
NBSIR 75-713

A File Management System for a

Laboratory Automation Facility

Peter S. Shoenfeld and Lawrence J. Kaetzel

National Bureau of Standards

Department of Commerce

Washington, D. C. 20234

June 1975

Final Report

Prepared for

Analytical Chemistry Division

Institute for Materials Research

National Bureau of Standards

Washington, D. C. 20234

NBSIR 75-713

A FILE MANAGEMENT SYSTEM FOR A

LABORATORY AUTOMATION FACILITY

Peter S. Shoenfeld and Lawrence J. Kaetzel

National Bureau of Standards

Department of Commerce

Washington, D. C. 20234

June 1975

Final Report

Prepared for

Analytical Chemistry Division

Institute for Materials Research

National Bureau of Standards

Washington, D. C. 20234

U.S. DEPARTMENT OF COMMERCE. Rogers C.B. Morton. Secretary

NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Acting Director

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. DISK DIRECTORY 2

3. WORK AREAS FOR OPEN FILES 2

4. GENERAL STRUCTURE 2

5. FMGR -- Executive Scheduling Routine 2

A. Entry Points 6

B. Vectors, System Parameters, and Reserved Areas. 6

C. Operation 7

D. Error Conditions 8

E. Batch Communication with FMGR 9

6. XFIN -- Executive Completion Routine 10

7. NXACT -- Executive Queue Processing Routine 10

8. NBS DISK ALLOCATOR 11

9. ACTION PROGRAMS 11

A. Linkage (Subroutine FMLINK) and Conventions . . 12
B. NEWID -- Establish New I.D. No 14
C. RMVID -- Remove an I.D. No 15
D. CREATE -- Establish a New File 16
E. REMOVE -- Remove a File 17
F. OPEN -- Make a File Available for Use 18
G. CLOSE -- Complete Usage of File 19
H. WRITE -- Output Data 20
I. READ -- Input Data 21
J. RESUME -- Restart a File where Left Off 22
K. DELETE -- Mark a File for Deletion 23
L. CHKPT -- Take Checkpoint 24
M. Others 25

10. SUBROUTINES 25

A. GDIR and PDIR -- Get and Put I.D. Directory . . 25
B. RETRY -- Retry I/O 26
C. DCHK -- Wait for Disk Directory 26
D. FSUM -- Form and Check Checksum in Work Area. . 26
E. HFIND -- Locate and Retrieve Record 0 27
F. DKINIT -- Initialize Disk Allocator 27

G. REDFIL and WRTFIL -- Read and Write
Archive File 27

i

TABLE OF CONTENTS (cont.)

Page

H. PFMD -- Print Directory 29
I. FLRET and RLCCM -- Communication with CCM ... 30

11. CONSOLE UTILITIES 32

A. INIT -- Initialize File Manager 33
B. NWID -- Establish new User I.D. from Console. . 34
C. RMID -- Remove I.D. No. from Console 35
D. DLET -- Mark File for Deletion from Console . . 36
E. CRFL -- Create New File from Console 37
F. RMOV -- Remove File from Console 38
G. . RLOT -- Roll out Files on Daily Archive Tape. . 39
H. RLIN -- Roll in Files from Daily Archive Tape . 40
I. SVFL -- Save File on User Archive Tape 41
J. INDEX -- Produce Index of User of Daily

Archive Tape 42
> K. RSFL -- Restore File from User of Daily

Archive Tape 43
L. DSPL -- Display File Manager Directory. 44
M. CLOS -- Close File from Console 45

12. OPERATING PROCEDURES 46

A. Initializing. . . i .•. 46
B . User I . D. ' s . . . 46

i- C. Deleting Files. . 46
D. Removing Files 46

- : E. Closing Files 46
' F. Archive Tapes and Reorganization 47

- G. File Manager Status and Indexing . 47

13. ACKNOWLEDGEMENTS. . 48

14. LITERATURE. 48

APPENDIX A: ERROR CODES 49

ii

LIST OF FIGURES

Figure Page

1. Disk Directory 3

2. Work Area for Open Files 4

3. Data Records. 5

4. PBLOCKS 13

5. PFMD Directory Printout 31

iii

A FILE MANAGEMENT SYSTEM
FOR A LABORATORY AUTOMATION FACILITY

The National Bureau of Standards' Analytical Chemistry
Division operates a centralized laboratory automation facility
built around a mult iprogrammed minicomputer. A file manager
was developed which allows the dynamic creation and manipu-
lation of sequential disk files. Although the system was
developed for real-time data acquisition, it is a general
purpose addition to the computer's operating system and may
be used for a variety of applications. A new operating
system function was developed to allow the queued scheduling
of programs. This is used to achieve more efficient multi-
programming. A comprehensive file utility package is also
provided

.

Key Words: Data acquisition; file system; laboratory auto-
mation; multiprogramming; operating system; real-time.

1. INTRODUCTION

The National Bureau of Standards' Analytical Chemistry
Division operates a centralized laboratory automation facil-
ity, using a UNIVAC Series 60 computer, formerly known as the
EMR 6135 (see 1) . A number of instruments are connected to
this computer. Each instrument acquires data in a series of
"runs." Six or more instruments may acquire data on a given
day, with some instruments performing thirty or more runs.
This data must be stored on magnetic disk and catalogued by
instrument and run. The file system described in this report
was built to fulfill this need. However, it is a general
purpose addition to ASSET IV (see 2), the computer's real-
time operating system, and may be used for other purposes as
well.

This package was designed to meet severe core constraints.
This was achieved by development of a new operating system
service to allow the queued scheduling of resident and non-
resident programs. This service is also of general use.

This system controls disk files consisting of backward
and forward linked lists of fixed length disk records. Each
such record consists of an integral number of physical disk
segments. The user may treat such files as if they were
series of fixed length records on magnetic tape. The names
of the "Actions" provided are suggestive of their functions
-- CREATE, OPEN, CLOSE, READ, WRITE, RESUME, etc. The essen-
tial functions of most routines are to transfer data between
disk and core and to maintain two types of table -- the Disk
Directory and the Work Areas for Open Files.

1

A console utility package is provided which facilitates
the transfer of file manager files to and from magnetic tape
and the maintenance of hardcopy records.

2. DISK DIRECTORY

This directory (Figure 1) is disk resident and is organ-
ized around User I.D. (Identification) Numbers. It contains
a "Record 0" entry for each currently existing file specify-
ing File Names, Logical Unit, Date last used, No. times used.
File Length, Record Length, etc. All files assigned to a
single User I.D. No. must share the same logical unit. Gen-
erally, User I.D. Nos. are associated with instruments and
files are associated with data acquisition runs. The "Record
0" entry for an individual file is so named because it is also
the zeroth record, or header record, for that file.

3. WORK AREAS FOR OPEN FILES

When a file is opened, the user must supply a nine word
work area (Figure 2) . This area is subsequently used to main-
tain pointers and other information needed for transferring
data (Figure 3) to and from the disk. This makes it unneces-
sary to refer to the disk directory except at the beginning
and end of a series of file operations. A checksum is main-
tained in the work area to guard against overwrites.

4. GENERAL STRUCTURE

All user calls are to an executive routine called FMGR
with the action desired indicated by an operation code. FMGR
queues the calls and dispatches them to the action programs
with the aid of two other executive modules, NXACT and XFIN.
There is an action program for each allowable operation code.

FMGR, NXACT, and XFIN may be used with subroutine FMLINK
to achieve queued scheduling of resident or nonresident pro-
grams. This makes it possible, when multiprogramming, to
create multiple simultaneous instances of a nonreentrant
nonresident program without keeping multiple copies in core.

5. FMGR

FMGR is the main resident scheduling routine for the file
manager. The three resident modules FMGR, NXACT, and XFIN are
strongly analogous to the three modules RIOS, FNR, and CRR
which compose the executive portion of the EMR 6135 ASSET I/O
(Input -Output) subsystem. FMGR is a reentrant system routine
and resides below the ASSET FENCE boundary.

2

Figure 1. DISK DIRIiCTORY

I.D. Directory Record 0

I.D. No. (1)

Logical Unit

Addr. 1st File

I.D. No. (2)

Logical Unit

Addr. 1st File

I.D. No. = -1

marks end

I.D. No. = 0

marks an
empty slot

Addr. Pointer
negative m.eans
no files on disk
for that I.D. No

Max. No. Segments
in I.D. Directory
in resident
location

DSIZE

Logical Unit for
I.D. Directory in
resident location
FLU

2

3

4

7

8

9

11

12

13

14

15

16

17

19

0

49

Forward Rec. Pointer (Initially -1)

Backward Rec. Pointer (Always -1)

Pointer to Last Rec. (Initially Rec. 0)

Pointer to Next File (-1 for Last File)

File Name (4 words)

Logical Unit

Date Created or

last Used
(3 words)

Delete
Flag No. Times Opened

File Length (records)

Rec. Length (words)

Addr. of Work Area
When File was
Opened

.

-1 if file\
not open /

I.D. No.

Not Used

User

Label

(30 words)

The Delete Flag (Bit 16, word 12)
is set to mark a file for deletion
when the system, is next reorganized

3

Figure 2. WORK AREA FOR OPEN FILES

Busy 16

Flag Logical Unit

Pointer to record 0

Pointer to current record

Pointer to previous record

Pointer to next record

Pointer to last record

File length (records)

Record length (words)

Check Sum (Sum words 0-8,
modulo 16 bits)

The busy flag is on when an action is

in progress.

The check sum is checked at the start o£
each action and reformed at the end of the
action, except that

The entire work area must be zeros going
into OPEN or RESUME and the entire work area
is set to zeros at the end of CLOSE.

4

Figure 3. DATA RECORDS

Word

n
Forward Record Pointer
(-1 on last record)

1 Backward Record Pointer

2

•

•

•

DATA

•

•

•

L-1

L= Record Length. Fixed for any given file.
Always a positive multiple of 50.

5

A. Entry Points

FMGR has four entry points for user calls.

FMGRl -- PBLOCK follows call; control returns after schedul-
ling. PBLOCK preceeded by a pointer to NP (No. of
parameters in PBLOCK)

FMGR2 -- PBLOCK immediately follows call; no return after
scheduling.

FMGR3 -- PBLOCK address in index register 1, control returns
after scheduling.

FMGR4 -- PBLOCK address in index register 1, no return after
scheduling.

File Manager PBLOCKS are generally similar to RIOS PBLOCKS.
They always contain a completion address and a completion pri-
ority. If there is no completion routine, FMGR should be
furnished a completion address of 0.

' B. Vectors, System Parameters, and Reserved Areas

FMGR maintains four vectors, each of which contains an
entry for each allowable action type. These vectors are
indexed by operation code. These three vectors are called
FMQUE, OPWORD, NORD, and ADTAB

.

FMQUE -- An Asset queue of PBLOCKS waiting for service from
the corresponding action program. PBLOCKS are
queued in priority order by ASSET routine QUEIT.

NORD -- Nonresident program number if action program is

nonresident, meaningless if action program is
resident.

OPWORD -- One bit flags.

Bit 16 - 1 if action uses disk directory, other-
wise 0.

Bit 15-1 during period when nonresident action
program scheduled but still nonresident,
0 at all other times.

Bit 14 - 1 if action program should remain perma-
nently resident after being scheduled the
first time. 0 if action program should
be removed from core when no PBLOCKS are
waiting

.

6

Bit 13 - 1 if action program is in use, 0 other-
wise, (action programs are assumed to be
nonreentrant)

ADTAB -- Action program starting address while program is
in core, 0 when program is not in core. The ADTAB
entry should be initialized at SYSGEN time i£ the
action program is permanently resident. Nonresident
action programs plant there starting addresses here
when they come in from the disk (Subroutine FMLINK)

.

Other Parameters and Reserved Areas

DFLAG -- 1 when the disk directory is in use, 0 otherwise.
Only one action which uses the directory is allowed
to proceed at a time. Action programs are respon-
sible for waiting for and setting DFLAG. Subroutine
DCHK is used for this purpose. DFLAG is turned off
by XFIN when an action program using the directory
has completed processing a call.

DSIZE -- Maximum number of 50 word disk segments in the I.D.
directory. Used in determining size of dynamic
buffer needed when reading I.D. directory into core
(Subroutines GDIR and PDIR)

.

FLU -- Logical unit of I.D. directory.

PRI -- Priority used for loading nonresident action pro-
grams .

FLMAX -- Maximum permissible file length, in disk segments.

FRES, POOL, and LPOOL -- A pool and stack arrangement furnish-
ing PBLOCKS to be used in loading nonresident action
programs. These PBLOCKS are obtained by system sub-
routine GETP and returned by system subroutine PUSH.

C . Operation

The program starts off, at each of its four entry points,
by initializing the index registers. XR 1 gets the PBLOCK
address, XR 4 gets the interrupt stack address (PROP) and XR 2

gets a "return code" -- 0 for no return (FMGR2 and 4), 1 for
direct return (FMGR2) , and 2 for indirect return (FMGR3)

.

The four entry paths come together at location FMGRA.
The PBLOCK busy bit is tested and set. The running priority,
used in queueing the PBLOCK and scheduling action program
execution is placed in word 1 of the PBLOCK. The value used
is either 0 or RPL (ASSET running priority level) depending

7

on whether the caller is below or above FENCE. The completion
address, if there is one, is then checked against the comple-
tion priority.

At location OPCD, XR 4 gets the operation code obtained
from the PBLOCK. At location FMIO, a decision is made as to
the disposition of the call. If the action program is in core
(ADTAB entry not 0) and if the busy bit is off (OPWORD bit 13)
the call will get immediate service and the busy bit is set.
This is indicated by zeroing the E register. Otherwise the
call will have to be queued for later service. In this case
a PBLOCK may be needed to load the action program so one is
obtained using system subroutine GETP. The address of this
PBLOCK is stored in the E register. A positive value in the
E register at this point indicates that the calling PBLOCK is
to be queued.

At location T, the return to the calling program after
scheduling is set up, if there is to be such a return. Action
taken depends on the return code in XR2 . If no return is
called for, the user is removed from the stack. If a direct
(PBLOCK in line) return is called for, the return address is
computed from the NP (no. of parameters) value furnished and
is placed on the stack. If an indirect return (PBLOCK address
in XRl originally) is called for we simply add one to the
address already on the stack. If any return is called for,
AMPN (active middleground program number) and RPL values are
placed on the stack as required by ASSET protocol.

At location T30, the E register is tested to see if we
are to process this call directly or queue it. If the E

register is zero, the call gets directly processed. The ADTAB
value is placed in word 3 of the calling PBLOCK which is then
used to schedule entry to the action program via SRQUE. On
the other hand, if the E register is not 0, the calling PBLOCK
is placed on the appropriate FMQUE queue by QUEIT. If the
action program is not in core (ADTAB = 0) and if it has not
been scheduled for loading (bit 15 of OPWORD = 0) its loading
is scheduled via RMAS4 using the PBLOCK whose address was in
the E register. In this case bit 15 of OPWORD is also set.
If the action program is already in core or already has been
scheduled, the PBLOCK whose address was in the E register will
not be needed and is released via system subroutine PUSH.

D. Error Conditions

FMGR produces console error messages via system sub-
routine ALMS with the PBLOCK address typed out.

ERROR 061 -- Calling PBLOCK busy. Control goes to Job Con-
trol .

8

ERROR 062 -- Caller below FENCE has furnished completion
address above FENCE with priority 0. Control
goes to Job Control.

ERROR 063 -- Completion address below FENCE furnished with •

nonzero priority. Processing proceeds with
priority changed to zero.

ERROR 064 -- No PBLOCKS available for scheduling loading of
action program. Control goes to Job Control.

E . Batch Communication with FMGR

Since programs running under control of the Batch Monitor
may not directly call programs in foreground (like FMGR)

,

special procedures are required for file manager operations
within such programs. Two routines are involved; FMGR2 and
FMBPC.

A batch program performs file manager operations by issu-
ing a call to FMGR2 using the same calling sequences as are
used in calling the foreground version. However, the call to
FMGR2 from the batch has the effect of invoking the batch
library routine FMGR2 which is not the same as the routine
reached through the foreground entry point FMGR2 . FMGR2
copies the PBLOCK along with the contents of the locations
pointed to by addresses in the PBLOCK into the areas FMBPPB
and FMBA. This copying is directed by a table in FMGR2 which
is indexed by operation code. FMGR2 calls FMBC via an SMM
(Store Monitor Master) trap. FMBC then calls FMGR to begin
the actual file operation. Return is made to FMBC which then
passes control back to FMGR2 . FMGR2 then copies the information
from FMBPPB and FMBA back into the calling program and returns
to the calling program.

The routine FMBC is in the protected "resident batch
area." This is the portion of memory occupied by batch pro-
cessor routines throughout the entire period when the batch
monitor is active, as opposed to that area which is used by
the batch monitor but may be checkpointed when foreground jobs
need core.

The resident batch routine)INIT was modified to unpro-
tect areas FMBPPB and FMBA so that information could be passed
in from the unprotected batch area.

The size of area FMBA presently places a restriction to
500 words on the maximum record length available when access-
ing the file manager from the batch monitor.

Status codes returned from batch calls to FMGR2 have the
same meanings as in foreground operation with one exception;

9

a code of -16 means that there was an error in the move-
directing table in FMGR2 which would have resulted in moving
more data that could be accommodated in FMBA.

6. XFIN

XFIN is the resident completion routine called by all
action programs after completing processing for a given call.
It is analagous to CRR, which is the completion routine in
the I/O subsystem. XFIN is a reentrant system routine and
resides below the FENCE boundary. It is entered from an
action program with the PBLOCK address in XRl , the operation
code in XR4 , and the completion status in the E register.
Its functions are:

1. DFLAG is turned off, if OPWORD bit 16 indicates that the
completing action uses the disk directory.

2. The completion status is placed in the PBLOCK and the
PBLOCK threading cell is zeroed.

3. The completion address and priority are set up to schedule
the completion routine if the completion address is not
0. If the completion priority is zero, the priority in
word 1 of the PBLOCK is left unchanged. If the completion
priority is not zero and the completion address is below
FENCE the priority in word 1 is zeroed. Otherwise, the
completion priority replaces the priority in word 1.

4. The completion routine, if there is one, is scheduled via
SRQUE

.

XFIN terminates by jumping to NXACT which initiates
processing of the next call on the queue.

7 . NXACT

NXACT is the resident routine which initiates processing
of the next call on queue for any action or terminates process-
ing if the queue is empty. It is analogous to the FNR (Find
Next Request) program in the I/O subsystem. It is called from
XFIN and at the beginning of nonresident action programs when
they are first loaded in core. It is called with the appro-
priate operation code in XR4. NXACT is a reentrant system
routine and resides below the FENCE boundary. Its functions
are

:

1. FMQUE is checked. If the queue is not empty, the top
PBLOCK is removed. The action program address is obtain-
ed from ADTAB and placed in word 3 of the PBLOCK. The
action program is then scheduled via SRQUE.

10

2. If the queue is empty, the busy bit (OPWORD bit 13) is
turned off. Bit 14 of OPWORD is then tested to see
whether or not the action program should be removed from
core. If removal is indicated, the core formerly held
by the action program is released via PUT and the ADTAB
entry is zeroed.

NXACT terminates by calling JC (Job Control)

.

8. NBS DISK ALLOCATOR

This program is used by the file manager to obtain and
return disk space. Calling sequences are as follows:

To obtain disk space

CALL QUEDRM(0,0,PRI1,GETDRM,LU,WC,DADD,PRI2) where

PRIl ignored
GETDRM is an external symbol.
LU = disk logical unit
WC = number of words desired
DADD = disk address, on return (1 word).
PRI2 ignored

To release disk space

CALL QUEDRM(0,0,PRI1,RTNDRM,LU,WC,DADD,PRI2) where

PRIl, LU, WC, and PRI2 are as above
RTNDRM is an external symbol
DADD = address of disk area to be released.

The reason for the ignored calling sequence parameters
is that this is a compatible replacement for an earlier
package. In both cases, a negative DADD value is returned
to indicate failures.

9. ACTION PROGRAMS

Action programs may be either resident or nonresident.
A resident action program is loaded above FENCE at SYSGEN
time with its starting address in ADTAB. Only those actions
which are used very frequently (READ and WRITE) should be
made resident. Nonresident action programs plant their
addresses in ADTAB and call NXACT to process waiting calls
when they first arrive in core. Setting bit 14 of OPWORD at
SYSGEN will cause a nonresident action program to remain
permanently resident after it is loaded.

11

A. Linkage and Conventions

A resident action program whose starting address was
labeled READ would begin execution with

ENT READ

READ JMP *+l

I£ the same program were made nonresident and had oper-
ation code 07 it would begin like this

OC VAL 0 7

INIT CALL FMLINK(READ,OC)

READ JMP *+l

END INIT

When the program was loaded, subroutine FMLINK would be
called. FMLINK first returns the PBLOCK used in loading the
program to stack FRES by means o£ system subroutine PUSH. It
then plants the starting address, in this case READ, in the
correct entry of ADTAB, as determined by OC . It turns off the
scheduling bit (bit 15) in OPWORD and calls NXACT to initiate
processing of the calls waiting on queue. In this case, the
action program would be entered at location READ each time a
call is to be processed.

Action programs expect XRl to contain the PBLOCK address
when entered at the starting address-. Action programs generally
use XRl to point to the PBLOCK and XR4 to point to the Open
Files Work Area internally. Action programs use the priority
obtained from word 1 of the calling PBLOCK to schedule I/O and
disk allocator operations. Action programs using the disk
directory call subroutine DCHK to delay execution until the
directory is available and to set DFLAG to indicate that the
directory is tied up. All action programs terminate by, calling
XFIN with the PBLOCK address in XRl, the operation code in XR4
and the completion status in the E register.

12

r-H (U

2: f—

1

0 ^1

u is

w
w CT> W

Q •

w • 0
Q

w
a:& 00 nJ w w

CO Q • pjl

w 0 • 0 <
ec: 0

Q W
(-U

W 0

CQ

w
ni I-U

1—4 vO 0) Uh0 0
*"

>^
4J t/)

w H t/) t/)

^ <L) W
0 LD 4-> 0 Uh
hJ <D H <u 0 0 Ph

4-> Hi

P P. P in pq

g (H

^ <D 0 0 0 w w w
4-> H 4-1 H •H cu Uh

t/5 (/))-> t/i 4-> 0 4-> 0 i-i • 0 < < lU
>^ Qi <D <D Is

in t/5 rH I/) r-i I—

I

PQ

—
w 0 0

(J (J

0
bO IS

w 0 • 0 <
Pi

w
I-] • t-i

• p-1 w W U U
W Q • PQ w iz:

• 0 < <
C_5

Q I—

1

1—

1

CO
1—

1

0 -p
• 0 •H -H

W) c
0 D

r-H

rt

»

—

• 0 •H -H

0

0 r—

4

CNl K5 vO 0 1—

i

0 * 1—

1

I—

1

I—

(

1

O
U

o

10

c
•H

M
c
O
O

in

i—f

O

rH W
•73 XI (I)

•H -H

o o
IS IS

IS IS
I-I 1—1

cd OS

<+-i II

t>0

o
ro

03 >

in

•H
in

<^ (=5

> i-H

rH P
rt O

t/) (A

.-3 W
PQ Ph
< D^ PQ

^ <

w u
PQ
< O

w
<

Di 12: H
W W t-H

O Is:

PQ O O
W
<

<

Q

in

H
Oil

O
Ph

03

U
•H

<
C/3

o
OO
rH

o
I-H

P-

o
o

<
CO

o
o
o
CNl

Ph

PQ

<

vO
O
O
O
to

^ E-

n:
cj

J CO

u oo
iH

pe;

CI,

o
o

PU P4
a:J u
CO

p-i

CO
o
1-1

O

p^
p.,

Ph

PQ

<
CO

o
o
o

O
o

o
o

P-1

X
CO

o
o
be-

o
o

IT
P-. pj

_1 CO

u o
cr.

13

ACTION DESCRIPTION

NAME: NEWID

TYPICAL CALL: CALL FMGR2 (0,0,PRI ,0,CA,00,STAT,0, ID,LU)

FUNCTION: Establishes new entry in the I.D. Directory.

Searches I.D. Directory for a vacant slot and
establishes new entry using the I.D. No. (ID) and
Logical Unit (LU) furnished.

COMPLETION STATUS CODES:

+1 - Success
-1 - I/O Error
-4 - No room in I.D. Directory
-5 - Duplicate I.D. No.
-9 - Illegal (Negative) I.D. No.

ACTION DESCRIPTION

C. NAME: RMVID

TYPICAL CALL: CALL FMGR2 (0 , 0 , 0 , 0, CA , 01 , STAT , 0 , I . D
.

)

FUNCTION: Searches directory for ID and removes ID
by writing zeros in the 3 word directory
entry

.

COMPLETION STATUS CODES:

-1
-6

-10
+ 1

lOST
MS ST
FEST
OKST

I/O Error
ID NOT IN DIR.
FILES EXIST
OK STATUS

15

ACTION DESCRIPTION

NAME: CREATE

TYPICAL CALL: CALL FMGR2 (0 , 0 , PRI , 0 , CA , 02 , 0 , ID , NAME ,DATE

,

LABEL, WC)

FUNCTION: Establishes a new Record 0 (Header) entry in
the Disk Directory.

The I.D. Directory is read and searched for a match-
ing I.D. No. The list of files attached to that I.D. No.
is followed to the end. The disk allocator is called to
obtain a new 50 word segment and the new Record 0 is built
in that segment with values as follows:

Forward Record Pointer = -1

Backward Record Pointer = -1

Last Record Pointer -> Record 0
Forward File Pointer = -1

Name - from PBLOCK
Logical Unit - from I.D. Directory
Date - from PBLOCK, ignored if 1st word = 0

No. Times Opened = 0

Delete Flag = off
Length = 0

Word Count (Rec. Length) - taken from PBLOCK (WC)

;

rounded to high multiple of 50 with a minimum of
50.

Pointer to Work Area = -1

I.D. - from PBLOCK
Label - from PBLOCK, ignored if 1st word = 0

The new Record 0 entry is written out. The proceed-
ing Record 0 entry has its Forward File Pointer updated
and is rewritten. If this is the 1st file for this I.D.
No., the disk pointer in the I.D. Directory is updated
and the I.D. Directory is rewritten.

COMPLETION STATUS CODES:

+1 - Success
-1 - I/O Error
-4 - Disk Allocator Error
-5 - Duplicate Name within I.D. No.
-6 - I.D. No. not in Directory

16

ACTION DESCRIPTION

E . NAME : REMOVE

TYPICAL CALL: CALL FMGR2 (0 , 0 , PRI , 0 , CA , 03 , STAT , 0 , ID

,

NAME)

FUNCTION: Removes a Record 0 entry from the disk direc-
tory and deallocates all disk assigned to the
file.

The I.D. Directory is read and a matching entry
found. The list of Record 0 entries attached is searched
using 2 alternating internal buffers. When a match is
found, both the matching Record 0 and its predecessor
are in core.

If the matching Record 0 is not first on the list,
its Forward Record Pointer replaces that of its prede-
cessor and the predecessor is rewritten. If the matching
Record 0 is first on the list, its Forward Record Pointer
replaces the disk pointer in the I.D. Directory and the
I.D. Directory is rewritten.

Deallocation, via the disk allocator, starts with Record
0 and proceeds down the file until one of the following
conditions is met:

a) Forward Record Pointer negative.

b) Last Record (as indicated by Record 0)
deallocated.

c) No. of records deallocated = File Length (as
indicated by Record 0)

.

COMPLETION STATUS CODES:

+1 - Success
-1 - I/O Error
-6 - Couldn't find matching I.D. No. and Name
-7 - File Open

17

ACTION DESCRIPTION

NAME : OPEN

TYPICAL CALL: CALL FMGR2 (0 , 0 ,PRI ,0 , CA , 04 , STAT , WA , ID

,

NAME , DATE, BUFFER)

FUNCTION: Builds an Open Files Work Area in User
Provided Area (WA)

The matching Record 0 entry is found and read into
BUFFER. If there are no data records on the file, the
disk allocator is called to reserve disk space for the
first data record. The Work Area is set up with values
as follows:

Logical Unit - from Record 0
Pointer to Record 0 -> Record 0
Pointer to Current Record -> Record 0
Pointer to Previous Record = -1

Pointer to Next Record - from Record 0 or Disk
Allocator

Pointer to Last Record - from Record 0
File Length - from Record 0
Record Length - from Record .0

Record 0 is updated as follows:

Date - from PBLOCK, ignored if 1st word = 0

No. Times Opened - Incremented by 1

* Pointer to Work Area -> Work Area
Forward Record Pointer - from Disk Allocator if
previously -1^ left alone otherwise

COMPLETION STATUS CODES:

+1 - Success
-1 - I/O Error
-2 - Work Area not initialized to all zeros
-4 - Disk Allocator Error
-6 - Couldn't find matching Name ^ I.D. No., could

also result from an I/O error in the search
-7 - File already open.

No essential use is made of this pointer. The Work Area
may move around in core between an OPEN and a CLOSE.

18

ACTION DESCRIPTION

G. NAME: CLOSE

TYPICAL CALL: CALL FMGR2 (0 , 0 , PRI , 0 , CA, 05 , STAT , WA

,

- BUFFER)

FUNCTION: To terminate the file at its "last record"
and to update Record 0 from the Work Area
(WA) . At completion, WA will be all zeros
and BUFFER will contain Record 0.

The "last record", as indicated in the Work Area
(WA) is read into BUFFER. If the Forward Record Pointer
is not negative, the record pointed to is released by
the disk allocator and the "last record" is rewritten
with its Forward Record Pointer changed to -1.

Record 0 is read into BUFFER and modified as
follows

:

Last Record Pointer - from Work Area Pointer
to Last Record

Length - from Work Area

Pointer to Work Area = -1 (this indicates that
file is closed)

Finally, Record 0 is rewritten and the Work Area is

cleared.

COMPLETION STATUS CODES:

+1 - Success
-1 - I/O Error
-2 - Work Area busy or has incorrect check sum

19

ACTION DESCRIPTION

NAME: WRITE

TYPICAL CALL: CALL FMGR2 (0 , 0 ,PRI , 0 , CA , 06 , STAT ,WA,
BUFFER)

FUNCTION: Contents of BUFFER are written onto next
record.

A new record is obtained from the disk allocator.
The contents of BUFFER are written onto the record indi-
cated by the Work Area (WA) "Pointer to Next Record."
The pointers in the record written are as follows:

Backward Record Pointer - from Work Area pointer to
Current Record

Forward Record Pointer - from disk allocator

The Work Area is modified as follows:

Pointer to Current Record = former Pointer to Next
Record.

Pointer to Previous Record = former Pointer to
Current Record.

Pointer to Next Record - from disk allocator

Pointer to Last Record = former Pointer to Next
Record

COMPLETION STATUS CODES:

+1 - Success
-1 - I/O Error
-2 - Work Area busy or has incorrect check sum
-4 - Disk Allocator Error
-8 - Attempt to write with current record last

record
-12 - Attempt to write when File Length has reached

maximum allowable value.

20

ACTION DESCRIPTION

I . NAME : READ

TYPICAL CALL; CALL FMGR2 (0 , 0 , PRI , 0 ,CA, 07 ,STAT , WA,
BUFFER)

FUNCTION: Reads next record into BUFFER.

The record indicated by the Work Area (WA) "Pointer
to Next Record" is read into BUFFER. If this was the
last record, one more record is obtained from the disk
allocator and the Forward Record Pointer in the record
just read is updated to point to this additional record.
The Work Area is modified as follows:

Pointer to Current Record = former Pointer to Next
Record

Pointer to Previous Record = former Pointer to Current
Record

Pointer to Next Record = Forward Record Pointer from
i record read if this was not

last

.

= address obtained from disk
allocator if record read was
last

.

COMPLETION STATUS CODES:

+1 - Success
+2 - Success, record just read was last record on

file
-1 - I/O Error
-2 - Work Area busy or has incorrect check sum
-4 - Disk Allocator Error
-8 - Attempt to read past last record on file

21

ACTION DESCRIPTION

NAME: RESUME

TYPICAL CALL: CALL FMGR2 (0 , 0 , PRI , 0 , CA, 08 ,STAT ,WA, ID,
NAME, DATE, BUFFER)

FUNCTION: Builds on Open Files Work Area in WA, with
pointers positioned at end of the file. At
completion, BUFFER contains Record 0.

The matching Record 0 entry is found and read into
an internal buffer. The last record is read into BUFFER.
An additional record is obtained from the disk allocator.
The Work Area is set up as follows:

Logical Unit - from Record 0

Pointer to Record 0 -> Record 0

;
Pointer to Current Record -> last record
Pointer to Previous Record - from Backward Record

Pointer of last record
j Pointer to Next Record - from disk allocator

Pointer to Last Record -> last record
File Length - from Record 0

Record Length - from Record 0

Record 0 is updated as follows:

Date - from PBLOCK
No. Times Opened - Incremented by 1

Pointer to Work Area -> Work Area

The last record is updated as follows:

Forward Record Pointer - from disk allocator

Finally Record 0 and the last record are rewritten and
Record 0 is copied into BUFFER

If Record 0 = last record, the action resulting from
RESUME is the same as from OPEN

COMPLETION STATUS CODES:

+1 - Success
-1 - I/O Error
-2 - Work Area not initialized to all zeros
-4 - Disk Allocator Error
-6 - Couldn't find matching Name and I.D. No., could

also result from an I/O Error in the search.
-7 - File Already Open

22

ACTION DESCRIPTION

NAME: DELETE

TYPICAL CALL: CALL FMGR2 (0,0,0,0,CA,09,STAT,0, ID,NAME)

FUNCTION: Finds Record 0, deletes file by setting bit
16 of word 12 and rewrites Record 0.

COMPLETION STATUS CODES:

+1 - Success
-1 - I/O Error
-3 - File Already Deleted
-6 - No such ID in Directory

ACTION DESCRIPTION

NAME : CHKPT

TYPICAL CALL: CALL FMGR2 (0 , 0,PRI , 0,CA, 11 ,STAT,WA)

FUNCTION: Updates the last record indications in Record
0 from the Work Area to establish a checkpoint.
If system is interrupted after a CHKPT opera-
tion with the file open and later restored,
the restored file will be truncated at the
point of the CHKPT.

Record 0 is read into an
as follows:

Last Record Pointer
to Last Record

Length - from Work Area

Record 0 is then rewritten.

internal buffer and changed

- from Work Area Pointer

COMPLETION STATUS CODES:

. +1 - Success
-1 - I/O Error
-2 - Work Area busy or has incorrect check sum

24

M. Others

File Manager's flexible design makes it easy to define
and build in additional action types. Such additions cur-
rently contemplated include:

REWRITE . Writes a record over an existing record with
work area pointers positioned somewhere other than at the end
of the file.

BACKSPACE . Repositions work area pointers one record
behind their current position.

REWIND. Repositions work area pointers at beginning of
file. This would eliminate need of an extra OPEN and CLOSE
in some applications.

SKIP-TO-END . Repositions work area pointers at end of
file. This would eliminate need of an extra CLOSE and RESUME
in some applications.

TRUNCATE . Closes a file with the current position of the
work area pointers becoming the end position. All succeeding
records would be discarded.

EXCISE . Discards a single record at the current work
area pointer position, linking up the records at the previous
and next positions.

10. SUBROUTINES

Subroutine FMLINK is described in the section on action
program linkage and conventions. Other subroutines written
specifically for the use of File Manager Action Programs and
console utilities are described below.

A. GDIR and PDIR

GDIR is a nonreentrant library subroutine which obtains
a dynamic buffer and reads the I.D. Directory into it. The
calling sequence is:

CALL GDIR(DLOC,MAX)

On return, DLOC will contain the address of the buffer contain-
ing the I.D. Directory and MAX will contain the number of words
in the Directory - 1. This is useful in setting up a loop to
search the Directory. The A register will contain the I/O
status on return. The value of MA.X and the size of the buffer
are computed from system parameter DSIZE.

25

PDIR is a nonreentrant library subroutine which rewrites
the I.D. Directory from a dynamic buffer and releases the
buffer. The calling sequence is:

CALL PDIR(DLOC)

On call, DLOC should contain the buffer address. On return,
the A register will contain the I/O status.

jB. RETRY

RETRY is a nonreentrant library subroutine used to retry
an aberrant I/O operation up to ten times before giving up
and going to an error routine. The calling sequence is:

CALL RETRY (STAT, 10, ERR)

If STAT is nonnegative, control proceeds to the next
instruction. If STAT is negative, control goes to location
10 the first nine times RETRY is called and to ERR the tenth
time. RETRY maintains its own counter which is reset on a
nonnegative status and before jumping to location ERR.

C. DCHK

DCHK is a nonreentrant library s.ubroutine used to delay
execution until DFLAG = 0 (Directory free) and then to set
DFLAG = 1 (Directory busy) . It operates by repeatedly calling
library subroutine DELAY. The calling sequence is:

CALL DCHK

D. FSUM

FSUM is a reentrant subroutine used to form and check
the checksum in an open files work area. It is normally
called at the beginning and end of action programs. The
calling sequence is:

CALL FSUM

On call, the work area address should be in XR4 . The
sum in word eight of the work area is saved. A new sum of
words zero through seven is formed, ignoring overflow, and
stored in word eight. The old sum and new sum are compared.
If they are the Same, a +1 is returned in the A register.
If they are different, a -1 is returned in the A register.

FSUM is resident and reentrant.

26

E. HFIND

Subroutine HFIND is used to locate and retrieve Record
0 of a file, given the file I.D. No. and Name. The calling
sequence is

:

CALL HFIND(ID,NAME,LU,AD,BUF)

ID = I.D. No. of file on call.

NAME = Name of File on call.

LU = Logical Unit on which file is located on return.

AD = Disk address of Record 0 on return.

BUF should be a 50 word buffer which will contain Record 0 on
return.

HFIND operates by first searching the I.D. Directory and
then searching the list of Record 0 entries attached to the
matching I.D. No. It returns a status in the A register:

A reg. = +1 means success

-1 means no matching I.D. No.

-2 means no matching Name for this
I.D. No.

-3 means file deleted. In this case
all parameters are returned nor-
mally.

-4 means I/O error.

F. DKINIT -- Initialize Disk Allocator

Subroutine DKINIT is used to force a null condition on
the NBS Disk Allocator's core resident tables when initial-
izing or reorganizing the file manager. The calling sequence
is

:

CALL DKINIT

G. RDFIL and WRTFIL -- Read and Write Archive File

An archive file is a magnetic tape containing copies of
a variable number of File Manager files. Such tapes begin
with a fifty word volume header label, followed by an E.O.F.,
and end with a fifty word volume trailer label. A detailed
description of these labels is available in the documentation

27

for the NBS LABGEN program. Each File Manager file copy con-
sists of a header record, a variable number of data blocks,
and finally an E.O.F. The header record is fifty words long
and contains a copy of Record 0. The data block length is
the least multiple of the file's record length which is greater
than or equal to 1000. Each data block is filled with copies
of File Manager records. However, the last data block may be
only partially filled. The forward record pointer of the last
record in each data block is set to -1 and the forward record
pointer of all other records is set to +1.

Subroutine WRTFIL is used to transfer a file from the
File Manager to an already positioned archive tape. The
calling sequence is:

CALL WRTFIL CIFLMAX, ID, LU,LUTAP,IRECZ,ISTAT)

where

IFLMAX = Maximum number of disk segments to be transferred.

ID = I.D. number for file.

LU = Logical Unit for file.

LUTAP = Logical Unit for tape drive.

IRECZ = Record 0

ISTAT = Status on return' •

The file is transferred with transmission being termi-
nated and an E.O.F. written when IFLMAX is exceeded or when
any of the following end of file conditions is recognized:

i. File Length specified in Record 0 reached.

ii. Last record reached, as specified in Record 0.

iii. Record reached with forward pointer negative.

Status codes are returned in ISTAT with the following meanings:

+1 - transfer completely successful

-1 - tape I/O error

-2 - file contains no data; Record 0 and an E . O.F. are
written on tape.

-3 •- Word Count specified in Record 0 greater than 1000.

28

-4 - out of range disk address

-5 - IFLMAX exceeded, an E.O.F. is written

-6 - end of file conditions inconsistent, an E.O.F. is
written

.

Subroutine REDFIL is used to transfer a file from a
positioned archive tape to the File Manager. The calling
sequence is

CALL REDFIL (LUTAP, IRECZ, ISTAT, IFMRS) where

LUTAP == Logical Unit of tape drive.

IRECZ == Record 0.

I STAT == status on return.

IFMRS == File Manager Status on return
Manager error.

if there is a File

The file is transferred with transmission normally termi-
nating when an E.O.F. is reached on the tape. Status codes
are returned in ISTAT with the following meanings:

+1 - transfer completely successful.

-1 - tape I/O error.

-2 - File Manager error; IFMRS will contain File Manager
status code.

-3 - Word count in Record 0 greater than 1000.

-4 - Delete flag set in Record 0, transfer not effected.

-5 - Reached end of block without finding record with
forward pointer = -1.

H. PFMD -- Print Directory

This subroutine is called by console utility program DSPL
to print out formatted Record 0 images. The calling sequence
is

CALL PFMD (PENT)

where PENT is an I.D. directory entry in core. PFMD will
print Record 0 for each file associated with the I.D. Number

29

referenced on logical unit 14. Sample output is shown in
Figure 5. If no files are present for that I.D. number, the
message

NO FILES FOR THIS ID

is printed.

If an I/O error occurs the message

ERROR 172 177764

is typed on the console teletype. When Record 0 is read in
from disk, the backward pointer is checked, since it should
always be -1. If this is not the case the message

RECORD ERROR... FILE POINTERS ARE INVALID

is printed.

I. FLRET and RLCCM -- Communication with CCM

These two subroutines are used by console utility programs
operating under control of the Command Control Monitor (CCM)

.

RLCCM is used to reset the CCM busy flag (CCMBSY) , which
has been made external, without returning to CCM. This allows
the operator to intitiate further CCM actions from the console
teletype during long file searches, printouts, etc. The call-
ing sequence is

CALL RLCCM

FLRET is used to return to CCM from a File Manager con-
sole utility. The calling sequence is

CALL FLRET with a status code in the A register.

If the status is negative, ERROR 172 is typed with the
status. Control then goes to CCMRET. CCM will type OK if
the status was positive.

30

Figure 5. PFMD Directory Printout

FItF MANARE" OIPECTORY PAr,E 1

USER LH^' - FILE NAME - FILE OATF USAGE LFNGTH WHWr FLAGS
ID UNIT LEG CODE F?UM NO ADP CPDMT n|. np

510 37) OA Pi nil 2^3 12*5 1*^17 I 1 IPC
USER LABEL
Pl445?5 H-iTlJ P73177 ^446l(7i le-'SlPi 1M557 Pip(Pi?!i;i(5i ciCTClPiC^i?! (7i(?|Pif»oiP WDfTlPiP-f^

("P'^'^C^^C" 7^I?0C^CT (^PipC»t^!^ ««t^l^C»fflP< ffl(^nt10O P)PIC^0C!W pj1?t^(?'^ |7(^f"i7t^n

0C^0^(^0 t^^lCKa^ P^PK^WF n^C^(^(^f^ ^PCTf^^C^ l^CC^f^CCT ppOPIi^CI P1H??00 C^RWC'^n C^n[^(»Cir^

954 3C1 HH PAROM 126 Q 1 1 2 54 5C^ 2

USER LABEL
170f1f»Pi 14 '-1 155 017672 Pi44121 iSlfilPl P!7l3Ci1l7 nc«PlPiP)R PC^pidPiPl CI a 144 ?ni(?(?'5!'

BPipt^pp !^?^P,1P (^Pip0(^pi c^i^pppc t^pc^ppp pnri^pip! (?p!^0ppi rpi0i^?,0 p^wpi^ti ncspspn

pppppp nP'^c^i^p 00PIR0P! c^pnfflpiw pnpCTPf* t^t^Rpipp P(?!^pi00 P!PP!PPI0 nrr^ppy 7i^i^<7i<^<^

956 3CT OA P 2386 253 123 212? 1 34 5?
USER LABEL
iwpipppi I4r)(256 PI07674 PI44341 l5(7|465 ?i3P4l7 0216(^6 P>CT0P)77l P40144 i?n0033

00i30!^l BBf^pPP P0?10P)P 0!:^0P00 P00!*00 fT0C»!^P 7^^100^
000000 003030 P00000 00f^000 ffl0'^000 00(^620 000000 000000 00000(^ l^i^^l^P"!

956 30 OA 1 2386 253 123 2138 I 34 50
USER LAPFl
100000 14C1256 007674 044341 150720 01 4177 ("21606 000'7lPil PI401 44 000033
000000 000001 000000 0000^0 000000 000000 000000 000000 000000 000000
0e*000PI (?0;^pii:^pi 000000 000000 000000 000620 000000 000000 000000 0000P0

956 30 OA 3 23R6 253 123 2141 1 34 50
USER LABEL
100000 140256 007674 044341 160204 073557 021606 000003 040144 000033
000000 00^001 000000 fl000CT0 0000P0 000000 000000 000000 0000r^0 00000PI
000000 00'^000 000000 000000 0f*0000 000620 000000 000000 000000 000000

956 30 OA 0 2367 253 123 221P 1 34 50
USER LAPEL
100000 14.3256 007674 044342 1 46125 051037 021607 000000 040144 9100033

000000 00.^001 000000 000000 000000 (5C10^C«0 000000 000000 000000 000000
00000CT 00^0010 000000 0000CT0 000000 000620 000000 000*00 0000r'0 000000

956 30 OA 0 2388 253 125 1758 1 34 50
USER LABEL
100000 140256 007674 044527 16501''3 054237 021610 000000 040144 000033
000000 00^001 000000 000000 000000 000000 000000 000000 000000 00000C"

000000 00^^000 000000 000000 000000 000620 000000 000000 000000 000000

956 30 OA 2 2389 253 125 1828 1 34 50
USER LABEL
100000 14(;)256 007674 044530 1 52010 050617 02161 1 000002 040144 000033
000000 000001 000000 000000 000000 000000 000000 000000 000000 000000
000000 00000W 000000 000000 000000 000620 000000 000000 000000 000000

956 30 OA 3 2389 253 125 1829 I 34 50
USER LABEL
100003 14^)256 007674 044530 152102 012457 021611 000003 040144 000033
000000 00-^0^1 000000 000000 000000 0W0000 000000 000000 000000 00000(^
000000 0000 '^0 000000 000000 000000 000620 000000 000000 000000 000000

31

11. CONSOLE UTILITIES

All file manager utilities are accessed via CCM (Command
Control Monitor), and run at priority 13. Utilities having a
long execution time release CCM by calling RLCCM (Release CCM)
after console inputs, and type descriptive messages when fin-
ished. All error diagnostics are produced through the utility.
Shorter utilities terminate by calling FLRET (file return) and
passing the status code in the "A" register, at which time an
error diagnostic is produced or an "OK" status is returned to
CCM. Both methods use the following format for error output:
ERROR XXX - YYYYYY; where XXX = error number and YYYYYY =

Status code in octal (See listing attached for definitions)

.

Brief descriptions of individual modules follows.

32

CONSOLE UTILITY DESCRIPTION

NAME -- INIT

FUNCTION -- Initializes file manager directory and disk
allocator

INPUT PARAMETERS -- 1. File logical unit (FLU). Used for file
manager directory as defined in SYSGEN
listing. (Format 12) Range greater than
19, less than 66.

2. Disk size (DSIZE) . Number of segments
used for directory. (Format 12) . Range
greater than 0, less than 11.

OPERATION -- Requests and validates console inputs described
above. Stores logical unit number in resident
location (FLU) and writes -1 in word one of
directory. Stores disk size in resident loca-
tion DSIZE. Calls DKINIT, which initializes
disk allocator and terminates calling FLRET.

LOGICAL UNITS -- TTY input = 20
FLU - No. input

Error CODES -- None

STATUS CODES -- +1 = OK
-12 = I/O Failure
-11 = Parameter error

33

CONSOLE UTILITY DESCRIPTION

NAME NWID

FUNCTION -- Creates new user ID in file manager directory.

INPUT PARAMETERS 1. User ID in decimal. (Format 14).

2. User logical unit. (Format 12).

OPERATION -- Requests and validates inputs described above.
Calls FMGR action module NEWID, which writes

-u. entry in directory. Loads status from FMGR
and terminates by calling FLRET.

LOGICAL UNITS -- TTY input = 20

Error CODES None

STATUS CODES -- +1 = OK
-12 = I/O Failure
-11 = Parameter error
Also return error status codes from FMGR

(see listing)

CONSOLE UTILITY DESCRIPTION

NAME -- RMID

FUNCTION -- Removes user ID from directory

INPUT PARAMETERS -- 1. User ID in decimal (Format 14)

OPERATION -- Requests user ID and calls FMGR module RMVID
(01) . Loads return status code and calls
FLRET.

LOGICAL UNITS -- TTY Input = 20

Error CODES -- None

STATUS CODES -- +1 = OK
-12 = I/O Failure
Return status from FMGR (See listing)

35

CONSOLE UTILITY DESCRIPTION

NAME -- DLET

FUNCTION -- Marks delete flag (Bit 16 of word 12 in record
zero) for future file delection.

INPUT PARAMETERS -- 1. User ID of file to be deleted (Format
14).

2. Legend (DA,HH,$$), Format A2)

.

3. Optional, depending on legend:
DA: Code (Format 15)

Run. No. (Format 15)
Lab Addr. (Format 03)

HH: Alpha name (Format A2,A2,A2)
$$: Octal name (Format 06,06,06)

4. CODE = -1 (for termination)

OPERATION -- Requests file name using the above inputs.
Calls FMGR action module DELETE (09) . Loads
return status code and terminates calling
FLRET,

LOGICAL UNITS -- TTY input = 20
TTY output = 20

Error CODES -- None

STATUS CODES -- +1 = OK
-12 = I/O Failure
Also, return error status codes from FMGR (See
lising)

36

CONSOLE UTILITY DESCRIPTION

NAME -- CRFL

FUNCTION -- Creates record zero of new file from console.

INPUT PARAMETERS -- 1. User ID of file to be created (Format
14).

2. Legend (DA,HH,$$) (Format A2)

.

3. Optional, depending on legend:
DA: Code (Format 15)

Run. No. (Format 15)
Lab Addr. (Format 03)

HH: Alpha name (Format A2,A2,A2)
$$: Octal name (Format 06,06,06)

4. User label (Format 30A2)

.

5. Record length (Format 14).

OPERATION -- Requests above inputs and calls GDB for file
date. Calls FMGR action module CREATE (02),
which creates record zero of new file. Loads
return status code from FMGR and terminates
calling FLRET.

LOGICAL UNITS -- TTY input =20
TTY output =20

Error CODES -- None

STATUS CODES -- +1 = OK
-12 = I/O Failure
Also, return error status codes from FMGR
(See listing)

.

37

CONSOLE UTILITY DESCRIPTION

NAME -- RMOV

FUNCTION -- Removes file from FMGR by deallocating disk

INPUT PARAMETERS - 1. User ID (Format 14)
2. Legend (DA,HH,$$) (Format A2)
3. Optional, depending on legend:

DA: Code (Format 15)
Run No. (Format 15)
Lab Addr. (Format 03)

HH: Alpha name (Format A2,A2,A2)
$$: Octal name (Format 06,06,06)

OPERATION Request above inputs and calls RLCCM to re-
lease CCM. Calls FMGR action module REMOVE
(03), which removes file. Outputs error
message when necessary via ALM3, types "RMOV
FIN" and calls FIN.

LOGICAL UNITS - TTY input =20
TTY output =20
ALM3 output = AO (25)

Error CODES -- 172

STATUS CODES - -12 = I/O Failure
Also, return error status codes from FMGR.
(See listing)

38

CONSOLE UTILITY DESCRIPTION

NAME -- RLOT

FUNCTION -- Rolls out file manager files on daily archive.

INPUT PARAMETERS -- 1. Current date (Format 9A2)

.

OPERATION Requests current date. Releases CCM. Positions
and writes label on daily archive. Calls GDIR
to get directory, calls WRTFIL to write file on
archive. Creates a record of ID's where no
files exist. Writes trailer label, rewinds,
releases directory from dynamic core and
terminates, typing "RLOT FIN" and calling FIN.
Also types descriptive error messages on line
printer.

LOGICAL UNITS -

Error CODES

STATUS CODES

TTY input =20
TTY output = 20
Archive LU = 7

LPR error msg. = 14

- 172

-12 I/O Failure
Also, return status codes from WRTFIL (See
listing ERROR 173)

39

CONSOLE UTILITY DESCRIPTION

NAME -- RLIN

FUNCTION -- Rolls in daily archive.

INPUT PARAMETERS -- None

OPERATION -- Reads daily archive header label and outputs
contents on console TTY. Calls REDFIL which
writes files from daily archive to file
manager disk. Creates file manager directory
entry for ID's with no files. Loads status
code in "A" register and terminates calling
FLRET. Also, outputs descriptive error
messages on line printer.

;

LOGICAL UNITS -- Daily Archive LU = 7

TTY output =20
LPR error msg. = 14

Error CODES -- None

STATUS CODES -- -12 = I/O Failure
+ 1 = OK
Also, return status codes from REDFIL
(See listing ERRORS 174)

40

CONSOLE UTILITY DESCRIPTION

NAME -- SVFL

FUNCTION -- Saves files on user archive.

INPUT PARAMETERS -- 1. User ID (Format 14)
2. Legend: DA,HH,$$ (Format A2)
3. Mode?: Manual = -1

Auto = any char.
Term = -2

4. Optional, depending on legend:
DA: Code (Format 15)

Run No. (Format 15)
Lab Addr. (Format 03)

HH: Alpha name (A2,A2,A2)
$$: Octal name (Format 06,06,06)

5. Delete option (manual only)
"NO" (A2)
"Any char"

OPERATION -- Manual Mode -- Requests above inputs and releases
CCM. Validates user archive with ID input. Reads user
archive until "end of archive" (trailer label) has been
found. Finds file in directory and writes on archive
using WRTFIL. Returns to "MODE?" for next file/s to
be saved or terminates request. Terminates by rewriting
trailer label at end of archive, releases core held by
directory, types "SVFL FIN" and calls FIN.

AUTO MODE -- Validates archive and ID, as above. Requests
"Run No. (Low Range)" and "Run No. (Hi Range)". Saves
and deletes all files, then returns for next range or
terminates

.

- TTY input =20
TTY output =20
User Archive = 7

172 - SVFL
173 - WRTFIL

-12 = I/O Failure
-6 = REC 0 NOT FOUND
-9 = Illegal ID

-15 = Wrong Archive Mounted

LOGICAL UNITS -

Error CODES --

STATUS CODES --

41

CONSOLE UTILITY DESCRIPTION

NAME -- INDX

FUNCTION -- Index's user or daily archive.

INPUT PARAMETERS -- None

OPERATION -- Starts by releasing CCM. Writes headings on
line printer then begins reading archive
searching for record zero and outputing file
name, date, LU, length, and usage on line
printer. Terminates when trailer label is
found, by writing "INDX FIN" on console and
calling FIN.

LOGICAL UNITS -- LPR output = 14
Archive LU = 7

Error CODES -- 172

STATUS CODES -- -12 = I/O Failure

42

CONSOL'E UTILITY DESCRIPTION

NAME -- RSFL

FUNCTION -- Restores file from user or daily archive to file
manager

.

INPUT PARAMETERS -- 1. User ID (Format 14). Negative ID
signifies daily archive is mounted.

2. Legend (DA,HH,$$), (Format A2)
3. Optional, depending on legend:

DA: code (Format 15)
run no. (Format 15)
Lab Addr. (Format 03)

HH: Alpha name (Format A2,A2,A2)
$$: Octal name (Format 06,06,06)

4. Code: -1 for Terminate

OPERATION -- Requests above inputs from console TTY . Re-
leases CCM and determines whether a user or
daily archive is mounted by checking for a
negative ID number input. Begins searching
archive for file name requested. If found,
calls REDFIL to write file onto file manager.
Returns to "CODE" for next restore or termi-
nate.

LOGICAL UNITS -

Error CODES --

STATUS CODES --

• TTY input =20
TTY output = 20
Archive LU = 7

172 - RSFL
174 - REDFIL

-12 = I/O Failure
-15 = Wrong Archive mounted
-14 = Unsuccessful archive search
Also, return error status codes from REDFIL
(See listing errors 174) .

43

CONSOLE UTILITY DESCRIPTION

NAME -- DSPL

FUNCTION -- Display file manager directory.

INPUT PARAMETERS -- 1. Individual user ID (Format 14) OR
general display ("00" - zero)

.

OPERATION -- Requests mode from console TTY and prints
headings on line printer. Gets directory and
searches for user ID and existing files. If
no ID'S exist, "DIRECTORY IS EMPTY" is output
on line printer. If ID's exist, PFMD is called
to print one of the following:

1. Record zero information
2. "NO FILES FOR THIS ID"
3. "RECORD ERROR"

Returns from PFMD and checks for next directory
entry, if requested. Otherwise, terminates
printing "END OF DISPLAY" on line printer.
Loads return status and calls FLRET.

LOGICAL UNITS -- TTY input = 20
TTY output = 20
LPR output = 14

Error CODES -- none

STATUS CODES -- -12 = I/O Failure
+ 1 = OK

44

CONSOLE UTILITY DESCRIPTION

NAME -- CLOS

FUNCTION -- Closes file by turning off open flag.

INPUT PARAMETERS -- 1. User ID (Format ID)
2. Legend (DA,HH,$$), (Format A2)
3. Optional, depending on legend:

DA: Code (Format 15)
Run No. (Format 15)
Lab. Addr. (Format 15)

HH: Alpha name (Format A2,A2,A2)
$$: Octal name (Format 06,06,06)

OPERATION -- Requests above parameters and calls HFIND to
find record zero. When found, calls FMGR
action module CLOSE (05) . Loads return status
from FMGR and terminates by calling FLRET.

LOGICAL UNITS -- TTY input = 20
TTY output =20

Error CODES -- None

STATUS CODES -- -12 = I/O Failure
+ 1 = OK
Also, return error status codes from FMGR
(See listing)

.

45

12. OPERATING PROCEDURES

A. Initializing

Initializing the file manager is done by calling CCM
module INIT, which requires two parameters. The first is the
directory logical unit (FLU), which is determined by SYSGEN.
The logical unit is currently named FMRl (LU2 7) . The second
is DSIZE, the number of 50 word disk segments reserved for
I.D. directory entries. Initializing is always done before
rolling in of daily archives or when a fresh file manager
directory is desired. There should be no file manager users
running and no files left on the directory which have not
been archived, as such files will be lost.

B. User IP's

A New user ID is entered into the directory by calling
CCM module NWID. No files can be acquired without there
first being a matching ID in the directory. Care should be
taken so that one ID will represent a single users data.
This is necessary for the validation of ID's and for user
archives when files are saved. An ID may be removed from
the directory by calling CCM module RMID.

C. Deleting Files

File manager files are deleted by first marking the file
for deletion by calling CCM module DIET. The deleting is
actually done by calling CCM module RLOT to save the files on
a daily archive and calling CCM module RLIN which detects the
delete bit and omits the file.

D . Removing Files

Files may be removed at once by calling CCM module RMOV.
This is not recommended for long files, however. Problems
may arise in the deallocating of large quantities of disk
from the disk allocator.

E. Closing Files

Closing file manager files from the console may be done
by calling CCM module CLOS, which sets the close flag in the
file work area. This may be done when a user is unable to
terminate or terminates without closing the file.

46

F. Archive Tapes and Reorganization

1. Daily archives are produced by calling CCM module
RLOT. This should be done under the following conditions:

a. When a fresh copy of the operating system has
been booted into core; a scratch tape or serial disk may be
used with no saving of the archive necessary after the system
has been initialized.

b. When the file manager disk area has reached its
capacity; archives should be saved and files processed on
user archives at a future date.

c. When a backup copy of file manager files is de-
sired (usually done once a day); archive should be saved and
recycled (usually 30 days)

.

d. When it is felt that debugging would endanger
existing files; archive should be saved until development is
completed and system restored.

When restoring the system, as mentioned above, the daily
archive is reloaded by calling CCM module RLIN, which creates
a file manager directory. Header and trailer labels are gen-
erated within RLOT and are compatable with LABGEN (subroutine
used to produce user archive labels) produced labels.

2. User archives are produced by calling CCM module
SVFL . The file is read from the file manager onto a user
archive. This is done periodically, depending on the volume
of files. Ideally, files should be saved the day after they
are acquired. This eliminates having to roll in a previous
daily archive, which cannot be done with users on-line. Files
are stacked on the user archive at the "end of tape," which
is the trailer label. User archive labels are produced by
the batch processing routine LABGEN.

At some point, the user may request a previously acquired
file which is on his archive. This file may be restored by
calling CCM module RSFL, which searches the archive for the
named file and restores it to file manager.

G . File Manager Status and Indexing

At any time the file manager may be interrogated by
calling CCM module DSPL. This will produce a list of files
and their status on the line printer. A display may be pro-
duced for a given ID or the entire directory. The contents
of a user or daily archive can be obtained by calling CCM
module INDX, which prints header and trailer labels and file
identification of the archive files on the line printer.

47

13. ACKNOWLEDGEMENTS

Peter Shoenfeld served as designer and general super-
visor on this project. He programmed the executive routines
and the action programs. Lawrence Kaetzel programmed most
of the utility package. John Barkley wrote the roll-out and
roll-in modules, subroutines REDFIL and WRTFIL, the batch
communication feature, and the NBS Disk Allocator. The
first functional specifications were due to Richard Freemire,
of the NBS Institute for Basic Standards. All work was done
under the administrative direction of James R. DeVoe.

14. LITERATURE

1. DeVoe, J. R., Shideler, R. W.
,
Ruegg, F. C, Aronson,

J. P., Shoenfeld, P. S., Computer IJtility for the
Analytical Laboratory , Anal. Chem. 46, 509 (1974).

2. ASSET ly Real-Time Monitor User's Manual , EMR Computer,
Bloomington, Minn., 1970

.

3. FORTRAN IV User's Manual, EMR Computer, Bloomington,
Minn., 1970.

1

48

APPENDIX A: ERROR CODES

RETURN STATUS CODES
FOR FILE MANAGER

DECIMAL OCTAL DEFINITION/SOURCE

««««««««« i«a4«««#«tt(i««a««««««««<«««#«ti«ttNOt9«i<«>«««t4t(««i«a«ti««<«t«««««»K«««a«

FOLLONING STAT COOES RETURNED FROr* CFLUT AND ARUT WITH THE FORMAT!
ERROR 172 XXXXX

I 1 OK

-I 177777 I/O FAIL CFMGR5

-2 177776 WORK AREA NOT INITIALIZED

-3 1777715 FILE ALREADY DELETED

>4 177774 DISC ALLOCATOR ERROR

-5 177773 DUPLICATE NAME

-6 177772 MATCHING ID AND FILE NAME NOT FOUND

-7 177771 FILE ALREADY OPENED

-8 17777PI FILE MIS-POSITIONED (PAST ENDl

-9 177767 ILLEGAL ID

177766 FILES EXIST

-11 17776S PARAMETER ERROR - CFLUT

-12 177764 I/n FAILURE - CFLUT

-13 177763 WRTFIL ERROR

-1« 177762 UNSUCCESSFUL ARCHIVAL SEARCH

-15 177761 WRONG ARCHIVE MOUNTED

FOLLOWING STAT CODES RETURNED FROM WRTFIL WITH THF FORMAT!
EPPPR 173 XXXXX

1

2

-1

-2

-3

-4

1

2

177777

177776

177775

177774

OK

ONLY RECORD 0 IN FILE

I/n FAIL (SERIAL UNIT)

I/O FAIL tDISC)

wnPO COUNT > IClOB

ILLEGAL niSr ADRS WHILE WRITING OUT

177773

177772

177771

SEGMENT EXCEEDS FILE max

EOF CONDITIONS 00 NOT AGREE

IP AND LU DO NOT AGREE

FOLLOWING STAT CODES RETURNED FROM REDFIL WITH THE FORMAT!
ERROR 174 XXXXX

EOJ/

1

-1

-8

-3

-4

-5

EOF

177777

177776

177773

177774

177773

OK

I/O FAIL (SERIAL DRIVER)

FMGR STATUS ERROR

WORD COUNT > IHWPI

DELETE FLAG ON

ILLEGAL FORMAT TAPE

49

USCOMM-NBS-OC

NBS-IMA (REV. 7-73)
1

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBSIR 75-713

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE

A File Management System for a Laboratory
Automation Facility

5. Publication Date
|

Tnnp 1 Q 7 ^

6. Performing Organization Code ,

7. AUTHOR(S)
Peter b. bnoenteld and Lawrence J. Kaetzel

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

310 1113
j

11. Contract/Grant No. !

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Same as Item 9

13. Type of Report & Period
Covered

Final Report
14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less factual summary of most sigpificant information. If document includes a significant

bibliography or literature survey, mention it here.)

The National Bureau of Standards' Analytical Chemistry Division operates
a centralized laboratory automation facility built around a multi-
programmed minicomputer. A file manager was developed which allows the
dynamic creation and manipulation of sequential disk files. Although
the system was developed for real-time data acquisition, it is a general
purpose addition to the computer's operating system and may be used for
a variety of applications. A new operating system function was developed
to allow the queued scheduling of programs. This is used to achieve more
efficient multiprogramming. A comprehensive file utility package is also
provided.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons)

Data acquisition; file system; laboratory automation; multiprogramming;
operating system; real-time.

18. AVAILABILITY [X] Unlimited 19. SECURITY CLASS
(THIS REPORT)

21. NO. OF PAGES

1
For Official Distribution. Do Not Release to NTIS

UNCLASSIFIED 52

1 ! Order From Sup. of Doc, U.S. Government Printing
Washington. D.C. 20402. SD Cat. No. C13

Office 20. SECURITY CLASS
(THIS PAGE)

22. Price

(X. !
Order From National Technical Information Service
Springfield, Virginia 22151

(NTIS)
UNCLASSIFIED

$4.25

USCOMM-DC 29042-P74

A file management system for a laboratory automatic

Shoenfield, Peter S.;Kaetzel, Lawrence J.

QC100.U56 no.75-713 1975

NIST Research Library

[242] filemanagementsy?571shoe
nbsir75-713

Jun 17, 2015

