
NBSIR 76-1041

Security Analysis and
Enhancements of Computer
Operating Systems

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, D. C. 20234

April, 1976

Final Report

U S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

NBSIR 76-1041

SECURITY ANALYSIS AND
ENHANCEMENTS OF COMPUTER
OPERATING SYSTEMS

R. P. Abbott

J. S. Chin

J. E. Donnelley

W. L Konigsford

S. Tokubo
D. A. Webb

The RISOS Project

Lawrence Livermore Laboratory

Livermore, California 94550

T. A. Linden, Editor

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, D. C. 20234

April 1976

Final Report

U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary

James A. Baker, III, Urtder Secretary

Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Acting Director

Foreword

This is one of a series of documents prepared as part of a project on computer security and

privacy at the Institute for Computer Sciences and Technology of the National Bureau of Standards.

This document is intended primarily for use by those who are responsible for managing and operating

government data processing installations. It provides an understanding of the types of security

problems that arise in current computer operating systems, and it suggests ways in which the security

of these operating systems can be enhanced. The document may also be of use to: (1) those engaged in

the development of computer security techniques, (2) the manufacturers of computer systems and

software, and (3) those responsible for managing and operating computer systems in the private sector.

This document concerns the security problems that arise in computer operating systems. In order

to develop a balanced set of security safeguards, one should use it in conjunction with documents that

treat other specific aspects of the security problem. Other NBS publications on computer security

that may be of particular interest for this use are:

Computer Security Guidelines for Implementing the Privacy Act of 1974, Federal Information Processing
Standards Publication 41, U.S. Government Printing Office, Washington, D.C. 20402, Catalog No.

013.52:41, $0.70.

Guidelines for Automatic Data Processing, Physical Security and Risk Management, Federal Information
Porcessing Standards Publication 31, U.S. Government Printing Office, Washington, D.C. 20402,
Catalog No. 013.52:31, $1.35.

Exploring Privacy and Data Security Costs - A Summary of a Workshop, NBS Technical Note 876, U.S.
Government Printing Office, Washington, D.C. 20402, Catalog No. 013.46:876, $0.85.

Proposed Federal Information Processing Data Encryption Standard, the Federal Register, August 1, 1975.

Computer Security Risk Analysis Guidelines, to be published.

This report is applicable to most general purpose computer operating systems; however, it discusses

in detail, the security features of three operating systems. These systems are: IBM's OS/MVT, UNIVAC'

1100 Series Operating System, and Bolt Beranek and Newman's TENEX system for the PDP-IO. They were

chosen for their illustrative value—two of them because they are the most commonly used large systems

in the Federal Government inventory, and the third because a detailed analysis of its security was

available, and because many of the specific security flaws found in the system can be used as detailed

examples of typical security flaws. Most known TENEX flaws have been corrected in all currently used

versions of the system.

Guidance is provided for specific security enhancements; however, the amount of detail contained

in this report is constrained by the danger that excessive detail could be harmful. Excessive details

about current security flaws might be used by someone intent on penetrating security. On the other

hand, those responsible for security must be made aware of the security techniques that are available,

and they must understand and prepare for the dangers to which they are still exposed.

The authors of this document have attempted to write it in a way that provides as much information

as possible to those responsible for system security while at the same time minimizing its potential

usefulness to someone who might misuse the information. It is generally acknowledged that the security

provisions of most current operating systems can be broken by an experienced programmer who has spent

much time working with the system and has a very detailed understanding of its inner workings. The

guidance used in the preparation of this document was that it should not increase the number of people

iii

who know all the details needed to effect a security penetration. Many details about specific security

flaws have not been included in this report either because there is no reasonable enhancement to correct

the flaw or because exploitation of the flaw could be carried out by someone with relatively little

additional detailed information about the system.

The security enhancements suggested in this document do not provide complete protection against all

the security flaws in the operating systems. The reader should not anticipate that the correction of

the identified security flaws will do any more than reduce the number of avenues by which the system

software might be penetrated. Whether the suggested enhancements will result in a significant improve-

ment in a system's overall security posture depends on many factors that are unique to each computer

installation; in particular, it depends on the characteristics of the data processing environment, the

specific software and hardware configurations, the value or sensitivity of the information being

processed, and the nature of the threats to that information that can reasonably be anticipated. It is

very difficult to evaluate whether a specific security enhancement Is a cost-effective way of Improving

a system's overall security posture; that decision can only be made by people who know the character-

istics of the specific data processing installation and who are also familiar with the current state-of-

the-art in computer security. Many data processing installations may have the option of relying mostly

on physical, procedural, and administrative security controls so that confidence in the integrity of

Internal system controls is not needed.

Early drafts of this document - together with lists of specific security flaws - were made available

to the different vendors. In most cases vendor action is the most efficient way to correct a security

flaw. This document will be especially useful if it reduces the current tendency for the same security

flaw to reappear repeatedly in different systems.

Dennis K. Brans tad
Theodore A. Linden

Institute for Computer Sciences and Technology
National Bureau of Standards

iv

Contents

Abstract 1

1. An Overview (i?. P. Abbott) 1

1.1 Motivation for Enhancing Security 2

1.2 Technical Issues in Enhancing Security 3

1.3 Operating System Security within Total HDP Protection 4

1.4 An Example of A Security Flaw 5

2. Security Enhancements of Operating Systems (0. A. Webb) 6

2.1 Detection Controls 6

2.2 Corrective-Preventive Controls 7

a. Hardware . 7

b. Software 8

c. User Action 9

d. Administrative-Physical 10

3. Taxonomy of Integrity Flaws iW. L. Konigsford) 10

3. 1 Introduction 10

3.2 Taxonomy of Integrity Flaws 10

3.3 Class of User 11

a. Applications Users 11

b. Service Users 12

c. Intruder 12

3.4 Class of Integrity Flaw 12

3.5 Class of Resource 12

3.6 Category of Method : 13

3.7 Category of Exploitation 13

3.8 Detailed Description of Operating System Security Flaws 13

a. Incomplete Parameter Validation 14

b. Inconsistent Parameter Validation • 16

c. Implicit Sharing of Privileged/Confidential Data 17

d. Asynchronous Validation/Inadequate Serialization 19

e. Inadequate Identification/Authorization/Authentication 22

f. Violable Prohibition/Limit 23

g. Exploitable Logic Error 23

4. IBM OS/MVT iW, L. Konigsford) 26

4.1 Introduction 26

4.2 Overview of OS/MVT History 27

4.3 IBM/360 and OS/MVT Prevention Concepts 28

a. Hardware Isolation Features 28

b. Control Access Features 28

c. Integrity Monitoring and Surveillance 29

4.4 Summary 29

4.5 Operating System Integrity Flaws

,

30

5. UNIVAC 1100 Series Operating System {J. S. Chin) 31

5.1 Introduction 31

5.2 Design Criteria of the Operating System 32

V

5.3 1108 Architecture 32

a. Memory Interface 34

b. System Control 34

5.4 Integrity Features 34

a. User Control 34

b. States of Execution 35

c. Protection of Permanent Files 35

d. Protection of Magnetic Tapes .
• 35

e. Audit Trails 36

f. Role of System Console Operator 36

g. Impact of System Degradation 37

5.5 Summary 37

5.6 Operating System Integrity Flaws 38

6. Bolt Beranek and Newman TENEX E. Donnelley) 39

6.1 Introduction to TENEX 40

6.2 Typical Use of TENEX 40

6.3 Overview of TENEX Hardware Architecture and Integrity Features 42

a. CPU 42

b. Virtual Memory Hardware 43

c. Peripherals 43

6.4 Operating System Design and Integrity Features 44

a. File Protection 45

b. Directory Protection '^5

c. Process Protection ^6

6.5 Summary . 47

6.6 Operating System Integrity Flaws 48

a. Existing Flaws 48

b. Flaws that have been Fixed 49

7. Summary and Conclusions 52

Glossary {W. L. Konigsford) • 54

Bibliography {D. A. Webb) 59

References 62

vi

Acknowledgment

This report was prepared for the National Bureau of Standards, Order No. S-413558-7A, as part

of the work of the Research In Secured Operating Systems (RISOS) project at Lawrence Livennore

Laboratory. The RISOS project is sponsored by the Advanced Research Projects Agency of the

Department of Defense (ARPA) under ARPA Order No. 2166. The work was performed under the auspices

of the U.S. Energy Research and Development Administration.

The authors of this document are:

R. P. Abbott

J. S. Chin

J. E. Donnelley

W. L. Konigsford

S. Tokubo

D. A. Webb

vii

SECURITY ANALYSIS AND ENHANCEMENTS OF

COMPUTER OPERATING SYSTEMS

The protection of computer resources, data of value, and individual privacy has motivated a concern

for security of EDP installations, especially of the operating systems. In this report, three

commercial operating systems are analyzed and security enhancements suggested. Because of the

similarity of operating systems and their security problems, specific security flaws are formally

classified according to a taxonomy developed here. This classification leads to a clearer understanding

of security flaws and aids in analyzing new systems. The discussions of security flaws and the security

enhancements offer a starting reference for planning a security investigation of an EDP installation's

operating system.

Key words: BBN-TENEX; IBM OS/360; UNIVAC 1100 Series OS; operating system security; software security;

security flaws; taxonomy of integrity flaws.

1. An Overview

This document has been prepared for use by computer, EDP, and systems managers:

• To aid in understanding the issues of confidentiality, protection, and security as they apply

to computer operating systems.

• To provide information that will assist in assessing how much effort is required to enhance the

integrity features of their operating systems.

To meet these objectives, two operating systems, which are commercially available, were selected

for analysis. The two systems were selected from those commonly used in Federal Government computer

centers. A third system has also been analyzed and is presented here because of its more recent design

and because the issue of security was considered during its design phase.

The material in this document is divided into three major areas. Sections 1-3 comprise the first

area. Section 1 introduces the material with discussions of the motivational and technical aspects

of computer security and the relative importance of operating system security. Section 2 deals with

general operating system security as it applies to a range of systems. Section 3 presents a taxonomy

of integrity flaws, that is, a more formal, systematic way of portraying and classifying these problems.

The second major area contains sections 4, 5, and 6, and each deals with a specific operating

system: IBM OS/MVT, UNIVAC 1100 Series Operating System, and Bolt Beranek and Newman's TENEX for the

PDP-10, respectively. The last area includes section 7, the summary and conclusions; a glossary; and a

bibliography.

1

1.1 MOTIVATION FOR ENHANCING SECURITY

Initial interest in computer security came from the area of national security. It is fairly easy

to recognize the need for protecting the data that relates to a nation's defense. However, privacy

and confidentiality bec'arte issues as the nation's attention was focused on the increasing amount of

personal information contained within computer systems. As. the volume of information grew, so did the

possibility that information might be used in a manner which was not intended.

In the business community and in the Government, many computerized records afford opportunities

for fraud or embezzlement. Some examples of volatile and highly sensitive records are: proprietary

data and programs; records of ownership —cash deposits, stock transactions, real property, etc.; and

online banking. It is easy to imagine the Implication of even a temporary modification of such records.

A decision, based on the temporarily modified data, could have far-reaching effects.

Definitions of security (as applied to computers), confidentiality, and privacy are presented in

the Glossary, Consider at this point, however, a rather legalistic and simplistic definition of these

words:

Integrity is the state that exists when there is complete assurance that under all conditions a

system works as intended.

Computer security is the composite protection of administrative and physical security for computer

assets and data security.

Data security is protection against accidental or deliberate modification, destruction, or

disclosure of data.

Confidentiality relates to data. The word confidential means entrusted with the confidence of

another or with his secret affairs or purposes; intended to be held in confidence or kept secret.

Controlled accessibility is the protectiori provided to information and computational resources

by the hardware and software mechanisms of the computer itself.

Privacy relates to the individual. The right of an individual to decide what information about

himself he wishes to share with others, to be free from unwarranted publicity, and to withhold himself

and his property from public scrutiny if he sb chooses.

Public Law 93-579 (The Privacy Act of 1974) is not necessarily a justification for enhancing the

security of a computer's operating system; however, it does focus attention on the protection of data.

An examinat;ion of the Privacy Act is in order so that an appropriate level of effort may be directed

toward operating system security as it affects the confidentiality and privacy of data.

The first portion of the "Privacy Act of 1974" reads:

"Sec. 2. (a) The Congress finds that -

(1) the privacy of an individual is directly affected by the collection, maintenance,

use, and dissemination of personal information by Federal agencies;

(2) the increasing use of computers and sophisticated information technology, while

essential to the efficient operations of the Government, has greatly magnified the

harm to individual privacy that can occur from any collection, maintenance, use,

or dissemination of personal information;

(3) the opportunities for an individual to secure employment, insurance, and credit,

and his right to due process, and other legal protections are endangered by the

misuse of certain information systems;

(4) the right to privacy is a personal and fundamental right protected by the

Constitution of the United States; and

2

I

(5) in order to protect the privacy of individuals identified in information systems

maintained by Federal agencies, it is necessary and proper for the Congress to

regulate the collection, maintenance, use, and dissemination of information by such

agencies.

"

Another excerpt from the Privacy Act of 1974:

"Sec. 3. (m) Government Contractors. When an agency provides by a contract for the operation

by or on behalf of the agency of a system of records to accomplish an agency function, the

agency shall, consistent with its authority, cause the requirements of this section to be

applied to such system. ...any such contractor. .. shall be considered to be an employee of

an agency."

Personal information about an individual must be protected against misuse. That is, the person's

privacy must be safeguarded by maintaining the confidentiality of data related to the individual. If that

information has been placed in a computer system, that computer system must maintain the confidentiality

of the information. Therefore, that computer system must be secure against the misuse of information

on individuals.

The law not only mandates the protection of information but requires agencies to implement security

safeguards cis stated in Section 3 of the law:

"(e) Agency Requirements. -Each agency that maintains a system of records shall—...

(10) establish appropriate administrative, technical, and physical safeguards to insure the

security and confidentiality of records and to protect against any anticipated threats or

hazards to their security or integrity which could result in substantial harm, embarrassment,

inconvenience, or unfairness to any individual on whom information is maintained; and..."

1.2 TECHNICAL ISSUES IN ENHANCING SECURITY

Data security is the protection of data against accidental or deliberate destruction, modification,

or disclosure. If a remote-access, timeshared system crashes and causes confidential information to be

displayed randomly on one or more terminals, it may be considered to be an accident. If, however,

someone causes the crash for the purpose of gathering such information, then that is a deliberate

disclosure of confidential information. Neither case is desirable.

From a software point of view, both the operating system and each application program bear

responsibility for maintaining data security. It is, however, the operating system that controls,

assigns, allocates, and supervises all resources within the computer system. Core space, input/output

(I/O) channels, peripheral units, data files, the master file index, and the CPU are accessible to an

application program only after appropriate dialog (i.e., system calls) with the operating system.

Should the operating system be tricked, subverted, controlled, or compromised by an application program,

the confidentiality of information may be violated. The end result is the same regardless of whether

the act of subversion was accidental or deliberate.

The ideal situation is one in which operating system security is a major design criterion. Even

then, consideration must be given as to whether the design is correct, the design is correctly

interpreted, and the interpretation is correctly implemented. Unfortunately, computer science has not

advanced to the point where it is possible to prove that a sizable program has been correctly designed,

interpreted, and implemented. It may well be that an incorrect design, an incorrect interpretation of

that design, and an incorrect implementation may appear to provide a satisfactory operating system.

Other combinations of correct or incorrect designs, interpretations, and implementations may also appear

to be satisfactory.

3

For the most part, the operating systems that are in use today have not been designed with security

and controlled accessibility as significant design criteria. In view of the desire to protect an

individual's right to privacy, it may be a violation of the right to privacy to wait for an occurrence

of system compromise. Therefore, an operating system must be examined for weaknesses, by knowledgeable

systems analysts (programmers), with the objective of implementing corrections for any and all observed

weaknesses.

1.3 OPERATING SYSTEM SECURITY WITHIN TOTAL EDP PROTECTION

Operating system security is only one aspect of the total integrity-privacy-confidentiality

protection picture and needs to be viewed within a comprehensive cost-risk analysis. In some cases,

the integrity of the operating system is a minor element; however, in other cases the operating

system is critical and can be the weakest link of the complete EDP system.

Overall protection of a computing installation encompasses three protection areas:

• Physical.

• Information.

• Service.

Physical protection is the safeguarding of installation facilities against all physical threats;

that is, protection against damage or loss from accident, theft, malicious action, or fire and other

environmental hazards. Physical security techniques involve the use of locks, personal ID badges,

guards, security clearances, sprinkler systems, etc. Physical protection is a prerequisite for

information and service- level protection.

Information (data) protection is the safeguarding of information against accidental or unauthorized

destruction, modification, or disclosure. This requires the use of both physical security (including

procedural and administrative) and controlled-accessibility techniques. The software mechanisms that

control access are operating systems, application programs, and utility or service programs.

Service-level protection is the safeguarding of a computer system's services from degradation or

failure (i.e., crashing). A reliability failure or malicious action can cause this service degradation.

The nature of the applications at a given installation normally indicate the importance of security

measures for this protection.

A blend of different security measures is used to achieve the desired degree of protection:

• Personnel security — credit checks, security training, and reminders.

• Management policies — standard operating procedures which reflect a constant and committed

desire to protect computer- contained information.

• Physical security — controlled physical access locks, guards, and fire protection.

• Operating system security — protection of system tables, checking of all arguments, and

verification of parameters.

It is important to understand that operating system security is only one aspect of the total

security area needed for insuring integrity, privacy, and confidentiality protection. The operating

system can be used (or misused) in very sophisticated and subtle ways to effect a security compromise.

Also, the detection of security misuse can be prevented or covered up in some instances. (Later

sections will discuss several of these security flaws and what action can be taken to prevent or

eliminate them.) These techniques demonstrate that an installation's operating system is a critical

avenue through which data and service can be compromised. However, in the overall protection of an

installation the "weakest link" concept is relevant and must be considered. This document addresses

4

only operating systems and should be used as a starting reference for planning a security investigation

of an installation's operating system. Publications that cover other elements of security are

referenced in the Bibliography.

1.4 AN EXAMPLE OF A SECURITY FLAW

Sections 4, 5, and 6 examine general and specific flaws. Before presenting this material, it

will be useful to consider an example from an interactive timeshared system. Even though the example

is somewhat technical, the conclusions and lessons are important and illustrative of several specific

problems discussed later. The example has been chosen because:

• It is specific to a number of systems and may be generalized to apply to most systems, as

will be noted.

• It is relatively harmless in the event that a misguided reader should invoke it against an

unsuspecting and unprotected system.

• It serves to illustrate the point that computer security is a function of the environment in

which the computer operates.

Assume the following sequence of actions on an interactive time-shared or multiprogrammable

system:

• A program is started.

• The program activates an I/O activity.

• The program terminates after the I/O request is issued, but before the I/O request is completed.

The preceding sequence will result in the permanent elimination of the program's core space as a

further system resource (i.e., a memory lockup). In other words, the system will have to be stopped

and then reloaded before the core space that was used by the program may be reassigned to any other

user. Although the example is specific to a number of present-day systems, its generalized form has a

much broader application: any system that permits two or more asynchronous events to take place is

susceptible to resource lockup. Those systems which perform a periodic or conditional collection of all

memory space (or resources) not attached to an active process will be immune to this example.

The inner workings of the operating system and how the above sequence results in a memory lockup

requires further explanation. An operating system can be viewed as consisting of two sections: an

interrupt handler and a housekeeper. In this example, the housekeeper, upon receipt of the ending

request, severs all connections between itself and the program. An exception is made for the memory

map table because of the outstanding I/O request. When the end of I/O action is processed by the

interrupt handler, it removes all traces of the outstanding I/O request, but does not clear the memory

map entry. Thus, the memory map is left with a setting which indicates that a portion of core is

occupied.

A number of different observations may be drawn from the memory lockup example:

1) Although the actions that must occur are specified, there are any number of ways a program

can be written to produce the same end-result. The I/O device activated can be tape or disk.
I

The program can be written in assembly language as well as some higher-level languages

,

2) The example does not state which operating system will be affected by the procedure. In fact,

it will work on a number of operating systems controlling the hardware of different manu-

facturers. This suggests that there is a commonality among operating systems with regard to

the types of errors to be found in each.

5

3) Taken together items 1) and 2) suggest that a) there may be a set of generic classes of errors

that are applicable across manufacturer product lines and b) each generic error may be expressed

in a variety of programming styles. A more thorough treatment of this point may be found in

section 3, Taxonomy of Integrity Problems.

4) This particular example is time dependent. The command to terminate the program must occur

after I/O is started, but before it is completed. Operating systems are vulnerable to both

time-dependent as well as time -independent sequences.

5) What is the impact of this example on security? If the computer system has a real-time

component, it is possible that critical real-time programs will not be able to find space to

fit in core. Whatever the real-time programs are supposed to do, they may lose their time-

liness. If the system has no real-time component, revenue may be lost either as a result of

the machine not producing revenue from clients or because the job queue is not exhausted at

the end of the time period.

6) Any overt action that forces an abnormal reaction from a computer operator may be a masking

action to hide or to bring into being a more devastating set of circumstances. It should be

noted that there is ample opportunity in the example to erase all but a few lines of the culprit

code. This erasure makes it difficult if not impossible to trace accountability in an audit-

trail sense.

A more powerful point can be established as a result of items 5) and 6) . The decision as to

whether a particular operating system flaw affects security, and ultimately privacy and confidentiality,

is a function of the environment in which the computer operates and the mission to which it is assigned.

A flaw that has catastrophic consequence at one installation may have no impact at another installation.

2. Security Enhancements of Operating Systems

This section discusses general controls and actions that can be taken within a computer instal-

lation to enhance the integrity of operating systems. These security enhancements can serve as either

a detection (audit) or a corrective-preventive control. Depending on the nature of the problem and the

proposed action, different enhancements may be implemented by users, systems programmers, or instal-

lation managers

.

The security flaws discussed here are foinnally classified in the taxonomy in section 3. General

and specific examples of integrity problems and their enhancements are described in sections 4, 5, and

6, where specific operating systems are analyzed.

2.1 DETECTION CONTROLS

If data are examined or changed by an unauthorized user, an integrity compromise has occurred.

This compromise is magnified when the compromise goes undetected. If this action is not detected and

reported, then neither corrective action nor preventive measures will be taken. Thus, an integral part

of operating system security is the inclusion of detection controls or audit trails.

Most operating systems have some audit-trail facilities. In a transaction-oriented system, the

auditing can be complete enough to allow 100% reproduction of all operations for a given time period.

This level of reporting does provide information for detecting misuse of the system. However, recording

all system actions does not mean that integrity problems are necessarily reported to the proper people

(e.g., a security officer). This is an administrative step that must be taken in addition to the

initial recording.

6

For systems that are not transaction-oriented, the detection control is much more complex. It is

quite common to log statistics as to what jobs and users are running and what resources are being used.

Normally, this log information is sent to a console typewriter, but an administrative step is still

required to report any discrepancies to the proper person. The information can be helpful in detecting

resource exploitation such as system degradation or system crashes. However, detection controls are

often inadequate to detect information exploitation such as the destruction, reading, or altering of

data. This is because the file access information is normally not maintained.

Commercial audit packages are available from most of the large certified public accountant (CPA)

firms [1]. These packages, however, only extract and report data from previously created files (quite

often files of financial information). The data are checked to see if they are accurate, but there are

no facilities to determine what user program read or modified the data. What is required is an audit

trail of not only who is on the system, but what data files are available, what files are referenced,

how files are referenced, and in general, any exception to a predefined standard of normal processing.

2.2 CORRECTIVE-PREVENTIVE CONTROLS

Numerous corrective-preventive controls can enhance the security of operating systems. These

controls can affect the operating system directly, as with code modifications, or indirectly, as with

procedural and administrative changes. Basically the controls are measures designed to prevent users

from 1) executing in a supervisor state or master mode, 2) reading or altering data or files to which

authorized access has not been granted, and 3) degrading system performance by crashing the system or

using resources without corresponding accounting charges.

These controls are implemented through hardware, software, user actions, or administrative/

physical steps. The ease and cost of these enhancements vary considerably. Hardware and software

changes usually require more effort and cost than those taken either by users or by enacting admin-

istrative controls. However, the effectiveness of each enhancement must be considered.

a. Hardware

Some hardware controls are originally built into the system; others can be added as required. In

both cases, some amount of software coordination is usually required to derive the full protection

benefits.

• Built-in controls

With a multi-user environment, it is necessary to protect against unauthorized reading, modification,

and execution of sections of memory. Several hardware designs can provide this protection and are

usually fundamental to the computer architecture. One, physical memory can be originally divided into

sections and a key assigned to each section. The key indicates the type of access allowed, if any.

Two, protection can also be provided on a logical section of memory via base and bounds registers.

Three, virtual storage can be used that requires the hardware to perform paging and segmentation.

In addition to memory protection, control protection is also normally a designed-in hardware

feature that involves the restricted use (execution) of certain instructions. Examples of actions that

a system protects against are: modifying program status words, halting execution, and issuing direct

I/O commands. This protection is often implemented by the machine having two modes, or states, of

operation: system and user. System mode is a privileged state in which any instruction may be

executed; user mode is a restricted state in which certain instructions can not be executed.

7

• Add-on controls

Protection can also be provided by adding a new piece of hardware or modifying existing hardware.

However, specific changes are limited by the hardware configuration in question, and most computer

installations do not have the resources to effect these changes. Three examples of add-on hardware are

as follows:

One, an encryption device can be used for protecting data. For example, the encryption algorithm

recently described by the National Bureau of Standards [2] can be implemented in hardware. This device

could then be attached to I/O or storage devices. With this configuration, data are transmitted or

stored in an encrypted ("unreadable") form. Even if an unauthorized user accessed the data, it could

not be decoded without also obtaining and using the key that originally encrypted the data. Thus,

the key must be protected to protect the data, but this is a much easier task. Currently, encryption

appears to be the most reasonable hardware addition for providing data security. The National Bureau

of Standards intends both to submit the encryption algorithm to the Secretary of Commerce for con-

sideration as a uniform Federal ADP Standard and subsequently to publish guidelines for implementing

and using the algorithm [2].

Two, a hardware monitor can be attached to the existing hardware to record (or trap) execution

actions. This monitoring records and evaluates how a system is being used in terms of efficiency.

Also, the monitor can be used to log references to resources such as I/O channels and disk drives.

And three, a device can be added that provides permanent write protection for a physical section

of core. The section of core could contain sensitive control or status information needed only by the

operating system. Although this feature has significant security implications, it is not available

for all systems.

b. Software

Software controls are the most common and direct security enhancements for operating systems.

However, they are often costly as they require installation implementation and can introduce new

integrity problems. Some software controls are as follows: 1) removing a function or module from the

operating system, 2) adding a function or module, or 3) modifying existing code.

• Removing software functions

The removal of routines or parts of routines can directly increase the level of security of the

operating system. The functions of these routines may be useful but permit unintended results. Also,

some routines may have been originally included to circumvent protection features. Two examples of

removing software are as follows:

The removal of a checkpoint/restart routine can enhance protection. This routine takes periodic

dumps of program status data and intermediate results so that in case of a system crash, the program

can be reinitiated at the last checkpoint as opposed to a complete restart. Security can be com-

promised if critical status data in the checkpoint dump are altered and used in a reinitiation of the

program.

Removing system programmer traps can also enhance protection. When a system is implemented,

traps or "hooks" are often included to allow special operating privileges to system programmers. The

traps are intended for debugging or legitimate system maintenance. However, their usefulness depends

on the secrecy of their existence, and secrecy is a very poor security protection method. Thus, the

use of traps should be strictly limited or they should be removed.

8

• Adding software functions

Adding software functions to an operating system can be done either by the vendor or by the

installation itself. As security is becoming more important, vendors are making available some routines

to afford protection. Two examples of adding software functions are as follows:

The use of passwords can protect data files and user accounts. This function deals with the

problems of authorization and authentication. The quality of the password software mechanism and the

manner in which the passwords themselves are administered are critical and demonstrate the multi-

dimensional nature of security enhancements. Short passwords (e.g., only four characters), passwords

chosen for ease in remembering (e.g., name of user's spouse), or lack of exception action (e.g., not

reporting several incorrect password tries) can lead to compromise and a false sense of security.

A monitor, or control routine, could be used as an audit tool to record resource usage or data

accesses. In addition to recording this information, a check can be made against a predetermined

authorization list to see if the action is valid and to prevent its completion if not.

• Modifying software functions

Modifying existing operating system code is a nontrivial task. Systems are normally very large

and the interaction among modules is complex so that a change may produce an undesired and unexpected

"ripple" action. However, code changes can significantly enhance the security of a system.

The following are two examples of system problems that can be corrected by modifying software:

1) Coding in which parameters are not adequately checked. Some system routines do not validate

input parameters becaiise of the assumption of either a benign environment or that another

system routine made the validation. This can lead to routines being used for unintended

purposes and security compromises.

2) Coding in which system routines store data in user storage area or execute in master (or

privileged) mode when not required. These practices are not direct security flaws, but they

allow users to modify data being used by the system and gain special privileges — either of

which can then be used to compromise integrity.

c. User Action

Individual users can take some direct action. The most obvious is to use existing security con-

trols, such as passwords and proper tape-labeling techniques. Also, system routines should be used in

the intended manner without using tricks that may have unintended consequences.

The user must be aware of possible integrity problems and take direct action to counter them. For

example, in some installations user-to-user scavenging may be a security problem. That is, code and

data are left after a program terminates and a subsequent user, resident in the same core area, can

read the unaltered information. In this case, a user could scrub or zero-out all buffer and data areas

before terminating the program.

Another instance of possible user security action deals with terminal sign-on procedures. It is

the user's responsibility to determine that he is interacting with the system and not with another

user's program imitating the system. Entering passwords or accounting information on a terminal

without first verifying that one is communicating with the operating system can compromise the entered

information. Another user could be imitating the operating system and recording the entered in-

formation (e.g., passwords) for later unauthorized use. To prevent compromises of this type, users

must interact with the system in a way that can not be duplicated by a user's program (e.g., using a

terminal control key to sign off prior to initiating the sign-on procedure)

.

9

Also, users should always sign off properly when finished processing. This may involve destroying

all programs and work files when through. This avoids the problem of leaving data files or programs

on the system and available to anyone who happens to subsequently use the terminal.

d. Administrative-Physical

The installation manager or person designated with security responsibilities can take direct

action to enhance operating system security. This action normally is to prohibit or mandate certain

user actions by policy decisions or by physical actions (often some hardware or software action must

accompany the administrative decision)

.

From a practical point of view, administrative or physical security enhancements are very important.

Usually they are the first enhancements made. They can be implemented in a relatively easy and cost-

effective manner and provide a significant amount of security. These measures will not prevent the

very determined individvial from compromising security, but it does increase the difficulty of com-

promising and the risk of detection. An added benefit can be a more disciplined and orderly instal-

lation.

Items that fall into this class include restricting terminal access, requiring all tapes to be

labeled (with the corresponding software checks), standardizing log-on procedures, requiring passwords,

using system-generated passwords, using encryption devices for data transmission, limiting actions an

operator may perform in response to console log messages, and using guards and some form of badge

identification around the computer facilities.

A final administrative enhancement concerns a procedure for recording all changes made to the

operating system. A formal procedure should be set up to document and account for each change imple-

mented. This is an audit-type control that fixes accountability, restricts the number of modifications,

and ensures that someone understands the modification. The approval ("sign off") for each step in

modifying an operating system (requesting, implementing, and verifying correctness of changes) should be

done by different people.

3. Taxonomy of Integrity Flaws

3.1 INTRODUCTION

In this section, a system of arranging integrity flaws into related groups is presented, and one

class of integrity flaw — operating system security flaws — is examined in detail (Sec. 3.8).

3.2 TAXONOMY OF INTEGRITY FLAWS

Table 3-1 presents a taxonomy (i.e., a system of arrangement) of integrity flaws. Table 3-1 is

divided into two segments and an example. Segment one, the syntax portion, clarifies that the mere

existence of a flaw renders an installation vulnerable. This is analogotis to the engineering concept

of "unavailable" potential energy. When an individual (or group) becomes aware of a flaw, an active

potential to violate installation integrity is achieved — analogous to "available" potential energy.

With adequate motivation, skill, resources, and opportunity, this potential is transformed into

kinetic energy, and an installation's integrity is penetrated. This penetration of integrity provides

the individual with potential access to one or more classes of resources — items of value to an in-

stallation or its users. If the individual now chooses, this access may be exploited to produce a

loss for the installation (such as a loss of information, service, or equipment) and/or a gain for the

individual

.

10

Table 3-1. Taxonomy of integrity flaws

Syntax

A [Class of User] user acquires the potential to compromise the integrity of an installation via

a [Class of Integrity Flaw] integrity flaw which, when used, will result in unauthorized access to

a [Class of Resovccae] resource, which the user exploits through the method of [Category of Method]

to [Category of Exploitation]

.

Syntax Elements

[Class of Integrity Flaw]

•Physical Protection
•Personnel
•Procedural
•Hardware
•Applications Software
•Operating System

[Class of User]

•Applications
•Service
•Intruder

[Class of Resource]

•Information
•Service
•Equipment

[Category of Method]

•Interception
•Scavenging
•Pre-emption
•Possession

[Category of Exploitation]

•Denial of Possession/Use
- Steal equipment
- Destroy equipment
- Degrade service
- Interrupt service
- Destroy data
•Denial of Exclusive Possession/Use
- Read/Transcribe data
- Steal service
•Modification
- Alter data
- Alter equipment

Example

An "applications" user acquires the potential to compromise the integrity of an installation via

an "operating system" integrity flaw which, when used, will result in unauthorized access to an

"information" resource, which the user exploits through the method of "scavenging" to "read/transcribe

data."

Each classification depicted in the syntax can be divided into subclassifications and each of

these subclassifications can be further divided into subclassifications and so on — in descending

order from most inclusive to most specific. Segment two depicts the first levels of classification

for each of the syntax elements. In the following paragraphs, each classification will be briefly

discussed. However, because this document is principally concerned with operating system security

flaws, only that class of flaw will be fully expanded and discussed (Sec. 3.8).

3.3 CLASS OF USER

A user may have various capabilities at various times, and similar users may be granted differing

sets of capabilities. However, it is useful to classify users in terms of broad sets of capabilities.

a. Applications Users

Under this approach, applications users are those users who have not been specifically granted

special capabilities beyond permission to use the system. They are subdivided into consumers and

producers. Consumers are the authorized recipients of information products from a computer-based

application. Producers are the analysts and applications programmers who design and implement specific

11

applications which produce information products for consumers. (Producers may or may not be part of the

consumers' organization. Producers require access to the computer system to develop products; their

programs require access to data in the system.)

b. Service Users

Service users are subdivided into systems and administrative servicers. Systems servicers are

members of a computer servicing staff that includes the operators, systems programmers, and main-

tenance engineers who are responsible for the maintenance and availability of computer system resources.

Because systems servicers have physical access to the computer, the operating system code, or the data

storage volumes, they have the capability to access any information in or on a system. For example,

an operator can replace the installation's protected operating system with a non-protective one or may

use computer console switches to alter main storage contents. The hardware vendor's maintenance

engineer, in another example, is equipped with a set of diagnostic aids which can be utilized as in-

tegrity penetration tools.

Administrative servicers are members of the systems staff who do not have physical access to the

computer room or operating system, but who have special software privileges, which, for example, permit

access to privileged hardware instnactions and special operating system services, or permit special

operations on data. Such users frequently have the capability to access any information in a system.

c. Intruder

An intruder is an unauthorized user, he is an outsider. This term applies to individuals or

organizations who have no authorized access to a computer installation or its products and who have

a possible malicious interest in obtaining unauthorized access.

3.4 CLASS OF INTEGRITY FLAW

The classes of integrity flaws have been mentioned in sections 1 and 2. Briefly, physical pro-

tection flaws include: telecommunications interception, mixed-security-level access to terminals, uin-

authorized access to a computer room, and exposure to natural disasters. Flaws involving personnel

security include acts such as sabotage, collusion, and user error. Procedural flaws are, of course,

instal lat.ion -dependent . Examples of such flaws involve tricking (or "spoofing") a system operator

into making unauthorized data available to a user; inadequate tape-labeling procedures at an instal-

lation; and "Trojan Horse" subversion of an operating system. As used here, "Trojan Horse" refers to

covertly implanting computer instructions in a trusted (system) program so that the trusted program

executes its intended functions correctly, but with illegitimate side effects. Hardware integrity

flaws include problems such as a flaw in which a user's terminal disconnect signal is not passed on to

the operating systems software, or a flaw in which all users are permitted access to an instruction

such as "disk diagnose," which should have restricted access. Flaws involving applications software

include problems of inadequate user-user isolation, insufficient control over access to data, and

exploitable flaws in program logic. Almost all applications software flaws have direct analogies with

operating system flaws. Operating systems flaws are discussed in detail in section 3.8.

3.5 CLASS OF RESOURCE

The resources of value to an installation or its users are information, service, and equipment.

Information includes all the system's files (programs, data, and file directories) and all user files.

12

Service represents the unimpaired operation of the installation. Service resources include all the

capabilities of the operating system. If an applications user obtains access to the hardware wait/idle

mode, monitor/master mode, or unauthorized disk-storage space, then a valuable resource has been com-

promised. Equipment resources include all installation equipment relevant to the unimpaired operation

of its computers.

3.6 CATEGORY OF METHOD

Interception is the interruption of communication or connection. For example, a user program

masquerading as the system could intercept an unwary user's sign-on password. Scavenging is the

searching for something of value from discarded information or supplies. For example, if reading of

(scratch) tapes is not prevented, a user could search through the data left by a previous user in an

attempt to find some valuable information. Pre-emption involves taking something to the exclusion of

others such as a user pre-empting CPU cycles. Possession is taking control of property such as stealing

a magnetic tape containing valuable information.

3.7 CATEGORY OF EXPLOITATION

Because the categories of exploitation (Table 3-1) are self-explanatory, they are only listed

here for ease of referral and completeness.

• Denial of Possession/Use
-Steal equipment
-Destroy equipment
-Degrade service
-Interrupt service
-Destroy data

• Denial of Exclusive Possession/Use
-Read/Transcribe data
-Steal service

• Modification
-Alter data
-Alter equipment

3.8 DETAILED DESCRIPTION OF OPERATING SYSTEM SECURITY FLAWS

Operating system integrity is concerned with the assurance that the operating system works as

intended. Thus, an operating system integrity flaw is any condition that would permit a user (or his

programs) to cause the operating system to cease reliable and secure operation. Integrity is thus

concerned with reliability (fraud and error) problems and with security (resource and privacy pro-

tection) problems.

In this section, the seven major categories of operating system security flaws are discussed and

examples of each are given. The seven categories of operating system security flaws are:

• Incomplete parameter validation.

• Inconsistent parameter validation.

• Implicit sharing of privileged/ confidental data.

• Asynchronous -val idation/ Inadequate-s erial ization

.

13

• Inadequate identification/authentication/authorization.

• Violable prohibition/limit

.

• Exploitable logic error.

Associated with the general text description for each of these operating system security flaws

is a table ip which that flaw is further divided into sub-categories along with a brief, descriptive

example for each sub-category. To conserve space, not all of these sub-categories and examples are

discussed in the text. A complete description can be found in A Taxonomy of Integrity Problems [3].

a. Incomplete Parameter Validation

At a high level of abstraction, whenever a process (or program) with one set of privileges requests

service from a second process with another set of privileges, the preservation of system integrity

requires that the request be thoroughly validated. For most operating systems, the boundary of greatest

relevance to system integrity is that boundary between a control program, with complete hardware and

software capabilities, and user programs, with a limited subset of capabilities. This separation is

usually enabled by hardware facilities (such as control/monitor state and storage protection) but is

enforced through software.

In general, user programs invoke control program services in a manner similar to subroutine calls,

using many parameters. Only the control program has the capabilities to perform the requested services.

The purpose of creating this separation or isolation between user programs and the control program is

to prevent any user from compromising the functioning of the control program that is performing

services for all users (e.g., I/O operations, program initiation, date and time, etc.). If the

checking mechanism for each of the requested parameters is not rigorous or complete, it is possible to

"fool" the control program into executing the request in a manner which is detrimental to secure

operations. To be validated rigorously, parameters must be checked for permissible:

• Presence or absence.

• Data types and formats.

• Number and order.

• Value ranges

.

• Access rights to associated storage locations.

• Consistency among parameters (e.g., storage locations).

As an example, three dangerous results can occur if a user succeeds in getting the control program

to accept a parameter consisting of an address outside the memory space allocated to that user:

• The control program may obtain unauthorized data for that user.

• A set of conditions can be generated to cause a system crash.

• Control may be returned in control/monitor state to the user.

A penetration attempt illustrating the return of control in control/monitor state to a user program

is described below and in figures 3-1 and 3-2.

1) An instruction which, when executed, will transfer control to a predetermined point in the

user's program is loaded into a register.

2) A system call is then made which causes the registers to be saved by the control program in

Register Save Area (Fig. 3-1).

3) Upon return of control to the user, another system call is made. Among the parameters for

this system call, is a pointer (address) that has to point to a location in the control pro-

gram. This address will be used in transferring control to the appropriate control program

service routine. Naturally, the address supplied is the location in the Register Save Area

where a transfer back to the user's program had been planted by the previous system call

(Fig. 3-2).

14

E

a

<
0)
V)

15

Control Program

Register Save Area

Data

Pointer to User A Program A

Data

Data

User A

Program A

System call No. 1

User B

Figure 3-1. Layout of memory after first system
call.

E
0)

M
to

Control Program

Register Save Area

Data

Pointer to User A Program A

Data

Data

User A
Program A

System call No. 1

System call No. 2

Transfer pointer

Parameters

User B

(a) Points to Register Save Area instead of a control

program service routine.

Figure 3-2. Layout of memory when preparing to
issue second system call.

15

4) All parameters are checked and approved; and during execution of the second system call, control

is returned in control/monitor state to the user, giving the user control of the system.

Table 3-2 further describes the categories of incomplete parameter validation.

Table 3-2. Incomplete parameter validation: categories and examples

1. System routine does not adequately validate parameter attributes.

Example: ,\

• The control program does verify an initial I/O transfer. However, it does not verify that

the initial I/O transfer will not cause illegal modification to subsequent I/O transfers.

2. System routine does not properly reiterate parameter validation.

Example:

• Only the first I/O command or all but the last I/O command in a chained list of I/O commands

is verified.

3. System routine validates a parameter under some conditions but not under all conditions of in-

vocation.

Example

:

• A "confused-deputy" control -program .service routine adequately verifies parameters when

directly invoked by a user, but not when a user's parameters are indirectly passed to the

first service routine by a second service routine.

b. Inconsistent Parameter Validation

Whenever there are multiple definitions of the same construct within an operating system, there

exists the possibility that inconsistencies among these definitions will create a security flaw.

This design error goes beyond the incomplete parameter validation error. A situation may exist

in which each of several control program routines checks completely for conditions it considers valid;

however, the multiple sets of validity criteria Ci-e., conventions) are not completely consistent.

An example of this category of flaw follows:

Operating systems maintain directories (e.g., catalogs) of the data files used by the system and

its users. The contents of these directories are often accessed by as many as half a dozen interface

programs. Each of these interface programs makes assumptions as to what constitutes a valid condition

in the file system.

Consider something as basic as the characters in the parameters representing the name(s) of users

to be given permission to access a file. The routine that creates a master-file-index entry may accept

a character (such as an embedded blank) as valid in a specific permission name; whereas all of the

other interface programs that modify/delete master-file-index entries assume blanks will never be valid

and thus do not accept them. Under such conditions, specific file permissions could be created (such

as shared access to a file) which could not thereafter be deleted.

Table 3-3 summarizes inconsistent parameter validation.

16

Table 3-3. Inconsistent parameter validation: categories and examples

Two or more systems routines perform adequate parameter verification for their purpose, but the

multiple sets of validity criteria are mutually inconsistent.

Example:

• The routine that creates a master-file-index entry permits embedded blanks, but all of the

other routines which modify/delete master-file -index entries treat an embedded blank as an

error. Thus, once granted, a user may be unable to revoke shared access to a file.

c. Implicit Sharing of Privileged/Confidential Data

To ensure integrity, an operating system must be able to isolate each user from all others and

from the control program. This isolation involves both control flow and information. Whenever

information isolation is not complete, the system may allow information of greater privilege to become

accessible to a lesser privileged user or may allow one user to access another user's information

against that user's wishes.

In many operating systems the control/program portion of the operating system shares memory space

with user programs, either as work space or as a convenient place to put information associated with

that user program. This is a deliberate design policy to facilitate charging individual users directly

for resources that they use. If the user requires file operations or other kinds of system resources,

the system maintains the information and the work space for his requirement in an area that will be

uniquely chargeable to that user. Because the workspace is shared, but in a mode not normally avail-

able to the user, operating system implementors have often been careless with regard to the state in

which the workspace is left after receiving a user request.

For example, the control program may use such a workspace to read in the master index of user

files along with their associated passwords as part of a search for data requested by a given user.

This function is necessary in order for the system to determine that the request is properly formed

and authorized to the user making the request. If the control program should find that the request is

improper, it returns control to the user program originating the request, with an indication of the

nature of the error in the request. However, in this example, the control program does nothing about

the information remaining in the shared workspace. As a consequence, the user can now access the

workspace and obtain from it other user identifiers and authenticators (passwords) which he can then

use to masquerade to the system (Fig. 3-3). As shown below, even if the system erases the information

before returning control to the user's program, the information can be obtained by the user through

some form of concurrent processing, such as an independent I/O operation which reads from the workspace

in question. There are other variations of this flaw. Sometimes work files and workspace are not

erased when a user releases them, and another user can scavenge this "unerased blackboard" when the

uncleared file space or buffer space is next assigned.

Sometimes the full implications of information made available to a user are not realized by the

system's designers. For example, control programs frequently acknowledge the disposition of user

service requests by setting a retum-code/status-flag. Various return conditions (such as: "illegal

parameter", "segment error", "password OK", etc.) and other forms of interprocess communication (e.g.,

SEND/RECEIVE acknowledgment) may connote intelligence that enables a user to breech security.

Table 3-4 summarizes and gives examples of the categories of implied sharing.

17

System Nucleus

User A

Program X

Issue I/O Request (File A)

Workspace

\

File A
1

Password A
File B Password B

File C Password C
1

Master File Index

System Nucleus

User A
Program X

I/O Request complete
• (Error Return)

Workspace

File A I

File B I

File C
I

I

L

Password A
Password B

Password C

Figure 3-3. Layout of memory before and after issuing requests to read master file index.

18

Table 3-4. Implicit sharing of privileged/confidential data: categories and examples

1. Explicit transfer of information.

Examples

:

• While servicing a user request, the control program uses a user-accessible buffer to scan master-

file-index entries. While this activity is in process, the user asynchronously reads this buffer

and obtains another user's file-index password.

• The control program does not erase blocks of storage or temporary file space when they are re-

assigned to another user ("unerased blackboard")-

• A user's password is still legible through the overstrike characters on the user's terminal

printout, or a user's password is listed on his batch output when his job command is flushed

due to incorrect syntax.

2. Implicit transfer of information.

Example:

• A user piecewise decomposes a password by locating it on a page boundary and noting page

faults or by precisely timing variations in the execution time required by a password

checking routine.

d. Asynchronous Validation/Inadequate Serialization

System integrity requires the preservation of the integrity of information passed between

cooperating processes or control program instruction sequences. If serialization is not enforced

during the timing window between the storage of a data value and its reference (or between two se-

quential references) , then the consistency of such a data value may be destroyed by an asynchronous

process.

Control information is especially susceptible to modification whenever it is located in storage

accessible to a subordinate process. This is sometimes called the "time-of-check to time-of-use"

problem. As described under the implied sharing of privileged data flaw, an operating system may

frequently share memory space with user programs. This space may not only be used for the passive

storing of information, but also may contain system or user parameters that represent data upon which

future actions will be based. Whenever there is a "timing window" between the time the control pro-

gram verifies a parameter and the time it retrieves the parameter from shared storage for use, a

potential security flaw is created. This is because contemporary operating systems allow a user to

have two or more activities (processes) executing concurrently and sharing that user's memory allo-

cation. For example, a user may initiate an I/O operation and then continue executing his program

while the I/O operation completes.

In another example, a timesharing user may temporarily suspend one operation by pressing the

"attention" or negative acknowledgment (NAK) key on his terminal, perform a second operation, and then

return control to the first operation for completion. Some systems permit "multitasking," in which

19

two or more programs are sharing a single user's assigned memory (a-ddress space) and are executing

concurrently —perhaps each being simultaneously executed by separate CPU's of a multiprocessing

computer system.

The following steps describe an asynchronous validation flaw, which is depicted in figure 3-4.

• In time frame 1, a user issues an I/O request to the control program. The control program

validates all of the I/O parameters (including the address pointer to a valid buffer within

the memory legitimately assigned to the user) , enqueues the I/O request [which must wait until

the appropriate device is no longer busy), and then returns control to the user.

• In time frame 2, the user replaces the valid address pointer to his buffer with an address

that points to a location within the control program.

• When the I/O is performing in time frame 3, the data requested by the user is read into (or

out of) the control program instead of his valid buffer. Instructions within the control

program can thus be overlayed with instructions supplied by the user, or privileged control

program information can be read out to the user's file.

In some systems, the control program may use an overflow register save area, located in user

accessible storage, whenever the control program's primary save area is filled. This saved information

generally contains program status and control information.

This situation can give rise to another variation of the asynchronous validation flaw, should a

user be able to modify such control information. An example of such a penetration attempt follows:

• A user constructs an I/O record that simply contains an address pointing to a desired location

in one of the user's programs.

• Multiple copies of this record are then output as a file.

• The user next initiates an I/O operation to read these records repeatedly into that area of

the user's memory utilized by the control program as overflow storage for registers.

• Then the user issues a system service request that causes the control program to make a

number of nested intra-monitor calls, thus overflowing its primary save area. [The repeated

issuing of certain service requests may also accomplish this aim.)

• The registers saved by the control program in the overflow save area will be overlayed by the

input records that contain the address pointing to the user's code. (Some timing adjustments

may be required for the user to accomplish this.)

• When the control program eventually restores registers and status from the overflow area, it

will transfer control to the user's program in monitor/control state — thus giving the user

full control over the operating system.

An operating system may store information over a period of time in shared auxiliary storage as well

as in main memory. For instance, an operating system may have a checkpoint/restart provision to

record the state of a running program at convenient restart points as "checkpoint" dumps. These check-

point dumps contain both user data and control information which specifies the control status to be

assigned if the program is restarted. The checkpoint dumps are recorded in a file specified to the

system by the user and are accessible by that user for manipulation. Through such manipulation, the

user could cause his program to be restarted with modified state information that gives his program

greater privileges than that originally specified. This can, for example, result in the user gaining

control/monitor state privileges.

Table 3-5 further describes the categories of asynchronous validation and serialization flaws,

with examples

.

20

Time Frame 1 Time Frame 2 Time Frame 3

User: Issues request to

control program for I/O
into User Buffer.

Control Program: Val-
idates user's request

parameters.

User: Changes I/O buffer

pointer to point to sensitive

Control Program location.

Control Program: Issues

physical I/O which reads

a record from user's file

into control program, thus

overlaying control program

instructions with those

constructed by user.

Control Program

Control Program
Instructions

User Program

I/O Request

I Pointer to

User Buffer

Parameters

Parameters

User Buffer

Control Program

Control Program
Instructions

User Program

I/O Request

I Pointer to

Control Program
location

Parameters

Parameters

User Buffer

Control Program

User

Instructions

User Program

I/O Request

Pointer to

Control Program
location

Parameters

Parameters

User Buffer,

User

File

Figure 3-4. An example of an asynchronous validation flaw.

21

Table 3-5. Asynchronous validation/inadequate serialization; categories and examples:

1. Asynchronous modification of user (inferior process) storage.

Examples:

• A user performs asynchronous I/O into his parameter list to modify illegally a previously

validated system call.

• A user performs I/O into a checkpoint/restart file so that his process is given additional

unauthorized privileges when restarted.

2. Inadequate serialization/control of protected storage.

Examples

:

• A user issues a system call which, in part, sets values in an I/O control table and then returns

control to the' user. The user then issues a second, different system call which also, in part,

stores values in the I/O control table — thus overlaying a portion of the previously set values

in such a way as to gain unauthorized I/O privileges for the I/O performed in conjunction with

the first system call.

• A system routine is induced to overlay its own parameter/storage area by a user. The user

supplies an address where a return code is to be stored by the system routine upon return of

control to the user. This user-supplied address overlays the initial word of a buffer where the

system routine has stored a return jump instruction.

e. Inadequate Identification/Authorization/Authentication

Identification, authorization and authentication are the essential components of the concept of

controlled access. Authorization — the controlled granting of access rights — is ultimately based

upon authenticated, unique identification of individuals and resources. An operating system is

essentially a resource manager. Thus, an operating system is subject to integrity problems whenever

1) it does not require authorization for an individual or process to access any data or to use any

resource that should not be available to all, or 2) it does not uniquely identify the resources with

which it is dealing.

A flaw is created whenever a system permits a user possessing one set of privileges/capabilities

to legitimately bypass (controlled access) security mechanisms and perform an action only permitted to

users with differing privileges/capabilities or whenever it permits all users to perform an action

that should be restricted only to users of greater privilege.

An inadequate identification/isolation flaw can be created whenever one system routine relies

upon mechanisms (implemented elsewhere in the system) to ensure the isolation of system resources and,

hence, the adequacy of their identification. This may be a bad policy if the mechanisms are not, in

fact, adequate.

For example, to be identified uniquely a program must be identified both by program name and by

the name of the library from which it was loaded. Otherwise, it is very easy for a user to preload a

22

counterfeit program whose name is the same as some control program routine (which must be dynamically

loaded when required) and to have this counterfeit routine used by the control program in place of the

authentic routine.

To accomplish this, the user generates an activity that will result in the control program re-

questing this routine. The loader will see that the named (counterfeit) routine is already loaded

(which is legitimate) and will set up the control program to use the counterfeit program.

As another example, the user-ID or password-checking mechanism may be circumvented if it does not

effectively limit the number of times a user can attempt to log into the system or if it does not limit

the elapsed time permitted for completing a login. It may be possible, under such circumstances, for

a user to utilize another computer to exhaustively enumerate all password bit combinations and thus

break password security.

Some systems have extensive authorization checking associated with most, but not all, of the file-

access methods and do not restrict use of those access methods which do not perform authorization

checking. Any user who obtains documentation for these latter access methods (unrequired capabilities)

has simply to use them to access any file in the system. This is an example of the bypass of con-

trolled-access mechanisms.

Table 3-6 summarizes the categories and presents additional exanqiles of the inadequate identi-

fication, authorization, and authentication flaw.

f . Violable Prohibit ion/limit

An operating system is described both by its embodiment in computer instructions and by its

external documentation. Whenever these two descriptions differ, an integrity flaw may exist. A

security flaw is created whenever a documented operating system limit or procedural prohibition is not

enforced.

For example, those who implement an operating system may not treat the sittiation in which the

upper limit in size of tables or buffers is reached or when queue space becomes saturated. Docu-

mentation may specify precisely these upper limits and prohibit exceeding the limits, but should a

user deliberately or accidentally cause an overflow or overload, then various results may occur — some-

times a system crash may result, sometimes system operation is degraded, sometimes sensitive data can

be lost, and in some instances such data could be compromised.

Table 3-7 gives examples of this flaw.

g. Exploitable Logic Error

In any major operating system, there are — at any point in time — some "bugs" or logic errors.

Many of these errors depend upon statistically improbable timing situations and are not under the con-

trol of any individual user. Some of these logic errors can, however, be intentionally exploited by

a user to compromise the integrity of a system.

One example involves incorrect error handling. The system may, for instance, perform an illegal

action before signaling an error condition. Consider, for example, that a user requests a series of

modifications be made to the file directory entry of another user, to which the first user has read-

only authorization. If the system performs the requested actions and then determines that the actions

exceed the requesting user's authorization, the security of the system has been compromised through a

logic error. This also may happen if a system service such as a storage dump is initiated concurrently

with the checking of a user's authorization to request the specified service for the specified storage

areas. By the time the error is detected, forbidden areas may have already been listed.

23

Table 3-6. Inadequate identification/authorization/authentication : categories and examples

1. Inadequate resource identification/isolation.

Examples

:

• A user program with the same name as a system program is preloaded by a user and is then accepted

and used by the system.

• A system routine assumes the validity of a system control table whenever the control table is

located in system storage to which users do not have direct write access. In fact, it is

possible for a user to create a counterfeit control table and have it copied into system storage

by certain control program service routines, such as the storage deallocation routine.

2. Bypass of controlled-access security.

Examples

:

• A user legally bypasses the file initialization (open) routine and its security mechanism.s by

utilizing a basic file access method.

• A user obtains system privileges by tdking a legal exit from abnormal job termination (i.e.,

abort) processing.

• A user obtains system privileges by discovering and using a "trap door" exit to the system meant

for system maintenance programmer use.

• An operating system, which does not prfevent a user from simulating its logout and login functions,

permits an unattended (hardwired) terminal to simulate a logged out terminal and obtain another

user's password during a simulated login process.

On a more subtle level, a user may discover that half-word arithmetic instructions are used to

improperly process a half-word return-address parameter. If the largest possible half-word number is

used as an address, an unanticipated overflow may occur, resulting in an address pointing to location

0001 in control program memory, which may cause a system crash.

In another situation, by pressing the "attention" (or NAK) interrupt button on his terminal

during the printing of the login error message, a user may be able to cause the system to erroneously

accept a new login attempt without advancing the counter set to record the number of previous login

attempts. This system error permits automation of an exhaustive enumeration of passwords, with no

indication to system operators that this is taking place.

In a last example of incorrect error handling, it sometimes occurs that protection mechanisms are

disabled or modified as a result of a (deliberate) user error and may not be reset when the control

program later returns control to the user. This can result in the user obtaining unauthorized privileges.

24

Table 3-7. Violable prohibition/limit : categories and examples

1. Violable system limit.

Examples

:

• A user is supposed to be constrained to operate only within an assigned partition of main

storage, while in fact, the user may access data beyond this partition.

• A user is supposed to be constrained in the amotmt of system queue space available to his

process, when in fact, the user may create an uninterruptible, endless loop on a system call

that eventually uses up all of the control program's queue space. This causes the system to

crash.

2. Violable system procedural prohibitions.

Example

:

• A user is able to obtain unauthorized privileges by omitting notification to the operating system

of an exit from an I/O error-processing routine, although the documentation requires such

notification.

Table 3-8 lists three categories of logic error flaws and presents some additional examples.

There are two additional categories of exploitable logic flaws. These are listed here for completeness

and without examples:

• Incorrect process/function initiation or termination.

• Control -state software error trap.

25

Table 3-8. Exploitable logic error: categories and examples

1. Incorrect error-handling sequencing.

Example:

• The operating systems fails to update a count of unsuccessful login attempts if a user presses

the interrupt key CNAK) on his terminal just after submitting a password guess.

2. Instruction side -effects

.

Examples

:

• The operating system uses full-word arithmetic on a half-word return address supplied by the

user. If the value supplied is -1, this causes an overflow into the index field of the word,

and a return to the user in control state.

• An operating system uses a particular indirect-addressing instruction in user space to access

some parameters. The user substitutes a similar indirect instruction which increments an index

register after each execution and thus creates a flaw,

3. Incorrect resource allocation/de-allocation.

Example:

• The same tape or core block is assigned to two users at the same time.

4. IBM OS/MVT

4.1 INTRODUCTION

The IBM System/360 family of computers was developed in the early 1960's to consolidate the

divergence and incompatibility among IBM's three or more existing families of second-generation com-

puters. The System/ 360 design provides for a large main memory, a uniform treatment of input/output

(I/O) functions, non-stop operation under an operating system, and multisystem operation.

The central processing unit (CPU) has the following characteristics: 16 general registers (15 of

which may be used as accumulators, index registers, or base-addressing registers); binary addressing;

fixed and variable field lengths; decimal and hexadecimal radices; bit manipulation; automatic indexing;

and floating- and fixed-point arithmetic. There is a selectively maskable interruption system, main-

storage protection keys, and four alternative CPU states: stopped vs operating; running vs waiting;

masked (uninterruptible) vs interruptible; and supervisor vs problem states. The regularity and clarity

of the System/ 360 instruction architecture reduces the probability that system programmers will mis-

understand or forget about an instruction effect. This in turn diminishes the possibility of integrity

flaws arising from instruction side effects. On the other hand, instruction limitations in the

26

management of base addressing and in I/O programming and error sensing have tended to complicate some

elements of systems programming, which increases the possibility of integrity flaws arising from pro-

gramming complexity.

The operating system discussed in this report is the OS/MVT system (Operating System for Multiple,

Variable Number of Tasks) which consists of a set of service and control programs, including a master

scheduler, job scheduler, and supervisor. The master scheduler handles all communications to and from

the operator, whereas the job scheduler is primarily concerned with job-stream analysis, I/O device

allocation and setup, and job initiation and termination.

Central control resides in the supervisor, which has responsibility for storage allocation, task

sequencing, and I/O monitoring. Provision for this control is embodied in the following concepts:

• Supervisor mode (CPU supervisor state) with associated privileged instructions,

• Storage protection to ensure the supervisor's survival.

• Hardware monitoring of program instruction violations.

• A CPU wait state available to the supervisor (as opposed to a stop/halt instruction available

to the applications programmer)

.

4.2 OVERVIEW OF OS/MVT HISTORY

OS/MVT was not designed to prevent deliberate user-tampering with the operating system. Instead,

an "accidental -error" philosophy was implemented, specifying that the operating system would attempt

to protect itself and other users of the system from common "accidental user errors," but there would

be no explicit attempt to protect against a user deliberately trying to interfere with the operation

of the system. Concern about this philosophy was evinced as early as 1964, when the Systems Objectives

Requirements Committee [4] of the IBM SHARE users group stated:

"The Committee is concerned with the problem of maintaining security of data, particularly

for those systems which allow for multiple program execution. This encompasses both

governmental and corporate security, the former represented by classified and top secret

data, and the latter by management information systems.

Members of the Committee have investigated this problem both inside and outside of IBM, and

very little seems to be being done for a variety of reasons."

In addition to the accidental -error philosophy, OS/MVT (in common with most other third-generation

systems) does not have a clearly and systematically defined interface with the user. The variation in

such an interface tends to increase the probability that integrity flaws will be introduced during

implementation and to increase the difficulty of systematically correcting such flaws.

Several installations, in the ensuing years, have made extensive modifications to OS/MVT to enhance

its integrity in the presence of deliberate user attempts to penetrate the system. Two such instal-

lations are McDonnell -Douglas Corporation and Cornell University. IBM developed an experimental

Resource Security System (RSS) which was field tested at the Massachusetts Institute of Technology;

TRW Systems, Inc.; and the Management Information Division of the State of Illinois. System integrity

was considerably enhanced in this system, although some known integrity flaws were not addressed [5],

The 0S/VS2 Release 2 (OS/MVS) for the newer IBM/370 line of computers has attempted to close system-

atically all known integrity flaws and has made a committment to fix any integrity flaws uncovered in

that system. The design approaches used in the MVS system are relevant to installations concerned

with OS/MVT integrity flaws. These design approaches are discussed by W. S. McPhee [6]; portions of

which are paraphrased in Operating System Integrity Flaws, section 4.3.

The following paragraphs briefly discuss the IBM/360 and OS/MVT security approaches in the cate-

gories of prevention (isolation and controlled access) and integrity monitoring.

27

4.3 IBM/360 AND OS/MVT PREVENTION CONCEPTS

The first step in preventing impairment of system integrity is to isolate users from each other

and from the operating system. The isolation features of the system are storage protection, program

interrupts, tape/disk write protection, and privileged instructions.

a. Hardware Isolation Features

Storage protection prevents currently operating CPU or I/O channel programs from intruding into

other programs and their associated data areas. A number of different main storage regions should be

accessible and distinguishable from each other because I/O channel operations may be related to latent

CPU programs rather than the program currently being executed by the CPU. Storage protection is

realized by providing each of the 2048-byte blocks of storage with an 8-bit register (3 bits unused)

.

The monitor may store any 4-bit combination into any one of these registers. The communicants with

storage (namely the CPU, each selector channel, and each multiplex subchannel) are provided with in-

dependent 4-bit key combinations by the monitor. These key assignments are divided into two classes,

zero and nonzero. The zero key, considered as the master key to all locks, is assigned only to appro-

priate sections of the monitor. The protection function applies only to operations that store into

a block. Storage takes place only if the key and lock combinations match or if the master key is used.

Otherwise, the store is inhibited, and a program error interruption occurs. Fetch (read) protection

is supported by the hardware-storage-protect feature (as the fifth bit in the register), but is not

used by the operating system. (This permits any user to read all the contents of main storage.)

There are a number of basic control instructions, such as those initiating I/O or changing pro-

gram status, which can be executed only in the supervisor state. Any attempt at execution by an appli-

cation program results in a hardware "program error" interruption.

Instruction and data formats are checked for correctness as the instructions are executed. This

policing action distinguishes and identifies instruction errors (such as addressing or operation

exception errors) and machine errors. Thus, instruction errors cannot cause machine checks; each of

these types of error causes a different type of interruption.

The way an application program requests services from the control program is through an inter-

ruption. The preferred method is through execution of the supervisor call instruction which causes a

supervisor-call hardware interruption. Although the supervisor call instruction is preferred, some

IBM and installation subsystems have implemented other methods of generating interruptions to request

control program services.

Magnetic tapes have a detachable plastic ring whose presence or absence is sensed by the tape

read-write unit to permit or prevent writing on the tape. Some direct -access devices may be equipped

with a manual switch to achieve the same results. The operating system uses a file mask I/O order

(i.e., channel command) to prevent an I/O operation from reading or writing beyond assigned limits.

There are a number of operating system integrity flaws that permit subversion of most of these

hardware isolation features.

b. Control Access Features

Although there are installations whose computing requirements can be satisfied within an environ-

ment of complete user isolation from each other, it is far more typical for users to have requirements

to interact with each other — sharing resources such as programs or files. This ability to share

selectively through authorized access to specified resources is called controlled access. Controlled

access relies upon an effective system of isolation, without which access can not be controlled. In

28

common with many other third-generation operating systems, the OS/MVT design philosophy introduces very

few constraints upon unlimited access, leaving most such constraints to be implemented by admin-

istrative and operator procedures.

The OS/MVT file system includes a Volume Table Of Contents (VTOC) on each direct access volume and

of an optional tape label for tapes. These labels provide for password controlled access and for

expiration-date controls that require permission from a system operator for a user to write into the

file before its expiration date. There is a central file index (CATALOG) which lists the name of each

cataloged file and gives its volume identification (serial number) . Any entry in this CATALOG is

available for legitimate modification by any user.

The IBM-supplied, data-set (file), password-protection scheme is not used by most installations

because it is procedurally cumbersome to use and because of limitations in the security it provides. A

number of installations (e.g., Yale University) have implemented their own version of data-set password

protection,

c. Integrity Monitoring and Surveillance

In keeping with the OS/MVT accidental -error philosophy, integrity monitoring (assurance that the

system is working as intended) and surveillance (the monitoring and recording of system activity) are

not oriented toward the detection and identification of deliberate user-tampering with the operating

system or with other user's files.

The most comprehensive of these monitors is the System Management Facility (SMF) . It is possible

to generate more than a hundred types of records; the installation using system generation parameters

can specify those types of records it wishes generated. Most installations use purchased software

packages or installation-written programs to format and summarize the thousands of records SMF produces

daily. SMF records can be produced for the following categories of data: job accounting, data set

(file) use, disk space use, device use by job step, program calls, and installation-captured data.

While SMF appears to offer a detailed and useful security audit trail, its usefulness is compromised

by three factors. First, the SMF output files are no better protected than any other system file,

thus permitting their unauthorized modification by a user. Second, a user who has penetrated the

integrity of the operating system can prevent the SMF programs from recording information about his

activities. Third, a system crash will prevent the recording of, and cause the loss of, the most

recently produced records. While SMF data may thus be compromised, it will not necessarily be com-

promised. Therefore, SMF data must be reviewed by an installation for any indications of unusual

activity — such as a statistically significant increase in the occurrence of invalid timesharing pass-

words (e.g.. Time-sharing Option passwords).

4.4 SUMMARY

The security of OS/MVT can be enhanced in three ways:

• Operational: An installation can choose to execute applications in a single -thread, stand-

alone mode in which it is assumed that each program being executed has full access to all data

and programs in or stored on the system, including accounting information.

• Applications: All access to the system is through one or more designated application sub-

systems that the installation has audited and is confident can not be subverted. No other

activity (such as program testing or compiling) can take place concurrently, and all data to be

protected (including the trusted version of the operating system) are removed from the system

before other activity is allowed.

29

• Systems: Extensive programmed modifications are undertaken to eliminate most known integrity

flaws and to monitor system integrity. This will increase the effort and risk required to

subvert the system.

4.5 OPERATING SYSTEM INTEGRITY FLAWS

Installations running OS/MVT should be aware of the following two specific integrity flaws. These

flaws are discussed because it is relatively easy to counteract the effects of these flaws. Together

with similar integrity flaws described in Section 5.6 and 6.6, these flaws also serve as specific ex-

amples of the classes of integrity flaws described in the taxonomy (Section 3) . The generic des-

cription of the flaw is taken from the taxonomy. The reader should not assume that these two flaws

are typical of the other integrity flaws that are known to exist in OS/MVT. Easily exploitable flaws

are not described in this document unless they are no longer applicable to currently operating systems.

c Generic Description : Asynchronous validation/ inadequate serialization.

Specific Description : The checkpoint data set produced by the checkpoint/restart facility

contains sensitive system data. This data set is not protected from modification (or counter-

feiting) by the user prior to its use by the restart facility.

Security Enhancement : One option, if feasible, is for the installation to remove the check-

point/restart capability from the system. If this is not feasible, control mechanisms must be

developed to require

:

— System-operator validation of checkpoint files.

— External labeling procedures for checkpoint volumes.

.
— Off-line library control over access to checkpoint files.

— Prohibition of I/O to checkpoint data sets, except via the checkpoint SVC and

authorized system utility programs.

• Generic Description : Inadequate identification/authorization/authentication

.

Specific Description : It is possible to bypass tape label processing even if this function

is included in the system by specification during system generation. For example, a user

may change the label-type, which is specified in a system control block, before the tape file

is opened and the label accessed.

Security Enhancement : The system can be modified so that important parameters which describe

user files are maintained in memory protected from the user. This may be combined with an

autotnatic-volume-recognition package acquired commercially or from another installation.

Alternatively, naming conventions and logs for external tape labels can be adopted such that

the system operator will only mount tapes authorized to the requesting user.

30

5. UNIVAC 1100 Series Operating System

5 . 1 INTRODUCTION

The UNIVAC 1100 Series Operating System operates any of the three 1100-series computers, the 1106,

1108, and 1110. It combines multiprogramming, multiprocessing, timesharing, communications, and real-

time systems into a complete set of software — from basic service routines to compilers. The major

subsets "(with some examples shown in parentheses) are:

• Executive system.

• System processors (collector, FURPUR, SECURE).

• Utility system processors (FLUSH, CULL, DOC).

• Language processors (FORTRAN, COBOL, ASSEMBLER).

• Subroutine library (FORTRAN library, SORT/MERGE)

.

• Applications programs (GPSS, PERT)

.

The executive system is responsible for controlling and coordinating the functions of the internal

environment. By using multiprogramming and multiprocessing, it handles batch processing, demand pro-

cessing (timesharing), and real-time processing. Since installations do not have the same needs and

requirements, each capability supplied by the executive may be eliminated by an installation during

system generation. Permanent data files and program files are kept on mass storage devices with some

security measures to ensure that files are not subject to unauthorized use.

The executive system consists of several classes of routines, grouped by the functions provided.

• A set of control statements are provided for directing the execution of individual tasks of a

job and for relaying operational information about the job to the executive system.

• The supervisor component controls the sequencing (coarse scheduling), setup (dynamic allocation

of storage space), and execution (central -processor-unit dispatching) of all jobs.

• Available facilities are assigned by the executive as needed to fulfill the requirements of

all rxms entering the system.

• File-control routines allow file manipulation without concern for the physical characteristics

of the recording devices.

• Operator-communication functions display system status information to the operators.

• Input/output device handlers and symbionts control the activities of all I/O channels and

peripheral equipment attached to the system.

31

5.2 DESIGN CRITERIA OF THE OPERATING SYSTEM

Because of the flexibility of the hardware and software configurations, the 1100 Operating Sys-

tem can handle both scientific and business jobs. Jobs may be submitted via any one of three ways:

central job-entry terminals, remote job-entry terminals, and demand terminals. Once submitted, a job

may be handled in any of three modes: real-time, batch, and demand processing. The differences of

the three operating modes are not in the way data is handled but rather in the priority and queuing

of the job's tasks for dispatching.

UNIVAC (in the 1100 Series Operating System Programmer Reference Manual) lists the following as

fundamental design criteria:

• Individual components operate reentrantly whenever possible.

• Components and data areas are permanently resident in main storage only if nonresidency is

either impossible or would impose an unacceptable overhead.

• The central processor units (CPU's) are in general treated equally.

• Components must be able to execute on any CPU.

• Wherever feasible, real-time requests are given top service priority.

• Interrupt lockouts and software interlocks on interrupt-related data must be kept to a minimum.

• Most executive system components operate as ordinary activities and are managed in the same

way as user activities.

• Service requests by an individual user are to be validated to whatever extent is necessary

to eliminate undesired interaction with the system and other users.

• Code for optional hardware components and software capabilities should be written such that

it need not be generated if the associated component or capability is not configured.

• Each type of peripheral (e.g., teletypewriters and printers) has an associated symbiont, a

peripheral-handling routine. The symbionts buffer large amounts of data from low-speed

peripherals to main storage to minimize the number of data transfers.

5,3 1108 ARCHITECTURE

The CPU's are interfaced to the I/O peripherals by I/O controllers CIOC) . As a result of the

IOC, the CPU does not concern itself with the physical capabilities and limitations of I/O devices.

The CPU and the IOC are connected to the main storage device. Data transfers are usually buffered to

increase efficiency. There is a hardware option, back-to-back block transferring, which allows data

manipulation to be handled completely within main memory without the involvement of the CPU once the

process has been initiated. This leaves the CPU completely independent during long data transfers.

(See figure 5-1.)

32

Ini'erleaved

main
storage

MMA

I/O channel

Interleaved

main
storage

MMA

I/O
controller

(IOC)

I/O peripherals

Figure 5-1. CPU, IOC, and interleaved main storage with MMA's for UNIVAC 1108.

33

a. Memory Interface

The CPU's and the IOC's are interfaced to the storage units by the multimodule access (MMA) units.

There is one MMA for each storage unit. The UNIVAC 1108 may have from one to four storage units. A

storage unit provides 64K words of main storage (36-bit words) . Hardware implementation exists to

provide address interleaving for greater efficiency. An MMA is used by the CPU's and IOC's to request

and receive access to the corresponding storage unit. When a conflict occurs between two or more

access requests, the MMA services the requests on a priority basis.

b. System Control

The majority of the control activities are handled through the 128 control registers, the interrupt

system, and the queuing system. Dynamic allocation is serviced in order of priority and by the queue

ordering within each priority. The first request arriving at priority x will be handled the moment

there are no requests of a higher priority. The dispatcher, controlling CPU usage, operates in a

similar fashion, i.e., switching consists simply of taking the highest priority activity from a list

(called the switch list) of all activities currently requiring CPU service. When an I/O interrupt

occurs, the type of interrupt and the channel on which it occurred is either queued or routed to the

appropriate processing routine. When the interrupt is queued, the priority of the interrupt helps

determine the length of the time before servicing.

The availability control unit (ACU) provides hardware configuration control. It interfaces with

the CPU's, IOC's, storage units, and MMA's for up to 24 peripheral subsystems. The ACU provides for:

• Dividing the entire system into independent systems.

• Disabling CPU's or IOC's whenever a power failure occurs.

• Taking a unit off line for maintenance without impacting the operation of the remaining units.

• Initiating automatic recovery upon system failure.

• Maintaining an availability table for all units.

5.4 INTEGRITY FEATURES

a. User Control

The basic program entity for which storage allocation is required is called a bank. When in main

storage, a bank occupies contiguous physical addresses. In the logical program sense, a bank is a

collector-defined portion of the program that is specified by a single bank-descriptor word (BOW).

(The collector functions as a loader or linkage editor.) By this collector definition, a program is

logically organized into two banks: instruction banks (I-banks) and data banks (D-banks)

.

The profile of the entire task with all of its associated banks is maintained in the program

control table (PCT) . The portion of the PCT controlling the banks is called the bank -descriptor table

(BDT) . In the BDT are the BDW's describing each bank belonging to the program. The BDW's contain

bank control information such as whether or not the bank is read-write protected and what are the upper

and lower boundaries of the bank area.

A program area is thus described and controlled by the PCT. Within the PCT are two control words:

the program state register (PSR) and the storage limits register (SLR) . The PSR contains the guard

mode and storage protection designators. Main storage protection can be established in either one of

two modes. One mode (exec mode) affords write, read, and jump protection; the other (user mode) affords

protection only when writing. A program may run in either of two modes. Exec mode allows the program

to use privileged instructions; user mode does not. The SLR contains the upper and lower absolute

34

address limits of main storage in which the active I-bank and D-bank of the currently operating pro-

gram are located. Thus the type of storage protection and whether or not it is enforced depends on

the condition of the guard mode and the write-only storage protection designators in the PSR.

b. States of Execution

There are four states in which a program may execute.

• The program runs in exec mode with no storage limits enforcement.

• The program runs in exec mode with storage limits enforced.

• The program runs in user mode with no storage limits enforcement.

• The program runs in user mode with storage limits enforced.

The last state is the only "safe" state with regards to security. A user job getting into any of the

first three states can. cause a security compromise.

c. Protection of Permanent Files

Cataloged files are protected by the concept of keys: read-key required, write-key required,

both read and write keys required. In core, files are protected by storage limits, read-only desig-

nator, and write-only designator. Files, in general, can be manipulated by using the file utility

routirtes (FURPUR) supplied by the system. A user can also write his own file manipulation routines.

Physical security of cataloged files on mass storage is provided by the SECURE processor which

produces backup tapes. Most files can be saved by SECURE. Certain files are marked with "unload

inhibit" which will not allow them to be removed from mass storage. These unload-inhibit files are

determined by real time or other special considerations. There is also a guard option for reading that

even prevents the privileged read necessary to make the backup copies. This option is required for

certain special files which are internal to the system and are either highly transient or highly

classified. A checksxmi is optionally provided to check the backup copy. With these backups, no file

will lose more than a certain amount of processed data if the system crashes with some kind of data loss

SECURE tapes are handled by SECURE routines only. These tapes should be stored separate from user tapes

In other words, there must be a SECURE tape vault, exclusive of user tapes.

d. Protection of Magnetic Tapes

All magnetic tapes are "exclusively assigned." That is, two different jobs should not be able

to access the same tape at the same time. Each tape is identified by a series of header labels. The

volume header identifies the reel number and the owner of the reel if it is private (as opposed to

public). The file header contains information such as filename, file generation and version numbers,

creation and expiration date, and access control designators. When the operator mounts and loads a

tape, the system should check the headers against the tape request if the tape is labeled. (The

earlier releases of the 1100 Operating System did not perform an adequate check; however, the later

releases do.)

A tape-labeling system is necessary to offset any operator error which may occur. If such a

system is not available, more procedural checks must be added to double check for human error. One

possibility is for the operator to always copy the user identifier and the reel identifier into a

tape log book, then to take the tape log book to the vault librarian who then must initial the log book

before giving the tape to the operator. (Ownership of tapes must also be checked.) There could be a

log book at the vault for the operator to initial. With the incorporation of all of these procedures.

35

the possibility of using a wrong tape is greatly reduced. The overhead involved with these procedures

is time and the cost of log books. Alternate methods may be more reasonable for an installation with

few tapes

.

e. Audit Trails

While the log books record tape usage, the system maintains logs to record system usage. Audit

trails (log entries) record the following: 1) job initiation and termination statistics, 2) user-

specified log control messages, 3) console messages, 4) I/O errors, 5) symbiont activity, 6) tape-

labeling information, 7) checkpoint/restart information, 8) facility usage, and 9) cataloged mass-storage

file usage.

The total amount of time used by a job is broken down into the various subsystems used. A log

entry is created and subsequently inserted into the master log whenever the configuration of a job is

changed by assigning or freeing a tape or an arbitrary device file, or whenever a cataloged file is

created, assigned, or freed. The actual usage, or lack thereof, of a file or tape is not logged

since the mere act of assigning a file does not imply usage. In fact, a user may assign any file or

tape. The access control is not checked until the access is performed. Thus, the "usage" entries in

the master log list the reservations made by the job for various types of storage and facilities and

the amount of time spent using each type. These entries do not adequately describe the actual access

made by the job.

The system master log is updated at intervals. Until update time, the logging information is

kept as a temporary file, and temporary files are destroyed by a system crash. Therefore, a user can

get on the machine, perform unauthorized actions and be undetected (i.e., not recorded on the master

log) if a system crash occurs. Some installations have incorporated their own audit trails into the

1100 Operating System. If a larger overhead is acceptable, more specific information must be added

to detect an intended breach of security. The presentation of the information should be directed toward

the person (not necessarily a system programmer) responsible for examining audit information.

The use of the audit trail raises the questions of who and how often the log entries are examined.

Administrative procedures need to be implemented to ensure that the audit trail information is

examined in a consistent and timely manner and that appropriate actions are taken. An example of such

a procedure is the existence of a "security officer" whose console output are the highlights of the

log. The important entries (as defined by the administration) are printed onto the security console.

The officer's task is to use this information in detecting breach attempts. The presentation of log

entries to a security officer should be easier to read than are the current log tables. A list of

times and files used may not be significant to the security, while a message indicating a guard mode

fault from user xxx at terminal yyy would get his attention.

Implementing these administrative procedures will require a redesign of not only the logging

system but also part of the interrupt system. Currently, a user program may supply an interrupt-

handling routine for software errors so that information would not be passed to the log routine.

Thus, a guard-mode fault would not be logged. The interrupt must be logged before control is passed

to the user's interrupt handling routine.

f. Role of System Console Operator

Just as the tape vault procedure can be used to identify a user's access rights to a tape, a sys-

tem console operator could have a procedure to determine when or when not to honor a request for

operator intervention. Messages from the system would be formatted so that they contain flag characters

which a user could not duplicate onto the system console as a spoofing mechanism. Once the operator

36

is sure that the system is the requestor, he can safely comply. If the requestor is a user, the

operator must check two points: 1) the user is really who he says he is, and 2) the user is authorized

to request that particular action. An example of this process is the authorization of a job that requires

operator interaction. The operator would have a list of all users allowed this privilege and would

confirm that the request came from that user rather than from another user masquerading as one of the

authorized persons. These procedures will differ depending upon the installations' needs and require-

ments. Each installation should decide upon a set of rules and enforce them.

g. Impact of System Degradation

Another installation-dependent procedure is the handling of a system crash. Certain installations

do not consider a system crash a security problem. Other installations view a crash as a reliability

problem, a matter of poor throughput. Still others worry about system crashes and recoveries because of

time- sensitive data processing or the loss of information.

Assuming that a system crash is serious with respect to security, a procedure should be established

for system recovery. Before recovery begins, steps must be taken to identify, as specifically as

possible, the reason for the crash. This is not an easy task. The system itself may be in control

at the time of the crash even though it was caused by a user. (For example, he requested a confusing

sequence of tasks, supplied bad data, etc.) Where possible, the user job responsible for the crash

must be identified. A decision by a "person of responsibility" is made as to whether malice was

meant or an accident happened. The security officer's console log might be one tool used for deciding.

It must be pointed out that this procedure will make system recovery take longer.

It is possible for a user to cause a system crash after making spurious files. There is a chance,

therefore, that the recovery system may be fooled into giving these spurious files more privileges,

more data, etc. This would be a security breach.

Solving this problem involves the redesign of the recovery system and possibly of other portions

of the normal system.

5.5 SUMMARY

The UNIVAC 1100 Series Operating System was not designed with operating system security in mind.

There are a number of known flaws that can be corrected only by redesigning parts of the operating

system. Certain parts involve a large amount of code, and changes in these areas would greatly impact

the design of other areas. One such area is the file management complex of routines. '

Although not all areas lend themselves to redesign, a large number of the problems are fixable.

Consider as an example the problem of file protection in this system. To protect the files from un-

authorized user access, an access table can be implemented. Because the table size must be limited, not

all user files can be protected in this way. However, not all files are sensitive in nature. Thus, a

user can assess each file's protection requirements and submit his sensitive files for this kind of

protection.

Problems that would involve complicated software changes may have solutions in hardware appli-

cations. For example, bank protection can be write-protected by introducing an add-on hardware unit

into the system.

Still other problems lend themselves best to procedural solutions. Restriction of access is

indeed the most straightforward of solutions. Assuring that all users with access to the system are

legitimate (by physical restrictions, by imposing heavy identity checks, or by a combination of the

37

two) allows the system to relax its mistrust of users. The ultimate in procedural protection mech-

anisms is the restriction of computer operation to serial (batch) service. That is, only one job is

allowed on the system at any instant of time.

Timesharing and concurrent job processing introduce complications that the standard UNIVAC sys-

tem is currently unable to adequately provide protection. Procedural, hardware, and software fixes

can be introduced (and some UNIVAC sites have done so) to reduce the probability of computer mis-

management to a level of "acceptable" risk during concurrent processing.

5.6 OPERATING SYSTEM INTEGRITY FLAWS

The following examples have been carefully chosen because they illustrate security problems yet

involve a minimum amount of exposure or risk to installations. The first two integrity flaws can be

fixed at the option of each installation. The final three flaws appeared in early versions (before

level 31) of the operating system and have been corrected by Univac (as of three or more years ago)

.

They are listed to illustrate the types of security problems that occur in computer operating systems.

« Generic Description : Inadequate identification/authorization/authentication.

Specific Description : The protection mechanism of reentrant processors (REP's) cannot write-

protect the REP's I -bank.

Implications of Flaw : If the I-bank of a REP is not write-protected, a user program can

attach to the REP, install a Trojan horse, and then release the REP back into circulation.

Future calls to the REP will trap the callers.

Security Enhancement : UNIVAC has developed a hardware attachment (two cards per CPU) which

implements proper write protection for the I-banks. A switch is also provided to allow access

by systems personnel to run debug shots.

• Generic Description : Implicit sharing of privileged/ confidential data.

Specific Description : Portions of core are not cleared before the user has access to the areas

in question.

Inylications of Flaw : The user given uncleared storage can inspect the residue left by the

system or by another user. Information he can get may include file access words, passwords,

keys, EXPOOL information, etc. There is an option for the collector that allows the user to

specify core sections not to be cleared before release to him. There are also at least two

instances of EXPOOL information leakage. Both are recoverable by the user, allowing him to

scavenge for system control information.

Security Enhancement : This collector option (B-option) must be removed. The default of

"clear" must be the rule. CLRCOR is a configuration parameter which can be set at system

generation so that the system always clears core.

38

« Generic Description ; Inadequate Identification/authorization/authentication.

Specific Description : The check for the system file name is Inadequate.

Implication of Flaw ; Access to the system ^ile SYS$*DLOC$ specifies the run as being

"privileged." To determine if a job is privileged, the system concatenates the first three

characters of the qualifier name with the first three characters of the filename. This six-

character result is compared against the string "SYSDLO". If the comparison yields equality,

the job is assumed to be privileged. Therefore, a job with access to the file SYSA*DLOA is

considered privileged. Any privileged run can access the text and the master file directory

information of any file catalogued In the system without supplying any of the access keys.

Security Enhancement ; The entire name of the file and its qualifier must be checked. This

check must be expanded to Include the entire qualifier (SYS$) and the entire filename (DLOC$),

instead of just the first three characters of the qualifier and filename.

• Generic Description : Implicit sharing of privileged/confidential data.

Specific Description ; In systems released before level 27, register Rl contained the access

key for the I/O instructions.

' Implication of Flaw ; A user can write into register Rl. An all-blank keyword is the access

key that allows any request to be honored. A user who writes blanks into register Rl can then

issue I/O requests to gain unauthorized access to system information and to data belonging to

other users.

Security Enhancement ; A control word can be defined in system space to hold the access key.

All checks on the I/O requests should be compared against this control word.

• Generic Description : Exploitable logic error.

Specific Description : A user can load a bank before his access rights to it are checked.

Implication of Flaw ; A file pointer is updated too early. The user can access banks to which

he has no legal rights.

Security Enhancement ; The user's access rights must be checked before updating the file

pointer. The code is already in the LIJ/LDJ section of the system. The two sets of in-

structions need to be interchanged.

6. Bolt Beranek and Newman TENEX

6.1 INTRODUCTION TO TENEX

The TENEX operating system was designed by Bolt Beranek and Newman Inc. (BEN) with support by the

Advanced Research Projects Agency (ARPA) . The original intent was to develop a medium cost system

employing state-of-the-art virtual memory hardware and software, user-controlled multiprogramming, and

a flexible user-controlled software interrupt system to serve the research groups at BBN. The one

need that forced the development of the new system more than any other was the need to run large LISP

programs, \^^lich typically require a rather large and scattered working set.

39
1

To obviate the need for developing a completely new set o£ utility programs, TENEX was designed

to be hardware and software upward compatible with Digital Equipment Corporation equipment, the DEC 10/50

system. By having DEC UUO's (DEC system calls) cause loading of a user interpreter to perform the

equivalent TENEX JSYSes CTENEX system calls), TENEX was able to implement a complete new set of system

calls and still maintain the DEC 10/50 compatibility with a minimum addition to the security kernel of

the operating system.

6.2 TYPICAL USE OF TENEX

Figure 6-1 shows a system status listing for a "typical" TENEX system. The listing gives the

reader a visual picture of the typical use of TENEX. A description of how the listing was generated

and what the various fields represent should help it to convey the maximum amount of information.

This description follows:

1) To generate the listing, a user on one TENEX system ran a TELNET program that allowed him to

connect to the "typical" TENEX system. The TELNET program has a feature (discussed in

section 6.6.b with respect to a security problem) that allows it to accumulate the terminal

output from the remote system in a disk file. This disk file, the TELNET typescript file,

was later edited into this report.

2) Starting at the top of the listing is a line of header put in by the TELNET program. The "#"

is the first character of terminal output and is the prompt character from the TELNET program.
*

The user then typed "tenex" followed by a carriage return (<CR>) . The TELNET program com-

pleted the connection through the ARPA network as it typed "is complete" and the initial

herald by the remote system follows the "#" delimiting the end of the TELNET programs' command

output. In the case of TENEX, the herald indicates the TENEX version number (here 1.33.16)

and the EXEC version number (here 1.53.21).

3) The "@" is the prompt from the remote TENEX's EXEC language processor (EXEC). The user then

typed "login usemame password <ESC><CR>". The password doesn't echo, and the system recog-

nizes the default account string for this user when the user typed the ASCII escape character

(<ESC>)

.

4) The user was then logged-in, and he got some information about his status, a note as to when

he last logged in (to detect password leakage problems) and was given the prompt "@" by his

now logged-in EXEC (discussed in section 6.4.c, Process Protection). He then typed "ld<CR>"

whidh generated the status listing, and he typed "logout<CR>" after the last "@" prompt to

logout. An ASCII SUB (control-Z) tells the original TELNET that the user wants to talk to it,

again eliciting the The user then disconnects and quits leaving the typescript file.

5) As far as the load status itself goes, after some load statistics (e.g., an average of 6.31

processes are currently requesting the CPU), the load status lines are generally broken up

into four fields: job number, terminal number, user name, and a variable length field. The

variable length field includes: a) the subsystem in use (default is EXEC); b) the user's local

network site, shown in parentheses "()" (default is a local user); and c) the user's con-

nected directory, shown in angle brackets "<>" (default is the user's login directory). Most

of these terms are discussed in detail later where they relate to security issues and are

noted here simply for later reference. The only lines that are not of this format are lines

that do not start with a number (the job number). These lines indicate active ARPA net con-

nections and are not pertinent to this discussion.

*
Characters in angle brackets (<>) indicate ASCII standard characters.

40

TELNET typescript file started at TUE 18 flflR 75 1937:27 EDT
ten9X is complete.
TEHEa 1.33.16.. EXEC 1 . 53 . Z 1

iiioqin rises LLL
JOB 9 OH TTt'113 18-riRf?-F5 16:39 PDT
PREVIOUS LOGIN: lR-rifiR-75 14^12 PDT

@id
Load 1

up 32:442 36
5. 13
25+2+5

Jb
34
3

20
46
42

TTY
I 14*
1 13
1 12*
I I 1*
53*

User
not logged

5.05
jobs 12;-; idle

in
Risos
Sm i t h
Jones
Lab

OPND *3.''2 <>
48 52 Jones
25' 50* Risos
OPHD 102.''3 <

OPNm 104 <-

LD. CLLL-RISOS)
RSEXEC. i:fir1E5-TIr=N=40)

10/'l.. 05

'-'3
.-

Bob
30
40
3
17
28
21
13
38
41
12
45
35
23
8
15
13
24
23
33
26
5
4

45
43*
42*
40*
37
.-IQ-T-

32*
26*
24*
23*
22*
21*
17*
16*
14*
1 1*
10*
2*

Det
Det
rLDINF)
CRSSER)

CLZU *0/i <

2 CBFiTCnHj
1 (PRTNTR?
0 (SVSJOB)
OPND *3000---

OPND *3002
(31 ogout
LOGOUT JOB 9

USED 0:0=5
*d isoonneot
*qu i t

Fr lend
Tay i or
Campus
S LJ 3

I
oc K

User
Mistuf

f

Edit
Mssembl
Fast
Report
Nbs
Rises
Number
Bart
fli onqname

TELNET
BBN-TENEXR:

NL5
FTP.. (LLL-RISuS)

> BBN-TENEa:7 3001
BBM-TENEX:? 3003..

B5Y5.< Isis>
LI5P..<5np«ch>
SPELL
PRIHTR.<5Mstem>
(PRIV)
LISP
TECO
nRCRO
TVEDIT
RUNOFF

B8

Bart
Fr i end
naol 1

Batch
Unit

FXERCI
F40
SOS
.. X05
RERDMfl
SHDnSG
nfiCNi 1

TEL5ER.<net>
<Loadstat >

BBN-TEnFX:40*3^-'2.
< Batch/
<Pr inter/

836

.: Discussed udth EX'EC.

.:The load status program itself

.:fin RSEXEC problem is discussed
;5ianK indicates EXEC use.
.:fl TELNET problem is discussed.
Rn ac t i ve ne t utorK connec t ion.
fl fancy tree structured editor

.:The file transfer program.

•The bacKup archival system,

;R spelling correction program.
^System printer control.
;R user's unnamed program.

;R simple pouerful editor.
;fln assembler,
fl fast display t ype ed i t or

.

;Rn old report generator^

;The RISOS system Exerciser.
: The Fortran compiler.
I fin unKnoun subsystem.

!R subsystem to read messages.
iR message sending facility.
:R PDP-11 cross assembler.
;R detached job.

RSEXEC server discussed.

1 :> BBN-TENEXB:35*103---2. B8
BBN-TENEXB: 35*105.. B8

USER RISOS.
IN 0:2:14

RCCT LLL.. TTY 113.- RT 3XlR,.-'75 1641 PDT

Figure 6-1. Example of a system status listing for a "typical" TENEX system.

41

6) Anything after and including a ";" on a line was included as a comment and was edited in for

this report. Also some subsystem use was modified to further typify the status. Some names

were changed, and some lines were deleted to shorten the listing.

As an example in hand of typical TENEX use, the initial entering, editing, spelling correction,

storing, and network mailing of this section were done with TENEX.

6.3 OVERVIEW OF TENEX HARDWARE ARCHITECTURE AND INTEGRITY FEATURES

a. CPU

The TENEX operating system can currently run on a DEC KAIO processor with a BBN pager or on a

DEC KIIO processor. (The KAIO, KIIO, and KLIO are all DEC PDP-10 processors.) The initial implemen-

tation was on the KAIO for which BBN designed the pager. The KIIO version is selected at assembly

time and is implemented by translating between the KIIO format and the BBN pager format for the page

tables. The system upon which this report deals with is the KAIO version, so only the KAIO system

will be considered. There is little loss of generality in thus restricting the report to the KAIO

version of TENEX.

Probably the most important feature of the PDP-10 CPU that aids system integrity is the fact that

the instruction set and I/O structure were optimized more for simplicity than for speed. The mech-

anism for computing the effective addresses used by instructions is uniform throughout the instruction

set, thereby freeing the programmer and automatic analysis routines from the need to consider many

special cases. Included in the instruction set are a complete set of Boolean operators, stack

operators, variable- length byte operators, and flexible bit-testing and masking instructions. Many

of these instructions are almost never used and many perform identical operations, but the instruc-

tions are organized in a way that makes them easy to understand and use. The I/O structure is also

very simple dnd doesn't contain the sophisticated channel -program mechanisms that appear in many com-

puter systems of about the same vintage.

One disadvantage of the PDP-10 is that its architecture does not admit a practical virtual ma-

chine monitor. There are several instructions that allow a program running in monitor mode to de-

termine that it is really in monitor mode. Such instructions would have to be emulated in a virtual

machine monitor, and no mechanism is available for singling out the particular troublesome in-

structions. This fact requires that a virtual machine monitor for the PDP-10 simulate all instructions,

a mechanism that is impractically slow on the PDP-10 itself. A TENEX emulator was implemented on the

MAXC at the Xerox Palo Alto Research Center [PARC) which made some otherwise difficult measurements

possible, but this is a one of a kind system and the additional measurements are very limited. A

virtual machine monitor for the PDP-10 itself would make TENEX development much smoother and make much

more complete testing of the operating system possible.

The hardware modifications necessary to allow the KAIO to support a virtual machine monitor are

fairly minor. The software task of writing a virtual machine monitor for the PDP-10, however, would

be a major undertaking.

The JSYS mechanism that was introduced with the BBN modifications to the KAIO processor greatly

simplifies the Monitor call mechanism. The most important part of the JSYS mechanism is the JSYS

vector located optionally at a fixed location in real core or in a reserved page in the per-process

region (discussed in section 6.3.b) of the Monitor's virtual space. (This option is a recent addition

for JSYS trapping which is also discussed in section 6.4.c.) The JSYS vector contains the addresses

of the routines used to handle the JSYS calls and the addresses of words to store the information

necessary to return to the calling process. When coupled with the per-process mapping (Sec. 6.3.b

42

below), this mechanism makes monitor entry and exit from user space very simple. Unfortunately the

Monitor recursion mechanism (using JSYSes within the Monitor) is still awkward. This recursion is

once removed from the user, however, and is therefore somewhat less security sensitive.

b. Virtual Memory Hardware

TENEX is a virtual memory system with separate virtual spaces for the Monitor and the user. This

fact reduces some security problems. For example, it is not possible for a user to put his program

into monitor mode by having the Monitor return by mistake with the monitor mode bit set. If the TENEX

Monitor did so, it would simply return to somewhere within the Monitor. This would likely cause a

system crash, but would not allow the users program to run in monitor mode. The user can still attempt

to put a program segment into the Monitor space somehow and then try to get the Monitor to jump into

it, but this is a slightly more difficult problem that also exists on any system with write-modifiable

or pageable code.

Another advantage of having a virtual memory map for the Monitor is that it is possible to write-

protect the monitor code. TENEX currently makes some use of this feature.

The fact that part of the Monitor virtual space is mapped on a per-process basis makes the Monitor

simpler and eliminates a class of security problems. Associated with each TENEX process is a page

called the Process Storage Block (PSB) . Contained within the PSB is the map for the Monitor's per-

process area (the last 128 pages of the monitor virtual space) . The PSB is pointed to by a pager

reister, so it is very easy to change when rescheduling a new process. The kinds of security prob-

lems that this feature eliminates are those which can happen when the monitor confuses references to or

fails to protect from the user-process specific information (e.g., the implied sharing of privileged

data class of flaws discussed in the taxonomy in section 3)

.

Still another hardware feature that simplifies system coding and therefore makes it easier to

secure TENEX is the operation of the monitor mode instructions which reference user space. On the

PDP-10, the 16 general registers can be referenced as the low 16 words of a virtual space. These

same registers are used for both Monitor and user spaces. Therefore, when the Monitor is entered, it

has to save any user registers that are needed by the Monitor routines. To reference user space, the

Monitor is given a special set of instructions. When the Monitor references a user address which

happens to be between 0 and 15, the pager automatically causes this reference to go to a special saved

register area of the PSB. In this way, if the Monitor has a user address to reference, it need not

make a special check to see if it is between 0 and 15.

c. Peripherals

The most security sensitive TENEX peripherals are the paging drum and the disks, which are used

for permanent file storage. Failures in these units have caused security problems in the past, but

generally such failures only result in system crashes. The little fault tolerance built into TENEX

for these contingencies should be augmented.

TENEX supports a wide variety of online terminal devices. The software that associates these

devices with processes is fairly simple. No security problems were discovered in its implementation.

Intrinsically, however, mechanisms are designed into TENEX which allow processes to assign a non-

logged-in terminal device and to accurately simulate a non-logged-in EXEC. The way the mechanisms

work, there is no way that a user starting to use a hard-wired, non-logged-in terminal can assure

himself that the terminal is not assigned to a process which is simulating on EXEC. Terminal -like

connections that are effected through the ARPA network do not have this problem because the network

"terminals" are created and destroyed every time a connection is set up.

43

TENEX siqjports an extensive set of communications software. There are problems discussed in

section 6. 6. a concerning the auto-answer telephone facilities and the interface to the ARPA computer

network. The ARPA network software presents a unique problem both intrinsically and in terms of the

implementation of the interface multiplexing.

Intrinsically, the ARPA network (or any network of the same type) represents some unique problems

because it allows arbitrary processes to communicate with arbitrary processes on other host systems.

Traditionally, computer systems have kept a fairly tight control as to which processes were allowed to

handle specific devices. Because the ARPA network is logically multiplexed to look like a very large

number of devices, access to these pseudo devices is given out very freely. Any process (especially

privileged processes) handling one of these pseudo network devices is maintaining a security perimeter

and must be assiored of correct operation to assure system integrity. (See the Privileged subsystem

problem discussed in s.ection 6.6.b for example.) Even an interactive terminal user using a process to

connect to another site (e.g., the TELNET connection, in figure 6-1) is incurring the security risk

that the remote system might spoof his local process into releasing sensitive information. If the

user explicitly gives sensitive information to an ARPA network connection, he has no assurance that

its integrity will be protected. All such network communication must assume malicious tapping and

noisy communication channels, and therefore, combative techniques like encryption and error checking

must be used.

The Network Control Program (NCP) that performs the logical multiplexing for the ARPA network

connections is a complex program making auditing and correct implementation difficult. Also, there

are many situations where it is natural for the NCP to trust the Interface Message Processors (IMP's)

handling the conanunication network functions and even the remote hosts to follow network protocols

and/or to perform in a generally reasonable manner. This trust can lead to problems.

There were several times during the course of the TENEX study that problems of one kind or

another were traced to the NCP. The NCP is a complex and rapidly changing portion of the TENEX monitor,

however, so it was not included in the main thrust of the TENEX security study and will not be directly

discussed in the remainder of this report.

TENEX also supports a complete assortment of tape devices, line printers, card readers, paper

tape equipment, etc. There are minor intrinsic security issues associated with many of these devices,

but these issues are generally applicable to such devices on any system, and there were no outstanding

novel implementations on TENEX.

There is one other peripheral -associated mechanism that deserves mention and that is the TENEX

Backup System (BSYS) . This is a magnetic storage system that is used as archival storage for TENEX.

The system uses ordinary magnetic tapes and requires manual operator tape manipulation. This system

is sensitive in that it has to multiplex the physical tapes among users. An incorrect archival re-

trieve could give one user another user's file. However, this system was not looked at in detail for

the TENEX study, and no problems associated with it appeared after the initial bugs were shaken out.

6.4 OPERATING SYSTEM DESIGN AND INTEGRITY FEATURES

There are some terms that need to be mentioned before a discussion of the TENEX software design

and integrity features can be continued. Included here are only those terms and associated information

pertinent to the security and integrity discussion:

44

Associated Items

password, directory protection, default

file protection, directory group

membership word.

protection bits.

login directory, connected directory,

job process structure, job file structure.

process capabilities, inferior process

structure.

login directory (and associated password)

,

user group access word, initial capa-

bilities .

The discussion of TENEX software security and integrity will be broken into three parts: file

protection, directory protection, and process protection.

a. File Protection

In TENEX, any file can be named and access -requested by any user. Five kinds of access are

recognized: read, write, execute, append, and list. List access is requested when a user asks for

the name of a file from the system (e.g., by trying to list the file's name in a directory). Append

access is requested when a user attempts to write beyond the end of a file. The others are self

explanatory.

Each file contains 18 bits of protection information. This information is broken up into three

fields called SELF, GROUP, and OTHER. Each field has one bit to denote each of the five accesses

recognized (plus one unused bit). When a user attempts to access a file, the appropriate field is

chosen as follows:

1) If the user is connected to the directory containing the file, then the SELF protection field

is used to validate access. A user is initially connected to his login directory and can

only connect to other directories by owning them (see the discussion of directory protection

below) or by knowing their password.

2) TENEX has 36 user groups that are set up administratively (the user has no direct control

over them). Associated with each user is a 36-bit user group access word. The user's group

access word contains a 1 bit for each group that the user has GROUP access to. Associated

with each directory is a 36-bit directory group membership word. The directory group member-

ship word has a 1 bit for every group that the directory belongs to. If, when attempting to

access the file, the user does not have the SELF relationship to the file's directory, but

does have group access to a group which the file's directory belongs to, then the GROUP pro-

tection field is used to validate access.

3) If neither 1) nor 2) hold, then the OTHER protection field is used to validate access.

b. Directory Protection

In addition to the file protection, there is a facility for directory protection within TENEX.

The directory protection mechanism, like the group mechanism, is administratively controlled and is

inaccessible to the user. Associated with each directory is a protection word that is broken up into

45

Item Environment

Directory system

File directory

Job system

Process process, job

User system

fields analogous to those for files (SELF, GROUP, and OTHER). The first bit in this field is used to

limit all accesses. If this bit is off, a user can't even know of the existence of the protected

directory. If this first bit is on, then the other bits are used for governing OWNER, OPEN, and APPEND

access. OWNER access allows connection to the directory without a password, control of file ac-

counting, and some other control functions. OPEN access allows the user to open files in the directory

according to their file protection. APPEND access allows the user to add files to the directory.

This protection scheme is flexible, but its particular form of flexibility also admits various

incompletely defined and at times seemingly inconsistent situations. The directory protection and

group mechanisms are poorly documented. Typical TENEX users have nothing to do with any of the pro-

tection mechanisms. A good deal of sophistication by users is required to change the file protection

word. The group and directory protection mechanisms are often difficult to use even for experienced

system users. The lack of user manipulatory facilities for the directory protection and group facilities

seriously limit the utility of these facilities.

c. Process Protection

Processes within a TENEX job occupy a tree structure with the TENEX EXECutive language processor

(EXEC), usually at the root. TENEX processes have always been able to protect themselves from inferior

processes. (Note: The terms superior and inferior are used to indicate the relative position of

processes in the tree. Process A is superior to process B if A is on the shortest path between B and

the root.) With the implementations of the JSYS trapping facility, however, superior processes can now

protect both themselves and the user's resources from inferior processes. This property has important

applications to debugging, Trojan-horse problems, and extensive programming.

The cases of the debugging problem and the Trojan-horse problem are quite similar. In the first

case, one is generally worried about protection from a well-meaning but possibly misdirected process

and in the second case from an unknown and possibly malicious process, but the basic problem is the

same. In each case, the user wants to protect himself from a process that might try to adversely affect

his environment.

Early in the TENEX development an invisible debugger, IDDT, was developed which monitors execution

of a user's process in a way invisible to the process. This debugger is quite useful for monitoring,

but it cannot protect the user from arbitrary system calls by the process being debugged. The new

JSYS trapping feature for TENEX allows a superior process to handle system calls for an inferior. This

mechanism allows the superior to completely protect itself and the user's resources from the untrusted

inferior process

.

Though this theoretical ability to solve the classical Trojan-horse problem exists, it is awkward

to implement and has not yet been programmed. The problem is interpreting the inferior's JSYS calls

and deciding viiether or not to allow them. Until a complete security system is implemented, however,

a user's files can be protected with the simple mechanism outlined below.

The user could put whatever files the untrusted program is to be allowed to reference in a spare

directory (this scheme requires that such a directory exists) and then, after connecting to the spare

directory, he could run the untrusted program under a trivial monitor that simply traps any attempts

to connect to another directory. This would crudely solve the classical Trojan-horse problem and allow

users protection from undebugged programs.

The JSYS trapping facility is very new new enough that at the time of this writing, no complete

documentation exists. The JSYS trapping facility was designed, however, largely to aid implementation

of the TENEX RSEXEC system, so the RSEXEC makes heavy use of JSYS trapping and is a good example of the

ways in which extensive monitors can be written for TENEX.

46

The RSEXEC system is designed to give the user access to TENEX on a network virtual basis. To

this end. It allows users to acquire directories on other host computers and to use the files in those

directories as if they were local files. This requires that the RSEXEC trap JSYS calls and make ref-

erences to remote files look like references to local files.

A set of capabilities are maintained with each TENEX process. These capabilities are used to

denote special privileges of the process. Typical privileges are:

o CTRLC allows a process to enable "control-C" as a PSeudo Interrupt (PSI, software interrupt)

condition. "control-C" is usually reserved as the break character to escape from a process in

TENEX. A process with the "control-C" capability can handle its own "control-C 's".

o SUPMAP allows a process to perform memory mapping operations on its superior,

o WHEEL allows various privileged JSYSes. This capability is an all-powerful capability given

to system programmers.

Processes in TENEX are also allowed flexible access control over the virtual memory pages of pro-

cesses and files that they have access to. This is not particularly pertinent to security except to

note that this mapping scheme correlates with the file protection mechanisms in the sense that virtual

memory mapping allows at most those accesses allowed to the file or process being mapped.

One other TENEX feature which fits most naturally here is the way in which the TENEX executive

language processor was essentially kept out of the TENEX security kernel. When a user initially con-

nects to TENEX, he is given an EXEC. This EXEC is not logged in, however, and is only able to in-

terpret the user's commands and perform simple operations. When the user tries to login, the EXEC

simply performs a login JSYS supplying the name, password, and account given by the user. If this

login is successful, the EXEC is given access to the user's login directory, the user's capabilities,

etc. At this point the EXEC is acting like any other process running in the usual environment for the

user. It can only access files accessible to the user and has only those privileges granted to the

user by the monitor. In this way, the EXEC need only be trusted by the user with his resources to the

extent that any other program which is running unprotected must be trusted. The EXEC can no more de-

grade the Monitor than can any other user process. Also, users cannot be affected by another user's

EXEC unless there is a problem in the TENEX monitor. For this reason, except for possible Trojan-

horse-like problems, the TENEX EXEC need not be considered part of the TENEX security kernel.

6 . 5 SUMMARY

Of the security problems that have been discovered in TENEX, the majority of them have been

eliminated from more recent versions of the system. The more significant known problems that re-

main occur in the area of the peripheral interfaces. In TENEX it is possible, though difficult, to

handle the classic Trojan-horse problem using the system call trapping feature (JSYS) ; TENEX does

not address the general problem of controlled communication between mutually suspicious processes that

is solved by experimental capability-list (C-list) systems.

Much of the TENEX implementation is relatively easy to analyze. Its major weaknesses from the

point of view of code obscurity are in the file system, the Network Control Program, and the

scheduler. Portions of the TENEX process and software interrupt handling code have been extensively

analyzed and exercised. These sections of the monitor now appear to be implemented correctly.

47

6.6 OPERATING SYSTEM SECURITY FLAWS

During the more than 2 years of the TENEX study, 20 to 30 flaws were found in the system that

could loosely be classed as security flaws. Of these, some 13 or 14 were analyzed in depth. These

flaws were observed in TENEX releases between 1.29 and 1.32. Some of the existing flaws have been

fixed in releases 1.33 or 1.34.

Here we present a few of the flaws that we have investigated. All of the known problems that

still exist in TENEX are presented along with methods for minimizing their effects. Furthermore,

since the other flaws have been fixed at all current TENEX installations, we have included represen-

tative examples of these earlier flaws. These examples are fairly typical of the range of security

problems that occur in computer operating systems; however, the ease with which some of these problems

were fixed is not typical. The flaws are categorized within the scheme presented in the taxonomy in

section 3 in order to display the TENEX flaws in terms of global operating system problems. The

associated taxonomy category is shown in parentheses.

a. Existing Flaws

• List-access failure during file recognition. (Inadequate identification/authorization/
authentication)

There is a feature of the TENEX monitor which fills in the remainder of a recognizable name

for a file at the user's request. The monitor code which handles this name recognition fails to

check to see if the requestor of the recognition has list access. Users must be aware that this

problem exists and not depend on list-access protection.

The needed fix is to add the appropriate access check. In the meantime, users who really

have a need to hide the names of files in their directory can get someone to protect their

directory using the directory- list protection.

• Crash on drum overflow. (Violatable prohibit ion/ limit)

If users create too many private pages, the Monitor crashes. TENEX does not use any paging

scheme for its secondary drum storage. If the drum fills up, the system crashes.

There are two schemes that have been used to alleviate this problem. One is to make the

drum larger by logically including some disk storage. This scheme could work because there is an

upper limit on how much drum storage can be demanded by users. This upper limit is very large,

however, so the initial scheme of reserving disk space for the drum overflow is too impractical

to be used to solve the problem completely. What is needed is a paging scheme for the "drum"

storage

.

Another scheme that hsis been used to prevent system crashes is the triggering of a machine-

size-exceeded software interrupt if the drum is close to filling up. This does protect the sys-

tem from crashing, but probably destroys a user program which was not doing anything wrong.

• Circular mapping causes hung process. (Exploitable logic error)

This problem appears if a user sets up a circular set of indirect map pointers in a process

and then tries to kill the process. The killing process hangs irrevocably in the KFORK (kill

fork) JSYS.

Having this problem occur simply degrades system performance and uses up the user's resources

(the process hangs in an unterminating loop) . There is currently no certain way known to get rid

of such hung processes short of restarting the system.

This problem could be fixed by having the KFORK JSYS limit the number of indirect page

pointers that it will follow in the same way that the pager does.

48

• Lack of scanner hang up and recall signal. (Hardware)

As mentioned earlier, some of the telephone scanners used with TENEX do not have adequate

signals to notice when an auto-answer phone call is hung up and another call on the same line is

initiated. This allows new callers to get old jobs if the old job was hung up without a proper

logout

.

To avoid this problem, the system should be configured with the proper scanner signals that

are available. Users on systems without the proper hardware can minimize this problem by logging

out properly whenever possible. This problem occurs only with telephone calls, so a system without

telephone access (e.g., only hardwired and/or network access) does not have the problem.

b. Flaws That Have Been Fixed

• Skip return problem. (Exploitable logic error)

This error occurred because of the way the monitor implemented the mechanism which returns

to the user's program counter (PC) + 1 rather than directly to the user's saved PC (called a skip

return). The mechanism was simply to add 1 to the user's return word. If the PC happened to be

-1, this addition would overflow into the index field of the word. In this case, because of the

way in which the return instruction works, the return would be done to the location specified in

general register 1. This return location also controls whether return is to user or monitor

space. Under certain conditions, the user could control what was in register 1 and in some other

registers. This control would allow the user to return to the registers that he had set up in

the monitor's space. These registers could contain a program that bootstraps in a program de-

signed by the user to take over the complete control of the TENEX monitor.

This was the only case encountered during the study of TENEX in which a complete take over

of TENEX could be accomplished in this somewhat fundamental way. The password check problem

noted below was as serious in its consequences, but was not as fundamental in nature.

The problem was patched the afternoon that the bug was encountered and was distributed to all

TENEX sites through the ARPA network the same day. The fix amounted to masking out the indirect and

index bits in the user return word before returning to the user.

• Password information leak. (Implied sharing of privileged/confidential data)

This problem combined several features of TENEX to produce a security threat in a clever way.

The first feature is that a user can find out when a page in his virtual space which was unmapped

has been referenced. The second feature is that the TENEX password-checking routine did character-

at-a-time checking of a user's submitted password. The third feature was the fact that user pro-

cesses can themselves submit passwords for checking in a flexible way.

What a user could do to exploit these features was to submit a candidate password in user

space in such a way that the first character which was not known to be correct is 1 byte before a

page boundary with an empty page to follow. Then if the character is correct, the password checker

will reference the next page thereby telling the user that the password character was correct.

As long as the character is incorrect, the user can simply change it and try it again. This re-

duces the number of guesses required to guess an N-character password from on the order of 64**N

to on the order of 64*N. This allows passwords to be discovered in a reasonably short amount of

time.

The fix to this problem was to have the password checker reference the full length of the

submitted password regardless of where the check failed.

49

This flaw is mentioned because it is an instance of a very stubborn type of problem that is

not directly attacked by any of the current program-verification or program-proving techniques.

The problem is one of having the system leak sensitive information to a user process through

timing or other unrelated information channels (in this case the fact that a page fault had oc-

curred) . With this problem, the password checker could have been proven correct as could the page

mapper, but between the two of them they leak out some critical system information. There are

many other ways in which a system can leak information from one process to another without directly

transferring any data. However, because this general problem is not directly pertinent to TENEX,

it is not discussed further.

• Incorrect communication instruction usage. (Exploitable logic error)

This is a case where inappropriate use was made of one of the special user-to-monitor space

communication instructions. Here the instruction was intended to fetch a byte from the user

space. It would do this properly, but would also do any indirecting that was requested by the

user in the monitor space. When doing indirecting on a PDP-10, new memory words for the address

calculation are accessed from addressed locations until an address is found in which the indirect

bit is turned off. (For details, see DEC System 10 Assembly Language [7].) If an immapped Mon-

itor page was referenced during this address computation, TENEX would crash.

The fix was to use the proper communication instruction that also did its indirection in the

user space. The actual fix which was initially implemented was to mask out the indirect bits of

the user submitted pointer. This initial fix unnecessarily limited the user's flexibility.

The instruction set for the TENEX machine, even with these few user-monitor communication

instructions, is so simple that bugs of this kind are rare.

• Accounting problem. (Inadequate identification/authorization/authentication)

This is a case where an add-on mechanism was not properly tied into the monitor's usual access

control mechanisms. Originally in TENEX, user accounts were not validated. They were only used

for system information. Later it was decided to charge according to the accounts. This required

account validation. Initially this was implemented by having the EXEC check accounts if an ac-

count change was requested through the EXEC. This didn't suffice, however, because users could

still change their accounts directly with the change account JSYS, thereby bypassing the EXEC's

check.

In TENEX, version 1.32 changes were made to the change -account JSYS to have it validate ac-

counts directly.

• TELNET typescript file problem. (Implied sharing of privileged/ confidential data)

This is an example of where the Trojan-horse problem can still plague unwary TENEX users.

The TENEX TELNET program is a program that can be used to connect to other sites on the ARPA net-

work. This program has a feature for accumulating the user's terminal printout in a file, called

his typescript file. This facility is turned on by default, but the file generated is made

temporary so that is disappears if the user logs out without having explicitly saved it. Before

this problem was noticed, the protection for the typescript file was set to the default protection

of the directory that it was in. This was generally set to allow all users read access. This

meant that after a user had completed a TELNET transaction and until he logged out, his typescript

file, containing possibly sensitive information like passwords, etc., was up for grabs.

50

The fix was to set the protection of the typescript file to self only. The moral is that,

even though TENEX has facilities for combating the Trojan horse problem, users must be wary of

leakage when running any programs that are allowed to reference sensitive data.

• Privileged subsystem problem. (Inadequate identification/authorization/ authentication)

This problem, which was alluded to earlier in the ARPA network discussion (Sec. 6.3.c), dem-

onstrates the need to keep privileged processes to an absolute minimum (zero if possible).

TENEX has a facility called linking which allows two users to communicate by sending all

terminal output generated by either user to both user terminals. When one user attempts to link

to another, he is allowed to do so only if the other user is accepting links.

The RSEXEC system, which was mentioned earlier, implements as one of its services a mechanism

,for host-to-host network links. In the earlier stages of the RSEXEC development, it was found

desirable to have the process at each site which listened for these network links to be a priv-

ileged process. The way it was implemented, the network link was put through in spite of the

fact that the receiving party might be refusing links. This left potentially sensitive infor-

mation exposed.

The point here is that any privileged processes running on TENEX are in the TENEX security

kernel. If TENEX is ever to be proven correct then any such processes must be proven correct.

The easiest way to do this is to have no such processes.

• Unchecked file deletion access. (Inadequate identification/authorization/authentication)

The DELNF JSYS is a monitor call that deletes all but some number of versions of a file. Such

a JSYS was initially thought convenient, but in actual practice is almost never used. It was prob-

ably the fact that the DELNF JSYS is so seldom used that caused this integrity problem to go un-

detected for so long.

In coding DELNF, the file protection check was simply omitted. This allowed any user to de-

lete any file in any directory with simply open and list access to the directory. This includes

almost all files.

The important thing to note about this problem is the fact that there could be an access

check omitted in DELNF even though the proper check was made in DELF (the JSYS usually used for

deleting files) . This dual implementation situation is caused by ineffective organization and

causes comparable problems in many systems. TENEX generally has very few problems of this sort.

There is a feature of TENEX that effected the DELNF problem that can be most appropriately

discussed here. When TENEX deletes a file as with DELNF, it simply sets a "deleted" bit in the

file descriptor. Such deleted files can afterward be undeleted if desired. These deleted files

are only really destroyed if the user explicitly asks for them to be expunged or if he logs out.

If, before deleting and expunging any files or logging out, the user had first taken the pre-

caution of undeleting all files, he would have been safe from all but the most insistently mali-

cious DELNFing programs.

There are system files that would cause a system crash or serious degradation if deleted (for

example the TENEX EXECutive) , so this wasn't really an acceptable solution, but with it users

could at least protect their own files fairly well.

51

7. Summary and Conclusions

The protection of computer resources, data of value, and individual privacy has motivated a con-

cern for security of EDP installations. Because operating systems are such an integral and critical

part of large installations, this concern for security has extended to operating systems. This docu-

ment reports some of the security flaws and security enhancements developed from a research project.

This material is a starting reference for planning a security investigation of an EDP instal-

lation's operating system. Its intended use is at Federal Government EDP installations with large

commercial systems. However, the results can be applied to most EDP installations.

To meet this objective, three commercial operating systems are analyzed and security enhancements

suggested. The specific security flaws discussed are formally classified according to the taxonomy

developed here. Flaws can be classified formally because of the similarity of operating systems and

their security problems. This classification leads to a clearer understanding of security problems

and aids in analyzing new systems.

The operating systems chosen for analysis represent a major segment of the current Federal EDP

installations but not the entire spectrum. The choice of systems implies neither evaluation nor recom-

mendation but only prevalence of use and interest. Also, no attempt at completeness of flaw description

is presented, only a representative set of flaws for which some amount of security enhancement can be

done.

Several conclusions are drawn from the overall analysis:

• Security is not an absolute but is relative for each installation, depending on the data, re-

sources, and mission of the facility as well as on the potential hazards. Each installation

must determine its own cost-risk trade-off.

• Operating system security is not a binary, yes-no, condition. Primarily because of its size

and complexity, no large operating system can be said to be completely secure. However, many

security enhancements can be incorporated into systems to make them harder and costlier to

penetrate or compromise.

• Software security, which includes operating system and user applications programs, is only one

aspect of the total security of an EDP installation. Administrative, physical, and hardware

security need to be considered and kept in perspective.

• Operating systems are not necessarily the most critical point of security or the point that

requires the first enhancements. Also, they may not offer the highest return in terms of the

cost -protection trade-off as compared to physical or administrative security.

• There are a limited number of basic security flaws (S to 15 depending on the way they are

described). There can be numerous different exploitations, but the number of basic flaws re-

mains fairly constant. These basic flaws tend to re-occur in different systems because of the

similar architecture and design of the machines and operating systems.

• With the expected technical growth of EDP installations (e.g., in the area of networks), the

security of complex systems will require continuing analysis. Current security flaws and en-

hancements may not remain valid with the technological changes that are taking place.

• Today's commercial operating systems were not designed with security as a critical design

factor. Efficiency, flexibility, and cost were more important, not the demand for security.

This orientation led to security via retrofitting, and this is shown to be a poor method as

changes often introduce new and subtle security problems.

52

• There are some enhancements that can be instituted by installations to increase operating sys-

tem security and increase the difficulty of a penetration. But these are often in the area of

software modification and thus require a system expertise that is not always readily available

at installations. However, some operating system security problems can only be "fixed" through

a redesign of the entire system.

• Continuing research and development in operating systems security are being performed in uni-

versities, research institutions, commercial firms, and government agencies. An informative

summary of sites and security work being done has been published [8]. The list of sites in-

cludes: MIT, Carnegie-Mellon, Lawrence Livermore Laboratory, Information" Sciences Institute,

MITRE, TRW, Systems Development Corporation, IBM, Honeywell, National Bureau of Standards, and

the Air Force Electronic Systems Division.

• If security modifications are to be made to operating system code, it is ^very desirable to have

"clean" coding. (That is, coding written in a straightforward style, unencumbered with tricks

or complex instructions.) Easily readable coding does not add to security per se, but does aid

in understanding the code, and reduces the chance that a routine can be used in a manner other

than what was originally intended.

53

Glossary

This glossary defines terms that may not be defined in the text or that require special emphasis

and ease of referral. The items in brackets [] specify the context of the terms.

Many of the definitions have been modified to make them consistent with the definitions that are
to appear in the Glossary of Terminology for Computer Systems Security [9]

.

Access

The ability and the means to communicate with (input to or receive output from) , approach or make

use of. Data access is often categorized by combinations of read, write, or execute.

Asynchronous [event/process]

Events or processes which occur at an unknown time or execute at an unknown rate with respect to

each other. An example is an I/O process which proceeds at a rate independent of the program which

initiated it.

Audit trail

A chronological record of system activities which is sufficient to enable the reconstruction, re-

view, and examination of the sequence of environments and activities surrounding or leading to each

event in the path of a transaction from its inception to output of final results.

Authentication

The act of verifying the eligibility (i.e., authorization) of a user and his agents (e.g., programs,

terminals) to access specific categories of information.

Authorization

The granting to a user, a program, or a process the right to access .

Capability [process/user]

The right' to access granted to an individual, program, or process. In a capability system, this

right to access is signified by a protected bit pattern or by inclusion on an access list.

Certification [operating system]

Proving or measuring the int egrity of a system. Certification is the act of authoritatively

confirming (via an effective methodology) that the protection capabilities or characteristics of a

system comply with a particular set of requirements.

An assurance, based on defined objectives and arrived at through a closed process of assessment,

that the probability of operating system design and/or implementation flaws is less than a specified

value, and that the probability of a hardware failure is less than a specified value.

Confidentiality

A concept that applies to data that must be held in confidence. Confidentiality describes the

status accorded to data and the degree of protection that must be provided for such data. The pro-

tection of data confidentiality is one of the objects of security . Data confidentiality applies not

only to data about individuals but to any proprietary or sensitive data that must be treated in con-

fidence.

54

Controlled access

The concept that each authorized user of a system be permitted access to that information and

resources to which he is authorized, but to no more.

Limiting access to the resources of an automated data processing system to only authorized users,

programs, and processes or (in computer networks) other authorized data processing systems.

Control program

That part of an operating system which directly interfaces with the hardware and which initiates

and guides the execution of all other programs and processes. A control program frequently consists

of an interrupt handler and a housekeeper component. Other terms used synonymously include: super-

visor,' monitor, and executive.

Control state

One of two generally possible states in which a computer system may operate; the other is the

user state. In the control state, certain privileged instructions are permitted execution. Priv-

ileged instructions are not permitted to execute when the system is operating in the user state. Other

terms used synonymously include: supervisor state, monitor mode, and executive state. (The arch-

itecture of some computer systems supports operation under fewer or more than two hardware states.)

Cost-risk analysis

The assessment of the cost of providing a given degree of protection vs the potential risk of not

protecting a resource. (This is a function of the economic consequences of a loss and the threat

probability.)

Encrypt [data]

The coding of information to conceal its meaning; to convert plain text into an unintelligible

form by means of a cryptosystem.

Flaw [operating system]

An operating system integrity flaw is the state that exists whenever a user (or his programs) has

the potential to cause the system to cease reliable and secure operation. An integrity failure exists

when this potential has been exercised and the reliable and secure operation of the system is breached.

A reliability flaw represents the potential to cause a system to cease correct operation (e.g., to

crash or degrade the operation of a system); a security flaw represents the potential for one user to

access (i.e., read, modify, manipulate, or destroy) another user's information or programs against that

user's wishes or to gain control of the operating system.

Integrity

Integrity is the state that exists when there is complete assurance that under all conditions a

system works as intended. That is, the system reflects the logical correctness and reliability of the

operating system; the logical completeness of the hardware and software that implement the protection

mechanisms; and the consistency of the data structures and accuracy of the stored data. Integrity is

concerned with reliability (fraud and error) problems and with security (resource and privacy protection)

problems

.

55

Interactive [computer system]

Use of a computer such that the user is in intimate control of the execution of his work and may

make modifications or enter data between execution steps.

Isolation [user]

The containment of users, data, and resources in an operating system such that users may not access

each other's data and resources and may not manipulate the protection controls of the operating system-

Multiprogrammed [computer system]

A system which executes numerous processes or programs concurrently, by overlapping or inter-

leaving their execution. For example, permitting more than one process to timeshare computer peripheral

devices

.

Operating, system

The aggregate of control and maintenance software that is used to support user interface functions.

Paging

A procedure for moving standard-size blocks of information (pages) between main storage and aux-

iliary istorage units. This is generally used to permit several programs to share main storage con-

currently.

Preventive mechanism

A preventive mechemism is a software or hardware mechanism that implements all or part of the

elements of protection in a system. In an operating system, these elements are: isolation and con-

trolled access .

Privacy [information]'

The right of an individual to self-determination as to the degree to which he will interact with

his social environment; this is manifested by an individual's willingness to share information about

himself with others; and may be compromised by unauthorized exchange of information about the individual

between ojuher parties.

Process [computer]

A process (or task) is a computation that may be executed concurrently with other computations.

This term may represent either a sequence of instructions or an entire (independently dispatchable)

work unit. (An operating system generally represents the latter by a control block containing an

address-state and a processor-state description. A process may involve several programs and several

jobs. A user may. create more than one process. Two or more processes may share programs and data.)

Protection

The defending or guarding of the hardware, software, and information resources of a computer sys-

tem.

Real-time process

See time-dependent .

56

Reliability

A measure of the ability to function without failure.

Remote-access [computer system]

A hardware and software system which permits input to be made from a location other than the

central computer room. Usually, such a system provides remote output as well; operates over tele-

communications circuits; and manages a number of remote-access stations or terminals.

Scavenging [data]

Searching through data not erased from storage after use Ci-e., residue), without necessarily

knowing its format or content, in an attempt to locate or acquire unauthorized information.

Security

Security is the realization of protection of data, the mechanisms and resources used in processing

data, and the security mechanism(s) themselves. Data security is the protection of data against ac-

cidental or unauthorized destruction, modification, or disclosure using both physical security measures

and controlled access techniques. Physical security is the protection of all computer facilities

against all physical threats (e.g., damage or loss from accident, theft, malicious action, fire, and

other environmental hazards). Physical security techniques involve the use of locks, badges (for

personnel identification), guards, personnel security clearances, and administrative measures to con-

trol the ability and means to approach, communicate with, or otherwise make use of, any material or

component of a data processing system.

Security kernel [operating system]

That portion of an operating system whose operation must be correct in order to ensure the security

of the operating system. Ideally, this involves the isolation of all hardware and software functions,

features, and data which form the basis of protection of programs and information in one protected,

centralized part of the system (i.e., kernel). The rest of the operating system is linked to this

kernel in a manner such that the kernel is invoked by all references to information in the system.

Only the protection mechanisms themselves are placed in the kernel, and the policy-making code which

directs these mechanisms is placed elsewhere in protected compartments.

Spoof

To deliberately induce a system user or operator to take an incorrect action.

Suspicious processes

In a multiprogramming environment, the concurrent use of the system for sensitive data or programs

by users who mutually distrust one another or where one distrusts the other. Such processes normally

grant only the minimal number of required capabilities to each other.

Symbiont

Small routines that buffer large amounts of data from low-speed peripherals to main storage to

minimize the number of data transfers.

57

System call

An instruction that acts much like a subroutine call but transfers control to the operating sys-

tem rather than one of the user's subroutines.

Taxonomy

A system of classification which proceeds from the most inclusive classification to the most

explicit.

Time -dependent [sequence]

A sequence of computer instructions which can produce different results depending upon the rate

at vfliich it is executed. A real-time process involves time -dependent instruction sequences, which must

be executed within specific (usually small) periods of elapsed time for the process to produce valid

results.

Timing window [execution]

Any unit of time (generally at least the length of time it takes a computer to execute a single

instruction) between two sequential processes, where the second process is dependent upon information

supplied by the first process.

Trap door

A breach intentionally created. in a computer system for the purpose of collecting, altering, or

destroying data.

Trojan horse [flaw]

A trusted program which contains a trap door .

Validate

To perform tests and evaluations to determine compliance with security specifications and require-

ments. Validation is usually considered to be less comprehensive and rigorous than certification .

Virtual storage

An organization of memory (based on automatic swapping of data and programs as required between

operating memory and secondary memories) that allows addressing as if a very large executable memory

existed, although the executable memory available to the processor is generally much smaller than the

range of addressing which may be referenced by a program.

Working set

The area of a processes's virtual storage that is referenced frequently. Generally, this is

taken to be the portion that is referenced enough to require presence in primary memory.

58

\

Bibliography

AUDITING

Krauss , L . I
.

, SAFE: Security Audit and Field Evaluation for Computer Facilities and Information

Systems. (Firebrand, Krauss and Co., East Brunswick, N. J., 1972).

An auditing handbook that has several hundred checkpoints of security related items for computer

facilities. The book is designed to aid in a do-it-yourself field investigation of security measures

and safeguards. The user estimates the importance of each item and his facilities compliance, and then

calculates a security index value (a weighted average). The eight classifications of checkpoints are:

personnel; physical; data, programs, and documentation; operational; backup; development; insurance;

and security program.

Computer Control Guidelines , Canadian Institute of Chartered Accountants, (Auerbach Publishers,

Princeton, N. J., 1971).

A book presenting the results of a study performed by the Canadian Institute of Chartered Ac-

countants. The book deals with 25 control objectives, giving the minimum control standards and specific

control techniques

.

Kuong, J. F., Computer Security, Auditing and Controls. — A Bibliography
,
Management Advisory Publi-

cations, Wellesley Hills, Mass., 1973.

This non-annotated bibliography covers several hundred publications in the interrelated areas of

auditing, controls, and security. The bibliography is classified into six main subheadings and numerous

subclassifications. The main subheadings are: EDP Auditing and Controls, computer security and

privacy, EDP planning and operations control, EDP management review and evaluation, online and real-

time systems, and checklists and guidelines.

BIBLIOGRAPHY

Abbott , R . P
. , et al

. , A Bibliography on Computer Operating System Security , Lawrence Livermore

Laboratory, Rept. UCRL-5155 (1974).

This bibliography has over 750 entries on the subject of computer security. The emphasis is on

software and, in particular, operating system security. The first part of the bibliography is a key

word out of context (KWOC) index and the second part a master listing of each entry.

GENERAL SECURITY

AFIPS System Review Manual on Security , American Federation of Information Processing Societies, Inc.,

Montvale, N. J., 1974.

This manual is the first AFIPS System Review Manual. It is intended to be used as a guide for

reviewing existing systems and as a checklist during system development. The intended audience in-

cludes managers, EDP auditors, and systems designers. The chapter topics include: personnel, physical

security, operating systems, access controls, programs, communications, storage, and input/output. Each

chapter contains "General Principles" to be followed and a checklist of related questions.

59

Van Tassel, D. , Computer Security Management (Prentice-Hall , Inc., Englewood Cliffs, N. J.,

April 1972.)

This book is a good examination of numerous computer security topics. These topics include:

past crimes and disasters, company security, embezzlement, EDP controls, auditability, program secu-

rity, cryptographic techniques, disaster protection, insurance, service bureau relations, and time-

sharing security. The book deals with management controls and operating procedures and has a series

of checklist questions.

Data Security and Data Processing , Vols. 1 to 6 (G320-1370 to G320-1376) . [Intemational Business

Machine Corp., White Plains, N. Y., 1974.)

These six volumes report the findings of a program initiated in 1972 by IBM to strengthen data

security research and technology, and to identify user requirements. A wide range of specific topics

are covered and presented at different levels of detail. Volume 1 is written for management and

discusses data security in general. Volume 2 summarizes the findings of the study. Volumes 3 through

6 present in detail the findings of the four sites: the Massachusetts Institute of Technology, the

State of Illinois, TRW Systems, Inc., and the IBM Federal Systems Center at Gaithersburg, Maryland.

OPERATING SYSTEM SECURITY

Anderson, J. P., "Information Security in a Multi-User Computer Environment," Advances in Computers ,

(Morris Robinoff editor. Academic Press, Inc., New York, 1972), pp. 1-35.

This short article deals with methods of exploiting flaws or weaknesses in operating systems of

multi-user systems to illegally access data. Some hardware and software enhancements are suggested;

however, the article is quite technical.

Conway, R. W. , W. L. Maxwell, and H. L. Morgan, "On the Implementation of Security Measures in Infor-

mation Systems," Communications of the ACM, April 1972, pp. 211-220.

This paper discusses the nature of flexibility in a secure system and to relate the costs of

implementation and enforcement to that flexibility. A security matrix model is presented and used to

explain security features of several existing systems.

PHYSICAL SECURITY

Guidelines for Automatic Data Processing Physical Security and Risk Management , National Bureau of

Standards, Federal Information Processing Standards Publication, FIPS PUB 31, June 1974.

This document is part of the Federal Information Processing Standards Publication Series. The

publication provides guidelines to be used by organizations in structuring physical security programs.

It includes the following topics: security analysis, natural disasters, supporting utilities, system

reliability, procedural measures and controls, off-site facilities, contingency plans, security aware-

ness, and security audit. It also contains statistics and information relevant to physical security

and gives references to other, more detailed, publications.

60

Molho, L. M., "Hardware Aspects of Secure Computing," AFIPS Conference Proceedings ,
Spring Joint Com-

puter Conference, Vol. 36, 1970, pp. 135-141.

This paper reports the findings of a study of the hardware aspects of controlled access time-

shared computing. It deals with the storage protection system and the Problem/Supervisor state con-

trol system of an IBM System 360 Model 50 computer. Methods of enhancing security are discussed.

PRIVACY - CONFIDENTIALITY

Renninger, C. R. and D. K. Branstad, Ed., Government Looks at Privacy and Security in Computer Systems .

National Bureau of Standards Technical Note 809, National Bureau of Standards, Washington, D.C., 1974.

This publication summarizes the proceedings of a conference held for the purpose of highlighting

the needs and problems of Federal, State, and local governments in safeguarding individual privacy and

protecting confidential data contained in computer systems from loss or misuse. The conference was

sponsored by the National Bureau of Standards in November 1973. Major needs and the cost implications

of providing security measures are discussed.

Renninger, C. R. , Ed., Approaches to Privacy and Security in Computer Systems . National Bureau of

Standards Special Publication 404, National Bureau of Standards, Washington, D.C., 1974.

This publication siimmarizes the proceedings of a second National Bureau of Standards conference

held in March 1974 to continue the dialog in search of ways to protect confidential information in com-

puter systems. Proposals are presented for meeting governmental needs in safeguarding individual

privacy and data confidentiality as identified in the prior NBS conference.

Westin, A. F. and M. A. Baker, Databanks In a Free Society (Quadrangle Books, New York, 1972).

This book reports the results of a 3-year study of computer databanks and civil liberties. The

study was commissioned by the National Academy of Sciences. The book includes: 1) a profile of 14

organizations that use computers for record keeping, 2) a description of changes both in organizational

record-keeping patterns and in civil-liberties protections that were believed to be taking place but

were not observed, 3) a description of those changes that were observed taking place, and 4) the findings

about accuracy and security problems in computerized record systems.

61

References

[1] Adams, D. L. and Mullarky, J. F., "A Survey of Audit Software," The Journal of Accountancy , 39-66

CSeptember 1972)

.

The Federal Register, Monday, March 17, 1975, Washington, D.C. , Vol. 40, No. 52, pp. 12134-12139.

Konigsford, W. L. , A Taxonomy of Integrity Problems, Lawrence Livermore Laboratory Rept. (To be

published)

.

IBM SHARE GUIDE, 1620 Users Group, Appendix F, Report of Systems Objections and Requirements

Conmiittee , Rept. No. SSD 123 (Jiine 1964).

Data Security and Data Processing, Vols. 1-6, IBM, White Plains, NY, Rept. Nos . G320-1370 through

-1376 (June 1974)

.

McPhee, W. S., "Operating System Integrity in 0S/VS2," The IBM Systems Journal , No. 3, IBM,

Armonk, NY (1975).

decsystemlO assembly language handbook . Software Distribution Center, DEC, Maynard, MA 01754,

Rept. No. DEC-IONRZC-D (1973).

Saltzer, J., "Ongoing Research and Development on Information Protection," Operating System Review ,

8-24 (July 1974).

Glossary of Terminology for Computer Systems Security, Federal Information Processing Standards,

Task Group 15: Computer Systems Security, National Bureau of Standards, September 2, 1975.

NOTICE

"This report was prepared as an account of work
sponsored by the United States Government.
Neither the United States nor the United States

Energy Research &. Development Administration,

nor any of their employees, nor any of their

contractors, subcontractors, or their employees,
makes any warranty, express or implied, or

assumes any legal liability or responsibility for the

accuracy, completeness or usefulness of any
information, apparatus, product or process

disclosed, or represents that its use would not

infringe privately-owned rights."

RAC/lt/la

USCOMM-NBS-DC 62

NBS-lUA (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBSIR-76-1Q41
2. Gov't Accession

No.
3. Recipient's Accession No.

4. TITLE AND SUBTITLE

Security Analysis & Enhancements
of Computer Operating Systems

5. Publication Date

April 1976
6. Performing Organization Code

7. AUTHOR(S) The RISOS Project
Lawrence Livermore Laboratory

8. Performing Organ. Report No.

9, PERFORMING ORGANIZATION NAME AND ADDRESS

The RISOS Project
Lawrence Livermore Laboratory
Livermore, California 94550

10. Project/Task/Work Unit No.

640.1112
11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

National Bureau of Standards
Department of Commerce
Washington, D.C. 20234

13. Type of Report & Period
Covered

Final 7/74-12/75
14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less factual sunmary of most si^ilicant information. If document includes a significant

bibliography or literature survey, mention it here.)

The protection of computer resources, data of value, and individual
privacy has motivated a concern for security of EDP installations,
especially of the operating systems. In this report, three commercial
operating systems are analyzed and security enhancements suggested.
Because of the similarity of operating systems and their security
problems, specific security flaws are formally classified according
to a taxonomy developed here. This classification leads to a clearer
understanding of security flaws and aids in analyzing new systems.
The discussions of security flaws and the security enhancements
offer a starting reference for planning a security investigation
of an EDP installation's operating system.

KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons)

BBN^TENEX; IBM OS/360; operating system security; security flaws;
software security; taxonomy of integrity flaws; UNIVAC 1100
Series OS

18. AVAILABILITY [Xl Unlimited

I I
For Official Distribution. Do Not Release to NTIS

I I
Order From Sup. of Doc, U.S. Government Printing Office
Washington, D.C. 20402, SD Cat. No. C15

Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS 21. NO. OF PAGES
(THIS REPORT)

69
UNCL ASSIFIED

20. SECURITY CLASS 22. Price

(THIS PAGE)

UNCLASSIFIED $4 . 50
USCOMM.DC 29042-P74

