NBSIR 75.679

Measurements of the Behavior of Incidental Fires in a Compartment

J. B. Fang

Center for Fire Research
Institute for Applied Technology
National Bureau of Standards
Washington, D. C. 20234

March 1975

Interim Report

Principal Sponsor
Office of Policy Development and Research
Department of Housing and Urban Development
Washington, D. C. 20410

MEASUREMENTS OF THE BEHAVIOR OF INCIDENTAL FIRES IN A COMPARTMENT

J. B. Fang

Center for Fire Research Institute for Applied Technology National Bureau of Standards
Washington, D. C. 20234

March 1975

Interim Report

This work reported here covers work now in progress at the National Bureau of Standards and will be superseded by a future publication.

Principal Sponsor
Office of Policy Development and Research
Department of Housing and Urban Development Washington, D.C. 20410

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

Page

1. INTRODUCTION 1
2. EXPERIMENTAL DETAILS 2
2.1. Test Compartment 2
2.2. Instrumentation 2
2.3. Test Specimens 3
3. TEST PROCEDURE 4
4. TEST RESULTS 4
4.1. Temperature and Heat Flux Levels 4
4.2. Smoke Concentration 7
4.3. Effect of Carpet 7
4.4. Wood Cribs 9
4.5. Waste Receptacle Experiment 9
4.6. Comparison Data 9
4.7. Spread of Fire 15
5. CALCULATIONS OF HEAT FLUX 15
6. CONCLUSIONS 23
7. ACKNOWLEDGEMENTS 25
8. REFERENCES 25
APPENDIX - VIEW FACTOR 26

J. B. Fang

A variety of upholstered chairs and wood cribs were burned within a ventilated compartment. The experimental measurements of weight loss, smoke concentration, temperature and heat flux levels are summarized. A reproducible fire obtained from burning a standardized wood crib array was found to be capable of representing the essential features of incidental fires of moderate intensity.

Key words: Buildings; combustibility; fire intensity; flames; furnishings; heat release; ignition; smoke; thermal radiation; upholstery; waste receptacle.

1. INTRODUCTION

An incidental fire which starts in a wastebasket or on a piece of furniture may cause ignition of adjacent combustibles such as interior finish materials or furnishings and may grow into a fully-developed compartment fire. Information related to the characteristics of the environment created by such minor fires is desirable as a basis for both the development of rational procedures for designing the needed fire resistance of building constructions and for the establishment of design concepts for reduction of fire hazard. An experimental study of the burning behavior of various combustible contents of wastebaskets and individual pieces of upholstered furniture has been reported previously [1]. ${ }^{1}$

Combustible wall and ceiling finishes in fire situations are generally recognized as a primary or contributing factor in the spread of a building fire. Most building codes provide specifications to regulate general use of interior finishes and have adopted the ASTM E-84 flame spread tunnel furnace test as a method for hazard evaluation. However, it is not clear to what extent the conditions presented inside the tunnel before and during the test can rationally simulate the environment encountered in an actual fire, since material location, orientation, and the magnitude of the fire exposure have a pronounced effect on fire behavior. To evaluate the thermal responses of different types of interior finish materials exposed to real fire situations it is necessary to acquire information on burning characteristics of the initiating fire such as the range of possible fire intensity, duration and flame

[^0]size. Such data can provide a base for developing an effective test method as an evaluation tool for classification of materials according to degree of fire hazard.

The present room fire study program in NBS is designed to quantify the contribution made by interior finish materials to the growth of a fire in a compartment, to determine if a useful correlation exists between standard laboratory and full-scale test methods for evaluating hazard potential of materials, and to suggest improved performance criteria of interior linings for building construction. This paper is a report of work in progress. The objectives of this phase of the compartment fire program are to characterize the fire environment to which the interior finish materials are likely to be exposed and to develop a standardized wood crib to duplicate the conditions produced by typical incidental fires.

This paper presents some experimental results on the burning characteristics of upholstered chairs and cross piles of wood under a wellventilated condition in a test compartment. The experimental study is mainly concerned with a characterization of the environmental conditions due to typical incidental fires by measurement of the levels and ranges of temperature rise, the incident heat flux, the duration of burning, and the rates of heat release and smoke generation.

2. EXPERIMENTAL DETAILS

2.1. Test Compartment

Experiments were conducted in a burn room measuring 2.9 m by 3.2 m by 2.4 m high. One door measuring 1.3 m wide by 2 m high was located in one of the smaller compartment walls and was kept fully open during the test. The entire test compartment was enclosed in a large building to provide wind and draft-free conditions. The test compartment was constructed of reinforced concrete and the interior surfaces which were exposed to the fires were lined with 16 mm thick gypsum wallboards sprayed with a vermiculite gypsum plaster.

2.2. Instrumentation

Commercial radiometers and heat fluxmeters, placed at selected locations in the test compartment, were used to determine the heat flux due to radiation alone and also due to the combination of convection and radiation.

Direct measurements of the weight loss rate of the burning combustible materials were made with four strain-gage type load cells positioned at the corners of a 0.94 by 1.60 m platform. A single layer of painted 16 mm thick gypsum wallboard nailed to wood studs extending from
floor to ceiling, was located near the fire and served to represent a typical dwelling wall and to provide an estimate of the fire intensity by the surface area burned.

A Gardon-type heat fluxmeter was mounted on the painted gypsum board for continuous monitoring of heat flux incident on the board from the test fire. This heat fluxmeter was placed at a height of 730 mm above the floor, and spaced 51 mm from the chair back and small sized wood crib, or 102 mm from the medium and large wood cribs. This transducer was made from a copper block with an opening of 19 mm in diameter and a 50 mm blackened platinum foil screwed over the opening on the copper body. With two fine copper wires soldered to the body and the center of the foil, the meter thereby constituted a copper-platinum thermocouple. The transducer output was calibrated against the radiant flux from of a blackbody cavity placed in a muffle furnace and showed linearity of signal output with an accuracy of $\pm 5 \%$ over the flux range corresponding to the blackbody temperature range of 500 to $910^{\circ} \mathrm{C}$.

The temperatures of the plume gas along the flame axis above the chair or wood crib, the surface of the finished gypsum board, and the heated air at various locations within the compartment were determined by barebeaded thermocouples of 0.5 mm diameter Chromel-Alumel wire.

Measurement of the smoke produced by the test fire in the compartment was made by the use of the attenuation of light principle. A photometric system which consisted of a voltage controlled light source, appropriate lenses to collimate and focus the beam, and a photodetector tube was used for continuous measurement of the decrease in light transmittance. The concentration of smoke buildup within the compartment was determined at two locations: one at the 1.52 m above the floor with a horizontal beam parallel to the gypsum wall board, situated at a spacing of 2.3 m from the gypsum board, and covering the whole room width with a path length of 3.17 m ; the other at a location near the center of the compartment, separated a horizontal distance of 1.4 m from the center of the fire with the beam collimated perpendicular to the floor and having a path length of 2.41 m .

All output signals from the radiometers, thermocouples and heat fluxmeters were punched on paper tape for data processing as well as being recorded digitally at l-minute intervals on a high speed digital acquisition system. Two 2-channel potentiometric strip chart recorders were used to monitor the outputs of smoke meters and load cell.

2.3. Test Specimens

The chairs, obtained from a local used furniture outlet, had different weights and constructions and had experienced various degrees of use and wear. Several types of upholstery fabrics were used on these chairs, including cotton, nylon, and rayon. The cushion pads were made of cotton batting, latex rubber, or urethane foam.

The standarized wood cribs were designed to duplicate the conditions produced by the test fires with furniture. A large crib was used to simulate the incidental furniture fire of moderate intensity. This crib, measuring $0.56 \mathrm{~m} \times 0.56 \mathrm{~m} \times 0.55 \mathrm{~m}$ high and weighing approximately 33 kg , was constructed of cross piles of 34 pieces of nominal 51 x $102 \times 560 \mathrm{~mm}$ long hemlock sticks. A medium sized, 0.51 m cubic crib weighing about 25 kg and constructed by stacking 30 pieces of 0.51 m long sticks was used to represent a lower intensity furniture fire. A smaller $0.36 \times 0.36 \times 0.30 \mathrm{~m}$ high crib weighing about 6.3 kg and constructed by piling 28 pieces nominal $51 \times 51 \times 360 \mathrm{~mm}$ long sticks was used to represent an incidental fire of lower flame height and shorter duration. The large and medium sized cribs had 8 and 7 layers, respectively, each containing four sticks with a 64 mm stick spacing for the top four layers, and a 25 mm spacing for the remaining layers, plus a bottom two-stick layer, with successive layers laid crosswise. The small crib consisted of six 4 -stick and two 2-stick layers and the spacing between sticks except for the bottom two layers was 51 mm . The moisture content of the wood cribs was found to be approximately 9 percent. Table 1 summarizes the main parameters of the combustibles involved for each test. Fire load density is defined as the weight of combustible materials per unit projected gross area of the specimen on the floor.

3. TEST PROCEDURE

For each upholstered chair test, the ignition source was a methenamine "timed burning" tablet placed at the junction of the chair back with the seat cushion.

For the wood crib tests, the fire was initiated by application of an open flame to ignite 150 ml of ethyl alcohol in a square steel pan placed beneath the crib. At ignition of the alcohol all recording instruments were turned on simultaneously. The development and burning behavior of each test fire was observed and recorded during the test.

4. TEST RESULTS

4.1. Temperature and Heat Flux Levels

Summary data on duration of burning, the maximum rate of weight loss, hot gas temperature, rates of heat transfer to surroundings, smoke generation at the peak of the fire, and the maximum distances at which specimen indicators were affected for each test are presented in table 2.

Most of the upholstered chairs examined burned completely in 40 to 86 minutes with an average of 50 minutes. The duration of the chair fire seems to correspond fairly well to the types of padding materials used in the seat cushion, longer durations being associated with cotton felt.

Table 1. Description of Upholstered Chair and Crib Tests

Test No.	Materials			Chair or Crib Weight Width (Kg) (cm)		Fire Load Density ($\mathrm{g} / \mathrm{cm}^{2}$)
	Upholstery Fabric	Padding				
		Body	Cushion			
47	Cotton	Cotton	Cotton	9.64	64	2.60
48	Rayon/Nylon	Cotton	Cotton	20.87	69	3.54
49	Nylon	Cotton/ Hair	Cotton	12.81	56	3.23
50	Cotton	Cotton	Cotton	21.32	58	4.44
51	Rayon	Cotton	Urethane Foam	22.91	80	3.70
52	Cotton	Cotton	Urethane Foam	21.41	58	4.90
53	Cotton	Cotton	Urethane Foam	14.52	65	3.09
54	Rayon	Cotton/ Hair	Urethane Foam	27.76*	76	4.36
55	Rayon	Cotton/ Hair	Urethane Foam	29.26	102	2.36
56	56\% Rayon/ 40\% Cotton/ 4\% Metaliic	Cotton	Latex Rubber	34.47*	97	3.86
57	75\% Rayon/ 25\% Cotton	Cotton/ Hair	Latex Rubber	24.81	79	3.16
58	60\% Rayon/ 40\% Cotton	$\begin{array}{r} \text { Cotton/ } \\ \text { Sisal } \end{array}$	Urethane Foam	18.05	66	2.86
59	Cotton	Cotton/ Sisal	Latex Rubber	25.63	69	4.42
60	50\% Cotton/ 49\% Rayon/ 1\% Metallic	Cotton/ Hair/ Sisal	Latex Rubber	32.43	97	4.01
61	Rayon	Cotton/ Wood Fiber/ Hair	Urethane Foam	29.26	102	2.36
62	85\% Rayon/ 15\% Cotton, Cotton ${ }^{\text {** }}$	Cotton/ Hair	Latex Rubber	29.94*	71	4.28
63	Wood Crib (Large Size)			32.89	56	10.53
64	Wood Crib (Large Size)			33.34	56	10.68
65	Wood Crib (Medium Size)			25.76	51	9.98
66	Wood Crib (Medium Size)			25.18	51	9.75
68	Wood Crib (Small Size)			6.35	36	4.90

*Including 2.81 Kg of a 94 - by 127 cm acrylic carpet placed underneath the chair.
**Fabric used for chair slipcover.

$\begin{aligned} & \text { Test } \\ & \text { No. } \\ & \hline \end{aligned}$	Duration (min)	Extent Burned	Maximum Burning Rate ($\mathrm{g} / \mathrm{min}$)	Maximum Temperature (${ }^{\circ} \mathrm{C}$)					Surface Area Affected on Gypsum Bard (m2)	Maximum Heat Flux ($\mathrm{W} / \mathrm{cm}^{2}$)							Maximum Smoke Concentration				
						Inside	On Gypsum Board** Exposed Unexposed Surface Surface			$\begin{gathered} \text { On } \\ \text { Gypsum } \\ \text { Board } \\ \hline \end{gathered}$	Distance from the Chair/Crib Center Line						Horizontal		Verticall		
				Flame	Compt.	Compt.					cm	$!61$	cm	76 cm	91 cm	Tire	Conc.	Time	Come-		
				Plume	Ceiling	(Mean)			Total		Radiaut	Total	Radiant	Total	Total	(min)	(0.D./m)		(0.D. $/ \mathrm{mm}$)		
47	83	Comp? etely Consumed	424	866	265	46	205	48		--	--	0.79	0.50	0.47	--	-	0.40	13	0.10	23	0.23
48	66	Consumed Partially	718	863	222	102	600	62.		--	--	0.82	0.73	0.64	--	--	0.50	25	0.25	29	0.32
49	56	Burned Completely	225	200	47	36	58	29	--	--	0.20	0.11	0.11	--	--	0.05	49	0.15	41	0.25	
50	86	Completely Consumed	607	868	171	84	341	53	--	--	0.90	0.63	0.60	-	--	0.30	35	0.23	30	0.35	
51	41	Completely Consumed	897	709	202	92	438	64	--	--	2.08	1.66	1.17	--	--	0.58	9	0.17	7	0.24	
52	47	Completely Consumed	815	975	243	200	517	67	--	--	4.82	4.03	1.73	--	--	1.17	6	0.32	6	0.4	
53	50	Completely Consumed	580	930	185	111	304	49	--	--	1.70	1.48	1.17	--	--	0.61	10	0.29	10	0.3	
54	63	Completely Consumed	622	989	356	271	613	84	--	--	4.03.	3.54	3.44	--	--	1.97	1ϵ	0.32	16	0.4	
55	61	Completely Consumed	953	928	314	195	419	86	--	--	--	--	2.20	1.79	1.23	1.13	19	0.29	24	0.4	
56	25*	$\begin{array}{\|l} \text { Partially** } \\ \text { Burned } \end{array}$	1,314	960	519	419	745	110	--	--	--	--	5.52	4.03	3.08	3.0	12	0.36	13	0.4	
57	54	Completely Consumed	638	962	268	169	451	77	0.93	--	--	--	3.59	3.51	2.02	1.38	13	0.36	--	-	
58	55	Completely Consumed	431	767	233	124	292	71	0.55	6.12	--	--	1.30 :	1.05	0.99	0.51	24	0.23	33	Q. 1	
59	66	Completely Consumed	677	847	194	101	332	84	0.60	3.33	--	--	1.66	1.46	0.91	0.61	13	0.36	12	0.4	
60	40	Completely consumed	1,177	765	329	209	624	96	1.58	10.9	--	--	2.93	2.71	2.10	1.34	$\overline{7}$	0.43	7	0.4	
61	43	Completely Consumed	1,487	913	432	$307{ }^{\circ}$	737	94	2.04	7.32	--	--	3.31	3.22	2.91	2.34	18	0.36	19	0.4	
62	35*	Partially* Consumed	2,722	937	363	273	601	91	2.15	13.9	--	--	5.41	3.78	3.20	2.40	30	0.38	27	0.5	
63	50	Completely Burned	1,008	936	392	138	533	81	1.18	2.21		--	1.30	1.25	--	0.63	2.6	0.14	2.6	0.0	
64	51	Completely Burned	1,111	968	407	140	511	82	1.15	1.80	--	--	1.35	1.29	--	0.69	2.5	0.12	2.5	0.0	
65	50	Completely Burned	888	939	349	110	508	62	0.90	1.19	--	--	1.02	0.99	-	0.56	0. 3	0.06	0.8	0.0	
66	47	Completely Burned	837	996	382	144	479	72	0.90	1.40	--	--	1.00	0.97	--	0.53	0.5	0.06	--	-	
68	13	Burned Completely	399	895	302	84	556	--	0.50	2.99	--	--	--	--	--	1.05	8.7	0.21	7.1	0.17	

The temperature of the gases within the test compartment was calculated by averaging of the room gas temperatures measured at 6 locations: 5 at mid-height and the other one at 25 mm below the center of the ceiling. Excluding one chair which only partially burned due to the upholstery fabric, the average temperature of air in the compartment at the peak fire conditions ranged from 45 to $420^{\circ} \mathrm{C}$ with a mean of $180^{\circ} \mathrm{C}$. This temperature level developed during the fire makes human occupancy untenable in a short period. Under the conditions of these tests, the danger due to high temperatures was in general found to precede the hazard due to smoke, except for the burning of upholstered chairs cushioned with latex rubber.

The maximum rate of heat transfer from the fire to a vertically oriented black surface located 0.61 m from the flame axis varied from approximately 0.5 to $5.5 \mathrm{~W} / \mathrm{cm}^{2}$ with a mean of about $2.2 \mathrm{~W} / \mathrm{cm}^{2}$, reflecting the different weights and constructions of chairs tested. This level of incident heat flux resulting from combined radiation and convection heating is capable of causing spontaneous ignition of nearby combustible materials.

4.2. Smoke Concentration

The average peak concentrations of smoke generated by the burning of chairs containing latex rubber, urethane foam and cotton felt padded seat cushions in the test compartment were of the order of $0.45,0.34$ and 0.30 Optical Density/m (0.D./m), respectively. The elapsed times to reach these peak levels were found separately to be about 10,17 and 27 minutes after initiation of the fire.

Figure 1 shows the time history of smoke concentration, expressed in terms of optical density per metre smoke thickness, as measured horizontally at 1.53 m above the floor, across the width of the test compartment, for fires with typical upholstered chairs and the standardized wood crib. The rate of smoke production during the test was highly variable as it strongly depended upon the nature of the fuel involved and the size and intensity of the fire. The measurement data as shown in the figure indicate that under well-ventilated conditions, the chairs cushioned with latex foam generated the greatest amount of smoke, whereas an open crib produced the least. The smoke concentration within the compartment 1.5 m above the floor averaged over the test period was found to be $0.03,0.29,0.15$ and $0.090 . D . / m$, respectively, for fires involving wood crib and the chairs having latex rubber, urethane foam and cotton cushions. The development of smoke was found to occur at the peak of these fires, and as shown in figure 1 the smoke could give rise to a highly dangerous situation.

4.3. Effect of Carpet

A preliminary study was made to determine the effect of a carpet on fire behavior by placing a 0.94 by 1.27 m acrylic carpet (random shear

TIME（minute）
Figure l．Development of smoke measured at l．5m above the floor
for fires with upholstered chairs and wood crib．
（u／．0．0）NOILVタLNヨONOO ヨyOWS
type, polypropylene/jute, pile height 1.6 to 8 mm , total weight 2.81 kg) underneath the chair. In two of the three tests conducted, it was observed that the entire chair and carpet were enveloped in flames at approximately 30 minutes after ignition and the chair burned more rapidly than those without carpets. This flameover phenomena appeared to result from the ignition of the carpet through direct flame contact with burning chair fragments, however, it was undoubtedly associated with an accumulation of combustible gases generated by the carpet exposed to intense radiation.

4.4. Wood Cribs

The behavior of the wood cribs was similar to the upholstered chairs in terms of a relatively low rate of weight loss at the early stage followed by active burning and decay periods. It was found from replicate tests that the weight loss rate, the heat transfer rate to surroundings, and the burning time of these crib fires were fairly repeatable. As illustrated in table 2, at peak fire conditions the average temperature of air inside the test compartment generally increased 80 to $140^{\circ} \mathrm{C}$, the air temperature near the ceiling above the crib varied from 300 to $410^{\circ} \mathrm{C}$. The total surface area of the painted gypsum board burned was measured after each test and found to be comparable to that of a chair fire.

4.5. Waste Receptacle Experiment

In the waste receptacle fire experiment involving the burning of 2.82 kg of plasticized paper milk cartons in a nominal 120 liter steel waste receptacle the original weight diminished relatively rapidly during the initial stage of the fire and then at a slower rate. This was due to the change of burning conditions from unlimited air supply to partially restricted air flow as the fire propagated lower into the waste receptacle. In general, waste receptacle fires containing combustibles commonly found in a dwelling or an office had a shorter buildup period than chair or crib fires.

4.6. Comparison Data

Typical curves of weight loss versus time for some chair, waste receptacle and crib fires are shown in figure 2. It can be noted from the figure that the upholstered chairs, after being ignited, required between less than 10 to more than 20 minutes to develop into fully involved fires. The maximum weight loss rate for chair fires was quite variable because of diverse weights and constructions of upholstered chairs used for each test.

Figure 3 shows a comparison plot of air temperature measured directly above the fire and measured at 2.5 cm below the ceiling versus

Figure 2. Weight loss versus time curves for fires involving upholstered chairs, wood crib and plasticized milk cartons in a waste receptacle.

Figure 3. Comparison of air temperature above the fire and near the ceiling for upholstered chair, waste receptacle and wood crib fires.
time for fires involving an upholstered chair, plasticized milk cartons in a waste receptacle and a wood crib. The ASTM E-119 standard temperature-time curve was also plotted in the same figure for comparison. It can be seen that the temperature of hot gases above a waste receptacle fire increases more rapidly than either chair or crib fires during the early stage of burning. The upholstered chair, waste receptacle, and crib fires had a relatively short duration of peak temperature whereas the standard ASTM E-119 curve increased continuously.

The combined radiative and convective heat flux level at various locations was obtained from commercial heat fluxmeters, which were mounted vertically 0.73 m above the floor facing the burning object. The measured values of total and radiative fluxes at peak fire conditions for each test are listed in table 2. The experimental data show that radiation was the primary mode of energy transport comprising approximately 75 to 85 percent of the total energy at a distance of 0.46 to 0.61 m from the vertical center line of the burning item.

The temporal distributions of the level of heat flux incident on a vertical surface located at a height of 730 mm above the floor in the proximity of the test fires and the derived heat flux-time curve for a fully-developed room fire are presented in figure 4. The latter curve has been calculated from the ASTM E-119 standard temperature-time curve with the assumptions that the fire filling a 2.4 m high room may be considered as a black-body emitter of infinite width compared to the dimension of a receiver located at a spacing of 0.61 m and an elevation of 0.73 m measured above the floor. As shown in the figure, the waste receptacle fire had a fairly rapid start and shorter duration in comparison with the fires with furniture or wood arrays. The relatively steep peaks noted in the chair fires are attributed to the high heat release resulting from active burning of the latex rubber and urethane padded seat cushions. The heat flux level for a fully-developed room fire based on the ASTM E-119 test procedure, increases rapidly and continuously with time whereas the typical furniture and crib fires reached peak levels which were considerably lower and occurred within a 30 minute period.

A plot of combined convective and radiative heat flux incident on a vertical plane at 0.61 m spacing to the center of the fuel source, is given in figure 5 as a function of heat release rate. The heat release rate was calculated from the rate of weight loss, the projected area of fuel source on the floor, and the calorific values of the combustibles involved. From visual observations, it was found that most chairs burned fairly slowly during the early stage. Then the fire propagated progressively over the highly flammable seat cushion and the back and arms, producing a maximum heat output and large quantities of smoke. Flaming reduced considerably when the upholstered materials were consumed and slower burning wood frames were involved. As illustrated in figure 5, the rate of heat transfer from a freely burning fire was roughly linearly related to the heat release rate. Its magnitude at 0.73 m above the floor and 0.61 m from the flame axis was estimated to be about 2 percent of the available heat generated, based on unit area occupied by

Figure 4. The combined radiative and convective heat flux measured at the selected location versus time for upholstered chair, waste receptacle and wood crib fires.

Figure 5. Relationship of combined radiative and convective heat flux incident at 0.61 m location and rate of heat release for chair and crib fires.
the fire load. This relationship is expected, since for a given burning source an increase in the burning rate would produce an increase in the flame size, thereby yielding a higher rate of radiative and convective heat transfer.

4.7. Spread of Fire

In order to obtain some information concerning the minimum separation distances at which incidental fires would not spread to nearby combustible items, three types of cellulosic materials commonly found in dwellings and offices were studied. These indicator specimens were 0.19 mm thick white cotton cloth, 0.08 mm thick white paper, and 6.4 mm thick cedar wood. All of the specimens were $100 \mathrm{~mm} \times 150 \mathrm{~mm}$ in dimension and were mounted on stands; specimens were mounted on stands at heights of 0.43 and 0.71 m above the floor and at fixed distances of $15,30,45$ and 60 cm from the chair or wood crib. The maximum distance at which the specimen was ignited, charred or scorched by the test fire is given in table 3. There are obvious variations in the distance at which the test fires caused spontaneous ignition. Some fires were unable to ignite white paper as close as 15 cm . These differences are primarily due to the wide variations in fire intensity and periods of exposure to the fluctuating flame. As illustrated in the table, the ignitability of the cotton cloth and white paper used were not much different from that of the wood specimens, and all three seem to provide equal sensitivity as indicators. This is primarily due to low absorptivity of the irradiated surfaces and reduction of the temperature gradients within these thin specimens.

The maximum distance at which the various effects were produced in the specimens of wood, cloth and paper is shown in figure 6 as a function of the maximum fire intensity expressed in terms of the maximum incident heat flux. This heat flux was measured at a horizontal distance of 0.61 m from the center of the chair and at a height of 0.73 m above the floor. The ignition distances found ranged from 0.15 m for light weight upholstered chairs to 0.60 m for moderate sized chairs with a carpet beneath. Most chair fires caused ignition of wood at a separation distance of 0.15 m , char at 0.30 m and scorch at a distance of 0.60 m within 30 minutes after ignition of the furniture item.

5. CALCULATIONS OF HEAT FLUX

Since radiation is found to be the dominant mode of energy transport, the magnitude of radiant heat flux impinging on a neighboring object from a fire depends upon temperature, total emissivity of the flame, and the view factor between the flame emitter and the receiver.

Calculations of the radiant flux distribution around a radiating flame generally involve complex integration procedures and numerical techniques [2,3]. A mathematical model of free-burning fires [4] has
Table 3. Distances at Which the Indicator Specimens Were Affected for Upholstered Chair and Wood Crib Fires

	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	
	$\begin{array}{l\|l} 0 & 0 \\ 0 & 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	
	$\begin{aligned} & 0 \\ & 0 \\ & \tilde{u} \\ & 0 \\ & 0 \\ & 0 \\ & u \\ & \hline \end{aligned}$	
	-	
	$\underset{F=1}{\stackrel{\sim}{0}} \underset{\sim}{\circ}$	

Figure 6. Fire intensity and distances at which specimens were affected.
been recently developed to relate the burning rate and fuel properties to the flame physical and geometrical properties, which are essential information required in radiative analysis. In order to estimate heat flux levels at various locations, the freely burning fire is assumed to be a finite cylinder having a diameter equal to the fuel source width, a height identical to the visible flame height, a constant emittance, and a constant temperature. Figure 7 presents calculated curves of view factor for radiant exchange between a differential plane receiver and a right circular cylinder, as a function of the dimensionless separation distance for two typical dimensionless flame heights, and two heights of the receiver measured above the flame base. An analytical expression of the view factor for the configuration illustrated in the figure is given in appendix A.

Experimental data on heat flux measured at different locations are plotted and presented in figure 8, where the incident heat flux at peak fire conditions is plotted against the geometric view factor calculated on the basis of the relative location of the heat fluxmeter, the width of the combustible item and the measured flame height. It can be seen that all the data in each test fall adjacent to a regression line, and the resultant heat flux conditions produced by the fires from the developed simple wood arrays lie within those created by incidental fires.

Figure 9 compares the curves showing the time history of rate of heat release, based on the projected area of the combustible item on the floor, for fires with upholstered chair, wood crib and plasticized milk cartons in a waste receptacle. As noted before, the rates of heat output from the burning chairs are widely varied and significantly dependent upon the types of padding materials, design and construction of the furniture item involved. The simplified fuel arrays can be utilized to synthesize fire buildup conditions for furniture since the heat output pattern of standardized crib fires approximately simulate that of certain furniture fires as shown in the figure. The maximum rate of heat output and the total amount of heat energy released per unit projected area by test fires were estimated to be of the order of 120 kW and $2.7 \times 10^{4} \mathrm{~J} / \mathrm{cm}^{2}$, respectively, for waste receptacle fires, 320 kW and $15 \times 10^{4} \mathrm{~J} / \mathrm{cm}^{2}$ for large crib fires and 130 kW and $5.8 \times 10^{4} \mathrm{~J} / \mathrm{cm}^{2}$ for fires involving a small wood crib, and 870 kW and $16 \mathrm{x} 10^{4} \mathrm{~J} / \mathrm{cm}^{2}$ for furniture fires of moderate intensity.

Figure 10 shows a plot of the combined radiative and convective heat flux at the flame edge versus the computed rate of heat release at peak fire condition. The former was estimated from figure 8 by extrapolating the regression line to intercept with the ordinate corresponding to a view factor equal to unity. The peak heat flux level in the proximity of the test fire varied widely: ranging from approximately $0.9 \mathrm{~W} / \mathrm{cm}^{2}$ for chairs padded with cotton felt to $8.5 \mathrm{~W} / \mathrm{cm}^{2}$ for those with plastic foam. As shown in the figure, there was a trend of linear relationship existing between the heat flux from the flame envelope and the computed heat release rate. The heat flux level was estimated to correspond to approximately 4 percent of the available heat released based on unit area projected by the combustible item on the floor.

Figure 7. View factor curves for radiant interchange between

- ォәрит̣t

Figure 8. Relationship between the measured incident heat flux and the view factor from the receiver to the fire.

Figure 9. Comparison of rate of heat release for furniture, wood crib and waste receptacle fires.

Figure 10. Relationship between the computed rate of heat release and the extrapolated heat flux at flame envelope.

A relationship showing flame emissivity and half-width of the fuel source is presented in figure 11. The emissivity of the flame for each test was calculated by using the extrapolated value of the heat flux at the flame envelope and the flame temperature measured with the unshielded thermocouples located along the flame axis. The flame emissivity data from chair fires was found to be considerably dispersed. This may be attributed to wide variations in the concentration and composition of the radiating gases and the presence of varying amounts of soot and smoke particles from the burning of different types of upholstered chairs. The attenuation coefficient k, is defined by the equation:

$$
\begin{equation*}
\mathrm{k}=\frac{-\ln (1-\varepsilon)}{\mathrm{r}} \tag{1}
\end{equation*}
$$

This coefficient can be estimated from flame thickness, which is approximately equal to the source width $2 r$, and calculated flame emissivity ε. The equation of a best fit line drawn in figure 11 was obtained by regression analysis and the average attenuation coefficient for these test fires was found to be $1.13 \mathrm{~m}^{-1}$.

6. CONCLUSIONS

Incidental fires generally produce high fire plume temperatures and intense heat flux in local areas and may approach the fire severity as represented by the ASTM Standard E-119 test method for fully involved room fires. However, these levels of air temperature and heat flux to adjacent surfaces at peak fire conditions exist for only short periods.

The rate of heat transfer from a freely burning fire was found to be roughly linearly related to the heat release rate or fuel burning rate, and its magnitude at the flame boundary accounted for approximately 4 percent of the heat generation rate based on unit area of the combustible item projected on the floor.

The fire with a standardized wood crib can duplicate the essential characteristics, such as burning time, temperature and heat flux levels and the size and shape of the flame, of typical incidental fires.

Data on heat flux levels measured at various locations were, for a given item, correlated fairly well by a simplified derived expression based on an assumption of considering the fire to be cylindrical in shape and a gray-body emitter with constant temperature.

The upholstered chairs furnished with latex foam cushion produced higher levels of smoke concentration than those with cotton felts or urethane foam.

The distances at which spontaneous ignition of wood would occur varied from 0.15 m for 1 ight-weight burning chairs to 0.45 m for moderate sized ones above a carpet.

Figure 1l. Flame emissivity versus half-width of the fuel source for furniture, wood crib and waste receptacle fires.

7. ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Mr. C. F. Veirtz and Mr. T. F. Maher for their assistance in the experimental work. The work was supported in part by the United States Department of Housing and Urban Development.

8. REFERENCES

[1] Gross, D. and Fang, J. B., The Definition of a Low Intensity Fire, Joint RILEM-ASTM-CIB Symposium Proceedings, Performance Concept in Buildings, Vol. 1, Nat. Bur. Stand. (U.S.) Special Publication, 361 (1972).
[2] Masliyah, J. H. and Steward, F. R., Radiative Heat Transfer from a Turbulent Diffusion Buoyant Flame with Mixing Controlled Combustion, Combustion and Flame, Vol. 13, 613-625 (1969).
[3] Love, T. J., Shahrokhi, F., Hood, J. D. and Tsai, Y. W., A Method for the Prediction of Radiative Heat Transfer from Flames, paper No. 67-HT-47 presented at ASME-AIChE Heat Transfer Conference, Aug. 6-9, 1967.
[4] Fang, J. B., Analysis of the Behavior of a Freely Burning Fire in a Quiescent Atmosphere, Nat. Bur. Stand. (U.S.), NBS IR 73-115 (Feb. 1973).
[5] Hamilton, D. C. and Morgan, W. R., Radiant-Interchange Configuration Factors, United States Nat. Advisory Com. for Aeronautics (USNACA) Tech. Note 2836 (Dec. 1952).

The view factor for radiant interchange between a right circular cylinder A_{2} of radius r and height h, and a differential area element dA, with its normal perpendicular to the axis of the cylinder, as shown in the sketch of figure 7, can be expressed by the following equation [5]:

$$
\begin{align*}
& F_{12}=\frac{1}{\pi L}\left\{\tan ^{-1}\left[\frac{N}{\sqrt{L^{2}-1}}\right]+\tan ^{-1}\left[\frac{(H-N)}{\sqrt{L^{2}-1}}\right]+\frac{(H-N)\left(P_{1}-2 L\right)}{\sqrt{P_{1}} Q_{1}} \tan ^{-1} \sqrt{\frac{P_{1}(L-1)}{Q_{1}(L+1)}}\right. \\
&+\frac{N\left(P_{2}-2 L\right)}{\sqrt{P_{2} Q_{2}}} \tag{2}\\
&\left.\tan ^{-1} \sqrt{\frac{P_{2}(L-1)}{Q_{2}(L+1)}}-H \tan \sqrt[-1]{\frac{L-1}{L+1}}\right\}
\end{align*}
$$

where $L=\frac{d}{r}, N=\frac{n}{r}, H=\frac{h}{r}$

$$
\begin{aligned}
& P_{1}=(L+1)^{2}+(H-N)^{2}, P_{2}=(L+1)^{2}+N^{2} \\
& Q_{1}=(L-1)^{2}+(H-N)^{2}, Q_{2}=(L-1)^{2}+N^{2}
\end{aligned}
$$

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document inc ludes a significant bibliography or literature survey, mention it here.)

A variety of upholstered chairs and wood cribs were burned within a ventilated compartment. The experimental measurements of weight loss, smoke concentration, temperature and heat flux levels are summarized. A reproducible fire obtained from burning a standardized wood crib array was found to be capable of representing the essential features of incidental fires of moderate intensity.
17. KEY WORDS (six to tweive entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons) Buildings; combustibility; fire intensity; flames; furnishings; heat release; ignition; smoke; thermal radiation; upholstery; waste receptacle.
18. AVAILABILITY XXUnlimitedFor Official Distribution. Do Not Release to NTISOrder From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, SD Cat. No. C13
\square Order From National Technical Information Service (NTIS) Springfield, Virginia 22151

19. SECURITY CLASS (THIS REPURT)	21. NO. OF PAGES
UNELASSIFIED	

[^0]: ${ }^{1}$ Numbers in brackets correspond with the literature references listed at the end of this paper.

