FILE COPY

NBSIR 76-850

DO NOT REMOVE

LIQUID HELIUM STORAGE AT HIGH DENSITY AND DISCHARGE AT HIGH FLOW RATES

TECH MTF 5

David E. Daney

Cryogenics Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302

December 1976

Prepared for: Air Force Weapons Laboratory Kirtland Air Force Base Albuquerque, New Mexico 87117

.

NBSIR 76-850

LIQUID HELIUM STORAGE AT HIGH DENSITY AND DISCHARGE AT HIGH FLOW RATES

David E. Daney

Cryogenics Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302

December 1976

Prepared for: Air Force Weapons Laboratory Kirtland Air Force Base Albuquerque, New Mexico 87117

U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary Edward O. Vetter, Under Secretary Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

CONTENTS

	I	'age
1.	INTRODUCTION	1
2.	ANALYSIS	4
	2.1. Fill Process	4
	2.2. Pressurization - Discharge Process	5
	2.3. Mixing	5
3.	EXPERIMENTAL SYSTEM	6
	3.1. Fill System	8
	3.2. Test Dewar	14
	3.3. Discharge System	14
	3.4. Instrumentation	17
4.	RESULTS AND DISCUSSION	20
	4.1. Fill Process	22
	4.2. Discharge Process	23
5.	SUMMARY AND CONCLUSIONS	33
6.	ACKNOWLEDGEMENTS	36
7.	NOMENCLATURE	36
8.	REFERENCES	37
APPE	NDIX Discharge Data for Experiment 6	38

ABSTRACT

Equipment to store supercritical helium at high density and to demonstrate pulsed discharge at high flow rates has been designed, fabricated and successfully tested. A storage density of 0.193 x 10^3 kg/m³ (12.03 lb/ft³) at 8.3 MPa (81 atm) was achieved in a 135 liter (35 gal) dewar. Pulsed discharges of 2/ seconds and 4 seconds duration were demonstrated at a flow rate of 1.0 kg/s (2.2 lb/s), and flow fluctuations of less than ± 1 percent were achieved without feedback control. In general, the system operated in a very stable and well behaved manner.

Key words: Cryogenic helium supply system; cryogenic storage; helium; helium supply system; high density helium storage; liquid helium storage; supercritical helium.

1. INTRODUCTION

The Air Force Weapons Laboratory has developed a requirement for bulk storage and discharge of cryogenic helium at densities and flow rates significantly in excess of previous applications. They require densities approaching $0.2 \times 10^3 \text{ kg/m}^3$ (12.5 lb/ft³) and pulsed flow rates of several kg/s. By comparison, the Apollo Lunar Module Helium Storage System has a fill density of $0.13 \times 10^3 \text{ kg/m}^3$ (8.1 lb/ft³) and a discharge rate of 0.04 kg/s(0.09 lb/s)[1]. In order to demonstrate the practical feasibility of a system meeting these requirements, the NBS Cryogenics Division was asked to design, build, and test a system to:

- Store helium in a dewar at a density approaching 0.2 x 10³ kg/m³ (12.5 lb/ft³) with a pressure less than 10.3 MPa (102 atm), and
- discharge helium in pulses of 2 seconds or more and at a flow rate of at least 1.0 kg/s (2.2 lb/s) at greater than 3.5 MPa (35 atm) pressure.

In addition to these specific objectives, more general goals were to demonstrate a relatively large field-type system, measure the operating parameters of this system, and identify possible problems the system might have. Thus the task was to go from concept to practice, providing design information such as dewar fill time, agreement with equilibrium thermodynamic calculations, temperature stratification, mixing of the pressurant entrance jet, practical fluid supply temperatures, and blower requirements and performance. The laying to rest of potential problems that fail to occur is also an important result of the study.

The principal constraint on the project was that the results were required within seven months. Consequently, existing equipment was employed whenever possible, necessitating some design compromises. For example, the use of an Appolo oxygen dewar for the test vessel restricted the maximum fill pressure to 8 MPa (81 atm) and resulted in some crowding in the dewar neck.

The method of filling the test dewar is shown schematically in figure 1. The dewar is first filled with boiling-point liquid helium, after which it is pressurized with cold helium to the final fill pressure. Starting at ambient temperature, this helium is cooled to 80 K (144° R) in the precooler and then to about 4.5 K (8.1° R) in the subcooler before it enters the test dewar. The heat of compression of the helium in the dewar is removed by the test dewar cooler. Because of the relatively high compressibility of liquid helium, fill densities 60% greater than normal-boiling-point-liquid density can be obtained at 10 MPa (100 atm) pressure by this method.

The discharge system, figure 2, achieves a constant mass flow rate by maintaining constant pressure and temperature at the discharge nozzle during flow. Self pressurization of the dewar is accomplished by the blower-heat-exchanger loop in the upper portion of the figure. Cold fluid is drawn from the bottom of the dewar, warmed to ambient temperature, and returned to the top of the dewar. Temperature stratification results, and as fluid is drawn from the dewar, a warm zone propagates towards the bottom.

Demonstrations of the completed system were highly successful and indicated that the desired storage densities and discharge rates are indeed practical and require no technical

Figure 1. Fill system schematic.

Discharge system schematic.

Figure 2.

advances - only careful application of the existing state of the art. In the 135 liter (35 gal.) test dewar a density of $0.193 \times 10^3 \text{ kg/m}^3$ (12.03 lb/ft³) was achieved at 8.2 MPa (81 atm), the maximum dewar operating pressure. Although lower than the $0.2 \times 10^3 \text{ kg/m}^3$ (12.5 lb/ft³) goal, extrapolation of the density-pressure fill curve gives the goal density at the 10 MPa (102 atm) pressure limit. Discharge rates of 1 kg/s with a variability of less than $\pm 1\%$ were achieved without feedback control; and in general, the system operated in a very stable and well-behaved manner.

2. ANALYSIS

Several system processes merit careful analysis, viz., the fill process, the pressurization-discharge process, and mixing of the temperature stratified contents of the dewar. Whereas analysis of the first two processes is necessary for the design of the fill and discharge systems, the last process is important in considering field applications in which sudden changes in dewar orientation might occur.

2.1 Fill Process

Consider the open system shown below.

$$\Delta E = Q - W + h_i \Delta m_i.$$
 (1)

Noting that the shaft work, W, is zero, and expanding the internal energy term gives

$$n_2 u_2 - m_1 u_1 = Q + h_i \Delta m_i,$$
 (2)

where subscripts 1 and 2 refer to the initial and final states, respectively. Now

 $\Delta m_i = m_2 - m_1,$

so that eq. (2) becomes

$$u_{2} = \frac{m_{1}}{m_{2}} u_{1} + \frac{Q}{m_{2}} + h_{1} \left(1 - \frac{m_{1}}{m_{2}}\right).$$
(3)

Using the definition of density

$$\rho = \frac{m}{V}$$

gives

$$\frac{m_1}{m_2} = \frac{\rho_1}{\rho_2}$$

and eq. (3) becomes

$$u_{2} = \frac{\rho_{1}}{\rho_{2}} u_{1} + \frac{\rho_{1}}{\rho_{2}} \frac{\rho_{0}}{\rho_{1}} \frac{Q}{m_{0}} + h_{1}(1 - \frac{\rho_{1}}{\rho_{2}}).$$
(4)

Absence of a simple equation of state requires that eq. (4) be solved by iteration since ρ_2 appears on the right hand side and is unknown. The helium thermodynamic property programs of McCarty [2] and Arp [3] were used in the numerical solution of eq. (4).

2.2 Pressurization - Discharge Process

During the discharge from the dewar we achieved constant discharge mass flow rate by maintaining the dewar pressure constant. This condition requires that the volume flow rate of the pressurant gas be equal to the volume flow rate of the fluid leaving the dewar. This intuitively obvious statement is easily demonstrated by considering a control volume of fixed dimensions moving along a column of temperature stratified fluid. The motion of the control volume does not affect the pressure in the column (neglecting the hydrostatic effect), and the fixed dimensions require equal volumes entering and leaving. When we consider that a portion of the discharged stream is recirculated as pressurant, we obtain

$$\hat{\mathbf{m}}_{i} = \frac{\rho_{i}/\rho_{0}}{1 - (\rho_{i}/\rho_{0})} \cdot \hat{\mathbf{m}}_{o}$$
(5)

for the pressurant mass flow rate, where the subscript i refers to the warm pressurant, and the subscript 0 refers to the cold discharge fluid.

2.3 Mixing

In some field applications sudden changes in dewar orientation might occur, and it is important to know what changes in dewar pressure could result from the consequent mixing of the temperature-stratified contents. If a sudden pressure rise were to occur, rupture of the dewar might result. A large pressure decline could temporarily reduce the discharge capacity of the system. Let us consider a system initially divided into n subsystems, each one of which is internally in a state of stable equilibrium, and which is in thermal isolation from its neighbors and the surroundings. Pressure equilibrium is assumed.

Let mixing or thermal equilibrium of the total system occur. During this process there is no external work, heat transfer with the surroundings, or mass flow; so the first law of thermodynamics becomes

$$\Delta U = 0$$

The mean specific internal energy is given by

$$\overline{\mathbf{u}} = \frac{\Sigma \mathbf{u}_{\mathbf{i}} \mathbf{m}_{\mathbf{i}}}{\mathbf{m}} = \frac{\Sigma_{\mathbf{i}} \mathbf{u}_{\mathbf{i}} \mathbf{\rho}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}}{\Sigma_{\mathbf{i}} \mathbf{\rho}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}}$$
(6)

where X_i is a volume fraction.

The mean density of the fluid in the dewar is given by

$$\overline{\rho} = \Sigma_1 \rho_i X_i.$$
 (7)

Equations (6) and (7) define the initial and, for this process, the final state of the fluid in the dewar. The final pressure is then obtained by iteration for the state ρ , \overline{u} .

3. EXPERIMENTAL SYSTEM

The experimental system, figure 3, is comprised of three subsystems: the fill system, the test dewar, and the discharge system.

In the fill system, a single fill line serves the dewar. Liquid transfer occurs with valve V-23 open, and supercritical fluid transfer with V-23 closed. The test dewar is initially filled with liquid helium, via V-23, the vent valve V-34 is closed (along with V-23), and the dewar is then pressurized and filled with supercritical helium ($T \approx 4.5 \text{ K}$) from the subcooler. Continuous transfer from the helium supply dewar to the subcooler occurs during this fill operation. High pressure (16 MPa, 160 atm) helium gas, supplied from a 1100 std. m³ (40,000 scf) tube trailer, passes through a molecular sieve purifier and then to a dome-loaded pressure regulating valve which controls the pressure and flow rate. Passing to the precooler, the helium is then cooled to near 80 K (144°R) by helium and nitrogen boil-off gas i.1 the three-pass counter flow heat exchange of the precooler. Cooling to 80 K (144° R)

occurs in the coil immersed in liquid nitrogen (LN_2) , and trace impurities are removed in the charcoal purifier. Further cooling to near 5 K (9°R) by the helium boil-off gas then occurs in the two-pass counter flow heat exchanger, which is vacuum and multilayer insulated. After passing through a vacuum-insulated transfer line to the subcooler, the final temperature of 4.5 K is achieved in the liquid helium cooled coil. Finally, the stream passes through a second transfer line (vacuum insulated and vapor shielded) to the test dewar.

The test dewar cooler is supplied with liquid helium drawn from the subcooler and throttled through valve V-24. The cooler boil-off stream is split as it emerges from the dewar with one stream cooling shields on the transfer line and subcooler. The other stream cools an antipercolation line in the Apollo dewar, which was originally thought to be a shield line.

The discharge system is composed of the main heat exchanger, the blower heat exchanger and the blower. Pulsed, constant flow rate discharges of 1 kg/s are achieved by simultaneously starting the blower and opening valves V-31 and V-32 (V-33 is open except during filling). The blower and its associated heat exchanger provide the high flow rate of pressurant gas required to maintain constant pressure in the test dewar during the discharge. Regulation of the discharge rate is achieved by the fixed diameter discharge nozzle. By supplying this nozzle with gas of a relatively constant temperature and pressure, the desired fixed flow rate is achieved. Discharge flow measurement is achieved by simply measuring the temperature and pressure at the inlet to this sonic nozzle.

General views of the apparatus are given in figures 4 and 5, and figure 6 shows details near the test dewar. Operation of the test dewar at high pressures required installation of the equipment behind a protective concrete wall and operation by remote control when pressurized. The main control panel, located in an adjacent trailer, is shown in figure 7.

3.1 Fill System

The heat exchanger type fill system was chosen because it appeared to pose the fewest problems for development of a working system in the short time allowed. A system employing a high pressure reciprocating liquid helium pump would offer superior helium supply logistics because only a liquid helium supply would be required, but this system would require development of a pump.

Figure 8 gives a view of the fill system with the precooler dewar, subcooler vacuum can, and subcooler radiation shield removed. Both counter-flow heat exchangers are located in the subcooler for convenience. The high temperature heat exchanger sits in the nitrogen vapor space uninsulated, whereas the low temperature heat exchanger has multilayer insulation in a vacuum jacket.

Both heat exchangers are fabricated from ribbon packed heat exchanger tubing with an active surface area (all channels) of $0.13 \text{ m}^2/\text{m}$ (4.2 ft²/ft) and a hydraulic diameter of $2.4 \times 10^{-3} \text{ m}$ (0.008 ft). Two parallel 1.0 meter lengths of tubing form the high temperature heat exchanger, and a single 1.0 meter length forms the low temperature heat exchanger. At the design flow rate of 11 g/s, the calculated number of transfer units (NTU) of the low temperature heat exchanger is 11. In practice, flow rates were limited to 5 g/s by the rate

Figure 4. General view of apparatus.

Figure 8. Partially assembled fill system.

Figure 7.

Main control panel.

of transfer from the liquid helium supply dewar to the subcooler pot, giving an estimated NTU of 24.

In the precooler, the liquid nitrogen-cooled coil consists of 3 meters (10 ft) of 9.5 mm (3/8-inch) 0.D. copper tubing. The subcooler coil is 10 meters (33 ft) of 9.5 mm (3/8-inch) 0.D. copper tubing, giving an estimated temperature difference between the bath and exit fluid of 0.1 K (0.2 R).

Gas-cooled radiation shields around the subcooler pot and fill line assure a low heat leak to the cold helium as it flows to the test dewar.

3.2 Test Dewar

The schedule did not allow time for fabrication of a dewar designed specifically for these tests. Instead, we modified an existing Apollo oxygen dewar by cutting off the bonnet and removing the neck plug and the dewar contents. Figure 9 shows the modified dewar, and Table 1 lists the characteristics of the dewar. The design pressure for this dewar is 7.2 MPa (1040 psi), but the operating pressure was extended for these tests to 8.3 MPa (1205 psi) by placing the equipment behind a protective barrier and operating it remotely.

Relatively large discharge (23.9 mm I.D.) and vent (16.6 mm I.D.) lines are required in order to achieve a low pressure drop in the blower circuit; otherwise, the blower head requirements would become excessive. The pressurant gas enters the dewar through the 31.8 mm (1-1/2 inch) I.D. x 44.5 mm (1-3/4 inch) 0.D. annular space between the discharge and the dewar neck. No significant disturbance of the thermal stratification by the pressurant entrance jet was observed with this arrangement.

The cooler, which is wrapped around the discharge tube, is formed from 6.35 mm (1/4 inch) 0.D. x 4 m (13 ft) long copper tubing. In these tests its cooling capacity was limited by the cooler flow rate rather than heat transfer capacity. The cooling rate based on the cooler flow rate is 10 watts, compared to a capacity of 88 watts calculated for a 0.5 K $(0.9^{\circ}R) \Delta T$.

3.3 Discharge System

The discharge heat exchanger represented the greatest problem in the design of the system because it must transfer 1.5 x 10⁶ watts in order to warm the 1 kg/s discharge flow to ambient temperature. Ambient temperature discharge was not a specific requirement of the tests, but this seemed the best way to overcome the problems of flow control and flow measurement, since cold discharge would be accompanied by problems of large temperature transients and non-ideal gas properties.

The pulsed nature of the discharges, with the opportunity for recovery in between, suggested that a hybrid thermal-regenerator-heat-exchanger might satisfy the requirements. During the discharge, heat is withdrawn from the heat exchanger wall at a rate limited primarily by the thermal diffusivity of the wall. Between discharges, the wall temperature recovers through heat exchange with water circulated through the jacket of the heat exchanger.

Figure 9. Test dewar assembly.

Table 1. Apollo oxygen tank chara	cteristics [4].
Material	Inconel 718
Ultimate strength, MPa (psi)	1240 (180,000)
Yield strength, MPa (psi)	1000 (145,000)
Youngs' modulus, MPa (psi)	21×10^4 (30 × 10 ⁶)
Safety factors (Apollo use) Ultimate	1.5
Yield	1.33
Safety factors (these tests) Ultimate	1.29
Yield	1.15
Pressure-vessel diameter, mm (in)	636.5 (25.06)
Pressure-vessel thickness, mm (in)	1.50 (.059)
Outer-shell diameter, mm (in)	0.51 (0.020)
Operating pressure	
(these tests), MPA (psi)	8.31 (1205)
Proof pressure, MPa (psi)	9.36 (1357)
Burst pressure, MPa (psi)	10.55 (1530)
Tank volume (measured) m^3 (ft ³)	0.1349 (4.76)
Tank weight before modification, kg (1b)	41 (91)

Figure 10 is a view of a short version of the partially assembled heat exchanger, before assembly of the water jacket and header cap. The heat exchanger used in the tests consisted of 19 tubes 12.7 mm (0.50 inches) I.D. x 25.4 mm (1.00 inches) O.D. x 3.7 m (12 ft) long of type 6061 aluminum welded into a header, and surrounded by a water jacket. The weight of the tubes is 72 kg (158 lbs) giving an ambient temperature heat capacity of 6.5 $(10)^4$ j/K. Typical decay rates of the exit temperature were 20 K/s. The construction of the blower heat exchanger is similar to that of the main heat exchanger, except it is smaller because it handles only 5 percent of the flow. It uses 3 aluminum tubes 12.7 mm (0.50 inches) I.D. x 25.4 mm 0.D. x 1.8 m (6 ft) long.

The blower, which was subcontracted, was designed for the following conditions:

Gas	Helium
Inlet pressure	5.2 MPa (750 psi)
Inlet temperature	294 K (70°F)
Mass flow rate	0.05 kg/s (0.11 1b/s
Volume flow rate	6.2 l/s (13.2 CFM)
Pressure rise	69 kPa (10 psi)
Housing design pressure	8.6 MPa (1250 psi)

It is a partial admission blower with a 180 mm (4.25 inch) diameter impeller (5 straight vanes) attached directly to the motor shaft. The motor and impeller are enclosed in a single high-pressure housing, eliminating the need for a high-pressure rotating shaft seal, and part of the inlet flow cools the motor windings. Use of a universal motor in combination with a variable voltage dc power supply allows control of the blower over a wide range of operating conditions.* Typical test operating conditions were:

Inlet pressure	4.1 MPa (610 psi)
Developed pressure	38 kPa (5.6 psi)
Mass flow rate	0.048 kg/s (0.106 lb/s)
Volume flow rate	7.55 %/s (16 CFM)
Speed	19,800 rpm
Input power	1.56 kW

The blower was operated at much lower speed if it was desired to build pressure in the dewar between discharges, because the normal operating speed gave the rather high pressure rise rate of 0.2 MPa/s (30 psi/s).

The discharge system piping is uninsulated and uses type 304 stainless steel pipe of the following sizes:

dewar to main heat exchanger - 1-1/4 inch nominal (schedule 10)
main heat exchanger to discharge nozzle - 1-1/2 inch nominal (schedule 10)
blower circuit - 1 inch nominal (schedule 10).

3.4 Instrumentation

Data acquisition and reduction were accomplished with a minicomputer system using the following instrumentation:

*The brush life is probably short in the dry helium atmosphere.

Figure 11. View of disassembled blower.

Temperature at bottom of test dewar (T_0) - germanium resistance thermometer, Estimated total error + 0.02 K (0.04°R).

Temperature at nine dewar locations - gold (0.07 at. percent iron)

vs. chromel (type KP) differential thermocouples referenced to

T . Estimated total error \pm 0.05 K (0.09°R) or \pm 1 percent of measured ΔT .

Temperature at dewar inlet - germanium resistance thermometer (shorted out and did not function)

Dewar pressure - variable reluctance pressure transducer. Estimated total error + 0.1 MPa (1 atm)

Discharge nozzle temperature - copper-constantan thermocouple

referenced to ice bath. Estimated total error \pm 1 K (1.8 °R).

Discharge nozzle pressure - variable reluctance pressure transducer.

Estimated total error <u>+</u> 0.1 MPa (1 atm).

Blower developed pressure - variable reluctance pressure transducer. Estimated total error + 2 percent.

Blower venturi △P - variable reluctance pressure transducer. Estimated total error + 2 percent.

Blower venturi temperature - copper-constantan thermocouple referenced

to ice bath. Estimated total error ± 1 K (1.8°R).

Blower speed - magnetic shaft pick up. Estimated total error + 3 percent.

The total error in the discharge and blower flows is estimated to be about ± 3 percent. In addition to the pressure transducer, a bourdon tube pressure gauge with an accuracy of \pm 50 kPa (0.5 atm) was used to measure the test dewar pressure.

Liquid level in the test dewar and subcooler were indicated with superconducting liquid level sensors since knowledge of these levels is necessary for operation of the apparatus.

The primary method of density determination was by measurement of the dewar pressure and temperature. The average bulk density was calculated using equation (7) and using volume weighting factors based on horizontal segments. In the first experiment (before the discharge piping was attached), mass determination was also attempted with a load cell, but the suspension system was inadequate for the thermal and pressure stresses of the fill piping. A mass balance of the gas supplied from the tube trailer gave agreement to within 1/2 percent of the density calculated from the pressure and the volume average temperature -- well within the accuracy of the calculation.

4. RESULTS AND DISCUSSION

Six tests, which are summarized in table 2, were made with the system. Except for fill system oscillation problems, which were eliminated, the system operated in a well behaved manner, and no other problems were encountered.

After attachment of the discharge system to the test dewar between tests 1 and 2 (with V-31 adjacent to the discharge nozzle and V-32 and V-33 absent), pressure oscillations with a frequency near 1/2 Hz occurred when liquid fill was attempted. The severity of these oscillations

Test No.	Comment	ressurization Time	Final Pressure	Final Density	Total Discharge Time	Duration of Discharge Tests
		Minutes	MPa (atm)	kg/m ³ (lb/ft ³)	м	Minutes
-	Discharge system not attached.	28	6.8 (67)	0.185 × 10 ³ (11.54)	1	-
5	Discharge system attached. Severe flow oscillations prevented filling of dewar with liquid helium.					
m	Discharge valve moved to upstream side of heat ex- changer, oscillation ampli tude greatly reduced, but not eliminated.	56	5.0 (49)	0.170 × 10 ³ (10.61)	12	1
4	Addition of valve V-33 completely eliminated vent oscillation during fillings.	22	6.7 (66)	0.184 x 10 ³ (11.48)	16	80
ц		24	6.7 (66)	0.184 × 10 ³ (11.45)	18	114
9	Lower fill rate used to achieve maximum density.	46	8.2 (81)	0.193×10^{3} (12.03)	18	78

Table 2. Summary of experiments.

was such that no liquid could be accumulated in the dewar because of the concomitant heat input.

Pressure oscillations within helium systems are relatively common, but they are generally the thermal-acoustic (thistle tube) variety which occur in gauge lines, etc., and which have frequencies measured in ten's of hertz [5,6]. In contrast, these oscillations are believed to result from the addition to the vent and discharge lines of a large volume (about 30 liters), which acted as a soft pneumatic spring. With this configuration, a negative vent pressure perturbation moves cold fluid to a warmer region where heating and expansion occur, resulting in a pressure rise and motion of warm fluid towards the cold region.

One solution to the problem consists of increasing the spring constant of the attached volume (decreasing its volume). Thus, the first corrective action taken was to eliminate the heat exchanger volumes from the discharge side of the dewar by moving discharge valve V-31 to the position shown in figure 3, and to add V-32 to the system. These changes greatly reduced the oscillation problem, permitting filling during test number 3, but mild oscillations still occurred. Complete elimination of the oscillations was accomplished with the installation of V-33, which isolates the blower and blower heat exchanger from the vent line.

4.1 Fill Process

Densities attained during the tests are shown in figure 12. Extrapolation of the results for experiment number 6 indicates that the goal of 0.20 x 10^3 kg/m^3 (12.5 lbs/ft³) is closely approached at the upper pressure limit of 10.3 MPa (102 atm). Restriction of the test dewar working pressure, however, limited the maximum density to 0.193 x 10^3 kg/m^3 (12.04 lb/ft³) at a pressure of 8.2 MPa (81 atm). The densities were determined from the measured temperature profile and pressure and have an estimated total uncertainty of ± 1 percent -- about half of which is due to the uncertainty in the thermodynamic properties.

Fill experiments 1, 4, and 5 were run with an initial liquid-fill temperature of 4.1 K $(7.4^{\circ}R)$, an estimated helium supply temperature of 4.5 K (8.1^{\circ}R), and a net cooling rate of 5 watts (17 BTu/hr) (equivalent to 7.5 J/kg·atm for a 30 minute fill at 67 atm). The inlet line thermometer was shorted out, but the measured subcooler pot pressure indicates a temperature of about 4.4 K (7.9^{\circ}R) for the subcooler liquid. Allowance for a 0.1 K (0.2^{\circ}R) ΔT between the liquid bath and the exit fluid results in the 4.5 K (8.1^{\circ}R) supply temperature given above. The net cooling rate of 5 watts (17 BTu/hr) is based on measured cooler flow rate of 0.5 g/s (0.011 lb/s) (giving a cooling rate of 10 watts assuming use of the latent heat only) and a heat leak of 5 watts (determined from the boil-off rate). The estimated uncertainty in the cooling rate is about 3 watts (10 BTu/hr).

Experiment 6 was run with a reduced fill temperature, 4.3 K (7.7 °R) and increased cooling, 12.5 J/kg·atm. The resulting one percent increase in density, at the same pressure, is apparent in figure 12. These conditions were achieved by filling at a reduced rate and precooling the dewar a day before the experiments. The reduced fill rate resulted in a lower subcooler pressure and temperature, and it increased the cooling time per unit mass. Precooling the dewar reduced the heat leak to the steady state value rather than the higher initial values exhibited by dewars with warm insulation.

The analytical curve in figure 12 was obtained using the method described in section 2.1. The excellent agreement with the experimental data is partly fortuitous because of the estimated 5 percent uncertainty in the specific heat of helium in the region of concern. The agreement does indicate, however, that the actual fill process can be modeled rather well by a thermodynamic analysis that assumes continuous mixing (thermal equilibrium) of the tank contents.

The calculated effect of the amount of dewar cooling is illustrated in figure 13. Higher liquid-fill and supply temperatures are satisfactory for high density storage, given sufficient dewar cooling.

Figure 14 shows the dewar temperature profile during the fill process. The temperatures are measured along a vertical line displaced 49 mm (1.9 inches) from the vertical axis. Because previous studies [7,8] have demonstrated the virtual absence of horizontal temperature gradients (except in a thin wall boundary layer) during natural convection within vessels, a single vertical temperature profile is sufficient to characterize the dewar contents.

Approximately 400 liters (100 gal) of liquid helium were required for cooldown of the fill system and test dewar, fill of the dewar to final density, and supply of the cooler. This compares to an equivalent of 200 liters (50 gal) of helium stored in the 135 liter (35 gal) test dewar. Fill times varied somewhat, but times as short as the following were observed:

dewar cool down (dewar precooled to near 100	0 K)	6	minutes
Liquid fill		20	minutes
Supercritical fill		22	minutes
	total	48	minutes

4.2 Discharge Process

Figures 15 through 18 are typical traces of the discharge nozzle pressure and flow rate. Mass flow variations of less than \pm 1 percent were attained with fixed nozzle size and blower supply voltage, i.e., without feedback control. A slow decay of the nozzle pressure compensates for the 20 K/s (36°F/s) decay in the nozzle temperature. A 0.1 second pressure rise time and the large flow decay tail are characteristics of this particular heat exchanger-valve arrangement and should not be considered unalterable. Placement of the discharge valve next to the discharge nozzle could reduce transient times to near valve response times. Valves in the positions of V-31, V-32 and V-33 would still be required to prevent fill oscillations.

The blower performance, figure 19, exhibits some modulation. Part of this may be instrument noise, but the congruence of part of the wave forms suggests that some of the modulation may be real. The small pressure dips in figures 15 and 17 suggest that pressure waves may be present in the system which effect the blower behavior and pressure and flow instrumentation.

The vertical temperature distribution in the dewar is shown in figure 20 as a function of the fraction of the initial mass which is left in the dewar. Although there is no liquid level, the region of steep temperature gradient (40 to 80 K) is somewhat analogous to one. When warm fluid reaches the discharge line inlet, the dewar may be considered empty since the

Figure 12. Experimental fill densities.

PRESSURE, atm

BULK DENSITY, kg/m³x10³

BULK DENSITY, kg/m³x10³

Figure 14. Dewar temperature profile during filling.

Mass flow during two successive two second discharges. Figure 16.

PRESSURE, atm

Blower performance during a four second discharge. Figure 19.

SPEED, RPM×10⁻³

D/x 'NOILISOd

Dewar temperature profile as a function of mass remaining in the dewar. Figure 20.

blower can no longer maintain the dewar pressure during discharge. The downward progression of the warm zone, which should not be confused with thermal diffusion, is simply the result of withdrawal of cold fluid from the bottom and its replacement by warm fluid at the top. Heat transfer with the discharge tube and mixing in the ullage reduce the temperature of the pressurant from ambient (285 K) to the values indicated in figure 20.

The temperature of the fluid entering the discharge tube, figure 21, varies with the amount of fluid discharged. Although the density of the discharge fluid decreased by over 30 percent during the course of the discharges, the blower flow required to maintain constant mass discharge was invarient until the discharge temperature exceeded 16 K. This apparent contradiction with the requirement established in section 2.2 is reconciled by noting that the temperature at the top of the dewar gradually increased as the dewar was emptied. Thus the system is self-compensating.

When the dewar is considered empty (unable to supply flow at specified conditions) is a somewhat arbitrary judgement, of course, which depends on the tolerances specified for discharge flow, discharge pressure, and blower flow. For fixed blower supply voltage, an initial fill density of $0.193 \times 10^3 \text{ kg/m}^3$ (12.03 lb/ft³), and a minimum acceptable discharge flow of 0.9 kg/s (2.0 lb/s), the dewar was empty with 11.8 percent of the initial mass remaining. If conditions of $0.2 \times 10^3 \text{ kg/m}^3$ (12.5 lb/ft³) initial density and 0.75 kg/s (1.65 lb/s) minimum flow are accepted, then only 8.6 percent of the initial mass remains. Increasing the blower flow could increase the remaining usable mass even further.

The problem of the pressure change that accompanies mixing of the dewar contents is studied by applying the analysis of section 2.3, using experimentally determined dewar temperature profiles. The results of these calculations, table 3, are for complete mixing, so in practice the pressure decay would always be less. Because the pressure falls upon mixing, there is no danger of dewar rupture due to sudden accidental mixing. The calculated pressure decays are modest enough that there would be little problem in maintaining pressure with the blower during the mixing process.

The original discharge process data for experiment 6 are given in the Appendix.

5. SUMMARY AND CONCLUSIONS

Equipment to store supercritical helium at high density and to demonstrate pulsed discharge at high flow rates has been designed, fabricated, and successfully demonstrated.

A storage density of 0.193 x 10^3 kg/m^3 (12.03 1b/ft³) at 8.3 MPa (81 atm) was achieved in a 135 liter (35 gal) dewar with an initial liquid fill temperature of 4.1 K (7.4°R) an estimated helium supply temperature of 4.3 K (7.8°R), and cooling of 12.5 J/kg·atm. The dewar used in these tests was limited to a maximum working pressure of 8.3 MPa (82 atm) but extrapolation of the experimental pressure-density curve indicates that the target density of 0.20 x 10^3 kg/m^3 (12.50 1b/ft³) could have been achieved at 10.3 MPa (102 atm).

Pulsed discharges of 2 s and 4 s duration, with 2 s pauses between discharges, were demonstrated at a flow rate of 1.0 kg/s (2.2 lb/s), and flow fluctuations of less than + 1 percent were achieved without feedback control.

Figure 21. Dewar discharge temperature.

Position, X/D	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
initial temperature, K initial pressure pressure after mixing	ا ا ا 2°	5.66 5.13 MPa 4.60 MPa	5.64 a (50.7 a (45.4	5.70 atm) atm)	5.79	6.08	6.37	8.22	75.26
initial temperature, K initial pressure pressure after mixing	6.02	6.23 5.39 MPa 4.13 MPa	6.55 a (53.2 a (40.8	7.25 atm) atm)	7.92	14.0	57.5	104.5	142.9
initial temperature, K initial pressure pressure after mixing	8.57 =	9.51 4.34 MPa 4.05 MPa	23.30 a (42.8 a (40.0	50.0 atm) atm)	94.6	126.0	142.6	152.2	155.3

Table 3. Calculated effect of mixing on dewar pressure.

The pressurant flow (blower flow) required to maintain dewar pressure during discharge was found to be 0.050 of the discharge flow rate for most of the range of discharge conditions. A reasonable estimate of the unusable fraction of the initial fill mass is taken to be about 10 percent.

In general, the system operated in a very stable and well behaved manner.

6. ACKNOWLEDGEMENTS

The author gratefully acknowledges the efforts of C. F. Sindt who contributed in several areas, particularly with the mini computer data acquisition system; and the efforts of L. M. Anderson whose exceptional craftsmanship and productivity were essential to the success of the project.

7. NOMENCLATURE

Е	total energy of a system
h	specific internal enthalpy
m	mass
NTU	number of heat exchanger transfer units [9]
Р	pressure
Q	heat transferred
Т	absolute temperature
U	total internal energy
u	specific internal energy
V	volume
W	work
x	volume fraction of a horizontal dewar segment
W	work volume fraction of a horizontal dewar segme

Greek

ρ density

- R. Haslett, G. R. Pinter, and P. Sanicola, Cryogenic helium pressurization system for the descent stage of the lunar excursion module (LEM), Bull.IIR Annexe 1966-5 (Meeting of Comm. 1, Boulder, CO, June 15-17, 1966) 415-422 (1966).
- 2. R. D. McCarty, Thermophysical properties of helium-4, Nat. Bur. Stand. (U.S.) Tech. Note 631 (1972).
- 3. V. Arp, New forms of state equations for helium, Cryogenics 14, 593 (1974).
- 4. M. L. Davis, R. K. Allgeier, Jr., T. G. Rogers, and G. Rysavy, The development of cryogenic storage systems for space flight, NASA SP 247 (1970).
- J. R. Clement and J. Gaffney, Thermal Oscillations in Low Temperature Apparatus, Advances in Cryogenic Engineering, K. D. Timmerhaus (ed.), 302-306, Plenum Press, New York (1960).
- J. D. Bannister, Spontaneous pressure oscillations in tubes connecting liquid helium reservoirs to 300 K environments, Bull. IIR Annexe 1966-5 (Meeting of Comm. 1, Boulder, CO, June 15-17, 1966) 127-135 (1966).
- 7. L. B. Evans, R. C. Reid, and E. M. Drake, Transient natural convection in a vertical cylinder, AIChE J. 14, 251-259 (1968).
- 8. D. E. Daney, Turbulent natural convection of liquid deuterium, hydrogen and nitrogen within enclosed vessels, Int. J. Heat Mass Transfer, 19, 431-441 (1976).
- 9. W. M. Rohsenow and H. Y. Choi, Heat, mass and momentum transfer, 341, Prentice-Hall, Englewood Cliffs, NJ (1961).

APPENDIX

Discharge Data for Experiment 6.

The position of the dewar thermometers is as follows:

Thermometer	Dimensionless distance from bottom of the dewar (X/D)
0	0.05
1	0.10
2	0.20
3	0.30
5	0.50
7	0.70
8	0.80
9	0.90

The computer printed times start at the beginning of each discharge cycle. 1 atm = $1.01325 (10)^5$ Pa.

0 1 2 2	=	5.44335 5.42035 5.90531	
5	=	6.2558 ⁸	Discharge No. 1 Time: O min.
7 9 9	=	5.21686 5.17046 5.31096	

DEWAR PRESS = 72.3058 ATM

TIME MIN SEC	DEWAR PP. ATM	NOZ PR. ATM	07 T.	MOZ FL. KG/SEC
0 : .008 0 : .193 0 : .376 0 : .559 0 : .732 0 : .906 0 : 1.03 0 : 1.254 0 : 1.438 0 : 1.622 0 : 1.806 0 : 1.99	72.2539 54.0211 61.1233 57.8465 55.1231 52.5035 50.6636 48.9173 47.4932 46.1626 44.9776 43.855	1.33667 58.8287 55.7951 52.5245 49.9459 47.8697 45.86 44.5517 43.1486 41.9447 40.7592 39.6979	299.438 253.689 255.185 252.539 249.743 247.293 244.526 242.173 239.943 237.89 235.899	4.70495-2 1.30945 1.34472 1.26981 1.21473 1.17153 1.1267 1.10302 1.0743 1.34071 1.02477 1.00302
BLOW DP ATM	RPM	BLOW FLOW KG/SEC	K BPOK GEAB	
-6.46118E-3 7.02976E-2 .139984 .171145 .20259 .207303 .193032 .191024 .192072 .178761 .176404 .175728	184.996 8389.97 10634.2 12257 12441.1 12832.4 12210.9 12694.3 13419.4 13350.3 12774.9 13097.1	6 7.03484E-3 0 2.53537E-2 2.4931E-2 2.69559E-2 2.75171E-2 2.67609E-2 2.89917E-2 2.44309E-2	274.755 273.325 272.069 267.515 263.055 260.837 268.537 273.576 274.713 275.147 275.5 275.647	
TIME	0:2.187			
DEWAR TEMP.	0 = 4.9369 1 = 5.1494 2 = 5.3721 3 = 5.3599 5 = 5.4268 8 = 5.6507 9 = 64.836	1 6 3 2 2 2		

DEWAR PRESS = 42,9558 ATM

TIMF	Ý :	.0	62	
DEWAR TEM	P. 0 1 2 3	= = =	5.32311 5.68217 5.56142 5.54082	
	5	=	5.78941	
	7 8 9	= =	6.37113 8.22243 75.2672	

DEWAR PRESS = 5%.674 ATM

TIME		DEWAR PR.	NOZ PR.	NOZ T.	NOZ FL.
MIN	SEC	ATM	ATM	· K	KG/SEC
0:	.008	50.7884	1.1244	293.359	.0427492
Ø :	.199	46.2458	42.8737	261.484	1.0274
Ø :	.382	45.6741	4] 044]	253.874	.999003
0 :	.555	45.1023	40.2193	253.09	.980826
0:	,726	44.7801	40.1529	249.27	.98553
0:	.898	44.4371	39,9349	247.079	.985802
0:	1.069	44,1356	39,641	244.467	.983994
0:	1.241	44.094	39,5083	241,936	985791
0 :	1.413	43.8851	39.423	239.448	088803
0:	1.585	43.6471	39,1101	236.733	.985722
0:	1.757	43.6159	39.058	234.231	.990684
Ø :	1.929	43.4184	38,949	231.695	.993558
0:	2.101	43.1221	38.7641	229.149	.994224
<i>6</i> :	2.273	43.1793	38.5935	226.674	.995325
6 :	2.447	42.8311	38.6172	224.121	1.00158
0 :	2.621	42.7687	38.347	221.526	1.00052
0 :	2.793	42.7011	38.3754	219.383	1.00513
0:	2.965	42.5036	38.2711	217.18	1.00853
0 :	3.137	42.3945	39.1147	215.147	1.00922
0 :	3.309	42.3841	38,1526	212.834	1.01568
0:	3.483	42.1865	37.963	211.02	1.01507
0:	3.655	42.2438	37.8161	200.284	1.01541
Ø :	3.829	42.1762	37.8957	297.454	1.02201

Discharge No. 2

Time: 7 min.

PLOV DP ATM	PP:	PLC FLOM KC/SPC	K BFOM dens
-1.129395-2 -7.755135-2 299346 361711 358919 365941 36457 367299 374291 364575 357522 374291 329423 372274 329423 372274 311711 357522 369315 339759 35991	1056.66 13361.9 16054.1 17493.5 17731.2 19494.3 19430.5 19635.7 18741.9 194713.4 19552.3 10555.9 19207 19115.2 10655.9 19207 19217 19217 19217 19217 19217 1929.1 1929.1 1927.1	0 3.9805E-2 4.73679F-2 4.9554°E-2 4.93561F-2 5.00575F-2 4.93505E-2 4.92336E-2 5.0477F-2 4.96770F-2 4.96770F-2 4.96770F-2 4.92374]F-2 5.12°24F-2 4.97239E-2 4.95197F-2 4.95197F-2 5.12°24F-2 4.95428E-2 5.13417E-2	275.379 275.493 277.034 279.737 279.357 279.552 279.729 279.745 279.717 270.595 279.513 270.513 270.302 279.341 279.224 279.341 279.224 279.141 279.9043 279.9043 279.9043
TITT	9 : 4.014		
DPHAR IENS.	<pre>3 = 5.28814 1 = 5.4116 2 = 5.52936 3 = 5.43478</pre>		
	5 = 5.94854		
	7 = 55.3814 8 = 91.9946 9 = 114.574		
DEWAP PESS	= 42.1138 NT	1	
THE	9 • 602		

Denne 15 F.	= 5.95459 $1 = 5.22044$ $2 = 5.23559$ $2 = 5.23559$		Diasham	
	5 = 7.02540		Discharg	ye NO. 3
	$\mathbf{D} = \mathbf{F} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} T$		Tue die	shangos in succession
	$\begin{array}{rcl} 7 &=& 57.47.4\\ 8 &=& 104.3\\ 9 &=& 142.98\\ 10 &=& 3.782690 \end{array}$	E - 2 8		
AP PPESS	= 53.2104 AT*			
TINE IC SEC	DSWAR PF. Atm		ど い ス 生。 ズ	MOZ PL. KG/SEC
0 : .193 0 : .379 0 : .549 0 : .72 0 : .991 1 : .925 0 : 1.235 0 : 1.467 0 : 1.579 0 : 1.751 0 : 1.923	53.3351 49.4256 47.9298 47.5283 47.5555 47.3165 45.9734 45.9842 46.7344 45.4121 45.3899	1. J0519 45.0352 43.471 42.9116 42.5764 42.286 42.286 42.286 42.286 42.286 41.9M25 41.7551 41.537 41.2526	289.95 253.399 254.093 251.193 247.933 244.545 241.993 238.991 235.451 233.695 233.89 233.89 233.89	.042583 1.07434 1.05651 1.04933 J.04798 1.05041 1.05382 1.95439 1.05993 1.05993 1.05993
RLUN DP At	RPX	PLON PLO NG /S EC	erok Irab K	
012801 3.97958-2 .347746 .331263 .389643 .329543 .388246 .388246 .385229 .383246 .389246 .389246 .389246	-1.05772 13731 15599.4 18124 19483.3 18609.9 18356.7 18505.3 19595.3 17855.3 19892 18425.7	0 - 028797 - 033925 4.793068-2 5.119798-2 5.23088-2 .0504692 5.312630-2 5.12630-2 5.157370-2 5.650560-2 5.209918-2 5.129138-2	279.155 276.047 277.705 279.749 289.043 280.003 280.003 279.936 279.824 279.741 279.58	
$\mathfrak{P}\mathbf{I} \approx \mathfrak{P}$	e : 2.148			
ORNAP Troop.	= 5.76.22 1 = 5.29144 2 = 5.51997 3 = 5.65226 5 = 9.93322 7 = 110.293 9 = 123.646 9 = 131.255			
UBLAR PRESS	= 25.2042 Am	42		

TIME	DEWAR PR.	NOZ PR.	NOZ T.	NOZ FL.
MIN SEC	ATM	ATM	K	KG/SEC
0 : 4.019 0 : 4.373 0 : 4.557 0 : 4.729 0 : 4.901 1 : 5.073 0 : 5.245 0 : 5.589 0 : 5.761 0 : 5.933	50.4973	1.1007	248.741	4.5843°E-2
	47.0556	25.2692	264.072	.610249
	45.5182	40.4184	223.308	1.04925
	44.9049	39.9823	217.404	1.05215
	44.5618	39.9823	213.72	1.06118
	44.2604	39.6315	210.977	1.05887
	44.3539	39.3566	208.58	1.05953
	44.2188	39.2286	206.538	1.05953
	43.9277	38.9964	204.46	1.05872
	44.0169	38.7783	202.407	1.05824
	43.9173	38.7025	200.6	1.06096
	43.5847	38.5271	198.364	1.06085
BLOW DP ATM	RPM	BLOW FLOW KG/SEC	BLOW TEMP K	
1.42003E-2	4315.83	0	280.558	
1.33093	13269.7	4.54925E-2	269.4	
.295942	15744.1	2.95339E-2	274.834	
.371487	17240.3	4.13965E-2	278.047	
.370091	17896.3	5.08907E-2	278.906	
.357522	18529.3	4.93848E-2	279.16	
.37847	18471.7	5.18936E-2	279.032	
.334057	18575.3	.0522382	278.868	
.372834	18333.6	5.09584E-2	278.637	
.372884	18863.1	5.11827E-2	278.452	
.372884	19035.7	5.15336E-2	278.348	
.377074	18161	5.33397E-2	278.154	
TIME	ð : 5.118			
DEWAR TEMP.	0 = 6.06584 $1 = 6.19913$ $2 = 6.82733$ $3 = 7.14755$ $5 = 30.3794$			

-		
7	=	141.838
8	=	135.834
α	=	140 88

DEWAR PRESS = 43.7342 ATM

ДТų́ь.	0 : .002			
DEWAR TEMP.	0 = 7.45087 $1 = 7.3611$ $2 = 8.0878$ $3 = 8.82136$ $5 = 37.0511$ $7 = 113.824$ $8 = 137.06$ $9 = 153.162$		Discharge No Time: 60 mi Three discha the discharg open for the	. 4 n. rges in succession e valve failed to third discharge.
DEWAR PRESS	= 51.5784 AT	*A(
TIME MIN SEC	DEWAE PP. ATM	NO7 PR. ATM	NOZ T. K	NOZ PL. Kg/Sec
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51.4952 48.7925 48.0951 47.6699 47.5244 47.1709 46.7551 46.7967 45.5265 46.225 46.2146 46.0379	.7449 43.2719 42.7126 42.1438 41.9352 41.812 41.537 41.3569 41.2526 41.0535 40.8165 40.5933	289.463 265.231 255.287 252.457 249.463 246.447 243.585 246.788 239.246 235.548 232.977 230.791	3.45418E-2 1.02941 1.03595 1.02913 1.02926 1.03255 1.0319 1.03346 1.93539 1.03737 1.03717 1.03999
SLOW DP ATM	RP1	RC/SEC STOM BTOM	BLOW TEMP K	
-3.45596E-3 .189322 .325793 .371487 .391439 .389643 .399419 .384057 .409195 .392436 .396626 .402212	736.523 13707.1 16056.4 17205.8 17712.2 17723.7 19162.3 17815.7 18103.5 1916.2 19415.5 18863.1	0 1.68049E-2 3.60837E-2 4.4797E-2 4.94394E-2 5.08413E-2 5.10008E-2 5.10564E-2 5.14975E-2 .0508002 5.17533E-2 5.12581E-2	278.876 277.236 278.014 279.327 279.752 279.965 279.976 279.864 279.794 279.794 279.626 279.491	

44

.

J. I vi E	0:2.142			
DEMAR TEMP.	$\begin{array}{rcrrr} 0 &=& 7.42205\\ 1 &=& 7.71662\\ 2 &=& 8.52024\\ 3 &=& 0.35559\\ 5 &=& 67.779\\ 7 &=& 125.782\\ 8 &=& 140.271\\ 9 &=& 151.811 \end{array}$			·
DEWAR PRESS	= 45.7676 ATM			
TIME MIM SEC	DEMAR PP. ATM	EDZ PF. At ^{as}	MOZ T.	NOZ EL. Kg/sec
0 : 4.02 0 : 4.194 0 : 4.37 0 : 4.554 0 : 4.726 0 : 4.893 0 : 5.07 0 : 5.242 0 : 5.414 0 : 5.586 0 : 5.758 0 : 5.93	$\begin{array}{r} 48.6054\\ 46.3407\\ 44.8217\\ 44.8217\\ 44.3643\\ 44.1356\\ 44.1356\\ 44.1356\\ 43.803\\ 43.5847\\ 43.5159\\ 43.5159\\ 43.6159\\ 43.664\\ 43.6365\\ 43.1273\end{array}$	-1.45522 19.23%2 39.607% 39.389% 39.0058 38.8779 38.7925 38.5413 39.347 38.232% 39.0341 37.8824	248.167 277.225 226.167 219.04 216.012 213.052 211.446 209.290 207 204.025 202.955 201.3	-].592]9F-2 .434779 1.6221 1.93797 1.62236 1.63189 1.03575 1.03444 1.3503 1.63989 1.63989 1.63694 1.3713
BLOW DP ATM	RPM	PLOK FLOM	K BPO‰ le⊲b	
1.67043E-2 1.55438 .306591 .385453 .38246 .392436 .379867 .389643 .392436 .372884 .391039 .392436	6732.69 12487.1 16975.6 17677.6 18322.1 17597.1 18425.7 19391 18241.6 19588.2 18609.9 17999.9	0 6.52744E-2 2.73974E-2 4.32599F-2 4.92951E-2 .0485952 4.87197E-2 5.10914E-2 5.14985E-2 4.95205E-2 4.95205E-2 4.95265E-2 4.97297E-2	280.515 266.422 275.267 278.282 279.005 270.144 270.068 278.043 278.435 278.495 278.364 278.222	
TI'IE	^a : 5.115			
DENAR TEMP.	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
	5 = 04.5963			
	7 = 142.649 9 = 152.221 9 = 155.264			

DEWAR PRESS = 42.8415 ATM

TIME MIN SEC	DEWAR PR. Atm	NOZ PR. ATM	NOZ T. K	NOZ FL. KG/SEC
0 : 8.019 0 : 8.193 0 : 8.367 0 : 8.541 0 : 8.715 0 : 8.715 0 : 8.237 0 : 9.063 0 : 9.237 0 : 9.411 0 : 9.759 0 : 9.933	45.0608 45.3622 45.8716 46.3809 47.1813 47.7011 49.5951 49.0316 49.9776 50.6117 51.4329 52.2229	805237 2.04678 1.49027 1.05715 1.00427 1.00723 .954054 1.04685 .929317 1.6413 .942649 1.0099	227.027 223.103 220.936 223.134 225.774 227.39 228.016 228.494 228.987 229.353 229.353 229.737 230.041	-1.47369E-4 7.25008E-2 5.86066E-2 4.72939E-2 4.55779E-2 4.559E-2 4.41878E-2 4.63269E-2 .0434722 4.62503E-2 4.53935E-2 4.53935E-2
BLOW - DP ATM	RPM	BLOW FLOW KG/SEC	РЦОМ ТЕМР К	
2.636570-2 .190763 .257351 .245011 .259064 .303186 .312526 .308118 .294851 .295549 .298386 .271065	4822.22 13993.3 16423.2 18045.9 18230.1 18425.7 18586.8 18022.9 18517.8 17654.6 18138 17907.8	7.34297E-3 4.21549E-2 5.34928E-2 5.89278E-2 5.88067E-2 6.10488E-2 6.48463E-2 6.21581E-2 6.43304E-2 6.21838E-2 6.21838E-2 6.21838E-2 6.21838E-2 6.21838E-2 6.89799E-2 .0672002	279.354 279.397 279.397 279.341 279.133 278.762 278.482 278.274 277.964 277.772 277.449 277.089	

DEWAR	TEMP.	() 1 2 3	1 1 1	8.95 9.20 10.5 27.2	445 841 85 269
		5	=	129.	312
		7 8 9	=	168. 168. 169.	172 233 354
DEWAR	PRESS	=	52.	8362	ATM

TIME Ø : 10.12

TIME	0 : .003			
DEWAR TEMP.	$\begin{array}{rcrrr} 0 & = & 9.62333 \\ 1 & = & 9.64851 \\ 2 & = & 9.64126 \\ 3 & = & 9.60185 \\ 5 & = & 9.61616 \\ 7 & = & 9.62966 \\ 8 & = & 9.61244 \\ 9 & = & 9.57948 \end{array}$	02 +.02 	Thermoco	uple zero check.
DEWAR PRESS	= 49.7385 ATM			
TIME	0:.002			
DEWAR TEMP.	0 = 10.2059 $1 = 10.7276$ $2 = 12.8895$ $3 = 28.258$ $5 = 107.518$ $7 = 142.544$ $8 = 160.9$ $9 = 172.307$		Discharge No Time: 78 mi Two successi	. 5 n. ve discharges.
DEWAR PRESS	= 52.0773 ATM			
TIME MIN SEC	DEWAR PR. ATM	NOZ PR. ATM	NOZ T. K	NOZ FL. KG/SEC
0 : .008 0 : .197 0 : .384 2 : .565 0 : .737 0 : .909 0 : 1.081 ↓ : 1.253 0 : 1.425 0 : 1.597 0 : 1.941	52.0773 49.5098 48.751 48.2104 47.5491 47.3892 47.2749 46.7967 46.5161 45.9755 45.6429	.828739 43.0633 42.97P 42.3902 42.1248 41.8025 41.6224 41.3759 41.0725 40.8639 40.6554 40.2667	284.762 263.199 251.366 248.266 245.087 242.258 239.685 237.147 234.581 232.168 229.801 227.439	3.67157E-2 1.02849 J.05038 1.04272 1.04301 1.04121 1.04121 1.04183 1.03998 1.04016 1.04027 1.035°6

PLOW DP ATM	PPM ~	BLOW FLOW KG/SEC	PLOW TFMP K	
-2.91851E-4 .192094 .379367 .428747 .43154 .418971 .43154 .432936 .416178 .424557 .42316 .42735	1133.26 13292.2 16541.8 18092 18218.6 19012.7 18886.1 19012.7 18575.3 18402.7 19104.7 18540.8	0 1.221675-2 3.02248E-2 4.3094E-2 4.73661E-2 5.02243E-2 .0483802 .0494472 4.92975E-2 5.01816E-2 5.12676E-2 5.10527E-2	277.83 276.16 275.288 278.112 278.631 278.773 278.697 278.465 278.348 278.203 278.035 277.918	
TIME	0:2.126			
DEWAR TEMP.	0 = 12.4748 $1 = 15.7593$ $2 = 31.2078$ $3 = 67.6929$ $5 = 126.811$ $7 = 140.838$ $8 = 148.615$ $9 = 154.89$			
DEWAR PRESS	= 45.5597 ATM			
TIME MIN SEC	DEWAR PR. ATM	NOZ PR. ATM	NOZ T. K	MOZ FL. Kg/sec
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.7073 45.0504 41.8436 40.8664 40.0296 39.4059 38.6471 37.8623 36.9228 35.5754 34.2293 32.7792	.0583332 1.59559 36.5459 35.6167 34.9389 34.3748 33.9392 32.9907 31.91 30.6728 29.393 27.9805	242.21 291.852 226.537 221.025 218.685 216.152 215.063 214.566 215.145 215.821 216.318 216.604	2.09798E-2 5.33423E-2 .943871 .931794 .919331 .910108 .898517 .877522 .849313 .814948 .780911 .743985

.

RLOW DP AIM	БĎŴ	PLON PLOC KG/SEC	BLOW TRMP K
3.10027E-2	4430.92	6.097372-3	279.174
.197658	14616.3	5.865618-2	271.951
.2976	16699.4	<i>C</i> }	263.65
.379857	17884.8	2.351938-2	272.454
. 445492	18978.1	3.45155F-2	276.237
.388246	19519.1	4.421438-2	275.974
.389643	19185.3	4.21106E-2	275.044
.38685	19957.9	4.1937E-2	276.574
.384057	20937	3.58065E-2	275.769
.395229	19964.3	3.166465-2	274.882
.384057	19519.1	2.72297E-2	274.218
.399922	20474.3	·M259202	273.577

TIME 0 : 5.121

DEWAR TEMP.

Ø	=	97.7286
]	=	109.455
2	=	119.092
3	=	132,071
5	=	163.614
7	=	175.6%4
8	=	188.612
9	=	179.707

Reference thermometer outside calibration range; these temperatures meaningless.

DEWAR PRESS = 31.3555 ATM

NBS-114A (REV. 7-73)

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 76-850	2. Gov't Accession No.	3. Recipient'	s Accession No.
4. TITLE AND SUBTITLE			5. Publicatio	n Date
LIGUID HELIUM CTODAGE AT HIGH DENSITY AND DISCURDER AT HIGH			December 1976	
LIQUID HELIUM STORAGE AT HIGH DENSITY AND DISCHARGE AT HIGH			4 Dectember	
FLOW RATES			0. Performing	g Organization Code
			275.05	
7. AUTHOR(S)			8. Performing	Organ, Report No.
David E. Daney				
9. PERFORMING ORGANIZAT	ION NAME AND ADDRESS		10. Project/T	ask/Work Unit No.
			2	750559
NATIONAL BUREAU OF STANDARDS			11. Contract/	Grant No
WASHINGTON D.C. 20234				-runt no.
	, 5.0. 20204		/T-008	
12. Sponsoring Organization Nat	me and Complete Address (Street City	State ZIP)	13. Type of B	eport & Period
Denartment of the Air Force			Covered	cepore a r errou
Air Force Weapons Laboratory			Final	
Kintland	Air Force Base New Maxico	97117	14.5	
Kirtland Air Force Base, New Mexico 8/11/			14. Sponsorin	g Agency Code
15 CUDDI ENENTADY NOTES			1	
13. SUPPLEMENTART NOTES				
16. ABSTRACT (A 200-word or	less factual summary of most significan	t information. If documen	t includes a s	ignificant
bibliography or literature su	rvey, mention it here.)			
Equipment to s	tore supercritical helium a	at high density a	nd to demo	onstrate pulsed
discharge at high f	low rates has been designed	1, fabricated and	successfu	illy tested.
A storage density o	of 0.193 x 10 ³ kg/m ³ (12.03	$1b/ft^{3}$) at 8.3 M	Pa (81 atn	n) was achieved
1 105 111 /05				
in a 135 liter (35	gal) dewar. Pulsed dischau	rges of 2 seconds	and 4 sec	conds duration
in a 135 liter (35 were demonstrated a	gal) dewar. Pulsed dischant t a flow rate of 1.0 kg/s	rges of 2 seconds (2.2 lb/s), and f	and 4 sec low fluctu	conds duration lations of less
in a 135 liter (35 were demonstrated a than + 1 percent we	gal) dewar. Pulsed dischan t a flow rate of l.O kg/s re achieved without feedbac	rges of 2 seconds (2.2 lb/s), and f ck control. In g	and 4 sec low fluctu eneral, th	conds duration ations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a verv	gal) dewar. Pulsed dischar t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved mar	rges of 2 seconds (2.2 lb/s), and f ck control. In g	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.O kg/s re achieved without feedbac stable and well behaved man	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, tł	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.O kg/s re achieved without feedbac stable and well behaved man	rges of 2:seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.O kg/s re achieved without feedbac stable and well behaved man	rges of 2:seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.0 kg/s re achieved without feedbac stable and well behaved man	rges of 2:seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.O kg/s re achieved without feedbac stable and well behaved man	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.0 kg/s re achieved without feedbac stable and well behaved man	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.0 kg/s re achieved without feedbac stable and well behaved man	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.O kg/s ere achieved without feedbac stable and well behaved man	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.O kg/s re achieved without feedbac stable and well behaved man	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.O kg/s ere achieved without feedbac stable and well behaved man	rges of 2:seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.O kg/s re achieved without feedbac stable and well behaved man	rges of 2:seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.0 kg/s re achieved without feedbac stable and well behaved man	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.0 kg/s re achieved without feedbac stable and well behaved man	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of l.0 kg/s re achieved without feedbac stable and well behaved man	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration uations of less ne system
in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very	gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man	rges of 2 seconds (2.2 lb/s), and f ck control. In g ner.	and 4 sec low fluctu eneral, th	conds duration ations of less ne system
<pre>in a 135 liter (35 were demonstrated a than + 1 percent we operated in a very </pre>	gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize on	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th	conds duration ations of less ne system unless a proper
<pre>in a 135 liter (35 were demonstrated a than + 1 percent we operated in a very 17. KEY WORDS (six to twelve name; separated by semicolo Crycogonic holium su</pre>	gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize or ons)	rges of 2 seconds (2.2 lb/s), and f ck control. In g ner.	and 4 sec low fluctu eneral, th	unless a proper
 in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very 17. KEY WORDS (six to twelve name; separated by semicold Cryogenic helium su donsity bolium stated 	gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize or ons) upply system; cryogenic stor	rges of 2 seconds (2.2 lb/s), and f ck control. In gr ner.	and 4 sec low fluctu eneral, th <i>Tirst key word f</i> ium supply	conds duration uations of less ne system unless a proper / system; high
<pre>in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very 17. KEY WORDS (six to twelve name; separated by semicolo Cryogenic helium su density helium stor</pre>	gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize or ons) pply system; cryogenic ston rage; liquid helium storage	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner. <i>hly the first letter of the t</i> rage; helium; hel s supercritical h	and 4 sec low fluctu eneral, th <i>lirst key word f</i> ium supply elium.	conds duration uations of less ne system unless a proper / system; high
 in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very 17. KEY WORDS (six to twelve name; separated by semicolo Cryogenic helium su density helium stor 	gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s ere achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize or ons) apply system; cryogenic stor age; liquid helium storage	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner.	and 4 sec low fluctu eneral, th <i>first key word f</i> ium supply elium.	unless a proper / system; high
 in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very 17. KEY WORDS (six to twelve name; separated by semicolo Cryogenic helium su density helium stor 18. AVAILABILITY 	<pre>gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize or ons) upply system; cryogenic ston rage; liquid helium storage</pre>	rges of 2 seconds (2.2 lb/s), and f ck control. In gen ner. hy the first letter of the f rage; helium; hel supercritical he [19. SECURIT]	and 4 sec low fluctu eneral, th first key word f ium supply elium.	unless a proper v system; high
 in a 135 liter (35 were demonstrated a than <u>+</u> 1 percent we operated in a very 17. KEY WORDS (six to twelve name; separated by semicolo Cryogenic helium su density helium stor 18. AVAILABILITY 	gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize or ons) upply system; cryogenic stop rage; liquid helium storage	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner. hly the first letter of the f rage; helium; hel supercritical he [19. SECURIT (THIS REL	and 4 sec low fluctu eneral, th first key word f ium supply elium. Y CLASS PORT)	unless a proper v system; high 21. NO. OF PAGES
 in a 135 liter (35 were demonstrated a than + 1 percent we operated in a very 17. KEY WORDS (six to twelve name; separated by semicolo Cryogenic helium su density helium stor 18. AVAILABILITY For Official Distributio 	<pre>gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize or ons) upply system; cryogenic stop rage; liquid helium storage XX Unlimited n. Do Not Release to NTIS</pre>	rges of 2 seconds (2.2 lb/s), and f ck control. In g nner. hly the first letter of the f rage; helium; hel supercritical he [19. SECURIT (THIS REL	and 4 sec low fluctu eneral, th first key word f ium supply elium. Y CLASS PORT)	unless a proper v system; high 21. NO. OF PAGES
 in a 135 liter (35 were demonstrated a than + 1 percent we operated in a very 17. KEY WORDS (six to twelve name; separated by semicolo Cryogenic helium su density helium stor 18. AVAILABILITY For Official Distributio 	<pre>gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize on ons) upply system; cryogenic ston rage; liquid helium storage XX Unlimited n. Do Not Release to NTIS</pre>	rges of 2 seconds (2.2 lb/s), and f ck control. In go ner. here first letter of the f rage; helium; hel supercritical he (THIS REF UNCL ASS	and 4 sec low fluctu eneral, th first key word ium supply elium. Y CLASS PORT) IFIED	unless a proper v system; high 21. NO. OF PAGES 53
 in a 135 liter (35 were demonstrated a than + 1 percent we operated in a very 17. KEY WORDS (six to twelve name; separated by semicold Cryogenic helium su density helium stor 18. AVAILABILITY For Official Distributio Otder From Sup. of Doc 	<pre>gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize or ons) upply system; cryogenic ston age; liquid helium storage <u>XX</u> Unlimited n. Do Not Release to NTIS or U.S. Government Printing Office</pre>	rges of 2 seconds (2.2 lb/s), and f ck control. In go ner. here the first letter of the f rage; helium; hel supercritical here (THIS REF UNCL ASS 20. SECURIT	and 4 sec low fluctu eneral, th first key word ium supply elium. Y CLASS PORT) IFIED Y CLASS	unless a proper v system; high 21. NO. OF PAGES 53 22. Price
 in a 135 liter (35 were demonstrated a than + 1 percent we operated in a very 17. KEY WORDS (six to twelve name; separated by semicold Cryogenic helium su density helium stor 18. AVAILABILITY For Official Distributio Order From Sup. of Doe Washington, D.C. 20402 	<pre>gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize or ons) upply system; cryogenic ston age; liquid helium storage <u>XX</u> Unlimited n. Do Not Release to NTIS ., U.S. Government Printing Office 2, SD Cat. No. C13</pre>	rges of 2 seconds (2.2 lb/s), and f ck control. In go nner.	and 4 sec low fluctu eneral, th first key word ium supply elium. Y CLASS PORT) IFIED Y CLASS (GE)	conds duration ations of less ne system unless a proper / system; high 21. NO. OF PAGES 53 22. Price
 in a 135 liter (35 were demonstrated a than + 1 percent we operated in a very 17. KEY WORDS (six to twelve name; separated by semicold Cryogenic helium sudensity helium stor 18. AVAILABILITY For Official Distributio Order From Sup. of Doe Washington, D.C. 20402 	gal) dewar. Pulsed dischan t a flow rate of 1.0 kg/s re achieved without feedbac stable and well behaved man entries; alphabetical order; capitalize or ons) upply system; cryogenic stor age; liquid helium storage <u>XX</u> Unlimited n. Do Not Release to NTIS ., U.S. Government Printing Office 2, SD Cat. No. C13 uphaical Information Service (NTIS)	rges of 2 seconds (2.2 lb/s), and f ck control. In genner. here first letter of the f rage; helium; hel supercritical here (THIS REL UNCL ASS 20. SECURIT (THIS PA	and 4 sec low fluctu eneral, th first key word ium supply elium. Y CLASS PORT) IFIED Y CLASS (GE)	conds duration ations of less ne system unless a proper / system; high 21. NO. OF PAGES 53 22. Price