NBSIR 75-794

HEAT TRANSFER IN FURNACES FOR CIB COOPERATIVE PROGRAM AND HEAT BALANCE ANALYSIS OF WALL FURNACE

J. B. Fang and J. T. Scott

Center for Fire Research Institute for Applied Technology National Bureau of Standards Washington, D. C. 20234

November 1975

Final Report

U.S. DEPARTMENT OF COMMERCE, Rogers C.B. Morton, Secretary James A. Baker, III, Under Secretary Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

CONTENTS

Page

LIST	C OF	TA	BLES	•	• •	•	•	•	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	iv
LIST	C OF	FI	GURE	S.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
LISI	C OF	NO	MENCI	LAT	URE	ε.	•	•	•	۱.	٠	•	٠	•	•	•	•	٠	•	٠	•	6	٠	•	•	٠	٠	vii
1.	INTH	RODI	UCTI	ON	•••	•	•	•	۰	•	٠	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	1
2.	TESI	ΓE	QUIPI	MEN	г.	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	8	۰	•		•	2
3.	TEST 3.1. 3.2.	см: . (ETHOI Compa Heat). ari Ba	sor 1ar	i o ice	f] iı	Fui n I	rna Fu:	ace rna	es ace	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	3 3 4
4.	TEST 4.1. 4.2.	[R] . (.]	ESUL: Compa Heat	rs . ari Ba	ANI sor lar) D 1 O 1 C E	IS(f] iı	CUS Fui n H	SS: rna Fui	ION ace rna	NS es ace	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	4 4 5
5.	REFI	ERE	NCES			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	6
APPE	ENDIS	K A	. н	EAT	BA	LA	NCI	E]	EN	Fl	JRN	JAC	Ε	•	•	•	•	•	•	•	•	•	•	•	•	•	•	36
APPE	END I S	ĸв	. А	LI	ST	OF	AS	SSI	JMI	ED	PF	ROF	PER	RTI	ES	S F	OF	۲ ۲	ES	SТ	FU	JRN	JAC	CΕ		۰		39

LIST OF TABLES

		Page
Table l.	General Test Information	8
Table 2.	Average Heat Contribution for Test No. 1	9
Table 3.	Measured Data for Test 1	10
Table 4.	Measured Data for Test 2	11
Table 5.	Measured Data for Test 3	12

			Page
Figure	1.	Location of Radiometers and TNO Heat Flux Meters in Test Wall	13
Figure	2.	TNO Heat Flux Meter With Thermocouple Locations	14
Figure	3.	Test Wall Thermocouple Locations	15
Figure	4.	Details of Wall-Testing Furnace	16
Figure	5.	Upper TNO Heat Flux Meter Readings	17
Figure	6.	Lower TNO Heat Flux Meter Readings in Test No. 1	18
Figure	7.	Upper TNO Heat Flux Meter Readings in Test No. 2	19
Figure	8.	Lower TNO Heat Flux Meter Readings in Test No. 2	20
Figure	9.	Upper TNO Heat Flux Meter Readings in Test No. 3	21
Figure	10.	Lower TNO Heat Flux Meter Readings in Test No. 3	22
Figure	11.	Furnace Temperatures in Test No. 1	23
Figure	12.	Furnace Temperatures in Test No. 2	24
Figure	13.	Furnace Temperatures in Test No. 3	25
Figure	14.	Stack and Wall Temperatures in Test No. 1	26
Figure	15.	Stack and Wall Temperatures in Test No. 2	27
Figure	16.	Stack and Wall Temperatures in Test No. 3	28
Figure	17.	Radiometer Readings in Test No. 1	29
Figure	18.	Radiometer Readings in Test No. 2	30
Figure	19.	Radiometer Readings in Test No. 3	31
Figure	20.	Inlet Air and Exhaust Gas Velocities in Test No. 1	32
Figure	21.	Calculated Heat Input and Output Curves for NBS Wall Furnace Using a Lightweight Masonry Block Test Wall (Test No. 1)	33

		Page
Figure 22.	Comparison of Calculated Radiant Heat Flux Incident at Furnace Walls and Radiant Flux Measurement (R-2) on Test Wall for Test No. 1	34
Figure 23.	Schematic Diagram of Furnace and Heat Transfer	35

*

LIST OF NOMENCLATURE

^A B	Interior surface area of furnace including test specimen
A _E	Cross-sectional area of the exhaust stack
A _S	Interior surface area of the test specimen
A _w	Surface area of the furnace walls
C_{A}	Heat capacity at constant pressure for air
C_i	Heat capacity at constant pressure for the i-th species
cv	Heat capacity at constant volume for furnace gas mixture
E _t	Total energy contained in furnace gases
h	Convective heat transfer coefficient
Н°	Enthalpy of the inlet air at the datum temperature T
н _в	Radiative heat flux incident at the gray surface element
H° F	Enthalpy of fuel gas at the datum temperature T
Hi	Enthalpy of the i-th species at temperature T
Н° і	Enthalpy of the i-th species at the datum temperature
M_{i}	Molecular weight of the i-th species
$Q_{\mathbf{B}}$	Heat loss to both test specimen and furnace walls
Q _C	Heat loss to both test specimen and furnace walls by convection
$Q_{\overline{F}}$	Heat supplied by fuel combustion
Q_L	Heat loss to the bounding surfaces
Q _R	Heat loss to both test specimen and furnace walls by radiation
Q _S	Heat loss to test specimen
Q _W	Heat loss to furnace walls
Т	Absolute temperature
т _в	Temperature of exposed walls including test specimen
T _E	Temperature of exhaust gases

vii

- LIST OF NOMENCLATURE, (cont'd) Temperature of inlet air TT Temperature of furnace gases T_{M} Т Datum temperature TS Surface temperature of the test specimen Time variable t UF Velocity of exhaust gases V Volume of furnace WA Mass flow rate of the inlet air Mass flow rate of fuel gas Wr Wi Mass flow rate of the i-th species Mole fraction of the i-th species X. Absorptivity of gaseous mixture at T_{M} for radiation emitted from α_B interior walls at T_R Total absorptivity of the furnace gases to be evaluated at the αs surface temperature of the test specimen Total absorptivity of the furnace gases to be evaluated at the αw surface temperature of the furnace walls Effective surface emissivity of furnace walls including test ε specimen Surface emissivity of furnace walls including test specimen ε_R Emissivity of gaseous mixture εм Surface emissivity of the test specimen εs Density of gaseous mixture ρ_M
 - σ Stefan-Boltzmann constant

HEAT TRANSFER IN FURNACES FOR CIB COOPERATIVE PROGRAM AND HEAT BALANCE ANALYSIS OF WALL FURNACE

J. B. Fang and J. T. Scott

Tests were conducted in the NBS wall panel furnace as part of a CIB international cooperative program to measure and compare heat transfer in fire endurance furnaces. Additionally, a heat balance analysis showed that a cellular concrete block wall specimen absorbed more heat by convection than by radiation. The rate of radiant heat transfer was found to decrease slowly, while the furnace exhaust heat loss increased during the test from 42 to 58 percent of the heat output. The calculated radiant heat fluxes incident at furnace walls was found to be somewhat lower than the experimental values measured at the test wall.

Key words: Fire resistance ratings; fire test furnace; heat balance; heat transfer; temperature-time curve.

1. INTRODUCTION

These preliminary tests were performed as part of a cooperative effort to correlate the fire resistance of reference specimens obtained by various testing laboratories. This project was initiated following the ninth meeting of CIB (Conseil International du Bâtiment) Commission W.14 in Paris in May 1970 where it was decided to continue the work on the comparison of the performances of fire test furnaces.

Previous efforts to compare furnaces had shown wide variability among laboratories in fire resistance determinations for ratings up to 90 minutes. [1]¹ Recently, Castle [2] made radiant and total heat flux measurements in several test furnaces operated in accordance with ASTM E-119 method, and reported a wide variation in the radiation and convection levels to the specimen determined in these furnace environments. The primary reasons for these differences were that fuel properties and its input rate, amount of air introduced, furnace geometry, thermal properties of furnace walls and test specimen, the operating pressure, and the positions of burners and the exhaust stack, were varied among the furnaces, even though the same prescribed temperature-time curve was followed.

A method for measuring the heat transfer rate and comparing the performance of various furnaces was described by van Keulen in his report on "Comparison of Heat Transfer in Furnaces."[3] The report provided testing

[&]quot;Numbers in brackets refer to the literature references listed at the end of this paper.

and measurement details for determining heat transfer rate along with the theory for correlating test results between furnaces.

Three tests were conducted at NBS to measure the rates of heat transfer by radiation and convection using two TNO heat flux meters [3] set in a cellular concrete block wall. In these tests, measurements were restricted to heat flux into the elements separating the heated furnace from the outside.

The application of an overall heat balance concept to a wall panel furnace was first introduced by Harmathy.[4] He studied the effect of thermal properties of a test specimen on the fuel consumption in a temperature-programmed fire test furnace. Therefore, additional measurements were taken to provide information for a heat balance analysis of the wall panel furnace.

The intent of the thermal analysis was to provide relative indications of the level and mode of heat transfer processes taking place in the furnace, and to obtain a better understanding of the various phenomena involved in the determining of the fire endurance rating of a panel assembly.

2. TEST EQUIPMENT

A 4.9 x 3.0 m (16 x 10 ft) high test wall was constructed of precast cellular concrete blocks. The blocks were 22.9 x 45.7 x 15.2 cm (9 x 18 x 6 in) in size, had a density of 0.50 g/cm³ (31 lbs/ft³) and a thermal conductivity of 0.117 W/m-°K (0.0675 Btu/hr-ft-°F). The test wall had two TNO heat flux meters and two radiometers built into it as shown in figure 1. The radiometers were commercial water-cooled 150 degree viewing angle instruments of the Gardon circular foil type with a saphire window to measure the radiant heat flux component.

The TNO heat flux meters were constructed of refractory sillimanite. Two identical slabs were joined to form a 19.5 x 30 x 3 cm thick (7.7 x 11.8 x 1.2 in) heat flux meter. The exposed surface of the meter was enameled and one-half of it treated with a gold paste in order to provide a difference in emissivity between the two halves. Three thermocouples were imbedded in each half of the meter while additional thermocouples monitored the temperature 5 cm in front of the exposed surface and 5 cm behind the unexposed side of the heat flux meter. All thermocouples were of 0.5 mm diameter chromel-alumel wires. A diagram of thermocouple locations is shown in figure 2.

The furnace temperature was measured by 12 metallic sheathed mineral insulated fast response thermocouples symmetrically arranged within the furnace and 10 cm from the test specimen to provide an approximation of its average temperature. These thermocouples comprised 1 mm diameter chromel and alumel wires insulated with magnesium oxide from a closed end 6.4 mm (1/4 in) OD stainless steel (type 310) sheathed tube. For comparison purposes the furnace temperature was also monitored using 12

ASTM thermocouples mounted within heavy iron pipes and symmetrically distributed 10 cm from the test wall. The time constants of the sheathed and the ASTM thermocouples were found to be approximately 1.2 and 6.2 minutes respectively, using a gas fired furnace maintained at a constant temperature of 900 °C.

Specimen surface temperatures were measured using eight thermocouples arranged as shown in figure 3. Other temperatures monitored during the test were the furnace wall, the exhaust gas and the room temperature.

Inlet air and exhaust gas velocities were measured by means of pitot tubes in conjunction with a differential pressure transducer.

Furnace gas concentrations of O_2 , CO_2 and CO were measured during the tests. Exhaust gas samples were taken using a stainless steel tube positioned in the exhaust stack. The gas was drawn through a trap filled with glass wool and was cooled with dry ice to remove smoke particles and water vapor. The gas was divided into three streams which passed through individual instruments of the following types: non-dispersive infrared analyzers for CO and CO₂, and a magnetic susceptibility analyzer for O₂.

Details of the wall test furnace including principal dimensions, are given in figure 4. The furnace is of the natural updraft type. The fuel was natural gas containing approximately 95% methane and having a specific gravity of 0.595 and a higher heating value of 38.5 J/cm^3 (1,033 Btu/ft³). The gas composition and its thermochemical data are tabulated in table 1 along with some information on furnace walls and test specimen. This natural gas was supplied through 92 air-aspirating burners mounted in the wall opposite the specimen. The gas flow rate was measured every 5 minutes during Test No. 1.

TEST METHOD

3.1. Comparison of Furnaces

To promote uniform test conditions the test wall was dried during Test No. 1. The ISO R-834 standard time-temperature curve was followed for one hour. The furnace was left closed until it cooled down in order to avoid water uptake in the test wall.

Two tests were then conducted in the wall panel furnace with Test No. 2 being of 60-minute duration and Test No. 3 being a 90-minute test. A constant pressure of 1.5 mm of water column was maintained at a height of 2.3 m above the bottom of the test wall during both tests. Periodic recordings were made of various instruments on a data logger and later processed and plotted by computer.

3.2. Heat Balance in Furnace

A description of the method and equations used for the heat balance calculations are given in appendix A. Determination of the terms in the heat balance equation were made by experimental measurements and by calculations using developed heat transfer formulae. The results of the fully instrumented first test were used for the heat balance analysis.

4. TEST RESULTS AND DISCUSSIONS

4.1. Comparison of Furnaces

The variations of temperature readings of TNO heat flux meters with time for each test are shown in figures 5 to 10. It can be seen that the temperature of furnace gases near the meters was considerably higher than the exposed surface temperature throughout the test. Figures 11 to 13 illustrate time sequence of average furnace gas temperature measured during the tests along with the ISO R-834 standard curve plotted for comparison. An inspection of these figures show a significant difference in the temperatures measured using sheathed versus ASTM thermocouples. The results indicate over a 100 °C difference between the temperatures measured after 20 minutes during Test No. 1 with similar results obtained in the other tests. This temperature difference was attributed to high thermal capacitance of the iron protection tubes utilized in ASTM thermocouples and significant radiation loss from the tubes to the cooler furnace walls.

The average surface temperatures of furnace walls and the test specimen, and the flue gas in the exhaust stack for the three tests are shown in figures 14 to 16 as a function of time. It is important to note that the surface temperature of the test specimen was approximately equal to that of furnace walls. Figures 17 to 19 show plots of radiation flux densities determined at two locations of the test specimen versus time. As shown in the figures, there was little variation in the measured radiant fluxes between tests 1 and 2. The reason for the higher irradiance observed at the lower portion (radiometer No. 2) of the test wall than that at its upper part (radiometer No. 1) as shown in figure 19 was not known.

Time variations of the velocities of air entering into the furnace through the inlet ports, and combustion gases flowing inside the exhaust stack of Test No. 1 are given in figure 20. The results of gas analysis demonstrated that a process of complete combustion of fuel gas occurred in the test furnace since no CO was detected in flue gas. The concentrations of CO_2 and O_2 in the exhaust stream were found to be relatively constant after approximately 10 minutes after the start of the test. The flue gas composition averaged over the last 50 minutes of the test was 8.7% CO_2 , 8.4% O_2 and 82.9% N_2 (dry basis).

The test results tabulated in tables 3 through 5 were forwarded to van Keulen for data analysis with the other participating laboratories. Summary data of the test series were given in his report along with construction details of TNO heat flux meter, and the procedure for furnace performance evaluation.[5] He compared the performance of each test furnace based on the amount of heat accumulated in the standardized wall test material versus time curve, and concluded that a correction factor to reduce differences between furnaces was not presented due to wide scattering of test results, and insufficient data for justification. The determination of separate contributions of radiation and convection components to the heating of the test specimen was unsuccessful because of evaporation of the gold coating on TNO heat flux meters.

4.2. Heat Balance in Furnace

Using the equations developed in appendix A, determinations were made of the heat input and output terms. Figure 21 provides a graph of each term in the heat balance equation. Inspection of the curves showed a decreasing rate of heat supply from the fuel while there was a slight increase in heat loss through the exhaust stack. Convective and radiative heat losses decreased during the test. The sensible energy supplied by the inlet air and the heat stored in the furnace gases were very small and were neglected.

The determined convective heat transfer coefficient, h, ranged from 89 to $180 \text{ W/m}^2-^{\circ}\text{C}$ (16 to $32 \text{ Btu/hr-ft}^2-^{\circ}\text{F}$). These h values seem to be comparable with values determined by other experiments.[6] A check of the convective and radiant heat transfer throughout the test with the calculated h values, assumed thermal properties of furnace wall material as given in appendix B, and measured furnace gas temperatures using a method described in reference 7 showed that the deviation between the estimated average surface temperature of the furnace walls and the actual measured value varied from 0.2 to 11.3% with an average of 3.7%.

Since there were some difficulties in calibration of the oxygen analyzer, the composition and mass flow rate of combustion products were calculated based on the measured gas composition and mass rate of the fuel gas, and the concentration of CO_2 in the exhaust stream. It was found that the flue gas consisted of 7.3% CO_2 , 14.9% H₂O, 5.1% O₂ and 72.7% N₂, and the fuel burned with approximately 36% in excess of the air required for complete combustion. The total emissivity and absorptivity for furnace gases were derived from H₂O and CO_2 emissivity charts developed by Hottel and his coworkers [8] with a correction to account for spectral overlap of emission bands. The gas emissivity was found to range from 0.30 to 0.22, decreasing with an increase in gas temperature, and the absorptivity varied between 0.33 and 0.22.

Listed in table 2 are the average heat transfer contributions for each of the terms in the heat balance equation along with their percentage contribution to heat input or output. For this furnace, the largest heat loss was due to the flow of hot combustion products through the exhaust stack, and this increased from 42% at 10 minutes to 58% at 60 minutes. Convective heat loss to the furnace walls was found to decrease with time from 42 to 34% of the total heat input, and the rate of radiant heat transferred into furnace walls was also seen to decrease gradually with increasing wall surface temperature during the test.

Figure 22 shows a comparison plot of time variation of calculated radiant heat flux incident at the furnace walls and the measured radiant flux obtained at the test wall for Test No. 1. The calculated values were computed on the basis of the rate of radiant heat loss shown in figure 21, and the average interior wall temperature using a surface emissivity of 0.8 for all furnace walls. It can be seen from the figure that the calculated values were approximately 15% less than those determined experimentally. This discrepancy in radiative heat transfer to the surface element may be due to non-uniformity of the temperature and composition of furnace gases. Also there might have been introduced some errors with higher readings on the radiometer as a result of reradiation from the heated sapphire window attachment to the foil sensing element.

The fire resistance rating of a structural element depends upon its physical and thermal properties and the heat flux incident at its bounding surfaces from the surrounding furnace walls and the furnace gas. The magnitude of the incident heat flux is determined by the furnace geometry, the surface emissivity and thermal properties of the furnace walls, the radiative properties, the gas flow and turbulence characteristics of the furnace gas as well as its temperature. The incident heat flux to the test wall appears to be a more appropriate parameter to be measured during the test than the gas temperature for characterizing and monitoring the furnace fire intensity.

The results of this study are limited to the single test which involved one material and one set of test conditions. Future testing with additional instrumentation by including water-cooled total heat fluxmeters and gas purged radiometers will make possible a verification of the results obtained. Extension to other materials of different thermal properties will provide data for better comprehension of the fire endurance testing since thermal properties determine the temperature level of the exposed surface, and the amount of heat absorbed by the test wall.

5. REFERENCES

- [1] Correlation Tests on Furnaces for Separating Elements, Bundesantalt fer Materialprufung (BAM) Laboratory for Fire Protection, West Germany, (Jan. 1970).
- [2] Castle, G. K., The Nature of Various Fire Environments and the Application of Modern Material Approaches for Fire Protection of Exterior Structural Steel in Them, AVCO Systems Division, A paper presented at A.I.Ch.E. Loss Prevention Symposium, Nov. 14, 1973, Philadelphia.

- [3] van Keulen, J., Comparison of Heat Transfer in Furnaces, paper for CIB Commission W.14, Group 1, Fire Endurance (Nov. 1971).
- [4] Harmathy, T. Z., Design of Fire Test Furnaces, Fire Technology, Vol. 15, No. 2, 140-150 (May 1969).
- [5] van Keulen, J., Comparison of Heat Transfer in Several Wall Furnaces, Report of CIB Commission W.14, No. BVI-74-17 (Feb. 1974).
- [6] Seigel, L. G., Effect of Furnace Design on Fire Endurance Test Results, Fire Test Performance, ASTM STP 464, 57-67 (1970).
- [7] Hill, P. R., A Method of Computing the Transient Temperature of Thick Walls from Arbitrary Variation of Adiabatic-Wall Temperature and Heat-Transfer Coefficient, Nat. Advisory Committee for Aeronautics, (U.S.) Tech Note 4105 (Oct. 1957).
- [8] Hottel, H. C. and Sarofim, A. F., Radiative Transfer (McGraw-Hill, New York, 1967).

 Fuel:	Natural Gas
Gas Composition:	95.1% CH ₄ , 3.0% C ₂ H ₆ , 0.76% C ₃ H ₈ 0.29% C ₄ H ₁₀ , 0.14% C ₅ H ₁₂ , 0.70% CO ₂
	0.01% N ₂
Specific Gravity:	0.595
Heating Value (corrected to 14.2 °C (60 °F), 762 mm (30 in) Hg dry):	38.5 J/cm ³ (1,033 Btu/ft ³) (Gross) 34.7 J/cm ³ (931 Btu/ft ³) (Net)
Furnace Walls:	Fire Brick
Test Wall:	Cellular Concrete Blocks Density = 0.50 g/cm ³ (31 lbs/ft ³) Thermal Conductivity = 0.117 W/m-°K (0.0675 Btu/ft-hr-°F)
 Gas Flow Data:	226 m^3 (8,000 ft ³) for 1 hour test

Note: For additional information see figures 1-4.

		Rate of	Heat Flow	Perc	cent
	Term	Kw	(10 ⁶ Btu/hr)	Average	Range
Energy In	Q _F	2,180	7.45	100	
Energy Out	$\sum (w_i H_i)$	1,155	3.95	53	42-58
	Q _R	243	0.83	11	7-16
	Q _C	782	2.67	36	34-42

Table 2. Average Heat Contribution for Test No. 1

Table 3. Measured Data for Test 1

	80	15	16	18	20	25	44	53	67	80	94	106	112	121	123	130	
	~	13	352	418	606	770	820	844	866	874	892	920	927	929	936	940	
(°c)	9	13	21	32	47	101	. 195	275	329	373	403	425	442	459	468	476	
ttom 1 II	ŝ	13	26	46	73	160	277	374	444	500	543	574	598	616	630	-641	
Bot	4	13	87	124	202	388	528	614	676	720	758	790	815	830	846	855	
	m	13	18	26	37	78	150	219	276	325	368	399	419	435	450	461	
	2	14	23	33	55	118	214	299	372	436	492	535	566	588	605	616	
		14	77	108	169	338	474	562	636	701	754	290	816	832	850	860	
	œ	17	19	22	25	31	42	58	75	92	106	121	134	150	160	173	
-	7	13	431	486	610	684	757	786	814	834	858	877	894	904	917	922	
,c)	9	15	19	30	45	94	168	237	294	337	372	400	421	438	451	464	
,) I J	5	15	31	51	06	138	243	327	404	461	509	545	576	601	618	632	
Tc HFN	4	16	82	126	188	330	458	550	623	679	717	752	782	800	812	833	
	ć	16	19	27	39	82	146	213	268	318	357	390	414	433	447	460	
	2	16	29	42	81	125	212	295	371	436	490	533	566	597	615	630	
	H	18.	80	110	180	300	428	526	607	671	719	760	791	809	822	844	
ure f H ₂ 0)	lower HFM	1		-	. 1	•014	000	000	1 1 1	.002	8	• 000	1	•002		• 006	
Press (inch o	upper HFM		-	3	1	• 068	.058	• 064		.062		•063	1	.062		.065	
ace Temp (C)	extreme	 14-28	234-324	324-421	436-554	635-791	707-844	765-866	791-885	811-900	832-918	852-933	870-950	877–956	887-967	896–972	
Furné (°	mean	16	276	365	483	689	761	797	841	846	867	885	903	910	922	930	
Room	Temp (°C)	17	18	19	19	20	21	21	22	22	24	25	25	27	28	28	
Times	(min)	0	2	4	9	10	15	20	25	30	35	40	45	50	55	60	F

Test
for
Data
Measured
4.
Table

 \sim

Imes	acca	Furna (°	tce Temp (C)	Press (Inch o	ure E H20)				Tol HFM	р. (°С	(;)						Botte	°) II mo	с)		
(ulm	Temp (°C)	mean	extreme	upper HFM	lower HFM	Т	2	e	4	5	9	7	æ	-	2	m	4	5	9	2	8
0	19	20	17-26		-	2.1	21	21	21	19	19	18	21	18	15	16	17	17	16	17	17
2	19	289	253-328	1		86,	27	20	86	28	21	446	22	83	20	17	89	26	19	376	18
4	20	506	469-619			170	50	31	170	54	34	599	24	175	41	27	184	53	33	586	19
9	22	587	550-685	1		224	79	46	231	87	50	630	25	240	71	42	262	90	54	643	20
10	22	688	661-790	.064	• 004	336	150	100	350	165	109	681	33	378	150	96	397	180	119	732	26
15	23	768	729-859	.060	• 000	460	240	172	470	260	185	74,2	53	508	247	176	530	286	201	161	40
20	24	801	762-886	.060	•000	552	325	238	558	343	254	780	72	597	335	248*	611	377	273	818	57
25	25	825	794-907	-	-	624	398	295	628	413	308	809	89	662	108	305	671	446	330	842	72
30	25	850	819-929	.062	.002	675	456	336	679	470	351	819	105	110	+64	348	716	965	373	864	85
35	25	865	839-932		-	715	500	374	713	511	384	848	120	749	508	380	750	536	400	880	94
40	26	879	859-935	.060	.002	750	536	401	746	542	859	859	133	776	537	407	775	567	426	895	100
45	27	893	875-946	1		782	570	421	174	575	880	880	140	798	565	423	796	590	440	906	113
50	27	904	887-955	.060	.002	802	593	436	792	587	888	888	156	819	583	435	813	607	453	920	120
55	27	918	899-966			821	613	450	812	616	908	908	163	833	598	449	828	619	462	926	126
60	87 . 1	176 1	1 908-968	.060	.002	1 212	029	4 28 4	824 1	629	401	- 276	- 1/0	846 1	12 -	420 -	841 -	6.30	4/1	410	

11

	∞	16	17	19	20	27	37	52	64	72	83	90	103	107	111	114	119	122	126	129	131	136	
	~	16	320	589	666	722	795	820	839	854	875	888	899	901	916	923	937	942	962	968	982	984	
(J°)	9	15	20	29	55	114	192	260	315	356	385	409	426	438	448	460	468	473	479	485	491	497	
tom II	2	16	29	56	06	178	276	367	436	490	530	560	585	605	618	630	640	651	600	699	676	685	
Bot HFM	4	16	74	185	258	382	512	600	659	669	748	770	794	804	820	832	848	859	874	882	897	908	
	m	15	20	29	52	104	176	247	300	342	376	400	419	432	442	455	462	468	474	480	486	492	
	2	14	29	54	85	163	257	346	418	474	520	554	580	599	612	626	640	651	660	669	676	685	
	-	17	74	185	258	382	512	600	629	704	740	776	804	812	830	843	861	870	887	898	913	922	
	œ	19	20	22	24	30	45	65	80	97	116	195	208	212	216	220	220	221	224	226	234	240	
	2	17	380	564	620	674	744	782	806	824	858	810	881	892	903	910	929	940	953	960	971	980	
(°°)	9	18	26	36	50	113	187	,255	310	352	384	430	458	475	490	500	506	513	524	530	544	550	
DP A I	Ś	18	36	57	88	164	258	342	411	468	507	549	584	607	626	641	654	664	677	690	700	712	
TC	4	21	80	171	234	352	472	565	625	673	711	746	774	789	812	825	849	862	876	890	906	917	
	m	20	20	30	42	94	161	224	278	322	357	388	414	434	452	466	474	482	490	496	504	512	
	2	21	30	48	72	135	220	301	371	427	472	511	542	571	590	608	620	634	645	655	665	676	
	- 1	20	78,	156	216	326	450	542	609	660	706	742	770	786	809	822	846	859	873	887	902	914	
ure H ₂ 0)	lower HFM -					.010	.010	.010		• 004		•004		• 006		•006		.008		.008		.007	
Press (Inch of	upper HFM					• 060	.060	.060	-	.062		.065		• 066		.072		.062	-	.063		.065	
ce Temp C)	extreme	16-25	243-326	442-539	596-738	653-774	719-847	762-858	784-882	816-894	838-906	856-916	873-934	877-936	899-954	900-964	902-972	909-981	921-993	929-997	939-1006	952-1018	
Furna (°(mean	19	281	483	629	695	761	191	818	843	861	878	893	897	116	921	931	942	952	961	972	983	
Room	Temp (°C)	18	18	19	19	20	23	24	25	26	26	27	28	28	29	29	29	29	29	29	29	30	۶.
Imes	(uiu	0	2	4	9	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	

Table 5. Measured Data for Test 3

A, Furnace Chamber; B, Burners; C, Thermocouple Protection Tubes; D, Pit for Debris; E, Observation Windows; F, Air Inlets; G, Flue Outlets and Dampers; H, Firebrick Furnace Lining; I, Reinforced Concrete Furnace-Shell; K, Gas Cocks; L, Control Valve; M, Ladders and Platforms to Observation Windows; N, Movable Fireproofed Test Frame; O, Loading Beam; P, Hydraulic Jacks; Q, Test Wall; R, Asbestos Felted Pads Covering Thermocouples on Unexposed Surface of Test Wall.

Figure 5. Upper TNO Heat Flux Meter Readings.

Figure 6. Lower TNO Heat Flux Meter Readings in Test No. 1.

Figure 7. Upper TNO Heat Flux Meter Readings in Test No. 2.

Figure 8. Lower TNO Heat Flux Meter Readings in Test No. 2.

.

Figure 9. Upper TNO Heat Flux Meter Readings in Test No. 3.

Figure 10. Lower TNO Heat Flux Meter Readings in Test No. 3.

Figure 11. Furnace Temperatures in Test No. 1.

Figure 12. Furnace Temperatures in Test No. 2.

Figure 13. Furnace Temperatures in Test No. 3.

Figure 14. Stack and Wall Temperatures in Test No. 1.

Figure 15. Stack and Wall Temperatures in Test No. 2.

Figure 17. Radiometer Readings in Test No. 1.

Figure 18. Radiometer Readings in Test No. 2.

Figure 19. Radiometer Readings in Test No. 3.

Figure 20. Inlet Air and Exhaust Gas Velocities in Test No. 1.

*

Figure 21. Calculated Heat Input and Output Curves for NBS Wall Furnace Using a Lightweight Masonry Block Test Wall (Test No. 1).

Figure 23. Schematic Diagram of Furnace and Heat Transfer.

APPENDIX A. HEAT BALANCE IN FURNACE

The law of conservation of energy applied to the test furnace, which is considered as a control volume, expresses the fact that the rate of increase of total energy contained in the furnace gases will equal the sum of (a) the net rate of energy transport into the system associated with the mass flow and (b) the rate of heat generation by fuel combustion, minus the rate of energy removal across the bounding surfaces. Accordingly a macroscopic energy balance equation for the test furnace illustrated in figure 23 can be written in the form:

$$\frac{dE_t}{dt} = \sum (w_i H_i)_{in} - \sum (w_i H_i)_{out} + Q_F - Q_L$$
(1)

In order to make the analysis mathematically feasible, the following assumptions were made:

- 1. There is no temperature variation in the furnace gases.
- 2. A stoichiometric complete combustion process occurs in the furnace.
- 3. The heat loss by radiation through openings can be neglected.
- The furnace walls and test specimen are gray-bodies, and the entire furnace walls have substantially uniform surface temperatures and can be assigned a single mean temperature.

The total energy accumulated within the furnace gases comprises internal, kinetic and potential energy, the last two of which may be neglected in comparison with the remaining one. The rate of energy stored in the furnace gases and the sensible heat supplied by inlet air and fuel were calculated from the following expressions:

$$\frac{dE_{t}}{dt} = V \rho_{M} C_{V} \frac{d(T_{M} - T_{I})}{dt}$$
(2)

$$\sum (w_i H_i)_{in} = w_F (H_F^{\circ} + \int_{T_o}^{T_I} C_F dT) + w_A (H_A^{\circ} + \int_{T_o}^{T_I} C_A dT)$$
(3)

The velocity and temperature of the inlet air and the volumetric flow rate of fuel into the furnace were measured throughout the test. The contributions of these two terms, which were evaluated in reference to standard conditions at a datum temperature of 15 °C (60 °F), were found to amount to less than one percent of the total heat transfer supplied. Since these quantities were of negligible impact and were on opposite sides of the heat balance equation, equation 1 reduced to:

$$Q_{\rm F} = \sum (w_{\rm i}H_{\rm i})_{\rm out} + Q_{\rm L}$$
 (4)

The rate of heat provided by the fuel combustion was equal to the rate of fuel consumed multiplied by its net heating value. The composition of the exhaust gases can be determined either by direct experimental measurement or by calculation from air overall material balance for each chemical species present, based on the measured fuel gas composition and concentration of one of the component gases in the exhaust stream along with the assumption of complete combustion for the fuel gas reacted with air. The heat loss due to the venting of the exhaust gases was calculated from:

$$\sum (w_{i}H_{i})_{out} = \sum w_{i}(H_{i}^{o} + \int_{T_{o}}^{T_{E}} C_{i}dT)$$

$$w_{i} = (\rho_{M}U_{E}A_{E}) \left(\frac{X_{i}M_{i}}{\Sigma X_{i}M_{i}}\right).$$
(5)

where

Heat loss to the bounding surfaces consisting of the test specimen and the walls of the test furnace occurred mainly by convection and radiation from the hot furnace gases. The radiation incident at the test specimen consisted of direct emission from the furnace gases, and radiative contribution from surrounding furnace walls through the gases. The net rates of radiation and convection losses to the test specimen can be expressed by

$$Q_{S} = \sigma A_{S} \varepsilon_{S}^{\prime} (\varepsilon_{M} T_{M}^{\prime \prime} - \alpha_{S} T_{S}^{\prime \prime}) + \sigma A_{S} \varepsilon_{S} \varepsilon_{W} [(1 - \alpha_{W}) T_{W}^{\prime \prime} - (1 - \alpha_{S}) T_{S}^{\prime \prime}]$$

$$+ h A_{S} (T_{M} - T_{S})$$
(6)

where α_{W} and α_{S} are the total absorptivities of the furnace gases, to be evaluated at the furnace wall and test specimen temperatures, respectively. [8] A_{S} , ε_{S}' , ε_{S} and T_{S} are the surface area, effective surface emissivity, surface emissivity, and absolute surface temperature of the test specimen, respectively.

Similarly, the net rates of radiative and convective exchange for the furnace walls with furnace gases and the test specimen are

$$Q_{W} = \sigma_{A_{W}} \varepsilon' (\varepsilon_{M} T_{M}^{4} - \alpha_{W} T_{W}^{4}) + \alpha_{A_{S}} \varepsilon_{S} \varepsilon_{W} [(1 - \alpha_{S}) T_{S}^{4} - (1 - \alpha_{W}) T_{W}^{4}]$$

+ hA_W (T_M - T_W) (7)

where A_W and T_W are the surface area and surface temperature of the furnace walls, respectively. ε_W and ε_W' denote the surface emissivity and effective surface emissivity of the furnace walls, respectively.

A review of figure 14 showed that there was little variation between the surface temperatures of furnace walls and test specimen. Incorporating this information, the test specimen and furnace walls were treated as a single zone. Defining Q_B to be the sum of Q_S and Q_W , and combining equations 6 and 7 yields

$$Q_{B} = Q_{R} + Q_{C} = \alpha A_{B} \varepsilon (\varepsilon_{M} T_{M}^{4} - \alpha_{B} T_{B}^{4}) + h A_{B} (T_{M} - T_{B})$$
(8)

A simplified equation describing the overall heat balance for the test furnace can be obtained by introducing the above relationship into equation 4. Thus,

$$Q_{F} = \Sigma(w_{i}H_{i})_{out} + (Q_{R} + Q_{C})$$
(9)

Both the total emissivity and absorptivity for the furnace gases were determined in accordance with the procedures recommended in the text [8] taking into account the concentrations of CO_2 and H_2O vapor, gas temperature, furnace geometry and size, and surface temperatures of furnace walls. A value of $(1 + \epsilon_B)/2$ was used for the effective surface emissivity, ϵ , of the entire boundary walls. [8] The geometric beam length used in gas radiation calculation was equivalent to 4 times of the furnace volume divided by its internal surface area.

All parameters in equations 8 and 9 were either known or measured except for the convective heat transfer coefficient (h). By calculating all the other quantities, it was possible to determine the convective heat transfer coefficient. The above equations were solved at 10 minute time intervals from 10 to 60 minutes. A plot of the heat input and output terms in the overall heat balance equation is shown in figure 21.

The net radiant heat flux density at a gray surface element of total emissivity $\varepsilon_{\rm B}$ and at temperature T_B due to incidence of radiative heat flux H_R coming from the surroundings was expressed by

$$\frac{Q_R}{A_B} = \varepsilon_B (H_B - \sigma T_B^{4})$$
(10)

Evaluation of the radiant flux incident at furnace walls at any time was possible using the above equation along with known or measured values for all the other parameters. Figure 22 was derived from these results. Furnace Walls:

Heat Capacity: 0.84 J/g-°K (0.2 Btu/lb-°F) Thermal Conductivity: 0.52 W/m-°K (0.3 Btu/hr-ft-°F) Density: 1.25 g/cm³ (78 lb/ft³) Surface Emissivity ($\varepsilon_{\rm B}$): 0.8 Effective Surface Emissivity (ε): 0.9

Furnace:

Total Volume (V): 14.2 m^3 (492 ft³)

Total Internal Surface Area (A_R) : 55.7 m² (600 ft²)

USC OMM-NBS-DC

NBS-114A (REV. 7-73)				
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA	1. PUBLICATION OR REPORT NO. NBSIR 75-794	2. Gov't Accession No.	3. Recipien	t's Accession No.
4. TITLE AND SUBTITLE			5. Publicati	ion Date
			Novembe	er 1975
Heat Transfer Program and Furnace	in Furnaces for CIB Co Heat Balance Analysis	operative of Wall	6. Performin	ng Organization Code
7 AUTHOR(S)			8 Dosformi	Dana Parau Na
J. B. Fang and	l J. T. Scott		NBS	IR 75-794
9. PERFORMING ORGANIZAT	TON NAME AND ADDRESS		10. Project/ 492	Task/Work Unit No. 6389
DEPARTME WASHINGTO	NT OF COMMERCE N, D.C. 20234		11. Contract	/Grant No.
12. Sponsoring Organization Na	ume and Complete Address (Street, City, S	State, ZIP)	13. Type of Covered	Report & Period
same a	s No. 9		Fi	nal
			14. Sponsori	ng Agency Code
15. SUPPLEMENTARY NOTES	5			-
Tests part of a (and compare tionally, a crete block than by rac found to do increased o output. The nace walls values mean 17. KEY WORDS (six to twelve	were conducted in the SIB international cooper heat transfer in fire heat balance analysis k wall specimen absorbed diation. The rate of r ecrease slowly, while t during the test from 42 he calculated radiant h was found to be somewh sured at the test wall. entries; alphabetical order; capitalize on	NBS wall pane rative program endurance fur showed that d more heat by adiant heat to he furnace exists to 58 percent eat fluxes inter at lower than	l furnac n to mea rnaces. a cellul y convec ransfer haust he t of the cident a the exp	e as sure Addi- ar con- tion was at loss heat t fur- erimental
name; separated by semicol balance; he	^{ons)} Fire resistance ra eat transfer; temperatu	tings; fire to re-time curve	est furn	ace; heat
18. AVAILABILITY	X Unlimited	19. SECURIT (THIS RE	Y CLASS PORT)	21. NO. OF PAGES
For Official Distributio	n. Do Not Release to NTIS	UNCL AS	SIFIED	-+1
Order From Sup. of Doc Washington, D.C. 2040	., U.S. Government Printing Office 2, <u>SD Cat. No. C13</u>	20. SECURI (THIS P	TY CLASS AGE)	22. Price
Crder From National To Springfield, Virginia 22	chnical Information Service (NTIS) 151	UNCLASS	SIFIED	\$3.15