

Liquid Level Instrumentation in Volume Calibration

R. M. Schoonover H. H. Ku J. R. Whetstone J. F. Houser

Institute for Basic Standards National Bureau of Standards Washington, D. c. 20234

October 1975

Final

Prepared for Mechanics Division Institute for Basic Standards Washington, D. C. 20234

LIQUID LEVEL INSTRUMENTATION IN VOLUME CALIBRATION

R. M. Schoonover H. H. Ku J. R. Whetstone J. F. Houser

Institute for Basic Standards National Bureau of Standards Washington, D. C. 20234

October 1975

Final

Sponsored in part by: Brookhaven National Laboratory Technical Support Organization Upton, L.I., New York 11973

Prepared for Mechanics Division Institute for Basic Standards Washington, D. C. 20234

U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary James A. Baker, III, Under Secretary Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Liquid Level Instrumentation in Volume Calibrations

by

R. Schoonover, H. Ku, J. Whetstone and J. Houser with Appendix by C.R. Tilford

Introduction

Several years ago, the Mass and Volume Section of the National Bureau of Standards undertook a study, supported in part by the Atomic Energy Commission, to determine the accuracy of a nuclear fuel reprocessing tank volumetric calibration. The calibration technique studied was volume versus liquid level as determined by head pressure measurements. The results are given in NBS Report 10396 [1].*

The purpose of this study is two-fold: (1) to use the earlier work as a basis for comparison of several instruments as liquid level detectors including the appropriate analysis and (2) to generate data for testing the ANSI Draft Standard N15.19. The proposed ANSI standard sets forth an analysis technique for application to tank calibration data.

Data reduction is covered in the previous report and is supplemented by sight glass observations, liquid density measurements, and more general equations in the appendices of this report. Included are the data necessary for an independent evaluation and analysis.

Review

This study relies on earlier work described in NBS Report 10396 for calibration techniques and data reduction. A short review of that work is presented here.

That report detailed the calibration and data reduction of straight-wall tanks via liquid level head pressure. To measure head pressure, a quartz bourdon gage with an electro-mechanical readout was used. This type of instrument is sufficiently sensitive and reproducible, but requires calibration to obtain suitable accuracy.

With the proper pressure gage coupled to a tank, there must be some means of introducing known volume increments and noting the resulting head pressure. There are two popular methods of introducing known volume increments. Both are generally performed using water during initial tank calibrations. One

101

^{*} The numbers in brackets refer to similarly numbered references at the end of this paper.

method is to pour water from a standard test measure of known volume and the other is to weigh out a volume of water and then pour it into the tank. The second method can be modified by first pouring an unknown volume increment into the tank and then weighing the tank to determine the added volume.

Although the two methods for determining incremental volumes were found comparable [2], the method of volume transfer is more convenient. The calibration results in the correspondence of liquid level (height) to tank volume. The uncertainty of the correspondence is about 3 parts in 10^4 .

In proceeding with the current study, it was necessary to replace the original pressure probe (bubbler tube) and make other modifications to the tank. These modifications preclude comparing the tank's geometric profile to the previous one.

Current Study

As stated above, an overall tank calibration accurate to 3 parts in 10^4 is obtainable if proper care is exercised. Our goal here is to compare three pressure gages and a sight glass as liquid level detectors, via tank calibration, suitable for field operation at the 1 part in 10^3 level. Included in these measurements is a test for maximum level detection resolution. Additionally, the water density is determined by direct pressure measurement and also calculated based on temperature measurements.

NBS built the sight glass detector and supplied the XR-38 pressure gage. This gage was used in the previous study. The Brookhaven Technical Support Organization (TSO) arranged for two other gages, a Ruska DDR 6000 and a Bell and Howell electro-manometer, model number 4-336-0050, with servo amplifier 11-169.¹

Although we did not require an experiment at the 3 parts in 10⁴ level of accuracy, the XR-38 pressure gage and tank calibration techniques were used as before. Thus, we had a standard of known performance from which to judge the other detectors and the techniques used in conjunction with them.

We used volumetric transfer from a standard test measure accurate to about 3 parts in 10^5 as the means of providing known volume increments for the tank calibration. A gravimetric check was provided in conjunction with the first calibration test merely to verify that the system behaved as expected.

¹ Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material or equipment identified is necessarily the best available for the purpose.

It is noteworthy to stress that the calibration of a processing tank as presented here is a system calibration valid under certain restrictions. These restrictions are discussed in appendix 3.

Hardware

The steel tank was 4 feet in diameter and 14 feet high, but was modified to accommodate three sets of probes. Each set consisted of two bubbler tubes, the orifice separation of which was 20 cm. Support for the probes is furnished by three horizontal braces that span the tank's inner diameter. Over the working range of the tank, these braces cause discontinuities in the rightcircular cylindrical geometry. Placement of the bubbler orifices near the tank's bottom end provides the maximum detection range and minimizes the heel volume of the tank. The tank and heel volumes are, as before, 3000 liters and 200 liters respectively.

A sight glass of 25 mm bore is in direct contact with a measuring tape and is mounted vertically to the tank's exterior wall. At the bottom end, a connection is made between the glass tube and the tank's contents. The upper tube end is in free contact with the atmosphere. The tape itself is three meters in length and has one millimeter graduations. The uniformity and correctness of the graduations has been verified by independent calibration [3].

Dry nitrogen is used for the bubbler gas source and is regulated at one cubic foot per hour regardless of head pressure for both the DDR 6000 and Bell and Howell gages. These two gages both work in much the same manner. The pressure is sensed by a quartz bourdon tube in the DDR 6000 and a metal bellows in the Bell and Howell instrument. In each instrument the elastic sensing element is servoed to a null position. The restoring force is supplied and controlled electronically in each instrument and requires a five and one-half digit $(5\frac{1}{2})$ digital voltmeter (DVM) for output of the pressure signal. One DVM was used for reading both instruments.

The DDR 6000 was factory adjusted and calibrated to read out directly in cm of water at 0 °C with the DVM set on the 10 VDC voltage range. The manufacturer specifies linearity to be 0.002% full scale or better with a pressure range of 10 psiG. The Bell and Howell instrument calibration is 1 volt DC = 1 psi with a range of 5 psi. Early experimentation indicated the voltage outputs for these instruments required integration to produce a steady DVM display. This was provided by an external RC filter network with a one-second time constant.

To simulate field use of these instruments, they were not pressure cycled over the expected working range to minimize hysteresis. Although unproven here, null operation probably eliminates the advantage of an exercise cycle. Other than the modifications specifically mentioned, the tank configuration remains the same as that of reference 1. Shown in figure 1 is the experimental setup used for this study.

Design and Analysis of Eight Calibration Runs

Four criteria largely determined the number of repeated calibrations and their composition: first, TSO desired each calibration to contain at least 17 points per run for testing the proposed ANSI Standard N15.19; second, one calibration run should test the resolution of the various level detectors; third, from a statistical viewpoint, each calibration should not contain nominally identical data points; fourth, the tank should be weighed empty and full in order to demonstrate closure of the gravimetric and volumetric calibration methods.

We made eight calibration measurements, most of which have some volume variation from each other. Table 1 gives the volume increment for each run in the order of occurrence. Our first measurement tested the integrity of the bubbler tubes. This was accomplished by measuring the same liquid level with the XR 38 connected individually to each probe. However, pressure was not measured for every increment of the run which results in fewer calibration points. A gravimetric check of total accumulated volume was done on Run II and was in agreement with the volumetric technique within the uncertainties of the two. Run IV contains many increments ordered in a manner to test detector resolution.

Except for the additional bubbler tube needed for measuring water density and the sight glass observation, data reduction is the same as that of NBS Report 10396. (See the appendices of this report for details concerning data reduction for the sight glass and water density measurement). The calibration results are tabulated for each detector in reduced form (see table 2). Each point is standardized to 20 °C and is adjusted for variations in bubbler depths. That is, the first point, or instrument indication, is subtracted from all others observed with the instrument to provide a common intercept (volume at zero height). Temperature corrections on the sight glass data have been made for runs 6, 7, and 8, but not for runs 1 through 5 because we did not observe sight glass temperature. A calibration line was fitted by the method of least squares to data from each of the four instruments within a run using the following model:

$$h = a + b V + E + e$$

- where V: The volume of water added, corrected for temperature and density, in liters;
 - h: The observed height of the liquid level as indicated by the particular instrument in cm;

FIGURE 1: SIMPLIFIED VIEW OF HARDWARE HOOKUP

Calibration Runs

	#1	#2	#3	#4	#5	#6	#7	#8
1	[50]	50	100	100	50	55	65	30
2	50	100	100	100	50	50	50	50
3	[50]	100	100	100	50	50	50	50
4	50	100	100	1	50	50	50	50
5	[50]	100	100	1	50	50	50	50
6	50	100	100	5	50	50	50	50
7	[50]	100	100	5	50	50	50	50
8	50	100	100	1	50	50	50	50
9	[50]	100	50	1	50	50	50	50
10	50			1/4	50	50	50	50
11	[50]			1/2	50	50	50	50
12	50			3/4	50	50	50	50
13	[50]			1	50	50	50	50
14	[50]			100	50	50	۰50	50
15	[50]			100	50	50	50	50
16	[50]			100	50	50	50	50
17	50			100	50	50	50	50
18				100				
19				100				

Table 1. Shown above are the nominal volume increments for each calibration in order of occurrence. For clarity, the nominal volumes are given in gallons and elsewhere in the text as liters. Brackets indicate the omission of the pressure observation.

RUN 1 SIGHT PROBE 1 ACCUM. DELTA PROBE 1 ACCUM. T PRESSURE HEIGHT HEIGHT PRESSURE HEIGHT WATER ACCUM. DELTA DELTA DEL TA WATER GLASS PRORE ACCUM. TANK DEL TA HEIGHT PRESSURE HEIGHT NO. TEMP. DENSITY MASS VOLUME VOLUME HEIGHT HEIGHT PRESSURE HEIGHT HEIGHT 2 14.245 999.208 378.35 .3786900000* 2435.3 .24897 2488.5 .25441 -00000 2452.0 - 00000 - 25067 14.110 999.227 756.39 .75707 .3763A .75703 .00000 .00000 5706.5 +58337 .33440 5760.5 .58890 .33449 5724.0 .58516 .33449 13.675 999.287 1134.76 1.13573 9028.6 .66853 .91901 6 .00000 .00000 .91714 .66817 .92293 A000.3 66835 1.13569 +00000 .00000 12247.1 1.25185 1.00289 12300.9 1.25735 1.00294 12254.5 1.00296 8 13,125 999,360 1513,19 1,51438 1.25363 999.405 1891.43 1.89285 1.51415 .00000 .00000 15517.9 18797.9 1.58610 15572.1 1.59165 1.33724 15533.2 12.766 1.33714 1.58767 1.33700 10 12.527 999.434 2269.78 2.27144 1.89274 .00000 .00000 1,92131 1.67234 19853.2 1.92695 1.67254 1AA15.6 1.92311 1.67244 12 12.089 999.486 3215.55 3.21775 2.83906 2.50662 26999.5 2.75942 2.50501 26079.8 2.75741 2.50674 .00000 +00000 26962.0 2.75559 17 RUN 2 PROBE 1 PROBE 2 PROBE 3 +08065 780.6 13.466 999.315 189.12 1892A +00000 .24600 .00000 788.9 +00000 .07979 .00000 889.9 -09097 .00000 .33530 12.532 999.434 . 56797 .33531 .58200 +41510 74858 567.56 .37870 .33600 4073.8 -41638 .33573 4061.3 4171.0 .42631 3 12.162 999.477 945+85 .94650 .75723 .67100 7337.5 .74993 . 66902 .66928 7324.4 . 66879 7436.0 .75999 10613.5 12.119 999.482 1324.44 1.32535 1.13607 1.25200 1.00600 1.08474 1.00409 10596.3 1.0A29A .00319 10718.2 1.09544 00447 1.41777 13995.2 1,51500 1+43135 1.33934 069 999.488 1703.12 1.70428 1.58700 1.34100 13890.9 1.41969 1.33914 13872.1 .33798 11.981 999.496 2081.34 2.04274 1.89347 1.92270 1.67670 17167.6 17150.4 1.75281 1.75456 1.67392 1.67301 17261.7 1.76418 1.6732 6 11.827 999.516 2459.41 2.46103 2.27176 2:25800 2:01200 20433.2 2.08828 2.00763 20422.3 2.08716 2.00737 20540.5 2.09924 2.00827 23699.3 2.42195 2.34131 23681.0 2.42019 2.34040 24811.7 2.43355 2.34258 26971.2 2.75642 2.67578 26952.9 2.75455 2.67476 27083.1 2.76786 2.67689 11.797 999.519 2637.87 2.83974 2.65046 2.59200 2.34600 8 11.726 999.527 3216.18 3.21828 3.02900 2.92700 2.68100 9 RUN 3 2434.7 .24750 .01000 1 11.948 999.502 378.30 .37855 .41520 .00000 .24883 .00000 2421.7 .00000 2530.9 .25866 .00000 5705.6 11.408 999.561 756.26 .75673 .37817 .74900 .33380 .58308 .33425 5689.7 +58146 .33396 5800.2 .59276 .33409 2 .66791 11.113 999.592 1134.51 1.13519 +75664 1+08350 . 46830 .91674 8953.2 .91495 .66745 9066.1 . 92649 .66782 1.25193 12250.9 12233.0 1.25010 12348.5 1.26190 10,968 999,607 1512,88 1.51377 1.13522 1.41920 1.00400 1.00309 1.00260 1.00324 15524.1 15494.1 1.58335 1.59587 10.953 999.609 1891.30 1.89241 1.51386 1.75360 1.33840 58642 1.33758 1.33585 5616.6 1.3372 18801.2 1,93237 1.67371 11.012 999.603 2269.52 2.27086 1.89231 2.08920 1.67400 18801.2 1.92131 1.67248 18781.2 22063.2 2.25467 2.00583 22044.8 1,91927 1.67177 18909.4 11.075 099.596 2647.76 2.64934 2.27078 2.42400 2.00A80 11.033 099.601 3026.03 3.02782 2.64927 2.75800 2.34280 2.26547 2.00581 2.25279 2.00529 22168.9 25326.8 2.58817 2.33934 25306.9 2.58613 2.33863 25433.4 2.59906 2.34040 8 11.046 999.599 3215.21 3.21712 2.83857 2.92600 2.51080 26966.9 2.75578 2.50694 25949.0 2.75394 2.50644 27076.6 2.76698 2.50832 q RUN 4 1 11.308 999.572 378.25 2 11.170 999.586 756.38 +37548 .00000 .41370 .00000 2433.1 .24865 .00000 2418.7 .24718 .00000 2487.3 .25419 .00000 .33454 .75683 .37836 .75689 .74920 .33550 5706.1 .58312 .33447 5689.2 .58139 .33421 5760.9 .58872 8972.2 .66770 902A.3 10.895 999.614 1134.71 1.13537 1.08350 .669A0 .66822 A952.8 .91448 .91687 .92260 .66842 3 8989.0 . 67205 10.958 999.608 1138.49 1.13916 .76068 1.08670 .67300 9006.2 92035 +67170 91859 .67141 9063.8 .92624 . 67477 1.14294 .76447 9040.1 92195 .67498 10.984 999.606 1142.27 1:09030 .67650 ,92381 .67517 9021.9 9092.5 .92916 .78339 .94037 9184.7 93859 .69141 9261.6 .69226 9202.0 .69172 .94645 999.599 1161.17 1.16186 1.10680 .69310 6 11.044 999.594 1180.08 1.18078 1.12400 .71030 9367.4 95727 .70863 9348.4 95533 .70A15 9428.2 .96349 70930 11.098 .80231 11.122 999.591 1183.86 1.18457 11.160 999.588 1187.64 1.18836 +80609 1+12730 .71360 9401.3 .96074 .71209 9380.8 .95864 .71146 9460.1 .96675 ,71256 .71599 . 80988 1.13070 .71487 9493.6 0434.5 .96414 .71549 9414.1 .96205 .97017 .82880 .73167 9655.4 .98672 11.235 999.580 1206.54 1.20728 1+14730 .73360 9593.8 98042 .73177 9578.4 97885 73253 11.249 999.578 1207.59 1.20823 .82975 1.14850 .73480 9602.0 .98126 .73251 9782.4 94969 .75251 9666.3 . 98783 . 73364 11 11.271 999.576 1209.38 1.21012 .83164 1.14990 9602.4 .98131 .73413 9682.8 .98952 .73534 .73620 9618.2 .98292 .73428 12 .8344A .99210 .73791 999.574 9643.0 98371 .73653 9708.0 11.292 1212.21 1.21296 1.15230 .73860 98546 73681 9626.0 9739.7 11.332 999.570 1216.00 1.21675 11.476 999.554 1594.04 1.59504 .98693 14 .83827 1.15540 .74170 9676.4 .98887 .74023 9657.3 .73974 .99536 .74116 1.07680 1.32309 1.07444 12926.3 1.21656 1.49050 12946.6 1.32101 1.07383 13004.9 1.32904 1.07486 15 1.40778 40 AQ1 11.894 1.97376 16218.3 16193.3 65496 16 999.508 1972.44 1.59528 1.82440 1.41070 1+65752 1.40887 15258.0 1.65260 1.74402 19478.5 1.99066 1.74348 19561.5 1.99914 2.07716 22739.6 2.32389 2.07671 22823.7 2.33249 1.74496 11.696 999.530 2350.83 2.35236 1.97388 2.16080 11.511 999.550 2729.11 2.73084 2.35236 2.49500 1.74710 19498.1 1.99267 17 2.08130 22758.3 2.32581 2.07831 18 19 11.364 999.566 3109.58 3.11151 2.73303 2.63200 2.41830 26048.3 2.66199 2.41335 26031.1 2.66023 2.41305 26114.6 2.66877 2.41458 RUN 5 .00000 .08096 .00000 .08722 1 12.219 099.471 189.19 .18932 +00000 .24620 792.2 .00000 805.6 .08234 853.4 .00000 378.35 11.841 999.514 .37860 18927 .16790 2432.9 .25016 .16782 2493.8 .16765 -41410 .24865 .16759 2447.7 +25487 2 11.696 999.530 .56781 .37849 .58230 33610 .41641 .33545 4086.8 .33534 4134.1 .42250 .33528 11.374 999.565 5717.6 . 58799 756.64 .75711 56779 74950 .50330 5707.6 . 58329 .50233 58432 .50198 5753.5 50076 11.102 999.594 .75714 .75101 7391.2 .66811 945.90 .94646 .67030 7338.5 .74995 7348.9 .66867 +75533 5 +91650 .66A98 .94646 .83780 999.613 1135.12 1.13578 1.08400 8975.0 .91716 .83620 A977.3 .91740 +83506 9029.7 .92276 10.909 10.793 999.625 1324.24 1.32500 1.13567 1.25140 1.00520 10511.6 1.08440 1.00343 10619.4 1.08519 1.00286 10668.1 1.09017 1.00295 10.691 999.635 1513.33 1.51418 1.32486 1.41900 12257.0 1.25253 1.17020 1,25773 1.17280 12248.5 1.25166 1.17070 12307.8 1.17050 8 33746 1.70352 1.51420 13886.7 1.33809 3890.3 1.41943 999.641 1702.57 1:58650 1:34030 1,41906 1.33709 13941.7 10.621 1. 1. 10.691 999.635 1891.82 1.89290 1.70357 1.75400 1.50780 10.808 999.623 2080.97 2.08217 1.89285 1.92250 1.67630 15522.7 1.58625 1.50528 15524.0 1.58638 1.50405 17163.9 1.75397 1.67301 17166.1 1.75420 1.67187 15574.9 1.59158 1.50436 17163.9 1.75397 17224.5 1.67295 1.76017 18800.7 1.92123 1.84027 18805.2 1.92169 1.83936 18862.7 20430.8 2.08779 2.00682 20436.5 2.08838 2.00604 20499.0 10.746 999.629 2270.13 1.84370 92756 2.27143 2.08211 2.08990 89.039 13 10.665 999.637 2459.20 2.46059 2.27127 2.25720 2.01100 2.09476 2.00753 10.612 999.642 2648.29 2.64977 2.46045 2.42430 2.17810 22061.2 2.25439 2.17342 22067.8 2.25506 2.17273 22128.9 2.26130 2.17408 10.588 999.645 2837.47 2.83905 2.64973 2.59170 2.34550 2.42130 2.34033 23701.6 2.42200 2.33967 15 23694.7 23762.6 2.42824 2.34102 10.567 999.647 3026.60 3.02829 2.83896 2.75850 2.51230 25326.5 2.58804 2.50708 25332.9 2.58869 2.50636 25395.5 2.59509 2.50787 10.542 999.649 3215.86 3.21764 3.02832 2.92640 2.68020 26966.9 2.75566 2.67469 26974.0 2.75638 2.67405 27037.1 2.76284 2.67461 16

KE.	T: Probe 1 XR 38	08112:	lemperature	degrees telsiu
	Probe 2 DDR 6000		Density	kg/m ³
	Probe 3 B&H Electromanometer		Volume	(meters) ³
			Height	meters
Th	e abbreviation TR stands for volume transfer		Pressure	pascals
	No sight glass observations made during Run 1		Md55	кg
**	Temperature corrections applied to sight glass for	Runs 6,	7, and 8 (s	ee text).

Table 2: Data shown are collected from each of the eight calibration runs on which the reported analysis is based. Table continued on next page.

								-	and .	-	-	-	quel.	N	N	2	RJ	N
	ACCUM. HEIGHT	.10335	.27103	.43863	•60532	.771 93	.93912	1.10621	1.27330	1.44050	1.60770	1.77530	1.94338	2.11015	2.27702	2.44388	2.61062	2.77845
	PPOBE 3 PRESSURE	1011.5	2652.4	4292.5	5923.6	7554.1	9190.2	10825 . 5	12460.6	14096.8	15733.1	17373.4	19018.2	20650.1	22283.2	23916.2	25548.0	27190.5
	DELTA HEIGHT	• 00000	.16759	.33515	.50180	.66810	.83544	1.00294	1.17003	1.33707	1.50372	1.67165	1.83901	2.00571	2.17260	2.33934	2.50597	2.67365
	ACCUM. HEIGHT	01660.	•26669	.43425	.60090	.76720	. 93455	1.10204	1.26913	1.43618	1.60282	1.77075	1.93811	2.10491	2.27170	2.43844	2.60507	2.77275
	PROBE 2 PRESSURE	969°9	2610.0	4249.6	5880.4	7507.8	9145.4	10784.6	12419.8	14054.5	15685.3	17328.9	1 A966.6	20597.9	22231.1	23862.9	25493.7	27134.8
	DELTA HFIGHT	00000	.16737	.33479	.50138	.66818	.83573	1.00301	1.17004	1.33702	1.50398	1.67180	1.83945	2.00644	2.17294	2.33938	2.50594	2.67370
	ACCUM. HFIGHT	.09806	.26542	.43284	.59943	°76624	.93378	1.10106	1.26810	1.43507	1.60204	1.76986	1.93750	2.10450	2.27100	2.43744	2.60399	2.77176
	PROBE 1 PRESSURF	959.6	2597.5	4235.9	5866.0	7498.4	9138.0	10775.1	12409.7	14043.7	15677.7	17320.2	18960.7	20594.8	22224.2	23853.1	25483.2	27125.0
	DELTA HETGHT		16532	.33450	.50106	.66792	.73505	1.00194	1.16881	1.33601	1.50284	1.67072	1.83834	2.00521	2.17147	2.33860	2.50600	2.67269
	SIGHT GLASS HFTGHT	.06450#V	0000	.59900	.76556	.93232	.99955	1.26644	1.43331	1.60051	1.76734	1.93522	2.102P4	2.26971	2.43597	2.60310	2.77050	2.93719
	DELTA	10000	14935	.37861	.56779	.7569R	.94622	1.13543	1.32463	1.51393	1.70326	1.89250	2.08183	2.27109	2.46035	2.64968	2.83897	3.02827
	ACCUM.	20806	. 30741	58667	.77584	.96504	1.15428	1.34349	1.53269	1.72199	1.91132	2.10055	2.28988	2.47914	2.66840	2.85773	3.04703	3.23633
	WATER	207.95	307.10	586.34	775.40	964.49	1153.62	1342.73	1531.82	1721.02	1910.25	2099.38	2288.60	2477.75	2666.90	2856.13	3045.33	3234 • 54
	WATER	2000 688	500 . 673	909.648	999.629	999.629	999.631	999.636	999.638	999.639	049.640	746.647	549.643	999.638	999.638	549.643	749.647	999°651
N 6	TANK	10,155	10.084	10.549	10.745	10.746	10.732	10.680	10.657	10.645	10.631	10.560	10.607	10.658	10.656	10.605	10.563	10.519
RU	A P	2	10	d PC) ą	5	0	-	00	0	10	11	14	10	14	15	16	17

.00000 16768 .16768 .50197 .66857 .88576 .88576 .88576 1.00880 1.16994 1.16994 1.50435 2.00680 2.17367 2.17367 2.50727 2.50727 2.50727 2.67509

DFLTA HEIGHT

RUN 7

•00000	.16712	。335A9	•5n173	•66 ^R 54	.83570	1.00310	1.17027	1.33723	1.50417	1.67222	1.83984	2.00665	2.17330	2.34010	2.50777	
.13688	.30400	.47197	.63861	.80542	.97258	1.13998	1.30715	1.474.1	1.64105	1.80909	1.97672	2.14353	2.31018	2.47698	2.64465	
1339.3	2974.6	461A.1	6248.7	7881.1	9516.8	11155.0	12791.0	14424.9	1605A.6	17703.2	19343.6	20976.1	22607.0	24239.4	25880.3	
•00000	.16722	.33519	.50155	.66835	• 83540	1.00255	1.16985	1.33679	1.50348	1.67172	1.83917	2.00590	2.17264	2.33958	2.50691	
.13254	.29976	.46773	.634ng	.80089	.96795	1.13510	1.30239	1.46934	1.63603	1.80427	1.97171	2.13845	2.30519	2.47212	2.63946	
1296.9	2933.1	4576.6	6204.5	7836.8	9471.5	11107.2	12744.4	14378.1	16009.4	17655.9	19294.6	20926.4	22558.2	24191.9	25829.6	
• 00000	.16703	.33459	.50126	.66834	.83580	1.00318	1.17007	1.33709	1.50395	1.67194	1.83966	2.00631	2.17299	2.33950	2.50678	
1315 3	.29856	.46611	.63278	.79987	.96733	1.13471	1.30159	1.46861	1.63547	1.80347	1.97119	2.13784	2.30452	2.47102	2.63830	
1286.9	2921.3	4560.8	6191.7	7826.7	9465.5	11103.4	12736.6	14371.1	16004.0	17648.1	19289.4	20920.4	22551.6	24181.1	25818.3	
• 00000	.16733	.33552	.50150	.66861	•83564	1.00244	1.16950	1.33672	1.50463	1.67149	1.83892	2.00570	2.17210	2.33997	2+50654	
.29720	.46453	.63272	.79870	• 965A1	1.13284	1.29964	1.46670	1.63392	1.80183	1.96869	2.13612	2.30290	2.46930	2.63717	2.80374	
• 00000	.18922	.37858	.56788	.75722	.94627	1.13556	1.32476	1.51406	1.70331	1.89267	2.08200	2.27129	2.46058	2.64997	2.83919	
• 24590	.43511	•62447	.81378	1.00311	1.19216	1.38146	1.57066	1.75996	1.94920	2.13857	2.32790	2.51719	2.70647	2.89587	3.08508	
245.73	434.82	624.06	813.24	1002.47	1191.41	1380.60	1569.69	1758.89	1948.03	2137.30	2326.53	2515.72	2704.90	2894.20	3083.32	
064°666	999°505	999.513	999.520	999°537	999.550	999.561	999.572	999.582	999°591	665°666	909.606	999.613	999.619	999,624	999.629	
1 12.056	2 11.920	3 11.853	4 11.788	5 11.632	6 11.516	7 11.409	8 11.305	9 11.214	10 11.129	11 11.044	12 10.977	13 10.910	14 10.853	15 10.799	16 10.748	

RUN 8

CO	32	10	91	27	10	88	15	31	19	81	25	52	29	11	86	57
• 0 0 0	.168	•3355	°202°	•669	•836	1.003	1.171	1.338	1.505	1.672	1.840	2.007	2.174	2.341	2.507	2.675
.01951	.18783	•35460	.52242	.69878	.85594	1.02339	1.19066	1.35782	1.52470	1.69232	1.45976	2.02702	2.19379	2.36062	2.52737	2.69507
190.8	1837.8	3469.6	F111.6	6739.5	8375.2	10013.8	11650.6	13286.4	14919.4	16559.7	1A19Å.2	19835.0	21467.0	2.099.5	24731.3	26372.4
.00000	.16868	.33575	.50352	.67018	.83684	1.00420	1.17145	1.33861	1.50576	1.67331	1.84062	2.00772	2.17437	2.34107	2.50807	2.67562
•01399	.18266	.34973	.51751	.68417	.85092	1.01818	1.19544	1.35259	1.51975	1.68730	1.85460	2.02170	2.18835	2.35505	2.52205	2.69960
136.8	1787.2	3421.9	5063.5	6694 .3	8325 .1	9962.8	11599.5	13235.2	14870.9	16510.5	18147.7	19782.9	21413.7	23045.0	24679.3	26318.9
• 00000	.16860	.33578	.50361	.67015	.83711	1.00442	1.17169	1.33908	1.50627	1.67397	1.84098	2.00799	2.17456	2.34145	2.50819	2.67575
.01308	.18169	• 34886	.51669	•68324	.85019	1.01750	1.18478	1.35217	1.51936	1.68696	1.85407	2.02107	2.18764	2.35453	2.52127	2.68884
0	٢.	a,	9	¢,	0	N	0	-	-	N	10	m	0	σ.	5	÷
128	1777.	3413.	5055.	6685.	R319.	9956.	11593,	13231.	14867.	16507.	18142.	19776.0	21406.	23039.	24671.	26311.
•00000 128.	.16R41 1777	.33551 3413.	.50348 5055.	.66995 6685.	.83694 R319.	1.00435 9956.	1.17159 11593,	1.33845 13231.	1.50522 14867.	1.67261 16507.	1.83948 18142.	•00000 19776.	•00000 21406.	.00000 23039.	2.50720 24671.(2.67431 26311.
.17870 .00000 128.	.34711 .16841 1777.	.51421 .33551 3413.	.68218 .50348 5055.	.84855 .66995 6685.	1.01564 .83694 R319.	1.18305 1.00435 9956.	1.35029 1.17159 11593,	1.51715 1.33845 13231.	1.68392 1.50522 14867.	1.85131 1.67261 16507.	2.01858 1.83948 18142.	•00000 •00000 19776.1	•00000 •00000 21406.	•00000 •00000 23039.º	2.69590 2.50720 24671.0	2.85301 2.67431 26311.
.00000 .17870 .00000 128	.18924 .34711 .16841 1777.	.37846 .51421 .33551 3413.	•56779 •68218 •50348 5055•	.75701 .84855 .66995 6685.	.94640 1.01564 .83694 8319.	1.13565 1.18305 1.00435 9956.	1.32483 1.35029 1.17159 11593,	1.51412 1.51715 1.33845 13231.	1.70339 1.68392 1.50522 14867.	1.89257 1.85131 1.67261 16507.	2.08187 2.01858 1.839A8 18142.	2.27115 .00000 .00000 19776.0	2.46044 .00000 .00000 21406.1	2.64972 .00000 .00000 23039.4	2.83901 2.69590 2.50720 24671.0	3.02829 2.85301 2.67431 26311.
.11355 .00000 .17870 .00000 128	.30279 .18924 .34711 .16841 1777.	.49201 .37846 .51421 .33551 3413.	•68133 •56779 •68218 •50348 5055.	•87056 •75701 •84865 •66995 6685.	1.05995 .94640 1.01564 .83694 8319.	1.24920 1.13565 1.18305 1.00435 9956.	1.43838 1.32483 1.35029 1.17159 11593.	1.62766 1.51412 1.51715 1.33845 13231.	1.81693 1.70339 1.68392 1.50522 14867.	2.00612 1.89257 1.85131 1.67261 16507.	2.19542 2.08187 2.01858 1.83948 18142.	2.38470 2.27115 .00000 .00000 19776.0	2.57399 2.46044 .00000 .00000 21406.1	2.76327 2.64972 .00000 .00000 23039.	2.95256 2.83901 2.69590 2.50720 24671.	3.14184 3.02829 2.85301 2.67431 26311.
113.44 .11355 .00000 .17870 .00000 128	302.58 .30279 .18924 .34711 .16841 1777	491.68 .49201 .37846 .51421 .33551 3413.	680.87 .68133 .56779 .68218 .50348 5055.	869.98 .87056 .75701 .84855 .66995 6685.	1059.26 1.05995 .94640 1.01564 .83694 8319.	1248.40 1.24920 1.13565 1.18305 1.00435 9956.	1437.47 1.43838 1.32483 1.35029 1.17159 11593,	1626.64 1.62766 1.51412 1.51715 1.33845 13231.	1815-80 1.81693 1.70339 1.68392 1.50522 14867.	2004.88 2.00612 1.89257 1.85131 1.67261 16507.	2194.07 2.19542 2.08187 2.01858 1.839A8 18142.	2383.24 2.38470 2.27115 .00000 .00000 19776.1	2572.43 2.57399 2.46044 .00000 .00000 21406.1	2761.60 2.76327 2.64972 .00000 .00000 23039.	2950.78 2.95256 2.83901 2.69590 2.50720 24671.	3139.96 3.14184 3.02829 2.85301 2.67431 26311.
999.169 113.44 .11355 .00000 .17870 .00000 128.	999.479 302.58 .30279 .18924 .34711 .16841 177.	999.495 491.68 .49201 .37846 .51421 .33551 3413.	999.496 680.87 .68133 .56779 .68218 .50348 5055.	999.511 869.98 .87056 .75701 .84865 .66995 6685.	999.530 1059.26 1.05995 .94640 1.01564 .83694 8319.	999.541 1248.40 1.24920 1.13565 1.18305 1.00435 9956.	999.550 1437.47 1.43838 1.32483 1.35029 1.17159 11593.	999.557 1626.64 1.62766 1.51412 1.51715 1.33845 13231.	999.563 1815.80 1.81693 1.70339 1.68392 1.50522 14867.	999.569 2004.88 2.00612 1.89257 1.85131 1.67261 16507.	999.575 2194.07 2.19542 2.08187 2.01858 1.839A8 18142.	999.579 2383.24 2.38470 2.27115 .00000 .00000 19776.1	999.583 2572.43 2.57399 2.46044 .00000 .00000 21406.	999.586 2761.60 2.76327 2.64972 .00000 .00000 23039.	999.590 2950.78 2.95256 2.83901 2.69590 2.50720 24671.	999.594 3139.96 3.14184 3.02829 2.85301 2.67431 26311.
1 14.518 999.169 113.44 .11355 .00000 .17870 .00000 128.	2 12.152 999.479 302.58 .30279 .18924 .34711 .16841 1777.	3 12.006 999.495 491.68 .49201 .37846 .51421 .33551 3413.	4 12.002 999.496 680.87 .68133 .56779 .68218 .50348 5055.	5 11.867 999.511 869.98 .87056 .75701 .84855 .66995 6685.	6 11.696 999.530 1059.26 1.05995 .94640 1.01564 .83694 R319.	7 11.597 999.541 1248.40 1.24920 1.13565 1.18305 1.00435 9956.	8 11.519 999.550 1437.47 1.43838 1.32483 1.35029 1.17159 11593.	9 11.454 999.557 1626.64 1.62766 1.51412 1.51715 1.33845 13231.	0 11.395 999.563 1815.80 1.81693 1.70339 1.68392 1.50522 14867.	1 11.341 999.569 2004.88 2.00612 1.89257 1.85131 1.67261 16507.	2 11.283 999.575 2194.07 2.19542 2.08187 2.01858 1.839A8 18142.	3 11.243 999.579 2383.24 2.38470 2.27115 .00000 .00000 19776.	4 11.202 999.583 2572.43 2.57399 2.46044 .00000 .00000 21406.	5 11.174 999.586 2761.60 2.76327 2.64972 .00000 .00000 23039.	6 11.135 999.590 2950.78 2.95256 2.83901 2.69590 2.50720 24671.0	7 11.095 999.594 3139.96 3.14184 3.02829 2.85301 2.67431 26311.

a 1

Table 2 (Continued)

	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8
Slopes (cm/liter)								
Sight Glass	.088469 (35)	.088492 (18)	.088484 (17)	.088464 (13)	.088493 (12)	.088294** (16)	.088282** (12)	.088261* (12)
XR-38	.088300 (28)	.088311 (18)	.088312 (25)	.088310 (11)	.088303 (13)	.088292 (15)	.088309 (15)	.088311 (15)
Ruska DDR 6000	.088235 (46)	.088258 (59)	.088303 (27)	.088304 (11)	.088280 (13)	.088278 (12)	.088292 (13)	.088301 (11)
B & H Electromanometer	.088297 (28)	.088368 (15)	.088380 (33)	.088340 (18)	.088361 (17)	.088326 (12)	.088325 (13)	.088318 (11)
Intercepts (cm)								
Sight Glass	008 (57)	.085 (35)	081 (32)	.040 (16)	.059 (22)	047 (25)	.035 (21)	.187 (21)
XR-38	.014 (46)	.106 (34)	.037 (48)	.004 (13)	.085 (23)	.047 (28)	.008 (26)	.177 (25)
Ruska DDR 6000	.086 (22)	.175 (112)	012 (50)	030 (14)	.055 (23)	.061 (22)	.019 (22)	.167 (20)
B & H Electromanometer	.034 (45)	.039 (28)	024 (63)	.031 (23)	018 (32)	.042 (23)	.014 (22)	.102 (19)
Residuals S.D.*								
Sight Glass	.069	.045	.041	.035	.042	.048	· .031	.038
XR-38	.055	.043	.061	.028	.044	.054	.048	.047
Ruska DDR 6000	.091	.144	.063	.030	.045	.042	.041	.036
B & H Electromanometer	.054	.036	.079	.048	.061	.043	.040	.035
Standard Deviation of a Predicted Point (Maximum)								
Sight Glass	.057	.029	.027	.023	.020	.027	.019	.019
XR-38	.045	.028	.040	.019	.021	.026	.024	.028
Ruska DDR 6000	.075	.093	.041	.020	.021	.020	.020	.022
B & H Electromanometer	.045	.024	.052	.032	.029	.021	.020	.021
Number of Calibration Points	7	9	9	19	17	17	16	17

* Includes both tank configuration and measurement error

** Sight glass levels corrected for temperature

Table 3: Summary of slopes, intercepts and residual standard deviations for all eight runs. (Figures in parentheses are standard errors of values immediately above.)

- a: Intercept of the calibration line;
- b: Slope of the calibration line;
- E: Deviations from calibration line due to tank configuration;
- e: Deviation due to measurement error.

The results are summarized in table 3 for the eight runs. Run 1, however, cannot be considered as a regular test since the XR - 38 was used for all probes. The residual standard deviation thus obtained include contributions from both E, the tank configuration errors, and e, the measurement error associated with the instrument. The decomposition and estimation of the error term will be discussed later. It will suffice to note here that the tank configuration error should remain constant at a given level of liquid whereas measurement errors may be assumed to be random.

The values of the slope of the calibration lines obtained from the sight glass during the first five tests are higher than the other three instruments by about .0002, indicating the presence of a systematic effect. This was traced to the difference in temperatures, and hence density, of the water inside the tank and in the sight glass (see next section and appendix 1 for detailed analysis). Corrections of this temperature difference were possible for runs 6, 7, and 8 where the temperature of the water in the sight glass was measured. The slopes of these three runs agree well with the other three instruments after making appropriate temperature corrections.

We observe from table 3 the following:

- 1. For runs 2 through 8, the Bell and Howell Electromanometer gave consistently higher slopes than the XR-38, the DDR 6000, and the sight glass after temperature correction.
- 2. The intercepts for run 8 are higher than those of the other runs.
- 3. The residual standard deviations are of about the same magnitude. The large value for the Ruska DDR 6000 for run 2 may be traced to a possible transposition of a reading in the last two digits. This "standard deviation" however includes a component due to the deviation of the tank from the model geometry.

In fitting the response of an individual instrument's calibration lines for a run, the plot of each set of residuals suggested that there is a definite "profile" of the tank which is common to all four instruments. It would be desirable to plot such a profile using more than one run to sketch the tank configuration in detail. Runs 5, 6, 7 and 8 were chosen for this purpose.

To align the four runs to the same starting point, the initial volume increments, varying from 113 liters for run 8 to 245 liters for run 7, were multiplied by the respective calibration line slopes obtained for each instrument. This resulted in liquid levels which could be added to the accumulated heights for each instrument in a run such that all four runs were referred to a common starting point. A total of sixty-two points was used from the four runs Table 4 gives the volume in liters in column 1, residuals from the calibration line for each instrument in columns 2, 3, 4, and 5, and the averages of residuals from the four instruments against tank volume in liters, and figure 3 is a plot of the averages of the residuals against tank volume.

From these two figures, it is evident that the spread of the points at a given volume is a measure of the measurement errors of the instruments; whereas the deviations of the averages of these points from the fitted line is a measure of constancy of the tank diameter from bottom to top, i.e., a profile of the tank. The two peaks correspond to the lower two of the three braces supporting the probes, the third one is at the top of the tank and is outside the range shown in the figure. The systematic error in using the calibration lines for the estimation of volume from instrument readings is less than 1 liter.

Since each deviation (E) of the tank configuration is systematic in nature, the measurement error standard deviation, σ_e , can be estimated from the residual standard deviations. Denoting by δ the differences between the residuals of an instrument from the average of all four instruments, e.g., (column 1 - column 6 of table 4), then:

$$\delta = e_1 - \frac{e_1 + e_2 + e_3 + e_4}{4}$$

- 11 -

	SIGHT				AVERAGED
VOLUME	GLASS	XR 38	DDR 6000	B & H	RESIDUALS
302.77206	319762537	130451232	0UR4827087	015226619	010867465
378.56600	018942847	128432959	015535164	063549553	• 0079272275
397.36200	055270519	725343254	016881560	0035515352	023485949
435.07300	0068540543	317524946	0064380068	016355022	011793007
492.00200	024243108	721380597	017365375	-•017375452	020016133
567.77599	.057305119	.533817504	.062004662	.10479072	.064479502
586.48199	0002326396	·F168/U362	038035875	• 059416573	.044162301
624.43299	•U8863/8/1	0/12267689	044490000	• 0 5 8 5 0 5 2 7 8	.060484978
757.07599	025590873	.7081233357	020531537	071919041	0044183239
775.66199	.0096138337	26213204	.0076569868	• 019982187	.0027599508
813.73299	030563390	036649811	0092035852	0013375451	019438310
877.54199	010277602	0694013753	0078091267	029644918	010378692
946.43099	333993490	042428575	-•025797647	073490894	043177652
964.85199	013981535	050180146	063606507	030336598	039526196
1003.0730	033300876	047091796	036469738	044713065	040393868
1059.9420	039792074	245043671	···056083223	047262228	04/045299
1135.7490	934301820		098860496	-+051/92290	05616/001
1154-0920	- 011999379		- 039280423	- 025071020	02122/910
117201231	= • U 2 13 9 6 I 4 7	*30407K9177	028130235	- • UZZ472885	015/31062
1249.18?0	+0048440325	026554105	025849097	010747914	014576518
1324.9640	∞ • 038496143	127903590	-•022829707	030993283	030055681
1343.3320	∞ • 017365274	.115735534	•0076912631	027155276	0052809382
1381.4130	048713292	.032041829	020983124	-+0014328423	0097718351
1438+3620	• J24/85969		- • UUUJJI4/6U/9	•01106/449	+0081927805
1517+1533	020370779	- 10856365	•0057750025	038358073	0041481470
1570.6130	039071884	.313959890	.0041136051	0075571298	0033605650
1627-6520	0049984066	+C21304400	0044958628	+0031643123	.0062428141
1703.4920	025557410	.317063968	019421897	028054409	013992437
1721.8020	015169855	7028238579	014571321	038392917	010453827
1759.9130	028273775	0029535744	019622470	-•022284886	018283676
1816.9220	023020522	+027142178	0030913477	-•022972712	0039399271
1892.8650	033733995	+014921354	047340162	071218166	034342742
1911+1320	041149575	019151089	039050233	041077683	035107145
1949.1630	056945958	735450456	058941895	037711766	018789540
2006-1020	+016922154	.180929757	.048625392	028841691	.043829748
2082.1376	.367029317	.0716998/9	.03365//89	• 054545704	.056/3309/
2138.5230	·040832505 ·032439473	• 042338708	• 0 4 2 0 2 7 2 5 9	.037149055	.038488624
2195+4020	.046253207	. 174119694	. 363563590	.060058115	.060998651
2271.3970	.058851387	.089535177	075714152	071367349	.073867016
2289.7020	094854432	.10614120	071655407	091507825	.091039716
2327.8530	070584951	.10277638	075643276	074656484	.080915273
2460.5560	049612025	• * 36289827	036687389	077115600	049926210
2478.9620	075367237	· C85993398	034212738	055004149	.062569380
2517+1433	. 352268566	• 046748014	.032/93493	04569/72/	.0443/6950
25/309/20	017902054	•"U31510639 - 0093403099	016088838	020475997	+UI/986542
20470/4/0	0047313300		+0052767305	024502409	.014598444
200102220		+ / OFFIC 21 + +	0110/00017	020302007	010370041
2706.4230	025162718	·1016013598	0091749721	012376262	011276148
2/63.2520	JZ1335028	721897545	027207611	-+011878108	020578323
2839.0216	·0081263121		0043424116	= • UI 4381117	010944409
205/055/J 2805.0330	019699156	074141007	- • UZ60512/2	=+041051510	023053105
207300230	- 003206853	- (/7022200	-+031/36/90	001051517	- 047534242
3028,2530	057549244	- + P 6 2 8 7 2 5 6 5	-+0-139810984		051334440
3046.8420	= 973138111	= 10327904	- 066941547	= 053330541	- 074172318
3085.0430	0053341471	053991228	0084090304	0038300182	017891106
3141.8220	010025177	022867328	0046885158	0032009305	0085950226
3217.6120	024511465	923780970	0035034254	0070111942	012950051
3236.1520	017352360	037842021	0087965659	0057510412	014559976

Table 4: Above are the volume increments and residuals from the fitted calibration line for the combined runs 5 - 8. Data has been adjusted to have the same zero. The volume is given in liters and the residuals in centimeters.

*

-14-

where the subscripts refer to the instruments. The tank configuration error, E, cancels out since it is the same for both individual instrument readings and the average of four readings. Hence, the variance of δ :

 $Var(\delta) = 9/16 Var(e_1) + (1/16 Var(e_2) + 1/16 Var(e_3) + 1/16 Var(e_1)$

Table 5 lists the residual standard deviation, the standard deviation corresponding to measurement errors.

Table 5

	Sight Glass	XR-38	DDR 6000	Bell & Howell
	(Cm)	(Ciii)	(CIII)	(Cm)
Residual Std. Dev.	.0405	.0448	.0386	.0431
σ _e	.0208	.0203	.0181	.0218

The pooled value of $\hat{\sigma}_e$ is 0.0204 centimeters. Judging from the small spread of the four values of estimated $\hat{\sigma}_e$, the assumption of equal precision of the four instruments seems to be justified. Therefore, for a 17-point calibration of this tank, the uncertainty of a point on the calibration line can be expected to be less than the sum of the bounds to systematic error due to tank configuration and the maximum width of the 95 percent confidence band about the calibration line, or equal to 0.091 + 0.027 = 0.118 \approx 0.12, equivalently 1.4 liters.

In using the calibration line corresponding to an instrument reading, an additional error of 3 standard deviations of measurement error, or equivalently 0.7 liter, should be added giving a total uncertainty of 2 liters for a tank volume of about 3000 liters.

Summary and Conclusions

The results of this study demonstrate clearly that the uncertainty of the calibration of the volume-height relationship of a tank depends both on the calibration techniques and on the actual tank geometry. The basis for description of a tank should be a simple geometrical one which adequately accounts for the tank's gross characteristics, e.g., straight-walled vessels of appropriate cross section. With the precision available in calibration techniques and liquid level measuring instruments, the actual contours of a tank may be represented as the departure of actual tank geometry from that of the model. The conditions necessary for detection of such departures are the following:

- 1. The uncertainty in the volumetric increments used in the calibration should be considerably smaller than departure of the actual tank geometry from that of the model.
- 2. The level detection apparatus should have sufficient precision to detect departure from the model geometry.
- 3. Temperature measurement should be of sufficient accuracy and precision to contribute zero variability to the calibration process.

Under these circumstances, two, at the most three, properly designed calibration passes should suffice to generate sufficient information to characterize actual tank deviations from that of the geometric model. This study has met these criteria in that the uncertainty associated with volumetric increment addition and temperature measurement are an order of magnitude below that of the level detection instruments.

Based on the knowledge of the actual geometry, relative to a particular set of operating limits, it may be expedient to accept a linear calibration curve, that is, to assume that the tank is sufficiently well characterized by the geometric model. The consequence of such a decision is to take the maximum deviation of the actual tank geometry from the model geometry as the systematic error associated with the operation of the tank. However, should the limits of variability for tank operation be reduced, the information necessary to construct a more descriptive tank calibration curve is available with little additional effort. Such a calibration is limited only by the random component of variability, assuming that the systematic component has been minimized. The use of the corrections for departure of actual from model geometry in this case reduces the measurement uncertainty of the tank to 1.4 liters. It would be remiss not to point out a mechanism for circumvention of the intent of safeguards and accountability practices. The knowledge of the magnitude and sign of actual tank deviations from the model allows the possibility for the measured volumes to be systematically incorrect. Although the uncertainty associated with a particular tank load may be within accountability limits, the accumulated uncertainty associated with the total amount of fluid processed in this manner could quickly become unacceptably large, exceeding accountability limits. Rectification of this problem is two-fold: either construct tanks whose geometry closely fits a simple geometric model or use the actual tank profile as measured by the calibration process. This calibration concept is most critical when the tank in question is the accountability tank or tanks for nuclear fuel reprocessing plants.

This exercise has clearly demonstrated the physical reality of the need for temperature correction when a manometer is operated over a region of thermal gradients. In this case, water was the manometer fluid, a fluid having a relatively small thermal expansion coefficient. In the case of manometer oils, the thermal expansion coefficients are at least twice as large and may be three to four times that of water for hydrocarbon fluids of density 0.7 to 0.8 q/cm^3 . Not only does this effect influence calibration operations but also normal operation of the tank. One would expect additional complication caused by changing seasons at a plant site which could induce sizeable changes in the temperature gradient between sections of the manometer. Sight glass operation which disregards the existence of temperature gradients may contribute significant error to calibration Problems of this nature are not encounand normal operation. tered with electromanometers.

Although water has been used as the calibration fluid in this work, any fluid of known density and thermal expansion properties could be used. Given the commercial availability of apparatus to measure these parameters rapidly and with sufficient accuracy, the use of fluids more suitable to a particular process would seem to pose no great difficulty.

Acknowledgments

The authors wish to express their gratitude to Leon Carroll for his help with computer programming and data table preparation and to Mrs. Gertrude Tesler for her help in the preparation of this manuscript. The interest and assistance of S.C. Suda, Brookhaven Technical Support Organization, and P.E. Pontius, Chief of the Mass and Volume Section are greatly appreciated.

References

- [1] Schoonover, R.M. and Houser, J.H., Pressure Type Liquid Level Gages, Nat. Bu. Stand. (U.S.) NBS Report 10396.
- [2] Schoonover, R.M., The Equivalence of Gravimetric and Volumetric Test Measure Calibration, Nat. Bur. Stand. (U.S.), NBSIR 74-451 (1974).
- [3] Carroll, C.L., Field Comparisons of Steel Surveyors' Tapes, Nat. Bur. Stand. (U.S.) NBSIR 74-451 (1974).
- [4] Lembeck, J., The Calibration of Small Volumetric Laboratory Glassware, Nat. Bur. Stand. (U.S.), NBSIR 74-461 (1975).
- [5] Wagenbreth and Blanke, PTB Mitteilungen (1971).

Appendix 1

Sight Glass Analysis

In practice, the sight glass is used in conjunction with the length unit by which the enclosed liquid level of a vessel can be determined. The liquid surface is visible through the tube wall and the level is compared with the attached length scale. The visible liquid surface approximates that of the enclosed surface. When the liquid level is changed, the difference in level is the difference between two scale readings.

Usually there is a reference level assignment that may coincide with an empty tank and an arbitrary head volume. Liquid level is usually expressed as the height above the reference level.

We assume the length scale is correct and without significant angular displacement from a vertical attitude. Also, capillary depression and meniscus uniformity are nearly constant over the sight glass range.

The sight glass can be considered as a manometer with a different fluid density in each leg due to nonisothermal conditions in the legs (see fig. 4). At equilibrium, the pressure of each leg must be the same. Therefore, we can write the following equation:

$$P_2 = P_1$$

where P_2 is the pressure in the sight glass leg and P_1 is the pressure in the vessel at level H_1

These pressures can be expressed in terms of liquid density, height, and local acceleration of gravity as follows:

$$\rho_2 g H_2 = \rho_1 g H_1$$

where p_2 = liquid density in sight glass

p, = liquid density in vessel

H_ = meniscus height in sight glass

H, = liquid height in vessel

g = local acceleration of gravity

FIGURE 4: SIGHT GLASS TUBE AND SCALE ARRANGEMENT

Solving for liquid level of interest, H_1 , of the vessel in terms of the observed sight glass height, H_2 , we have

$$H_1 = \frac{\rho_2 H_2}{\rho_1}$$

Obviously the user of the sight glass method for determining liquid level in a vessel must know the density ratio ρ_2/ρ_1 or force the term to unity $(P_1=P_2)$ by an appropriate technique as discussed below.

If there is a heel volume to the vessel, then there is a corresponding height, H_k , that is, a constant level below which the contents are not observable and the manometer effect is still present. Then H_k must be estimated by some means and added as a constant to observations of H_1 and H_2 for the adjustment of temperature effects and hence density differences.

Sight Glass Observation

Sight glass observations [4] of liquid level are made by estimating the intersection of a horizontal plane and the length scale. The plane is tangent to the bottom of the meniscus formed at the air-liquid interface inside the tube.

Sight Glass Experiment

At first glance the sight glass appears to indicate liquid level in a tank without second order effects if properly constructed. In comparing all of the fitted slope values for the various instruments, calibrations 1 - 5 show that the sight glass slopes are systematically larger than the others. This systematic difference is about 2 parts in 10^3 , a very significant error for this case.

In our experiment, as in plant operations, the processing tank may contain liquids at temperatures considerably different from the surrounding ambient conditions. When the sight glass and contained liquid are not at tank temperature, an error exists between the sight glass indicated level and the true liquid level inside the tank.

In runs 6 - 8, water temperature was measured by an immersed thermometer inside the sight tube. This experiment indicated the water in the sight glass was about 12 °C warmer than that in the tank. The sight glass data were then corrected for this error by the method based on water temperature measurements. After

adjustment, all calibration slopes for runs 6 - 8 agree closely. This verifies that our sight glass data adjustment is appropriate. However, if the tank contained a liquid of unknown thermal expansion, another solution which we investigated was successful and is described below. After the last incremental volume transfer and all pertinent observations were obtained for runs 6 - 8, the sight glass was pressurized. The pressure used exceeded the tank head pressure, thereby forcing the liquid back inside the tank. When the pressure was removed, the liquid returned to the sight glass. Eight to ten such pressure cycles brought the sight glass and its scale much closer to the tank temperature as indicated by thermometry. At this time, the sight glass was observed again. A large change in the sight glass level was seen as shown below.

Sight Glass Observation

		Before Pressure Cycle	After Pressure Cycle	Tank Temp
Run	6	294.22 cm @ 21.60 °C	293.75 cm @ 12.70 °C	10.52 °C
Run	7	280.80 cm @ 20.85 °C	280.42 cm @ 12.38 °C	10.75 °C
Run	8	285.81 cm @ 21.61 °C	285.44 cm @ 12.47 °C	11.10 °C

The merit of pressure cycling the sight glass may be judged by comparing the height difference between the initial and final liquid levels in the tank as measured by the XR-38 and the sight glass. The pressure cycled sight glass value is used for the final liquid-level measurement. The initial sight glass liquid is much closer to that of the tank liquid at that point. The height differences for each instrument are shown in the table below.

Calculated Height Difference

		Sight Glass	<u>XR-38</u>	S.G. Minus XR-38
Run	6	267.30 cm	267.37	07 cm
Run	7	250.70 cm	250.68	02 cm
Run	8	267.57 cm	267.58	.01 cm

The small differences between the measured heights for the two instruments shows clearly the effect of differing temperatures in the tank and sight glass and that the effect may be essentially eliminated by the use of pressure cycling the sight glass fluid. Also, this exercise shows clearly that differing temperatures between the sight glass and the tank fluids introduces a sizable systematic effect, especially for tall tanks.

When properly used, the sight glass performs to about the same precision as the other instruments tested and is free of serious bias.

Appendix 2. Density Probe Calibration and Use

In essence liquid density measured by head pressure is two determinations of liquid level from bubbler tubes (see fig. 5) at grossly different depths as explained later on. These pressure measurements occur at nearly the same time and liquid density is assumed constant during the period required.

The two observed head pressures, P_1 and P_2 , are written as follows:

 $P_1 = \rho_L gL_1 \text{ and } P_2 = \rho_L gL_2$ $P_1 - P_2 = \rho_L g(L_1 - L_2)$

where PL is liquid density

 L_1-L_2 is the difference in probe depth

g is the local acceleration of gravity

If the probe depth separation, $L_1 - L_2$, is known, then ρ_L is calculated from the pressure measurements as follows:

$$\rho_{L} = \frac{P_{1} - P_{2}}{\hat{g}(L_{1} - L_{2})} \qquad \text{eq. (1)}$$

The value for ρ_1 is in kg/m³ when

P₁ and P₂ are in pascals
g is meters/sec²
 (as measured at the site of calibration)
L₁ - L₂ is in meters.

The probe separation, L_1-L_2 , can be determined by dimensional measurement and as reported here by head pressures in a liquid of known density. We feel the bubbler technique reflects true orifice behavior and deserves our attention since dimensional techniques are well known. When the bubbler tubes are assembled in place, as ours were, the glass tube of figure 3 can be replaced by a plastic bag. The bag must be supported externally to maintain a stable liquid level.

The calibration experiment follows the basic liquid level via head pressure scheme. Distilled water is the liquid of choice. It is readily available and the density is well characterized

FIGURE 5: SIMPLIFIED VIEW OF THE CALIBRATION SCHEME FOR DETERMINING THE ORIFICE SEPARATION FOR USE IN THE LIQUID DENSITY MEASUREMENT. from temperature measurement to 1 part in 10^{-5} or better although to maintain this level of accuracy, all components in contact with the distilled water must be extremely clean and nonsoluble in water.

Since the density of water is known sufficiently well, it follows from equation (1) that:

 $L_1 - L_2 = \frac{P_1 - P_2}{g\rho_L}$ eq. (2)

This value for $L_1 - L_2$ can be substituted in equation (1) and unknown liquid densities can now be determined.

The temperature of distilled water must be measured to 0.01 °C for adequate accuracy of calculated densities. The recent work of Wagenbreth and Blanke [5] contains the necessary water density expansion formula with density expressed in cubic meters.

Liquid Density Measurement

During the calibration runs 2 - 8, the water density was determined after each volume increment was added to the tank by direct measurement. These determinations were obtained by observing the differential pressure between two probes using the XR-38. As described earlier, the pressure probes were installed in sets comprised of a level probe and one referred to as a density probe for each pressure gage. The additional pressure measurement required to determine density was only observed with the set connected to the XR-38 pressure gage.

Both probes were connected to each of the supporting braces closely adjacent to one another. The probe tips were tied to-gether in a manner such that the orifice separation could not be changed.

Orifice separation was approximately 20 cm to simulate field use where the density measurement is made in the heel area of the tank. The upper probe was designated the density probe and the lower probe, the level detector. Occasionally the first volume increment failed to cover both probes causing a measurement ommission.

Although the data on measured densities are available for runs 2 - 8, we give only the data for run 2 in table 6. These data are typical of the other runs. Included in the table is a comparative analysis for runs 2 - 8. It is seen that the standard

RESIDUAL STANDARD DEVIATIONS (A)

Run No.	DENSITY	(B) Measured	HEIGHT	(C)
	ourcurated	neusureu	carcurateu	measureu
2	.0386	.517	.000527 .	000974
3	.0270	.475	.000554 .	000779
4	.0183	.545	.000270 .	001111
5	.0296	.450	.000468 .	088000
6	.0145	.351	.000525 .	000877
7	.0066	.499	.000449 .	001107
8	.0728	.424	.000592 .	000903

- (A) As successive increments of water were added, the temperature drifted downward and the density drifted upward. Residual standard deviations are computed from deviations from the trend line. A typical set of data, run 2, is shown below.
- (B) Density in kilogram per cubic meter
- (C) Height in meters

NUMBER	VOLUME	CAL. DEN.	CAL. HT.	MEA. DEN.	MEA. HT.
	m ³	kg/m ³	m	kg/m ³	m
1	.189278	999.315132	.080646	.000000	.000000
2	.567973	999.433502	.416376	998.724243	.416672
3	.946503	999.477394	.749925	998.435822	.750709
4	1.325350	999.482384	1.084740	999.237724	1.085006
5	1.704280	999.488159	1.419691	999.021103	1.420355
6	2.082744	999.498245	1.754563	999.203156	1.755082
7	2.461034	999.515648	2.088275	997.714760	2.092049
8	2.839735	999.519005	2.421954	998.309845	2.424891
9	3.218276	999.526894	2.756424	998.532867	2.759171
Std. D Std. De Residua	Intercept Slope Dev. of Ave. ev. of Slope I Std. Dev.	999.373276 .019932 .028082 .004990 .038655	-0.085870 .883291 .000353 .000180 .000527	999.063629 075671 .475361 .079783 .517052	086207 .884305 .000827 .000397 .000974

Table 6: Data from run 2 reduced and fitted using both calculated and measured density for comparison.

deviations of measured density and height are much larger than those for calculated density and height. This will result in a much larger calibration uncertainty, near the 1 part in 10^3 level. The error, ϵ_D , in our measured density has two components, ϵ_1 and ϵ_2 , which are the random error of the XR-38 pressure gage and the systematic error of the assumed probe separation respectively.

Assuming the systematic component to be small although in our case it is not, the random component would occur twice for a given density determination. From table 5 we see that the XR-38 has a random component of 0.02 cm ($\hat{\sigma}_e$), therefore e_1 is estimated to be 0.040 cm for a probe separation of only 20 cm, about 2 parts in 10^3 .

Obviously, since we calibrated the probe separation via the XR-38 pressure gage, there is also a sizable systematic error, ε_2 . Of course, repeated calibration or another technique may reduce ε_2 to an acceptable magnitude.

For the random component effect on the density determination to be made comparable to that of the level detection, we need a probe separation of about 2 meters or more. This could be easily accomplished if a tank at least 2 meters long and 10 cm or more in diameter were placed inside a tank and used exclusively for the density measurement. In this way, the small tank could always be filled from the contents of the main tank after thorough mixing even when the liquid level is low.

Alternatively, the application of some other technique may be more suitable for measuring density.

APPENDIX 3

Gas Head Corrections for Level and Density Determinations

by

C.R. Tilford Pressure and Vacuum Section Heat Division

The non-zero density of the gas in the bubbler tubes used to determine liquid height and density gives rise to gas head corcorrections to the simple equations generally used with these measurements. Under conceivable operating conditions, these corrections could well exceed the uncertainties reported for the measurements in this report and, in any case, restrict the operation of the system after it has been calibrated. Expressions for liquid height and density including gas head corrections will be derived and the effect of the corrections discussed.

These equations will be derived assuming that the gas density is linear with pressure (second order effects are at the parts per million level); the same gas is used in all parts of the system and its temperature is uniform throughout the system; and account is taken of effects due to bubble formation at the end of the probe tips. Effects due to nonlinearity or changes in calibration of the pressure gages are not considered.

Definitions:

The necessary quantities are defined below and illustrated in figure 6.

P_1, P_2, P_3, P_4	are the absolute pressures at the gages,
P'_1, P'_3, P'_4	are the absolute pressures at the probe tips,
P2'	is the absolute pressure at the liquid surface,
h	is the vertical separation between probe tip #1 and the liquid surface,
ΔL	is the effective vertical separation between probe tips number 3 and 4 and is positive,
H ₁	is the elevation of pressure gage #1 minus the elevation of probe tip #1,
H ₂	is the elevation of pressure gage #2 minus the elevation of probe tip #3,
ρ	is the density of the liquid, and
ρ ₁ , ρ ₂ , ρ ₃ , ρ ₄	are the gas densities at pressures P_1 , P_2 , P_3 , and P_4 .

Assuming that the density of gas is proportional to pressure, we have

 $\rho_{i} = AP_{i} (i = 1 \dots 4).$ (1)

For air or N_2 at room temperature we have

 $A \approx 1.2 \times 10^{-8} \text{ g/cm}^3 \text{ Pa}$ $\approx 1.2 \times 10^{-3} \text{ g/cm}^3 \text{ Atm}.$ Level Determination

We have

$$h = \frac{P_1' - P_2'}{g\rho}$$

where g is the local acceleration of gravity and ρ is the average density of the liquid. Taking gas heads between the appropriate points in or above the liquid and the gage #1 into account, we have

$$P'_{1} = P_{1} + \rho_{1}gH_{1}$$

 $P'_{2} = P_{2} + \rho_{2}g(H_{1} - h)$

From the above and using eq. (1) we have

$$g_{\rho}h = P_{1} + \rho_{1}gH_{1} - P_{2} - \rho_{2}g(H_{1} - h)$$
$$= (P_{1} - P_{2})(1 + AgH_{1}) + \rho_{2}gh$$

So

$$h = \frac{P_1 - P_2}{g(\rho - \rho_2)} (1 + AgH_1)$$
(2)

Note that P_1-P_2 is the differential pressure at the gage; that if the tank is open to the atmosphere, P_2 is the atmospheric pressure at the gage and the correction $\rho-\rho_2$ will be about 0.12%, and that Ag $\approx 1.2 \times 10^{-4}$ /m.

If gas density is ignored, we obtain the commonly used approximation to eq. (2)

$$n \approx \frac{P_1 - P_2}{g\rho}$$
(2a)

The effect of the gas density corrections will depend on how the system is used. In many cases, including the measurements discussed in this report, what is really desired is not the height of the liquid but the volume of liquid, or more exactly, changes in the volume. The volume will be a function of h, or of $(P_1-P_2)/(\rho-\rho_2)$, which may be expressed as a polynomial. The coefficients of the polynomial can be determined by calibrating the tank with known volumes of liquid. If the same gas is used in both the calibration and operation and the relative elevation of gage #1 and probe tip #1 is not changed, the correction $(1 + AgH_1)$ will be the same for both calibration and operating conditions and will drop out. The volume can be expressed as

$$V = B + C \left[\frac{(P_1 - P_2)}{(\rho - \rho_2)} \frac{(\rho^* - \rho_2^*)}{(P_1^* - P_2^*)} \right] + D \left[\frac{(P_1 - P_2)}{(\rho - \rho_2)} \frac{(\rho^* - \rho_2^*)}{(P_1^* - P_2^*)} \right]^2 + \dots$$

where the quantities with an asterisk are those determined during the calibration. For a typical right circular cylindrical tank, such as is considered in this report, the linear term will be by far the largest.

If we consider this term we see that since the gas density is much smaller than the liquid density, we can approximate

$$\frac{\rho^{*} - \rho_{2}^{*}}{\rho - \rho_{2}} \approx \frac{\rho^{*}}{\rho} (1 - \rho_{2}^{*}/\rho) (1 + \rho_{2}/\rho)$$
$$\approx \frac{\rho^{*}}{\rho} \left[1 + \frac{(\rho_{2} - \rho_{2}^{*})}{\rho} - \frac{\rho_{2}^{*}\rho_{2}}{\rho_{2}} \right]$$

The quadratic term is at the parts per million level and can be dropped. The linear term, $(\rho_2 - \rho_2^*)/\rho$, will be zero if the gas composition, temperature and pressure at the top of the tank are the same during calibration and operation. Under these conditions, the approximate eq. (2a) can be used for both calibration and operation. If the tank is pressurized by, for example, 1 atmosphere after the tank has been calibrated, then the use of eq. (2a) would result in about a 0.12% error in the measured height or volume.

Similarly, if the relative elevation of the pressure gage and probe tip were to be changed by 8 m after the calibration an error, due to changes in the term $(1 + AgH_1)$, of about 0.1% would occur in the measured height or volume if the correction in eq. (2) was not applied.

It is hoped that this discussion will underscore the importance of not changing the system after it has been calibrated, or of making proper corrections if conditions are changed.

Density Determination

The density of the liquid in eqs. (2) or (2a) can be determined by measuring the differential pressure across a pair of bubblers separated by an effective vertical distance ΔL .

Thus

$$\rho = \frac{P_3' - P_4'}{g_{\Delta L}}$$

Taking gas heads into account, we have

$$P_{3}^{i} = P_{3} + \rho_{3}gH_{2}$$

 $P_{4}^{i} = P_{4} + \rho_{4}g(H_{2} - \Delta L)$

Assuming that the same gas is used in both probes and using the above and eq. (1), we have

$$\rho g \Delta L = P_3 + \rho_3 g H_2 - P_4 - \rho_4 g (H_2 - \Delta L)$$
$$= (P_3 - P_4)(1 + Ag H_2) + \rho_4 g \Delta L$$

So

$$\rho = \frac{P_3 - P_4}{g\Delta L} (1 + AgH_2) + \rho_4$$
(3)

Again, note that (P_3-P_4) is the measured differential pressure and an approximate form of eq. (3) is

$$\rho \approx \frac{(P_3 - P_4)}{g\Delta L}$$
(3a)

The correction term, ρ_4 , occurs because the pressure generated by the column of liquid of height ΔL is partially offset by the pressure generated by the corresponding column of gas of density ρ_4 . The correction (1 + AgH₂), where Ag \approx 1.2 X 10⁻⁴/m for air or N₂, arises because the different pressures and correspondingly different gas densities in lines 3 and 4 give rise to different gas head corrections. If eqs. (3) or (3a) are to be used with any pretext of accuracy, ΔL must be an effective length. This can be determined by making an in situ calibration of the entire density measuring system using a liquid of known density, ρ^* , such as water. From eq. (3) we then have

$$\Delta L = \frac{(P_3^* - P_4^*)}{\rho^* - \rho_4^*} (1 + AgH_2^*)$$

where ρ_4^* is the density of the gas at the calibration pressure P_4^* .

Then

$$\rho = \frac{(P_3 - P_4)(1 + AgH_2)(\rho^* - \rho_4^*)}{(P_3^* - P_4^*)(1 + AgH_2^*)} + \rho_4$$

If the relative elevation of gage #2 and the probe tips are not changed after calibration $(H_2=H_2^*)$, we can write

$$\rho = \frac{(P_3 - P_4)}{(P_3^* - P_4^*)} (\rho^* - \rho_4^*) + \rho_4$$
$$= \frac{(P_3 - P_4)}{(P_3^* - P_4^*)} \rho^* + \rho_4 - \rho_4^* \frac{(P_3 - P_4)}{(P_3^* - P_4^*)}$$
$$\approx \frac{(P_3 - P_4)}{(P_3^* - P_4^*)} \rho^* + (\rho_4 - \rho_4^*)$$

since, if the densities of the calibration and measured liquids are approximately the same, $(P_3-P_4) \approx (P_3^*-P_4^*)$. Thus, if $\rho_4 = \rho_4^*$ we could use eq. (3a) for both the calibration and operation. Unfortunately, P_4 will change as the liquid level changes, or if the tank is pressurized. Obviously, the liquid level will change during operation and the error in using eq. (3a) could be significant for a large tank. As an example, if the liquid level differs by 8 m from the calibration level and eq. (3a) is used, the measured density will be in error by about 0.1%. The same sort of error will be introduced if the pressure above the liquid is changed by 1 atmosphere, or if the relative elevation of the gage and probe tips was changed by 8 m after calibration.

Thus, density measurements by the bubbler technique with uncertainties comparable to those obtained in the height measurements discussed in this report will not be possible unless the exact form of eq. (3) is used and care is taken in changing the operation of the system after it has been calibrated.

FIGURE 6: SCHEMATIC FOR PRESSURE DISCUSSION PRESENTED IN APPENDIX 3

NBS-114A (REV. 7-73)

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET 1. PUBLICATION OR REPORT NO. NBSIR 75-900	2. Gov't Accession No.	3. Recipient	's Accession No.
4. TITLE AND SUBTITLE		5. Publicatio	on Date
Liquid Level Instrumentation in Volume (alibration	Octo	ner 1975
		6. Performin	g Organization Code
7. AUTHOR(S) H.H. Ku, J.F. Houser, R.M. Schoonover, and J.F	. Whetstone	8. Performing NBSI	g Organ. Report No. R 75-900
9. PERFORMING ORGANIZATION NAME AND ADDRESS	Y	10. Project/7	Task/Work Unit No.
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234		11. Contract/	Grant No.
12. Sponsoring Organization Name and Complete Address (Street, City, S Sponsored in part by: Brookbayen National Laboratory	State, ZIP)	13. Type of H Covered	Report & Period
Technical Support Organization Upton, L.I., New York	14. Sponsorir	ng Agency Code	
15. SUPPLEMENTARY NOTES			
The technique of pressure head liquid levels in tanks has been u of commercially available electr and a sight glass. In addition t information, the high precisio with that of volumetric transfer applicability of the calibratio partures of the actual tank geome straight-walled geometry. It is of the volume-to-height relations may be accomplished with an uncer of ~ 4 parts in 10,000.	measurement for sed for the into omanometers with o obtaining into n of these devo techniques demon n method in deto try from that de shown that the hip of a 3300 tainty in this n	determinin ercompariso n themselve ercompariso ices couple nstrates the ermining de calibratio liter tar relationship	ng on es on ed ne e- el on nk i p
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize on name; separated by semicolons) Key Words: Density measurement; elec large volume calibration.	ly the first letter of the tromanometer;	fitst key word	unless a proper
 17. KEY WORDS (six to twelve entries; alphabetical order; capitalize on name; separated by semicolons) Key Words: Density measurement; eleclarge volume calibration. 18. AVAILABILITY Unlimited 	ly the first letter of the tromanometer; 19. SECURI (THIS R	first key word TY CLASS EPURT)	unless a proper 21. NO. OF PAGES
 17. KEY WORDS (six to twelve entries; alphabetical order; capitalize on name; separated by semicolons) Key Words: Density measurement; electronic large volume calibration. 18. AVAILABILITY To Official Distribution. Do Not Release to NTIS 	ly the first letter of the tromanometer; 19. SECURI (THIS R UNCL AS	first key word TY CLASS EPORT)	unless a proper 21. NO. OF PAGES 37
 17. KEY WORDS (six to twelve entries; alphabetical order; capitalize on name; separated by semicolons)	ly the first letter of the tromanometer; 19. SECURI (THIS R UNCL AS 20. SECURI (THIS P	first key word TY CLASS EPORT) SSIFIED TY CLASS AGE)	unless a proper 21. NO. OF PAGES <u>37</u> 22. Price

.

×