

A MICROWAVE VECTOR VOLTMETER SYSTEM

Keith C. Roe
Cletus A. Hoer

Electromagnetic Division Institute for Basic Standards
National Bureau of Standards
Boulder, Colorado 80302

August 1976

Sponsored by
Department of the Air Force USAF School of Aerospace Medicine Brooks Air Force Base, Texas 78235

a MICROWAVE VECTOR VOLTMETER SYSTEM

Keith C. Roe
Cletus A. Hoer

Electromagnetic Division
Institute for Basic Standards
National Bureau of Standards
Boulder, Colorado 80302

August 1976

```
Sponsored by Department of the Air Force USAF School of Aerospace Medicine Brooks Air Force Base, Texas 78235
```


U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary Edward O. Vetter, Under Secretary
Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

CONTENTS

Page
ABSTRACT 1
I. INTRODUCTION 1
II. DESCRIPTION 1
General 1
Seven-Port Junction 2
System Operation 4
III. SEVEN-PORT CALIBRATION 7
General 7
Broadband two-position insertion device 7
Broadband three-position phase shifter 10
IV. MEASUREMENT 12
Applications 12
Tasks 13
V. OPERATING PROCEDURE 14
Turn-on 14
Program 15
Operating 15
VI. ERRORS 16
Detector nonlinearity 16
Step attenuator nonrepeatability 16
Frequency drift 17
Leakage signals 17
Signal level variation 18
VII. EVALUATION 18
System repeatability 18
Intercomparison 18
VIII. TROUBLESHOOTING 20
IX. BIBLIOGRAPHY 21
APPENDIX A - USING AN ARBITRARY SIX-PORT JUNCTION TO MEASURE COMPLEX VOLTAGE RATIOS 23
APPENDIX B - CONTROL COMMANDS USED IN THE COMPUTER OPERATING PROGRAM 33
APPENDIX C - COMPUTER PROGRAM DESCRIPTION AND LISTING WITH SAMPLE PRINTOUT 37
APPENDIX D - INTERFACE CABLE PIN CONNECTIONS 53
APPENDIX E - DIAGNOSTIC PROGRAM LISTING WITH SAMPLE PRINTOUTS 61

LIST OF FIGURES

Figure Page

1. The microwave vector voltmeter system 2
2. A front view of the microwave vector voltmeter 2
3. The seven-port junction and isolators used in the MVV 3
4. The seven-port junction and its diode detectors 4
5. Circuit used for self-calibration, measurement and diode linearity in the MVV system 5
6. A view of the chassis containing the seven-port junction and self-calibration circuitry 6
7. Using a quadrature hybrid (Q) and a power divider (D) to make an insertion ratio of 3 dB with 45° phase shift 8
8. A two-position repeatable insertion device 8
9. Insertion loss and phase shift of the broadband two-position insertion device 9
10. A broadband three position phase shifter 10
11. Photograph of a broadband three-position phase shifter 10
12. Phase shift through the quadrature hybrid shown in figure 1 relative to the bottom coax line, measured on the NBS automatic network analyzer 11
13. Some measurement configurations using the microwave vector voltmeter. Device D may be either a power divider or a directional coupler 12
LIST OF TABLES
Table Page
I. Attenuation Measurement Difference (dB) 19
II. Phase Shift Measurement Difference (degrees) 19

A MICROWAVE VECTOR VOLTMETER SYSTEM
Keith C. Roe and Cletus A. Hoer
This report presents a system description and operating procedure for a vector voltmeter system which covers the frequency range . 5 to 12 GHz . The design is based upon a seven-port junction where phase and amplitude information is obtained using only power detectors. The system is computer controlled and self-calibrating for ratio measurements.

KEY WORDS: Amplitude; computer controlled; diode detectors; microwave measurements; phase anqle; selfcalibration; seven-port junction; vector voltmeter.

I. INTRODUCTION

The theory for using six, seven, and eight-port junctions to measure circuit parameters has developed rapidly at the National Bureau of Standards in the past three years [1-7]. One of the applications of that theory is a microwave vector voltmeter (MVV) used to make measurements of complex substitution loss, or gain, ratios.

This report describes a complete MVV system which includes a sevenport junction, computer, digital voltmeter, multiplexing unit, switching circuits, and self-calibration devices.
II. DESCRIPTION

General

The MVV system has two input ports or channels (labeled "reference" and "test") for comparison of voltage level changes in the test channel while the reference channel level is maintained constant. The complex ratio of the voltage change in the test channel may be measured at any frequency in the 0.5 to 12 GHz range with power levels not exceeding +10 dBm at either of the two input ports. The lower limit of power at the reference port is -20 dBm and at the test port is -70 dBM .

The basic design of the MVV is based upon the six-port concept [l - 7] where phase and amplitude information can be obtained from a set of amplitude measurements. (In the MVV, diode detectors whose output voltages are very nearly a linear function of the square of their respective input voltages are used to indicate amplitude levels.) The seven-port approach may be regarded as an augmented version of the six-port technique. This was motivated by preliminary experiments, which indicated an improvement in measurement precision with one additional power detector.

A block diagram in figure 1 shows the interrelationship between the major parts of the complete system. All interconnecting lines in figure 1 represent interface cables for switching control or data transfer.

The computer is used for data storage and calculation as well as automatic control of the system to minimize operator involvement and reduce the time required for the calibration and measurement processes. The switch driver, multiplexer and DVM are necessary for automatic control and data handling.

Figure 1. The microwave vector voltmeter system.

More detail is given in the following sections concerning the operation and functions of the MVV components shown in figure l. Figure 2 shows the assembled system where the multiplexer, DVM, switch driver, seven-port and self-calibration circuits are contained within the cabinet on the right and the computer and keyboard are in the cabinet at the left.

Figure 2. A front view of the microwave vector voltmeter.

Seven-Port Junction

The seven-port junction is constructed using quadrature hybrid 3 dB couplers (Q) and 3 dB power dividers as shown in figures 3 and 4.

For incident waves a_{1} and a_{2} at ports 1 and 2 the ideal response at each of the power detectors $P_{3}, P_{5}, P_{6}, P_{7}$ and P_{8} would be proportional to the quantities indicated in figure 3. The ratio of the two incident waves would be

$$
\begin{equation*}
\frac{a_{2}}{a_{1}} \alpha \frac{\left(P_{5}-P_{7}\right)+j\left(P_{6}-P_{8}\right)}{P_{3}} \tag{1}
\end{equation*}
$$

Since non-ideal components are used resulting in reflections, losses and uneven power division, the seven-port junction must be analyzed in a more general way. This is done in Appendix A for a six-port junction. A minor extension of that analysis can be performed for a seven-port junction resulting in equations (1) through (10), (Appendix A) where the summations are taken over 5 detectors instead of 4. The result is (from (10), Appendix A)

$$
\begin{equation*}
\frac{a_{2}}{a_{1}}=k-\frac{\sum z_{i} P_{i}}{\sum \frac{w_{i} P_{i}}{}}, \quad i=3,5,6,7,8 * \tag{2}
\end{equation*}
$$

The terms K, z_{i}, and w_{i}, are constants of proportionality that can be determined in calibration. For measurements of the ratio of two different values of a_{2} (a_{1} remains constant) the complex constant, k, does not need to be known. Since one of the $z_{i}=1$ and one of the $w_{i}=1$, this leaves four complex z_{i} and four real w_{i}, to be determined by the calibration. The self calibration process is described in Section III of this report.

Figure 3. The seven-port junction and isolators used in the MVV.

* The subscripts are so labeled to be consistent with previous publications.

Figure 4. The seven-port junction and diode detectors.

System Operation

To make measurements the seven-port junction must first be calibrated, and then switched into a measurement routine. Three routines are available through software (Appendix C) supplied with the system. These routines are:

1. Self Calibration
2. Measurement
3. Diagnostic.

These routines contain control commands (Appendix B) which set the switches shown in figures 5 and 6. The four outer switches (1, 3, 6, 7) are set to "M" to measure or position "C" to calibrate the seven-port junction. The three inner switches (2, 4, and 5) are set to "S" for calibration and measurement or to "D" for diagnostics and diode linearity.

Figure 5. Circuit used for self-calibration, measurement and diode linearity in the MVV system.

Figure 6. A view of the chassis containing the seven-port junction and self calibration circuitry.

General

The self-calibration procedure is almost identical to the procedure outlined in [7] and reproduced in Appendix A. The only change is that i goes from 3 to 7 instead of 3 to 6 .

Six independent measurements of the repeatable insertion device are obtained corresponding to these six nominal settings of ϕ_{0} (three-position phase shifter) and α_{0} ($0-15 \mathrm{~dB}, 1 \mathrm{~dB}$ step).

$$
\alpha_{0} \quad(\mathrm{~dB})
$$

0
0
0
3
3
3
\$0 (degrees)
0°
120°
240°
240°
120° 0°

These values of attenuation and phase shift for α_{0} and ϕ_{0} were chosen to obtain six symmetrically spaced points in the complex plane. The values are only approximate and need not be known for the self-calibration process. The only requirement is that no two points coincide for any frequency in the range 0.5 to 12 GHz .

The attenuation change, α_{0}, is easily obtained using commercially available equipment, however, the phase shifter (ϕ_{0}) and the repeatable insertion device (L) are specially constructed to obtain broadband operation. More detail is provided about those circuits and their operation in the following sections.

Broadband two-position insertion device

In calibrating the seven-port junction, the complex insertion ratio L of the repeatable two-position insertion device must not have a phase angle of 0° or multiples of 90°. A phase shift of 45° is probably optimum, but doesn't need to be exact or known. One way of getting 45° phase shift over a broad frequency range is shown in figure 7. The two outputs of the quadrature hybrid (Q) are equal in amplitude but 90° out of phase. Adding these two signals with an in-phase power divider. (D) gives a signal that is shifted 45° relative to the input signal. In addition to this 45° there will be some phase shift θ due to the lengths of line through Q and D. The length of the lower path can be adjusted to give a phase shift equal to θ. The phase difference in the two switch positions will be 45° over the complete frequency range of the hybrid and divider, which is the same as the frequency range of the
seven-port. The amplitude of the insertion ratio will be approximately 3 dB . The assembled two-position insertion device is shown in figure 8. Measurements of the phase and insertion ratio are shown in the graph of figure 9.

Figure 7. Using a quadrature hybrid (Q) and a power divider (D) to make an insertion ratio of 3 dB with 45° phase shift.

Figure 8. A two-position repeatable insertion device.

Figure 9. Insertion loss and phase shift of the broadband two-position insertion device.

Broadband three-position phase shifter

The phase shifter shown in figure 10 gives three different values of phase over the usable frequency range of the quadrature hybrid (Q).

Figure 10. A broadband three-position phase shifter.

Going through the hybrid (Q) the phase shift is theoretically either $\theta-90^{\circ}$ or $\theta+90^{\circ}$ depending on whether the outputs are shorted or open. The phase shift θ is a residual phase shift due to the length of line through the hybrid. The electrical length of the lower path is adjusted to equal θ, so the three relative values of phase are $0^{\circ},-90^{\circ}$ and $+90^{\circ}$ over the bandwidth at the hybrid coupler.

The center conductors at the two open circuited terminal planes were recessed 1.65 mm to equalize the electrical lengths of the shorted and open paths. The assembled three-position phase shifter is shown in figure ll. Results of measurements for both the shorted and open conditions relative to the bottom path are shown in figure 12.

Figure ll. Photograph of a broadband threeposition phase shifter.

Figure 12. Phase shift through the quadrature hybrid shown in figure 1 relative to the bottom coax line, measured on the NBS automatic network analyzer.

IV. MEASUREMENT

Applications

Several types of measurement can be performed using the MVV. Three types are shown in figure l3. Some additional applications are described in [8] and [9].

Figure 13. Some measurement configurations using the microwave vector voltmeter. Device D may be either a power divider or a directional coupler.

For the measurement shown in figure $13(\mathrm{a})$, the item under test must be a two-port device or system connected at the insertion point. The measurement configuration shown in figure l3(b) is for one-port devices and the configuration of figure l3(c) may be used for either one-port or two-port devices.

Tasks

Appendix C contains a listing of the program used to calibrate the seven-port junction and make measurements. This program contains a list of eight tasks which can be performed individually or sequentially. These tasks are:

1. Calibrate
2. Measure reference
3. Measure test device
4. Measure DVM offset voltages
5. Measure R_{0} and C
6. Monitor reference diode voltage
7. Measure insertion step value
8. To determine K for absolute ratio measurements
9. To measure and average ratios with test device inserted.

Tasks l, 2, and 3 are intended to be used most frequently where task 1 (calibrate) must, of course, be used before any measurements are made. Task 2 establishes a reference voltage ratio and task 3 measures a test voltage ratio relative to the reference voltage ratio. Any number of test voltage ratios may be measured relative to a reference or the option exists to reestablish a new reference ratio at any time by selecting task 2. Each time a task is completed the system will pause and wait for a new task selection which may be selected by entering the number of the task at the keyboard followed by an execute command.

The reference ratio is the value

$$
\begin{equation*}
\frac{a_{2}}{a_{1}}=k \sum_{\sum_{i}^{Z_{i}} P_{i}}^{W_{i} P_{i}}, \quad i=3 \ldots 7 \tag{3}
\end{equation*}
$$

and the test ratio is the value

$$
\begin{equation*}
\frac{a \dot{2}}{a_{i}^{i}}=K \frac{\sum_{i}^{z_{i}}{ }_{i}^{\prime}}{\sum \frac{w_{i}}{p_{i}^{\prime}}}, \quad i=3 . .7 \tag{4}
\end{equation*}
$$

The insertion ratio R is computed from these two ratios

$$
\begin{equation*}
R=\frac{a_{1} / a_{1}^{\prime}}{a_{2} / a_{1}} . \tag{5}
\end{equation*}
$$

Tasks 4 (measure DVM offset voltages), 6 (monitor reference diode voltage), and 7 (measure insertion step value) are available for general information about the complete system in case there is some question about the measurement results.

Task 5 (measure R_{0}) is performed at the end of the calibration procedure automatically, however it may also be performed at any other time when applicable. Its purpose is to establish a zero input reference at the terminal plane of the test device insertion point. Establishing a zero reference value increases the reliability of the measurements for high values of insertion ratio, 40 to 60 dB . The need for this measurement is due to non-ideal isolation between input ports 1 and 2 which allows some of the signal at port 1 to go through the seven-port junction and appear at port 2. Portions of this leakage signal are then reflected from discontinuities in the transmission line leading from port 2 to the insertion point. The effect of this leakage signal is measured and cancelled out of the measurements of the test signals.

Task 5 also allows the operator to input a value for the absolute power, P_{r}, incident at the input reference terminal of the MVV. Measurement of the incident power can be accomplished using a calibrated bolometer-coupler. The program then calculates a value for C in

$$
\begin{equation*}
P_{r}=C \sum_{i=3}^{i=7} w_{i} P_{i} \tag{6}
\end{equation*}
$$

so that the reference power can be monitored and printed by the calculator. If this is not useful information, simply input $P_{r}=l$ when the calculator asks for P_{r} and then. ignore the P_{r} column. Ratio accuracy is not affected by the value input for P_{r}.

Task 8 allows K in (3) to be determined. The operator is instructed to apply two signals equal in amplitude and phase to the test port and to the reference port so that $a_{2} / a_{1}=1+j 0$. Other reference ratios of a_{2} / a_{1} are then calculated relative to this first one.

Task 9 is a special routine to be used where source power stability is a problem. This task changes the sequence of reading the diode output voltages on the seven-port junction. All diode voltages are measured as fast as possible taking one reading from each diode. The voltage ratio ai/a' is measured 2 to 25 times depending on the value of $K 6$ in line 5140 of the MVV program. The average ratio is then computed. Results of the measurement are calculated using (5).

V. OPERATING PROCEDURE

Turn-on
First make sure that excessive microwave power levels are not present which could damage the diode detectors. Fifty milliwatts is considered excessive, however power levels of 10 milliwatt or less are recommended.

Turn on the ac power switch on the front panel of the voltmeter chassis and the computer and high-speed printer.

The front panel push button controls on the DVM should be set to "DC" and "Auto". The multiplexer push button controls should be set at "PWR", "REM" and "EXT". The multiplexer first point and last point thumbwheel switches should be set to 0 and 30 respectively.

Program

Load the program stored on file 2 of the cassette tape by pressing consecutively:

Load
2
Execute.

Operating

When the program has been loaded into computer memory it may be executed by pressing "Run" and "Execute". The computer will display or print questions and instructions. Questions can be answered through the keyboard while instructions can be acknowledged after completion by pressing "Cont" (continue) and "Execute". For example: The first question displayed when running the program is "Frequency (GHz)?" The operator responds by typing the frequency and pressing execute. The computer responds by setting the switches for the correct isolators in the MVV and then lists the eight available tasks on the high-speed printer. The operator may then select the aporopriate task by typing the number of the task and pressing execute.

In general, it is desirable to set the power levels so that the test and reference channel power levels are approximately the same magnitude. The reference channel may be monitored by selecting task 6 and should be set so that the reference diode output level is between 5 and 10 millivolts.

When the frequency is changed the program should be started over (press Run, Execute) so that the isolators will be reset. The system will need to be recalibrated also. The system can be stopped at any time and returned to the "Next Operation" question by pressing:

Stop
Cont 400
Execute.

VI. ERRORS

The major sources of error are:

1. Detector nonlinearities
2. Step attenuator nonrepeatability
3. Frequency drift
4. Leakage signals
5. Signal level variation

The following is a description of these errors and of methods used to reduce them.

Detector nonlinearity

This is the largest single source of error in the MVV. Diode detectors are used because of their small size, availability, simplicity, and ease of instrumentation; however, the output voltage response is not proportional to input power over a wide dynamic range. Some major factors affecting diode response are diode loading impedance and ambient temperature.

To improve the diode response curve each diode detector has an output loading resistor which was selected for the most optimum square-law response by comparing the diode output with known input power levels measured using a bolometer bridge power meter.

In addition, the diodes are temperature controlled to within approximately ± 0.1 degree Celsius using an aluminum block with a heater and temperature sensor controlled by a proportional oven temperature control circuit.

Step attenuator nonrepeatability

Self calibration of the seven-port junction is a process where six equations are produced relating the step attenuator value to two groups of power measurements. A basic assumption in solving the six simultaneous equations is that the step attenuator value is the same for each equation. If this is not true then the results may not fit to any lower value of precision than the precision of repeatability of the step attenuator.

Repeatability tests on the step attenuator produced standard deviations for groups of 10 steps of about 0.001 dB . A major factor which can increase the nonrepeatability is connector loosening due to vibrations from repeated switch closures. To reduce this effect a periodic check using the diagnostic routine (file 4 on cassette tape) is recommended which monitors the step repeatability for groups of five step closures. The connectors on the step may be retightened to improve the repeatability. Do not overtighten, since excessive torque may ruin the connectors on the switches.

Frequency Drift

Frequency variations from a microwave source will affect any phase measurement in a two-channel system if the two channels do not have equal electrical lengths. For example, a path length difference (Δ d) of one meter in air dielectric coaxial line will result in a phase change ($\Delta \mathrm{P}$) of 12 degrees when the frequency varies by 10 MHz . The relationship is

$$
\Delta P=\frac{360 \Delta \mathrm{~d} \Delta \mathrm{f}}{\mathrm{C}}
$$

where Δf is the frequency variation during the measurement period and c is the velocity of propagation.

Within the MVV, electrical lengths have been equalized for both channels in the measurement and calibration circuits; however, electrical path length differences external to the MVV can contribute to phase changes as well, so this effect must be considered. Both frequency control and equalization of external path lengths are recommended to minimize this source of error.

Leakage Signals

Isolation between the input ports 1 and 2 at the seven-port junction is required so that any change in Γ_{1} or Γ_{2} due to a change in a_{1} or a_{2} is negligible. (See Appendix A, eq. 18).

$$
\frac{V_{2}}{V_{1}}=\frac{a_{2}\left(1+I_{2}\right)}{a_{1}\left(1+I_{1}\right)}
$$

Isolation across the seven-port junction is greater than 40 dB , however this small amount produces significant errors when the measured insertion loss is 40 dB or greater. This effect has been reduced to approximately 60 dB by using the "measure R_{0} " routine described previously in Section IV.

An error can appear in calibration of the seven-port junction if the signal level varies during the time between measurements with the step in and the step out. From Appendix A equation (20)

$$
\begin{equation*}
L=\frac{a_{i}^{\prime}}{a_{2}}=\frac{\sum z_{i}{ }^{P}{ }_{i}}{\sum Z_{i}{ }^{P}{ }_{i}}, i=3 . . .7, \tag{7}
\end{equation*}
$$

L is the insertion ratio of the two-position insertion step attenuator. A change in signal level from the microwave source between measurements of a_{2} and a_{2}^{\prime} will introduce an error in the calculation of L and therefore an error in the calculation of the seven-port constants. This error will have the same effect as the previously described error from step attenuator nonrepeatability.
VII. EVALUATION

System Repeatability

Measurement precision and accuracy may vary from time to time depending on such factors as microwave source stability, step repeatability, and operating power levels. A reliable check on measurement precision appears in sigma of the self-calibration printout. Sigma is the standard deviation of differences between the calculated and measured values of the step attenuator for each of the six calibration measurements. If sigma is less than 0.03 dB the calibration is good and measurements should repeat to about the same value for insertion ratios up to about 20 dB . Above 20 dB the errors should increase approximately one order of magnitude for each 20 dB increment of insertion change in the test channel.

Intercomparison

A measurement comparison between the MVV and the NBS network analyzer has been performed using a $0-70 \mathrm{~dB}$ (10 dB steps) attenuator. Isolators were connected on both sides of the attenuator and measurements were made in the octave frequency range between 4 and 8 GHz using both systems. Results of that intercomparison are given in table I and table II.

Table I.
Attenuation Measurement Difference (dB)
ANA - MVV

Frequency GHz	10 dB	20 dB	30 dB	40 dB	50 dB
4.0	0.35	.07	.07	.49	1.7
4.5	0.27	.03	.31	.07	1.1
5.0	0.10	.08	.06	.15	0.2
5.5	0.05	.04	.13	.06	0.5
6.0	0.02	.07	.14	.41	1.5
6.5	0.02	.01	.00	.26	0.8
7.0	0.01	.05	.31	.17	0.0
7.5	0.01	.01	.01	.11	0.6
8.0	0.07	.04	.32	.42	1.3

Table II.

Phase Shift Measurement Difference (degrees)
ANA - MVV

Frequency GHz	10 dB	20 dB	30 dB	40 dB	50 dB
4.0	0.6	1.1	5.7	8.6	32.3
4.5	0.01	0.1	1.8	0.8	6.5
5.0	0.3	0.6	0.2	6.2	10.5
5.5	0.3	1.1	3.9	11.2	37.8
6.0	0.5	0.6	2.1	3.9	59.1
6.5	0.2	0.6	0.2	1.4	1.0
7.0	0.5	0.5	2.2	0.3	0.3
7.5	0.7	0.6	1.1	1.1	2.3
8.0	0.2	0.3	7.3	2.4	3.0

VIII. TROUBLESHOOTING

The following table lists some troubles that may occur during operation of the MVV system, their probable cause and cure.

Those troubles due to malfunctioning commercial equipment contained within the system should be referred to the respective manuals (supplied with the system) covering that equipment.

Trouble
Program won't converge to correct solution in self-calibration procedure.

Bad data

Probable cause and/or cure
CAUSE: 1. Data incorrect due to power level--too high or too low.
2. Switches not functioning.
3. Data transfer error caused by transient noise or interface cable trouble.

CURE: 1. Compare data with samples of good data that did converge.
2. Check switches by running diagnostic program to measure step repeatability and cycle the switches.
3. Check for adequate signal level in both the reference and test channels in the calibration and measurement modes.
4. Rerun the self-calibration routine.

CAUSE: l. Equipment not on.
2. Interface cables loose.
3. Scanner not setting correctly.
4. DVM malfunction or controls at wrong setting
5. Attenuators not switching correctly.
6. Switches sticking on phase shifter or repeatable step.
CURE: 1. Check equipment and cables.
2. Cycle switches.
3. Watch scanner during self-calibration routine to see if the scanner is changing channels properly.
4. Check data from the DVM, display data transferred to the computer and make sure it is the same as that displayed on the DVM.
5. Monitor diode voltage levels to see if there is sufficient signal present in both channels in the measurement and calibration modes.

Improper Switching

Program won't load

CAUSE: 1. Switch sticking
2. Switch driver malfunctioning
3. Interface cable disconnected.

CURE: 1. Cycle switches several times using the diagnostic routines and listen for audible switching noise. If no switches work, check the switch driver, interface cables, and statements in the program which control the switching functions. See Appendix C. If some switches work but others do not the switches may be bad or the driver output power level may be low. If possible substitute switches.

CAUSE: l. Bad tape
2. Dirt or residue on tape reader
3. Computer out

CURE: 1. Clean the tape reader then reload the program.
2. Load program from another tape.
3. Check computer manual.

IX. BIBLIOGRAPHY

1. Hoer, C. A., Theory and application of a six-port coupler, NBS report (unpublished).
2. Hoer, C. A., The six-port coupler: A new approach to measuring voltage, current, povier, impedance, and phase, IEEE Trans. Instrum. Meas., Vol. IM-21, Nov. 1972, p 466-470.
3. Engen, G. F. and C. A. Hoer, Application of an arbitrary six-port junction to power measurement problems, IEEE Trans. Instrum. Meas., Vol. IM-21, Nov. 1972, p 470-474.
4. Hoer, C. A. and G. F. Engen, Analysis of a six-port junction for measuring v, i, a, b, z, Γ, and phase, presented at the Proc. IMEKO Symp. Acquisition and Processing of Measurement Data for Automation, Dresden, Germany, June 17-23, 1973.
5. Engen, G. F., Calibration of an arbitrary six-port junction for measurement of active and passive circuit parameters, IEEE Trans. Instrum. Meas., Vol. IM-22, Dec. 1973, p 295-299.
6. Hoer, C. A., Using six-port and eight-port junctions to measure active and passive circuit parameters, National Bureau of Standards (U.S.), Tech. Note 673, Sept. 1975, 23 pages.
7. Hoer, C. A. and K. C. Roe, Using an arbitrary six-port junction to measure complex voltage ratios, IEEE Trans. Microwave Theory and Techniques, Vol. MTT-23, No. 12, Dec. 1975, p 978-984.
8. How vector measurements expand design capabilities, Application note 91, Hewlett-Packard Company, January 1968.
9. Vector voltmeter measurement techniques, Application note 22, PRD Electronics, Inc., May 1971.

APPENDIX A

USING AN ARBITRARY SIX-PORT JUNCTION

TO MEASURE COMPLEX VOLTAGE RAIIOS

Abstract

The following report is reproduced in its entirety because it provides the theoretical background for the MVV system. All work in this Appendix and in the main body of the report represents the same effort, therefore repetition can be avoided by referral to portions of this Appendix which cover the applicable subject.

Using an Arbitrary Six-Port Junction to Measure Complex Voltage Ratios

CLETUS A. HOER, member, ieee, and KEI'TH C. ROE, member, ieee

Abstract-An arbitrary six-port junction is analyzed as a microwave vector voltmeter, measuring the amplitudes and phase differences of two input signals in terms of power readings taken at the remaining four ports. The junction may be calibrated for measuring the complex ratio of these two signals using a self-calibration procedure which requires no attenuation or phase standards.

Manuscript received April 14, 1975. This work was partially supported by the Naval Sea Systems Command, USAFSAM, and the Army Metrology and Calibration Center. This is a contribution of the National Bureau of Standards not subject to copyright.
The authors are with the National Bureau of Standards, Boulder, Colo. 80302 .

INTRODUC"YION

PERHAPS the greatest impact in the field of CHE and microwave measurement in recent years has been the introduction of the automatie notwork analyzer (ANA). In contrast with the prior art where the key to improved accuracy was usually an improved hardware item, the procedure now is to measure the hardwaro imperfections and adjust the measurement results in such a way as to account for them. The key to this correction process is in the measurement of the phase as well as
amplitude of the complex parameters involved. The measurement of this phase has generally involved conversion to a lower frequency which complicates the detection process. Although phase detection circuits which operate at microwave frequencies are well known, these have generally assumed ideal components, and are not particularly suitable for automation.

Recent theoretical studies of an arbitrary six-port have provided an alternative method of obtaining the phase information without requiring either frequency conversion or ideal components. [1], [2], [7]. One of the unexpected results of this study is that most of the earlier six-port designs for getting phase information provide a set of data which is ill conditioned from the viewpoint of the more general theory. Fortunately, the theory also suggests how to design the six-port junction to eliminate this condition.

This paper shows how the ratio of two complex voltages or two complex wave amplitudes can be measured using an arbitrary six-port junction where four of the ports are terminated with power meters. If two coherent signals of the same frequency are applied to the remaining two ports, the junction gives the phase angle between the two signals as well as the amplitude of both in terms of the four power meter readings. The six-port junction thus becomes a vector voltmeter in which phase and amplitude information are calculated from power measurements.

The six-port junction can be calibrated for making complex ratio measurements without using any standards. The only precision component needed in the calibration or measurement setup is a two-position step attenuator whose change in insertion ratio must be highly repeatable, but need not be known. Its value is determined in the calibration process along with other unknown constants describing the six-port. The complete calibration process is readily automated, requiring no operator involvement.

Accuracy of ratio measurements is determined primarily by the linearity of the four detectors. Precision components are not required to make precise ratio measurements.

The analysis of a six-port junction as a vector voltmeter is similar to that of a six-port junction used for power [1] or impedance [2] measurements.

(iENERAL THEORY

('onsider an arbitrary six-port junction shown in Fig. 1, where four ports are terminated with power meters. If the junction is linear and only one mode is present at

Fig. 1. An arbitrary six-port junction with power meters on four of the six ports.
each port, the scattering equations for the junction can be written

$$
\begin{equation*}
b_{i}=\sum_{j=1}^{6} S_{i j} a_{j}, \quad i=1 \cdots 6 \tag{1}
\end{equation*}
$$

where a_{j} and b_{i} are the complex incident and emergent wave amplitudes and the $S_{i j}$ are the scattering parameters of the junction. Assuming that the power meters on arms $3 \cdots 6$ are permanently connected

$$
\begin{equation*}
a_{j}=b_{j} \Gamma_{j}, \quad j=3 \cdots 6 \tag{2}
\end{equation*}
$$

where Γ_{j} is the reflection coefficient of the power meter on port j. Equations (1) and (2) represent a collection of ten linear equations in terms of the twelve variables $a_{i}, b_{i}, i=1 \cdots 6$. This system of equations may be solved for any ten of these variables as functions of the remaining two. In particular, it is possible to write

$$
\begin{equation*}
b_{i}=A_{i} a_{1}+B_{i} a_{2}, \quad i=3 \cdots 6 \tag{3}
\end{equation*}
$$

where A_{i} and B_{i} are functions of the scattering parameters of the junction and the reflection coefficients of the power meters. Multiplying (3) by its complex conjugate yields

$$
\begin{align*}
\left|b_{i}\right|^{2}=\left|A_{i}\right|^{2}\left|a_{1}\right|^{2}+ & A_{i} B_{i}{ }^{*} a_{1} a_{2}{ }^{*}+A_{i}{ }^{*} B_{i} a_{1}{ }^{*} a_{2} \\
& +\left|B_{i}\right|^{2}\left|a_{2}\right|^{2}, \quad i=3 \cdots 6 \tag{4}
\end{align*}
$$

where (*) indicates complex conjugate.
If the phase angles ϕ_{1}, ϕ_{2}, and ϕ are defined such that

$$
\begin{equation*}
a_{1}=\left|a_{1}\right| \exp \left(j \phi_{1}\right), \quad a_{2}=\left|a_{2}\right| \exp \left(j \phi_{2}\right) \tag{5}
\end{equation*}
$$

and

$$
\phi=\phi_{2}-\phi_{1}
$$

then (4) becomes

$$
\begin{array}{r}
\frac{P_{i}}{K_{i}}=\left|A_{i}\right|^{2}\left|a_{1}\right|^{2}+\left(A_{i} B_{i}^{*}+A_{i}^{*} B_{i}\right)\left|a_{1} a_{2}\right| \cos \phi \\
+\left|B_{i}\right|^{2}\left|a_{2}\right|^{2}+j\left(A_{i}^{*} B_{i}-A_{i} B_{i}{ }^{*}\right)\left|a_{1} a_{2}\right| \sin \phi \\
 \tag{6}\\
i=3 \cdots 6
\end{array}
$$

where $P_{i} \equiv K_{i}\left|b_{i}\right|^{2}$ is the power indicated by the meter on the i th port, and K_{i} is a constant. This expression represents a linear system of four equations in the four unknowns $\left|a_{1}\right|^{2},\left|a_{2}\right|^{2},\left|a_{1} a_{2}\right| \cos \phi$, and $\left|a_{1} a_{2}\right| \sin \phi$. If these equations are independent ${ }^{1}$ they may be inverted to obtain each of the four unknowns as a linear function of the four $P_{i}(i=3 \cdots 6)$. The result is

$$
\begin{align*}
\left|a_{1}\right|^{2} & =\sum \rho_{i} P_{i} \tag{7a}\\
\left|a_{2}\right|^{2} & =\sum \sigma_{i} P_{i}, \quad i=3 \cdots 6 \tag{7b}\\
\left|a_{1} a_{2}\right| \cos \phi & =\sum x_{i} P_{i} \tag{7c}\\
\left|a_{1} a_{2}\right| \sin \phi & =\sum y_{i} P_{i} \tag{7d}
\end{align*}
$$

[^0]where each sum in (7) and throughout this paper is over the four sidearm power readings, $i=3 \cdots 6$. The coefficients of P_{i} are real numbers which are functions of the parameters $S_{i j}$ and Γ_{j}. Equations (7) constitute the desired result and are valid for any linear six-port junction subject to the conditions mentioned. The ratio a_{2} / a_{1} can be written
\[

$$
\begin{equation*}
\frac{a_{2}}{a_{1}}=\frac{\left|a_{2}\right|}{\left|a_{1}\right|} \exp (j \phi)=\frac{\left|a_{1} a_{2}\right|}{\left|a_{1}\right|^{2}}(\cos \phi+j \sin \phi) . \tag{8}
\end{equation*}
$$

\]

Using (7) this becomes

$$
\begin{equation*}
\frac{a_{2}}{a_{1}}=\frac{\sum\left(x_{i}+j y_{i}\right) P_{i}}{\sum \rho_{i} P_{i}} \tag{9}
\end{equation*}
$$

A more useful form of (9) for calibration purposes is obtained by factoring $x_{m}+j y_{m}$ out of the top sum and factoring ρ_{n} out of the bottom sum to get

$$
\begin{equation*}
\frac{a_{2}}{a_{1}}=K \frac{\sum z_{i} P_{i}}{\sum w_{i} P_{i}} \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& K=\frac{x_{m}+j y_{m}}{\rho_{n}} \tag{11}\\
& z_{i}=\frac{x_{i}+j y_{i}}{x_{m}+j y_{m}} \tag{12}\\
& w_{i}=\frac{\rho_{i}}{\rho_{n}} \tag{13}
\end{align*}
$$

and where m and n can each be either $3,4,5$, or 6 . For many applications the complex constant K does not need to be known. Since $z_{i}=1$ when $i=m$, and $w_{i}=1$ when $i=n$, this leaves only three complex z_{i} and three real w_{i} to be determined.

COMPLEX VOLTAGE RATIOS

The voltage at the two input ports can be written

$$
\begin{align*}
v_{i} & =a_{i}+b_{i}, \quad i=1,2 \tag{14}\\
& =a_{i}\left(1+\Gamma_{i}\right) \tag{15}
\end{align*}
$$

where Γ_{i} is the complex ratio b_{i} / a_{i} at port i

$$
\begin{align*}
& \Gamma_{1}=S_{11}+S_{12} \frac{a_{2}}{a_{1}} \tag{16}\\
& \Gamma_{2}=S_{22}+S_{21} \frac{a_{1}}{a_{2}} . \tag{17}
\end{align*}
$$

The scattering parameters in (16) and (17) are those of the equivalent two-port which results when the four sidearms of the six-port junction are terminated with power meters. The ratio of the two input voltages is

$$
\begin{equation*}
\frac{v_{2}}{v_{1}}=\frac{a_{2}\left(1+\Gamma_{2}\right)}{a_{1}\left(1+\Gamma_{1}\right)} \tag{18}
\end{equation*}
$$

The voltage ratio will be proportional to a_{2} / a_{1} provided
that there is sufficient isolation between input ports 1 and 2 so that any change in Γ_{1} or Γ_{2} due to a change in a_{1} or a_{2} is negligible.

SELF-CALIBRATION PROCEDURE

All of the constants in (10) except K can be determined by a self-calibration technique which does not require any standards. The technique is based on earlier work described by Allred and Manney [3]. A calibration circuit such as shown in Fig. 2 is used. A signal is divided into two channels which are connected to the inputs of the six-port junction. The signal a_{1} in one channel is held constant by internally leveling the generator and isolating it from the signal a_{2} in the other channel which contains a level set attenuator α_{0}, phase shifter ϕ_{0}, and a twoposition insertion device. Data for calibrating the six-port junction are obtained by noting the value of all P_{i} for the two positions of the insertion device at different settings of α_{0} and ϕ_{0}. The value of the insertion device does not need to be known, but it must be highly reproducible and independent of signal level.

The initial value of a_{2} relative to a_{1} is determined by the setting of α_{0} and ϕ_{0}, which also need not be known. When the insertion device is switched to its second position, a_{2} changes to $a_{2}{ }^{\prime}$ and the power readings change from P_{i} to P_{i}^{\prime}. Assuming that a_{1} is constant during the time it takes to read the P_{i} and $P_{i}{ }^{\prime},(7 a)$ and (13) give

$$
\begin{equation*}
\sum w_{i} P_{i}=\sum w_{i} P_{i}^{\prime}{ }^{\prime} . \tag{19}
\end{equation*}
$$

The ratio of $a_{2}{ }^{\prime} / a_{2}$ obtained from (10) is

$$
\begin{equation*}
L \equiv \frac{a_{2}^{\prime}}{a_{2}}=\frac{\sum z_{i} P_{i}^{\prime}}{\sum z_{i} P_{i}} . \tag{20}
\end{equation*}
$$

This L is the change in insertion ratio of the two-position insertion device. The ratio of $\left|a_{2}\right|^{2} /\left|a_{2}\right|^{2}$ obtained from (7b) is

$$
\begin{equation*}
|L|^{2}=\frac{\sum u_{i} P_{i}^{\prime}}{\sum u_{i} P_{i}^{\prime}} \tag{21}
\end{equation*}
$$

where $u_{i} \equiv \sigma_{i} / \sigma_{l}$ and l is either $3,4,5$, or 6 . Since $u_{l}=1$, there are only three u_{i} to be determined in (21).

The measurements of P_{i} and P_{i}^{\prime} are repeated for four

Fig. 2. Setup for calibrating and using a six-port junction to measure complex voltage ratios.
or more different settings of α_{0} and ϕ_{0}. Each different setting gives additional equations like (19)-(21), where L is the same for each measurement. These three sets of equations can be solved for the calibration constants z_{i}, w_{i}, and u_{i} and also for L.

To assure that L remains constant when α_{0} and ϕ_{0} are changed, and that a_{1} remains constant at the two positions of L, isolators are added as shown in Fig. 2. Further analysis may show that not all of the isolators are needed.

CALCULATING SIX-PORT CONSTANTS

When the complex insertion ratio L is known, it can be thought of as a ratio standard in calibrating the six-port junction to obtain the constants z_{i}, w_{i}, and u_{i}. However, it is not necessary that L be known; L can be treated as simply one more unknown constant to be determined. When L is not known, (20) is a nonlinear equation which can be solved by writing it in the form

$$
\begin{equation*}
f=\sum z_{i}\left(L P_{i}-P_{i}^{\prime}\right)=0 \tag{22}
\end{equation*}
$$

and expanding f in a Taylor series about the best estimates of z_{i} and L

$$
\begin{equation*}
f \simeq f_{0}+\sum_{i \neq m} \frac{\partial f}{\partial z_{i}} \Delta z_{i}+\frac{\partial f}{\partial L} \Delta L=0 \tag{23}
\end{equation*}
$$

where f_{0} is the value of f calculated from (22) using best estimates of z_{i} and L. The partial derivatives

$$
\begin{align*}
& \frac{\partial f}{\partial z_{i}}=L P_{i}-P_{i}^{\prime} \tag{24}\\
& \frac{\partial f}{\partial L}=\sum z_{2} P_{i} \tag{25}
\end{align*}
$$

are also calculated using best estimates of z_{i} and L.
Initial estimates of z_{i} to use in (25) and in calculating f_{0} can be determined by solving (22) for the \tilde{z}_{i} using an estimate of L as a known value. A set of four or more equations like (23), which is linear in the unknowns Δz_{i} and ΔL, is solved for these four unknowns which are then used to improve the estimates of z_{i} and L

$$
\begin{align*}
\text { new } & Z_{i}=\text { old } \tag{26}\\
\text { new } & Z_{i}+\Delta Z_{i} \tag{27}\\
\text { nold } & L+\Delta L .
\end{align*}
$$

These new estimates of z_{i} and L are used in (23) and the iteration repeated until the Δ 's become insignificant. Once L is determined, (21) becomes linear in the three unknown u_{i} so that three or more equations like (21) can be solved directly for the u_{i}.
The constants ρ_{n}, σ_{l}, and $x_{m}+j y_{m}$ cannot be determined by this calibration process. However, for measuring complex insertion ratios, these constants are not needed. Complex insertion ratios of a_{2}^{\prime} / a_{2} can now be measured using the known z_{i} in (20). If only the amplitude of L is desired, it is somewhat simpler to calculate $|L|^{2}$ using the real u_{τ} in (21) rather than the complex z_{i} in (20). Using the z_{i} and w_{i} in (10), ratios of a_{2} / a_{1} can be measured to within a constant K.

BROAD-BAND TWO-POSITION INSERTION DEVICE

In calibrating the six-port junction, the complex insertion ratio L of the repeatable two-position insertion device must not have a phase angle of 0° or multiples of 90°. A phase shift of 45° is probably optimum. One way of getting 45° phase shift over a broad frequency range is shown in Fig. 3. The two outputs of the quadrature hybrid (Q) are equal in amplitude but 90° out of phase. Adding these two signals with an in-phase power divider (D) gives a signal that is shifted 45° relative to the input signal. In addition to this 45° there will be some phase shift θ due to the lengths of line. The length of the lower path can be adjusted to give a phase shift equal to θ. The phase difference in the two switch positions will be 45° over the complete frequency range of the hybrid and divider, which can be the same as the frequency range of the six-port. The amplitude of the insertion ratio will be 3 dB .

The optimum value of $|L|$ has not been determined. Values near 3 and 8 dB have been used with no noticeable difference in results.

Fig. 3. Using a quadrature hybrid (Q) and a power divider (D) to make an insertion ratio of 3 dB with 45° phase shift.

SIX-PORT DESIGN CRITERIA

As one might expect, not all six-port junctions are equally useful in making measurements of $\left|a_{1}\right|,\left|a_{2}\right|$, and ϕ. One useful design is an extension of the phase discriminator or correlator circuit which is a six-port device often used to get phase information from amplitude measurements [4]. Fig. 4 shows a correlator constructed from three quadrature hybrids and one in-phase power divider. If the components are ideal, the phase angle is calculated from $P_{5} \cdots P_{8}$ using

$$
\begin{align*}
4\left|a_{1} a_{2}\right| \cos \phi & =\left|a_{1}+a_{2}\right|^{2}-\left|a_{1}-a_{2}\right|^{2} \tag{28}\\
& =k\left(P_{5}-P_{7}\right) \tag{29}\\
4\left|a_{1} a_{2}\right| \sin \phi & =\left|a_{1}-j a_{2}\right|^{2}-\left|a_{1}+j a_{2}\right|^{2} \tag{30}\\
& =k\left(P_{6}-P_{8}\right) \tag{31}
\end{align*}
$$

Fig. 4. A correlator constructed from one power divider (D) and three quadrature hybrids (Q). Ideal components would give outputs proportional to the values shown.
where k is a constant. Although the correlator is a six-port device, the equations in (7) do not apply in the limit when the correlator becomes ideal because the four outputs are not linearly independent. The identity

$$
\begin{equation*}
\left|a_{1}+a_{2}\right|^{2}+\left|a_{1}-a_{2}\right|^{2}=\left|a_{1}-j a_{2}\right|^{2}+\left|a_{1}+j a_{2}\right|^{2} \tag{32}
\end{equation*}
$$

shows that the correlator has only three independent outputs since any one output can be obtained from the other three. In a sense, the correlator by itself is only a fiveport junction. One more independent output must be added to the correlator to have (7) apply. Since the correlator alone cannot give $\left|a_{1}\right|^{2}$ and $\left|a_{2}\right|^{2}$ which do come out of (7), we might expect that adding an output proportional to $\left|a_{1}\right|^{2}$ or $\left|a_{2}\right|^{2}$ would make a valid set of four independent outputs. This is indeed the case. Fig. 5 shows a correlator with two power dividers and two more detectors added to make $\left|a_{1}\right|^{2}$ and $\left|a_{2}\right|^{2}$ available. The six outputs are listed in Table I. It can be shown that a set of four independent outputs is obtained by choosing one from each group in Table I, plus a fourth output which can be any one of the six not already chosen. For example, if $\left|a_{1}\right| \simeq\left|a_{2}\right|$, a six-port vector voltmeter could have outputs approximately proportional to

$$
\begin{equation*}
\left|a_{1}\right|^{2}, \quad\left|a_{1}+a_{2}\right|^{2}, \quad\left|a_{1}-j a_{2}\right|^{2}, \quad\left|a_{2}\right|^{2} . \tag{33}
\end{equation*}
$$

Or if $\left|a_{2}\right| \ll\left|a_{1}\right|$ one might design the outputs to approximate

$$
\left|a_{1}\right|^{2}, \quad\left|a_{1}+a_{2}\right|^{2}, \quad\left|a_{1}-j a_{2}\right|^{2}
$$

and

$$
\left|a_{1}-a_{2}\right|^{2}
$$

or

$$
\begin{equation*}
\left|a_{1}+j a_{2}\right|^{2} . \tag{34}
\end{equation*}
$$

Here $\left|a_{1}-a_{2}\right|^{2}$ or $\left|a_{1}+j a_{2}\right|^{2}$ is used instead of $\left|a_{2}\right|^{2}$ because $\left|a_{2}\right|^{2}$ might be too small to measure, but $\left|a_{1}-a_{2}\right|^{2}$ or $\left|a_{1}+j a_{2}\right|^{2}$ would still contain useful information about a_{2}.

As with other six-port applications, the outputs listed

Fig. 5. Adding two power dividers (D) to a correlator to make an eight-port junction having several combinations of four independent outputs.

TABLE I

GROUP 1	GROUP 2	GROUP 3
$\left\|a_{2}\right\|^{2}$	$\left\|a_{1}+a_{2}\right\|^{2}$	$\left\|a_{1}-j a_{2}\right\|^{2}$
$\left\|a_{2}\right\|^{2}$	$\left\|a_{1}-a_{2}\right\|^{22}$	$\left\|a_{2}+j a_{2}\right\|^{2}$

Note: A set of four independent outputs is obtained by choosing one from each group plus a fourth which can be any one of the six not already chosen.
in Table I are only design goals. The actual outputs of a six-port junction can depart considerably from these values and still be quite useful. For example, the output $\left|a_{1}+j a_{2}\right|^{2}$ indicates that ideally a_{1} and a_{2} would be 90° apart at detector 8. But the output is still useful even though the phase difference is $\pm 60^{\circ}$ from the ideal 90°. When the outputs depart greatly from those in Table I, the coefficients of P_{i} in (7) become large so that the desired information is obtained from the difference between large terms in the sum. As the individual terms in the sum become significantly larger than the quantity on the left of the corresponding equa* sign in (7), greater precision is required in measuring each P_{i} to obtain a given accuracy.

EXPERIMIENTAL SETUP

An eight-port junction following the design shown in Fig. 5 was constructed from commercially available miniature coaxial X-band components with SMA connectors. This was converted to a six-port by terminating ports 7 and 8 with $50-\Omega$ loads so that the remaining four outputs are approximately proportional to those in (33). A photograph of the junction is shown in Fig. 6. The components in the photograph are identified in Fig. 7 which also shows how the signals are combined to get the desired outputs. Four diode-type power meters having a linearity of ± 1 percent from 10 nW to $10 \mu \mathrm{~W}$ were used as detectors. The power level into each diode was kept less than $10 \mu \mathrm{~W}$ to assure square-law operation.

Fig. 6. Experimental six-port junction and power detector mounts.

Fig. 7. Identifying the components in Fig. 6, where Q indicates quadrature hybrids, and D indicates an in-phase power divider. The signals labeled at different parts of the circuits are those obtained from ideal components if the two input signals are $2 \sqrt{2} a_{1}$ and $2 \sqrt{2} a_{2}$.

Fig. 8. Experimental six-port X-band vector voltmeter setup. From left to right: programmable calculator, input/output expander, DVM and scanner, four-power meters, six-port junction (on white paper), and two-input signal lines.

Since the six-port calibration and measurement process requires taking many sidearm power measurements, it is most desirable to have the data read directly into a computer which can then process the data. A programmable calculator is capable of taking the necessary sidearm power readings under program control, and then processing the data to give the calibration constants and measurement results.

Basic language programs have been written for calibrating the junction as a microwave vector voltmeter, and also for using it to measure complex insertion ratio. After calibrating the six-port junction using the setup in Fig. 2, the same setup is used to measure complex insertion ratios by either changing or inserting something in the test (lower) channcl, and using (20) to calculate the ratio.

A picture of the setup is shown in Fig. 8. The same setup can be used with any type power detectors that have an output de voltage which is a known function of the input power level.

RESULTS

Preliminary measurements have been made on this setup at $8-12 \mathrm{GHz}$. The complex insertion ratio of the twoposition step attenuator L, was measured with the sixport junction and then measured by the National Bureau of Standards ANA. The results are shown in Table II. The agreement is within what one would expect using detectors linear to only 1 percent. Better power detectors should give greater accuracy. The comparison shows that the theory of using an arbitrary six-port junction as a

TABLE II
Amplitude and Phase Change in the Two-Position Step Attenuator as Measured by the Six-Port with Diode Power Meters and by the National Bureau of Standards ANA

FREOUENCY, GHz,	8	9	10	11	12
${ }_{\text {z }} \mathrm{z}$ \| SIX-PORT	7.82	7.58	7.52	7.91	8.53
	7.75	7.57	7.48	7.92	8.36
difference	. 07	. 01	. 04	-. 01	. 17
SIX-PORT	38.15	34.13	33.19	31.49	31.00
崇苟AMA	38.09	34.81	32.45	31.73	30.91
difference	. 06	-. 68	. 74	-. 24	. 09

Note: Six-port versus ANA.
vector voltmeter is correct. It also shows that the sixport junction can be calibrated without using any standards. The only precision component in the setup is the two-position step attenuator whose change in insertion ratio is repeatable to $\pm 0.001 \mathrm{~dB}$.

OTHER APPLICATIONS

Once the six-port vector voltmeter has been calibrated, it can be used to measure the complex reflection coefficient of a one-port device by using it on the sidearms of a reflectometer. The setup in Fig. 2 can be converted to a reflectometer by inserting a directional coupler at the "insertion point" as shown in Fig. 9. 'The resulting reflectometer can be calibrated to measure Γ at the reference plane using established techniques [5], [6]. If it is desired to measure only Γ with the setup, the six-port vector voltmeter can be calibrated as before with the dircctional coupler permanently fixed at the insertion point. A sliding short at the reference plane could then take the place of ϕ_{0}. The reflection coefficient is calculated from

$$
\begin{equation*}
\Gamma=\frac{A\left(a_{2} / a_{1}\right)+B}{1+C\left(a_{2} / a_{1}\right)} \tag{35}
\end{equation*}
$$

where A, B, and C are complex constants. Note that although K in (10) is not known, it can be thought of as being part of A and C which are determined in calibrating the reflectometer. It is, therefore, not necessary to know K for this application. If the only application of the sixport junction is to measure Γ, it is probably better to calibrate the junction directly as a reflectometer using other techniques which do not require isolators [7].

DISCUSSION

The experimental system described here could be simplified to make a relatively inexpensive automatic measurement system of moderate accuracy. The six-port component and diode detectors could be fabricated in one stripline package. Since measurements are made directly at the test frequency, no local oscillator (LO) or phaselocked sources are required to heterodyne the signal to some lower frequency. The six-port concepts should be useful into the millimeter-wave region where it becomes difficult to measure phase by other techniques. The complete calibration process can be controlled by a programmable calculator or small computer.

Accuracy of the six-port measurements is determined primarily by the linearity of the detectors. Bolometricor thermoelectric-type power detectors would give greater accuracy than that achieved in our experiment, but that

Fig. 9. Adding a directional coupler to the setup in Fig. 2 to make complex reflection coefficient measurements.
would increase the measurement time somewhat. Another approach to increased accuracy would be to model the diodes and mathematically correct for their nonlinearity with the computer. This latter approach is presently under investigation.

ACKNOWLEDGMENT

The authors wish to thank C. M. Allred for assistance in working out the self-calibration techniques. They also wish to thank G. F. Engen for his helpful discussions throughout the project.

REFERENCES

[1] G. F. Engen and C. A. Hoer, "Application of an arbitrary 6-port junction to power-measurement problems," IEEE Trans. Instrum. Meas. (1972 Conferecne on Precision Electromagnetic

Measurements), vol. IM-21, pp. 470-474, Nov. 1972.
[2] C. A. Hoer and G. F. Engen, "Analysis of a six-port junction for measuring v, i, a, b, z, Γ, and phase," presented at the Proc. IMEKO Symp. Acquisition and Processing of Measurement Data for Automation, Dresden, Germany, June 17-23, 1973.
[3] C. M. Allred and C. H. Manney, "Self-calibration of complex ratio measuring systems," presented at the Proc. IMEKO Symp. Acquisition and Processing of Measurement Data for Automation, Dresden, Germany, June 17-23, 1973.
[4] S. B. Cohn and N. P. Weinhouse, "An automatic microwave phase measurement system," Microwave $J .$, vol. 7, pp. 49-56, Feb. 1964.
[5] R. A. Hachborn, "An au"omatic network analyzer system," Microwave J., vol. 11, pp. 45-62, May 1968.
[6] G. F. Engen, "Calibration technique for automated network analyzers with application to adaptor eva'uation," IEEE Trans. Microwave Theory Tech. (Part II of Two Parls), vol. MTT-22, pp. 1255-1260, Dec. 1974.
[7] - "Calibration of an arbitrary six-port junction for measurement of active and passive circuit parameters," IEEE Trans. Instrum. Meas. (Special Issue on 1973 EEMTIC and IM Symposium). vol. IM-22, pp. 295-299, Dec. 1973.

APPENDIX B

CONTROL COMMANDS USED IN THE COMPUTER

OPERATING PROGRAM

Abstract

The following tables list commands that are used in the operating programs to control specific functions in the microwave vector voltmeter. These commands are located in various parts of the program listed in Appendix C. Use of these tables is intended to be an aid in understanding the program and in writing other software routines or modifyj.ng existing routines.

IMPORTANT NOTICE

Certain commercial equipment is identified in this report. This does not imply endorsement by the National Bureau of Standards nor does it imply that the equipment identified is necessarily the best available for the purpose.

Effect
Device under Control
Command

Control Commands from Computer to MVV

Effect
Device under Control
Command

Test Atten: 0 db
1 db
2 db
3 db
4 db
5 db
6 db
7 db
8 db
9 db
10 db
11 db
12 db
13 db
14 db
15 db
Driver 120-1
Write (2,*) WBYTE (ϕ or 1);
" "
" " "
(2 or 3);
" " " (4 or 5);
" " " (6 or 7);
" " (8 or 9);
" " " (10 or 11);
": " " (12 or 13);
" " " (14 or 15) ;
" " " (16 or 17);
" " " (18 or 19);
" " " (20 or 21);
" " " (22 or 23);
" " " (24 or 25) ;
" " (26 or 27);
d
Reference

Atten: | 5 db | $"$ | $"$ | $"$ | $"$ | (32 or 33$) ;$ | |
| ---: | :---: | :---: | :---: | :--- | :--- | :--- |
| 10 db | $"$ | $"$ | $"$ | $"$ | $"$ | $(64$ or 65$) ;$ |
| 15 db | $"$ | $"$ | $"$ | $"$ | $"$ | $(96$ or 97$) ;$ |

Control Commands from Computer to MVV

Effect
Command

Isolators to $8-12 \mathrm{GHz}$	Scanner	Model 1200	Write (1,*)	WBYTE 31;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
	Scanner	Mode1 1200	Write (1,*)	WBYTE 26;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
	Scanner	Mode1 1200	Write (1,*)	WBYTE 25;
	Driver	120-1	Write (2,*)	WBYTE 1;
	Scanner	Model 1200	Write (1,*)	WBYTE 22;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
Isolators to $4-8 \mathrm{GHz}$	Scanner	Mode1 1200	Write (1,*)	WBYTE 30;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
	Scanner	Mode1 1200	Write (1,*)	WBYTE 29;
	Driver	120-1	Write (2,*)	WBYTE 1;
	Scanner	Mode1 1200-1	Write (1,*)	WBYTE 24;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
	Scanner	Mode1 1200-1	Write (1,*)	WBYTE 23;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
Isolators to $2-4 \mathrm{GHz}$	Scanner	Model 1200-1	Write (1,*)	WBYTE 30;
	Driver	120-1	Write (2,*)	WBYTE 1;
	Scanner	Model 1200-1	Write (1,*)	WBYTE 28;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
	Scanner	Mode1 1200-1	Write (1,*)	WBYTE 24;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
	Scanner	Mode1 1200-1	Write ($1, *$)	WBYTE 22;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
Isolators to . $5-2 \mathrm{GHz}$	Scanner	Model 1200	Write ($1, *$)	WBYTE 31;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
	Scanner	Model 1200	Write ($1, *$)	WBYTE 27;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
	Scanner	Mode1 1200	Write (1,*)	WBYTE 25;
	Driver	120-1	Write (2,*)	WBYTE 1;
	Scanner	Mode1 1200	Write (1,*)	WBYTE 23;
	Driver	120-1	Write ($2, *$)	WBYTE 1;
Take Voltage Readings from the 5 detectors in the MVV	Scanner	Model 1200	Write (1,*)	WBYTE 58;
	DVM	Model 3500	Enter ($4, *$)	A, B
	Scanner	Mode1 1200	Write (1,*)	WBYTE 59;
	DVM	Mode1 3500	Enter ($4, *$)	A, B
	Scanner	Mode1 1200	Write (1,*)	WBYTE 60;
	DVM	Model 3500	Enter ($4, *$)	A, B
	Scanner	Model 1200	Write (1,*)	WBYTE 61;
	DVM	Model 3500	Enter ($4, *$)	A, B
	Scanner	Model 1200	Write (1,*)	WBYTE 62;
	DVM	Model 3500	Enter ($4, *$)	A, B

APPENDIX C

COMPUTER PROGRAM DESCRIPTION AND

LISTING WITH SAMPLE PRINTOUT

Appendix C

Computer program description and listing.

Equations (22) - (27) in Appendix A are solved using matrix algebra. Before expressing these equations in matrix notation, add a subscript j to indicate the measurement number, where $j=1 \ldots 6$ in the present calibration routine which takes six measurements. Equation (22) of Appendix A then becomes

$$
\begin{equation*}
f_{j}=\sum_{i=1}^{5}\left(L P_{j i}-P_{j i}^{\prime}\right) z_{i}=0 \tag{C-1}
\end{equation*}
$$

Subscript i refers to the detector numbers which are relabeled 1 ... 5 in the program. The following table relates the detector number used by the program to that shown in Figure 3.

Table C-1

Computer Number	Figure 3
1	$P_{3} \alpha\left\|a_{1}\right\|^{2}$
2	$P_{5} \alpha\left\|a_{1}+a_{2}\right\|^{2}$
3	$P_{8} \alpha\left\|a_{1}+j a_{2}\right\|^{2}$
4	$P_{6} \alpha\left\|a_{1}-j a_{2}\right\|^{2}$
5	$P_{7} \alpha\left\|a_{1}-a_{2}\right\|^{2}$

In matrix notation ($\mathrm{C}-1$) becomes

$$
\left[\begin{array}{l}
\mathrm{f}_{1} \tag{C-2}\\
\cdot \\
\cdot \\
\cdot \\
\mathrm{f}_{6}
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{LP}_{11}-\mathrm{P}_{11}^{\prime} & \mathrm{LP}_{12}-\mathrm{P}_{12}^{\prime} \cdot \cdots & \mathrm{LP}_{15}-\mathrm{P}_{15}^{\prime} \\
\cdot & & \\
\cdot & & \\
\cdot & & \\
\mathrm{LP}_{61}-\mathrm{P}_{61}^{\prime} & \mathrm{LP}_{62}-\mathrm{P}_{62}^{\prime} \cdot & \cdot \mathrm{LP}_{65}-\mathrm{P}_{65}^{\prime}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
\cdot \\
\cdot \\
\cdot \\
z_{5}
\end{array}\right]
$$

Since L and z_{i} are complex numbers, all matrices in ($C-2$) are complex. Let $L=L_{1}+j L_{2}$ and $z_{i}=x_{i}+j y_{i}$ where L_{1}, L_{2}, and x_{i} and y_{i} are real numbers. Write (C-2) as

$$
\begin{equation*}
F_{o}=[P+j Q][X+j Y] \tag{C-3}
\end{equation*}
$$

where F_{0} is a complex matrix but P, Q, X, and Y are real matrices;

$$
\begin{align*}
& P=\left[\begin{array}{ccccc}
L_{1} P_{11}-P_{11}^{\prime} & \ldots & L_{1} P_{15} & -P_{15}^{\prime} \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
L_{1} P_{61}- & P_{61}^{\prime} & \ldots & L_{1} P_{65} & -P_{65}^{\prime}
\end{array}\right], Q=\left[\begin{array}{ccc}
L_{2} P_{11} & \ldots & L_{2} P_{15} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
L_{2} P_{61} & \ldots & L_{2} P_{65}
\end{array}\right] \tag{C-4}\\
& X=\left[\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{5}
\end{array}\right], \quad Y=\left[\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
y_{5}
\end{array}\right] \tag{C-5}
\end{align*}
$$

The P and Q matrices can be written

$$
\begin{equation*}
P=\mathrm{L}_{1} \mathrm{O}-\mathrm{I} \quad, \quad \mathrm{Q}=\mathrm{L}_{2} \mathrm{O} \tag{C-6}
\end{equation*}
$$

Where the 0 matrix contains the data with the step "out", and the I matrix contains the data with the step "in" (3 dB inserted).

$$
0=\left[\begin{array}{lll}
P_{11} & \ldots & P_{: 5} \tag{C-7}\\
\cdot & & \cdot \\
\cdot & & \cdot \\
\dot{P}_{61} & \ldots & P_{65}
\end{array}\right] \quad, \quad I=\left[\begin{array}{lll}
P_{1}^{\prime} & \ldots & P_{15}^{\prime} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\dot{P}_{61}^{\prime} & \ldots & P_{65}^{\prime}
\end{array}\right]
$$

The program first takes the data to fill in the 0 and I matrices. It then asks for an estimate of L (approximately -3 dB and 45 degrees) from which it calculates L_{1} and L_{2}. The P and Q matrices in ($C-4$) are then calculated.

Initial estimates of the z_{i} are obtained by solving (C-1) using the estimated value of L. Since any one of the z_{i} can be set equal to 1 , we choose to set $z_{5}=1+j 0$ since this tends to simplify the mathematics. Equation ($\mathrm{C}-1$) then becomes

$$
\begin{equation*}
\sum_{i=1}^{4}\left(L P_{j i}-P_{j i}^{\prime}\right) z_{i}=-\left(L P_{j 5}-P_{j 5}^{\prime}\right) \tag{C-8}
\end{equation*}
$$

In matrix notation this becomes

Let N, Z, and R be the three complex matrices in (C-9) so that (C-9) becomes

$$
\begin{equation*}
N Z=R \tag{C-10}
\end{equation*}
$$

Note that N is identical to $P+j Q$ if the last column of $P+j Q$ is deleted. The column matrix R is the negative of the last column of $P+j Q$. Since N is not a square matrix, it cannot be inverted. To solve (C-10), first premultiply by N transpose to get

$$
\begin{equation*}
N^{\top} N Z=N^{\top} R \tag{C-11}
\end{equation*}
$$

Since $N^{\top} N$ is a square matrix, it can be inverted to give

$$
\begin{equation*}
Z=\left(N^{\top} N\right)^{-1} N^{\top} R \tag{C-12}
\end{equation*}
$$

The elements of Z are only estimates of the z_{i} since in general L used in C-9 is not known. The correct values of the z_{i} are obtained by using the estimates in equation (23) of Appendix A.

Adding a subscript j to (23) of Appendix A gives

$$
\begin{equation*}
f_{j}=f_{o j}+\sum_{i=1}^{4} \frac{\partial f_{j}}{\partial z_{i}} \Delta z_{i}+\frac{\partial f_{j}}{\partial L} \Delta L=0 \tag{C-13}
\end{equation*}
$$

The sum in ($\mathrm{C}-13$) is from 1 to 4 since $z_{5}=1+j 0$. In matrix notation (C-13) becomes

$$
-\left[\begin{array}{c}
f_{01} \tag{C-14}\\
\cdot \\
\cdot \\
\cdot \\
f_{06}
\end{array}\right]=\left[\begin{array}{ccccc}
\frac{\partial f_{1}}{\partial z_{1}} & \frac{\partial f_{1}}{\partial z_{2}} & \cdots & \frac{\partial f_{1}}{\partial z_{4}} & \frac{\partial f_{1}}{\partial L} \\
\cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & & \cdot & \cdot \\
\frac{\partial f_{6}}{\partial z_{1}} & \frac{\partial f_{5}}{\partial z_{2}} & \cdots & \frac{\partial f_{6}}{\partial z_{4}} & \frac{\partial f_{6}}{\partial L}
\end{array}\right]\left[\begin{array}{l}
\Delta z_{1} \\
\cdot \\
\cdot \\
\cdot \\
\Delta z_{4} \\
\Delta L
\end{array}\right]
$$

where from (24) and (25) of Appendix A

$$
\begin{align*}
& \frac{\partial f_{j}}{\partial z_{i}}=L P_{j i}-P_{j i}^{\prime} \tag{C-15}\\
& \frac{\partial f_{j}}{\partial I}=\sum_{i=1}^{5} z_{i} P_{j i} \tag{C-16}
\end{align*}
$$

Let F_{0}, M, and $i Z$ be the three complex matrices in ($C-14$) so that ($C-14$) becomes

$$
\begin{equation*}
-F_{0}=M Z \tag{C-17}
\end{equation*}
$$

Substituting ($\mathrm{C}-15$) and ($\mathrm{C}-16$) in ($\mathrm{C}-14$) shows that M is identical to $P+j Q$ except for the last column which contains the $\partial f_{j} / \partial L$. These terms are calculated from ($\mathrm{C}-16$) which can be written

$$
\begin{equation*}
\frac{\partial f_{j}}{\partial L}=\sum_{i=1}^{5} P_{j i}\left(x_{i}+j y_{i}\right) \tag{C-18}
\end{equation*}
$$

or

$$
\begin{align*}
{\left[\begin{array}{c}
\frac{\partial f}{\partial L} \\
\cdot \\
\cdot \\
\dot{\partial f_{6}} \\
\partial L
\end{array}\right] } & =\left[\begin{array}{ccc}
P_{11} & \ldots & P_{15} \\
\cdot & & \\
\cdot & & \\
\cdot & & \\
P_{61} & \ldots & P_{65}
\end{array}\right]\left[\begin{array}{c}
x_{1}+j y_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{5}+j y_{5}
\end{array}\right] \tag{C-19}\\
& =0[X+j Y] \tag{C-20}
\end{align*}
$$

Therefore M is obtained by substituting the complex column matrix ($\mathrm{C}-20$) in column 5 of the $\mathrm{P}+\mathrm{jQ}$ matrix.

Initial estimates of z_{i} to use in calculating F_{o} and M are obtained from (C-12). With these estimates, F_{o} and M can be calculated so that (C-17) can be solved for ΔZ. The solution is

$$
\begin{equation*}
\Delta Z=-\left(M^{\top} M\right)^{-1} M^{\top} F_{0} \tag{C-21}
\end{equation*}
$$

The elements of ΔZ are used to correct the estimated values of z_{i} and L;

$$
\begin{align*}
& \text { new } z_{i}=\text { old } z_{i}+\Delta z_{i} \tag{C-22}\\
& \text { new } L=\text { old } L+\Delta L \tag{C-23}
\end{align*}
$$

The iteration is now repeated, calculating a new P and Q matrix using the new L , and calculating a new F_{o} and M matrix using the new z_{i}. Then ($\mathrm{C}-21$) is solved to get a new ΔZ. The iteration continues until $\Delta L_{1}<10^{-6}$. Usually ΔL_{1} will be less than 10^{-6} after four iterations.

Equation (19) of Appendix A is also solved using matrix algebra, but no iteration is required. Adding a subscript j to indicate the measurement number as before, that equation becomes

$$
\begin{equation*}
\sum_{i=1}^{5} w_{i}\left(P_{j i}-P_{j i}^{\prime}\right)=0 \tag{C-24}
\end{equation*}
$$

For an ideal seven-port junction, all of the $w_{i}=0$ except for the w corresponding to P_{3} in figure 3. Since P_{3} is on channel 非1, we choose $w_{1}=1$ in the program. Therefore ($\mathrm{C}-24$) becomes

$$
\begin{equation*}
\sum_{i=2}^{5} w_{i}\left(P_{j i}-P_{j i}^{\prime}\right)=P_{j 1}^{\prime}-P_{j 1} \tag{C-25}
\end{equation*}
$$

which can be written

$$
\left[\begin{array}{cccc}
P_{12}-P_{12}^{\prime} & P_{13}-P_{13}^{\prime} & \ldots & P_{15}-P_{15}^{\prime} \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
P_{62}-P_{62}^{\prime} & & \cdots & \\
P_{65}-P_{65}^{\prime}
\end{array}\right]\left[\begin{array}{c}
w_{2} \\
\cdot \\
\cdot \\
\cdot \\
w_{5}
\end{array}\right]=\left[\begin{array}{c}
P_{11}^{\prime}-P_{11} \\
\cdot \\
\cdot \\
P_{61}^{\prime}-P_{61}
\end{array}\right] \quad(C-26)
$$

or simply

$$
\begin{equation*}
D W=C \tag{C-27}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
W=\left(D^{\top} D\right)^{-1} D^{\top} C \tag{C-28}
\end{equation*}
$$


```
916 FEM IHLDITLGTE THE NK
```



```
FG PUE 45GQ Put calibration data in 0 and I matrices
G5G FOR I=1 TOM
GES FOR I=2 TO H
97! I|[.|,I-1]=0[.J=I]-I[.1.I]
Caculate D and C matrices
GED HENT I
95[1:[,1,1]=I[, 1=1]-[0[.1,1]
10口冋\ NEXT I
1016 MAT T=TFUSII
102G MAT F=T-I
16%G MHT F=IN'V
1549 「HT U=T O
1656 HNT M=F+11
MGO
```



```
1120 Calculate initial estrmate of the z
```



```
1156 FOTG &1%G
```



```
117.g FFINT
11SG FEM I'EFATION EESIME
```



```
12g左 MAT A=F
MAT E=Q Calculate FO}=(P+jQ)(X+jY), store in E + j
12S0 MAT U=E { Fo stored in U + jV
```



```
12E6 MHT [:F G M except for last column
12要 HAT II=Q
1280 MHT E=0%G } Last column of M
130ू FGF I=1 TO Dी
1310 1:[I F | ] = [I, I 
1320 IICI,H ]=F[I : _
133G NENT I
```



```
13回MRT A=TFHE, } MT stored in }A+j
13G日 MHT E=TFHII: Calculate M}\mp@subsup{M}{}{\top}M\mathrm{ , store in E + jF
Calculate (M'M)
```



```
140g fAT G=! Put Fo in C + jD
141g M有 I| Calculate M M Fo, store in E E jF
40 J0G1E z6%6
```



```
1449 F0S|E 22E6
14C0 FIE I=1 TO HI
14E号 WFITE 15,15%GIE[I.1I
147星 HE:T I
14BO FOF I=1 TI H1
14G怆TTE }Print - \triangleZ
15日G NEXT
151G WEITE 15,1E2G!C[I.I扣的..1]
```



```
15%0 FFIHT
154%-1=L1-L[r+1] } New L = old L + LL
55b Lミ=LZ-I[HN:1]
1568 . 4=[[H:1] X4 + \L [1
150 MHT [={-% New z
589 11HT I='リーI
150日 MAT %=0
1EW0 MHT Y=I
1610 [H]=[N,1]=+1}}}\quadz5=1+j
1Ez0 '[N ]=IN[H:1]=
16%6 50GUE 49%0
1E4GIFHEG 4 IE-GE THE 1IG目 If }\Delta\mp@subsup{L}{1}{}>1\mp@subsup{0}{}{-6}\mathrm{ then continue iterating
1650
```



```
1ET& FOF I=1 TG H
1680 FFINT I:
1GgE MEWT I
1%G FRIMT
```



```
1780 FFINTT
```



```
17EG F'FIHT LI*Lこ=L_F
L"%G FF゙THT
```



```
17GGFOFHHT F?OB4F1日, 6
18日6 FE||T "', N=
|yEFUF 1=1 T04 Print
```



```
10yG 4-",
1040 FFJJT
1850 FFINT
1GEQ FOW 1=1 TOH
```



```
18EG HEST
1BGET PFINT
19EG PRIHT "暗IJ="多
1910 FOF =1 TO N
```



```
198日 抽ETMI
194E FHIT
1956 FOFMFT WFIG. &
1g5% Calculate and print value of L for each of the 6 measurements
```



```
19gG IVFUT ए1
2EGE JF F!=1 THEH OBF
20110M=1
```



```
ZGEG FFIM%
24T0 Measure \rhoo and c
2gG% EFT|FI
2100 flat 5-E+0
21|:1性T E"F゙\
2I2G NHT E=E-G
21S星 1F"T I=EFO
```



```
E[5月 MHT +&F+5
21FG FETIIFH
```



```
2をG4 HAT O=F+|
Z210 PIHT S=E+5
```



```
2E5G FETIIF+1
```



```
22?G 慒T F=\"*
2egG |AT F:=S*E
2CO0 NHT O=C-L
23E| |#T G=TFE
2G1G MAT II=G*F
2%EM MHT T= TI+T
zGGG FET|f:
```



```
3116 FEN PEAGIRIHG FHTTOU HITH TEST LEMICE IHSEFTEI
O12G IISP
313E ETIF
#146 I=I=1
9150 GOSUE 4E50
Read diode output voltages
1EG GOELE 2GG6 Calculate voltage ratio
17.0 F'1=T - F
```



```
SG日 GOTG %21E
GQG WFITE (15, 2GEG, "TEST FHTIO "EYL.T.FI
```



```
G2G FETIIFH
```



```
324日 IISF "RFFL''SHME SIGHAL TG BGTH FOFTG"
356 ETOF
GEG GOS|E 4ESG Set switches to measurement mode
3%G Kl=I=T=1
288 K2=6
```



```
S06 GELE CGE Calculate voltage ratio
216 1=12 }
```



```
340 FET\FU4
G56 FEM GUEFDIITINE TG FUN SHITEH LEIUEF
36日 AHIT 5G
37G WFITE (2ッ*)WEYTEFG+1:
806 NHIT 56
3340 F'ETLIFH
34QE FEN NEHSUFIHG STEF WHLUE FFTEF IFHIEFHTIOH
2410 I=1
340 GOSE 2540 Measure diode voltages with step "out", step "In"
Sg Calculate voltage ratio for step out.
346 F:=2
456 E=
4E. F=T Store results in R, S, P, E.
OGE=F
346 P1HT I=1
3490 COME 2G8 Calculate voltage ratio for step "in"
366 F1=T-F
```



```
5% FETIFFH
```



```
B5G HFITE & 1, +WE'TVE#F
56G I=1
GE Read diode outputs, store in o matrix
S560 GOUE 4GO
86@ I=こ
```



```
Set step "in"
Read diode outputs, store in I matrix
```



```
3ESEFETLIFH
```



```
SES IF FTOE THEH 3FOG
3EG IF FFS THEH 3FEG
3ETG. IF FP. 4 THEN 3日SE
G日G NE=こ马
6E% NG=35
60日 1, F=24. For 2\leqf\leq4
O14 NR=22
```



```
3%6 + +5=31
848 NH=こも For 8<f< 12
3-50147=25
OTG HE=22
37日 GOTO SE'E
376 H5=1
3704 HE=2?
5610 H7= %5 For 0.5< f<2
819 +4E=3
8%G FOT0 5BG
606 NE=56
8日4日 NE= For 4<f\leq8
3850 HT =24
BEGQ HE=2S
3B6TGOUE SO50
80g WFITE &1%+NHETTEHE:
G0% GOGl|E 3G5G Set isolator switches
G10 WFITE &1, NWE'YTEHT:
89% GOGUE S%G6
OG LFFITE O. YHE'YTEHE;
O46 GOGUE SOEG
G5E FETINFH

```

4ESG EEM EHLIILHTE LHITIHL ESTMMTE DF THE ZIO FFOMESTIMFE OF L
4EGE REN

```

```

4GE Calculate P and Q matrices
4GE HAT F=TFHCF%
4T1日 MAT E=TFHEO

```


```

4740 NAT E=TFHCH
4FSG NFT II=TEHCEO
476目 Calculate NTN, store in E + jF
476 Calculate (N'N)

```

```

4%96 FOF 1:-1 TOM
4S日6 [[I, 1]=-P[I IN] C C + jD = R
4日1日 I[I:1]]=-0[I+N]
4GEG HEST I
Calalculate NTN, store in E E + jF

```


```

4GGGEEIINE[H:1],II[H:1]

```

```

4EEE II[H,1]=[, } 25 = 1 + j0

```


```

4gCGEETIFH
4'G FEH EFLDILHTE THE F' HHII MHTFTTE
4946 MFT F=L1 %OI
45回 |FT F F=F--1
4E6 NAT O=LE
497E EETURH

```

```

496 FOF l=1 TO H
50106 Iニ= I
SG1G REM IIELETE HENT LIHE TO IISE IIODEG JH FH'Y ORIEE

```

```

5ESE IISF "ISE IIDIE \#C1...5";
504G1 1HFUTT II
505 FOF I=1 TOM M
56EG [I[1,I]=\&[1,I|
5%7G [[, |,]]=L[1, II]
5HQE FEST I
SGGE HEST
STEG FETBFH

```


565 HEMT I
SEG FETUFH

Subtract offset voltage and store reading in 0 matrix

EHTEF 1 TOFLIEFATE UECTOE UOLTVETEE
EHTEE 2 TU MEHSUPE FEFEFEVEE FHTID

EHTEE 4 TO MEHSURE IWN GFFSET UOLTHEE
EATEE 5 TU MEHSURE FG
EHTER G TO MOHTOF REFEFEHE DIGHE
FEESS STGF EOHT AGE WHEM DHIHE
EHTER ？TG MEASUEE STEF WHLIEE


L：FEHL

LDE
FCTEGREES
4.6015972

B． 5445559
\(-2.21505\)
40106446
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(I=. \quad 1\) & 2 & 3 & 4 & & \\
\hline  & －8．9527 & Q． 12 E 2 & 1． 61616 & & \\
\hline \(\because 619-9424\) & 1．925 & －6．6448 & 9， 0.106 & & \\
\hline WGT＝1．006 & － 0.1076 & 0.067 & 0.0646 & & \\
\hline LCT？İE & L－LCD）DE & FGI）DEE & F－FCI）DEE & \[
\mathrm{FE}=\mathrm{EEF}
\]
FFIU: & FGFT FONEF FFZFFI－1 \\
\hline －2．0919 & － 0.616 & 46，6e & －E，Ez & －11． \(\mathrm{c}^{\text {a }}\) & 1． 0191145 \\
\hline －2．0312 & －0．日ごす & 48.154 & －6．151 & － 40.60 & － 0.61094 \\
\hline － 29595 & －0．0120 & 4 H & － 10.0 &  & －6．060131 \\
\hline －2．1179 & 6． 1164 & 99\％ 5 & 6．241 & －164 9\％ & 9．06125 \\
\hline －－．1278 & 0 Bag & 59， 95 & 6．051 & －10．704 & Q． 061206 \\
\hline \(-2.85\) & Q． G －4 & 95．95 & 6． 1041 & －11． 1.9 & －6．060197 \\
\hline 9T゙Iロ ME\％。 & 4，9231 & & 0．124 & & \\
\hline
\end{tabular}


LFEHL

（108）
F DEGEEES
a6gersiseg


STI．IEV．＝
TY＇FE
MEAGUFENENT
Fiv
FEFEFFHE BGT
IHEETID FATIO IHEEFTIDH EATIO IHGEFTIOH FHTII IHEEETEOK RATIO I \(A\) SEFTIDH FH！I IFEETION EATIG IHEEETIDH FATIO IHEERTIMH FHTCO
STEF FKTIO L
GTEP FETI口 \＆
ETEF FATID \＆
GTEF FATID \＆
GTEF FATIU L
ETEF FHTID L
ETEF FHTID ©L

\(-2.110159\)
\(39,521 \mathrm{~B}^{2} 4\)
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 4 & 5 \\
\hline 1.255 & 1．9060 \\
\hline 0.6144 & 108060 \\
\hline 6．48EE & Q． 14.1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline  & FFEEEF & －Prat \\
\hline & FEIT： & FFQ Pr 1 \\
\hline 10．615 & －－1－\％em & Q4013E \\
\hline E． 612 & \(-16.76\) & －6．960154 \\
\hline Q． 908 & －14． 0 & －－Wabrl \\
\hline －6．016 & －11． 1.82 & 0． 10102 \\
\hline O． B E & \(-10.75\) & 6． 6.012 c \\
\hline －6， 40 & \(-11.244\) & －区，961\％ \\
\hline
\end{tabular}
\(-4.42\)
Q．613
FHAGE FFCDEH FREFR1－1 DEEFEES

Attenuation in Test Channe 1 0 dB 10 20 30 40 50
60 60
70
 E．7．80－2．181 － \(785 \quad-2.219\) \(8.7807 \quad-2.56\) 9．7780－2．161
\(\begin{array}{ll}6.923 & -1.688 \\ 663 & -269\end{array}\)
Bigl－－


6． 6 E
H．BE E

\begin{tabular}{|c|c|}
\hline Q，962 & －5， 68 \\
\hline 0． \(\mathrm{P}_{4} 9\) & －2．523 \\
\hline 0.9499 & －6． 0101 \\
\hline Q， \(\mathrm{O}_{1} 5\) & －4，59\％ \\
\hline 6．108 & －14，3t \\
\hline Q．日3， & －2\％ロ96 \\
\hline 1． 016 & \(\cdots 3.825\) \\
\hline Q，brye & －49． 492 \\
\hline 6．Wb L & －5，－5 \\
\hline 6．日6ly & －76．144 \\
\hline E． \(\mathrm{F} \boldsymbol{7} \mathrm{B}\) & －2．151 \\
\hline 6． 785 & －－－119 \\
\hline 8.7867 & －2．150 \\
\hline 9．7780 & \(-2.181\) \\
\hline 6． 02 g & －1．688 \\
\hline Qubl3 & －2．369 \\
\hline 6.851 & \(-1.607\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline －126．75 & 19．464 & \\
\hline －136．2゙ & E．960 & \\
\hline －－． 14 & Q． 0.11 & \\
\hline －-2.8 & －0．045 & \\
\hline \(-2 \cdot 42\) & －6． BH & \\
\hline \(-8.67\) & －6． 014 & \\
\hline 10．E5 &  & \\
\hline 5.34 & －9．906 & \\
\hline 41.97 & －－6． 617 & \\
\hline 167．3t & －6． 818 & \\
\hline 46.26 & －6． ELG & Q． 016161 \\
\hline 99.8 & －1．019 & 0.64162 \\
\hline 39．93 & －6．010 & －6． 61017 \\
\hline 48.29 & －6． 6017 & Q． 10.64 \\
\hline 41.14 & －－0．0さこ & －6019－24 \\
\hline 46.98 & －6．611 & Q ． 01036 \\
\hline 31.74 & \(-\mathrm{O}_{4} \mathrm{O}\) & 4． \(9169{ }^{\circ}\) \\
\hline
\end{tabular}

1． 1.4
－52－

\section*{APPENDIX D}

INTERFACE CABLE PIN CONNECTIONS

These tables list pin connections for the interface cables indicated in figure 1 (page 2). The tables can be found at the rear of the chassis of each unit indicated. A brief description of the signal present at those pins is given to aid in understanding or troubleshooting.

Model 1200A Scanner



Interface connections from Data Precision Model 3500 DVM to HP computer interface cable 11203A BCD Interface
\begin{tabular}{ccc}
\begin{tabular}{c} 
Data Precision \\
Model 3500 \\
Connector Pin 非
\end{tabular} & \begin{tabular}{c} 
Information \\
Direction
\end{tabular} & \begin{tabular}{c} 
Hewlett Packard \\
\(11203 A\) Interface \\
Wire 非
\end{tabular}
\end{tabular} Comments on description
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \(\longrightarrow\) & 968 & \multicolumn{2}{|l|}{ground} \\
\hline 2 & \(\longrightarrow\) & 907 & Digit 9 "8" & (LSD) \\
\hline 3 & \(\rightarrow\) & 96 & Digit 9 "4" & \\
\hline 4 & \(\longrightarrow\) & 90 & Digit 9 " & \\
\hline 5 & \(\rightarrow\) & 1 & Digit 9 "1" & \\
\hline 6 & & N.C. & & \\
\hline 7 & \(\longrightarrow\) & 906 & Digit 8 "8" & \\
\hline 8 & \(\rightarrow\) & 95 & Digit 8 "4" & \\
\hline 9 & \(\longrightarrow\) & 9 & Digit 8 "2" & \\
\hline 10 & \(\rightarrow\) & 2 & Digit 8 "1" & \\
\hline 11 & \(\longrightarrow\) & 913 & 1000 V Range & to Exp. "5" \\
\hline 12 & & N.C. & & \\
\hline 13 & & N.C. & & \\
\hline 14 & \(\longrightarrow\) & 967 & Flag from Read & Output (Invert Flag \\
\hline 15 & \(\longrightarrow\) & 91.2 & 5 th digit "8" & MSD \\
\hline 16 & \(\rightarrow\) & 902 & 5th digit "4" & \\
\hline 17 & \(\rightarrow\) & 91 & 5 th digit "2" & \\
\hline 18 & \(\longrightarrow\) & 5 & 5 th digit "1" & \\
\hline 19 & \(\longrightarrow\) & 925 & 4 th digit "1" & 1/2 digit (1 or \(\phi\) ) \\
\hline 20 & \(\longrightarrow\) & 901 & & \\
\hline 21 & \(\xrightarrow{\square}\) & 957 & & \\
\hline 22 & \(\longrightarrow\) & 968 & ground & \\
\hline
\end{tabular}
\[
915-97 \quad+5 \text { volts to Exp. "4" }
\]
\begin{tabular}{cccc}
\hline \begin{tabular}{c} 
Data Precision \\
Model 3500 \\
Connector Pin \(⿰ ⿰ 三 丨 ⿰ 丨 三 一\)
\end{tabular} & \begin{tabular}{c} 
Information \\
Direction
\end{tabular} & \begin{tabular}{c} 
Hewlett－Packard \\
l1203A Interface \\
Wire
\end{tabular} & Comments on description
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline A & \(\longleftrightarrow\) & 968 & ground \\
\hline B & \(\longrightarrow\) & 98 & 10 volt range to Function＂4＂ \\
\hline C & \(\rightarrow\) & 908 & Digit 6 ＂8＂ \\
\hline D & \(\longrightarrow\) & 93 & Digit 6 ＂4＂ \\
\hline E & \(\rightarrow\) & 7 & Digit 6 ＂ 2 ＂ \\
\hline F & \(\longrightarrow\) & 4 & Digit 6 ＂ 1 ＂ \\
\hline H & \(\longrightarrow\) & 92 & 1 volt range to Function＂2＂ \\
\hline J & \(\longleftarrow \sim\) & 958 & Control 1 to Enable \\
\hline K & & N．C． & \\
\hline L & & N．C． & \\
\hline M & & N．C． & \\
\hline N & \(\rightarrow\) & 905 & Digit 7 ＂8＂ \\
\hline P & \(\longrightarrow\) & 94 & Digit 7 ＂4＂ \\
\hline R & \(\rightarrow\) & 8 & Digit 7 ＂2＂ \\
\hline S & \(\longrightarrow\) & 3 & Digit 7 ＂1＂ \\
\hline T & \(\rightarrow\) & \(\phi\) & 100 volt Range to Exp＂1＂ \\
\hline U & & N．C． & \\
\hline v & & N．C． & \\
\hline W & & N．C． & \\
\hline X & \(\longrightarrow\) & 6 & 100 mv Range to Function＂ 1 ＂ \\
\hline Y & \(\longrightarrow\) & 916 & Overload to Exp．sign \\
\hline Z & \(\longrightarrow\) & 968 & ground \\
\hline
\end{tabular}

Ground：903；908；917；918；923；924；926；927；928； 934；935；936；937；938；946；947；948；956．
```

Monitor Labs
To
Data Precision
Model 3500
DVM
Scanner
Connector J2
Rear Panel Input Connectors

```
\begin{tabular}{lll} 
Pin 2 \\
Pin 4 \\
Pin 3 & \(\longrightarrow\) & High \\
Low
\end{tabular}
\begin{tabular}{ll} 
Weinsche1 Switch Driver & To \\
Mode1 120-1 & Mode1 1200 Scanner \\
Connector Pin No. & Pin No. on J2 (Boards 2 and 3)
\end{tabular}
\begin{tabular}{lll} 
Pin 1 \\
Pin 19 & \(\longrightarrow\) & Pin 4 \\
Pin 2
\end{tabular}

Model 1200
Pin Connections

HP 11202 Interface
~ ~ Output "4" Output "2"
on 11202 - short outputs to inputs
(1-1, 2-2, etc.), short flag to Cntrl


\section*{APPENDIX E}

\section*{DIAGNOSTIC PROGRAM LISTING WITH}

\section*{SAMPLE PRINTOUTS}

This appendix contains a listing of the diagnostic program stored on file 4 of the MVV cassette tape.

Three separate tasks can be selected when using program. They are:
1. Measure step repeatability
2. Measure diode linearity
3. Monitor source stability.

The program was written to be an aid for setting up the system and for troubleshooting. Remarks have been added to the program listing to explain the functions of the program statements.


```

120 IIM M[7]![[1E,5]!T[1E,5],F[4]!4[4]

```

```

140 M[5]=-166

```

```

1E回K=星 K9 = 0 indicates
1习要 MHT [=ZEF
1SG NAT F=ZEF
1G6 NHT O=2EF
C口G 㺫T I=EEF
21日 IISF "FFEQ。IH FHE",
2G IFFF|T FT
ZGFFIHT "FFEG = "F\vec{F"MHZ}
24日 FFIHTT
EG SNE 1510 Switch in appropriate isolators
EEG FFIHT "E\&TEF 1 TO NEHEUFE STEF EEFEHTHEILITY"
ZTE FFI\&T "EHTEF Z TO MEHSURE IIOTE LIVEFFIT'"
Z日G FRIHT "EHTEF TG MOHITOF GOUFLE GTHEILIT'"
2GG PFINT
%日6 IISF"THGN";
3E IHFUT I

```

```

33日 FOTG SGE
S回 万㽞吕410
BEG IISF "TIIEH DFF FOWER":
30日 GTOF
SQ FOGUE EOWG Measure diode offset voltages
OG IISF "TUFH OHF FOWEF":
40GTOF
410 GOLE 4OQ Choose which diode to monitor
4%日 G0TO 5%G

```

```

446 IHFU\T1
45,0 FFIFHT
4EGFFINT "IIIIE NG* ".J.
4FEFFIHT
4Q Set attenuation in measurement channel to zero
456 K=0
F0, S } Set switches to calibration mode
SETGI|E 18G日 S Set switches to calibration mode
G0NE=41
ly } % % Set switches

```




```

EGG WEITE , 15.G1E

```

```

50}+1=
EOH H=5
E40 M0|E SH|, Measure step ratio N times, compute average and std. dev.
ECGH=H A0 = initial average

```


```

EGEGGUE 1GGG Measure step ratio N times again
EG WFITE:15, PGEM\&
FG日 FGFMAT FS.G

```

```

PG IF F, G. WGI THEN r, %
TGG IF HE|GE1 THEH PBG
T4E FFIHT THESZ"+"THEET:

```




```

TGG WFITE \&5, 目合
BQE FOFM的 FT,4

```

```

82@ K1=K1+1
8% IF FIS THEH ESG R Repeat measurement 20 times

```

```

900 STOF
\#12 it=%
Ga, \&=8 } Set switches to calibration mode
} Set switches to calibrate diodes
GE FFIN
30 HFITE 15,5SQ, DHBNE HG, 2,3,4.5
GBG FGRMFT FE,B,BFIE,g

```


```

1010 I=1
10g z=? {苃} Set step out
1040 R0, 1170 Read all diodes
105642=-4
feg I=2 Set step in
LEQ JOEE 11% Read all diodes
10%G FOF I=1
1106 %[|]=-0183-2]

```

```

12S HENT I

```


```

115G HEQT NG
11EG GOT, EGEQ
118曻曻
15% FOF 1=: T0 子

```

```

1こ1G GOGE 1GGG Read DVM
122G H=E

```

```

\rgFETMF! or in I matrix if D = 2 for step in
12%-踪
12与0 !- N-

```

```

ミ゚くここここ=,
15GFOF I=1
Sa, } Set step out

```

```

13%
}={的 Set step in

```

```

V V = ratio of step out to step in
14.3 三=こ
\#5%=
\#E目洎T

```

```

AGO-1}
1-SEFこT:FM


```
5G IF FP%E THEN 16GH
SG IF FPE THEH 16.5日
1540 IF FPY THEH 1FOW
1550 NE=2G
150.0 +5=30
15,0 HT=24
15G04 +8=2-
1590 F0T01740
16日咟年1
1E10 HE=2E
1G0% NT=ご.
80 NB=ここ
164日 叮㽞1746
1650 +5=31
1EE回 NE=々宁
1670 NT=25
1680 +G=2%
160% 50T01740
70日 N5=96
1710 NE=2G
1%G HT=24
1730 NE=2%
1740 WEITE &1.%)HE'TEFF:
1750 GG|E 1850
1TEO WFITE &1,%)WEYTENE:
1779 GOSIE 1850
17BG 听ITE &1,%)NEYTEFF%
1790 FISUE 18SE
```



```
1810 口OG|E 185G
1B2G PETIPN
```



```
1S4Q WFITE &14 +)NENTENE:
```



```
1G%G HFIT SE
1BGGEETHFH
BGG FEN SIEFOUTIUE TO REHT UTOLE UTLTHUES
1%星E=6
1910 EHTEF &4, OHI,E4
19%回FF=1 TO
1Gg EHTEF &4s+%H1sE1
194日 NHIT 5G
```



```
1%EG E=E E E'
197G HENT &
1950 E=E 5
1GGEETUFPH
2GGG REM GUEMUDTIHE TL MEFGOME IOFFET VOLTHIGE
2GE NFT \Gamma=こEF
2GE FOF I=1 TO &
2GG WKITE & + MEPTEFQ- I* Connect diode 非 + 1 to DVM
2W4G FOUE 1ByG Read DVM
2G50[J]=E
2GEM HEQT ।
2G7E FETUFF
```



```
C110 WFITE 14+5EYTEEM- I: Connect diode #J + 1 to DVM
21EG FOFI=1 TOE
Z10 EHTEF {4, \F1:Y
214日 HENT I
```



```
2144 IFFIIT S%
2150 IISF " FEIHTG1% IR IISFLHY(2) "%
21EQ IHFIIT K
217. IF H= THEN S5SG
2175 万0TO GT OF こ1B4.2193, 2197
```



```
-1G% FOTO -9लF
-17 GOTO ここD
```



```
2194 FRIHT THEG5"**+.2% "4* +.4% "%* +.5%
```



```
21g7 FRIHT "
298 FRIHT THB35" +2.G% +4.6% +5.0%
```



```
2g16 मFITE &5, ここG%
```



```
2-5 5%=10+(57-1
2066 H=10
```


FFEO F. 5 FHE

Sample Printout

Task \#1, Step Repeatabilitv

EHTEF 1 「I MEHEMFE GTEF FEFEHTHEILITY'
EHTEF - TG MEHGLEE IIDIE LIHEHFITG'
EHTEF TG MOHIGF GOREE GTEILITY

IIIIE トNIG

[^1]\qquad

FWEO OM O WH

THUE HO

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 76-844	2. Gov't Accession No.	3. Recipient's Accession No.
4. TITLE AND SUBTITLE A MICROWAVE VECTOR VOLTMETER SYSTEM			5. Publication Date August 1976
			6. Performing Organization Code 276.03
7. AUTHgerth C. Roe and Cletus A. Hoer			8. Performing Organ. Report No.
9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			10. Project/Task/Work Unit No. 2763433
			11. Contract/Grant No.
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP) Department of the Air Force USAF School of Aerospace Medicine (USAFSAM) Brooks Air Force Base, Texas 78235			13. Type of Report \& Period Covered Final
			14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

This report presents a system description and operating procedure for a vector voltmeter system which covers the frequency range . 5 to 12 GHz . The design is based upon a seven-port junction where phase and amplitude information is obtained using only power detectors. The system is computer controlled and self-calibrating for ratio measurements.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)

Amplitude; computer controlled; diode detectors;
microwave measurements; phase angle; self-calibration; seven-port junction; vector voltmeter.

18. AVAILABILITY [XX Unlimited For Official Distribution. Do Not Release to NTIS	19. SECURITY CLASS (THIS REPURT) UNCL ASSIFIED	21. NO. OF PAGES 68
Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, SD Cat. No. C13	20. SECURITY CLASS (THIS PAGE)	22. Price
XK Order From National Technical Information Service (NTIS) Springfield, Virginia 22151	UNCLASSIFIED	\$4.50

[^0]: ${ }^{1}$ It is this condition that is not satisfied by most older six-port designs used for getting phase information from amplitude measurements. See the section on "Six-Port Design Criteria."

[^1]: 15C-1

