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MINICOMPUTERS: AN ATTITUDE

T. G. LEWIS

Minicomputers are defined in dozens of ways: by
word length, memory size, speed, cost, applications,
peripherals, software, and design. The definition used
here includes all limited resource computers; emphasis
is placed on a minicomputer attitude that attaches
importance to the design of simple, straightforward,
special purpose, dedicated computing systems.

Minicomputer architectures are categorized according
to type of control (random logic or microprogrammed) , bus
structure (distributed or central) , number of working
registers, and instruction types. Three demonstration
minis are used to show how hardware complexity influences
software complexity, and consequently, software cost.

The comparison suggests that complexity should be forced
into hardware, since hardware is less expensive than
software. Programming and software emerge as the most
significant problems faced within the minicomputer
environment. Each minicomputer should support a

reasonable high-level language to ease the programming
task.

Concluding speculations suggest that minis will
overcome current limitations, will incorporate more
complexity into hardware, and will use the multi-level
nature of software, firmware (microprogrammable elements),
and hardware to advantage in special purpose systems.

Key words: Architecture; assembly language; LSI;

microprogramming; minicomputer; physical I/O; pro-

gramming techniques for small computers; stack processing.

1. INTRODUCTION: WHAT IS A MINICOMPUTER? [16]

Traditionally, electronic digital computers have been large,

complex, and expensive. In the early years they were incredible devices
composed of thousands of vacuum tubes and miles of wiring. Even now,

thirty years later, electronic digital computers summon an image of

massive hardware and sophisticated software.

In the early sixties, a few small digital computers of limited
capacity and power were designed and built. Because of their modest size

these machines were not called general purpose digital computers; rather,

their low cost and flexibility made them useful as process
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controllers or as "programmable hardware" in a variety of applications.

The demand for flexible hardware and the development of special
digital techniques (especially for the military) created a market for

small computers. This market began to expand rapidly in the late nine-
teen sixties. Not surprisingly, the small computers were tagged
with a common expression: they were "minis".

In the period 1967-1972 many manufacturers entered the minicomputer
market. It may also have been during this period of competition and

rapid change that computer experts began to feel uneasy about the

definition of a minicomputer. Many such definitions have been
proposed: a computer on a single circuit board, a computer that occupies
less than one cubic foot of space, a 16-bit computer, a computer costing

less than twenty thousand dollars, a computer with limited instruction
set and small memory. Each is valid only in a limited sense: in terms
of storage capacity and instruction set limitations all early computers

were minis; a desk calculator qualifies as physically small and
inexpensive.

This report will demonstrate that all of the definitions above
have something to do with minicomputers. The significant point
missed by all of the definitions is that a minicomputer is a state
of mind and minicomputing is an attitude.

The minicomputer attitude is concerned with efficient utilization
of memory space, optimum use of instructions, low cost, and special
purpose computing. It seeks to implement hardware and software
systems under extreme constraints. Constraints may include
rapid execution speed, reliability under environmental shock,
or financial limits.

Before approaching the hardware and software details of mini-
computing, let us survey the characteristics of minis: size, speed,
cost, application areas, peripherals, software, and design philosophy.
In the following, the reader will observe that many of the concepts
discussed are also part of "maxi" computing. The purpose of this article
is to point out features central to the minicomputer attitude, not to

separate mini from maxi. It would indeed be surprising if the two were
dramatically different.

1.1 Size

A typical minicomputer occupies about one cubic foot of space, has
a maximum capacity of 64K words or bytes, and has 16 bits per word.
Very few minicomputers are purchased with memory and cpu, alone. Usually
additional backing store of disk, tape, or cassette is purchased along
with printers, terminals, and necessary interface and controllers. A
complete minicomputer system mav r^miire a sizeable amount of physical
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space (including a controlled environmental room).

1.2 Speed

Surprisingly, minicomputers are fast. A minicomputer tuned

for 32 bit scientific computation is capable of 600nsec. addition
(mid-seventies estimate) and 5u sec multiplication [1].

Correspondingly, a typical large scale computer requires 2u sec

addition time and 20u sec multiplication time [2]. Hence, in this

single simple measure, the minicomputer is two to four times

faster than a large computer. (The reader should note the bias

purposely introduced by the author.)

Minicomputers are often faster than large computers because
they take advantage of technology almost immediately. Using the

new generation announcements by large computer
manufacturers as a measure of technological change, the following
table shows a six year lifetime per generation:

The life time of a large model computer is roughly proportional
to the manufacturer's investment. A big investment in technology is

necessary to develop, program, and market a large machine and its

attendant software. Software, of course, involves considerable cost.

Minicomputers, on the other hand, represent to the manufacturer

only relatively small investments for hardware. Some of the reasons

are listed below:

1. Minis are often sold in quantities to original equipment manufac-
turers (OEM) and the profit is mainly on the actual hardware (no

software is included in the sales).

2. Minis are modular and uncomplicated thus making them adaptable to

new technology.

3. Mini customers (OEM people) are usually more sophisticated than the
general buyer and therefore rely less upon the manufacturer's
service (maintenance, software libraries, etc.).

4. Most mini manufacturers are merely component assemblers and do not
develop the technology directly, but instead, buy it from outside
suppliers.

As an example of item 2 above, minis were the first

computers to employ semiconductor main memories having an order of mag-
nitude greater speed than core memory. In general, a production change

generation announcement date

1

2

3

4

5

1952
1958
1964
1970
1976
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on a mini assembly line effects fewer than one hundred skilled workers
while a change in a large main frame manufacturer affects thousands.
This enables minicomputer manufacturers to employ a technological
advance in a matter of months aft»^r it is available.

1.3 Cost

Word size is the most limiting factor in designing low cost
computers. This is reflected in the short word length of minis. In

the early sixties a minicomputer had 12-bits per word. In the late
sixties, and in the seventies a 16-bit word is typical. Recently,
several 32-bit minis have been introduced* perhaps indicating a trend

toward larger words.
We can classify computers according to word size and cost, at the

risk of being rapidly outdated, as follows:

Classification (name) Word Size (bits) Cost (thousands $)

1.4 Applications

The low cost of minis opens the door for a wide variety of
applications. Although large computers are employed heavily in military,

financial, and corporate applications, very few of these expensive

computers are employed in areas dominated by minis. The spectrum of

minis' applications is given below:

Micro
Mini
Midi
Large
Super

4 to 8

8 to 16

16 to 24

24 to 32

32 to 64

3 to 20

20 to 100
100 to 1,000
over 1,000

0.1 to 3

A. Preprocessing
Displays, peripherals, buffering.

B. Communications
Message switching, telemetry, data concentration.

C. Scientific Computing
Hand/pocket calculators, special purpose equation solvers.

D. Process Control
Machine tools, production lines, monitoring, laboratory
automation.

E. Business Data Processing
Special purpose inventory or financial control.
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F. Command and Control
Guidance and tracking, navigation, cryptography.

Minis are used as part of intelligent terminals, controllers for

peripheral storage devices, and front-end or back-end processors. They
are low cost alternatives to hardwired data concentrators, or message
switchers. In factories they may be disguised as automatic production
control machines or as laboratory equipment.

Although minis have traditionally been weak in numerical calcula-
tions, they offer definite cost benefit advantages in special purpose
scientific and business applications. Packages such as ECAP (Electronic
Circuit Analysis Program) have been implemented on minis. "Turnkey"
systems, i.e. ready-to-use hardware and software tailored to a special

application, are currently available that incorporate a mini as part of

a database system for small businesses.

Finally, due to their small size and low cost, minis are used in

aerospace applications. These applications commonly require uncompli-
cated but high speed processing.

1.5 Peripherals

While the cost of a minicomputer cpu is dwindling, the cost of

peripherals is still sizeable. Indeed minicomputer peripherals account
for a large share of the manufacturer's profits. In 1969 the ratio of

total system cost to the minicomputer cpu was 2:1. By the early
seventies this ratio had risen to 3:1, and in the mid-seventies it is

4:1.

Disk and tape drives cost as much as a mini cpu (1975 prices)

.

Addition of paper tape I/O devices, cassette, flexible disks, and a

line printer drives the cost of a complete system upward. The cost of

peripherals will become the major hardware obstacle to penetrating low
cost, high volume markets, e.g. appliances, automobiles, home enter-
tainment, industrial control, communications, and education.

In addition to the cost of peripherals, the cost of controllers and
interfaces has added to the relative high cost of total systems. The
simplest serial device (such as a console teleprinter) may conform to

industry standards but still require an additional Interface. For
example, a teleprinter interface may specify an EIA RS 232-A standard but
fail to indicate strapping options or the transmission speed. Therefore,
an additional interface device is needed to make the peripheral work
harmoniously with the cpu. Only recently have mini manufacturers
recognized this problem and begun to produce general purpose I/O
ports

.

1.6 Software

The software available for a typical mini is limited. Operating
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systems are unsophisticated and usually special purpose. Language pro-
cessors are nearly non-existent except for assembler translation and
BASIC. Often translators run on large machines that produce object
code for the mini. These are called cross-translators. However, a

few minis have FORTRAN, ALGOL, RPG, or COBOL. The trend of the seventies
is toward more high level languages [4, 7, 12, 13].

1.7 Design

In the remainder of this decade minicomputers will use more LSI

(large scale integration) components to shrink size and electrical power

requirements and to provide an economical way of building more sophis-

ticated central processors, controllers, and memories.

LSI employs solid state circuitry and miniaturization to combine
thousands of components into a single package collectively called a

"chip" (roughly 1" to 2" long, V to 3/4" wide and h" thick). The
chip is manufactured by the thousands at very low cost, but once the

circuits are designed they may not be altered without high cost. There-
fore, the LSI chip is inflexible but low cost.

A minicomputer must remain flexible and extensible to be market-
able. This seemingly causes a conflict between LSI technology and mini-
computer design. The conflict is resolved in part by the acceptance of

a limited variety of minicomputer organizations (inflexibility), modu-
larity (extensibility) , and microprogramming (an intermediate level of

flexibility imposed between the hardware and software, e.g. firmware).

In the following section we discuss the architecture of mini-
computers. Keep in mind the forces of cost reduction and the counter-
forces of flexibility. Minicomputer designers use central bus design,
microprogramming, and modularity to balance cost and flexibility.
Ultimately designer decisions reflect in the cost and complexity of

software, and as we have seen, software is the major facet of the
minicomputing attitude.

2. ARCHITECTURE OF MINICOMPUTERS

Minicomputer designs vary tremendously from model to model. As
a result, it is difficult to compare the performance of model x to that
of model y even within a single manufacturer. Instead, vfe will examine
the dominant types of organization as follows.

1. MICROPROGRAMMED VERSUS RANDOM LOGIC

2. CENTRAL BUS VERSUS DISTRIBUTED BUS

3. SPECIAL REGISTER VERSUS GENERAL PURPOSE REGISTER VERSUS STACK

4. INSTRUCTION ARCHITECTURE
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Items 1-4 are design features which also can apply to larger mach-
ines.

2.1 Microprogrammed Versus Random Logic For Minis

A random logic architecture implies that the minicomputer's
instruction set is hardwired. The only way to modify the effects of

an instruction is to alter the circuitry. Such a system can be thought
to be a two-level system: the hardware and the software.

A microprogrammable computer, on the other hand, is a three level
computer: hardwired logic (perhaps LSI chips), firmware logic (a memory
containing microinstructions which control the cpu) , and the software
logic (a memory containing instructions which are interpreted by
sequences of microinstructions). Each software instruction taken from
main memory is carried out by a sequence of firmware microinstructions
which in turn control the sequencing of hardware functions. The firm-
ware routines stored in the control memory constitute a simulator or

interpreter called an emulator. In other words, the software instruc-
tions are emulated by a microprogram which runs on a microprocessor
(m-processor),

The incremental cost of increased complexity in an m-processor
is based on the cost of high speed control memory (see Figure 1).

Control memory is a (relatively) small read-only-store that contains
m-processor control words or microinstructions. As the: size of the
microprogram increases it is necessary to add pages (blocks or "chunks")
of control memory. The step function of Figure 1 represents the
incremental cost in expanding the instruction set of an m-processor.

Figure 2 shows how the control memory fits into the overall sys-
tem. During execution of instructions from main memory (i.e. inter-
pretation on the m-processor) , the control memory acts as a ROM
(read-only-memory) . When we wish to alter the contents of control
memory (to load a different interpreter for machine instruction(s) ) the
ROM becomes a WCS (writeable control store) . The WCS appears to be an
output device during a write cycle. From the processor's view, the whole
reload had better be one cycle, since after initiation of the transfer
no processor intervention can occur. Transfer failure or error can
easily leave the processor inoperable until manual intervention.

Actually the WCS/ROM control memory may be part of main memory.
Microinstructions are fetched from one segment of main memory and machine
instructions fetched from another segment. If we think of micro-
programming in this context, then emulation—simulation of one
machine's instruction set on another machine—is simply another level of

interpretation below machine language.

The * in Figure 1 marks the cost-effective cross-over from random
logic to m-processor design. It is difficult to estimate the exact
location of the * which we will call the "hardware shift" point.
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OUTPUT I/O BUS

BUS

Main
Memory

CONTROL PATH (INPUT)

CONTROL
MEMORY

System
Modules

Figure 2. A Typical M-processor (simplified)
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The hardware shift point moves because of two factors: decreasing
cost of random logic through LSI technology, and decreasing cost of con-
trol memory through memory technology (which includes LSI advances)

.

Most minicomputers are microprogrammed but only a few are micro-
programmed by the user. User microprogramming provides a way to tailor
the mini to individual applications. There are, however, pitfalls that

await the uninformed who do not understand the complexities and limita-
tions of microprogramming.

Manufacturers of non-user microprogrammed minis usually do not

advertise their mini as being microprogrammed. Control memories of such
machines are unalterable and implemented in FROM (fusable-link) , PROM
(programmed), or some form of ROM. We will treat this type of mini
logically the same as we treat random logic minis.

2.2 Central Bus Versus Distributed Bus

One of the most important design criteria for manufacturers of

minis is modularity. Since the applications and requirements for hard-
ware vary radically from system configuration to configuration some
means of modularity is highly desirable. For example, when a variety
of I/O devices are to be attached how can the designer provide a single
universal interface?

The central bus, or universal bus structure was invented to

alleviate the problem of interfacing and modularity. Surprisingly, the
universal bus impacts heavily upon programming because it eliminates
the necessity for I/O instructions (see next section).

Figure 3 shows how we might view a universal-bus mini. Each
system module is physically attached to the bus and assigned a logical
location called its bus address. The bus address is used to access
data regardless of its origin. For instance, the status register of a

peripheral device is treated the same as a main memory word by the
prograiraner .+

Early minicomputers were organized around a collection of internal
buses. Such a distributed bus allows simultaneous transfer of data

MASTER/SLAVE relation is one between two modules on the bus which
are involved in a transter. The MASTER assumes control of the bus. The
priority system on typical minis has two facets:

Bus grant: priority determines which system module gets the bus.
Once granted, the module cannot be preempted.

Cpu grant: interrupts from the bus (generated by activities of
system modules) are processed by the cpu at the
priority of the bus grant. The cpu will be preempted
by requests of strictly higher priority.

10



<
Address space: (00 6AK...272K)

two-way bus

Console
rerminal

Mass
Storage

Main
Memory

>

Figure 3. A central bus organization. Each system module is

given one or more addresses on the bus.

I
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between system components, but decreases hardware flexibility. The

universal bus, on the other hand, increases modularity, but often contri-

butes to congestion.

A priority system is established along the bus to determine which

system module is MASTER and which one is SLAVE during a bus transfer.

Interrupts are allowed only by modules of equal or higher priority.

Various manufacturers have trademark names for these devices which

are actually "intelligent buses" because they perform a limited amount

of processing, e.g. shifting, timing.

2.3 Special Register Versus General Register

The execution speed, amount of program code, and low level pro-
gramming ease of any computer is closely related to the number of work-
ing registers made available to the assembler programmer or translator
vrriter. Traditionally, an accumulator, multiplier /quotient , and pos-
sibly an index register were all that a programmer could expect. Such
minis are called register - register minis with special purpose regis-
ters .

Decrease in hardware costs have brought about an orientation to

multiple registers. In a machine with, say eight registers, RO, Rl, ...

R7, the function of the registers will usually be general purpose. This
increases the power of mini-computing by decreasing the number of load/
store operations.

Recently minicomputers have been designed to support high level
system implementation languages [4,7] . Such language-directed minis
are based on a single pushdown stack of registers rather than a few
working registers. Thus they are in a sense unlimited-register machines
having the ability to access an unlimited stack of registers.

Another possibility for register organization exists. Suppose we
bypass registers entirely and allow the machine-level instructions to

modify the contents of main memory directly? Two and three-address
machines may, for example, allow storage-storage operations directly
without movement of data to working registers. The central bus struc-

ture eliminates the need for direct use of working registers because
the working register and main memory registers are both attached to the

bus as system modules. In actual operation, however, the operands from
main memory may be held temporarily in internal registers without the

programmer's knowledge. To the programmer it appears that it is

possible to write programs without ever referencing a working register
(see the section on Mini B)

.

In the following section we will discuss three types of mini-
computers differing in the number and purpose of their working registers.

The machines will be (A) a single address, (B) a two-address, and (C) a
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stack, or zero address minicomputer. Before doing so, however, let us

examine the instruction architecture of a typical minicomputer.

2.4 Instruction Architecture

The most notable feature of a minicomputer's instruction set is

its limitation. Often multiply/divide instructions are an extra
cost option and floating-point arithmetic an after-thought. Arith-
metic addition and subtraction is standard but the compare and logical
instructions are typically limited. For example, the exclusive-or
instruction may be lacking and instead must be simulated with two AND
instructions and one OR instruction.

Branching and subroutine calls may be sophisticated for small
machines. The design of subroutine linkage control can be elegant for
minis that employ a pushdown stack mechanism. Often, however, recur-
sive calls to subroutines are difficult because return addresses

are saved in the first word of the called subroutine or in a working
register.

Machine/assembly code is sometimes a difficult notation for

programming or to read later because of the way instrucitons are packed
into an instruction word. Regretfully, few minicomputer designers
attempt to ease the programmer's job through careful design of instruc-
tion sets and mnemonics. This trend may be reversed in the future due
to the high cost of software development.

Minicomputers are well known for their special purpose instruc-
tions. A mini used for communications control most likely will have a

"generate ASCII parity" instruction that produces a parity bit.

Polling is frequently done by a mini. In this situation a single
instruction is used to determine which bit is set in a word (scanning
left-to-right)

.

The main problem with minicomputer instruction sets arises from
the short instruction word. A 16-bit mini must incorporate a variety
of addressing modes in order to address reasonably large memories and
at the same time represent a reasonably large instruction set. In

addition, they must be able to process byte-length data in addition
to word-length data. This places severe demands upon the 16-bit
word length.

The effective address of an operand is calculated in six or

seven basic ways. The simplest mode of addressing is to use a part of

the instruction word, say D, as the absolute address of an operand.

operation mode D instruction word

Naturally the magnitude of D limits the instruction to only a
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few hundred bytes of "addressability". If memory is segmented into
blocks called pages, then a paged address is computed by adding the
page number to the displacement value, D.

operation mode page D

#

Figure 4. Word-Paged format.

Paged addressing is inconvenient and makes the problem of

relocating programs to new pages unnecessarily complicated. If the
program counter or a special base register is used in combination with
the displacement value D, then a relative address may be computed.

Since arrays and tables are frequently searched by minicomputers,
a convenient addressing mode is the indexed mode in which the contents
of an index register are added to D.

Further, since searching is done by sequentially examining con-
tiguous locations the auto step addressing mode is helpful. A main
memory word or register is used as an index or as an address of the
operand. The register or memory word is incremented/decremented auto-
matically, either before (pre-index) or after being used (post-index).

Assume D is the contents of a field within an instruction word and
M is the mode of addressing. The effective address EA is given for
various values of M, below.

M = 0 ABSOLUTE
1 PAGED
2 REGISTER
3 PROGRAM

RELATIVE
BASE

RELATIVE
4 INDEXED
5 INDIRECT

6 AUTOSTEP

EA = D
EA = page number + D

EA = a register number
EA = contents of program counter + D

EA = contents of base register + D

EA = D + contents of index register
EA = contents of address specified by some

mode
After the EA is computed, increment or decre-

ment the indirect address used to fetch the
data

The shift/rotate instructions on a mini often depart from those
of a large machine since only a basic set of shift instructions is

usually provided. The full set is built-up from the basic set.

Often shift length is limited to one bit and multiple-register shifts

are made possible with the assistance of an additional carry bit or

overflow. See figure 5.
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c 16-bit word or register

17-bit shift/rotate

Figure 5. Shift/Rotate Instructions Work On 17-bits.
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Some minis may incorporate a post-shifter that operates on the
result after it has passed through the arithmetic/logic unit. This
gives the instruction set added power at little extra cost. Programming
complexity and unreadability are increased, however, in exchange.

A basic repertoire can be very basic, indeed. Remember that mini
hardware is modular and additional modules are added to increase perfor-
mance for a particular application. For example, minis with a central
bus organization may replace software floating point routines with a

floating point module that attaches to the bus. Automatic address
translation and memory protection could be added to the basic emulator
of a micro-programmed mini by upgrading the control memory.

Minicomputers placed in harsh environments would require an op-
tional power fail/auto restart feature that saves important restart
information when power failure is detected. Other options include
exception handling for overflow, memory parity, and hardware failure
detection, and a real-time clock or interval timer for event-driven
applications.

A large number of I/O driven systems are implemented on mini-
computers. For this reason a final word on minicomputer I/O subsystems
is given. A minicomputer programmer must deal with physical level I/O
more often than a systems programmer working on a large system. There-
fore he needs to know the variety of options available to him.

The three most important parameters in I/O subsystems are (1)

maximum transfer rate, (2) interrupt structure, and (3) type of I/O:

program controlled or direct memory access, DMA. Transfer rate is

determined by the designer. The minicomputer programmer must accept

whatever rate is available. The interrupt structure is also built-
in, but a programmer may choose to use it or circumvent it.

Program controlled I/O is used for console devices or slow peri-
pherals that transfer limited volume of data. The mini is synchronized
with the device through an elementary handshake that uses two registers:
STATUS and DATA. A typical input is made as follows:

(1) Start Read operation

(2) Test STATUS and wait until device is ready (loop)

(3) Transfer data from DATA to main memory or a working register

The loop in step (2) holds up the entire computer

until a transfer is made. This same I/O operation can be performed
concurrently with the operation of the cpu if an interrupt is enabled
in step (1). It is the responsibility of the programmer to provide a

program to service the interrupt when it occurs some time later.

DMA (direct memory access) transfer is accomplished by stealing
memory cycles from the cpu, that is, by accessing memory in between
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the times when the cpu is accessing memory. In the event of a conflict,
the DMA device overrides the cpu, locking it out, temporarily. (The cpu
can wait, but a device often cannot.) Although DMA transfer rates are
potentially very high, the cpu may be slowed or stopped during such
fast transfers.

DMA I/O may be initiated and completed just as the program con-
trolled I/O, but this is wasteful of resources. Instead, it should be
carried out concurrently with the execution of the program and syn-
chronized by an interrupt or a flag (register). The steps are:

(1) Program initializes an ADDRESS register and COUNT register

within the DMA unit (an additional hardware module).

(2) Program signals device to START.

(3) The DMA unit keeps track of the transfer by decrementing
COUNT and testing it for zero.

(4) DATA is transferred to/from memory location specified by
ADDRESS which is incremented by the DMA unit.

Once the DMA transfer is completed either an "I/O completed"
interrupt occurs (if the programmer enabled interrupts) or else the
STATUS register changes the value to DONE. In either case, this

method is well suited for block transfers at high speed.

We can gain additional processing speed if interrupt driven
(triggered) scheduling is used in a program. This allows simultaneous

use of devices with the minicomputer cpu.

A variety of schemes exist for interrupt servicing, but in this
discussion we define an interrupt as a hardware-forced call to a sub-
routine. The subroutine is called a service routine because it services
the interrupt.

The service routine performs a service (input/output, buffer
switching, or transforms tables), restores the processor status, dis-
misses the interrupt by clearing flag bits, and returns control to the
interrupted code.

In a simple interrupt structure the minicomputer system reserves
main memory locations 0000, 0002, and 0004 for the address of the
service routine, the "old" processor status word, and the return
address, respectively. Then, when an interrupt occurs a branch to the
location specified in 0000 is executed and at the same time the status
word and program counter are saved on 0002 and 0004.

Upon return from the service routine, the status word and program
counter are restored from the save areas in main memory. Obviously,
this system breaks down if subsequent interrupts occur while the cpu is

17



executing in a service routine, unless the interrupt is held (at a

level) until the current one is dismissed (the saved status word and
program counter are destroyed when the second interrupt occurs).
Another disadvantage is that the service routine must do work just to

determine which device caused the interrupt, since all devices pass
control through reserved location 0000.

In more sophisticated minis a collection of dedicated words of

main memory are used instead of 0000, 0002, and 0004. Each triple
performs the same function as described for the simple I/O system, but
instead there is a unique triple for each device. These dedicated words
are often called I/O VECTORS; see Figure 6.

A separate vector and separate routine are provided for

each device. There is no possibility of lost information if an inter-
rupt occurs during the processing of an interrupt , since

subsequent interrupts save the old program status and

counter in the I/O vector. The only exception to this prevention
occurs if there is a subsequent interrupt caused by the same device
that is currently being serviced through the I/O vector.

On minis that use a pushdown stack, the PS and PC Information is

saved (pushed) on the stack instead of in the vector. In this situ-
ation repeated interrupts on the same vector are allowed because
duplicates of PS and PC are saved on the stack. Thus, a combination of

I/O vector and pushdown stack seems to offer the greatest power for
minicomputer interrupt structures.

Another scheme not yet mentioned is the Interrupt Mask

Register system. This uses a single register containing a zero in bit
position p if no interrupts are allowed by device //p, or else a one if

interrupts are allowed. The program or hardware must check each bit in
the Mask Register to determine which device will be serviced.

2 . 5 Summary

The architectural trends for minicomputers are microprogramming*,
central bus structure, variety of register organizations, sophisticated
I/O structures, and special purpose instruction sets. These are
outgrowths of the current minicomputer attitude. This attitude is

characterized by a typical minicomputer with:

*For another view, see R. F. Rosin, "The Significance of Micro-
programming," Proc, International Computer Symposium, 1973, A.

Gunther, et al (editors), North-Holland Pub. Co. (Amer. Elsevier
for U.S.A. - N.Y. , N.Y.)

.
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Vector 1
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ROUTINE

LINE

PRINTER

ROUTINE

Figure 6. I/O Vectors For Automatic I/O. They Contain Pointers
To Service Routines And Keep The Old PS And PC Values.
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(1) General purpose register, bus structure

(2) 16-bit, two's complement integer arithmetic

(3) Data manipulation (byte and word) instructions that are
limited in shift/rotate, test/branch, and logical operations.

(4) Small memory, proliferation of addressing modes and protec-
tion options.

(5) Variety of add-on options

The outgrowth of this attitude will be to overcome limitations as

stated above. Again we reiterate that the sum total of these limita-
tions is the difficulty with which minis are programmed. The challenge
in the next ten years will be to minimize software development costs.

3. MINICOMPUTER PROGRAMMING

In the previous sections of this report, we saw that minicomputing
is an attitude about smallness. Smallness implies limited programming,
and yet it is possible to develop programs of respectable size that run
on minicomputer hardware. To do so, however, requires software tools
specifically adapted to the minicomputer attitude.

The search for powerful software tools is further clouded by a

variety of minicomputer organizations embodied in hardware. We empha-
sized the lack of a measure of architectural effectiveness in the last
section, and in this section we can only point out intuitive or aesthe-
tic measures of software effectiveness. For this purpose we examine
three machines. Mini A is a special purpose register, single-address
machine (a simple mini) [S]. Mini B is a general-purpose-register, two
address machine (typical) [s], and Mini C is a stack machine (micro-
programmed) to support a high level systems implementation language [4].

3.1 Case Study I: Mini A (simple machine)

Mini A is a commercially available computer that is designed to be
low cost, fast, and uncomplicated. It is organized around a 17-bit
distributed bus as shown in Figure 7. The bits are cycled through the
ALU (arithmetic/logic unit). The result out of the ALU is

(possibly) shifted by one bit position. A skip sensor determines where
the next instruction is fetched. The Load/Noload switch determines
whether the 17-bit bus data is placed back into a register or lost.
The C-bit is a carry, overflow bit that is input into the ALU along
with the 16-bit register values.

The registers are dedicated to accumulator or index functions in

addition to their special purpose assignments given below.

ACQ 16-bit, one - or two's - complement accumulators
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Figure 7. Mini A. A simple Minicomputer with A Special Purpose

Registers, Shifter, Skip Sensor, ALU, and Bus.
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ACl used in arithmetic/logical operations

AC2 16-bit, one - or two's - complement
ACS accumulators exactly like AGO and ACl, except these two registers

are also index registers.

AC3 A second purpose for AC3 is as a subroutine return address regis-
ter. The return address is stored here.

In addition to these special purpose registers there are special
purpose words in main memory that are used in autoindexing. They assist
in indexing through arrays by automatically increasing or decreasing
in value each time they are treated as a pointer to data.

LOCATIONS: 020^ to 027„ Autoincrement
o o

030o to 037_ Autodecrement
o o

The hardware determines that these locations are being used as a

pointer whenever an indirect address is computed through these locations.

The instruction set of Mini A is partitioned into four classes:

Move Data
Memory Reference
ALU
I/O

We will demonstrate programming techniques using assembler
mnemonics and avoid the necessity of defining the machine codes for
each operation.

Operands are accessed through one of five addressing modes as

follows (PC is the program counter)

:

Page Zero: Direct access to locations OGOg to 377g
PC-relative: Contents of PC plus displacement
Indexed: Contents of ACi;i=2,3 plus displacement
Indirect: Address of address when bit zero is set
Autoindex: Use when indirect addressing location 020g to 037g

The shifter and carry bit is controlled through additional bits
in each instruction word. We indicate CARRY/SHIFT control with an
assembler mnemonic as follows:

Z: clear CARRY register (zero)

0: set CARRY register (one)
C: Complement CARRY register (reverse)
L: rotate the 17-bit bus left one bit
R: rotate the 17-bit bus right one bit
S: swap low order 8-bits with high order 8-bits
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code
These mnemonic

mnemonic. They
codes are appended to the

are suffixes to the basic
right-hand end of any op-
instruction mnemonics.

The skip sensor is also controlled by placing skip codes in the
operand field of assembler statements. A few of the codes are given
below:

SZR: skip next instruction if zero result.

SZC: skip next instruction if carry is zero.

SKP: skip next instruction

Combining the codes for CARRY /SHIFT/SKIP control with the func-
tions of the ALU results in powerful instructions for this simple
machine. The abundance of suffixes may damage readability, though,
and standard programming techniques for Mini A border on programming
trickery. Let us consider a few examples.

The MOV instruction copies the contents of one register into
another (or same) register. When used in combination with other
functions it is extremely versatile.

MOV 1,1, SZR;

MOVL# 1,1, SZC;

test ACl for a zero result and skip the next
instruction if ACl contains a zero.

# means Noload. A copy of ACl is shifted left
one bit (rotation of 17 bits) and the next
instruction skipped if C=0. This tests the
sign bit of ACl.

MOVOR 1,1, SKP; Put a 1 in C, then rotate ACl right. Skip the
next instruction.

MOVZR 1,1; Zero the C bit, then shift right.

3.2 Example A.l

Suppose we wish to divide a two ' s-complement number by two.

There are two cases: when the number is positive and when the

number is negative.

MOVL# 1,1, SZC;

MOVOR 1,1 SKP;

MOVZR 1,1;

test the sign bit and skip if it is zero

it is negative, so right shift (divide by 2) and
put in a 1 (sign bit) , and then skip

it is positive, so right shift and put in a zero.

This example shows how test and branch instructions are incor-
porated into a single copy instruction. Now study the following example
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that shows how the autoindex locations in main memory function. The
assembler format is:

: denotes a label

; denotes a comment

, denotes an operand

The assembler mnemonics for the next example are:

LDA load a register from memory
STA store a register into memory
DSZ decrement and skip if result is zero
JMP jump

3. 3 Example A.

2

The following subroutine copies a block of data (30 words) from
locations 2000g in reverse order to locations 5205g to 5150g. The
autoincrement and autodecrement words are used with an indirect bit ((?

in assembler) to indicate that they are pointers.

MOVE: LDA 0,CNT , Set-up autoincrement...
STA 0,21 , ... in location 21^.

o
, Set-up autodecrement...LDA 0,CNT+1

STA 0,35 , ... in location 35g.
,Get a word and...LOOP: LDA 0,@21

STA 0,(335 , . . . move it

.

DSZ CNT+2 .decrement and test...
JMP LOOP , ... otherwise, loop again.
JMP 0,3 return to main through AC3

jump)
CNT: 001777 2000-l=pointer to...

005206

000036

. . . table to be moved
5205+l=pointer to...

. . . destination,
length of data (30).

The example above gives the reader an idea of how an assembler
program appears in this simple machine. The LDA and STA mnemonics cause
AGO to be loaded and stored. The (3 bit causes location 21g to be auto-
incremented during data fetching, and location 35g to be autodecremented
during the move.

The I/O instructions of Mini A are part of the skip, no-op, and
data transfer instructions. To demonstrate this, in the next example
a byte of data is read from the system console.

3.4 Example A.

3
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A single byte of data may be read into AGO with the following

code. Remember the three steps of program controlled I/O discussed
earlier. TTI is the device number of the console.

START: NIOS TTI ; start the terminal, READ.
SKPDN TTI ;skip next instruction...

; . . .if TTI is ready.
JMP .-1 ;loop back (not ready).
BIAS 0,TTI ;copy into AGO.

The codes may be interpreted by the reader as follows. NIOS is a

no-op, NIO, plus a suffix: S=set BUSY flag in the device STATUS regis-
ter. The SKPDN code means to "skip next instruction if the DONE bit is

set" in the STATUS register. The DIAS instruction actually performs the

transfer from device TTI to AGO.

An experienced Mini A programmer would acquire a bag of techniques
most likely called tricks by other programmers. This makes the task of

software development and documentation an ordeal at best. It is useful
to be aware of these techniques simply to assist anyone wishing to

understand Mini A software. Gonsider the following special techniques.

3.5 Special Techniques

SUBO AG, AG ; clear AC and CARRY
SUBG AG, AG ; clear AG but save GARRY
SUBZL AG, AG

;
generates a +1 in AG.

ADG AG, AG
;
generates a -1 in AG.

ADGZL AG, AG
;
generates a -2 in AG.

NEC AC, AC ;this pair of codes...
GOM AC, AC ;.. .decrements AG by one

To help the reader see why the above sequences of code work,

let us examine the ADGZL code. The ADC part causes the one's comple-
ment of AG to be added to the contents of AC, itself. The Z suffix
causes the GARRY bit to be cleared. The L suffix shifts the 17-bit
result left so that the low order bit (bit 15) is a zero and the carry
out from the high order bit is placed in G. Adding the one's -

complement of a number to itself creates a two's - complement (-1).

Shifting in a low order zero produces two times negative one, i.e. (-2).

3.6 Case Study II: Mini B

Mini B represents a compromise between sophistication and low cost.

One of the design goals of Mini B was to make assembly language pro-
gramming easy. The machine is organized around a universal bus capable
of transmitting 18-bit address words and 16-bit data words.

Figure 8 demonstrates how each system unit is modularized and
connected to other units through the universal bus.
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Mini B hardware is more complicated than Mini A, but as we will
see its programming complexity is less than that of Mini A because of
the straightforwardness of the instruction set. The nine registers
shown in Figure 8 are the key to understanding Mini B.

RO through R5 : general purpose registers used for
arithmetic/logic, indexing, and as

pointers to data.

R6 = SP :used by the hardware as a pointer
to the top element of a stack
stored in main memory.

R7 = PC :the program counter.

PS :the processor status word.

In addition, the PS register contains testable flags (condition
codes) for various conditions. For example, if a result of a computation
or test (TST) is zero, Z = 1 (See Figure 8), The T = TRAP bit causes
an interrupt after the execution of each instruction. This is used for
debugging purposes.

External interrupts are allowed only by devices of higher priority
than the cpu (see discussion of bus priority). Therefore, the PRIORITY
field of the PS register determines the level at which the cpu currently
runs. For example, if device //I on the bus wishes to transfer data to
main memory, the bus is relinquished only if the cpu is in a low enough
PRIORITY state.

Mini B is a two-address 16 bit word machine. This means that each
instruction operates on a SOURCE and DESTINATION operand. The format
of an assembler instruction is:

optional label : op-code mnemonic SOURCE, DESTINATION; Comment

This format is shortened to a single operand when the SOURCE equals the
DESTINATION. Examples of single operand instructions are given below.

CLR DESTINATION ; clear DESTINATION
COM D ;one' s-complement D.

INC D ;add one to D.

DEC D ; subtract one from D.

NEC D ; two ' s-complement D.

TST D ;test D, set condition code.
ROR D ;rotate D right one bit position
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ROL
ASR
ASL
SWAB
ADC
SBC

D

D

D

D

D

D

;rotate D left one bit position.
; divide D by two.

;multiply D by two.

; exchange high and low order bytes.

;add C to D (carry add-in).

; subtract carry from D.

Each of these instructions operates on a full word (16 bits) of data.
They may be converted into byte operations that manipulate half-words
merely by suffixing a B to each instruction mnemonic. Thus, CLRB
causes a single byte at DESTINATION to be cleared.

The double operand instructions are truly two-address instructions.
In the following, a byte-operand option is specified with brackets. SS

means source and DD means destination, for brevity.

In addition. Mini B has a variety of branch instructions whose meanings
will be obvious in later examples.

Each instruction stored in memory is either one, two, or three
words long. The length of instruction depends on the addressing mode
employed. If the SOURCE and DESTINATION are both registers, then a

single word instruction is generated from the assembler mnemonic. If

only one of the operands is a register, then two words are generated.
When both operands are main memory references, then three words of

instruction information are generated. In the assembler notation, a

per cent sign, %, distinguishes a register from a memory location.
Note also that the equal sign is used to perform equivalence in the
assembler. Before continuing to examples, the reader should study the

variety of addressing modes made possible by treating PC as an index

register simultaneously with its dedicated function as a program counter.

mov[b]
cmp[b]
ADD

SS,DD
SS,DD
SS,DD
SS,DD
SS,DD
SS,DD
SS,DD

;copy from SS to DD.

; compare SS minus DD.

;add: DEH-DD+SS.

; subtract: DD^DD-SS.
;bit test: SS .AND. DD.

; clear bits masked by SS: DEH—iSS.AND.DD.

;set bits masked by SS: DEH-SS .OR.DD

.

SUB
bit[b]
bic[b]
bis[b]
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MODE (Name) SYMBOLIC DESCRIPTION

Contents of R is the operand
Contents of R is a pointer
to operand
R is pointer, incremented
after use
Contents of R is the address
of the address
Decrement R, use as a pointer
Decrement address of pointer
Contents of R plus X is

address
Contents of R plus X is

address of address
n follows instruction as data
n is an absolute address
relative displacement to n

follows
address of address

Perhaps the most interesting feature of Mini B is its incorpora-
tion (perhaps half-heartedl}^ of a pushdown stack. Actually any one of
the working registers can be used as a stack pointer. Register six,

however, is used by the hardware as a stack pointer during calls to

subroutines and during external interrupts. The programmer may also
use R6 = SP for storage of temporary results or for passing parameters
to a subroutine.

The stack top is limited to location ^00^ in main memory but its

base may be placed anywhere the programmer desires. Suppose we wish to

set the base at location 477g and allow the stack to grow toward loca-
tion ^OOg- We could do this with the MOV instruction using the
immediate addressing mode.

register
R deferred

aut oincremen t

autoincrement , deferred

autodecrement
autodecrement , deferred
index

index deferred

immediate
absolute
relative

PC

R
(R)

(R) +

(a(R)+

-(R)

@-(R)

X(R)

(ax(R)

#n

n

relative deferred (an

MOV #477, %6 ;set stack base.

A push or pop operation is performed by MOVing data to/from a

register using the autoincrement or autodecrement addressing modes.
Observe that the stack increases in length by decreasing the address
stored in register six.

MOV %0,-(%6) ;push RO onto stack.

MOV (%6)+,%0 ;pop TOS (top-of-stack) to RO.

MOV (%5),(%6)+ ;delete TOS.
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The stack is also used to hold the return address linkage during a

subroutine call. The JSR instruction always pushes the contents of

some register on the stack. If that register is the PC then the return
address is pushed.

PC = %7

JSR PC, SUB ;call SUB and place.
;PC on stack.

RTS PC ;pop TOS into PC.

Notice the use of the "=" assembler pseudo-operation to improve read-
ability of the code (PC = %7)

.

In the previous section we promised to simplify I/O with a

universal bus structure. In fact there are no special I/O instructions
in Mini B as shown below. Let PRS be the universal bus address of a

STATUS register. Let PRB be the bus address of a DATA register. In

this example, //10020G is a bit mask for testing the error condition
(#100000) and ready condition (#000200).

INC PRS ; start READ operation by setting
bit zero.

WAIT: BIT PRS, #100200 ;test bits 15 and 7.

BEQ WAIT ; branch if equal to zero.

BMI ERROR ;branch if minus high order bit is

sign.

MOVE PRB,(R5)+ ;copy from DATA register . . .

;. . .to buffer area.

The preceding segment of code demonstrates the use of the
INCrement instruction to start a read operation in some device. The
device is chosen by setting PRS and PRB to some (predetermined) bus
address. The BIT instruction ANDs the mask with the status register and
sets a condition code only; the PRS is not affected. The next two
branch instructions act on the condition code set by the BIT instruc-
tion. Finally, when the device is error-free and ready, a single byte
is MOVed from PRB to the buffer location pointed at by register five.
R5 is incremented by one (unless R5 = %6 because the SP register is

always autoincremented and autodecremented by two to maintain word
alignment)

.

3.7 Example B.l

Suppose we program Mini B to perform a communications function.
In such an environment data is being read into the mini, manipulated,
and output. In a communications application it Jiay be necessary
to develop high speed algorithms (the minicomputing attitude) to
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perform bit reversal as in a fast Fourier Transform application or
simply to generate a parity bit for error control. For example,
counting the number of set bits in a word is a necessary part of

computing a parity bit. How can we perform this simple counting
operation at high speed? Consider the following algorithm:

1. Let W = w„ w. Wr, . . . w be the bit string of cleared or set
0 1 2 n °

bits. We want to compute Z w^ by counting. Set KOUNT = 0.

2. Repeat the following no more than n times:

2a. Test W to see if it is zero. If W = 0 the algorithm
is done and KOUNT contains the number of set bits. If

W ^ 0 go on to the next step.

2b. Compute W ^ (W) . AND . (W-1)

*

2c. Increment KOUNT.

3. Stop.

This algorithm works best for values of W such that there are few (less

than one-half) set bits. The Mini B program follows:

KOUNT
W
TEMP
BITNO

;

LOOP:

%0

%1

%2

CLR
TST
BEQ
MOV
DEC
COM
BIC
INC

BR
RTS

KOUNT
W
DONE
W,TEMP
TEMP
TEMP
TEMP,W
KOUNT
LOOP
%7

assign variables.
W is passed thru Rl

.

temporary scratch req.

entry to subroutine.
set KOUNT = 0.

done? test value of count
yes (i.e. branch if code z

no. compute W-1 . . .

. . . and save in TEMP

.

fake an AND . . .

. . . with COM, BIC.

KOUNT = KOUNT + 1

Repeat
return.

= 1)

The fast Fourier Transform algorithm employs a clever index
algorithm that is implemented in a manner similar to the example.

*Let W = 1-2^ + 1-2^ + ... + 1-2 /+ 1-2| where a>b>.^.>L'>L>0
then W-1 = 1-2^ + 1-2° + ... + 1-2^+ 0-2'-+1-2^ +1-2^ +. . .+1 or

clearly then W.AND.W-1->W ^ ./

gives W= 1-2^ +1-2 +...+1-2 as required. W = 0 when KOUNT
is correct.
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Notice in the program above that COM and BIC, taken together,
perform a logical AND operation on TEMP and W. This is required on
Mini B because the BIT instruction does not store a result. Instead,

to get a result from an AND operation two instructions are substituted
in place of the BIT instruction normally used for ANDing.

3.8 Special Techniques

Mini B programmers need not acquire a special techniques repertoire
as needed for Mini A. The limited instruction set may cause distress,
however. For example, the smaller models often lack an exclusive

OR, multiply, divide, and logical AND operation that produces a result.

The programmer must develop a collection of macros to simulate these

instructions.

The consistency and format of assembly statements makes programming
Mini B straightforward. The machine is designed with this in mind. In

most cases, the operands may be register or memory locations and the

programmer need not worry about the actual resource being used. This
eases the programmer's burden, but note that program length is increased
when two and three word instructions are used in place of register-to-
register instructions.

The added power of recursive subprograms and stack processing
probably reduces program size in many applications. This is demonstrated
by the short program segment below that strips off decimal digits, one-
at-a-time, in preparation for output to a terminal. The segment is

recursive.

3.9 Example B.2

CONVRT: JSR PC, DIVIDE ;divide (QUOTIENT/10).
MOV REM,-(SP) ;save REMainder on stack.
TST QUOTIENT ;test quotient. Done?
BEQ DONE ;Yes.

JSR PC, CONVRT ;No. call self (recursively).
DONE: ; Output the REMs . . .

; . . . stored on the stack.

This example shows how a compact conversion routine is programmed
using the full power of stack processing on Mini B. As an example,
assume QUOTIENT = 123, initially. After division by 10, the QUOTIENT
becomes 12 and REM = 3. Repeated recursions produce 2, 1, and then
zero. The binary equivalents of 3, 2, 1 are stored on the stack in

reverse order. When they are popped, the binary coded digits are
ready for output in the proper order.

3.10 Case Study III: Mini C

Minicomputer A is low cost and simple. System complexity is dealt
with by the software and not the hardware. Minicomputer B is more
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sophisticated and, by nature of its organization absorbs more complexity
at the hardware level than Mini A. Even so, both require programming
talent of a greater caliber than is expected of programmers on many
large machines. Therefore Mini A and Mini B do not represent great
advances in reducing programming effort.

Mini C is presented in this report because it represents one
approach to reducing programming costs in minicomputer systems. Clearly,
the relative cost of a minicomputer cpu is negligible when compared to

the cost of peripherals and software. The cost of peripherals is

expected to drop in the same way that mini cpu costs have declined. The
major problem faced by minicomputers in the next ten years is programming
and software complexity.

The basic philosophy of Mini C is simply this: reduce programming
costs by forcing complexity into the cpu hardware (actually firmware).
When this is done the programmer no longer develops software in assembly
language. Instead, a high level machine oriented language is used to

develop systems software, language translators, text editors, application
packages and utilities.

Mini C is a minicomputer specifically designed to efficiently
support a high level systems implementation language [4,7]. The
language is a PL/1 derivative, that is, it is block structured, pro-
cedure oriented, and equipped with control constructs for modular
(structured) programming.

Mini C emulates an execution environment that supports the most
flexible type of process, i.e. the pure process. This is accomplished
by protecting a running program from WRITE infringement (the program
is temporarily in a ROM space) and guaranteeing data independence for

every active process. Figure 9 shows how a program segment and a data
segment are delimited in main memory.

In Figure 9 the currently executing program of length PL resides
in main memory locations PB to PB + PL. The next instruction will be
taken from location PB + PP. This space is designated ROM during the

program's execution.

The data space for the program shown in Figure 9 is a push-down
stack located at SB with length SL. All operands are taken from this

stack (with two exceptions) during program execution. SB + EP points
to a block of 4 words on the stack called a MARK. MARK contains all
the pertinent information required to establish a LOCAL ENVIRONMENT
for the corresponding block currently executing in program space. Each
time a new block (or procedure) is entered in the program, a MARK is

pushed onto the stack. Each time a block is exited in the program, the
stack is rolled-back (the MARK is popped). The MARK is intimately
related to the high level language discussed later.
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Figure 9. The Program Space And Data Space For Mini C
Main Memory.
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Emulated Registers;

PB E prog base
PL prog length
PP pts to current Inst
SB stack base
SL stack length
EP envir ptr
SP stack ptr to top of

memory stack

The machine instructions generated by translating the high level
language (HLL) will generally be either one, two, or three 8-bit bytes

depending upon the addressing mode. The single byte instruction acts

on the TOS (top-of-stack) elements, only. The other two instruction

formats include fields containing displacement information.

1 OP-CODE MODE

1. OP-CODE MODE D8

1 OP-CODE MODE D16

There are eight addressing modes as shown in Figure 10. A running
program would be executing within the environment established by MARK
(EP is the environment pointer) . All data beyond the MARK is called
local data. Modes 2 and 3 provide access to these local values by
computing the sum of SB + EP + D8 and possibly the TOS value.

Global values are values outside the present environment but
within the current program's data stack. For example, mode 5 computes
an address by summing the SB + (TOS) + (TOSl) values (TOSl is the
element next to TOS in the stack) . Top-of-stack comprises 5 (emulated)
registers

TOS
TOSl

T0S4

in descending order.

Absolute addresses may be accessed only by privileged instructions.
Assuming that a given program is an executive routine of some sort,
absolute addresses are computed from TOS plus four times the next
element on the stack, TOSl.
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Figure 10. The Addressing Modes of Mini C.
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Program constants can be read from the program space using mode 6.

The protection mechanism for program segments prevents a write operation
(pop) from occurring in mode 6.

Now let us digress for a moment to establish a motivation for

the complexity presented above. Mini C is designated to reduce
programming effort through the principle of forcing complexity into the
hardware. Actually, Mini C is microprogrammed to operate on the stack
space and program space in the way presented above. Therefore,
complexity is forced down to the firmware level of the machine. We will
reap the benefits of this principle by never having to worry about firm-
ware complexity while programming . This is accomplished through the

HLL mentioned earlier.

Figure 11 is a listing of a program written for Mini C. It is a

simple example of a main program and an internal procedure. The
application is purposely simple because we are more concerned with
understanding the relationship between this program and the hardware
described by Figures 9 and 10. Procedure SUM computes the sum of

elements in ARRAY and is not shown.

The rules of this language are obvious to any PL/1 programmer and
will not be belabored here. Simply stated, they are as follows:

1. Unlike PL/I, all variables are typeless.
2. All variables must be declared.
3. The scope of all variables is the block in which

they are declared.
4. Simple parameters are passed to procedures by value,

arrays are passed by address.
5. Variables are declared as 16-bit WORD, 8-bit

BYTE, POINTER, or PROCEDURE valued.

6. Arrays index from zero to their upper bound.

Let us study step-by-step how the program of Figure 11 is executed

by the Mini C firmware. An assembler-like mnemonic code is used in

place of machine code to make understanding easier. Each mnemonic is

explained as required.

The PROCEDURE statement produces a MARK on the stack as shown
above. The DECLARE statement reserves storage space on the stack.

Note that EP points to the MARK that defines the current environment.
At this point the mini must set SP and begin executing the DO - loop.
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PROCEDURE MAIN;
DECLARE SUM EXTERNAL PROC WORD,

(X,Y,Z) WORD,

ARRAY (9) WORD,

SQUARE (9) WORD,

(I, J) WORD;

DO 1=0 TO 9;

ARRAY (I) = I;

END;

X = SUM (ARRAY)

;

DO J=0 TO 9;

SQUARE (J) = ARRAY (J) * ARRAY (J);

END;

Y = SUM (SQUARE)

;

Z = Y/10 + X/10;
END;

Figure 11. A Sample HLL Program For Mini C.
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DECLARE

EP

SUM
(X,Y,Z)

ARRAY(9)
SQUARE (9)

(I, J)

EXTERNAL PROC WORD,
WORD,
WORD,
WORD,
WORD,

SP

PROGRAM MAIN
MARK

X

A
R
R
A
Y

S

Q
u
A
R
E

DO I = 0 TO 9;

SSP 29

LO
L9

LI
LADR 0,0,0,1,1
DIB 24

+ 29- ^ 0

9

1

t I^ >

set stack pointer register to EP + 29

load 0, 9, and 1

load a pointer to I
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The DO-loop is set-up by pushing the INITIAL value, TEST value,
INCREMENT value, and address of loop counter I onto the stack. This
is shown above by the SSP (set stack pointer) and L (load) instruction
mnemonics corresponding to the DO-loop statement in HLL.

The LADR instruction causes the address of variable I to be
pushed onto the stack. The DIB mnemonic indicates that the variable
at the location specified by TOS will be tested as follows: TOSl (next

word under TOS in the stack) is treated as the INCREMENT value for

the loop counter. T0S2 is the test value and T0S3 is the INITIAL
value.

The DIB (DO-loop initialize and branch) instruction performs
the following steps:

DIB 1. Copy the INITIAL value into location I and,

2. If INITIAL > FINAL then pop TOS, TOSl, T0S2,
T0S3, and branch to PB -!- 24.

TOS 3 0 INITIAL

TOS 2 9 FINAL

TOSl 1 STEP

SP -> TOS fl address of counter

The two LW (load word) instructions push first the right-hand-
side of the assignment statement and then the subscript of ARRAY onto
the stack. Finally, the assignment is carried out by the STW (store
word indexed) instruction. The stack is cut back to the address of I.

The loop is tested with the DSBB instruction (Do-loop step and
branch back). This instruction is generated by the END.

ARRAY(I)

LW
LW
STW

0,1
0. 1

1, ARRAY

END;

DSBB 10
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DSBB: 1. Step through TOS; hence 1=1+1. 1=1+ T0S1=(I)+1
2. Compare I and FINAL, that is compare the value

accessed by addressing through TOS with the value
stored at T0S2.

3. If I is less or equal than FINAL then branch
back 10 bytes.

4. If I is greater than FINAL then pop TOS, TOSl, T0S2,
and TOS 3.

The next segment of program executes a procedure call. This call
will force a new environment onto the machine by establishing a stack
MARK. The parameter ARRAY is passed as an address in order to conserve
memory in the local environment of SUM.

X = SUM (ARRAY);

MARK 0,1,1, SUM
LADR 0,0,0,1, ARRAY
CALL 4, SUM
STW 0,X

The MARK establishes a new environment and provides backward
pointers so that the stack can be rolled-back upon return from SUM.

Immediately following the four word MARK is the address of ARRAY. A
mode 4 CALL is executed which passes the address of ARRAY to a new
program segment called SUM. Upon return from SUM, the new value of X
is on the stack, and this value is stored (STW).

By now the reader will have some idea of the basics of Mini C.

Therefore, the remainder of the translated program is presented below.
The correspondence between HLL and the segments of machine code are
obvious

.

DO J = 0 TO 9;

LO
L9
LI
LADR 0,0, 0,1,

J

DIB 68

(J) = ARRAY (J) * ARRAY (J);

LW 0,J
LW 0,J
LW 1, ARRAY
LW 0,J
LW 1, ARRAY
MUL
STW 1, SQUARE

SQUARE

END;
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DSBB 20

Y = SUM (SQUARE)

;

MARK 0,1,1, SUM
LADR 0,0, 0,1, SQUARE
CALL A , SUM
STW 0,Y

Z = Y/10 + X/10;
LW
LIO
DIV
LW 0,X
LIO
DIV
ADD
STW 0,Z

The HLL of Mini C accelerates programming as any high level
programming language does. This means that coding and documenting
a program require less time and effort. Maintenance of existing
programs becomes easier and changes are quicker to accomplish.

The disadvantages of a HLL for minicomputers are the same dis-
advantages that have always plagued HLL's. They require compilation
and the resultant code executes slower and require additional debugging
aids. These shortcomings are minimized for Mini C because the machine
conforms to the language. Mini C might properly be called a language
oriented machine.

4. COUNTERPOINT 1975 [l5]

4.1 The Multilevel Mini

Large scale general purpose maxicomputers may be called
Renaissance Computers . A Renaissance Computer is everything to every-
one; a multiple purpose, versatile information processor. It provides
time-sharing, batch, real-time, and shared data base functions to a

diverse community of users. Unfortunately, most Renaissance Computers
do not provide all these functions at a cost-effective level. [15,

p. 55]

Twenty-five years ago computers of any type were large and

expensive because hardware technology was costly. Software programmming
was a means of changing the system to fit different applications. The
machines were designed to be general purpose and programmable so that

many users could share the high cost. Indeed, they had to be
Renaissance Computers [15].
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It is no longer necessary to perpetuate the Renaissance Computer

concept. The mini attitude is an alternate that is practical because
hardware costs have sharply declined in the last ten years and
resultant simplification of* software has partially offset increasing
software costs. A mono-computer system implemented on Mini C, for
example, can reduce the per capita cost of hardware and software
to a point below the per capita costs of a time-sharing system.
Additional users merely get replicas of the Mini C system. Integrated
data base systems are an exception requiring multiprogrammed access to
many users. Even when mini systems are designed with multiple access
in mind, they become attractive economically because of their special-
purpose nature [17,18].

Simplified software is a result of the minicomputer attitude. Low cost
hardware coupled with simplified software opens the door to special purpose
computing [l8]. Software in a special purpose system is not used to

gain a general user base. Instead, software, firmware, and hardware
become a continuum of system implementation levels. Each level offers
cost/benefit ratios according to the amount of complexity needed at

each level. Hardware binds a portion of the complexity so that
firmware becomes attractive. Firmware binds complexity at the next
level and finally software binds complexity at the application level.

Special purpose, microprogrammable minicomputers of type "Mini C"

offer flexibility in terms of bound complexity. Most likely, a blend
of "soft-firm-hardware" will prevail in minicomputers of the near
future because the benefits offered by multi-level systems are
attractive for special purpose computing [l5].

If we extrapolate current trends in minicomputer hardware we
would predict that minicomputers would soon be free. This,
however, is implausible. Instead, a plateau will most likely
be reached (at several hundred dollars) at which the price will
remain stable. Complexity will be substituted in place of
decreasing costs. In the mid 70' s we are experiencing the first
signs of reaching this plateau [l5].

Assuming that multi-level, low-cost minis are close to

the price plateau, then we can extrapolate some future directions
for minis. Basically, these extrapolations are outgrowths of the
need to overcome present limitations. We demonstrated several short-
comings in the previous section. They lead us to believe that the

future minicomputer will possess features found on large machines.

(1) More powerful instructions reminiscent of Mini C [9].

(2) Larger word size to gain addressability; hence larger
main memories [l].

(3) Architectural extension (ability of user to add instructions
to the basic set) through microprogramming [l,7,10].
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(4) Special purpose systems through multilevel design (soft-

firm-hardware) [9,17,18].
(5) Reduction in size and cost of peripherals used in mini-

,i computer systems [3,10,15].

Where does this leave the large scale computers? Obviously there
are many applications that sensibly require the size and power of a

large computer. There may be a trend away from Renaissance Computers,
but this does not preclude the need for bulk storage capacity and
complexity beyond that of a mini.

Large computers in the minicomputer era will probably take
advantage of the minicomputer attitude. The large computer of the

future might be a distributed network of special purpose (mini)

computers [l4]. Each subprocessor is a special purpose organ that

performs a dedicated function. For example, a storage-control
computer is dedicated to managing data into and out of a main memory
module. An I/O processor can handle all I/O, an arithmetic processor
can perform all arithmetic and a language translator processor can
perform only translation.

Minicomputers will continue to compete with larger machines for
economic reasons. A buyer in the process of selecting a computer
must consider the application, volume of data, and software require-
ments before choosing between mini and maxi.

4 . 2 Summary

Minis are finding applications in places where maxis fear to

tread. The low cost of hardware leads to specialization, but we must
beware of the relatively high costs in programming. In the future,
mini hardware will become more complex instead of forever decreasing
in cost. Complexity will be distributed across three levels: hardware,
firmware, and software [9,10]. High level languages will contribute
to decreasing programming costs [7,9,11,12,13]. Systems will be
developed on larger computers and loaded into small computers as a

part of a mini-maxi symbiosis. Finally, the obvious trend is toward
applications and tailored computing [l7].
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