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y Row of an irreducible representation o£ a probe
mode. See section 5.2. For the spherical case,

that modal index which occurs in e'^^^ .

V Irreducible representation of the probe mode (sec-
tion 5.2). For the spherical case, that modal index

which occurs in P^fcos 6').

[n
, ,,] The matrix which corrects for integration over the

polar angle from 0 to tt instead of 0 to 27t in the
computation of the pattern coefficients (Q's) of
the test antenna (24), (26), (26').

a Polarization index of the probe modes (section 5.2
and (14)) .

Any eigenfunction (section 5.1).

p(R) A weight function in the symmetry decomposition ex-
pression (6) and the orthogonality relations (see
table 1)

.

0) Angular frequency.

Notational Conventions

The coordinates of the test antenna and probe coordinate
systems are unprimed and (singly) primed respectively. Double
and triple primes are used to indicate the transmitting and
receiving antennas respectively. Single primes are used on
modal indices to indicate a possibly different value. Zero
subscripts are used on operations upon the probe and its
coordinate system.

Script is used for symbols which do not refer to a
specific antenna or symmetry group, as well as for additional
symbols

.

Row, column, and rectangular (or square) matrices are
indicated by L i, { }, and [ ] respectively. As a function
is decomposed, say into its Fourier components, the variable
is replaced by a superscript index. When an index is used
to indicate a row or column in a matrix, it is lowered to
the subscript position. When this is impractical, the
index is encircled, f 1 is a symbol defined in Appendix II.
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NON- PLANAR NEAR- FIELD MEASUREMENTS: SPHERICAL SCANNING

by

Paul F. Wacker

ABSTRACT

The advantages and limitations of near-field antenna
measurements are compared with those of conventional far-
field measurements. Further, the advantages and limita-
tions of planar, circular cylindrical, and spherical scan-
ning are compared.

Spherical scanning is advantageous for arrays steered
well off-axis and for antennas with wide angle side lobes,
but the data processing has been quite impractical except
for very simple antennas and probes. A new highly effic-
ient data processing scheme is given for spherical scanning
with and without probe pattern correction. The translation-
of-centers transformation of the probe pattern coefficients
(required only with the probe pattern correction) is carried
out once and for all for a given probe, scanning radius, and
frequency. The routine computations involve Fast Fourier
"Transforms" and multiplication by matrices with constant
elements, matrices which are independent of the detailed nature
of the probe, the radius of the scanning sphere, the points at
which measurements are made, and the nature of the test antenna.
The FFT's and matrix multiplications supplant matrix inversion,
ordinary solution of simultaneous equations in more than two
unknowns, ordinary numerical integration, and (in routine pro-
cessing) ordinary evaluation of functions, even for computa-
tion of the far field. Except for the truncation of the in-
finite series of spherical modes, no analytical or data pro-
cessing approximations are made, even in the use of the FFT.

So that readers may draw from their understanding of
planar and cylindrical scanning, a unified theory of near-field
data processing is given, treating planar, cylindrical, and
spherical scanning as mere special cases.

Key Words: Antennas; arrays; coordinate transformations;
data processing; group representations; measurements; near
field; non-planar; patterns; scanning; spherical; symmetry.

xii



NON-PLANAR NEAR-FIELD MEASUREMENTS: SPHERICAL SCANNING

I. QUALITATIVE DISCUSSION

1. Obj ectives

Determination of antenna patterns by near-field spherical
scanning is highly attractive from many points of view for
both developmental and operational testing of, e.g., airborne
arrays. It provides a small, inexpensive, all-weather antenna
range free of ground reflection effects. Unlike the planar
and circular-cylindrical scanning techniques, it is easily
applied to antennas steered well off-axis and, if the antenna
can be mounted on a conventional rotator, requires no probe
transport mechanism, as distinguished from possible rotation
of the probe about its own axis.

Although Jensen* has provided a formulation almost com-
plete in the formal sense, his data reduction scheme is
grossly impractical except for very simple test antennas.
By the use of highly-efficient data-reduction techniques
integrally related to new probe designs, it is believed pos-
sible to provide practical, efficient data reduction systems
with and without probe pattern correction, permitting realiza-
tion of the advantages of spherical scanning. The probes are
assumed to be circularly (azimuthally) symmetric in the
material sense and propagate only a single mode but are
otherwise arbitrary. However, the simpler the dependence
of the pattern upon the polar angle, the simpler the (mathe-
matical) probe correction.

The objectives of this effort are to determine the feasi-
bilities of the proposed (spherical scan) data reduction
schemes for electrically large antennas, outline the required
probe designs, and carry out the required mathematical and
numerical analysis leading to practical algorithms upon which
computer programs may be based. Further, the advantages and
disadvantages of spherical scanning compared to alternative
measurement procedures are outlined, all related to the
extent possible to antennas of interest to the Air Force.

*The bibliography is given at the end of this report.
References in the text are enclosed in square brackets.



2. Comparison of Techniques for Determining Antenna Patterns*

2 . 1 Advantages and Limitations of Near Field Scanning

The suitability of a given method of determining an an-
tenna pattern of course depends upon the antenna. For an
antenna which is both electrically and physically small, say
a probe, near-field techniques seldom compete with conventional
methods. However, for larger antennas, near-field techniques
have distinct advantages. Ground reflections are eliminated
as are the grazing-incidence reflections of "anechoic" chambers,
since the test antenna and probe are close together and the
absorber may be placed essentially perpendicular to the radia-
tion. (Reflections in chambers are larger than is commonly
believed; in a "good" anechoic chamber, the apparent gain may
vary by 2 dB as the antenna pair is rotated with respect to
the chamber.) Moreover, proximity errors do not occur, but to
reduce the proximity error in a conventional measurement of a

typical standard gain horn (with another horn of comparable
size) to 0.05 dB requires that the measurements be made at

2
32 times the Rayleigh distance (32 a /X). Further, a small,
closely coupled system is subject to laboratory-type control,
as compared to a conventional system with nearby trees and
buildings, variable moisture content of the ground, and varying
weather conditions. Hence, near field measurements can yield
especially accurate antenna patterns [Kerns 1970; Newell et al

.

1973; Newell and Crawford 1974; Rodgrigue et al . 1973].

A near-field system is usually much cheaper than the con-
ventional range it replaces (assuming the availability of a
computer) and requires much less expensive absorbing material
than an "anechoic" chamber. From a single physical scan, the
patterns for many different steering directions may be obtained
for an array, or patterns for many different frequencies may
be obtained for a broadband antenna. Moreover, for production
line testing and adjusting of antennas, the antenna need not
be moved to a conventional range between adjustments. The
all-weather character of near field work is an obvious advan-
tage, and the method may be used to determine patterns of
antennas in atmospheric absorption bands, say near 60 GHz.

The limitations of near-field techniques are as follows.
As the wavelength becomes quite short, determination of phase
as a function of position becomes more difficult, particularly

*So that the reader may obtain a general understanding of
the report with a minimal study of the mathematics, general
material is presented in sections 2 and 3 prior to the mathe-
matical development. Moreover, in this context, frequent
reference is made to subsequent material for later detailed
study.

2



over a large area. (Since phase is not needed for the XBS
extrapolation method, this limitation does not apply to it.)
We have obtained high accuracy with little difficulty at 60
GHz (5 mm) for antennas 100 wavelengths in diameter, but
existing systems will become inaccurate and eventually fail
in the submillimeter region. (However, a laser fringe-
counting system with servo devices can eliminate the positional
accuracy problem, even for submillimeter waves.) Further,
there are practical size limits to scanning systems. However,
large scanning systems should be less expensive (possibly
much less) than conventional terrestial ranges required for
accurate results on an antenna of a given large size. Further,
the spherical technique may be useful for physically large
antennas mounted on a rotator since probe transport is not
required; the data reduction would be expected to be manage-
able for many such antennas, particularly if no probe correc-
tion is required (see sections 5.5 and 9).

2 . 2 Comparison of Xear-F_ield Scanning Techni£[ues

IsTiich near-field method is most appropriate also depends
upon the antenna. For a pencil beam antenna, one naturally
thinks of a transverse planar scan, not cylindrical or
spherical (unless a planar scanning system is unavailable or
impractical due to physical size). (Unless otherwise indi-
cated, planar scanning is used to mean rectangular planar
scanning and cylindrical scanning to mean circular cylindrical
scanning.) For a fan beam antenna, one naturally thinks in
terms of a cylindrical or possibly a spherical scan. For an
antenna with lobes at many angles or an array which is steered
to many different directions, both planar and cylindrical
methods become awkward but a spherical scan seems natural.

A number of factors are involved. In mechanical terms,
the "spherical scan" is the most convenient for an antenna
which can be mounted on a conventional antenna mount, simpler
than a planar or cylindrical scan since no probe transport is
needed. If the antenna cannot be tipped, azimuthal rotation
combined with probe motion on a semicircle may be used. The
lack of probe transport is important for inexpensive imple-
mentation and/or phys ically- large mechanically-s teerable
antennas. However, in terms of data processing, the planar
scan is simplest, particularly if a probe correction is
needed

.

For planar and cylindrical scans, there should ordinarily
be little radiation in any direction nearly parallel to the
plane or axis of the cylinder. Two principles are involved.
First, a very large fraction of the energy from the test

3



antenna should pass through that portion o£ the "scanning
surface" over which measurements are actually made. Hence,
this requires very large measurement surfaces if the radiation
has a direction nearly parallel to the plane or axis of the
cylinder

.

(In principle, actual measurements could be extrapolated
to other parts of the scanning surface, but this must be re-
garded as a makeshift. A directional probe could be used to
decrease the required scanning area if information is required
only for a restricted set of directions; if there is much
radiation in directions of no interest, such a probe also
improves the "signal" to "noise" rat io . (Because directional
probes tend to be large, they tend to introduce multiple re-
flection problems, which may require special design and/or
increased probe- antenna separation.) Such measurements could
be made on a series of canted planes, each plane providing
information for a restricted set of solid angles. Note that
the planes cannot be truncated at their intersections, as in
a prism. Although the measurements on such a prism would be
sufficient in the abstract sense, the available data pro-
cessing algorithms require that information be available as
far out as there is significant contribution to the Fourier
transform for angles of interest.)

Second, measurements on a surface nearly parallel to a
direction of propagation are very wasteful in terms of meas-
urement accuracy, much like measuring the cosine rather than
the sine to determine a small angle; moreover, the phase
changes rapidly but must be known everywhere on the measure-
ment surface to a small fraction of Ztt relative to a single
reference

.

An additional factor in the choice of a near-field scan-
ning method relates to the implied choice of basis functions.
Thus, for a rectangular horn, a planar rectangular scan should
be efficient, while for an antenna with circular symmetry,
spherical or circular cylindrical scanning makes full use of
the azimuthal dependence in the choice of basis functions.
A well-chosen set of basis functions for a given problem means
fewer unknowns to determine and so more effective use of meas-
urements, either through wider spacing of measurements or,
for a given spacing, greater redundancy providing better
statistical averaging. However, if the antenna or array is
steered to many directions, the advantage of a specific set
of basis functions is reduced or eliminated. Nevertheless,
a spherical surface does have advantage in this situation.

4



3 . Spherical Scanning

3 . 1 Problems

Jensen has given a treatment of spherical scanning,
essentially complete in the formal sense. (He did not treat
reduction of polarization measurements.) However, his proposal
for analyzing the data was quite impractical except for quite
simple probes and test antennas. Specifically he proposed
inverting the matrix to solve the simultaneous equations re-
presented by equation (14) of this report. Even for a sphere
of only 20 wavelengths in diameter and four measurement points
per square wavelength, this would be a real matrix of order
n = 20,000. Assuming a fast computer, a highly efficient com-
puter program designed for large matrices, and very large
storage, inversion would require roughly 20 n^ microseconds,
since the matrix has few zeros. Hence, for the case cited,
the computer would run continuously for more than five years

Q

(assuming sufficient core storage, 4*10 words for the input
matrix alone) . Further, the inverse would be highly inaccurate
due to accumulated rounding error. Moreover, he proposed
numerical computation of the complicated elements of the
matrix to be inverted.

3 . 2 Solutions

In our procedure, presented in London in July 1974, the
simultaneous equations are decoupled into sets of at most two
equations in two unknowns (two probe orientations and two coef-
ficients for polarization-pair modes), which are easily solved.
The decoupling is achieved by means of a Fast Fourier "Trans-
form," followed by matrix multiplication. The multiplying
matrix is independent of the test antenna, the detailed nature
of the probe, the radius of the measurement sphere, the fre-
quency, and the points at which the measurements are made,
and hence may be computed once and for all. Further, it has
many conveniently located zeros.

Moreover, the FFT and matrix multiplication replace both
ordinary numerical integration and computation of both the modes
and D's of (16) as functions of (}> , 0, 0^, 0^, and Xq* Further-
more, the translated probe coefficients (p s of (15)) are re-
quired only with probe pattern correction and then computed
only once for each probe and scanning radius, independent of
the test antenna and the points at which measurements are made.

5



Both the translat ional transformation and the decoupling are
markedly simplified by the choice of probes which have simple
azimuthal dependence (y of (14) to (18) equal to 0 or ± 1)

.

Moreover, since the patterns of these probes have precisely
the same azimuthal dependence as those of ideal dipoles,
they are expected to reduce the need for a probe pattern
correction. These probes should have circular symmetry in
the physical sense and the leads, e.g., waveguide, should
transmit only a single mode, but the probes may have arbi-
trary flare. The modal coefficients expressing the pattern
of the test antenna so computed are least squares values,
and tests of statistical significance (see section 10) are
easily applied, permitting discrimination against random
error and reduction in subsequent computations. The far
field is computed from the coefficients by an inverse FFT
following multiplication by a matrix closely related to the
aforementioned multiplying matrix. It also may be computed
once and for all by techniques similar to those for the
other matrix, no inversion being required. Some of these
ideas are expressed in a paper recently submitted by Jensen,
but not decoupling by matrix multiplication, avoidance of

computing the 9^ dependent functions, or efficient computa-

tion of the far field by an FFT and matrix multiplication.

3 . 3 Limitations of the New Spherical Scanning Technique

As previously indicated, the mechanical limitations of
the spherical scan method are very slight for an antenna
mounted on a rotator. The Fast Fourier "Transform" for the
spherical case is little more complicated than for the planar
case and the matrix multiplication is fast, particularly due
to the many conveniently located zeros in the matrix. Hence,
in terms of scanned area measured in square wavelengths,
these operations may be little more restrictive for the
spherical than the planar case. Further, the limitations
arising from computing the multiplying matrix and the trans-
lational transformation of the probe pattern are moderated by
the fact that they may be computed once and for all (the
latter for a given probe and scanning radius). Moreover, the
translat ional transformation may be eliminated if the probe
may be approximated as an ideal dipole (see sections 5.5 and
9) , and computation of the multiplying matrices is feasible
if the reactive zone of the antenna may be circumscribed by
a sphere with no more than 250 half wavelengths on a great
circle (see section 8 and Appendix I). However, as for
cylindrical scanning, the complexity of the transformational
transformation of the probe pattern creates computational
problems for large near-field scanning radii with complicated
probe patterns. The transformation is simplified by the

snfact that c^^^(A)'s of equation (15) are needed only for

6



y = 0 or ± 1 and the fact that these quantities are simpler
for these cases, relatively simple explicit expressions and
two-term recursion relations being available for the coef-
ficients of the Hankel functions for both the y = 0 and ± 1

cases. The coefficients of the Hankel functions may be com-
puted once and for all, independent of the specific probe
or the diameter of the scanning sphere. The upper limit on
the diameter with the probe correction remains to be deter-
mined, but it is believed that the correction will be feasible
for most of the radii for which it is needed.

7



II. GENERAL MATHEMATICAL BACKGROUND

4 . General Theory of Antennas and Antenna -Antenna Interactions

Due to the mathematical complexity of the spherical
problem, some basic discussion is given to facilitate under-
standing. So that the spherical problem may be related to
simpler problems, the discussion is initially in general terms.
This presentation is independent of the coordinate system and
applies, e.g., to planar, circular cylindrical, and spherical
scanning as special cases. Although attention is fastened
upon electromagnetic fields, the treatment applies equally
well to acoustic fields in mathematically linear fluids,
without the complication of polarization. So that readers
familiar with planar and/or circular cylindrical scanning may
transfer their understanding to the spherical case, examples
from these types of scanning are given. However, these
examples may be disregarded by those not familiar with them.

The general treatment constitutes a summary of pertinent
parts of forthcoming papers. Although section 5 is based
upon the theory of group representations, no familiarity
with the theory is required, provided that the reader
accepts (6), (7), (10) to (12), (12'), and (12"), which are
related to familiar examples. Although the theory may seem
needlessly general, most of the equations presented and ex-
plained are needed for the spherical case, but apply (with-
out specific functional forms) to any compact group, essen-
tially to any smooth finite scanning surface. The remaining
equations are the counterparts for the planar and cylindrical
cases. Readers finding difficulty with Part II may skim it
for the basic ideas and then refer to it while reading
Part III on spherical scanning proper.

Any field f(P) may be approximated in the mean to any
desired accuracy as a linear combination of any complete set
of suitable basis functions fj^(P), say a complete set of exact

solutions of Maxwell's equations for which we use the word
mode. Thus

M

where P indicates position. (A single frequency and
hysteresis free media are assumed.) The modes may be, e.g.,
waveguide modes, plane waves of specified direction and
polarization, circular-cylindrical modes, or spherical modes.

8



Usually one uses spatial modes which are solutions for
media surrounding an antenna or scatterer. In this case, the
domain of validity of eq . (1) (with constant coefficients)
is limited; for example, a series of ordinary spherical modes
representing the field outside a sphere circumscribing a
transmitting antenna does not represent the field inside,
particularly for a reentrant body; the modes are not solu-
tions of Maxwell's equations for the whole domain.

The modal index M implies a complete identification of a

mode including the polarization (e.g., TE , TM character).
(Script letters are used in abstract treatments, e.g., a

single isolated antenna or symmetry not pertaining to a

given antenna or coordinate system, as in (1), (3), (6), and
(7) .) Kerns and Davhoff use m, k , and k or n, I , and t
\ J J , 'x' y X y
for the planar case. Leach and Paris use n and h (or ri) , as
well as the distinction between a and b or between c and d to
indicate the TE , TM character. Jensen uses s, m, and n (or
a, y, and v) for the spherical problem. Xote that k ,

k^,

.£.,-£., h and ri assume continuous values. (See section 5
X y
and table 1 for details.) In these cases, the summation
signs in eqs . (1), (2), (4), and (5) are symbolic and really
imply integration. Similarly, the matrices in (3), (4), and
(5) and in Kerns and Dayhoff are symbolic. Hence, in the
abstract mathematics, as distinguished from practical data
processing, the matrices have infinite order and may have
either a denumerable or non- denumerable number of rows and
columns

.

Assuming that the materials (medium and material (s) in
the antenna and waveguide) are mathematically linear, the
coefficients c.^ of the basis functions (modal expressions)

f,| for a source-free domain are related by a scattering matrix,

just as for a waveguide junction. That is, in a region free
of sources, the coefficients of the outgoing waves {b} are
given by linear combinations of the coefficients of the in-
coming waves {a}, i.e., by the matrix equation {b} = [S]{a}, or

b . = Z S . . a. . (2)

The S's are complex functions of frequency or, for a single
frequency, complex constants [Kerns and Beatty, p. 41 ff.].

For simplicity for an antenna or array, only one non-zero
waveguide output mode coefficient b^ and only one non-zero

waveguide input mode coefficient a^ are assumed, and the re-

maining output and input coefficients (of the spatial modes)
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are designated by b and a. Then, the matrix equation may be
partitioned to yield

S

^0
(3)

where r is the input reflection coefficient of the antenna,
and T, R, and S represent all its transmitting, receiving and
scattering properties. See figure 1. (Note that F is a com-
plex number and that R and T consist of a single row and
column respectively of such numbers.) Kerns and Dayhoff
designate these as Sqq, S-^q, S^^, and S-j^-j^, respectively.

Leach and Paris use a^(h) , b^^Ch) and c^(n) , ^j^(^) "to express

T for the test antenna and probe respectively, while Jensen

respectively.uses
smn J ayv

q and p

For an antenna pair, neglecting multiple reflections be-
tween the antennas, the ratio of bg for the receiving antenna

to a^ for the transmitting antenna is given by a bilinear

form between the T for transmitting antenna and the R for the
receiving antenna, due to the assumed linearity. That is,
the ratio is given by a weighted sum of products between the
T's and the R's, where the weights depend upon the relative
coordinates and orientations of the two antennas. See figure
2. Since we are interested in the pattern of the test antenna
in its own coordinate system, we consider the test antenna to
be fixed and the probe to be moving; happily, we need not
distinguish whether the test antenna transmits to the probe
or vice versa, since the T's and R's (as distinguished from
the r's of the mismatch correction) occur in a symmetric
manner in the bilinear form.

Consider a pair of coordinate systems, namely an unprimed
system fixed to the test antenna and a (singly) primed system
fixed to the probe. Let the T's or R's (transmitting or re-
ceiving pattern) of the test antenna be represented by the
row matrix L^|^J and those of the probe (receiving or trans-

mitting pattern) by the column matrix {p^} , the elements in

each matrix referred to modes fixed in the coordinate system
of the given antenna, where M and u are modal indices. (For
quantities characteristic of the original independent
coordinate systems, lower case is used, except for M and the
transformation operator R, as in (4).) Assume that the
test antenna is fixed in space^and that the probe moves
on a scanning surface and let R be a set of translation(s)
and/or rotation(s) which transform the fixed (test antenna)
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coordinate system into the moving (probe) coordinate system.
The R's thus serve as position coordinates and orientation
parameters for the probe relative to the test antenna. Then
the complex amplitude delivered to the load of the receiving
antenna is given by

b'o'
= IV'V^ M u ^-^"^^^ ^0

(4)

^ L

Double and triple primes are used for the transmitting and
receiving antennas respectively. The coefficient of the sum

tl I tl t

is a mismatch correction, and r being the complex re-

flection coefficients at the reference plane of the receiving
antenna looking toward the load and antenna respectively
(with the antenna in free space) [Kerns 1971, (1 .

6
- 11) ( 1 .

6- 1 5) ]

.

(Jensen, Leach and Paris, and Kerns and Dayhoff do not include
the mismatch correction, and the first two papers assume that
the probe receives.) Except for the functional character of
the g's (as yet unknown), (4) follows from the linearity
and lack of multiple reflections. Validity upon close
approach of the antenna pair depends upon the individual
coordinate system(s).

Normally one position coordinate is held fixed (Zq

coordinate in the planar case and the radius r^ in the cyl-

indrical and spherical cases) and the other two varied.
Further, the axis of the probe is normally kept perpendicular
to the scanning surface, as in the planar, cylindrical, and
spherical cases, fixing two orientation parameters. Moreover,
except for rotation to determine polarization effects, the
third orientation parameter is also fixed. Using zero sub-
scripts for the R's (in conformity with Jensen and with Leach
and Paris) and enclosing the coordinates held fixed on a scan-
ning surface in parentheses, the R's for the planar, circular
cylindrical, and spherical cases are respectively x^

, y^ ,
(Zq)

,

Zq, (Tq) , and (jj^, 0^, Xq , C^q-^ ' Eulerian angles

Bq, and Xq ^.re defined by figure 3. R without overlining

is used to indicate those parameters of R which change during
scanning. Note that only R, the bQ''s, and the g's vary

during scanning. Further, note that the modes used to ex-
press the probe pattern may be different from the modes used
to express the pattern of the test antenna. If correction
is made for the probe pattern, it is convenient to use modes
which are the same except for translation and/or rotation.
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However, if no probe correction is made, dipole modes, based
upon a spherical coordinate decomposition, are used for the
probe, regardless of the modes used for the test antenna,

\
Particularly for cylindrical and spherical scanning, it

is convenient to break up the determination of the g's, i.e.,
transformation of the probe coefficients, into two parts, the

\ first related to the shift in the coordinate held constant
during the scanning and the second related to the parameters
R changed during scanning. The first may be carried out once
and for all for a given probe, frequency, and scanning sur-
face, significantly reducing data processing time. After the
first transformation, (4) becomes

b'o'CR) = —rrkrrLQj [Gj^(R)] {P^} a'^

1-r
^ (5)

1 "

1-r Tj^ M U ^ ^ ^

where the probe coefficients are corrected for the difference
in the constant scanning parameter (e.g., Zq in the planar

case and r^ in the cylindrical and spherical cases) . Note

that the indices of the probe modes are in general changed;
see Section 5.4. Capital letters are now used for the pattern
coefficients of both the test antenna and probe, since it
may be convenient to renormalize both sets of coefficients,
at least so that the Gj^^y(R)'s are unity for R = 0, i.e., for

the probe pattern expressed in terms of the coordinate sys-
tem of the test antenna. Capital letters are generally used
for this shifted coordinate system.

Equations (1) to (5) , like the remainder of this report
but unlike the work of Jensen and of Leach and Paris, apply
to non- reciprocal antennas, such as arrays with ferrite phase
shifters; unlike their work, the receiving pattern of the re-
ceiving antenna is used, not its transmitting pattern. These
equations also apply for lossy, inhomogeneous , anisotropic
media, such as the atmosphere near 60 GHz or high altitude
plasmas.

5 . Unified Theory of Near Field Data Reduction

Reduction of the near field antenna measurements consists
primarily in determining the Qw's of the test antenna from the

II I
^

measured b^ (R)'s and the previously determined P's of the
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probe. In principle, one can solve the simultaneous equations
implied by (4) by matrix inversion as Jensen proposes, but
this is highly inefficient. Since there are commonly thousands
of simultaneous equations, efficient data reduction is essen-
tial and requires decoupling of the simultaneous equations (5)
based upon the properties of the G^^(R]'s, preferably using

orthogonalities with respect to summation on the measurement
lattice and using the Fast Fourier "Transform."

Very generally, these efficient data reduction tech-
niques are provided by the powerful theory of group repre-
sentations (mathematical theory of symmetry) referred to the
scanning surface. In fact, this theory provides the appro-
priate modes, modal indices, G's, orthonormalities between
the modes and between the G's leading to efficient data re-
duction, and even the g's (correction of probe pattern for
the shift of the coordinate held constant during scanning)

.

Those not familiar with group representations may find
it useful to read Chapter 3 and pages 311-317 of Hamermesh;
although the chapter deals only vvith groups containing a

finite number of operations, the basic symmetry equations of
this report ((6), (7), and (10) to (12)) are closely related
to similar equations there.

The following treatment has wide applicability in the
abstract, but definition of the limits of applicability is
inappropriate here. The surfaces are assumed smooth and of
finite area, except for the plane, circular cylindrical,
and other specifically mentioned cases (see comments after
(12).) The representation coefficients (D's) are known only
for a limited number of surfaces, commonly only after addi-
tion theorems for the functions involved are known.

5 . 1 Modal Symmetries "

The situation is summarized in table 1, which gives cor-
respondences which relate planar, circular cylindrical, and
spherical scanning to each other and to the Fourier transform
and Fourier series decomposition (real line and circle res-
pectively) . Frequent reference to the table will provide
many concrete examples for the following general theory, as
will reference to Part III on spherical scanning.

Just as any function of x may be uniquely decomposed
into two functions, one even and the other odd with respect
to reflection in the x = 0 plane, so any field (scalar,
vector, or tensor) or function f of position P, may be
uniquely decomposed by means of eq . (6) [Haig et al..
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Chapter 5] into a set of functions f^ ^ (P) , each with pre-

scribed properties with respect to the operations R, which
are now assumed to form a mathematical group. Thus,

£C'^)(P) = N / D^'^^(R)* p(R) O^f(P) dR. (6)

This may be proved in a manner analogous to Hamermesh's (3-189);
see Haig et al. [their Chapter IV] for additional background.
The operator Oj^ translates and/or rotates the function f(P)

from the fixed (test antenna) coordinate system into the
moving (probe) coordinate system, that is, if R moves point
P to point P', then Oj^f(P) has the same value at P' as f(P)

had at P. In other words, referred to the probe coordinate
system ,

Oj^f(P) is an unchanging function [Hamermesh, pp.

80-81]. is a normalization constant to be defined, p(R)

is a prescribed weight function, and the asterisk indicates
the complex conjugate. The operator Oj^ acts on the complete

function, e.g., for a vector function or field, it acts simul-
taneously upon the unit vectors and their functional coeffi-
cients [Kerns, 1951]. Each representation consists of a

set of matrices, one for each R; (R) is the element in
* ' my ^ ^

the mth row and yth column of the matrix corresponding to
the operation R in the nth representation.

For simplicity, we confine ourselves to irreducible
unitary representations, i.e., representations consisting of
unitary matrices such that the matrices of a representation
cannot be simultaneously reduced by a unitary transformation,
that is, the representation decomposed into two or more
representations, each consisting of matrices of lower order
[Hamermesh, p. 92-98]. The irreducible unitary representa-
tions are determined only up to a unitary transformation.

For example, e"'"^'^, e -"-^^^ cos n({), and sin n({) all belong to
the nth irreducible representation of C^ ^, the group which
includes reflection as well as rotation on a circle, the
first two functions belong to separate rows in one formula-
tion, the last two to separate rows in another formulation.
In general, a complete orthogonal set of functions belonging
to a given representation defines that representation in
detail and each such function belongs to a specific row
[Wigner, pp. 110-111]. The number of such functions is
equal to the order of the matrices, one for the planar and
cylindrical cases, and 2n+l for the spherical case . We are
primarily concerned not with a small number of operations R,
but a non-denumerable number, leading to an infinite number
of representations and of well-defined symmetry types f^ ^ (P)

.
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For the scalar case, there is only one function with each
symmetry and a set of such functions is complete and linearly
independent [Pontrjagin, pp. 116-125]. Thus, for a function
on a circle, there can be rotation by any real angle and

the Fourier series decomposition £((P) = Z c e
'^^'^

is just
n= -00

a symmetry decomposition [Hamermesh, pp. 322-5]. Similarly,
for a function on the x axis, there can be any real transla-

00 "^^x"'^
tion Xp,, and the Fourier transform f(x) = / g(k ) e dk

U 1 ^ X.

kx= -°°

is a symmetry decomposition [Hamermesh, pp. 486-489]. On the
surface of a sphere, the Eulerian angles (rotations) ({>q, 6^,

and Xq ^^^ri assume any real values, leading to the symmetry
<» n . .

decomposition f((|),e) = Z Z c e^"^^ PjJCcos 6) [Hamermesh,
n=0 m=-n ^

ix
pp. 325-337; Edmonds, Chap. 4]. Even the functions e , cos x,
sin X, Bessel functions, and the associated Legendre functions
may be defined on the basis of symmetry. The theory of group
representations not only defines these and similar decomposi-
tions but also provides orthogonalities (12') which are used
in computing the series coefficients and are basic to the
definitions of the transforms.

Returning to the general case (from the scalar case) , a
( n)function of a given symmetry type is denoted by f^ and is

said to belong to the mth row of the nth irreducible represen-
tation, i.e., n and m are the principal and subsidiary symmetry
indices and is the number of rows in the nth representation

(2n+l for the spherical case) . Of the cases presented in the
table, the row index m is needed only for the spherical case,
there being only one row in the other cases. As shown in the
table, the planar case is just a combination of two transla-
tions, while the cylindrical case is just a combination of a
rotation and a translation; hence, two indices are needed to
specify n in the planar and cylindrical cases. The parameters
k , k , and k assume all real values, while n and m assume
X y z

only integer values, and n is non-negative in the spherical
case. The spherical functions are those of a multipole ex-

pansion, 2^ being the order of the pole (dipole, quadrupole,
octapole, hexadecapole for n = 1, 2, 3, and 4); further, the
TM and TE modes represent electric and magnetic multipoles
respectively. Hansen's spherical wave functions [Stratton,
p. 416] have these properties, but we use slightly different
definitions (see tal3le 1 and section 6) . For those familiar
with quantum mechanics, the spherical n and m are 2TT/h times

15



the total angular momentum J and its z component respec-

tively. Scalar functions belonging to the given symmetry
types are given in table 1.

For the electromagnetic case, we assume for simplicity
in presentation that the medium is homogeneous, isotropic,
and source free. Then every solution of Maxwell's equations
obeys the eigenvalue equation

VxVxE = k^E or VxVxH = k^H

where E and H are the electric and magnetic field, the eigen-
value Ic^ = oo"^ ye, 0) is the angular frequency, and the magnetic
susceptibility y and the dielectric constant e are assumed to
be scalar constants.

Now consider any eigenvalue equation Hi) = k^i[i and any
group sucb that evejy group operation R commutes with the
operator H, i.e., RH = HR. Then one may choose a complete
set of solutions of the eigenvalue equation such that every
solution belongs to a row of an irreducible representation
of the group. Moreover, the gradient, divergence, and curl
each commute with any rotation, reflection, or translation
[see Kerns 1951] . Therefore a complete set of solutions of
the curl-curl equation -- and therefore a complete set of
solutions of Maxwell's equations -- may be chosen such that
every solution belongs to a row of an irreducible representa-
tion of any group which includes, e.g., only rotations,
translations, and/or reflections. Further, these solutions
will be orthogonal in the sense of section 5.5. This principle

- ik z

yields the e z dependence for waveguide of arbitrary
cross - section , the curl-curl operator commuting with z trans-
lation (see table 1)

.

We choose our solutions to belong to rows of irreducible
representations and hence (6) describes the behavior of the
solutions with respect to the scanning operations (say two
coordinates) assuming the representation coefficients (D's)
to be known. It should be noted that the coordinate system
is not assumed to (a) be orthogonal, (b) be one of the 11
coordinate systems formed from first and/or second degree
surfaces, or (c) provide separation of either Maxwell's
equations or the scalar Helmholtz equation. However, holding
a coordinate constant on a scanning surface implies some
separation with respect to that coordinate.

The application of (6) to vector fields requires care
since the effects of rotation and reflection on the unit
vectors must be considered. In general, one must distinguish
between true or polar vectors and pseudo or axial vectors

16



[Stratton, p. 67]. Upon reflection the former behave like the
associated arrow, while the latter behave like a directed loop
normal to the usual arrow [Kerns, 1951]. Thus, in the con-
ventional representation of a magnetic field by axial vectors,
the field reflects like the associated current loops.

For simplicity in treating vector fields, we confine our-
selves to an artifice which suffices in many cases. We intro-

duce the product of a scalar function f^ ^ belonging to a row

of an irreducible representation with a vector field e_^a which

is invariant under all operations of the group. Since reflec-
tion is not a possible scanning operation, we need not dis-
tinguish between polar and axial vectors even in taking the
curl, which converts axial to polar and vice versa. The
invariant vector field is commonly taken to be the unit vector
e^ in the z direction for planar and cylindrical scanning, but

need not be. For example, for plane polar scanning or circu-
lar scanning e_^

,
e_^

,
e_^ , and every linear combination of them

are invariant under the scanning operations.

Then the function e. f^ ^ I belongs to the mth row of the—1 m " ^

nth irreducible representation, where f and i are scalar func-
tions of those coordinates which are variable and constant
respectively during the scanning. [The function i may be
determined by whether the mode is incoming or outgoing and
either from the reduced (usually one dimensional) differential
equation or equivalently by s>Tnmetry with respect to a larger
group (see section 5.4 and table 1}.} In analogy with Hansen's
treatment [Stratton, Chapter VII], we introduce the functions

M*^*^^ E V X (e. f^^^ i) (6']

—m —

m

We write p^^^ to indicate either m'-*'^-^ or n'^^'^'' ,
using s equal

to 1 or 2 to indicate M or N_ respectively. Unlike Hansen's
original development, these equations provide constructive
(as opposed to hit or miss) procedures for obtaining modes
with natural non-constant definitions of transverse. xMore
importantly, they satisfy (6) and particularly (7) for their
variation during scanning operations, without complications
due to variation of the unit vectors during scanning. (To
satisfy (7) in its simple form, the f's must be normalized
as described after (7).) From their construction, the M ' s

and N's are linearly independent and remain so during scanning
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The M.' s and N.' s actually obtained by the preceding arti-
fice obey the divergence condition and belong to a specific
row of a specific irreducible representation as do the solu-
tions of Maxwell's equations. However, for some groups or
coordinate systems, some of the M.' s and Ji.' s may not exist, say
those formed with e^ = e^ [Morse and Feshbach, p. 1764 ff.].

That is, for some coordinate systems, some solutions of
Maxwell's equations and some fields of given symmetry may be
inconsistent with the functional forms (particularly the
factorization) arbitrarily imposed by (6') and (6"). In
such cases, direct application of (6) may yield the missing
solutions of Maxwell's equations.

5 . 2 Coordinate Transformations of Modal Functions

The modes then have known symmetry properties which may
be used to determine the G's as functions of R and decouple
the equations. Just as the behavior of an even function and
of an odd function under reflection in the x = 0 plane is well

( n) (defined, so is the behavior of each function f^ (P) , M^ '

,

In]
and ' under each of the symmetry operations R of the group.

Here we have a non-denumerable number of symmetry operations,
so the behavior on the whole scanning surface is prescribed.
Specifically, the following equation (7) gives a function or
mode (of a given symmetry) fixed in the probe (moving) coordi-
nate system in terms of functions or modes in the test-antenna
coordinate system fixed in space. (See after (6) for the
definition of 0^.) Thus,

ORPi''^(p) = I vl^h^) ^Lu^m- (7)

(For a simpler analog, see Hamermesh [p. Ill (3-66)].) The

p^'^-^'s are partner functions, i.e., functions f^*^"^
> M^*^^ > or

( n)
of a given symmetry but with relative normalizations such

that (7) is valid for all y values of a given representation
n. Note that only functions of the same representation (n)

but various rows (m) are involved; an example is given by the
equation

cos ni<^±(pQ) = cos nc{) cos nc})^ + sin n<t) sin ncf) 0'

cos n<p and sin nc}) belonging to the same nth representation
but different rows of the group C^^ which includes reflection
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as well as rotation on a circle. (This group provides the
basis for the sine-cosine Fourier series decomposition.) For
planar and circular cylindrical scanning, the sum in eq. (7)
has only a single term, there being only a single row in the
representations. Equation (7] provides "addition theorems"
for functions. For example, the group defined by plane
polar coordinates provides definitions of the cylindrical
Bessel functions and, through (7), Graf's addition theorem
for Bessel functions, used by Leach and Paris for the trans-
lation of axis (Tq) correction for circular cylindrical
scanning

.

For mathematical simplicity in the application of eq . (7),
we choose the modes to be partner functions. For the M_' s and

N's, this is achieved by choosing the scalar f^ ' s to be

scalar partner functions. For the probe pattern correction
case, the same modes (including the same polarization prop-
erties) are chosen for the test antenna and probe for R = 0

(superimposed coordinate systems) , but the probe modes are
fixed in the moving probe coordinate system. Each modal index
includes a polarization index, row index(es), and representa-
tion index(es) . They are designated as follows:

test antenna probe
M u U

polarization index s a a

row index (es) m y y

representation index(es) n v v

Following Jensen, Latin letters are used for the test antenna
and the corresponding Greek letters for the probe, Tilde
overlining is used for modes defined relative to the extended
group (R's), while no underlining is used for the group de-
fined by the scanning surface (R's). The larger group is
used for the transformation of probe coefficients ((4) to

(5)) and is discussed in section 5.4. The reader not interested
in probe pattern correction may skip to section 5.5.

We can now. determine the G's of (5) as functions of Rj_

Equat_ion (5) states tha.t the probe mode U of polarization a,
row y, representation v and coefficient in the probe

coordinate system gives rise in the test antenna system to a
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mode M (among others) with polarization s, row m, representa-
tion n, and coefficient Gj^y(R) P^. Equation (7) states that

the same probe mode U gives rise in the jtest antenna coordi-
nate system to a mode with polarization a, row m, representa-

Further the coefficienttion V, and coefficient D^^-^fR) P„,
' _ my ^ U _

is zero unless n = v due to (7) and unless s = a provided
that the polarization type remains unchanged during scanning
(under the R's, see section 5.1). Moreover, the fact that
the same modes are used for the test antenna and probe for
R = 0 permits identification of the summation index of (7)
with m of M. Hence,

SU^^^ = ^mt^^^) ^nv 'so (8)

where 6^-^ = 1 if n = N but zero if n ?^N. Thus, (5) becomes

»! t

bp (R) =

1-r

1
TTf—rrr

smny
y

qsmn j3(n)^R) psyn
^

^ — ^ my ^ (9)

which expresses the variation of the received signal on the
scanning surface. The modal indices M and U are expressed

•^^^ for P,explicitly,

making use of the 6

I.e., we write ^smn r ^
Q for Q, and P-

functions of (8) in the latter case.
Note that no term contributes to eq . (9) unless the modes of
the test antenna and probe, each in its own (translated)
coordinate system, belong to the same representation and have
the same polarization.

5 . 3 Orthogonalities and Decoupling the Equations

To decouple the equations, orthogonalities are required.
These are provided by the equations [Pontrjagin, pp. 110-116]

/ D^-^ (R) D^V-Ur)* P(R) dR = 6(k -k') 6 (k -k') (10)^j^my^^ m'y'^^ ^ ' ^ x x-' J J

= 6„„, H\-^[) (11)

\Kn' 'ma' ^^J

where (10), (11), and (12) apply respectively to the planar,
circular cylindrical, and spherical cases, and 6 (x) is the
Dirac delta "function." Primes on modal indices merely indi-
cate distinct index values, not a coordinate system or an
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antenna. Equation il2) applies to any "compact" group,
essentially to any smooth coordinate surface of finite area
[but not to a plane or cylinder) , and (10) and (11) are
analogs of (12) for two non-compact cases. The preceding
equations of this section 5 apply for any compact group
and the cases given, but extension to other cases requires
individual investigation. (The general theory of representa-
tions of non-compact groups is not well understood except for
two classes and not simple for these two [Haig et al., p. 295
ff ] . Even for compact groups, each irreducible representa-
tion here consists of a non-denumerable number of matrices,
one for each R, the row and column being indicated by the
first and second subscripts on the D's; further, there is an
infinite number of irreducible representations. However, for
the planar case, there is a non-denumerable number of irre-
ducible representations and, for the plane polar coordinate
case, the matrices forming the irreducible representations
are of infinite order.)

Because of eqs . (10) to (12), multiplication of both
fn ' ]

sides of eq. (9) by D^, —
,
(R)'^ -(R) and integrating over R

(all values of the scanning parameters on the scanning surface)
yields

/ b'''(R) D^V-Ur)'^ =(R) dR = }rr-TrT I % P..
' ^^^^

R ^ m - 1-: :^ M u ^ ^

where the "double" sum now contains only two terms, one for
each polarization, both the row and the representation of both
the probe and test antenna modes being specified. Unless a

single polarization can be assumed, measurements are made with
two probes or one probe with two orientations, so that eq. (13)
decouples the simultaneous equations (9) into sets of two
equations (probe orientations) in two unknowns (coefficients
for the two polarizations) . Note that no assumptions or
approximations have been made concerning the polarization
of either the near field (as a function of position) or the
far field (as a function of direction) of either the test
antenna or probe (s) except that the two by two matrices of
the probe coefficients be non- s ingular

.

The preceding analysis together with table 1 explains
why decoupling of the simultaneous equations is obtained by
the Fourier transform in the planar case, the Fourier transform-
Fourier series decomposition in the circular cylindrical case,
and by the representation coefficients of the spherical point
group in the spherical case.
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5.4 Probe Pattern Transformation

The addition theorem expression (7) is also useful in
obtaining the probe pattern coefficients of (5) from those of
(4), i.e., in transforming the probe coefficients to those
characteristic of a zero value of the coordinate held fixed
in scanning (Zq for the planar case and r^ for the cylindrical

and spherical cases) . Consider the group of operations R
which includes both the scanning parameters R and those held^
fixed during scanning, then (7) is valid with R replaced by R
and the D's of the scanning group replaced by those of the
larger group. The modified (7) is then used to obtain the
g's of (4). For the planar case, this just adds the factor
+ik^ZQ

e to D*-— (R) ,
i.e., the correction factor for the probe

+ik Zf.
z 0pattern coefficients is just e . For the cylindrical

case, this gives Graf's addition theorem for Hankel functions,
used by Leach and Paris for this transformation. Moreover,
for these two cases, change of z^ or r^ does not change TE to

TM modes or vice versa, TE and TM being defined relative to
a Zq = constant plane. Hence, the probe pattern transforma-

tions are simply obtained with eq. (7).

For the spherical case, translation of the center of the
probe coordinate system from r^ = 0 to r^ = r^ mixes TE and

TM modes, these modes being transverse with respect to sur-
sn

faces of concentric spheres. Hence, Jensen's C fAl ' s are

non-zero even for s ^ a if y 0 (see eq. (15)). See Appendix
II for details.

5 . 5 Data Reduction Without Probe Pattern Correction

A marked simplification of the data processing may be
achieved if the probe may be treated as a (high impedance)
ideal dipole which gives a field component at a point. In
this case the two antenna problem disappears and with it the
need for coordinate transformations of the probe modal func-
tions, both during the scanning process (eq. (7)) and due to
the coordinate held fixed during scanning (section 5.4 and
(15)). The elimination of the latter transformation is par-
ticularly helpful in the spherical and cylindrical cases.

Even with probes made from conventionally sized rec-
tangular waveguide, moderate accuracy can be obtained by
treating the probe as an ideal dipole. It is of course well
known that the pattern of a short dipole is very similar to
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that of an ideal dipole. The probes described in section 7

as well as electric dipoles short compared to half a wave-
length should provide a significantly better approximation
than rectangular guide.

From a mathematical viewpoint, gv*,, (R) P of (4) is re-

placed by f^ (R) for the acoustic case or by, e.g., (R)

or N^^-^ (R) of (6') or (6") for the electromagnetic case.

Since the probe is assumed to directly measure the field
without perturbing it, the probe coefficients (p 's) are no
longer pertinent.

Equations (7) through (13) and (15) and even the repre-
sentation coefficients are no longer needed (except in an
abstract sense in the following) . With the aid of (12) and
a proof analogous to that given by Wigner [p. 115] for finite
groups , it may be shown that

/ f'^^^(R) g'^7''' (R)* P(R) dR = 6 ,6 , / f'^^^(R) g'^^^(R)* p (R)
l^m ^-'^m' ^ ' ^ < J nn' mm'|^m ^-^^m ^-^ j

(12')

is zero unless both n = n' and m = m'; in addition, it is
independent of m, provided that both the f's and g's are
partner functions. In the integration, the variable which is
constant on the scanning surface is fixed.

For the electromagnetic case,

/ F^"^^(R) -G^'"^'^' (R)* p(R) dR
R

. . (^12")

= 6 ,6 ,
/ F^"^^(R) -G^ '"^^(R) * p(R) dR,

nn' mm'j^— >

where the G's, like the F's, may be M's or N's and in our
applications may differ Trom the F^'s in normalization or in
the function of the variable held constant during scanning,
say in the type of Hankel function. Again if both the F's
and G^'s are partner functions, the integrals are independent
of m.

yields

If a vector field, electric or magnetic, is represented

s ,m ,

n

by F(R) = Z Q^"^^ F^ "^^(R), then the application of (12")
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It t ~ o ' •

/ b'n' (R)-G^ "^^(R)* p(R) dR
R V (13')

II

= mt—rrr Z Q / F (R) 'G (R)* p(R).dR
' 1-T s R

which may be used to determine the Q's. The integral on the
s n s '

right hand side C can commonly be evaluated in closed form
(e.g., see section 9). Since the invariant (£^) component is

zero for the M.' s and has the same symmetry properties as a
scalar for the N.'s, (12'), (12"), and (13') apply for the in-
variant components alone. Further, the transverse components
(those orthogonal to £^) obey by themselves (12") and (13').

Hence, it is usually convenient to measure two transverse
components of E_, two transverse components of H, or the in-
variant (e^) components of both E and H^. The latter gives

rise to two independent "scalar" decompositions with complete
decoupling. Application of (13') to the transverse components
always decouples into sets of no more than two equations in
two unknowns. The decoupling is commonly complete, i.e., the
factor "5^^, occurs on the right hand side of (13'), eliminat-

ing the sum. Since "N^^"^ = 0 at every point [Brand,

p. 231] if the definitions (6') and (6") are used, decoupling
always occurs if the Ws or N's are real [Hamermesh, p. 138
ff ] . It also occurs for planar, cylindrical, and spherical
scanning [Stratton, p. 395 (17), p. 397 (33) and (34); Stein
(6)] (for the cylindrical case with £• = £ if the medium is
lossless) .

1 z

Expressions related to (10) or (11) rather than (12) are
also available, but m is then redundant. Equation (12') and
its analogs provide innumerable orthogonalities, which are
used, e.g., for the computations in Fourier series, Fourier
transform, and Hankel transform decompositions.
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III. DETAILS OF SPHERICAL SCANNING

6 . Basic Equations

We now adapt the general treatment to the spherical case.
To the extent feasible, we use the notation of Jensen and our
two previous progress reports. However, to include the mis-
match correction, receiving as well as transmitting test
antennas, non-reciprocal probes, etc., some changes in defi-
nitions and notation are made. Because the general treatment
of sections 4 and 5 is rather abstract, this discussion of
spherical scanning is made rather self-contained, even at the
expense of repetition, and of course detailed and specific.

It is assumed that the probe revolves about the test
antenna with the z' axis of the (primed) coordinate system
0'r'G'(j)' fixed in the probe passing through the origin 0 of
the (unprimed) coordinate system Or0(j) fixed in the antenna.
Neglecting multiple reflections between the probe and antenna,
assuming the medium, probe, and antenna are electrically
linear, and assuming the medium is homogeneous and isotropic,
the complex received amplitude with "probe" t (t = 1,2) is
given by

W (A,XQ,eQ,(t)Q) = I q V g^^^ i^.XQ,QQ,^Q) (14)
s ,m,n
a,y,v

a special case of (4) (developed in section 4) . (One probe
with two orientations or two probes are required to deter-
mine polarization effects.) To be explicit and in accord-
ance with both the table^of section 5.2^^nd JaMe 1, we
express

qj^, p^, and gj^^CR) of (4) as q^'"
» P ^

'

g^^^(A,Xn > ' *}'n)
respectively. For notational simplicity,

~01J V U U U
, It I It I tl tit

Jensen's W is redefined as b^ (l-F r^^
^/^O

^^^'^^ ^0

the complex amplitude of the signal delivered to the load
It

of the receiving antenna (probe or test antenna)
,

a^ is

the complex amplitude of the signal fed to the transmit-
ti I It f

ting antenna (test antenna or probe) , and (l-F ) is a
It t tl t

L'

mismatch factor, and F being the complex reflection

coefficients at the reference plane of the receiving antenna,
looking toward the load and antenna respectively with the
antenna looking into space. Here 6^, and Xq "the

Eulerian angles which express the orientation of the probe
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coordinate system with respect to the antenna coordinate sys-
tem, and A is the distance between the origins o£ the two
systems. See figure 3. A = r^ is the radius of the scanning

sphere. The q's and g's are the modal coefficients expressing
the patterns of the test antenna and probe respectively, each
in its own coordinate system, whether the transmission be from
the test antenna to the probe or from the probe to the test
antenna. The same modal types, including types of polariza-
tion, are used for the test antenna and probe, such that the
modes are identical for superposed coordinate systems

^^0 ~ ^0 ~ ^0 ^ ^ ~ '^0 ^ ^-^ * transmitting pattern T is

used for the transmitting antenna and the receiving pattern
R for the- receiving antenna (see (3)). Jensen assumes that
the probe receives and uses its transmitting pattern, not its
receiving pattern, with a reciprocity relation in his g's.
To distinguish, we use p and g rather than p and g, but
otherwise adopt Jensen's notation. Further, modal indices
are used as superscripts and/or subscripts in the manner of
Jensen. The bilinear form of (14) is due to linearity and
the neglect of multiple reflections; the detailed nature of
the j's is due to the symmetry of the spherical modes fsee
(16), (15), and Appendix II).

Of the modal indices, the polarization indices s and o
each assume the values 1 and 2 for the M and N modes (of
section 5.1) respectively, m and y express the dependences
of the modes upon the azimuthal angles (j) and (j) ' , and n and v
(with m and y) express the dependences upon the polar angles
0 and 9'. As in section 5 and table 1, m and y indicate rows
and n and v representations of the (spherical) symmetry
group. For a homogeneous isotropic source-free medium, we
identify the M and N modes of (6') and (6") with TE and TM
modes respectively "[Stratton, Chapter VII]. Transverse is
defined relative to spheres centered at the origin of the
given coordinate system, i.e., e^ of section 5.1 is See

Appendix II for the full description and normalization of
the modes.

The p's are assumed known from previous measurements of
the probe~pattern in its far field (see section 9). The q's
are to be determined from the set of simultaneous equations
(14) and the measured values of W. However, there are two
complex equations for every measurement point, and the g's are
very difficult to compute and seldom zero. For practical data
reduction, the equations must be decoupled and computation of
the g's must be minimized or eliminated.
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For a given "probe" t, a given radius A of the scanning
(measureinent ) sphere, and a given frequency, the probe pattern
may be transformed once and for all to the origin of the test
antenna, namely

a ,v

The c's are simply related to Jensen's C's [pp. 107-112] and
this transformation is discussed in detail in Appendix II.

Renormalizing the q's and p's for computational conven-
ience and expressing the angular dependence explicitly, eq.

(14) becomes

s,m,n y
^^^^

a special case of (9) v.'hich is proved_in section 5.2. (Due
to the form of (15) , we may identify " with y. We add the
indices A and t to p, P, and W to be explicit.) Equation (16)
is a generalization of Jensen's (2.122), (VII. 25), renormalized
for computational simplicity. That is, the P's and Q's of
both (9) and (16) are coefficients of partner functions dis-
cussed in section 5.2. The functions may be, e.g., Edmonds

spherical harmonics Y (£,;) rather than P^(cos 5) e"'"^"'^ mn ^ ' ^ ^ n
[Edmonds, pp. 53, 54, 59], eliminating Jensen's factor [VII. 15]

(-y/|y|)"- (-m/im,)"" {(n+|yj)l (n- , m
|

) ! / (n-
| y

|

) ! (n+imj)!}^/"
from routine computations . The three angular factors of (16)

constitute the representation coefficient D^^''(R) of (9),
f n 1

mi-

here
(?o' ^0' '^0''

'^'^^ spherical point group [section 5;

table 1; Edmonds, (4.2.12)]. The d's are truncated Fourier
series [Edmonds, (4.5.2)] in 5^, proportional to associated

Legendre functions for y = 0 or m = 0

.

Note that we define the Eulerian angles Cg, 6^, and

as operations upon the moving probe and its moving coordinate
system, leading to (7) which expresses moving (probe) modes in
terms of fixed (test antenna) modes. On the contrary, Edmonds
[pp. 53-55] and Stein [p. 21] define the Eulerian angles as
operating upon a moving coordinate system used to expand a

function (mode) fixed in space, giving rise to Edmonds equa-
tion (4.1.4) which expands a function fixed in space (test
antenna mode) in terms of moving functions (probe modes)

.

Hence, our 5^, and Xq correspond in this application to
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Edmonds "Xq* ~^q» "^q ^^^pectively . Although Jensen

describes 6^ and cj)^ as position coordinates of the probe

[page 36] , he nevertheless makes this transcription in his
equations (VII. 16) and (VII. 23). However, in his explicit
expression for the F (VII. 25), he gives a form inconsistent
with his (VII. 15) and (VII. 16). Moreover, as previously men-
tioned, he includes a reciprocity relation in his g given in
his equations (2.121) and (2.122). Hence our formulas differ
from his.

Now

27T TT 277 ,

(n')
sin 9q)

87T'

dcj^ode^dxo

=6 ,6 ,6 ,/(2n+l)
nn' mm' yy ^ ^ (17)

[Edmonds, (4.6.1)], a special case of (12) which is a stand-
ard expression. Primes on modal indices are used to indicate
another specific value, not a coordinate system or antenna.

fn' 1Hence, multiplication of (16) by Diji»y«(^o'

8tt^ and integration reduces (16) to
'o»

Xq)* (sin Qq)/

27T 77 277

/ / / W^^cD
877^ 0 0 0

0 .Q,Xo)* sin0Q d({)QdeQdXo

^ ^Qlm'n'ply'n'At
^

Q2m 'n •p2y'n 'At^/
^2n+l)

(18)

a special case of (13). Thus, the simultaneous equations
(16) have been reduced to sets of two equations (for two
"probes") in two unknowns (Q's).

7 . Probe Design
^

Since the integrations over (j)^ and Xq are essentially

finite Fourier series decompositions due to the exponentials
of D (see table 1 and (16)), the totality of the integrations
over and Xq (for all m' and y') are easily carried out

without approximation (except for possible aliasing) as a
single two dimensional Fast Fourier "Transform." However,
by proper probe design, it is possible to eliminate measure-
ments (and computation) as a function of Xq» reduce the

number of P's necessary to express the probe pattern, and
reduce the required number of D's to those for one or two y
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values. Moreover, as will be shown, it is unnecessary to
compute the D's or to carry out ordinary numerical integra-
tion over Oq, or Xq-

Specifically, i£ the probe is circularly (azimuthally)
symmetric in the material sense and its leads (e.g., waveguide)
propagate only a single mode, the y value is determined,
eliminating measurements and integration as a function of xq •

The probe may have arbitrary variation of its cross section
with length (e.g., arbitrary flare), leading to an arbitrary
dependence of the probe pattern upon its polar angle 6'.

For the TE^-j^ mode of circular guide (t = 1) and the TEM

mode of coaxial guide (t = 2), y = 0. The. first probe responds
only to spherical TE modes (a = 1) and the second to only
spherical TM modes (a = 2) , regardless of fringing as may be
seen in figure 4. Qualitatively they respond to the radial
components of H and E respectively. Although such probes are
quite impractical in the far field, they may be quite prac-
tical for the very near field, as James and Longdon's measure-

snments of the radial electric field show. Since c (A) of
ay V ^ ^

(15) for y = 0 is zero if s a (see Appendix II) , we may set
s = a = t and this procedure results in complete separation
of the unknowns (Q's). (Modes other than the TE^-j^ mode in

circular guide may be suppressed with vanes, a TE^-j^ guide 1 km
long being under construction in Japan.

For an arbitrary distance from the test antenna, the
lowest mode of circular guide (the TE^^ niode) may be used or
alternatively a thin dipole short compared to a half a wave-
length. For such probes, y = ±1. They measure essentially
the transverse electric field and respond to both TM and TE
spherical modes

.

The pattern of each aforementioned probe has precisely
the same azimuthal ((})') dependence as that of an ideal
dipole, while the commonly used rectangular guide probes must
have high order multipole constituents just to meet the cross-
sectional boundary conditions. Hence, small probes of the
aforementioned types would be expected to provide quite good
approximations to ideal dipoles . The case of no probe cor-
rection is discussed in section 9.

8 . Computation of the Test Antenna Pattern Coefficients (Q's)

For the probe correction case with a probe used to meas-
ure the transverse electric field, the data are desired in

+iyxo
the "circular" polarization representation (e > y = ±1) ,
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rather than the "linear" representation (cos PXq* sin |y| Xq) >

as may be seen from (16). However, since probes designed to
receive a single "circular" polarization tend to be quite
frequency dependent, a probe designed to receive "linear"
polarization is used. For a circular waveguide probe, a
circular to rectangular waveguide transition may be used
and/or a vane used in the circular guide to fix the polari-
zation. In any event, the circular guide should be long
enough and of such a diameter as to propagate only the TE^j^
mode. Then from eq . (16), the complex received signal
corresponding to y = ±1 is given by

W(y = ±1) = |[W(Xo = 0) ± iW(xQ=7T/2)] , (19)

where Xq is the Eulerian angle describing the rotation of the

probe about its own axis. Thus, a FFT with respect to (j)Q,

coupled with eq. (19) for transverse component probes, reduces
(16) to sets of equations of the form

^myAt^Q^^ ^
I

Q^"^^ ps^^t d^^^Og)
s , n

^1 my ^ 0'^-' ^n n '

s = l

(20)

where m and y are known, t is needed only for the y = 0 case
and n >_ |m|, |y|. We use matrix notation to relate the ana-
lysis more closely to the required computer programming.
Broken brackets are used to indicate a row matrix and curly
brackets to indicate a column matrix. In the following,
indices which indicate rows and columns are lowered to the
subscript position; where this is impractical, the index is
encircled

.

Separation according to the n value is conceptually
based upon the orthogonality of the d's, namely

/ d^^^(e^) d^^'^(e^) sin 0„ de^ = 6 ,/in+h, (21)^my^O-^ my ^0-^ 0 0 nn"^ 2^' ^

a special case of (17) utilizing the definition of the D's in
(16) . The integration is one dimensional since separation
according to m and y has already been achieved. Hence, pre-

multiplying both sides of (20) by the column matrix ^^^^^(6^)

sin 9^} and integrating, one obtains
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my

= I / {dOcej sin e,} Ld^^cejJ {q'"' p^^^^} de^
s=l 0 0 my ^ 0^-' n 0

s = l

since the integration over the 6^, matrices yields a diagonal
1

matrix with diagonal elements l/Cn+y). Thus, the simultaneous

equations represented by (16) have been split into sets of

two equations in two complex "scalar" unknowns q-'"^'^ and Q^^^.

For the transverse probes, there are two equations for y = +1
and -1, while for the radial y = 0 probes, two physical
probes are used, t = s, and the decoupling of the equations
is complete.

However, we wish to avoid the computation of the d's and
the numerical integration implied by the left hand side of
(22) . To evaluate the left hand side of (22) , we express both
^myAt.g

-J
^j^g elements of {d®-^ (0^,) sin 6„} as Fourier

^ O'^ my ^ 0'^ 0

series. Since w"^^^^(er.), like the d^^-^(6„)'s, is even or odd^0 my ^ 0

in 9q as m-y is even or odd (see Appendix I), the values for

negative 0^ may be filled in and an ordinary FFT carried out.

Since the values for negative 0^ are introduced only during

the computation for a given m and y, they add little to the
computer storage problem. Thus, FFT ' s are carried out over

for each non-negative 0q value followed by FFT's over 0^

for each m value, rather than a two-dimensional FFT; however,
the number of multiplications is identical. This yields
^m"myAt^ where

^myAt^Q^^ =Le^°J {W^JI^} . (23)

Since d^^-* (0^) is given by a sine or cosine Fourier
my ^ 0"^ ^ ^

series of order n with real constant coefficients (see Appen

dix I), {cij^^^(eQ) sin 0q} is given by the product [f^J^,]

31



where m' runs from -n-1 to +n+l. The indices m and
y on the first matrix merely indicate which rectangular
matrix is involved. Thus, the left side of eq . (22) becomes

= [£'^^] [n
, „] {wT/*},nm ' m'm" m" '

(24)

where the elements of n are equal to it for m'+m" = 0, equal
to 2i/(m'+m") for m'+m" odd, and equal to zero if m'+m" is
even but not zero. Thus, (22) becomes

n nm"-" m

2

s = l

where [f"^^„] = [f"^^,][n , . Both the [f]'s and [F]'s are
nm" nm ' m' m" ^

constant matrices with all the elements either pure real or
pure imaginary. Computation of [f] is described in Appendix I

The forward "multiplying matrix" [F^|j|n] is computed for

each value of y (zero or +1 and -1) and each value of m, the
number of m values being no greater than the number of

values used on a latitude. As previously noted, the matrices
are independent of the frequency, the test antenna, the choice
of measurement points, the detailed nature of the probe (s) t,
and the radius r^ = A of the scanning sphere, although the y

value (s) depend upon the probe type(s) and the appropriate
number of m values depends upon the fine structure of the
antenna pattern. Hence the [F]'s need to be computed only
once.

Actually, the computation implied by (24) may be con-
siderably simplified by symmetry analysis analogous to that
which justifies writing

a b

/ / £(x,y) e(x) o(y) dx dy
x=-a y=-b

a b

" ^ / / ^eo'^'''>'^ ^^""^ ""^y^
x=0 y=0
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where eCx) is an even function, oCy) is an odd function, and
f^^(x,y) is that part of fCx,y) which is even with respect to

X and odd with respect to y [Hamermesh (3-184), table 4-11,
C2^] . This shows that the cross-diagonal (m'+m" = 0) terms

of n do not contribute and that the matrix elements for nega-
tive m' or m" are unneeded. Thus, the f's for negative m'
need not be computed or used, the W's for negative m" are
not used, and n is replaced by a quadrant submatrix of the
appropriate constituent of 11 (eo or oe) .

The previously described computations thus yield two
equations (y = +1, -1) in two unknowns (Q's). The equations
are easily solved for the Q's, assuming the P's (discussed in
Appendix II) are known. (For the y = 0 probes, the separa-
tion occurs with the probe, namely t = s.)

9 . Data Processing Without Probe Pattern Correction;

Determination of Probe Pattern

As mentioned in section 5.5, the data reduction is
markedly simplified if a probe pattern correction is not re-
quired. In particular, the translational transformation (15)
is eliminated. In this approximation, two of the spherical
(e^, £g ,

_e^) components of the field are measured directly.

In a flow-chart sense, the data processing is much the
same as for the case with probe correction. Equation (16)
for the measured field is replaced by the vector equation

W^(e,4') = I
Q^"^^ F^"^^^(e ,(})) (16')

where the F's are defined in section 5.1 and we no longer need
to distinguish between 6 and 0^ or between <p and (p^. The
decomposition equation (18) is replaced by

77 2tJ

1 j W'^(e ,(})) •G'"""(e ,({))* sin e dQd(t>

e=o (})=o (18')

= Q^"^^
/ / F^"^^(e,(i)).G^"'''(e,(j))'^ sin e dedcj),

6 = 0 (})
= 0

a special case of (13') of section 5.5. (Primed equation
numbers are used to display correspondences.) The integra-
tion over Xq implied by (13') merely introduces the (cancelled)

factor 277 since the integrands are independent of this variable
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• It A

and W just being representations of the actual complex

vector field of the test antenna. [Although discussion is
sometimes in terms of a transmitting test antenna for con-
venience, this section, like the rest of this report, applies
equally well to a receiving test antenna.) Further, an analog
of the y decomposition (^19) is unneeded; the indices y and t

no longer occur. As mentioned in section 5,5, the M and N
functions are orthogonal for the spherical case [Stein (67] ,

so that the decoupling is complete.

So that the right hand side will be independent of m, we

base the G's upon partner functions rather than P^(cos 6)e'^^'^

(see sectTons 5.2 and 6). For brevity, we confine our further
discussion to the more complicated but important case of
transverse component measurement. Since (18') is a special
case of (13') which holds for the transverse components alone
(as discussed in section 5,5), we choose G's without com-

A smnAponents and suppress such components in both W and F of
(16') and (18') and in the remainder of this section. We de-
r . ^lmn^„ ,

•> ^ T -^m im6 ^.mn nmn jfine G (e,(l)) = (-l) e ^(A e^-B e^) and

^2mn^„ ^ , >.m imd) r-n^^ ^ A^^ri n u^^^ a^i^i . j(n)^Qs /

G (e,(})) = (-1) e ^ (B + A e^) where A = im %q /

sin 0 and b"^^ = d(d^Q^ (9) ) /de . Thus, we make use of the d's

required for data processing with probe correction rather than
introducing additional functions such as Edmond's spherical
harmonics (Y's) [Edmonds, (4.1.25)].

For the e"*"^^ dependence which we use, the Fourier series
decomposition with respect to 0 is easily carried out (for
each non-negative 0) by means of an FFT, reducing (16') to
sets of vector equations of the form

jToAm^ V i T-smA

s

where m is known, n >_ |m| , and F (B) is the coefficient of
giinct)

^j^g Fourier series expansion of F^^^"^ ( 0 , (J)) . Premul-
s ' m

tiplying both sides of (20') by the column matrix {G , (0)
sin 0 } , we obtain

/ {G^i^'^O)* sin 0}-w"^(0) d0
0

^

=
I / {G^.'^'Ce)'^ sin 0}.LFn"^C0)J{Qn"'} dQ (22')
s 0 .

= {C^^ Q^"^} 6,6,n ^n s s ' nn

'
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where G^^^^C-) is the coefficient of e"""^^ in the Fourier series

. „ ^smn.^ J ^snA ^"^ ^-SInnA^^^ ^smn,^^* . j ^expansion of G_ C->^J a-^-O- C = / F C3)'G (Q)^ sm v d9

,

0

the integral being independent of m, zero for s ^ s' or n n

'

[section 5.5], and available in closed form [Stratton, p. 417
(20)]. Thus, complete decoupling has been achieved.

To avoid both the evaluation of the G's as functions of
e and ordinary numerical integration, we proceed as with (22),
i.e., we express the left hand side of (22') in terms of
Fourier series. The A's and B's are odd functions of 0 for
even m and even functions of 9 for odd m (see Appendix I)

.

Moreover, both the A's and B's are given by Fourier series
of order n (see Appendix I and Stratton p. 401 (12), noting

that A = 0 if m = 0). Thus, we may write {A^(e)} =
[aJJ^^ . ] ^ e^® ®

} ,

{B^(e)} = [b^ ,]{e^©S}, and {G^^(e)'^ sin 9} = [^^^
, ] {

e^©^
} ,n ^ ^ ^ nm '

' —n "-^nm '
^

'

where for each s and m, the elements of the G_' s and g_'s are
two-vectors and m' of the last equation runs from -n-1 to
n+1. The a's, b's, and _g_' s may be evaluated like the f's
described in Appendix I. Further, a development analogous to
that in section 8 leads to

= {Q^"" C^-^}, (26-)

where [G ',,] = [g "
, ] fll , u] . Note that the elements of both the

—nm '-^nm' m'm-'

left hand side of (25') and the right hand side of (26') are
"scalars" (matrices with a single row and column) and that the
decoupling is complete, not merely into sets of two equations

in two unknoisTis (Q's). As in computing {w|||n" } from W^^" (5^)

in section 8, so in computing {W^"^} from W^'^(6), the values

of W (9) for negative 9 are filled in according to whether
m is even or odd.

The preceding treatment is convenient for determining
the probe pattern coefficients (p's). The probe is scanned
on a spherical surface in its far field with a standard probe
of known polarization, preferably linear. Hence, for a nor-
mal type standard probe, only its on-axis properties are re-
quired and it may be considered to be an ideal electric
dipole (a = 2, y = -1, v = 1) since it essentially measures
the field of the probe at a point on the measurement sphere.
If absolute values and the ultimate in accuracy are required,
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the properties of the standard probe may be determined by
the three antenna method [Newell, Baird, and Wacker] . If
only relative values are needed and the standard probe may
be assumed to have a known linear polarization, no measure-
ments of the standard probe or of the load mismatch factor
are required. Since the measurement probe always faces the .

test antenna, information concerning its pattern is required
only for the facing hemisphere ^ 6

' i 'n'/2) . Further, for
large separations between the probe and test antenna, the
pattern well off axis (9' near tt/Z) is relatively unimportant.

10. Statistical Considerations

If the number of Q's is equal to twice the number of
measurement points, the data will usually be fitted exactly,
including random experimental error. However, it is desirable
to discriminate against random error as one does in drawing a
rather smooth curve through 1000 data values, say by using a
polynomial of moderate degree rather than degree 999. One
may similarly discriminate here by using a smaller number of
Q's, say by leaving out those corresponding to the higher n's
and m's, these corresponding to a rapid angular variation
which is not realistic outside the reactive zone of the an-
tenna. This may be done arbitrarily, or the Fisher-Snedecor
F test of statistical significance [Bennett and Franklin,
pp. 108-110, 192 ff.] may be used, as in the NBS extrapolation
method. Even better, one may plot weighted squares of the
magnitudes of the Q's as functions of n and m, omitting those
down in the noise. The latter methods provide statistical
justification for the choice of individual Q's, throwing out
those Q's for which the square of its magnitude is below a

simple criterion. Our formulation has the advantage that it
gives least square values of the Q's, regardless of the set
of Q's chosen- - least square in the sense that the sum of the
squares of the magnitudes of complex deviations of the fitted
from the experimental near-field data, weighted with the fac-
tor sin 9q, is minimized. Jensen's original procedure requires

as many Q's as measurements and does not give least squares
values. (For the probe correction and no probe correction
cases, the aforementioned weighted squares are
iQsmn pSunAt/^,2 |Qsmn/^snA gSnA*

|

a respectively, where

snA _ „smnA/^smn „i • ^ j ^ ^.r,
g = F /G . These squares are appropriate due to the
propertTes of orthonormal funct ions [Riesz and Sz.-Nagy, p. 66],

B^^^ and F^mnA^/^snA ^snA*
^^^^^ orthonormal in the sense

of the scalar product of a Hilbert space [Riesz and Sz.-Nagy,
p. 198]. (See (12), (17), and (12"), noting that the integral
on the right hand side of (12") is zero for the spherical case
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unless s = s'. For simplicity, it may be convenient to sum
over y and/or s and then test for the joint significance of
combinations of functions.

11 . Computation of the Far Field

For an electrically large antenna, there are many sig-
nificant Q's and the pattern values are usually required for
many directions; hence, an efficient procedure for the compu-
tation of the far field is needed. In particular, we wish to

avoid ordinary evaluation of the many p^^-'^'s as functions of
6 and ({) . Again we use a matrix multiplication and a two-

dimensional FFT. In (20'), we expand w"^^(e) as Je^'.l-*®J
{wJJJ^}

as in (23) and in addition expand F^'^'^(9) as [e'^3^ [F^m"^] >

showing that ^

s

That is, (27') is the two dimensional Fourier "transform" of
the field. For the far field, we use the asymptotic expansion

for the Hankel functions and divide out the factor e /kr
from both sides of (27'). Thus, we find that the "far field"
is the two dimensional inverse FFT of

{w"",,} = y [B^yj ]
{Q^""}, (28')—m" '--in"n-' ^n '

^

s

smwhere the backward multiplying matrix [B ] is defined as
smA. — i Icir

[F^,,^] kr/e where A = r is large. B is computed by tech-

niques analogous to those of Appendix I. In fact, except for
the difference in normalization of the F^'s and G's -- roughly

the e~^^''^/kr factor for large r, [F^n"^] is the complex trans-
smpose of [£ ,,], which is the matrix corresponding to [;)] of

S IIIAppendix I, i.e., the matrix obtained in calculating [g^^^j^ti]?

just before modification to include the sin 6 factor. The
elements of the first two matrices of (27') and of (28') are
complex two-vectors.

If a probe correction is used to obtain the Q's and com-
puter storage is a problem, an alternative but parallel com-

putation may be used to avoid introducing the B ' s . w^^''^^ and

[d®'(eQ)J of (20) are expanded as [e%3^0j {wjjJJ^^^} and
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[DjJjfi^J respectively. Since ideal dipoles give a field

component at a point, we use transverse ideal dipoles as hypo-
thetical probes in the far field computations, indicating
this with an overline. Making the preceding substitutions in
(20) yields

^^myAj
= 1 [D^.^J {Q^^ P^^^}. (27)

s

Dividing through by e /kr, one obtains

m" ^ m"n-' ^n n ^

s

with obvious definitions. The p's are not to be confused with
those of (4) or (14) for actual probes. The p's of (28) may
be computed with expressions for the c's of (15)
given in Appendix II. (As mentioned in section 9, for trans-
verse ideal electric dipole, a = 2, y = ±1, and v = 1.) The

D's are Hermitian conjugates (complex transposes) of the [l^^tl

of Appendix I; thus the ^'s may be fed into the computer and
used for the computation of both the Q's and the far field.
The FFT of (28) yields the far field in the circular polariza-
tion representation; to obtain the far field in the 9, cj) repre-
sentation, the inverse of (19) may be applied to the left hand
side of (28) prior to performing the FFT.

By a simple artifice, the far field may be readily com-
puted for arbitrarily fine spacing in 9 and <^ (submult iples
of 2t\) . One chooses the number of 9 values (9 spacing) and
the number of (p values (<]) spacing) desired. Since the FFT
and its inverse require as many input as output values, zeros

mm"
are added if necessary to the w ' s of (28') for missing
higher values of |m| and |m"|. The inverse FFT then yields
least squares values of the far field corresponding to the
retained (say statistically significant) Q's. The proposed
computations yield the phases and amplitudes of the and £q
components; if the polarization is desired in another repre-
sentation, it is easily calculated on a modern computer with
no loss in accuracy (see section 12) . Note that no matrix
inversion is required even to obtain the auxiliary matrices
my

^
sm^ sm

^ ^ ^
my

^L nm"-"' '—nm"-"' '—m"n-' ' m"n-'
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12 . Experimental Details and Options; Probe Rotation and

Polarization Measurements

The preceding analysis assumes that the probe moves about
a fixed antenna. Further, for both the probe correction and
no probe correction cases, no rotation of the probe about its
own axis is assumed, i.e., Xq assumed to be fixed at either

0 or 7t/2. For ~ ®0 ~ -^0 ~ ^' ^' probe

coordinate system Ox'y'z' have the same directions as x, y,
and z respectively of the test antenna coordinate system
Oxyz. If Xq ^2 held fixed at Xq = 0 and and 0^ varied,

the x', y', and z' directions become the 9, ()) , and r direc-
tions respectively of the test antenna coordinate system.
Thus, an ideal dipole originally in the x' direction will
measure the 9 component for Xn ~ ^ and the (j) component for

We wish to relax both the fixed antenna and fixed Xq

conditions. The probe transport (revolution) system may be
eliminated if the antenna is mounted on a conventional antenna
rotator (model mount, azimuth over elevation, or elevation
over azimuth) . Alternatively, the probe transport may be re-
duced to motion on a semicircle if the antenna is rotated
azimuthally. Since the measurements are required for a con-
stant radius, the axes of rotation must intersect as in the
model mount or in the WPAFB TAPA scanning system. In the
latter system, the antenna rotates about a vertical axis and
the probe revolves on a gantry arm with a horizontal axis.

A model mount, like a TAPA-type scanner, has a number of ^

advantages for "spherical" scanning. First, the antenna may
be scanned over almost 47t steradians . Further, the scanning
center may be chosen close to the "phase center," possibly
minimizing the required number of basis functions and so mini-
mizing the required number of measurement points. For a
directional antenna, the type of mechanical scanning can re-
duce the required amount of absorbing material. Thus, a planar
wall or ceiling of absorber may be sufficient for a fixed an-
tenna with a movable probe or even for a TAPA system. Since
the antenna axis is kept horizontal in the model mount, a cyl-
indrical absorbing wall (say a hemicylinder ) may be sufficient
for it. However, the wall should extend far enough above and
below the antenna so that wide-angle radiation does not pass
out the top or bottom and then be reflected back to the probe.
Of course, the closer the absorber, the less is required.
Further discussion is confined to the model mount and TAPA
type scanner, to which the preceding analysis is easily
applied if the probe is not rotated about its own axis.
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For the model mount and the TAPA scanning system, both
mounting and expression of the far field power pattern are
convenient if the figure axis of the antenna is taken as the
z axis (horizontal axis in the case of the model mount)

.

Further, the polarization is conveniently expressed in these
coordinates for a circularly polarized antenna. Moreover,
if the test antenna has a good approximation to c() or 9

,

polarization, it may be possible to measure the principal
polarization with a linearly polarized probe and neglect the
cross polarization. Furthermore, for these types of nominal
polarization, high relative accuracy in the cross polarization
is possible because it is measured directly, not as the dif-
ference of two large numbers .

However, for an antenna with linear polarization (normal
to the X or y axis) expression of the polarization in terms
of e and

(J)
components is inconvenient, and measurement of a

small cross polarization tends to be inaccurate for fixed Xg*

Hence, we generalize the previous treatment to permit rota-
tion of the probe about its own axis, still avoiding measure-
ment and data processing as functions of three Eulerian angles.
In (16) we take Xq ~ ^ & where a is an integer (say 0 or

±1) and 3 is 0 or tt/ 2 . Thus, the angular part of (16) becomes

^i (m+ay)cDo d^^^ (e^) e^^^^^ Hence, the y separation (for

fixed (|)g) may be carried out as before, replacing Xq iri (19)

by 6. Since the received signal depends upon (j)^ as if m were

replaced by m+ay, the FFT with respect to is carried out

as before, but correction for the shift in the m value needs
to be carried out prior to extending the data to negative 6q
and taking the FFT with respect to this variable. Hence,
rotation of the probe about its axis may be used to increase
the accuracy of the cross polarization measurements without
significantly increasing or changing the computations.

Regardless of probe rotation and therefore regardless of
the polarization representation used in the actual measure-
ments, the computations are carried out in the (J), 6 represen-
tation. However, this causes no degradation in the accuracy
of the far field, due to the number of significant figures
carried in a modern computer. That is, even if W(3 = 7r/2) is
so small that the difference between W(y = 1) and W(y = -1) is
less than their individual uncertainties, the full accuracy in
both W(B = 0) and W(3 = tt/2) is carried implicitly. Thus, it
is quite unnecessary to replace [F] of (25) and [G] of (25')

by matrices corresponding to cos and sin Xn rather than e'-^-^O,
although this would be possible.
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13 . Relation to Planar Measurements and Data Processing

Since the required measurements for both the spherical
and planar scanning procedures are phase and amplitude outputs
of each of two "probes" t on an array equally spaced in the
two position coordinates, the instrumentation (apart from
antenna rotation and/ or probe positioning) and initial parts
of the computer programming are almost identical. For example,
the same system may be used for measurement triggering, phase
and amplitude measurement, analog-to-digital conversion, sample
and hold, tape formatting, computer input, calibration correc-
tions, and drift corrections (renormalization using tie scans).
Further, the Fast Fourier Transform processing is much the
same

.

The latter requires that the measurements be equally
spaced in the two coordinates. However, unlike the planar
case, the spacing cannot be arbitrary. In both the spherical
and circular cylindrical cases, the spacings of the angular
variables must be integral submultiples of Ztt. Nevertheless,
for directions of negligible radiation, the W's may be arbi-
trarily set equal to zero without measurement.

A tentative flow chart for the spherical case with probe
correction is given in figure 6.
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Figure 3. Eulerian angles of the probe
relative to the test antenna
In order, the rotations are
about z to yield ^x-j^y^z^, 6^

about y-j^ to yield 0x2y2Z2» arid

about Z2 to yield Ox'y'z2;

translation by A along Z2 yields

Note that the probe faces
the negative z', Z2 direction

while the test antenna faces a
positive direction, say that of
z = z.

00 '=Z2-z '=A



Waveguide
mode TE^^ TE^^ TEM

Spherical
modes TE,TM TE TM

a 1,2 1 2

y -1,+1 0 0

Component
measured
(Qualitative)
measured E^ H E

t r r

Figure 4. Probe type and modes. An ideal electric dipole has
a TM spherical mode (a = 2) and measures E^ ; a

linear ideal electric dipole has a linear combina-
tion of y = -1 and y = +1 modes.
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Figure 5. Array of ''^jjjj^'s required for the computation of the

multiplying matrix [f|^^it] • All the values for a

given horizontal plane (n value) may be obtained by
simple symmetry relations from those in the shaded
octant

.
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Spherical Scanner Data Processing Flowchart

Probe Correction Case

0
DAT* TAPE

(PRODUCED
BY 5CANNEI!)

THE KOTATION OF THE TEXT (AS DESCRIBED IH SECTION 8) IS
UTILIZED FOR DESIGNATING MATRIX AND SCALAR QUANTITIES.
(E.G.; SUPERSCRIPT QUANTITIES DO NOT VARY, SUBSCRIPT
QUANTITIES OR ENCIRCLED QUANTITIES DO VARY TO DESCRIBE
COLUMNS AND/OR ROWS OF MATRICES. BROKEN BRACKETS INDI-
CATE ROW MATRICES, CURLY BRACKETS COLUMN MATRICES, AND
SQUARE BRACKETS TWO-DIMENSIONAL MATRICES.) THUS. LOWER-
ING SUPERSCRIPTS OR RAISING SUBSCRIPTS SIMPLY IMPLIES
NOTATIONAL REORDERING. HOWEVER, PHYSICAL REORDERING ON
THE COMPUTER IS NOT REQUIRED, SINCE THE IMPLIED REORDER-
ING IS ACHIEVED IT~COMPUTER SUBSCRIPTING.

THE NOTATION OF THE TEXT IS PRESERVED, IN THAT W INDICATES
NEAR-FIELD DATA, » INDICATES FAR-FIELD DATA, AND n, m,
CORRESPOND TO THE .USAGE GIVEN IN THE TEXT. HOWEVER, THE
SUPERSCRIPTS A AND t ARE DROPPED (BOTH u AND t ARE REDUN-
DANT), AND u' IS INTRODUCED TO DISTINGUISH THE FAR-FIELD
U FROM THE NEAR-FIELD u.

THE QUANTITY f""""' IS EXPLICITLY GIVEN AS IT DIFFERS FROM
THE DEFINITION OF APPENDIX I. HERE, THE ft ARE PURE-REAL
NUMBERS. ALSO, ONLY THE f's COHRESPONDING TO POSITIVE
SUPERSCRIPT QUANTITIES ARE STORED, AS A SIMPLE SIGN CHANGE
GIVES THE QUANTITIES CORRESPONDING TO NEGATIVE SUPERSCRIPTS.
THE ELEMENTS OF THE n ARRAY ARE COMPUTED AS THEY ARE NEEDED.

DISK STORAGE IS INDICATED FOR ELECTRICALLY LARGE ANTENNAS
WHICH REQUIRE MANY MEASUREMENT POINTS. ON SMALLER ANTENNAS,
OR WHEN MEASUREMENT ACCURACY IS NOT CRUCIAL, TAPE STORAGE
AND/OR STORAGE IN CENTRAL MEMORY ALONE MAY. BE UTILIZED.

FOR 0 < m,«' < IHI , PRECALCUUTE

TB +1 ,« Tl +1 ,1 TI -l,iaTIl -l

PART-TRANSFER

OF
[fjJJ, ] ARRAY

CORE
STORAGE

FOR CURRENT m

(OR B 's AS AN OPTIONAL FEATURE)

GET ARRAY [f^', ] FROM

DISK STORAGE OVER CURRENT

RANGE OF n FOR ' > 0

TO ' - nti

FOR EACH n IN THE CURRENT RANGE,

FORM THE PRODOa [f;[?'][II,.,.]{t{5)

(laplltd iia over ' ind ) TO COM>UTE W^
REPEAT FOR t^-\m\ AND ALSO

v—l, INTRODUCING APPROPRIATE SIGN

CHANGES TO THE COEFFICIENT ARRAY [f^. ]

FOR EACH FIXED VALUE OF n I \u]

,

FORM THE PRODUa 0^.^] (wj]")

(1^>)1*<l sua over u) TO OBTAIN

(SET

CURRt

RECOWINE THE [fj^,} ARRAY
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«9 I W 1

FOR EACH V
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APPENDIX I

Computation of the Multiplying Matrices

The d's are given by

d^^^Ce ) = A^^^^4^^kC0) + 2 I A^V^A^V^Kdn'e ) (I.l)my ^ o-* Om Oy ^ m'm m'y^ o^ ^
'

m >o

where A^^^ = d"^^^ (7r/2) and
my my ^

k(x) = cos xifm-y=0+4k
= sin X if m - y = 1 + 4k

= -cos xifm-y=2+4k
= -sin xifm-y=3+4k-

where k is any integer [Edmonds (4.5.2)]. Equation (I.l) is
a Fourier decomposition and is easily converted from the sin-
cos to the exponential representation. For fixed m and y,
one may then write

where the left hand side is a column matrix with the row in-
dex n ^ |m|

, |y| ; the last factor is a column matrix with the

row index m'; and Ffi^^,] is a rectangular matrix with row and

column indices n and m' respectively. The sin 0 factor is
easily introduced, i.e..

{d^he^) sin e,} = [f"^^] {e'^'^^, ^^'^^
my ^ 0-^ 0 nm '

'

where

r/iny -, r,my -,

nm
2i

Thus, the problem is reduced to computing the A's.

The A's, like all d's, are real (Edmonds, p. 59]. The
array of A's, which are numbers, may be considered to form a

pyramid as shown in figure 5, where n = 0 to °° is the vertical
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distance down from the apex, and m' and m are coordinates
orthogonal to both each other and the axis of the pyramid.
Both m' and m assume values from -n to +n; and n, m', and m
assume only integer values. From equation (I.l), negative values
of m' are unneeded (or in the exponential representation can
easily be obtained from the properties of the sine and cosine)

.

This combined with symmetry relations among the d's [Edmonds,
pp. 59-60] permits one to confine computations for each n
(horizontal plane) to the triangle defined by m' ^0, m >_ 0

,

m' >^ m, the remaining A's being obtainable by multiplying by
an appropriate integer power of -1.

The A's are easily obtained on the vertical m = 0 and
m' = 0 planes and also on the exterior faces, namely

A^7n = 0 for n + m' odd
m ' 0

, n+m' T^.n+m'+l.
,m' — r(—=

)

(£iliil_)
! V (n+m') !

2"
r 1 ^ 2 ^ ^ 2 ^

/ (n-m') ! ^ ^ , .r c^(-1) —
, I

-^^ ^— for n + m' even (1.5)
V fn+m'

[See Edmonds (4.1.24) and NBS Handbook of Mathematical Functions
(8.6.1)] and

aCh) = 1_ !
(2n)!

2^ M (n+m) ! (n-m)

!

[see Edmonds (4.1.27) and (4.2.6)]. Computation of the re-
maining values of the A's within the triangle is expected to
be most efficient by means of recursion formulas. The co-
efficients of the sines or cosines in equation (I.l) are given
by products of corresponding A's on two planes with m in
figure 5 equal to m and y respectively.
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APPENDIX II

Translat ional Transformation of the Probe Pattern Coefficients

To carry out the translat ional transformation of the probe
pattern coefficients (15) , we require expressions for the

^gyv'^'
expressions for the coefficients in the expansions

of the probe modes in terms of the test antenna modes. Depending
upon whether the probe receives or transmits, the probe modes in
the probe coordinate system involve spherical Hankel functions of
the first or second kind. We require an expression valid inside
the scanning sphere, i.e., for r < r^ = A. For simplicity, the

translation is assumed to be along the z axis, the effect of sub-
sequent rotation being given by (16) . The forms given by Bruning
and Lo [1971, (22), (23), p. 390] are most convenient. Thus,

00

and

where

mO)' =
I M^^^ + B^^ N^^^ (II. 1)-yv n=[y] ^

= I
N^l^ + B^^ M^^^ (II. 2)-yv

n= [y]

^yv ^ ^..^y -n-v __2n^
^ i"? [n (n^l) (v^l) -p (p^l) ]yn

2n(n+l) p

a(y ,v,-y,n,p) h^^^(kA),

(II. 3)

B^"" = (-1)^ i^-^ ^nil.
J i-P(.2iykA) a(y,v,-y,n,p) h^j^(kA), (11.4)

2n(n+l) p
P

1/2a(y,v,-y,n,p) = (2p+l)
[
(v+y)

!
(n-y) ! / (v-y) !

(n+y)
!

]

V n p
0 0 0

V n p
y -y ol»

(II. 5)

and the last two factors are Wigner 3-j coefficients [Edmonds,
pp. 45-52]. Here the primed modes on the left hand sides of
(II. 1) and (II. 2) are functions of the probe coordinates r', 6',

and
(f)

' and the unprimed modes on the right are functions of the
test antenna coordinates r, 9, and cf) . The normalizations assume

that fl^^{> of (6') and (6") is taken, e.g., as z^(kr) p5^(cos 9) e^"^**

where z is a spherical Bessel function. The (j) on the left hand

sides of (II. 1) and (II. 2) and the right hand sides of (II. 3) and
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(II. 4) indicates the type of Hankel function, while the (1) on the
right hand sides of (II. 1) and (II. 2) indicates spherical Bessel
functions of the first kind Cj^^'s). The summation index [y] in

the first two equations indicates the larger of unity and the
absolute value of y. Although the upper limit is infinite, the
A's and B's are needed only for the n's for which the test antenna

pattern coefficients (Q^^^'s of (16)) are significant. The sums
over p in the second two equations are from |n-v| to n+v for p
values such that J = n+v+p is even. Hence, for small probes, only
a small number of p values are required, v being unity for an
ideal dipole.

To avoid unnecessary computations in the transformations
proper, special normalizations are used; for brevity, we confine
our attention to the y = ± 1 case. We define

^i'^^'^(kA) = (2p+l) i"P h'^^^(kA), (II. 6)
P

^(^^ ' = M^^^ 'j (II. 7)—yv —yv ^

^(1) , (2n.l} .n ^(1) („^3
->^" 4n^(n+l)^

and similarly for the N's. We then obtain

and

where

m'^^^ = I A^^ M^l^ + B^^ M^l^ (II. 9)-yv n=[y]

00

W'^j^ = y A^^ N^^^ -H B^^ (11.10)
-yv

n= [y]

^-In
=

^In
= ^ [n(n+l)+v(v+l)-p(p+l)]

P (11.11)

,

rj-2£i rj-2^ rj-2pi ^u) ^^^^
(j+i) fji

^

'-In
=

^In
= I [n(n+l)+v(v-Hl)-p(p + l)]

P (11.12)
rj-2^ rj-2vi rj-2pi

(-1,^3,

(j+i) fji
p
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r/l equals the binomial coefficient ( , and the summation con-
straints are unchanged, '

Since = h^^-^ + h^^-^ , the preceding expressions also ex-

press the incoming modes in the test antenna coordinate system
arising from a transmitting probe or vice versa. Hence,

c^^ fA) = A^^ 6 + B^^ 6 (11.13)ayv^ ^ yn sa yn s,a+l ^

where 6^ ^^-j^
is unity if the probe and test antenna modes are

of different TE,TM types, otherwise zero. Finally, we compute the
P ' s as

pSynAt ^ (_i)y[(n^^)!/(n-y)!]l/2 ^synAt
^^^^^4^

so that they are the coefficients of partner function modes and
thus equation (16) is valid without additional normalization
factors

.
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