
NBSIR 76-1094(R)

Standards for Computer Aided
Manufacturing

John M. Evans, Jr., Ph.D., Project Manager

Joseph T. O'Neill

John L Little

George E. Clark, Ph.D.

James S. Albus, Ph.D.

Anthony J. Barbera, Ph.D.

Bradford M. Smith

Dennis W. Fife, Ph.D.

Elizabeth N. Fong

David E. Gilsinn, Ph.D.

Frances E. Holberton

Brian G. Lucas, Ph.D.

Gordon E. Lyon, Ph.D.

Beatrice A. S. Marron

Mable V. Vickers

Justin C. Walker

Office of Developmental Automation and Control Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D. C. 20234

Third Interim Report

January, 1977

Prepared for

Manufacturing Technology Division

Air Force Materials Laboratory

Wright-Patterson Air Force Base, Ohio 45433

NBSIR 76-1 094(R)

STANDARDS FOR COMPUTER AIDED
MANUFACTURING

John M. Evans, Jr., Ph.D., Project Manager
Joseph T. O'Neill

John L. Little

George E. Clark, Ph.D.

James S. Albus, Ph D.

Anthony J. Barbera, Ph D.

Bradford M. Smith

Dennis W. Fife, Ph.D.

Elizabeth N. Fong

David E. Gilsinn, Ph.D.

Frances E. Holberton

Brian G. Lucas, Ph.D.

Gordon E. Lyon, Ph D.

Beatrice A.S. Marron
Mabel V.Vickers

Justin C. Walker

Office of Developmental Automation and Control Technology

Institute for Computer Science and Technology

National Bureau of Standards

Washington, D. C. 20234

Third Interim Report

January, 1977

Prepared for

Manufacturing Technology Division

Air Force Materials Laboratory

Wright-Patterson Air Force Base, Ohio 45433

U.S. DEPARTMENT OF COMMERCE. Juanita M. Kreps, Secretary

Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

INTRODUCTION

SUMMARY OF RECOMMENDATIONS

Evaluation of CAM Standards
Evaluation of Computer Standards
Summary Matrix

STANDARDS FOR COMPUTER AIDED MANUFACTURING

1. NC Part Programming Language Standards
2. CAD/CAM Interface Standards

STANDARDS FOR COMPUTER SYSTEMS

1. Computer and Communications Interface Standards
2. Communication Code Standards
3. Programming Language Standards
4. Operating Systems
5. Data Base Management Systems
6. Software Testing and Tools
7. Documentation Standards
8. Media Standards

APPENDIX A - Data Base Management File Structures

INTRODUCTION

The Air Force is initiating a major new program to accelerate the
establishment of Integrated Computer Aided Manufacturing (ICAM) in discrete
part batch manufacturing industries in the United States , especially in
the aerospace industry. The National Bureau of Standards is providing
support to that program by analyzing existing standards relevant to
Integrated Computer Aided Manufacturing.

This document is the third interim report to the Air Force Manu-
facturing Technology Division of the Air Force Materials Laboratory
at Wright-Patterson Air Force Base on the ICAM support project. This
report covers task 4 of the 5 tasks of the project:

Task 1 Identify current standards applicable to CAM.
Task 2 Analyze existing formal and de facto standards.
Task 3 Assess the actual usage of standards in industry.
Task 4 Recommend optimal standards for CAM system development.
Task 5 Identify standards organizations and outline a proper Air Force

role in standards activities.

The first report identified those existing and potential standards
which will be useful to the Air Force in the development and implementation
of integrated computer aided manufacturing systems. Such systems, when
implemented by the Air Force and by Air Force contractors, will increase
productivity in discrete part batch manufacturing by several thousand
percent

.

The second report provided a comprehensive reference data base on all
formal and de facto standards that are considered to be relevant to the
Air Force Program. The report took the form of an annotated bibliography
with data sheets on each standards activity for ease of reference.
This report covered Task 2 and 3.

The third report discusses the utility of these standards to the
Air Force Program and in each relevant standards area recommends a best
approach to follow either toward adopting existing standards or toward
developing needed standards. This discussion is embedded in the context
of a hypothetical computer based manufacturing environment where standards
are shown to plav an essential role in three key areas:

System integration: data and communication interfaces between CAM
application programs.

Software portability: interfaces between CAM programs and the host
computer system, including languages, operating systems, and data
based management system interfaces.

Integration of distributed systems: interfaces between computers
in distributed systems.

The work reported here was supported by the Air Force Program for
Integrated Computer Aided Manufacturing, Manufacturing Technology Division,
Air Force Materials Laboratory, Wright-Patterson Air Force Base under
MIPR FY 14577600369, Dennis Wisnosky, Program Manager.

SUMMARY OF RECOMMENDATIONS

This third interim report recommends optimal standards for the Air Force
ICAM program. Many formal standards that now exist are recommended as relevant
to the ICAM program and these are expected to remain so in the future.
Futhermore , trends and developments In standardization process are enumerated
with key areas identified for monitoring or development. Finally, several
areas are cited where formal standards do not exist but where project standards
will be necessary.

This report and the recommendations of this report should be considered
as a first step in an interactive effort to define the nature, the detailed
structure, and the details of implementation of ICAM projects.

Evaluation and Recommendations on CAM Standards

There are few CAM standards that can be evaluated, a result partly of
the newness of the field and partly of the way in which CAM systems have
been developed primarily by large user industries for their own internal
(and hence proprietary) use. In the area of NC programming languages,
standards have developed because of the multi-industry development effort
and Air Force contractual requirements. The APT language standard is
recommended as a minimum, with extensions to cover adequately the post
processor area. If two languages can be allowed, the COMPACT II/ACTION/SPLIT
family should also be used since it is more efficient on simple parts and can
product compatible CL data as an option.

In the CAD/CAM interface area, the ANSI Y14.26.1 effort, NASA's IPAD,
and the CAM-I Geometric Modeling Project are considered in relation to the
digital representation of physical object shapes. The ANSI approach is
recommended, and the Air Force is advised to monitor the other efforts to
insure eventual compatibility with the ICAM system. In addition, the
Institute for Printed Circuits standard on printed circuit boards is
discussed as a tutorial example and recommended where appropriate.

Evaluation and Recommendations on Computer Standards

Communications

In order to construct distributed fourth generation computer systems
expected to be in wide use in the 1980's, adequate communications inter-
face standards are a necessity. A supr.ising amount has been dome on hardware
standards and comminucations protocols. A comprehensive set of standards,
some of which are only in the formation stages, is recommended on computer
peripherals (ANSI proposed channel le^vel and minicomputer device level
interfaces), DTE/DCE interfaces (RS 232, RS XYZ , CCITT X.21), and bit
oriented link level and packet network protocols (ANSI ADCCP and CCITT
Recommendation X.25). Following these standards, a distributed computer
system can be developed, using commercial communication services, that will
remain relevant into the 1980 's.

Codes

The lowest level of information storage and transmission is the char-
acter code level. Serious problems may arise in code conversion and in
accessing or merging files with different coding schemes. These problems
are discussed and the American Standard Code for Information Interchange
(ASCII) code is recommended for data crossing any system interface.

Software: Languages, Data Base Management, and Operating Systems

The Air Force has stated that their objectives for the ICAM system in-
clude software portability, integration of software modules and, potentially,
distributed data processing. These requirements lead to a consistent set of
recommendations for programming languages, data base management, and operating
systems

.

Standardized programming languages offer the key to portable software.
Using adequate language standards and requiring validation of compilers against
those standards will be required for Air Force ICAM software to be portable.
FORTRAN and COBOL will have to be supported to the near term because of the
bulk of application programs written in those languages. Eventual conversion
to the use of a more modern programming language should be anticipated. Re-
presentative of the "modern" languages is PL/I which is the only one that has
been submitted for standardization. However, substantial effort remains
before PL/I can be termed suitable for ICAM needs.

From the point of view of integration of applications modules, the most
critical element is the data base management system (DBMS) . The recommendation
here is to prepare functional specifications for the competetive procurement
of a commercially available data base software package to support all near
term ICAM projects. Emphasis should be placed upon obtaining modular archi-
tecture, well defined interfaces, portability of applications programs,
integration of ICAM modules, and future adaptability to a computer network
system with distributed data bases.

In Operating Systems there are no standards. This is a major problem
area from the point of view of software portability, but a standard operating
system is not feasible for large scale computers because of the differences

in architectures. However, a standard operating system for 16 bit or 32

bit byte oriented machines seems at least technically feasible. It may be

necessary to implement project standards on file names and library names to

avoid problems in portability due to differences in file management conventions.

Documentation, Validation and Testing, and Software Tools

These are some of the most important tools to insure system integration

and software portability and maintainability. Detailed recommendations
are not possible until the maintenance of ICAM software is better defined,

but general requirements and various approaches are discussed and evaluated,

and general guidelines are provided. It is recommended that the Air Force

use validation and testing procedures, and that general software develop-

ment tools be developed, used in ICAM development, and then made a part

of the ICAM system.

Media

Magnetic Tape and discs and direct communication links are the primary

recommended standards for transmitting ICAM data and software within a

given installation and between installations. Where punched cards must be

used, standards are available. Paper tape, even for NC , is not recommended;

instead direct communications links (DNC) should be used.

Summary Matrix

There is no comprehensive set of present day standards that will solve

all of the Air Force's needs. However, where today's standards are

inadequate, major trends, developments and needs for project standards have

been identified that should provide the Air Force ICAM program with sound

initial guidance. A summary of recommendations is given in the matrix of

Figure 1.

3

aj 44 cn 1 X
X > 4-> QJ X 1 c • QJ

<D cn r-4 tO X •—

1

0 X X r-H *rH XX G
l-i 44 1 o x 4-1 QJ O QJ QJ •H QJ 3 2 3 0
•H 0 P cn 4-i 44 > 0 > X 3 QJ X Or Cn < G X
3 cn 44 0) 3 Q) X Q) 3 > XI G 0 -H O
cr M 44 cn 4-4 H 0 X X 3 3 rH x M x cn

QJ a) 44 aj 44 -H X X QJ cn G QJ

X u o - -H QJ XI ftX 4l 0) cn G > QJ >4 3 C
O 44 M 4-1 -P G cn x XI 3 3 QJ > X -H >1

U1 44 cn 1 -H •H x 0 Id x E x x c cn x x
4-> 04 t" 4-1 2 '—

1

0 <—

1

QJ X X cn •HQ) G 3 -H
>4 -P X c *H r—i > 1 X - X 44 in 11) OH
0 cn rn QJ O XI 3 44 QJ 0 \ Q) 3 H G -H
4-1 0 x e •H > 0 X X 44 0) X G XX -H X
4-1 a 04 * X QJ 1 0 cn x 3 X QJ Or X 3
W - 0 a to 4-1 X X X 3 X rH E G X

<U ln r~H < 04 X C 44 cn X X X rH X 0 0 G
1-1 N X 0) X £ C Q) O 0 in cn 0 a> 0 3 -H U Or 0
0J •H r0 > H o 3 e S X x •rH X 0 in Or Or
x TJ x 0) O 04 a 4-) 0 cn >4 3 cn G in QJ 3
4-1 44 44 X G C. 0 44 0 QJ Or O £ X X tnx cn 0 x cn qj

44 (0 0 0 '4 i—

1

0 1—

1

COO QJ \x •H QJ Or 3 G
3 X -4> QJ 4J QJ 4-1 Q) X X X X 1—

1

X cn X X QJ 3
X C -H 44 •H I>1 I> •H > X Q) 0 cn X -H cn XI GH E «1

3 G 3 C C QJ c QJ G > 44 E XI QJ 3 P O -H -H C
x S -P 0 to X 0 X 3 QJ Or cn X 3 > cn ox 3 x -h
CO 2 2 2 a

1

X H a >
1

X
r4

G
X 3 0 X
QJ rH Cn CP G C

l l Q) X £ 1
—

1

X X X C 0 3
(1) 44 U 1 cn • » 3 QJ 0 3 C QJ •H X
44 a) X 0 44 3 QJ X X X 0 X 3 X X cn '

4-1 H 44 0 U QJ •H cn G QJ •H 01 in c U
- G O, 4-1 • - 3 X Ql 44 >4 G 0 G z > •H QJ 0 \

cn U1 -H - O4 cn X Or X CA 0 •rH •H < 0 X CP-H X
c QJ 1

—
1 fO 1—

1

- 44 0 cj cn X X 3 X G Q) 3 cn X
0 tP U) 4 CN 0 QJ X 4r •H r-H Or cr Eh Or 3 C
•H 3 3 40 QJ • 00 X 3 3J X x X >1 Q) X x cn ai -

X 3 CN 44 X o\ C P 3 c G G O Q) £ 0 G x CO
IT) tP < • Q) 1—

1

•h in £ G 3 0 X X G 3 X \
XI C E4 x 44 3 0 0 X c £*4 QJ X rH Q) X
C 3 < 1—

1

5 0 G '—1
O 44 3 cn QJ X G X X cn x

0) H a >4 •H 3 cn d) r4 0 cn QJ X
g X X tsi 4-t X X cn M 0 QJ G X 3 G XXX
E x: u H 44 >4 U) QJ 44 X,* cn H 3 cn 3 £ 3 GH cn

0 -P CO tO QJ X £ X 3 T G £ U X 3 O X QJ in 3 S x
o o a; Z X 4-1 CO QJ Or X 3 0 Q) CO G 0) G X C •H X QJ —
0) X! 44 QJ < C to X X •H C

,
3 x < Q) • - cn 0 0 GS M2

X •H U to -H cn 44 3 X cn X Cn Or CQ G h 3 < X \
QJ p to QJ 4-> 44 QJ >1 QJ -P QJ tG QJ C C x Or O 0 \ X U 3 X
cn cr 44 cn cn Oi cn cn Or cn c C cn cn -G •H •rH 3 O X X cn 44 cn x
D X D s X CO X

r-H

1

1

£ 1
1

1

4-1 40 G 0 QJ QJ X £
U CM -p QJ O O > Q) -C

cn aj . •H 0 1 X 3 QJ Z X
XI •I—I Tf 3 X 3 1—

1

X X ,—

>

•H
G X rH O 04 0 3 3 G X H G
3 O >4 44 >4 X •H X X QJ X QJ H 0X '—

'

H X 3 G 3 X X C X r-H U Cn
C r-4 u CO C 3 X Cn C •H U 0 CO r-H

(0 (0 G X •H §
’

—

X — t-4 X 3 0 5 <
-P O 0 X £ £ X c Or 0
CO 4H •H -r-4 QJ v 44 0 x 0 1

—
1 cn Or X O GM cn 4-J Q 4-) X CN QJ U CN 0 X ro X u 1—

1

in 0 M O
44 >rQ,C C 44 00 X • X X G G u 0 fN G . Q •H
0 E4 X "H X •H fO CN Cr> -—- X 3 Q) 3 a 0 . Or ro U X Z
•n U IX 44 44 G X CO 3 0 cn 1—

1

DGXC 0 X X X Or <
(0 < CJ 44 (X C X X —

1 C t-4 3 x a. C X X w >4 x x u
2 X h cn <c 1 3 3 3 0 Eh G G x 3 H 0 H G H G E4 O H 44

Eh 2 CO Q) CO 2 a 4-1 < X C X H X 3 G X CO G CO 0 CO 2 0 x m \co
a, o z Q < <d 04 CO H 3 X U £ £ QJ CO z Or z 3 z X C 0 0 x <
< u < Z cj M W U Or < < <C w W x u X OQ

cn

QJ

1 in Cn
G QJ 3

1 OJ X 3
cn £ X 0 CP
CD 0 C cn a G
<n CO U H x 3
3 Q G c X
u cn X x cn 3 0

aj < C C X •rH CPX Cn Q 3 0 G X C
G CO 3 Z -H 3 3 •H
3 a 3 < G X X 0 EX X CP s Eh QJ 3 CO •H E
C < c CO X U c 3
3 Q 3 u 3 -H QJ 3 G
X Z X X Or C O Cn
CO < q W E 3 3 0

Eh U < Eh 0 £ X 0 G
CO Z 0 X CJ

X
u X

2 • • 2 • • •

r-H CN O »H IN ro
u u

Operating

Systems

No

standards

No

formal

standards

are

Develop

project

likely

certain

aspect

O' £
C C (1)

0 -P X
X 0

cn 03 >1
03 M M
P <23

<U Oj
0 o
c
03 X
X O
0

I CO
C i—

<

03

X P
(0 O

E 03
<13 C

0 C
03 *H
ax
O cn

03

X >i
Dc XI -P

P *r

03

CO p
CO 3 c
O U -H
04 03

cn td

co

0 03

0)

P
03

4-1

3

X
o

>1
o
03

P
3

P 0)

O Dc
4-1 03

x:
<o o

i p
4-1 0)
<4-1 0)

O
cn cn

co

03
p
03

0

i

cn

>i
CO C 03

O Q3

C -H 4-1

•H 4-> C
03 03 0J

0)

o
03
>p

p <
0) M
4-> W
c

P 03 X 4-> 03 > 0 cn 0 cn C 03 <4-4 o 03 X 0 G 0 c c c 3 •P X
03 E G cn p 0 o3 03 p 0 03 c 0 3 p 0 X 03 cn •H 0 0 X
i—) 03 0 >i cn O 03 G c 0 Dc X 03 c 03 X 0 03 E X X E 0 E -p

3 C E cn p ip o X 03 03 03 cn

cn
o 44 0 3 0 X cn c E 3 03 0 3

C3 a 0 0 0 •P X p P 0 C X 1
—

1 c 0 0 X i-4

•P 0 O DC 4-1 4-1 X 03 3 >i cn cn X 0 X O cn 03 X X 0 X 03 0 03 0 C x
4-> r—

1

rH C 3 P 0 E x G o a 03 44 X o E E 0 c c 03 C >1 O 1

P *P 0 •H O-i O 0 cn •H 0 C 0 03 0 i—

i

a, in •p a 0 0 0 03 03 0 -p cn

03 <4-1 > 4-1 E a 03 cn p o Dc •r-iM-l -P 4-1 03 0 0 •l—l-p 0 - X H
a 0 03 O a 3 X 03 DC •H 0 p X in 0 0 P 03 r—

1

E 0 X 03 >4 c «. U 03

03 03 P o 3 cn O 0 0 cn p 0 03 cn 0 P 0 0 C 0 03 P 03 X Dc 0 2 P 0
- c 0 -P cn p X s 0 X X 0 a x > 0 X X 03 -n 03 > P a X 0! •H •P 03 0 a 0 0

cn <c P a, c 0 cn < P c 03 c Dc 03 <0 0 D< C 0 cn P P Cl x
E 0 o -h e 4-1 u 03 *P 03 a *H a 03 a £ a E CL 03 0 Cl 0 X 0 0 03 03 >4 0 X
0 cn 03 E 0 3 cn X 3 i—

1

>4 0 0 3 o 0 0 0 P 0 E C a. 03 03 3 x 0 •H
4-1 X •H 03 4-> a s X 03 3 -H i—

1

cn r—

1

iH X tP X 1
—

1 0 Cl rH 3 •P cn G X •p 0 P
cn .-I cn P 4-1 cn E m p <4-1 X 0 p 0 2 0 c 0 X 0 0 0 p 0 0 0 E 03 X p §
>i 03 C 03 -P >i O a o 0 03 X <a > cn > 03 > 03 > 03 > 03 c > 0 Cl 0 0 X 0 03 C 0
cn o o 03 X cn 0 <4-4 cn a cn 0 0 a 0 <"H 0 E 0 0 0 3 •H 0 03 ax X 0 0 1

—
1 -P u

u < a a a a a a < u
03 03

03 G
03 H 03 •H 0
C c

1
cn c —

l

P
0 0 0 c 2 0 0
-p •p •P 0 < 0 E c 0
X P X X e 0 3 £ 0 P
03 O 03 03 03 0 3 , 03 0 0

r-4 X 03 X C X 0 0 0 - 0 c c
0 •P 0 03 03 0 0 0 3 03 0 03 0
P 0 X pH 03 c a 0 p •p

0 03 03 00 a -p <0 • - 0 0 0 X
P p E > C ro E X X X 03 3 03 X E 03

0 3 0 03 c a 0 •P P 0 0 P
X X P OQ 0 u 03 0 03 0 0! C X 3

x: 0 0 0 0 X X H •p •H 0 P 03 0 Dc
p 3 >4 1—

1

•P 0 P4 3 X E 0 03 C 0 >4 -P
0 P 0 •P E p 0 0 Dc 0 03 03 a 0 X
3 X a 0! 0 cn X •P c >4 P 0 X 03 c
X 0 0 E C N PL X G Dc P 03 03 0 X CJ 0 03
0 - 0 >4 >4 H M -P 0 03 03 03 P 2 0 0
c 03 O 0 03 1—

1

Cn 1 0 •P E E C 03 H p 03
X 00 03 2 0 X •H 03 0 cn 0 P U c

0 03 ac 0 0 c 0 <: Cl 03 0 p X 2 CL 0 2 0
0 03 1-4 0 0 03 0 u 0 X 0 Cl 0 X < 03 X a E
33 33 X X X H 04

o

X 04 X
X rsl X

U)
1

v

2 —. X
< u 0 M X 0

0 a fd C4CN >— 03
03 0 O co 03 • P
P a ^ m ro c En x 0 03

03 0 R n3 x a, u
03 Cn 03 03 4J 0 03

C 03 X X w •P - E 03 -—v

<0 - 03 04 04 X 401 00 0 r—

1

X X -H H 0 x p x 43 CN

0 O d cn cn
|

C • 0 • 0 •

03 04 04 tjc X U|X c ro

0 O > M X < 03 X 03 X 3 X
2 U Cn Cn CJ S 04 04

I

0 DC
Dc c
03 •H
C 0 X c
03 E 0 0
s 0 0 *H
X E 0 X

0 0 1
—

1 03

0 >4 0 0 X
03 cn P 0 c
03 03 E 0
X S E 03

03 C x 03 3 •P

X 0 x c 0 0
03 E 0 03 0 0
a cn a 2

in CD r~ 00

«. ' •

V

STANDARDS FOR COMPUTER AIDED MANUFACTURING

1. NC PART PROGRAMMING LANGUAGES

BACKGROUND

APT STANDARDIZATION

COMPACT II STANDARDIZATION

COMPARISON OF NC LANGUAGES

CRITERIA FOR NC LANGUAGE SELECTION

RECOMMENDATIONS

COMMENTS

REFERENCES

7

BACKGROUND

An NC machine tool accepts commands from a punched paper tape or from
a computer to control the operations of that tool. These control signals
are strings of bit patterns that are decoded by the tool into the proper
locations, movements, and actions, to produce the desired part. Following
a standard code for the different control signals, an operator can punch
these values into a paper tape. Simply rerunning the paper tape into the
NC tool allows the tool to produce automatically as many parts as
desired while the operator is free to do other jobs.

For simple parts, and originally for all parts, the coding of the
control tape is carried out directly according to the EIA standard
tape formats. (RS-247C with RS-358 character code.)

As the parts to be made become more complicated, the programming
becomes much more involved. Higher level NC programming languages
have been developed for these more sophisticated cutting operations.
These languages are typically made up on a number of English-like
commands which are translated by a computer program (processor) into either
the proper bit pattern for a particular NC machine tool, or into an
intermediate machine-tool-independent data file (Cutter Location Data
(CLDATA) file) . This CLDATA file will then be fed into another computer
program called a postprocessor. It is the function of the postprocessor
to translate the cutter location data into the appropriate commands for
the selected machine tool necessary to machine the desired part. The
postprocessor also checks for various error conditions and produces
the printed listing to assist the machine operator.

Thus, the CLDATA file is a machine-independent data file that
describes in detail the path the cutting tool must follow to make the
part. This file is created by a single processor .

Since the postprocessor is dependent upon both the machine tool
and controller, there are as many postprocessors as there are different
models of machine tools and controls.

Although there exist over 40 NC programming languages, only two
are in widespread, productive use. These are APT (Automatically
Programmed Tools), the first of the higher level NC languages, and
COMPACT II (COMputer Program for Automatically Controlling Tools)

.

These two languages are representatives of two families of NC language
processors. The APT family includes the APT, UNIAPT, and ADAPT processors,
while COMPACT represents the COMPACT II, ACTION and SPLIT processors.
Both of these language families are proceeding toward formal standard-
ization. An example of each language family is given in the accompanying
figures. A simple test part is shown in Figure 1 while the respective
part programs are given in Figures 2 and 3

.

APT STANDARDIZATION

The revised APT standard (X3.37) (presently undergoing final
balloting) is expected in January of 1977. This standard is created
and maintained by the American National Standards Institute (ANSI) Committee
X3J7 under the Business Equipment Manufacturer's Association (BEMA)

.

The standard is written in a meta-language format which is computer
independent. This format gives a complete and vigorous definition of
all elements of the language, permissible combinations of these elements,
and the meaning of these combinations. While somewhat difficult to read
the meta-linguistic format provides a concise and comprehensive technique
to itemize all of the combinations and their meanings in a reasonable
length document. The new standard will contain the original (X3. 37-1974)

8

• 500

Figure 1

DEMONSTRATION PART PROGRAM API' (GE)

10 PART MO TEST 1
*

15 CLPRNT
20 CUTTER/. 25
30 SYM /P, POI NT / Lj LI ME j C I , C I RC LE » ST , G OT 0, GF, G OFVD, GD, G ODLT A, F RAL> ! US , S

AO XA,XAXI S,YA,YAXI

S

50 I NT OL/ .001
60 OUTT OL/ .001
70 SP=P/0 , 0 , .35
80 FEDRAT/5
90 L 1 =L/XA
100 L2 = L/PARLEL, L 1 ,YLARGE,2
110 L3 = L/YA
120 C 1 =CI /3 , 1 , 1

130 P 1 =P/3 , .5
1 A 0 P2 =P/3 , 1 .5

150 P3=P/2 , 1

160 CYCLE /MILL, 0,0
170 S$ TARGET AT LEFT 30TT0M CORNER
180 FROM/SP
190 GD/- . 5, - .5, 0,150
200 GD/0,3,-.35, 150
210 GO/TO, LI, 150
22 0 TLRGT , 3 ORGT /L

1

230 GF/C1
2A0 3F/L2
250 GOLFT /L3, PAST , L

1

260 £ £ CUTTER MOVES TO HOME POSITION AND STOPS. CHANGE TO 3/16 DRILL
270 FEDRAT/.00A, I PR
230 CYCLE/DRILL, 0, .A5
290 GT/P1
300 GT/P2
310 GT/P3
320 CYCLE / OFF ,011 IT

330 END
3A 0 FI N I

Figure 2

DEMONSTRATION PART PROGRAM COMPACT II

MACH IN, KTGE7 SO 0

IDENT , NCL.E TEST # 1 COMPACT II

SETUP , E3j INDEX45 , - . 1 2 5LX, . 1 25LY , 1 0 LZ , LI MI T (X - 1 0 / 1 0 , Y- 1 Q / 1 0 , Z- 1 0 / 1 0

)

3TARGET AT LEFT BOTTOM CORNER
BASE, MAjYAj ZA
DPT 1 , 3XB, . 5Y3i .35ZB
DPT2, 3XB, 1 . 5YB, .35ZB
DPT 3 , 2XB, 1YB, .35Z3
DPT4, 3XB, 1 YB, ZB
DLL 1 , Y3
DLN2 , LN 1 /2YL
DLN3 , XB
DC I R 1 , PT4 , 1R

MTCHG , T OOL 1 , . 25TD, 5 1 PM, 0 GL
M0VE,-.5X,-.5Y
MOVE, -.350Z
MOVE j TOLN

1

OCON,CIR1 ,CCV,S(TANLN1) , F C TANLN2

)

CUT ,PASTLN3
CUT , PASTLN

1

HOME , STOP
SCUTTER MOVES TO HOME POSITION AND STOPS. CHANGE TO 3/16 DRILL
MTCHG , T 00L2 , C3/16)TD, 18 0 ORPM, OGL, .004IPR
DRL,?T1 , . 25THRU, . 1 CLEAR
DRL,PT2, . 2 5 THRU , . 1 CLEAR
DRL, PT3 , • 25THRU , . 1 CLEAR
HOME, STOP
END

Figure 3

11

standard for the processor, plus updates and corrections in addition to
a standard for postprocessor language.

The new standard is unique in its consideration of the postprocessor
language. This is the language which enables the control of the non
motion functions of a machine tool such as choice of spindle speeds,
control of coolant, and selection of cutting tools. Prior to this
document guidelines for postprocessor language have been scanty with the
result that developers of software programs have had to sometimes
choose language syntax themsleves.

As various new hardware or electronic options were developed in the
marketplace so were new APT language commands to control them. While
the commands for a single function 1 Lke a tool change are similar among
all postprocessors, minor differences exist in each software implementation.
These differences have the effect of forcing a part programmer to choose
a specific NC machine tool before he starts to develop the APT language
to produce the desired item.

The lack of a fully specified APT language tends to defeat the
intended universality of the higher level language concept. The design
intent of APT was that a part program could be easily processed for any
appropriate machine tool through the use of different postprocessors.
Increasingly today one finds that not to be the case. Computer runs
are aborted for trivial problems such as a command to postprocessor "A"
calling for SPINDL/1000, CLW causing an error in postprocessor "B"
which requires SPINDL/CLW, RPM, 1000. The revised APT standard is aimed
at correcting this problem.

COMPACT II STANDARDIZATION

The COMPACT I I/ACTION/SPLIT Standard proposal is currently under
consideration by the X3J5 standards committee of CBEMA. SPLIT is the
parent language of a group of languages
in a father/son/grandson relationship,
but the processors are quite different,
the standard that a standard CL (Cutter
optional since this family of languages
intermediate data output medium.

comprising SPLIT, ACTION, COMPACT II
The languages are very similar,
It was decided in developing

Location) output would be
does not necessarily generate an

The SPLIT processor is machine dependent and does not create an
intermediate cutter location (CL) file. The ACTION and COMPACT II
processors, however, are machine independent; but they work in conjunction
with their respective postprocessors. In this integrated mode, each
statement is processed into a CL file statement and then postprocessed
by the selected postprocessor into a machine control format before the
program moves to the next statement.

ACTION can be run on a minicomputer and in that situation operates
in the re-entrant mode - i.e., all the statements in a program are pro-
cessed and a CL file is generated; then that file is postprocessed
to produce the machine control output.

The ANSI committee feels that to make intermediate output (CLDATA file)
the mandatory output of the standard would be to deprive the users of
many of the inherent economics of the languages. However, the committee
is recommending that the intermediate data output be a user or implementor
option, and where offered it should conform to the existing CLDATA Standard.
The University Computer Corporation (UCC) COMPACT II processor already
produces an intermediate data file in accord with the CLDATA requirement
of the APT standard.

12

The long term objectives of the COMPACT II Standards committee are
to provide most of the capabilities already present with APT or under
research effort. These include work mg standards for graphic out. put, for
incorporation of machining technology, for programming sculptured
surfaces, and for the interface of the NC language to total CAD/CAM
systems

.

/

There are presently 1400 instal rations using the COMPACT II family
of languages, representing 6000 NC machine tools. The five year pro-
jection (by 1981) estimates 3500 users (20,000 NC machine tools) in
the US and 6000 users (40,000 NC machine tools) worldwide.

At present, about 50% of all NC machine tools are being programmed
by computer assist. Of these, about 40% are being programmed by
COMPACT II family and about 40% by APT with the remainder using the other
40 languages. The five year prediction is for 75% of all NC tools to
use computer assisted programming with close to half in COMPACT II and
half in APT.

Thus, even though the COMPACT II family is a late entry, (circa 1967
vs. 1950's for APT) it has quickly found widespread acceptance. The
main reasons for this are several. The COMPACT II family is less
sophisticated than APT and for that reason many users feel that for their
more limited requirements that COMPACT is easier to learn. Lathe (2 axis)
programming is much more efficient in COMPACT II because of certain
language features not available in APT. Lathes represent 40% to 50%
of all of the NC tools being shipped. COMPACT II has also been well
provided on a time-shared remote service bureau basis by Manufacturing
Data Systems Inc. (MDSI) with excellent support.

COMPARISON OF NC LANGUAGES

In March 1974 the Numerical Control Society submitted a final report
on the US Army Electronics Command Numerical Control Language Evaluation.
This study analyzed seven general purpose NC programming languages and
presented data concerning their performance on ten test parts representative
of Department of Defense workload. The test parts all of the milling-
drilling-boring variety spanned the entire range from 2 axis to 5 axis
complexity

.

While no definite conclusions were reached in the study, sufficient
data is presented and analysis factors explained that a prospective
user can perform benefits analysis in the context of his own shop
environment

.

One fact is clear - that of the general purpose NC language processors
now in widespread productive use only two language families are prevalent,
APT and COMPACT. It is again only these two language forms that are
being considered in government and national standardization activities.
As such both merit the attention of the Air Force ICAM Program.

CRITERIA FOR NC LANGUAGE SELECTION

Several technical factors should be considered in choosing a pro-
gramming language for numerical control:

Language Programming Capability
Processor Availability
Language Documentation
Processor Maintenance
Programming Time
Processing Costs
Proprietary Nature of Language

L 3

Study of NC languages must be placed into the perspective of the final
goal of the Air Force program, an integrated computer base manufacturing
system. It is expected that when this goal is realized, a designer may
sit down at a computer terminal with a CRT, design some object, then
allow the computerized manufacturing system to manage the supply of raw
materials, schedule machines, decide on cutters, manage inventories and
produce a final product while providing management and designers with the
appropriate feedback information Critical interfaces in this final system
should be identified now and carefully standardized so that a workable
system can be developed. In the area of the actual machining and forming
of parts, the most important interface is between the CAM (computer aided
manufacturing) system and the actual production machines. This interface
is defined by the CLDATA file. This is the standardized part description
data that describes exactly how to make any part. A postprocessor of
any machine tool will convert this standardized data to the specific
command statements necessary for that particular tool to make the part.
The CLDATA file can also be used by graphics devices to display in visual
form information concerning the part.

At the present time this CLDATA file is generated by the NC programming
language APT, and is being considered as an optional requirement for COM-
PACT II. It is the standard for the International Standards Organization
(ISO). A designer now gives a part programmer either his own drawings
or design drawings made with varying degrees of computer assist. The
part programmer then generates the necessary code to make the part.
This is passed through a processor to create (in APT) a CLDATA file which
should be a totally machine-independent representation of the part.
This, is customised to the requirements of the individual machine tool
by putting the CLDATA file through the postprocessor for that tool.
Eventually the part programmer should be eleminated with the CAM system
providing the CLDATA file from the designer's requirements. Thus, while
the NC programming language standard is important, indeed crucial during
the interim stage, its importance wi LI decrease as the full CAM system
is realized. The CLDATA file, however, will become the link between
the CAM system and the real world of production. If this CLDATA file can
be properly standardized, it can be the common data base between any CAM
system and any set of machine tools or any programming language and any
CAM system or machine tool. It would make it easy for any machining
facility to produce any parts regardless of their own CAM capability,
merely by having access to the CLDATA file. It would allow government,
for instance, to make replacement parts or additional units from CLDATA
files without having to attempt to access contractor CAM systems that
might be proprietary. Again this interface, the CLDATA file, is considered
one of the most crucial for a truly flexible computer aided manufacturing
system.

RECOMMENDATIONS

With this in mind our recommendations considering NC part programming
languages follow.

(1) If a single part programming language is desired to cover all
applications then this language should be APT. APT produces
the CLDATA file standard. It is the most sophisticated including
such unique capabilities as producing part programs for milling a
non-formula or sculptured surface (a surface defined by a lattice
of coordinate points) such as found commonly on aerospace parts.
Thus far it is the only language for which there is a formal
draft standard. There are several areas of research and develop-
ment of advanced capabilities such as process planning, geometric
modeling, and sculptured surfaces that will be compatible
with existing APT processes.

14

(2) If more than one language can be considered, then it is recommended
that both APT and COMPACT II be used. APT provides the
sophistication for complex parts. COMPACT II, however, offers
significant advantages in speed and ease of programming of simpler
parts and expecially lathe work.,

(3) If COMPACT II is included as a standard language then the
capability to produce a standard CLDATA file must be included.
This would allow part programming in either APT or COMPACT II
with their CLDATA files to be the common interface to the
production machines.

(4) While the current standardization activity with the APT
postprocessor language is encouraging, it falls short of the
capability truly needed by the Air Force in manufacturing.
Even the most recent proposed standard for APT allows too
much latitude in the choice of language syntax. Anything short
of a complete and comprehensive language specification obviates
the possibility of being able to rapidly and easily exchange
NC workload among functionally equivalent machines. This
capability is central to the concept of integrated and flexible
manufacturing. The Air Force can and should provide the
impetus to a widespread implementation of a complete government
standard on postprocessor language and philosophy of post-
processing which would bring about this flexibility. Only
with this technique can NC data be made transferable among
different machines, different shops and different contractors.

(5)

Further work on additional language capabilities for both APT
and COMPACT II is being carried out by the relevant ANSI committees
on NC part programming languages. It is recommended that the
Air Force monitor this work and help provide direction for the
implementation in CAM systems. Work is progressing in the
areas of a) sculptured surfaces, non-analytical sculptured
shapes (shapes arrived at by sculpturing processes), unconventional
analytical shapes (e.g. parametric surfaces), and any combination
of these two; b) bounded geometry, 3-dimensional modeling
capability within the computer. Objects would be represented
and manipulated as bounded, closed entities rather than as
bounded by a set of possibly infinite faces combined in specific
ways; c) lathe language - a study of the various capabilities
of several languages in their ability to efficiently program
lathes which account for close to half of all NC machine tools.

COMMENTS

The emphasis of the proceeding report on NC Programming Language
Standards is the important interface between future CAD/CAM systems and
the production tools. The CLDATA file appears to be a good starting
point for the development of this crucial interface standard. The
recommendations above suggest some important additions necessary if real
flexibility is to be obtained at this interface.

There are additional considerations which will be mentioned here.

The CLDATA file is not a totally independent description of the
necessary commands and cutter path. When the program is written, certain
data such as the diameter of the cutting tool, the length of the tool,
etc. are included in the program and these affect the cutting path
motions. The CLDATA file with postprocessor commands can be used as a

description of the machine tool operations only as long as these
additional parameters are kept constant. If a shop does not have the

15

correct size cutter it would be advantageous if the part program could
be modified to accomodate the cutter size availabe. For contouring
operations, this implies new geometric calculations and the need for source
code modifications. It would thus be advantageous to have the NC system
on-line in a DNC configuration. This is a reasonable plan for systems for
the 1980's. This would require better identification of relevant state-
ments in the CLDATA file, perhaps through flags, comment statements, etc.
to allow for possible editing.

REFERENCES

(1) American National Standard APT - Proposed Revision
, March 1975,

American National Standards Institute, 1430 Broadway, New York
City, New York 10018

(2) Numerical Control Language Evaluation , Numerical Control Society,
March 1974, 1201 Waukengan Road, Glenview, Illinois 60025

(3) CAM-I Special Projects 1976, PR -75-ASPP-01 , Computer Aided Manu-
facturing-International, Inc., 611 Ryan Plaza Drive, Suite 1107,
Arlington, Texas 76012

(4) Proposal for the creation of an X3 Standards Committee covering the
COMPACT II, ACTION, and SPLIT family of Numerically Controlled
Machine Languages, 1975; Submitted to : American National Standards
Committee X3, Secretary X3, CBEMA ; By: Manufacturing Data Systems, Inc.,
320 North Main Street, Ann Arbor, Michigan 48104; Sundstrand
Machine Tool Compary, 3625 Newburg Road, Bervidere, Illinois 61008.

(5) The letter of August 27, 1975 by Elliot Brebner, Chairman of X3J7,
in response to the SPARC committee requesting that X3J7 comment on
the COMPACT II, ACTION, SPLIT proposal for the formation of a

standards committee.

(6) Computer Software for Numerically Controlled Manufacturing - 1973;
By : Bradford Smith, Report # NSRDC 4327, Computer Aided Design
Division, Naval Ship Research & Development Center, Bethesda,
Maryland 20084

17

STANDARDS FOR COMPUTER AIDED MANUFACTURING

2. CAD/CAM INTERFACE STANDARDS

INTRODUCTION

APT AS A DE FACTO CAD/CAM INTERFACE

DIGITAL REPRESENTATION OF PHYSICAL OBJECT SHAPES

CAM- I GEOMETRIC MODELING PROJECT

CAD/CAM INTERFACE IN PRINTED CIRCUIT BOARD MANUFACTURE

POTENTIAL IMPACT OF NASA IPAD PROJECT

SUMMARY

RECOMMENDATIONS

REFERENCES

19

INTRODUCTION

The CAD/CAM interface is a boundary, as yet ill defined, across which
information must be communicated. The flow of information is primarily
in the CAD-*-CAM direction, although ideally there is a reverse flow giving
the design or process engineer information concerning tool availability,
material inventory, etc. The simplest, historical design/manufacturirg
interface was the set of engineering drawings describing the part to be
manufactured. In a CAM system, the interface is the appropriate data base
representing the same data as the part drawings.

APT AS A DE FACTO CAD/CAM INTERFACE

There presently exists no consensus as to what the CAD/CAM interface
is or precisely when it should be drawn. For example, are Automatically
Programmed Tool (APT) programs part of the design process or the manufactur-
ing process? Many small stand-alone interactive CAD systems produce APT
source code, APT CL file data or machine tapes as direct output. This
data is then carried to a manufacturing installation where it is put through
a processor and/or post processor (if necessary) and used to control NC
machine tools. The APT part description is thus a direct CAD/CAM interface
for small systems.

In larger installations, where CAD/CAM is more integrated, the data
base which describes the physical parameters of the parts to be manufactured
is usually considered to be the CAD system output. APT tool programming
is treated as one part of Process Planning (part of CAM, not CAD) . The
CAD/CAM interface is thus considered the drawing or data base describing
the part. In Figure 1, if APT programming is considered to be a part of
manufacturing, the CAD/CAM interface can be drawn as the dashed line.
If, however, APT is included in design, then the interface can be drawn
as the dotted line in Figure 1. In either case, it is possible, given
the structure shown in Figure 1, to draw the CAD/CAM interface such that
it cuts only the outputs of data bases. This would appear to be a useful
concept in that it makes for clearly defined interfaces both physically
and logically.

STANDARDS ACTIVITY IN DIGITAL REPRESENTATION OF PHYSICAL OBJECT SHAPES

Whether any particular CAD/CAM system adopts the configuration of
Figure 1 or some other, it is clear that the data base consisting of a
numeric description of physical objects is central to the entire CAD/CAM
processes. This data base provides the working input to CAD displays
and to CAD analysis programs. Indeed, the entire CAD process does nothing
more than generate, analyse, and manipulate this data base. Once finalized,
the part descriptor data base provides the primary input to APT tool programs,
planning and scheduling programs, and eventually to inspection and quality
assurance programs.

Thus, the part description data base is central to the entire CAD/CAM
concept and, in large measure, will define the CAD/CAM interface. This
implies that efforts to develop standard methods for representing part
shapes, dimensions, tolerances, materials surface finishes, etc. are pre-
requisites to developing standards for CAD/CAM interface. The American
National Standards Institute (ANSI) Y14.26 subcommittee on Computer Aided
Preparation of Product Definition Data is presently working on a Y14.26.1
standard for the Digital Representation of Physical Object Shapes.

The stated aim of this standard is to facilitate the communication
of physical object shape descriptions among CAD/CAM programs and data bases
of organizations engaged in interfacing activities such as contracting and
subcontracting. The approach is to abstract the spatial property of shape

20

I

Design Analysis

r

Data Base #

Design >

Requirements)
,

IT IT
Data Base

Part
Description

..tJ/

s. r 1

i

Data Base

y^ . ^
Data Base

Data Base
j

.....
Data Base

Production ;

Schedules

j

APT
Programs i—— i

Materials
Inventory

j

Tools
Facilitie$

Accounting
Billing

Receiving

Shipping

si/ >1/

Production Control
1

> *

\
. . n. iij

I turing
a.

Warehouse

rr
Assembly

|

TL.j
I Inspec-

tion

Materials Transport

Figure 1

SCHEMATIC LOCATIONS OF THE CAD/CAM INTERFACE

21

by representing physical objects as geometric solids. The problem then
reduces to describing solids.

A solid may be considered to be a geometric structure constructed
out of building blocks of simpler geometric entities. The description
of that solid is then an information structure constructed out of building
blocks of digital data. This leads to a hierarchy of building blocks.

At the lowest level in the geometrical hierarchy is the point. A
point moving along a trajectory generates a line, a line moving along a
trajectory generates a surface. A surface moving from a start to an end
surface generates a solid element. A succession of solid elements can be
joined to form a complex solid. An example of this method of generating
and describing physical object shapes is shown in Figure 2.

Generating a trajectory requires a rule (or set of rules, procedures,
or equations) which describes the motion of the generatrix (point, line,
surface, solid element) . Each element in the hierarchy depends on the
available set of subelements and generating procedures in the lower levels
of the hierarchy. A judicious choice of lower level subelements can produce
a very broad variety of complex shapes.

This work is proceeding steadily, although rather slowly. But even
when this standard is formalized, it will represent only a first step toward
solving the larger problem of completely describing physical objects.

A related effort is currently being funded by Computer Aided Manufac-
turing-International, Inc. (CAM-I) . The CAM-I Geometric Modeling Project
is attempting to develop 3-dimensional modeling tools based on digital
descriptions of geometric shapes. On August 25, 1976, CAM-I acccepted a bid
from Sof-Tech, Inc to develop a Geometric Modeling System (GMS) . This will
be a generic system capable of incorporating software modules for part
description languages, geometric modeling mathematics, display and communica-
tion technology, and end use applications. GMS is to "conform to ANSI
standards and be as computer-independent as possible."

THE CAD/CAM INTERFACE IN PRINTED CIRCUIT BOARD MANUFACTURING

The Institute of Printed Circuits has published a standard entitled
"End Product Description in Numeric Form for Printed Wiring Products."

This standard not only defines methods for describing geometric shapes
of printed wirinq boards but prescribes record formats for describing the

end-product in digital form. An example of four records describing four
segments of a printed wiring circuit is shown in Figure 3. This digital data,
when recorded on punched cards or magnetic tape, contains sufficient informa-
tion for tooling, manufacturing and continuity testing of printed wiring
products. These formats thus may be used for transmitting information
between the designer and the manufacturing facility after the design has
been completed by a computer-aided process. Such data format standards
are particularly useful when the manufacturing process includes numerically
controlled machines.

The data records specified in this standard are general, not in any
particular machine language, and can be used for both manual and machine
interpretation. Thus each facility can produce an end-product from the data
by the most efficient method available.

Unfortunately, this standard addresses only a tiny fraction of the set
of manufactured products, namely two dimensional printed circuit boards.
Nevertheless, it is complete, is presently in use, and does deal with the
problem of describing a physical object with sufficient completness to define
not only the manufacturing process, but the inspection and acceptance testing
process as well.

22

Cl = G06 (PI, P2 , P3 , P4

)

The curve Cl is generated by the parametric cubic operator G06 operating
on the points PI, P2, P3, P4.

SI = G05 (Cl, C2 , C3

)

The surface Si is generated by the operator G05 operating on the curves
Cl, C2 , C3.

VI - G04 (SI, S2

)

The solid VI is generated by the operator G04 operating on surfaces SI, S2.

Figure 2

ANSI Y14.26 METHOD OF DESCRIBING PHYSICAL OBJECT SHAPES

23

Op. Code Datct Field Record #

Start Point. End Point

111 X+00 Y+03 X+02 Y+03 (1)

Circle Centei
Start
Angle

Finish
Angle Radius

Direc-
tion

021 X+02 Y+02 X+90 Y+00 X+01 Y+01 (2)

021 X+04 Y+02 X+180 Y+270 X+01 Y-01 (3)

Oil X+04 Y+01 X+06 Y+01 (4)

11L" Set size of XY fields
1 = linear 2 = circular interpolation

- 1 = begin line 0 = continue line

Figure 3

EXAMPLE OF IPC STANDARD REPRESENTATION OF PRINTED WIRING CIRCUIT

24

POTENTIAL IMPACT OF NASA'S IPAD PROJECT

The work on an Integrated Program for Aerospace-Vehicle Design (IPAD)
being funded by NASA Langley Research Center is not a standard by the common
definition. It is merely one more integrated software system which attempts
to computerize, in so far as possible, company-wide design information pro-
cessing. IPAD will bei composed of l) executive software that will control
user-directed processes through interactive interfaces with a large number
of terminals in simultaneous use by engineering and management personnel,
2) a large number of utility software packages for information manipulation
and display functions, and 3) data management software to store, track,
and retrieve large quantities of data in multiple storage devices.

However, IPAD is different from other integrated software design systems
in that it is scheduled to be released by NASA to become public domain
under NASA's FEDD (For Early Domestic Dissemination) policy. If IPAD
is a successful system it will undoubtedly be widely used by many industries,
especially those which are too smal] to afford to develop their own internal
CAD systems. The formats used by IPAD for digital description of physical
objects shapes, and even for describing end-products, will thus become
common usage in many CAD/CAM systems in the future.

The result will be that even though IPAD does not pretend to be a
standards setting project, it nevertheless will set precedents which are
almost certain to become de facto standards for data base formats, man-
machine interfaces, and eventually CAD/CAM interfaces.

There will probably arise many situations where IPAD data bases will
not conveniently conform to standards being developed under ANSI Y26.14.1.
The temptationwill be to ignore the ANSI standards since they have not yet
been formally adopted. Every effort should be made to resolve such conflicts
whenever they arise for otherwise the general applicability and usefulness
of both IPAD and Y26.14.1 will be reduced. The result will be that future
CAD/CAM systems such as the ICAM system of the US Air Force will be
adversely impacted.

The Air Force should take every effort to avoid such conflicts,
working closely with NASA in the manner outlined in the existing Memorandum
of Agreement between NASA and the Air Force.

SUMMARY

To date, all operational CAD/CAM systems have adopted ad hoc techniques
custom tailored to specific applications. To some extent this is acceptable
as long as a CAD/CAM installation is confined to a single plant or a single
company where local custom can serve as an ad hoc standard. It is, however,
completely unacceptable in a wider context where many different contractors
and subcontractors will be required to use the same numeric descriptors
for competitive bidding and for manufacturing operations. For a project
such as the Air Force is presently contemplating, it is critical that
efforts to achieve systematic set of numerical product descriptors be given
top priority. Full cooperation and support should be given to the ANSI
Y26.14 subcommittee as well as to the CAM-I Geometric Modeling Project.
Close liaison should be maintained with the NASA's IPAD and every effort
made to see that conflicting and competing standards do not proliferate.

RECOMMENDATIONS

It is recommended that the Air Force:

1. Maintain close liaison with the ANSI Y14.26 subcommittee.

25

2. Insist that all of its contractors adhere to the ANSI proposed
standards whenever possible.

3. Maintain its close liaison with the IPAD project as outlined in
its present Memorandum of Agreement with NASA.

4. Be aware of potential conflicts with IPAD and take whatever steps
possible to prevent serious incompatabilities from developing.

5. Monitor the CAM-I Geometric Modeling Project to identify any
compatability problems that may develop.

6. Insist on the use of the IPC-D-350A standard in future wedges
relating to electronics or systems including printed wiring products.

REFERENCES

(1) Statement of Work - Development of Integrated Program for Aerospace
Vehicle Design (IPAD) , Ap 15, 1976, Langley Research Center, Langley,
VA.

(2) Product Manufacturing Interface , October 1976 D6-IPAD-70011-D, NASA
Langley Research Center

(3) End Product Description in Numeric Form for Printed Wiring Products ,

IPC-D-35QA, September 1974, Institute for Printed Circuits

(4) Digital Representation of Physical Object Shapes , ANSI Y14.26.1 Draft
Report, June 1976, American National Standards Institute, New York
City, 10018

(5) CAM-I Special Projects, 1977 , PR-76-ASPP-01, Computer Aided Manufactur-
ing-International, Inc., Arlington Texas, 76012

(6) Minutes of Geometric Modeling Project Meeting , M-76-GM-01 held August
24-26

, Rochester , N. Y. , CAM-I, Arlington, Texas 76012

26

STANDARDS FOR COMPUTER SYSTEMS

1. COMPUTER AND COMMUNICATIONS INTERFACE STANDARDS

INTRODUCTION

COMPUTER PERIPHERAL DEVICE INTERFACES

Large Scale Computer System Peripheral Interfaces
Minicomputer System Peripheral Interfaces
Recommendation for Computer Peripheral Device Interfaces

INSTRUMENTATION INTERFACES

Recommendation for Instrumentation Interfaces

COMMUNICATION INTERFACES

Hardware Interconnection Level Interfaces
Data Link Control Level Interfaces
Network Level Interfaces
Recommendations for Computer Communications Interfaces

SUMMARY OF INTERFACE STANDARDS

SUMMARY OF RECOMMENDATIONS

27

INTRODUCTION

For purposes of the following discussion, an interface is defined to
be the point of interconnection between two logically and physically
separate components to enable the interchange of information. Depending
upon the operational capabilities and functional complexities of the
components, specification of an interface may require the definition of
parameters and performance characteristics at several levels.

At the most basic level, for example, the physical interconnection of
two components requires that they be electrically and mechanically
compatible at the interface point, i.e., the signalling voltages and
currents presented at the interface by each component must be compatible
with the impedances and receiving circuit sensitivities of the other and
the two interconnection plugs must mate. In addition, also at the basic
level of interface definition, it is essential for information interchange
that the components be functionally compatible, i.e., every function
required by one component must be generated and presented at the interface
in proper sequence by the other.

For some kinds of relatively unsophisticated equipment, conformance
to the basic electrical, mechanical, and functional interface character-
istics is sufficient to ensure operation. Complex systems also require that
higher level operational and procedural definitions be provided. At
the highest level where the components being interconnected have a range
of operating capabilities, the formats and information transfer sequences
must be also defined to ensure component interoperability.

There are generally three different kinds of interfaces that have
been established for ADP systems that govern the interconnection of these
systems with external devices and facilities and which enable the input/
output interchange of internally stored information with the data collection,
storage, or distribution environment external to the ADP system. The
three kinds of interfaces are for:

(1) Computer peripheral devices, such as magnetic tape or disk that
may serve both as intermediate or long term storage as well as
a means for the direct input and output of data.

(2) Instrumentation and control devices that may be employed in
a laboratory experiment or process control environment where
the ADP system collects data produced by environmental or
positional sensors and as a result of processing this data
generates correctional control sequences to operate other
machinery or equipment involved with the performance of the process.

(3) Communications, where the ADP system is to be interconnected
with analog or digital telecommunication facilities in a
teleprocessing environment.

For each of these three different kinds of interfaces, industry or
national standards are being developed, or in some cases have already
been approved, that specify the interfaces sufficient to ensure that
components furnished by different suppliers can be interconnected.

COMPUTER PERIPHERAL DEVICE INTERFACES

Standards for this ADP system interface have proved to be the most
difficult to accomplish, not because of their technical complexity but
rather due to competitive pressures and fundamental differences in the
architectural structure employed by different ADP system manufacturers.
However, several draft proposed American National Standards are presently
close to completion.

28

Large Scale Computer System Peripheral Interfaces

The first set of these computer peripheral device interface standards
deal with the large scale ADP system and is based upon the IBM 370 type
I/O channel- to-peripheral controller interface; the set consists of three
kinds of specifications: (1) a document that prescribes the interface
electrical, mechanical, and functional characteristics, (2) an interface
power control specification, and (3) a series of device-specific (e.g.,
tape, disk, etc.) operational specifications.

Figure 1 illustrates the architectural structure for a large scale
computer system that contains an I/O channel and. shows the point in this
structure that is defined as the I/O channel-to-controller interface.

Figure 2 provides a listing of functions presented on the two sides
of the I/O channel-to-controller interface and indicates the direction of
signalling. In general, a command initiating an action (e.g., Select Out)
is issued by the channel, while the response, indicating the action has
been completed is issued by the controller.

It is anticipated that an I/O channel- to-peripheral interface standard
including operational specifications for both magnetic disk and tape
devices will be completed and approved by the American National Standards
Institute by late 1977.

Minicomputer System Peripheral Interface s

A different kind of device level, but device-specific computer
peripheral interface standard is being developed for minicomputer systems.
Figure 3 indicates the arrangement of processing logic, control, storage,
and I/O components in a typical minicomputer system employing a common
bus structure. It also shows the interface point for connecting
peripheral devices. In the minicomputer case, a general purpose standard
peripheral device interface is being perscribed that contains a total
of some 40 functions--all of which would be presented on the CPU side
of the interface; devices conforming to this interface, however, will
only employ the functions they actually require, elg., a printer cannot
perform the function "read media" and thus would not implement this
function

.

Figure 4 lists the kinds of functions and indicates the signalling
directions for this general purpose interface as it would be implemented
between a magnetic tape transport and a controller.

It is anticipated that this general purpose device-level minicomputer
interface standard will be completed and approved by the American National
Standards Institute by the End of 1977. Furthermore, it is planned that
in conjunction with the final stages of processing by ANSI these computer
peripheral interface standards will also be processed for adoption and
implementation as Federal Information Processing Standards.

Recommendation for Computer Peripheral Device Interfaces

The General Services Administration has established a number of
Mandatory Requirement Contracts dealing with the procurement of "plug
compatible replacement" peripheral devices for the product lines furnished
by several of the major manufacturers. These contracts cover magnetic
tape and magnetic disk subsystems (including the respective controllers),
add-on memory, and input/output punched card facilities. All agencies
are obligated to use these GSA Mandatory Requirement Contracts whenever
practical to do so. It is recommended, however, that the Air Force

29

X - I/O Channel to Controller

Interface Points

FIGURE 1: LARGE SCALE COMPUTER SYSTEM ARCHITECTURE

30

I/O

CHANNEL

INTERFACE POINT

A

V

Address Out

Command Out

Service Out

Data Out

< Address In

^ Status In

4. Service In

4 Data In

BUS OUT BUS IN

Operational Out

Hold Out

Select Out

Suppress Out

>- OJ
CO

<
<

<

<

Disconnect In

Operational In

Select In

Request In

A

CO
<D

cn
c

c

Metering At * 5 <

—

Metering In 1

Clock Out —

FIGURE 2: 1/0 CHANNEL TO CONTROLLER INTERFACE

31

I/O

CONTROLLER

X - Device Level Interface

Point

FIGURE 3: MINICOMPUTER SYSTEM ARCHITECTURE

32

CONTROLLER

INTERFACE POINT

Load On-Line

Sel ect

Sync Forward

Sync Reverse

Density Select

Rewind

Off-Line

Set Write Status

Overwrite

Write Data Strobe

Write LRCC

Write Data

Read Threshold

Ready

On-Line

Rewinding

EOT

BOT

File Protect

Data Density Ir.d.

Read Data Strobe

/K

Read Data

y

FIGURE it: I/O CONTROLLER TO MAGNETIC TAPE DEVICE INTERFACE

33

DEVICE

carefully follow the standards being developed for the computer peripheral
device interface and be prepared to implement these in CAM applications
as soon as these standards are proposed for Federal adoption.

INSTRUMENTATION INTERFACES

The IEEE has developed and approved (as of July 1974) an industry
standard for instrumentation applications entitled "IEEE Standard 488--
Digital Interface for Programmable Instrumentation." This standard has
also been approved by the American National Standards Institute as ANSI
MC 1.1-1975. Although this standard is not limited by its scope, it
appears that its principal application is concerned with minicomputers
instrumented in close proximity for limited process control functions
such as in a laboratory type environment. This standard deals with
systems and components that employ byte-serial, bit-parallel data
transfer. Figure 5 illustrates the 1/6 wire bus structure of the IEEE
488 programmable instrumentation interface and indicates some of its
characteristics as well as the functional properties (talker, listener,
etc.) of some of the components that may be interconnected by it.

Recommendation for Instrumentation Interfaces

It is anticipated that implementation of the IEEE Standard 488 will
probably be contrained to minicomputers interconnected in close proximity
with digital instruments and devices normally employed in laboratory type
experimental situations, e.q., temperature, signals various form sensors, or
positional measurements with the processing of these measured data being
employed to correct and control their future values. While this interface
is not considered to be of general purpose utility for data processing,
some of the instruments and devices that are available as "off-the-shelf"
items for use in CAM applications are designed to the IEEE Standard 488
interface. For this reason, it is recommended that the Air Force be
aware of the existence of IEEE Standard 488.

COMMUNICATIONS INTERFACES

Perhaps the most dynamic areas of computer utilization are currently
those concerned with teleprocessing and computer networking that are
dependent upon advances in data communication technology. Within the
past few years, there have been a number of significant developments in
establishing standards for data communications and computer networking.
New standards that are in various stages of development include replace-
ments for such widely accepted and implemented standards as RS-232 at the
physical interconnection level and binary synchronous (bisync) link control
at the link protocol level as well as for higher levels not previously
covered, such as for packet switching. These standards are being developed
both on a national and international scale by such groups as the American
National Standards Institute (ANSI), the International Standards
Organization (ISO), and the Consultative Committee on International
Telegraph and Telephone (CCITT) . Most of these standards eventually
will be adopted for mandatory use within the Federal Government by either
or both the National Bureau of Standards (NBS) and the National Communi-
cations System (NCS) . Because most of these standards pertain to the
interconnection of computers or data terminal equipment with data
communication or telecommunication facilities, they all may be char-
acterized as interface standards dealing with the computer communications
interface

.

34

FIGURE 5: THE BUS STRUCTURE FDR THE IEEE STANDARD A88-

DIGITAL INTERFACE FOR PROGRAMMABLE INSTRUMENTATION

35

Hardware Interconnection Level Interfaces

With the data networks of the future expected to be digital from
end to end, standards are being developed to interface terminals to such
networks. This includes replacement for RS-232, presently being developed
by EIA and known as RS-XYZ, as well as the addition of a signalling scheme
to initiate and terminate calls (replacing manual dialing) . Inter-
nationally, CCITT Recommendation X.21 is being proposed for synchronous
terminals and provides a means to initiate calls, exchange call progress
signals, transmit data, and finally terminate calls on new public data
networks. This CCITT Recommendation is also under consideration for
adoption as American National and Federal standards.

Figure 6 and 7 show the respective functional properties of the
RS-XYZ and X.21 interfaces. Note that while the RS-XYZ interface provides
a separate interchange circuit for each function, the X.21 interface
accomplishes essentially the same functional interchanges by combinations
of signals presented on the circuit pairs TRANSMIT (data) with CONTROL and
RECEIVE (data) with INDICATION, i.e., when CONTROL is "on" the information
on the TRANSMIT circuit is interpreted as control--otherwise it is data.

Data Link Level Interfaces

At the data link level, ISO has been working for the past few years
to complete the details of a new, bit-oriented High Level Data Link
Control Procedure (HDLC) . The American National Standard version of this
procedure is called the Advanced Data Communications Control Procedure
(ADCCP) . The concept of a data link to which these control procedural
standards apply is defined as an assembly of two or more data terminals
and the interconnecting line operated according to a particular method or
protocol that permits information to be exchanged.

So far, international agreement has been achieved for both the HDLC
frame structure and the elements of procedure (definition of the command
and response repertoire) . International arguments are still going on
regarding the way in which these commands and responses are to be used
for various applications involving different terminal and link configurations
Consensus is slow to achieve because of the many different interests that
must all be satisfied with the proposed standard.

IBM, because of its ability to act unilaterally in product announcements
has announced a product implementing its own Synchronous Data Link Control
(SDLC

)
procedure which is quite similar to HDLC. Some other vendors

such as Burroughs have announced products that they claim will be fully
compatible with SDLC, ADCCP, and HDLC.

DEC, on the other hand, has continued to pursue its own link control
procedure (DDCMP) which is quite different from any of the proposed
standards. As strong vendor participation continues in the final
development of both HDLC and ADCCP, it seems likely that both an inter-
national and compatible national standard will eventually emerge that
will be implemented by most of the major vendors.

Network Level Interfaces

One of the most dramatic standards developments in the last few
years has been the adoption of Recommendation X.25 by the CCITT at its
quadrennial plenary assembly this past September. Recommendation X.25
is a standard for interfacing host computers to public packet switching
networks. It includes both X.21 and HDLC in the appropriate portion of the
standard, and adds a set of packet formats and commands and responses for
setting up "virtual calls" and transferring data through the network.

36

CIRCUIT CIRCUIT CIRCUIT CIRCUIT

MNEMONIC NAME DIRECTION TYPE

SG SIGNAL GRCUND -

SC SEND COMMON TO DCE COMMON
RC RECEIVE COMMON FROM DCE

IS TERMINAL IN SERVICE TO DCE
1C INCOMING CALL FROM DCE CONTROL
TR TERMINAL READY TO DCE

DM DATA MODE FROM DCE

SO SEND DATA TO DCE
DATA

RD RECEIVE DATA FROM DCE

TT TERMINAL TIMING TO DCE
Uc!z

ST SEND TIMING FROM DCE TIMING
z<

RT RECEIVE TIMING FROM DCE

RS REQUEST TO SENO TO DCE oz

CS CLEAR TO SEND FROM DCE s
Rft RECEIVER READY FROM DCE CONTROL

GC
O.

SQ SIGNAL QUALITY FROM DCE
NS NEW SIGNAL TO DCE

SR SIGNALING RATE TO DCE

SSD SECONDARY SEHD DATA TO DCE
DATA

SRD SECONDARY RECEIVE DATA FROM DCE
GC -J
CHS UJ
ea Z

SRS SECONDARY REQUEST TO SENO TO DCE
z Z© <

SCS SECONDARY CLEAR TO SEND FROM DCE CONTROL ud O
SRR SECONDARY RECEIVER READY FROM DCE

LL LOCAL LOOPBACK TO DCE

RL REMOTE LOOPBACK TO DCE CONTROL
TM TEST MODE FROM DCE

SS SELECT STANDBY TO DCE MKITBm
S3 STANDBY INDICATOR FROM DCE

FIGURE 6: INTERCHANGE CIRCUITS DEFINED FOR RS-XYZ

THE DTE/DCE INTERFACE FOR ANALOG NETWORKS

37

t

t

D
1

| Transait
0 i

CD 1

> 1

c
!

I

i

i

i

i

D

| Control # (C) |

> 1

\ *
•

1 i

T 1 Receive
n y - - - -

(Bj I

- J

c I

1

8

i

S

|
lodicatioQ U) 1 1

g

i

g

j SigoEle.T^a
t /

(sj i
, i J

g l

i : i i i

I . »

11NC : 01’ DTE - Data Tocainal Eguipoeot
DEMARCATION DCE - Data Circuit-Teroina t-

I ing Equipment
: DSE - Data Switching Exchange

FIGURE 7: INTERCHANGE CIRCUITS DEFINED FOR CCITT

RECOMMENDATION X.21 THE DTE/DCE INTERFACE FOR DIGITAL NETWORKS

38

Figure 8 shows the enveloping format prescribed by X.25 for the inter-
change of information between a host computer and a packet switched network.
A packet consists of data to be transferred between two users. This data
is preceded by a packet header that identifies the sender and intended
recipient; the network uses information contained in the header for routing,
billing, and network control purposes. The packet is then enveloped by an
HDLC frame for transmission between the host computer and the network.
The HDLC frame provides for link level control and consists of bracketing
opening and closing flag octets, a link address octet and a control octet
identifying the type of command or response frame; the frame is ended
with the two octet Frame Check Sequence provided for error detection
just prior to the closing flag octet.

Agreement on such a worldwide standard seemed quite remote only a few
years ago, and it was not until the major packet switching carriers around
the world got together privately that a consensus emerged. The standard
has been criticized by some as lacking in certain features—notably the
standard does not presently provide for the "datagram" type of service—
but this particular deficiency is already being addressed by proposals
to add to the standard.

The key point to note about X.25 is that a workable solution has
been adopted which averts the situation of multiple incompatible inter-
faces being implemented by carriers in each country. Thus, it will be
possible for computer manufacturers and software houses to build and
support only one interface for packet switching.

Recommendations for Computer Communications Interfaces

The data communications area is a very dynamic one at present, and
standards will continue to evolve to keep pace with the state of the art.
Significant developments to look for over the next few years are the
completion and large scale implementation of work already begun, such
as HDLC, additions and modification to recently adopted standards, such
as X.25, and the initiation of new work in areas not currently addressed,
such as end-to-end protocols between host computers.

Designers of networks within the Department of Defense, such as
AUTODIN- I I and SATIN-IV are generally cognizant of these standards
developments and insofar as practical most of these new standards are
being implemented as the network design specifications are finalized.

For this reason, it is recommended that the Air Force advise ICAM
contractors to confer with commercial data communication carriers
concerning alternative network design characteristics and particularly
with regard to specific user-to-network interfacing requirements rather
than unilaterally prescribing communication interface standards that
might subsequently prove incompatible with existing or planned networks.

SUMMARY OF INTERFACE STANDARDS

Figure 9 provides a system level overview of the typical locations
of the several standard interfaces that have been described for a system
that consists of one large scale computer connected to two remotely located
minicomputers via a packet switched public data network. While the inter-
faces described are not the only interface points in a processing system
such as this standardization of these particular interfaces provides the
consumer of ADP products and services with a large degree of freedom
in the acquisition and interconnection of components furnished by
competitive sources. It should be noted, however, that although the
various interface standards that have been described do make possible the
physical interconnection of independently supplied components as well as

39

HDLC FRAME

F A C

I l!nk

I
Address

* Octet

E
(Packet Header) (Data)

>]

Packet

Opening Control
Flag Field

Octet Octet

FCS F

Closing
Flag

Frame Octet
Check
Sequence

-Two Octets

THE TRANSMISSION FORMAT PRESCRIBED BY

CCITT RECOMMENDATION X.25

FIGURE 8:

NOTE: X.25 PRESCRIBES THREE INTERFACE LEVELS : (1) THE

PHYSICAL CIRCUIT LEVEL EMPLOYING X.21, (2) THE

LINK CONTROL LEVEL EMPLOYING THE HDLC PROTOCOL,

AND (3) THE PACKET LEVEL PROTOCOL INCLUDING SOME

14 PACKET FORMATS.

FIGURE 9: SYSTEM LEVEL PERSPECTIVE OF INTERFACES DESCRIBED

41

enable the interchange of data among these components it must be emphasized
that these standards are not sufficient to ensure that meaningful
end-to-end information interchange can occur. End-to-end communication
between users in a system such as this also requires that both ends employ
a common protocol involving a standiird language that is represented
with an agreed upon alphabet with characters encoded in a standard manner.

While a number of different mu] ti-computer networking systems have
been designed and successfully implemented that are incompatible among
themeselves with regard to user protocols, languages, and codes,
development of standards for many of these higher level problems has not
yet been satisfactorily addressed. Partly, this is because some of these
higher level problems are not yet snf f iciently well defined that a

standard solution can be prescribed--even though the need for standard-
ization is generally recognized; partly, it is because in other cases a

number of alternative competing solutions have been proposed, none of
which appear optimal.

An an interim alternative to standardization for some of these
higher level problems, NBS has designed and implemented a Network Access
Machine (see NBS Technical Note 917) that employs a minicomputer to
translate from a common user protocol to that required for accessing a
variety of services provided by different remote host computer systems.

It is anticipated that these higher level areas of standardization
will receive increasingly urgent attention in the near future and it is
recommended that the Air Force monitor these activities closely.

SUMMARY OF RECOMMENDATIONS

a) It is recommended that the Air Force carefully follow the
standards being developed for the computer peripheral device
interface and be prepared to implement these in CAM applications
as soon as these standards are proposed for Federal adoption.

b) It is recommended that the Air Force be aware of the existence
of the IEEE Standard 488 that prescribes a Digital Interface
for Programmable Instrumentation.

c) It is recommended that the Air Force advise ICAM contractors
to confer with commercial data communication carriers concerning
alternative network design characteristics and particularly with
regard to specific user-to-network interfacing requirements
rather than unilaterally prescribing communication interface
standards that might subsequently prove incompatible with
existing or planned networks.

d) It is recommended that the Air Force closely monitor standardiza-
tion activities in the area of establishing common user, network
access, and other higher level standards that will help ensure
end-to-end communications in a heterogeneous computer networking
environment

.

REFERENCES

(1) ANSI X3S34/589 (Fifth Draft), 4/9/76, Advanced Data Communications
Control Procedures, American National Standards Institute.

(2) Donnan, R. A., and J. Ray Kersey, "Synchronous Data Link Control: A
Perspective", IBM Systems J. , 1_3, 2, 1974 .

(3) IBM Corp., "Binary Synchronous Communications", Order No. GA27-3004,
IBM Corp., White Plains, N.Y. 10604.

(4) ANSI X3. 28-1971, "Procedures for the use of the Communication Control
Characters of American National Standard Code for Information Inter-
change in Specified Data Communication Links", American National
Standards Institute, Inc., New York, N.Y., 10018

(5) Metcalf, R. M. and D. R. Boggs, "Ethernet: Distributed Packet
Switching for local computer networks", CACM, 19, 9, 7/76, pp. 395-403.

(6) Farber, D. J. , & K. C. Larson, "The System Architecture of the
Distributed Computer System - The Communications System", Presented
at the Symposium on Computer Networks, Polytechnic Institute of
Brooklyn, 4/72.

(7) C.C.I.T.T., "Recommendation X.25 - Interface between Data Terminal
Equipment and Data Circuit-Termination Equipment for Terminals
Operating in the Packet Mode on Public Data Networks". See also
ANSI documents X3S37-76-]4 and X3S33-76-6.

(8) Pouzin, L. , "Virtual Circuits vs. Datagrams - Technical and Political
Problems", Proc . NCC, 1976 (V. 45), pp. 483-495.

(9) ANSI X3S37-75-54/4 (Fourth Draft - "ANSI X.21") Proposed American
National Standard-- "General Purpose Interface Between Data Terminal
Equipment and Data Circuit Terminating Equipment for Synchronous
Operation on Public Data Networks.

(10) Electronic Industries Association Draft Standard— "Functional and
Mechanical Interface Between Data Terminal Equipment and Data
Communication Equipment Employing Serial Binary Data Interchange"

—

(Temporarily Labeled RS-XYZ), Twelfth Draft—May 7, 1976, Amended--
July 30, 1096, Prepared by EIA Subcommittee RS 30.2.

43

'

STANDARDS FOR COMPUTER SYSTEMS

2. COMMUNICATION CODE STANDARDS

CHARACTER CODE SETS

ASCII
Hollerith
EBCDIC
Numerical Control

CODE CONVERSION PROBLEMS

COLLATING SEQUENCE PROBLEMS

Relevance to CAM Systems
Relevance to Software Portability

RECOMMENDATIONS ON CODING

PROTECTION OF CAM DATA BY ENCRYPTION

RECOMMENDATION ON ENCRYPTION

45

CHARACTER CODE SETS

Successful implementation of modular computer/communications equipment
requires well-defined interface specifications to accomplish the successful
interchange of control signals and data between the various modules.

For adjacent equipment, the interface may signal each control function
on a separate wire, and the data may appear as parallel signalling of bits
on many wires. Thus, the interface may contain many wires. Some micro-
computer bus-type interfaces employ 100 wires.

Where great distances are involved, the entire interface is reduced to
two or four wires or a single microwave beam, and the control and data are
accomplished by a stream of bits. Groups of successive bits may represent
characters, so that the bit stream groups (usually 5 to 11 bits) represent
a character stream. It has been shown that a stream of characters coded
according to a recognized standard is the most certain of achieving success-
ful interchange among dissimilar computers .(1

)

ASCII Standard Code

In the United States, the standard coded character set is the American
Standard Code for information interchange (ASCII), ANSI Standard X3. 4-1968,
also adopted as FIPS PUB 1. Internationally the standard is similar to
ASCII and is ISO-646 or CCITT V.3, International Alphabet No. 5. ASCII and
its international counterparts are defined as 7-bit codes, having 128
characters. An 8-bit version, having 256 characters, is being developed
along the lines described in code extension standards, such as ANSI X3.14-
1974, FIPS PUB 35, and ISO 2022 as well as ECMA-35. All of these code
extension standards are similar, having been coordinated internationally.

In the numerical control (NC) or computer-aided manufacturing (CAM)
areas, the 128 characters of ASCII appear to be adequate. The EIA standard
RS-358 is a subset of ASCII for numerical control employing less than half
of the ASCII characters. However, many computers represent characters as
8-bit "bytes." In 8-bit environments, ASCII characters should be represented
in a standard manner, according to FIPS PUB 35 (ANSI X3. 41-1974).

Well-defined ANSI standard interfaces exist for the reading, writing,
or representation of ASCII characters on paper tapes, magnetic tapes on
reels, cassettes or cartridges, and Hollerith punched cards. In all of these
media, the ASCII code should be used as prescribed in these various ANSI
standards or pending ANSI standards.

Hollerith Standard Code

The Hollerith Punched Card Code Standard, ANSI X3.26 (FIPS PUB 14) was
adopted in 1970 and specifies 256 different hole patterns for twelve row
punched cards. Hole patterns include the 128 characters of the ASCII Code,
ANSI X3. 4-1968 (FIPS PUB 1) plus 128 additional patterns.

EBCDIC Standard Code

ECBDIC is the Extended Binary Coded Decimal Interchange Code defined in
IBM Corporate Systems Standard 3-3320-022. The standard specifies the BCD
coded representation of up to 256 characters used on IBM 360, 370, System 3

and System 32 computers.

4 6

Numerical Control Codes

In the area of character codes for numerical control of machine tools
two coding conventions are in popular and widespread use. The older "EIA"
code defined by EIA RS-244A of January 1967 is an odd parity code of 52
identifiable characters. This code was that used by Flexowriters in common
use in the early days of NC for the preparation of NC control tapes. The
newer "ASCII" code is defined by EIA RS-358 of July 1968. It specifies an
even parity code for the same character set which is a subset of the full
ASCII code.

Originally, both of these standards were recognized and in conflict.
More recently the older "EIA" code has been rescinded. Still there exist
many numerically controlled machine tools capable of interpreting only the
"EIA" code. Newer control units are: generally supplied with the ability
to read either input coding option.

One slight variation of the "ASCII" coding scheme rapidly gaining
acceptance is described in EIA Standards Proposal 1177-A. Recognizing that
there is a need for two distinct types of data at the machine tool site, the
standards proposal defines a Type 1 and Type 2 data on the input media.
Type 1 is the traditional machine pi ogram data codes in accordance with EIA
RS-358 as above. Type 2 data contains machine set-up instructions,
initialization and operational parameter data coded in the full ASCII code.
Thus there are three coding schemes prevalent on the input media for
numerical machine controllers.

It is expected that future systems operating in a CNC or DNC environment
will implement whatever final version of EIA SP1177A is adopted. The Air
Force should use this standard for command of any NC tools involved in the
ICAM program.

CODE CONVERSION PROBLEMS

Conversion of non-standard codes to and from ASCII is not always a
trivial matter There is supposedly a defined correspondence between the
256 character positions of 8-bit EBCDIC and the 128 character positions of
7-bit ASCII or the 256 character positions in 8-bit ASCII.

The entire basis for correspondence is made possible by the Hollerith
Code. That is, both ASCII and EBCDIC representations on a punched card are
well defined.

The Hollerith Punched Card Code Standard, ANSI X3. 26-1970 (FIPS PUB 14)
provides 256 hole patterns mapped into 8-bit ASCII in Table 1 of the
Hollerith Standard. These same 256 hole patterns are shown mapped into
EBCDIC in Appendix B, which is not part of the Hollerith Standards, but is
included there for information. There is thus established a 1 to 1 to 1

correspondence between 256 card hole patterns, 256 ASCII bit patterns, and
256 EBCDIC bit patterns. However, IBM practice does not adhere fully to this
correspondence somewhat spoiling the 1 to 1 mapping between EBCDIC and
ASCII

.

Some EBCDIC control and graphic characters are not contained in ASCII.
However, IBM chooses to map these, via the Hollerith Punched Card Code, into
ASCII character positions, rather than into the 128 available non-ASCII
character positions. EBCDIC equivalent characters to those displaced are
mapped elsewhere, and the correspondence is thus spoiled. Selected examples
are shown in Figure 1*

47

There are four interchange separators in EBCDIC which correspond to the
four information separators of ASCII. Only IFS and IRS are shown because
of the possible confusion of EBCDIC FS (Field Separator) with ASCII FS (File
Separator) , and of EBCDIC RS (Reader Stop) with ASCII RS (Record Separator)

.

The EBCDIC square brackets are not shown in the principal defining
table (Table IV of the CSS) but are shown as publishing and printing graphic
options (in Table VII). There is no Cent Sign in ASCII. IBM has chosen to
displace the ASCII Opening Bracket by the EBCDIC Cent Sign. However, in
representing the ISO 7-Bit Code of ISO 646-1973, IBM drops the Cent Sign
and uses the Hollerith hole pattern 12-8-2 to represent the ISO Left Square
Bracket, as shown in Table X of the IBM CSS, as a displacement of a national
use symbol.

The substitutions in ASCII of the symbols for Logical Or and Logical Not
are permitted in the ASCII standard (FIPS 1/ANSI X3. 4-1968). This was done
by IBM in order to get all 60 of the PL/I language symbols into the 64
character subset of FIPS PUB 15. The ASCII Exclamation Point is displaced.
The EBCDIC Exclamation Point then displaces an ASCII Bracket, and a ripple
of confusion follows, as was shown in Figure 1.

It is important to note that these problems in code conversion only
occur whenever characters are required to cross an interface. In these
cases the coding of characters should adhere strictly to the ASCII Standard.
This is true regardless of when characters are enveloped in a "code
independent frame" or are represented in serial-by-bit form or in parallel-
by-bit form. Internal computer codes, if different than ASCII, such as
EBCDIC, should not be allowed to cross such interfaces. In this way the
Air Force should not encounter problems with character coding in the multi
vender, distributed, integrated computer system that is envisioned for the
1980 ' s

.

COLLATING SEQUENCE PROBLEMS

An even more serious problem than code conversion arises from differences
in the collating sequence embedded in various coded character sets. The
collating sequence in a computer determines

(1) the order of the records in a data file according to the relative
binary values of the entries in a "sort key" (does W32 come before
or after 37N?)

(2) the results of inequality comparison operations (is ZaQ3 smaller or
larger than Z24J?)

As long as one keeps to a single computer system or a network of similar
equipment no problems are caused by collating sequence. However, the advent
of distributed manufacturing systems opens the prospects of a variety of
computer hardware being linked together, of data files on one system being
queried by another, and of data files and programs being freely transported
between different sites. In this type of environment collating sequence
can lead to differing results obtained from identical programs operating on
identical data files.

The ASCII standard, ANSI X3. 4-1968 (FIPS 1) section 6.3 states; "The
relative sequence of any two characters, when used as a basis for collation,
is defined by their binary values." The IBM Corporate Systems Standard
-3220-002 for EBCDIC states in Section 1.1 that it defines a collating
quence. ANSI Standard X3. 27-1969, Magnetic Tape Labels for Information
terchange also provides guidance on structuring data files.

48

CONTROL AND GRAPHIC CHARACTERS OF IBM EBCDIC WHICH MAP VIA
HOLLERITH HOLE PATTERNS INTO 8-BIT ASCII IN POSSIBLY CONFUSING WAYS

IBM Name
of

Character

IBM

EBCDIC
Character

IBM
EBCDIC

Positi on

Hex. Col. Row

Standard
Hollerith

Hole
Pattern

Correspond!' ng

ASCII
Position

Column/Row
ASCII
Symbol

ASCII
Name

Interchange File
Separator

IFS 1C 11-9-8-4 01/12 FS File
Separator

Field Separator FS 22 0-9-2 08/2 None None

Interchange
Record
Separator

IRS IE 11-9-8-6 01/14 RS Record
Separator

Reader Stop RS 35 9-5 09/5 None None

Tape Mark TM 13 11-9-3 01/3 DC3 Device
Control 3

Cent Sign t 4A 12-8-2 05/11 [Opening
Bracket

Open Square
Bracket

[AD 11-0-8-5 13/5 None None

Close Square
Bracket

] BD 12-11-0-8- 5 14/5 None None

Exclamation
Poi nt

1 5A 12-8-2 05/13] Closing
Bracket

Logical Or
1

4F 12-8-7 02/1 j Exclamation
Point

Logical Not 1 5F 11-8-7 05/14
- Circumfl ex

Figure 1

49

ASCII and EBCDIC define different collating sequences. The ASCII
collating sequence, in general terms is "Space," Special Symbols, Numbers,
Capital Letters, Small Letters. The EBCDIC collating sequence in general
terms is "Space," Special Symbols, Small Letters, Capital Letters, Numbers.

ASCII collating sequence is defined in FIPS PUB 1 and 7, according
to the ASCII standard, ANSI X3.4-1908. EBCDIC is defined only in IBM
Corporate Systems Standard 3-3220-002. A draft revision to FIPS PUB 1

and 7, published in the Federal Register on December 29, 1975, pages
59607-08, "Revised Instructions for Implementing Standard Character Codes
and Collating Sequence," strengthens the requirements for the use of
ASCII collating sequence.

ASCII is the standard collating sequence in most minicomputers and
microprocessors. EBCDIC is the de facto collating sequence in IBM 360, 370,
System 3, System 32, and directly compatible computers. ASCII is the de
facto collating sequence in all DEC computers, most NCR computers and some
UNIVAC and Honeywell computers.

A data file in a computer system usually encompasses a well-defined
area of interest, such as a "Payroll File," an "Inventory File," and the
like. A "file" contains many " records .

" In a payroll file, there is a

record for each item kept in inventory. The records in a file are kept in a

specified sequence, usually determined by a "sort key." The various
records are arranged according to the sort key, usually in ascending
numerical order or in 26-letter alphabetical order. For simple sort keys,
the order is the same no matter what kind of computer is used. Some sort
keys may be pure binary numbers having any number of bits. Other sort keys
can contain more complex arrays of characters, such as mixed upper and lower
case letters, punctuation marks, special symbols as well as decimal digits.
For complex sort keys, the order of the records is usually a "default"
sequence determined by the native character code of the computer.

Two principal character codes are presently used in computers. One is
ASCII (American Standard Code for Information Interchange) as specified by
FIPS PUB 1, ANSI X3. 4-1968, or ISO 646-1973. The other code is EBCDIC
(Extended Binary Coded Decimal Interchange Code) as specified in IBM
Corporate Systems Standard 3-3220-002 or variations by other mainframe
vendors. The collating sequences of ASCII and EBCDIC are the same for simple
sort keys, such as numerics or the 26 capital letters. But for more complex
sort keys, the collating sequences are radically different. Computer control
function characters are, of course, not used in sort keys. For the graphic
characters, the collating sequence of ASCII is from low to high value as
follows: "Space," punctuation and special symbols, numbers, capital letters,
lower case letters, with some special symbols between these major groups.
In EBCDIC, the collating sequence of the graphic characters is: "Space,"
punctuation and special symbols, lower case letters, capital letters, and
numbers, with some special symbols between these major groups.

For the same data file, a sort key using most of the graphic characters
of ASCII or EBCDIC would produce a record sequence based upon the collating
sequence of ASCII or EBCDIC, unless otherwise specified. These two record
sequences would be considerably different. A clerk could learn to use
either record sequence as an index, but would have great difficulty trans-
ferring from one sequence to the other. This has occurred, for example,
in the case of large catalogs arranged by Federal Stock Number (FSN,
alphanumeric) ordered according to two different collating sequences.
Introducing new Federal Stock Number items into the two "master" files
would require that the new records be sorted by FSN according to the
collating sequence of each file, and then merged into the master file.
Data transferred from one "master" fxle to the other would require a
re-sort of the selected records into the sort sequence of the other before
the data merge could occur efficiently.

50

Relevance to CAM Systems

In the CAM arena, it is not apparent whether there are any difficulties
that might result from the use of computers having two different collating
sequences. It is possible to postulate some. For example, suppose it were
desired to generate an index list of all APT part programs. Should "CAP A 37"

come before or after "CAPAFORACOVER" where "A" represents the character
"Space"? Since "CAPA" is the same for both titles, the sequence would be
resolved by whether "3" is smaller (lower in the collating sequence) or
larger (higher in the collating sequence) than "F" . In ASCII collating
sequence, numbers are lower than letters, so that "CAPA37" would precede
"CAPAFORACOVER." In EBCDIC collating sequence, numbers are higher than
letters and hence "CAP A 37 " would follow "CAPAFORACOVER." The point is that,
in a large index, a programmer might miss the existence of a desired program
if the index had been collated on one machine and was being searched on
another.

A standard collating sequence in the CAM area would be preferable to
a mixture, sometimes ASCII and sometimes EBCDIC.

The following simple example illustrates the differences between ASCII
and EBCDIC collating sequence. A sort key contains only two character
positions and the complete character set is comparised of the four characters
1, 9, A, Z. The complete collating sequences are:

Sequence ASCII EBCDIC
Number

1 11 AA
2 19 AZ
3 1A Al
4 1Z A9
5 91 ZA
6 99 7.Z

7 9A Z1
8 9Z Z9
9 Al 1A

10 A9 1Z
11 AA 11
12 AZ 19
13 Z1 9A
14 Z 9 9Z
15 ZA 91
16 ZZ 99

It can be seen that in a large file index, a clerk would have difficulty
locating a particular item without knowledge of the collating sequence.

If both capital letters and small letters are allowed in a sort key,
then the confusion would be even greater, since in ASCII capital "Z" collates
ahead of small "a," while in EBCDIC small "z" collates ahead of capital "A".

In an alphanumeric sort key, if certain positions are always numeric
and other positions are always alphabetic (capital letters or small letters
but not both) , then the collating sequence will be the same in ASCII or
EBCDIC. Thus in the example above, if the first position is always numeric
and the second position always alphabetic, the complete sequence will be:

Sequence ASCII or
Number EBCDIC

1 1A
2 1Z
3 9A
4 9 Z

51

It can be seen from the 16-sequence table that the sequence of four does
appear in the same sequence in the ASCII or the EBCDIC column. This
uniformity in collating sequence is achieved by a constraint on the sort key
which greatly reduces the number of keys (records) that can be represented
by a given number of positions in the sort key. Consistent use of the ASCII
collating sequence will remove the need for such simplifying constraints on
sort keys, and will eliminate variations in the sequencing of complex sort
keys, and will also give consistent results for computer program comparison
operations

.

Revelance to Software Portability

Comparison operations in computer programs generally compare one group
of characters with another group of characters. If the groups of characters
are "simple," such as numerics or 26 letters, then the results of the
comparisons will be the same whether the character coding is in ASCII or in
EBCDIC. However, if the character groups to be compared are more complex,
then the inequality of the two groups can indicate that the former is
"larger" in ASCII but "smaller" in EBCDIC. Computer programs in high-
level languages, employing such comparisons, can thus give different
results in ASCII or EBCDIC, because of the difference in the collating
sequences of ASCII or EBCDIC. A standard collating sequence would
eliminate this complication along with the sort key sequencing
inconsistencies

.

In the original COBOL programming language standard, the collating
sequence was indicated to be whatever the computer vendor specified. As
a consequence, some COBOL programs could, and did, give different results
on different computer systems. This had the effect of spoiling the
transferability of COBOL programs among various computers, although such
transferability was claimed to be one of the advantages of using high-level
programming languages. To overcome this disadvantage, the COBOL standard
(FIPS PUB 21-1, ANSI X3. 23-1974) has been modified to allow the programmer
to specify the collating sequence.

SUMMARY OF RECOMMENDATIONS ON CODING

a) It is recommended that the USAF use the FIPS 1 ASCII coding of character
set data wherever information crosses an interface between a CAM module
and any other CAM, computer or communications module or device.

b) It is recommended that the USAF use the ASCII subset of EIA Standard
RS-358 for Numerical Control applications and adopt the "type l"/"type"2
data conventions of SP177A before it becomes a standard.

c) It is recommended that the USAF use the recognized FIPS/ANSI standard
representations of ASCII in media, such as paper tapes, magnetic tapes,
punched cards, cassettes, and cartridges.

d) It is recommended that the USAF represent 7-bit ASCII in a standard
manner in 8-bit environments, according to FIPS PUB 35/ANSI X3. 41-1974.

e) It is recommended that the USAF represent any extensions of ASCII in a
standard manner in accordance with FIPS PUB 35/ANSI X3. 41-1974.

f) It is recommended that the USAF use the ASCII collating sequence for
sequencing file records according to sort keys.

g) It is recommended that the USAF use the ASCII collating sequence for
determining the results of comparison operations in computer programs.

52

PROTECTION OF CAM DATA BY ENCRYPTION

In most CAM applications, no special protection of the data will be
required and none should be used. In some cases, protection may be deemed
important. If CAM data is to be transmitted by military communications, then
military data encryption techniques should suffice. If CAM data protection
is desired but military communications are not involved, then such protection
can, and should be, accomplished by means of the NBS Data Encryption Standard.

The NBS Data Encryption Standards (DES) algorithm specifies the
encryption of 64 bits of data into a 64 bit cipher based on a 64 bit
key and the decryption of a 64 bit cipher block into a 64 bit data
block based on a 64 bit key. The steps and the tables of the algorithm
are completely specified and no options are left in the algorithm itself.
Variations in implementing and using the algorithm provide flexibility
as to the application of the algorithm in various places in a computer
system or network, how the input if formatted, whether the data itself
or some other source of input is used for the algorithm, how the key
is generated and distributed, how often the key is changed, etc. These issues
are covered in a separate NBS guideline.

Basic implementation of the algorithm is most easily done in special
purpose electronic devices. Overall security is based on two primary
requirements when using the DES algorithm: secrecy of the encryption
key and reliable functioning of the algorithm. Implementation of the
algorithm in dedicated electronic devices provides the following economic
and security benefits

:

1) Efficiency of algorithm operation is much higher in specialized
electronic devices.

2) Basic implementation of the algorithm in specialized LSI electronic
devices whi^h can be used in many applications and environments will
result in cost savings through high volume production.

3) Functional operation of the device may be tested and validated
independent of the environment.

4) The encryption key may be entered (or entered and decrypted) into the
device and stored there and hence never need appear elsewhere in the
computer system.

5) The paths of data to and from the device may be controlled and monitored.

6) Unauthorized modification of the algorithm is very difficult in such
a device.

7) Redundant devices may simultaneously perform the algorithm independ-
ently and the output may be tested before cipher is transmitted.

8) The device can be controlled externally in accordance with the
requirements and environment of the application.

9) Implementation in special purpose devices (electronic devices or
dedicated micro processing computers) will satisfy Government
requirements for compliance with the standard.

RECOMMENDATION ON ENCRYPTION

Wherever security is needed in interchange of CAM information, the NBS
Data Encryption Standard algorithm should be applied, unless its use is

superseded by military communications requirements.

53

REFERENCES

(1) "Information Interchange Between Dissimilar Systems" by H.S. Meltzer
and H.F. Ickes, Modern Data , Vol. 4, No. 4, April 1971, pp. 56-67.

(2) Hollerith Punched Card Code Federal Informat Processing Standards
FIPS PUB 14 1970 U.S. Department of Commerce, National Bureau of
Standards

.

(3) Extended Binary Coded Decimal Interchange Code IBM Corporate Systems
Standard CSS 3-3220-002, November 1970, IBM Systems Standards
Department, Poughkeepsie, New York.

(4) Proposed Federal Information Processing Data Encryption Standard
1 Aug. 1975 Federal Register.

(5) Guidelines for Implementing and Using the NBS Data Encryption Standard,
Draft Document, 10 Nov. 1975 Institute for Computer Sciences and
Technology, National Bureau of Standards.

54

STANDARDS FOR COMPUTING SYSTEMS

3. PROGRAMMING LANGUAGE STANDARDS

INTRODUCTION

STANDARDS ON EXISTING LANGUAGES

FORTRAN

COBOL

BASIC

PL/I

SYSTEMS IMPLEMENTATION LANGUAGES

FUTURE NEEDS IN PROGRAMMING LANGUAGES

General Observations
Standards and Limitations

RECOMMENDATIONS

REFERENCES

55

INTRODUCTION

Programming languages serve the same purposes for comouting as spoken
languages do for human communications. They are the principal mechanisms by
which ideas (algorithms), data, commands, response requirements, etc. are
communicated from man to machine.

Like spoken languages, they have a tendency to diverge into "dialects," in
which case users of different forms of the language find it difficult or
impossible to continue communicating with each other. A cooperative
standardization effort is frequently required in order to get the various
dialects to converge acceptably, since the language compilers can not adapt
to slight variations in use as can humans.

Programming language variations are inevitable and in many instances they are
desirable, because through them better or entirely new forms of useful
expression arise. The "better" forms are perhaps the more dangerous from a
communication point of view because, if adopted, they must either supersede
the older forms or introduce a redundancy into the language; in either case,
considerable attention must be accorded these types of changes, as they
constitute deviations from the approved language definition and threaten
software portability.

New forms, or "unilateral extensions," are usually outside of the previously
defined scope of the language and require some time to be defined,
implemented, tested, understood by others and accepted into the language. As
a result, they do not pose as immediate a threat to program portability as do
the "better" forms. However, cons ider at ion must be given to the manner in
which new forms are defined and employed in the building of application
programs, so that users will be aware that the use of these new forms
prevents them from creating portable code, at least until such time as the
new form is accepted into the language definition.

STANDARDS ON EXISTING LANGUAGES

There are currently standards in existence or in the process of approval for
four general purpose programming languages: FORTRAN, COBOL, PL/I, and BASIC.
Of these languages, only PL/I is a "modern" language that has the potential
for satisfying the requirements of the Air Force for a general purpose
programming language for the CAM program. The choice of a general purpose
programming language is not clear as will be shown. In fact, the language
chosen by the Air Force for the ICAM program may not be any of these four
discussed, although support for at least COBOL and FORTRAN is mandatory for
the near future because of the body of existing programs in these languages.

Although ALGOL is mentioned several times in the following text, there is no
formal standard and or standards committee for ALGOL and it is considered in
terms of historical interest and the heritage it has brought to other
languages. Current use of ALGOL is sufficiently limited that it is not
considered comparable, even as a de facto standard, to the other languages
discussed here.

Independent of which language standard is selected the Air Force must realize
that the simple specification of a standard language in a procurement action
will not be sufficient. Indeed an entire set of software development and
documentation guidelines and validation and testing tools are mandatory to
meet Air Force goals, as will be discussed below.

Only general purpose programming languages are addressed here. For specific

56

problem oriented needs, such as simulation or
are languages but no standards or defacto
existing languages and compilers can be selec
requirements when they are set.

artificial intelligence, there
standards. It is believed that
ted to satisfy ICAH project

FORTRAN

Originally designed in the early 1950's as a replacement for assembly code,
FORTRAN is a simple higher level language that is easy to compile into
machine code. However, the requirements of this efficiency have extracted a

price which is paid for in annoying restrictions which crop up in use of the
language. FORTRAN statements tend to reflect the hardware characteristics of
the first machine to support FORTRAN. The memorable fact that every DO is
always done at least once is an example. This is due to the fact that the
original machine for the language has a test-and- j ump instruction which
worked by testing at the end of loops, rather that at their entry points.

FORTRAN lacks many features often expected of general purpose languages.
Part of the omission is simply because the language is so old, about
twentyfive years. Nonetheless, a user of ANS (or Standard) FORTRAN can not
expect the following: good string handling; block structure; run-time
allocation of space. FORTRAN'S virtue is that it is simple and effective,
and much preferable to assembly code; this point is important, because for
many uses the competition is not other modern languages such as PL/I and
PASCAL, but rather, machine code. FORTRAN in conjunction with an optimizing
compiler can be very fast.

Elaborate libraries ex
addition, techniques
design features a bit
space allocation of
coherent control struc
implementations. The
which involve complex
function integrations
contrast to COBOL wh
scientific or engine
hand, for generating i

a commercial nature.)
an interim scientific
nicely.

ist of FORTRAN engineering and scientific routines. In
are available [Larmouth, 1976] which can stretch the

to circumvent the more annoying restrictions such as
arrays. Unlike BASIC, FORTRAN is sufficiently rich in

tures that it can be sensibly used for large-scale
language is well suited to industrial applications

numerical calculations such as table interpolations,
, or measurement smoothings and averaging. This is in
ich is rather inefficient and clumsy to use for
ering evaluations. (FORTRAN is not suited, on the other
n a straightforward manner nicely formatted reports of
FORTRAN input/output is both limited and slow. But as

and engineering language for CAM, FORTRAN could serve

The new FORTRAN Standard, long in gestation, was released in draft form in
early 1976. There was an avalanche of criticism—mostly that it should
contain each critic's favorite structure— but it apoears that debate will be
cut off with the addition of IF-ELSE IF--END IF and perhaps STREAM
input/output. Committee members hope to have solidified a new Standard by
March 1977.

COBOL

COBOL was originally conceived as a bus
processing. It is an effective means
characterized by the requirement to man
input/output (as contrasted with those
problem solving). Quoting Pratt, "

implemented of the languages ...[See Pra
but few of its design concepts have had
languages, with the exception of PL/I.

iness language for commercial data
for programming applications that are

ipulate characters, records, files and
concerned primarily with computational
COBOL is perhaps the most widely
tt's book for the context of this.]...

a significant influence on later
Both of these facts may be partially

5 7

attr ibuted to its orientation toward business data processing , a major area
of computer application, but one in which the problems are of a somewhat
unique character: relatively simple algorithms coupled with high-volume
input-output ..."[Pratt , 1975, o. 359]

Like some other language of the same period, COBOL was developed and has been
maintained by voluntary efforts of implementors and users. The COBOL
standard, as is the case with any standard, does not in itself cure all
problems associated with computer systems. As the language is used, its
flaws and inadequacies become more apparent; action must be taken to correct,
adjust and extend the standard definition.

There exists a rather elaborate mechanism dedicated to the continuing process
of making COBOL evolve in response to user requirements. In addition, to
enhance the viability of Standard COBOL as a tool, ancillary activities have
been initiated to provide for testing of compilers for conformance to the
standard, for interpretation of the language specification when questions of
meaning arise and for development and establishment of policies relative to
procurement and testing of COBOL compilers.

In a recent survey (MBS I R 76—1100) , of the 132 Federal government computer
installations responding to the survey question concerning usage of COBOL,
86.4% indicated that COBOL was available and 94.7% of those who had access to
the language actually used COBOL to some extent. (Also see Phillippakis
(1973].) A few examples of COBOL applications illustrate potential uses of
COBOL within a CAM system. For example:

a. The National Weather Service, an agency of the Department of Commerce,
has an operational on-line system providing weather forecast information.
Approximately 30 terminals throughout the nation receive and send weather
forecast information. Among the users are civilian and military agencies and
radio and TV stations. The system is written in various languages; however,
three to four dozen COBOL programs accomplish an important function in the
system. These COBOL programs perform editing of input data for errors and
formatting the data for its presentation over the network. COBOL was
selected for use in implementing these programs because of its ability to
handle editing and character manipulation.

b. The Defense Supply Agency (DSA) , an agency of the Department of Defense,
performs central supply service to all Defense agencies. It provides support
materiel such as food, medical supplies, clothing and construction material.
DSA has a very large logistics system called SAMMS (Standard Automated
Materiel Management System) written in COBOL. SAMMS provides the following
daily functions for DSA: distribution, requirements forecasting, financial
management, procurement, and cataloging. This system is used in each of
DSA 1 s five major centers: Richmond, Virginia; Columbus, Ohio; Dayton, Ohio
and two in Philadelphia, Pennsylvania. There are 400 to 500 individual
reports produced by SAMMS. Examples of some of the reports are management
reports, statistical reports, rejection reports, exception reports, and
turn-around (time requirement) reports. The system requires about 1000
changes per year, mostly enchancements, because of changing requirements.
The number of records in the system varies in each center from 800,000 to
1,500,000; approximately 12,000 records are updated per hour. With some 800
to 1000 COBOL programs, SAMMS is the largest logistics data system in the
Federal government and is integral to DSA's daily operations. COBOL was
chosen for implementing this system to enhance the portability of the
programs and because of the attributes of COBOL for handling character data.

It is evident from the efforts pursuing development and standardization of
COBOL and from the examoles of how COBOL can be used effectively in its

typical application
for use whenever
numbers of limited
special commercial

areas, that COBOL should be given ser
a problem requires straightforward and
range, along with a heavy volume of
formatting requirements (such as flush

ious consideration
few computations on
such numbers with
dollar signs)

.

BASIC

BASIC (Beginners All-Purpose Symbolic Inst
programming language developed in the mid
Dartmouth College. The primary motivation beh
was the desire to educate large numbers of
remote-console, time-shared computer to solve
on names to letter +numeral have been ret
purpose of this— to simplify symbol t >le
necessary. The language was designed to
especially for simple problems. In this respe
BASIC differed from other languages such
Algol 60 (expressing algorithms) which aimed

uction Code) is a computer
I960 ' s; by Kemeny and Kurtz at

nd the design of the language
undergiraduates in the use of a
imole problems

.

Limitations
ined, even though the original
maintenance— is no longer

be lecirned and use d easily.
t , the design c rite rion for

as FORTRAN (execution speed) or
at professional programmers.

Since its original design, more advanced features have been added to BASIC,
both at Dartmouth and at other installations, so that BASIC now is often used
as an alternative to FORTRAN or Algo] 60. The divergence in the design of
advanced features, in addition to divergence even in the features of original
BASIC, has been a concern among suppliers and users of BASIC. In response to
this concern, ANSI established an ad hoc committee "to investigate the
computer programming languages generally known as BASIC, and determine the
existence of a viable nucleus language suitable for standardization .

"

This committee recommended that ANSI create a technical committee charged
with developing a standard for BASIC. This recommendation was approved by
the committee at its January 17, 1973 meeting.

In addition to identifying and standardizing a

language, the ANSI standards committee X3J2 is
features in various implementations and is standardiz
sees fit. The standards committee felt it prefer
than just a BASIC nucleus, since the greatest
implementations occurred in the treatment of feature
not be in the nucleus.

nucleus for the BASIC
investigating advanced

ing other modules as it
able to standardize more
divergence in BASIC

s that would most likely

The now proposed
the language fo
course the standa
operation. In
implemented in an
emphasizes sing
compilation of op
require just such

St andarci for
r use in
r d does not
or acticcil te
environraen

t

le -pass , f

ti mi zed code
an emphasis

MINIMAL BASIC
a remote-conso
preclude the us
rms, the standa
which provides

ast compilati
. Educational

re f le c ts the or
le t t i me-shared
e o f BAS IC in

rd do e s assume
m i no r ed it ing

on and execu
u s es of prog

ig inal design of
system

,

though of
other modes of

that BAS IC will be
services and wh ich
tion ra ther than
ramming languages

The proposed American National Standard for Minimal BASIC was approved by
X3J2 in January, 1976 and was forwarded to X3 for action. X3 has given the
proposed standard the reference BSR X3.60 and has submitted the proposed
Minimal Standard for public review. Comments were due by the end of

September 1976. This nucleus standard contains those portions of the planned
language not specifically contained in planned enhancement modules.
Standards for enhancement modules concerning files, strings, matrices,
subprograms and chaininci, and formatted input/output are under development at
present

.

59

From the past exper ience of the development of the Minimal Standard the
completion of the enhancements standardization may take on the order of 2 to
3 additional years. Therefore, a full BASIC standard should be available by
1980 provided the committee does not face any votinq deadlocks. These
estimates assume the regular committee meeting schedule of 4 meetings a year
in the last week of each of the months of January, April, July, and October.

For any large scale effort in CAM systems being able to store, retrieve, and
manipulate large sets of data is important. Minimal BASIC is not designed
for this although future enhancements will allow file and formatted I/O
capabilities. Large scale data handling can be accomplished in a more
prominent language such as COBOL or PL/I, and with more probable efficiency.

There was an attempt to specify some minimal working precision for numerical
constants and variables of at least 6 digits. However, no accuracy
specification is imposed on arithmetic expressions or intrinsic functions.
This limitation on precision makes BASIC unusable for some engineering
calculations

.

From the engineering design point of view many good algorithms for matrix
manipulation, solving differential equations, etc. have already been coded
and tested and installed through library packages such as IMSL (International
Mathematical and Statistical Libraries, Inc.) or the Association for
Computing's Collected Algorithms. FORTRAN and Algol 60 are the principal
languages used for these existing collections.

The standard allows minimal string capability. No comparison except equal or
not equal is allowed between strings. This is another disadvantage to the
BASIC standard in its present form.

CAM should rely in the short run at least on languages and design support
libraries that have the most wide spread use. Although BASIC has recently
become popular the original intent of the language was for the learner to
step on to another language; BASIC was not intended as a large scale
production language. (The reader may want to reference Pratt, pp. 475-476 for
a lucid discussion of the demands of an interactive language, in his case
APL, and possible detriments to doing large production programming.) Because
of this fact, and because of the limitation in the BASIC standard, BASIC is
not recommended for use in the ICAM program.

PL/I

PL/I is an
to enhance
are FORTRAN-1
FORTRAN
PL/I
same

PL/I program structures are borrowed
types in the language show a clear
to be a "universal" or omnibus for
general users. Whether it has met
Use of PL/I has not grown nearly as
earlier period. Because of the

language which was designed originally
machines. Statements in the language

close enough that long time
into FORTRAN when writing some
of a FORTRAN DO is not the

from ALGOL (e.g., BEGIN-END) . Data
COBOL influence. The language was meant
scientific, commercial and diversified
this intent is somewhat open to question,
fast as had FORTRAN or COBOL in an
very size of the language, the initial

extensive, general purpose
the IBM model 360 series of
ike. In fact, the similarity is

programmers are prone to lapse back
statements, such as the DO. (The meaning
in PL/I!)

60

This oroblen hascompilers were difficult to write and slow in execution,
been remedied --';nt with time.

The draft standard renresents an attempt to si '
1

> o .

>

otherwise very large language. Because of the tentative nature of the draft,
it is unlikely that any PL/I processor chosen today would conform to the
letter of the new standard. Several PL/I dialects exist, including PL/C
[Conway 1973], a student subset with fast compiling, and a systems support
version PL/S. PL/I is not limiced to IBM implementation even for system
work. For example, 95% of Honeywell MULTICS is written in PL/I.

PL/I was accompanied soon after its introduction by a formidable formal
model-- the Vienna Definition Language. This meta language, known also as
VDL , has been retained in the draft of the standard. The modeling language is
not very easy to read, and it remains to be seen whether use of it has
removed the threat of ambiguities or omissions in the standard.

Besides the difficult VDL formalism, the PL/I standard has another drawback
of not defining allowed subsets of the language. Implementation of the full
capabilities of the language therefore requires a compiler that can only be
run on large scale computers. .Subsets of PL/I have been implemented for
developing cross software for microcomputers (PL/M, PL/M6800). More
extensive standard subsets could be defined for minicomputers and medium
scale computers.

If PL/I is used, the Air Force should specify standard subsets of PL/I for
various applications within the context of the ICAM program.

Among languages mentioned in this report, PL/I is one that has potential in
the long run as a good growth language for both systems and applications.
The dialect PL/S [see below] is used by IBM on some of their systems work;
student dialects have been mentioned above. Because it borrows from Algol
for block structures, it is fairly easy to write "structured programs" in
PL/I; in addition, the COBOL heritage provides a more definite input/output
capability than that of, say FORTRAN, or (worst) Algol (where i/o is left
undefined). Consideration of PL/I, along with other modern languages such as
PASCAL and its extenions (e.g. EUCLID) , should be made for longer-term
planning in the CAM project. The AMS PL/I with specified subsets and with
features of PL/S might be, for example, a good vehicle to write most of the
CAM systems software.

SYSTEMS IMPLEMENTATION LANGUAGES

The development of large system software projects, e.g. operating systems,
compilers, and data management systems, has been, and still is, hammered by
the lack of adequate tools. The most important of these tools is a good high
level systems implementation language (SIL). (The term systems programming
language can be used interchangably .

)

Despite the lack of a SIL that can be considered to be really good, the use
of existing SILS is preferable to the implementation of system software in

assembly language or macro-assembly language. If the resulting compiled code
fails to meet execution time constraints, critical inner loops can be recoded
in assembly language. If practical, they should not be placed in-line, but
rather grouped together in a seoerate module (or modules) and referenced

61

through procedure calls

.

por tabil ity

.

This will isolate machine dependent code to enhance

Of the existing SILS , there does not currently exist one that possesses a

clear advantage over all others. Some notable attempts have been made in 3IL
design and implementation, but the resulting languages have nearly always
been targeted to a single vendor's machine architecture or have not achieved
widespead use. As mentioned above, a dialect of PL/I known as PL/S has been
used internally by IBM to implement much of their system software. A dialect
of Algol has been used by Burroughs in the same manner. Many other systems
implementation languages have been developed but have not seen widespread use
because of machine architecture dependencies. Several SILs have been
designed specifically for microprocessor s . There is obviously little
incentive for a vendor to develop a systems imolentation language that could
be readily used to implement systems for another vendor's machines. Thus, if
there is to be any movement to more machine independent systems
implementation languages, that movement must come from without the mainframe
vendors. The Air Force could provide that impetus.

It may be possible to avoid developing a special SIL. For example, 95% of
Honeywell's MULTICS is reported to be written in PL/I, the rest in assembly
language. The key features of a Sir, are the ability to manipulate data at
the ohysical level, r ?.

1 i*r than at the logical level, and to execute
privaleged calls to the hardware. Implementation of a good data base
management system and adeouately standardized general purpose programming
languages may be sufficient for Air Force needs in providing data
manipulation and portable software

.

The specif ication and initial design of a machine independent systems
implementation language (D00-1) is currently underway in the Department of
Defense for use in system programming of weapons systems [Fisher, 1975].
Although its use is not mandated for general purpose, commercial computer
systems, it may prove to be a good choice [DOD, 1976].

In summary, the Air Force must have a SIL. The choice is to pick one or
develop one. There is no clear choice between the SILS that exist and have
been implemented. With the possible exception of PL/S, a proprietary dialect
of PL/I, the Potential availability of PL/S should be investigated by the Air
Force. Development of a adequate SIL may be the only choice; in this regard,
the DOD-1 language effort should be carefully evaluated before an independent
development effort is begun under the I CAM program

.

FUTURE NEEDS IN PROGRAMMING LANGUAGES

General observations

C.A.R. Hoare [1973] has stated that a programming language should aid in
program design, program documentation, and program debugging. He goes on to
stress language simplicity, security, fast translation, efficient object
code, and readability. (His paper also includes a verv interesting annotated
bibliography on some common languages, including FORTRAN, ALGOL 60, and
COBOL.

)

Documentation can be helped by syntactic forms in a programming language, or
equally, hindered. Indeed, something as simple as a comment can be more (or

less) useful in encouraging clear programs. Scowen and Wichmann [1974] review
a number of comment conventions, including those in PL/I, ALGOL 60, FORTRAN,
BASIC, and COBOL. They provide six design criteria for comments.

62

Program debugging occupies a sizeable portion of a progr ammmer " s time and
language features can be important. For example, data types in a language can
help prevent improper transformations between disparate entities. However, a

data-tyoing feature is defeated by an automatic , transparent type conversion
(a la older PL/I) , which may then require extremely tedious examinations of
identifiers for improper type. Unchecked array bounds provide another very
common source of error that can be difficult to catch without help from a

compiler

.

Although structured programming and related methods have met resistance in
the programming communitv, the ideas are nonetheless attractive [Lucas, 1976;
Yourdon, 1976-Chap. 4] . Perhaos the situation would be different if programs
were physical things which could be viewed for balance and workmanship
[Cheatham, 1971]. Programmers may argue for complete latitude in connecting
pieces of programs together; however imagine a carpenter who set wall studs
sometimes at 16" apart, sometimes 14", and if his lumber was warned, at
varying distances. He could argue that his buildings were no weaker than
anyone else's, but the insulation workers would rate his handiwork less
favorably, since standard batts are 16" wide.

The possibilities for connecting N points of a program are of order N*N. If
nothing else the various structuring and programming refinement disciplines
seek to introduce some constraint uoon this potentially huge N*N. The most
notorious restriction has been, of course, E. Dijkstra's condemnation of
GOTO ' s [Dijkstra, 1968]. His point —auite valid--was that GOTOs represented
a way of thinking about programming, that many GOTOs indicated shoddy program
organization— a "Rube Goldberg" programmer in action. It was not enough that
a program worked— so did most of Goldberg's bizarre inventions. The
programming task should be thought through as one might organize an essay.

Yet even after the organization of a program has been expressed, it must be
written in terms of some programming language. While an organization may
reflect the virtues of modular pieces and good, tree-like dependencies among
modules, it is equally clear that some languages will not allow one to ban
GOTOs easily. COBOL and FORT RAN have control statements dependent upon
GOTOs; for example, in COBOL the EXIT statement is, effectively, only an
exit label at the end of the scope of a PERFORM; interior "exits" must GO TO
this one valid point of egress. Any interior EXITS are treated as no-ops,
and do not affect the PERFORM. And since FORTRAN has no compound statements,
GOTOs are often introduced to produce the effect. More modern programming
languages often include compound statements, conditionals, a DO or FOR
statment, WHILES, the CASE statement, and naturally, procedures including
recursive ones.

A second place for a program to become unbuttoned is in its data;
Hoare[1973] observes that untyped pointers allow as much arbitrary hazard in

the data soace of a program as GOTOs nose in the program (or control) space.
A pointer can jump around, and if assigned an improper value, jump around
into the wrong data locations. On an even simolier vein, it is possible to

replace GOTOs by flags, only to find that the flags are so poorly designed
that their meaning is dependent uoon points of control in the program.

The moral is, if a programmer is messy, nothing will helo.

Standards and Limitations

Any discussion on standardized languages and their status could be deceptive
if unaccompanied bv a caveat on the limitations of the language standards
themselves, for in fact there are many system influences on language use, and
in the wordings of the standards.

63

Larmouth [1976]
provides details of many loose ends in FORTRAN. For example,

local variables in a subroutine can become undefined (of indeterminate value)
upon exit from the subroutine, even though most systems preserve local
variables, treating them as Algol OWN values or PL/I STATIC. The reason for
the Standard's hedging is that on stack-machines, such as Burroughs, the
subroutine exit pops the storage stack. Local values are truly lost. On
another plane, the recent problem with COMPUTE in COBOL was caused by a

failure in the standard to define intermediate results for arithmetic
expression evaluation. Some manufacturers used their machines' double
precision floating point for the intermediate results, while others
incorporated the various numbers of fixed point digits. It is impossible to
state concisely all of the problems that one might encounter in a particular
standard. The best advice would seem to be to refer the reader to the
Larmouth article and indicate that the FORTRAN standard that generated all
that discussion is about a tenth that of, say COBOL or PL/I Standards.
Caveat emptor .

Files and the handling of system secondary storage exemplify the importance
of uniform, simple conventions, especially among programs written in
different languages. The dictum of "delayed binding", i.e. late fastening of
attributes, implies that files should have no specific characteristics other
than those absolutely necessary. This allows flexibility in rerouting inputs
and outputs, typical requests for contemporary users. Usually there will be
loadable files and text. Nothing else. Text, if sent to the printer process,
generates—on paper— a user's print file. It is not difficult to cite
systems in which there are user card files, printer files, data files, and
program source code files. For example, on the UNIVAC 1108 under EXEC II, it
is quite easy to find that one has a COBOL preprocessor, written in COBOL to
convert other COBOL decks, whose output is unreadable by the COBOL compiler!
Gerhard Goos [1974] has remarked that:

"The most serious problem of today's system programming languages is the
non-existence of a basic model for file-handling and I/O. All models either
are developed with a certain operating system in mind and are difficult to
adapt to other operating systems. Or they are too simple, allowing for
sequential files only while random-devices are modeled by unstructured linear
address spaces."

Much as one would like programs written in various languages to share files,
one would also like to share library routines. K.W. Morton [1974] discusses
the NAG library and practical limits in current operating systems? e.g. to
serve both FORTRAN and Algol users some routines have to be coded twice.
Hoare [1973] also reflects on the point briefly, and is not generally in
favor of shared routines.

In any event, while specification of a standard in a language will improve
compatibilities, such standards may require additional constraints to be
really useful. This is especially true if distinct programming languages are
to share the processing of file information on the system.

i

64

RECOMMENDATIONS

1. CAM systems and application software packages should be developed
only with high level programming languages, except for the very few
instances where acceptable performance can only be achieved by
resorting to assembly language for coding of critical algorithms.
These cases should be carefully controlled and documented.

2. The Air Force should encourage the use of standardized programming
languages. NBS believes their effective use to be the key to
software portability.

3. ICAM may not wish to prohibit the use of nonstandard programming
languages where the reasons for their selection by a contractor
are fully documented and supported. In those cases where the Air
Force allows the use of a nonstandard language, it should at the
same time initiate a standardization effort to formalize the
product definition, through a consensus opinion of users and suppliers,
so that compilers can be implemented on other computers to effect
portability.

4. Because of the bulk of existing application programs are written
in FORTRAN and COBOL, these two languages must be supported for
the near term future in the Air Force ICAM program. Eventual
conversion of existing programs to a modern language should be
planned for under the ICAM program. At the present time FORTRAN
and COBOL are the only two general purpose programming languages
that are considered to be immediately useful to the Air Force.

5. The Air Force should support the establishment of a Federal
FORTRAN standard based upon revision of the ANSI standard, now
in progress. Should ANSI fail to approve a revised standard in
1977, the Air Force should support in writing the NBS goal of
adopting the next ANSI committee proposal as a Federal standard.

6. Of all the general purpose programming languages submitted for
standardization, PL/I is the only one that can be considered a

"modern" language suited for Air Force ICAM applications. However,
BL/I compilers can produce inefficient code and tend to require a

large run-time support system. Furthermore, not all of the major
computer manufcicturers offer PL/I. Hence, it cannot yet be con-
sidered a "standard" language suitable for Air Force use. If it is
desired to use PL/I, substantial effort in standardization will be
required and particular attention should be given to the definition
of subsets to run on smaller computers and to the development of
extensions for systems work.

7. The Air Force CAM authorities should monitor the DOD-1 project
because it appears to have the broad base of support that could
produce a standardized language suitable for CAM needs in the 1980's.
Among the candidates being considered in the DOD-1 effort that are
particularly relevant to CAM projects are PASCAL and PL/1.

65

iREFERENCES

Andreas S, Phill ippakis . "Programming language usage."
ANSI BSR X3.53 Basis/1-12 1975 (Peb.) Draft Proposed Standard Programming

Language

.

BSR X3.53 Chap 1 revised 1976(Feb).

BSR X3.53 Errata Sheet 1976(Jan.)

BSR X3.60

M. Beckmann, et. al . ADVANCED COURSE IN SOFTWARE ENGINEERING.
Spr inger-Ver lag (Berlin, 1974).

Bennet P. Leintz, "A Comparative Evaluation of Versions
of BASIC," Comm, of the ACM, April 1976, Vol . 19, No. 4, pp.
175-188.

T.E. Cheatham. "The recent evolution of programming languages," Proceedings,
IFIP Congress 71, Ljubljana, Yugoslavia, August 1971, pp 1-118 •

—

1-134.
R. Conway and T . Wilcox. "Design and implementation of a diagnostic compiler
for PL/I." Comm. ACM. 16, 3(March 1973), 169-179.

Donald R. Deutsch. Appraisal of Federal Government Cobol Standards and
Software Management : Survey Results . NBS?R ^6—1100, Final Report
August 1976, U.S. Dept, of Commerce , National Bureau of Standards.
DATAMATION , October 1973, 109-111.

E. Dijkstra. "GO TO statement considered harmful," Letter to editor of COMM.
ACM 11, 3 (March 1968), pp 147-148.

DoD Directive 5000.29, Management of Computer Resources in Major Defense
Systems, 1976 (April).

D.A. Fisher, A Common Programming Language for the Department of Defense
Background and Technical Requirements, 1976 (June).

M. Griffiths. "Relationship between definition of implementation of a
language," Lecture Notes, op cit.

G. Goos. "Programming languages as tool in writing system software," in
Beckmann, et.al, op. cit.

C. A.R. Hoare. "Hints on prgramming language design." Computer Science
Department, Stanford University, Dec 1973, STAN-CS-73-403 , 29 pp.

D. E. Knuth. "Structured programming with GO TO statments," COMPUTING SURVEYS
6, 4(Deceraber 1974), 263-301. (Special issue on programming.)

66

J. Laraouth. "Serious PORTRAN--The Rules of the Game." Chapter to appear as
an MBS Tech Note for the NBS/NSF SOFTWARE ENGINEERING HANDBOOK, July 1976,
20pp. (An earlier version appeared in SOFTWARE— PRACTICE & EXPERIENCE)

Larmouth, J. "Serious FORTRAN." and "Serious FORTRAN— Part Two." SOFTWARE:
Practice & Experience 3, 2-3(1973), pp; 87-108, 197-225. Prentice-Hall,
Inc., Englewood Cliffs, N.J\ , 1975.

H. Lucas Jr. and R.B. Kaplan. "Structured programming experiment," COMPUTER
JOURNAL 19, 2(1976), pp. 136-138.

K. W. Morton. "What the software engineer can do for the computer user," in
Beckmann, et.al., op. cit.

Pratt, T.W. Programming Languages: Design and Implementation.

R.S. Scowen and B.A. Wichmann. "The definition of comments in programming
languages," SOFTWARE—PRACTICE & Also see J.G.P. Barnes, op. cit. ,pp. 401-408.

N. Wirth. "On the composition of well-structured programs," COMPUTING SURVEYS
6, 4(December 1974) ,pp. 247-262 . (Special issue on programming.)

D. B. Wortman, et.al. "Six PL/I Compilers," SOFTWARE: PRACTICE & EXPERIENCE 6,

(1976) , pp. 411-422.
E. Yourdon. TECHNIQUES OF PROGRAM STRUCTURE AND DESIGN. Prentice-Hall, Inc.
(Englewood Cliffs, N.J., 1976), 364pp.

67

. *.

Si- V

' V.T. b,..

V,,.V

STANDARDS FOR COMPUTER SYSTEMS

4 . OPERATING SYSTEMS

INTRODUCTION

OPERATING SYSTEMS FUNCTIONS

COMMUNICATIONS WITH AN OPERATING SYSTEM

VIRTUAL SYSTEMS

Virtual Memory-
Virtual Devices
Virtual Machines

FILE MANAGEMENT PROBLEMS

SUMMARY

RECOMMENDATIONS

69

INTRODUCTION

Operating systems can be thought of as the system managers. In response
to demands of a user's program, the operating system manages the allocation
and use of the central processor unit, main and mass memories, and input
and output resources.

The lack of standards and quality in existing operating systems is the
major problem in transporting software from one computer installation to
another, even with only a single make and model of computer.

Operating systems are at once the best and worst place to consider
standardization. Ideally, if one had a standard operating system, then
one could imagine true software portability, since all machines would
appear identical. From a practical point of view, a standard operating
system for a large computer is neither practical nor desirable.

Operating systems for large computers are huge collections of software
programs intimately related to the particular hardware architecture for
which they were designed. For this reason, those features that are common
among large computers, and could be the basis for standardization, are
generally a very small subset of the total features implemented in a modern
operating system. This lowest common denominator approach would deny
the user the best features of the large computers in use today. Further,
the mainframe manufacturers have a market incentive to keep operating
systems both unique and proprietary.

The second problem for the Air Force in considering operating systems
is their size and complexity; the cost of developing a new operating
system for a large machine would probably exceed the total resources of the
ICAM program. Worse, advances by the industry in hardware and system designs
would soon obsolete whatever system was developed.

Incompatible features of operating systems will undoubtedly cause
the Air Force serious problems in creating complex integrated systems soft-
ware that is sufficently independent of the host computer to be portable.
However, overall operating system standardization does not seem to be a
viable answer. There are several areas in which limited standards can
and should be implemented for the ICAM program which will be discussed
below.

The situation is somewhat different for mini and microcomputers. The
16 bit minicomputers are sufficiently similar in their hardware characteris-
tics and system architectures that the idea of a standard operating system
is feasible. For a distributed, inte-grated system based on 16 bit mini-
computers, the development of a communications oriented standard operating
system is probably within the resources of the ICAM program. The 32 bit
machines which are byte oriented (in handling internal data communications)
are generally extensions of comparable 16 bit machines and could also be
considered in developing a standard operating system.

Microcomputers are too small to have much of an operating system.
Simple terminal monitors or switch monitors are supplied on ROMS in micro-
computer kits to allow the user to load programs, but that plus some simple
debugging routines is the extent of the system software. There is an
opportunity to facilitate the use of microprocessors in CAM systems through
the development of a cross software system based on PL/M or some other sub-
set of a high level language that would run on higher level computers.
Such a system would be essentially independent of the rapid hardware
innovations at the microprocessor level and could provide full system
support capabilities.

70

OPERATING SYSTEM FUNCTIONS

Historically, operating systems first arose as a matter of convenience
rather than necessity. In the early 1950's, each programmer actually
operated the machine and debugged his program on-line, controlling card
input formats and line printer formats with patch panels inserted in the
periphals. Batch processing programs were developed in the late 50'

s

to
expedite this situation by automatically loading another program as one
was completed.

Executive systems were developed in the early 1960's that provided
users with common access to complex programs developed for handling input
and output. At this time computers were basically constrained to a single
user and each job was completed before the next one began.

Because input and output functions depend on external periphal devices
generally much slower than the CPU, single user systems are very inefficient.
For this reason, multiprogramming batch systems were developed that allowed
more than one job to be executed at once.

The development of time sharing systems, on line file management,
real time operating systems, and virtual storage and virtual machine concepts
has led to the operating systems of the 1970's, in which multiple users
can simultaneously have access to the resources of the computer. The operat-
ing system is required to schedule the computer resources while preventing
unwanted interaction between unrelated processes and to enforce access
restrictions to data.

The primary functions of modern operating systems can roughly be divided
into 4 classes:

1. Job control
job scheduling
process scheduling
control of information flow
start/stop processes

2. Main Storage management
allocate memory (including partitioning and/or paging)
access control

3. Device management
schedule I/O devices
control data flow to I/O devices
monitor interrupts on I/O devices

4. File system management
create/destroy file
open/close file
read/write file

It is in this last area of file management that many of the worst problems
of software compatibility and portability arise, as we will discuss below.

COMMUNICATION WITH AN OPERATING SYSTEM

The user communicates with an operating system by two methods: system
calls and an operating system command language (OSCL)

.

System calls can be thought of as procedure calls to special operating
system procedures. They are used in programs to request services of the
operating system. For example, READ and WRITE statements are supervisory

71

Functions

user

periphals, secondary memory, and
communications

. specifies desired operation
of computer

. user specified applications
programs

• compilers, assemblers, loaders
. debugging, text editing
. libraries

. job scheduling and control

. storage management

. device management

. file system management

. main memory

. electronic data processing

. interaction of CPU with outside
world

Figure 1

OPERATING SYSTEM FUNCTIONS

72

calls. The system calls represent the "primitive actions" that an operating
system can perform for an executing process.

These primitives vary greatly between operating systems since they
represent basic design decisions and implementation realizations.
Standardization at the system call level is not practical nor advisable
since it might stifle new innovation.

However, it is possible to present a more uniform view of the system
call interface to a process by layering it with routines which map user
intentions into system calls. This is, in fact, exactly what is done
by the I/O runtime support routines for a programming language.

Figure 2 shows schematically how a user program interfaces to an
operating system through a runtime support routine. These routines are
necessary to translate the varying system calls in different languages
to a form understood by the operating system. For example, OUTPUT FILEZ
in BASIC and WRITE 600, FILEZ in FORTRAN may be translated into the same
system call to initiate an I/O action.

It is at this level that the direct interaction takes place between
a user program and an operating system for I/O.

An extension of this approach to other system feature calls may
yield improved benefits and warrants investigation. However, any such
approach is still limited by the basic primitives that the operating system
designers implemented.

An operating system command language (such as JCL) is a self-contained
but often rudimentary language for direct communication between a user
and the operating system. The command language is used to schedule jobs,
assign files, etc. and otherwise direct the execution of programs on the
behalf of the user. The design of a command language is greatly influenced
by the primary intended mode of operation of the operating system: batch
or interactive. Unfortunately, there exist systems orginally designed
for batch operation to which an interactive mode was later added. The
resultant command languages are often ill-suited for interactive use.

Some attempts have been directed towards the development of a system-
independent command lanugage. They have received very little, if any,
vendor support and probably for that reason have had no success. However,
on some of the more well-designed operating systems, the command language
exists as a separable part of the system, and thus can be easily changed.
If fact, some of these systems can support more than one command language.

Each vendor of operating systems has a unique appraoch to the imple-
mentation of the user-system interface from one generation to another.
No operating system in widespread use can be said to possess sufficient
redeeming qualities in its user-system interface that acceptance of it
as even an ad hoc standard can be advocated.

VIRTUAL SYSTEMS

There are several concepts that can be considered under the general
title of virtual systems. These include virtual memory, virtual devices,
and virtual machines. All are intended to make a physical characteristic
of the computer appear to be more than it actually is in order to help
the user and improve the efficiency of utilization of the computer itself.

Virtual Memory : this is by now the well known concept of placing
only parts (pages) of a users program or data files in the high speed
main memory at any one time. By managing the partitioning of the main
memory and by swapping appropriate pages to and from low speed, low cost,

73

USER PROGRAM

RUNTIME SUPPORT ROUTINE

OPERATING SYSTEM

HARDWARE

Figure 2

RUNTIME SUPPORT ROUTINE

74

high volume secondary disc storage, the user program sees a memory that
appears to have the capacity of a disc with the speed of the main memory.

Virtual Devices : with multiprogramming systems, the limitations of
communication to and from I/O devices can cause the system to bog down.
This can be circumvented by creating duplicate, virtual devices. A program,
then, will output to a virtual device. After a program is completed,
the data file can be scheduled for output on the physical output device.
Several different programs may be simultaneously performing i/o operations
to the same (virtual) device.

Virtual Machines : the same essential problem exists with process
management as with device management. By creating multiple, virtual ver-
sions of the operating system hardware interface, several operating systems
can (seemingly) simultaneously execute privileged system calls at the hard-
ware level. The virtual monitor, or hypervisor, is shown in Figure 3.

The hypervisor operates on an interrupt basis in response to privileged
instructions for the operating system. A file is set up of these instruc-
tions for execution when the hardware is actually available, and control
is returned to each operating system in such a way that it thinks the in-
struction was executed. This can make one computer look like several com-
puters with different operating systems.

The possibility of extending the virtual machine concept to gain hard-
ware independence for Air Force software has been considered and discarded.
The same arguments that were given at the first of this section still
hold true:

1. The basic limits are the hardware features of the machine. Using
only those features that are common to all large machines is inefficient
and too severe a restriction.

2. Adding another layer of interpretation is inefficient.

3. The potential cost of operating systems development is huge and
will be quickly rendered obsolete.

For these reasons, extensions of the virtual machine concept are
not recommended.

FILE MANAGEMENT PROBLEMS

It is in this area that the Air Force can expect to encounter serious
problems unless adequate care is taken in the early design stages. Different
computers have different file management schemes which may cause problems
in an integrated, distributed environment such as that envisionaged by
the Air Force for ICAM.

File management can even be a problem in a single computer environment.
For example, a file written by a FORTRAN program may be unreadable by a

COBOL program because of the formatting and the addition of "invisible"
bits such as file designations and check sums.

These problems can be solved by careful consideration and standardiza-
tion of the file management system calls made by the runtime support routines
for each of the languages to be allowed in the ICAM program. Changes
can be made to these routines, if necessary, at low cost.

Standardization of file formats and naming conventions can and should
be done for the ICAM program as special project standards. This will simplify
the file compatibility problem and will help insure portability. This can
be carried out in conjunction with development of the data base management
system for the program.

75

USER PROGRAM

OPERATING
SYSTEM #1
(e.g. DOS)

1

USER
1

PROGF
2

AMS
3

OPERATING
SYSTEM #2

(e.g. TIME SHARE)

USER OF
"BASE"
VIRTUAL
MACHINE

HYPERVISOR

HARDWARE

Figure 3

HYPERVISOR CONCEPT

76

Another problem is in the creation of files when reading from a

magnetic tape. For example, the same problem of "invisible" bits mentioned

above can occur here. As another example, if a 7 bit ASCII code is used

on the tape, a 36 bit machine operating system may pack 5 1/7 characters

into one word. This will produce an unreadable file.

Again, using an example from the field of automatic image pattern
recognition, in loading digitized image data into a 60 bit word computer,
the file management software may pack 7 1/2 8 bit bytes into each word.
Since one 8 bit byte is a discrete information element (pixel) , further
processing of the data may be difficult.

System programmers are used to dealinq with these problems. Still,
several man-days may be spend in modifying software to read a tape into
a computer. These problems can and should be avoided in the Air Force
ICAM program through the use of proper specifications and standards
for file management.

SUMMARY

In summary, the lack of standardization and quality in available
operating system software is a major contributor to the difficulties and
costs experienced in transporting program systems to different computer
installations. The difficulties may be significant even when the computer
hardware configuration is nearly identical between the source and the target
installations. The costs due to operating system problems may now exceed
the costs resulting from minor discrepancies in the programming language
compilers involved. Thus some consideration of operating system standardi-
zation is essential to the future success of the Air Force CAM projects.
It would not be feasible to seek industry or national standardization of
this software in the near future; the extent of previous efforts to do
so have never progressed past a study stage. It would not be economical
either to consider developing a standard operating system or modifying
an existing one for Air Force purposes.

However, several areas of interaction between user and the operating
system have been identified in the discussion above where attention will
be needed to maximize portability;

1. Runtime support routines between user program and operating system.

2. Operating system control language.

3. File management and data base management system interfaces.

4. Input/output software to read files to and from tapes or other
media for transporting software and data.

RECOMMENDATIONS ON OPERATING SYSTEMS

1. The Air Force should not undertake to develop a new operating system
or modify existing systems for large machines.

2. Standards on programming languages and data base management systems

are the best approach to software portability and integratability . In other

words, the operating system area should be avoided and system functions im-

plemented using the general purpose programming languages, if at all possible.

77

3. Limitation of the number of operating systems for the ICAM system
may ultimately be necessary. In any case, identification and isolation of
all systems dependent code in ICAM software will expedite transitions to
other computer systems.

4. No current operating system command language has such features as
to recommend it over others. However, this is one area in which standardiza-
tion is at least technically feasible and should be considered. Federal
standardization is already underway in a limited way, addressing the user
access protocol to computer networks and services. This effort in FIPS
Task Group 20 could be expanded to consider the full range of command language
functions. The Air Force should request the Associate Director for ADP
Standards, NBS , to determine the feasibility of expanding the scope of work
of TG 20 to address Air Force requirements for its CAM program.

5. A standard operating system could be developed for many of the 16
bit (and 32 bit) minicomputers in use today. For a distributed computer
system based on 16 bit or 32 bit minicomputers, this approach is attractive
and should be examined in detail.

6. File management standards, such as naming conventions for data files
and library software, should be enforced for all ICAM development projects
to maximize portability of CAM software products. Many potential problems
in file management may be avoided through the use of an adequate data base
management system (see next section)

.

REFERENCES

(1) Madnick, S.E. and Donovan, J.J., Operating Systems, New York, McGraw
Hill, 1974.

(2) Organick, E.I., The Multics System: An Examination of Its Structure,
Cambridge, MIT Press , 19 7 2.

(3) Organick, E.I., Computer System Organization (The B5700/B6700 Series)

,

New York, Academic Press, 1973.

78

STANDARDS FOR COMPUTER SYSTEMS

5. DATA BASE MANAGEMENT SYSTEMS

INTRODUCTION

TYPES OF DATA BASE MANAGEMENT SYSTEMS

CODASYL
Self Contained Packages
Host Language Approach
Relational Concept

CENTRALIZED VS DISTRIBUTED DATA BASES

Areas of Consideration

DEVELOPMENT OF A DBMS VS A COMMERCIAL DBMS

ASSESSMENT OF SYSTEMS AND SOME POPULAR COMMERCIAL PACKAGES

RECOMMENDATIONS

REFERENCES

See Appendix on Data Base Management File Structures

79

INTRODUCTION

A data base management system (DBMS) is a generalized tool for manipulat-
ing large data bases. It provides a flexible facility for accommodating
different data files and operations while demanding less programming effort
than use of conventional programming languages. DBMS possess the following
general properties:

* Software which facilitates such operations as data definition,
data storage, data maintenance, data retrieval, and output.

* Software which facilitates reference to data by name and not by
physical location.

* Software which is general, rather than specific to a particular set
of application programs or files.

Since the early 1950 "s, when generalized file handling routines were
first developed, the technology of DBMS has matured considerably. Within
the last ten years, a great number of DBMS packages have appeared on the
market. No precise count of operational DBMS exists, but it is estimated
that at least 200 are now available.

The use of DBMS to control large data bases and provide information
to multiple users has already gained acceptance in the data processing world.
A recent survey (1) of DBMS usage, just on IBM 360/370 computers in the United
States, reported 3,900 DBMS installations as of 1976.

The off-the-shelf DBMS packages do not provide the same set of functions,
and the implementation of functions differs widely in depth and strength
of effectiveness (2). There are as yet no standards in the area of DBMS
as a total package. Many groups are concerned about standardization and
are actively working in this area. The CODASYL Data Base Task Group (DBTG)
report (3) has been published by the Programming Language Committee of
CODASYL as a part of the 1976 COBOL Journal of Development (4)

.

This report
represents a specification of a data base management system; future national
and international standards will certainly be influenced by this report.
The ANSI/X3/SPARC Data Base Study Group has been meeting since 1972; see
Interim Report (5)

.

Part of their charge is to develop a basis for DBMS
standardization

.

In planning the use of data base software for CAM, the Air Force should
recognize the severe difficulties that stem from the lack of standard systems,
the technical complexity of data base packages and the consequent problems
of training and applications analysis, and the rather high costs in storage
and processing time that may be unacceptable in some applications. Although
available data base packages may be categorized by a similarity of concept,
such as the CODASYL or network approach, none of the available packages are
even close to being identical in their commands, language, and functions.
No de facto standard data base systems exist or are likely to develop in the
next three years. The transferability of data base packages between different
computers, particularly between minicomputers and large machines, is very
limited. Fundamental differences may be presented in the same package because
of machine dependent factors, such as the available mass storage.

80

TYPES OF DATA BASE MANAGEMENT SYSTEMS

Although there are many DBMS packages in the market with different func-
tions and strategies, for the purpose of this study, the total DBMS technology
can be described as four broadly different approaches:

1. CODASYL Data Base Task Group Specification
2. Self-Contained Approach
3. Host Language Approach
4. Relational Approach

Inherent in this classification is the data organization which the data
base management system supports. The three favored data model approaches
are: network, hierarchical, and relational. (See Figures 1, 2 and 3).

The CODASYL DBTG supports a network structure. Most of the self-contained
type systems support a hierarchical structure. The non-CODASYL host languages
are distinguished from the CODASYL host language types becuase of the two
popular packages; IMS which is hierarchical > and TOTAL which supports networks.
The relational approach models the relational data organization which has a

tabular orientation. The characteristics of the four approaches are dis-
cussed below.

Figure 1

HIERARCHICAL DATA STRUCTURE ILLUSTRATION SHOWING
SIMPLE SUPERIOR/SUBORDINATE ASSOCIATIONS

81

Figure 2

NETWORK DATA STRUCTURE ILLUSTRATION SHOWING
ARBITRARY ASSOCIATIONS OF DATA ELEMENTS

32

A Relation A Particular Tabular Association

Date element

X Y Z

values associated
values

associated
values

Figure 3

RELATIONAL SYSTEMS REPRESENT COMPLEX DATA
ASSOCIATIONS IN SIMPLE TABLES

83

CODASYL Data Base Task Group Specification

The CODASYL Data Base Task Group (DBTG) specification as published in
1971 consists of two parts: (1) syntax and semantics of a data description
language (DDL) for describing the structured data base, (2) the definition
of data manipulation language (DML) statements to augment COBOL (for retrieving
and updating data in the data base)

.

Three important characteristics of the CODASYL DBTG specification (see
Fig. 4) are as follows:

* The data relationships are explicitly defined in the data base.
Records that are logically related are tied together by eitner
pointers or by indexes. The relationships are defined when the data
base (schema) is defined. The advantage of this architecture is
that the relationships can be carefully worked out by the people
who understand the data. The disadvantage is that it can be a
nontrivial task to change the relationships.

* The Data Definition Language (DDL) is separated into two parts:
(1) the Schema DDL is totally language- independent and used to
describe the data relationships as mentioned above, and (2) the
Sub-Schema DDL which is fashioned around the language of the user's
program and restructures the data base for the particular requirements
of the program. Thus, this separation permits multiple-language
interface, data independence, a smaller view of the data to a program,
and protection for the remainder of the data base not used in a

given application.

* The Data Manipulation Language (DML) has been desiqned to help the applied
tion programmer "navigate" within the data base. Any given record
in the data base can be related to a number of other records, and it
might be accessed by any of several paths. The application programmer
must know where his program is operating, and how it should retrace its
steps when a search proves unfruitful.

The CODASYL DBTG approach adopts the network data model. A network
is a more general structure than a hierarchical structure because a given
node may have any number of immediate superiors as well as any number of
immediate subordinates. Therefore, this approach provides the most powerful
means of handling complex data structures, but querying and reporting may
prove to be a complex matter.

Self-Contained Packages

The majority of the commerically available data base software packages
are of the self-contained type. Typically, these systems possess three major
processing capabilities: data creation, data update, and data retrieval
and report formatting. A self-contained user language is provided to accom-
plish all three processing tasks. These systems are aimed at handling a
certain set of data base functions in such a way that conventional procedural
programming is not required. The capability to specify in detail the search
method and data retrieval the programmer wishes is replaced by preprogrammed
or built in processing algorithms so that the amount of writing required by
the user is minimized. The self-contained systems are optimized on their
interrogation and update functions. As a result they represent the most advanced
DBMS in the area of user language capabilities.

The very reason for the success of the self-contained DBMS, ie. their
high level, non-procedural interrogation language, becomes a large disadvantage
in those cases where the user wishes to exercise control over the sequence .

of detailed steps the system uses to process his requirements. Some systems
also provide external programming interfaces where the user can enter his own

84

DATA

BASE

ADMINISTRATOR

A *
4c

X
u
s
Q

•H > fl >i 3 X c •—

'

w X 4-1 X <D fl 0
co fl A fl TP Q •H fl

< S X XI 4-> TP C o
CQ w a> fl A <D fl •H fl

43 u; u w 'fl c a P c 3
< U a r4 a) 3 rH O
&H CO a) •H 0) >44 TP X 44 c
< X X X A c u 0) fl

Q Eh w 4-> TP •H co Q X

a a

h

co
os

w
co
D

rH r—* CM ^ x Q • •

**: * =*= * =#= w co
2 >h

5T1

rf
4 5; £ £ 2 H CO

2 2 n 2 X Q < 1 <
2 Eh oS o Cl, E-* >»

O OS + U CQ + U X 2 OS

o o o o o w o w
OS fe, OS CJ OS CO CJ 2
a "H 04 04 O

c
(1)

<u w X (0

4C

X
Q
Q

X p
X 0 a

X w X
>1 X X X
X fl c 0 c

w fl X X fl TP w
Tp fl P 0 3 c fl

fl X fl w fl fl O'
c u w w X fl

H fl •r4 fl c X w 3
44 X 3 U 0 •H fl O
fl fl tr O -H T3 O c
TP TP a fl X fl fl fl

3 >4 X 3 x 3
W fl £ O 0 O 3
fl X 3 g fl a C TP O'

X a 3 fl fl fl •H
4c X M otj w X c &4

W X fl 3 o O A 3 r4
fl a u O O)4 N X fl

i
Q 3 H >4 CL|-r4 fl fl fl X

X X a 3 W X 3 c
X fl o (4 X O fl X 3 0

3 CO
co i

A
fl 3
X CO
Eh

3 C4X
4-1 4-1

W fl

0) -G M-4

U4J O a 3

TP
fl

:s o i

O O X
X O XHMD
flaw

c •rH

0 rH X
X o •rH

X 3 0
fl c X fl

u 0 c a
*r4 •H 0 w
X X X X u
•rH a a £ X
CJ a x a fl 0
fl 3 — •rH c
a x fl C4 TP
co a 6 a fl a
a fl c o> £ o

X X fl a a
>4 fl O £ 3 fl 3
CO 6 CO O o O
r< fl 1 fl c •H 3
Q X X X fl > rj

O CJ 3 fl X fl X
CJ CO co a D
* *

*

85

routines written either in FORTRAN, COBOL, PL/I or assembly language to
perform processing not inherently supported by the system. However, this
does not yield the same capabilities as a host-language DBMS with its appro-
priate data manipulation language (DML) . The majority of the self-contained
data base management packages model the hierarchical data structure with
repeating groups. Typically, the system employs the inverted indexed technique
to facilitate quick retrieval.

Characteristics of these systems are that they are:

* End-user oriented. The user-language is easy, natural and English-
like. Very little application programming is necessary.
However, the user is paying for an added layer of software with
less efficiency and flexibility,

* Easy to install. After the data base has been created it is

relatively easy to change the structure. The data base can be
built an application at a time, without requiring that the whole
data base be defined at the outset. These capabilities are largely
a result of the implementation of an inverted or partially inverted
file system for storing the data. However, the (partially) in-
verted file structure results in difficulty in handling of queries
that specify records located in different branches and/or at dif-
ferent levels of a hierarchy, and in addition, results in consider-
able storage space required for the indicies.

* Easier to formulate unanticipated ad-hoc queries. Self-contained
systems permit the user to ask the question directly, and he has
no need to call on a programmer as an intermediary. For those
applications that self-contained systems can handle, they offer
considerably reduced set-up time and a vast reduction in the time
required to prepare a new interrogation or update to the data
base. However, the end-user must be aware of the data structure
supported by the system; if the needed data elements are not
keyed or inverted, the system either searches sequentially or refuses
to respond. Another caution on a hierarchical tree structure,
if the data elements requested in the queries are not of the
same hierarchy, no "hits," or even erroneous ones, will be made.

Host Language Approach

Although the CODASYL DBTG specification is a host language type, we
have treated it as a separate entity because of two distinctly different
packages that are already widely used; IMS by IBM, and TOTAL by Cincom
(See Table 1) . The host language approach is characterized by the following
features

:

* The system is designed as a tool for the experienced programmer.

* System functions are invoked from within host programming languages
(e.g., COBOL, FORTRAN, PL/I, assembly language).

* The supported data structures generally permit more user control,
even down to the physical storage level, than those found in self-
contained data management systems.

Host language DBMS generally lack high level language constructs
for conditional data, updates and retrievals, as are found in the self-
contained type. Typically, this is because the emphasis has been placed
on defining logical relationships among records or group of records in large
interrelated data bases, rather than on generalized functions. However,
these systems do interface to separate Report Program Generators (RPG)/
Query packages (this provides some aspect of the interrogation capabilities

inherent in the self-contained systems) while providing the flexibility
to the user of specifying the details of how his request is to be processed
through the use of the procedural-DML

.

Host language type systems can be thought of as extensions to the pro-
gramming languages. The method chosen to interface the host language data
management system with the programming language is usually through the
facilities of the CALL statement in the programming language.

Host language type systems provide powerful data management functions
for manipulating data, programmable through the flexibility of a programming
language and considerable user control over the physical storage structure.

Relational Concept

With commercially available DBMS, the variety of data representation
characteristics which can be changed without logically impairing some
application programs is still quite limited. Some people feel that the present
data base management systems require entirely too much knowledge on the
part of the user on how the data base is structured and how the data should
be accessed (for the case of host language systems) or are too limited
by preprogrammed algorithms (for the use of self-contained systems).
Instead, the user, be he an application programmer, manager, engineer,
or other - should simply have to specify what data is desired, not how
it is to be retrieved. The main problem with present systems is that the
data relationships are structured, which favors some types of access at
the expense of others, i.e. the application programs are not independent of
the data base. (See Appendix for a discussion of some of the characteristics
of various file structure techniques.)

Three of the principal kinds of data dependence are:

1) Ordering dependence - e.g. records of a file concerning parts
might be sorted in ascending order by part serial number - these
systems fail if this ordering is replaced by a different one
(e.g. if a search is desired by part material - aluminum, brass,
steel etc.) The same is true for a stored ordering implemented
by means of pointers.

2) Indexing dependence - from an informational standpoint, indices
are redundant components of the data representation, requiring
large additional storage capacity from the data structure.

3) Access path dependence - many of the existing formatted data systems
provide users with tree-structured files or slightly more general
network models of the data. Application programs developed to
work with these systems tend to be logically impaired if the
trees or networks are changed in structure. Or, if a query is
made for data in other than the structured form in the data base,
then a time consuming, total and complete search of the data base
may be required. In general, the user (or his program) is required
to exploit a collection of user access paths to the data.

The relational data base is proposed as a possible solution to these
problems. This concept is relatively new (Codd 1970) (6). The approach
is based on the premise that users of data base management systems are
becoming increasingly concerned with the information content of their data,
as opposed to specific representation details. That is, there is a trend
toward data base user interfaces that deal with information in application
terms rather than with the bits, pointers, and lists that are used to
represent information on computer mass-storage devices.

The relational approach to data base management can be characterized
as follows:

87

* Simplicity of user interface. The relational user is presented
with a single, consistent data structure and requests can be form-
ulated strictly in terms of information content, without reference
to most system-oriented complexities.

* Data independence. The user is relieved of concerns forknowing
specific information storage and access strategy.

* Flexible response to ad-hoc queries. Since all information is
represented by data values in relations, there is no preferred
format for a question.

The most serious question regarding the relational approach is whether
it can be implemented to form an efficient and operationally viable DBMS.
Many prototype systems exist but no commerical systems exist that are truly
relational. These systems are summarized in Table 1.

CENTRALIZED VS. DISTRIBUTED DATA BASES

There is no clear-cut best answer regarding which approach to use.
Each approach has its advantages and shortcomings. But the answer seems
to depend upon the particular needs and application environment. Data
base management packages also need to be selected in the context of some
architectural configuration. Two opposite data base architectures can be
identified: the centralized data base approach and the distributed data
base approach.

Centralized data base - A central data base is usually maintained
using a large-scale third generation type mainframe. Data may be generated
centrally or bulk entered from several remote data entry stations. The
centralized approach allows centralized control of the data bases, which
is necessary for efficient data administration. The data base management
system for the central computer would need to have full facilities for
storage and maintenance of data. In particular, some of the mandatory
features should be powerful control functions for data validation, update
control, centralize data dictionary capabilities to manage the centralized
data base. Retrieval and output reports can be optionally weighed against
very end-user oriented query language facility versus transaction invocation
via predefined process written in a programming language such as COBOL.
The data base management system for the centralized architectural approach
can be all of the above four types: CODASYL DBTG-like, non-CODASYL self-
contained, non-CODASYL host language, or the relational approach.

Distributed data base approach - The development of computer networks
has led to the prospect of distributed data bases. Distributed data bases
also include distributed processing which generally consists of remote
stations distributed throughout remote locations. The remote stations
evolved from intelligent terminals 1;o, at present, minicomputers installed
with their own secondary storage. Distributed data bases can have numerous
configurations. One scenario might be identified as follows: The distrib-
uted information system might be a multi-level hierarchy of processors,
generally matching, at each level, the organizational structure and com-
plexity of the manufacturing system. The network could be comDosed of a number
of mini-computers so that processing logic and storage (distributed data
bases) would be placed at or near the points where transactions occur.
A common design would be used for the numerous data bases and for the data
base management systems, so that the total data base could be distributed
throughout the system. However, due to the data base being stored under
a common data base structure, using common data definitions, any portion
of the total data base would be accessible from any mode in the network.

This modular design allows modules to be added and others deleted
to meet the needs of a particular situation. This would give the network

80

1

0 CO

c CP
T)
:i

c
•H CO\ X c

u X C 0
C: X - 0 -H
•r 1 10 H CO

-J UP
X P 0 0
X o 0. 10 0 rH >
o CP 0 P S PC
u o P 0 X -P CO O -H

r" - ^ iU
P P X 0 0 rH

GO x 2 (P O 1/1 o 2 -H 0 0 - 5*

21 \ (H- rr 3 x X U -H u §
x o \ it. X ^ U \-H Q O Eh
>1 2 C VO U P co p CJ M
x w 0 m < p LT X X c 0 o - X X O
< X P > VO o •H P TJ H X w X O
Q X CO S H X 1

X X I 0 0 C rH U X X
o D 0 CQ 2 Q O rH O I X -H 0 3 P 2 D
u U CQ HDH LO U CJ X X X CJ H u A

U -1 “
O P c
O <—

1

•H
O T3
V£> U 3
O X i—

l

rH CO

U vn Q U \ c >
Q X c X o c - X

n u H X •H 0 > p
0 X < 10 - *H M - X
•H S 'U ^ P P X P Eh Eh

X X CQ O 2 < 0 2 0 P 0 \ X P >H

0 s o c < > 0 1 i 2 XXX
O' x O - X —

'

X C 3 3 O <, X <
0 Eh - Eh •H P O X X S X X

X -H CO X 0 P M X D
CP x p r" - o 2 0 — o 0 2 0 > s; Eh - U -

s c X 0 n o (N H P CO X P CJ 2 s x X O
'
— 0 G \ r* \ >, P •H X o <, X - Eh

S C X 0 P CO g u s Eh Eh U
1 o -H VO U O 2 4-1 X c 0 - X \ x o
P u o m < cm < X 4H o HH0 XXX X 1 X in
w 2 C > M 3 X P 0 C CJ Eh X U P Eh r-
0 W -H £ p 2 X m X) o 3X0 p 2 < O X X
X u u X 2 O <M X X >

m u X u x CJ P Eh X < X

CO

CO

0P u
0 O
U 0
•H
x Pd
0 O 0

0 P 0 X
C7» 0 P P

GO
0 CO P -H 0 X
3 0 \ 0 T3 E - X> CP P X - X Bh

G >i X X USX
GO 0 O X q o <; Eh >
sz r- 1 u s P P Eh

1
ro X X - x \ X X o

P o 53 2? «3, <r XXX X X 1 o
co s S o X 5 3 Q t/] U Eh X X X P X
0 X X m o Q X M M p 2 < D X
X P M vr u X X X X U P Eh u s < A

\ p <3 Q
X 0 X w
X •H H — Ui

0 O p — p
•H r- X X G P 0 X

'O c £ Q 2 «-0 0 s u
0 -H 0 Q Q <, 3 0 0 P M

GO c CP 0 0 X CTX P 0 u
U P O -H CO 0 tT> Eh 0 P -H 2 X
< -H r- p 0 0 03 X X 0 Q - X « ‘ gp > P 0 -p -p 3 O 2 S Eh X Eh >

c 0 \ X >1 >. CP X T3 T3 13 S x Eh X L
o O X X G 0 CO 0 0 o <; M P P o

•=a: o 03 G vo CJ rd P CO P P u s xxx in

5 0 ro < X X X X P 0 P P X \ SUE-
P P > o 0 0 0 0 X X X > A
P CO 2 M o o G X > O > > £h X < < X

0 0 0 X 2 <N in 5 o c < c c 2 < a a <
X cn x P X rH rH O CJ P MM P Eh < < cq

O
P
i—

1

rH

\ \ 0
CO X 0 cn
o X cr> 0
,—1 0 x

CO «. X 0\ 0 2 o 0o 0 w O VO -p <; 0 a
CD G 0 r- o >n 0 X ao •H co x CP rH X C7> Eh 0 - u
CNI E 0 \ P 0 X O p X

P 0 Eh O X 3 O •H 0 Eh X >i P
SI 4-* VO

| O C7> X X -H T) p
LU 0 CO - m o o C U P 0 G C 0 A
1

—

o >, G U o rH 0 ' PGP 5 3
GO X -H I < vo CN X X 0 0 P 0 o cr
>- P P > 1 o P 3 0

CO T3GO M (0 2 h (j H” C X 0 cr > to

0 X 3 X 2 Q 5 O •H 0 c 0 0 G
X s < H X O O CJ X X M X X 0

l/)

o
1

—

<
SI QG 1

UJ
H—
GO SI

C3
LU
QG

GO LU
CX Q

LD O
h-
<r

<t
H-
GO

>— ZD O GO QG 2
GO 1

—

<n f— 3= GO LU r—1

LJ 1

—

LU GO iz: go
1

—

>—
GO ZD LU (> LU LU LU LU

UJ ^ QG SI O pj PD —

«

O
GO UJ< SI
CQ LU

LUO QG
LU
1

—

LU
SI 3 1

—

GO GO
QG <C
Q- LU

QG

1

—

1
—

H

QG
LU

CD o LU LU LU LU OQG— CQ
LU

SI
‘ -

LU
GO
=3

1 Q LJ Q—UJC

—

SI
Q_ 33

<c $ci s_
>- LU> o

c > sE ll. § -5: 1— 1—1 QGC3LU

89

TABLE

1
-

DATA

BASE

MANAGEMENT

SYSTEMS

EDMS

CODAS

YL

Xerox

Information

Systems

Group

El

Segundo,

CA

XDS

SIGMA

6,

7,

9,

560

to

4-J

•H
XI

CN
m

to

T5
Li

0
5

*
0
.H

1

'J

COBOL,

FORTRAN

Direct,

Random/Cal-

culation

Indexed,

Chains,

Network

1

1

1

1

1

1

1

1

>

50

1

GO
CD

CODASYL

Honeywell

Information

Sys

Phoenix,

Arizona

H

9GS)

200,

400,

600

H-6000,

Large

Series

60'

s

2
K

words

Monitor

|
10

K

words/Partition

COBOL,

FORTRAN

Random/direct,

Hierarchy, Networks

1

1

1

1

MDQS

Report

Generator

(on-line

request

only)

>

170

(including

IDS-I

which

is

not

CODASYL)

DMS

1100

CODASYL

UNIVAC

Rosevi*Lle,

Minnesota

UNIVAC

1106,

1108,

1110 -p

•H
X)

«X>

rn

U)

TD
p
0
5

LT i

vr.

1

r—

1

COBOL,

FORTRAN

ISAM,

Direct Random/Calculation

Inverted

Tables,

Pointer

array

Transaction

Interface

Package

1

1

1

1

o
^r

A

u
c 0)

M o
•H
>

to Li TD
(D C rH

C/3 U) rtf rtf

OQ i
—

1 u <D 1 1 i
—

1 -H 1 1

rtf Li 1 1 (tf x: 1 1

c rH (tf 1 1 G O 1 1o 0 rtf x 1 1 0 P 1 1

•H C U5 •H (tf

-P 0 -P PH <u (tf <U

-P i i—1 -H lO
<U (tf •H 0) ffi

tf 2 tf A

rtf

•H
C
Lt

O X
4-t •H
•H C

D
(tf

U X3
4-J

4-1 •H
0 >1 5

GO <D
«—

1 1 1 1

rtf 4-> <U rH 1 (tf 1 1

c •H ^ 1 c 1 1

0 W Ll CL 1 0 1 1^

—

•H Li Q) Q
4-> 01 CQ CL -p
rtf > i-3

rtf

i—

l

•H 4-> U
<D C rtf w <1)

tf D Q tf A

GO
=2o
1

—

5= _ 3
LU =) QG 1

1

—

C3 CUD CD *=3:GO S LU GO LU 1

—

i

—

>— LU QG LU QG Q GO
GO h— UD ZD CD GO 2 zr

GO >~ <=£ 1— zc GO LU1— >- QG ZD t—) 1

—

LU GO go
uj iz: GO GO o CUD 2D LU cm lu LU LU LU
GO LU QG m QG SI o cm CUD —

-

O
<C SI LU LU LU 1

—

QG <C 1

—

CQ LU O QG 1— SI _J GO GO CL. LU QG
LD CD 2D GO QG QG 1 LU

*=£ <c LU cm Q_ 22 QG LU LU LU LU CD —

*

CQ
1
— Q_ ug > ' *—

«

LU —i cm cm —J h- u cm s:
«=c <c >- LU CD GO LU ^ LU <E ZD
cm si 1

— > c > ZD LU <c <n h- — QG LU

90

TABLE

1
-

DATA

BASE

MANAGEMENT

SYSTEMS

the ability to withstand severe damage to some of the processors (or some
of the storage units) with the remainder being able to continue operation.
(Due to the centralization of the data that has occurred as a result of
the installation of DBMS some plants have experienced severe problems in
the total shut down of the operations when something goes wrong with the
system. The solutions organizations are arriving at turn out to be ap-
proximations to the network philosophy - some companies have logically
and physically subdividided the data base to cause it to reside on dif-
ferent storage units - others have installed additional minicomputers
to allow for continued data-taking if the main system goes down) . The
distributed communications in a network structure would provide at least
two independent paths between any two modes, so as to provide automatic
alternate routing for messages. Two kinds of data base management software
can be considered in this scenerio:

1) There are data base management systems specifically built for
the minicomputer. For example, Hewlett-Packard has developed
a package called IMAGE, and Data General has a data base manage-
ment system (INFOS) for its Eclipse series. Varian and Harris
have signed contracts with Cincom to offer TOTAL. Cullinane
offers IDMS which is precompiled on an IBM 360 and the object
module run on DEC'S PDP 11/45. Other prototype systems which are
not yet commerically available are operational for DEC's PDP-11.

2) Another approach is relatively new. It is the concept of a Data
Computer. It consists of hardware solely used for the accessing
of data. A prototype is being built by Computer Corporation of
America for the ARPA network. A similar concept is the "back-end"
computer concept where the data base is maintained as the "back-
end" computer, usually a minicomputer, and interfaced to a host
computer, usually a large-scale third-generation type where user
request language is translated.

Many advantages would accrue from a geographically dispersed approach
to data base management, including:

* Better provisions for protection than with centralized systems.

* Flexibility and localized control of data processing activities.

* Data validation at local sites, resulting in cleaner data input
to the central computer data base.

* Flexibility and potential of a distributed architecture.

The distributed data base concept is not without problems. For example,
does the user have to know the data location, does the request language
need to be different to access different distributed data bases, etc.
Most importantly, there is no fully operational distributed data base system
as yet.

Areas of Consideration

1) There are no standards in data base management as a total package.
The CODASYL DBTG report lends itself to be a potential candidate
for standardization, but many feel that the CODASYL DBTG approach
is not universally accepted and should not be standardized.
This is a result of the general feeling that data base management
systems are very much an evolving technology where many develop-
ments are yet to come. It is felt that the standardization of the

CODASYL data base task group (DBTG) report would provide sufficient
inertia to the system so as to impede the development of new and

perhaps better data base management systems. In addition, the

91

specifications of the DBTG report are felt to be too incomplete.
The proposed data manipulation language (DML) is felt to be too
procedurally oriented (therefore, not easily used by the non-
programmer) and to have shortcomings with respect to data indepen-
dence, data integrity, and compatibility (Guide-Share report).
The CODASYL specifications make no provision for handling existing
sequential and index sequential file structures. Nor do they
define a device media control language (DMCL) which is the storage
structure language used to describe the mapping of the data onto
physical storage media. And while the specification of a totally
language-independent data definition language (DDL) would theoret-
ically allow access to the data base by either a host- language
request or a self-contained-like query, only the host-language
data manipulation language (DML) has been specified. CODASYL
has not yet developed the specifications for query and reporting
languages. As mentioned earlier, the application programmer must
know how to "navigate" in a complex data base environment. Query
and reporting languages will have to do such "navigating" automat-
ically, and as a result could be quite complex in their development.
However, this difficulty exists for any type of complex data base
structure (i.e. a network or graph structure), and is not limited
to CODASYL-like systems. Some report program generators (RPG)/
Query packages are available and interface to the commerical CODASYL
systems. These are not as powerful, as yet, as the self-contained
system query capabilities. In addition, CODASYL does not specify
the recovery techniques to be used after a system goes down, nor
the method to be used for restructuring and/or reorganizing the
data base. All of these features are left up to individual vendor
and/or user to supply.

2) The possibility exists that there will be standards in each of
the different DBMS approaches. The rationale is that since
there are different programming languages for different applications,
e.g. COBOL, FORTRAN, PL/I, BASIC, it is conceivable that there
may be different data base management systems under consideration
for different applications.

3) The contemporary large-scaLe data base management systems are
built with separable functional modules. For example, a data base
management system may consist of a nucleus plus the following kind
of functional modules:

* the data definition language for specifying the logical structure,

* the data dictionary/directories for ease of managing data
description

,

* the teleprocessing message handling for on-line interactions,

* the user language processor for user interface to manipulate
the data,

* the protocols for invoking procedures on the data base system,

* the data access methods for physical sotrage accesses,

* the report writer for formatting fancy reports.

Each of these areas may potentially be considered for standardiza-
tion. Already, the commercial world has been marketing data base
management software in optionally upgradable and pluggable modules.
Adjunct packages such as report writer, query languages, telepro-
cessing front-end, data dictionary and various utilities such as

92

bulk load, sort, etc. have started to appear in the marketplace.
These adjunct packages usually operate in conjunction with a specific
data base management system. Although the interfaces of these
packages are not as yet flexible, standardizing the interfaces
of a data base system leads to the concept of interchangeable
parts

.

DEVELOPMENT OF A DBMS VS A COMMERCIAL DBMS

The development of a data base management system is considered too
involved, too expensive, and too risky to attempt. Years of problems
of cost overruns, unattained goals, and expensive maintenance have plaqued
new development efforts. There are, at present, a number of commerical
data base management systems available, that, while they fall short of meet-
ing the requirements of an idealized DBMS, effectively provide for the record-
ing, retrieving, and updating of large, complex stores of data. It is
recommended that the Air Force choose one of these commercial systems
with the expectation of updating or even converting to an entirely new
system in several years as major advances in DBMS occur. To wait for these
advances, or to attempt to develop new systems (which would entail a great
expenditure of resources in a not-well-understood field to obtain questionable
improvements) would cause a major setback to the overall project. Experience
and a clearer understanding of the problem of what is really needed from
a DBMS in an Integrated Computer Aided Manufacturing system can be better
obtained from using an existing commercial DBMS in a working system rather
than attempting to develop a DBMS for a non-working system.

At present, there are no working commerical packages of the relational
DBMS type. This area is considered too experimental to be implemented in
the Air Force project. Much more research and development is required to
see if these relational systems can provide the theoretical advances they
promise

.

There are a number of commerical systems (both host-language and self-
contained) available and the choice of a system should include such considera-
tions as

flexibility - in terms of use on a number of different computers in
a distributed system all addressing the distributed
data base.

portability - in terms of being able to move a DBMS or a data base or
portions of a data base from an existing hardware/software
complex to another.

adaptability - in terms of the ability to change data definitions
easily (i.e., to add, delete, lengthen, shorten, or
change the relative location of fields within records,
records within sets or files, or relationship indicators
(pointers or indices)) , to do all of this without having
to make changes in application programs and without having
to dump and reload the whole data base.

ASSESSMENT OF SYSTEMS AND SOME POPULAR COMMERCIAL PACKAGES

Self-contained systems - System 2000 marketed by the MRI systems
corporation and ADABAS, distributed by Software AG, are among the most
popular self-contained DBMS. As mentioned previously, these self-contained
systems originated with their own internal language with no connection
to any of the procedure-oriented languages (such as COBOL or FORTRAN)

.

However, most self-contained systems now provide interfaces to allow use
of COBOL, FORTRAN, and PL/1 in formulating data requests, but the use of
these procedural languages does not result in the same capabilities or

93

efficiencies as obtained with host-language DML . Even though these self-
contained systems are very good in query and reporting capabilities, they
are not recommended for the Air Force project because, due to the limitations
of a hierarchical file structure. System 2000 does not handle complex data
structures (networks), ADABAS , however does have a network file structure
that is like the CODASYL approach; the limited capabilities of the built-in
processing algorithms which are only partially corrected for by providing
interfaces to procedural language programs; and, their rather large size
somewhat restricts their use in a distributed system.

Host-Language Systems - The host-language systems such as IBM's In-
formation Management System (IMS) and CINCOM's TOTAL are embedded in a
host language (COBOL, PL/1, or FORTRAN (TOTAL only)) and therefore are built
upon the facilities of a procedural language.

IMS is a hierarchical based file structure which means network -type
relationships are difficult to handle, but IMS does allow network-like
structures. This probably results in a considerable overhead in additional
pointers and indices and is probably partially responsible for IMS requiring
the largest amount of main memory (450K bytes) of any of the DBMS. IMS
does not have a FORTRAN host-language capability.

IBM will provide the hardware, operating system, data base management
system, data communications package, and query and reporting facilities.
Further, IBM makes frequent improvements to these, and gives them good
support. IBM is not currently implementing the CODASYL DBTG specifications
and has no plans to do so.

User comments on IMS include good recovery, flexibility in data orgniza-
tion and administration, versatile file structures, and that changes to data
relationships can be achieved via rule redefinition without requiring major
program modification or data reentry. However, IMS is also reported to be
a very complex product requiring much application software support, and
it has large core requirements. IMS is not recommended for this project
because it is specific to IBM equipment and produces a sole source condition
incompatible with the objectes of a portable system. In addition, the DBMS
is so large that it does not fit in with the concept of a distributed system,
which has been given as a potential Air Force objective.

TOTAL is the most successful data base management system in terms
of number of installations (>750). It, like the CODASYL DBTG specifica-
tions, was derived from Integrated Data Store (IDS) , the grandfather of the
data base management systems. TOTAL does not, however, conform to the
CODASYL DBTG specifications but conceivably could be converted (TOTAL
is similar to the CODASYL specifications in the way data is structured
and the way the data relationships are expressed)

.

TOTAL does allow file inversions, chains, and networks so that complex
data structures can be easily represented and quickly retrieved. Users
report that the system requires small amounts of core (^ 35K bytes) and is
inexpensive and easy to install. It was developed with small users (DOS
environment) in mind. But while it is simple to use, the system is some-
what awkward for large multi-file use since when one file is being accessed,
all other files are locked out. Hence, simultaneous processing of several
data files is impossible. Also the system's performance degrades with the
addition of new variable data records over a period of time.

The major drawbacks seen with TOTAL at present are its inability to
efficiently handle multi-file access. However, an interactive query package
has recently been added, and future developments could easily make TOTAL
a reasonable alternative to a CODASYL based system.

94

CODASYL Systems - The data base management systems built along the guide-
line s~~o?

-
tKe

-
CODASYL specifications are considered to be the most promising,

at present, for implementation by the Air Force. The CODASYL specifications
represent the most comprehenisve effort to form a "common" (not standard)
and machine independent approach in the development of a DBMS. No real
standards are expected in this field for at least five to ten years due
to the present lack of knowledge and understanding about how a data base
should really be structured and accessed and what all the requirements
are for the "best" data base management system.

The CODASYL specifications have gone the farthest in providing the
basis for a common, modular architecture for DBMS. This approach of care-
fully partitioning the system to develop a modular architecture has two
very important advantages

:

1) by partitioning the system, interfaces can be carefully defined
and eventually standardized,

2) a common architecture for data base management systems should
facilitate the development of distributed systems with distributed
data bases.

Data base management systems, in general, were originally designed
either as a host-language system or a self-contained system according to
expected applications and many that were developed were specially tailored
for the unique applications of that individual company, that is, there
are many unique DBMS solutions. Now, the trend of the successful system is
to modularity: the self-contained systems have interfaces to procedural
languages; the host-language systems have interfaces to report generation/
query systems; both types of DBMS have provided interfaces to teleprocessing
packages, and data dictionary/directories. Thus, all of the DBMS appear
to be moving in the direction that the CODASYL specifications had originally
outlined. The CODASYL specifications specifically and comprehensively
attack this problem of modular partitioning and definition, rather than
backing into it as the other commercial systems appear to be doing. Whereas
all of the systems seem to be coming to the same end, CODASYL, alone has
attempted to charter the path and define the architecture. Thus, the
CODASYL sepcif ications are most in line with the philosophy of correctly
defining the logical modules and then standardizing on the interfaces
connecting them. The CODASYL specifications provide the type of common
architecture necessary for the distributed computer network. But although
a number of CODASYL-type systems are available, they are by no means identical.
The specifications themselves are in a state of change by the Data
Description Language Committee. Additionally, it appears that TOTAL is
widely implemented and is a reasonable alternative to the CODASYL approach.
Hence, a competetive procurement should be used to select a single DBMS
to suit ICAM requirements for the near future.

95

RECOMMENDATIONS

1. A common data base management system will be critical to the integration
of ICAM software. In particular the DBMS provides the interface be-
tween all applications programs.

2. The Air Force should not attempt the development of any new general
purpose data base management system due to the expenditure of re-
sources required without any guarantee of success.

3. Functional specifications should be prepared for the competetive pro-
curement of a commercially available data base software package to
support all near-term ICAM projects. The specification should require
the package to be available on all hardware systems that would be
considered for CAM applications in the first few years of the program.
Emphasis should be placed on obtaining modular architecture, well
defined interfaces, portability of applications programs, integrata-
bility of ICAM modules, and future adaptability to a computer network
system with distributed data bases. The evaluation for selection
should include a benchmark demonstration of performance on a typical
CAM application.

4. The Air Force should initiate participation in NBS FIPS Task Group 24,
which has begun to consider government-wide needs for data base
standards, and in ANSI efforts, such as the ANSI/S3/APARC Study Group,
that is identifying the need for ANSI standards.

5. The Air Force should monitor the continuing research and development
work with relational data base management systems.

REFERENCES

(1) International Data Corp. , "The Data Base Management Software Market
on IBM 360/370 Systems," International Data Corp. #1685, 214 Third
Avenue, Waltham, Mass., 02154, May 1976.

(2) Fong, E., Collica, J. , and Marron, B. Six Data Base Management Systems:
Feature Analysis and User Experience. NBS Technical Note 887, Nov., 1975.

(3) CODASYL Programming Language Committee, Data Base Task Group Report,
Available from ACM, April 1971.

(4) CODASYL Programming Language Committee, COBOL Journal of Development,
1976.

(5) ANSI X3/SPARC/Study Group - Data Base Systems, "Interim Report"
ACM/S IGMOD Newsletter: fdt. 7,2 (Dec. 1975).

(6) Codd, E. F. "A Relational Model of Data for Large Shared Data Banks",
Comm. ACM 13,6 (June 1976) pp. 377-397.

Berg, J. L. , ed. Data Base Directions, NBS Special Publication 451,
Sept., 1976.

Sibley, E. H. , The CODASYL Data Base Approach: A COBOL Example of
Design of Use of a Personnel File. NBSIR 74-500, Feb., 1974.

(7) "Data Base Management System Requirements, Nov. 11, 1970," by the
Joint Guide-Share Data Base Requirements Group. Order from Share
Secretary, Suite 750, 25 Broadway, New York, NY 10004, price $1.50.

96

(8) "The Debate on Data Base Management" by Richard G. Canning. EDP
Analyzer , March 1972, Vista California 92083.

(9) "The Current Status of Data Management" by Richard G. Canning. EDP
Analyzer , February 1974, Vista California 92083.

(10) "Introduction to Feature Analysis of Generalized DBMS," Communications
of the ACM, May 1971 p. 302-318.

(11) "Concepts of Data Base Management" Honeywell's manual for their IDS
Technical Presentation.

(12)

"Data Base Design" The Manual for AMR International, Inc.'s Course
on data base design. Copyrighted 1973 by AMR International, Inc.

97

STANDARDS FOR COMPUTER SYSTEMS

6 . SOFTWARE TESTING AND TOOLS

INTRODUCTION

SYSTEM TESTING

APPLICATIONS TESTING

Static Testing
Dynamic Testing
Testing Mathematical Software

SOFTWARE TOOLS

Types of Tools
Minimum Essential Tools

RECOMMENDATIONS

REFERENCES

99

INTRODUCTION

The most thoroughly tested software
compilers, editors, file managemen
surprising considering that systems
marketable system. Although this
examination of tyoical systems testi
which arise mostly in application
discussion

.

SYSTEM TESTI MG

Two aspects of system testing are ec»

examination.

Performance measurement is fundament
components such as cpu, discs ci

helps best? and Who pays for what?
involves some aspect of measureme
It is quite important that a system
meaningful measurements of user an
clock a system is tuned only with di

services can become confused.

pieces are usually the system components;
t procedures, schedulers. This is hardly
software is crucial to all aspects of a

brief discussion will begin with an
ng procedures, there remain many aspects
s. These topics are covered later in the

sily visible even in the most cursory

al to any operation involving expensive
nd memory. The natural questions of What
occur over and over. Each question

nt (hence, testing) of a computer system.
have a fine enough clock to allow

d system states. Without such a hardware
fficulty, and (importantly) billing of

Language processor testing is another significant domain for system checkout
and testing. Several checkout schemes have been mentioned earlier; for
COBOL, FORTRAN, BASIC, and MUMPS. For languages such as these which are
heavily used on their systems the investment in language test routines is
quite justified, specifically since it also promotes program transferability
amonq processors on distinct and different systems. Testing also assures
conformance to an acceptable performance standard; that is, it shows a

capability to handle required language features.

APPLICATIONS TESTING

There is a vast users' area over which the tag "testing" can be attached.
For sake of convenience it is often the case that static (or textual) program
features are treated as distinct from dynamic (or executable) behavior.

Static Testing

Static testing encompasses several labels. At this level of
names must be accounted for, e.g., external system names should
A common problem along these lines occurs when one module in
rewritten and external storage maps are changed. The new maps
with other module-maps unless some monitoring is made of storage
and enforcements made to maintain consistency.

the lexicon,
not conflict,
a system is
may not agree
definitions.

Syntactic testing is obvious, and every compiler does it with greater or
lesser degrees of success. A number of points may be worth mentioning.
First, the compilation facilities can serve as good enforcers of any system
"standards" that are required for transportability or clarity. The compiler
is an especially good and effective place for enforcement, in that failure to
comply can imply failure to get any work done. Secondly, many compilers have
extremely poor error message and diagnostic facilities. For some reason this
is especially true for COBOL, and it seems to be more the fault of the
compilers than the language. Some test orograms have been written to test
compiler diagnostics, but further work could be done on this aspect. The
problem is easy to ignore but important to the everyday programmer. Thirdly,
some languages such as early PL/1 nave conventions, defaults design choices

100

almost invisible!which make compilation errors less apparent, and sometimes,

Semantic and functional testing are more wishes than current realiz
technology. Questions arise on the meaning of primitive operations, mac
dependencies (e.g., word size), and renr esentat ions . Functional testing,
proof-of-cor rectness asks whether a program corresponds to its orig
specifications; this is an extremely difficult problem and little prog
has been made of a practical nature.

Dynamic Testing

The first aspect of dynamic testing is one of cor r esoondence . Has
correct problem been solved? Comparing actual runs against true answers
reveal the ultimate bug—having solved the wrong oroblem.

Performance measurement has been mentioned regarding the need for a

hardware clock for accounting and tuning. Similar requirements a

directly to aoplications programs. Three other points are worth mentioni

(i) Program conversion and modularization— Help find "related" code to
together

;

(ii) Learn variations in efficiencv, isolate bottlenecks and non- crit
parts

;

(iii) Subsetting. Given cases of interest, chart "live" segments in a 1

program, thereby limiting the code to that of immediate interest.

The third area of dynamic testing could be called function
wants to thoroughly exercise a program [Huang, 1975]
instrumented code can be tested against standard test case
latter are truly thorough. Weaknesses in test data
omission, so parts of the program may not be used. This s

when program segment counters are zero.

al- empirical.
. In addition,
s to check that
are usually sin
hows up immedia

able
hine

or
inal
ress

the
may

good
pply
ng

:

load

ical

arge

One
the
the

s of
tely

Mathematical Software Testing

In CAM system utilization, any nurae

production management would be
important then that CAM enginee
performance of software as well
programs. Although there are no s

mathematical software testing, the
de facto standards. We review some

ica 1 er i:or s arising during design or
efl ec ted in the fini shed product. I t is

s ha ve conf idence in the numer ical
as in the log ical correctmess of the

and ar ds for the numerical qual ity of
e a re testing practices that are somewhat
of th ese prac tices in this section.

Mathematical software according to Cody [1] denotes those computer programs
that implement mathematical algorithms. Mathematical theorems are usually
established about the theoretical nature of the algorithms and their
convergence properties. In general, such results do not concern themselves
with finite machine arithmetic. Very precise theoretical error bounds can
usually be established for these theoretical function approximations [3].

However, when machine considerations such as word length, radix, floating or

fixed point arithmetic are introduced, the theoretical algorithm must be

restructured for a particular implementation in order not to lose the
mathematical properties required to assure the theoretical error bounds. The
restructuring of the theoretical algorithm for a particular implementation

101

might be referred to as the machine algorithm. By an implementation of a

theoretical algorithm we mean the restructuring of the computation to make
use of particular machine optimization of computations and the programming
language used.

With respect to the testing of mathematical software there are two divisions.
These are:

(1) Programming Languages Supporting Mathematical Functions
(2) Scientif ic/Enqineer ing Support Mathematical Software

These divisions arise because, for language support mathematical software,
i.e., mathematical function routines, there has emerged what appears to be a

consensus approach, or de facto standard, for testing the mathematical
function routines such as exponential, sine, cosine, etc. However, for
general scientific software there are no general standards, but there are two
approaches that might be referred to as test or benchmark problem sets and
roundoff error analysis, (See Cody (1]). These latter approaches will not be
considered here since we are concerned only with the mathematical function
libraries that impinge on the language standards.

The simplest type of error testing is a direct comparison of computed
function values against published tables. There are several difficulties
with a naive application of this method. The first difficulty is the entry
and storage of the large data set that would be needed in order to perform an
exhaustive comparison. It would also require detailed checking of the input
data to determine transcription error, and it would of course require editing
of the data after entry. The next difficulty is the sparseness of the
entries. Approximation procedures would have to be programmed to generate
reference values to test the function subroutines at arguments between the
table entries. The major difficulty is that these table-generated data
points do not provide a sufficient sample of the behavior of the routine
under test. Sample sizes of several thousand arguments have been used by
some testers. Furthermore, table generated tests do not provide flexibility
to the user.

Although the data table methodology is cumbersome and requires manual
checking and preparation, the qeneral idea is the same as the methodology
used by the function testing community. The difference lies in the fact that
the procedures for generating the comparison tables have been automated and
allow a wider testing range and flexibility.

The most prominent scheme of accuracy checking is one that involves automatic
tabular comparison where the standard table values are generated within the
machine as needed. This usually requires the provision of a subroutine to
compute standard values for a function to a precision greater than that of
the routine under test. With such a routine it is possible to generate a

table of comparison values automatically that can either be stored for future
use or used immediately at the time of generation. This routine would
generate high precision function values for specific arguments or for random
arguments.

The emphasis in the mathematical testing community has been on the
statistical sampling of the accuracy because of the objective ability to
measure this. The approach has been widely used by a number of researchers
(See Kuki [3], Cody [4], and Lozier [10] for examples.)

102

With regard to de facto testing methodologies, mathematical software divides
itself into two classes. First the language support elementary function
routines and second general scientific routines that are collected into
libraries. There is a well- defined procedure for testing the language
sunport function routines. However, thejre are a number of procedures that
rely on performing arithmetics other than floating ooint that have been used
to estimate numerical error. Since the process of developing scientific
libraries, especially those that may be used to design critical parts, is a

lengthy and expensive one, it is imperative to identify as soon as possible
viable numerical software testing procedures and begin using them in
evaluating user libraries.

SOFTWARE TOOLS

It is evident from prevailing experience and research that every software
production project, regardless of complexity , must include a tool
provisioning activity. The toolmaker faces several questions, to be answered
in collaboration with his project manager: Is there a commonly accepted set
of standardized tools applicable to every project?; What set of special
tools can be identified for a project at the outset?; Are necessary tools
already available as commercial packages with acceptable cost?; What are the
economical approaches to creating special tools and modifying them as may be
needed in the course of a project? Corresponding evidence shows there is
inordinate difficulty in selecting tools tools from the marketplace shelf.
Commercial items are available at reasonable cost, but there is essentially
no standardization of tool capabilities. The number of suppliers and the
diversity of packages confound the would-be buyer. But equally important,
proprietary packages cannot be modified and tailored by the buyer since the
source code is usually not delivered with purchase. Although a basic set of
tools is identifiable for any project, it appears that that special
modifications are warranted in many cases. Furthermore, a general expansion
and integration of available tool functions would be well-advised to cope
with the widely-recognized problem of software quality control. The
following analysis tends to support a recommendation for standardization of
basic tools at source code level, so that CAM software production can be

conducted with a common set of tools amenable to user extension and
special ization

.

Types of Tools

The only standard tool for software
language compiler. This statement appl
a standard is a formal soec i f ica t ion or

group for nearly universal applicat
standardization of comoilers has on
definition, ignoring crucial capabil
output listings, accuracy and scope
features, and interactive and batch modes.

production today is the high-level
ies the traditional understanding that
oduced by a recognized professional
ion. Yet, national and international
ly addressed programming language
ities such as the form and content of

of diagnostic messages, debugging

Even so, use and economic
types. These tools canno
similar purpose and funct
capability brought about
types have been determine
compilers, assemblers,
application programs or
excluded are replacement

s of tool design have lead to commonly discernible
t be called defacto standards, for they reflect only
ion, and not by any means a near equivalence of

by uniform commercial demand. The following common
d from a survey of commercial packages. Omitted are

data base management systems, utility routines,
libraries (e.g. mathematical routines). Also

packages for software normally offered by a hardware

103

vendor, such as operating systems and I/O access methods. Common tools are:

Abort diagnoses—nrovide full or selective dumps; Breakpoint control-— for

interactive debugging; Cross reference generator; Data
aud itor/catalog—analyzes data relationships; Error analysis and
recovery— intercept selected abnormal terminations; File or library
manager—centralized retrieval and update; Flowchart generator; Program
auditor—checks conformance of programs; Program execution monitor—see
testing sections, above; Program formatter /documentor— Rearranges and
structures source text; Project manager— scheduling and production aid;
Resource monitor—accounting information; Shorthand or macro expander—may
also include decision table expansion; Source level translator—e.g. RPG to

COBOL; Test data generator; Test simulator— simulates execution and flow,
allow user decisions in testing; Text editor.

Min imum Essential Tools

Contemoorary experience and practioners' concensus are sufficient to

recommend some tools as essential for almost any software development
project. Exceptions may arise if a computer has unusual architecture or

limited capabilities (e.g. no mass storage). Minicomputer systems are
generally included, particularly since the UNIK system [Ritchie] has
demonstrated that a highly effective, ateractive programming support system
is practical on a low-cost min icomputer

.

It is recommended that in general program development be done with support of
an interactive computer system. Interactive support increases productivity
throughout the changes, debugging, and testing that characterize most
projects

.

The primary tool is the compiler for the high-level programming language.
Again, experience has amply proven enhancements of programming productivity
using high-level languages. Only selected procedures critical to system
performance need to be assembly-language coded for extreme execution speed.
Other essential tools are recommended as a minimum complement for most
projects

:

Text editor - For entering, correcting, and modifying such texts as program
specifications and design documentation. Requires a facility for online
storage and recall of named text units for inspection, printing or editing.

Program editor - For entering, correcting, and modifying program texts. With
free-form programming languages, one editor could serve both as text and
program editor.

Program librarian - For storing all orogram texts, associated job control
statements, common data definitions, and test data, and maintaining a

chronological record of modifications between distinct versions. Includes
appropriate access controls for members of the project group.

Debugger - For analyzing program behavior during execution on test data
input, and deriving execution statistics and traces to help correlate program
output with the results of individual high-level language statements.

Project manager - For recording chronologically the activity of the
individual project members on defined program modules and deliverables of
the project. Standard specifications of functions for each tool type appear
feasible and desirable, and would assist those who undertake toolmaking
without benefit of prior study and experience. Yet it is clear that

1 04

individual projects often may need t.o create special features that would not
be available in standardized tools. Various project requirements or
circumstances may dictate such specializations. For instance, large projects
with many personnel especially would benefit from extensions to automatically
enforce unique design standards and practices that are difficult to ensure
through personal communications and code -inspections.

Desirable specializations may range in difficulty from minor extensions of
extant tools to new composite tools formed by integrating and refining
several distinct packages. Both of these cases require the original tool's
source code--ideally in a system-standard high level language--and thorough
documentation of course. The latter case also requires that the building
block tools be carefully designed, with flexible interfaces and modular
design, permitting extensive modifications with relative ease.

RECOMMENDATIONS

It is appropriate therefore to recommend studies and development on CAM
programming tools, with the following goals:

1. to make widely available a set of CAM building block tools, with
standard designs and source code in CAM-system high level language;

2. to evaluate alternatives for interfaces and modular design that would
support major modifications of tools without loss of efficiency and
performance; and

3. to develop guidelines for raoid and reliable specialization of tools
from available building blocks, based upon the characteristics of CAM
projects most benefitting from soecial tools.

REFERENCES

(Computer Validation)

Federal Property Management Regulation 101-32 . 1305-a Validation of COBOL
Compilers

.

NBS Special Publication 399, Vols. 1-3, "NBS FORTRAN Test Programs."

MDC/29, MUMPS Validation Program User Guide.

(General

)

NBS Technical Notes 874, "Software Testing For Network Services"; 849, "A
FORTRAN Analyzer"; 800, "Computer Networking" (above some
approaches to quality assurance).

K. V. Hanford, "Automatic Generation of Test Cases," IBM Systems Journal 9,

4 (1070) , op. 242-257 .

J. C. Huanq , "An Aoproach to Program Testing," Commuting Surveys 7,

3(Seotember 1975), op. 113-128.

(Mathematical Soft’ 'nr* Testinq)

W. J. Cody, "The Evaluation of Mathematical Software," Program Test Methods,
EWilliam C. Hetzel, Prentice-Hall, Inc., Englewood Cliffs, NJ

(1973) , 121.

C. T. Fike, Computer Evaluation of Mathematical Functions, Prentice-Hall,
Inc., Englewood Cliffs, NJ , (1968).

105

H. Kuk i , "Mathematical Function Subprograms for Basis System Libraries
Objectives, Constraints and Trade-Off," Mathematical Software,
Academic Press, NY, pl37-i99.

W. J. Cody, "Performance Testing of Function Subroutine," AFIPS ConProc.,
Vol . 34, 1969.

N. A. Clark, W. J. Cody, K. E. Hillstrom and E. A. Thieleker, "Performance
statistics of the FORTRAN IV (H) Library for the IBM Systems/360,"
Report ANL7321, Argonne National Laboratories (1967).

C. L. Lawson, "Study of the Accuracy of the Double Precision Arithmetic
Operations on the IBM 7094 Computer," JPL Tech. Memo B33-142, Jet
Propulsion Laboratory, Pasadena, 1963.

D. W. Lozier, L. C. Maximon, W. L. Sadowski, "A Bit Comparison Program for
Algorithm Testing," The Computer Journal, Vol5, N2, op. 111-117.

A.C.R. Newbery, Anne P. Leigh, "Consistency Tests for Elementary Functions,"
AFIPS ConProc., Vol. 39, 3971.

W. J. Cody, "Software for the Elementary Functions," Mathematical Software,
R. Rice Ed., Academic Press, NY, 1971.

D.W. Lozier, L. C. Maximon, and W. L. Sadowski, "Performance Testing of a

FORTRAN Library of Mathematical Functions Routines— A Case Study
in the Application of Testing Techniques," Journ. of Res., NBS , B.
Math. See., Vol. 77B, Nos. 3 & 4, July- December 1973.

(Software tools)

Brooks, Frederick P., Jr. The mythical man-month. Add i son -Wes 1 ey Publishing
Company, Reading, Mass., 1975, n.128.

Reifer, Donald J., "Automated aids for reliable software," Proceedings of the
International Conference on Reliable Sof tware , SIGPLAN Notices 10

,

6(June 1975), pp. 131-140.

Ritchie, Dennis M. and Thompson, Ken. "The UNIX Time-sharing system," Comm.
ACM 17, 7 (July 1974), op. 365-375.

Van Dam, Andries, and Rice, David E. "On-line text editing: a survey,"
Computing Surveys 3, 3(Sept. 1971), op. 103-105.

Wichmann, B.A. "A syntax checker for ALGOL 60," NPL Report NAC 53, August
1974, Division of Numerical Analysis and Computing, National
Physical Laboratory, Teddington, Middlesex, England.

106

STANDARDS FOR COMPUTER SYSTEMS

7 . DOCUMENTATION STANDARDS

INTRODUCTION

SOFTWARE DOCUMENTATION GUIDELINES

RECOMMENDATIONS

REFERENCES

107

ol
LU
Od

2!oM
h"c

uopeoppads
sseg epQ +

+
*

K

*

*
*
*

X

quauinooQ

squauiauinbay epQ
*
*
+

*
*
*

*
*
X

X

uopeoppads
uieu 6oud X

poday
sls/C[bu\/ gsaj. *

*
*
*

X X

uopeoppads
wais^sqns/wags/s X X

luawnooa s;uaw
-aupbay [Buopounj X X X

ue Ld

qsai X X X X

Lenuew
aoueuaqupw weuBouy X X X X

LenuBw
suopeuado X X X X

pnuBH
suasn X X X X X

/Qeuiwns

ajeMpog X X X X X X

PROGRAM

COMPLEXITY

One

shot-single

use

programs*

Small

limited

purpose

programs

Multipurpose-general

programs

Large

scale-multiuser

program

Large

scale

systems

Consnon

data

base

Multi

application

programs

Totally

integrated

systems

Multi

di

sipline

users

Multi

contractor

development

u

o
Cl

*3
O
O

-Q

~o
CD
S-

Z3
cr
OJ

d)
X)

>>
fl3

c
o

<D
E
13
U
O
TD

<T3

C
o
+->

“O
T3<
* * *

* *
*

108

Test

Analysis

Report

may

be

prepared

informally.

May

or

may

not

be

needed

depending

upon

project.

INTRODUCTION

One of the recent developments in software has been the emphasis on
control of the complete generation cycle, and an examination of the depen-
dencies that should exist in this cycle. Documentation preparation should
be treated as a continuing effort evolving from preliminary requirements-
drafts, through change and reviews to the final documentation and continuation
documentation of the delivered software products. Since clear and complete
documentation is a keystone for portable and maintainable software modules,
definitive guidelines for its preparation are of vital importance to the
Air Force program. A documentation administrator should be assigned to
work with the contracting officer to define and enforce requirements for
clear documentation including source code of system components which should
be Air Force property. The documentation administrator should have a
clear idea of what is in the CAM system; therefore a model should be
constantly kept of system components to catch any omissions. The model
should be available to users for feedback on its adequacy and degree of
coverage in current documentation.

The extent of documentation should depend on the size, complexity
and value of the project. Special requirements are necessary for certain
well-defined components; for example, interactive processors (editors,
language translators, networking modules) should have available on-line
"help" files to show how to use them. A user should be able to run these
interactive components without shutting off his terminal, but rather, using
it to advantage.

Documentation should spell out clearly the specific software com-
patibilities and incompatibilities; i.e. does compiler X read files of
type Y. In addition, compatibilities should be spelled out as specific
mandatory requirements in early stages of design documentation, and the
design requirements written to preclude as many undesirable conflicts as
possible. The extent, detail, and formality of software documentation must
be included in all contractual arrangements for software procurement.

Automated aids for development and maintenance of ICAM documentation
would be a great assistance to both contractors and the documentation adminis-
trator. The development of such aids should be considered as an early
ICAM project.

SOFTWARE DOCUMENTATION GUIDELINES

In reviewing various guidelines for software documentation a growing
tendency is noted toward the development of a full life cycle management
system for the software creation process. NASA documentation standards
for part of the Appollo project are a good example. Entitled "Procedures
for Management Control of Software Development for Appollo" the guidelines
address each functional step from requirements analysis to coding, testing
and maintenance. Specifications are made for the documentation required
for each functional step.

Considerable progress has been made in Federal standards for software
documentation: FIPS PUB 38 is prehaps best suited for the development of
large systems, providing as it does a checklist of items worthy of detailed
attention in a project. The documentation categories of GIPS PUB 38 begin
with functional requirements, pass through the natural stages of a project,
and end with test plans and analyses. The standard recognizes that not
all documentation categories are needed for every project. Rather as the
size, complexity and visibility of a project increases so does its need
for more extensive documentation. Figure 1 has been abstracted from FIPS
PUB 38 to emphasize this concept.

109

CAM- 1 has established documentation standards to assure the availability
of detailed information on the software products developed. The standard
defines the structure, content and use of ten separate documents to be developed
within each software project. The functional content of the CAM-I specified
documents is quite similar to those in FIPS PUB 38 although the latter are
more completely defined.

Three other differences are noted:

FIPS PUB 38 breaks out separate Test Plans and Test Analysis Reports
rather than embedding the functions in other documents. These two
are very important for validating the applications module and for
assuring that the coding meets portability requirements.

CAM-I describes a Project Status Report necessary for good Air Force
management control of the software development process. Also included
is a Project Prospectus which ICAM may find quite useful as a brief
descriptive outline of a module that can be sent to all prospective
users or included in press releases, etc.

FIPS PUB 38 contains an in depth specification for defining a module's
interdependence with various data bases. In the distributed processing,
integrated systems environment envisioned for ICAM due attention must
be given to these data requirements.

A number of miscellaneous recommendations exist for bits and pieces
of program development. For example, there is FIPS PUB 24 on flowcharting.
In addition, a large number of texts and articles exist. Yourdon, pages
23-24, provides some excellent common sense on documentation and maintenance
of program modules, including advice on the use of variables in original
codings

.

The Department of Defense has issued in December 1972 a manual on
Automated Data Systems Documentation Standards which has been implemented
by all three services.

Smaller programs and projects in the CAM undertaking may find the work
of the American Nuclear Society (244 East Orden Ave. , Hinsdale, Illinois
60521) useful. Two documents of the Society are referenced at the end of
this chapter.

RECOMMENDATIONS

1. The Air Force should extend FIPS 38 in order to have more detailed
guidelines for computer program documentation and to software. The
guidelines should use the framework of FIPS 38, and may incorporate
useful sections of the CAM-I, NASA, and American Nuclear Society
publications

.

2. The Air Force should establish a documentation administrator to
specify and maintain system and software documentation. Since
there are many disparate CAM interests, a tight rein on documentation
in the first development stages combined with industry participa-
tion (as practical) could promote a clarification of standard CAM
system components and procedures.

3. Automated aids for production and maintenance of documentation
should be considered as early program efforts.

110

REFERENCES

(1) Guidelines for Documentation of Computer Programs and Automated
Data Systems'! Federal Information Processing Standards Publications
FIPS PUB 38, February 15, 1976. US Department of Commerce, National
Bureau of Standards.

(2) Guidelines for the Documentation of Digital Computer Programs .

Americal Nuclear Society, ANS-10.3. (Also ANSI N413)

.

(3) ANS Standard . Recommended Practices to Facilitate the Interchange
of Digital Computer Programs . ANS STD 3-1971.

(4) Flowchart Symbols and Their Usage in Information Processing. FIPS PUB
24, June 30, 1973. (Same as ANSI X3. 5-1970)

(5) Daniel D. McCracken. "How to write a readable FORTRAN program."
DATAMATION (Oct. 1972), pp . 73-77.

(6) E. Yourdon. Techniques of Program Structure and Design , Prentice-
Hall, Inc., (Englewood Cliffs, N. J. , 1975)

.

(7) Department of Defense Automated Data Systems Documentation Standards
Manual j 4120 . 17M, December 1972.

(8) CAM-I Standard for Computer Program Documentation , STD-73-SC-01

,

May 1973.

Ill

)

STANDARDS FOR COMPUTER SYSTEMS

8 . MEDIA STANDARDS

INTRODUCTION

PUNCHED CARDS

MAGNETIC TAPE

MAGNETIC DISK PACKS

PUNCHED PAPER TAPE

RECOMMENDATIONS

REFERENCES

113

INTRODUCTION

Of basic importance to any computer system is the media on which
computer readable information is prepared, stored and exchanged. Adherence
to formal media standards is a simple economic principle. Consider a computer
program of 20 thousand language statements punched onto a nonstandard
card deck. A lengthy and costly keypunch task would await anyone wishing
to use this program. Fortunately the industry has pretty well standard-
ized the media in common use; punched cards, magnetic tape, punched
paper tape, and disk packs.

PUNCHED CARDS

These are the familiar 3 1/4 x 7 3/8 inch heavy paper cards that are
as common to a computer programmer as nails to a carpenter. ANSI Standard
X3.ll describes the physical attributes and quality of these while ANSI
Standard X3.21 defines the size and location of the rectangular holes.
It should be remembered that for punched cards to be readily transportable
it is necessary that a specification be made to the coding of characters
on the card. See the Hollerith Punched Paper Card Code.

MAGNETIC TAPE

Specifications for 1/2 inch wide magnetic tape and reels are given
in ANSI Standard X3.40 while format and recording data are detailed in
ANSI X3.14 and X3.22. Together these standards enable mechanical, magnetic
and recording format interchangeability of data among various systems and
equipment utilizing the American National Standard Code for Information
Exchange, X3.4. Magnetic tape written in this manner provides the best
means of exchanging computer data. It is also a convenient method for
use in archieval storage and distribution of ICAM developed software. A
recent DATAMATION article details recommended procedures for maintaining
good quality control over a magnetic tape based archieval record storage
facility.

MAGNETIC DISK PACKS

ANSI Standard X3 . 46-1974 provides the general, magnetic and physical
requirements for interchangeability of six-disk packs among various disk
drives. However, ANSI leaves the formating and recording of data to the
manufactures' discression. As a result absolute compatibility is not
guaranteed. The six-disk pack is giving way to a twelve-disk pack for
which an ANSI standard is yet unavailable.

PUNCHED PAPER TAPE

Two ANSI Standards exist for describing punched paper tape. This
media is most extensively used for the numerical control of machine tools.
However, some use is seen for data storage in minicomputer applications.
ANSI X3.29 details the physical characteristics and acceptance test pro-
cedures for one inch wide and eleven-sixteenths inch wide unpunched,
oiled paper tpae. ANSI X3.18 covers the physical dimensions of the tape
as well as its perforations. Caution is advised that to insure
portability of paper tapes one must specify the format and coding of
the data as well as the physical characteristics.

When used in NC applications, punched paper tape has been justly
described as the weakest link in the process. This is a result of the many
maintenance problems that exist on paper tape punches and readers. It
would be unfortunate if the Air Force perpetuated the use of paper tape
in large scale CAM Systems. Direct wire link is today far more efficient,
reliable, and versatile.

114

RECOMMENDATIONS

1. Magnetic tape should be used as the primary means of exchanging
and storing computer readable information.

2. All magnetic tapes should conform to ANSI X3.40, X3.14 and X3.22
Standards

.

3. The use of punched paper cards should be deemphasized as it is an
inefficient media of information storage. However, where it is
necessary to produce cards the ANSI X3.ll and ANSI X3.21 Standards
should be specified.

4. The use of punched paper tape should be avoided for transmitting
NC data. Direct wire link from computer to machine controller
provides a higher quality system configuration.

REFERENCES

(1) Specification for General Purpose Paper Cards for Information Processing ,

ANSI X3.ll, October 1969, American National Standards Institute,
Inc., 1430 Broadway, New York City, New York 10018.

(2) Rectangular Holes in Twelve-Row Punched Cards , ANSI X3.21, October 1976,
American National Standards Institute.

(3) Recorded Magnetic Tape for Information Interchange;
200 CPI, NRZI, ANSI X3.14, December 1972
800 CPI, NRZI, ANSI X3.22, December 1972
9 Track 200 CPI, NRZI, ANSI X3.40, February 1976
9 Track 800 CPI, NRZI, ANSI X3.40, February 1976
9 Track 1600 CPI, PE, ANSI X3.40, February 1976
American National Standards Institute.

(4) One Inch Perforated Paper Tape for Information Interchange ,

ANSI X3.18, March 1974, American National Standards Institute.

(5) Eleven-Sixteenths-Inch Perforated Paper Tape for Information Interchange ,

ANSI X3.19, March 1974, American National Standards Institute.

(6) Specification of Properties of Unpunched Oiled Paper Perforator Tape ,

ANSI X3.29, May 1971, American National Standards Institute.

(7) Unrecorded Magnetic Six-Disk Pack , ANSI X3. 46-1974, May 1974, American
National Standards Institute.

(8) Archival Data Storage , Sidney B. Geller, DATAMATION, October 1974,
pp 72-80.

115

APPENDIX A

DATA BASE MANAGEMENT FILE STRUCTURES

FILE STRUCTURE AND ACCESS METHOD

Sequential
Random
List

COMPLEX STRUCTURES

Indexed Sequential
Tree
Network
Sets

File Structure and Access Method

With present commerical data base management systems, many of the
characteristics of their operations are a result of the particular file
structure and access method used. We will describe here, the various methods
used with their advantages and limitations. These will be general remarks
and do not indicate that some of the limitations cannot be resolved by clever
alterations, however, these additional correction factors are usually expensive
in terms of main memory, storage space, or retrieval time overhead.

We will partition the structure/access methods into three types -

sequential, random, and list.

1) SEQUENTIAL - Here, the record is contiguous, its location is
based on the value a record's key has relative to other records.
(Storage devices tend to be tapes and cards.)

Advantages - very rapid access to the next file.

Limitations - a new file has to be written for each update to
a record or if a new additional record is inserted, retrieving
records out of their normal sequence is virtually impossible,
if a file is to be retrieved by more than one key (e.g. a water
pump specification may be under the key-engine parts and the key-
aluminum parts) , then duplicate files have to be created leading
to much data redundancy.

2) RANDOM - records are stored and retrieved on the basis of a pre-
dictable relationship between the key of the record and the address
of the location where the record is stored (Storage devices are
drums and discs) . Three general methods are used to determine
the address:

a) Direct Address - the address of the Jones' record (for example)
i . e . , the disc, track, and sector location (number 3469, for
example) is known by the programmer and is supplied at storage
and retrieval times.

Advantages - allows equally fast access to all records.

Limitation - additional effort is required to maintain these
direct addresses.

b) Dictionary lookup - both the address and the record key are
stored in a dictionary (table or index) . To locate the "Jones"
record, the dictionary is scanned for a match on this name.
Then the location address is picked up and the record retrieved.

Advantage - the system maintains the actual address.

Limitation - additional time required to scan the dictionary,
and additional storage space required for the indices.

c) Calculation or Randomization - the record key is converted
through some kind of hash code process into an address.

Advantage - can retrieve all records equally fast without
having to search a data file or index file, and records can
be sorted, retrieved, and updated in place without effecting
other records in the storage media.

118

Limitation - may not yield a unique address for each record,
therefore, if overlap occurs - causes a condition called over-
flow therefore have to use pointers indicating where the over-
flow record is stored.

3) LIST - The basic concept here is to separate the logical organiza-
tion from the physical organization. The next logical record
desired can be "pointed" to, and need not be the next physical
record as in sequential organization. Thus, new records can be
placed in any space that is available. There are three basic types
of list organization:

a) Simple list - pointers are used to cause a record to be a
member of as many lists as desired under any number of different
keys (like our water pump example)

.

Advantage - there is no duplication of the record in the data
base and, therefore, no multi-updates, in addition, the record
can be stored anywhere in the file where there is space.

Limitation - additional space required for pointers, user's
system must take into consideration the length of the lists
as well as the number of lists in which a record participates
- these factors increase the file maintenance overhead time
since if a record is deleted, all of the lists it was involved
in have to be readjusted to bypass it.

b) Inverted list - makes available every data item as a key.
Such an organization requires a table or index of all data
values in the system and contains the addresses of all record
locations where those values occur.

Advantage - allows access to all data with equal ease - this
gives good query and reporting capabilities - good at handling
hierarchical data structures.

Limitation - the index table required can be as large or larger
than the data itself, as with the simple list system above,
there can be much maintenance required in storing and updating
data in large tables - this system has difficulty in handling,
requests of records looted in different branches and/or levels
of a hierarchical structure, or located in network type data
structures

.

c) Ring - the last record in a list points (by a pointer) back
to the first (forming a ring structure).

Advantage - very powerful as it provides retrieve and process
capabilities in both directions while allowing branching to
to other logically related ring structures.

Limitation - again heavy record pointer overhead - these
searches can be quite time consuming if the data base is not
"tuned" properly - e.g. if the pointers send you back and forth
to different discs for each record in the list to be searched.

Compex Structures

In addition, to the simpler methods of storing and relating records
described above more complex relational structures can be defined.

1) INDEXED SEQUENTIAL - The file is organized so that records can
be accessed either by use of an index or in a sequential fashion

119

(of the indices or the data records) . Indices containing record
keys and addresses may exist for each record in the file.

Advantages - it provides some of the speed of retrieval of the
sequential file (once you are at the right location) by using
indicies to increase the speed of entering the file at the proper
place

.

Limitations - still large maintenance problems of sequential files
with the additional maintenance overhead of indices.

2) TREE - several layers of indices or records are used to establish
a tree-branched hierarchy. Indices may be organized as lists or
in sequence, with either method's characteristics.

Advantage - convenient in maintaining large dictionaries - allows
the data to be structured to represent rather complex data
relationships

.

Limitation - only a single entry point into each hierarchical
relationship - therefore, can require a long time to search the
hierarchy for one piece of data. Does not represent a network
related data structure, since no branches of the tree touch.

3) NETWORK - specialized form of a hierarchy where all the branches
can be interconnected.

Advantage - permits the storage and retrieval mechanisms of the
data management system to start with any record in the file and
move in multidirections throughout the hierarchy. The network
structure allows the data to accurately model real world
manufacturing and business relationships.

Limitation - updating and record deletion can involve large main-
tenance due to the involved relationships.

4) SETS - this is the CODASYL concept of relating data records. Each
set type consists of one record type declared as owner and plus
one or more record types declared as members. Connection between
the owner record and the member records is made by chains (embedded
pointers) or pointer arrays (indices) . Both tree and network
structures can easily be built from these sets. At the least,
sets are connected by one way pointers, but the user may also choose
to declare two-way pointers for given sets. These sets can then
be searched in either direction with equal efficiency. In addition,
the member records can have pointers to the owner record, to avoid
stepping through the chain to obtain the owner.

120

N BS-1 1 4 A (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS I R-

1

094

(

R

)

2. Gov 't Accession
No.

3. Recipients Accession No.

4. TITLE AND SUBTITLE

STANDARDS FOR COMPUTER AIDED MANUFACTURING
/

Third Interim Report

5. Publication Date

January 1977

6. Performing Organization C ode

600.20

7. AUTHOR(S)

Dr. John M. Evans, Jr., et. al.
8. Performing Organ. Report No.

9. PEREORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project 1 ask Work Unit No.

11. Contract Tirant No.

12. Sponsoring Organization Name and C omplete Address (Street, City, State, ZIP)

Manufacturing Technology Division
Air Force Materials Laboratory
Wright-Patterson Air Force Base, Ohio 45433

13. 1 ype of Report & Peri oil

Covered

Third Interim
14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

In the previous interim reports existing and potential standards were identified

which will be useful to the Air Force in the development and implementation

of integrated computer aided manufacturing systems; and a comprehensive reference

data base was provided on all formal and de facto standards that are considered

to be relevant to the Air Force Program. This report discusses the utility

of these standards to the Air Force Program and in each relevant standards

area recommends a best approach to follow either toward adopting existing stan-

dards or toward developing needed standards.

. 17. KEY WORDS (six to twelve entries; alphabetical order; capitali ze only the first letter of the first key word unless a proper

|

name; separated by semicolons)

CAM standards; computer aided manufacturing; communications; computer systems;

operating systems; system integration.

18. AVAILABILITY
[

Unlimited 19. Sl'CURrn CLASS
(1 MIS REPORT)

21. NO. OF PAGES

X l or Official Distribution. Do Not Release to NT IS

UNCLASSIFIED

Order From Sup. of Doc., U.S. Government
Washington, D.C . 20402. SD Cat. No. Cl 3

‘r i nr mg Ol t i ce 20. Sh.C URITY (LASS
(THIS PAGE)

22. Price

Order From National Technical Information
Springfield, Virginia 22151

Set vice (N 1 IS)

UNC LASSIE' 1 ED

U3COMM-DC 29042- P 7 4

