
NBSIR 75-735

An Expandable Total Energy
Data Editor

Richard H. F. Jackson

Applied Mathematics Division

Institute for Basic Standards

Washington, D. C. 20234

Final

June 1975

Issued August 1976

Technical Report to

Center for Building Technology

Institute for Applied Technology

Washington, D. C. 20234

Prepared for

Department of Housing and Urban Development
Office of Policy Development and Research
Washington, D. C. 20410

NBSIR 75-735

AN EXPANDABLE TOTAL ENERGY
DATA EDITOR

Richard H. F. Jackson

Applied Mathematics Division

Institute for Basic Standards

Washington, D. C. 20234

Final

June 1975

Issued August 1 976

This report covers work done by the Applied Mathematics Division in

collaboration with the Center for Building Technology under an inter-

division agreement between the Building Environment Division and AMD
during FY 74 and FY 75. The work was in support of the HUD-MIUS Total

Energy project in Jersey City, sponsored by the Department of Housing and Urban Development.

Technical Report to

Center for Building Technology

Institute for Applied Technology

Washington, D. C. 20234

Prepared for

Department of Housing and urban Development
Office of Policy Development and Research

Wast-iington, D. C. 20410

U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary

Edward O. Vetter, Under Secretary

Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

FOREWORD

The Department of Housing and Urban Development (HUD) is conducting the
Modular Integrated Utility System (MIUS) Program devoted to development
and demonstration of the technical, economic, and Institutional advantages
of integrating the systems for providing all or several of the utility
services for a community. The utility services include electric power,
heating and cooling, potable water, liquid waste treatment, and solid
waste management. The objective of the MIUS concept is to provide the

desired utility services consistent with reduced use of critical natural
resources, protection of the environment, and minimized cost. The program
goal is to foster, by effective development and demonstration, early
Implementation of the integrated utility system concept by the organization,
private or public, selected by a given community to provide its utilities.

A major building-block of MIUS is the on-site generation of electricity
with waste heat recovery, better known as "Total Energy." Although there
are good environmental and energy conservation reasons for adopting Total
Energy systems, specific detailed information on the costs of operating a

total energy system for residential use is generally lacking. The Depart-
ment of Housing and Urban Development has supported the construction of a

test facility in Jersey City, N. J. to provide the information needed for

evaluating residential Total Energy.

The National Bureau of Standards, under contract to HUD, is obtaining the

needed data from the operating plant. Temperature sensors and fluid flow-
meters measure the hot and chilled water systems and the fuel flow.

System loads, climatic factors, building space heating and cooling loads,

electricity and domestic hot water use, and environmental and economic
data are being monitored. On completion of the first year of operation,
a data base will be available for the first time on the operational
capabilities, limitations and efficiency of a Total Energy system.

Under HUD direction several agencies are participating in the HUD-MIUS
Program, Including the Energy Research and Development Administration,
the Department of Defense, the Department of Health, Education and Welfare,
the Environmental Protection Agency, the National Aeronautics and Space
Administration, and the National Bureau of Standards. The National Academy
of Engineering has provided an independent assessment of the Program.

This publication is one of a series developed under the HUD-MIUS Program
and is Intended to further a particular aspect of the program goals.

Drafts of technical documents are reviewed by the agencies participating
in the HUD-MIUS Program. Comments are assembled by one of the agencies
into a Coordinated Technical Review. The draft of this publication re-
ceived such a review and all comments were resolved with HUD.

1

ABSTRACT

This report documents the Total Energy Data Editor as of January 31,
1975. It is a computer program developed to process the data to be
collected by the ongoing Total Energy Project at the National Bureau of

Standards. Consisting of a mix of FORTRAN and RAYTHEON machine language
subroutines, the Editor is a powerful, interactive program written to

be run on a Raytheon 704 minicomputer with two tape drives and a disk
pack. Since this document is also meant as a user's manual, it includes
a dictionary of commands, complete discussions and listings of individual
subroutines, as well as an explanation of the workings of the program.

ii

Contents Page

0. INTRODUCTION: THE TOTAL ENERGY DATA
EDITOR - WHAT IT IS 1

1. THE DATA EDITOR - WHY IT IS

WHAT IT IS 3

2. THE DATA EDITOR - WHAT IT DOES 4

3. THE DATA EDITOR - HOW IT WORKS 6

4. THE DATA EDITOR - HOW TO TALK TO IT 9

5. THE DATA EDITOR - HOW TO USE IT 14

6. THE DATA EDITOR - ITS PARTS (THE SUBROUTINES) 16

7. THE DATA EDITOR - HOW IT TALKS TO YOU 47

8. BIBLIOGRAPHY 50

APPENDIX A: SUBROUTINE LISTINGS A-0

INDEX TO APPENDIX A A-i

APPENDIX B: FORMAT OF RAW DATA INPUT TAPE B-0

APPENDIX C: FORMAT OF 1108 COMPATIBLE OUTPUT TAPE C-0

iii

0. INTRODUCTION: THE TOTAL ENERGY DATA
EDITOR - WHAT IT IS

This report documents the Total Energy Data Editor, as oC the "freeze
date" of January 31, 1975. It is a computer program developed to process
the data from a very specific source, namely the data collection effort

of the Total Energy Project at the National Bureau of Standards (NBS)

.

That project is concerned with investigating the feasibility of the
"total energy" concept (recycling waste heat produced by on-site genera-
tion of. electricity) , by studying the performance at a prototype site
consisting of high and low rise apartment buildings with its own power
plant in the central equipment building (CEB) . Approximately 300 elec-
tronic sensors were implanted throughout the site, measuring flows,

temperatures, and pressures at key points.

These measuring devices are wired into an automatic data acquisition
system (DAS) which automatically scans the measuring devices and takes a

reading from each one every 5 minutes. Hereafter, one of these sets of

readings will be referred to as a "data scan." It is planned for the
data collection effort to operate for a full year. The data collected
in this manner are stored on magnetic tape and, every few days, a full

tape of data is shipped to NBS, edited on the Center for Building
Technology's RAYTHEON 704 minicomputer and then analyzed on the NBS
UNIVAC 1108.* See appendices B and C respectively for the format of a

data scan and of a record on the edited tape.

The data editing requirements of the Project reflect the fact that large
quantities of data (3.2 x 10^ data values in the course of the year) are
to be collected, in operational rather than laboratory-like surroundings
(e.g., a power plant), by very sensitive electronic equipment, which
under the circumstances, must be expected to malfunction at times. In

view of these considerations, it was decided to use a hands-on approach
to data editing. Such an approach is clearly too expensive to execute
on a large batch process machine like the 1108, but is economically
feasible on the CBT-owned minicomputer. This is the background of the
decision to develop the package documented below.

The Data Editor program consists of a main program and 49 subroutines,
which are written either in FORTRAN or in RAYTHEON machine language. Its
ability to operate in an interactive mode is provided by certain sub-
routines which perform instruction interpretation. An extensive set of
instructions is available and provision was made for easy addition of

more at a later date.** It is a very core conscious program, because
throughout most of the Editor's development, the RAYTHEON had only 16,000
words of storage available. It was much later in the project that the
available core size doubled to 32,000. Consequently, some of the

*A more complete description of the Total Energy Project and its analy-
sis phase can be found in [3].

**Since the "freeze" date for this documentation, that capability has
been successfully utilized by D.E. Rorrer of the Center for Building

Technology.

1

early efforts to save core storage which remain, may seem ridiculous
now. The reader is forewarned of this.

Appropriate points of discussion with regard to any computer programming
system are portability and versatility. Although the Data Editor was
designed for the CBT-owned RAYTHEON 704, and although much of it had to
be written in machine language for reasons of efficiency, every effort
was made to keep the program as general and portable as possible. The
modular construction discussed in the next section was useful in this
respect in that machine language subroutines were written to accomplish
very specific, restricted functions. In most cases, each routine could
be rewritten in another machine language or even in FORTRAN with little
effort, using the subroutine descriptions as a guide. On the other hand,
the Editor is quite versatile with respect to applications to different
data tapes. Some changes will be required in the Phase I programs (see
Section 2), but all are straightforward.

As a final note, it needs to be explained that the monitor referred to in

the next section (the user of the system, if you will) necessarily will be
someone familiar with the Total Energy project and with the kinds of data
problems that will occur. This is necessary in the early stage of the
year-long data processing effort because, as is discussed in Section 1,

no one knows exactly what steps will be required in the performance of

a given edit, or in what sequence the steps will be performed. As a

result, the Editor was designed to be flexible and to grow through
addition of new functions. As the editing process becomes more routine

in time, additional functions can be added to effect repetitious behavior,

and the familiarity restraint on the user could be removed.

The balance of this report consists of eight sections and three appendices.

Section 1 discusses the design philosophy of the Editor. Section 2 explains
the editing process by elucidating the three phases of an edit. Section 3

presents an "inside" view of the Editor, by explaining the structure of an

Editor instruction and discussing how such an instruction gets translated

into an action. Section 4 offers a dictionary of the available instructions.

Section 5 describes what a typical edit might look like. Section 6 presents

each of the subroutines in the Editor with comments on its function. Section
7 explains the error messages that can appear. Section 8 is the bibliography.

Appendix A contains listings of the subroutines. Appendix B presents the
format of a data scan. Finally, Appendix C contains the format of the 1108
compatible output tape.

2

1. THE DATA EDITOR - WHY IT IS

WHAT IT IS

The design concept that was paramount in developing the Editor was

flexibility through simplicity. This was required because, by the nature
of the project for which the Editor was developed, many of the data
problems the Editor would need to handle could not be identified in

advance. Those which were classical problems in data collection could

of course be anticipated and allowed for in the program design. It was
recognized, however, that many others would only be discovered once the

data collection, editing, and analysis processes had begun and would
then require resolution in a "real-time" mode.

The Data Editor, therefore, was designed from the top down, and created
from the bottom up. It was designed top-down, in the sense that the

whole data editing operation was looked at from the viewpoint of the person

(hereafter referred to as the monitor) who will be seated at the RAYTHEON
704 performing the editing, and each of his major processes was then
broken down into its basic elements. (Those processes and their corres-
ponding component elements will be discussed in more detail later.)
Those basic elements were then programmed as individual subroutines.
More subroutines which combine the basic elements were then written to

perform certain elementary functions. And then even more subroutines
were written, to combine these functions so as to satisfy the requirements
of the edit processes. Thus a hierarchy of "levels of subroutining" was

developed, starting from the most elementary. These levels of sub-
routining are explained in greater detail in Section 6.

It is in this structure, and most especially in the breadth of the bottom
level of subroutines as well as in the simplicity of each of the members
of that bottom level, that the requisite flexibility of the Data Editor
resides. As the need for a new function is discovered, in most cases its

accomplishment should only require combining an already existing group of

subroutines. Even if additional bottom level routines are required, these
are by their very nature simple and easy to develop. Also, since every-
thing is written as a subroutine, the inclusion of each new routine (and,

therefore, of the new fxinction being provided) requires almost no re-
programming.

This structure should provide effectively for real-time resolution of new,
unanticipated data problems: every effort was made to provide all the
basic tools (in the bottom level of routines) likely to be required, and
the programming/reprogramming required to resolve such new problems should
be minimal.

3

2. THE DATA EDITOR - WHAT IT DOES

As indicated earlier, considerable time was spent in thinking through
what processes would be involved in what came to be called a "data edit."
The overall view of an edit of one raw data tape of information reveals
three phases.

The first phase is one in which each data scan is read; checked for
physical errors (bad format, parity errors, preemptive scans in the
middle of other scans, etc.); converted to binary from EBCDIC; refor-
matted so that all scans are of fixed length with the extraneous charac-
ters removed from each DAS channel measurement, leaving only the actual
measurement; recorded in the table of contiguous times which is later
used as an index into the file; and finally written onto the disk in the
next sequential record location. This continues until all records on

the raw data tape have been processed, or until the disk file has been filled.

If any errors appear or occur during the execution of this first phase,
the automatic execution of Phase I stops and control is passed to the
monitor (the person doing the editing), who then corrects the error using
any of the commands designed for that purpose, and restarts the automatic
execution of Phase I.

The second phase of the data edit is the least automatic of the three.

It is also the most amorphous in that the monitor decides what must be
done to the data that is now disk resident. For example, a pass through
the complete data file (or a specific section) can be made to produce
some summary statistics* on the data, or to set certain status flags.
(Every data value has associated with it a status flag which provides in-
formation on the quality of the datum.) On the other hand, if the daily
log from the site indicates that a certain transducer appeared to be
recording erratically for a specified time, then the measurements from
that transducer for the time period in question could be printed out,

summarized or have its status flags set, and so on. When Phase I in-

dicates no problems with the data, this phase can be bypassed and the

monitor can proceed with Phase III.

The third phase of the edit process is the one which produces the UNIVAC
1108 compatible output tape as well as an edit summary report. There is

some automatic reformatting here, as well as some checking of the data.

Future plans include the installation at this point of much more error

checking (e.g. a check to ensure that the times on the output tape are

non-decreasing.

)

The edit summary produced during Phase III includes a report on changes

in status flag settings across the data records, and will eventually in-

clude such items as summaries of any interpretive comments inserted into

the data stream for clarification,

* STATS, the routine that produces the statistics had not been completed

by the freeze date for publication of this report. See section 6 for

its design specifications.
4

This phase is also automatic, but again, if an error occurs, control is

passed to the monitor who corrects the error, and steps the Editor

through each part of the third phase process until it is "in sync,"
in the sense of being positioned to begin the process of transferring
one data record to the 1108 tape, rather than in the middle of that pro-
cess. When the Editor is in sync, the monitor can restart the auto-
matic processing.

5

3. THE DATA EDITOR - HOW IT WORKS

The goal of this section is to explain in some detail the inner workings
of the Total Energy Data Editor. It is intended to provide the reader
with a "feel" for the subroutines in the Editor, and the manner in which
those subroutines interrelate. It does this by discussing the relation-
ship between Editor command (listed alphabetically in the next section)
and internal subroutine, and also the relationships between command/sub-
routine and the phases outlined in the previous section.

The first item of concern to a user of the Data Editor is the structure
of an Editor instruction. The discussion of how the Editor works will
therefore be launched with an explanation of the command structure. The
command structure can also serve as a convenient vehicle for more
detailed explanations of the inner workings of the Editor.

An instruction to the Editor is composed of two basic parts: the command
word, and its parameters. The parameters of an instruction can be of

three types. The first kind of parameter is a "local" parameter, one that
is intrinsic to the particular command word. An example of this is the
"disk buffer print out" command*:

PO, 14, 29

where PO is the command word and 14 and 29 are the parameters which are

transmitted to the subroutine POUTBF, and are used by that subroutine to

determine which words of the buffer to print out.

The second and third kinds of parameters in an instruction are, respec-
tively, class variables and day/time references. These appear only in

commands which reference the disk-resident data file and define the

"two-dimensional area of interest" (AOl) block in that file. An example
of a command that requires these parameters is the "set data value"
command

:

SD, 19, X9, 281, 1905, 282, 0145

where 19 is a local parameter, X9 is a class variable (explained

below) , and the rest are the day and time references (also explained
below.

)

Before proceeding further, the concept of a two-dimensional area of in-

terest should be explained. It is convenient here to view the disk

resident data file as a mass of data records, each 640 words long (con-

sisting of 6 words of label information followed by 317 measurement

values followed by 317 status flag words) , all stacked one beneath the

other in space. The up and down dimension is provided by the time

*See Section 4 for a detailed explanation of the commands referenced in

this section.

6

associated with each scan. For example, in the above instruction, the

AOI block is defined to begin with the scan made on day 281 at 1905

hours, and to end with the scan made on day 282 at 0145 hours. But this

only covers one dimension of the AOI block. Since it is not expected
that one would want to change every data value in a particular scan, the

concept of a class variable defining the other ("across the top") dimen-
sion was introduced, A class variable is simply a variable that has been
defined (using the CV command) to represent a set of measurement variables
(or rather one or more of the 634 positions in the disk-resident scan)

.

More on class variables can be found in the explanation of the CV command
in Section 4.

Therefore, in the SD instruction given as an example above, the AOI block
is defined in the day-time dimension by 281,1405 and 282,0145, and in

the measurement variable dimension by the set of positions represented by

the class variable X9.

With the format of an Editor instruction presented, the next aim is to

describe what happens inside the editor to that instruction, from the
time it is typed in until the time the operation is complete.

The characters representing an instruction are read in by the MAIN program
in Hollerith format, converted to a special internal format by a call to

subroutine CODIT and the buffer containing those characters is passed to

subroutine GETCOM, which is concerned solely with instruction interpreta-
tion. The characters in the instruction are processed one-by-one and

each element of the instruction is built up. The characters in the

command are grouped together, and a function* is applied to the bits
which make up this grouping to produce an index into the symbol table
controlled by subroutine HASH, The parameters in the instruction are

then processed one-by-one, independent of their meaning in the sense that

if the parameter is a number, the Hollerith characters representing it

are converted to binary digits and the number is built up digit-by-digit.
If the parameter is a variable (see the SV and DV commands in Section 4)

,

its characters are also combined in the same sense that the command
characters were, and a hashing function is also applied to yield an index
into the symbol table, where the value of that variable is retrieved.
This process of parameter processing continues until all are processed.

At this point, control, as well as the buffer containing the interpreted
parameters, is passed back to MAIN which obtains the "command number"
from the symbol table, using the hashed command characters as an index.

This command number is then used in a computed GO TO statement to jump
to a subroutine CALL statement, which begins the next part of the process.

If the command was one of those that do not deal directly with the disk
data file, and consequently do not have the AOI block parameters as part
of the command, then this part of the operation consists simply of a

*Functions such as these are commonly referred to as hash functions.

7

CALL statement directly into the subroutine which perforins the function
requested; e,g, , an RT command causes a direct call to the RDTAPE sub-
routine.

If on the other hand, the command does have the AOI block parameters in

it and, therefore, requires access to a number of data scans on the disk,
control passes first to subroutine DRIVER. This subroutine's main role
is to interpret the AOI block and retrieve, in succession, the data scans
requested. It does this by computing the relative position of each scan
in the data file, using information stored in TABLE, the table of con-
tiguous time blocks which is maintained by subroutine UTABLE. Having
determined the position in the file, it causes the record to be read in

by a CALL to DSKRTS. Once the record is read in, DRIVER passes control
to the subroutine which is to perform the desired action; e.g., STDATA
to set data or status flag values, or DATTAP to reformat and output the

record to the 1108 compatible tape. When the subroutine finishes oper-
ating on the one record, it sends control back to DRIVER which writes
the edited scan back onto the disk, if necessary, gets the next record
needed, and continues on.

That, in brief, is the flow through the Editor as experienced by an in-

struction statement as it gets passed around. A more detailed under-
standing of the individual subroutines can be obtained by reading the

specification sheet for an individual subroutine given in Section 6 or

by reading the listings which appear in Appendix A.

8

4. THE DATA EDITOR - HOW TO TALK TO IT

This section contains a dictionary of the Editor commands that had been

built in by the cut-off date for inclusion in this report. As mentioned

earlier, the Editor was designed to be dynamic and constantly growing,

in order to be able to resolve the new data problems as they arise.

This of course means that the list is not all inclusive, even as of the

date of this report; it is expected that updates will be issued period-

ically.

Section 3 of this report gave some information regarding the general

format of an instruction to the Data Editor. In that section, the

concept of a command word and its associated local and AOI block
parameters was introduced. It should be noted that the exact format of

an instruction is the command word followed by a comma, followed by the

local parameters and then the AOI block parameters, all separated by

commas. Within this overall structure, an instruction is free form in

that imbedded blanks are ignored and a comma followed by a comma or by a

series of blanks and then a comma indicates a parameter with a value of

zero. There is no end of line character. Nor is there a line continu-
ation character. The import of the last comment is that all instructions
must fit on one 72 character line of the CRT. This affects only the CV

instruction, and special provision was made to handle more input for
that instruction.

The day-time references mentioned in Section 3 and referred to below as
DljTl and D2,T2 have a special format: day (Dl and D2) is given as day
of the year, and time (Tl and T2) is given in the form of the 24 hour
clock. Thus, 9:15 PM November 18 would be input as 322, 2115.

Another point to mention is that by setting system flag 10 on the
RAYTHEON 704 before loading the Data Editor, all output written to the
CRT will be copied automatically when the CRT face becomes filled, pro-
vided that the CRT function switch is turned on. When the automatic
copying is complete, the face is erased and outputting continues.

A last point before providing the dictionary is that all instructions
in the dictionary are mnemomic. In what follows, the phrase from which
the mnemonic is formed is given, in most cases, in the first sentence of
its definition with the appropriate letters underlined.

* * *

BK,N,L
This command will cause logical unit L to be b^ackspaced over N records.
If N is negative, the unit will be skipped forward.

9

C8,D1,T1,D2,T2
C^reate the 1108^ tape. This causes all scans from day Dl, time Tl through
day D2, time T2 to be reformatted and written, along with their status
flags, onto the output tape. The data scans copied are currently residing
on the disk; and the output tape is mounted on the tape drive assigned to
logical unit 9. This command also checks the status flag settings across
the scans. If any settings change from one scan to the next, that infor-
mation is printed out onto the listing device (logical unit 11), which is
normally the CRT.

CN
C^onverts, checks, and reformats the data scan currently stored in the
input buffer, and then rewrites it into the output buffer. The data scan
is converted from individual EBCDIC characters to individual binary
representations of single digits, then grouped into binary values which
represent the measured value, (checked during this process for character
legality), and finally stored in the proper place in the output buffer.
If any illegal characters are encountered during the conversion, a

message to that effect is printed on the CRT.

CV,A,S,N1,N2,. , . ,N25

This is the £lass variable processing command. A class variable is one

that is used to represent a number or set of measurement variables. The
set could be defined to be all temperature measurements or all pressures,
for example. The representation is by position in the disk data record
and is defined, redefined and "undefined" with the CV command.

Here, A is the name of the variable being referenced or defined. It can
be any two characters from the set of letters and numbers, but the first
must be a letter and the resulting name must be different from the
command names as well as all previously defined variable names. S in

the command is a switch. If S"=0, this class variable is being defined
to represent the measurement variables occupying the (not necessarily
contiguous) positions N1,N2, . . . ,N25. If S<0, the class variable A will
be deleted from the class variable table. And if S>0, class variable A
will be expanded to include the additional positions N1,N2 , . . . ,N25 in

its definition along with its previous values. It should be noted that

25 is the upper limit on the nimber of positions in one CV command only
because one line of input from the CRT can contain no more than 72

characters and there is no provision for continuation lines.

DB,N
This command causes the value of the internal variable DEBUG to be set
to the value N. If N>0, the debugging prints associated with subroutine
N will be printed each time that subroutine is entered. The subroutine
numbers are:

10

1. MAIN 2. GETCOM
3. HASH 4. INHASH
5. DEHASH 6. INIT
7. CLASS 8. COMINT

9. ERRPRT 10. RDTAPE
11. CONALL 12. POUTBE
13. HEXDMP 14. UTABLE
15. DRIVER 16. DSKRTS
17. DATTAP 18. EX
-19. STDATA 20. C\TROC

A value for DEBUG of zero, of course, turns off all debugging prints.

DV,A
D_eletes a variable A and its associated value from the symbol table.

See the SV command for more,

EX
This command terminates an editing run and exits to the RAYTHEON system.

Before terminating the run, it performs a clean-up function by tying

off all loose ends in the editing run (e.g. the closing out of the disk

files) . Current plans include extending this routine to allow for

storing enough information to provide a restart capability if it becomes
necessary to abort an edit run before completion.

GS,N
_Gets the data _scan that occupies the N'th position (starting from 1) on

the disk file, and copies it into the disk buffer. Note that this works
strictly by position on the disk, not by day and time.

ro,Nl,N2
Provide a h.exadecimal _dump of the characters numbered XI through N2 in

the raw data buffer.

LS,N1,N2,N3
I,eft jhifts by Nl positions, the characters from N2 through N3 of the
raw data buffer. This command also zero fills the positions shifted out
of. CAUTION: It is extremely important not to shift beyond the limits
of the buffer, since this will destroy other areas of core with
untoward consequences.

N¥,N
Sets the value of the internal variable XTAR to N, NVAR represents the
number of DAS channels (measurement variables) that were scanned and
subsequently recorded on the raw data tape that is about to be processed.
If set too large, error messages will appear the first time a record is
read. If set too small, data will not be transferred and will thus be
lost during the transferring in a RT instruction.

11

PO, N1,N2
This coinmand is used to 2.^1nt o^ut the contents of the disk buffer. The
label characters are printed first, followed by the values in positions
Nl through N2. If N2 is G or does not appear, just position Nl is

printed. If neither Nl nor N2 appear, or are both 0, only the label is

printed on the CRT.

RS,N1,N2,N3
Right ^hifts by Nl positions, the characters from N2 through N3 of the

raw data buffer. See the discussion of the LS command for more.

RT,N
Reads one record from the raw data _tape and copies into the raw data
buffer the data in its original vmconverted form (EBCDIC characters -

13 per DAS channel) . N is the number of characters in the record to

skip before beginning the transfer.

*

RW,L
Rewinds logical unit L.

SD,V,A,D1,T1,D2,T2
This command provides the capability for s^etting the value of d.ata words
or their associated status code words. In the command string, V is the
value the words will be set to; A is either a number representing the

position in the data scan to be reset, or a class variable (previously
defined) representing a set of positions to be all set to V; Dl and Tl

are the day and time of the first data scan on the disk to be thus set;

and D2,T2 are the day and time of the last disk-resident data scan to

be thus set.

SE,N,L
Positions logical unit L past the N'th end-of-file. A message is

printed indicating the number of records skipped (including the ends-of-
file). The mnemonic is from "s^eek end-of-file".

SK,N,L
Positions logical unit L beyond the N'th record. The mnemonic is from
"skip a record".

SP,N
^ets to N the update £olnter word in the I/O control block of the File
Control System (FCS) . When used in conjunction with the US command, it

allows the writing of the contents of the disk buffer to a specified
record position on the disk.

*Since the freeze date for this report, the option to skip characters
before reading has been installed in a separate command.

12

SV,A,N
Creates a variable, A, and _sets its value at N. Any subsequent commands

in which A appears as one of the arguments will have the value of A (N

in this case) substituted for it. Restrictions on the variable name A,
are the same as those described under the CV command.

TR,N,K
Transfers raw data to the disk by traversing, N times, the loop of

reading a raw data record from the data tape, converting, checking,
regrouping, reformatting, indexing, and finally writing the information
on the disk. After every k records are transferred in this manner, the
command produces a message on the CRT indicating this fact.

US
Updates a _s_can by writing the data scan that currently resides in the

disk buffer on the disk as the N'th record on the disk, where N is the
current value of the disk update pointer in the FCS I/O control block.
The update pointer is set explicitly by using the SP command. It can
also be set implicitly by the GS command, since every time the OS

command is executed, the update pointer is automatically set to the
position of the record just transferred.

WE,L
Writes three ends-of-file on logical unit L.

WS
Write the data _scan currently disk buffer resident onto the disk in the
next available record position (usually at the end of the file)

.

13

5. THE DATA EDITOR - HOW TO USE IT

In this section, the reader is presented with a typical edit process.

The intent is to provide an understanding of how everything fits together
into a cohesive system which performs the desired data editing function.
No attempt will be made here to explain how to operate the RAYTHEON 704.

The Data Editor is a system resident routine on that machine, and the

monitor will load the program before the editing process begins.

The editing process begins with mounting the raw data tape on the 9 track
tape drive. Having done so, the monitor responds to the Editor's
instruction query (a "?") with a TR command to begin the transfer of

data scans from the tape to the disk. If any errors occur, the program
prints error messages and waits for the monitor to decide what to do

about the errors. If the errors are of the illegal-character-type, the
monitor can attempt to fix the characters by dximplng the content^ of the

EBCDIC input tape buffer to determine what the character should be, and
then setting the proper value with the SD command. If it is impossible
or deemed improper (in order to maintain the integrity of the data) to

fix data values in this way, the monitor can simply use the SD command
to turn on the status flag bits associated with the measurement
containing the illegal character. Having done this, the monitor can
restart the automatic transfer by stepping the editor through the

completion of the transfer loop (using combinations of the RT,CN, and
WS commands) until it gets back "in sync", and then by giving another
TR command.

Another problem that can occur at this point is the discovery of a

preemptive scan. A preemptive scan is one that results from some alarm
condition at the site and might override the recording of a regular scan,

with the result that the preemptive scan starts in the middle of the
regular one and the tape record is larger than normal size. If this
error occurs, the monitor will fix it by using the RS command to move
the preemptive scan characters out of the normal scan and using the WS
command to store the regular one. Then, by using the BK command to

backspace over the record and the RT command to skip over the good scan
characters and fill the buffer with just the preemptive scan characters,
the monitor can reorganize the records so that they conform to format.
Then the Editor is stepped through the transfer loop as outlined above
and restarts the process with another TR command.

Once all the records have been transferred to disk, the Phase II perusail
process tsegins. Any flags or data values that need to be set, will be
set by using the SD command. Anecdotal comments are Inserted, statistics
gathered, and data values perused for correctness.

Once all is considered well with the data, the monitor will give a C8
command. This begins the process of transferring the scans to the 1108
compatible tape which is normally mounted on the 7 track tape drive. The only

error messages that could appear will have to do either. with physical
tape problems (which require mounting a new tape and restarting this phase)

,

14

or with out-of-sequence scan times (which require retyping the C8

command) . When the data have all been reformatted and transferred to

the output tape, the WE command Is used to endflle the tape. The EX
command Is then given to get out of the program and the day's edit is

complete.

15

6. THE DATA EDITOR - ITS PARTS (THE SUBROUTINES)

This section describes the individual subroutines that comprise the
Data Editor, each one in turn, in a "specification sheet" manner. There
is an entry for each subroutine in the system, as well as for routines
that have not been written as of the date of this report. These last
are part of the overall design of the Editor, and as such are intrinsic
to any discussion of the work done on it. These unfinished subroutines
appear below with the word "FUTURE" after their names. They are left
as future work on the Total Energy Project.

In an attempt to provide somewhat of an overview, we first present here
a list of all subroutine names, grouped as to whether they are involved
in instruction interpretation, or are level 1, 2 or 3 routines (see section
2) . The names marked with an "*" are machine language routines written by
D. E. Rorrer of CBT.

LIST OF SUBROUTINES

Instruction Interpretation

MAIN

Level 3

CR8TAP-FUTURE

Level 2

ADDTIM-FUTURE

DATTAP

GENTXT-FUTURE

RDTAPE

UTABLE

Level 1

ADRESS*

CLOSE*

CONATE*

CREATE*

. DEHASH

DSKUPD*

HASH

LSHIFT*

OUTINT*

READMT*

SEEKEF*

UNSPLT*

GETCOM

DRIVER

CONALL

DSKRTS

INIT

STATS-FUTURE

BACKSP*

CODIT*

CONETA*

DECDIT*

DSKINT*

DSKWT*

HEXDMP

OPENIT*

OUTTXT*

RSHIFT*

SKIP*

WRITEF*

READIN*

TRNRAW

CVPROC

EX

PDISK-FUTURE

STDATA

CLASS*

COMINT*

CONGRP*

DELETF*

DSKRD*

ERRPRT

INHASH

OUTHEX*

POUTBF

RWNDIT*

SPLITA*

WRITMT*

16

ADDTIM-FUTURE

FORTRAN REFERENCE:
CALL ADDTIM(PAR,MPA)

FUNCTION:
To place a new group of time entries on the KALNDR for a

record that had been created previously by one of the non-
data record generators,

ERROR CONDITIONS:
Out of space in KALNDR.

COMMENTS

:

KALNDR is a linked list which stores, linked by time, a

file reference number and a time associated with that file.

The file referenced is a file of anecdotal or calibration
information which is to be included on the output tape just

before the data scan whose time is the same as that stored
in KALNDR. Those "non-data" files are created by GENTXT.

ADRESS

FORTRAN REFERENCE:
CALL ADRESS (VAR,IADR)

FUNCTION:
To retrieve the absolute address of a variable or subroutine
entry point.

ERROR CONDITIONS:
Variable must be defined within FORTRAN.

COMMENTS

:

Either one or both of the arguments can be array elements.
This is a machine language subroutine.

BACKSP

FORTRAN REFERENCE:
CALL BACKSP(N,L)

FUNCTION:
To backspace N records on unit L.

ERROR CONDITIONS:
Load point reached before completing the command.

COMMENTS
If N<0 on output, the load point was reached. If N 0 on input,
this subroutine is equivalent to the SKIP subroutine. In any
case on return, |N| is the number of records skipped over.
This routine was written in machine language so that it would
not be necessary to include the RAYTHEON'S FORTRAN tape library
routines which use an amount of core storage inordinate for this
application.

17

CLASS

FORTRAN REFERENCE:
KARCLS = CLASS (K)

FUNCTION:
This integer function subroutine is used by GETCOM to

determine the character class of a given character, for use
in the finite state transition table, (presented in the
documentation of subroutine GETCOM) , which governs the
decoding of an Editor instruction.

ERROR CONDITIONS:
Only as given below,

COMMENTS

:

CLASS (an subsequently KARCLS in the statement
be set as follows :

*

CLASS = 1, if 10<K<35, (letters)

;

CLASS = 2, if 0<K<9 (digits)

;

CLASS = 3, if K = 36, (comma)

;

CLASS = A, if K = 41, ($);

CLASS = 5, if K=38 or K=39, (+ or - signs)

;

CLASS = 6, otherwise (error)

.

This routine is written in machine language.

CLOSE

FORTRAN REFERENCE:
CALL CLOSE (IOT,L)

FUNCTION:
To close out the file referenced in the file control block (lOT)

ERROR CONDITIONS:
As noted below.

COMMENTS

:

This is a machine language routine that sets up to call the

CLOSEFL routine of the RAYTHEON disk File Control System (FCS)

lOT is the Input/Output table described in the documentation
of FCS, and L is a status word set by this routine. If L>0
the operation is complete, no error occurred and L contains
the number of words transferred. If L<0, an error occurred,
and the absolute value of L corresponds to the error codes
given in the FCS documentation (see p. 39 of [l])

.

CODIT

FORTRAN REFERENCE:
CALL CODIT (IBUF1,IBUF2,N)

*See the documentation for subroutine CODIT for more on the internal

coding.

18

are 0 t

are 10

is 36,

is 37,

is 38,

is 39,

is AO.

is 41,

are 42.

FUNCTION:
To convert the N characters, stored two to a word in IBUFl,
from ASCII to the Editor's internal code and store them one
to a word in IBUF2.

ERROR CONDITIONS:
None, since illegal characters have a code and are dealt with
elsewhere

.

COMMENTS

:

The Editor's internal code is:

0 through 9

A through Z

blank
+

*

$

all others

Note that IBUF2 must be twice the size of IBUFl. The two buffers
may be the same, in which case no more than half of the buffer may
contain data. This machine language routine was written at a time

when both a PDP-IO and the 704 were being used for development of

the Editor and it was necessary to create a machine independent
internal representation.

COMINT

FORTRAN REFERENCE:
CALL COMINT (IBUF,N,IERR,IVAR)

FUNCTION:
To convert the N digits stored in separate continguous words
of IBUF into one binary number, and store it in IVAR.

ERROR CONDITIONS:
If IVAR>32767 or IVAR<-32767, then IERR=99 . If an illegal
character is encountered in IBUF, lERR is set to that charac-
ter. Otherwise, IERR=0.

COMMENTS:
This is a machine language subroutine.

CONALL

FORTRAN REFERENCE:
CALL CONALL (INBUF ,MIN , OUTBUF , MOU , lERR)

FUNCTION

:

To convert the data scan stored in INBUF from EBCDIC characters
to individual binary values and store them in OUTBUF.

19

ERROR CONDITIONS:
None that are intrinsic to CONALL. The errors that cari occur and

are printed out as a result of a call to ERRPRT from CONALL, are

errors that occur in the subroutines that CONALL calls. Those
errors are explained in those subroutines or in Section 7.

COMMENTS:
This is the routine one calls by giving the editor a CN command.

It is a level 2 routine and functions by setting up arguments
required by the level 1 routine it calls which do the actual work
of converting.

CONALL operates first on the 19 EBCDIC characters that form the
header. These are converted into 19 binary values and stored in

OUTBUF by a CALL to CONETA. The first 12 digits representing the
label are then combined into 3 binary values by 3 CALL's to COMINT,
The 3 digits representing the day are then combined into one value
and stored in OUTBUF by another CALL to COMINT. Next, the same
is done to the 3 digits representing time. Finally, CONALL causes
each of the 13 character measurement groups to be converted and
combined into the 5-value measurement groups that appear in the
output buffer, OUTBUF. The conversion of the measurement groups
is effected by CALL's to CONGRP.

. .; CONATE

FORTRAN REFERENCE:
CALL CONATE (IBUF1,IBUF2,ICNT,IERR)

FUNCTION:
To convert ICNT ASCII characters from IBUFl to EBCDIC and store
them in IBUF2.

ERROR CONDITIONS:
lERR will be set to the number of illegal characters encountered.
Each such character will be set, in IBUF2, to a zero.

COMMENTS

:

IBUFl and IBUF2 may be the same buffer, but in any case are
single integer arrays with the data packed two characters per
word. This is a machine language routine.

CONETA

FORTRAN REFERENCE:
CALL CONETA(IBUFl, IBUF2, ICNT, lERR)

FUNCTION:
To convert ICNT EBCDIC characters from IBUFl to ASCII and
store them in IBUF2.

20

ERROR CONDITIONS:
lERR will be set to the number of illegal characters
encountered. Each such illegal character will be set

to an ASCII

COMMENTS

:

This is simply the reverse of CONATE, and all comments there
apply here. This subroutine is written in RAYTHEON 704 machin
language

.

CONGRP

FORTRAN REFERENCE:
CALL CONGRP (IBUF,IGRP,N,IFLAG)

FUNCTION:
To convert the 13 EBCDIC characters, beginning with the Nth
character, of IBUF, into 5 distinct binary values and store
them in IGRP.

ERROR CONDITIONS:
The 4th through the 16th bits of IFLAG will be set according
as any of the Nth through the (N+ 12) th characters of IBUF
are illegal. IFLAG=0 means no errors. If an illegal charac-
ter appears, the corresponding word of IGRP will be set to

negative zero (1 000 000 000 000 000)

.

COMMENTS:
The values stored in IGRP are as follows:

IGRP(l) = scanner channel number;
IGRP(2) = remote number if data was from a remote, otherwise =

-1,

IGRP (3) = the DVM function (M or V)

;

IGRP(4) = the measurement value (including sign over-range fla

and voltage digits) ; and
IGRP(5) = the scale digit.

for more on this, see the listing in the appendix.

This is a machine language routine.

CR8TAP-FUTURE

FORTRAN REFERENCE:
CALL CR8TAP (PAR , MPA, TABLE , MTAl ,MTA2 , OUTBUF ,MOU , CLSTAB ,MCL

)

FUNCTION:
To do everything necessary to transfer from disk and core to
the 1108 compatible tape all information (at this point edited
and clean) associated with the time interval defined in PAR.

It will also have dominion over the production of the edit
summary.

21

ERROR CONDITIONS:
The primary CR8TAP error condition would be an overlap of the
time interval requested with the already-tape-resident time
Interval. There are, of course, many other error conditions
that could occur during the run of this routine, but they
occur in lower level routines called by CR8TAP and are

- discussed in the documentation of those routines.

COMMENTS

:

This is a level 3 subroutine (see section 2) and is

consequently one of the more powerful (and important) ones.

Its method of operation is first, to check KALNDR for the
first non-data record to be transferred to tape. It will
then have all data records with time-of-scan values less
than the time of that KALNDR entry transferred to the tape.

(DATTAP, the routine called by CR8TAP to effect this, also
produces a summary report on status flag changes over the

records it transfers.) As each non-data record is written
onto the tape, it is also printed out as part of the edit
summary. This processing cycle continues until all information
associated with the time interval stated in the instruction
(stored in PAR) has been transferred.

Upon completion of the transferring function, CRBTAP will
then move into its clean-up phase, wherein all core storage
areas left behand must be cleaned up and "freed" for future
use by the Editor. The KALNDR and possibly the non-data
files must be cleaned up. It is also possible, yet unclear
this point that TABLE, the time table of contiguous times (see

UTABLE write-up) and the data files need to be cleaned up and
their space made available.

CREATE

FORTRAN REFERENCE:
CALL CREATE (IOT,L)

FUNCTION:
To create a disk file as described in the file control block,
(lOT)

.

ERROR CONDITIONS:
As described in documentation of subroutine CLOSE.

COMMENTS

:

This is a machine language routine that provides the linkage
to get to FCS's routine CREATEFL. See subroutine CLOSE for

more

.

22

CVPROC

FORTRAN REFERENCE:
CALL CVPROC(PAR,MPA,CLSTAB,MCL)

FUNCTION:
To define, delete, or redefine a class

the parameters from the CV instruction
CLSTAB is the class variable table.

ERROR CONDITIONS:
There are three error conditions, each
error print. They correspond to error
and are defined in Section 7 (q.v.).

COMMENTS

:

PAR(3) corresponds to S in the CV instruction (see section 4)

.

It is -1,0, or 1 according to whether one wants to delete,

define, or redefine a class variable. PAR(2) contains the

encoded variable name* which is used as an index into the

symbol table controlled by subroutine HASH. The value of

the class variable in the symbol table is a pointer into

CLSTAB to retrieve the set of measurement variable positions
that the class variable represents. PAR(4) through PAR(MPA)
contain the positions. Pictorially, the class table (CLSTAB)

is

:

symbol symbol
table Nl VI V2 VNl table N2 VI V2 W2 -1

index index

where "symbol table index" is PAR(3) above, N1,N2, etc. are
in each case the number of members of the class, and VI, V2,
etc. are the positions. There is a -1 at the end of it all.

A class variable is defined simply by adding its information
to the end of CLSTAB beginning V7ith the position occupied by
-1. A deletion is performed by removing the cells allocated
to a class variable and repacking the table. A redefinition
is performed by adding the additional positions to the end of

a class variable definition, and for that reason cdn only be
done on the class variable that is occupying the last physical
positions in CLSTAB. If it is desired to redefine one that is

not last in the list, the user must first delete the variable
and then start all over.

*For more on the encoding, see the CODIT and GETCOM write-ups.

variable. PAR contains
(see section 4) and

with an associated
types 17,18, and 19,

23

DATTAP

FORTRAN REFERENCE:
lERR - DATTAP(PAR,MPA,OUTBUF,MOU,CLSTAB,MCL,WRTSWT,LRECF)

FUNCTION:
To transfer the data record in the disk buffer (OUTBUF) to the

1108 compatible tape. Also, to produce a local edit summary
consisting of changes in status flag settings from the pre-
viously transferred data record.

ERROR CONDITIONS:
Error returns from WRIIMT routine which signal an unrecoverable
write error on the output tape.

COMMENTS

;

The status flag check is performed by a bit-by-bit logical
OR over all the status flags in the scan. This "sum" is

compared against the same value for the previous scan sent
out. If different, a message is printed stating that fact.
Of course, this is a valid check only if the flags are stored
in independent positions in the status flag word.

DECDIT

FORTRAN REFERENCE:
CALL DECDIT (IBUF1,IBUF2,N)

FUNCTION:
To convert the N characters stored one to a word in IBUFl from
the internal code back to ASCII and pack them two to a word in

IBUF2.

ERROR CONDITIONS:
None

COMMENTS:
The internal code is explained in doctnnentation for subroutine
CODIT. This is just the reverse of that routine. IBUFl and
IBUF2 may be the same storage area. This is a RAYTHEON
machine language routine.

DELETE

FORTRAN REFERENCE:
CALL DELETE (IOT,L)

FUNCTION:
To delete the file described in the file control block (IDT)

from the disk, and free its space for further use.

24

ERROR CONDITIONS:
See CLOSE documentation.

COMMENTS

:

This is just an interface routine to get to FCS's routine

DELETEFL. See CLOSE documentation for more.

DEHASH

FORTRAN REFERENCE:
CALL DEHASH (KEY)

FUNCTION:
To delete a variable name and value from the symbol table

controlled by the HASH subroutine.

ERROR CONDITIONS:
KEY request not found in symbol table.

COMMENTS

:

This KEY is the very same one used by HASH as an index into

the symbol table.

DRIVER

FORTRAN REFERENCE:
CALL DRIVER (FUNC , PAR ,MPA , TABLE , MTAl , MTA2 , OUTBUF , MOU , CLSTAB ,MCL)

FUNCTION:
To serve as a controlling point for all routines that require
access to the disk stored data scans. It performs all
operations required to translate the day and time requests (see

section 4 on the structure of a command) stored in PAR, into
disk accesses which bring the desired records into core one

at a time. Upon this, control is transferred to the subroutine
name received in argument FUNC.

ERROR CONDITIONS:
Error status is controlled by subroutines that DRIVER calls.
If one of these returns in an error condition, DRIVER closes
out the file and passes control to MAIN which then calls for
another instruction. Disk operation errors could also occur,
but these are explained elsewhere. A last error condition
that DRIVER contains is one where the requested times are just
unknown.

25

COMMENTS

:

TABLE is the table of contiguous times (see subroutine UTABLE)

,

OUTBUF is the disk buffer, and CLSTAB is the class variable
table (see CVPROC documentation) . Note that those arguments
required by the routine that DRIVER will call, must be passed
into DRIVER, so that if new subroutines are added that will
deal with disk stored data scans, and these routines require
parameters not already in DRIVER 's calling statement, then
DRIVER must have its SUBROUTINE statement expanded.

DRIVER maintains a logical variable which tells it whether
to update the disk scan that it had read and passed to the

subroutine requested. This switch (WRTSWT) is set in the

called routine.

DRIVER also maintains a switch (LRECF) which signals that

the currently stored scan is the last one requested, so

that the called routine can finish out its operation if

necessary (e.g. STATS).

Note that DRIVER passes off to its routines by a FUNCTION
subroutine reference. Due to the vagaries of the RAYTHEON
704 FORTRAN compiler, this is the only way to pass the name of

a subroutine as an argument in a subroutine CALL.

A future addition to DRIVER will be one to provide for storing
the day-time and class variable requests that appear in PAR,

so that once input, they can be optional in subsequent commands
if the same ones are desired.

DSKINT

FORTRAN REFERENCE:
CALL DSKINT (10T,L)

FUNCTION:
To provide the linkage to FCS's routine INITLIZE which prepares
the disk for use.

ERROR CONDITIONS:
See documention for subroutine CLOSE.

COMMENTS

:

This routine also completely cleans out the disk files there,

so that all space is ready for use. Note that this is a

function of the linkage routine and is not a service provided
by FCS. For more, see subroutine CLOSE.

26

DSKRD

FORTRAN REFERENCE:
CALL DSKRD (TOT, L)

FUNCTION:
To link up ^n.th FCS's routine GETREC which brings a record,

described in the file control block TOT, into a buffer (in

the Data Editor's case, OLTTBLT) .

ERROR CONDITIONS:
See vrrite-up of CLOSE.

COMMENTS

:

The 27th word of lOT is the one that tells FCS which block on

the disk to retrieve. FCS starts counting blocks from zero,

so that if one wants the first record that was written to the

disk then I0T(27) = 0, the second record requires I0T(27) = 1,

etc. See CLOSE for more.

DSKRTS

FORTRAN REFERENCE:
CALL DSKRTS (OUTBLT , MOU, N , I COM , lERR)

FUNCTION:
To provide a central routine through which to read, write,

or update a disk record.

ERROR CONDITIONS:
Error returns from DSKRD, DSKWT, DSKLTD, w'hich force an

error print from this routine.

COMMENTS

;

In a system as complicated as the Data Editor, it makes good
programming sense always to open, operate on one record within,
and then close out a disk file rather than to open it once in

the beginning of processing and close it at the end of a day's
editing. This principle and the nature of the RAYTHEON'S
disk File Control System, necessitated some seemingly redundant
bookkeeping in the I/O control blocks (lOCBD) . Rather than
have that bookkeeping appear everywhere a disk operation was
required, this level 2 routine was t-rritten to centralize the
disk accessing. See CLOSE for more.

DSKLTD

FORTRAN REFERENCE:
CALL DSKUPD(IOT,L)

27

FUNCTION:
To provide the linkage to FCS's routine UPDATE, which updates
(rewrites, or overwrites) the record on the disk that Is
described In the file control block (lOT)

.

ERROR CONDITIONS:
See CLOSE documentation.

COMMENTS

:

This is the only way to write a record to disk in other than
the next available location at the end of the file. The
pointer used by DSKUPD (or UPDATE in FCS) is I0T(31). It is

automatically set when a DSKRD (or GETREC in FCS) operation is

performed, so that one can read, revise, and immediately
rewrite, without having to set anything. But one can also set
the pointer independently. See CLOSE for more.

DSKWT

FORTRAN REFERENCE:
CALL DSKWT (IOT,L)

FUNCTION:
To link to FCS's routine PUTREC which writes the contents of

the buffer referred to in the file control block (lOT) into
the next available location in the disk file that is also des-
cribed in lOT.

ERROR CONDITIONS:
See CLOSE write-up.

COMMENTS

:

This routine can only write to the next available space. The

PUTREC pointer described in FCS manual (see p. 26 of [1]) is

in error. It is not possible as indicated there, to PUT a

record wherever you want by setting the PUTREC pointer.

For more on this routine, see CLOSE.

ERRPRT

FORTRAN REFERENCE:
CALL ERRPRT(ISUB,MESS, lARGl, IARG2 , IARG3, IARG4, IARG5)

FUNCTION:
To print an error message.

ERROR CONDITIONS:
None

28

COMMENTS

:

The components of an error message are: the name of the
subroutine in which the error occurred, the type number of

the type of error, and the arguments that were relevant to the
error. The subroutine name is stored as Hollerith characters
and ISUB is a pointer to the name needed. MESS is the number
of the message (see the appendix) . If the error was a disk
error, EKRPRT also produces a hexadecimal dump of the disk I/O
control block. The arguments through lARGA are printed in
integer form and IARG5 is dumped in hexadecimal format.

EX

FORTRAN REFERENCE:
CALL EX

FUNCTION:
To "clean up" and exit to the system.

ERROR CONDITIONS:
None as yet.

COMMENTS

:

At present, almost no cleaning up is done by EX. Future
plans include options such as the writing out onto disk of

the I/O control blocks used to access the disk, the time
table used as an index into the data scans, perhaps even the
class variable table (CLSTAB) and the hash table (KEYS and
VALUES) . These and others would be stored so that one
could reenter the Editor in a restart or continuation mode.

GENTXT-FUTURE

FORTRAN REFERENCE:
CALL GENTXT

FUNCTION:
To add a file of anecdotal information to the non-data area of

the disk.

ERROR CONDITIONS:
No more disk space left for such information.

COMMENTS

;

These anecdotal comments are statements, usually copies of

entries from the site log that would be valuable to

subsequent researchers looking at the data. They might be
coimnents to the effect that a particular measuring device
(e.g. thermocouple no. 634) was taken out and replaced with
a new one at 1345 on day 319. This information is then associated
with a time on KALNDR through the ADDTIM subroutine and merged

29

in the output tape at its appropriate place by the CR8TAP
routine

.

GENTXT works by first creating a file, then switching into
input mode where it requests one line of text at a time from
the CRT. It continues in this fashion until the disk buffer
is full, whereupon it writes that buffer-full into the file,
and starts over requesting input. This cycle continues until
a line with naught but END In cols. 1-3 is encountered, whence
it pads out the remainder of the buffer, writes it out and
sends the message containing the file reference number, to

be used in the ADDIIM subroutine, back to the CRT.

GETCOM

FORTRAN REFERENCE:
CALL GETCOM (COMMND,MCO,FCT, PAR, MPA, FLAG)

FUNCTION:
GETCOM is the heart of the interface between the user's typed-
in instructions and the Data Editor's subroutine calls. It's

function is to get the command instruction stored as alpha-
numerics in COMMND, and convert it into a subroutine index
number, stored in FCT, and a set of subroutine parameters,
stored in PAR.

ERROR CONDITIONS:
Reference in the instruction string to an unknown variable,
and incorrect instruction structure. This last is explained
in detail below, but one example is discovering a sign (+ or -)

embedded in a string of digits. In either of these cases,
FLAG is turned on.

COMMENTS:
GETCOM decodes and interprets the instruction string,
character by character, through the use of a finite state
transition table. As each character in turn is removed from
the strings, its character class is determined by a call to

CLASS. Given the class of the character at hand (a number
from 1 to 6), and the current state of the decoding process
(a number from 1 to 9), the two dimensional finite state
transition table yields the new state of the process. In

other words, knowing where we came from and what type of

character we have, the table tells us what to do next.

There are 10 states that GETCOM can be in:

1.) Idle,
2.) Command character interpretation,
3.) Argument processing initialization,
4.) Variable argument processing
5.) Variable argument value retrieval.

30

60 Numeric argument processing,

70 Argument value storage,

80 Normal termination,

90 Numerical sign processing.

10 0 Error termination.
The six possible character classes are

10» Letter (A - Z)

,

20I Number (0 - 9)

,

30 Comma (,)

,

AOI End-of-string character ($),

50) Sign (+ or -) ,

60) Other.

With the above state and character class definitions in

mind, we present below the finite state transition table

used by GETCOM.

CHARACTER CLASSES

1 2 3 A 5 6

1 2 1 1 10 1 1

2 2 2 3 8 10 10

s 3 A 6 7 7 9 10

T

A 4 4 4 5 5 10 10

T
E 5 4 6 7 7 9 10

S
6 10 6 7 7 10 10

7 4 6 7 7 9 10

8 10 10 10 10 10 10

9 10 6 10 10 9 10

In order to illustrate the use of the transition table
without going into too much detail, one set of state
transitions will be explained here. Consider state 4, the

variable argument processing state. Its transition entries
are: 4, 4, 5, 5, 10, 10. The interpretation is that if the

current state of the system is 4 and the next character in

the instruction string is a letter, then we stay in state 4

and control in the program is transferred (by use of a

COMPUTED GO TO using 4) to a section of code that builds up

the variable name. If the next character is a digit, the

31

the same applies since a variable name can consist of any 2

characters so long as the first is a letter, which situation
is guaranteed at this point by the fact that we are already
in state 4. However, if the next character is either a comma
or the end of the string we move to state 5 which attempts to

retrieve the value of the variable from the symbol table by
calling HASH. If the next character is a numeric sign, this
is an, error since imbedded signs are not allowed. Finally, an
illegal character also sends control to the error termination
state 10.

When the string processing is complete, GETCOM will have
placed the hashing key associated with the command part of

the instruction into the variable FCT. That key is required
by MAIN. GETCOM will also have stored each one of the

parameters of the instruction in PAR(2) through PAR(N + 1),
where N is the number of arguments in the instruction. PAR(l)

will have been set to N. In the case of variables in the

instruction string, PAR will contain the variable's value that

was retrieved from the symbol table. In the case of numeric
arguments in the string, PAR will contain the binary (signed
or unsigned) equivalent of the Hollerith number that was in

the string.

HASH

FORTRAN REFERENCE:
IVAL - HASH (KEY, FOUND)

FUNCTION:
To provide a simple, yet effective method for retrieving
values from the Editor's symbol table.

ERROR CONDITIONS:
Because of the method ^see below) used to index the symbol
table, a KEY value of 0 is not allowed. If this occurs, an
error message appears. If the symbol table becomes full, an
error is also indicated.

COMMENTS

:

In the case of a full symbol table error, as the error
message given in section 7 Indicates, the operator has two

options: delete some variables from the table, or redimension.
If redimensioning is chosen, note that the dimension of both
KEYS and VALUES must be a power of 2 and that that power of 2

must be the value of N that is set in the DATA statement.

Note also that if the dimensions are changed, they must be

changed everywhere that the labeled COMMON block, BLK2, appears

viz. in MAIN, HASH, DEHASH, and INHASH.

32

The symbol table is indexed by use of a "hashing function"
applied to the key reference (the variable name or some

encodement thereof, which is the case with the Editor). For
more on hashing with sjrmbol tables, see p. A3 of [2].

HEXDMP

FORTRA.N REFERENCE:
CALL HEXDMP (INBUF,MIN,IBEG,IEND)

FUNCTION:
To provide a hexadecimal dump of (IBEG-IEND+l) words of the
input tape buffer, beginning with the IBEG'th word.

ERROR CONDITIONS:
None

COMMENTS

:

None

INHASH

FORTRAN REFERENCE:
CALL INHASH (KEY, VALUE)

FUNCTION:
To install a new variable name and value in the symbol
table maintained by subroutine HASH.

ERROR CONDITIONS:
An error obtains if the variable name already exists.

COMMENTS

:

KEY is the same KEY defined in the documentation of HASH.
VALUE is the value that the new variable is to have.

INIT

FORTRAN REFERENCE:
CALL INIT(IFILE,MIF1,MIF2)

FUNCTION:
To initialize the whole Data Editing system.

ERROR CONDITICMS:
Only error returns from the disk operations that are performed.

33

C(MMENTS:
This routine initializes the I/O control blocks that are used
in disk access (see [1]). It also sets up the disk files which
are to be used and installs the command references in the
symbol table. The command reference values are composed of

two parts: the subroutine reference number and the parameter
position number, both of which are packed into the value. The
subroutine reference number has been discussed elsewhere (see

MAIN and GETCOM) . The parameter position number is the index
into PAR where the day-time values of the instruction begin.
For those instructions which do not have day-time references,
this value is zero.

A word of explanation is in order, regarding the key values
used in initializing the commands. They are obtained by
taking the internal code equivalent (see CODIT) , of the

command characters, multiplying the first number by 36 and

adding the second. For example, the first entry in the FCN
table in INIT is for the RT command. The internal code
equivalent of an R is 27, that of a T is 29. And 27 x 36 + 29

- 1001, the first of the two entries in the first column of

FCN. The second entry, 0100, signals that 1 is the subroutine
reference number (the COMPUTED GO TO in MAIN will cause a jump

to its first argument) and that this command has no day-time
references.

Future plans for this routine include options for a restart
where the previous edit run left off. These options could
be very valuable if it develops that one run, because of DAS

recording errors, becomes much less than automatic in that the

person performing the edit must manipulate the data extensively.
If this turns out to be the case and the monitor must quit a

run before it is complete, then without some restart capabilities,
all accomplished to that point will be lost, and the monitor
would have to resume from scratch later on.

LSHIFT

FORTRAN REFERENCE:
CALL LSHIFT(IBUF,ICNT,M,N)

FUNCTION:
To perform a left shift by characters (2 to a word) of IBUF.
Words shifted out of are zero filled.

ERROR CONDITIONS:
None

COMMENTS

:

Characters M through N of IBUF are shifted ICNT positions.
CAUTION : be sure not to shift out of IBUF. This is a

machine language routine.

34

MAIN

FORTRAN REFERENCE:
None, this is the main program.

FUNCTION:
To provide complete control, through the use of subroutine
calls, over the whole editing process.

ERROR CONDITIONS:
Unknown command function requested.

COMMENTS

:

The MAIN routine functions by calling READIN to get an

instruction string brought into core, CODIT to convert the

string to internal code, GETCOM to convert those characters
into a command reference key and list of parameters, HASH to

retrieve the subroutine reference number and parameter position
code, and finally by using the subroutine reference number in

a COMPUTED TO GO to jump to a subroutine call which effects the

operation desired.

New commands are entered by entering the subroutine call here,
and entering the command reference in INIT.

Note that all arrays are dimensioned in MAIN and are in blank
common. This was done to save storage on the RAYTHEON: the
system provides that the Resident loader and blank common
begin at the same location, so that by putting all arrays in

common, even if they don't get used that way (in other COMMON
statements in the subroutines) , at least the storage allotted
to the Resident Loader is recovered and rendered useable.

Note also that all the arrays that are passed to the various
routines have their dimensions passed with them by means of

a variable which is set to the dimension value in a DATA
statement in MAIN. This allows the user to change the size
of critical arrays with only two program changes in MAIN,
namely the DATA statement value and the DIMENSION statement
value, rather than having to change in each subroutine also.

OPENIT

FORTRAN REFERENCE:
CALL OPENIT (IOT,L)

FUNCTION:
To link to FCS's routine OPENFL, which opens an already-
created disk file for use.

35

ERROR CONDITIONS:
See CLOSE documentation.

COMMENTS:
See CLOSE documentation.

OUTHEX

FORTRAN REFERENCE:
CALL OUTHEX(IBUF,N, CODE, SKIP)

FUNCTION:
To output N words of IBUF in a hexadecimal format.

ERROR CONDITIONS:
None

COMMENTS:
The numbers are output in a fixed Z4 format (4 hex characters
per word). See OUTINT and OUTTXT write-ups for more.

OUTINT

FORTRAN REFERENCE:
CALL OUTINT (IBUF ,N, CODE, SKIP)

FUNCTION:
To output integer numbers to the list device (CRT) . The numbers
are stored in IBUF. N is the number of numbers to be output.
CODE and SKIP are as in OUTTXT.

ERROR CONDITIONS:
None

COMMENTS

:

The numbers are output in a fixed 16 format including sign,

and follow the same concepts outlined under OUTTXT. See the
write-up of OUTTXT for more.

OUTTXT

FORTRAN REFERENCE:
CALL OUTTXT (IBUF ,N, CODE, SKIP)

FUNCTION:
To output Hollerith text to the list device (CRT) . The text

is stored in IBUF, two characters per word. N is the number of

words to output, CODE is a carriage control code, and SKIP is

the number of blanks to output before starting.

36

ERROR CONDITIONS:
None

COMMENTS

:

This provides for stream-oriented output, and was created
because space was at a premium in the RAYTHEON and the

FORTRAN I/O package required on the order of 2500 words of

storage. This routine (and its sister routines OUTINT and
OUTHEX) together require an order of magnitude less, in

addition to being much easier to use.

CODE, as was mentioned above, is a carriage control which
controls the output as follows (LF = line feed, CR = carriag
return)
CODE = 0, do nothing and return,
CODE = 1, output (LF) (text) (CR)

CODE = 2, output (text)

CODE = 3, output (LF) (text)

CODE = 4, output (text) (CR)

CODE = 5, ouptut (LF) (CR)

CODE = 6, output (CR)

CODE » 7, output (LF)

CODE = other

,

do nothing and return.

Note that if N>72, a CR/LF is inserted before the 73rd
character so that the stream may continue. This requires th

keeping of an internal cursor position which is used only by
OUTTXT, OUTINT, and OUTHEX and is reset to zero only when
a CR is sent to the CRT for any reason (internally because
N>72 or externally through CODE). Thus, unless one ends
with a CR, the next output command may be started in the

middle of a line

.

See the listings of OUTTXT, OUTINT, and OUTTXT in the

appendix for more.

PDISK-FUTURE

FORTRAN REFERENCE:
lERR = PDISK(PAR,MPA,OUTBUF,MOU,CLSTAB,MCL,tsTlTSWT,LRECF)

FUNCTION:
To print out disk records according to the following example
format

:

NO. VAL. FLAG NO. VAL. FLAG et

1 19483 0001 2 15421 0011

37

ERROR CONDITIONS:
Only that the request parameters are out of range.

COMMENTS

:

PAR (2) in this case is a switch, which determines what Is

printed as follows:

0, print whole record;

1, print all values;

If PAR(2) = ^' P^i^^ flags;

3, print values and flags for
class variable in PAR(3)

;

4, print values for class variable;

5, print flags for class variable.

POUTBF

FORTRAN REFERENCE:
CALL POUTBF(OUTBUF,MOV,IBEG,IEND)

FUNCTION:
To print out the contents of the disk buffer area in a

formatted way.

ERROR CONDITIONS:
None

COMMENTS

:

This subroutine prints, to the CRT, first a line containing
the label and time information stored in the first 6 words of

OUTBUF, and then a series of lines containing the measurement
values numbered from IBEG through lEND. If IBEG is 0, I.e.,
the instruction PO which calls this routine has no arguments,
then just the header information is printed. If lEND is

less than IBEG, then just the value IBEG is printed after the

header.

RDTAPE

FORTRAN REFERENCE:
CALL RDTAPE (INBUF,MIN,IERR)

FUNCTION:
To effect the reading of one record from the raw data tape.

ERROR CONDITIONS:
RDTAPE checks error returns from the READMT routine and

prints error message accordingly.

38

COMMENTS

:

This is a FORTRAN subroutine which simply sets up to call

READMT: the latter does the work of reading the EBCDIC
formatted tape.

READIN

FORTRAN REFERENCE:
CALL READIN (IBUF,N)

FUNCTION:
To provide variable length input from the keyboard device.

Up to 72 characters from the keyboard (usually CRT) will be

read in and stored in IBUF, 2 characters per word. N will
be set to the number of characters read.

ERROR CONDITIONS:
None

COMMENTS

:

This routine was necessary because no variable length input

was allowed from FORTRAN. If a format called for 72 characters
of input, there had to be 72 characters typed in. This
routine pads out the buffer with blanks if less than 72 are

typed in. IBUF must be at least 36 words long.

READIN is written in machine language.

READMT

FORTRAN REFERENCE:
CALL READMT(IBUF,ICNT,NCHAR,IERR)

FUNCTION:
To read one record into IBUF from the EBCDIC coded, 9 track,
DAS generated, magnetic tape, referred to elsewhere as the

input tape or raw data tape, and to perform physical,
magnetic tape-type error checks.

ERROR CONDITIONS:
lERR will contain information on the number and type of mag
tape errors that occurred. If lERR = 0, no errors occurred.
If lERR = -1, a single error applying to the entire record
occurred. If lERR = -32767, the record was completely
unreadable. If lERR > 0, then lERR is the number of parity
or other physical tape type errors in the record.

39

COMMENTS

:

When the subroutine is entered, ICNT represents the number of

characters to skip on the input tape record, before beginning
the transfer of data into IBUF. If used, ICNT must be a

positive, even integer. The routine sets ICNT to the

number of characters read when it passes control back. If

the sign of ICNT is negative, the record on the tape was too

long and more data needs to be read. If ICNT is zero, an EOF
was encountered. Also on entering, NCHAR should be set to

the maximum number of characters to transfer into IBUF from
the tape. NCHAR also must be a positive, even integer.

ICNT and NCHAR were designed in the above way to handle the

possible occurrence of preemptive scans on the data tape.

A preemptive scan is one that occurred in an alarm condition
or simply a manual condition, and could begin in the middle
of a good scan. Were this to happen, an unusually long "scan"
would result, which could, nevertheless, be processed using
this subroutine via the RT command.

For more on this, see the RT command in section 4, and the
listing in the appendix.

This routine is in machine language.

RSHIFT

FORTRAN REFERENCE:
CALL RSHIFT (IBUF, ICNT, M,N)

FUNCTION:
To perform a right shift by characters (bytes) of IBUF. The

opposite of LSHIFT.

ERROR CONDITIONS:
None

COMMENTS

:

See LSHIFT documentation.

RWNDIT

FORTRAN REFERENCE:
CALL RWNDIT (L)

FUNCTION:
To rewind unit L.

40

ERROR CONDITIONS:
None

COMMENTS

:

This routine is written in machine language. It was
necessary to do so, rather than just using the FORTRAN
RBs'IND instruction, because of storage problems. As the

Editor is now, no FORTRAN mag tape operations are used. The

whole tape operations section of the FORTRAN library is not

loaded in with the Editor, saving approximately 2000 v;ords of

storage

.

SEEKEF

FORTRAN REFERENCE:
CALL SEEKEF (N,IREC,L)

FUNCTION:
To find N ends-of-file on unit L.

ERROR CONDITIONS:
None

COMMENTS

:

IREC will be set to the number of records passed over. This
includes the EOF's passed over. This is a machine language

routine

.

SKIP

FORTRAN REFERENCE:
CALL SKIP(N,L)

FLTJCTIONr

To skip N records forward on unit L.

ERROR CONDITIONS:

End-of-tape marker reached before completing the command.

COMMENTS

:

If N<0 on entering the subroutine, then this subroutine
functions like the BACKSP subroutine. On leaving the
subroutine, |Nj will be the number of records passed over. If

N<0 here, the EOF was reached. This is a machine language
routine. For more on this routine see the SK command in
section 4, and the listing in the appendix.

41

SPLITA

FORTRAN REFERENCE:
CALL SPLITA (ARG1,ARG2,ARG3)

FUNCTION:
To separate out the bytes of ARGl and right justify them
respectively in ARG2 and ARG3.

ERROR CONDITIONS:
None

COMMENTS

:

None

STATS-FUTURE

FORTRAN REFERENCE:
lERR = STATS (PAR,MPA, TABLE, MTA1,MTA2,0UTBUF,M0U,CLSTAB,MCL)

FUNCTION:
To produce a set of statistics on the portion of the disk-
stored data defined in the PAR vector by the class variable
and day-time positions, that should give some indication of

whether All is well with the data collection mechanisms.

ERROR CONDITIONS:
None

COMMENTS

:

The statistics to be gathered are all relative ones, which
means among other things that they are dimensionless quantities
whose values will all be between +2. If any value is reported
larger in either direction, that is an indication that some
measuring device recorded values larger than expected. (One

would then zero in on the data to determine which device
malfunctioned during what time interval.)

In order to implement this routine, certain types of stored
statistics on the measured values are required. There are,
for each measurement variable:

1) ^ii^p ~ expected minimum value,

2) max =» expected maximum value,
P

3) y^ = typical value,

4) Ay = expected change in y over time,

5) Ay/y » expected relative deviation.

42

The standardized statistics to be reported are:

1.) standardized min:

(min-Tnln) / (max-min) ,

P P

2.) standardized max:

(max-min) / (max -min)

,

P P P

3.) standardized value:
(y-min) / (max -min)

,

P P P

4.) standardized standard deviation (SD)

:

SD/SD ,

P

5.) standardized relative standard deviation (RELSD)

RELSD/RELSD .

P
These statistics could all be computed in one pass through
the data values, and would be easy to implement. There are

more like this that could be useful in providing early
detection of measurement device anomalies, but these would be

developed and implemented on an as-needed basis.

It should be noted that these statistical checks are simple,

gross ones designed to provide the simplest of statistical
data checks, and should not in any way be associated with
providing information on data reliability.

STDATA

FORTRAN REFERENCE:
lERR = STDATA(PAR,MPA,OUTBUF,MOU,CLSTAB,MCL,WRTSWT,LRECF)

FUNCTION:
To provide the ability to set data or flag values over a

range of measurement variables and time definitions of the

disk-stored data scans.

ERROR CONDITIONS:
Since one of the parameters in PAR is a class variable or its
degenerate form, a measurement variable number, and since
STDATA must interpret this reference, an illegal variable
reference condition could obtain.

COMMENTS

:

This routine is the one eventually got to by typing in an SD
instruction to the Editor. After DRIVER brings in one of the
records referenced, STDATA interprets the class variable and
sets the data or flag values as required. STDATA sets the
write data switch on, which puts DRIVER in the read and write
mode

.

43

TRNRAW

FORTRAN REFERENCE:
CALL TRNRAW(INBUF,MIN,OUTBUF,MOU, TABLE, MTA1,MTA2,NREC,KPRNT)

FUNCTION:
To provide for the automatic transfer of data from the raw
data tape to core and then to disk.

ERROR CONDITIONS:
None that are endemic to TRNRAW. The errors that can occur,
do so in the subroutines that TRNRAW calls.

COMMENTS

:

This is the routine that one calls by giving the editor a TR
command. It is a level 3 routine (see section 2), and loops
through RDTAPE, CONALL, UTABLE and DSKRTS for NREC records.
It produces monitoring prints after every KPRNT records are
transferred.

If an EOF is encountered or any error condition occurs in one
of the routines called by this one, processing terminates and
a message indicating the exact number of records transferred
is printed.

UNSPLT

FORTRAN REFERENCE:
CALL UNSPLT (ARG1,ARG2,ARG3)

FUNCTION:
To reverse the process of subroutine SPLITA. That is, where
SPLITA unpacks bytes into the second and third arguments,
UNSPLT packs the right bytes of ARG2 and ARG3 into ARGl.

ERROR CONDITIONS:
None

COMMENTS

:

None

UTABLE

FORTRAN REFERENCE:
CALL UTABLE (OUTBUF , MOU , TABLE , MTAl ,MAT2 , lERR)

FUNCTION:
To update the table of contiguous times (TABLE) with the time

of the record about to be written onto the disk, which record

currently resides in the disk buffer, OUTBUF.

44

ERROR CONDITIONS:
If the number of entries is about to exceed the dimensions
of TABLE, which are MTAl and MTA2, then no entry is made, and
an error message is printed. Also, if an entry is attempted
for a record whose time is out of sequence, that entry is

not made and an error message appears.

COMMENTS

:

The table of contiguous times is used as an index table into

the disk-stored data scans. The idea is to keep a record of

contiguous blocks of data scans whose time differences, At,

from one record to the next are all the same. Given a begin-
ning time for such a group, a record number associated with
that beginning time, the At, and the time of a scan one is

interested in, the record number of the scan of interest can

be quickly calculated. This of course means that every
occurrence of a time difference between consecutive records,
that differs from that between the 2 previous records, causes

an entry in the TABLE.

The data for the time table is stored by columns so that
(TABLE(J,NENT)

, J=l,6) represent in order: the day of the

first entry for this contiguous group, the time in minutes
for the first entry in the group, the record number associated
with that entry, the day of the last entry in the group, the

time in minutes of the last entry, and finally the time
difference, At, that applies for that group.

WRITEF

FORTRAN REFERENCE:
CALL WRITEF (N,L)

FUNCTION:
To write 3 EOF's on unit L.

ERROR CONDITIONS:
None

COMMENTS

:

See write-up of RWNDIT. Comments there apply here also.

WRITMT

FORTRAN REFERENCE:
CALL WRITMT (IBUF,N,M,IERR,LUN)

To write the contents of the IBUF out to the 1108 compatible
tape mounted on logical unit LUN. N is the number of items

45

(words or characters depending on the value of M) to be
transferred, and M is a format control code,

ERROR CONDITIONS:
lERR will be set <0 if an unrecoverable mag tape error
occurred. Otherwise IERR=0.

COMMNETS

:

This is a somewhat complicated routine, that was designed to
" provide capabilities other than just those required by the

Total Energy Data Editor. The primary requirement for the

Data Editor regarding this routine was to write out the 16 bit
words in IBUF in such a way that the records could be read on
NBS's UNIVAC 1108 with a minimal amount of work at both ends
(RAYTHEON and 1108).

For a detailed explanation of what WRITMT does with the various
values of N and M, see the subroutine listing in the appendix.
Suffice it to say, here, that N is the niomber of words to write
out, and M should be equal to -1. These comments are true so

long as the output tape is mounted on the 7 track drive
(physical unit 14),

46

7. THE DATA EDITOR - HOW IT TALKS TO YOU

Any Data Editor error message is composed of three parts: the name of

the subroutine that was in control when the error occurred, the error

type number, and a list of arguments. This appendix provides explanations

of the various error types. The number reported in the displayed error

message is the one used to determine x-zhich message to read below.

* * A

1. Unknown command function requested. Check command requested, and

retype the instruction.

2. Illegal character in instruction string. ARGl is the position in the

string of this character.

3. A variable argument in the instruction has not been defined previously,

and therefore cannot be used as an argument. ARGl is the number of

the argument in error.

4. Incorrect instruction format. Embedded letters in numbers, or

embedded signs, are examples.

5. Symbol table hash key equal to zero. This is a serious error. An
attempt was made to retrieve a value from the symbol table with a

reference index of zero. Call a programmer.

6. Symbol table is full. No more variables can be defined until space
is obtained. Either delete some variables, or stop and redimension
the table.

7. Failure in the INHASH routine. ARGl is the value of FOUND. If ARGl
is 1, this simply means an attempt was made to define a variable that
already is defined. Delete the original definition and then insert
the new one. If ARGl is 0, a serious system error occurred. Call
a programmer.

8. Failure in the DEHASH routine, ARGl is the value of FOUND. If ARGl
is 0, an attempt to delete an unknown variable from the syinbol table
was made. If ARGl is 1, a serious system error occurred. Call a

programmer.

9. An error occurred in reading the raw data tape. Either the character
count (1st argument) is bad, or a magnetic tape error (2nd argument)
occurred.

-32767, if record was unreadable;
-1, if single parity error occurred applying to

entire record;

0, if no mag tape error occurred; or
n, where n is the number of parity errors that

occurred.

47

If ARG2 = 0, the error was with the character count. If ARG1<0,
the tape record was longer than expected and some data was therefore
unread. If ARGl =0, an end-of-flle was encountered.

10. An illegal character was encountered while converting from EBCDIC to

binary the measurement variable group of characters that is physically
the ARGl'th such group in the scan whose day is ARG2 and whose time
is ARG3. ARG5 is the hexadecimal dump of the flag word as explained
in the documentation of CONGRP, which contains pointers to the

position of the illegal characters.

11. Illegal EBCDIC characters were encountered while converting the label
and day-time characters of the scan. ARGl is the number of such
errors.

12. The table of contiguous times (TABLE), used as an index into the
disk, is full. Either redimension or stop transferring data to the

disk, continue on with an edit of the data already transferred, and
then start a new edit from the point left off.

13. A scan request was made for a scan whose time was not found in the
table of contiguous times. Try again.

14. Disk operation error. ARGl is the status word returned from FCS (see

[1], p. 39).

ARG2

0, if operation was other than below;

1, if operation was a read;

2, if a write;

3, if an update.

15. Error return from COMINT. ARGl =99, if resultant number was greater
than 32768, or n if the nth character was other than a digit, a +, a -,

or a blank, ARG2 = n if this call was the n'th grouping call from
CONALL. ARG4 is the 16 least significant bits of the value.

16. Illegal measurement variable reference in the instruction. It must
be a class variable or a number between 1 and SJVAR.

17. Out of space in CLSTAB, the class variable storage area. ARGl is the
amount needed for the latest request. ARG2 is the amount of space
left in the table. Either delete a class variable to make room, or
go back and redimension.

18. The class variable referenced was not found.

19. An expansion of a class variable definition was attempted when the

class variable referenced was not physically the last one in the list.

Delete the current definition and start over.

48

20. The input records are out of sequence. The last record whose transfer
was attempted had a day-time value less than the latest one on the

disk. ARGl and AE.G2 are respectively the day and time of the last

record on the disk. Note that the time printed is in minutes, not
hours and minutes.

21. Error return from WRITMT routine. If ARGl = 1, the error occurred
while writing the first record of an output block. If ARGl = 2,

the error occurred on the second (the data) record. ARG2 is the

total number of scans that are on the disk. ARG2 and ARG3 are,

respectively the day and time of the record being written when the

error occurred. This error is an unrecoverable one. It is necessary
to mount a new tape.

49

8 . BIBLIOGRAPHY

Fetzer, M. , "File Control System (FCS) Specification", RAYTHEON
Report nxjmb'er DN 59004CWL, Revision B, November, 1973.

Morris, R. , "Scatter Storage Techniques", Comm. of ACM, vol. II,

no. 1, Jan. 1968, p. 43.

Filliben, J.J., Jackson, R.H.F., Kirsch, R.A., Lozier, D.W.,

Orser, D.J., "Progress Report on Applied Mathematics Division
contribution to MIUS-Jersey City Total Energy Project, June 1975.

50

APPENDIX A

A-0

APPENDIX A - SUBROUTINE LISTINGS

This appendix contains a listing of each of the subroutines that comprise
the Total Energy Data Editor as of the freeze date for documentation of

January 31, 1975. Each listing begins a new page and all are in alpha-
betical order with a few exceptions. The exceptions are due to the fact

that although all subroutines discussed in Section 6 are conceptually
unique, some of the different machine language routines (e.g., BACKSP,
SKIP, SEEKEF, RWNDIT, and WRITEF) were combined into one subroutine with
different entry points, in order to save storage. An index into the
listings is given below.

SUBROUTINE NAME PAGE NO.

ADRESS A-1

BACKSP A-3

CLASS A-11

CLOSE A-1

3

CODIT A-66

COMINT A-15

CONALL .
. • A-19

CONATE A-20

CONETA A-22

CONGRP A-25

CREATE A- 13

CVPROC A-32

DATTAP A- 34

DECDIT A-66

DEHASH A-35

DELETE A-1 3

DRIVER A-36

DSKINT A-13

DSKRD A-13

DSKRTS A-38

DSKUPD A-13

A-i

DSKWT A-13

ERRPRT A-39

EX A-40

GETCOM A-41

HASH A-43

HEXDMP A-44

INHASH A-45

INIT A-46

LSHIFT A-47

MAIN A-52

OPENIT A-13

OUTHEX A-54

OUTINT A-54

OUTTXT A-54

POUTBF A-64

RDTAPE A-65

READIN A-66

READMT A-73

RSHIFT A-47

RWNDIT A-3

SEEKEF A-3

SKIP A-3

SPLITA A-78

STDATA A-80

TRNRAW A-81

UNSPLT A-78

UTABLE A-82

WRITEF A-3

WRITMT A-83

SUBROUTINE ADRESS

onno 000 7

0001 r!OOA

onOP Qoo-3
000 3 75^0 0

* 000/: 07FF
* 000 5 ^^00

A

000 6 0007

0007 000^
OOO^T 0000
0000 oooo

• 000 A 0000
00OB 000 0

1
=

3 ^

4
5

6 ^

7

8

10 =

1 1 H<

1??

13
1/-: t.

1 5 AD?.E5S
1 6

If?

10
no
?1
OP
S3 POOL

2 5 I ADR
26

•JHlTHI K'vir. ALiSOLJTIi: ADU..:-JSS Or A vAiilAUL}'.

MAY 13> 197''4

CALL F.'.OM FlOl-.TiiAM''-. VIA:'
CALL AD:'.i::SS < V'A?., I AD. .)

\:-lKAE lADH JiLL BE SET E^^JAL TO TMK ADD.-:^SS
OF vA/aAHLK *;A?%

:jot;::: var must he defi.jed jithi-J For.T-iA.M^

LIBH ADfsESS

DATA POOL
ld;; VAr.

LDX lAD?^

STv; * 0

JSX " ;- .}'.ET

DATA POOL

DATA ^]*0*0

GKT IAD.; ADD:iE55
SET IAD.;

DATA
DATA
e: jd .

000 5 R.FlST

'JO ERRORS

A-1

'^n'-R'-'^; noO'T T^.D?. OOOH POOL 0007 H.:-;ET 0005

pa:-?

SUBROUTINES BACKSP, SKIP, SEEKEF, RWNDIT, AND WRITEF

1 ' mo ThPE MISCELLhiNEGUS OPERRTIOHS
2 *

3 * SEPT 10. 1975
4 *
5 i
6 * ALL CALLS

^

7 * SMB BACKSPML
S t JSX BACKSPML
9 * DATA LOG OF N
10 * DATA LOG OF LUN
11 t RETURN WILL BE HERE
12 * AND
13 * CALL BhCKSP<N.LUN>
14 * CALL SKIP(N.LUN)
1 5 * CALL SEEKEF (N • I REC . LUN >

16 * CALL RWNDIT(LUN)
17 * CALL WRITEF'. N.LUN)
18 t
19 t
20 t FIRST PROGRAM ••

21 t BACKSPACE OR SKIP RECORDS
22 CALL FROM F0RTRAH4:
23 t CALL BACKSPCN.LUN)
24 * OR
25 * CALL SKIP(M,LUN>
26 *
27 t WILL BACKSPACE UNIT "LUN" N RECORDS
29 i OR WILL SKIP N RECORDS FOREWARO.
29 t
30 NOTE= A MINUS N WITH BhCKSP IS EQUIUALENT TO
31 t. CALLING SKIP.
32 t A MINUS N WITH SKIP IS EQUIUALENT TO
33 t- CALLING BACKSP .

34 *

A-

3

35 * N MILL BE SET TO A NEGATR»E NUMBER IF THE
36 » END-OF-TAPE NAS REACHED ON SKIP OR IF
37 * THE LOAD POINT WAS REACHED ON BACKSP.
38 * THE ABSOLUTE UALUE OF THIS NEW N WILL
39 » BE THE ACTUAL NUMBER SKIPPED OR BACKSP.
49 t
41 t SECOND PROGRAM

=

42 « SEEK END-OF-FILE<S>
43 t CALL FROM F0RTRAN4=
44 t CALL SEEKEF<N.IR£C>LUN>
45 »
46 t WILL FIND "N" END-OF-FILES ON UNIT "LUN"
47 * <W0 SET IREC TO THE NUMBER OF RECORDS
48* SKIPPED (INCLUDING THE END-OF-FILES >.

49 t
50 * THIRD PROGRAM

«

51 t REWIND
52 * CALL FROM F0RTRAN4*
53 t CALL RUNOITCLUN)
54 *
55 * MILL REMIND UNIT "LUN"
56 t
57 * FOURTH PROGRAM:
58 * WRITE EHD-OF-FILES
59 » CALL FROM F0RTRAN4:
60 * CALL WRITEF<N,LUN)
61 *
62 * WILL WRITE N END-OF-FILES ON LUN
63 *
64 LIBR BACKSPML
65 LIBR BACKSP, RWNDIT.SEEKEF, SKIP. WRITEF
66 NTRY BACKSPML
67 NTRY BACKSP, RWNDIT/SEEKEF.SKIP.WRITEF
68 4-

69 OPEN EQU 66

A-4

70 STRT
71
72
73
74
75 t
76 BACKSPML
f I

78
79
&-0

81

83 BMLRET
84

EMLPETl
BMLRET2

si OMLENT
92
93
94 PI
9*3 EhCK
"Ht-.

99
1 Cnj

lul

PROC
DhwTA POOL
LOW P(1 ^

JSX SETUP
ENDP

STX
LDN
STlsl

LDW
STW
LDW
JMP
LDM
STN
LDX
JMP
JMp
sne

STRT
ECU
JMP
JMP
LDN
DOT

SLL
ShP
JMP
js>=;

JMP
JMP
LDN
HDD

SAUE RETURN

SET H

LUN
t; 0

U
BMLRET

1

RETNML SET NEW RETURN
* 1 GET LUN

BMLENT
BMLRET2
RETNML RESET RETURN
LUN

t 2 RETURN
BMLRET

.

R . RET

IREC
BrCKSP-^2
RETURN
SKI
UNIT

WhIT

CHEK
Bl
RETURN
CNTDONN
Nl

A-5

105 JMP SKRET
106
107 SKIP STRT IREC
108 J^tP RETURN
109 JNP Bl
IIG SKI LOW UNIT
1 1

1

REhDI DOT
112 JSX WAIT
113 CAX
1 14 LOW Uf^IT
115 CLB 0
lie Sf>lE

117 vW'tP DEU0
1 IS CXA
119 SLL 3
120 SAP
121 JMP SK2
122 JSX CHEK
127- wiMP SKI
124 jrip RETURN
12^. SK2 LDN CNTDONN
126 SKRET LD.-< N
127 JMP SERET
128
12 J* SEEKEF STRT LUN
130 JMP
131 JMP SE2
132 SEl LOW UNIT
133 F:EhD2 DOT 0.0
134 JSX WAIT
1 SRL 4
136 SAO
137 JMP SEl
138 JSX CHEK
l^S" JMP SEl

A-6

140 SE2 LDX IREC
141 LOW CNTLIP
142 SERET STW *. 0
143 JMP RETURr^
144 t
145 PUNDIT STRT H
14i5 HDP
147 MOP
14S LOW UNIT
149 Rl-iHD DDT 0..O

1 50 JMP RETURN
151 ^

152 NRITEF STRT IREC
153 JMP RETURN
154 JMP RETURN
155 Nl LDN UNIT
156 I'lEOF DOT 0.0
15-" JSK WAIT
15S JSX CHEK
15? JNP Wl
160 R£T!J;;n LDW UNIT
It'i DISC 01 DOT 0,0
163 RETNMl SMB R.RET
163 JSX R.RET
1 64 DhTh pool
165 t
l'-6 SETUP STX RET
167 cr:<
168 LDM * 0 GET LUN
16? STN LUN3'.'
1 70 OPEN
171 DhTh FIOT
\'.\- NO DhTR 0,N1
173 LUfrEiU DhTh 0
iVA W'J DpTh 9

A-7

175 Nl DA-TA 1

176 STW UNIT
177 STB STATl-H
178 STB STAT2+1
179 AND XOOF0
180 STB DISCOl+l
181 STB DISC02+1
182 OR I N2
183 STB WEOF+1
184 ORl N8
185 STB RWND+1
186 OR I Nl
187 STB BhiCK+1
183 AND xeoF?
189 STB READl+l
190 STB READ2+1
is-i LDN UNIT
192 DISC02 DOT
193 CLR
194 STN CNTDOWN
195 STN CNTUP
196 LDX N
197 LOW t 0
198 LDX RET
199 Sh2
200 JMP $+2
201 Jt-\P ISZERO
202 SAP
203 IXS 1

204 IXS 2
205 NOP
206 SAP
207 CNP
200 ISZLPO STW NCNT
209 JMP t 0

210 t
211 NAIT LDIJ UNIT
212 STh»Tl DIN
213 SRC L
214 SAM
215 JMP WAIT
216 LDN CNTDuWN
217 SUB Ml
2 1 !^ SIN CNTDONN
21? LDN CNTUP

221 STN CNTUP
222 LDN UNIT
223 SThT2 DIN G.. G
224 jrip t

226 CHEK LDN NCNT
SUB Nl
STN NCNT

V 'J CMN HQ
23u SLE
231 JMP 0

JMP 1

277 i

234 N2 DhTh 2
235 N8 DhTr 8
236 DhTh X ' eiGiFO

'

O "7 "7
< ' ' DhTh ,X ' 80F? '

^ 'B FET DrTh

246 FIOT DmTh
241 DrTr
242 DhTr
:m 3 DrTh
244 DRTr U

A-9

245 *
246 POOL
247 N
24S I PEC
249 LUN
250 t
251
BE

DATrt 5.0.0

DPiTr 0
Df^TA 0

END

A-10

SUBROUTINE CLASS

1 integeb: FUNCTIOM CLhS3<K>

1974

BE SET rtS FOLLOW-

5
6

DECENE-.ER 17
4 *

CLASS l-ULL
i5 * K<lu 2
r * K<36 1

t K=36 3
9 t K=41 4
10 * K=3E• OR K
11 t ALL OTHER
12
13 LIBR CLASS
14- HTRY CLASS
15
16 CLRSS DATH Pi

1? STU S;«UE
IS CfiK
1? IXS 3
20 Sh'-'E DhTA 0
21 LDX t Q
O -I SXP
23 JMP $-2
24 LOW * 0
25 SAP
26 JMP SET6
27 CMW H41
2t: SLE
2S* JMP SETS
36 SHE
31 JMP SET4
32 CLB
33 SGR
34 JMP SET2

GET K

A-11

r i c-

C-f"C<

'7"'
J» IMC<Jilr ct 1 1
TO r i C'LLb Jb

cue
Jr'.r btT3
r-t DLLd TO

•4*4

*+ IMP OC. 1 O
tC' 1 1 P b
•+ i IMP QPTTT
A-Z- -C 1 o

IMP CC"TTTbe. 1 1 1

1 i P
er 4 IMP^_i| Ir CCTT Tbe. 1 1 1

1 1 P
IMPJfir CCT T Tbe. 1 1 1

LLd c.
cr cr IMP OCT T T
c - rrX

1

C't 1 1 LLd 4
1

^1 CI i 1bLL L Q

Do LUi^ O/M IC

1 AC* o

NOP
'^l Lok t 0
6^
63 JMP
64 STW t e
65 LDX SAME
66 UNM
67 1X3 4
68 N41 41
63 SMB R . EXEC

: (

SUBROUTINES CLOSE, CREATE, DELETF, DSKINT, DSKRD, DSKUPD, DSKWT, OPENIT

1 I FCS HCCFSiE; AND INTEPFhCE SUBROUTINE
^
3 FEBRUhPV 24.. 1975

5 f FnP:TRMN4 Er^TRV hCCESS--
e t ChLl nhme '.: iut.d

8 * Nh^f'iE CRN EE ANV OF THE FOLLOWING AND
9 i THEIR FUNCTION WILL CORRESPOND TO THE
Id t FUNCTION!; DISCRIBED IN THE RAYTHEON FCS
11 t MhNUhL for the " = '• NAME.
12 i CLOSE = CLOSEFL
13 .t • create = CREhTEFL
14 * DELETF = DELETEFL
15 t. DSKINT = INITLIZE
le % DSKRD = GETREC
17 * DSKUPD = UPDATE
IS i: DSKWT = PUTREC
i-? A. OPENIT = OPENFL
2Ci t IDT IS THE LOCATION OF THE FCS L O TABLE
21 * D I SCR I BED IN THE RAVTHEOH FCS MANUAL.
22 i: L IS A CODED WORD WHICH WILL BE SET BV THIS
23 * ROUTINE TO THE FOLLOWING"
24 * L<0 . OPERATION COMPLETE. ERROR
25 ENCOUNTERED.. THE ABS . UALUE
26 t. OF L WILL EQUAL THE ERROR
27 t CODE D I SCR I BED IN THE Rh'.'-

2:s A. THEON FCS NANUhL .

2? i L>-1 .. OPERATION COMPLETE- NO ERROR.
t L=# OF WORDS TRANSFERRED.

31 t:

L I BR CLOSE .. CREATE . DELETF .. DSK I NT . DSK RD
33 L I BR DSKUPD .. DSKWT .. OPEN I T .. LOCK I T .. PLhC I

T

34 NTR'i' CLOSE . CREATE .. DELETF > DSK I NT . DSKRD

A-13

"7*% MTOVN 1 K

I

DSKUPD .. OSKWT . OPEN I T . LOCK I T .. PLAC
?

ii Z't. I 1 r r UL
UhIH POOL

BEGIN
40 DtiT^^ p<; 1 >

41 ENDP
f-

4^ L-LU zt. I I CLOSEPL
44 L-r LH 1 1. CREATEFL
4 fiCZ i CTTCUtLt >

»-
•- rr "t"X DELETEFL

4t" L' r-r 1 li ' C'C. I 1 IHITLli-c
U z-r r U GETREC
Uor U. U CCTT UPDATE

•4- 'I CTT
: t ! I PUTREC

Ur c.ri 1 1 HPENFL
1 LULl i 1 LOCKFL

r LH»_- i 1
C STTT
Z't. 1 1 INSERT

^1 ^»

CTV RET SWE REFERENCE
~l _l

i nv lOT
c -

IOTP SET lOT POINTER
cr r«
_• t

58 STW * 4 SET NO ERR ACTION
f'S- STN * 5 SET NO END ACTION
•50 LDX RET GET REFERENCE
61 LDK t GET TRANSFER
•f'2 JSX * 0 TRANSFER TO PCS
6"^ IOTP DATR 0 I/O TAEU-E POINTER
f.4 ..IMP ERROR RETURN IF ERROR

CLR! RETURN IF NORHAL
66 HRRDR CMP FORCE <-> IF ERROR

L
STW t t? SET L

6:^ R.RET

A-14

70 JSX R RET
71 DhTh POOL
•y~i t

RET . DHlrt
74

POi.'iL 4 ,. Q .. 0
7t' lUT n

L DhTh

7"'}* END
BE

A-15

SUBROUTINE COMINT

1

»̂(-

3
4
5
6
7
8

10
11
12
13
14
15
16
17

*
t
t
t
t
t
t
*

t
t
t
t

COM I NT - TOTAL ENERGY SUBROUTINE

DECEMBER 18. 1974

C<^LLING SEQUENCE =

CALL COMINTaBUF,N,IERR.IUAR)

WILL COWiERT N CODED CHARACTERS STARTING
WITH IBUF INTO A BINARY NUMBER AND
WILL SET lUAR TO SAID NUMBER.

lERR WILL BE SET TO ZERO IF THE RANGE
OF lUAR IS WITHIN -32767 TO +32767.
OTHERWISE. lERR WILL BE SET TO 99 OR
TO THE OFFENDING CHARACTER NUMBER IF
THE CHAR IS NOT A SP.-.+z OR NUMBER.

18 LIBR COMINT
19 NTRY COMINT
20 t.

21 RETURN SMB R.RET
22 J3X R.RET
23 COMINT DATA POOL
24 CLR
25 STW SIGN SET SIGN +
26 STW NUM INITIALIZE NUM
27 CHEfvTHPU STB LDWI+1 SET FIRST CHAR
28 LDM N
29 CMW * e
30 SLS ARE WE THRU?
31 JMP THRU YES
32 LDK IBUF. NO
33 LDWI LOW 0 GET CHARACTER
34 SAP

A-16

35 IMP EPRDP
oo

f

IMP Ml JL Ttinn Ml

7^•J J* ri F:VL.U' 77'J f

SHE
41 JMP rONT I

N

or nwt-

33

44 IMP PI ij<^

45 CLB 39
46
47 JMP MINUS MINUS
4ft EPPnp CLR
49 LDB

ADD Nl CmLCULCiTE offfndfp
51 r I K I -iH lEPR
5^ SET IERR
53 LDU NUM

<=^.IGN

55
5h".

SXP
PMP force PttPTTY

*—'

»

lUAR
•-'••./

cpj T I lap

59 JMP PFTUPN

61 MINUS LOW $
62 STW SIGN SET SIGN -?
63 JMP CONTIH
64
65 THRU LDX NUM
66 ERROR

3

CLP
67 SKP WAS there ouerflon?

ERR0R2 LLB YES
65 JMP FINISH NO

A-17

70
71 MULTrtDO STW
72 LLe
73 MPY
74 ADD
75 STW
76 CLR
77 SNO
78 JMP
79 DXS
88 JMP
81 LDN
82 SAP
83 JMP
84 STW
85 CONTIN CLR
86 LDB
87 ADD
88 jrF
89 *
90 SIGN DATA
91 Nur-i DATA
92 TEMP DATA
93 Nl DATA
94
95 POOL DATA
96 IBUF DATA
97 N DATA
98 I ERR DATA
99 iuhr DATA
100
101 END

TEMP SAUE NUMBER
10
NUN
TEMP
TEMP

ERR0R2
I

ERR0R2
TEMP

ERR0R3
NUM

JUST CONTINUE ON NOW
LDWI+1
Nl SET UP FOR NEXT NUM
CHEKTHRU

0
0
0 -

1

6.0.0
0
0
0
0

A-18

SUBROUTINE CONALL

S LIBR a)NALL
SUBROUTINE CONALL (IN3UF» M IN ,OUTBUF, MOU , lERR

)

INTEGER INBUF, IGRP,OUTBUF, DEBUG
DIMENSION INBUF(MIN) ,OUTBUF(MOU) , IGRP(5)

. . COMMON /BLK1/NSCANS,NENT»DEBUG,NVAR
INC=M0u/^-3
IERR=0

C CO.-iVEfiT HEADER TO INDIVIDUAL BINARY VALUES.
CALL CONETA(INBUF,0UTBUF, 19, IFLAG)
IERR= I ERR "I FLAG
IF (IFLAG.GT.O) CALL ERRPRT(1 1 , 1 MFLAG, 0,0,0»0)
CALL CODIT(OUTBUF,OUTBUF, 19)

C COMBINE FIR5T 12 CHARS INTO 3 BINARY VALUES.
DO D 1=1.3
CALL C0MINT(0UTBUF((I-l)*4+l) ,4,IFLAG,0UTBUF(I))

I E RR= I ERR* IFLAG
IF (IFLAG.GT.O) CALL ERRPRT(1 M 5, IFLAG, 1 ,0,0/)UTBUF(I)

)

5 CONTINUE
C BUILD UP AND STORE THE DAY.

CALL C0MINT(0UTBUF(13),3, IFLAG , OUTBUF (4)

)

lERR* IERR+IFLAG
IF (IFLAG.GT.O) CALL ERRPRTC II . I 5 » IFLAG, 4, 0 ,0 , OUTBUF(4)

)

C BUILD UP AND STORE THE TIME.
CALL C0MINT(0UTBUF(16),4, IFLAG , OUTBUF (5)

)

IERR=IERR+IFLAG
IF (IFUG.GT.O) CALL ERRPRT(1 1 , 1 5, IFLAG, 5,0.0 ,OUTBUr(5)

)

C CONVERT. BUILD UP. AND STORE EACH OF THE MEASUREMENT GROUPS.
DO 10 1=1 .INC
OUTBUF(I+6)=0

10 OUTBUF(I+6+INC)=l
N=7
DO 20 1=1 .NVAR

CALL CONGRPdNBUF.IGRP.N. IFLAG) •

IERR=IERR*IFLAG
IF (IGRP.(2).GT.O) GO TO 20 _^ ,

ICHAN=IGRP(1

)

IF (IFLAG. EQ.O) GO TO 15

CALL ERRPRT(1 I , 1 0, 1 , OUTBUF(4) ,OUTBUF(5) .0. IFLAG)
JF (DEBUG. EQ. 1 1) CALL OUT INT(IGRP , 5 .

1 ,0

)

15 IF (ICHAN.LT. lO.OR.ICHAN.GT. 180) GO TO 20
OUTBUF(ICHAN+6)s IGRP(4)
OUTEUF(ICHAN+6+INC)=0

20 COi>*TlNUE
RETURiN
END

C; -

A-19

V SUBROUTINE CONATE

4
cr

10
11
u-
13
14
1?.

16
17
1"E:

-t <

WHERE

t

A.

';4

COHUERT ASCII TO EECD

FEBRUHF.V 24. 1975

CALL FROM F0RTRMM4 Ulft:

CALL CONATE< IBUFl > IBUF2/ ICNT .. I ERR >

ICMT ASCII CHARACTERS FROM IBUFl WILL BE
COf^UERTED TO EBCD AND PLACED IH IBUF2.

IBUFl IBUF2 MAY OR MAY NOT BE SAME.
lERR WILL BE SET TO NUM ILLEGAL CHAR..
EACH OF WHICH WILL BE SET TO ZERO.

LIBR
f^TRY

DATA
LOW
SLL
STW
LOW
SLL
STW
LDX
LOW
STW
CLR
STW
LDK
CK<S
JMP
LDX
LOW
3TW 4-

CONATE
CONATE

POOL
IBUF2
1

NXST
IBUFl
1

NXLD
ICNT
0
COUNT

ERR
COUNT
1

P02
IERR
ERR
0

SET FIRST STORE

SET FIRST LOAD

SET coutn

SET NO ERRORS

THRU?
NO
YES

SET ERROR COUNT

A-20

35 SriB p. RET
3(5 JS.\ R.RET RETURN TO F0RTRhH4
37 DhTA pool
38 PCi2 st:-<; count
3? LDX NXLD
40 LDB 8
41 IXS 1

42 NOP JUST TO BE SAFE
43 STX NXLD
44 Sm CCITEBCD
45 JSX CCITEBCD
46 LDX NXST
47 STB t 0
4S IXS 1

4? NOP JUST TO BE ShFE
5Q • STK NXST
51 LDX ERR
52 IXS 1

53 HXLD DATA 0
54 CLB 0
55 SNE ERRORS
56 STX ERR YES
57 JMP POl NO
58
51^ COU.HT DATA 0
t-G ERR DATA 0
61 HXST DATA Q
62 ^.

63 POOL DhTh b.0.0
64 IBUFl DATA Q
65 iduf;-: data y
66 ICNT DATA 0
67 I ERR DhTA 0

BE

A-21

(

SUBROUTINE CONETA

4
5
6
7
3

10

t
t
t

::

t
t
i. WHERE

11
12 *
13 *
14 *
15 *
16 *
17 t

CON'.iERT EBCO TO PiSCII

FEBRUARY 24. 1975

SOURCE ON 9 TRACK TAPE # 5

CALL FROM F0RTRAN4 MIA^
C:ALL CONETAC IBUFl . IBUF2. ICNT. lERR)

ICNT EBCD CHARACTERS FROM IBUFl WILL BE
COHUERTED TO ASCII AND PLACED IN IBUF2.
IBUFl AND IBUF2 MAY OR MAY NOT BE THE
SAME.

IERR WILL BE SET TO THE NUMBER OF ILLEGAL
CHARACTERS <EACH OF WHICH WILL BE SET TO
AN ASCII IE= X'AA' OR NUMBER 179).

IS * NOTE IBUFl. IBUF2. ICNT, AND lERR MUST
19 t INTEGER LABEL COMMON DATA.
20 t
21 LIBR CONETA

NTRY CONETA
23 t
24 CONETA DATA POOL
25 LDW IBUF2
26 SLL 1

27 STW NXST SET FIRST STORE
2S LDW IBUFl
29 SLL 1

STW NXLD SET FIRST LOAD
31 LDX ICNT
32 LDW 0
33 STW COUNT SET COUNT
34 CLR

A-22

35 STli ERP SET NO ERRORS
36 PGl LDX COIJNT
37" d::s 1 THRU?
3f' JMP Py£ NO
•39 LDK I ERF: VES
4Ci LDW ERR
41 0 SET ERROR COUNT
42 SMB R RET
43 JSM R . RET RETURN TO F0RTRHN4
44 POOL
45 POi* ST*-: COUNT
4ir~ WrLD
47 LDB * 0
4o IXS 1

4? NOP JUST TO BE SAFE
•50 STX n: :ld
51 SMB EBr:DTr:r: 1
c;--.

js:-: EBCDTCCl
53 LCX NX3T
54 STB 0
55 i>:s i

56 HOP TO BE ShFE
er-.'

:' :=;TX h:-:?=;t

JO ERR
5? i:ks 1

60 n;:ld DhTh 0
•-..1 CLB ' t'
62: SfC ERROR?
63 STX ERR YES
64 JMP POl NO
65
f^.f. COUNT DATh 0
€7 ERP DpTh PI

63 DATh 0
t.L-'

A-23

70 POOL
n IE:UF1
ri' IE:UF>
73 I TNT
74 I ERR
rs

EE

DATA b.. y ..

DhTh U
DhTh 0
DhTh 0

END

SUBROUTINE CONGRP

1 •CONi.'EPT ML 13 CHAR. GROUPS TO BE USrBLE
2 t
3 * JhNUARV 9. 1974
4 *
5 * CHLL FROM FrjRTRHN4 UIA^
6 * C rtLL COI^GRP-: I BUF . I GRP .N.I FLAG >

7
8 tPESULT^ 13 CHARhCTER EBCDIC GROUPS STARTING WITH
? * THE NTH CHARACTER OF I BUF WILL BE
16 * CONUERTED INTO 5 DISTINCT PARTS. IGRP
11 AND I FLAG NILL BE SET AS FOLLOWS^
12
13 -t: IGRPa.:- WILL BE SET TO A BINARN' NUMBER
14 t: • REPRESENTING THE CHARhCTERS MAKING UP
15 i: THE MEASUREMENT SCANNER CHhNNEL .

16 :f IGRP^"2;:' WILL BE SET TO THE REMOTE
17 * SCANNER CHhNNEL REPRESENTING THE REMOTE
18 * IF DATA WAS FROM A REMOTE. OTHER-
IS- * WISE. IGRP':. 2 .:' WILL BE SET TO -1 C IF NO^
2G * A REMOTE).
21 * IGRP<3> WILL BE SET TO THE ASCII CHARACTER
22 REPRESENTING THE D'.'M FUNCTION THIS WILL
23 t ' NORMALLY EE AN ASCII Mc X ' CDQO ' =-1305»:" .^^ OR
24 UC.X'DbOO' =-10752) BUT CAN BE ANV OTHER
2!5 t CHhRhCTER ':ERROR=.t=X' AhOO' =-22016
26 t IGRP^4.:' WILL EE SET TO ^ BINARY' NUMBER REF-
27 t RESEt-^TING THE 6 CHt^RhCTERS CONSISTING OF
25 t POLARITY.. O'-'ER-RANGE FLmG . AND 4 '..:OLTAGE

29 t DIGITS. IF THE OUER-RANGE FLhG IS NOT 0-2
30 t IT WILL BE SET TO 2 AND BIT 10 -'IITH BIT>
31 * OF IFLAG WILL BE SET ON. IF POLARITY IS
32 * OTHER THAfJ h ^ OR -.. IT WILl BE ASSUMED
33 i TO BE + AND BIT 3 lOTH BIT.' OF IFLhG
."'•4 WILL BE SET ON.

A-25

35 * IGRP<5> WILL BE SET TO A BINARY NUMBER
36 t REPRESENTING THE OUM SCALE CHARACTER
3? * IFLAG BITS 3-15 <4TH-1£.TH> WILL BE SET ON
38 * • IF THE NTH THRU N+12TH CHARACTERS ARE NOT
39 t LEGAL OR APPROPRIATE. IF IFLAG=0, NO
40 * ERRORS WERE DETECTED.
41 i

42 t NOTE: IF AN ILLEGAL CHARACTER OTHER THAN NEN-
43 * TIO^^D ABOUE. APPEARS IN ANY SUBGROUP I NG;
44 *. THE CORRESPONDING IFLAG BIT WILL BE SET
45 * ON AND THE IGRP ELEMENT FOR WHICH IT
46 * WOULD HAUE BEEN A PART WILL BE SET TO
4? * X'SOQO'
48 t
49 LI BR COHGRP
50 NTRY CCtNGRP
51 *
52 *
53 :t:

54 GETT PROC
55 LLB PC 1 >

56 JSX TRAM
57 BYTE P<2>.P<3>
58 ENDP
59 :*:

6ti CALL PROC
61 SMB P<1>
62 JSX P<1>
63 TRUE P<0>>1
64 DATA P<.2>
65 ENDC
66 ENDP
67* ^

6S CONU PROC
69 CALL DECTOBIN.PC 1

)

A-26

70 JSX CHEK
71 STW P<2>
72 ENDP
73 *
74 COHGRP DhTh POOL
75 LDW IBUF GET BUF
?€ SLL 1 MAKE BYTE
77 LDX N
7S ADD % G UP IT BY N
79 SUB Nl TAKE ONE OFF
80 STW eUFBLUC
SI LDX HOLDREF
32 CLP
83 Pei STB INSTGi+1
84 CLB 16
85 SLE THRU ZEROING
86 JMF P02 YES
87 CLR NO
88 1MST0 STN % O
85 LDB IHSTGi-H
98 ADD Nl
91 JMP P01
92 P02 GETT Q.0.. '9'

93 GETT 1 1 . 9

'

94 GETT 2.2. '9'

95 GETT 3>6..e
9t. GETT 4.7,0
97 GETT 5.12,0
98 CLB
99 SEQ

1 00 CLB '

n

•

101 LLB 1

1 02 SEQ
103 STB H0LD5+6
104 GETT 6. 14.0

05 CLB
06 SEQ
07 CLB
OS SEQ
09 LLB
10 STB H0L04
ill LLB 1

L12 SEQ
L 13 STB H0LD5+7
114 GETT 7.15. '2'

115 CLR
116 CMB H0LD5+3
117 LLB •2*

t IS SEQ
. 19 STB H0LD4+1
.£0 GETT 8. 16. '9'

i^i GETT 9. 17. '9'

GETT 10. IS. '9'

GETT 11. 19. '9'

GETT 12.20. '6*

25 COW HOLDl .HOLDl
26 HfiLDREF EQU $-3
"•"7 CONU H0LD2.HnLD2+l
28 CALL DECTriBIN.HnLD4
29 JSX CHEK
t3w LDX IGRP
131 STW % 3 SET IGRP<4
.32 LOW H0LD2
133 CMW XAOrtO
[34 LOW HQLD2+1 GET REMOTE
35 SHE

L 36 LOW NMl WAS NOT A
L 37 STW * 1 SET IGRP<2
.3 ft LOW HOLDl
L3§ STW * 0 SET IGRP<1

A-28

140 LDN HOLD?
141 STW t 2 SET IGRP<3)
142 LDB HOLD?
143 hND N15
144 STW * 4 SET IGRP<5:)
14f. LDX FLAGREF
I4t- CLR
14? STlJ RET
14:?. pfi3 STB INSTF+1
14S' CLB 12
150 SLE THRU?
151 JHP PHH ^'ES
152- CLR NO
157. INSTF LDB d
154 OR I RET
155 SLL 1

15b STW RET
15? LDB INSTF^-1
153 HDD Nl
1 5? JMP PS3
160 P04 LDW RET
161 SRL 1

162 LD>^ I FLAG
163 STW * 0 SET I FLAG
164 CALL R. RET. POOL RETURN TO F0RTRAN4
1 65
166 TRhN STX RET
167 STB INSTl+1 SET BUF LOAD
165 STB IMST3+1 SET FLAG LOG
169 LDW t 0 GET REFERENCES
170 STB INST4+1 SET MA/: NUMBER
in SRL 8
172 STB INST2+1 SET SAME LOC
1 73 LDX BUFBLGC
174 INSTl LDB t U GET DATA

A-29

175 CALL EBCDTCCl
176 LDX HOLDBREF
177 INSTa STB 8 SAUE ASCII
178 STB SAU+1
179 TPl CLB REMEMBER IF ERROR
150 LDX FLAGREF
151 LLB 1

182 SHE WAS IT ERROR'?
183 IHST3 STB * 9 YES
184 CLR NO
185 CMB INST4+1 REMEMBER IF P<;3)=0
186 LDN SAU
187 LDX RET
188 SNE WAS P<3>=e?
189 TP2 JMP * 1 YES
19»3 INST4 CLB Q NO
191 SLE IS DATA < OR « P<3)?
192 CLR NO
193 CLB V YES
194 SLE IS DATA A NUMBER?
195 JMP TP2 YES
196 CLR NO
197 STB INST4+1 MAKE IT LOOK LIKE NO NUMBER
198 LLB 't' GET ERROR INDICATOR
199 JMP TPl
200 *

201 CHEK. SEQ
202 LDW IF BAD
203 JMP * 0 IF GOOD
204 r
205 HOLDl RES 3
2iJG H0LD2 RES 3
207 HnL.D3 RES 1

208 HnLD4 RES 3
209 HOLDS PES 7

A-30

210 BUFBLGC
211 HOLDBPEF
212 FLHGREF
213 Srt','

214 RET
215 Ml
21t' N15
217 XEiyDO
21 S -.ihPihCi

219 NMl
22e» i

221 POCrL
222 IBUF
223 I GPP
224 H
225 IFLhG
226
BE

DATh 0
DhTh -HGLDl
DhTh .•HOLD^-t-l

DhTr
DnTh u

1

DPTh 15
DhTA
TB<J
DhTA -1

DHlm y
DhTA
DhTki
DhTh
END

SUBROUTINE CVPROC

S LI BR CVPROC
SUBROUTINE CVPROC(PAR.MPA,CLSTAB,MCL)
L(X5ICAL FOUND
INTEGER PAR(MPA) ,CLSTAB(MCL) ,DECRMT,PNTR, DEBUG, HASH
COMMON /BLKI/NSCANS,hENT, DEBUG, NVAR
DATA NEXT/1/
LEFT=MCL-NEXT+1
.^^ARG=PAR(1)-2
IF (NARG.GT.LEFT) GO TO 600

C IS THIS A DELETION, CREATION, OR AN EXPANSION.
IF (PAR(3)) 300,100,200

C CREATE A NEW CLASS VARIABLE.
100 CLSTAB(NEXT+l)*NARG

DO no I=1,NARG
110 CLSTAB(NEXT-m-I) = PAR(3+I)

CALL INHASH(PAR(2) ,-NEXT)
CLSTAB(NEXT)^PAR(2)
NEXTsNEXT+NARG*2
CLSTAB(NEXT)«-1
GO TO 900

C EXPAND THE DEFINITION OF THE CLASS VARIABLE.
200 nDEX=-HASH(PAR(2), FOUND)

IF (.NOT.FOUND) GO TO 610
IF (NDEX+CLSTAB(NDEX-»-l)+2.NE.NEXT) GO TO 620
DO 210 I=1,NARG

210 CLSTAB(NEXT-1+I)=PAR(3+I)
NEXT=iNEXT*NARG
CLSTAB(NEXT)»--1
CLSTAB(ND£X* I)«CLSTAB (ND£X+ 1) NARG
GO TO 900

C DELETE A CLASS VARIABLE AND PACK THE CLASS TABLE.
300 i^DEX=-HASH(PAR(2) .FOUND)

IF (.NOT.FOUND) GO TO 610
CALL DEHASH(PAR(2)) - -

DECRMT«CLSTAB(NDEX+1)'¥2

PNTR^NDEX
320 PNTR=PNTR+2+CLSTAB(PNTR+1

)

IF (PNTR.EQ.NEXT) GO TO 350
CALL DEHASH(CLSTAB(PNTR))
CALL INHASH{CLSTAB(PNTR),DECRMT-PNTR)
GO TO 320

350 NEXT^NEXT-DECRMT
DO 400 I«NDEX,N£XT

400 CLSTAB(I)^CLSTAB(I+DECRMT)
GO TO 900

A-32

C AN ERROR OCCURRED. PRINT MESSAGE AND RETURN.
600 CALL ERR?RT(20, 17, NARG, LEFT, 0,0,0)

GO TO 900
610 CALL EHRPRT(20, 18,0,0,0,0,0)

GO TO 900
620 CALL ERRPRT(20, 19,0,0,0,0,0)

C DE5UGGING PRINTS FOLLOrt.
900 IF (DEBUG. NE.20) GO- TO 950

CALL OUTINT(CLSTAB,MCL, 1 ,0)
CALL 01;TINT(NEXT,1,1,0)
CALL 0UTINT(NDEX, 1,1,0)

950 rtciURiN

END

A-33

SUBROUTINE DATTAP

S LI BR DATTAP
INTEGER FUNCTION DATrAF(PAR,MPA,OUTBUF,MOU,CLSTAB,MCL,WRTSwT,

* LHECF)
LOGICAL rtRTS^T,LRECF
INTEGER PARCMPA) ,OUTBUF(MOU) ,SUM,GSUM,FSTBLK(16) ,DEBUG,CLSTABXMCL)
COMMON /BLKI/NSCANS,NENT, DEBUG, NVAR
COMMON /BLK4/I0CBD(33),I0CBN(33J
DATA GSUM/0/

C COMPUTE THE SUM OF THE STATUS FLAGS.
SUM^O
M6*M0U-6
IERR=0
INC«M6/2*6
DO 50 la! ,NVAR '

50 SUM«LOR(SUM,OUTBUF(INC+6*!))
C IF SUM CHANGED SINCE LAST TIME, A STATUS FLAG CHANGED. NOTE
C THAT THE CONVERSE NOT NECESSARILY TRUE. PRINT OUT THE STATUS
C FLAGS IN THE CHANGED-SUM CASE.

IF (SUM.EQ.GSUM) GO TO 70
CALL OUTTXTX^FLAG CHANGES IN«',8,3,0)
CALL 0UTINT(0UTBUF,5,4,I)
CALL OUTTXT('PREV. SUM«', 5,3,0)
CALL OUTHEX(GSUM, 1,2,0)
CALL OUTTXTCCUR. SUM»',5,2,2)
CALL OUTHEX(SUM, 1,4,0)
GSUM«SUM

C SET UP THE FIRST RECORD OF THE DATA BLOCK TO BE PUT ON TAPE.
70 FSTBLK(!)«5

FSTBLK(2)^I0CBD(27)
FSTBLK(3)-NVAR ,

FSTBLK(4)«M6
FSTBLK(5)^0UTBUF(I)
FSTBLK(6)^0UTBUF(2) *

FSTBLK(7)=0UTBUF(3)
FSTBLK(8)^0UTBUF(4) - *-

FSTBLK (9)«OUTBUF (5

)

FSTBLK(IO)^SUM
FSTBLKdD^l
IF (DEBUG. EO. 17) CALL OUTINT(FSTBLK,9, J ,0)

C PUT THE DATA BLOCK ON TAPE.
CALL nRITMT(FSTBLK,16,-MERR,9)
SUM* I

IF (lERR.LT.O) GO TO 150
CALL rtRITMT(0UTBUF(7),M6,-.I,IERR,9)
IF (lERR.GE.O) GO TO 200
SUM«2

150 CALL ERRPRT(17,16,SUM,NSCANS,0UTBUF(4),0UTBUF(5),0)
200 DATTAP=IERR

RETURN '
*

END
CI

A-34

SUBROUTINE DEHASH

S LIBfi DEHASH
SUBROUTINE DEHASH(KEY)

C DELETES A KEY AND VALUE FROM THE HASH TABLE.
LOGICAL FOUND
INTEGER VALUES, KEY, KEYS, KEYSAV,KPLACE DEBUG,HASH
COMMON /BLK1/NSCANS,NENT, DEBUG, NVAR
COMMON /BLK2/KEYS(128),VALUES(I28),KEYSAV,KPLACE
K= HASH (KEY, FOUND)
IF (.NOT. FOUND) GO TO 99
IF (KEY.NE.KEYSAV) GO TO 99
KEyS(KPUCE)=0
VALUES (KP LACE)^0
GO TO 900

99 CALL ERRPRT(5,8,F0UND,0,0,0,0)
900 RETURN

END
c;

A-35

SUBROUTINE DRIVER

S LI BR DRIVER
subroutiwb qrivercfunc, pah, mpa, table, mtai ,mta2,0utbuf,m0u,

* clstab,mcl)
logical wrts^t,lrecf
Integer day, time, clsvar, debug, funcclstabcmcd
integer par, mha, table, mtal ,mta2
dimension par(mpa),table(mtai,mta2),nrec(2)
common /blki/nscans, went, debug, nvar
common /blk3/day(2) ,time(2),clsvar
common /blk4/i0cbd(33),i0cbn(33)

C
I0CBD(32)«0
IOCBD(33)^LG'
CALL 0PENIT(I0CBD,L)
CALL ADRESS(OUTBUF,IOCBD(32))
I0CBD(33)-«M0U
NRTS/iT-.FALSE.
LRECF— vPALSEa

C SEARCH TIME TABLE FOR BOUNDS ON RECORD NUMBERS OF REQUESTED
C RECORDS. THEN, CALCULATE EXACT RECORD NUMBERS FROM INFO THERE.

IF (DEBUG .^EQ. 15) CALL 0UTINT(DAY,4, 1 ,0)
DO .120 I^ltMTAl

100 IF (TABLE(4,I).LT.DAY(J)) GO TO 120
IF (TABLE(4,I).GT.DAY(J)) GO TO 110
IF (TABLE(5,I).LT.TIME(J)) GO TO 120

1 1 0 NREC (J)= ((DAY (J) -TABLE (I , I)) * 1 440+T I ME (J) -TABLE (2 , 1)) /TABLE (6 , 1

)

NREC(J) » NREC(J) TABLE (3,1)
IF (DEBUG. EQ. 15) CALL OUTINT(NREC, 2 , 1 ,0)

IF (J.EQ.2) GO TO 125
J«2 .

GO TO 100 '

,

120 CONTINUE
C A NO MATCH OCCURRED. PRINT ERROR MESS AND RETURN.

CALL ERRPRT(I5,13,J.0,0,0,0) *

GO TO 200
125 L*0 ^

I0CB0(27)aNREC(1)

J30 IF -(L.GE.O) GO TO 140
IF (L.EQ.-100) GO TO 130
CALL ERRPRT{ 15,14, L, 2,0,0,0)
GO TO 200

140 CALL DSKRD(IOCBD,L)
150 IF (L.GE.O) GO TO J60

IF (L.EO.-IOOX GO TO 150
CALL ERftPRT(15, 14, L,l ,0,0,0)
GO TO 200

A-36

C i^ASS CONTROL TO THE SUBROUTINE DESIRED.
160 IERft«FUNC(PAR,MPA,OUTBUF,MOU,CLSTAB»MCL,rtRTSrtT,LRECF)

IF (lERR.LT.O) GO TO 200
C IF NECESSARY, rtRITE OUT THE CURRENT RECORD BEFORE CONTINUING.

IF (rtRTSrtT) CALL DSKUPDC IOCBD,L)
IF (LRECF) GO TO 200

C CHECK IF CURRENT RECORD IS LAST ONE DESIRED.
IF (I0CBD(27) .LT.NREC(2)) GO TO 130
LRECF=.TRUE. -

GO TO 130
2C0 CALL CLOSE(IOCBD,L)

RETURN
END

A-37

SUBROUTINE DSKRTS

S LI BR DSKHTS
SUBROUTINE DSKRTS(()UTBUF.MOU,N, ICOM, lERR)
INTEGER OUTBUF(M()U), DEBUG
COMMON /BLKl/NSCANS, WENT, DEBUG, NVAR
COMMON /BLK4/I0CBD(33) , IOCBN(33)
IERR«0
IOCBD(32)^0
I OCBD(33)^' LG-'

CALL Oi^ENlT(lOCBD,L)
30 IF (L.GE.O) GO TO 40

IF (L.EQ.-lOO) GO TO 30
CALL ERRPRTC 16,14, L, 0,0, 0,0)
IERH=l
GO TO 200

40 CALL ADRESS(0UTBUF,I0CBD(32))
I0CBD(33)»M0U
IF (DEBUG. EQ..16) CALL OUTHEXC lOCBD, 33, 1 ,0)
GO TO (50,60,70) ,ICOM

50 I0CBD(27)^N-1
CALL DSKRD(IOCBD,L)
GO TO 80

60 CALL DSKrtT(IOCBD,L)
GO TO 80

70 CALL DSKUPD(IOCBD,L)
80 IF(L.GE.O) GO TO 200

IF (L.EQ.-lOO) GO TO 80
CALL ERRPRT(16, I4,L,IC0M,0,0,0)
IERR= I

200 IF (DEBUG. EQ.I6) CALL OUTHEX(lOCBD, 33, I ,0)
CALL CLOSE(I()CBD,L)
RETURN
END

A-38

SUBROUTINE ERRPRT

S LI BR ERRPRT
SUBROUTINE ERHPRT(ISUB,MESS,IARG1,IARG2,IARG3,IARG4,IARG5)
INTEGER DEBUG
COMMON /BLKI/NSCANS,iN(EiNT,DEBUG,NVAR
COMMOi>i /BLK4/I0CBD(33) ,IOCBN(33)

• DIMENSION NAMES(3,20)
DATA NAMES/'MA' ,^IN',' ' ,'GE' , 'TC , 'OM' ,'HA' ' ^,
IN' , 'HA' , 'SH' ,'DE' ,'HA' , 'SH' IN' IT' ,' ' ,'CL' , ' AS' , 'S '

,

*'C0' ,'MI' ,'NT' , 'ER' , 'RP' • 'RT' ,'RD' ,'TA' , 'PE', "CO' , 'NA'

,

x'LL' , 'PO' ,'UT' , 'BF' , 'HE' , 'XD' ,'MP' ,'UT' , 'AB' , 'LE' .'DR' ,' IV

,

^ER'.'DS' ,'KR',''TS','DA','Tr','AP','EX',' ',' ' ,'ST' ,'DA' , 'TA'
*'CV','PR','OC'/

C
CALL 0UTrXT('**ERR0R-',4,3,0)
CALL 0UTrXT(NAMES(1,ISUB),3,2,0)
CALL OUTrXT('TYPE',2,2J)
CALL OUTInTCMESS. 1 ,4,0)
CALL 0UTINT(IARG1,J,3,0)
CALL 0UTINT(IARG2, 1,2,0)
CALL 0UTINT(IARG3, I ,2,0)
CALL 0UTINT(IARG4,I ,2,0)

. CALL 0UTHEX(IARG5, 1 ,4,2)
IF (MESS. NE. 14) GO TO 90
CALL 0UTHEX(0, 0,7,0)
DO 50 1=1 ,33
CALL 0UTINT(I,1,2,0)
CALL OUTHEX(IOCBD(I), 1,2,1)
IF (MODd ,6) .EQ.O) CALL OUTINT(0,0, 5,0)

50 CONTINUE
CALL OUTINT(0, 0,5,0)

90 RETURN
END

C;

A-39

SUBROUTINE EX

LI BR EX
SUBROUTINE EX
INTEGER DEBUG
COMMON /BLK 1 /NSCANS, iMENT , DEBUG , NVAR
COMMON /BLK4/I0CBD(33),I0CBN(33)
CALL DELETF(I0CBD,L)
CALL 0UTrXT(^EXIT',2,.l,0)
CALL EXIT
RETURN
END

A-40

SUBROUTINE GETCOM

S LI BR GETCOM
5U3H0UTINE G£TCOM(COMMND , MCO , FCT, PAR , MHA ,fLAG)
INTEGER ARGCwT, STATE, CHCi^tT,FCT»CHCLS,VAL, PAR, TRANS, CQ?-iMiMD, CHAR
ll^T£3ER F LAG, CHAR I , CODE, CLASS, HASH, DEBUG
LOGICAL FOUND, S IGN
DlMENSIOiNi TRANS (6,9) ,COMMND(MCO) ,PAR(MPA)
COy-HO;t /BLK 1 /NSCAiNS, .lENT , DEBUG, NVAR

C FINITE STATE TRANSITION TABLE.
DAiA iRANS/
12,1,1,10,1,1,
2 2,2,3,8, 10, 10,
3 4, 6, 7, 7, ,9,10,
4 4, 4, 5, 5,10,10,
5 4, 6, 7, 7, 9,10,
6 10, 6, 7, 7,10,10,
7 4. 6, 7, 7, 9,10,
3 10,10,10, 10, 10, 10,
9 10, 6,10,10, 9,10/

C A N , E S 0
CHAR 1=0
ARGCNT^l
STATE*

I

CHCNT^O
FCTO
rLAG^O
IF (DEBUG. EQ. 2) CALL OUTTXTCCHAR CLASS STATE' , 9, 1 , 2

)

C GET NEXT CHARACTER OF CORUAND INPUT.
50 CH^AfiI=CHARr-*-l

CHAR=CO}AMND(CHARI)
C IGNORE BLANKS AND CHECK LEGALITY OF CHARACTER.

IF (CHAR. EQ. 37) GO TO 50
IF (CHAR. (jE.O. AND. CHAR. LE. 41) GO TO 70
CALL ERRPRT(2, 2, CHARI ,0,0,0,0)
FUG= 1

GO TO 999 .

C GET CHARACTER CLASS AND STATE.
70 CHCLS= CUSS (CHAR)

STATE=TRA NS (CHCLS , STATE

)

IF (DE3UG.r^E.2) GO TO 80
CALL OUTINT(CHAR, 1 ,3,0)
CALL 0UTINT(CHCLS, 1 ,2,0)
CALL 0UTINT(STATE, 1 ,4, 1)

"

C PASS OFF TO SECTION OF CODE DETERMINED BY CLASS AND STATE
C IN THE TRANSITION TABLE.

80 GO TO (100,200,300,400,500,600,700,300,900,1000) STATE
C CHARACTER RECEIVED rtAS NOT A LETTER. IGNORE IT.

ICO GO TO 50
C r-ROCESS THE COMMAND CHARACTERS.

2 CO IF (CHCNT.GE.2) GO TO 50
CHCNT=CHCNT+

1

FCT=FCT*36+CHAR
GO TO 50

A-41

C GEAR UP TO t^ROCESS THE ARGUMENTS OF THE COMMAND.
30O VAL«0

CHCnT-0
> SIGN*.TRUE.

AHGCNT-ARGCNT+I
GO TO 50

C P3JCESS A VARIABLE ARGUMENT'S CHARACTERS.
400 IF (CHCNT.GE.2) GO TO 50

CHGST«CHCNT*I
VAL=VAL*36*CHAH
GO TO 50

C IF FU.^CXION NOT SV, DV, OR CV, RETRIEVE VARIABLE
, ARGU^ENT'^S J^ALUE FROM_THE _HASH TABLE. _____

500 IF (FCT.EQ. 1039.0R.FCT.EQ.499.0R.FCT.EQ.463) GO TO 700
VAL«HASH(VAL, FOUND)
IF (FOUND) GO TO 700
ARGCNT=ARGCNT-I
CALL ERRPRT(2,3,ARGCNT,0,0,0,0)
FLAG*

I

GO TO 999
C PROCESS A NUMERIC ARGUMENT'S CHARACTERS.

600 VAL=VAL*10+CHAR
GO TO 50

C EAD OF AN ARGUMENT BUILD-UP. STORE IT.
700 IF (.NOT.SIGN) VAL—VAL

PAR(ARGCNT)=VAL
IF XCHCLS.NE.4) GO TO 300

C STORE NUMBER OF ARGUMENTS AND RETURN.
800 PARC I)*ARGCNT-I

GO TO 999
C PROCESS A SIGN.

900 IF (CHAR. EQ. 39) SIGN-. FALSE.
GO TO 50

C ERROR RETURN.
1000 CALL ERRPRT(2,4,0,0,0,0,0)

- FLAG=I
999 RETURN

END

A-42

SUBROUTINE HASH

S LI BR HASH
INTEGER FUNCTION HASH (KEY , FOUND)

C HASH TABLE STORAGE ROUTINE. REF CACM,VOL. I 1 ,#1 ,P.43.
LOGICAL FIRST, FOUND
INTEGER rtDSIZE, VALUES, KEYS, KEYSAV,KPLACE, DEBUG
COMMON /BLK 1 /NSCANS , i^iENT , DEBUG, NVAR
COMMON /BLK2/KEYS(128) ,VALUES(128) ,KEYSAV,KPLACE
DATA FIRST/. TRUE./
DATA rtDSIZE/16/
DATA N/7/

C
IF (DEBUG. NE. 3) GO TO 20
CALL OUTrXT(^HASH KEY', 4, 3,0)
CALL OUTINT(KEY, I ,4,2)

20 IF (FIRST) GO TO 91

1 IF (KEY.EQ.O) GO TO 98
KEYSAV* KEY

C USE PROD. OF KEY WITH APPROPRIATE MULTIPLIER AS HASH ADDRESS.
KRAND^l
IHASH=0
KEYA=IABS(KEY)
DO n I=l,rtDSIZE,N

11 IHASH*IHASH'^KEYA/(2**(I-1))

C CHECK INDICATED PLACE IN TABLE TO SEE IF IT IS EMPTY, OCCUPIED,
C BY THIS KEY, OR OCCUPIED BY ANOTHER KEY, WHICH WOULD REQUIRE
C LOOKING FURTHER.

21 KPLACE=MOD(IHASH+KRAND/4, 2**N) -»-l

IF (KEYS(KPLACE) .EO.KEY) GO TO 31

IF (KEYS(KPLACE).EQ.O) GO TO 41

KRAND=MOD (5*KRAND ,2**(N+2)

)

IF (KRAND.EO.l) GO TO 99
GO TO 21

31 FOUND=.TRUE.
riASH= VALUESC KPLACE

)

GO TO 999
41 FOUND* .FALSE.

GO TO 999
91 K=2**N

DO 92 1*1 ,K
92 KEYS(I)=0

FIRST*. FALSE.
GO TO 1

98 CALL ERR?RT(3,5,0,0,0,0,0)
GO TO 41

99 CALL ERRPRT(3,6,0,0,0,0,0)
GO TO 41

999 RETURN
END

C;

A-43

SUBROUTINE HEXDMP

LIBR HEXDMP
SUBROUTINE HEXDMP(INBUF,MIN, IBEG.IEiMD)
INTEGEK DEBUG
DlMENSIOi^ INBUF(MIN)
COMMON /BLK I /NSCANS,NENT, DEBUG, NVAR
MI«(IBEG+l)/2
m2=(IEnD+1)/2

A3=Ml*l2
IF (M3.GT.M2) M3=M2
CALL OUTINKM.I ,3,0)
DO 20 I='M1,M3
CALL 0UTHEX(INBUF(I),I,2,I)
CALL OUTHEX(0,0,6,0)
M-M-»'26
Ml^MI*l3
IF (M3.LT.M2J GO TO 10
RETURN
END

A-44

SUBROUTINE INHASH

S LI BR INHASH
SUBROUTINE INHASH(KEY , VALUE)

C INSTALLS A NEa KEY AND VALUE IN HASH TABLE,
LCXJICAL FOUND
I NTEGEtt V ALUE , VALUES , KEYS , KEYSAV ,KPLACE , DEBUG ,HASH
COMMON /BLK1/NSCANS,NENT, DEBUG, NVAR
COMMON /BLK2/KEYS (128), VALUESX 128), KEYSAV , KPLACE
K= HASH (KEY, FOUND)
IF (FOUND) GO TO 99
IF (KEY. NE. KEYSAV) GO TO 9.9

KEYS(KPLACE)=KEYSAV
VALUES (KPLACE)^VALUE
GO TO 900

99 CALL ERHPRT(4,7»F()UND,0,0,0,0)
900 RETURN

END
C; .

A-45

SUBROUTINE INIT

S LI BR IN IT
SUBROUTINE INIT(IFILE.MIFl ,MIF2)
INTEGER FCN,HASH,IFILE
DIMENSION FCN(2,24),IFILE(MIF-I ,MIF2)
COMMON /BLK4/I0CBD(33) , lOCBNC 33)
DATA IOCBD/0,0, I ,4*0, 120,640, 0,0, ^NI' ,^FX'' , 'UP' , ''UF^ , 18*0/
DATA IOCBN/0,0, 1 ,4*0, 1 20 ,640, 0,0, 'NI' ,'FX' ,'UP' , 'UF' , 18*0/
DATA FCN/

1 1001,0100,
2 455,0200,
3 416,0300,
4 924,0400,
5 625,0500,
6 479,0600,
.7 537,0700,
8 1028,0800,
9 .1004,0900, .

01 1039, 1000,
11 499, 1.100,

12 859,1200,
13 1033,1300,
14 604,1400,
15 1180,1500,
16 1 108, 1600,
17 440,1701,
13 1071 , 1800,
19 1021,1903,
02 463,2000,
21 1022,2100,
22 1166,2200,
23 784,2300,
24 1000,2400/

C ALLOrtABLE COMMANDS, LISTED IN ORDER OF APPEARANCE ABOVE, ARE«
C RT,CN,BK,P0,HD,DB,EX,SK,Rd,SV,DV,NV,SP,GS,rtS,US,C8,TR,SD,CV,SE,rtE,
C LS,RS«

DO 20 J=l ,24
CALL INHASH(FCN(1 ,J),FCN(2,J))

^

20 CONTINUE
IFILEC I ,1)^'TE'
IFILE(2,1)='FK
IFILE(1,20 = ''CR'

I FILE (2 2.)='AP'
CALL DSKINT(I0CBD,L)
CALL ADRESS(IFILEd ,2),I0CBN(4))
CALL CREATE(I0CBN,L)
CALL DELETF(I0CBN,L)
CALL ADRESS(IFILE(l,l),I0CBD(4))

40 IF (L.GE.O) GO TO 50
IF (L.EQ.-lOO) GO TO 40
CALL ERRPRT(6, 14,L,0,0,0,0)

50 CALL CREATE(IOCBD,L)
60 IF (L.GE.O) GO TO 90

IF (L.EQ.-lOO) GO TO 60
CALL ERRPRT(6, 14, L, 0,0,0,0)

90 RETURN
END

CI

A-46

SUBROUTINES LSHIFT AND RSHIFT

1 *
2 t
3 t
4 *
5 *
6 t
7 t
8 t
9 t
le
11 *
12 :tc

13 *
14 *

SHIFT BUFFER LEFT AND RIGHT

NOUEMBER ie> 1974

CALL FROM FORTRAh44 UIA =

CALL LSHIFT<IBUF.ICNT.M.H>
OR •

CALL RSHIFTCIBUF,ICHT.M.N>

WILL SHIFT CHARACTERS M THRU N OF IBUF
LEFT OR RIGHT I CUT POSITIONS. l-iILL

PLACE ZEROS IH POSITIONS SHIFTED OUT
OF AND THROUGH.

15 ttttttttttttttttt:ii;tttttt.tttttttttttttti:^ttt^^^^^
16 **CAUT 1 0^^**CAUT I ON:*c*CAUT I QN*-*CAUT I ON 1^*:CrUT I ON^:*
17 t:ttttttttttttttXXtttXtXtXttttttt:^tXi-t^^
18 * MEMORY BELOW IBUF WILL BE PROTECTED BY t
19 t THIS PROGPrM.; HOWEUER. IT IS LEFT TO THE t
28 * USER TO INSURE THAT SHIFTS ftRE HOT MADE *
21 * IN OR OUT OF MEMORY LOCATED fHBQUE IBUF. *
22 tttt.ttttr^Xtttttttttttttttttt^^^^^
23 * HCTE= THIS IS THE EQUIUALENT OF A LOGICAL
24 * BUFFER SHIFT BY BYTES LEFT OR RIGHT.
25 *

A-47

26 LIBR
27 NTRY111 In I

28 %
0053 29 LSHIFT DATA
S04C 30 LOW

0602 "'O'^ri 31 JSX
Www
0664 w
0005 9057 32 LDX
6606 BSOO 33 SUB X
0607 34 JMP
0OOS 35WW PSHIFT DATA
ri0p*'^ E'04D

U05S
066C
00nD — Km? -J • 38WW

w-ww 39w*' ADD t
0flOF

• '—'-jv 40
N.-0-Tr 41

r 1 42 CMU
©012 0300 43 SKIP DATA
0013 1021 44 JMP
0014 0130 45 CAX
0015 SO50 46 LDU
0016 F052 47 CM14
0017 5900 48 LDB t
0018 9050 49 LDX
0019 GS90 50 SLE
001A 3S90 51 STB X
60IB 804F 52 im
001C A04E 53 ADD

LSHIFT, RSH I FT
LSHIFT. RSHIFT

POOL
Nl
SETUP, N/M

ICNT
0
P01
POOL
NMl
SETUP, M,N

ICHT
0
NXST
NXLD
LSLD
X'0800' THRU? <SLS OR SGR

>

P02 YES
NO

NXST
MINLOC
0
NXST

OK TO STORE IT? .

0 YES
aXLD NO
TMP

A-48

G01D 704F 54
OOIE 0140 55
00 IF rt04E 56
0020 lOOF 57
0021 S05O 58 P02
0022 Fij51 53 P03
0€i23 0300 60 SKIP2
0024 102D 61
0025 »-Q52 62
002$ 0130 63
002? 0100 64
0023 0350 65
0O2^ 3300 66
002A 0140 67
0026 h04E 63
002C 1022 69
002D 07FF 70 P04
0G2E 2020 71
002F 0053 72
0030 6050 73 SETUP
0031 704E 74
0032 OS'iO 75
0033 08 1

0

76
0034 0630 -7-7

1 1

0035 78
0036 3047 79
0037 9056 80
0033 0h31 81
0O3l^ 0501 82

PAGE 2

STW NXLD
CXA
ADO TMP
JMP P01
LDU NXST
CNW LSLD
DATh X ' 0800

'

THRU ZEROING r (. SLS
JMP P04 YES
CMi4 MINLOC NO
CAX
CLR
SLE OK TO SET A ZERO?
STB * 0 YES
CXA NO
ADO TMP
JMP P03
SMB R.RET
JSX R.RET
DATA POOL
STX NXST
STW TMP
LLB X'40' SLS FOR LSHIFT
SAP
LLB X ' 80 • SGR FOR RSHIFT
STB SKIP+1 SET SKIP MODE
STB SKIP2+1
LDX IBUF
SLL D 1

DXS 1

A-49

003A 0A10 83 NOP
003B 0140 84 CXA

%^w 7052 85 STW
0630 86 LDX NXST
0R3E 9800 87 LDX * 0
003F 9800 88 LDX * 0
0040 *h800 89 ADO % 0
3041 "^0 ADO TMP

7»')51 STW LSLD
0Pl4'i Bn4F SUB ThFBin

0i344 93 SUB * 0
0045 9050 94 LDX NXST
6046 980

1

95 LDX * 1

6047 9SO0 96 LDX * 8
0048 ASC-iO 97 f^DO % 9
004 704F 98 STW N>'1_D

004A 9050 99 LDX NXST
004B 1802 100 JMP 4^ 2

101 *
004C 0001 102 Nl DATA 1

0040 FFFF 103 NMl DATA -1
004E 0000 104 IMP DATA e
004F 0000 105 NXLD DATA 0
0050 0000 106 NXST DATA 0
0051 0000 107 LSLD DATA 0
0052 0000 108 MINLOC DATA 0

109 %
0053 0006 110 POOL DATA 6^0^0

JUST TO BE SAFE

A- 50

0054 0000
0055 0000
0056 0000
0057 0000
0055: 0000
0053 0000

111
112
113
114
115

IBUF
ICNT
M
H

DATA 0
DATA 0
DATA 0
DATA 0
END

002E R . RET

NO ERRORS

A-5]

ROUTINE MAIN

S LIBR JI4AIN

C MAIN TEXT EDITOR PROGRAM.
EXTERNAL DATTAP,STDATA
I NTEGER PAR , COMMND , FLAG , HASH , FCT , INBUF , OUTBUF
I NTEGER K EYS , VALUES , KEYSA V , KPLACE , DEBUG , SYMVAL, TABLE , SUBPAR
IMTEGER DAY, TIME, CLSVAR,FCSRES,CLSTAB
LOGICAL FOUND
COMMON FCSRES (100), OUTBUF (640) ,INBUF(21 00) ,PAR(25) ,C0JrtMND(74)
COMMON IFILE(10,5) ,TABLE(6,25) ,CLSTAB(150)
COMMON /BLK1/NSCANS,imENT, DEBUG, NVAR
COMMON /BLK2/KEYS(128) , VALUES (128) ,KEYSAV, KPLACE
CO.MMON /BLK3/DAY(2),TIME(2),CLSVAR
COMMON /BLK4/I0CBD(33),I0CBN(33)
DATA DEBUG,NVAR/0,310/
DATA MIN,M0U,MC0,MPA,MTAl,MTA2,MCL/2l0O,64O,74,25,6,25,150/
DATA MIFl ,MIF2/10,5/

C
CALL OUTTXTCTOTAL ENERGY SYSTEM DATA EDITOR ',16,1,0)
CALL INIT(IFILE,MIF1 ,MIF2)

50 CALL OUTTXT('?', 1,1,0)
C GO GET COMMAND INPUT AND TRANSLATE.

CALL READ IN (COMMND, N)
CALL CODIT(COMMND, COMMND, N)
C0MMND(N+l)=4l
C0MAiND(N*2)=4l
DO 55 I«l ,MPA

55 PAR(I)«0
C GO DECODE THE COMMAND.

CALL GETCOM(COMMND,MCO,FCT,PAR,MPA,FLAG)
IF (FUG.EQ.l) GO TO 50
SYMVAL=HASH (FCT , FOUND

)

IF (FOUND) GO TO 60
,

CALL ERRPRT(1,1,0,0,0,0,0)
GO TO 50

C BREAK OUT SUBROUTINE NUMBER AND PARAMETER NUMBER = POSITION
C rtHERE DAY AND TIME BEGIN. (IF » ZERO, NOT APPLICABLE.)

60 SUBPAR*MOD(SYMVAL,IOO)
ISUB«SYMVAL/100
IF (SUBPAR.EQ.O) GO TO 70

C STORE DAY AND CONVERTED TIME. (HHMM GOES TO MMMM).
DAY(1)=PAR(SUBPAR*1

)

DAY(2)=PAR(SUBPAR^3)
TIME(I)*PAR(SUBPAR-»-2)-(PAR(SUBPAR+2)/100)*40
TlME(2)=PAR(SUBPAR*4)-(PAR(SUBPAR+4)/100.)*40

70 GO TO (100,200,300,400,500,600,700,300,900,1000, MOO, 1200, 13(X>,

*I4(X), 1500, 1600,1700, 1800, 1900 ,2000, 2 1 00 , 2200, 2300 ,2400) , ISUB

'i

1

A-52

C PASS OFF TO THE REQUESTED ROUTINES.
100 CALL RDTAPEC INBUF,MIN,IERR)

GO TO 50
200 CALL COiNALL(INBUF,MIN,OUTBUF,MOU, lERR)

GO TO 50 ;

300 CALL BACKSh'(PAR(2),PAR(3))
GO TO 50

400 CALL IP0UTBF(0UTBUF,M0U,PAR(2),PAR(3))
GO TO 50

500 CALL HEXDMP(INBUF,MIN,PAR(2),PAR(3))
GO TO 50

600 DEBUG=PAR(2)
GO TO 50

700 CALL EX
300 CALL SiCIP(PAR(2) ,PAR(3))

GO TO 50
900 CALL RrtNDIT(PAR(2))

GO TO 50
1000 CALL INHASH(PAR(2) ,PAR(3))

GO TO 50
MOO CALL DEHASH{PAR(2))

GO TO 50
1200 iWAR=PAR(2)

GO TO 50
1300 I0CaD(3I)=PAR(2)

GO TO 50
1400 CALL DSKrtTS(0UTBUF,M0U,PAR(2) , 1 ,IERR)

GO TO 50
IdOO call UTABLE(0UTBUF, MOU, TABLE, MTAl ,MTA2,IERR)

IF (IERR.GT.O) go to 50
CALL DSKRTS (OUTBUF , MOU , 0 , 2 , 1 E RR

)

GO TO 50
1600 CALL DSKRTS(0UTBUF,M0U,0,3,IERR)

GO TO 50 •

1700 CALL DRIVER(DATTAP, PAR, MPA, TABLE, MTAl , MTA2, OUTBUF ,MOU ,CLSTAB,MCL)
GO TO 50

1600 CALL THNRArtdNBUF.MIN,OUTBUF, MOU, TABLE, MTAl ,MTA2,PAR(2) ,PAR(3))
GO TO 50

1900 CALL DRIVER(STDATA, PAR, MPA, TABLE, MTAl ,MTA2, OUTBUF, M0U,CLSTAB,MCL)
GO TO 50

2000 CALL CVPROC(PAR,MPA,CLSTAB,MCL)
" GO TO 50

2100 CALL SEEKEF(PAR(2) ,IERR,PAR(3))
CALL OUTINTdERR, 1 ,3,0)
CALL OUTrXT('RECS SKIPPED' , 6, 4, 1

)

GO TO 50 ,

2200 CALL rtRITEF(3,PAR(2))
GO TO 50

2300 CALL LSHIFT(INBUF,PAR(2) ,PAR(3) ,PAR(4))
GO TO 50

2400 CALL RSHIFT(INBUF,PAR(2) ,PAR(3) ,PARX4))
GO TO 50
EiND I

C;

A-53

SUBROUTINES OUTHEX, OUTINT, AND OUTTXT

1 • F0F:TPAN4 TEXT OUTPUT ROUTINES
:: I .

3 % FBRUhRV 24. 1975
4 :*

5 * CALL IMG SEQUENCES^
t. % CALL 0UTHE:==:< HEX. CODE. SKIP)
7 t OR
8 4 CALL OUTINT-: NUM.. N.COOE> SKIP)
? * OR

lei * CALL 0UTTXT< IBUF.N. CODE. SKIP)
U *
12 * NUn = SINGLE INTEGER NUMBER TO BE
13 % CONUERTED TO ASCII AND OUTPUT
14 . AS A DECIMAL NUMBER.
15 * HEX = SINGLE INTEGER NUMBER TO BE
16 CONUERTED TO ASCII AND OUTPUT
17 t. AS 4 HEX CHARACTERS.
IS * SKIP= NUMBER OF SPACES TO OUTPUT BEFORE
\3 % OUTPUT OF TEXT OR 1ST HEX OR NUM.
20 i: IBUF= LOCATION OF FIRST WORD OF TEXT TO
21 * BE OUTPUT.
22 * N = NUMBER OF TNO CHARACTER WORDS OF
2.7 t: TEXT TO BE OUTPUT.. OR THE NUMBER
24 :: OF HEX OR NUMS TO BE CONUERTED
25 * AND OUTPUT.
26 CODE= CARRIAGE CONTROL AS FOLLOWS
27 0-DO NOTHING 8-. RETURN IMMEDIATELY
2S \ 1 -< L^'F X TEXT.'NUM X C 'R >

2^ \ 2- (TEXT'- HUM)
3KL/F.H TEXT/HUM)

:^l t 4- <TEXT''NUMXC/R>
32 5-<L' F) <C/-R>
33 t 6- <C^'R)
34 % 7-<L' F)

A-54

35 * OTHER-DO NOTHING S: RETURN IMMEDIftTELY
36 t
37 t ADDITIUNhL COMMENTS:
38 NUM WILL BE RIGHT JUSTIFIED WITH SPACES
39 :» REPLACING LEhDING ZEROS.
40 i FIELD WIDTH OF NUM (INCLUDING LEADING
41 *: SPhCES and SIGH> WILL ALWAYS BE 6
42 * + SIGN WILL BE OUTPUT AS A SPACE.
43 * - SIGN WILL BE OUTPUT AS A - SIGN AND
44 * WILL BE PLACED IN THE POSITION IMMED-
4=i * lATELY TO THE LEFT OF THE MOST SIGNIFI-
46 *: Cant digit of the number. HEX WILL
4? * HA*.'E A FIELD WIDTH OF 4.

48 * SKIP SPhCES will BE PLACED BEFORE THE
43 . TEKT OR BEFORE THE FIRST NUM OR HEK

.

50 i THE ABSOLUTE tirtLUE OF SKIP AND N WILL BE
51 t USED AS THEIR CCFINED '.iALUE

52 * NOTE=
53 t THE TEXT CONTAINED IN IBUF AND ALL OUTPUT
54 t FROM EACH CARRIAGE RETURN WILL BE
55 *: IN BLOCKS OF EITHER 71 OR 72 IF N>72.
56 * THAT IS. A C R 'i-. UF < IN THAT ORDER .>

57 * WILL BE ADDED BEFORE EACH 72 'ND OR
58 * 73 'RD CHARACTER THIS WILL BE UPDATED
59 * ON EACH CHARACTER AND WILL ONLY BE
60 * RESET WHEN A C-^R IS GIUEN FOR ANY
61 i: REASON.
6"^ ^
63 t ALL OUTPUT WILL BE ON UMIX WHICH SHOULD
64 * NORMALLY BE ASSIGNED TO THE CRT OR TTY

.

65 *
66 LI BR OUTHEX.OUTINT.OUTTXT
67 NTRY OUTHEX . OUT INT , OUTTXT
6y i
69 LUN EQU 11

A-55

70
71
72
73
74
75

i t

7S
7'?

80
:?!

S4

y6
J~»7

83

0010
SThT

SPOT

1 Cnj

103
1M4

DOIT

t
TPhN

hDDD

DECR

EQU
EC'U

PROC
DrTr
DRTA
RES
DrTA
RES
ENDP

PROC
STW
CLR
STW
DO 10
STAT
EHDP

PROC
LOW
STW
ENDP

PROC
LOW
ADO
ADD
ENDP

PROC
LOW
sue
STW
EMDP

68
70

P(1 '.P<2>+X'8f^nPJ'
C0^7..LiJM 5.. 14 43
3
J< ' 8000 •

1

P<1>

PC 2 >+5

P<2>

P< 1 >

P<2>

COUNTER
P< 1 >

PC1>

P<1>
p<r 2^
PC 1 >

A-56

105 *
lOt. S.ETT
107
1U8
109
lid f
111 UUTHE>:
112 outhe; :i

113
114
115
1 It".

117
11$:

11?
12u NUMEUFR
121
122
123
124 t;

125 OUT I NT
126 OUT I NT

1

] 27
12S
1 2?
13^
131
13^'

13.3

134
t 3S
i 3r--.

137 Ul.n I NT

2

1 3:;:

13-3

PPOC
DhTih pool
JS.X SETUP
ENDP

SETT
LDU REPEAT
SAZ
SAP
JMP GETDUT
LDX EUFS'..'

LOl-J *: 0
SMB he:-:tcc
JSX he>-tcc
DhTh f^LlNBUF

TRrN N2.. NCTMP
JSX DOOUT
JMP OUTHEXl

SETT
LOU REPEhT
SrtZ
SAP
JMP GETOUT
LDX EUFSU
LDN t 0
SriB HEXTDEC
JSX HEXTDECNUMBUF
ShM
JMP OUT I NT

4

LDX NUMBUFBR
LDB -t. 1

CLE *
'

SEO

140 JMP 0UTINT3
141 I;^S 1

142 JMP 0UTINT2
143 • JMP OUT INT

2

144 OUT I NT

3

LLB
14T. STB t 0
14i£: 0UTINT4 TRif^N r43..WCTMP
147 JSX DOOUT
14^5: JMP OUT I NT

1

14?
l^.fi OUT TXT SETT
151 TRAM XfH0R0..RE
152 JSX DOOUT
153 GETOUT LOW CODESU
154 CLB 2
155 • -SEQ
156 CLB 1

157 SEQ
153 JSX CR
151=" JMP RETURN
l€.fJ

161 DODUT STX DOOUTRET
162 LOW REPEAT
163 CMW ZERO
164 SNE
165 JMP t 0
166 sm
167 JMP D00UT2
168 DOOUTl LDX DOOUTRET
163 LOW WCTMP
1 70 CMW ZERO
171 SGR
172 JMP *
173 LDW COUNTER
174 CMW N71

175 SLS
176 JSX CRLF
177 LDW COUNTER
178 ADD Nl
179 SRL 1

ISO STW COUNTWD
181 LLB 36
182 SUB COUNTWD
183 CMW WCTMP
184 SLE
185 TRAN WCTMP.WC
18t. DECR WCTMP. WC
187
188

to*""

JMP
OUTFIOTl
DOOUTl

189 D0UUT2 STX OFOTIRET
190 LOW BUFSU
191 ADD Nl
192 STW BUFSU
193 TRAH NUMBUFR.FIOTl
194 ADDD WCTMP
195 CMW N72
196 SLE
197 JSX CRLF
198 DECR REPEAT, Nl
199 TRAN WCTMP. WC
200 JMP OFOTIPI
201
202 OUTFIGTj STX OFOTIRET
203 OFOTIPI ADDD WC
204 DOIT COUNTER.. F I OTl
205 LDW FIOTl
206 ADD WC
207 STW FIOTl
20:-:

209
LDX
JMP

OFOTIRET
0

210 * •

-

21

1

CR CLR
212 STW COUNTER
213 LDW
214 J?1P OUTONE
21^. CRLF ST>^ CRLFRET
2 It. JoX CR
217 LD>>' CRlFRET
2l:=; LF LOW XOOSA
21? OUTONE STX 0FUT2RET
22C1 DOIT ONEBUF..FIOT
221 LDX 0F0T2R.ET

JMP t 0
w. C»

224 SETUP STK SETUPRET
225 LDX CODE
22t» LDX * 0

DXS 5
22§ .IMP SETUPCn
22? IXS 4
27-y ..JMP RETURN
2.T.1 STX CODESU

TRhH lEUF.eUFSU
STW FIOTl

2.34 . LDK N
235 LDW * Ci

SrtP
7 CMP

STW WCTMP
23? STW REPEhT
240 LDX SKIP
241 LDW * 0
242 S«P
243 CMP
244 STW SKIPCNT

A-60

245 LOW CODESU
246 SAO
247 JSX LF
248 OUTSKIP LDX SETUPRET
249 S.KIP01 LOW SKIPCNT
2^.»^ CMW Hi
251 LOW COUNTER
252 SHE
253 jmp SKIP02
254
2F.*=. JNP 0
25t. cm N71
257 SNE

JMP SKIP03
Hs* • SLS
2Kri JSX CRLF
261 LDM XAOhQ
2k2 JSX OUTONE
263 DECR SKIPCNT, M2
264 LOW COUNTER
265 ADD N2
266 JMP SKIP04
267 SKIPei2 CMN N71
26y SLE
26? J'z-X CRLF
270 SKIP0.3 LOB XAQrQ
271 SLL P.

272 JSX OUTONE
27-3 DECR SKIPCNT. HI
274 LDW COUNTER
275 ADD HI
276 SKIPe4 STU COUNTER
277 JMP OUTSKIP

279 SETUPGl DXS 3

280 JMP RETURN
2S1 SETnp02 r::s

JMP SETUP04
SXE

234 JMP SETUP03
285 js;s CR
2i5it' JMP RETURr^

SETnp03 JSX LF
JMP RETURN

•E.ETUP04 JSX CRLF
230 RETURr^ SMB R.RET
291 JSX R . RET
2-?2 DATA POOL
2*?? t
2?«4 CPLFRET DhTA 8
2'?!5 DOOUTRET DATA 0
2*^»-" OFOTIPET DATA 0
2?r 0F0T2RET DATn 0
29o SE TURRET Data 0

CCUf^TWD DATA 0
300 COLih'TER DATA 0
SOI JKIPChT DATA 0
?0^' DATA 0
?0j' 0
704 OIIEBUF DATA 0
30^. CODE:;:'.' DATA 0
30*:-. flUf'IGUFBR DATA 'HUMBUF
307 BOF'E:'.' DATA 0
308 DATA 0
3i-i3 ZERO DATA 0
310 HI DATA 1

31 I N2 DATA 2
312 H3 DATA 3
31? N? I DATA 71
314 N72 DATA 72

A-62

315

317 XGCioA
31S HUMBUF
313
320 FIOTi
321 FI0T2
322 t
323 POOL
32-4 IBUF
325 N

rnoE
327 S.KIP
328 t

32?
BE

UH 1 H v>
.V A0^O

'

DrTh <../

DhTh '. .•

Uti8iH

'

PES 3

SPOT Q. WC
SPOT CINEBUF..H1

6.

DhTh 0
DhTh 0

DATA 0

EUD

SUBROUTINE POUTBF

S LI BR POUTBF
SUBROUTINE FOUTBF(OUTBUF,MOU, IBEG, lEND)
INTEGER OUTBUF, DEBUG, SKIP
DIMENSION OUTBUF(MOU)
COMMOiN /BLiCI/NSCANS,NENr, DEBUG, NVAR

C OUTFUr THE HEADER CHARACTERS.
CALL 0UTINT(0UTBUF,5, 1,0)
IF (IBEG.EQ.O) GO TO 90

C OUTPUT THE MEASUREMENT VALUES NUMBERED IBEG TO lEND.

IF (IBEG.LT.IEND) N=N+IEND-IBEG
CALL 0UTINT(0UTBUF(IBEG+6),N, 1,0)

90 RETURN
END

Ci

A>e4

SUBROUTINE RDTAPE

S LI BR RDTAPE
SUBROUTINE RDTAPE(INBUF,MIN. lEHR)
INTEGER INBUF,DEBUG
DIMENSION INBUF(MIN)
COMMON /BLK I /NSCANS

,

nEN T DEBUG , NVAR
»mCHARs2*MIN
IEriR=0
ICNT==0
CALL READMTC INBUF, ICNT,NCHAR, lERR)
IF (ICNT.GT.O.AND.IERR.EQ.O) GO TO 90
CALL ERRPRT(10,9, ICNT, lERR. 0,0,0)
IERR=I

90 RETURN
END

C;

A-65

SUBROUTINES READIN, CODIT AND DECDIT

1 ' repjdih. code, and decode routines
2
7 #. FEBPUhRY 24. 1975
4 :;

e * FIRST SUEROUTINE:
7 t THIS IS f< LIBRARY PROGRAM TO READ THE
8 t KEYGOhRD input DEUICE (DEFINED BELOW AS
9 t KEYBORDI > INTO A PREUIOUSLY ESTABLISHED
10 t FORTRAN BUFFER.
11 4
12 * ENTRY IS BY THE FOLLOWING:
13 »: CALL READIN <IARG..N>
14 t: WHERE lARG IS THE FIRST LOCATIO^^ OF A
15 % ' SINGLE INTEGER BUFFER IN WHICH TO PUT
16 t THE ASCII DATA AND N WILL BE SET TO
17 * THE NUMBER OF ASCII CHARACTERS READ
18 t. INTO THE BUFFER. i<iJE- 2 ASCII
19 t CHARACTERS WILL BE PLACED IN EACH
20 t WORD OF BUFFER AND THE UNUSED
21 * PORTION OF THE BUFFER < IF ANY) WILL
22 t. BE SET TO SPACES <UP TO 72).
"•'3 X
24 % NOTE IBUF CAS LOCATED BY IARC) MUST BE AT LEAST
25 * 72 CHARACTERS (36 WORDS) IN SIZE.
26 %
27 ttriim^^^^^^^^

28 * SECOND SUBROUTINE

=

29 THIS ROUTINE WILL CODE AN ENTIRE ASCII
30 * BUFFER INTO A SECOND BUFFER OF TWICE THE
Jl t SIZE OF THE ASCII BUFFER. HOWEUER THE TWO
32 BUFFERS NAY BE THE SAME.
33 t
34 t CALL FROM FORTRAfH UIA-

A-66

35
36
37
33
39
40
41
42
43
44
45
45
47
48
49
5ei

53
54
55
56
57
5S
59

61
t'£

£•3

64
65
66
67
60
69

t
i
i
^

*

t.

;:

r
X
:»:

-f.

X
X

NOTE

CALL COD IT C IBUFl.. IBUF2.H>
UHERE IBMFl IS THE LOCATION OF N BUFFER
CONTAINING ASCII DATA PACKED TWO TO A
WORD.. IEUF2 IS THE LOCATION OF A BUFFER
IN WHICH TO PUT THE CODED DATA PACKED
ONE TO A WORD.. AND N IS THE NUMBEf^' OF
ASCII CHARACTERS TO BE CODED.

IBUF2 MUST BE TWICE AS BIG AS IBUFl OR IF
THEY MRE THE SAME. ONLY HALF OF THE BUFFER
CAN CONTAIN ASCII DATA.

CODES ARE=
0 THRU 9
A THRU Z

SPACE
+

X
%

ARE 0 THRU 9
ARE 10 THRU 35
IS 36
IS 37
IS 38
IS 39
IS 40
IS 41

ALL OTHER ARE 42

xxx.xxxxx.xx.xxxxxxxxxxxxxxxxxxxxxxxxxxxx
THIRD ROUTINE^

THIS ROUTINE WILL CONUERT N CHARACTERS FR(
THE INTERNAL CODE ABOUE AND REPACK THEM AJ

ASCII INTO ANOTHER (OR THE SAME) BUFFER

CALL FROM F0RTRAN4 UIA^
CALL DECDIT UBUF 1,1 BUF2..N>

A-67

?0
71
72
73 *
74

77
78 *
7S' i

NOTE

NHERE IBUFl IS THE LOChTIOH OF H BUFFER
CONTi^lNlUG SINGLE WORD CODED CHrRrCT-
ER3.. IBUF2 IS THE LOCrTION OF R BUFFER
IN WHICH TO PLACE EQUIUhLEHT hSCII
CHARACTERS PACKED TWO TO A WORD.. AND N
IS THE NUMBER OF CHARACTERS TO DECODE

IF N IS ODD.. AN ADDITIONAL ASCII CHARACTER
WILL BE PLACED IN THE LAST HALF OF THE LAST
WORD. THIS CHARACTER WILL BE A SPACE.

O 1 READIN..CODIT..DECDIT
WTRVn 1 In I READ IN . COD I T .. DECD I

T

S3
84

t
DO 10 EQU 68

85 S'TAT EQU 70
86 KEYBOPDI EQU 10 LUN 10
87

PErDIN D^iTA POOL
8? LOW IBUFl

STW FIOT
91 SLL 1

32. ADD N71
93 STW LAST
94 DOIO FIOT
95 STAT FIOT
be LDX FIOT+4
97 FOl CKA
98 CMW LAST
99 SLE

1 tiM JMP PQZ
101 LLB
102 ! 3800 STB % & SET SPACES
10?: IXS 1

104 JMP P91 IF IN UPPER

A-68

105 JMP POl
1 oe 'P02 LOW FIGTi-4
107 SUB IBUFl
1 OS SUB IBUFl
1 0? LDX IBUr2
1 10 .•:7soo 0
1 1

1

JMP RETURN
1 12
1 1? COD IT DATA POOL
1 14 CODE EUU COD IT
1 15 LDX \\

IK- LDW t 0
117 DPI X7S00
1 IS STN STNI
11? COEiEIT LOW STNI
120 RND X07FF
121 SUE Nl
1

1 ^7 jrip RETURN
124 OR I X5S00
1

~

STW LDB I

1 26 ORE X2000
1 -'7 STW STNI
1 ">Cj LDX IBUFl
1 2? SLL D 1

1 70 CLP
IT.l LDEI LDB * Q

crx
DXS 160

134 .JMP

135 JMP GET42
1 DXS lb

.IMP P03
138 IXS 16
1 3? H6 6

SET N (N IS WRG2 HERE

GET COUNT

SET STW t N (ORIG;-

THRU'?
YES
NO

SET LDB * (WORtO

SET STN t ? <WORK>

GET ASCII CHhRrCTER

THIS PHRT OF CODE IT IS J'.

TOO MUCH TO EXPLHIN WITH
COMMENTS

A-69

140
141 STB GETITl+1
142 CLR
143 - LDX TAB 1 BR
144 GETITl LDB ^l: 0
145 JMP pei4

1415 P03 DX3 10
14? JMP
148 JMP ADD10
149 OXS
15»3 JMP $+2
1 -1

1

IMP GET42
152 DXS 26
153 GET42 LDX N6
154 IXS 26
155 NOP MIGHT NOT SKIP
15t. IXS 16
157 Nl DATA 1 WILL SKIP
158 CXA
15? FCi4 LDX IBUF2
i»:*e STWI STW t SET CODED CHARACTER
It. J JMP CODE IT CONTINUE CtN

162
163 DECDIT DATA POOL
164 DECODE Ei"'U DECDIT
165 LDW IBUF2
166 SLL 1

167 STW IBUF2 MA^rE IBUF2 BYTE
16y LDX N
169 LDW t 0 GET COUNT
1 7U
171 SAP ANYTHING TO DO?
172 JMP RETURN NO
1 73 STW LAST YES-SET LAST REF
174 LDW X3800

A-70

175 STW STBI SET SIB t ei

176 DECODE IT LDU S^BT
177 Xi37FF
17S •rue LrtST

179 ShN THRU?
JMP pMc. YES

ISl «DD LAST NO
1 SI- nDD Nl
IS? or: X3?My
1S4 STN STBI SET STB t ?
185 uRE
ISfc" :=.TM LDX I SET LDX t ?
IV7 LDX IBUFl
18:? LDXI LD^: :lr. e GET CODE
18-? LLB ASSUME BAD CODE
l?fj SXP CODE?
191 JNP PU5 - Sc IS BAD
V?2 41 + MAY BE GOOD
133 Ir<S 41
194 JMP P05 BAD CODE

CKA GOOD CODE
19t. STB GETIT2+1
197 CLR
1 98 LDX TAB2BR
199 GET I TI LDB 3

Pei5 LDX IBUF2
STE:I STB I 0 SET ASCII

JMP DECODE IT ANO'Cur^TINUE ON
POt LDU LhST

ShO
JMP RETURN
LDU STBI
KiDD Nl

Z:»j8 STW STBI>
rjH9 LLB

A-71

210 STEI2 STB t 0 SET SPACE IF ODD
211 RETURN SMB R RET
212 R . RET
213 DmTh POOL
214
215 N71 DATA 71
216 >:07FF DATA X ' 07FF

•

217 ! !20C«3 DATA X • 2000

'

! -5000
219 DATA X • A000

•

220 LAST DATA 0
<.>-

1

UM 1 M 36
TrBIBR DATA >TAB1
TrtB2BR DATA ^••TAB2

224 FIGT DATA 0 . N36. C0 = 7.. KEYBORDI 5-11
225 RES 5

%
ThBI BYTE 37 , 42 . 42 . 42 . 4 1 , 42 .. 42 . 42

22:? BYTE 42 .. 42 . 40 . 38 , 36 .. 39 . 42 . 42
229 *:

ThB2 TEXT ' 0 1 23456789ABCDEFGHIJKL

'

231 TEKT • MN0PQRSTUUWXY2 ..

'

232
233 POOL DATA 5.0.0
234 IBUFl DATA 0
235 IBIJF2 DATA 0
236 \i DATA 0
237
23ft END
BE

A-72

SUBROUTINE READMT

• READ ML TAPE T ^] TO EbCD "SI^.E" bJFFErit

* (IMTERRUPT n;ERSIO.M)
*

* JULY 17* 1Q7^
+

* E^JrSR FHOy. FOHTRAMA \Jl^i

* C^LL READMfC IBJF* ICNJr^MCHAR, lErtrt)

*

.

+' VHERE: TBUF T5 AM •'"'JC-J AR + .VCH AH" a»OhD S I E
* SINJGLE TMTEoER bJFFEh.
* ICMf •^JSr CO^rATX' am E^E\' Mjy.dEH OF CHAriAC-
* TERS rO S^CI? OEFOHE ?iJrfI^OG rBEi"! I.N] IbJF.
* TCMT WILL BE SET TO NEGAfWE COUMT IF THE
* RECORD SriLL COMFAINJS UMREAD DATA ANJO TO

* PLUS COU'Jr IF THE RECORD READ wAS
* CC^^PLETED. THE ABSOLUTE J^LJE OF IC'Sil

* VILL EQUAL THE MJ'MBER OF CHARACfEHS nEAD
* TMrO IBJF. IF ICMT IS ^.ERO* AM ENJD-OF-
* FILE WAS DETECTED.
* , MCHAR MUST COMIAIM A POSiriVE EvEM IMfEGEri
* MU:^HER EQUAL TO THE .MAKI.-IUM Ev^E.nJ MJ^'It^En

* OF CHARACTERS TO BE READ I M TO IBJF.
* y lERR -JILL BE SET TO THE MUr-IBER OF MAG- TAPE
* TYPE ERRORS (-1 IF A SIMGLE ERrvOR APPLf-
* IMG TO THE EMTIRE RECORD, -32767 IF THE
* RECORD JAS UMREADABLE, 0 IF MO ERRORS, OR
* TO THE MUM.-^ER OF CHARACTERS IM POSSIBLE
* ERROR AS A RESULT OF i^T-TYPE ERhORS).
*

+ MOTE: IM MO CASE SHO 3LD MCHAR BE LAi-JGER TH.AM

* T.^?TCE THE MUMBER OF -.y/ORDS COMTAIMED IM IBJF
*

LTBR READi-lT

MTRY READriT
*

DQTO EQU
ST^T EOU 7 0

^:;tut EOlj

DR EOU 1 1

EF EQU 10
DRREF EOU DR + DR + DR + DR + 1

EFRSF EQU EF+ EF+ EF+ EF+ 1

>'.TDE^/ EOij 0

LT STLUM EQU 1 1 i

*

HETV PRQC
TRUE MTDEV=0
CLR
EM DC
F^LSE "1 TDE'«; = 0
LD;J DEv;

EM DC
EM DP

A-73

nFAPiYT DATA POOL

SrJ ERTRY
I . P < >J0

' STW DRSAVE
LDV EFREF
Sr^; EFSA7E

pni I,n.7 J.JA!T
STV WAIT
ldw erc^jt
cmjJ mo
SME
-IMP P03
SGR
.JMP POS
T.DW CKCNJT
SAP
C^!P

cm;^ ercmt
5LE
hDJ ERCMT
SA7
SAP
.TMP PO*?

POO LDV ERTHY
n<s 1

.IMP P04
P0 3 LDV I ERR

STW * 0
LDW CHCMT
LPy TCMT
STW * 0
LDV MO
LD'V DRSAVE
STW * DRREF
LOW EFSAviE
STW EFREF
SMB R.RET
.TS< R.RET
DATA POOL

PO/: ST^ ERTRY
P05 DIM MTU9*0

SAP
• IMP P0 5

GETv;
DOT MTU^* 1

1

pOfi DIM MTa'5#0
SLL 1

SAM
.IMP P0 7

DO I 0 F I 0 T

STAT FIOT

SET ERROR FRY COJMTEH

SAVE D.R. LIMK

SAv^E E.F. LIMK

ERCMr=0

ERCMr=-
ERCMT=l OR MORE

FORCE CHCMF +

CHCMr>ErtCMr (OX)
SET ERCMr=I AbSCC^CMD

- OK KERS COR 0)
STILL ERRORS
TRIED 5 TIMES?

MO -TRY AGAIM
YES-TKEY MJSr REALLf tJE

SET ERROR COUMT

SET CHARACTER COJMT

REPLACE D.R. LIMK'

REPLACE E.F. LIMK

RETJRM TO FOR TRAM

A

MT BUSY?
YES

BACKSPACE

IS MT OM LIME?
YES
MO

A-74

* - J i V

D T \^

CO \' TROLL Ert READf?
. r-ip

1 i ES
S DEVICE READf?
• I'^^ ^ 7 NJO

T \' T r'ES

SET SKI?
T ^
n

DA SET ADDRESS

ST*' * DF.REF SET DA FA L I
,':-<

1

L DV
^ T* jJ t E F ^ EF SET E\'D-F.\' LIX'K 1

CL
s rv FR FLG SET \0 LAST Zr.?.':^?.

^ r J ERC^JT SET \J0 ERRORS
-J i f _f r \i T SET MO DATA

- I • — V i

L

DOT READ 1 RECORD

GET SET a? TO «AIT
• J I." J A T T 0\' SO/iETHINJG rO 4APPE

STv ACH SAVE ACR
ST^ I •-'R SAVE I <R
L D'' SKIP
D^S o SAVE DATA?
.'"<? P0<^ n;o

L D~^ N^CHAR /ES
LD/ * 0

STV SKIP SET 'lAK 3JF + 2

LD^
T.DW DR^REF
ST^ * DRREF SET DATA LI.\'K

J-'.P P0 5

DI \' r j-^. 1 5 ;iEr DATA AaD F

s r SKI ? SET :>)EJ SKIP
PI 3

*

ACR SAJE ACR
s r-'- I '^R 5-^vE I <R
DT \' r 1 5 :Er DATA
L D '' SKIP
D

S

o IS :2 j F F ER FJLL?
• T/'P NO
LDa" c^c\" r YES

r 0 R C E coj>or

C <? rc :-i INjJS AN]D

ST*' c-'icx" r SET MOT THRU
. 1 .^^ p ? 1

1

A-75

Pin SKIP
OAD-l

0 sa\;e data
1

MO DATA 0
STY DADR SET >JE'/^ bJrrEK

c^CMr
r<s p

DATA
STX C4CMr IMCKE^ENjf COJ.Nir

DIM MTJl* 0
SAO EkHOR?
.HP PI I MO
LD^" ERCMT /ES
T P
DATA 0
STK ERCMr SET ERRORS JP bf OME
1 . DJ MMl
.HP PIP

PI 1 CLR
srw ERFLG

PI ACR RECOv;£R ACR
I VR recov;er ixr

I MR DR REfJRM TO WHEREn/EH
*

DSH DR SKJr DOWM BOTK
. DSH EF IMFERRJPrS

STv/ ACR SA\;E ACR
ST< I VR SAVE IXR
LOW CHCMT
SA^ IS COUMr '.ERG?
,H? P16 MO
DIM MTLI=)# 0 YES
SRL
SAO SMD-OF-FILE?
.IMP P14 MO
L DW SKIP YES
SAT
SAP
.IMP Pl<5 SKIP=0 OR LESS
L DW MMnP767 SKIP=1 OR MORE
,TMP P15

PI 4 LOW NMl
PI 5 STvJ ERCMT

JMP PIQ
P16 LDX DADR

DVS I

LD'jJ * 0
CLB 0 REMEMBER LAST CHARACTER
DIM MTLl9#n

* SRL 1
•

SAO RATE ERROR?
J^P P17 MO
SEQ YES- WAS LAST A /.EftO?

JMP P14 MO
JMP PlBt • YES

A-76

P 1 7 SEO
JMP P 1 1

LDW ERFLG
SAM
J^IP PI <^

LDY ERCM r

SXM
DY5
STX ERCMT

PI « LDy CHCMT
SXP
r ys 1

1

STV CHCMT
P 1 Q LDW JPO 1

STW T
LDW ACR
LDy IXR

*

TMR EF

• JPO 1 .JMP POl
• I'V^T T JM^ vJAI T

DATA 0
CHC^JT DATA 0

S'-<TP DATA 0
OADR DATA 0
DR 1 REF DATA DRL 1

DA FA DRL?
^Fl REF DATA EFL I

ERFI.fl DATA 0

^CR DATA n

T VR DATA 0

DATA -

1

NJMTP7'i7 DATA -'^f>767

MP DATA
DRSA'JE DATA 0

efsav;e DATA 0

FALSE y.TDEV

DE7 DATA f-ITDEv;

EM DC
*

ftot DATA MZjvc^7R

DATA C 0 : 7 * L

RES S

*

DATA y

*

DATA 6*0, n

TB'JF DATA 0

T CMT DATA 0

MCHAR DATA 0

T ERR DATA 0

EMD

WAS LAST A ^.SHO?
MO
f ES

WAS LAST A ERHOR?
MO
YES

SET ERROR COUNT

SET COUMF DOWM Bf ONE

SET EXI r LIMK
RECOVER ACR
RECO^;ER KR
RETJRM TO WHENCE *E CAME

A-77

SUBROUTINE SPLITA AND UNSPLT

1 * SPLIT AND UNSPLIT INTEGERS
2 t
3 t NOUEMBER 9, 1974

• 4 t
5 t CALL FROM F0RTRAN4=
6 t CALL SPLITA<ARG1.ARG2.ARG3>
7 t OR
8 t CALL UNSPLT<ARG1,ARG2.ARG3)
9 t
10 t ARG2=0.LEFT BYTE OF ARGl C SPLITA

>

11 t ARG3«0. RIGHT BYTE OF ARGl
12 t OR
13 t ARG1«ARG2,ARG3 < UNSPLT)
14 *
15 LIBR SPLITA. UNSPLT
16 NTRY SPLITA. UNSPLT
17

0017 18 UNSPLT DATA POOL
6001 901C 19 LOX ARG3
0002 8800 20 LDU 4c 0
0003 3020 21 STB SAUE-t-l

0004 901B 22 LOX ARG2
0005 8300 23 LOM 4c e
0006 0A18 24 SLL 8
0007 S«01A 25 LDX ARGl

A-78

1011 26 PI
27 *

00G9 001? 28 SPLITA DATA POOL
000A 901rt 29 LDX ARGl
000B 8300 30 LZM t 0

7016 31 STN SAt;E
0OOD OhOS 32 SRL 8
000E 90 IB 33 LDX ARG2

7S00 34 STW t 0
0010 9010 35 LDX ARG3
0011 502D 36 PI LDB SAUE+1
0012 7800 37 STW » 0
0013 07FF 38 SMB R.RET
0014 2013 39 JSX R.RET
0015 0017 40 DATA POOL

41 t
0016 0000 42 SftUE DATA e

43 t
0017 0005 44 POOL DATA
0018 0000
0015 0000
001« 0000 45 DATA e
001B 0000 46 ARG2 DATA e
001C 0000 47 ARG3 DATA e

48
49 EKD

0014 R . RET

NO ERRORS

SUBROUTINE STDATA

S LI BR STDATA
I NTEGER FUNCT ION STDATA (P AR , MPA , OUTBUF , MOU , CLSTAB ,MCL , rtRTSrtT

,

If LRECF)
LOGICAL riRTSrtT, LRECF
INTEGER PAR(MPA) ,OUTBUF(MOU) ,CLSTAB(MCL) ,VARNUM,PTR, BEG, ENJ .DEBUG
COMMON /BLK 1 /NSCANS

,

HENT , DEBUG , NVAR
STDATA»0
WRTSrtT=:.TRUE.

C CHECK IF VARIABLE TO BE CHANGED IS A SINGLE OR A. CLASS VARIABLE.
IF (PAR(3).LT.O) GO TO 1 00
IF (PAR(3).EQ.O) GO TO 300
IF (PAR{3).GT.NVAR) GO TO 300

C PROCESS THE SINGLE VARIABLE.
VARNUMsPAR(3)
OUTBUF (VARNUM*6)» PARC 2) ^

GO TO 900
C PROCESS THE CLASS VARIABLE.

100 PTR=-PAR(3)
BEG«PTR+2
EiND=BEG+CLSTAB(PTR+l)-l

DO 150 I«BEG,END
VARNUM«CLSTAB(I)

- 0UTBUr(VARNUM*6)=PAR(2)
J 50 CONTINUE

GO TO 900
300 CALL ERhPRT(19, 16,0,0,0,0,0)
900 RETURN

END
c;

A-8G

SUBROUTINE Tf^RAW

S LIER TRNRAfi
SUBROUTINE TR.NRArt (INBUF, M IN , OUTBUF, MOU , TABLE, MTA 1 ,MTA2 ,NREC,KPRNT)

- INTEGER INBUF(MIN) ,OUTBUF(MOU) ,NREC,KPRNT
C BEGIN LOOP TO READ , CONVERT, AND riRITE TO DISK.

DO 50 1=1 ,NREC
CALL RDTARECINBUF»MIN,IERR)

. IF (IE3R.GT.0) GO TO 90
CALL CONALL(INBUF , M IN , OUTBUF , MOU , IE RR

)

IF (lERR.GT.O) GO TO 90
CALL UTA3LE (OUTBUF, MOU, TABLE, MTA 1 ,MTA2, I ERR)
IF (lERR.GT.O) GO TO 90
CALL DS:<RTS(OUTBUF,MOU,0, 2, IERR:
IF (lERR.GT.O) GO TO 90
i4=I

IF (I .EG. 1) GO TO 20
IF (I.EQ.NREC) GO TO 20
IF (KPRNT.EQ.O) GO TO 50
IF (MOD(I ,i<:PRNT) .NE.O) GO TO 50

C OUTPUT MONITORING INFORMATION ON FIRST, LAST, AND
C KPRNT'TH RECORDS TRANSFERRED.

20 CALL OUTTXT(^TRANSFER REC NO. ',8, 3,0)
CALL 0UTINT(N, 1,4.0)
CALL POUTBF(OUTBUF,MOU,0,0)

DO CO.^iTInUE
90 CALL 0UTINT(N, 1 ,3,0)

CALL 0UiTXT(' RECS TRANSFERRED 9 , 4 , 0)

RETUR:>*

END
C;

A-81

SUBROUTINE UTABLE

S LI BR UTABLE
SUBROUTIHE. UTABLE (()UTBUF,MOU, TABLE, MTAI ,MTA2,IERft)
INTEGER DAY, TIME, CLSVAR, DEBUG
INTEGER TABLE, OUTBUF.DELTAT
DIMENSION OUTBUF(MOU) ,TABLE(mTAI ,MTA2)
COMMON /BLK1/NSCAnS,NENT, DEBUG, NVAR
COMMON /BLK3/DAY(2) ,TImE(2),CLSVAR
DATA NSCANS,NENT/0,)/
I£RH=0
i4SCANS=NSCANS'»'l

C CO;HVERT -FROM HHMM TO MM.
A I NTI M« OUTBUF (5) - (OUTBUF (5) / 1 00) *40

e IF FIRST TIME THROUGH, GO INITIALIZE TABLE.
IF (NSCANS.EQ.I) GO TO 900
DELTAT= (OUTBUF (4) -TABLE (4

,

nENT)) * I 440+M I NT I M-TABLE(5 , NENT

)

IF (DELTAT.LT.O) GO TO 960
IF (TABLE(6,«ENT).EQ.O) GO TO 910
IF (TABLE (6, NENT) .EQ.DELTAT) GO TO 920

C CHECK FOR TABLE FULL.
IF (NENT.EQ.MTAI) GO TO 950
NENT=NENT*I

C
900 DELTAT=0

TABLE(1 ,NENT)«0UTBUF(4)
TA3LE(2,NENT)=MINTIM
TABLE (3 ,N ENT) = NSCAN S-

1

910 TABLE(6,NENT)*DELTAT
920 TABLE(4,NENT)«0UTBUF(4)
930 TABLE(5,NENT)=MINTIM

IF (DEBUG.NE.U) GO TO 999
CALL OUTINT(NENT, I ,3,0)
CALL 0UTINT(TABLE(I ,NENT) ,6,4,0)
GO TO 999

950 CALL ERRPRTX I4,I2,MTA2,0,0,0,0) ,

GO TO 998
960 CALL ERRPRTC 14, 20,TABLE(4,imENT),TABLE(5, NENT) ,0,0,0)
993 IERR«I - '

999 RETURN
END

A-82

SUBROUTINE WRITMT

1 * NRITE FROM CORE TO A DEUICE
2 *
3 t JANUARY 17. 1975
4
5 * F0RTRAN4 CALLING SEQUENCE

=

6 * CALL WR I TMT c; I BUF . N . M . IERR . LUN >

7 *
8 * IBUF IS THE BUFFER CONTAINING THE DATA TO
9 * BE WRITTEN. IF M IS >0. THEN IBUF MUST
10 * CONTAIN ASCII DATA; OTHERWISE. IBUF MAY
11 * CONTAIN ANYTHING.
12 * N IS THE NUMBER OF WORDS TO WRITE IF
13 * M<0 OR N=0.: OTHERWISE, N IS THE NUMBER
14 4c OF ASCII CHARACTERS TO WRITE (IF M>0>
15 i: • IF M>0 AND N IS ODD, AN EXTRA SPACE WILL
le t BE WRITTEN ON THE MAG TAPE AS THE LAST
17 a . ASCII CHARACTER.
18 * N IS A FORMAT CONTROL WORD AS FOLLOWS

:

19 * M=<->. BINARY FORMAT)|c|cNOTE^M ONLY HAS**
20 * M«<0), SPECIAL FORMAT** REAL MEANING **
21 * M=<+), ASCII FORMAT ** FOR 7-TRK MT **
22 * lERR WILL BE SET <-> IF A NON-RECOUERABLE
23 * MAG TAPE ERROR WAS ENCOUNTERED > IF THE
24 * WRITE OPERATION WAS COMPLETED WITH NO
25 * ERRORS. IERR WILL BE SET TO ZERO CQ>
26 * LUN IS THE LUN ON WHICH TO WRITE.
27 * IF LUN IS MINUS. WORD 5 OF THE FIOT
28 * WILL BE SET TO ZERO AND RETURN WILL
29 * BE IMMEDIATE. THIS SIMULATES A REWIND
30 * OF DISK FILE ZERO.
31 *
32 **MaG TAPE FORMAT**
33 * 7-TRACK^
34 * M=-0. ONLY THE FIRST 12 BITS OF EACH WORD IN

A-83

35 * IBUF WILL BE WRITTEN ON THE TAPE. EACH
36 * FRAME OF THE TAPE WILL CONTAIN 6 BITS OF
37 * DATA BEGINNING WITH THE FIRST 6 BITS OF
38 t IBUF<i> FOLLOWED BY THE 7TH-12TH BITS OF
39 * IBUF<n AND 1ST-6TH OF IBUFt 2 > AND SO ON
40 * THRU THE 7TH-12TH BITS OF IBUF<N>.
41 t M«-. THE FIRST TWO FRAMES OF THE RECD WILL BE
42 * ALL rS <12 BITS). EACH 4 FRAMES AFTER
43 * THE FIRST 2 WILL CONTAIN A WORD OF 16 BIT
44 t. MEMORY AS FOLLOWS: <D=DATA BIT)
45 * DODDDD DDDDDD OODD©© 000900
46 % M=+. EACH NAG TAPE FRAME WILL CONTAIN ONE
47 * ASCII CHARACTER WITH ITS FIRST TWO BITS
48 t STRIPPED OFF.
49 * IE= SPACE=X'A0'«10100000=100000
50* • COMMA=X' AC '=10101 100=101100
51 * 1=X*B1 '=10110001=110001
52 * N=X'CE'=11001110=001110
53 * W»X'D7'=11010111=010111
54 ETCETERA
55 * 9-TRACK-
56 * HAG TAPE FRAMES 14HEN TAKEN TWO AT A TIME WILL
57 * BE A MIRROR IMAGE OF A WORD OF MEMORY.
58 *
59 t HOTE NO PARALLEL PROCESSING MAY TAKE PLACE WHEN
60 .t THE PROCESSOR IS OPERATIt^G WITHIN THIS SUB-
61 t ROUTINE. THIS SUBROUTINE WILL TAKE CARE OF
62 * NOT ALLOWING IT, THEREFORE THE USER OF THIS
63 :: PROGRAM NEED NOT WORRY ABOUT IT.
64 t"-

65 LIBR WRITMT
66 NTRY WRITMT
67 t
68 DO 10 EG'U 68
69 STAT EQU TO

A-84

"701
r o *
71 1 10 T TMTUK 1 1 n

1

UH 1 H cnnir UUL-

72 LUX LUN
7>5
''A PFLlTNn THF ni'^k.'?'

•7c: IMP'

r 0 n p
1 CO

1 r QTIJ0 1 V*

78 JMP RETURN
f

wnnoi' C'i,:n 0
1 1 P

& 1

(-•—>
Oil. FIQT+2
ov
Pel SET BUF LOC

1 ny M
1

1

ob i_-i_r.

0 i
r MiJ * PFMFMPFP MfinF

00 QTIJ O.Ct\ IF iiS^.I IMF KinT Ck'^r T T

0.7
CkC\ 1 ni.i

M11
*j pni IMT Tn c^pp

Ci i3 J
CI Q MnnF'?nuuc^ r

IMC Dfi> 1rUl KiriT CiCr- T T

HULI r i u 1 ASCI I

94 ADD FIOT CALC LAST BYTE LOC
95 CAX
9t- STW LhSTB SAUE LAST BYTE LOC
97 LDW SIGB GET TRIGGER BIT
93 LDB 1 GET LhST BYTE+1
99 STW ShUE SRUE LAST BYTE+1
\m LLB

STB 1 SET LAST BtTE+1 TO SPACE
10^' LDX N JUST IN CASE N IS ODD.
10". LDW 0 GET ASCII COUNT
104 ADD Nl BUMP IT BY ONE AND

A-85

105 SRL 1 FORCE IT EUEN FOR WC
106 P01 STW WDC-HT SET WORD COUNT
107 CLR ASSUME NOT SPECIAL
103 SNE MODE?
109 LDM SIGB SPECIAL
110 STW FIOT+6 NOT SPECIAL-SET FORMAT
111 LDM WCLOC ASSUME ASCII
112 SLE MODE?
113 ORI SIGB BINARY
114 STW FIOT+1 ASCII OR SPECIAL
115 DOIO FIOT WRITE THE BUFFER ON MT
116 STAT FIOT WAIT ON IT TO FINISH
1 17 LOW SAME
lis SAM DID ME CHANGE BUFFER
119 • JMP pe2 NO
120 LDX LASTB YES
121 STB t 1 REPLACE LAST BYTE+1
122 P02 LDX FIOT+S MT STAT TO IXR
123 CLR ASSUME NO ERROR
124 SXE ERRORS?
125 LOW SIGB YES
126 LDX I ERR NO
127 STW * 0 SET ERROR CODE
128 RETURN SMB R.RET
129 JSX R.RET RETURN TO F0RTRAN4
130 DATA POOL
131 :
132 SA«.'E DATA 0
133 LASTB DATA 0
134 SIGB DATA X ' 8000

'

135 WDCNT DATA 0
136 WCLOC DATA WDCNT
137 Nl DATA 1

138
139 FIOT RES 8

A-86

140 *
141 POOL DhTA i

142 IBUF DrtTH 0
143 H DhTA 0
144 M DhTA 0
145 lERR DrtTrt 0
146 LUN DhTn 0
147 t
14S END
BE

A-87

APPENDIX B

B-0

I

APPENDIX B: FORMAT OF RAW DATA INPUT TAPE

DENSITY: 800 f.p.i.

PARITY: Odd.

TRACKS: 9.

FORMAT: EBCDIC Characters.

LOGICAL RECORD LENGTH: 19 + 13* NVAR, where NVAR = the number
of voltage recording devices scanned by
the DAS.

BLOCKING FACTOR: 1.

NUMBER OF LOGICAL RECORDS: Variable

RECORD INTERPRETATIONS:

POSITIONS MEANING

1-12 twelve digits used as a header,

13-15 day of the year,

16-17 hour of the day,

18-19 minutes of the hour,

20-24 scanner channel number,

25 voltmeter function (M = milivolts,
V = volts)

,

26 polarity (+ or -)

,

27 over-range flag (0,1, or 2),

28-31 voltage reading,

32 characteristic for voltage reading

APPENDIX C

C-0

APPENDIX C: FORMAT OF THE 1108 COMPATIBLE OUTPUT TAPE

The following constitute tentative file formats for the RAYTHEON generated
UNIVAC 1108 compatible magnetic tape file. They are tentative in that not
all block types have been completely defined, and thus their representation
has been left open.

The tape file created by the Data Editor will be used to convey edited
data, comments inserted under control of the Editor, structured textual
information, transducer parameter updates, data order index maps, and any
other information required that will help to make the data tape self
documenting.

Data scans will be in order by time with the other types of information
inserted at that point in time with which they are concerned. Each data
scan, or other block of information, will be written out as two physical
records on the tape. The first record will have a fixed format and length
(currently 16 words) for all block types. The second record will vary in
length and format depending on the block type. Because the physical format
of the type is dependent upon 7-track versus 9-track and other representa-
tional variations (see documentation for subroutine WRITMT) , we give here
only the logical format. Numeric values will normally be representable
by 16 bits per character (dependent upon 7-track versus 9-track) . All
data values will be in binary.

The following defines the first record:

RAYTHEON WORD 16 BIT CONTENTS

1 Block Type

2 Sequence Number

3 Number of channels currently
assumed

4 Length of second record of
block

5-7 Twelve digit header stored in
314 format

8 Calendar day of year

9 Time to nearest minute in

HHMM format

10 Condition code check sum

11 Binary/formated switch

12-16 Available for future use.

C-1

Codes for the Block type are as follows:

1. Unstructed text

2. Structed text

3. Index mapping function

4. Transducer parameter update

5. Data scan

For the second record, we give here only the format for the data scan
block type. The second record of a data scan block will be 634 words
long. The first 317 words contain the scan data, while the second 317

words contain the corresponding status codes. The sequence order for

the scan data will probably be changed from time to time, but initially
will be (for CEB Channels only) that in which Channel I is stored in

the iTH location, 10<I<180. The remote channels may also be stored
in a similar manner by breaking the DAS code into two indices.

C-2

NBS-lUA (REV. 7-73)

11 Q nPPT OF COMMkJ&i 1 • W 1 w w rri iTj .

BIBLIOGRAPHIC DATA
SHEET

1. Fu 13 LiCA i ICJiN UK KhrtjRi NO.

NBSIR 75-735

^. Oov t Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE

The Total Energy Data Editor

5. Publication Date

Jiine 1975

o. rertormmg Organization Code

7. AUTHOR(S) .
, ^ „ ^ ^ ,Richard H, F« Jackson

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ^IP)

Department of Housing and Urban Development!
Office of Policy Development and Research

|

Washington, D. C. 20410
j

13. Type of Report & Period
Covered

Final

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less (actual summary of most si^ificant information. If document includes a significant

bibliography or literature survey, mention it here.)

This report documents the Total Energy Data Editor, a computer program developed
to process the data to be collected by the ongoing Total Energy Project at the
National Bureau of Standards. Consisting of a mix of FORTRAN and RAYTHEON machine
language subroutines, the Editor is a powerful, interactive program written to be
run on a Raytheon 704 minicomputer with two tape drives and a disk pack. Since
this document is also meant as a user's manual, it includes a dictionary of commands,
complete discussions and listings of individual subroutines, as well as an explana-
tion of the workings of the program.

17. KEY V'ORDS (six to twelve erfries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons)

Data editing; computers
J energy conservation

18. AVAILABILITY [X Unlimited

1 For Official Distribution. Do Not Release to NTIS

[
' Order From Sup. of Doc, U.S. Government Printing Office
Washington, D.C. 20402, SD Cat. No. Cl^

I
' Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

22, Price

USCOMM-DC 29042-P74

