NBSIR 75-777

Report No. FHWA-RD-75-118

STUDY OF THE NATIONAL STANDARDS FOR DIRECTIONAL AND OTHER OFFICIAL SIGNS

Overview of Their Adequacy

I.V. Fechter and others

Institute for Applied Technology
National Bureau of Standards
U.S. DEPARTMENT OF COMMERCE

Washington, D.C. 20234

October 1975 Final Report

Fechner, J. V., Pezoldt, I. J., Persensizy, J. J.: Porsenski, J. J., Lepkonsiki, J. R., Study of the National Standards for Directional and other oficicial signs. Orenview of their adequacy, Report No. FHMA-PD-

75-118, 75 pages (Lveileble from the
Nations Technical Information Service, Sprirgicicld, Va., 22161, oct. 1975).

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for

FEDERAL HIGHWAY ADMINISTRATION
Offices of Research \& Development
Washington, D.C. 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the National Bureau of Standards, Institute for Applied Technology, which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein only because they are considered essential to the object of this document.

Technical Report Documentation Page

1. Report No. FHNA-RD-75-118 2. Government Accession No.	3. Recipient's Corolos No.
4. Title and SubtitleSTUDY OF THE NATIONAL STANDARDS FOR DIRE CTIONAL AND	5. Report Dote October 1975
	6. Performing Organizotion Code
7. Author's) John V. Fechter, Valom J. Pezoldt, J. J. Persensky, and J. Richard Lepkowski	8. Periorming Orgonization Report No.
9. Performing Organizarion Name ane Address Institute for Applied Technology National Bureau of Standards Department of Commerce Washington, D.C. 20234	10. Hork Unit No. (TRAIS) $32 \mathrm{C} 2-082$
	11. Confract or Grant No. P. O. $5-3-0148$
	13. Type of Report ond Period Covered
12. Sponsoring Agency Nome ond Address Office of Research Federal Highway Administration Department of Transportation Washington, D.C. 20590	Final Report
	14. Sponsoring Agency Code

15. Supplementary Notes

FHWA Contract Manager: T. M. Mast, HRS-31

16. Abstract

This report contains the results of an evaluation of the National Standards for Directional and Other Official Signs (Part 21, Section 131(c), Title 23, United States Code). It is the third in a series of three reports. The other reports in the series are:

FHINA-RD-116 STUDY OF THE NATIONAL STANDARDS FOR DIRECTIONAL AND OTHER OFFICIAL SIGNS. Synthesis Report. Truman M. Mast, Office of Research, Federal Highway Administration.

FHWA-RD-117 STUDY OF THE NATIONAL STANDARDS FOR DIRECTIONAL AND OTHER OFFICIAL SIGNS. Laboratory Evaluation. A. G. Klipple and K. M. Roberts, Office of Research, Federal Highway Administration

The results of an evaluation of the Standards conducted by the National Bureau of Standards are presented in this report. The evaluation method made use of a literature review, two different theoretical models and expert opinion. It was concluded that for many speeds, sign locations, and driver characteristics, signs conforming to the Standards but designed for extreme cases of message length and content are inadequate.

17. Key Words Sign Standards Evalu Signs, Sign Size, Si	irectional 18. Oistribution No restric ion. able to th Technical Virginia	18. Distribution Statement No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.	
19. Security Clossif. (of this resort) Unclassified	20. Security Classif. (of this page) Unclassified	$\begin{aligned} & \text { 21. No. of Pages } \\ & 109 \end{aligned}$	22. Price

Table of Contents

Page
Acknowledgements iii
Executive Summary iv
1.0 INTRODUCTION 1
1.1 1965 Highway Beautification Act 1
1.2 Objections to the Standards 2
1.3 FHWA/NBS Research Efforts 3
2.0 APPROACH 4
2.1 Review of Technical Material 4
2.2 Consultants 5
2.3 Development of Hypothetical Signs 5
2.4 Signing Mode1s 11
2.5 Application of Models to Hypothetical Signs 16
3.0 RESULTS 16
3.1 Problem Areas in the Standards 16
3.2 Consultant Conclusions 17
3.3 Field Site Measurements 17
3.4 Sign Size, Legibility, and Theoretical Models 20
4.0 DISCUSSION 31
4.1 Problem Areas 31
4.2 Development of Theoretical Tests 31
4.3 Limitations of the Models 32
4.4 Conclusions and Recormmendations 33
4.5 Recommended Research 34
Selected References 35
Appendix A - Sign Design Guidelines 41
Appendix B - Surmary of State Standards for Directional Signs 45
Appendix C - Photographs and Location Maps of Field Signs 49
Appendix D - Consultant Vitae 93
Appendix E - National Standards for Directional and Other Official Signs 97

ACKTOWLEDGEMENTS

It would have been impossible to complete this project on such a rigid schedule without the valuable assistance of several other persons.

Miss Ann Ramey contacted numerous firms and officials to locate field site information, state sign codes, and resource documents. Nr. Clarke Jones prepared the state code summary after reviewing submitted material. Sign design assistance was provided by Mr. Travis Brooks of FHWA.

The perseverance of Miss Kim Howard in typing the text and preparing tables for the original manuscript and its many revisions is much appreciated. Mrs. Carol O'Connor and Miss Sharon Shaff also provided valuable typing assistance throughout the review process.

Consultants, Drs. T. Forbes, S. Hulbert, E. King, and T. Rockwell, provided much information and active assistance on very short notice. Industry references and other material were provided by Mr. Walt Youngblood of the 3 M Company.

Major inputs to the format and organization of the final report were made by Dr. Robert Cunitz, who contributed much time and effort to meld the separate efforts of the several authors into a cohesive whole.

EXECUTIVE SUMMARY

The Problem

In 1969 the Federal Highway Administration (FHWA) issued National Standards for Directional and Other Official Signs. Under these Standards, certain features of directional signs erected by owners of privatelyoperated scenic and historical sites are controlled in a zone extending from the edge of the right-of-way to a distance $660 \mathrm{ft}(201.2 \mathrm{~m}$) beyond.

The National Caves Association (NCA) objected to the Standards and submitted requests for their modification. NCA sought increases in
-- total sign area,
-- height, and
-- length,
-- as well as in the number of signs allowed.
In response to these NCA requests, the FHFA Office of Research:

- performed a study of the effects of angle of regard, and
- requested the assistance of the National Bureau of Standards (NBS) to evaluate the Standards with respect to the needs of motorists.

The Method
In fulfilling this request, NBS personnel have

- examined the present Standards,
- searched data bases and reviewed pertinent literature,
- asked experts in highway-signing to independently evaluate the Standards,
- measured signs which were in compliance with the Standards, and
- developed 15 "worst case" sign designs which were evaluated by two different theoretical models.

The Results

A review of the history of the development of the Standards uncovered few references to technical supporting data and the published research on highway signing was either too general or not directly relevant.

Furthermore, evidence supplied by NCA to support its proposed changes was limited.

However, the literature did indicate that the ability of a driver to read and comprehend a Directional Sign depends upon the following variables:
-- driver's visual acuity (static and dynamic),
-- sign length, height, and placement,
-- vehicle speed,
-- local terrain,
-- driver eye and head movement,
-- message length, content, and arrangement, and
-- sign color and surrounding environmental conditions.
An analysis of the hypothetical signs was performed using reasonable values for each of these variables. The analysis showed that the sign dimensions needed to display legible messages vary considerably as the values of each variable are changed. For example, a $30 \mathrm{ft}^{2}\left(2.8 \mathrm{~m}^{2}\right)$ sign located $5 \mathrm{ft}(1.5 \mathrm{~m})$ from the pavement would be adequate for drivers of $20 / 23$ vision who were traveling at 40 mph (64.4 koh), if a 40° divergence angle was acceptable. At the opposite extreme, with the acceptable divergence angle only 10°, a sign bearing the same message, located $740 \mathrm{ft}(225.6 \mathrm{~m})$ from the pavement and read by drivers traveling 80 mph (128.7 kph) would have to be over $8000 \mathrm{ft}^{2}\left(743.2 \mathrm{~m}^{2}\right)$.

Stated in general form, the results indicate that:
-- most Standards-conforming signs are adequate if the divergence angle is large, the speed is low, the lateral displacement small, and the driver has $20 / 20$ vision.
-- few signs are adequate for the same driver if the divergence angle is sma11, the speed is high, and the lateral displacement large.
-- few signs would be legible at the outermost edge of the controlled zone ($740 \mathrm{ft}, 225.6 \mathrm{~m}$).

The Conclusions and Recommendations

For many speeds, sign locations, and driver characteristics, signs conforming to the Standards but designed for extreme cases of message length and content are inadequate. Their utility depends on the values of the "real world" variables used by FHWA as design criteria. Independent of specifying such values, the following conclusions were reached:
-- The Standards should require that sign characters be legible at the levels of visual acuity required by state driver licensing regulations.
-- Maximum sign size should be specified in terms of the visual ang1e subtended, rather than as a maximum physical size.
-- Neither reviewed material nor consultant recommendations support any change in the number of signs allowed, in the maximum distance from sign location to site location, in the one-mile (1.6 km) spacing between signs, or in the proximity limits between directional signs and interchanges or exits.

The consultants also made several recommendations which could possibly improve the Standards but which were unrelated to the question of adequacy.

Research is needed to provide supporting data for changes to the Standards. This research should include:
-- More field tests of sign legibility outside the right-of-way.
-- Field validation of laboratory studies and theoretical models.
-- Surveys to define the actual visual acuity level of drivers.
Additional data are also required on:
-- Drivers' visual abilities, including the gestalt of sign perception.
-- Drivers' information needs.

An Overview of the Adequacy of National Standards for Directional and Other Official Signs

1.0 Introduction

1.1 1965 Highway Beautification Act

In support of the 1965 Highway Beautification Act the Department of Transportation in 1969 issued National Standards for Directional and Other Official Signs (Part 21, Section 131(c), Title 23, United States Code). As amended in late 1973, the Standards control outdoor advertising signs, displays, and devices which are visible from highways in non-urban areas or are located within $660 \mathrm{ft}(201.2 \mathrm{~m})$ of the nearest edge of the right-of-way in urban areas. These Standards limit signs outside commercial areas and industrial zones to ". . . directional and other official signs and notices, which signs and notices shall include, but not be limited to signs and notices pertaining to natural wonders, scenic and historical attractions, which are required or authorized by law, which shall conform to national standards hereby authorized to be promulgated by the Secretary hereunder, which standards sha11 contain provisions concerning the lighting, size, number, and spacing of signs, and such other requirements as may be appropriate to implement this section . . .,".

These Standards cover a variety of sign parameters ranging from specific prohibitions to general guidelines. Of particular importance are the following parameters:

Size - The maximum dimensions allowed, including border and trim, but not supports, are:
Area - $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$ Height - $20 \mathrm{ft}(6.1 \mathrm{~m})$
Length - $20 \mathrm{ft}(6.1 \mathrm{~m})$
Spacing - The location of each directional sign must be approved by the State highway department and none can be located within $2,000 \mathrm{ft}(609.6 \mathrm{~m})$ of an intersection or exit along the Interstate system or freeway, or within $2,000 \mathrm{ft}(609.6 \mathrm{~m})$ of a rest area, parkland, or scenic area. These signs must be within 75 air miles (120.7 km) of the activity for the Interstate System and within 50 air miles (80.5 km) for the Primary System. Such signs must be spaced at least one mile (1.6 km) apart.

Number - No more than three directional signs for a given activity and facing the same direction of travel may be located along any single approach route to the activity.

Content - Message content on directional signs is restricted to identification of the activity and directional information such as mileage, route number or exit numbers.

1.2 Objections to the Standards

A report from the Commission on Highway Beautification (1973) cited numerous examples of businesses which were denied the privilege of erecting signs in the protected zone - motels, restaurants, and points of interest. The operators of such businesses were not satisified with the Act and have criticized the Standards for being too restrictive. Others have criticized the Standards for being too liberal and the National Caves Association (NCA), an organization of private cavern owners who are permitted to erect directional signs in the protected zones, has criticized the Standards for being inadequate. The NCA objections to the Standards cited an anticipated loss of income, an inability to relocate sites, and a heavy reliance upon one-time visitors. The NCA proposed modifications to the size and spacing (number) allowed, which would result in the following changes:

Area	- from $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$ to a new maximum of $600 \mathrm{ft}^{2}$ $\left(55.7 \mathrm{~m}^{2}\right)$.
Height	- from $20 \mathrm{ft}(6.1 \mathrm{~m})$ to $30 \mathrm{ft}(9.1 \mathrm{~m})$.
Length	- from $20 \mathrm{ft}(6.1 \mathrm{~m})$ to $50 \mathrm{ft}(15.2 \mathrm{~m})$.
Spacing (Number)	- from 'Not more than three directional signs pertaining to the same activity and facing the same direction of travel may be erected along a single route approaching the activity" to "Not more than six . . ."

A letter from a sign manufacturer was included as evidence of the need for these changes. The letter referenced the dimensions needed to display messages on signs located $660 \mathrm{ft}(201.2 \mathrm{~m})$ from the highway. Full details were not provided, but a criterion of one inch (2.54 cm) of character height for every $40 \mathrm{ft}(12.2 \mathrm{~m})$ of viewing distance was used. However, it was not clear how such figures were subsequently translated into the larger physical dimensions of the signs requested by NCA.

An internal Federal Highway Administration (FHWA) study of these objections cited a re-evaluation of the Standards by the Office of Traffic Operations (FHWA Correspondence \#TO-21, 1974). The requested 700% increase in area (from three to six signs and from $150 \mathrm{ft}^{2}$ to $600 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right.$ to $\left.55.7 \mathrm{~m}^{2}\right)$ each) was considered excessive. However, FHWA conceded that some messages could not be adequately displayed on a $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$ sign. For this reason, changes for freeways and expressways were recommended by the Office of Traffic Operations in an internal response to the Office of Right-of-Way and Environment, as follows:
'Rather than to just place a limit on the size of the sign,
it is suggested that the limit be placed on the size for the
alphabets and the amount of directional information. For example on freeways and expressways: (1) restrict the maximum size of legend to 24 -inch uppercase and 18 -inch lowercase letters in the destination name and 18-inch uppercase in the directional copy, (2) limit the directional copy to two lines not exceeding the width of the name of the attraction,
(3) utilize interchange numbers where appropriate, and (4) sign
size to be determined solely on legend size and spacing, however, the maximum size sign shall not be greater than 400 square feet. Apply same criteria to other roads except utilize 20 -inch uppercase/15-inch lowercase alphabets in the attraction name and 15 -inch uppercase in the directional information. For these facilities the maximum sizé should be limited to 300 square feet.

The current limitation as to the number of signs per approach to the activity is adequate, in our opinion, for directional guidance."

Official FHWA policy has not been modified to reflect these or other internal responses to the question of adequacy.

Additional FHWA study of Standards modifications has emphasized problems of implementing any changes. These studies indicate that active cooperation with the states is absolutely necessary to meet the objectives of the Highway Beautification Act of 1965. If the changes to Part 21 of the Standards result in double standards for states to enforce, the 'beautyprograms" would be in serious jeopardy. In addition to the problems of double standards, should changes be made there is some question about the legal status of the larger signs which are now scheduled to be removed from highways.

1.3 FHWA/NBS Research Efforts

In response to such questions regarding the adequacy of the Standards, the FHWA Office of Research initiated a human factors study of the importance of divergence angle (the angle of regard between the direction of roadway travel and the driver's line of sight to the sign) and requested the assistance of the National Bureau of Standards (NBS) to complete an overview of the Standards' adequacy with respect to the needs of motorists. It was the intention of Congress that the Standards allow adequate guidance and information for motorists but that strict advertising be avoided. Technical data which supported or conflicted with portions of the Standards were sought.

To examine the adequacy issue, NBS personnel:

1. reviewed the available FHWA files on this topic, discussed the Standards' history and problems with FHWA personnel, and prepared the background material discussed above;
2. completed literature searches of recently published reports relevant to highway signing, and obtained pertinent articles for closer examination;
3. reviewed selected State Codes pertaining to privately-erected directional signs;
4. completed field measurements of four signs in the Washington, D.C. vicinity erected in compliance with the Standards;
5. asked four recognized experts in sign research to provide reviews of the Standards and of research dealing with various specific points;
6. designed a variety of fictitious signs according to several criteria and compared each with 'real world" parameters; and
7. summarized the technical objections to specific parts of the Standards and made recommendations to satisfy these objections.

2.0 Approach

It was the goal of this project to provide FFFA with an overview of the adequacy of the 131(c) Standards - in terms of motorists' needs. The limited time and resources and the restricted scope of the effort permitted little original research to be done. Instead, a limited literature search and review, discussions with and reports from consultants, field site measurements, and two theoretical signing models were used to evaluate specific points in the Standards.

2.1 Review of Technical Material

A number of benchmark articles, annotated bibliographies and texts were available which summarized a great deal of the early highway signing research. To complement these publications, several data bases were searched to identify more recent research.

The data bases examined were the:

- HRIS (Highway Research Information Service),
- NTIS (National Technical Information Service),
- Compendex (Engineering Index),
- PASAR (Psychological Abstracts Search and Retrieval), and
- New York Times Information Service.

Unfortunately, most potential sources were either too general to be applicable or were not directly relevant. Most research concerned right-of-way signs - not directional signs positioned out of the
right-of-way. Advertising-sign literature was primarily concerned with attitudes of the public and advertising effectiveness, and was less concerned with layout, character height, or total area.

Section 21.4 of the Standards requires participating states to submit their signing codes for review by FHWA. Ten states have thus far submitted the required material. Three other states in the Washington, D.C. area submitted their codes to this project for review. The extent of compliance and magnitude of local exceptions were studied to identify difficulties faced by states in implementing the Standards.

2.2 Consultants

Four experts were selected whose published research dealt with subjects relevant to parts of the Standards. (Brief vitae are included in Appendix D.) These four men served to acquaint project personnel with relevant publications and different frames of reference to evaluate the Standards. Each also responded to the question of Standards adequacy and submitted a report summarizing their conclusions. The four were:

- Dr. Theodore Forbes (Professor of Psychology and Research Advisor, Highway Traffic Safety Center at Michigan State University),
- Dr. Slade Hulbert (Research Psychologist in the Psychology Department at the University of California at Los Angeles),
- Dr. Thomas Rockwell (Professor of Industrial and Systems Engineering, Driving Research Laboratory at the Ohio State University), and
- Dr. L. Ellis King (Associate Professor of Civil and Environmental Engineering and Associate Director of the Center for Urban Transportation Studies at the University of Colorado).

2.3 Hypothetical Signs

It was not possible to obtain a representative sample of actual signs in the field for comparisons with the provisions of the Standards and with published research. Consequently, hypothetical signs were developed for this purpose, based on established signing principles. Four actual signs were measured to provide a frame of reference for evaluating the hypothetical signs and to serve as examples of field problems and practices.

The message content and arrangements of these hypothetical signs were selected to conform to the Standards, satisfy the guidelines suggested in the Manual on Uniform Traffic Control Devices (MUTCD, 1971), and present the extreme of dimensions likely to be encountered in the field. It was assumed that if the Standards were adequate for such extreme cases, they would be more than adequate for signs of lesser message length and content which were also better arranged.

A fictitious sign text was generated and arranged on two, three, and four lines. In the previously cited FHWA study, the 1ongest line of text used was "SIX FLAGS OVER GEORGIA." To avoid direct criticism of this or other existing signs, a fictitious name, ''Schmillingrass Caverns," was constructed which used the same number of characters and spaces (i.e., 22). The recommendations (FHWA internal correspondence \#TO-21, 1974) mentioned above suggested that all text should occupy only two lines on a sign. However, for the Six Flags example, text had also been considered as three- and four-line arrangements. For these reasons, comparable arrangements were used here. Figure 1 illustrates upper and lowercase (UC/LC) and uppercase (UC) only examples of each sign.

Each of these formats (two-, three-, or four-line) was arranged in five configurations (based on MUTCD guidelines and research conclusions, Kindersley, 1960):
-A) A11 UC characters, spacing between lines of text equal to 0.75 character height;
-B) All UC characters, SCHMILLINGRASS CAVERNS line(s) 1.5 times the size of other line(s), spacing between lines equal to 0.75 character height;
-C) A11 UC characters, spacing between lines equal to 0.33 character height (Kindersley, 1960);
-D) Same as configuration A, but with UC/LC characters;
-E) Same as configuration B, but with UC/LC characters.*
All characters are from Series E, as recommended by Standard Alphabets (1966).**

For each of the 15 resultant signs, the length/height combination which made best use of the available area was determined. The character

[^0]Uppercase Only

Sign 1

SCHMILLINGRASS
CAVERNS
ROUTE 99
KENT ST EXIT

Sign 2

SCHMILLINGRASS CAVERNS
ROUTE 99 KENT ST EXIT

Schmillingrass Caverns
Route 99

Sign 3

Schmillingrass Caverns
Route 99
Kent St Exit

Figure 1. Uppercase only and upper/lowercase versions of each of the three signs.
height was calculated from these dimensions, as was the greatest distance at which characters of that height would be legible. The method used is illustrated below for a four-1ine sign in configuration A.

$\frac{0.75}{1.00}$	SCHMILLINGRASS
$\frac{0.75}{1.00}$	CAVERNS
$\frac{0.75}{1.00}$	ROUTE 99
$\frac{0.75}{1.00}$	KENT ST FXIT
$\frac{0.75}{7.75}$ lines of text	

1) From Appendix A, if characters of unit size were used, the length of the longest line would be 15.10 units.
2) Sign height, from the above diagram would be 7.75 units.
3) The ratio, α, of Length to Height would be

$$
\alpha=\frac{15.10}{7.75}=1.95
$$

which can be used to calculate the Height and Length of a sign of any fixed area since:
4) Area $=$ Height x Length $=$ Height $x \alpha$ Height $=\alpha$ Height 2.
5) In this example, for a $150 \mathrm{ft}^{2}$ sign:

$$
150 \mathrm{ft}^{2}=1.95 \text { Height }^{2} ;
$$

Therefore,

$$
\begin{aligned}
& \text { Height }=8.77 \mathrm{ft}(2.57 \mathrm{~m}) \text { and } \\
& \text { Length** }=\frac{150 \mathrm{ft}^{2}}{\text { Height }}=17.10 \mathrm{ft}(5.2 \mathrm{~m})
\end{aligned}
$$

[^1]6) The character height is equal to the sign height divided by the number of lines of text. Hence,
$$
\text { character height }=\frac{8.77 \mathrm{ft}}{7.75}=1.13 \mathrm{ft}(0.34 \mathrm{~m})
$$

OR

$$
\text { i3.56 in }(34.44 \mathrm{~cm})
$$

The factors which determine the greatest distance at which characters are legible are the stroke width and the driver's visual acuity. For reading purposes, visual acuity is the ability to distinguish letters on a Snellen chart (Bioastronautics Data Book, p. 638). Persons of "normal" vision (20/20 Snellen) can perceive characters having a stroke width of .0698 in (. 177 cm) at a distance of $20 \mathrm{ft}(6.1 \mathrm{~m})$. This corresponds to a one minute visual angle. Their visual acuity ratio is, therefore, $.00349 \mathrm{in} / \mathrm{ft}(.029 \mathrm{~cm} / \mathrm{m})$ of viewing distance. As a general rule, the distance at which characters are just legible is obtained by dividing the stroke width by the visual acuity ratio. The just legible viewing distances for various stroke widths are shown in Figure 2, for several levels of visual acuity.

The legibility distance per unit of character height is ontained by dividing the stroke width, expressed as a fraction of character height, by the visual acuity ratio. In the example above, the stroke width of UC only, Series E characters is 17.2% of character height.* For persons with $20 / 20$ vision, the legibility distance/character height ratio is

$$
\frac{.172}{.00349 \mathrm{in} / \mathrm{ft}}=49.3 \mathrm{ft} / \mathrm{in}(5.92 \mathrm{~m} / \mathrm{cm}) .
$$

Therefore for our example the legibility distance is

$$
13.56 \text { in } x 49.3 \mathrm{ft} / \mathrm{in}=669 \mathrm{ft}(203.9 \mathrm{~m}) .
$$

That is, characters 13.56 in (34.44 cm) high, whose stroke width is 17.2% of character height, would be legible $669 \mathrm{ft}(203.9 \mathrm{~m})$ away to viewers with 20/20 vision.

The legibility distance/character height ratio in the example above ($49.3 \mathrm{ft} / \mathrm{in}, 5.92 \mathrm{~m} / \mathrm{cm}$) is close to the "Rule of Thumb" ratio referred to by numerous highway officials ($50 \mathrm{ft} / \mathrm{in}, 6 \mathrm{~m} / \mathrm{cm}$). As can be seen,

[^2]

Just legible viewing distance
Figure 2. Just legible viewing distance for various stroke widths at four Ievels of visual acuity (figures based on visual acuity alone, not in context of meaningful sign text).
use of the 'Rule of Thumb' for placement of signs with Series E UC only characters rests on the implicit assumption that most drivers have $20 / 20$ vision. In fact, 80% of motorists drive with visual acuity poorer than 20/20 (Dewar, 1973; Forbes, 1965). In several states drivers may operate motor vehicles with uncorrected vision of 20/40 or even 20/70 (King, 1970). Ratios for four different levels of visual acuity are given below for UC/LC (19.9\% stroke width) and UC only (17.2% stroke width) Series E characters.

Legibility distance per unit of character height

Minimum
Visual
Acuity
20/20

20/23

20/40

20/70

Discernible Visual Angle
1.00 min
1.15 min
2.00 min
3.50 min

UC/LC characters,
stroke width is
19.9% of character
height

$57.0 \mathrm{ft} / \mathrm{in}$ $6.84 \mathrm{~m} / \mathrm{cm}$
$49.8 \mathrm{ft} / \mathrm{in}$ $5.98 \mathrm{~m} / \mathrm{cm}$
\simeq "Rule of Thumb"
$28.8 \mathrm{ft} / \mathrm{in}$
$3.46 \mathrm{~m} / \mathrm{cm}$
$16.3 \mathrm{ft} / \mathrm{in}$
$1.96 \mathrm{~m} / \mathrm{cm}$

UC Only characters, stroke width is 17.2% of character height
$49.3 \mathrm{ft} / \mathrm{in}$ $5.92 \mathrm{~m} / \mathrm{cm}$ \simeq "'Rule of Thumb'
$43.0 \mathrm{ft} / \mathrm{in}$ $5.16 \mathrm{~m} / \mathrm{cm}$
$24.9 \mathrm{ft} / \mathrm{in}$ $2.99 \mathrm{~m} / \mathrm{cm}$
$14.1 \mathrm{ft} / \mathrm{in}$ $1.67 \mathrm{~m} / \mathrm{cm}$

2.4 Signings Models

The models considered applicable to this project are those discussed by King (1971) and by Rockwell (1973). Both consider the effect of perpendicular distance from the sign to the roadway (lateral displacement), maximum divergence angle, driver speed, sign width, (length), and number of words.

The lateral displacement partly determines divergence angle. At smaller divergence angles, less lateral eye and head movement is needed to read the sign and foveal vision is not diverted as far from the roadway. The divergence angle increases as the driver moves down the road, from an
initial angle, measured at the point where reading begins, to a terminal angle (i.e., maximum divergence ang1e), measured at the point where reading ends. At any given speed, the terminal divergence angle should be something less than half of the usable visual sector (i.e., the right half of the field). Early work by Hamilton and Thurstone (1937, and summarized by Ewald, 1971) indicated that the usable visual sector, in which detail can be clearly seen, decreases in size with increasing speed. At $30 \mathrm{mph}(48.4 \mathrm{kph})$, the visual sector is 90° wide while at $55 . \mathrm{mph}$ (88.5 kph) it is reduced to approximately 48°. The minimum size at higher speeds is probably 20° to 30°, the normal limits of eye movement without corresponding head movement.

In addition to its effect on visual sector width, increasing speed also reduces the depth of that sector. At $60 \mathrm{mph}(96.6 \mathrm{kph})$ a driver can see details clearly only between 110 and $1400 \mathrm{ft}(33.5$ and 426.7 m) in front of the vehicle (Ewald, 1971). This $110 \mathrm{ft}(33.5 \mathrm{~m})$ minimum fixes a limit to the closeness of the sign. In other words, there is a minimum distance which must separate drivers from a sign and this minimum increases with increasing speed.

The following parameter values were used in applying the models to the hypothetical signs:

Lateral Displacement -
$5 \mathrm{ft}(1.5 \mathrm{~m})$, speed limit and similar types of signs are usually positioned at approximately this distance from the pavement.
$35 \mathrm{ft}(10.7 \mathrm{~m})$, right-of-way signs are generally located 30-50 ft ($9.1-15.2 \mathrm{~m}$) from the pavement.
$80 \mathrm{ft}(24.4 \mathrm{~m})$, this is the "average" distance from the pavement to the outermost edge of the right-of-way.
$740 \mathrm{ft}(225.6 \mathrm{~m})$, the zone protected by the Standards is from the end of the right-of-way to a point $660 \mathrm{ft}(201.2 \mathrm{~m})$ beyond. $740 \mathrm{ft}(225.6 \mathrm{~m})$ is $660 \mathrm{ft}(201.2 \mathrm{~m})$ beyond the "average" right-of-way.

Terminal Divergence Angle -
10°, King (1971) recommends 10° as the maximum ang1e, but his discussion points out that other researchers favor 15°; both angles are close to the maximum divergence angie expected of drivers who are using only eye movement to scan the visual field in front of the car.
30°, this angle was used since it was empirically determined in eye movement research basic to Rockwell's (1973) paradigm and is close to one-half of the field of view expected of drivers moving at $55-60 \mathrm{mph}$ ($88.5-96.6 \mathrm{kph}$).
40°, this angle approximates the divergence angle between the roadway and the position of the rear-view mirror.

Speed -
$80 \mathrm{mph}(128.7 \mathrm{koh})$, the speed for which most Interstate highways have been designed.

60 mph (96.6 kph), though the national speed limit is 55 mph (88.5 zp) many drivers are likely to maintain this slightly higher limit.
$55 \mathrm{mph}(88.5 \mathrm{~km}$), the national speed limit.
$40 \mathrm{mph}(6 \leq . \leq \mathrm{koh})$, the minimum speed limit on many highways.
Sign Iength -
As indicated above, the sign length which made best use of the available $150 \mathrm{ft}^{2}\left(13.2 \mathrm{~m}^{2}\right)$ was used for each version of the four-1ine signs. Required viewing distances are identical for all of the tro- and three-1ine signs because the length of each had to be reduced to $20 \mathrm{ft}(6.1 \mathrm{~m})$ to conform with the Standards.

Number of Words -
Published research (Forbes, 1959; 1972) emphasizes the desirability of using no more than three or four short, familiar words for best message perception. Since our analysis emphasized the use of "worst case" sign designs, seven words (Miller, 1956) were used as an upper 1init.

For "worst case" design purposes, it is important to assume that drivers will be traveling in the leftmost lane when passing the sign. Since rural settings where directional signs are allowed are unlikely to be carrying dense traffic, only three lanes were assumed.

Other factors which affect sign legibility include contrast between the figure and ground (characters and their inmediate surround), driver reading habits and search strategy, color and luminance of the sign, atmospheric conditions, and windshield characteristics such as tinting and dirt. These factors were not considered in the analysis.

Each model was used to determine the minimum line-of-sight distance (riewing distance from the driver to the sign) at which reading must start. The distance at which characters on each sign would be legible
(a function of visual acuity) can be compared with the minimum line-of-sight distance to determine a sign's adequacy. If the legibility distance is larger than the minimum viewing distance, characters would be legible at the latter distance. If the legibility distance is smaller, the characters would not be adequate at the minimum distance required by the models.

After the minimum viewing distance was determined, the optimum ratio of length to height was used to determine the dimensions of a sign which would satisfy the Rule of Thumb legibility requirements at that distance. These dimensions were obtained as follows:

Both models use the schematic diagram shown in Figure 3. The parameters are:
$A B=$ minimum viewing distance.
$A C=$ distance travelled while reading the sign.
$\mathrm{DE}=$ width of roadway (three lanes of traffic).
$E F=$ perpendicular distance from the inner edge of the sign to the outer edge of the roadway (lateral displacement).
$\mathrm{FB}=$ one half the sign width (length).
θ (theta) $=$ maximum acceptable angle, which determines the last point where the driver can read the sign (terminal divergence angle).

The equations for both models reduce to the following form:
$A B=\sqrt{[A C}+(D E+E F+F B) \cot \theta]^{2}+(D E+E F+F B)^{2}$
The models differ mainly in terms of the assumptions basic to each. In practice, the essential differences are, (1) the amount of time assumed necessary to read the sign, and (2) the terminal angle of regard. King recommends an angle of 10° or less, while Rockwell recommends 30°.

King's discussion of sign size and location is presented as guideline information of use to highway engineers designing legible signs for drivers who are reading such signs while monitoring road traffic in the periphery of their visual field. For this reason, a 10° divergence angle is recommended. Rockwell, instead, presents his model as a description of driver behavior actually observed, and concludes that 30° is the angle at which most drivers stop looking at the sign. In a similar view, King assumes a reasonable reading time based on published research, whereas Rockwell concludes with a longer assumed reading time since observed drivers did not look at the sign during the entire period when it was legible to them.

Figure 5. Schenatic diagram of sign location used

Both models can be used for any combination of speed, lateral displacement, sign width, number of words, and terminal divergence angle,* but only the limited number of discrete points described in the previous sections were used in this analysis. The values used were based on "real world" values which closely match situations likely to be encountered in the field.

2.5 Application of Models to Hypothetical Signs

To evaluate the hypothetical signs, answers were sought to these questions:

1. At $80,60,55$, and 40 miles per hour (128.7, $96.6,88.5$, and 64.4 kizometers per hour), what is the maximum viewing distance at which Standards-conforming signs should be legible?
2. What effect does the lateral displacement from the road have upon the viewing distance?
3. For four-line signs, what is the minimum height, length, and area which would meet the driver's needs, if $50 \mathrm{ft} / \mathrm{in}(6 \mathrm{~m} / \mathrm{cm})$ is the visual acuity used? Only four-line signs were used because they made full use of the available area.

3.0 Results

The Standards address five factors related to sign design and placement. These are: (1) maximum sign area of $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$, (2) 1ength and height each restricted to a maximum of $20 \mathrm{ft}(6.1 \mathrm{~m})$, (3) no more than three signs per route, (4) spacing between signs must be at least one mile (1.6 km), and (5) maximum distance from signs to the site is 50 or 75 air miles (80.5 or 120.7 km), depending on the type of road system.

3.1 Problem Areas in the Standards

A review of the Standards and official records showed minimal reference to supporting technical data. For example, no source could be identified to support the one mile (1.6 kizometer) spacing between signs, or the restriction of height and length to $20 \mathrm{ft}(6.1 \mathrm{~m})$.

A supplementary report from the Commission on Highway Beautification (1975, draft) noted that the $660 \mathrm{ft}(201.2 \mathrm{~m})$ setback limit was apparently a legislative compromise. In 1955, the Congress had reconmended 550 ft $(167.6 \mathrm{~m})$ in similar highway legislation and later hearings before the Department of Commerce were concluded with a $750 \mathrm{ft}(228.6 \mathrm{~m})$ recommendation. The present setback of $660 \mathrm{ft}(201.2 \mathrm{~m})$ is one-eighth of a mile, a furlong, and is apparently not based on highway construction requirements or driver constraints.
*If the terminal angle of regard exceeds 90°, then the driver will be beyond the sign and must look back at it to finish reading, an impossible situation. Past 90° only the back of the sign is visible if the plane of the sign is perpendicular to the roadway.

Similarly, the $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$ maximum area was adopted over 15 years ago. Its basis is unknown. In a field survey of signs erected next to highways throughout the country (excluding right-of-way signs), FHWA ascertained that over 75% were $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$ or less. Such face validity was apparently used as the basis for continuing the restriction.

As summarized in Appendix B, state standards for directional signs submitted to FHWA for review are essentially in conformance with the Federal regulations. Minor modifications were made on many points, but in terms of sign dimensions and number, all comply with the 131 (c) requirements.

3.2 Consultant Conclusions

There was general agreement among the consultants, but with differences of opinion expressed about the specifics of several restrictions. Each consultant stated that a maximum sign size of $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$ was probably too restrictive for all signing situations, and that many factors affect the minimum necessary sign area (e.g., lateral displacement from the roadway, message length, surrounding terrain and traffic density).
Similar observations were made concerning character size. The consultants suggested that parameters traditionally used to determine the minimum character size needed for right-of-way signs could just as well be applied to 131 (c) type signs, so as to tailor each to the requirements imposed by its intended location. Parameters noted were: visual angle subtended by the image, angle of regard, and traffic density.

No direct comments were received with respect to the number of signs per route. The most direct statement on this point was the suggestion that the "rule of three" concept used in right-of-way highway signing should also be applied to the 131 (c) type of signs. This concept requires that three separate warnings be given to drivers prior to each decision point. The one mile (1.6 kmI spacing was considered to be well above the minimum needed to avoid confusion and distraction. Suggestions were made that if a more different limit is ever adopted it should never be less than 1500 to 2000 ft $(457.2$ to 609.6 m$)$. One expert also suggested that more than one attraction could be announced at the same sign location, particularly when placed immediately prior to a decision point. No direct comments were made nor any data cited with regard to the distance from the signs to the site.

3.3 Field Site Measurements

Four signs erected in compliance with the Standards were measured to serve as a frame of reference when analyzing the hypothetical signs. Although selected signs did not constitute a statistically representative sample, they did serve as examples of field problems and practices.

The physical measurements of the signs are presented in Table 1. They include the height and length of the sign board; height, width and stroke width of selected characters; and the lateral displacement of the sign. Sign length and the number of words in each sign were used with King's model to determine the maximum viewing distance at which each of these signs should
Table 1
Physical Measurements of Signs and Characters for Four Standards－Conforming Signs
（Photographs of each are presented in Appendix C）

Character Dimensions

$$
\begin{align*}
& \text { 'C'' in Caverns } \tag{E}\\
& 26.0 \mathrm{in} / 5.5 \mathrm{in} \\
& 66.04 \mathrm{~cm} / 13.97 \mathrm{~cm} \\
& \text { 'E' in Exit } \\
& 18.0 \mathrm{in} / 3.5 \mathrm{in} \\
& 45.72 \mathrm{~cm} / 8.89 \mathrm{~cm} \\
& \text { 'M' in Mi. } \\
& 14.5 \mathrm{in} / 3.0 \mathrm{in} \\
& 36.83 \mathrm{~cm} / 7.62 \mathrm{~cm}
\end{align*}
$$

 	uṭ $0^{\circ} £ / \mathrm{L}$ T 0° ZI子uoxis u！،،O،
suəəлej ut "،』،	$\begin{aligned} & * / \mathrm{wo} 88^{\circ} \mathrm{sq} \\ & * / \mathrm{L} 0^{\circ} \mathrm{zz} \end{aligned}$ suəəлеј U！̣＂ヨu
uṬ 0 ．s／uṬ 0.62 suләле〕 uṭ ،．J．＂	wo $\angle 6^{\circ}$ ET／uo $99^{\circ} \varepsilon \angle$ ut g•乌／ut 0•6Z suxəлеว แ！̣ ،．ગ．،

Table 2

	Character Height	$\begin{gathered} 80 \mathrm{mph} \\ (128.7 \mathrm{kph}) \end{gathered}$	$\begin{aligned} & \text { Required } \\ & 60 \mathrm{mph} \\ & (96.6 \mathrm{kph}) \end{aligned}$	wing distance 55 mph (88.5 kph)	$\begin{gathered} 40 \mathrm{mph} \\ (64.1 \mathrm{kph}) \end{gathered}$	Rule of thumb ($50 \mathrm{ft} / \mathrm{in}$) distance at which measured character would be legible
Sign Λ	$\begin{aligned} & 22 \text { in } \\ & 55.88 \mathrm{~cm} \end{aligned}$	$\begin{array}{r} 1180 \mathrm{ft} \\ 360 \mathrm{~m} \end{array}$	$\begin{array}{r} 1061 \mathrm{ft} \\ 323 \mathrm{~m} \end{array}$	$\begin{gathered} 1031 \mathrm{ft} \\ 314 \mathrm{~m} \end{gathered}$	$\begin{aligned} & 941 \mathrm{ft} \\ & 287 \mathrm{~m} \end{aligned}$	$\begin{array}{r} 1100 \mathrm{ft} \\ 335 \mathrm{~m} \end{array}$
Sign B	$\begin{aligned} & 21 \mathrm{in} \\ & 53.34 \mathrm{~cm} \end{aligned}$	$\begin{array}{r} 1187 \mathrm{ft} \\ 362 \mathrm{~m} \end{array}$	$\begin{array}{r} 1067 \mathrm{ft} \\ 325 \mathrm{~m} \end{array}$	$\begin{array}{r} 1037 \mathrm{ft} \\ 316 \mathrm{~m} \end{array}$	$\begin{aligned} & 947 \mathrm{ft} \\ & 289 \mathrm{~m} \end{aligned}$	$\begin{gathered} 1050 \mathrm{ft} \\ 320 \mathrm{~m} \end{gathered}$
${ }^{\circ}$ Sign C	$\begin{aligned} & 15.8 \mathrm{in} \\ & 40.13 \mathrm{~cm} \end{aligned}$	$\begin{gathered} 1273 \mathrm{ft} \\ 388 \mathrm{~m} \end{gathered}$	$\begin{gathered} 1126 \mathrm{ft} \\ 343 \mathrm{~m} \end{gathered}$	$\begin{gathered} 1089 \mathrm{ft} \\ 332 \mathrm{~m} \end{gathered}$	$\begin{gathered} 979 \mathrm{ft} \\ 298 \mathrm{~m} \end{gathered}$	$\begin{array}{r} 787 \mathrm{ft} \\ 240 \mathrm{~m} \end{array}$
Sign D	$18 \text { in } 45.72 \mathrm{~cm}$	$\begin{array}{r} 1196 \mathrm{ft} \\ 365 \mathrm{~m} \end{array}$	$\begin{array}{r} 1068 \mathrm{ft} \\ 326 \mathrm{~m} \end{array}$	$\begin{gathered} 1035 \mathrm{ft} \\ 315 \mathrm{~m} \end{gathered}$	$\begin{aligned} & 939 \mathrm{ft} \\ & 286 \mathrm{~m} \end{aligned}$	$900 \mathrm{ft}$ $274 \mathrm{~m}$

*This $50 \mathrm{ft} / \mathrm{in}(6 \mathrm{~m} / \mathrm{cm})$ rule of thumb is only slightly difforent from the $20 / 23$ visual acuity used
to evaluate hypothetical signs (49.8 or $49.3 \mathrm{ft} / \mathrm{in} ; 5.98$ or $5.92 \mathrm{~m} / \mathrm{cm}$).
be legible, at several velocities and lateral displacements. These data are presented in Table 2. Also shown in this table is the maximum distance at which the sign characters would be legible, based on $50 \mathrm{ft}(15.2 \mathrm{~m})$ of viewing distance for every inch (2.54 cm) of character height. Signs C and D are not legible at the distance required by King's model, which means that the divergence angle would be greater than 10° before reading was completed.

A variety of signing techniques are shown in Appendix C. Only cavernsrelated signs were photographed and measured, since other-types of sites in the Washingtion, D.C. area have not yet erected signs under the Standards. Unless located in commercial zones, non-conforming signs for all types of sites are scheduled to be removed by December 1976.

3.4 Sign Size, Legibility, and Theoretical Models

For the hypothetical signs, the $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$ limitation was the binding constraint for the four-1ine format. The two- and three-line formats were constrained by the maximum $20 \mathrm{ft}(6.1 \mathrm{~m})$ length allowed. Figure 4 presents the percentage of available area used by each Standardsconforming sign (as reported in Table 3). Table 4 presents the distances at which the fictitious message would be legible on Standards-conforming signs, for four levels of visual acuity.

The distance at which the signs should be legible was determined for each sign using both King's model and Rockwell's model. For each of the four-1ine signs the five different configurations did not produce substantial differences to such distances. For this reason, the data for only one sign, (configuration D of the four-line signs) are presented in tabular form (Table 5).

Table 6 presents the minimum viewing distances for all two- and threeline signs (each of which was restricted in length to $20 \mathrm{ft}(6.1 \mathrm{~m})$. Since theoretically derived viewing distances are based on sign length, such distances for these signs are identical.

The height, length, and area which would be required at the various speeds and placement distances were calculated only for four-line signs because such signs allowed the largest character size within the constraints. The same procedures can be used to calculate these dimensions for any other sign. Figures 5 and 6 illustrate the minimum viewing distance required by the models under several conditions, and the maximum distance at which characters of the hypothetical signs would be legible.

If all of Rockwell's assumptions are accepted, the Standards are not adequate for drivers having normal (20/20) visual acuity, traveling at speeds above $60 \mathrm{mph}(96.6 \mathrm{kph})$. King's model assumes less reading time required, but many of the test signs placed 80 ft or less from the pavement are also not adequate at speeds above $60 \mathrm{mph}(96.6 \mathrm{kph})$. Although it is unlikely that anyone would choose to erect a sign at the limits of the protected zone (660 ft or 201.2 m beyond the right of way) if a closer position were available, the size of such a sign at that distance would have to be several thousand square feet to be legible, far exceeding the $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right) 1$ imit. Tables 7-9 present sign dimensions needed to display legible messages on the UC/LC, 0.75 spacing, four-line sign at various speeds, lateral displacements and divergence angles.

Dimensions of "optimum" signs. (Area figures are rounded to the nearest whole ft^{2}.)
Configuration A - All UC characters, 0.75 spacing.
Configuration B - All UC, 0.75 spacing, destination 1.5
times as large.
Configuration C - All UC, 0.33 spacing.
Configuration D - UC/LC, 0.75 spacing.
Configuration E - UC/LC, 0.75 spacing, destination 1.5 times as large.

Height Length

Percentage of available area used

Four-1ine Signs
A

B
8.77 ft
17.09 ft 5.20 m
$150 \mathrm{ft}^{2}$
100%
2.67 m
$13.9 \mathrm{~m}^{2}$
$150 \mathrm{ft}^{2}$
100%
$8.24 \mathrm{ft} \quad 18.19 \mathrm{ft}$
$13.9 \mathrm{~m}^{2}$
C
8.02 ft
5.54 m
$150 \mathrm{ft}^{2}$
100% $2.44 \mathrm{~m} \quad 5.69 \mathrm{~m}$

$$
13.9 \mathrm{~m}^{2}
$$

D
$8.78 \mathrm{ft} \quad 17.08 \mathrm{ft}$
$150 \mathrm{ft}^{2}$
100%
$2.65 \mathrm{~m} \quad 5.20 \mathrm{~m}$
$13.9 \mathrm{~m}^{2}$
$8.24 \mathrm{ft} \quad 18.18 \mathrm{ft}$
$2.67 \mathrm{~m} \quad 5.54 \mathrm{~m}$
$150 \mathrm{ft}^{2}$
100%
Three-1ine Signs
A

> 5.15 ft 1.56 m
20.00 ft
$103 \mathrm{ft}^{2}{ }_{2}$
69%
6.09 m
$9.6 \mathrm{~m}^{2}$
B
4.36 ft
20.00 ft
$87 \mathrm{ft}^{2}$
58\%
$1.32 \mathrm{~m} \quad 6.09 \mathrm{~m}$
$8.1 \mathrm{~m}^{2}$
$4.43 \mathrm{ft} \quad 20.00 \mathrm{ft}$
1.35 m
6.09 m
$89 \mathrm{ft}^{2}{ }^{2}$
59\%
C

D
5.23 ft
20.00 ft
6.09 m
$105 \mathrm{ft}^{2}$
70%
1.59 m
$4.44 \mathrm{ft} \quad 20.00 \mathrm{ft}$
$9.8 \mathrm{~m}^{2}$
$89 \mathrm{ft}^{2}$
60%

Two-Iine Signs
A
3.65 ft
20.00 ft
$73 \mathrm{ft}^{2}$
49%
1.11 m
6.09 m
$6.8 \mathrm{~m}^{2}$
B
3.36 ft
20.00 ft
$67 \mathrm{ft}^{2}$
45\%
1.02 m
6.09 m
$6.2 \mathrm{~m}^{2}$
C
3.28 ft
20.00 ft
$66 \mathrm{ft}^{2}{ }_{2}$
44%
0.99 m
6.09 m
$6.1 \mathrm{~m}^{2}$
D
3.70 ft
20.00 ft
$74 \mathrm{ft}^{2}$.
49%
1.16 m
6.09 m
$6.9 \mathrm{~m}^{2}$
E
3.42 ft
20.00 ft
$68 \mathrm{ft}_{2}^{2}$
45\%

Figure 4. Percentage of available area used by Standards-conforming, hypothetical signs. (From Table 3.)

Table 4

Distances in feet at which the hypothetical 'Standards-conforming' signs would be legible, at various levels of visual acuity. (Distances in meters are shown in italics.) Sign configurations A-E are the same as those presented in Table 3.

Four-1ine Signs

Visual					
Acuity	A	B	C	D	E
20/20	$\begin{aligned} & 669 \\ & 203.9 \end{aligned}$	$\begin{aligned} & 713 \\ & 217.3 \end{aligned}$	731 222.8	$\begin{aligned} & 774 \\ & 235.9 \end{aligned}$	824 251.2
20/23	$\begin{aligned} & 584 \\ & 178.0 \end{aligned}$	$\begin{aligned} & 662 \\ & 189.6 \end{aligned}$	638 194.5	$\begin{aligned} & 677 \\ & \quad 206.3 \end{aligned}$	$\begin{aligned} & 719 \\ & 219.2 \end{aligned}$
20/40	$\begin{aligned} & 338 \\ & 103.0 \end{aligned}$	$\begin{aligned} & 360 \\ & 109.7 \end{aligned}$	$\begin{aligned} & 369 \\ & 112.5 \end{aligned}$	$\begin{aligned} & 391 \\ & 119.2 \end{aligned}$	$\begin{aligned} & 416 \\ & 126.8 \end{aligned}$
20/70	191	204	209	221	235

Three-line Signs

Visual Acuity	A	B	C	D	E
20/20	$\begin{aligned} & 508 \\ & \quad 154.8 \end{aligned}$	$\begin{aligned} & 507 \\ & 154.5 \end{aligned}$	$\begin{aligned} & 508 \\ & 154.8 \end{aligned}$	$\begin{aligned} & 596 \\ & 181.7 \end{aligned}$	$\begin{gathered} 596 \\ 181.7 \end{gathered}$
20/23	$\begin{aligned} & 443 \\ & 135.0 \end{aligned}$	$\begin{aligned} & 442 \\ & 134.7 \end{aligned}$	443 135.0	$\begin{aligned} & 521 \\ & 158.8 \end{aligned}$	$\begin{aligned} & 521 \\ & 158.8 \end{aligned}$
20/40	$\begin{aligned} & 256 \\ & 78.0 \end{aligned}$	$\begin{aligned} & 256 \\ & 78.0 \end{aligned}$	${ }^{257} \quad 78.3$	$3_{91.7}$	$3_{91.7}$
20/70	$\stackrel{145}{44.2}^{2}$	${ }_{44.2}$	$\stackrel{145}{44.2}^{2}$	$1_{51.8}$	1_{52}

Two-1ine Signs

Visual

Acuity	A	B	C	D	E
$20 / 20$	508	507	507	595	597
	154.8	154.5	.154 .5	181.4	182.0
$20 / 23$	443	442	442	520	521
	135.0	134.7	134.7	158.5	158.8
$20 / 40$	257	256	256	300	302
	78.3	78.0	78.0	91.4	92.0
$20 / 70$	145	145	145	170	171
	44.2	44.2	44.2	51.8	52.1

Viewing distances in feet from which a four-1ine, UC/LC sign having 0.75 interline spacing should be legible, according to two models (King, 1971; Rockwell, 1973). Model-derived distances are shown for various vehicular speeds, lateral displacements, and divergence angles. (Distances in meters are shown in italics.)
10° Divergence Ang1e

Lateral Displacement		5 ft		35 ft		80 ft		740 ft	
80 mph	King	742	(226)	914	(279)	1172	(357)	4970	(1515)
(128.7 kph)	Rockwe11	1245	(379)	1416	(432)	1674	(510)	5468	(1667
60 mph	King	622	(190)	794	(242)	1052	(321)	4851	(1479)
(96.6 kph	Rockwe11	999	(304)	1170	(357)	1428	(435)	5224	(1592)
55 mph	King	592	(180)	764	(233)	1022	(312)	4822	(1470)
(88.5 kph)	Rockwe11	937	(286)	1109	(338)	1366	(416)	5163	(1574)
40 mph	King	501	(153)	674	(205)	933	(284)	4732	(1442)
(64.4 kph)	Rockwell	752	(229)	924	(282)	1182	(360)	4981	(1518)

30° Divergence Angle

Lateral Displacement	5 ft		
80 mph	King	563	(172)
$(128.7 \mathrm{kph})$	Rockwell	1065	(325)
60 mph	King	443	(135)
$(96.6 \mathrm{kph})$	Rockwell	819	(250)
55 mph	King	413	(126)
$(88.5 \mathrm{kph})$	Rockwel1	758	(231)
40 mph	King	323	(98)
$(64.4 \mathrm{kph})$	Rockwell	573	(175)

40° Divergence Angle

Lateral Displacement		5 ft		35 ft		80 ft		740 ft	
80 mph	King	538	(164)	577	(176)	637	(194)	1614	(492)
(128.7 kph)	Rockwe11	1041	(317)	1078	(329)	1136	(346)	2069	(631)
61 mph	King	418	(127)	458	(140)	520	(158)	1510	(460)
(96.6 kph)	Rockwe11	795	(242)	833	(254)	891	(272)	1843	(562)
55 mph	King	388	(118)	428	(130)	490	(149)	1484	(452)
(88.5 kph)	Rockwe11	733	(223)	771	(235)	830	(253)	1787	(545)
40 mph	King	299	(91)	340	(104)	403	(123)	1408	(429)
(64.4 kph)	Rockwe11	549	(167)	588	(179)	648	(198)	1623	(495)

Viewing distances in feet from which two and three-line signs should be legible, according to two models (King, 1971; Rockwe11, 1973). Model-derived distances are shown for various vehicular speeds, lateral displacements, and divergence angles. (Distance in meters shown in italics.)

Lateral Displacement	
80 mph	King
$(128.7 \mathrm{kph})$	Rockwell
60 mph	King
$(96.6 \mathrm{kph})$	Rockwell
55 mph	King
$(88.5 \mathrm{kph})$	Rockwe11
40 mph	King
$64.4 \mathrm{kph})$	Rockwell

10° Divorgence Angie

5 ft		35		ft	80		ft
750	(299)	922	(281)	1180	(360)	4979	(15t
$7518)$							
1253	(382)	1424	(434)	1682	(513)	5476	(1669)
630	(192)	802	(244)	1061	(323)	4860	(1481)
1007	(307)	1178	(359)	1436	(438)	5233	(1595)
600	(183)	772	(235)	1031	(314)	4830	(1472)
945	(288)	1117	(340)	1375	(419)	5172	(1576)
510	(155)	682	(208)	941	(287)	4741	(1445)
761	(232)	933	(284)	1191	(363)	4989	(1521)

30° Divergence Angle

Lateral Displacement		5 ft		35 ft		80 ft		740 ft	
$\begin{gathered} 80 \mathrm{mph} \\ (128.7 \mathrm{kph}) \end{gathered}$	King Rockwell	$\begin{array}{r} 566 \\ 1068 \end{array}$	$\begin{aligned} & (172) \\ & (326) \end{aligned}$	$\begin{array}{r} 620 \\ 1122 \end{array}$	$\begin{aligned} & (189) \\ & (342) \end{aligned}$	$\begin{array}{r} 704 \\ 1203 \end{array}$	$\begin{aligned} & (215) \\ & (367) \end{aligned}$	$\begin{aligned} & 1996 \\ & 2467 \end{aligned}$	$\begin{aligned} & (608) \\ & (752) \end{aligned}$
$\begin{aligned} & 60 \mathrm{mph} \\ & (96.6 \mathrm{kph}) \end{aligned}$	King Rockwell	$\begin{aligned} & 446 \\ & 822 \end{aligned}$	$\begin{aligned} & (136) \\ & (251) \end{aligned}$	$\begin{aligned} & 501 \\ & 876 \end{aligned}$	$\begin{aligned} & (153) \\ & (267) \end{aligned}$	$\begin{aligned} & 586 \\ & 958 \end{aligned}$	$\begin{aligned} & (179) \\ & (292) \end{aligned}$	$\begin{aligned} & 1886 \\ & 2235 \end{aligned}$	$\begin{aligned} & (575) \\ & (681) \end{aligned}$
$\begin{gathered} 55 \mathrm{mph} \\ (88.5 \mathrm{kph}) \end{gathered}$	King Rockwe11	$\begin{aligned} & 416 \\ & 760 \end{aligned}$	$\begin{aligned} & (127) \\ & (232) \end{aligned}$	$\begin{aligned} & 471 \\ & 815 \end{aligned}$	$\begin{aligned} & (144) \\ & (248) \end{aligned}$	$\begin{aligned} & 556 \\ & 897 \end{aligned}$	$\begin{aligned} & (170) \\ & (273) \end{aligned}$	$\begin{aligned} & 1858 \\ & 2177 \end{aligned}$	$\begin{aligned} & (566) \\ & (664) \end{aligned}$
$\begin{gathered} 40 \mathrm{mph} \\ (64.4 \mathrm{kph}) \end{gathered}$	King Rockwe11	$\begin{aligned} & 326 \\ & 576 \end{aligned}$	$\begin{aligned} & (99) \\ & (176) \end{aligned}$	$\begin{aligned} & 382 \\ & 631 \end{aligned}$	$\begin{aligned} & (117) \\ & (192) \end{aligned}$	$\begin{aligned} & 469 \\ & 715 \end{aligned}$	$\begin{aligned} & (143) \\ & (218) \end{aligned}$	$\begin{aligned} & 1777 \\ & 2006 \end{aligned}$	$\begin{aligned} & (542) \\ & (611) \end{aligned}$

40° Divergence Ang1e

Lateral Displacement		5 ft		35 ft		80 ft		740 ft	
80 mph	King	540	(165)	579	(177)	639	(195)	1616	(493)
(128.7 kph)	Rockwell	1043	(318)	1080	(329)	1138	(347)	2071	(631)
60 mph	King	420	(128)	460	(140)	522	(159)	1512	(461)
(96.6 kph)	Rockwe11	797	(243)	835	(254)	893	(272)	1845	(562)
55 mph	King	390	(119)	430	(131)	492	(150)	1486	(453)
(88.5 kph)	Rockwell	735	(224)	773	(236)	832	(254)	1789	(545)
40 mph	King	301	(92)	342	(104)	405	(124)	1410	(430)
(64.4 kph)	Rockwel1	551	(168)	590	(180)	650	(198)	1625	(495)

Lateral displacement from pavement edge to sign edge (ft, m)
Figure 5. Viewing distance needed to read characters on a four-line sign, UC/LC characters, 0.75 interline spacing, at a 10° divergence angle at various lateral displacements. The horizontal dotted line is the distance at which the characters on the four-line sign would be legible to stationary viewers of $20 / 20$ visual acuity. (From Table 5.)

Lateral displacement from pavement edge to sign edge (ft, m)
Figure 6. Viewing distance needed to read characters on a four-1ine sign, UC/LC characters, 0.75 interline spacing, at a 30° divergence angle at various lateral displacements. The horizontal dotted line is the distance at which the characters on the four-line sign would be legible to stationary viewers of $20 / 20$ visual acuity. (From Table 5.)

Table 7

Sign dimensions in feet needed to display the four－1ine，UC／LC， 0.75 interline spacing sign to drivers of $20 / 23$ visual acuity，at a 10° divergence angle，at various vehicular speeds and lateral displacements． （Dimensions in meters are shown in italics．）

10° Divergence Angle									
Lateral	Displacement 5		5 ft	35	ft	80 ft		740 ft	
玉	Height	9.58	（ 2．92）	11.80	（ 3．60）	15.14	（ 4．61）	64.20	（ 19．57）
\％${ }^{2}$	Length	18.64	（ 5．68）	22.96	（ 7.00 ）	29.46	（8．98）	124.92	（ 38．08）
，	Area	179	（16．6）	271	（25．2）	446	（41．4）	8020	（745．0）
	Height	16.08	（ 4．90）	18.29	（ 5．57）	21.62	（ 6．59）	70.63	（ 21．53）
	Length	31.29	（ 9．54）	35.59	（10．85）	42.07	（12．82）	137.43	（ 41．89）
	Area	503	（46．7）	651	（60．5 ）	910	（84．5）	9707	（901．8）
ふ	Height	8.03	（ 2．45）	10.25	（ 3．12）	13.59359	（4．14）	62.66	（ 19．10）
$\begin{aligned} & \text { 㲍 } \end{aligned}$	Leng th Area	$\begin{aligned} & 15.62 \\ & 125 \end{aligned}$	$\begin{aligned} & (4.76) \\ & (11.7) \end{aligned}$	19.94204	（ 6.08 ）		（8．06）	121.92	$\begin{aligned} & (37.16) \\ & (709.7) \end{aligned}$
					（19．0）		（33．4）	7640	
$\begin{aligned} & \text { ㄹ } \\ & \text { E } \\ & \stackrel{0}{2} \end{aligned}$	Height Length Area	$\begin{aligned} & 12.90 \\ & 25.10 \\ & 324 \end{aligned}$	$\begin{aligned} & (3.93) \\ & (7.65) \\ & (30.1) \end{aligned}$	$\begin{aligned} & 15.11 \\ & 29.40 \\ & 444 \end{aligned}$	$\begin{aligned} & (4.61) \\ & (8.96) \\ & (41.3) \end{aligned}$	$\begin{array}{r} 18.44 \\ 35.88 \\ 662 \end{array}$	$\begin{aligned} & (5.62) \\ & (10.94) \\ & \text { (61.5) } \end{aligned}$	$\begin{array}{r} 67.48 \\ 131.30 \\ 8860 \end{array}$	$\begin{aligned} & (20.57) \\ & (40.02) \\ & (823.1) \end{aligned}$
	Height Leng th Area	$\begin{array}{r} 7.64 \\ 14.87 \\ 114 \end{array}$	$\begin{aligned} & (2.33) \\ & (4.53) \\ & (10.6) \end{aligned}$	$\begin{array}{r} 9.86 \\ 19.19 \\ 189 \end{array}$	$\begin{aligned} & (3.01) \\ & (5.85) \\ & (17.6) \end{aligned}$	$\begin{aligned} & 13.20 \\ & 25.68 \\ & 339 \end{aligned}$	$\begin{aligned} & (4.02) \\ & (7.83) \\ & (31.5) \end{aligned}$	$\begin{array}{r} 62.28 \\ 121.18 \\ 7547 \end{array}$	$\begin{aligned} & (18.98) \\ & (36.94) \\ & (701.1) \end{aligned}$
2．									
－号									
	Height Length Area	$\begin{array}{r} 12.10 \\ 23.54 \\ 285 \end{array}$	$\begin{aligned} & (3.69) \\ & (7.17) \\ & (26.5) \end{aligned}$	$\begin{aligned} & 14.32 \\ & 27.86 \\ & 399 \end{aligned}$	$\begin{aligned} & (4.36) \\ & (8.49) \\ & (37.1) \end{aligned}$	$\begin{aligned} & 17.65 \\ & 34.34 \\ & 606 \end{aligned}$	$\begin{aligned} & (5.38) \\ & (10.47) \\ & (56.3) \end{aligned}$	$\begin{aligned} & 66.69 \\ & 129.77 \\ & 8654 \end{aligned}$	$\begin{aligned} & (20.33) \\ & (39.55) \\ & (804.0) \end{aligned}$
\％									
$\begin{array}{ll} \text { E } \\ \sim \\ \sim \end{array}$									
	Height Leng th Area	$\begin{array}{r} 6.48 \\ 12.61 \\ 82 \end{array}$	$\begin{aligned} & \left(\begin{array}{l} 1.98) \\ (3.84) \\ (7.6) \end{array}\right. \end{aligned}$	$\begin{array}{r} 8.70 \\ 16.93 \\ 147 \end{array}$	$\begin{aligned} & (2.65) \\ & (5.16) \\ & (13.7) \end{aligned}$	$\begin{aligned} & 12.04 \\ & 23.43 \\ & 282 \end{aligned}$	$\begin{aligned} & (3.67) \\ & (7.14) \\ & (26.2) \end{aligned}$	$\begin{aligned} & 61.13 \\ & 118.95 \\ & 7271 \end{aligned}$	$\begin{aligned} & \left(\begin{array}{l} 18.63) \\ (36.26) \\ (675.5) \end{array}\right. \end{aligned}$
$\stackrel{\infty}{2} \quad \underset{\Xi}{8}$									
\cdots									
	Height Length Area	$\begin{array}{r} 9.72 \\ 18.91 \\ 184 \end{array}$	$\begin{aligned} & (2.96) \\ & (5.76) \\ & (17.1) \end{aligned}$	$\begin{array}{r} 11.94 \\ 23.23 \\ 277 \end{array}$	$\begin{aligned} & (3.64) \\ & (7.08) \\ & (25.8) \end{aligned}$	$\begin{aligned} & 15.27 \\ & 29.71 \\ & 454 \end{aligned}$	$\begin{aligned} & (4.65) \\ & (9.06) \\ & (42.2) \end{aligned}$	$\begin{aligned} & 64.33 \\ & 125.17 \\ & 8052 \end{aligned}$	$\begin{aligned} & (19.61) \\ & (38.15) \\ & (748.1) \end{aligned}$
＇									
\bigcirc									

Table 8

Sign dimensions in feet needed to display the four－1ine，UC／LC， 0.75 interline spacing sign to drivers of $20 / 25$ visual acuity，at a 50° divergence angle，at various vehicular speeds and lateral displacements．
（Dimensions in meters are show in italics．）
50° Divergence Angle

Lateral	5 ft			55 ft		80 ft		740 ft	
E	Height	7.2^{-}	（ 2．82）	7.98	（ 2．43）	9.06	（ 2．76）	25.75	7．85）
き	Leng th	14.15	（ 5.31 ）	15.53	（ 5.73 ）	17.65	（ 5.37$)$	50.10	（15．27）
爫	Area	105	（ 2.5 ）	124	（11．5）	160	（14．8）	1290	（119．9）
	Height	15.76	（ 5.18 ）	14.45	$(\leq . \leq 0)$	15.51	（ 4.73 ）	51.83	（ 9．70）
	Leng th	26．7．	（ 8．15）	28.12	（ 8．57）	30.18	（ 2．20）	61.94	（ 18.88 ）
	Area	568	（31．2）	406	（37．8）	468	（ 43.5 ）	1972	（183．2）
$\underset{三}{\underline{E}}$	Height	5.72	（ 1.75 ）	6.44	（ 1.96$)$	7.55	（ 2.30 ）	24.32	（ 7.41$)$
	Iength	11.15	（3．39）	12.55	（ 3．82）	14.65	（ 4.47 ）	47.52	（ 14.42 ）
	Area	64	（ 5.8 ）	81	（ 7.5 ）	110	（10．3）	1151	（108．8）
	Height	10.58	（ 3．22）	11.28	（ 3．44）	12.54	（ 3．73）	28.83	（ 8．70）
	Length	20.59	（ 2.28 ）	21.95	（ 0.68 ）	24.01	（ 7．32）	56.10	（17．10）
	Area	218	（20．2）	248	（23．0）	296	（27．6）	1617	（150．3）
込	Height	5.35	（ 1．62）	6.05	（ 1.85 ）	7.15	（ 2．18）	23.97	（ 7．31）
	Length	10.57	（3．16）	11.77	（ 3．59）	15.91	（ 5.24 ）	46.64	（14．22）
	Area	55	（ 5.1 ）	71	（ 6.6 ）	99	（ 8.2 ）	1118	（103．9）
	Height Iength Area	9.79	（ 2．98）	10.49	（ 3．20）	11.55	（ 3．52）	28.09	（ 8．56）
		19.05	（5．81）	20.41	（ 6.22 ）	22.47	（ 6.85 ）	54.66	（ 16.86 ）
		187	（17．3）	214	（19．9）	260	（24．1）	1555	（142．6）
	Height	$\div .17$	（ 1．27）	4.90	（ 1.49$)$	6.02	（1．83）	22.91	（ 6.98$)$
	Iength	8.11	（ 2． 57 ）	9.55	（2．80）	11.71	（ 3．57）	44.58	（ 13.53 ）
	Area	37	（3．1）	47	（ 4.3 ）	70	（6．6）	1021	（ 94.8 ）
	Height	7.41	（ 2．26）	8.11	（ 2．57）	9.19	（ 2．80）	25.87	（ 7．89）
	Length	11.42	（ $\leq . \leq 0)$	15.78	（ 5.81 ）	17.88	（ 5．45）	50.34	（ 15.34$)$
	Area	107	（3．8）	128	（11．9）	164	（15．3）	1502	（121．0）

Table 9
Sign dimensions in feet needed to display the four-1ine, UC/LC, 0.75 interline spacing sign to drivers of $20 / 23$ visual acuity, at a 40° divergence angle, at various vehicular speeds and lateral displacements. (Dimensions in meters are shown in italics.)

40° Divergence Angle									
Lateral	Displacement 5		t	35 ft		80 ft		740 ft	
	Height	6.95	(2.12)	7.46	(2.27)	8.23	(2.51)	20.84	(6.36)
	Length	13.52	(4.12)	14.52	(4.43)	16.01	(4.88)	40.57	(12.37)
	Area	94	(8.7)	108	(10.1)	132	(12.2)	846	(78.6)
	Height	13.44	(4.10)	13.93	(4.25)	14.67	(4.47)	26.72	(8.14)
	Length	26.15	(7.97)	27.11	(8.26)	28.54	(8.70)	51.99	(15.85)
	Area	351	(32.7)	378	(35.1)	419	(38.9)	1389	(129.1)
	Height Length Area	5.41	(1.65)	5.92	(1.80)	6.71	(2.05)	19.50	(5.94)
		10.53	(3.21)	11.52	(3.51)	13.06	(3.98)	37.94	(11.56)
		57	(5.3)		(6.3)		(8.1)	740	(68.7)
	Height Length Area	10.27	(3.13)	10.76	(3.28)	11.51	(3.51)	23.81	(7.26)
		19.98	(6.09)	20.94	(6.38)	22.40	(6.83)	46.33	(14.12)
		205	(19.1)	225	(20.9)	258	(24.0)	1103	(102.5)
	Height	5.02	(1.53)	5.53	(1.69)	6.33	(1.93)	19.17	(5.84)
	Length	9.77	(2.98)	10.76	(3.28)	12.32	(3.76)	37.30	(11.37)
	Area	49	(4.6)	60	(5.5)	78	(7.3)	715	(66.4)
$\begin{aligned} & \text { 를 } \\ & \underline{E} \\ & \text { n } \end{aligned}$	Height	9.47	(2.89)	9.96	(3.04)	10.72	(3.27)	23.09	(7.04)
	Length	18.43	(5.62)	19.38	(5.91)	20.86	(6.36)	44.93	(13.69)
	Area	175	(16.2)	193	(17.9)	224	(20.8)	1037	(96.4)
$\begin{array}{ll} 5 & 0 \\ \text { cy } & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$		3.86	(1.18)	4.39	(1.34)	5.21	(1.59)	18.18	(5.54)
	Length	7.51	(2.29)	8.54	(2.60)	10.14	(3.09)	35.37	$\text { (} 10.78 \text {) }$
	Area		(2.7)	37	(3.5)	53	(4.9)	643	(59.7)
$\begin{array}{ll} \overrightarrow{0} & \overrightarrow{0} \\ \equiv & \stackrel{3}{3} \\ \circ & 0 \\ \hline \end{array}$	Height Length Area	7.09	(2.16)	7.59	(2.31)	8.37	(2.55)	20.97	(6.39)
		13.80	(4.21)	14.77	(4.50)	16.29	(4.97)	40.80	(12.44)
		98	(9.1)	112	(10.4)	136	(12.7)	856	(79.5)

For all practical purposes, eye movement (without head movement) is not expected of drivers past the center of their rear view mirror. While this angle is dependent upon many factors, 40° is a reasonable average. Using a terminal divergence angle of 40° for King's model, most Standardsconforming signs could be read at most speeds - unless located far from the edge of the right-of-way.

4.0 Discussion

4.1 Problem Areas

Available records did not explain the rationale for adopting the current limits in the Standards, and state codes do not differ significantly from the provisions spelled out in the 131 (c) regulations. Thus, it was necessary to consider the specific objections raised by the National Caves Association (NCA) and other potential problems raised by research results to evaluate the adequacy of the Standards.

NCA objections to the Standards were primarily concerned with the size and number of signs allowed. In place of existing restrictions, a 700% increase in total area (doubling the number of signs allowed and increasing the area of each to $600 \mathrm{ft}^{2}\left(55.7 \mathrm{~m}^{2}\right)$) was proposed. Rather than react directly to these proposed changes, the approach taken in this project was to objectively determine sign dimensions adequate for the field environment expected. Aspects of the Standards considered potential problems and subject to examination were sign dimensions, spacing between signs, and the number of signs allowed per route.

4.2 Development of Theoretical Tests

Since official records did not explain the rationale used to select the values for these variables, and since the available literature did not directly address the specific points in the Standards, it was necessary to use design paradigms originally developed for right-of-way signs to evaluate our hypothetical, "worst case" examples.

Figure 4 illustrates the importance of properly arranging messages to make best use of the available area, i.e., a four-line Standards-conforming sign constrained only by an area limit, would be legible at the required viewing distance, though two- and three-line versions of the same message would be of inadequate character height since they were constrained more severly by the length limit. So long as maximum limits on height and length are in the Standards, their influence is greatly affected by the sign format used.

Addressing a separate issue, Tables 5 and 6 present data which can be used to judge the adequacy of signs conforming to the existing dimensional restrictions. Listed in these tables are the sign dimensions needed to display the Schmillingrass Caverns message at the model-derived viewing distances, to drivers of $20 / 23$ visual acuity. As shown in Tables $7-9$, for many conditions signs must be larger than
$150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$ to meet the requirements of each model. As speed and
lateral displacement increase, Standards-conforming signs become more and
more inadequate. However, if signs are located $35-80 \mathrm{ft}(10.7-24.4 \mathrm{~m})$ from the pavement and the angle of regard is assumed to be 30°, many Standardsconforming signs are adequate. For example, at the minimum speed (40 mph , $64.4 \mathrm{kph})$, the minimum lateral displacement ($5 \mathrm{ft}, 1.5 \mathrm{~m}$) , and at the largest divergence angle (40°), a sign of less than $30 \mathrm{ft}^{2}\left(2.8 \mathrm{~m}^{2}\right)$ would be adequate to meet King's assumptions, and a sign of $98 \mathrm{ft}^{2}\left(9.1 \mathrm{~m}^{2}\right)$ would meet Rockwell's assumptions. However, at $80 \mathrm{mph}(128.7 \mathrm{kph}), 740 \mathrm{ft}(225.6 \mathrm{~m})$ from the edge of the pavement, and using a 10° divergence angle, the same sign would have to be several thousand square feet.

Specific values must be assumed for the essential parameters of speed, lateral displacement, divergence angle, and visual acuity if the data from these tables are to be used to determine in what way and to what extent the standards are adequate or inadequate.

The sign size required at the outermost edge of the protected zone is far in excess of $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$. Few businesses would be likely to choose such a distant placement if a closer position were available, but it can be concluded that signs of $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$ are not adequate at all points within the protected zone. If the size restriction is to be maintained, a shorter, maximum setback distance within the protected zone should be adopted, or a range of sizes be defined for various lateral displacements.

The data illustrate the importance of visual angle in sign design. Signs which meet the optimum length/height ratio increase in area as they are placed farther from the roadway. The effect is comparable to projecting an image on a screen. When close, the image is small, and it increases in size as the screen is moved farther away. Though the actual size of the image on the screen changes, the visual angle which that image subtends at the viewer's eye is constant. If the Standards placed a restriction on the size of the visual angle which the sign could subtend, signs placed at all distances from the roadway would all present the same image size to a viewer. As an alternative to an absolute size regulation, a maximum visual angle specification would seem to be consistent with intent of the $150 \mathrm{ft}^{2}$ $\left(13.9 \mathrm{~m}^{2}\right)$ restriction currently in the Standards.

To insure that the text on each sign is legible (a need not directly addressed in the current Standards), the visual angle which the stroke width of characters must subtend should also be specified. If this change was coupled to a maximum visual angle for the sign itself, signs would be of uniform impact because their images would be of a constant apparent size, and the individual characters would be legible.

4.3 Limitations of the Models

These paradigms were selected and used because they presented illustrative examples of the parameters which must be considered in evaluating the Standards. As previously described, the essential differences hetween the models are the reading times assumed and the maximum divergence angles recormended. Both models were originally developed primarily for right-of-way signs; as the lateral displacement becomes large the models are not entirely adequate because the orientation
of the sign itself becomes a major factor. It must be emphasized that no models were located which specifically addressed the highway signing situations covered by the Standards, and to that extent the viewing distances, character sizes, and sign dimensions could be expected to change if a more appropriate model were used instead.

4.4 Conclusions and Recommendations

Some parts of the Standards should be modified, to better meet the needs of drivers in the variety of field situations likely to be encountered when reading signs.

1. Directional sign Standards should require individual characters to be legible at the minimum visual acuity levels specified in state driver licensing regulations. For ease of use by highway engineers, this can be specified as a ratio of viewing distance/character height. The proper ratio would depend on the stroke width of the type of characters used.
2. Restricting the physical dimensions of signs may constrain those sites seeking to display long-named items of information. Instead, restrictions should limit the visual angle subtended by the sign in the horizontal and vertical directions. This would mean that signs placed close to the road would be smaller than those placed further away, that both would be of the same apparent size to the viewer, and that justifications for large signs would be based only on legibility needs of drivers.
3. No material was located to support a change to the present proximity limits between directional signs and interchanges or exits; to the number of signs allowed, or to the maximum distance from sign location to site location.
4. In terms of motorists' needs, the one mile (1.6 km) spacing between signs is adequate. Consultants recommended no change, but cautioned that this distance never be reduced to less than 1500-2000 ft (457. 2-609. 6 mL .

In the process of studying deficiencies and improvements to the Standards, the consultants made several other observations which merit consideration.

1. The current Standards include no "break away" requirements. In the interest of safety, signs covered by 131(c) regulations and located less than $80 \mathrm{ft}(24.4 \mathrm{~mL}$ from the pavement should also comply with the break away requirements imposed on right-of-way signs.
2. Many developed cavern sites are located in close proximity to one another, due to the geological make-up of the area and ease of access for tourists. Motorists would be aided if right-of-way signs were used to announce the type of activity accessible from an exit (see Figures 21 and 22).
3. Effective, attention-getting signs of reasonable size are possible if standard shapes or colors are used. However, their use would require public education - more than a minor problen.
4. Consultants suggested that perhaps a priority of sign placement, indpendent of right-of-way, should be adopted. With this system of priorities, drivers could search specific areas of the visual field for driving information signs, without constantly scanning for signs over the entire area in front of the vehicle. For example, information signs could be located 35-50 ft (10.7-15.2 m) into the right-of-way, or overhead, and caverns-type directional signs could be located in the same position or at some other standard distance, such as $80 \mathrm{ft}(24.4 \mathrm{~m})$.

4.5 Recommended Research

As noted several times in this report, most of the literature reviewed for this project was not directly applicable to the problems under study. To remedy this situation, several areas of research should be pursued.

1. The legibility of signs erected outside the right-of-way has not been sufficiently examined. More field testing is needed.
2. Laboratory experiments involving humans often yield data which are inconsistent with field results. As an example, the Janesville field study (National Advertising Company, undated report) determined that a $42 \mathrm{ft} / \mathrm{in}(5.04 \mathrm{~m} / \mathrm{cm})$ legibility distance/character height ratio was necessary for signs to be legible, whereas simulation studies had yielded a $50 \mathrm{ft} / \mathrm{in}$ $(6 \mathrm{~m} / \mathrm{cm})$ ratio. Had the simulation-derived figures been used without field testing, all signs would have been too small for their intended placement. Field validation of laboratory studies and theoretical models is essential.
3. More data are needed on drivers' visual abilities. The proper ratio of viewing distance to character height is not firmly established, and the maximum terminal divergence angle has not been identified. Not only do they depend upon visual acuity and speed but also the familiarity of the message to be perceived and the type of characters used. Much work also needs to be done on the gestalt of highway sign perception especially in terms of familiarity, driver attention and motivation, and driver expectancies and stereotyped responses. The visual acuity assumptions relate to such a gestalt, and could explain why words can be read on a highway sign at longer distances than would be predicted for a particular visual acuity level, even though some of the letters are not clearly discerned.
4. Better data are needed to define the "actual'" static and dynamic visual acuity of the driving population. Many states require only a static visual acuity examination, and then only at the time of initial license application. Drivers whose vision has deteriorated over time may be operating at levels far below the tested level.
5. Much sign design is based upon assumed driver information needs. Proper design requires a better understanding of such needs: What level of information do drivers obtain prior to departure, what feedback is expected along the way, and what details are assumed to be announced prior to arrival? No research was identified by this project which could define the specific information drivers require or when they require it.

Selected References

Adler, B. and Straub, A.L. Legibility and brightness in sign design. Paper presented to the annual conference of the Highway Research Board. Washington, D.C., National Academy of Sciences and Highway Research Board 1971.

Alexander, G.J. Report to Motorist Information Systems Committee - Updating Forbes ', et al. 1964 Bibliography. Highway Research Board Committee Correspondence, May 2, 1974.

Alexander, G.J., King, G.F., Warskow, M.S., and McGlamery, D. Development of Information Requirements and Transmission Techniques for Highway Users. Texas Transportation Institute, July 1970.

Allen, T.M. Night legibility distance of highway signs, Highway Research Board Bulletin, 1958, 191, 33-40.

Allen, T.M., Dyer, F.N., Smith, G.M., and Janson, M.H. Luminance requirements for illuminated signs, Highway Research Record, 1967, 179, 16-37.

Allen, T.M., and Straub, A.L. Sign brightness and legibility, Highway Research Board Bulletin, 1955, 127, 1-22.

Allen, T.M., Smith, G.M., Janson, M.H., and Dryer, F.N. Sign Brightness in Relation to Legibility. Michigan Department of State Highways, August 1966.

Bhise, V.D., and Rockwe11, T.H. Toward the development of a methodology for evaluating highway signs based on driver information aquisition, Highway Research Record, 1973, 440, 38-56.

Bhise, V.D., and Rockwell, T.H. Development of a Methodology for Evaluating Road Signs. Project EES315B, Final Report, Ohio State University, Columbus, 1973.

Bhise, V.D., and Rockwell, T.H. Implementing Sign Research Results Into Operational Practices. Project EES407, Final Report, Ohio State University, Columbus, 1974.

Blood, D.M., Rajender, G.R., Moncur, J., and Curle, E.J. Traveler Attitudes Toward Highway Billboard Advertising: A Survey of Selected Wyoming Motel Patrons. Wyoming State Highway Department and Bureau of Public Roads, January 1969.

Bureau of Public Roads, Economic impact of the highway beautification act, Volume 1, Staff Report, March 1967.

Burg, A. Vision and driving: a summary of research findings, Highway Research Record, 1968, 216, 1-12.

Burg, A., and Hulbert, S.F. Dynamic visual acuity as related to age, sex, and static acuity, Journal of Applied Psychology, 1961, 45(2), 111-116.

California Department of Motor Vehicles, The 1964 California Driver Record Study. California Department of Motor Vehicles, Division of Administration, Parts 1-8, December 1964 - March 1967.

Case, H.W., Michael, J.L., Mount, G.E., and Brenner, R. Analysis of certain variables related to sign legibility, Highway Research Board, 1952, 60, 44-58.

Christie, A.W., and Hirst, G. Legibility of signs with green backgrounds, Traffic Engineering \mathcal{G} Control, March 1965, 6(11), 672-3.

Claus, K.E., and Claus, R.J. Visual Communication Through Signage, Volume 1, Perception of the Message. Cincinnati: Signs of the Times Publishing Co., 1974.

Commission on Highway Beautification, The Priority of Quality, Summary Report, December 1973.

Commission on Highway Beautification, Supp1emental Report to the Priority of Quality. Draft version, 1975.

Connolly, P.L. Visual consideration: man, the vehicle and the highway, Highway Research News, 1968, 30, 71-74.

Cunningham, P.A. Control of highway advertising signs, some legal problems, Highway Research Board Report, 1971, 119, 1-72.

Dewar, R.E. Psychological Factors in the Perception of Traffic Signs. Psychology Department, University of Calgary, February 1973.

Dunipace, D.W., Strong, J., and Fuizinga, M. Prediction of nighttime driving visibility from laboratory data, Applied Optics, 1974, 13(11), 2723-2734.

Elastic Nut Corporation of America, Spacing Rules and Regulations, Signal Products Division, Elizabeth, New Jersey, 1962.

Ewald, W.R., Jr., and Mandelker, D.R. Street Graphics. The American Society of Landscape Architects Foundation, Washington, D.C., 1971.

Ferguson, W.S. Virginia Highway Signing. Phase I. Iriver Awareness of Sign Colors and Shapes. Virginia Highway Research Council and Bureau of Public Roads, March 1967.

Forbes, T.W. Methods of measuring judgment and perception time in passing on the highway, Highway Research Board Proceedings, 1939, 19, 218-228.

Forbes, T.W. Factors of adequate sign design, Traffic Engineer's Handbook. Institute of Traffic Engineers, New York, 1941, 106-107.

Forbes, T.W. Factors in highway sign visibility, Illuminating Engineering, August 1970, 495-503.

Forbes, T.W. Human Factors in Highway Traffic Safety Research. New York: Wiley-Interscience, 1972.

Forbes, T.W., Fry, J.P., Jr., Joyce, R.P., and Pain, R.F. Letter and sign contrast, brightness, and size effects on visibility, Highway Research Record, 1968, 216, 48-54.

Forbes, T.W., Goldblatt, J., Greenwood, W.H., and Saari, B.B. A Study of Characteristics of Highway Signs Optimal for Visibility and Legibility. (Preliminary Report), presented at Seminar on Visual Signalling, International Commission on Illumination, Washington, D.C., April 1974.

Forbes, T.W., and Holmes, R.S. Legibility distances of highway destination signs in relation to letter height, letter width, and reflectorization, Proceedings of the Highway Research Board, 1939, 19, 321-335.

Forbes, T.W., Moscowitz, K., and Morgan, G. A comparison of lower case and capital letters for highway signs, Proceedings of 13th Annual Meeting of the Highway Research Board, December 1950.

Forbes, T.W., Pain, R.F., Bloomquist, D.W., and Vanosdall, F.E. Low contrast and standard visual acuity under mesopic and phototopic illumination, Journal of Safety Research, 1969, 1, 5-12.

Forbes, T.W., Pain, R.F., Fry, J.P., and Joyce, R.P. Effect of sign position and brightness on seeing simulated highway signs, Highway Research Record, 1967, 164, 29-37.

Forbes, T.W., Pain, R.F., Joyce, R.P., and Fry, J.P., Jr. Color and brightness factors in simulated and full-scale traffic sign visibility, Highway Research Record, 1968, 216, 55-65.

Forbes, T.W., Snyder, T.E., and Pain, R.F. Traffic Sign Requirements. Michigan State University, 1963, 15.

Forbes, T.W., Snyder, T.E., and Pain, R.F. A Study of Traffic Sign Requirements II. An Annotated Bibliography. College of Engineering, Michigan State University, East Lansing, Michigan, August 1964.

Forbes, T.W., Snyder, T.F., and Pain, R.F. Traffic sign requirements I. Review of factors involved, previous studies and needed research, Highway Research Record, 1965, 70, 48-56.

Ha11, W.A., Walters, E.L., Nimeroff, I., and Douglas, C.A. Photometric Tests of Vehicle Glazing Materia1s. NBS Report 74-519, National Bureau of Standards, Washington, D.C., August 1972.

Hanson, D.R., and Woltman, H.L. Sign backgrounds and angular position, Highway Research Record, 1967, 170, 82-96.

Hulbert, S.F. Evaluation of highway destination signs, Proceedings 7th California Street \& Highway Conference, Universi $\begin{gathered}\text { y } \\ \text { C } \\ \text { of California, Berkeley }\end{gathered}$ 1955, 122-124.

Hulbert, S.F., and Burg, A. The effects of underlining on the readability of highway destination signs, Proceedings, Highway Research Board, 1957, 36, 561-574.

Hulbert, S.F., Burg, A., Kno11, H.A., and Mathewson, J.H. A pre1iminary study of dynamic visual acuity and the effects in motorist's vision, Journal of the American Optometric Association, 1958, 29(6), 359-364.

Hurd, F. Glance legibility, Traffic Engineering, 1946, 17, 161-162.
Institute of Outdoor Advertising, The First Medium, New York, 1974.
Kindersley, D. Motorway sign lettering, Traffic Engineering and Control December 1960, 463-465.

King, B., and Sutro, P. Dynamic visual fields, Highway Research Board Bulletin, 1957, 152, 7-11.

King, G.F. Some effects of lateral sign displacement, Highway Research Record, 1970, 325, 15-27.

King, G.F., and Lunenfeld, H. Development of information requirements and transmission techniques for highway users, Highway Research Board NCHRP Reports, 1971.

Ko1srud, G.S. Diagranmatic Guide Signs for Use on Controlled Access Highways, Volume III. Traffic Engineering Evaluation Diagrammatic Guide Signs, Part 3. Synthesis and Conclusions. Federal Highway Administration, December 1972.

Lowry, P.R., et al. A Survey of the Standard Poster Outdoor Advertising Industry. Bureau of Public Roads, Bureau of Business \& Economic Research, Memphis State University \notin Texas Transportation Institute, Texas A\&̧M University, 1967.

Lowry, P.R., Sumner H.H., and Cartee, P.C. Economic Effects of the Control of Highway Signs in Tennessee. Tennessee Department of Highways and Bureau of Public Roads, November 1967.

Mast, T.M., Chernisky, J.B., and Hooper, F.A., Jr. Diagrarmatic Guide Sign for Use on Controlled Access Highways, Volume II. Laboratory, Instrumented Vehicle, and State Traffic Studies of Diagrammatic Guide, Signs. Federal Highway Administration, December 1972.

Matson, T.M., Smith, W.S., and Hurd, F.W. Traffic Engineering. New York: McGraw-Hill, 1955.

Middleton, W.E.K. A study of the conspicuity of orange surface colors, Illuminating Engineering, February 1952, 95-98.

Miller, G.A. The magical number seven, plus or minus two, some limits on our capacity for processing information. Psychological Review, March 1956, 63 (2) , 81-97.

Miro-Flex Company, Inc. Sign Layouts, Interstate Highway Products, Wichita, Kansas, 1971.

National Aeronautics and Space Administration, Bioastronautics Data Book, U.S. Government Printing Office, 1975.

National Acaderry of Sciences, Visual Factors in Transportation Systems. Proceedings of spring meeting, 1969, NAS-NRC Committee on Vision (Multiple Contributors).

National Advertising Company. Letter Sizes and Color Combinations for Interstate Highway Directional Signs, Research Department of National Advertising Company, Argo, Illinois (undated).

Odescalcki, P. Conspicuity of signs in rural surroundings, Traffic Engineering \& Contro1, 1960, 2(7), 590-5, 597.

Pain, R. Brightness ratio as factors in the attention value of highway signs, Highway Research Record, 1969, 275, 52-40.

Peterson, S.G., Schoppert, D.W., Voorhees, A.M., and Associates. Motorist's reactions to signing on a Beltway, Highway Research Record, 1967, 170, 1-29.

Powers, L.D. Effectiveness of sign background reflectorization, Highway Research Record, 1965, 70, 74-86.

Schoppert, D.W., Moskowitz, K., Hulbert, S.F., and Burg, A. Some principles of freeway directional signing based on motorist's experiences, Highway Research Board Bulletin, 1960, 244, 50-87.

Simon, A.L., and Rosenquist, H.S. Comprehensive Evaluation of Highway Sign and Billboard Regulations. Akron University, Ohio, August 1967.

Solomon, D. The effect of letter width and spacing on night legibility of highway signs, Proceedings of the Highway Research Board, 1956, 35, 600-617.

Straub, A.L., and Allen, T.M. Sign brightness in relation to position, distance, and reflectorization, Highway Research Board Bulletin, 1956, 146, 13-34.

Texas Transportation Institute, Driver Communications and Traffic Control, November 1966.
U.S. Department of Transportation, Manual on Uniform Traffic Control Devices for Streets and Highways, Federal Highway Administration, 1971.
U.S. Department of Transportation, Standard Alphabets for Highway Signs, Federal Highway Administration, Office of Traffic Operations, 1966 edition.

Walton, N.E. Visibility and driver information, Highway Research Board Record, 1973, 440, 1-19.

Woltman, H.L. Review of visibility factors in roadway signing, Highway Research Board Special Report 134, Highway Visibility, 1973, 28-41.

Woods, D.L., and Rowman, N.J. Street name signs for arterial streets, Highway Research Board, 1970, 325, 51-61.

APPENDIX A

Sign Design Guidelines
"Schmillingrass Caverns," was used to illustrate sign design principles. It used the same number of characters and spaces as the longest, real destination name previously studied by FHFA to respond to the question of the Standards' adequacy (FHWA Correspondence \#To-21, 1974). For purposes of illustration and model testing the following assumptions were met for the various configurations of "Schmillingrass Caverns" signs. These design considerations were adapted from guidelines presented in Standard Alphabets for Highway Signs (1972 reprint of 1966 edition), from The Manual of Uniform Traffic Control Devices for Streets and Highways (1971), and from information obtained directly from Mr. Travis Brooks, FHWA, Office of Traffic Operations.

1. Character Height, Width and Stroke Width.

- Stroke width to height ratios for Series E letters and numbers were used (Standard Alphabets, 1966).
- Character widths employed maintained the same ratio to character height as was specified for 10 in (25.4 cm) high Series E characters.
- Characters were not restricted to standard sizes. Rather characters that utilized all available height on the sign were used, e.g., 15.02 in (38.15 cm).
- Loop heights of lowercase (LC) characters in a given line were set at 0.75 the height of the uppercase (UC) characters in that line.
- For signs having two sizes of UC characters, the larger was 1.5 times the height of the smaller.

2. Spacing Between Characters and Words.

- Spacing between characters maintained the ratios specified in Standard Alphabets for spacing between 10 in (25.4 cm) characters.
- Spacing between words on the SCHMILLINGRASS CAVERNS line equals the width of a fictitious UC " C " plus the spacing to the left and right of that " C ".

3. Spacing to Side Borders.

- Spacing from the first character of the longest line to the left vertical border, and spacing from the last character to the right border were each set equal to the height of the UC characters on that longest line.

4. Interline Spacing

- The distance from the top border to the first line equalled 0.75 of the height of UC characters in that line.
- For configurations A and D, interline spacing was 0.75 UC character height.
- For configurations B and E, interline spacing was 0.75 the height of the first " S " in Schmillingrass.
- For configuration C, interline spacing was 0.33 character height (Kindersley, 1966).
- Spacing to the bottom border was 0.75 the height of the UC characters. (This differs slightly with guidelines in the Manual on Uniform Traffic Control Devices, but was assumed for ease of computation.)

5. Line Length

- Only the length of the longest line was calculated since all other lines will fall within the same limits.

6. Sign Height was determined as the sum of the number of lines of text, interline spacings, and text-to-border spacings (expressed as proportions of character height).
7. Punctuation

- No periods were used after abbreviations.

Widths of Characters, Spaces and Resultant Lines of Text for Four Configurations of "Schmillingrass Caverns," Widths Expressed as Proportions of Uppercase Character Heights

UC/LC I ine	Character (or space)	UC only line
Border to		
1.000 -- 1st Character ----- 1.000		
. 797 -------- S ----------- . 797		
. 313 . 206		
. 633 -------- C ----------- . 797		
. 413 . 206		
. 663 ------- H ----------- . 797		
. 513		. 258
1.054 ------ M ----------- . 922		
. 513 . 258		
. 188 ------- I ---------- . 172		
. 513 . 258		
. 188 ------- L ----------- . 734		
. 513 . 206		
. 188 ------- L ---------- . 734		
. 513 . 206		
. 188 ------ I ----------- . 172		
. 513 . 258		
. 640 ------- N ---------- . 797		
.400 . 258		
. 633 ------- G ----------- . 797		
. 513 . 258		
. 484 ------- R ----------- . 797		
. 200 . 206		
. 633 ------- A ----------- 1.000		
. 375 . 206		
. 633 ------- S ---------- . 797		
. 233 . 206		
. 633 ------- S ----------- . 797		
Last character		
1.000 -- to border -------- 1.000		
15.08 -- Subtotal ${ }^{1}$-------- 15.10		
Space between		
1.209 ----- words -------- 1.209		
. 797	C	-- . 797
. 350 . 137		
. 633 ------- A ---------- 1.000		
. 375 . 068		
. 742 ------- V ----------- . 906		
. 263 . 206		
. 633 ------- E ---------- . 734		
.413 E .206		
. 484 ------- R ----------- . 797		
. 313 . 258		
. 640 ------- N ----------- . 797		
. 375 . 258		
. 633 ------- S ----------- . 797		
1.000 -- to border -------- 1.000		
22.94 -- Total ${ }^{2}$----------- 23.27		
Total Wirth os Line		
$1_{\text {SCIMILLINGRASS }}$ (15.10		
${ }^{1}$ Schmillingrass $\quad 15.08$		
${ }^{2}$ SCHMLLLIVGRASS CAILRUS		
${ }^{2}$ Schnillingrass Caverns 22.94		

Appendix B

Sunmary of State Standards for Directional Signs

Table 10 presents a summary of pertinent provisions in various state codes regarding directional signs. The first ten states listed had previously submitted their codes to FHWA in accordance with provisions in Section 21.4, Paragraph (f) (3) of the Standards. As part of the preparation for field site measurements, those states near the Washington, D.C. area which had not yet submitted their codes were asked to provide regulations applicable to similar types of signs.

The entries in the first line of Table 10 are from Part 21, Section 21.2 and 21.4 of the Standards. All entries of "standard" mean that the State Code essentially replicates the Part 21 requirements for that point. FHWA responses to provisions less restrictive than the National Standards were not studied for this project. Because cell entries are only brief summaries, it will be necessary to refer to the State Code to clarify some specific provisions, e.g., the Number of Signs entry for Nebraska. Maryland has special provisions for directional signs, so the comments below relate to the remaining twelve states whose codes were examined.

Distance from Right-of-Way (R-0-W, within $660 \mathrm{ft}(201.2 \mathrm{~m})$ of the nearest edge of R-O-W on Interstate (IS) and Federal-aid Primary System (P) and which are visible from the main traveled way of the system).

- 8 states meet or exceed the Standards.
- 3 states have not specified requirements.
- 1 state refers to locations adjacent to and visible from the main traveled way of IS and P.
Size (maximum: Area $150 \mathrm{ft}^{2}$; Height 20 ft ; Length 20 ft ; or Area $13.9 \mathrm{~m}^{2}$; Height 6.1 m ; Length 6.1 m).
- All twelve states comply with the Standards.

Moving (signs which move or have any animated parts are prohibited).

- 7 states meet the Standards (one of these mentions P but not IS).
- 5 states have not specified requirements.

Spacing
a. (2,000 ft (609.6 m) minimum distance from an interchange or intersection at grade along IS or other freeways.)

- 10 states meet the Standards (3 of these have other restrictions).
- 1 state specified $100 \mathrm{ft}(30.5 \mathrm{~m})$ minimum from an intersection on any route or road.
- 1 state specified 500 ft (152.4 m).
b. $(2,000 \mathrm{ft}(609.6 \mathrm{~m})$ minimum distance from a rest area, parkland, or scenic area.)
- 8 states meet the Standards with respect to Federal-aid primary (1 of these does not mention IS).
- 1 state did not specify this requirement.
- 3 states specified 500 ft (152.4 m).
c. (Separation of at least one mile (1.6 kizometers) from other directional signs facing same direction of travel.)
- 9 states meet the Standards (1 of these does not mention IS).
- 1 state specified 0.5 mile (0.8 kizometers).
- 2 states mention shorter distances but are unclear as to how they relate to the Standards.

Number of Signs (Not more than three directional signs for same activity facing same direction along a single route to the activity.)

- 11 states meet the Standards (1 of these does not mention IS).
- 1 state does not permit commercial signs along IS.

Distance from Activity (Signs to be within 75 air miles (120.7 kiZometers) along IS; within 50 air miles (80.5 kilometers) along P).
-10 states meet the Standards (1 of these does not specify air miles and 1 requires signs to be within 5 air miles (8 kizometers) of the advertised activity).

- 2 states did not specify for IS (1 of these also did not specify for P).

Content (Message limited to identification of the attraction and directional information (mileage, route number, or exit numbers).)

- 9 states meet the Standards.
- 3 states not clearly specified.
Table 10. State Directional Sign Specification Sumary

State, Date of Code	Distance from R-O-W	Size (maximmi)			Moving	Lighting	Spacing		
		$\begin{aligned} & \text { Area } \\ & \left(\mathrm{ft}^{2}\right) \end{aligned}$	Height (ft)	Length (ft)			Minimum distance From intersection etc.	Minimum distance From Rest area, etc.	Separation
$\begin{aligned} & \text { DOT part 21 } \\ & \text { Section } 21.2,21.4 \\ & 1 / 17 / 69 \end{aligned}$	660 ft of Interstate and Federal-aid primary system and visible from main traveled way	150	20	20	Do not move and have no animated or moving parts	Stable, shielded, do not improve vision, do not interfere with traffic signal, device, sign	2000 ft on Interstate system or other freeway	2000 ft from rest area, parkland, scenic area	At least 1 mile between signs facing same direction of travel
$\begin{aligned} & \text { Illinois } \\ & 7 / 11 / 72 \end{aligned}$	Standard	Standard	Standard	Standard	Standard	Standard	Standard, except for addition of "weigh" station \qquad	Standard	Standard
Indiana 3/3/72	Standard								
Iowa No date	No non-complying, directional signs shall be visible from Interstate, freeway primary, or primary highway.	Standard	Standard	Standard	Not specified	Not specified	Standard	Standard	Standard
$\begin{aligned} & \text { Mississippi } \\ & 10 / 1 / 72 \end{aligned}$	${ }^{1}$ Not indicated (see remarks)	Standard	Standard	Standard	Not specified	Standard	Standard	Standard	Standard
$\begin{aligned} & \text { Missouri } \\ & 3 / 16 / 72 \end{aligned}$	Standard								
Nebraska No date	Not specified	Standard	Standard	Standard	Not specified	Essentially standard	No sign within 100 ft of intersection on any route or road	Not specified	Minimum of 250 ft from any Class IV-A or IV-BI sign
Utah No date	Adjacent to and visible from main traveled way of IS and p	Standard	Standard	Standard	Standard	Standard	500 ft	500 ft	1/2 mile apart facing same direction
Virginia 10/29/70	Standard	Standard	Standard	Standard	Not specified	Standard	Standard	Standard	Standard
$\begin{aligned} & \text { Wisconsin } \\ & 1971 \end{aligned}$	Standard								
Wyoming 1971	Not specified	Standard	Standart	Standard	Not specified	Not specified	2000 ft from interchange or intersection 500 ft of interchange, intersection, safety, rest areas on IS or p with full access control	500 ft of public parks, playgrounds, scenic areas, cemetaries ${ }^{2}$	IS - 500 ft of existing off-premise sign ${ }^{2}$ P - 300 ft of existing off-premise sign ${ }^{2}$ All signs facing same direction of travel, ${ }^{\text {at }}$ least one mile apart ${ }^{3}$
Ohio	Standard	Standard	Standard	Standard ${ }^{1}$	Standard	Standard	2000 ft of freeway interchange or 500 ft of non-froeway interchange	Standard ${ }^{1}$	Standard ${ }^{1}$
$\begin{aligned} & \text { New Jersey } \\ & 7 / 74 \end{aligned}$	Standard	Standard	Standard	Standard	Standard	Standard	2000 ft , 1 imited access highway; 500 ft , Nonlimited access highway	2000 ft , limited access highway; 500 ft non-limited access highway	Standard
Maryl and $7 / 1 / 68$	NO PROVISION FOR DIRECTIONAL	SİNS							

Table 10. State Directiona1 Sign Specification Summary (continued)

State, Date of Code	Number of Signs	Distance from Activity		Content	Remarks
		Interstate	Primary		
$\begin{aligned} & \text { DoT Part 21 } \\ & \text { Section } 21.2,21.4 \\ & 1 / 17 / 69 \end{aligned}$	Not more than 3 signs for same activity facing same direction of travel along a single route to activity	Within 75 air miles	Within 50 air miles	Identification and directional information. No words, phrases, pictorial, photographic material descriptive of activity of envisions	Colum entries for states are noted as "standard" when they essentially duplicate Section 21.2 or 21.4
$\begin{aligned} & \text { I11inois } \\ & 7 / 11 / 72 \end{aligned}$	Standard	Standard	Standard	Standard	
$\begin{aligned} & \text { Indiana } \\ & 3 / 3 / 72 \end{aligned}$	Standard	Standard	Standard	Standard	
Iowa No date	Standard	Standard	Standard	Standard	
Mississippi 10/1/72	Standard	Standard	Standard	Standard	${ }^{1}$ No indication of distance or visual criteria provided in SOP MD-09-06-00-000 pp. 6-11
$\begin{aligned} & \text { Missouri } \\ & 3 / 16 / 72 \end{aligned}$	Standard	Standard	Standard	Standard	
Nebraska No date	Maximum 1 sign per mile per activity 1-5 miles from corporate or activity limits, none over or under that. Also, not more than 3 signs for same activity facing same direction of travel along a single route to activity (non-commercial).	Not specified	Not specified	Not specified but illustrations indicate that some message is acceptable	Data are for informational signs to public places owned and operated by Federal, State, or local governmental subdivisions, i.e., Class IV-A. Not clear as to status of private directional signs. $1_{\text {Class IV-B are local }}$ government or civic organization signs.
Utah No date	Standard	Within 5 air miles	Within 5 air miles	Essentially standard	
$\begin{aligned} & \text { Virginia } \\ & 10 / 29 / 70 \end{aligned}$	Standard	Standard	Standard	Standard	
Wisconsin 1971	Standard	Standard	Standard	Standard	
$\begin{aligned} & \text { Wyoming } \\ & 1971 \end{aligned}$	Standard	Standard	Standard	Not specified but context seems to imply identification and direction only	${ }^{1}$ This distinction is not clear $2_{\text {It }}^{\text {as }}$ cited. ${ }^{2}$ It is not clear if this ${ }_{3}$ applies to directional signs. ${ }^{3}$ Relationship of this specification is not clear.
$\begin{aligned} & \text { Ohio } \\ & 4 / 5 / 72 \end{aligned}$	Not specified ${ }^{1}$	Not specified	Standard	Standard	${ }^{1}$ Specified for Federal-aid primary highways without mention of Interstate highways
$\begin{aligned} & \text { New Jersey } \\ & 7 / 74 \end{aligned}$	Standard	Within 75 miles, Lim Within 50 miles, Non	access highway nited access highway	Standard	${ }^{1}$ Not specified as air miles
$\begin{aligned} & \text { Maryland } \\ & 7 / 1 / 68 \end{aligned}$					

EPEENDIX C

> Photographs and location maps of Eield signs

Figure 7. \#View of Harpers Ferry Caverns sign located in West Virginia just south of Bolivar, West Virginia on US Route 340.

Figure 8. \#Close-up view of sign in Figure 7.

ROAD CLASSIFICATION

Figure 7A. Approximate location of Harpers Ferry Caverns sign located in West Virginia on US Route 340 just south of Bolivar, West Virginia (see Figures 7 and 8).

Figure 9. \#View of Harpers Ferry Caverns sign located in West Virginia on US Route 340, approximately one mile (1.6 kilometers) east of Halltown, West Virginia.

Figure 10. \#Close-up view of sign in Figure 9.
\#Does not comply with 131(c) Standards.

Figure 9A. Approximate location of Harpers Ferry Caverns sign located in West Virginia on US Route 340, one mile (1.6 kilometers) east of Halltown, West Virginia (see Figures 9 and 10).

Figure 11. \#Luray Caverns sign typical of many such signs erected prior to Standards spaced about 0.5 miles (0.8 kilometers) apart along highways in the area. This sign is located on US Route 340 , approximately one mile (1.6 kilometers) west of Gaylord, Virginia. The sign in Figure 12 is barely visible in this photograph in the lower left corner, right side of highway.

Figure 12. \#Luray Caverns sign located on US Route 340 just past the sign in Figure 11. =Does not comply with 131 (c) Standards.

BERRYVILLE. VA. - W. VA.

Figure 11A. Approximate locations of Luray Caverns signs located one mile (1.6 kilometers) west of Gaylord, Virginia on US Route 340 (see Figures 11 and 12).

Figure 13. \#Endless Caverns sign located in New Market, Virginia at intersection of US Route 211 and 11.

Figure 14. *Close-1p view of Skyline Caverns sign located approximately two miles (3.2 kilometers) south of Stephens City, Virginia on I-81.

[^3]

ROAD CLASSIFICATION

NEW MARKET, VA.
NW/4 MT. JACKSON IS QUADRANGLE N3837.5-W7837.5/7.5

1967
ANS 5261 Il NW-SERIES V834
Figure 13A. Location of Endless Caverns sign on US Route 11 in New Market, Virginia (see Figure 13).

Figure 14A. Approximate location of Skyline Caverns sign located two miles (3.2 kilometers) south of Stephens City, Virginia on I-81 (see Figure 14).

Figure 15. *Road-side view of Endless Caverns sign located on I-81 approximately 0.5 miles (0.8 kilometers) south of Mauzy, Virginia. (Sign is located among trees in upper right-hand corner of photograph. Apparently erected in 1971.)

Figure 16. *Close-up view of sign in Figure 15. (Trees in front of sign, blocking view in Figure 15 are behind photographer.)
*Complies with 131 (c) Standards.

ROAD CLASSIFICATION
Primary highway, all weather, Light-duty road, all weather,
hard surface improved surface

TENTH LEGION, VA.
SW/4 MT. Jackson 15 Quadrangle N3830-W7837.5/7.5

1967
AMS 5261 II SW-SERIES V834

Figure 15A. Approximate location of Endless Cavern sign located 0.5 miles (0.8 kilometers) south of Mauzy, Virginia on I-81 (see Figures 15 and 16).

Figure 17. *Close-up view of Skyline Caverns sign located approximately one mile (1.6 kilometers) northeast of Middletown, Virginia on I-81.

Figure 18. *Road-side view of sign in Figure 17. (Note close proximity to state erected mileage sign.)

MIDDLETOWN. VA.

N3900-W7315/7.5
1966
PHOTOREVISED 1972

Figure 17A. Approximate location of Skyline Caverns sign located on I-81, one mile (1.6 kilometers) northeast of Middletown, Virginia (see Figures 17 and 18).

Figure 19. *Road-side view of Skyline Caverns sign located on I-66, approximately three miles (4.8 kilometers) south of Reliance, Virginia.

Figure 20. *Close-up view of sign in Figure 19.

Figure 19A. Approximate location of Skyline Caverns sign located on I-66, three miles (4.8 kilometers) south of Reliance, Virginia (see Figures 19 and 20).

Figure 21. @Right-of-way sign for "Caverns" located on US Route 340, approximately 0.5 miles (0.8 kilometers) notth of Luray, Virginia.

Figure 22. @Right-of-way sign for "Caverns" located just off Route 211, approximately 0.25 miles (0.4 kilometers) south of Luray Caverns.

Figure 21A. Approximate location of right-of-way sign for "Caverns" located on US Route $340,0.5$ miles (0.8 kilometers) north of Luray, Virginia (see Figure 21).

Figure 22A. Approximate location of right-of-way sign for "Caverns" located just off US Route 211, 0.25 miles (0.4 kilometers) south of Luray Caverns (see Figure 22).

Figure 23. @Right-of-way sign for Shenandoah Caverns located on I-81, approximately 1.25 miles (2 kilometers) east of Quicksbury, Virginia. (Similar sign at Route 730 Exit.)

ROAD CLASSIFICATION
Primary highway, all weather. Light-duty road, all weather,
hard surface hard surface improved sufface \quad Secondary highway, all weather. Unimproved road, fair or dry hard surface weather $\quad======$
\circlearrowleft Interstate Route \square U. S. Route \bigcirc State Route
NEW MARKET, VA.
nw/4 Mt. Jackson 15 quabrangle
 N3837.5-W7837.5/7.5

Figure 23A. Approximate location of right-of-way sign for Shenandoah Caverns located on I-81, 1.25 miles (2 kilometers) east of Quicksburg, Virginia (see Figure 23).

Figure 24

Figure 25

Consultant Vitae

Dr. Theodore W. Forbes
Dr. Forbes is Professor of Psychology and research advisor, Highway Traffic Safety Center at Michigan State University. He teaches graduate courses in Engineering Psychology and carries on human factor research under the Division of Engineering Research. He obtained his A.B. and M.S. from Oberlin College and his Ph.D. from Ohio State University in fields of applied and experimental psychology and was a Fellow at the Harvard Traffic Bureau and a staff member of the Yale Traffic Bureau. He has authored research reports in a variety of fields, including Traffic Sign Legibility, Driver Judgments and Responses, Human Factors in Traffic Flow Theory, Drowsiness in Driving, Air Photo Traffic Data, and Effects of Tunnel Conditions on Driving Behavior. He performed some of the earliest human engineering research in connection with highway sign studies at the Yale Bureau of Highway Traffic. He is a member of a number of scientific and professional societies in human factor and engineering fields.

Example publications include:
Forbes, T.W. A method for analysis of the effectiveness of highway signs. Journal of Applied Psychology, 1939, XXIII, No. 6, 669-684.

Forbes, T.W. Highway sign luminance, contrast, visibility and legibility. Presented at: 7th IRF World Meeting, Munich, West Germany, October 16, 1973.

Forbes, T.W., Pain, R.F., Fry, J.P., Jr \& Joyce, R.P. Effect of sign position and brightness on seeing simulated highway signs. Highway Research Record, 1967, 164, 29-37.

Forbes, T.W., Pain, R.F., Joyce, R.P. ६ Fry, J.P. Jr. Color and brightness factors in simulated and full-scale traffic sign visibility. Highway Research Record, 1968 , 216, 55-65.

Forbes, T.W., Snyder, T.E., and Pain, R.F. A study of traffic sign requirements II. An annotated bibliography, Michigan State University, East Lansing, Michigan, 1964, 65.

Forbes, T.W., Snyder, T.E., and Pain, R.F. Traffic sign requirements I. Review of factors involved. Previous studies and needed research. Highway Research Record, 1965, 70, 48-56.

Dr. Slade F. Hulbert
Dr. Hulbert has been a research psychologist with UCLA since 1952. Since that time he has been active in: Human Factors research in transportation systems, Engineering Education, and Psychological Behavior Theories. He has had extensive experience consulting in these areas with numerous national, state, and local governmental agencies.

He has authored and co-authored several textbook chapters and 40 research articles and reports having to do with driver behavior.

Dr. Hulbert is a Fellow of the Human Factors Society of America and recipient of the Society's 1972 A.R. Lauer Award; Fellow of the Institute of Traffic Engineers; a member of the American Psychological Association; Sigma Xi; Training Committee of the Society of Automotive Engineers; Driving Simulation Committee and Bicycle Committee of the Transportation Research Board of the National Academy of Sciences and Engineering; Panel on Human Error in Maritime Accidents, Maritime Research Board; Research Advisor to the National Joint Committee for Uniform Traffic Control Devices; Consultant to the National Highway Traffic Safety Administration, U.S. Department of Transportation; and is a Licensed Psychologist in the State of California.

Example publications include:
Beers, J., and Hulbert, S. Research and development of the changeable message concept of freeway traffic control, Highway Research Board Special Report, July 1972, 129.

Burg, A., and Hulbert, S. Dynamic visual acuity as related to age, sex, and static acuity, Journal of Applied Psychology, 1961, 45(2), 111-116.

Hulbert, S.F. Evaluation of highway destination signs, Proceedings, Seventh California Street and Highway Conference, University of California, Berkeley, 1955, 122-124.

Hulbert, S.F., and Burg, A. Predicting the effectiveness of highway signs, Highway Research Board Bulletin, 1962, 324, 1-11.

Hulbert, S.F., and Burg, A. Human factors in transportation systems, Systems Psychology, (K.B. DeGreene, Ed.), McGraw-Hill, 1970, 471-509.

Schoppert, D.W., Moskowitz, K., Hulbert, S.F., and Burg, A. Some principles of freeway directional signing based on motorist's experiences, Highway Research Board Bulletin, 1960, 244, 30-87.

Dr. L. Ellis King
Dr. King has pursued the practical application of laboratory and field data to highway signing and lighting problems. Previous work has included analysis of the ability of drivers to process graphic, directional and driving information and other nonverbal messages. He holds B.S.C.E. and M.S.C.E. degrees in transportation engineering from North Carolina State University and the D.Eng. degree from the University of California at Berkeley and was Director of the Transportation Systems Program at West

Virginia University from 1971 to 1973. Now an Associate Professor of Civil and Environmental Engineering at the University of Colorado at Denver and Associate Director of the Center for Urban Transportation Studies, he was awarded a Walter L. Huber Civil Engineering Research Prize by the American Society of Civil Engineers in 1973.

Recent publications include:
King, L.E. Recognition of symbol and word traffic signs, Journal of Safety Research National Safety Council (accepted for publication).

King, L.E. A laboratory comparison of symbol and word roadway signs, Traffic Engineering \& Control, London, February 1971, 12(10), 518-520.

King, L.E. Highway lighting - design for luminance, Traffic Engineering, February 1973, 43(5), 32-33, 50.

King, L.E., and Campbell, R.E. The traffic conflicts technique applied to rural intersections, Accident \& Prevention, December 1970, $\underline{2}$ (3), 209-221.

King, L.E., and Plummer, R.W. Field investigation of driver understanding of left turn signal indication sequences, Proceedings of the 16th Annual Human Factors Meeting, Los Angeles, California, October 17-19, 1972.

King, L.E., and Plummer, R.W. Meaning and application of color and arrow indications for traffic signals, Final report, Engineering Experiment Station, West Virginia University, April 1973.

Dr. Thomas H. Rockwell
Dr. Rockwell is now Professor of Industrial Engineering and Systems Engineering at the Ohio State University. He holds M.S. and Ph.D. degrees in Industrial Engineering and has directed over 60 M.S. and Ph.D. candidates in Traffic Accident Research. Since the mid-1960's, he has been on the Scientific Advisory Board for Operations Research at Nationwide Insurance, and a consultant to the U.S. Department of Health, Education, and Welfare; U.S. Public Health Service; Wright-Patterson Air Force Base; Bureau of Labor Statistics; Department of Ohio Transportation; Ford Motor Company; and the National Highway Traffic Safety Administration. Professional membership is held in: Sigma Xi, American Institute of Industrial Engineers; Fellow of the Human Factors Society; Transportation Research Board (National Academy of Sciences) ; Fellow of the American Association for the Advancement of Science and the American Association of Automotive Medicine. Awarls for traffic/driver research have been received from the Ohio Society of Professional Engineers and the Human Factors Society (1970, 1971).

Recent publications include:
Rockwell, T.H., and Bhise, V.D. Evaluation of visual field requirements of vehicles in freeway merging situations, Proceedings, 16th Annual Meeting of Hunan Factors Society, Beverly Hills, California, october 1972.

Rockwe11, T.H., and Bhise, V.D. Toward the development of a methodology for evaluating highway signs based on driver information acquisition, Highway Research Record, Washington, D.C., 1973, 440.

Rockwe11, T.H., and Lindsay, G.F. Freeway illumination and driving performance, Traffic Engineering, March 1969, 39(6), 36.

Rockwell, T.H., and Mourant, R.R. Mapping eye-movement patterns to the visual scene in driving: an exploratory study, Human Factors February 1970, 12(1), 81-87.

Rockwe11, T.H., and Mourant, R.R. Maximum driving performance--can it be predicted? Proceedings, Symposium on Psychological Aspects of Driving Behavior, Noordwijkerhout, Netherlands, August 1971.

Rockwell, T.H., and Mourant, R.R. Strategies of visual search by novice and experienced drivers, Human Factors, August 1972, 14(4).

National Standards for Directional and Other Official Signs

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION bureau of public roads

WASHINGTON, D.C 20591

FEBRUARY 1969

Tite 23-hirdyays

Chapter 1-Eurecu of Public Roads, Department of Yransportation

PART 21-NATIONAL STANDARDS FOR DIRECTIONAL AND OTHER Official sigis

The purpose of this amendment is to add a new Part 21-National Standards for Directional and Other Officials Signs-to chapter I of title 23 of the Code of Federal Regulations. The new part will include all national standards establisked under section 131(c)(1) of title 23, United States Code.

Section 303(a) of the Highway Beautification Act of 1965 (Pubiic Law 83-285) requires public hearings to be held in each State by the Secretary before issuing standards necessary to carry out section 131 of tisle 23, United States Code. Notice of the public hearings was published in the Federal Register on January 28, 1966 (31 F.R. 1162).

Pursuant to this notice, public hearings were conducted in each State, the District of Coiumbia, and Puerto Rico.

Based on the testinony received at the 52 public hearings which were held, draft standards were developed. The draft standards were given wide circulation among the outdoor advertising industry, roadside councils, garden clubs, State highway departments, and other interested groups. Comments thereon were evaluated and given full consideration in the preparation of the proposed standards.

On January 10, 1967, proposed national standards for directional and official signs were reported to Congress by the Secretary in accordance with section 303(b) of the Highway Beautification Act of 1965, and printed as Senate Document No. 6, 90th Congress, first session.

Thereafter proposed standards were distributed to the States, the District of Columbia, and Puerto Rico, and other interested parties for comment.

A review of the proposed national standards and all additional comments and recommendations submitted as a result of the distribution has been completed with all such pertinent matter, recommendations and comments having been fully considered and evaluated.

The national standards added by this amendment are minimum standards. They have been developed in cooperation with the States and other interested organizations, groups, and individuals.

In consideration of the foregoing,

Chapter I of title 23, Code of Fed. eral Regulations is amended by adding a new Part 21, "INational Standards for Directional and Other Official Signs", as set forth below, effective February 25 , 1969.

This amendment is made under authority of sectiorss 131 and 315 of title 23, United States Code, section 6(a) (1) (H) of the Department of Transportation Act (Public Law 89-670, 80 Stat. 931), and the delegation of authority contained in Part i of the Regulations of the Office of the Secretary of Transportation (49 CFR 1.4(c)).

Issued in Washington, D.C., on January $17,1969$.

Iowell K. Bridwell, Federal Highway Administrator.
Sec.
21.1
1.2 Application
21.3 Definitions.
21.4 Standards for directional signs. 21.5 State standards.

AUTHORITY: The provisions of this Part 2 issued under secs. 131 and 315 of title 23, U.S.C., sec. 6 (a) (1) (Hi), Department of Transportation Act (Fublic Law 83-670, 80 Stat. 931); delegation of authority to 49 CFI2 1.4 (c).

§21.1 Purpose.

(a) In section 131 of title 23, United States Code, Congress has declared that:
(1) The erection and maintenance of outdoor advertising signs, displays, and devices in areas adjacent to the Interstate System and the primary system should be controlled in order to protect the public investment in such highways, to promote safety and recreational value of public travel, and to preserve natural beauty.
(2) Directional and other official signs and notices, which signs and notices shall include, but not be limited to, signs and notices pertaining to natural wonders, scenic and historical attractions, which are required or authorized by law, shall conform to national standards authorized to be promulgated by the Secratary, which standards shall cortain provisions concerning the lighting, size, number and spacing of signs, and such other requirements as may be appropriate to implement the section.
(b) The standards in this part are issued as provided in section 131 of title 23 , United States Code.

§21.2 Application.

The following standards apply to directional and other official signs and notices which are erected and maintained within 660 feet of the nearest edse of the right-of-ray of the Interstate and Federal-aid primary system, and which are visible from the main travcled way of the system. These standards do not apply to directional and other official signs erected on the highway right-cfway.

§ 21.3 Definitions.

For the purpose of this part-
(a) "Sign" means an outdoor sign, light, cisplay, device, figure, painting, drawing, message, placard, poster, billboard, or other thing which is designed, intended, or used to advertise or inform, any part of the advertising or informative contents of which is visible from any place on the main traveled way of the Interstate or Federal-aid primary highway.
(b) "Train traveled way" means the through trafic lares of the highway, exclusive of ifontage roads, auxiliary lanes, and ramps.
(c) "Interstate system" means the National System of Interstate and Defense Highways described in section 103(d) of title 23, United States Code.
(d) "Primary system" means the Federal-aid highway system described in section 103(b) of title 23, United States Code.
(e) "Erect" means to construct, build, raise, assemble, place, affix, attach, create, paint, draw, or in any other way bring into being or establish.
(f) "Maintain" means to allow to exist.
(g) "Scenic area" mears any area of particular scenic beauty or historical significance as determined by the Federal, State, or local officials having jurisdiction thereof, and includes interests In land which have been acquired for the restoration, preservation, and enhancement of scenic beauty.
(h) "Parkland" means any publicly owned land which is designated or used as a public park, recreation area, wildlife or waterfowl refuge or historic site.
(i) "Federal or State law" means a Federal or State constitutional provi-
sion or statute, or an ordinance, rule, or regulation enacted or adopted by a State or Federal agency or a political subdivision of a State pursuant to \& Federal or State constitution or statute.
(j) "Visible" means capable of being seen (whether or not legible) without visual aid by a person of normal visual acuity.
(k) "Freeway" means a divided arterial highway for through traffic 2 full control of access.
(1) "Rest area" means an area or site established and maintained within or adjacent to the highway right-of-way by or under public supervision or control for the convenience of the traveling public.

Im "Directional and other official signe and notices" includes only official signs and notices, public utility signs, service club and religious notices, pidblic service signs, and directional signs.
(n) "Official signs and notices" means signs and notices erected and maintained by public officers or public agencies within their territorial or zoning jurisdiction and pursuant to and in accordance with direction or authorization contained in Federal, State, or local law for the purposes of carrying out an official duty or responsibility. Historical markers authorized by State law and erected by State or local government agencies or nonprofit historical societies may be considered official signs.
(o) "Public utility signs" means warning signs, informational signs, notices, or mariers which are customarily erected and maintained by puolicly or privately owned public utliities, as essential to their operations.
(p) "Service club and religicus notices" means signs and notices, whose erection is authorized by law, relating to meetings of nonprofit service clubs or charitable assoclations, or religious services, which signs do not exceed 8 square feet in area.
(q) "Public service signs" means signs located on schoo! bus stop shelters, w'sch signs-
(1) Identify the donor, sponsor, or contributor of said shelters;
(2) Contain safety slogans or messages, which shall occupy not less than 60 percent of the area of the sign :
(3) Contain no other message;
(4) Are located on school bus shelters which are alithorized or approved by city, county, or State law, regulation, or ordinance, and at places approved by the city, county, or State agency controlling the highway involved; and
(5) May not exceed 32 scuare fcet in area. Not more than one sign on each shelter shall facc in any one direction.
(r) "Directional signs" means sigus contalning directional information about public places owned or operated by Federal, State, or local governments or their asencies; puillicly or privately owned natural phenomena, historic, cultural, scientific, educational, and religious sites; and areas of natural scenic beauty or naturally suitcd for outdoor recreatlon, deemed to be in the interest of the traveling public.
(s) "State" means any one of the 50 States, the District of Columbia, or Puerto Rico.

§ 21.4 Siandards for directional simns.

The following appiy only tu directional signs:
(a) General. The following signs are prohibited:
(1) Signs advertising activities that are illegal under Federal or State laws or regulaticns in effect at the location of those signs or at the location of these activities.
(2) Signs locatcd in such a manner as to obscure or otherwise intevfere with the effectiveness of an official traffic sign, signal, or device, or obstruct or interfere with the driver's view of approaching, merging, or intcrsecting traffic.
(3) Signs which are erccted or maintained upon trees or painted or drawn upon rocks or other natural features.
(4) Obsolete signs.
(5) Signs which are structurally unsafe or in disrepair.
(6) Signs which move or have any animated or moving parts.
(7) Signs located in rest areas, parklands or scenic areas.
(D) Size. (1) No sign shali exceed the following limits:
(1) Maximum area- 150 square 1eet.
(ii) Maximum height- 20 feet.
(iii) Maximum length -20 feet.
(2) All dimensions include border and trim, but exclude supporis.
(c) Lighting. Signs may be illuminated, subject to the following:
(1) Signs which contain, include, or are illuninated by any flashing, intermittent, or moving light or lights are prohibited.
(2) Signs which are not effcctively shielded so as to prevent ceams or rays of light from being directed at any portion of the traveled way of an Interstate or primary highway or which are of such intersity or brilliance as to cause glare or to impaip the vision of the driver of any motor vehicle, or which otherwise interfere with any driver's operation of a motor venicle are prohibited.
(3) No sign may be so illuminated as to interfere with the effectiveness of or obscure an official traffic sign, devicc, or signal.
(d) Spacing. (1) Each location of a directional sign must be appioved by the State hirhway department.
(2) No directional sign may be located within 2,000 fect of an interchange, or intersection at grade along the Interstare System or other frceways (measired along the Interstate or freeway foum the nearest point of the beginning or crading of pavement widening at the exit from or entrance to the main traveled way'.
(3) No directional sign may ba located within 2,000 feet of a rest area, parkland, or scenic arca.
(4) (i) No two directional sigins facing the same direction of travel shall be spaced less than 1 mile apart;
(ii) Not more than three directional signs pertaining to the same activity and facing the same direction of travel may be erected along a single zoute approaching the activity;
(iii) Signs located adjacent to the interstate System shall be witnin 75 air miles of the activity; and
(iv) Signs located adjacent to the Primary System shall be within 50 air miles of the activity.
(e) Message content. The message on directional signs shall be limited to the identification of tiee attraction or activity and directional information useful to the traveler in locating the attraction, such as mileage, route numbers, or exit numbers. Descriptive words or phrases, and pictorial or photographic representations of the activity or its \in nvirons are prohibited.
(f) Selection methods and criteria. (1) Privately owned activities or attractions eiligible for circctionai simnine are limited to the foilowing: natural phenotnena; scenic attractions: histeric educational, cultural, scientinc, and religious sites; and outcoor recreationa! areas.
(2) To be eligible, privately owred attractions or activit:es must be nationally or regionally known, and of outstanding interest to the traveling puolic.
(3) Each State snall develop specific selection methods and criteria to be used in cetermining whether or rot an activity qualifies for this type of signing. A statement as to selection rethods and
criteria shall be furnished to the Secretary of Tra:isportation before the State permits the erection of any suchi signs under section 131 (c) of title 23 , United States Coue, and this part.

§21.5 Siare standards.

This part does not prohibit a Staie from extablishing and raintaining stantiards which are more restrictuve with respect to directional and other official siens and notices along the Fed-eral-aid higinay systems than these rational standards.
[F.R. Doc. 59-881: Filed, Jan. 22, 1969; 8:50 a.m.]

[^0]: *Other specifications are discussed in Appendix A.
 **The reconmendation applies only to UC/LC characters but for consistency Series E characters were used for UC only configurations as well.

[^1]: *The length of any sign is determined by the length of the longest line of text which, in turn, depends upon the specific characters comprising that line. For example, a line of 10 " m " characters would be longer than a line of 10 " i " characters.
 **The length/height ratio which made best use of the available $150 \mathrm{ft}^{2}\left(13.9 \mathrm{~m}^{2}\right)$ area (the optimum length/height ratio) was determined for each of the 15 signs. However, the optimum length for two- and three-line signs exceeded the $20 \mathrm{ft}(6.1 \mathrm{~m})$ limit. Therefore, the height of these signs was calculated from the formula height $=1$ ength $/ \alpha=20 \mathrm{ft} / \alpha$.

[^2]: *Series E characters were used both for UC/LC and UC only signs, for reasons of consistency. It should be noted, however, that Series E UC/LC characters have a stroke width 19.9% of the character height, while UC only characters have a stroke width 17.2% of the character height. The larger stroke width makes UC/LC characters legible at greater distances than UC only characters of the same height.

[^3]: =Does not comply with 131 (c) Standards.

 * Complies with 131 (c) Standards.

