NBSIR 76-1081

Progress Report on the Corrosion Behavior of Selected Stainless Steels in Soil Environments

W. F. Gerhold, E. Escalante, and B. T. Sanderson

Corrosion and Electrodeposition Section Metallurgy Division Institute for Materials Research National Bureau of Standards Washington, D. C. 20234

August 1976

Progress Report 1970-1974

Prepared for

American Iron and Steel Institute 1000 16th Street, N. W. Washington, D. C. 20036

NBSIR 76-1081

PROGRESS REPORT ON THE CORROSION BEHAVIOR OF SELECTED STAINLESS STEELS IN SOIL ENVIRONMENTS

W. F. Gerhold, E. Escalante, and B. T. Sanderson

Corrosion and Electrodeposition Section Metallurgy Division Institute for Materials Research National Bureau of Standards Washington, D. C. 20234

August 1976

Progress Report 1970-1974

Prepared for American Iron and Steel Institute 1000 16th Street, N. W. Washington, D. C. 20036

U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary

Edward O. Vetter, Under Secretary

Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Progress Report on the Corrosion Behavior of Selected Stainless Steels in Soil Environments

W. F. Gerhold, E. Escalante, B. T. Sanderson

Corrosion and Electrodeposition Section Metallurgy Division National Bureau of Standards Washington, D. C. 20234

A. INTRODUCTION

Stainless steels* have been successfully used in limited applications (such as for pipe clamps on cast-iron sewer lines) in soil environments for many years. In recent years, other applications in use or under test include ground rods, transformer cases, submerged switches, underground residential distribution equipment, gas lines [1, 2], water lines, caskets, culverts, residential sewage disposal systems, etc.

Corrosion data for selected annealed, unstressed austenitic and ferritic stainless steels, buried in various soils, have been reported in NBS Circular 579 [3]. Tests conducted for 14 years in various soils in the United States by NBS showed that austenitic Type 304 (containing Ni) and Type 316 (containing Ni and Mo) stainless steels were highly resistant to both pitting corrosion and general attack. Type 304 was susceptible to pitting corrosion in certain highly aggressive soils, while Type 316 was relatively unaffected by corrosion. The martensitic, Type 410 (12% Cr) and the ferritic Type 430 (17% Cr) stainless steels were found to be fully resistant in only one-third of those soils where they were exposed. Branch [1] and Steinmetz and Hoxie [2] have reported on the suitability of stainless steels for some underground uses. Stress corrosion cracking has not been reported to be a problem with Types 304 or 316 in actual underground applications [1]. In a 2 year exposure to various soils in and around Baltimore, Maryland, Type 304 gas service lines [50 for a total length of 1 mile (1.61 km)] were reported to have suffered no corrosion effects [2].

In order to evaluate more fully the corrosion and stress corrosion behavior of some of the different types of stainless steels considered for use in soil environments, NBS in cooperation with the Committee of Stainless Steel Producers, American Iron and Steel Institute, initiated in 1970 a soil burial program in representative corrosive soils utilizing 9 stainless steels in both the annealed and cold worked conditions with various treatments. Test specimens incorporated welds, crevices, galvanic couples and specimens which had been sensitized to induce carbide precipitation. In 1971 and in 1972, this program was expanded to include additional stainless steels. The results obtained for specimens buried in the soils for up to 2 years were reported in 1974 [4, 5]. This report contains the results obtained for specimens buried

^{*}The term "stainless steel" is broadly used in industry to describe any of a number of different alloys of widely varying composition, corrosion resistance, mechanical properties and microstructures. The essential alloying element added to iron to form stainless steels is chromium, which is present from 10.5 - 30 percent. In some cases, additional alloying elements are used such as nickel or molybdenum to enhance corrosion resistance.

at the NBS soil test sites for up to 4 years.

B. EXPERIMENTAL PROCEDURE

1. Soils at NBS Test Sites

Some of the properties of the soils at the NBS test sites are given in Table 1. The relative corrosivity of these soils on plain carbon steel is shown in Fig. 1. However, the corrosivity of these soils towards stainless steels may not necessarily be the same as with carbon steel. Following are detailed descriptions of the soils at the test sites which have been selected by NBS from 128 test sites previously evaluated to represent the range of soil properties having a bearing on the corrosivity of metals in soils.

Sagemoor Sandy Loam (Site A) is a well-drained alkaline soil with a resistivity of 400 ohm-cm and a pH of 8.8 and is typical of that found in vast areas of eastern Washington and Oregon. The site is located on the Yakima Indian Reservation near Toppenish, Washington. The soil is consistent in composition to a depth of at least 7 feet (2.13 m) and supports an abundant growth of sage-brush.

<u>Hagerstown Loam (Site B)</u> is a well-drained soil representative of the majority of well-developed soils found in the eastern part of the United States. The site is located at the Loch Raven Reservoir of the Baltimore Water Department. The soil consists of a brown loam about 1 foot (0.30 m) deep, underlain by reddish-brown clay that extends about 5 feet (1.52 m) or more to underlying rock. The soil has a resistivity in the range of 12,600 to 37,300 ohm-cm and a pH of 5.3. Practically all of the materials that have been investigated in the extensive NBS soil corrosion tests have been exposed at this site which, therefore, can serve as a reference site for the correlation of data obtained for specimens in the present program with data obtained from the earlier tests.

<u>Clay (Site C)</u> is located in a large clay pit on level land at the U. S. Coast Guard Receiving Center, Cape May, New Jersey, and is subject to flooding during heavy rains. The soil consists of a plastic gray clay to a depth of 6 inches (15.24 cm) underlain by gray clay mixed with patches of brown clay to a depth of 12 inches (30.48 cm). This is underlain by a poorly drained very heavy plastic clay in which the specimens are exposed. The soil has a resistivity which ranges from 400 to 1150 ohm-cm and a pH of 4.3.

Lakewood Sand (Site D) is a white, loose sand with some black streaks occurring in places and supports an abundant growth of beach grasses. The site is located in a well-drained rolling area on the property of the U. S. Coast Guard Electronic Engineering Station, Wildwood, New Jersey. This site is not subject to overflow from the ocean except under unusual flood conditions. The sand has a pH of 5.7 and the resistivity ranges from 13,800 to 57,500 ohm-cm.

<u>Coastal Sand (Site E)</u> is a typical white, coastal beach sand with a high content of black sand; at this site, however, the sand is constantly damp and is occasionally flooded with sea-water. The site is located on the Two-Mile Beach on the property of the U. S. Coast Guard Electronic Engineering Station, Wildwood, New Jersey. The sand has a pH of 7.1, and the resistivity ranges from 1,320 to 49,500 ohm-cm.

<u>Tidal Marsh (Site G)</u> is a soil typical of the poorly-drained marsh soils that are found along the Atlantic and Gulf coasts. The site is located along a creek (Pine Hill Run) that empties into the Chesapeake Bay at the Patuxent Naval Air Station, Lexington Park, Maryland. The soil is naturally charged with hydrogen sulfide and has a resistivity in the range from 400 to 15,500 ohm-cm and a pH of 6.0.

2. Materials, Treatment and Preparation

In order to simulate some of the conditions that may be encountered with components fabricated from stainless steels, materials for these soil corrosion studies included stressed and unstressed flat sheet specimens with and without welds, welded tube specimens, coated specimens, sensitized specimens, and stressed and unstressed galvanically coupled specimens.

Descriptions of the various stainless steel systems buried at each test site including treatments and preparation are given in Table 2. The chemical analyses and mechanical properties of each alloy are given in Tables 3 and 4.

Upon receipt of the specimens from the stainless steel producers, the specimens were first stamped with identification numbers using chromium plated steel dies. All of the flat sheet materials [approximately 0.06 inch (0.15 cm) thick] were supplied with sheared edges which had been deburred. In some instances further deburring was necessary. All of the materials to be exposed unstressed were then degreased in trichlorethylene vapor, passivated (using procedures described in Table 2), scrubbed with a fiber brush, thoroughly rinsed with water and then air dried.

Half of the coated [coal-tar epoxy, 16 mils (0.04 cm) per side] specimens (System No. 61) were scored diagonally from the corners, twice on one surface, by cutting through the coating to the base material with a sharp pointed instrument. The other half of the specimens were exposed in the "as coated" condition.

The cross-bead welded flat sheet materials (System Nos. 3, 9, 11 and 54) were prepared in accordance with Welding Research Council recommendations.

Type 304 tube (System No. 57) was prepared in accordance with ASTM Specification A249. Type 409 tube (System Nos. 62 and 63) was tested in the "as-welded" condition. Except for cleaning and passivating, the proprietary alloys were tested as supplied by the producers. The ends of the tube specimens were plugged with rubber stoppers and then plastic or rubber caps were placed on each end to create a crevice.

All of the sheet materials to be stressed as either single or double U-bends had oblong holes, 1/4 inch x 1/2 inch (0.64 cm x 1.27 cm), punched near each end so as to be self aligning after bending. Specimens to be connected to a dissimilar metal (galvanic couples) had an additional hole 0.093 inch (0.236 cm) drilled 1/4 inch (0.64 cm) from the end and side for wire connections.

The specimens to be stressed were initially bent using a die (shown in Fig. 2) to about 20° (internal angle). The only portions of the die in contact with the specimens during the forming operation were fabricated from Type 304 stainless steel. The specimens were then cleaned and passivated using the same procedures noted above for unstressed specimens.

Single U-bend specimens were then formed by bending the two ends in a wooden jig so that they were parallel [the inside diameter at the bend was approximately 1 inch (2.54 cm)] and clamping them in this position with a Type 316 stainless steel nut and bolt. Double U-bend specimens for crevice and stress corrosion studies were formed in the same manner except that some were spot welded together (see Fig. 3) prior to the bending operation. They were then bent at the same time to form the U and clamped at the ends with Type 316 stainless steel fasteners.

For the galvanic couple studies, specimens were connected to steel (iron), zinc or magnesium anodes or to copper strips. Connection was made by soldering 14 gauge stranded copper wire to the specimen at the drilled hole using 50-50 acid core solder.

The iron anode consisted of a 1 foot (0.3 m) length of a cold finished steel (AISI 1017-1018) 3/4 inch (1.90 cm) hexagonal shaped rod with a hole [0.093 inch (0.236 cm)] drilled in the rod mid-way between each end for the electrical connection. The copper wire from the specimen was inserted in this hole and then soldered to the iron anode using 50-50 acid core solder.

The magnesium anode [4 feet (1.2 m) long and bent in the form of a horseshoe] was of the commercial flexible extruded type with an oval shaped cross-section 3/4 inch x 3/8 inch (1.90 cm x 0.95 cm) and a continuous centrally located 1/8 inch (0.32 cm) diameter iron wire core. The copper wire from the specimen was soldered to a 1 inch (2.54 cm) extension of the iron wire core using 50-50 acid core solder. In addition a bituminous (coal-tar epoxy) coating was applied to both 3/4 inch (1.90 cm) faces of the anode to extend its effective life.

The zinc anode [1 foot (0.30 m) long] was also of the commercial flexible extruded type with a diamond shaped cross section [5/8 inch x 7/8 inch (1.59 cm x 2.22 cm)] and a continuous centrally located 0.1 inch (0.25 cm) diameter zinc-coated (galvanized) iron wire core. The stranded copper wire from the specimen was soldered to an extension of the galvanized wire core.

Copper strips which were electrically coupled to the unstressed stainless steel specimens were cut from cold-rolled copper sheet, 0.065 inch (1.651 cm) thick and of the same dimensions as the stainless steel specimen [1 inch x 12 inches (2.54 cm x 30.48 cm)].

The areas at all soldered joints, including any exposed portions of the copper wire, were covered with a bituminous (coal-tar epoxy) coating.

3. Exposure

At each test site, the specimens were buried in trenches approximately 2-1/2 feet (0.76 m) deep and 2 feet (0.61 m) wide. The specimens were placed about 1 foot (0.30 m) apart. The 8 inch x 12 inch (20.32 cm x 30.48 cm) sheets were placed in the trench in a vertical position (with the long dimension horizontal). The specimens electrically connected to the steel and zinc anodes and to the copper strips were placed in the trench with the dissimilar metal parallel to the specimen and separated by approximately 1 foot (0.30 m). Specimens electrically connected to the horseshoe shaped magnesium anodes were placed at the center of the horseshoe. Upon backfilling the trenches, the insulated wires soldered to those specimens to be used in potential and corrosion current (couple corrosion) determinations were connected above ground to terminal strips mounted on 4 inch x 4 inch x 6 foot (10.16 cm x 10.16 cm x 1.83 m) wooden posts. Leads from the anodes and copper strips were connected to leads from the specimens at the terminal strips (potential and current measurements).

Sufficient specimens were buried at each of the 6 test sites to permit recovery of a complete set at specified intervals (1, 2, 4 and 8 years) and a final set to be removed at a later date to be determined. Each set of the 8 inch x 12 inch (20.32 cm x 30.48 cm) flat sheet systems and welded tube systems consisted of 4 specimens, while for the stressed and unstressed 1 inch x 12 inch (0.254 cm x 30.48 cm) sheet systems, each set consisted of 2 specimens.

The burial order for each test site is shown in Figs. 4a, b and c. One thousand fifty four (1054) specimens were buried at each test site for a total of 6324 specimens at the six test sites.

4. Electrochemical Measurements

All electrochemical measurements (potential, couple current, and corrosion current) were made at time of burial and subsequently 3 times a year when possible with the exception of Site A where measurements were usually made once a year.

Electrochemical potentials of the specimens and couples <u>vs</u>. a Cu-CuSO4 half cell were measured using a high precision portable pH meter as a millivoltmeter. The half cell was placed in a remote area (usually at the edge of the test area) and shielded from light to prevent photochemical effects.

The couple currents of the anode systems and the stainless steel-copper systems were measured using a zero impedance circuit employing an operational amplifier (Fig. 5) for small currents and a commercially available zero resistance ammeter for larger currents.

Corrosion currents were measured using a modification of the linear polarization technique based on the following relationship derived by Stern and Geary [5]:

$$\frac{\Delta E}{\Delta I} = \frac{1}{2.31} \qquad \frac{B_a B_c}{I \text{ corr}}$$

where ΔE is the overvoltage of the corroding specimen produced by a polarizing current, ΔI . B_a and B_c are the slopes of the anodic and cathodic polarization curves, respectively, in the Tafel region and I_{corr} is the corrosion current. Assuming B_a and B_c equal to 0.1 V in this investigation (the error will usually be about 20% or less, as established by Stern and Weisert [6],) the following equation was derived:

$$I_{\text{corr}} (\text{mA}) = \frac{2.7 \triangle I}{\triangle E} (\text{mA})$$

The electrical circuit described previously, [7] but minus the bridge circuit was employed. A soil auger was utilized as the auxiliary electrode. The change in potential was measured directly using the pH meter or an electrometer (0-10 mV scale) plus a battery and variable resistor (to null the initial potential) and a Cu-CuSO₄ reference electrode. Electrodes (auxiliary and reference) were placed so that the specimen was between them or at approximately right angles to them. In making these measurements, an increment of current was applied to the specimen unitl a stable overpotential of usually 2 to 10 mV occurred. The potential and current readings were then recorded.

Occasionally the open circuit potential of the stainless steel alloy was found to fluctuate and the corrosion current measurements could not be made. At other times, extremely humid or rainy conditions prevented these measurements.

5. Examination of Specimens After Exposure

Upon removal from the trench after burial for 1, 2 or 4 years, each of the stressed specimens was examined for indications of failure by cracking. All specimens were then returned to the laboratory for cleaning and a more thorough examination.

In the laboratory, the specimens were rinsed in tap water to remove adhering soil particles. They were then examined visually prior to further cleaning. The stressed U-bend specimens were disassembled by removing the Type 316 stainless steel fasteners. The copper wires were unsoldered from those specimens that had been coupled to dissimilar metals.

All specimens, except the coated ones (System No. 61) and the composites (System Nos. 14, 15 and 16), were then further cleaned ultrasonically using a 10% nitric acid solution heated to $120^{\circ} - 130^{\circ}F$ ($49^{\circ} - 54^{\circ}C$) for 20 to 30 minutes. Specimens from System Nos. 14 and 16 were ultrasonically cleaned using an aqueous 10% ammonium citrate solution heated to 175° to $185^{\circ}F$ ($73^{\circ} - 85^{\circ}C$). The time for cleaning these specimens from System No. 15 were ultrasonically cleaned to the corrosion scale. The specimens from System No. 15 were ultrasonically cleaned for approximately 30 minutes using an aqueous ammonium chloride solution at 175° to $185^{\circ}F$ ($79^{\circ} - 85^{\circ}C$). After cleaning, the specimens were rinsed in hot tap water and then air dried.

The unstressed sheet [8 inches x 12 inches (20.32 cm x 30.48 cm)] and tube specimens were then weighed twice and their weight loss was determined. The average loss in weight of similar unexposed (control) specimens given the identical cleaning process was subtracted from the weight loss of the exposed specimens.

Pit depth determinations were obtained for all of the unstressed tube and 8 inch x 12 inch (20.32 cm x 30.48 cm) sheet specimens.

C. RESULTS AND DISCUSSION

Table 5 summarizes the results obtained from visual examination of the unstressed non-welded sheet materials. The results obtained for welded sheet and tube materials are summarized in Table 6. The results obtained from average weight loss and pit depth determinations are given in Tables 7 through 12 and are shown graphically in Figs. 6 through 10.

Data given for each alloy system are a compilation of results obtained from either 2 or 4 specimens depending upon the number of specimens of each system that was exposed. The weight loss for a given alloy system exposed in a particular soil may appear to be extremely small in comparison to the observed corrosion. This occurs because the corrosion of stainless steels in some environments can often be localized and confined to a very small area. Similarly, one specimen may have only one corrosion pit which caused perforation of the specimen, while there was little or no corrosion observed on companion specimens exposed for the same period of time in the same environment.

Corrosion of stainless steels is generally attributed to a breakdown of the passive film at the surface of the material at localized or selective areas. If corrosion occurs it may often be influenced by one or more of the following:

1. Inhomogeneities of the metal surface.

2. Concentration cell effects due to adhering soil particles or crevices where stagnant conditions may exist.

3. Presence of chlorides in the soil.

4. Microbiological organisms.

5. Abrasion of the metal surface by soil particles or foreign debris.

A break in the passive film at the localized area results in a small anodic site. The larger surrounding area is the cathode. The electrolytic cell formed could result in localized pitting corrosion, which can rapidly penetrate the thickness of the metal. However, a stainless steel with adequate alloying content for the environment would repassivate without degradation. Concentration cells formed at stagnant areas beneath soil deposits or at crevice areas can also result in localized corrosion. An unusual form of pitting corrosion, tunneling, is normally associated with edges and can be increased by gravity flow of corrosion products. As noted above, all flat specimens were buried vertically, thus increasing the propensity for tunneling.

1. General Corrosion Behavior

AISI 200 Series

Annealed Type 201 and 202 austenitic stainless steels (System Nos. 50 and 51) buried up to 4 years in alkaline soil (Site A), Hagerstown loam (Site B) and dry sand (Site D) were in general unaffected by corrosion. However, pitting corrosion was noted at the edge of one Type 201 specimen buried for 2 years at Site D. Specimens of both systems buried in the acid clay (Site C) and wet sand (Site E) exhibited pitting and tunneling corrosion and were perforated due to corrosion after exposure for 1 year. Of the specimens buried in the tidal marsh (Site G), both systems were susceptible to pitting corrosion. Tunneling corrosion was also observed at the edge of one Type 201 specimen which had been buried for 4 years. A companion specimen buried at this site for 2 years was perforated due to corrosion. Tunneling corrosion was not observed on the Type 202 specimens. However, one specimen was perforated at the edge due to pitting corrosion.

AISI 300 Series

Annealed Materials - In general, corrosion was nil or superficial for the annealed austenitic 300 series materials buried for up to 4 years at Sites A, B and D. Annealed Type 316 buried at Sites C and G was with a few exceptions unaffected by corrosion. However, a few corrosion pits were observed at edge areas on two specimens that were buried for 4 years at Site C. At Sites C and G annealed Types 301 and 304 specimens were susceptible to pitting and tunneling corrosion. All of the annealed 300 Series alloys buried at Site E exhibited both tunneling and pitting corrosion and many specimens were perforated at corroded areas.

Sensitized Materials - Degradation of the sensitized 300 series alloys buried at Sites A and B for up to 4 years was nil or negligible.** However, some slight etching and pitting corrosion was noted at areas on some specimens buried at these sites. Of the sensitized materials buried at Site C, all were susceptible to pitting corrosion with Type 316 being the least susceptible. Sensitized Type 304 and Type 316 buried at this site were also susceptible to tunneling corrosion. Some of the sensitized Type 301 and Type 304 specimens buried at Sites D and E exhibited "blister-like eruptions" at surface areas. These appeared to be very small corrosion pits.

Degradation of sensitized Type 301 and 304 specimens buried at Site G was generally due to severe etching and non-uniform attack (Fig. 11). Some specimens were perforated at scattered localized areas after burial of 1 or 2 years, but none had perforated after burial for 4 years. Corrosion of Type 316 (sensitized) buried at this site was in general negligible.

^{**}Many of the specimens examined exhibited incipient pitting and various forms of discoloration, e.g., iridescence, rust and dark to black stains. However, no other degradation was observed on these specimens nor was there any loss in weight due to exposure in the soil environment. Corrosion of these specimens was considered to be nil or superficial.

Welded Materials - Corrosion of the cross-bead welded Type 301 sheet and heliarc-welded Type 304 tube specimens buried at Sites A, B and D was in general nil or superficial. Pitting corrosion was noted at and adjacent to the weld bead on the cross-bead welded Type 301 sheet specimens buried at Sites C, E and G. Pitting corrosion was also observed at and adjacent to the weld seam of Type 304 tube specimens buried at Site C and at areas adjacent to the caps and at crevice areas (under the end caps) on tube specimens buried at Sites C and E. However, pitting was also noted at areas remote from the weld. It was not determined whether the welding operation resulted in sensitization at the weld or whether the pitting corrosion was or was not due to sensitization.

Figs. 12 through 15 are examples of some of the degradation noted on the 300 series specimens.

AISI 400 Series

Materials in this series include the martensitic Type 410 and ferritic Types 409, 430 and 434 stainless steels.

Specimens of Type 409 (annealed or welded) and Type 410 (annealed) were perforated by corrosion after burial for 4 years in 5 of the 6 soils. The time to first perforation (generally 1 or 2 years) for the Type 409 materials was less for specimens buried at Sites C, E and G. Corrosion of these alloys was nil or superficial at Site B. The coal-tar epoxy coated Type 409 sheet specimens were in general relatively unaffected by corrosion.

Types 430 and 434 were relatively unaffected by corrosion after burial for 4 years at Sites A and B. Companion specimens buried at Sites C, E and G were perforated by corrosion generally in less than 1 year. At Site D first perforation for these materials was not observed until specimens had been buried for 4 years.

Figs. 16 through 23 are examples of some of the degradation noted on 400 series specimens.

Specialty and Developmental Alloys

Stainless steels in this classification include proprietary and composite materials. The proprietary stainless steels may be grouped as follows according to major alloying constituents:

- 1. Cr Stainless Steel
 - 26 Cr 1 Mo 18 Cr - 2 Mo 18 Cr - 2 Mo (Nb) 18 Cr (Ti)
- 2. <u>Cr-Ni Stainless Steels</u>

26 Cr - 6.5 Ni 20 Cr - 24 Ni - 6.5 Mo 18 Cr - 8 Ni (N) (Now designated as AISI Type 304 N) The results obtained from visual examination of specimens of these materials after burial in the various soils for up to 3 years are summarized in Tables 5 and 6.

<u>Cr Stainless Steels</u> - Alloy 26 Cr-1 Mo [in the annealed condition (System No. 1)] was relatively unaffected by corrosion in any of the soils after burial for up to approximately 3 years. Pitting corrosion was noted particularly at or adjacent to crevice and weld areas of some of the heliarc welded Alloy 26 Cr-1 Mo specimens (System No. 17) buried at Sites A, C, E and G.

Corrosion of annealed Alloy 18 Cr-2 Mo (System No. 6) was nil or superficial for specimens buried for up to 3 years at Sites A, B, C and D. Scattered pitting corrosion with subsequent perforation of the material was observed on specimens buried at Sites E and G. Corrosion of annealed Alloy 18 Cr-2 Mo (Nb) (System No. 7) specimens was in general nil or superficial after burial for up to 2 years. Pitting corrosion was noted at weld areas of cross-bead welded sheet specimens (System No. 11) buried at Sites C, E and G and tube specimens (System 12) buried at Sites A and E. Pitting corrosion was also observed at crevice areas of tube specimens buried at Sites E and G. Specimens of System 11 were perforated due to corrosion at Sites C and E.

Of the Alloy 18 Cr (Ti) (System Nos. 2, 3 and 18) specimens buried for up to 3 years, corrosion of those buried at Sites A, B and D was in general nil or superficial. Some specimens buried at Sites C, E and G were perforated due to corrosion.

<u>Cr-Ni Stainless Steel</u> - The annealed Alloy 18 Cr-8 Ni (N) (System No. 8) specimens were in general relatively unaffected by corrosion after burial for approximately 3 years at Sites A, B, C and D. Some specimens buried at Sites E and G were perforated due to corrosion. Sheet specimens of this alloy having a cross-bead weld (System No. 9) and buried at Sites C, E and G were perforated due to pitting corrosion at weld areas. There was little or no corrosion of companion specimens buried at Sites A, B and D.

There was little or no appreciable attack on the annealed (System No. 4), sensitized (System No. 5) or heliarc welded (System No. 19) Alloy 20 Cr-24 Ni-6.5 Mo specimens buried in the 6 soils. Corrosion where observed was in general superficial.

Corrosion of annealed Alloy 26 Cr-6.5 Ni (System 10) specimens buried at Sites A, B and D was in general negligible. Companion specimens of this alloy buried at Sites C, E and G were perforated by corrosion in less than 1 year.

<u>Composite Materials</u> - The composite systems are sandwich materials where outer layers of carbon steel are metallurgically bonded to a thin core of stainless steel (total thickness approximately 0.120 in (0.305 cm). Composites A and B (System Nos. 14 and 15) were fabricated with Type 430 stainless steel as a core material while Composite C (System No. 16) utilizes Type 304 stainless steel. In addition Composite B specimens were individually hot-dip zinc coated [galvanized, 4.5 to 5 oz/ft² (1377 to 1528 gms/m²) zinc]. This was a thicker coating than would normally be used on carbon steel products. In general, there was little difference in the corrosion behavior of System Nos. 14 and 16 buried in the same soil environment for approximately 4 years. Pitting corrosion of the carbon steel outer layers was observed on all specimens buried at the six sites. The carbon steel was perforated by corrosion on specimens buried at Sites A, B and G which thus exposed the stainless steel core of both composite materials. While there was no apparent significant corrosion of the stainless steel core of these specimens, degradation of the carbon steel was more severe for specimens buried at Site G.

The hot-dip zinc coating on specimens of System No. 16 provided protection to the underlying carbon steel and stainless steel core in all of the soils. There was some dissipation of the zinc in all of the soils. However, there was some zinc remaining on all of the specimens after burial for up to 4 years in the 6 soil environments.

2. Stress Corrosion Behavior

The results of visual and micro examinations made to determine failure of the various systems due to stress corrosion cracking are given in Table 13 for non-galvanically coupled specimens.

AISI 300 Series

Type 301 stainless steel in the half-hard condition was relatively immune to stress corrosion cracking in all of the soils after exposure for approximately 4 years. Micro-cracking was observed on one specimen buried for 2 years at Site C. Sensitization of the half-hard alloy increased the susceptibility to stress corrosion cracking in all of the soil environments. Of the specimens buried for 4 years, all exposed at Sites A, C, D, E and G had failed, while at Site B, only 1 of the 2 specimens retrieved was cracked. The same alloy in the full-hard condition was in general also immune to stress corrosion cracking after exposure for up to 4 years. However, micro-cracking was noted on one of the spot welded specimens buried for 2 years at Site G. No failures were observed on stressed Type 304 in the annealed or half-hard condition. Cracking of the sensitized Type 304 stressed specimens in the half hard condition, buried at Site C for 2 years and Site E for 1 year, was observed while companion specimens buried for 4 years at these sites were unaffected by cracking.

AISI 400 Series

Type 434 stainless steel was the only alloy in this series exposed in the soils. There were no failures after burial for 4 years in any of the soils.

Specialty and Developmental Alloys

Steels in this category included Alloys 26 Cr-1 Mo, 18 Cr-2 Mo, 20 Cr-24 Ni -6.5 Mo, 18 Cr-8 Ni (N) and 26 Cr-6.5 Ni. There were no failures of these steels after exposure for up to 3 years.

3. Stressed Dissimilar Metal Couples

The results for the stressed galvanically coupled specimens have been reported elsewhere [6]. Table 14 in this report summarizes the results obtained for specimens buried for approximately 4 years.

AISI 300 Series

There were no failures noted for Type 304 in the annealed condition when coupled to zinc, magnesium or iron. Type 301 full-hard and Type 301 half-hard have a tendency to stress crack. As shown in Table 14 all of the stressed Type 301 full-hard stainless steel specimens and all but 1 of the Type 301 half-hard specimens coupled to magnesium failed in the four years of exposure. When coupled to iron, these materials were resistant to cracking at 4 of the 6 sites (Sites A, B, D and E). One Type 301 full-hard specimen buried at Site G had failed while Type 301 half hard specimens buried at this site had not failed. Both materials when coupled to zinc had failed at all of the sites except for those buried at Site A. The largest currents were generated by magnesium followed by zinc and iron. It was noted that below 1 $\mu A/cm^2$ no failures occurred for the Type 301 full-hard specimens failed and above 20 $\mu A/cm^2$ all Type 301 half-hard specimens failed. The fact that the number of failures increased with increasing cathodic current indicates that hydrogen embrittlement was the mode of failure.

Specialty and Developmental Alloys

There were no failures of the 26 Cr-1 Mo or 26 Cr-6.5 Ni galvanically coupled to zinc, magnesium or iron after exposure for approximately 3 years in the soils.

4. Unstressed Dissimilar Metal Couples

The results obtained for unstressed stainless steels coupled to a dissimilar metal (copper) have been reported elsewhere [7]. Table 15 in this report summarizes the results obtained for these stainless steels, each coupled to copper, after burial for up to 4 years in the various soil environments. The data shows that where the galvanic current was negative, little or no corrosion occurred. The only exception was on Alloy 26 Cr-6.5 Ni material exposed at Site E where pitting corrosion was noted on specimens at areas under the solder. This corrosion suggests that the solder connection was poor resulting in an inaccurate current determination for the specimens. The Type 409 stainless steel was the most severely corroded. However, there was no clear indication that the copper adversely affected the stainless steel. The results obtained from visual examination of the copper electrodes are given in Table 16. Since the copper was coupled to stainless steel, the electrochemical tabulations given in Table 15 also apply to the copper. It was noted that as the potential of the galvanic couple became more noble (more positive), the corrosion of the copper increased. The galvanic potentials at Site B were around zero (vs. Cu-Cu SO_4 reference electrode) and caused the most corrosion observed on the copper. The corrosion of the copper was least at Site G.

D. SUMMARY

1. AISI 200 and 300 Series

In general all of the austenitic (200 and 300 series) stainless steels included in this program exhibited good resistance to corrosion after burial for up to approximately 4 years in alkaline soil (Site A), Hagerstown loam (Site B) and Lakewood sand (Site D). These stainless steels were susceptible to corrosion in the acid clay (Site C), coastal sand (Site E) and tidal marsh (Site G). Type 316 (annealed) was the least susceptible to corrosion in the 6 soils investigated. Degradation of the 200 and 300 series stainless steels was generally due to pitting or tunneling corrosion or a combination of both with subsequent perforation of the specimens at localized areas. For some specimens buried in the tidal marsh, corrosion was observed at large areas on the specimens and was attributed to severe etching or general corrosion of the metal surfaces. Sensitization by heat treatment of Types 301, 304 and 316 generally resulted in increased susceptibility to corrosion in all of the soils.

Pitting corrosion was observed at or adjacent to the weld beads on cross-bead welded Type 301 sheet specimens buried at Sites C, E and G and at or adjacent to the weld seams on Type 304 tube specimens buried at Sites A, C and G. It must be stressed that pitting also occurred at other areas on the specimens remote from the welds. It was not determined at this time whether the welding operation resulted in sensitization at the weld areas or whether the pitting corrosion observed was or was not due to sensitization. Future studies will examine these questions. Type 304 tube specimens buried at Sites C and G were also susceptible to crevice corrosion.

With some exceptions the non-galvanic couples stressed 300 series alloys exhibited good resistance to stress corrosion cracking in all of the soils. Type 316 in the annealed or sensitized condition was immune to stress corrosion cracking in all of the soils after exposure for 4 years. Type 301 in the halfhard condition was susceptible to cracking at Site C, while spot-welded Type 301 in the full-hard condition was susceptible to cracking at Site G. Sensitization of Type 301 half-hard increased the susceptibility to stress corrosion cracking in all of the soils. Type 304 (annealed) was immune to stress corrosion, but sensitization of this material made the alloy susceptible to stress corrosion at Sites C and E.

Galvanic coupling of Type 301 half-hard or full-hard stainless steel to magnesium or zinc increased the susceptibility to stress-cracking. When coupled to zinc, failures were observed in five of the six soils (exception was Site A) while, when coupled to magnesium, failures were observed in all of the soils. This alloy in the half-hard condition and coupled to iron failed at Site C only, while similar specimens in the full-hard condition failed at Sites C and G.

2. AISI 400 Series

The martensitic Type 410 and the ferritic Types 409, 430 and 434 stainless steels were in general susceptible to pitting or tunneling corrosion or a

combination of both at Sites A, C, D and E and to severe etching or general corrosion attack at Site G. Except for the Type 430 and Type 434 buried at Site A, all were perforated due to corrosion. Of these materials buried for 4 years at Site B, the corrosion observed was nil or superficial. Areas at and adjacent to the weld seam on the heliarc welded Type 409 specimens buried at Sites C and G and the high-frequency welded Type 409 specimens buried at Sites A, C, D, E and G were susceptible to pitting corrosion. Pitting corrosion was also observed at crevice areas on these two materials buried at all sites except Site B. The coal-tar epoxy coating applied to the Type 409 stainless steel appeared to be effective in providing protection from corrosion at all sites. However, some superficial corrosion was noted at areas where the coating had been scored to bare metal prior to burial.

Type 434 was the only stainless steel in the 400 series included in the stress corrosion study. No failures were observed for non-galvanically coupled stressed specimens of this material in any of the soil environments.

3. Specialty and Developmental Stainless Steels

Annealed and heliarc-welded Alloy 20 Cr-24 Ni-6.5 Mo was resistant to corrosion in all of the soils after burial for 3 years. Sensitized specimens of this material were resistant to corrosion in all of the soils except at Sites C and G.

Annealed 26 Cr-1 Mo stainless steel was slightly pitted (< 5 mils deep) due to corrosion at Site C only after burial for 3 years. However, heliarcwelded tube was susceptible to crevice corrosion and/or pitting at Sites A, C, E and G. This alloy was not exposed in the sensitized condition.

Alloy 18 Cr-2 Mo (Nb) in the annealed condition and buried for 3 years was resistant to corrosion at Sites B and D. Also after exposure for 3 years, cross-bead welded sheet specimens of this alloy were unaffected by corrosion at Sites A, B and D. Heliarc welded tube specimens, exposed for 2 years, were resistant to corrosion at Sites B, D and G.

Annealed 18 Cr-2 Mo stainless steel was resistant to corrosion during a 3 year period at Sites A, B and D but was susceptible to pitting corrosion at Sites C, E and G.

Annealed and cross-bead welded 18 Cr-8 Ni (N) (now designated AISI Type 304 N) stainless steel specimens exposed for 3 years were also resistant to corrosion at Sites A, B and D and were similarly susceptible to pitting corrosion at Sites C, E and G.

Alloy 26 Cr-6.5 Ni in the annealed condition was resistant to corrosion at Sites B and D but was susceptible to pitting corrosion at Sites A, C, E and G.

Annealed 18 Cr (Ti) sheet and heliarc welded tube stainless steel specimens were resistant to corrosion at Sites A and B. The heliarc welded tube was also resistant to corrosion at Site D, but the annealed sheet material at this site was pitted due to corrosion. Both types of specimens of this alloy were severely corroded at Sites C, E and G. Of the proprietary steels included in the stress corrosion study, there were no failures of either galvanically coupled or non-galvanically coupled specimens after 4 years exposure in any of the soils.

ACKNOWLEDGEMENTS

The assistance of James L. Fink in various capacities during this investigation is acknowledged.

Acknowledgement is made also to the following organizations which provided test sites and assistance during the burial and removal of the specimens and during the inspections at the test sites.

Bonneville Power Administration U. S. Department of Interior Portland, Oregon 97208

Baltimore Bureau of Water Supply Baltimore, Maryland 21217

U. S. Coast Guard Training Center Cape May, New Jersey 08204

Patuxent Naval Air Station Lexington Park, Maryland 20653

U. S. Coast Guard Electronics Engineering Station Wildwood, New Jersey 08260

REFERENCES

- [1]. Branch, H. C., Corrosion Resistant Materials for URD Equipment, <u>Materials</u> <u>Protection and Performance</u>, <u>12</u>, 9-14 (March 1973).
- [2]. Steinmetz, G. F. and Hoxie, E. C., A Field Test of Type 304 Stainless Steel for Gas Service, <u>Materials Protection and Performance</u>, <u>12</u>, 41-44 (September 1973).
- [3]. Romanoff, M., Underground Corrosion (NBS Circular 579), National Technical Information Service, PB 168350 (April 1957).
- [4]. Gerhold, W. F., Iverson, W. P., Escalante, E. and Sanderson, B. T., Progress Report on the Corrosion and Stress Corrosion of Stainless Steels in Soil Environments, Part I. General Corrosion (NBS Report, NBSIR 74-483), (May 1974).
- [5]. Gerhold, W. F., Escalante E., Iverson, W. P. and Sanderson, B. T., Progress Report on the Corrosion and Stress Corrosion Behavior of Selected Stainless Steels in Soil Environments, Part II. Stress Corrosion and Electrochemical Behavior (NBS Report, NBSIR 74-484), (May 1974).
- [6]. Escalante, E. and Gerhold, W. F., "Galvanic Coupling of Some Stressed Stainless Steels to Dissimilar Metals Underground", Galvanic and Pitting - Field and Laboratory Studies, ASTM STP 576, American Society for Testing and Materials, pp. 81-93 (1976).
- [7]. Escalante, E. and Gerhold, W. F., The Galvanic Coupling of Some Stainless Steels to Copper - Underground, Materials Performance, <u>14</u>, 16-20 (October 1975).

Fig. 1. Relative Corrosion Effects of the Soils at the Six NBS Test Sites on Carbon Steel.

Fig. 2. Die for forming U-bend specimens.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	First Removal (1 Yr)	Second Ren (2 Yr)	noval	Third (4	Removal Yr)	Fourth Removal F: (8 Yr)		Fifth (X	fth Removal (X Yr)	
	First Removal (1 Yr) 50x01* 50x03* 51 51 52 52 53 53 54 54 55 56 56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63 64 64 65 65 66x01 66x03 50x02 50x04 51 51 52 52 53 53 54 54 55 55 56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63 64 64 65 65 66x02 66x04 67x02 67x04 68<	Second Ref (2 Yr) 50x05* 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 50x06 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 66x06 61 62 63 64 65 66x06 61 62 70 71 72 73 74 75 76 77 77 78 79 80 81 82 83 84 85 86 87 78 88 89 90 91 92x06	50x07* 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66x07 50x08 51 52 53 54 55 66x07 50x08 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66x08 67 68 69 70 71 72 73 74 75 76 77 78 79 <t< th=""><th>Third (4 50×09* 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66×09 50×10 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 66×10 61 62 63 64 65 66×10 67 73 74 75 76 78 79 81×10 70×10 77×10 70×10 77×10 70×10 80×10 82×10 70×10 80</th><th>Removal Yr) 50x11* 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 66×112 73 74 75 76 78 79 81×12 70×12 72×12 70×12 72×12 70×12 80×12 82×12 81×12 85×12 8</th><th>Fourth (8 50x13* 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 54 55 56 57 58 59 60 61 62 63 54 55 56 57 58 59 60 61 62 63 64 65 66×13 50×14 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66×13 50×14 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66×13 50×14 51 62 63 64 65 66×13 50×14 51 62 63 64 65 66×13 50×14 51 62 63 64 65 66×13 57 58 59 60 61 62 63 64 65 77 58 59 60 61 62 63 64 65 77 58 59 60 61 62 63 64 65 77 78 79 80 81 91 92×14 •</th><th>Removal Yr)</th><th>Fifth (X 50x17 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66x17 50x18 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66x17 50x18 51 52 53 54 55 56 60 61 62 63 64 65 66x17 50x18 51 52 53 54 55 56 60 61 62 63 64 65 66x17 50x18 51 52 53 54 55 56 60 61 62 63 64 65 66x17 50x18 51 52 53 54 55 56 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 70 80 81 71 73 74 75 76 78 79 81x18 77 74 75 76 78 79 81x18 77 77 78 79 81x18 77 77 78 79 81x18 77 72x18 77 72x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18</th><th>Remova 1 Yr) 50x19 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66x19 50x20 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66x19 50x20 51 52 53 54 55 56 67 78 59 60 61 62 63 64 65 66x20 61 62 63 64 65 66x20 68x20 69 71 73 74 75 76 78 79 81x20 77x20 91x20</th></t<>	Third (4 50×09* 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66×09 50×10 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 66×10 61 62 63 64 65 66×10 67 73 74 75 76 78 79 81×10 70×10 77×10 70×10 77×10 70×10 80×10 82×10 70×10 80	Removal Yr) 50x11* 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 64 65 66×112 73 74 75 76 78 79 81×12 70×12 72×12 70×12 72×12 70×12 80×12 82×12 81×12 85×12 8	Fourth (8 50x13* 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 56 57 58 59 60 61 62 63 54 55 56 57 58 59 60 61 62 63 54 55 56 57 58 59 60 61 62 63 64 65 66×13 50×14 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66×13 50×14 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66×13 50×14 51 62 63 64 65 66×13 50×14 51 62 63 64 65 66×13 50×14 51 62 63 64 65 66×13 57 58 59 60 61 62 63 64 65 77 58 59 60 61 62 63 64 65 77 58 59 60 61 62 63 64 65 77 78 79 80 81 91 92×14 •	Removal Yr)	Fifth (X 50x17 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66x17 50x18 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66x17 50x18 51 52 53 54 55 56 60 61 62 63 64 65 66x17 50x18 51 52 53 54 55 56 60 61 62 63 64 65 66x17 50x18 51 52 53 54 55 56 60 61 62 63 64 65 66x17 50x18 51 52 53 54 55 56 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 60 60 61 62 63 64 65 77 58 59 70 80 81 71 73 74 75 76 78 79 81x18 77 74 75 76 78 79 81x18 77 77 78 79 81x18 77 77 78 79 81x18 77 72x18 77 72x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18 77x18 91x18	Remova 1 Yr) 50x19 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66x19 50x20 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66x19 50x20 51 52 53 54 55 56 67 78 59 60 61 62 63 64 65 66x20 61 62 63 64 65 66x20 68x20 69 71 73 74 75 76 78 79 81x20 77x20 91x20	

📕 4"x4" Post

Wire terminal to post for electrical measurements

Wire terminals (galvanic couple) to post for electrical measurements.
*Specimen identification: Digits preceding "x" denote system number (see Table 2)
"x" represents site designation. Would be A, B, C, D, E or G depending upon where
specimen was exposed. Digits following "x" are specimen numbers.

First Removal (l yr)		Second Removal (2 yr)		Third Removal (4 yr)		Fourth Removal (8 yr)		Fifth Removal (X yr)	
1x01* 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 18x 19x01 1x02 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 17x 18x 19x01 1x02 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 17x 17x 18x 19x01 11x02 2x 3x 4x 5x 10x 14x 15x 10x 14x 15x 16x 17x 17x 18x 19x01 11x02 2x 3x 4x 5x 10x 14x 15x 10x 14x 15x 16x 17x 12x 12x 10x 14x 15x 16x 17x 12x 12x 14x 15x 16x 17x 12x 14x 15x 16x 17x 12x 14x 15x 16x 17x 12x 12x 14x 15x 16x 17x 12x 12x 14x 15x 10x 14x 15x 15x 16x 17x 12x 12x 14x 15x 15x 15x 16x 17x 12x 12x 12x 12x 12x 12x 14x 15x 15x 15x 15x 14x 15x 15x 15x 15x 15x 15x 15x 15x 15x 15	1x03* 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 18x 19x03 1x04 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 18x 19x03 1x04 2x 3x 4x 5x 6x 1x04 2x 3x 4x 5x 6x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04 2x 1x04	1x05* 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 18x 19x05 1x06 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x	1x07* 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 18x 19x07 1x08 2x 3x 4x 5x 6x 9x 10x 1x08 2x 3x 4x 5x 6x 9x 10x 14x 15x 16x 17x	1x09* 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 18x 19x09 1x10 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x	1x11* 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 18x 19x11 1x12 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x	1x13* 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 18x 19x13 1x14 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x	1x15* 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 18x 19x15 1x16 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x	1×17* 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 18x 19x17 1x18 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x	1x19* 2x 3x 4x 5x 6x 8x 9x 10x 14x 15x 16x 17x 18x 19x19 1x20 2x 3x 4x 5x 6x 9x 10x 14x 15x 16x 17x
17x 18x 19x02 20x02 21x 22x 23x 24x 25x 26x 27x 28x 30x 33x 34x 35x 36x 37x 38x 42x	17x 18x 19x04 20x04 21x 22x 23x 24x 25x 26x 27x 28x 30x 33x 34x 35x 36x 37x 38x 42x	17x 18x 19x06 20x06 21x 22x 23x 24x 25x 26x 27x 28x 30x 33x 24x 35x 36x 37x 38x 42x	17x 18x 19x08 20x08 21x 22x 23x 24x 25x 26x 27x 28x 30x 33x 34x 35x 36x 37x 38x 42x	17x 18x 19x10 20x10 22x 24x 25x 27x 21x 23x10 4 26x10 28x 30x 33x10 4 30x 33x10 4 30x 33x10 4 36x 37x 4 36x 37x 4 38x10 42x	17x 18x 19x12 20x12 22x 24x 25x 27x 21x 23x12 26x12 28x 30x 33x12 4 34x12 35x 36x 37x 1 38x12 42x	17x 18x 19x14 20x14 21x 22x 23x 24x 25x 26x 27x 28x 30x 42x 43x 44x 45x14	17x 18x 19x16 20x16 21x 22x 23x 24x 25x 26x 27x 28x 30x 42x 43x 44x 45x16	17x 18x 19x18 20x18 22x 24x 25x 27x 21x 23x18 42x18 42x18 1 26x18 28x 42x18	17x 18x 19x20 20x20 22x 24x 25x 27x 21x 23x20 26x20 28x 30x 42x20 1

🔳 4"x4" post

→ ■ Wire terminal to post for electrical measurements

Wire terminals (galvanic couple) to post for electrical measurements.

*Specimen identification: Digits preceding "x" denote system number (see Table 2) "x" represents site designation. Would be A, B, C, D, E or G depending upon where specimer was exposed. Digits following "x" are specimen numbers.

First Removal		Second Removal		Third Removal		Fourth Removal		Fifth Removal	
(1 Yr)		(2 Yr)		(4 Yr)		(8 Yr)		(X Yr)	
7x01*	7x03*	7x05*	7x07*	7x09*	7x11*	7x13*	7x15*	7x17*	7x19 ⁴
11	11	11	11	11	11	11	11	11	11
12	12	12	12	12	12	12	12	12	12
7x02	7x04	7x06	7x08	7x10	7x12	7x14	7x16	7x18	7x20
11	11	11	11	11	11	11	11	11	11
12	12	12	12	12	12	12	12	12	12

Figure 4c. Map Showing Burial Order for Specimens Exposed in 1972 at the Various Sites.

- 4"x4" post

*Specimen identification: Digits preceding "x" denote system number (See Table 2) "x" represents site designa- tion. Would be A, B, C, D, E, or G depending upon where specimen was exposed. Digits following "x" are specimen numbers.

-

ł

Average weight loss (mg/dm²) and maximum pit depth (mils) for AISI 200 series stainless steels after exposure in various soils. See Table 2 for descriptions of the systems. H denotes perforation. (a) Site C; (b) Site E; (c) Site G

- Fig. 7. Average weight loss (mg/dm²) and maximum pit depth (mils) for AISI 300 series stainless steels after exposure in various soils. See Table 2 for descriptions of the systems. O-none, N-<1 mg/dm², H-perforated and T-tunneling.
 - (a) Site C; (b) Site E; (c) Site G

Fig. 8. Average weight loss (mg/dm²) and maximum pit depth (mils) for AISI 400 series stainless steels after exposure in various soils. See Table 2 for description of the systems. O-none, N-<5 mg/dm², I-incipient pitting, S-<5 mils and H-perforated.

(a) Site A; (b) Site C; (c) Site D; (d) Site E; (e) Site G

Fig. 9. Average weight loss (mg/dm²) and maximum pit depth (mils) for Fe-Cr proprietary stainless steels after exposure in various soils. See Table 2 for description of the systems. O-none, N-<5 mg/dm², I-incipient pitting, S-<5 mils and H-perforated.

(a) Site C; (b) Site E; (c) Site G

Fig. 10. Average weight loss (mg/dm²) and maximum pit depth (mils) for Fe-Cr-Ni proprietary stainless steels after exposure in various soils. See Table 2 for description of the systems. O-none, N-<5 mg/dm², I-incipient pitting, S-<5 mils and H-perforated.

(a) Site C; (b) Site E; (c) Site G

Fig. 11 Sensitized Type 304 stainless steel buried for approximately 4 years at Site G. Note severe etching and nonuniform attack at areas A and B. x0.375

Fig. 12 Sensitized Type 301 stainless steel after exposure for approximately 4 years at Site D. Arrow A denotes crack. Areas exhibiting small blister-like eruptions are noted at arrow B. An area exhibiting slight etching is shown at arrow C, while areas where incipient pitting was observed is shown at arrow D. X 0.375.

Fig. 13 Type 301 stainless steel with cross-bead weld after exposure for 4 years at Site G. With the exception of the dark areas on the left side which are gray stains, this specimen was relatively unaffected by corrosion. X 0.375.

Fig. 14 Type 304 stainless steel after exposure for approximately 4 years at Site C. Upper right corner, arrow A was severely attacked. Areas shown at arrows B are light gray stains mixed with slight surface corrosion (etching). X 0.375.

Fig. 15 Sensitized Type 304 stainless steel buried for approximately 4 years at Site E. Dark areas at top are rust stains. Vertical stringers at the top of the specimen are areas where tunneling corrosion was observed. X 0.375.

Fig. 16. Type 409 stainless steel after exposure for 4 years at Site G. Note severe general corrosion in upper half of specimen. X 0.375.

Fig. 17. Type 409 stainless steel after exposure for 4 years at Site E showing tunneling corrosion (vertical stringers) and scattered localized pitting corrosion. X 0.375.

Fig. 18. Type 409 stainless steel exposed for approximately 4 years at Site C. There was slight general attack over much of the surface with localized pitting corrosion and subsequent perforation of the specimen due to pitting corrosion. X 0.375

Fig. 19. Type 409 stainless tube with a highfrequency welded seam after exposure for 4 years at Site G. Note corrosion at weld seam, arrow A and crevice corrosion at arrow B. All specimens were perforated due to corrosion. X 0.375.

Fig. 20. Coal-tar epoxy coated Type 409 stainless steel after exposure for approximately 4 years at Site G. Dark areas within scribed
X are rust stains, whereas lighter areas were unaffected by corrosion. X 0.375

Fig. 21. Type 410 stainless after burial for approximately 4 years at Site G. Note severe localized corrosion with subsequent perforation of the material at area towards center of the specimen. The luster of the remaining original surface is shown by the reflection of the camera on the surface to the right of the corroded area. X 0.375

Fig. 22. Type 430 stainless steel buried for 4 years at Site G. Note severe corrosion has resulted in the dissipation of over 1/4 of the specimen while most of the remainder retains the original luster. X 0.375

Fig. 23. Companion specimen of that shown in Fig. 20. Note slight etching at localized areas (light gray areas) and severe localized pitting corrosion within dark area at lower left. X 0.375

Table 1. Properties of soils at test sites.

Site Iden	Soil	Location	Internal Drainage of Test	Resistivity(a) (ohm - cm)				Col	nposition (Parts	of Wat per Mi	er Extra 11ion)	act		
			Site		На	TDS(b)	Ca	ВW	Na + K as Na	c0 ₃	нсо ₃	s04	IJ	N03
A	Sagemoor sandy loam	Toppenish, Wash.	Good	400	8.8	7,080	108	23	1,960	0.0	5,002	216	330	9
В	Hagerstown loam	Loch Raven, Md.	Good	12,600-34,760	5.3	(c)	,	•	ı	ı	ı	ı	ı	ı.
ပ	Clay	Cape May, N.J.	Poor	400-1,150	4.3	14,640	540	754	2,242	0.0	0.0	6,768	3,529	118
Q	Lakewood sand	Wildwood, N.J.	Good	13,800-57,500	5.7	(c)	ı	ı	·	ī	ı	ı	ı	ī
ω	Coastal sand	Wildwood, N.J.	Poor	1,320-49,500	7.1	11,020	302	329	3,230	0.0	55	1,133	5,765	31
ŋ	Tidal marsh	Patuxent, Md.	Poor	400-15,500	6.0	11,580	140	165	2,392	0.0	0.0	1,709	3,259	37
						(Milligr	am equ	ivalent	s per 100	grams	of soil)			
A			ı	ı	I		0.54	0.19	8.50	0.0	8.20	0.45	0.93	0.01
8	I	I	ı	I	ı	(c)	ı	ı	ı	I	ı	ı	ı	I
ပ	ı	ı	ı	ł	ı	ı	2.70	6.18	9.51	0.0	0.0	14.0	9.94	0.19
Q	ı	ı	I	I	ı	(c)	ı	I	ı	ı	ı	ı	ı	I
ш	ı	I	I	I	ı	ı	1.51	2.70	13.9	0.0	0.09	2.36	16.2	0.05
U	1	1	ı	ı	I	ı.	0.70	1.35	10.2	0.0	0.0	3.56	9.18	0.06
(6	Resistivity determinatio	ons made at the test	t site bv	Wenner's 4-Din meth	led [5]	excent f	or Site	A whe	re Shenar	d's car	ы [6] wa	pasit st		

(c) Analysis not made for soils at Sites B and D because of the very low concentration of soluble salts in these soils.

(b) TDS, total dissolved solids - residue dried at $105^{\circ}C$.

Table 2. Stainless steel systems in underground corrosion tests

System	Burial Year	Stainless Steel	Spec. Config. & Size ^(a)	Treatment(b)	Passivation(c) Procedure	Stressed(d)	Dec. Coupled To
1	197 1	26 Cr-1 Mo	Sheet (8"x12")		Ι		
2	u u	18 Cr (Ti)	u u n u	 VDU	I		
3		20 Cr-24 Ni-6.5 Mo	н н	ADW 	I		
5	н		0 0 0 0	S	Ĩ		
6	"	18 Cr-2 Mo 18 Cr-2 Mo (Nb)	n n		I		
8	1972	18 Cr-8 Ni(N)	u u		I		
9			n 0 n 11	XBW	I		
10	1972	26 Cr-6.5 N1 18 Cr-2 Mn (Nb)	n n	XBW	I		
12	"	10 01 2 10 (10)	Tube (2" 0Dx12")	HW	Î		
14	1971	Composite A	Sheet (8"x12")				
15		Composite C	н н				
17	н	26 Cr-1 Mo	Tube (2" ODx12")	HW	I		
18		18 Cr (Ti)	(1 1/8" 0Dx12")	HW	I		
20	U II	26 Cr-1 Mo	(778" UUx12") Sheet (1"x12")		I	(UU)	
21	н и	II.			Ι	U	
22		20 Cr-24 Ni-6.5 Mo	и и и и		İ	(00)	
23	н	н	н	S	I	UŬ	
25		18Cr-2Mo	19 18 14 11		Ι	(UU)	
26		19 (m-9 Ni/N)			I	U (111)	
28	н		н н		I	U	
30	и 11	26 Cr-6.5 Ni			Ι	U	
33 34		26 Cr-1 MO	н		ſ	U	Zn Ma
35	н	u	н н		Ī	Ŭ	Fe
36		26 Cr-6.5 Ni			I	U	Zn
37			0 0		l T	U	Mg
42	н	н	н н		Ī		Cu
50	1970	201	Sheet (8"x12")		I		
51	u .	202	u u		I T		
53	н	"	и и	S	Î(f)		
54	11 11	н 204	a n n n	XBW	I		
55 ·	п	304		5	1 I(f)		
57	11		Tube (2" ODx12")	HW(e)	I		
58 59		316	Sheet (8"x12")		I		
60	łi.	409	ни	5			
61	11 11	"		С			~ ~
62 63	н		lube (1-1/8" 0Dx12") Tube (7/8" 0Dx12")	HW	III		
64		410	Sheet (8"x12")		III		
65		430			II		
67	u	434 301	Sheet (1"x12")	 HH	I		
68		"	" "	НН	Ī	(UU)	
69 70	N N	"	11 D	HH+S	I(f)	UU	
71	н	n	11 II	FH	I		
72		304	11 II		Ī	U	
73			н н н н		I	(UU)	
75	н	н	и п	HH	I	(UU)	
76		"	0 U	S	I(f)	ÛŬ	
78		310	н н		I	U (UU)	
79	"	11	0 U	S	I(f)	UU	~-
80 81	H	434			I	U	
82	41	301	u u	 HH	I	(00)	 7n
83	41	u u	II II	НН	Î	Ŭ	Mg
84 85		11	n n	HH	I	U	Fe
86	н	11	н	FH	I	U	Zn Ma
87	11	"	11 u	FH	Ī	U	Fe
88		304			I	. U	Zn
90	н	п	п п		I	U	Mg
91		II 600	u u		Ī		Cu
92		409			III		Cu

Table 2 (Con't.)

- Key: S Sensitized (by heating at 1200°F for 2 hours, followed by air cooling and descaling in sodium hydroxide);
 XBW Cross bead weld (specified to be done in accordance with Welding Research Council recommendations. On half of these specimens, the welds were cleaned prior to exposure. The other half of the specimens were to be exposed "as welded".
 - HW Heliarc weld.
 - HFW High frequency weld;

 - C Coated; HH Half hard; FH Full hard.

(c)_{Passivation} procedure:

- I. 20 to 40% by volume of 67% nitric acid at 120-160°F for 20-30 minutes.
 II. 20% by volume of 67% nitric acid puls 2-6% sodium dichromate at 110-140°F for 20-30 minutes.
- III. 20 to 40% by volume of 67% nitric acid at 110-140°F for 20-30 minutes.

(d)_{Key}:

- -- = Unstressed. U = Single U-bend specimen; UU = Double U-bend specimen, not spot weld; (UU)= Double U-bend specimen joined by spot weld.

 $(e)_{\mbox{Welded}}$ with a full finish per ASTM Specification A249.

(f)_{Minimum} specified concentration of acid, temperature and time for sensitized materials.

	OTHERS	Co-0.09	A1<0.01,V-0.026	A1-0.13	A1-0.046,V-0.025		Nb-0.07,Pb-0.00		A1 < 0.01, v-0.054 Nb-0.47, A1-0.01 Ph-0.003		A1-0.048	
	ï			0.60		0.55						
	Cr	0.12	0.19 0.25 0.11	0.11	0.05		0.08	0.18	0.08		10.0	
	z	0.078 0.15	0.042 0.16		0.046	0.010	0.023	0.25	0.021			
	ଛା	0.15 0.22	0.17 0.40 0.15	2.28 0.12	0.76	0.94	6.50 2.15	0.26	0.04			
	N	5.10 5.13 7.1 7.23	9.80 9.11	13.53 0.61 0.67	0.32	0.10 0.49	23.61 0.15	8.15	6.2 0.28		0.28 0.28 10.2	
	ائ	16.76 17.50 16.1 17.43 16.98	18.2 18.45 17.6	17.48 10.75 11.22	12.53 16.67 18.2	26.18 18.22	20.41 18.90	19.29	26.5 18.54		16.86 16.86 17.3	
	۹	0.034 0.003 0.015 0.030	0.030 0.024 0.022	0.020 0.014 0.024	0.017	0.010 0.023	0.013 0.023	0.029	0.022 0.02		0.015 0.015 0.02 0.007	
eight %	ŝ	0.009 0.004 0.006 0.016	0.015 0.015 0.009	0.009	0.014 0.010 0.010	0.013	0.004 0.010	0.012	0.020 0.016		0.008 0.008 0.018 0.012	
	Si	0.47 0.41 0.49 0.34 0.54	0.68 0.68 0.64	0.53 0.57 0.44	0.44 0.14 0.50 0.43	0.21 0.40	0.81	0.36	0.40 0.78		0.31 0.31 0.48 0.009	
	Mn	6.90 8.05 1.1 1.02 0.86	0.82 1.0	1.62 0.47 0.51	0.41 0.55 0.46 0.42	0.01 0.32	1.73 0.91	1.64	0.49 0.91		0.16 0.16 1.26 0.32	
	اد ا	0.066 0.10 0.092 0.10	0.06	0.05	0.14 0.14 0.060 0.076	0.002 0.046	0.038 0.013	0.035	0.015		0.06 0.06 0.02 0.042	
	SYSTEMS	50 51 52,53,54 67,68,69,82,83,84 67,71 86 86 87	55,56,72,73,76,88,89,90,5 57 74,75	58,59,77,78,79 60,61,92 62	63 64 65,80,81	1,17,20,21,33,34,35 2.3.18	5. 4,5,19,22,23,24 6,25,26	8,9,27,28	10,30,36,37,38,42 7,11,12	رs(a): رs	14 15 16 14,15,16	-)
	Stainless <u>Steel</u>	Type 201 Type 202 Type 301 Type 301	Type 304 Type 304 Type 304	Type 316 Type 409 Type 409	lype 409 Type 410 Type 430 Type 434	26Cr-1Mo 18Cr(Ti)	20Cr-24Ni-6.5Mc 18Cr-2Mo	18Cr-8Ni(N)	26Cr-6.5Ni 18Cr-2Mo (Nb)	Composite Alloy	A Type 430 B Type 430 C Type 304 Carbon steel	-

Table 3. Cnemical analyses of non-ferrous constituents in stainless steels buried at various NRS underground test sites.

(a) A. Carbon Steel/430/Carbon Steel B. Galv. Steel/430/Galv. Steel C. Carbon Steel/304/Carbon Steel

Hardness	RB 92.5 RB 92.5 RB 92.5 RB 90.5 RB 85 RC 44 RC 28 RB 81 RB 88 RB 79 RB 78 RB 78 RB 88 RB 78 RB 88 RB 31 RB 31 RB 31 RB 31
Percent, Elongation in 2-in	52.5 64.0 64.0 25.0 25.0 26.0 26.0 37.0 37.0 37.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26
Yield Strength, Ksi(d)	53.0 52.0 52.0 42.1 38.1 38.1 38.1 38.1 38.1 38.1 374.7 41.3 44.9 60.0 44.7 44.9 61.3 55.3 56.3 56.3 56.3 56.3 56.3 56.3 56
Tensile Strength, Ksi(d)	103.5 100.6 120.1 107.9 162.0 147.0 203.0 203.0 203.0 203.0 203.0 85.3 86.9 85.3 86.9 85.3 86.9 81.0 70.7 70.7 70.7 70.7 71.0 79.5 79.5 79.8 71.0 79.8 71.0 79.8 71.0 79.8 71.0 79.8 81.0 83.8 81.0 81.0
System	50 51 52 53 67,68,82,83,84 69,82,86,87 54 56,76 74,75 56,76 74,75 56,76 74,75 59,79 60,92 60,92 60,92 60,81 1 1 1 20,21,33,34,35 20,21,33,34,35 4,15,19,22,23,24 10,30,36,37,38,42 6,25,26 7,11,12
Treatment ^(b)	5 Mo
Alloy Designation	Type 201 Type 202 Type 301 Type 301 Type 301 Type 301 Type 301 Type 304 Type 409 Type 409 Type 409 Type 409 Type 409 Type 409 Type 409 Type 400 Type 400 Typ

Table 4. Mechanical properties^(a) of stainless steels studied in this investigation

(a) Properties are as furnished by supplier
(b) All materials were in the annealed condition unless otherwise noted.
(c) Welded with a full finish per ASTM Specification A249.
(d) 1 Ksi = 6.8948 MPa.

Table 5. Summary of results^(a) obtained from visual examination of stainless steel sheet specimens buried in the soils at the NBS soil corrosion test sites. Specimens of System Nos. 1 through 6, 8, 10, 14, 15, and 16 were buried for approximately 3 years. System No. 7 was buried for approximately 2 years while others were buried for approximately 4 years.

System	Stainless	Specimen Type	Test	Result	s of Visual Examinatio	n of Specimens (d)
	51001	und medalene	(c)	Exposed 1 year	Exposed 2 years	Exposed 4 years
Exposed	in 1970					
50	Туре 201	Sheet, annealed	A B C D E G	N T,P,H IP H,P,T A,P,IP,Et(sli)	N RS P(F,E),T,IP P,IP H,T,P,IP,Et(sli) H(E),P,A(sev),IP	N RS H,P,T N H,T(E,F),P P+T(E,AE)
51	Туре 202	Sheet, annealed	A B C D E G	N N T,P,H IP H,T(E),P,IP P,IP	IP RS H,P(F,E),T,IP DS H,P,T,IP,IF P,IP	DS DS+RS(sli) H,P,T,RS DS H,P,T,RS H,P,RS,DS,IP
52	T y pe 301	Sheet, annealed	A B C D E G	N IP T,P,IP IP H P,T(E),IP	IP RS H,P(F,E),IP IP H,P,T,IP T,P,A+Et(sev),IP	N DS(sli) H,P,T(E,AE) RS+DS(sli) H,P+T H,P,RS,IP
53	Туре 301	Sheet, sensitized	A B C D E G	IP,Et IP(E) P,Et IP(E) A(E),P(E,AE),IP,Et Et(mod-sev),P,IP	Et(E),P,IP P(s1i),IP Et(sev),P(F,E),IP P,B1,IP Et(sev),B1,A(E),P,IP H,A+Et(sev),P,IP	P(s1i),IP,RS,DS,B1 RS,DS H,P,A(sev-mod) B1,P,IP,Et,A(E) P(AE,F),B1,Cr,RS,IF P+DS,IP
55	Туре 304	Sheet, annealed	A B C D E G	N N H,T,IP IF H,P,IP H(E),P,IP,Et(sev)	IP RS T,P,IP N H,T,P,IP A(sev),P,IP	DS N H,P+T(E,AE),Et DS H,T+P" P,Et,DS,RS
56	Туре 304	Sheet, sensitized	A B C D E G	Et[E(s1i)],IP Et(s1i),IP H,T(E),P IF H,P,IP H(E),P,IP	P(s1i),IP N H,P(E,AE),T,A(E),IP T,P(E,AE),IP,B1 H,T,P,IP H,A,P,IP,Et(sev)	Et(sli),IP Et(mod) H,P,A(sev),IP Et,P(AE),T(E,AE),B1 H,T,P,Et,RS A(sev),P+Et(sli),IP,Et
58	Туре 316	Sheet, annealed	A B C D E G	N N Et,IP N A+T(E),P(E,F) IP	IP N IP N H,T,P,IP IP	RS(sli) DS(sli) P(E),RS N H,P(E,AE) N
59	Туре 316	Sheet, sensitized	A B C D E G	IP(E) N P(E,F),H(E) IP P(E) P(E)	P(sli),IP DS A+P(E),T,Et(sli) N P,A(E),Et(sli) P,IP,Et(sli)	P(sli), IP, RS, Et Et, RS P, A(E), Et Et, P, DS A(E), T(E, F), RS, IF IP, P, RS
60	Туре 409	Sheet, annealed	A B C D E G	IP N P,H(E),Et(sev) IF,RS H,T(E,F),P H,Et(sev),P,IP	N P(sli) H,P,Et(sev),T,IP P,T H,T(AE,F),P,IP,Et(sMi H,P,A(sev),Et,IP	H,P(E,AE,F),DS DS,RS H,P(E,AE,F),A,RS,IP H,P(E,AE,F),T,Et)H,T(E,AE,F),RS,IF H,P(E,AE,F),A(sev)

<u></u>	CA inland	Consistent Turne	Test	Table 5 (Cont'd.)	c of Visual Examinatio	n of Specimens (d)
System	steel	and Treatment	Site	Exposed 1 year	Exposed 2 years	Exposed 4 years
61	Туре 409	Sheet, painted	A B C D E G	N N N N N N N	N N N N N N	N N N RS(c) N
61	Туре 409	Sheet, painted and scored	A B C D E G	RS(s) RS(s) RS(s,c) c,RS(s) c,RS(s) RS(s)	N RS[s(s]i)],U RS[s(s]i)] P+RS(s),U,B1 P+RS(s),U,B1	RS(s) N RS(s) B1+U(s) RS(s) RS(s)
64	Туре 410	Sheet, annealed	A B C D E G	P+IP(E,F) IP H,P,IP H,P,T,IP H(E)T Et(sev),H,P,IP	T,P,A(E) N H,P,Et(sev),A,IP H,T,P,A(E),Et(sev),IP H,T,P,IP H,A+Et(sev),P,IP	H,P(E,AE,F),DS,IP P,IP,RS H,P(E,AE,F),Et+A(sli) H,T(E,AE,F),P(E,F),A(E) H,T(E,AE,F),P,RS,DS H,P(E,AE,F),A(sev)
65	Туре 430	Sheet, annealed	A B C D E G	Et(sli),IP N H(E) IF H,T,IP H,Et(sev),P,IP	IP N H,P,T,Et T(F) H,T,P,IP H,P,A+Et(sev),IP	P,T,IP IF H,P(E,AE,F),Et(sli),A(sev) H,T(E,AE,F),P H,P+T(E,AE,F),IP,RS H,P(E,AE,F),A(sev),IP
66	Туре 434	Sheet, annealed	A B C D E G	N IP H(E) N H,P,IP H(E),P,IP	IP N H,P,T,IP P(F),IP(E) H,T,P,IP H,P,A+Et(sev),IP	N N H,P(E,AE,F),T(E,AE),Et,IP H,T(AE),P(AE,F) H,P,T(E,AE,F),RS P(E,AE),Et(sli),RS
Exposed	<u>in 1971</u>					
1	26 Cr-1 Mo	Sheet, annealed	A B C D E G	IP N IP(E) IP Et(sli),IP	N RS IP,RS Et(sli) N N	DS DS P,RS,IP,IF RS IF,RS N
2	18 Cr(Ti)	Sheet, annealed	A B C D E G	P(sli),IP N H,P,Et,IP P(AE),T,IP H,P,T H,P,A+Et(sev),IP	N Et(sli),RS Et,P(E,F),IP,RS N H,P(E,AE,F),T H,P(E,AE,F),Et,IP	Et(sli),P,RS DS H,P(E,F),Et(sli),IP RS H,P(E,AE,F),IP P,A(sev),IP,RS
4	20 Cr-24 Ni- 6.5 Mo	Sheet, annealed	A B C D E G	IP N IP(E) N N N	N Et(sli),RS N Et(sli),RS N N	DS N N RS N RS
5	20 Cr-24 Ni- 6.5 Mo	Sheet, sensitized	A B C D E G	IP N IP IP A(E) P(E),Et(sli),IP	N N Et(sli),IP,RS Et(sli) Et(sli) Et(sli)	DS DS Et(sli),P(E),RS IF,DS DS Et(sli),DS
6	18 Cr-2 Mo	Sheet, annealed	A B C D E G	IP IP T,P(E,F),IP N H,P,IP H,T,A,P,IP	N N RS Et(sli) H,P(E,AE,F),RS H,P(E,AE,F),Et	DS DS,IF P(AE),RS,DS RS,IF H,P(E,AE,F) P(E),RS,DS

System	Stainless steel	Specimen Type and Treatment	Test Site (c)	<u>Result</u> Exposed 1 year	ts of Visual Examination Exposed 2 years	n of Specimens (d) Exposed 4 years
8	18 Cr-8 Ni(N)	Sheet, annealed	A B C D E G	IP N IP N P(E) P(E,F),IP	N RS P,IP,RS Et(sli) P(E) H,P,T(E,AE),Et,IP	N DS,IF P(E),RS,IF DS H,P(E,AE),RS,IF A(mod),Et(sli),IP
10	26 Cr-6.5 Ni	Sheet, annealed	A B C D E G	P(sli),IP N H,T,P,IP N H,P,IP H,P,A+Et(sev),IP	P[sli(AE)] RS H,T(E),P,IP IP H,P,T(E,AE,F),IP H,P,T(E,AE),IP	DS DS H,P(E,AF,F),Et(sli) N H,P(E,AE,F),IP P,IP,DS,RS
14	Composite A	Sheet, hot rolled and pickled	A B C D E G	Et(sev),P Et(sev),P,IP Et(sev),P Et(sev),P Et[E+F(sev)] Et(sev),B1,P(AE)	P,Et[(sev)AE,F] P,Et[(sev),AE,F],A(E) P,Et(AE,F),A(E) P,Et(AE,F) P,Et(AE,F) P,Et(AE,F) P,Et(AE,F),A(E)	P(E,AE,F),Et P(E,AE,F),Et P(E,AE,F),Et RS,P(E,AE,F),Et RS,P(E,AE,F),Et P(E,AE,F),Et
15	Composite B	Sheet, hot- dip zinc coated (4.5 oz/sq. ft Zn)	A B C D E G	N N N A[F(s1i)] P(F),F1(E,AE)	N,c N N N P[F(sli)]	N N N A[F(sli)] A[F(sli)]
16	Composite C	Sheet, hot rolled and pickled	A B C D E G	Et(sev),P(AE,F) Et(sev),P Et(sev),P Et(sev),P Et(sev),P Et(sev),P Et(sev),P	P,Et(AE,F) P,Et(AE,F),A(E) P,Et(AE,F) P,Et(AE,F) P,Et(AE,F) P,Et(AE,F)	P(E,AE,F),Et P(E,AE,F),Et P(E,AE,F),Et,RS RS,P(E,AE,F)Et RS,P(E,AE,F)Et P(E,AE,F),Et
Exposed	<u>in 1972</u>					
7	18 Cr-2 Mo(Nb)	Sheet, annealed	A B C D E G	N N N P,IP N	P,DS DS P(E,AE),RS,IF N P(AE,F),RS P(E,F)	

Table 5 (Con't.)

(a) Results given for each system at each of the six soil test sites are a summary tabulation for four individual specimens.

(b) Specimen dimensions and treatment for each system are given in Table 2.

(c) Properties of the soils for each of the test sites are given in Table 1.

(d) Abbreviations used:

A- Metal attack AE- Adjacent to edge B1- Blisters BS- Black stain c- Coating chipped cr- Specimen cracked DS- Dark stain E- Edge Et- Etched F- Face F1- Coating flaked H- Perforation IF- Iridescent film IP- Incipient pitting mod- Moderate N- No apparent attack P- Pitting RS- Rust stain s- Scored area sev- Severe sli- Slight T- Tunneling U- Undercutting

					site	s for	up to 4 years.								
System	Stainless Steel	Material and Treatment	Test Site (c)	Body or Face	Cap	End or Edge	(e) Meld	Body or Face	Cap	End or Edge	Weld ^(e)	Body or Face	Cap	End or Edge	Weld (e)
Exposed	in 1970			EXIO	sure Time	, l Ye	ar		Exposure Time	, 2 Years		Εŭ	posure Time, 4	4 Years	
54	Type 301	Sheet with cross-bead weld	< auaus	N N N Y I Y	NNN NNA NNA NNA NNA NNA	ZZAZZA	N N N N P(W,AW)	IP IP P N H,T,P,IP P,Et(sev),IP	N/A N/A N/A A/N A/N A/A A/N	P(AE) P N P	P(AW) RS(M_AW) P(M,AW) P(AW) P(AW) P+A(M,AW)	N DS,IF H,P RS A(sev),P	N/A N/A A A A A A A A A A A A A A A A A	N P+T(E,AE) N P+T(E,AE) A(sev)+P	N P(W,AW) P+RS(W) RS(W) A(sev),P(W,Ab
57	Type 304	Tube with heliarc weld- ed seam (2-in ° 0D)	< a u	Et(sli) Et(sli) Et(sli) Et(sli) Et(sli) Et(mod to sev) Et(mod),P,IP	ZZZZZZ	ZZZZZ	222222	Et Et(s i) P Et(sli) Et(sev),P,IP P,Et(sli),IP	Et(UC) P(UC,AC),A(UC) P(AC,UC) P(AC,UC)	ZZZZZZ	N (MA, MA) N P(W) P(W)	P,Et(sli) Et(sli),RS P,RS P,RS	P(AC) N P(AC),Et(UC) RS(UC) P+Et(AC,UC)	222 2 22	P(AW) N N P(AW)
62	Type 409	Tube with heliarc weld- ed seam (1-1/8-in OD)	< BODMG	- P,IP N H H,P H,Et+A(sev),P	P+IP(UC) N N N N N	ZZZZZ	(M) PI	Et(sli),IP P,IP H,P,Et,IP P,Et(sli),IP H,P,Et(sli),IP H,P,Et(sli),IP H,P,A(sev),Et,IP	N H+P(AC,UC) H+P(AC,UC) H+P(AC,UC)	ZZZZZZ	IP(AW) N P(W) P(W) N P(W,AW)	H.P.T.Et Et.IF H.P.Et.IP H.P.Et.IP H.P.T.IP H.P.IP	P+T(AC) N P(AC,UC) P+T(AC,UC) P+T(AC,UC)	Z Z Z Z Z Z	и N N N P(W,AW)
63	Type 409	Tube with high frequency weilded-seam (7/B-in 0D)	< B い D E G	Et,P N H,P,IP H,P,IP H,A(sev),P	IP(AC) N N N P(AC)	ZZZZZ	IP(W) N N (M) N N N	IP P.IP H.P.Et.IP H.P.Et(sli),IP H.T.P.IP H.P.A(sev),Et	N H(AC) H+P(AC,UC) H+P(AC,UC)	A ZZZZZ	IP(AW) EP(W_AW) H(W),P(W,AW) H+P(W,AW) H+P(W,AW) H+P(W,AW)	Н,Р,Т N N H,Р,Et H,Р,IP H,Р,IP	P(AC) N P(AC,UC) P(AC) P(AC) P(AC)	222222	P(AW) N P(W,AW) P(W,AW) P(W,AW) P(W,AW)
Exposed	in 1971			Expo	sure Time	1 1	ar		Exposure Time	, 2 Years			Exposure Time,	3 Years	
E E	3 Cr(Ti)	Sheet with cross-bead weld	< B C D M G	IP,Et N P,T,IP H,P,IP H,P,IP	N/N N/A N/A N/A A N/A A N/A A A N/A A A A	н, ^р " т	N N P (W, AW) P (W, AW) P (W, AW) P (W, AW)	P N P,Et(Sli),IP N H,P,Et,IP P,Et,T	NNN NNA NNA NA NA NA NA	N N P N P(AE,E) P(AE,E)	N N N N N N N N N N N N N N N N N N N	P.RS.DS DS H.P.Et.IP DS,IF H.P.DS.IF RS	N/A N/A N/A N/A N/A N/A	N P(E,AE) P(E,AE) P(E,AE) P(E)	N N N N P(W) P(W)
6	3 Cr-B Ni(N)	Sheet with cross-bead weld	< BODWG	IP RS A,P N P,T,Et P,Et,IP	N/A N/A N/A A N/A A N/A A A N/A	ZZZZZd	Et(W), IP(AW) Et(W) Et+P(W), IP(AW) Et(W), IP(AW) P(W,AW), H(AW) P+Et(W), IP(AW)	N RS Et(sli) Et(sli) P	NNNA NNA NNA NNA NA NA	N N Et(AE) N P(AE,E)	RS(W) P(W,AW),Et(AW) P(W,AW) Et(W,AW)	N DS H,Et(sev) RS H,RS Et(sli),RS	N/N N/A A/N N/A A/N A/A A/N A/A	ZZZZĄZ	N N N N P (W,AW) P (W,AW)
17 2	6 Cr-1 Mo	Tube with heliarc weld- ed seam (2-in OD)	A B C D H G	ZZZZZA	N N N P(UC) RS(AC)	<u> </u>	ZZZZZZ	22 2222	P(AC,UC),RS(UC P+Et(UC) P(UC)	NUZNZZ	ZZZZZ	DS Et(sli),DS RS,IP N P,IF P,IF	N P+Et[(sev)UC] P+Et[(sev)UC] P+Et[(sev)UC]	P(E)	Z Z Z Z Z Z

Summary of results (a) obtained from visual examination of welded stainless steel sheet and tube specimens buried in the soils at six NBS soil corrosion test Table 6.

{

	le1d ^(e)	N N N N N N N N N N N	zzzzz			
	3	4) d				
	End or Edge	z z z z z z	222222			
	Cap	P(AC) N N P(AC)	2 2 Z Z Z Z Z			
	Body or Face	Et(sli) H,P N H,P,I H,P,IP	222222			
	Weld(e)	P(W,AW) N N N N	Z Z Z Z Z Z		N P(W,AW) P(W,AW) P(W,AW)	P(AW) N P(AW) N
	End or Edge	222222	ZZZZZZ		N N P(E) N N	ZZ ZZZZ
	Cap	N H+P(AC) N P(UC) H,P+Et(AC)	N N RS(AC)		A A A A A A A A A A A A A A A A A A A	N N N P(AC,UC) IP(AC,UC)
	Body or Face	T, T, T, T, T, T, T, T, T, T, T, T, T, T	×SS SS×××		DS N H,P,Et(sev) RS,IF H,P,IF P,RS	P, IP S, DS
(Con't.)	Weld ^(e)	N N N N H+P(W,AW)	ZZZZZZ		N N P(W,AW) P(W,AW) P(W,AW)	222222
able 6.	End or Edge	ZZZZZZ	zzzzz		-	222222
-	Cap	N N H+P(AC) N H(AC)	222222		ANNNNN ANNNN AANNNN AANNNN	P(UC)
	Body or Face	N P,IP,Et P,IP H,P,Et,IP	z z ñ ñ n z z		K N Et(sli) P N	222222
	Test Site (c)	о С С С В В С В В С В В В В В В В В В В	ч а о о ш о Т		< aoouo	≺ œ ∪ ⊆ ш ७ ¦
	Material and Treatment	Tube with heliarc weld ed seam (1-1/8-in Of	Tube with heliarc wel ed seam		Sheet with cross-bead weld	Tube with heliarc wel ed seam
	Stainless Steel	18 Cr(Ti)	20 Cr-24 Ni- 6.5 Mo	in 1972	18 Cr-2 Mo(Nb)	18 Cr-2 Mo(Nb)
	System	38	19	Exposed	=	12

(a) Results given for each system exposed at the six soil test sites are a summary tabulation for 4 individual specimens.

(b) Specimen dimensions and treatment for each system are given in Table II.(c) Properties of the soils are given in Table I.(d) Abbreviations used:

UC-undercap W-weld

mod-moderate N-no annarent attack	N/A-not applicable	P-pitting RS-rust stain	sev-severe	SI1-SI1gnt T-tunneling	
A-metal attack AC-adiarent to ran	AE-adjacent to edge	AW-adjacent to weld E-edge	Et-etched	H-pertoration IP-incipient pitting	

(e) W or AW do not necessarily signify that more severe attack occurred in the weld than in the parent metal.

Syst e m*	Material	Treat- ment (a)	Exposure, Time, Days	Avera <u>Weig</u> mg	ge ^(b) nt Loss mg/dm ²	<u>Pit E</u> Maximum	Depth, mils ^(d) Average of 5 Deepest (e)
Exposed	in 1970						
50	Type 201		413 791 1442	4 	 <1		
51	Туре 202		413 791 1442			 IP 	
52	Type 301		413 791 1442			 <5 	
53	Type 301	S	413 791 1442	68 201 1247	6 15 98	IP <5 <5	
54	Туре 301	XBW	413 791 1442	2 2	<] <] 	 <5 	
55	Туре 304		413 791 1442	2 	 <]		
56	Туре 304	S	413 791 1442	285 256 618	21 21 49	 <5 	
57	Туре 304	ΗW	413 791 1442	1 	<] 	 18	
58	Туре 316		413 791 1442	3 	<] 		
59	Туре 316	S	413 791 1442	20 86 384	2 6 12	IP <5 7	

Table 7. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Sagemoor Sandy Loam (Site A) for up to Four Years

System*	Material	Treat-	Exposure.	Aver Weig	age ^(b) ht Loss	Pit	Depth. mils ^(d)
ey e een		ment (a)	Time, Days	mg	mg/dm ²	Maximum	Average of 5 Deepes (e)
60	Туре 409		413 791 1442	6 6 150	<1 <1 12	29 <5 Н	 H
62	Туре 409	ΗW	413 791 1442	186 101 32	73 40 12	IP H	
63	Type 409	HFW	413 791 1442	187 149 75	95 88 37	IP <5 H	 H
64	Type 410		413 791 1442	3510 82 8843	281 6 705	48 20 H	 7 Н
65	Туре 430		413 791 1442	4 10 66	<1 1 6	 IP 22	
66	Туре 434		413 791 1442	4 2	<1 <1 	 IP 	
Exposed	in 1971						
1	26 Cr-1 Mo		496 860 1147	2	<1 	IP 	
2	18 Cr(Ti)		496 860 1147	10 2 1	 <] <]	IP <5	
3	18 Cr(Ti)	XBW	496 860 1147	1 4 4	<] <] <]	<5 <5	
4	20 Cr-24 Ni- 6.5 Mo		496 860 1147	4 1 1	<] <] <]	IP 	
5	20 Cr-24 Ni- 6.5 Mo	S	496 860 1147	¹	<1 	IP 	
6	18 Cr-2 Mo		496 860 1147	3 1	<] <]	IP 	

Table 7 (Con't.)

	1	L 1	۱.
	1	h.	1
	· ·		

				Avera	age		
System*	Material	Treat- ment (a)	Exposure,	Weig	ht Loss	Pit I	Depth, mils ^(d)
			DDays	mg	mg/dm ²	Maximum	Average of 5 Deepest (e)
8	18 Cr-8 Ni(N)		496 860 1147	 		IP 	
9	18 Cr-8 Ni(N)	XBW	496 860 1147	20 2	2 <1	IP 	
10	26 Cr-6.5 Ni		496 860 1147	 3	<1 <1	<5 < 5	
14	Composite A ^{(c})	496 860 1147	81500 116350 165175	6412 9154 12995	N/A N/A N/A	
15	Composite B ^{(C}	^{;)} HDZ	496 860 1147	9075 21975 27875	714 1729 2193	N/A N/A N/A	
16	Composite C ^{(C}	:)	496 860 1147	83775 112175 149075	6591 8825 11728	N/A N/A N/A	
17	26 Cr-1 Mo	HW	496 860 1147	11 	3 	<5 16	
18	18 Cr(Ti)	ΗW	496 860 1147	 4	 2		
19	20 Cr-24 Ni- 6.5 Mo	HW	496 860 1147		 		
Exposed	in 1972						
7	18 Cr-2 Mo(Nt)	364 651	4	<]	<5	
11	18 Cr-2 Mo (Nb)	XBW	364 651	13	1		
12	18 Cr-2 Mo (Nb)	HW	364 651	8	2	<5	

.

Table 7 (Con't.)

*Systems 12, 17, 18, 19, 57, 62, and 63 were tube specimens fabricated from sheet material, welded at the seams and then plugged and capped at each end to minimize internal corrosion. Specimens of all other systems were flat sheet material.

(a) All materials were in the annealed condition unless noted otherwise. Abbreviations used:

S-sensitized	HFW-high frequency weld
XBW-cross-bead weld	HDZ-hot-dip zinc coated (galvanized,
HW-heliarc weld	4.5 oz/ft^2) after bonding. See
	footnote (c)

- (b) Average for four specimens.
- (c) All composites were metallurgically bonded. Composite A-Carbon steel/Type 430/Carbon steel. Composite B-Carbon steel/Type 430/Carbon steel. Composite C-Carbon steel/Type 304/Carbon steel.
- (d) 1 mil = 0.025 mm. IP incipient pitting. H perforated. N/A not applicable
- (e) Average of five deepest pits on each of four individual specimens unless noted otherwise.
- (f) Average of ten deepest pits on each of four individual specimens.

		Hagers	stown Loam (Site B) for up	to Four Ye	ears	
System*	Material	Treat- ment (a)	Exposure, Time, Days	Aver <u>Weig</u> mg	age ^(b) ht Loss mg/dm ²	<u>Pit [</u> Maximum	Depth, mils ^(d) Average of 5 Deepe	est
Exposed	in 1970							
50	Type 201		371 736 1513	 6	<]			
51	Туре 202		371 736 1513	1 	 <]		' 	
52	Туре 301		371 736 1513					
53	Туре 301	S	371 736 1513	23 43 206	2 3 15	IP 		
54	Туре 301	XBW	371 736 1513			 		
55	Туре 304		371 736 1513					
56	Туре 304	S	371 736 1513	814 690 707	64 55 55			
57	Туре 304	Η₩	371 736 1513					
58	Туре 316		371 736 1513	 3	<1			
59	Туре 316	S	371 736 1513	 36 361	 3 21			

Table 8. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Hagerstown Loam (Site B) for up to Four Years

1

			_	Averag	e ^(b)		(b)	
System*	Material	Treat- ment (a)	Exposure, Time, Days	<u>Weight</u> mg m	Loss g/dm ²	<u>Pit l</u> Maximum	Average of 5 Deepe	est
60	Туре 409		371 736 1513	 4 	 <]			
62	Туре 409	HW	371 736 1513	1 1 	<1 <1 	 IP 		
63	Туре 409	HFW	371 736 1513	1 2 	<1 1 	 IP 		
64	Туре 410		371 736 1513	1474 1207 72	116 98 6			
65	Туре 430		371 736 1513	13 13 	1 1			
66	Туре 434		371 736 1513	4 6	<] <] 			
Exposed	in 1971							
1	26 Cr-1 Mo		394 777 1170	² 1	<1 <1			
2	18 Cr(Ti)		394 777 1170	12 	¹			
3	18 Cr(Ti)	XBW	394 777 1170	 2	 <1			
4	20 Cr-24 Ni 6.5 Mo		394 777 1170	7	<1 			
5	20 Cr-24 Ni 6.5 Mo	- S	394 777 1170				 	
6	18 Cr-2 Mo		394 777 1170	 6	< <			

Table 8 (Con't.)

1.5

			. ,	Aver	age ^(D)			
System	* Material	Treat-	Exposure,	Weig	ht Loss	<u>Pit D</u>	epth, mils ^(d)	
		ment (a)	Time, Days	mg	mg/dm ²	Maximum	Average of 5 (e)	Deepest
8	18 Cr-8 Ni(N)		394 777 1170					
9	18 Cr-8 Ni(N)	XBW	394 777 1170					
10	26 Cr-6.5 Ni		394 777 1170			·		
14	Composite A ^(c)		. 394 777 1170	66575 87425 100400	5238 6878 7899	N/A N/A N/A		
15	Composite B ^(c)	HDZ	394 777 1170	10175 5875 4275	800 462 336	N/A N/A N/A		
16	Composite C ^(c)		394 777 1170	78333 107350 110900	6163 8445 8725	N/A N/A N/A		
17	26 Cr-1 Mo	ΗW	394 777 1170	4 	1 	=		
18	18 Cr(Ti)	ΗW	394 777 1170	22	1 1			
19	20 Cr-24 Ni- 6.5 Mo	HW	394 777 1170			 		
Exposed	1 in 1972							
7	18 Cr-2 Mo(Nb)		• 395 801	 1	 >			
11	18 Cr-2 Mo(Nb)	XBW	395 801	8	 <]			
12	18 Cr-2 Mo(Nb)	HW	395 801	3	 <]			

Table 8 (Con't.)

*Systems 12, 17, 18, 19, 57, 62, and 63 were tube specimens fabricated from sheet material, welded at the seams and then plugged and capped at each end to minimize internal corrosion. Specimens of all other systems were flat sheet material.

(a) All materials were in the annealed condition unless noted otherwise. Abbreviations used:

S-sensitized XBW-cross-bead weld HW-heliarc weld HFW-high frequency weld HDZ-hot-dip zinc coated (galvanized, 4.5 oz/ft²) after bonding. See footnote (c).

- (b) Average of four specimens.
- (c) All composites were metallurgically bonded. Composite A-Carbon steel/Type 430/Carbon steel. Composite B-Carbon steel/Type 430/Carbon steel. Composite C-Carbon steel/Type 304/Carbon steel.
- (d) 1 mil = 0.025 mm. IP incipient pitting. N/A not applicable.
- (e) Average of five deepest pits on each of four individual specimens unless noted otherwise.
- (f) Average of ten deepest pits on each of four individual specimens.

		В	uried in Cla	y (Site	e C) for ι	up to Foun	r Years	
				Aver	age ^(b)			
S ystem*	Material	Treat-	Exposure,	Weig	ht Loss	Pit	Depth, mils ^(d)	
	ment (a)	Days	mg	mg/dm ²	Maximum	Average of 5 (e)	Deepest	
Exposed	in 1970							
50	Type 201		377 727 1463	797 902 1242	64 73 98	H H H	 H	
51	Type 202		377 727 1463	509 686 435	40 55 34	H H H	н Н	
52	Туре 301		377 727 1463	193 529 405	15 43 34	20 H H	 Н Н	
53	Туре 301	S	377 727 1463	3672 12951 14163	293 1031 1128	48 19 H	15 14	
54	Туре 301	XBW	377 727 1463	384 395 522	30 30 43	63 16 H	 6 Н	
55	Type 304		377 727 1463	326 635 4013	24 49 320	H H H	 H	
56	Туре 304	S	377 727 1463	768 1774 8022	61 140 637	H H H	 Н	
57	Туре 304	ΗW	377 727 1463	 89 223	 21 55	16 7	 5 6	
58	Туре 316		377 727 1463	2 6 6	<1 <1 <1	 63		
59	Туре 316	S	377 727 1463	596 735 988	49 58 79	H T 120(T)		

Table 9. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Clay (Site C) for up to Four Years

ĥ

	4			Aver	age ^(b)		
System	* Material	Treat-	Exposure,	Weig	ht Loss	Pit	Depth, mils ^(d)
		(a)	lime, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest (e)
60	Type 409		377 727 1463	6335 5468 10349	503 436 824	H H H	 H
62	Type 409	ΗW	377 727 1463	832 2852 3950	332 1138 1574	H H H	H(f) H
63	Туре 409	HFW	377 727 1463	1255 2176 4226	644 1116 2166	18 Н Н	 H H
64	Type 410		377 727 1463	7068 15991 30574	563 1274 2434	30 H H	 H
65	Type 430		377 727 1463	4755 5102 8978	379 406 715	H H H	 H H
66	Type 434		377 727 1463	541 955 1614	43 76 129	H H H	H(f) H
Exposed	1 in 1971						
1	26 Cr-1 Mo		350 730 1086	13 	¹ 	IP IP <5	
2	18 Cr(Ti)		350 730 1086	1016 652 227	81 52 18	H 42 H	
3	18 Cr(Ti)	XBW	350 730 1086	582 163 101	46 13 8	H 24 H	
4	20 Cr-24 Ni- 6.5 Mo		350 730 1086	10 	<1 	IP 	
5	20 Cr-24 Ni- 6.5 Mo	S	350 730 1086	33 14	³ 1	IP IP 22	
6	18 Cr-2 Mo		350 730 1086	32 6 1	2 <1 <1	<5 7	

Table 9 (Con't.)

Sustam*	Matonial	Treata	Exposure	Aver	age ^(b)	Pit Depth mils(d)		
Sy's cent	Material	ment (a)	Time, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest (e)	
8	18 Cr-8 Ni(N)	350 730 1086	² 5	<] <]	IP <5 50		
9	18 Cr-8 Ni(N) XBW	350 730 1086	529 552 554	42 44 44	141 10 H		
10	26 Cr-6.5 Ni		350 730 1086	441 330 132	35 26 10	H H H	 Н Н	
14	Composite A ⁽	c)	350 730 1086	3 9 200 60975 133000	3084 4797 10463	N/A N/A N/A		
15	Composite B ⁽	c) _{HDZ}	350 730 1086	56825 57950 80600	4470 4559 6341	N/A N/A N/A		
16	Composite C(c)	350 730 1086	41000 59175 126100	3226 4655 9920	N/A N/A N/A		
17	26 Cr-1 Mo	ΗW	350 730 1086	 58	 14	 <5 35	 7	
18	18 Cr(Ti)	ΗW	350 730 1086	121 44 81	48 18 32	H H H	н Н Н	
19	20 Cr-24 Ni- 6.5 Mo	HW	350 730 1086	1 	 <]			
Exposed	in 1972							
7	18 Cr-2 Mo (Nb)		380 736	6	 <]	<5 <5		
11	18 Cr-2 Mo (Nb)	XBW	380 736	60 136	5 11	<5 H(T)		
12	18 Cr-2 Mo (Nb)	ΗW	380 736	 160	39	 7		

Table 9 (Con't.)

*Systems 12, 17, 18, 19, 57, 62, and 63 were tube specimens fabricated from sheet material, welded at the seams and then plugged and capped at each end to minimize internal corrosion. Specimens of all other systems were flat sheet material.

(a) All materials were in the annealed condition unless noted otherwise. Abbreviations used:

S-sensitized	HFW-high frequency weld
XBW-cross-bead weld	HDZ-hot-dip zinc coated (galvanized,
HW-heliarc weld	4.5 oz/ft^2) after bonding. See
	footnote (c).

- (b) Average for four specimens.
- (c) All composites were metallurgically bonded. Composite A-Carbon steel/Type 430/Carbon steel. Composite B+Carbon steel/Type 430/Carbon steel. Composite C-Carbon steel/Type 304/Carbon steel.
- (d) 1 mil = 0.025 mm. IP incipient pitting. H perforated. T tunneling. N/A - not applicable.
- (e) Average of five deepest pits on each of four individual specimens unless noted otherwise.
- (f) Average of ten deepest pits on each of four individual specimens.

Table 10. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Lakewood Sand (Site D) for up to Four Years

System*	Material	Treat-	Exposure,	Avera	age (b) ght Loss	Pit (Depth, mils ^(d)
0,000		ment (a)	Time, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest (e)
Exposed	in 1970						
50	Type 201		377 727 1463	3 9 	<1 <1 	IP 40	
51	Туре 202		377 727 1463	 9	 <1	 	
52	Туре 301		377 727 1463	1	 <1 	IP IP	
53	Туре 301	5	377 727 1463	272 1121 1499	21 88 119	 30	 7
54	Туре 301	XBW	377 727 1463	2	<1 <1 	 IP <5	
55	Туре 304		377 727 1463	21 7 	2 <1 	IP 	
56	Туре 304	S	377 727 1463	297 740 1243	24 59 99	н 57	
57	Туре 304	HW	377 727 1463			 8	
58	Туре 316		377 727 1463	1 	<1 		
59	Туре 316	S	377 727 1463	127 172 179	10 14 14	 <5	

Table 10 (Con't.)

-

				Ave	erage ^(b)		
System*	Material	Treat-	Exposure,	Wei	ght Loss	Pit I	Depth, mils ^(d)
		(a)	Days	mg	mg/dm ²	Maximum	Average of 5 Deepest (e)
60	Туре 409		377 727 " 1463	3 264 620	<1 21 49	 54 Н	 H
62	Type 409	ΗW	377 727 1463	1 5 83	<1 2 34	21 H	 н
63	Type 409	HFW	377 727 1463	10 44 10	6 21 6	H H H	 H
64	Type 410		377 727 1463	160 1159 920	12 92 73	H H H	 H
65	Туре 430		377 727 1463	2 29 186	<1 2 15	 18 H	 H
66	Type 434		377 727 1463	3 8 56	<1 <1 3	 56 Н	 H
Exposed	in 1971						
1	26 Cr-1 Mo		350 727 1086	2 3	<] <]	IP 	
2	18 Cr-(Ti)		350 727 1086	17 	1 	23 	
3	18 Cr (Ti)	XBW	350 727 1086	8 	<1 	26 	14
4	20 Cr-24 Ni- 6.5 Mo		350 727 1086	6 	<1 	 	
5	20 Cr-24 Ni- 6.5 Mo	S	350 727 1086	6 	<1 	IP 	
6	18 Cr-2 Mo		350 727 1086	4 1 1	<] <] <]		
8	18 Cr-8 Ni (N)	350 727 1086	4	. <] 	IP 	

•

Table 10 (Cont'.)

				Ave	rage ^(b)		
System*	Material	Treat- ment (a)	Exposure	, <u>Wei</u>	ght Loss	Pit Depth, mils ^(d)	
			Days	mg	mg/dm ²	Maximum	Average of 5 Deepest (e)
9	18 Cr-8 Ni (N	I) XBW	350 727 1086	30 	2 	 IP 	
10	26 Cr-6.5 Ni		350 727 1086	6 	<1 		
14	Composite A ^{(c}	.)	350 727 1086	27000 32075 45100	2124 2523 3548	N/A N/A N/A	
15	Composite B ^{(c}	:) _{HDZ}	350 727 1086	5375 Lost 1200	423 94	N/A N/A N/A	
16	Compsite C ^(c)		350 727 1086	26750 38900 48000	2104 3060 3776	N/A N/A N/A	
17	26 Cr-1 Mo	ΗW	350 727 1086	6 	2 		
18	18 Cr (Ti)	ΗW	350 727 1086	 3	 1		
19	20 Cr-24 Ni- 6.5 Mo	HW	350 727 1086			 	
Expose	ed in 1972						
7	18 Cr-2 Mo (1	√b)	380 736	2	 <]		
11	18 Cr-2 Mo (Nb)	XBW	380 736	4 36	<1 3		
12	18 Cr-2 Mo (1	NP) HM	380 7 3 6	 6	2		

•

Table 10 (Con't.)

*Systems 12, 17, 18, 19, 57, 62, and 63 were tube specimens fabricated from sheet material, welded at the seams and then plugged and capped at each end to minimize internal corrosion. Specimens of all other systems were flat sheet material.

S

(a) All materials were in the annealed condition unless noted otherwise. Abbreviations used:

S-sensitized	HFW-high frequency weld
XBW-cross-bead weld	HDZ-hot-dip zinc coated (galvanized,
HW-heliarc weld	4.5 oz/ft^2) after bonding. See
	footnote (c).

(b) Average for four specimens.

- (c) All composites were metallurgically bonded. Composite A-Carbon steel/Type 430/Carbon steel. Composite B-Carbon steel/Type 430/Carbon steel. Composite C-Carbon steel/Type 304/Carbon steel.
- (d) 1 mil = 0.025 mm. IP incipient pitting. H perforated. N/A not applicable
- (e) Average of five deepest pits on each of four individual specimens unless noted otherwise.
- (f) Average of ten deepest pits on each of four individual specimens.

Table 11. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Coastal Sand (Site E) for up to Four Years

			Average (b)		
System*	Material	Treat-	Exposure,	Weight Loss		Pit Depth, mils ^(d)		
		(a)	Da ys	mg	mg/dm ²	Maximum	Average of 5 Deepest (e)	
Exposed	in 1970							
50	Туре 201		377 727 14 6 3	1302 3324 5705	104 262 454	H H H	 H(f)	
51	Туре 202		377 727 1463	778 1948 1939	62 155 155	H H H	H(f) H	
52	Туре 301		377 727 1 463	1339 2737 2 3 20	107 217 183	H H H	H(f) H	
53	Туре 301	S	377 727 1463	1 3 96 3744 4873	110 299 387	<5 8 28	 14	
54	T ype 301	XBW	377 727 1463	1768 2558 2828	85 204 225	H H H	H(f) H	
55	Туре 304		377 727 1463	1425 3162 4564	113 250 36 3	H H H	 H	
56	Туре 304	S	377 727 1463	2820 5912 11088	232 470 881	H H H	 Н Н	
57	Туре 304	ΗW	377 727 1463	641 1432 1352	156 348 329	38 26 53	21	
58	Туре 316		377 727 1463	174 534 83	14 46 6	H H H		
59	Type 316	S	377 727 1463	1350 3302 3306	107 262 262	62 <5 H		
60	Туре 409		377 727 1463	3309 3952 5235	262 314 418	H H H	H _H (f) H	

Table 11 (Con't.)

	Average ^(b)								
System*	Material	Treat- ment (a)	Exposure,	Weight Loss		<u>Pit Depth, mils</u> (d)			
			lime, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest (e)		
62	Туре 409	ΗW	377 727 1463	752 1270 2417	299 506 964	H H H	H H H		
63	Туре 409	HFW	377 727 1463	763 1033 1521	390 531 781	H H H	H H H		
64	Type 410		377 727 1463	4005 4012 8477	317 320 674	H H H	H H(f) H		
65	Туре 430		377 727 1463	1448 3174 5084	115 253 405	H H H	H _H (f) H		
66	Type 434		377 727 1463	1603 3113 5174	128 247 412	H H H	H _H (f) H		
Expose	d in 1971								
1	26 Cr-1 Mo		350 728 1087	6 1	<1 <1	IP 			
2	18 Cr (Ti)		350 728 1087	555 464 250	44 37 20	H H H	H(f) H H		
3	18 Cr (Ti)	XBW	350 728 1087	544 688 350	43 55 0 28	H H H	 H H		
4	20 Cr-24 Ni- 6.5 Mo		350 728 1087	2	? <1 <1 <1				
5	20 Cr-24 Ni- 6.5 Mo	S	350 728 1087	121 65 65	10 5 5 5 5) 5 5			
6	18 Cr-2 Mo		350 728 1087	615 534 224	5 49 1 42 1 18	9 H 2 H 3 H	 Н Н		
Table 11 (Con't.)

				Avera	age ^(b)			
System*	Material 1	reat-	Exposure,	Weigl	nt Loss	Pit D	epth, mils ^(d)	
		(a)	Days	mg	mg/dm ² !	Maximum	Average of 5 (e)	Deepest
8	18 Cr-8 Ni (N)		350 728 1087	25 12 56	2 1 4	 24 H		
9	18 Cr-8 Ni (N)	XBW	350 728 1087	922 1536 1776	73 122 142	H H H		
10	26 Cr-6.5 Ni		350 728 1087	403 1082 1093	32 86 87	H H H	 Н Н	
14	Com posi te A ^(c)		350 728 1087	24200 27125 39100	1904 2134 3076	N/A N/A N/A		
15	Composite B ^(c)	HD2	350 728 1087	12175 1350 12575	958 106 989	N/A N/A N/A		
16	Composite C ^(c)		350 728 1087	20275 17750 38450	1595 1396 3025	N/A N/A N/A		
17	26 Cr-1 Mo	HW	350 728 1087	6 4 2660	2 1 650	13 5 50	 16	
18	18 Cr (Ti)	HW	350 728 1087	6 3	2 1		 	
19	20 Cr-24 Ni- 6.5 Mo	HW	350 728 1087	ו ו	<1 <1			
Expose	d in 1972							
7	18 Cr-2 Mo (Nt)	380 736	 4	 <1	<5 <5		
11	18 Cr-2 Mo (Nb)	XBW	380 736	515 516	41 41	H H		
12	18 Cr-2 Mo (Nb)	ΗW	380 736	162 356	40 87	н н	Н	

Table 11 (Con't.)

*Systems 12, 17, 18, 19, 57, 62, and 63 were tube specimens fabricated from sheet material, welded at the seams and then plugged and capped at each end to minimize internal corrosion. Specimens of all other systems were flat sheet material.

(a) All materials were in the annealed condition unless noted otherwise. Abbreviations used:

S-sensitized XBW-cross-bead weld HW-heliarc weld HFW-high frequency weld HDZ-hot-dip zinc coated (galvanized, 4.5 oz/ft²) after bonding. See footnote (c).

(b) Average for four specimens.

- (c) All composites were metallurgically bonded. Composite A-Carbon steel/Type 430/Carbon steel. Composite B-Carbon steel/Type 430/Carbon steel. Composite C-Carbon steel/Type 304/Carbon steel.
- (d)] mil = 0.025 mm. IP incipient pitting. H perforated. N/A not applicable
- (e) Average of five deepest pits on each of four individual specimens unless noted otherwise.

(f) Average of ten deepest pits on each of four individual specimens.

Table 12. Average Weight Loss (mg/dm²) and Pit Depth (mils) for Stainless Steel Sheet and Tube Specimens Buried in Tidal Marsh (Site G) for up to Four Years

				717-01			
System*	Material	Treat-	Exposure,	Weig	ht Loss	<u>Pit D</u>	Depth, mils ^(d)
		(a)	lime, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest (e)
Exposed	in 1970						
50	Type 201		356 719 1355	3754 1199 78	299 95 6	45 H 35	
51	Туре 202		356 719 1355	60 18 85	5 1 7	40 33 H	 7 H
52	Туре 301		356 719 1355	165 1117 218	12 88 18	40 30 H	 H
53	Туре 301	5	356 719 1355	5016 13123 2185	400 1046 108	25 H 36	 13
54	Type 301	XBW	356 718 1355	49 1603 1400	4 128 112	13 62 12	 9
55	Туре 304		356 719 1355	930 1829 304	73 146 24	Н 36 37	 11 6
56	Туре 304	S	356 719 1355	322 6191 5146	24 494 409	20 H 26	 8
57	Туре 304	HW	856 719 1355	1 4 2	<1 <1 <1	 10 11	 3 5
58	Туре 316		356 719 1355	7 3 	<] <] 	<5 <5 	
59	Туре 316	S	356 719 1355	11 92 	<1 6 	<5 <5 <5	
60	Туре 409		356 719 1355	31407 66328 23206	2501 5283 1848	H H H	H(f) H(f) H(f)

Average (b)

				Aver	age ^(b)		
System*	Material	Treat-	Exposure,	Weig	ht Loss	<u>Pit D</u>	epth, mils ^(d)
		(a)	Time, Days	mg	mg/dm ²	Maximum	Average of 5 Deepest (e)
62	Type 409	ΗW	356 719 1355	8448 17055 4218	3367 6795 1681	H H H	H(f) H(f) H
63	Type 409	HFW	356 719 1355	4691 19912 10034	2403 10199 5139	H H H	Н ^(f) Н
64	Type 410		356 719 1355	31997 70709 104434	2547 5630 8314	H H H	H(f) H(f) H
65	Туре 430		356 719 1355	44284 103642 191351	3528 8256 1 5 243	H H H	H ^(f) H(f) H
66	Type 434		356 719 1355	99 7327 	8 584 	H H 6	
Exposed	l in 1971						
١	26 Cr-1 Mo		362 755 1098	5 3 	<1 <1 	IP 	
2	18 Cr (Ti)		362 755 1098	11974 33777 5984	954 2691 477	H H 37	 H 13
3	18 Cr (Ti)	XBW	362 755 1098	3712 815 3	296 65 <1	H 28 <5	
4	20 Cr-24 Ni- 6.5 Mo		362 755 1098	ו 	<1 		
5	20 Cr-24 Ni- 6.5 Mo	S	302 755 1098	152 	12 	IP 	
6	18 Cr-2 Mo		362 755 1098	402 630 	32 50 	2 H) H - <5	 H
8	18 Cr-8 Ni (N)	362 755 1098	56 159 2	4 13 <1	5 5 H 	 H

Table 12 (Con't.)

				Aver	age ^(b)			
System	* Material	Treat-	Exposure,	Weig	ht Loss	Pit De	epth, mils ^(d)	
		(a)	Days	mg	mg/dm ²	Maximum	Average of 5 (e)	Deepest
9	18 Cr-8 Ni (N)	XBW	362 755 1098	905 3409 2	72 272 <1	110 11 		
10	26 Cr-6.5 Ni		362 755 1098	4770 248 14	380 20 1	Н Н 7	 Н б	
14	Composite A ^(c)		362 755 1098	113275 380200 39 88 00	8912 29911 31374	N/A N/A N/A		
15	Composite B ^(c)	HDZ	362 755 1098	57825 66250 49300	4549 5212 3878	N/A N/A N/A		
16	Composite C ^(c))	362 755 10 9 8	105400 256400 358000	8292 20172 28165	N/A N/A N/A		
17	26 Cr-1 Mo	HW	362 755 1098	2 57 4	<1 14 1	 <5 <5		
18	18 Cr (Ti)	ΗW	362 755 1098	3468 24641 15115	1383 9825 6027	H H H	 Н Н	
19	20 Cr-24 Ni- 6.5 Mo	HW	362 755 1098					
Expose	d in 1972							
7	18 Cr-2 Mo (NI	b)	362 736	11	 <]	 45		
11	18 Cr-2 Mo (N	b) XBW	362 736	 7		45		
12	18 Cr-2 Mo (N	b) HW	362 736	 9	2	IP		

Table 12 (Con't.)

*Systems 12, 17, 18, 19, 57, 62, and 63 were tube specimens fabricated from sheet material, welded at the seams and then plugged and capped at each end to minimize internal corrosion. Specimens of all other systems were flat sheet material.

(a) All materials were in the annealed condition unless noted otherwise. Abbreviations used:

S-sensitized	
XBW-cross-bead weld	
HW-heliarc weld	

HFW-high frequency weld HDZ-hot-dip zinc coated (galvanized, 4.5 oz/ft²) after bonding. See footnote (c).

- (b) Average for four specimens.
- (c) All composites were metallurgically bonded. Composite A-Carbon steel/Type 430/Carbon steel. Composite B-Carbon steel/Type 430/Carbon steel. Composite C-Carbon steel/Type 304/Carbon steel.
- (d) 1 mil = 0.025 mm. IP incipient pitting. H perforated. N/A not applicable.
- (e) Average of five deepest pits on each of four individual specimens unless noted otherwise.
- (f) Average of ten deepest pits on each of four individual specimens.

Table 13. Summary of Results Obtained from Non-Galvanically Coupled Stressed 1-in x 12-in Stainless Steel Specimens After Exposure for up to 4 Years at the Six NBS Soil Corrosion Test Sites

System	Stainless steel	Treatment (a)	Stressed	Exposure Time-		Number	of Spec	imens Fa	iled	
		(4)	(b)	years	Site A	Site B	Site C	Site D	Site E	Site G
Exposed	in 1970									
67	Туре 301	НН	U	1 2 4	0 0 0	0 0 0	0 1(c) 0	0 0 0	0 0 0	0 0 0
68	Туре 301	НН	(UU)	1 2 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
69	Type 301	HH+S	UU	1 2 4	ן (d) 1 2	1(d) 0 1	2(d) 2 2	2 2 2	2 2 2	1 1 2
70	Туре 301	FH	U	1 2 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
71	Туре 301	FH	(UU)	1 2 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 1(d) 0
72	Туре 304		U	1 2 4	0 0 0	0 0 0-NR*	0 0 0	0 () 0	0 0 0	0 0 0
73	Type 304		(UU)	1 2 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
74	Туре 304	НН	U	1 2 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
75	Туре 304	нн	(UU)	1 2 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
76	Туре 304	S	UU	1 2 4	0 0 0	0 0 0-NR*	0 1-1(d) 0	0 0 0	1 0 0	0 0 0
77	Туре 316		U	1 2 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
78	Туре 316		(UU)	1 2 4	0 0 0	0 0 0-NR*	0 0 0	0 0 0	0 0 0	0 0 0
79	Туре 316	S	UU	1 2 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
80	Туре 434		U	1 2 4	0 0 0	0 0 0-NR*	0 0 0	0 0 0	0 0 NR*	0 0 0
81	Туре 434		(UU)	1 2 4	0 0 0	0 0 0	0 0 0-NR*	0 0 0	0 0 0	0 0 0
Exposed	in 1971									
20	26 Cr-1 Mo		(UU)	1 2 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0

Table 13 (Con't.)

System	Stainless	Treatment	Stressed	Exposure		Number	of Spec	imens Fa	iled	
		(d)	(b)	years	Site A	Site B	Site C	Site D	Site E	Site G
21	26 Cr-1 Mo		U	1 2 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
22	20 Cr-24 Ni-6.5	Mo	(UU)	1 2 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 . 0
23	20 Cr-24 Ni-6.5	Mo	U	1 2 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
24	20 Cr-24 Ni-6.5	Mo	UU	1 2 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
25	18 Cr-2 Mo		(UU)	1 2 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
26	18 Cr-2 Mo		U	1 2 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
27	18 Cr-8 Ni(N)		(UU)	1 2 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
28	18 Cr-8 Ni(N)		U	1 2 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0-NR*	0 0 0
30	26 Cr 6.5 Ni		U	1 2 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0

*Specimen not retrieved

- (a) All specimens in the annealed condition unless noted otherwise
 HH-half hard
 FH-full hard
 S-sensitized
- (b) U-single U-bend specimen UU-double U-bend specimen (UU)-double U-bend specimen, joined by a spot weld
- (c) Micro crack on face, specimen considered failed
- (d) Micro crack on edge, specimen considered failed

failure.
vs.
current
couple
a
Average ⁽
4.
Table 1

.

			Sit Washi	te A ington	Sit Loch	te B Raven	Sit Cape	e C May	Sit Wild (Dry	e D Wood Sand)	Sit Wild (Wet	e E wood Sand)	Site Patux	G ent
oys tem	spectmen	to to	μA/cm ²	Failures	μΑ/cm ²	Failures	μΑ/cm ²	Fallures	µA/cm ²	Failures	uA/cm ²	Failures	µA/cm ²	Failures
82	301 нн ^b	Zn	2.58	0	1.43	2	20	2	0.94	2	1.14	2	10.3	2
83	=	ВM	17.2	-	4.81	2	122	2	3.95	2	34.7	2	237	2
84	=	Fe	0.06	0	0.48	0	1.45	2	0.17	0	0.48	0	4.08	0
85	301 FH ^b	Zn	4.17	0	1.51	2	20.5	2	1.23	2	0.93	2	14.7	2
86	Ξ	бW	20.5	2	8.66	2	120	2	3.79	2	34.7	2	249	2
87	z	Fe	0.05	0	0.56	0	1.29	2	0.23	0	0.59	0	4.65	٢
88	304 ^b	Zn	2.57	0	1.86	0	26.3	0	0.96	0	0.71	0	11.5	0
89	=	Mg	25.3	0	6.38	0	117	0	5.25	0	30.2	0	258	0
06	=	Fe	0.09	0	0.45	0	66.0	0	0.06	0	0.59	0	8.27	0
33	26Cr-	Zn	7.75	0	1.49	0	33.8	0	1.39	0	2.47	0	18.5	0
34	2=	БW	22.7	0	3.57	0	133	0	3.77	0	24.0	0	353	0
35	=	Fe	4.73	0	0.54	0	0.87	, 0	0.25	0	2.4	0	-0.21	0
36	26Cr-	Zn	7.30	0	1.72	0	27.8	0	1.31	0	5.01	0	13.1	0
37	=	Мg	47.4	0	4.0	0	138	0	4.53	0	28.4	0	375	0
38	÷	Fe	0.37	0	0.98	0	1.57	0	0.35	0	0.94	0	6.52	0

^aAverage of two specimens - 16 readings.

^bFour year exposure. ^CThree year exposure.

		Table	15. Galvanic cu sta	rrent ^(a) /potent inless steel co	.ial ^(b) and visual data uple.	of		
Sys tem	Stainless Steel	Observation	Site A Washington mA (V)	Site B Loch Raven mA (V)	Site C Cape May mA (V)	Site D Wildwood (Dry Sand) mA (V)	Site E Wildwood (Wet Sand) mA (V)	Site G Patuxent ۳Å (V)
42 ^c	26Cr-6.5Ni Alloy	electro c chemical ^e visual ^f	-0.0002 (-0.111) no attack	-0.004 (-0.004) no attack	+0.005 (-0.148) few pits (3 mil)	+0.004 (-0.138) edge pits (1 mil)	-0.120 (-0.021) corrosion under solder	-0.004 (-0.427) few pits (7 mil)
p16	Type 304	electro- chemical ^e visual ^f	-0.0001 (-0.061) no attack	-0.027 (+0.001) no attack	-0.010 (-0.130) scattered etching	+0.003 (-0.163) scattered etching	-0.016 (-0.101) no attack	+0.017 (-0.443). pitted (30 mil)
92d	Type 409	electro- chemical ^e visual ^f	+0.002 (-0.059) one edge pit (22 mil)	-0.022 (-0.007) no attack	+0.045 (-0.358) perforated gh (10% wt. loss) gh	+0.003 (-0.147) pitted (2 mil)	+0.013 (-0.158) perforated gh	+0.158 (-0.497) perforated (30% wt. loss)
	^a Negative curren ^b Potential vs. C ^c Three year expo ^d Four year exposi	t indicates sta u-CuSO4. sure.	inless steel i	s cathode.		,		

2

^eFour specimens per system at each site - average of minimum of 20 readings.

fl mil = 0.025 mm.

⁹One specimen lost.

hApproximate weight loss based on visual observation. All other specimens in Table <2% weight loss maximum.

Site G Patuxent	etched (<l mil)<="" th=""><th>etched (<l mil)<="" th=""><th>etched (<l mil)<="" th=""></l></th></l></th></l>	etched (<l mil)<="" th=""><th>etched (<l mil)<="" th=""></l></th></l>	etched (<l mil)<="" th=""></l>
Site E Wildwood (Wet Sand)	gen. corrosion (2 mil)	gen. corrosion (1 mil)	gen. corrosion (1 mil)
Site D Wildwood (Dry Sand)	gen. corrosion (2 mil)	gen. corrosion (3 mil)	gen. corrosion (2 mil)
Site C Cape May	gen. corrosion (3 mil)	gen. corrosion (2 mil)	gen. corrosion (2 mil)
Site B Loch Raven	pitted (5 mil)	<pre>pitted (5 mil)</pre>	<pre>pitted (5 mil)</pre>
Site A Washington	<pre>slight cluster etching (<l mil)<="" pre=""></l></pre>	etched & few pits (2 mil)	etched (<l mil)<="" th=""></l>
Material	Copper (connected to 26Cr-6.5Ni Alloy)	Copper (connected to SS Type 304)	Copper (connected to SS Type 409)
System	42 ^b	91 c	92 ^C

^al mil = 0.025 mm. ^bThree year exposure.

CFour year exposure.

Table 16. Visual results^(a) of copper connected to stainless steel.

NBS-114A (REV. 7-73)				
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR-76 1081	2. Gov't Accession No.	3. Recipient'	's Accession No.
4. TITLE AND SUBTITLE	A	<u> </u>	5. Publicatio	n Date
Progress Report on th	ne Corrosion Behavior of Sel	ected Stainless	August	F 11 1076
Steels in Soil Envi	ironments		6. Performing	g Organization Code
7. AUTHOR(S)			8. Performing	g Organ. Report No.
9. PERFORMING ORGANIZAT	ION NAME AND ADDRESS	n	10. Projecr/7 31	Task/Work Unit No. 20362
DEPARTMEN	IT OF COMMERCE N, D.C. 20234		11. Contract/	Grant No.
12. Sponsoring Organization Nat	me and Complete Address (Street, City, S	tate, ZIP)	13. Type of H	Report & Period
American Iron and St	teel Institute		Covered 1970-1	Progress Report 974
Washington, D. C. 2	20036		14. Sponsorin	ng Agency Code
16. ABSTRACT (A 200-word or bibliography or literature su In order to obt corrosion of stainle committee of Stainle in representative so sheet specimens in t specimens and galvan To date approximate This report contains four years.	less factual summary of most significant rvey, mention it here.) cain more definitive informa ess steels in soil environme ess Steel Producers, AISI, i bil environments. Test mate the annealed and sensitized lically coupled and uncouple 1y10,000 specimens have bee the results obtained for s	information. If document tion regarding to nts, NBS in coop nitiated in 1970 rials included of condition, uncoar d stressed and u n buried at six pecimens buried	t includes a s che corros peration w) a soil b coated and ted welde instressed soil test for up to	ignificant ion and stress ith the urial program uncoated d tubing specimens. sites. approximately
17. KEY WORDS (six to twelve	entries; alphabetical order; capitalize on	ly the first letter of the	first key word	unless a proper
Coatings; corrosion	behavior; field tests; galv	anic couples: so	il enviro	nment:
stainless steels; st	ress-corrosion behavior.		2	
18. AVAILABILITY	X Unlimited	19. SECURIT (THIS RE	Y CLASS PORT)	21. NO. OF PAGES
For Official Distribution	n. Do Not Release to NTIS	UNCL ASS	SIFIED	
Order From Sup. of Doc. Washington, D.C. 20402	, U.S. Government Printing Office , SD Cat. No. C13	20. SECURIT (THIS PA	Y CLASS AGE)	22. Price
Order From National Te Springfield, Virginia 221	chnical Information Service (NTIS) 151	UNCLASS	IFIED	
				USCOMM-DC 29042-P74