






f

i

j



NBSIR 75-676

Path Finding Algoritlims and Data

Structures For Point-to-Point

Trip lilanagement

Judith F. Gilsinn

Patsy B. Saunders

Martin H. Pearl

Operations Research Section

Applied Mathematics Division

Institute for Basic Standards

Washington, D. C. 20234

January 1975

Final

Techn ica I Report to

Systems Analysis and Evaluation Division

Urban Mass Transit Administration

Department of Transportation

Washington, D. C. 20590





NBSIR 75-676

PATH FINDING ALGORITHMS AND DATA

STRUCTURES FOR POINT-TO-POINT

TRIP MANAGEMENT

Judith F. Gilsinn

Patsy B. Saunders

Martin H. Pearl

Operations Research Section

Applied Mathematics Division

Institute for Basic Standards

Washington, D. C. 20234

January 1975

Final

Technical Report to

Systems Analysis and Evaluation Division

Urban Mass Transit Administration

Department of Transportation

Washington, D. C. 20590

U. S. DEPARTMENT OF COMMERCE, Secretary

NATIONAL BUREAU OF STANDARDS, Richard W. Roberts. Director





ABSTRACT

This report identifies and characterizes the dat"^ base and computer
software requirements for a Point -to-Point Trip Management (PTPTM)
System which provides detailed transit trip itineraries in response
to inquiries made by prospective passengers. The requirements fall
into four categories, corresponding to successive stages in processing
such an inquiry: l) reception and interpretation, 2) location and connection,

3) path calculation, and h) report. Procedures for path calculation are
discussed in detail, including techniques for improving shortest path
algorithm performance both through optimized computational schemes and
through special methods of representing and manipulating the data base
describing transit routes and schedules. Estimates, based on step-by-
step schemes presented in an appendix, indicate that computation time
will be sufficiently small (less than one second per request) that on-line
path computation is feasible. Since path finding represents only a
fraction of the total time spent in answering a request for itinerary,
a queuing model is developed to establish how many formerly lost calls
would be captured by a computerized system which achieved a prescribed
fractional saving in service time; illustrative application of this model
indicates a sharp reduction in lost calls.

Key Words : Algorithms; networks; paths; shortest paths; transit information
systems; transit networks; transportation.
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1. INTRODUCriON

Point -to -Point Trip Management (PTPTM) is the capability of an urban
public transportation system to provide individualized trip planning

and trip execution information to a prospective rider, through use of

a readily accessible communication medium such as the telephone.

The two major elements of PTTTM are the communication system and the
transit company's "PTPTM Processor". This rep>ort discusses the
various components of the PTPTM Processor.

The idea of providing transit trip itineraries in response to telephone
requests is certainly not new. This service has been furnished in many
localities for many years by transit system telephone operators who
scan city maps, transit network maps, transit schedules, and update
sheets in order to identify a trip which will serve a caller's needs.
The idea which is somewhat new is that of transforming the various maps
and schedule information into computerized data bases, automating
the look-up procedures, and utilizing a computerized path finding
process to single out a "best" trip or trips for each caller.

The current Energy Crisis has provided an impetus to developing automated
transit information systems. With gasoline prices increasing and supplies
decreasing, there has been a renewed interest in efficient utilization
of transit systems. Some people are using mass transit for the first
time or using it for more types of trips, e.g., commuting, shopping,
visiting, dining out, etc. They need information in order to plan
their trips, and it is plausible that even more people would utilize
public transportation if trip information were more readily available.
An additional impetus for transit information systems comes from the
awakening interest in regional cooperative efforts to improve the quality
of life for all, efforts in which coordinated approaches to transportation
play a major role. Providing transit trip information on a regional
basis, it is hoped, will improve all citizens' access to facilities
throughout the area.

In a manual system, for example that provided by Washington D.C. 's

Metrobus Company, a call for transit information can take up to '( to 8

minutes to serve. Some people are no doubt discouraged from calling

again by tne length of culls, or by the resultant waits for contact with

an operator. F\irthermore, even when a large number of operators are

answering calls, when all of those operators are busy only a certain number of

additional calls can be placed in a queue on "hold", and once the queue is

filled all other calls are lost to the system. Automating the service

processes will significantly reduce tne average time per call, thereby

providing faster service on all calls and capturing at least some of

the calls which are now lost.
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In addition to serving more calls faster, there are several other
benefits from an automated transit information system. Under the
manual system operators search for a trip which meets the caller's
needs, i.e. carries the caller from a transit stop near his origin to
a transit stop near the desired destination, arriving and/or departing

ftt times close to those preferred by the caller. Although the reported
trip itineraries are reasonable, they are not necessarily the "best"
trip for each caller. Procedures for finding "best" paths in a network,
often referred to as "shortest path algorithms", can utilize any one
of many different criteria for selecting an optimal path for each caller.
(Possible criteria for path selection will be discussed later in the
report.) Furthermore, because the algorithms are well-defined procedures,
there is the added advantage of repeatability, i.e. for the same input
the algorithms always select the same path, which means that a caller
will receive the same response no matter ^jrtien he calls or which
operator handles his inquiry. In a manual system this is not necessarily
true: two operators, or even one operator answering several calls,
given the .fisame information requests, may not come up with the same
trip itinerary. In addition to optimality and repeatability, another
advantage of an automated system is its ability to incorporate changes
promptly. If, for example, a schedule is changed or a transit route
altered, the data bases can be modified to reflect the changes and the
PTPTM Processor will respond immediately. These advantages of an
automated transit information system make it clear that such a system
warrants closer investigation and analysis of its costs and benefits.

We will describe the components of a PTFTM Processor in Section 2 and
discuss for each its requirements and characteristics under various
levels of automation. Section 2 also contains descriptions of the data
base and software requirements of each component together with an
assessment of anticipated problem areas in Processor develojxnent

.

Section 3 focuses on the path finding component, describing computational
procedures to aid in finding shortest paths in a transit network, detailing
the related data structures and data processing requirements and providing
timing estimates for path computation. Section k summarizes the findings
of Sections 2 and 3 and recommends next steps.

The report also contains foar appendices. Tne first of these includes an

examination, for possible use in PTPTM, of that part of IMTA's Urban
Transportation Planning System (UTPS) which finds paths in a transit
network. Appendix B presents a queuing model of a PTPTM information
system and an illustrative application of that model to investigate how
significantly the number of lost calls would be affected by a reduction
in service time resulting from automation of the path finding component.
Appendix C takes up several topics, peripheral to the main thrust of this
report, which nevertheless are relevant to PTPTM and were noted during
our study. The final appendix gives the details of step-by-step com-
putational schemes for path finding in a transit network.
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2. COMPONENTS OF A PTPTM PROCESSOR

Some of the functions which are now carried out by the transit system
information operators will be carried out by the PTPTM Processor. These
functions and the associated sources of information, i.e. data bases, can
be thought of as components of four major functional categories. The diagram
shown in Figure 2.1 illustrates one conceptualization of the system.

Although the PTPTM Processor may, in final form, differ sanewhat from the
diagram, the functions and data bases shown therein will necessarily be
ingredients of an operational system. This section will discuss the various
functions and data bafees associated with each of the components.

2. 1 Reception and Interpretation

The functions of this category are now performed somewhat "automatically",
perhaps even subconsciously in some cases, by the transit system information

operator. The caller provides an origin, a destination, and Information
indicating a time preference for the trip, e.g. weekday morning to arrive
by 0830, or Saturday evening departing no sooner than I7OO.* The operator
must "receive and interpret" the caller's information. A typical conversation
is subject to several basic types of communication difficulty, e.g. mispro-
nunciation, accent variations, and multiple names for the same location.
While operators handle these difficulties readily, asking for clarification
when necessary, considerable effort would be required to develop a computer
processor with comparable interpretation capabilities.

2.1.1 FUNCTIONAL RBE^UIREMENTS

Tne PTPTM Processor will presu-iably be developed aiid i:riple."'!ented in stages, and

reception and interpretation may be the last stage to be automated. In
fact, the information requested from callers may differ depending upon
whether this part of the PTPTM Processor is or is not fully automated. In
a partially automated version operators would still answer the phones,
request information from the callers, and recognize and/or clarify pronunciation
ambiguities. The operator would then enter this information into an automated
location and connection component. Such a component must be capable of
recognizing and treating some of the communication difficulties now handled
by the operators as well as new problems introduced by the operators'
entering the information. The following is a list of some of the complications
with which this component must cope:

(i) multiple riameL for Lne same location, e.g. The Kennedy Center
or the John F. Kennedy Center for the Performing Arts,
Landover Mall or Landover Shopping Center, etc.

Although military time will be used throughout this: section, callers
would not necessarily be required to give their time preferences in this
Daanner.
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FIGURE 2.1

PTPTM Processor Components
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(ii) reordering of words, e.g. Commerce Department or Department
of Commerce, Maryland University or University of Maryland, etc.

(iii) abbreviations, e.g., S., St., St, for Street, Blvd. Bvd., or

B for Boulevard, etc.

(iv) misspellings, e.g., Glenn Dale Rd. or Glen Dale Rd., Chaplain St.

or Chaplin St., etc.

Many difficulties of the types mentioned above can be anticipated and

allowed for in advance.

After "recognizing" a communication difficulty, the location component
would then indicate each correction that has been made. If ambiguities remain,

it may print out a list of names from which the operator, on behalf of the

caller, can select the correct choice or reenter the system with more
precise information. Methods foj detecting, correcting, and verifying
input errors have been developed , and these general techniques, as well as

some of their details, can be utilized in the PTPTM Processor.

In a fully automated system, i.e. one in which there is operator assistance
only when a problem develops, it will probably not be feasible to allow
callers their present great freedom In formulating requests. Although some

work is being done to develop "voice decoders", i.e. systems which translate
spoken words into machine readable input, such devices are far from perfected.
Variations in accent, enunciation, tone of voice, etc. create great difficulties.
Present technology therefore requires efforts to minimize these variations
by restricting the words to be decoded. The capability of decoding spoken
numbers is far more promising than that of decoding arbitrary words. Thus,

a fully automated PTPTM Processor may require that a caller supply the
telephone members of the origin and destination locations. A more restrictive
but technologically simpler approach would be to have the telephone numbers
relayed not by voice but by the caller dialing (or pushing buttons on a

"Touch-Tone" phone) the origin and destination telephone numbers and desired
time of arrival or departure in response to appropriate recorded requests by
the PTPTM Processor.

Because of the desirability of developing the PTPTM Processor in stages such
that system changes are minimized as each new stage is implemented, there
may be a tendency to suggest that callers initially state the origin and
destination phone numbers to operators who then enter these numbers into
the system. Although this process wouli minimize the communication diffi-
culties described above, there are many problems which would be introduced,
including those that follow:

(i) An extra burden is placed on callers who may not know the
correct phone numbers and would have to obtain them from some
source.

(ii) It may be difficult or impossible to obtain some phone numbers,
e.g. residences with unlisted numbers, locations served by
unlisted pay telephones, etc.

(iii) There are many instances where there is not a one-to-one
correspondence between location and phone number. Obviously

there are apartment buildings, office buildings, etc. where

See description of the PARIS system appearing below and in [3].
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there are many phone numbers for the one location. Not so
Immediately obvious are situations where a single phone number
represents numerous locations. This occurs most frequently
with businesses that have one central switchboard where an
operator answers all calls and transfers calls to branch offices
which have extensions of the central switchboard telephone
number.

•

Because of the difficulties described above, it is recommended that telephone
numbers not be used as origin/desti nation descriptors until such time as
this is required for use in a fully automated system. At that time, steps

can be taken to overcome some of these difficulties and the increased burden
on the callers can be weighed more meaningfully against the advantages of a

fully automated system.

2.1.2 DATA BASES

There are several types of data which will be required to assist in the
reception and interpretation of caller supplied input. First, there must

be a list of immediately acceptable location descriptors. If the callers
are specifying street names, either as explicit location addresses, e.g.
"223 W. Elm Street," or as nearby street corners, e.g. "Elm and Oak", the

list will include all street names in the area served by the transit system.

If landmarks are to be accepted, their descriptors must also be included,
e.g. "Washington Monument" or "Korvette's Lot - Rockville." It will be the
function of the interpretation component to determine which of the descriptors
on the acceptable list is intended by the caller/operator supplied input.

Extraneous information and some abbreviations can be removed from the input

by checking another data list. Such a list might include such words as "the"

"in", "of", "West", "Street", etc. with each word on the list associated
with a group of letters to which the words on the list should be changed.
For example, "the", "in", "of", etc. might be changed to a single blank
space, while "West" or "Street" might be changed to "W" and "St" respectively.
This list would include fairly general changes which would not vary signifi-

cantly from city to city. After the input has been checked and, if necessary,
extraneous information removed, the (possibly modified) input can be checked
against the list of acceptable descriptors.

If the input information is found within the list of acceptable descriptors,
then the input can be passed along to the second component of the PTPTM
Processor. If it is not found, additional checks will be needed. Multiple
names and reorderings are probably best handled by anticipation, experience,
and rejection. Some mismatches of this type can be anticipated and the multiple
names or reordered phrases can be included in the acceptable list. When the
system is in use, the acceptable list can be auginented to include any
descriptors which frequently have resulted in mismatches. Finally, there
will be cases where the caller coins his own descriptor and the system will
reject the input and ask for clarification.
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Another source of mismatches will be spelling errors. Some of these

can be "caught" by using a list of multiple spellings of the same sound.

Such a list would, for example, include the pairs, "f" and "ph", "ay" and
"ey", "ay" and "eigh", "k" and "c", "c" and "s". A system for correcting

spelling errors based on sounds is in use in the PARIS system which will be
discussed later in this report. If, after checking for spelling errors,

the input still cannot be located on the acceptable list, it must be rejected

for further clarification from the user/operator.

To some extent there is a general philosophy which can be followed in

developing this component of the PTPTM Processor. Obviously, it would be
undesirable for the system to reject a large number of input descriptors.

Yet at the same time, to provide the system with the capability of "recognizing"

almost any conceivable input would require massive data bases and an
extensive amount of time in modifying and checking the input. The best

approach Is somewhere between the two extremes, i.e. provide enough inter-

pretation capability so that "most" input is acceptable, and periodically
monitor the Inputs which are rejected so that frequent mismatches can be

avoided by including the non -acceptable descriptors in the acceptable list.

A second general point is that great care must be taken to avoid changing the

input into the wrong descriptor. For example, "Elm Street" and "Elm Avenue"

may or may not refer to the same place. If both exist in the area served by

the transit system, the distinction must be maintained. If only the second
exists, it could be safe to assume that a caller's reference to "Elm Avenue"
really meant "Elm Street". To help avoid making the wrong changes, ambiguities
can be printed out so tlriat the user/operator can make the appropriate
determination.

2.2 Location and Connection

After the caller's origin and destination have been clearly identified by

the Reception and Interpretation component, they must then be located. This
process corresponds to the operators, in the manual system, searching city maps

to find these locations and then scanning the transit system maps to locate
nearby transit stops. This component of the PIPTM processor must perform
the same functions: given a caller's origin and destination descriptors,
it must determine appropriate transit stops, i.e. points of access and egress
for the caller, and provide all necessary information in a form acceptable
to the path finding component.

2.2.1 FUNCTIONAL REQUIREMENTS

In carrying out the location and connection processes, this component of the
PTPTM Processor will be primarily concerned with scanning various data
bases to obtain the appropriate information. Considerable effort will be
required to prepare these data bases and to organize their storage in such

a way that the searches can be accomplished with a minimum of scanning.
The choice of storage schemes will depend on both the path finding algorithm
and the particular transit network being modeled. In the following sections

which discuss the necegsary data bases, the descriptions and examples are

7



meant to illustrate the general nature of the information requirements

rather than a particular storage plan.

2.2,2 location/transit STOP MTA_

One of the major efforts in developing a PTPTM Processor is that of providing
the capability to locate a caller's origin and destination and to determine
appropriate transit stops near both of these locations. It would, of course,
greatly simplify the system if callers were required to specify these
transit stops. Such a requirement would, however, place an undue burden on
callers who are unfamiliar with, or unable readily to describe, the locations
of appropriate transit stops. Another alternative is to have the transit
system information operators continue to determine appropriate transit stops
manually, i.e. by scanning maps, and then "punch in" the stop numbers associated
with these locations. It is, in fact, quite likely that such a jartially
automated system will be used for some time during the develojment of a
more advanced FTPTM Processor. However, a location data base would be
required in order to achieve a fully automated system.

The assumption that an operator assisted location system will be needed
for some time during the development of the total system is based in part upon
the present lack of location data in most municipalities. It is anticipated
that the DIME files presently being developed by many local jurisdictions
in cooperation with the Census Bureau will aid in locating any given
address within the boundaries of the municipality. These data are expected

to aid various public service agencies, e.g. fire departments, ambulances,

etc., in rapidly locating addresses in need of emergency services. If useful
for this purpose, they could be of similar use in locating the origins,
destinations, and transit stops needed by the FTPTM Processor. Unfortunately,
since the DIME files are still under development for most large cities, it

is impossible to evaluate them regarding accuracy, completeness, etc. As
a result, there is a decision to be made between (a) developing the same type

of data base and possibly duplicating the DIME effort and (b) waiting until
the DIME files are available and hoping that they are sufficiently accurate
and complete for PTPTM purposes (or can be made so without excessive effort).

For purposes of this report, the discussion will specify the nature of the
information which must be available, regardless of its source.

Given a caller's origin and destination, the location component must respond
with two items corresponding to transit stops "near" the caller's origin
and destination. The DIME files are expected to provide x and y grid
coordinates for locations within the municipality. Using this type of data,

an off-line computer code can be executed to produce a data base consisting
of a set of nearby transit stops for "each" location. In actuality it will

Further information about the DIME (Dual Independent Map Encoding; files
may be obtained from Documentation for the Geographic Base (DIME) File,
U.S. Bureau of the Census, Geography Division, revised August 1, 197^.
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not be necessary to have an entry for every location, but only for certain

general location descriptions, e.g. "200-400 Elm Street use stops 2, 3, or 17."

Specific details on the storage of these data will depend on the transit

network and the city layout, since these will determine the extent to which

many locations can be grouped together for purposes of determining appropriate
transit stops. If total trip time is to include time spent traveling to

and from these transit stops, estimates of average access/egress times to

and from these transit stops will also be required. Thus the total information

which must be provided by the location/transit stop data base will include

the following;

(i) location descriptions
(ii) lists of transit stops

(iii) estimated access/egress times.

2.2.3 TRANSIT stop/arc DATA

Including all transit system stops as nodes in the network on which the

shortest path algorithm operates would unnecessarily increase the computation
time and storage requirements in this part of the processor. Just a little

reflection makes obvious the reason that all stops are not needed for the

algorithm. Consider for the moment a representation of the entire transit
system network in which every transit stop is a node and a directed arc joins
every pair of nodes (i,j) if a transit route stops at node i just prior
to stopping at node j. Augment this (abstract) network by adding additional
directed (transfer) arcs joining every pair of nodes (k, i) if passengers
are likely to disembark at node k and walk to node I to board another vehicle.
The resulting diagram is then representative of the detailed transit network.

A simple example is given in Figure 2.2. It contains a total of ten transit
routes, 50 arcs, and 20 stops or nodes. The dashed arcs connecting nodes

7 and 9 represent arcs over which passengers walk to transfer between routes
E or F and routes G, H, I, or J. The table at the bottom of the figure
specifies the stops for each route. It should be noted from the figure that
an arc from node i to node j is not the same as an arc from node j to node i,

i.e. all arcs are directed arcs.

We will next illustrate how the example network can be reduced in size.

We first define a note to be a "major" node if it has one or more of the
following characteristics:

(i) beginning of a transit route,
(ii) end of a transit route,
(iii) beginning of a transfer arc,
(iv) end of a transfer arc,
(v) transfer point
(vi) certain other "important" transit stops.

All of the above characteristics are somewhat se2-f -explanatory with the
possible exceptions of (v) and (vi). A transfer point is defined as any
stop where passengers might logically disembark and board another vehicle

9



FIGURE 2.2

A Detailed Transit Network

ROUTE A

ROUTE TRANSIT STOPS

1,11,12,2,13,3,1a, A

A, lA, 3, 13, 2, 12, 11,1
1,11,12,2,13,3,15,5
5,15,3,13,2,12,11,1
6,16,2,17,7.18,8
8,18,7,17,2,16,6
9,10
10,9

9,19,20,10
10,20,19,9
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to continue a trip. If two routes have a comidon segment containing several

nodes, it is not necessary that all cocnmon nodes be treated as "major" nodes

even though all are potential transfer points. Only those nodes meeting one

of the other criteria, (i) through (vi), and usually the first and last

nodes of the common segment, need be included as major nodes. In Figure 2.2,

Node 2 is a transfer point because, for example, passengers on Routes E or F

can transfer there to routes A, B, C, or D. Other transit stops may be

termed "important" if, for example, an unusually large number of callers
might originate or terminate rides at that stop. Furthermore, if fares

are to be reported for a zone fare transit system, transit stops Just
across a zone boundary will be important and must be included in the reduced

network.

In the reduced network, there will be a directed arc from major node i to

major node J for every route in the detailed network such that node i is

the last major node stop prior to node J on that route. All transfer arcs

in the detailed network must also be included in the reduced network.

Figure 2.3 illustrates the reduced network corresponding to the detailed
network shown in Figure 2.2. In this example, the reduced network includes
only 10 nodes and h arcs. This type of reduced network is all that
is needed by the shortest path algorithm for purposes of determining best

paths between any pair of transit stops in the detailed network.

The transit stop/arc data will provide the information necessary to derive
paths in the detailed network from paths in the reduced network. These
data will consist of a set of arc numbers for each transit stop, including
major node transit stops, in the complete network. Since each arc in the
reduced network is associated with a portion of a route in the complete
network, a transit stop will be associated with an arc if, in the complete
network, that stop is on that portion of the route to which the arc

corresponds. This seemingly complex explanation can be easily clarified by
an example. Referring back to Figure 2.2 it can be seen that stop l6 is

between stops 6 and 2 on both routes E and F. In the reduced network, arc 13
represents that portion of route E from stop 6 to stop 2 and arc l8 represents
that portion of route F from stop 2 to stop 6. Thus stop l6 would be
associated with arcs 13 and l8. The complete set of stops and their associated
arcs for the example network are given in Figure 2,4.

2.2.h TIME DISPLACEMENT DATA

In addition to a set of arc numbers for each transit stop, there must be
available a set of times associated with the arcs for each transit stop.

They can be thought of as "displacement times" since they indicate by how
much time a particular node is displaced from a major node on each arc.

Again, an example will clarify this explanation. If in the network of

Figure 2.2, stop l6 is 2 minutes from stop 6 on route E, then in Figure 2.3

stop 16 is displaced by 2 minutes along arc I3. Tnus if the schedule of de-
partures at stop 6 along route E is known, it will be easy to determine when
the vehicles will be at stop I6. Ii" the displacement times are not constant

11



FIGURE 2.3

Reduced Netvork From -Figure 2.2



FIGURE 2.k

Stop/Arc Data From Figure 2.3

Transit £top ' Arcs

1 1,6,7,12
2 1, 2, 5, 6, 7,8, 11, 12, 13, ih, 17, l8

3 2,3,4,5,8,9,10,11
h 3,4

5 9,10
6 13,18

7 14,15,16,17,23,24
8 15,16

9 19,20,21,22,23,24
10 19, 20, 21, 22

11 1,6,7,12
12 1,6,7,12
13 2,5,8,11
14 3,4

15 9,10
l6 13,18
17 14,17
18 15,16
19 21, 22

20 21, 22
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throughout the day, the displacements could be represented as fractions of
total arc time, e.g. the trip from node 6 to node l6 might consume 35^ of
its total time in going from node 6 to node 2 on arc 13.

2.2.5 LOCATION/COMBCTIQN: SUMMARY

As discussed previously, the location and connection component of the
PTPTM Processor vrlll provide the Inforraation necessary to associate the
caller's origin and destination with appropriate stops in the transit system
network. It is the interface between the caller's request and the path finding
component, and its development will require a more extensive software effort
than that for any other component of the PTPTM Processor. The developmental
process will require obtaining the needed information in a machine readable
fom, processing this inforraation to obtain the basic data, "debugging" the
data to insure accuracy and completeness, and developing clever computer
storage arrangements to minimize the time needed to scan the data bases in
search of the particular data needed to reply to an individual caller request.
All of these tasks are major efforts.

In summary then, the Location/Connection component will, given as input a
caller's origin and destination, first determine nearby transit stops and
then produce, as output, sets of arc numbers and displacement times associated
with these transit stops. These arc numbers are then used as input to the
path finding component to define the corresponding origin and destination
of the reduced network in which path finding is done. The displacement times
are added or subtracted from the total trip times calculated by the path
finding algorithm.

2.3 Path Finding Component

There are many "shortest path algorithms" which have been developed and are
in current use. Section 3 and Appendix D of this report will describe several
of these algorithms in detail. This section will concentrate on more general
descriptions of the concepts and data of path finding processes.

2.3.1 PATH SELECTION CRITERIA

Although path finding techniques have traditionally been referred to as
"shortest" path algorithms, it need not be the actual (distance -based) length
of ,a path which is the basis for selection. Indeed, almost any characteristics
of the various arcs and nodes which comprise a path can be combined to
determine a value for the path, and the values for other paths can be compared
to it to determine whicu patn has the "best value." One frequently used criterion
is time to traverse a path - total elapsed trip time. Time is of course
related to path length, but in a transit system other factors, e.g. congestion,

number of stops, etc., add additional time which is not necessarily a function

of the length of the path. In fact, total trip time is often calculated as

a function of several components, e.g. access and egress time, in-transit time,

and transfer time. These components have been defined in a number of different
ways and frequently are multiplied by different numerical "weights" prior to
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being added together. The weights are indicative of relative preferences

for the components, e.g. if in-transit time is less irritating than waiting

time, the weight associated with waiting time is larger than that for in-transit

time. The weights are necessary to distinguish between trips which, for

example, have the same total, elapsed time but differ in the distribution
of this time among the various components. Such a situation might arise
if a caller has the choice of walking six blocks to board an express vehicle
or walking half a block to board a "stop at every corner" vehicle. Obviously
the value of these two choices may differ from caller to caller and even from

day to day for the same caller. Weights on the individual components of
elapsed time would distinguish between the two trips whose unweighted total
elapsed time is the same.

Although total trip time is probably the most frequently used value for

determining best paths, there are many other criteria to be considered.

In planning some trips, callers may be more concerned with departure and/or
arrival time than with total elapsed time. For example, commuters may be

concerned with arriving at their place of business just prior to a certain

a.m. time and leaving after work shortly after a certain p.m. time. If

using the routes associated with the shortest trip times required a.m. arrivals
and/or p.m. departures quite different from the desired arrival and/or
departure times, then routes with longer trip times might be preferable. In
other words, there is an (unspecified) trade-off in the minds of these riders
between total trip time and deviation from desired departure and/or arrival
time. Furthermore, deviations on either side of a desired time may not

be equivalent, e.g. a rider may not object to arriving at his place of
business 20 minutes early, but could not even consider a trip which arrives
one minute after the start of business. There are ways of defining trip
value so that preferred departure and/or arrival times are included.

Still other factors which may be of importance in determining trip value
include number of transfers, total fare, amount of walking required, etc.

The following list, which is by no means all-inclusive, suggests some possible
criteria upon which path selection can be based.

Minimum time (weighted or unweighted),
Minim\im cost.

Minimum out -of-vehicle time.
Arrive closest to desired arrival time.
Arrive latest before desired arrival time.
Leave closest to desired departure time.
Leave soonest after desired departure time.
Minimum number of transfers.
Minimum walking distance,

10) Depart as late as possible to arrive prior to a specified time,
11) Depart after a specified time and arrive as early as possible,

(12) Minimum time with:
(a) No more than n transfers
(b) No more than t minutes out -of-vehicle time
(c) Cost less than d dollars or cents

(1

(2

(3

(^

(5

(6

(7

(8

(9
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Any of the criteria listed above, and perhaps even others vhich are not

listed, could most nearly meet the needs of some particular caller. It will be

necessary to decide in advance vhich set of criteria will be available in the

Pi'Pi'M Processor. Although it is conceptually possible to allow each caller

to select, from a group of criteria, the one(s) which describe his preferences,

this degree of flexibility could be costly in terms of both computer
storage requirements and computational time. Furthermore, although the
various shortest path algorithms are capable of working with each of the

criteria listed above, some of the criteria lend themselves to this more

naturally, resulting in more efficient computation and storage. In particular,

the criteria listed above as numbers 10 and 11 closely resemble those criteria
now used in manual systems and are especially well-suited for several
algorithms. In addition, it will be shown in Section 3 that these two criteria
are so closely related that very little additional effort is required to

allow the caller the option of choosing among them. It can be seen that
both of these criteria will result in the selection of a minimum time trip
subject to the stated limit on arrival or departure. The distinction is

simply whether the caller wants to be sure of arriving prior to a certain
time or whether he cannot depart until after a certain time. A simple

input code such as punching a "D" or an "A" along with the caller's specified

time can be used to indicate which of the two criteria is to be used. Use
of these criteria will be discussed in greater detail in Section 3.

2.3.2 REDUCED NETWORK DATA

The type of data needed to describe the reduced network has been, to some

extent, already described in connection with the location/connection data
bases. In fact, the reduced network data themselves constitute the information
needed to construct the reduced network from the detailed network. They can
be organized such that for every arc in the reduced network there is a route
number and two node numbers corresponding to the major node transit stops

at the beginning and end of the arc. The reduced network data for the
example network of Figures 2.2 and 2.3 are given in Figure 2.5. In this
example, letters rather than numbers are used to identify the routes. The
dashes ar> route identifiers for arcs 23 and 2h simply indicate that these

are transfer arcs, which are treated differently from transit route arcs.
These data completely describe the reduced network.

• 2.3.3 SCHEDULE DATA

Although describing the reduced network is fairly simple and straightforward,
the description of schedules on the network is more complex. There are
several alternative approaches, and the choice among them has important
consequences. Before discussing these alternatives, some general comments
can be made regarding the information to be provided by the schedule data.

As the name implies, the schedule data base will be used to determine when
vehicles serving the various transit routes (arcs) will be at a particular
transit stop (major node) to load and discharge passengers. Since each arc
is associated with a particular route and particular origin and destination
major nodes, the schedule data can be organized by arc. Thus for each arc
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FIGURE 2.5

Reduced Netvork Data From Figure 2.3

ARC ROUTE MAJOR NODES

1 A 1-2

2 A 2-3

A 3-4
k B 4-3

y B 3-2

6 B 2-1

7 c 1-2

8 c 2-3
Q c 3-5

10 D 5-3

11 D 3-2
12 2-1

13 E 6-2

lU E 2-7

15 E 7-8
16 F 8-7

17 F 7-2
18 F 2-6

19 G 9-10
20 H 10-9
21 I 9-10
22 10-9

23 7-9
24 9-7

The - in the column for route denotes a transfer arc with no route
identification.
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included in the reduced network there vill be a set of data describing
actual trips across that arc. These data can be either explicit schedules,

i.e. a list of times when vehicles start to traverse the arc, or average
headways, i.e. a single time interval which represents the average headway
between successive vehicles serving the arc. Which of these two alternatives
is selected affects both the computer storage requirements and the information
which can be provided to the caller.

The difference between computer storage requirements for explicit schedules
and those for average headways is rather obvious. Explicit schedule represen-
tations require one time for every daily trip across each arc in the reduced
network. Average headways require only a single time increment, e.g. 15
minutes, for each arc in the reduced network. If the headways differ
significantly throughout the day, it may be necessary to divide the day into

time periods and specify different headways for each time period. Even
in this case, there would probably not be more than 5 time periods per day
so that far less storage is required to provide schedules as average headways.
With either average headways or explicit times, schedule data will be required
for different types of day, e.g. weekdays, Saturdays, Sundays, and holidays.

The most significant difference between average headways and explicit times
is the type of information which can be provided to the callers. This
difference is best explained by describing the manner in which average
headway data are prepared. Published schedules for transit systems

usually Include a list of explicit times for each route which state when
vehicles will arrive at the various stops along the route. These times
would be used exactly "as is" for the explicit schedule data. However, if

average headways are to be used, the average headway data must be derived
from the explicit times in the published schedules. In the derivation
process specific times are "lost" and all that remains are approximations
of these times. As an example, consider the following two departure schedules

during the time period stipulated as 0700 to O9OO.

Departure No . Route 1 Route 2

1 0710 0700
2 0725 0715

3 07^0 0815
h 0755 0825

5 0810 0835

Both routes have five departures during the 120 minute time period, i.e.

average headways of 2k minutes. Yet the two sets of explicit schedules are
obviously quite different. For Route 1, describing the average headway as

15 minutes would be accurate, except that there is no way to indicate that
there are no departures on this route after O8IO. For Route 2, the departures
are irregularly spaced. Except for the periods 0715 to O815 and 0835 to O9OO,

departures are rather frequent. With the average headway representation of

this schedule, there is no way to convey the variation in headways along
Route 2.

,
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In the above example, the departures on Route 1 are re^larly spaced, but

they do not continue throughout the entire time period. On Route 2, however,

the situation Is Just the opposite: departures are Irregularly spaced but

do, to a greater extent, "cover" the time period. A third situation in

vhich average headways are Inadequate -is that of very infrequent departures,

e.g. one or two trips per day. In these cases, specifying an average headway

of 2h hours, 12 hours, or even one or two hours is, for obvious reasons,

totally inadequate information for a caller. Thus average headways can be

appropriate only for frequent, regularly spaced departures which occur

throughout the duration of a time period. It may be possible to utilize a

mixture of schedule data, i.e. average headways where they would provide

sufficient information and explicit schedules everywhere else. This arrange-

ment would save computer ftorage, but the complexities associated with recog-

nizing and utilizing two d-:fferent types of schedule data may outweigh the

reduction in storage.

2.3.4 TRANSFER DATA

When passengers transfer from a vehicle serving one route to a vehicle serving

another, some amount of time is consumed just in making the transfer. In

constructing both the detailed transit network and the reduced network,

transfer arcs were added to cover the situation where it was necessary

for a traveler to walk from one node to another to make the transfer. Each

of these transfer arcs must be associated with a minimum time to traverse

the arc, and "trips" across the ^rc can be assumed to begin when a vehicle
arrives at the origin of the transfer arc.

In addition to these transfer arcs, it may be necessary to include certain
other transfer data to cover the situation where the passenger would not

have to walk between nodes to make a transfer, i.e. when two or more routes
intersect. In this case a certain amount of time must be allowed for the
traveler to get off and on the vehicles. If this transfer time is fairly
constant at all nodes, the time can simply be added to total trip time
whenever a transfer occurs. On the other hand, if transfer time varies
from node to node, then of course the transfer time must be stored for each
node.

There are actually two types of transfers which can occur at a single node.

In one case passengers disembark and wait at exactly the same spot to
board the next vehicle. In the other, they have to cross a street to board
the next vehicle. If the nodes of the reduced network correspond to street
intersections at locations -v^ere transferring passengers would have to cross
the street before boarding, it may be necessary to split the node, i.e. have
two different nodes for the one intersection with transfer links joining these
nodes. Although the difference between remaining at the same stop and crossing
the street to another stop at the same intersection may seem negligible,
when connections are closely timed, crossing the street might add just

enough additional time tl-iat the transfer cannot be completed. The need
for splitting nodes can be determined by examining schedules at transfer

points to see how closely timed the connections are.
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If vehicles are Instructed to wait at transfer points until transferring
passengers arrive, then these additional same -inter sect ion nodes and transfer
links vould not be needed and the transfer time can simply be the difference
between the arrival of the first vehicle at tlie node and the departure of
the second,

2.3.5 FARE DATA

Except in transit systems where there is a single fare for all trips, if
fares are to be reported to the callers and/or included in the criteria
determining best trip, some type of fare data will be needed. If the
tmnsit system employs a zone fare structure, there are at least two ways
of organizing these data. With such a structure, there is usually a fixed
rate plus additional charges each time the passenger crosses into a new
zone. E^ch crossing into a new zone will correspond to an arc In the
reduced network. These arcs can be flagged so that whenever they are
included in a path, additional charges are -added. Furthermore, callers
with origins or destinations along these arcs could be advised that the
additional charges can be avoided by using other transit stops. Alternatively,
all transit stops could be numbered in such a way as to indicate their zone,

e.g. stops 1-200 are zone 1, stops 201-378 are zone 2, etc. Then if the
origin stop and the destination stop are in different zones, the complete
path can be checked to determine the number of zone changes involved in

making the trip. If the zone changing arcs were also flagged, it would
again be possible to advise callers how to avoid the additional charges.
This approach would require less checking for zone changes since the path
arcs would only be checked if the origin stop and destination stop are
in different zones. However, it does require special numbering of the
transit stops, whereas some other numbering scheme, e.g. numbering all
major node stops before numbering the other transit stops, may be more
advantageous for other data bases or for certain algorithms.

Some transit systems employing either a fixed charge or a zone fare impose
additional fare for transfers. Sometimes the transfer charges are incurred
only if more than some specified number of transfers are performed. Sometimes
transfer charges may depend on the location of the transfer and/or the
modes of transportation involved in the transfer. Although these fare
structures appear complex, they can be treated by counting transfers, noting
where or between what modes they occur, etc.

With a fare structure such as that now used by most inter-city transportation
systems, the charges differ by origin-destination pair. Such a fare structure

would require storing a fare for each origin -destination pair of transit

stops. Additional fare schemes are discussed in Appendix C.

In summary, there are two main points to be made regarding fare data. First,

although fare structures vary from one transit system to another so that

no single method of representation is sufficient for all systems, all
known fare structures can be handled by appropriate representation. The
second point concerns where, within the computations, the fares must be
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determined. If fare is to be included in the determination of best trips,

fare data must be available to the path finding component. Depending upon

the fare structure, the algorithm may or may not have to accumulate fares

as the paths are traced. If, on the other hand, fares are only to be

reported to the caller, then all necessary fare calculations can be performed

by checking only the best trip(6) determined by the path finding algorithm.

2.3.6 TRIP EXPAI^SION

After the shortest path algorithm has determined the best trip(s) between

the appropriate major node origin and destination transit stops, it remains

to expand this information back to the detailed network so that the origin

and destination transit stop information can be reported to the caller. The

data needed to expand the reduced network are the same as those needed to

reduce the complete network.

The expansion process is perhaps best explained by an example. Referring back

to Figure 2.2, suppose that a caller's origin and destination transit stops

are stops 11 and l8 respectively. Referring to Figure 2.3, suppose that
the best trip dete mined by the shortest path algorithm is the following.

Nodes Arc Route Depart Arrive
1-2 1 A 0800 0825
2-7 Ih E 0830 0835
7-8 15 E 0835 0845

Suppose too that the displacement times for stops 11 and I8 on arcs 1 and 15

are 10 and 5 minutes respectively. By adding 10 minutes to the departure
time at node 1, the caller's boarding time is determined as 08IO at stop 11;

by adding 5 minutes to the departure time at node 7, the caller arrives
at the transit stop destination node I8 at 084o, for a total trip time of

30 minutes. The need to transfer at node (stop) 2 as well as the details
on routes and transfer times are all available directly from the trip
information for the reduced network without expansion.

This example illustrates the relative ease with which the expansion process
can be executed. Besides the information which is produced by the shortest
path algorithm, all that must be referenced is the stop/arc data base,
to determine which displacement times are needed, and the displacement
time data to retrieve these times. Section 3 and Appendix D will illustrate
how some of the various shortest path algorithms compute and store the path
descriptions in the reduced network.

2.h Response to Caller

After the best trip(s) have been determined, the information describing these
trip(s) must be reported to the caller. There are at least two different
ways in vhich this transfer of information could be accomplished. They
correspond to different degrees of PTPTM Processor automation.
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In a partially automated system, the computer output would be in written
form from which an operator would read the information to the caller.
In order to produce the necessary written trip description, each transit
stop is associated with a location descriptor, e.g. stop l8 might he
"Eighth and Elm". Then the numerical trip description output by the
path finding component could be automatically translated into a written
verbal trip description for the operator to read to the caller.

An automated version of this component might operate in a manner similar
to the way in which the telephone system now responds to calls which reach
an inoperative number. In this case, a computer generates a voice response,
which, for the telephone system, is similar to "The number you have dialed,

555-8000, has been changed. The new number is 555-6000." At least part
of the message is usually repeated twice. This type of response is generated
by retrieving the appropriate pre-stored words, numbers, or phrases and
piecing them together to form the complete reply. Although the responses
needed to describe a transit trip will be more complex, the same approach
can be used. Voice recordings of transit stop location descriptions, of the
numbers from zero through fifty-nine, and of certain words and phrases
can be pieced together to form a transit trip description. The following
sentence will illustrate a possible trip description response where the
various components of the response are underlined.

"Board route 6 0 3 at^ 8 ^ a.m. at the northwest corner of
Eighth and Elm . Get off at Twenty -first and Elm and walk to
Twenty first and Main to board route 5. 3. 5. 5^. 2 o 'clock. Get off at

Twenty-fir St and Oak . The total trip time is 25 minutes .

The fare is 50 cents .

"

In summary, the purpose of this component of the PTPTM Processor is to
respond to the caller with a description of the best trlp(s). Whether the
component requires operator assistance or not, data will be needed to
translate the totally numerical trip descriptions into written or oral
verbal descriptions.

2.5 Auxiliary Updating Procedures

The preceding sections have discussed the various PTPTM components, the
data bases required by them, and procedures (or computer programs) needed
for answering a caller's request for a point-to-point transit itinerary.
Since these data bases will periodically be in need of updating, it will be
necessary to provide programs for accomplishing this. Some updates are
primarily additions or corrections to a file (a new street name, a frequently
misspelled location, a revised schedule for a particular route) and will
require only simple procedures, but others affect several files and require

a more complicated treatment. A change in routing, for Instance, may require
revision of the location/stop file, the stop/arc displacement data, the
network and transfer data and perhaps the stop descriptor data. Any change
affecting the network can require much reorganization of that data base
for some of the algorithms described below, and will thus require fairly

22



sophisticated updating procedures for automatically determining the level

of reorganization required. Most changes and updates can be done in a

backup mode during slack time or even completely off-line, but some updates

may be desired immediately. Indeed, since one of the advantages of a com-

puterized system is its ability to respond quickly to changes, it will be

desirable to include the facility for entering updates without significant

interruption to the system's operation.

Since the need for automated updating procedures is evident, the data

files should be designed with that requirement in mind. One suggestion in

this regard is the inclusion of additional, redundant information in each

record to facilitate easy file search and consistency checking. The
inclusion of latest record change date in the file structure and the

design of a program to produce audit trails of updates for perusal at

periodic intervals will also aid in insuring updates are correctly made.

It will be necessary, in addition, to design editing programs to check the
consistency of changes, internally among new updates at one time, and
between updates and the current files. Careful choice of update inpoit

formats, to permit easy description of the required change In terms
familiar to those with knowledge of the transit system (rather than those
with backgrounds in computer science or foar.a.^.iar.ics ) is desired so that
changes can be made promptly, without "sending for the specialist".

Besides updating programs, one can anticipate the need for programs for

monitoring system performance measures, such as calls answered per station
by time of day, frequently misspelled location identifiers, average waiting
time for a call, nodes which are frequently asked for, routes which
frequently appear in best paths, and any other information which might be
used in aiding efficiency of operation or indicating desirable updates.
Although not directly part of PTPTM, such programs will enhance the utility
of the system by providing information to help management analyze its
performance.
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3. SHORTEST PATH SCHEMES FOR FTPTM

3. 1 Introduction

A major computational effort involved in providing point-to-point transit
itineraries is that of finding shortest (least time, least cost, fewest
transfers, arrive soonest, arrive latest before desired arrival time, or some

combination of the above) paths in a transit network. Shortest path
algorithms are widely used in transportation planning (see the discussion
of UTPS in Appendix A as an example), and have been for many years. The
most frequent application has been in computing interzone auto travel times
as part of planning an urban region's road system. Computing shortest paths
in transit networks is a more recent development, but here too we are not
treading new ground. How does the shortest path problem for PTPTM differ
from that in these previous efforts? In transportation planning, average
travel times including average time spent in transferring, are desired (with
perhaps a distinction between j-ush hour periods and off peak times), since
system planning Is set up for the average transit or auto rider. For FTPTM,
employed in an operational setting rather than a planning context, exact
boarding time and specific inforroation concerning transfers are desired so

that the person requesting it can be told precisely which vehicle to board,
where to get off, and when and which one to board next. Algorithms similar
to those used by transportation planners are applicable, but their implementing
computational schemes will be different since the data base used is different.

In describing shortest path calculations we sMll use the following
definitions:

By an algorithm we will mean a rule or procedure for solving a
mathematical problem. Algorithms are usually described in general
and abstract terms without reference to a particular application.
The more concretely defined procedure which specifies which data
structures are used and vhich variables refer to which data, as
well as a step-by-step description of the implementation of the
procedure (in sufficient detail for a computer to be programmed
from the description), will be termed here a computational scheme .

A network consists of a finite set V of nodes and a finite set A
of arcs . To each arc a e A there corresponds an ordered pair (u, v)

of nodes, the origin node u and the destination node v. In addition,
each arc has associated with it a non-negative length ^(a). (For

some applications each arc will have several "lengths" associated
with it, one representing for example transit time on the arc, and
a second representing a fare for the arc or possibly some other
disutility.)
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A path in a network is a sequence P=(a ,
a^, a^^) of arcs such

that the destination node of arc a i^ the origin node of arc a^.

The origin node of arc a is called 'the path origin and the

destination node of arc Is called the path destination . The

path length J!(P) is the sum of the lengths of arcs in P:

f(P)=x(a^)+i(a^)+---+X(a^).

A shortest path from node v to node w is a path P (there may be

several) with origin v and destination w for which .r(P) is minimiam.

A cycle is a path which begins and ends at the same node. A

network is acyclic if it contains no cycles. A network is bipartite

if its nodes N can be partitioned into two sets and whose union

is N, whose intersection is empcy and which are such that every arc a

has its origin node u in one subset and destination node v in the other.

Note this means that no arcs have both origin and destination nodes in

the sane subset, either N^^ or N^-

3.2 Basic Shortest Path Algorithms

Although the title of this chapter only refers to algorithms, the chapter
will be concerned both with algorithms and with computational schemes.

Good algorithms for solving the shortest path problem are well-known and
have been available for some time. The problem we face here is not

primarily one of choosing an algorithm for use in point-to-point trip
management, but that of deciding upon an efficient computational scheme

to employ in this particular application.

Algorithms for solving the shortest path problem may be divided Into
two clfLEses, matrix algorithms which calculate paths between all pairs
of nodes at the same time and labeling algorithms vrtilch calculate shortest
paths from one node to some or all other nodes. Matrix algorithms must store
the matrix of shortest path ^engths between all node pairs simultaneously
in the computer, requiring N locations for a network containing N nodes.
For networks of several thousand nodes, several million computer storage
locations are thus required. For this reason matrix algorithms are seldom
used for path calculations in large transportation networks.

Labeling algqrithms involve labeling each network node with the length of
a path from the origin to that node. Computer storage for labeling
algorithms is usually several locations for each node and two locations
for each arc. See [5] and [ll] for a more detailed description of the
labeling approach.
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There are two basic labeling algorithms for computing shortest paths,
the label correcting algorithm and the label-setting algorithm. In the
basic label correcting algorithm the origin node r is initially labeled 0
(d(r)=0) and all othex nodes are labeled » . At each stage, one searches
for an arc a with origin u and destination v such that

d(u)+^(a) < d(v),

and replaces the current value of d(v) by d(u)+£(a). The algorithm terminates
when no such arc remains; then for each node u, d(u) is the length of the
shortest path(s) from r to u, and such a path can readily be "backwards-
traced". The basic label setting algorithm starts out in a similar manner
with the origin labeled 0 and all other nodes labeled oo . At each stage,
the algorithm exfimihes all arcs a whose origin node u has finite label and
whose destination node v has infinite label. That node v for which d(u)+i(a)
is minimum is then labeled d( v)=d(u)+ji(a) . The algorithm terminates when
all nodes have finite labels (or, if the path to a particular node w is
desired, when w receives a finite label). In the label correcting algorithm
a finite label may be changed at a later stage of the algorithm, but in the
label setting algorithm once a node receives a finite label that label is

permanent and represents a correct shortest path length from the origin
to that node.

3.3 Sequencing Methods

Computational schemes for these algorithms utilize a variety of techniques
to Increase efficiency of operation. Most of these techniques involve
vrays of recognizing which arcs should be examined and in what order. All
require the use of additional lists to store a partial history of the

latest stages of the algorithm as an indication of how to proceed next.

Four of these techniques will be mentioned here. The first, used to improve
the operation of the label correcting procedure, will be called the
alteration flag and involves flagging a node whenever a better path is

found to it. One then examines only those arcs originating at flagged
nodes, since other nodes either do not have any path yet found to them or

else have already been examined without improvement. The flag is removed
once path extension from its node has been tried. Of course it can later be
reinstated if a shorter path is found to that node.

A second technique, also used to improve the label-correcting method, is

called sequencing by alteration and involves retaining a list of nodes in

the order that their labels have been changed. One then examines arcs
whose origin is the top node on the list before other arcs. Once all arcs
from that node have been examined, it is removed from the list and the
next node becomes top. Pictorially this means that one starts at the
path origin and "fans out" searching for a path extension. At each stage

one is either trying to extend a path to an unlabeled node or testing an
alternate path to an already labeled node.
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other sequencing rules are possible, such as sequencing by cardinality
distance in which nodes which are a greater number of arcs from the origin
node appear further down the list from those closer (in number of arcs,

although not necessarily in path length) to the origin. This is especially
relevant for transit networks since with appropriate network representation,
a sequence of arcs will describe a sequence of transit routes with
transfers occurring at nodes at which the arcs meet. The list then insures
that paths with fewer transfers are investigated before those with more.

If one wishes to consider only paths with fewer than, say, two transfers,
sequencing by cardinality distance allows one to examine all, and only
those paths meeting this criteria.

A fourth technique is used in improving the label setting procedure. In
this procedure one has a set of nodes vrtiich are labeled and a set which
are not, and at each step the algorithm labels a new node not previously
labeled. This requires an efficient method of determining which unlabeled
node is a good candidate for labeling next. During the course of examining
arcs for constructing a new label, the algorithm usiially calculates
several potential labels but retains only the minimvim. The distance list
is a method of retaining these temporary labels and using them as a method
of selecting the next node to receive a permanent label and the value of
that label. Nodes are placed on the distance list in a position determined
directly by their label. (That is, node J is placed in position i equal to

d(j) modulo one plus the maximum arc length in the network.) The fact

that the length of the distance list is detemined by the maximum network
arc length makes this computational procedure suitable for most transit
networks and expected path-selection criteria.

Acyclic networks lend themselves to especially efficient processing,
since nodes in the network can be ordered (and numbered In order) at the

outset in such a manner that if u is the origin node of any arc a and v

its destination node, then u<v. Such an ordering eliminates the need for

establishing an ad hoc order during the progress of the algorithm. This
is especially important if the network is so large that it cannot be contained
wholly within the computer at one time. The once -and -for -a11 ordering
allows the network to be stored serially in peripheral storage, so that
one portion of it (generally called a page ) can be processed internally at

one time without reference to the rest still retained outside the computer.
Acyclic networks have other nice properties for obtaining shortest paths
in transit systems.

As discussed In greater detail in Appendix D, transit schedules may be
represented as an acyclic network in which nodes are geographical transit
stops at precise times of day and arcs are specific scheduled transit trips
between stops. Such a network is acyclic since all arcs go forward in time.
Allovable transfers may be represented as arcs in the network so that minimum
time required for inter-transit route transfers can be Included directly in

the network. This dual (location in space and in time) nature of a node
also overcomes what is called the overtake problem, which can be Illustrated
by considering a person faced with taking a slower local vehicle immediately
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or waiting to take a faster express service along the same line. If he is
going only a short distance the local vehicle may arrive sooner, but if
he goes further, waiting for the express may be the better choice. Applied
to the network whose nodes are transit stops, most shortest path schemes
would require him to start out on the local and transfer mid -trip to the
express, since each beginning segment of a shortest path to any node must
Itself be a shortest path to the intermediate node. The acyclic network
in which nodes are geographical points at particular times avoids this
difficulty, since both the local service to an intennediate transit point
(arriving earlier at this point) and the express service (arriving later
at the intermediate point but earliest at the destination) can be included.
This difficulty also arises when minimum times required to transfer at
an Intermediate point may make a route which seemed slower for the initial
portion of the trip be the best for the whole trip. Here again the acyclic
network representation described above avoids the problem.

3.^ Criteria for Path Selection

A further discussion of list processing techniques which can improve the
performance of shortest path algorithms can be found in [4], [5] and [11].

Actual implementation of one of the algorithms as a computational scheme
requires, as illustrated in the discussion of the acyclic network above,
not only the choice of algorithm and precise list processing scheme, but
also a definition of the data elements to be used in the process. For the
shortest path problem this Involves specification of three items:

1. What network nodes represent,
2. What network arcs represent, and

3. Wnat values (arc lengths) are to be placed on the arcs.

The latter determines the criteria for "shortest" path. In the sense that
path "length" is the sum of arc "lengths". Other operations than sviramatlon

are possible but do not seem as relevant, since the criteria described in

Section 2.3 .1 can be represented by summation of arc lengths.

Sfeveral of the criteria suggested Involve constraints, such as least time
path leaving after 7:30 a.m. with fare not exceeding $.50, arriving soonest

before 5 p.m. with less than 15 minutes spent in transferring, or arriving
closest to 5 p.m. with less than two transfers. Under a suitable network
representation the latter constraint can be handled through sequencing by

cardinality distance. (See Appendix D.2 below for a more complete discussion
of this procedure.) The other two types of constraints can be handled in

the acyclic network described above by insuring that paths are extended only
if the extension would not violate the constraint. Thus it is necessary
to keep track not only of the cumulative values for the optlmality criterion
(time, in the examples above) but also the cumulative value of the constrained
variable or variables. The decision to add arc a requires both that
d(u)+i(a)<d( v) and also that the second criterion does not violate its

constraint. Whether it is necessary to Include the capability for calculating

constrained shortest paths remains uncertain until desired criteria are
chosen, but whatever the decision, existing algorithms can handle this case.
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Up to this point our discussion of algorithms has focused on finding a single

shortest path, but most existing transit information systems provide
several itineraries to callers. This allows patrons to alter plans at the

last moment and gives them extra confidence and information on the next
opportunity for service if the desired vehicle is missed. Usually in existing
manual systems the operator provides only the previous and succeeding
transit vehicles on the same routes. Alternative routings are not provided,

unless easily available (as in the case of parallel routes, or express/local
service on the same route). Once a best itinerary is found using a shortest

path algorithm, it is not difficult to provide times for previous and next
vehicles on the same routes for each route segment. However, the second
best path may use an entirely different routing.

Algorithms for solving the kth best path problem, producing the first,

second, third, etc. up to kth best paths exist [2], [8], and some experience

[9] indicates that computation time on medium-sized networks is not prohibitive.
Actual experience with networks of the size expected in FTPTM applications
is desirable, but preliminary results indicate that for systems of this
size such algorithms may well require too. much time per path and/or too much
computer storage. Even if second and (perhaps) third best paths are to be
provided, it would probably be desirable also to include the previous and
next departure along any transit route given, to help the user evaluate the
criticality of making a particular vehicle or connection. This would lead
to much duplication where first and second best paths use approximately
the same route. The situation for which the kth-best path algorithm is of
greatest value is when there are alternate transit routes available serving
the same pair of nodes. The user can then be provided with information about
both (or all) of them and make his choice taking into account criteria not
normally considered by the algorithm (such as the neighborhood involved,
the expected load factors of the lines, desired transfer points, etc.). The
kth-best path algorithm is also an alternative to providing different shortest
path criteria. Providing the user with several good paths all based on the
same criterion allows him to choose one which is second or third best with
respect to that criterion but more desirable with respect to another.
Thus multiple path algorithms would be useful if true alternate routes
serve the same customers, if several criteria for shortest paths are required,
and if the additional computer time and storage are acceptable. Otherwise
it would be better, simpler and less costly to avoid their use if possible.

All of the algorithms and computational procedures described so far have

guaranteed producing the shortest path according to the chosen criterion.

One should at this point ask the question, "Can one find a simpler procedure

which nonetheless provides, if not the very best path, a good path?" This

is certainly consistent with the itineraries provided now by existing manual

systems. How "good" the itinerary is, depends in part on how experienced is

the person answering the call, and several transit information callers have

noted that they regularly request the same trip at least twice to compare

routings.
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The particular procedures used by the PARIS system [3], developed by
Systems Develox>raent Corporation (SDC), are not available, and since the company
is marketing the system one would expect this information to remain proprietary.
One can, however, suggest possible procedures for speeding up path calculation,
which may or may not resemble those used by SDC. If all network nodes,
say street corners, have x-y coordinates associated with them, one could
then make use of the fact that one knows the general direction in which one
wants to head. All trips which deviate more than a prescribed amount from
this direction might be ignored. For instance if the desired direction
is northeast, one might feel Justified in not going more than a fraction
of the straightline distance between the two points in a south or west
direction. Routes could be identified as north, south, east or west
and those proceeding in the right direction scanned first. All of these
procedures would be combined with the basic label correcting scheme and
termination would occur when the destination node is reached and no more
improvements are possible. In large networks the nodes could be divided
into zones. Tables could be constructed of routes which are candidates
for traveling between designated zone pairs. Perhaps some interzone
routing could be defined once and for all, or at least a list of several
potential routings. Such heuristic procedures would have to be tested and
evaluated on large example networks, since it is impossible to anticipate
all problems associated with their use.

3.5 The Role of Shortest Path Algorithms in FTFTM

It is perhaps useful at this point to discuss the role of path algorithms
and computational schemes in the whole of the PTPTM process. As can be
seen in Figure 2.1, shortest path calculations are a central part of PTPTM
service since they actually provide the trip itinerary. It has been
estimated [6] that in current manual systems about a third of the total
call is epent in search for the correct path. The rest of the time is spent

in ascertaining what trip the caller is inquiring about (origin, destination,
time, etc.) and in relaying the information on the actual trip suggested
after an itinerary has been determined. Therefore the computerized shortest
path calculation can only hope to affect one third of the call, and because
of additional data entry time the actual time savings may be closer to
20 or 25 percent even if path calculation were effectively negligible.

This may, however, produce proportionately much greater redactions in
callers' delay and turn-away rate; an analysis of this point, using queuing
theory, is given in Appendix B. One example worked out in the Appendix for
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a range of arrival and reneging rates and raaxiraum queue len^hs indicates

that a reduction of hO to 90 percent (typically 60 to 70 percent) in the

numher of lost calls would result from a reduction of 20 percent in the

service rate.

Altho\igh the shortest path calculation is central to the operation of a

PTPTM system, early choice of a computational scheme for it is not as

critical to system development . All of the algorithms and schemes

presented here use the same data base, and as discussed above in Section 2,

data bar>3 development and construction is the major effort in setting up
such a system. The location identifier file, the transit access file,

and even the file of transit schedules are common data bases independent
of choice of computational scheme. Some special processing of the basic
transit schedule file may be necessary for each different scheme, but
automated procedures for doing this should be relatively simple to define
(and quickly programmed). The computational schemes themselves are
uncomplicated, and it is expected that existing procedures and programs
can be modified without great investment of time and expense. In fact,

rather than making a premature choice of computational scheme, it is

suggested that several be programmed and tested on a large real data base.

Such a test will be necessary as a demonstration project in any case,

and the additional r^^p^-nse of trying several computational schemes (rather
than only one) will be very small compared to the effort of setting up the
initial data base. The actual test would allow estimated average parameters
(such as expected path length, number of transfers, etc.) to be checked
so that unanticipated network and path computation anomalies can be
ironed out and better estimates of actual computer times and costs can
be obtained. The demonstration data base would be needed even were no
further software development contemplated, as would be the case if
existing sortware such as that available from SDC were to be adopted by
DOT. Even in this case, however, further investigation into the path
computational scheme seems reasonable, since this software forms a well
defined module of the total system, and cost of such a study is not
prohibitive.

We have in this document generally assumed that the information to be
provided by a FTPIM system Includes exact vehicles to be taken (the K-2
bus), exact boarding and alighting stops (8th and A to 12th and F),
and boarding and alighting times (board at 9^32 and leave at '^ikd). Other
information, such as a description of the access trip from the caller's
origin to the transit boarding stop and similarly at the trip destination,
or a description of any transfers which involve walking between stops or
to a different corner of the same street intersection, may also be provided
in a more elaborate system. As discussed earlier in Section 2.3.3, the use
of exact vehicles and exact schedules is perhaps open to question. Elxi sting
transportation planning software such as the UTPS system, developed and
operating under UMTA auspices, uses average headway information rather than
explicit schedules. A further discussion of the potential for use in

PTPTM of UTPS is given in Appendix A. However, algorithms used in either
process are essentially the same, and computational procedures differ
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primarily in what constitute nodes anl arcs. A more detailed description
is given below of those computational schemes which may be used if average
headway information is sufficient to meet the callers' needs. Testing of this
approach could be part of the demonstration effort mentioned above, and
although preliminary processing of the data base is perhaps more extensive
in this case, the incremental cost of designing (or adapting) a prototype
computer program for it and for path calculation based on the transportation
planning procedures is not prohibitive.

3.6 Data Manipulation Aiding Algorithm Performance

A major part of a computational scheme is the definition of the data
elements of that scheme. In the case of shortest path calculation
schemes, the primary data elements are the nodes and arcs which form
the network. A more detailed description of these and the way in
which they enter each particular scheme will be given in Appendix D.

We will here discuss general ways, of manipulating the transit network
representation, which are applicable to the data structures of several
schemes.

The criterion used by most existing transit information systems in providing
a good trip itinerary is "least time". Clearly this does not mean
the trip during the whole day requiring shortest travel time, nor usually
the shortest trip during a particular time period, since actual departure
or arrival time may be critical. Thus the criterion used by most systems
may be phrased as "the trip which leaves after 5 p.m. and arrives soonest"

or "the trip leaving latest and arriving before 9 a.m."" (not both for one
trip), but trips which leave before the desired departure time or arrive
after the desired arrival time may be suggested to the caller if the more
desirable service is not available. This is accomplished by including a
penalty weight for time before desired departure or after desired arrival
in the calculation. The two criteria, shortest trip departing aft»r desired
departure time and shortest trip arriving before a desired arrival time,

will be called the departure oriented criterion and the arrival oriented
criterion respectively. Any PTPTM system would need to include both of
these criteria at the very minimum and perhaps others also.

Special list structuring for storing network arcs can speed up calculation
for the two different criteria, and for some schemes it may be necessary
that two copies of the network be retained (off-line, probably) so that the
appropriate network structure can be recalled for use witn the desired
criterion. Generally, in storing a network, arcs are grouped either by
arc origin node or by arc destination node. The former is termed "forward
star" form and is used for the departure oriented case; the latter is termed
"backward star" form and is used in the arrival oriented case. A pointer
is kept for each node to the first arc in the star (forward or backward)
of that node, so when in the course of the computation one wishes to
"fan out" from a node, one can immediately locate the arcs which are
required. In the departure oriented case, the procedure starts at the
origin node and proceeds forward using the forward stars of nodes along
the path (and in time) to the destination. If the same computational scheme
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is used for the arrival oriented case, it proceeds backward from the destination

(and in time) using the backward stars. For some of the approaches described

in Appendix D, an alternative scheme may be applied to the forward star

network, obviating the need to store the network in two different forms. -

Storage of the network in star form requires sorting the arcs either on

origin or destination node and computing the star pointer.

Most network arcs represent scheduled transit route segments, but it may

be necessary to include some arcs representing transfers. This will
clearly be necessary for cases in which two routes have no stops in common,

but customers often walk from a stop on one route to a stop on the other.

Time along the transfer arc must be sufficient for the walking trip and

will probably also include some leeway for making the connection (unless

this is handled differently within the algorithm). Even when the transfer

is between different routes at the same node, it will be necessary to insure

that the routing provided includes enough time for alighting one vehicle
and boarding the second, as well as some extra time to allow for the first

vehicle being late or the second early. This may be accomplished either by

adding a network arc representing the transfer or by including a list with

the minimum time required to transfer between routes at each network node,

and modifying the computational scheme to add this time to vehicle arrival
time before extending a path.

In most commuter bus and rail systems, stops are thought of as instantaneous,
since boarding and alighting time is included in interstop running time
and is of the order of magnitude of the variation in running time. A node
at which a scheduled period of stopping occurs can be handled in shortest
path calculation procedures by splitting it Into two network nodes, one

being the alighting node and the other being the boarding node, with a link
between for the scheduled stop time.

Network arcs generally represent the schedule along a particular route.
Different routes which have segments in common will still be represented
as separate arcs, since transfer from one route to another will be
required. Where transfer arcs are included in the network it will be
necessary to have separate nodes for each line stopping at the same
place, but the nodes may be the same if a single minimum transfer time
is used throughout the network. When two or more routes have several arcs
in common only the first and last nodes of their common segment need be
considered places to transfer from one to the other, or alternatively two
other nodes may be specified if they see;:; more natural or more convenient
from a practical standpoint (at a shopping center, or busy corner say,

rather than in a less traveled area). Path calculations can be made in
a network consisting only of major nodes at which transfers between routes
are possible. Figure 3.1 shows how such a reduction can be effected for
one example, with a reduction in the number of network nodes from ih to ^.

The single access arc in the upper network is replaced by two arcs in the
lower network, and the four transit arcs between nodes A and B are replaced
by the single arc in the lower network. This procedure increases the number
of access arcs, but reduces the number of transit network nodes. Since in
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FIGURE 3.1

Reduction to Major Ncxies
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any path calculation access (and egress) arcs are required only for the path

origin and destination nodes, only those two additional arcs are required

at any one time. The reduction in network nodes is critical since the speed

of calculation of shortest paths depends almost entirely on the number of
nodes in the network.

Generally the headway sheets maintained by transit companies for use in

manual FTPTM systems give scheduled arrival and departure times only at

major stops. The time at intermediate stops is obtained by interpolation,
that is, assuming direct proportionality to distance. Thus boarding or

alighting at a stop one mile from the beginning of a three mile segment

would occur l/3 the total trip time after the vehicle left

the segment origin node. If for example a vehicle left the origin at

9:00 a.m., covering the three miles in 15 minutes, it would reach the stop

one mile from the origin at 9:05 a.m. This type of interpolation can easily
be automated and will be needed in path calculations only for the transit
access and egress nodes associated with the path origin and destination,
(of course several transit access nodes may be associated with one path
origin since several transit lines may be available to people from that
point.) The major portion of the path calculation would thus be accomplished
in the "skeletal" network consisting of nodes at which transferring is

possible, and information on the total network enters the process only at
the beginning and at the end. The "network" referred to in the section
below will thus be this skeletal network.

3.7 Computational Schemes for fHfrH

This section will include a general description of several computational
schemes for use in PTPTM. (Step by step procedures for several schemes are
given in Appendix D. ) We will note here several special-purpose computations
which can be Included or will be needed in any of the schemes. The
access/egress interpolation described in the previous section is one such
computation which will be required as part of the schemes described below,
since we are presuming that the networks to which the schemes apply will
consist only of transfer nodes. Special coding will be required to add
access and egress arcs for the origin and destination to the network so that
access and egress can be Included in the path calculation process. The
networks will also have to Include transfer arcs representing walking trips
between transit stops whenever such a transfer is considered usual or likely.

Regular network arcs represent discrete service, i.e. transit vehicles
traverse the arc only at specified times. Transfer arcs represent continuous
service and it would be repetitious to represent each possible transfer
separately. To avoid this, arcs can be labeled as either discrete or
continuous service arcs. The first may require a waiting time between
when service is desired and when it is available. This waiting time
must be added into total trip time along with the arc travel time. Transfer
arcs require no wait time; only the arc travel time enters trip time,

(of course waiting, after walking, for the next vehicle on the second line
will have to be included.) Separate treatment of the two arc types will
have to be coded In the computational schemes. Some coding will also have
to be Included to handle minimum transfer time restrictions which ensure
that enough time is allowed for transferring between routes at a node.
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Such restrictions probably depend primarily on the node, but it may be

necessary to have different requirements between different routes at the
same node, if for instance different routes stop at different corners of

the same intersection. This can always be handled by treating the different
corners as different nodes and including walking transfer arcs between
them. Since such a treatment increases the number of nodes, it is hoped

that there will not be many cases for which it is necessary.

Some coding may also be required to obtain the most desirable path. The
shortest path criterion described above produces a path leaving after a

desired departure time and arriving soonest (or alternatively a path
arriving before a desired arrival time and starting latest). If several
paths arrive at the same time all leaving after the desired departure
time, no distinction is made among them, although some may actually be
more desirable than others. In fact one would expect that generally the
one with least total time sp>ent in waiting and transferring at

intermediate nodes would be preferable. To break ties among trip arriving
at the same time, weights may be attached to the initial wait time and
to transfer time, so that initial wait time counts less in the total than
does transfer time. Then the weighted sum of initial wait time and transfer
time may be accumulated separately and whenever two trips have the same
arrival time at a node, the one with the more desirable wait time-transfer
time weighted total would be chosen. Such a procedure leads back to the
same difficulty as the overtake problem: the best path to an intermediate
node is the one arriving soonest at that node but may not be the most desirable
first segment for the best path to a node further away from the origin.
The time expanded network approach given in detail in Appendix D will overcome
this problem since several paths to the same geographical node are allowed.
Another possible approach would be to examine the best path after it has been
calculated, from destination back to origin, to see if perhaps it is possible
to leave later along the same path but arrive at the same time. Such a
procedure would not necessarily arrive at the most desirable path, since
only time varifii ions of the same routing would be examined. A final alternative
approach is to change the best path criterion to be a weighted average of
wait time, travel time and transfer time with travel time having weight one,

wait time having weight less than one, and transfer time having weight
greater than one. The difficulty with this approach lies in the necessity
of experimenting with actual weight values until a set is obtained that gives
good paths.

Some special coding in the computational scheme and/or some special network
structuring may be required to calculate fares associated with the best
time path. Many areas have gone to a flat fare system in which all trips,
usually limited only by a maximum number of transfers or by a requirement
that the patron may not reverse direction, cost a single flat fare. This
type of fare system can easily be handled within the computational structures
described below. The other most common fare stnacture is a zone fare system
in which fixed rates are charged for trips within a zone, subject usually to

the restrictions mentioned above for defining a trip in a fixea rare system,

but trips from one zone to another incur an additional fee at the zone
boundary. This can be handled in one of two ways in a computerized PTPTM

36



path calculation process. A matrix of zone to zone fares may be included,

if the number of possible zones is fairly small, and the fare for the
appropriate zone pair for the transit origin and deslnation may be obtained

directly from this table. Alternatively the incremental fare for crossing
a zone boundary "may be accumulated during the progress of the path computation,

along with the usual time accumulation. This requires that the incremental
fare for boundary crossing be associated with an arc which crosses the
boundary. Some special coding may be required to ensure that only trips

which cross boundaries have this incremental fare associated with them.

Care must also be taken that routes which criss-cross back and forth
along the same boundary are not charged more fare than would actually be

the case. It is expected, however, that this situation would seldom arise,

since route structures would rarely favor crossing back and forth along
a zone boundary. It would also be necessary to have incremental fares
associated with arcs of express lines when the cost of express service is

higher than that of local service. (This is a case where it might be desirable

to compute a least fare route for those unwilling or hesitant to pay the cost

of express service.) Combinations of these fare structures are likely and

it may be necessary to include additional coding within the computational
scheme to accomodate them, but this is not expected to greatly complicate
the scheme or to be very difficult.

Some post -processing of the best path will be required before it is

displayed to an operator or relayed to the caller. The path calculated
by the algorithm may have more segments than actually required, since if

no transfer was necessary at a transfer node the path will have two
successive arcs along the same transit route. All successive arcs on one

route must be combined, and only points at which actual inter-route
transfers are required , should be listed. In addition it is desirable to
print the preceding and succeeding departures for each route taken. These
must be fetched from appropriate storage and listed along with the best
route. Other information may be accumulated and printed by the scheme,

including fare, time spent in transferring, number of transfers, distance
to be walked (if intermediate walking arcs are required), or any other
characteristics which are included in the network description and can be
associated with the path.

The items described in the present section up to this point have involved
operations which affect all schemes for transit path calculation. More
detailed descriptions of alternative computational schemes for PPPTM are
given in Appendix D and when reading that section one should keep in mind
the common operations noted above since they are not generally included as
separate items in each of the schemes' descriptions. The appendix will
include three major schemes, to be termed the time-expanded network scheme,

the bipartite route/stop scheme, and the transportation planning scheme.

In addition we will note, in conjunction with the second scheme, a method of
compactifying best path information which may lend itself efficiently to

storing precalculated paths. All schemes will for convenience be described
in terms of the depart after/arrive soonest criterion, but they can just
as easily handle the leave latest/arrive before criterion. A separate scheme
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for that criterion is described for the time expanded network case because
it is particularly useful to have both schemes with one network representation.

In the time -expanded network scheme , nodes represent a particular transit
stop at a particular time and arcs are specific transit vehicle trips departing
one stop at a given time and arriving at another stop at a specific later
time. Therefore there are as many arcs as there are vehicle trip segments.
Since arcs only go forward in time, the network is acyclic and a special
computational scheme, examining Just once a subset of the nodes in time order,

can be used. Appendix D gives two schemes based on a time -expanded network
stored in forward star form, one for the departure oriented case and a
second for the arrival oriented case. The bipartite route/ stop scheme
uses a network containing two classes of nodes, one representing transit
stops and a second representing routes. Arcs connect each stop with the
routes stopping there and each route with the stops along it. A piath in
this network consists of an alternating sequence of stops and routes,
beginning and ending with a stop, giving the itinerary for the trips as
a sequence of stops and the routes to take between those stops. Two schemes
are presented in Appendix D using this network, one a label-correcting
scheme using a sequence list and a second based on the label-setting procedure
using a distance list. A special method of representing and calculating
paths for a whole time period is presented for use with the label-correcting
procedure, for obtaining and compactly storing pre -calculated paths for
on-line retrieval. Finally, a variant of the transportation planning approach
using average running times and headways is presented. In this scheme time
to transfer is represented as half the headway of the vehicle to which one
is transferring.

3.8 Choice of Shortest Path Scheme

In Appendix D we describe several computation schemes for calculating
optimal paths in a transit network. The question we address here is that
of choosing among these computerized path calculation schemes for use in

the PTPTM environment.

Currently transit information systems obtain paths manually as they are
needed. Usually this means that the operator, who has received the call
and has processed the query resulting in a precise description of the request

being made, decides the best transit path using maps, schedules, and his/her

intuition and experience. Such a procedure can be very efficient if the
operator is experienced. Some calls may require virtually no reference
to documents by an operator who knows the system well. However,

it is much more difficult for operators to become expert in the large,

complex, perhaps multi-mode or mult i -property transportation systems. In
addition, operator training costs are high as are personnel turnover rates,

so that it is likely that many operators are unfamiliar with routings and

will have to use reference materials in answering most requests. There is

also a need for rapidly Incorporating temporary or permanent data changes
Into responses.
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As noted earlier, obtaining the "best" path takes on the average a third of the

total call time. The computerized path finding schemes described in this

report would be aimed at reducing this portion of the call. We are not

addressing schemes for reducing the rest of tho. call, although the computer

might be applied usefully here too (for example, to repeat slowly the suggested

transit trip so that the caller can record the information at whatever speed

he desires while the operator is free to go on to a new caller). One can

imagine a completely automated system where the caller "dials" codes on his

telephone, indicating the origin and destination of his trip and the desired

departure or arrival time. The computer then obtains a best transit path

and relays a description of it back to the caller. In such a system the

computer would assume all functions of the oi)erator. Without discussing

the merits or pitfalls of such a system, it is clear that path-finding

schemes are a central requirement for its realization.

The degree to which other activities are automated has little effect on the

operation of the path-finding scheme once input to that scheme is decided

upon. Its output may be a printed path description on paper or CRT scope

for reference by an operator, or may be a computer generated voice response.

The choice does not affect the feasibility or relative desirability of the

various path finding computation schemes.

Whereas the degree of automation of other portions of the PTPTM process has

no effect on the path finding scheme, that is not true of all decisions
about the process. In general a path may be found in two ways - l) it

may be calculated as needed (on-line calculation ) or 2) it may be retrieved
from a store of previously calculated paths (precalculation). Which of these
approaches is taken does have an effect on choice of scheme. Appendix D,

for instance, includes a description of a method of compactly representing
the path information for use in storing precalculated paths. In addition,
the transportation planning scheme (Appendix D.h) is presented primarily for

use in precalculating paths. An evaluation of the merits and problems
associated with the two approaches, on-line calculation and precalculation,
will be given below, as an aid in comparing the schemes.

To mirror the manual system, paths would be calculated as the need arises,
meaning an on-line system. This system has the advantages of requiring
peripheral storage only for the network and schedule data, and of being able
to react immediately to changes in the network or parameter values. Temporary
outages, re-routings, delays etc. can be input to the network and schedule
data, and can thus be reflected in path calculations in a very short time.
The crucial question in implementing such an approach is its feasibility,
determined primarily by the time required for each path computation. One
such system, the PARIS program, has been implemented, but so far it has been
tested only in a relatively small city, Santa Monica. Since the major use-
fulness of computerized transit information systems is in larger cities with
more complex systems, the true feasibility of PARIS must be demonstrated in
such an environment. We will make some timing estimates below which turn
out to support the feasibility of on-line calculation for a large city, but
confirmation requires actual testing on a realistically large, complex data
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base. The main point to be made in regard to the timing estimates is that
path computation time is overshadowed by network paging time, for any of a
set of good computational schemes. Analysis to rqduce network size is thus
an important part of the process.

The alternative to on-line calculation is to precalculate all possible paths
and retrieve them as needed. The time required to answer a query is Just
that to retrieve and unpack a path, significantly less than network paging.
It also eliminates the need for recalculating frequently requested paths,
but at the expense of calculating some which are never asked for. Another
disadvantage is that all paths must be recalculated when the network changes.
In practice this means that small changes will not be penaitted to trigger
a recalculation, and a decision will have to be made as to what level of
network alteration warrants redetermination of paths. Temporary conditions
will seldom be reflected in the path calculation, but may be handled through
additional message relays by the operator or by the system itself directly
if the process is fully automated.

The major feasibility question for a precalculation approach is the storage
required for paths. The compact representation presented in Appendix D
offers a way around this difficulty, but at the cost of access
requests to the file of compactly stored paths. An alternative approach to
precalculation would be to use the transportation planning scheme presented
in Appendix D.^ to calculate best path routings for 3 to 5 different time
periods during the day. This assumes, of course, that a single routing
remains "good" throughout a particular time period, an assumption which would
have to be tested. It also assumes that a suitable partition of each day
into time periods can be fixed at the beginning of the day, and that problems
at the times of changeover from one period to the next are sufficiently few
to be disregarded. In operation, when a caller requests information about
a particular trip, the routing baBed on the transport planning scheme would
be retrieved and then the precise schedules for the desired time of departure
or arrival would be .obtained for that routing.

The choice between on-line calculation and precalculation is difficult and
cannot be wholly resolved here. Our considered opinion at this point is

that the on-line approach is inherently more desirable, because of its more
flexible reaction to network changes and its need to calculate and accommodate
only those paths about which inquiries are made. (Some mixture of the two
may be appropriate.) The critical question thus revolves around the feasibility
on the on-line approach, which hinges on its requirement for paging time.

For either the t ime -expanded network scheme or the bipartite route/ stop
scheme, it will be necessary to access schedule data for a time period whose
length is determined by the shortest path from ORG to DST.

ORG is the path origin and DST is the path destination node.



We will now make several assumptions on system size as an aid in estimating

the number of pages of data required. Assume:

1) a path length of 6o minutes

2) 2000 vehicles active at one time

3) a vehicle takes 20 minutes to traverse a route
k) 10 arcs per route

5) 3 pieces of information per arc

6) each piece of information needs 2 bytes of storage.

* /-

These assumptions lead to a requirement for 360,000 bytes of storage for

the network required for one path calculation. Under the assumption of a

machine size of 250,000 bytes of internal memory, we will require 2 to 3

pages (allowing storage for the path description and program and estimating
conservatively). Better, more exact estimates would be available only with
more detailed descriptions of sample transit systems, but preliminary figures
indicate that the values chosen are not unreasonable, and generally overestimate
the average situation. Actual network storage, for instance, will require
less than the 3 words per arc estimated here unless fares or other items are
also required, and most trips would be less than 60 minutes. The figure of
2000 vehicles is based on the fleet size of the Washington, D.C. Metrobus
system; the route length figures are pure conjecture but 10 arcs/route seems

large while the 20 minutes/route may be small (both yielding a pessimistic
estimate). Machine size is given for one of the larger currently available
computers (e.g. JEM 360/65, UNIVAC IIO8, CDC 66OO), but does not take into
account such advances as virtual memory and thus it too may be conservative.
The estimates are made based on a longer than average trip, so that actual
average paging would be less, again indicating a pessimistic estimate.

"Paging" refers to the fact that not all of the network can reside in the
computer's central processing unit (CPU) at the same time. Accessing
information in the CPU is limited solely by electronic processes and is

measured in nanoseconds. In contrast, accessing information stored on a
peripheral device (disk or drum) depends in part on the physical movement
of the device and requires access times measured in milliseconds. Transfer
rates from peripheral storage are also greater than from the CPU since the
information must be relayed among several devices and must be checked for
accurate transmission. Using currently available access and transfer rates,

it is possible to access and transmit 3 pages of the size estimated above in

about half a second. Shortest path calculation time using the schemes
described in Appendix D is likely to be of the order of .2 to .5 seconds
(see [5] for reported timings), which to some extent may occur simultaneously

During the 60 minute trip duration, one vehicle will be able to traverse
3 routes, at 20 minutes per route, so 2000 vehicles will be able to make 6OOO
route trips. At 10 arcs per route this yields 60,000 arcs. If each arc
requires 3 pieces of data and each piece of data requires 2 bytes of storage,
the 60,000 arcs will require 360,000 bytes of storage in total.

»
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vlth the paging process, leading to a conservative estimate of one half to
one second per response. Even when combined with the additional time for
peripheral references required in obtaining the access and egress information,
total time is unlikely to be increased by more than an additional .1 to .5

seconds. It is therefore expected that with current technology one second
average responses are certainly p>ossible even for large transit systems.
This would allow 60 responses per minute; e.g. if average call length were
as low as about 30 seconds, it could handle a maximum of 30 operators answering
calls simultaneously. The technology of computer peripheral devices is rapidly
advancing, so that much of this estimate may be reduced by a factor of 2 to 3

in the next few years, and responses of one third to half a second may be
easily possible. We note that the estimates above refer solely to the time
needed by the computer to process the itinerary request. It does not, of course,

include data entry time, but it is anticipated that much of that activity can
be done as the information is elicited from the caller in parallel with the
reception and interpretation phase of the call.

It is clear from this analysis that the on-line calculation of shortest
paths should be feasible even for large transit systems. In addition
(ignoring differences in cost between the two approaches), on-line calculation
is preferable to a precalculation approach because it allows changes in the
schedule data to be input as they become known, making the information being
provided much more current than otherwise available.

Choice among the two schemes, the time expanded network and the bipartite
route/stop scheme, is more difficult. But since, as noted earlier, programming
the shortest path scheme is neither difficult nor is it likely to be a
bottleneck in the development of a PTPTM system, it is possible and desirable
that both schemes be programmed and run on a large scale transit system
data base, thus allowing a more direct operating comparison between them.

It is possible that some combination of the on-line and precalculation
approaches may be most desirable, but time constraints limited the current
effort to comparison of their "pure" forms. Specifically, pre -calculation could
be used for speeding up answers for frequently asked origin/destination pairs,
if such exist, or even for selected destinations which are often requested.
Precalculation of a set of reasonable alternative routes can also speed up
calculation of long paths, but at the expense of more storage. All of these
possibilities should be investigated as ways of speeding up and streamlining
a PTPTM system.
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h. CONCLUSION

4.1 Summary

This report describes the components of a PTPTM system, characterizing

them in a way which facilitates discussion of automating the various funtions.

Data requirements and structures are defined and necessary software subsystems
are identified. Step-by-step ccraputat ional schemes are provided for the
path finding component of the process.

From the point of view of automating responses to requests for. point-to-point
itineraries, the PTPTM process may be divided into four components (which are
also present in handling a typical call to an existing manual information
system)

;

1. reception and interpretation, in which the request is processed
to ascertain what itinerary is desired, generally by eliciting
and identifying trip origin, trip destination, and desired arrival
or departure time,

2. location and connection, in which the appropriate origin and
destination transit stops are identified for access to and egress
from the transit system,

3. path calculation, in which a "best" transit Itinerary Is calculated
for the desired trip request, and

k. response, in which the itinerary found in component 3 is conveyed
to the person who requested the Information.

Any or all of these functions may be automated, although 3 and k lend
themselves to automation perhaps more easily than 1 or 2. How the degree
of automation affects software requirements is discussed to some extent in

Section 2 above. That section also describes the eight data files associated
with the completely automated version of the PTPTM process:

1. Interpretation data are used in aiding translation of the words
and phrases received into an acceptable list of locations.

2. Acceptable location descriptors are used in locating the caller's
trip origin and trip destination.

3. Location/ stop data provide for each acceptable location descriptor
the transit stops which one might use from or to that location.

k. Stop/arc displacement data provide the information for treating
arrivals and departures at stops not appearing in the reduced
network on which the main calculations are performed.

5. Network and transfer data list the arcs of each route by giving the

stops along that route, as well as any required transfer arcs between
routes,
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6. Schedule data list departure and arrival times at each stop along
a route.

,

' " II
7. Fare data give the fare structure and any information required

for fare computation.

8. Stop descriptor information describes each netvork transit stop
in words, for transmission to the caller either by an operator or

- A by a voice encoding.

Not all data files would be required for all possible levels of automation.
For instance the interpretation data are not required by the current manual
systems. In which this function is executed by the information operator who
listens to the caller and presumably understarxis the request. (Of course
a language barrier may in some instances make interpretation difficult.)
Instead of a list of acceptable location descriptors, current manual systems
usually use street maps with street names and major buildings marked on
them. The list of descriptors thus becomes the list of names appearing
on the map together with the interpretive ability of the operator. In a
totally automated system the onus would be placed on the caller to provide
a location descriptor which the system could interpret, perhaps aided by
some system/caller interaction. A partially automated system might leave
all the access and egress portions of the trip to an information operator,
obviating need to have the first three files in computerized form. The last
five files will be required by any system using automated path-finding; they
SiT't represented in a manual system by city maps, transit maps, fare charts,
and headway schedule sheets.

It Is estimated that of a typical call one third is spent in the reception
and interpretation of the caller's request (component 1 and part of component 2

above), one third in retrieving the itinerary (part of component 2 and all
of component 3), and one third in responding to the caller (component k)

,

The first step In automating a PTPTM system would be the computerization of
the path finding process, component 3. The probable next step would be
automating the response, component h, followed by automating the location of
origin and destination and connection to the transit system, component 2.

The automation of reception and interpretation, component 1, would be the
final step toward a totally automated process. Automating path finding could
reduce call-length by less than one third, Bince additional data entry time
will be required and exact location of trip origin and destination are unlikely
to be automated at the start. A surrogate such as nearest street corner would
undoubtedly be required, and its determination will use some of this one
third of the call. How great a reduction is available from automated path
finding depends also on the choice of computational scheme for use in the
process. Previous crude estimates for large transportation systems, based on
straightforward implementations of shortest path algorithms, are of the order
of half a minute to several minutes per path calculation, too long to be
competitive with manual methods for on-line calculation and even too long
for reasonable precalculation. The estimates reached in this report, based

on network reduction and carefully designed computational schemes, are of the

order of a fraction of a second to one second per path calculation, making on-line
path finding quite feasible.



Although automation of the path finding procedures of a FTPTM system would

affect at most about one third of the total call length, the queuing model
described in greater detail in Appendix B shows that a decrease of 20 percent
in the time to answer a call can lead to a reduction of 60 to 70 percent
in lost calls.

Section 3 and Appendix D provide two step-by-step procedures for calculating

shortest paths in a transit network:

1. the time expanded network procedure in which each network node is

a transit stop at a particular point in time and each arc represents

one leg of one vehicle's route at a particular time during the day,

and

2. the route/ stop procedure in which network nodes corresjKDnd to the
transit stops and the transit routes, and arcs connect a route to
the stops along that route and a stop to the routes stopping there.
Schedules are provided for each departure along each route with the
appropriate one chosen as needed.

Two schemes are presented for each of these procedures; for the first procedure

the two schemes address the departure and arrival oriented criteria respectively;

for the second procedure one scheme is a variant of the basic label-correcting
shortest path algorithm and the second is a variant of the basic label-setting
algorithm.

A description is also provided for the scheme now used by transportation
planners, which relies on average runnii:ig times and headways rather than
on explicit schedules. This approach is not recommended for further investigation
since it does not allow accurate information on specific transfers and vehicles
to be provided to the caller, unless the system is very regular. Appendix D
also contains a description of a special step-function representation of
path length which might be employed in compactly storing and computing
precalculated paths, for use should on-line path calculation prove infeasible.
This was not the case, since the estimates of on-line path calculation time
obtained in Section 3 are about half to one second per path. The on-line
calculation approach is recommended primarily because it allows real-time
modification of the data base, thus utilizing the full capability of a
computerized system for rapid response.

Thus the report contains a description of the data bases and data handling
software required for a PTFTM system, together with two step-by-step
procedures identified as the most promising alternaties for use in the path
finding component of such a system. We find that whereas computerized shortest
path schemes form a central part of the operation of an automated FTPTM
system, early choice of such a scheme and its software implementation is less
critical to PTFTM system development since the programs involved are relatively
short and easy to code. Data base design and prototype development is a much
larger effort; in particular the data base and software for use in location
identification is probably the most difficult portion of the whole development
effort

.
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h.2 Recommended Next Steps

Taking into account the findings summarized above, the following five steps

are suggested by this report,

1. The work reported here addresses mainly the structuring of the
data base, software, and algorithmic requirements of a PTPTM
system, together with a discussion of its technical feasibility.
A companion report [6] prepared concurrently with the present one

.
^ raises questions about the cost-effectiveness of an autcxnated

approach to PTPTM. Further investigation of this question seems
paramount. To this end it is suggested that a parametric cost-

- . effectiveness model of a computerized transit information system
be developed and applied as an aid in evaluating the utility of
such a system. The model could use as a starting point the queuing
model with finite queue length and reneging presented in Appiendix B
of this report. Much of the effort involved in such an evaluation
would lie in the estimation and allocation of system costs and benefits
accruing from an increase in the number of calls answered, a
reduction in caller-experienced frustration resulting from shorter

: . queues, and possibly reduced operator staff.

2. In order fully to evaluate any automated PTPTM system it will be
necessary to exercise that system on a data base derived from some
large existing system. The second suggested next step is therefore
to set up such a data base. It might build on Run Cutting and
Scheduling (RUCUS) files if they are available for any large system,

or on any other existing computerized schedule data so ae to

\ r minimize the manual labor required. This task could also include
design and implementation of the editing and other data processing
software needed to check, maintain, and update the data files, since

some such software will be required for setting up even the first
version of a data base.

.3. In addition to an actual large-scale data base, it is desirable
to design and develop a parametric procedure for generating synthetic
networks to use in testing computerized PTPTM systems. Such a

procedure would allow debugging of systems on smaller data bases,
testing of systems during the interim before the larger data beCse

is available, and, by A/arying parameter values, exercising systems

on data bases with a variety of network characteristics to aid in

evaluations of wider scope than possible using just one data base.

k. It is suggested that the schemes presented in Section 3.7 and
Appendix D be coded and exercised on sample, small-scale networks
to validate the claims made for their efficiency and to assess
tradeoffs among schemes.
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5. Two significant technical tasks were identified but left

unaddressed "by tne report:

i. the design and evaluation of procedures for combining
precalculation of some paths with tha on-line approach
in the hope of speeding-up query answering, and

ii. the automation of the network reduction process to
recognize efficiently a "minimum" set of important points
and thus produce automatically the stop/arc displacement
data base and the reduced network from the detailed network.

These topics merit further investigation. Clearly, ii' the analysis of

Step 1 produces negative results then much of the remainder of the work
would have only marginal value. However, a careful estimation of the costs

of a PTPTM system may require at least prototype development, so that
initial work on the remaining steps would in any case be required.
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APPENDIX A

UTPS: IMEA TRANSPORTATION PLANNING SYSTEM

"Developed by the Urban Mass Transportation Administration, the UMTA
Transportation Planning System (UTPS) is a collection of IBM System/

36O-37O computer programs for use in planning multimodal urban transportation

systems. " [10] Each of the computer prop:rams relates to one or more of three
analytical categories: (i) network analysis, (ii) demand forecasting, and

(iii) passenger loading. The network analysis programs aid in describing
transportation networks, evaluating the levels of service provided by the
various modes, and estimating operating costs. The demand forecasting
programs utilize the results of the network analysis to estimate the number

of passengers who will choose each mode of transportation. Then the passenger
loading programs, using output from both network analysis and demand forecasting,
assign passengers to links of the network to evaluate system effectiveness
in terms of ridership versus capacity and cost. We will in this document be

interested only in programs for network analysis, since these are the ones

with possible relevance to PTPTM.

There are five UTPS programs concerned with network analysis: UNET, UPATH,

UPSUM, UROAD, and UFMTR. Two of these programs, URQAD and UFNtTR, appear to
be of no relevance to PTPTM. Program UROAD is devoted to pathfinding, path
skimming, and traffic assignment on highways, i.e., for automobile trips.

UFMTR is primarily devoted to producing graphic and tabular reports for
comparison purposes. Typical UFMTR output might include, for example, tables
showing the number of trips leaving, entering, and remaining in each zone
and/or plots showing the relationship between number of trips and trip fare.

Neither of these two programs are relevant for use in connection with PTPTM.

There are three network analysis programs in UTPS which may be relevant for
PTPTM. The three programs are related in that the output from UNET is input
for UPATH and the output from UPATH is input for UPSUM. After briefly
describing these three programs, the relevance of these programs to PTPTM
will be discussed.

UNET . The function of UNET is to create or modify a computerized descrip-
tion of a transit network. The input to UNET consists of node, link, and
line data as follows:

for each node,

(1) node number

(2) X and y coordinates

for each link,

(1) two node numbers
(2) mode number

(3) distance
(U) speed or time for a.m., p.m., and off-peak
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for each line,

(1) mode number

(2) line number ^
(3) average headway for a.m., p.m., off-peak, night, and maximum
(h) a sequence of link numbers describing the route

In addition to creating a network, UNOT estimates fleet size and operating
costs and produces a graphical display of the network. The following list

gives the maximum (unless otherwise noted) network parameter values which
UNET can accommodate.

nodes ' 819I
zones ' ' \ ' ^ 2500
transit routes 1275
transit lines ,

'
' 255

stops pej^route
' 50

weighted link time 25.5 minutes
number of times or speeds per link 3

zone-to-zone travel time 20k minutes
headways per route '

. ,
, 5

minimum headway
.

-
.

•! minute
maximum headway 99-9 minutes
non-transit modes (walk, auto, etc.) 3

*

transit modes (bus, train, etc.) 5

UPATH . The function of UPATH is to read the network description created

by UNKT and to calculate shortest paths between all or selected zones in

the system. The criterion for selecting shortest paths is the sum of the

path's weighted link times, wait times, and transfer times. The length

of a path is calculated as

L = M + I + P

where

L = length of path
M = sum of weighted link' times, Rim(K)*T(j)
I = sum of constrained weighted wait times, WAIT(k)*W(n)
P = sum of additional transfer penalties, ADD(k)

•

y •
•

. .

Maximum headways are used to constrain the passenger loading programs which
recompute headways based on loads.

Weights are specified by the user for each mode.
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and

T(j) = time on link J

W(n) = estimated wait time for line(s) N

RUTJ(k) = weighting factor for mode K in link time

WA.IT(k) = weighting factor for mode K in waiting time

ADD(k) = penalty for each transfer to mode K

The following discussion attemps to clarify each of the terms involved

in the path length calculfltion. The link times, T(j), are obtained directly

from the link data input to UNET for each link J. The weighting factor,

RUN(k), is a user supplied input to UPATH for each mode K. The products of

these terms are summed over all links of the path to obtain M, the sum of

the weighted link times.

The estimated wait times, W(n), are functions of the headways of the lines

boarded when traversing the path. When more than one line can be used, a
combined headway is calculated as half of the inverse of the sum of the line
frequencies. For example, if two lines can be used, with average headways
of 20 and 30 minutes, the sum of the frequencies is l/l2 = l/20 + I/30 so

the combined unconstrained, unweighted headway is 6 minutes for this "line"

which is actually a composite of two lines. This term is then weighted
by the user supplied value WAIT(k) for mode K. The weighted value is constrained
to fall within user supplied upper and lower limits for mode K, i.e., if the
product W(N)*WAIT(k) falls outside the limits, it is reset to equal the

limit nearest the computed value. The constrained weighted wait times are
summed over all lines in the path.

The transfer penalties ADD(k) are user supplied additional times which are
associated with each transfer to mode K. These values are summed over all
transfers in the path. The user can also supply an upper limit on the total
number of transfers.

E^ch run of UPATH calculates shortest paths for only one period of the day,

e.g., a.m., p.m., midday, or night. For each zone pair, the output is a .single

shortest path which may involve travel by more than one mode. Exact
departure/arrival times are not associated with these paths, and so UPATH
cannot supply the shortest path at a particular time during the time period.
Single mode shortest path trips can be generated by placing large weights
on all but the desired mode.

Documentation of the actual computational scheme used in UTPS for path-finding
is now in progress, but discussions with those familiar with the programs
indicate that the scheme used is similar to the transportation planning
scheme described in Appendix D.h.

In addition to calculating shortest paths, if provided with fare link data
cards, UPATH computes zone-to-zone fares over the shortest paths. Fares
need not be associated with every link, a desirable feature for modelling
zone fare structures.
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UPSUM . Program UPSUM reads the shortest path data output by UPATH and prints
up to twelve zone-to-zone inatrices detailing the component parts of the
shortest path trips. The data available for output are: unweighted travel
time on each of the (at most) 8 modes, number of transfers, initial wait
time, transfer time, and total weighted time. Frequency distributions
are produced for each output matrix.

UTPS was designed for use in the transportation planning process, for which
the average values are both adequate for decision making and desirable
because they require less work to concoct and modify. PTPTM is an operational,
rather than planning, function and as such requires information at a level
of detail specific enough to advise customers which vehicles to take and at
which stops and at what times to board and alight. UTPS does not contain
data at this level of detail and therefore is not alone adequate for use
in FTPTM. In addition, as indicated in Section 3, programming the path finding
element of PTFUM from scratch is not a major effort and is probably less
difficult than adapting the already existing UTPS programs.

The major advantages of using the UTPS programs presumably would be (l) the
utilization of multipurpose data which may already exist in some cities and

(2) the association with currently existing U^f^A procedures and programs.
However, rather than finding the UTPS data base a satisfactory source of

inputs, a PTPTM system requires data more closely associated with actual
day to day operations (such as say the RUCUS system for transit scheduling).
Compatibility with \MJ!A programming standards, if deemed important, can be
accomplished by careful program design, using the UTPS approach without
actually borrowing the UTPS programs.
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APPENDIX B

A QUEUING MODEL FOR ANALYZING BENEFITS FROM REDUCING CALL LENGTH

We have noted earlier that automation of the path finding component of a

transit information call is likely to reduce time for servicing the call by
at most (and probably less than) one third. It is not the reduction in

call length itself which is the main benefit from such automation, but rather

the resultant decrease in time customers spend on "hold" waiting for a

free operator, and the- additional calls not receiving a busy signal. Lost
calls, those which receive a busy signal, are a significant fraction of

calls in some systeas [6], and a reduction of one third in call length
could (and as the analysis below demonstrates, indeed does) have a much
larger effect on the number of lost calls.

To investigate the magnitude of that effect, we will develop in this appendix
a queuing model of the point-to-point transit information service and then
apply that model to a numerical example to illustrate its use in evaluating
the lost calls recovered by reducing call length. Alternatively it could be

applied to determine how a reduction in operator-time per call could be
used to maintain a given quality of service with fewer operators and/or fewer
"hold" lines (hence lower labor and equipment costs). The effects of faster
service cn other measures of syste.i: perforr.'iance, such as waiting tii^es and the
number of callers whi. "give up" when the period spent on "hold" beco-nes
intolerable, can also be estimated using the model.

Most large transit information systems currently use Automatic Call Distribution
(ACD), a telephone system in which incoming calls are distributed on a first-

come first-served basis until all operators are busy, when additional callers
are requested to wait. The system has a limited capacity for handling
customers on hold, and once this limit is reached subsequent customers
receive a busy signal. Customers who are initially placed on "hold" may
give up after a while rather than wait longer.

Such a system may be modeled as an s-server queue with maximum queue length r

and with reneging (giving up) allowed. That is the approach taken in this
appendix, under some simple straightforward assumptions, customary in queuing
theory, which are chosen in part because they make the analysis tractable.
Other assumptions might be used for alternative future model development,
if it is desired to extend the model or its application in analyzing a wide
range of levels of automation of a transit information system. A small
illustrative example of such an analysis is also presented as an indication
of the queuing model's use to evaluate the benefits, in terms of reducing
lost calls, to be obtained from a decrease in part of the service time by
automating the path finding procedure. The formula used to calculate the
expected number of lost calls is given following the analysis of the example,
and may be skipped by those readers not concerned with the mathematical
details.
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We consider a queue with s servers (the operators answering calls) and with
space for r people to wait for service, i.e. r people can be on "hold". If
the system contains s + r people, then necessarily s of them are occupying
the s servers while the other r are filling up the available waiting capacity,

so that any additional arrival must be turned away (a lost call). It follows
that no more than s + r customers can ever be present in the system.

We make the following assumptions:

1. The queue is handled in a first come first served (FIFO) manner.
(This is required only for the analysis of waiting times.)

2. The probability of one^call arriving in the small time interval t

to t + h is a h + o(h) , the probability of more than one arrival
is o(h), and |,he probability of no calls in the same interval is

' 1 - ah + o(h) . Thus we assume a Poisson arrival process, sometimes
called a completely random arrival pattern, with an arrival rate a.

The Poisson distribution is customarily used to describe telephone
call arrivals and other similar situations in which customers act
independently without consulting one another. The arrival rate
is constant and does not depend in any way on the condition of the
system, such as when the last call arrived or how long the hold
queue is.

;

3. The conditional probability that one person will finish service in

the small time interval t to t + h, given that ra people are being
served at time t, where 0 < m < s, is bmh + o(h), the probability
of more than one completion is o(h), and the conditional probability
tha't no one finishes service during that interval under the same
assumption is 1 - bmh + o(h). This results from the assumptions
that the service time for each server follows the negative exponential
distribution with mean l/b, and the service times of the different
servers are independent of one another. These again are commonly
made assumptions for situations like that here.

h. Any person waiting for service will renege (leave without service)
if the time he has been waiting exceeds a number which is exponentially
distributed with mean l/c, and the waiting times before leaving of
different people in the queue are independent. Thus the conditional
probability that one person waiting for service will leave without
it (hang up while still on hold) in the small time interval t to t + h,

given that s people are being served (i.e. all servers are busy)
and n people are in the queue, where 1 < n < r, is cnh + o(h). This

o(h) is used to denote any function f such that f(h)/h - 0 as h - 0.



assumption perhaps adheres less to the actual situation than
the previous two. Whereas the negative exponential distribution
decreases steadily from its peak at 0, one might posit the actual
distribution of waiting time to have two peaks, one at a fairly
low wait time, representing those who are very impatient and not

really willing to wait, and a second at a higher value representing
the average caller. In spite of this, the approximation may not
be too bad for much of the analysis, and the negative exponential
reneging time assumption greatly facilitates an analytic closed-form
queuing description, not as available with other distribution
assumptions.

In summary, the model Involves five parameters: the two positive integers

s and r, representing the number of operators and the "on hold" capacity
of the system, and the three positive real numbers a, b, and c, representing
the demand level, the rapidity of service, and the impatience of customers.

Since each of these features seems an essential ingredient of the situation
under study, and each is represented by just one parameter, no simpler
reasonable approximation to the real system seems possible.

A formula will be given below for the expected number of calls lost to the

system. I.e. those receiving a busy signal because the hold queue is full.

Table B.l records the calculated values, using that formula, for a manual
system with 8 operators (s = 8) each capable of answering on the average

37.5 calls per hour (b = 37.5)*« Since we are primarily interested in busy
periods during which the answering system is overloaded, three arrival rates
were chosen, all greater than the service rate (8b) of 300 calls an hour:

330, 360 and 450 calls per hour. The reneging rate was arbitrarily chosen
to depend on the arrival rate: .005 x a, .010 x a and .025 x a, leading to
average wait before reneging times of 5 minutes to over half an hour. (These

seern rather long; the actual values are unknown and would require further
study. ) Three cases were examined, one with maximum queue length r being 6,

one at 6 and one at 16. The manual system was assumed to have the stated

service rate (b = 37. 5) > while the reduction in average service time l/b

(slightly less than one third) from using an automated path finding procedure
results in an Increased service rate of 52.5-

Examination of Table B.l shows that in all cases a reduction in service time

of about 20 percent leads to a reduction in the number of lost calls of at

least ^0 percent, and typically 60 or 70 percent. The smallest reduction
occurs when the system is very overloaded, so that it remains overloaded
even with the increased service rate. Smaller reductions also occur with
shorter maximum queue lengths, since the queue fills up quicker and stays
filled up longer. Thus the size of the system obtaining greatest benefit
from an automated path finding procedure is that for which a twenty percent

These values pertain to characteristics of transit system 10 in [6].
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reduction in service time brings the total service rate up to a level for

which the system is no longer overloaded. Comparison of the columns in

Table B.l headed "Queue Capacity 8 With Computer" and "Queue Capacity l6

Without Coriiputer" shows that a greater benefit is generally to be derived from a

reduction of 20 percent in the service rate than-would occur from a doubling

in the queue capacity. This also holds true for the situation with lower

reneging rates for which there is an increase of 266 percent in queue capacity
(from 6 to l6).

The 20 percent reduction in service time assumed to be available through

automated path finding is equivalent to a 25 percent increase in the number

of servers, or in this example an increase of 2 peak time operators.

It is not apparent that use of a computer system would cost less than the

salary and overhead costs for 2 or 3 more operators^ though of course such
saving would not be the sole benefit from the automation. Further investigation

of actual computer costs and examination of benefits are needed to evaluate
more fully the cost -effectiveness of an automated i)ath finding procedure
for PTPTM. If functions other than path finding were also automated, such

as response to the caller, so that additional service time savings were
realized, this too would affect the analysis. The example developed here
is only illustrative of how the queuing model can be used for analyzing
the benefits to accrue from automation of parts or all of the PTPTM process.

Further development of this queuing concept, additional data collection and
expansion of the cost effectiveness analysis would be required for a more
definitive approach.

Reference [l] develops formulas for a queuing model similar to the one
presented above, with the further option that b, the average service rate,

can differ from server to server (i.e. different operators have different
capabilities and some can handle calls better than others). Whereas in the
current manual systems it is undoubtedly true that more experienced operators
know the system better and can respond on the average more quickly, one would
expect automation of the path finding portion of a call to even responses in
the area in which the greatest difference occurs. Reference [l] also gives
formulas for the special case of homogeneous service rate (i.e. all servers
have the same average service rate). The formula below for lost calls was
also developed independently by one of the authors and appears here in the
format he used. Let pj^ be the steady state probability that there are
i people in the system including those being served as well as any who are
waiting. Then, for the particular value i=r+s.

r+s
a

r

s.'b^ n (bs+ci)

i=l
P.r+s s-1

Z

h=0

h r h+s
aa

h
s.'b^ n (hs+ci)

i=0
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A lost call results from the conjunction of r+s people in the system and

the arrival of a call. Thus the probability of a lost call in the interval
t to t+h is ahp + o(h), from which the expected number of calls

in a period of length i can be shown to be ^J^V^^^- This formula is the one

used for calculating the expected calls lost to the system in the example
reported in Table B.l.
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APPENDIX C

ADDITIONAL AREAS OF CONCERN

This appendix contains discussions of four additional topics which are

peripheral to the main thrust of this report (the path finding process for

PTPTM), but which arose during the effort and we believe are worth noting.

(l) Not all inquiries to transit information systems concern trips which

a customer desires to make from one point to another at a specific time.

Complaints, lost -and -found requests, requests for general fare information,

and requests for schedule pamphlets can be channeled to other numbers by-

listing in the directory separate phone numbers for the different operations

and by repeating a message to those on hold giving the other numbers and

preparing the customer to organize his point-to-point request. However,

many requests, while not about a specific trip, may require access to the

schedule data base concerning a particular line, route or departure, and it

would be most logical to channel these requests to the PIPTM operator.

Examples might include questions concerning the timeliness of the schedule

pamphlet which the customer has (is it current? for how long?); questions

about specific departures along a route (the first bus after 5 on the K-2
route? how late do express busses mn down Conriecticut Avenue? how often

are departures along the L-6 route?); questions about routings (what routes

stop at a particular corner? where does the L-2 route stop near the library?

can you transfer from the K-3 to the L-2 at l6th and K?). In each of these

cases i^t will be necessary to interrogate the schedules or routings in order

to answer the request. Thus an automated PTPTM system will need to include

a means of directly accessing various schedule and routing data using as

keys the route number, line identification, time of day, or stop identification.
Additional descriptive data will be required for the stops, identifying
their actual locations and characteristics.

In spite of this, it will probably be impossible to answer all questions

by referring only to the computerized data files. For instance, the question
about where a route stops near the library would be so answerable only if

the route actually stopped at the library, but would require additional
knowledge of city geography if the route stopped two blocks away. Since
operators in a manual system normally use route maps, such questions fall
naturally within the scope of their current activities. The danger in a

partially automated system is that operators will tend to rely increasingly
on the computer to prepare responses, and will find it difficult to deal with
questions which cannot easily be phrased in tenns the computer has been
programmed to understand. Training will tend to emphasize, as it should,

communication between operator and customer and between operator and computer,
while deeraphasizing detailed knowledge of the transit system. Thus it may
also be necessary that the transit Information system provide a separate
position staffed by specially trained personnel to answer questions which
require greater knowledge.
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(2) It is unlikely that point-to-point trip information dissemination is

the only procedure which a transit system would automate. One might expect

that run scheduling (perhaps using IMEA's RUCQS program) and system planning
(perhaps using some of the capabilities of UTPS) would also be ccxnputerized

before or concurrently with automated PTPTM. Other activities, such as

payroll, would undoubtedly already be automated by most larger properties.
Coordination among these various automated procedures is of paramount
importance for smooth operation of all systems. This can be greatly
facilitated by advance planning of common data structures and interfaces.
Thus any design of data bases for PFPTM should rely on already existing or
planned data bases for other functions. Redesign of data base structure
should be contemplated if such will provide benefit to the additional new
function without greatly complicating the old. Time and effort spent in
careful planning and coordination of related activities is almost always
repaid many times over. Tradeoffs between the efficiencies of specialization
and general applicability must be weighed, and timely updating of similar
data items in different data bases should be considered. Coordination
among related subprogram areas should be done at the lowest management
level possible, to provide for coordination of detailed computer and data
structure specifications. Changes made in one area may affect related areas,
and those effects should be assessed bel'ore the changes are implemented.

(3) Fares were treated briefly in Section 2.3. 5> but most fare structures
are more complicated than those described there, with many different fare
systems coexisting. Among such systems are:

a) the fixed charge - whereby each passenger pays the same fixed

fare for a trip no matter where his origin and destination are,

b) the zone fare - in which passengers pay a fare depending on their
origin and destination zones. The zones are usually set up so that
an Incremental fare is added whenever a zone boundary is crossed.

c) a distance fare - in which the fare depends on distance traveled.
This may also be regarded as an O/D structure, in the sense that
separate fares are charged for each origin -destination pair. Such
charges are often found in commuter rail systems in which the passenger
usually purchases a ticket from a suburban station for a round trip
downtown and back.

d) transfer fares - in which a charges is levied for each transfer
or for more than so many transfers. In the latter case one may have
to pay a new basic fare after a certain number of free transfers.
Some care is exercised, usually, to insure that the trip proceeds
expeditiously from origin to destination without side trips and
looping back, and that transferring is necessitated by the transit
system network, not performed to provide special ad\'antage to the
passenger. Time limits, to prevent passengers from using transfer
stops for accomplishing personal business rather than solely for trans-
ferring, may be imposed.
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e) special fares for certain groups - The elderly and school

children often receive reduced fares subsidized by other funds.

The handicapped may also fall into this category. Members of

the favored groups may have to purchase special tickets at designated

ticket outlets or may only be required to show special identification.

f) off-peak fares - To encourage off-peak ridership, some systems have

introduced reduced fares for off-peak travel. Such fares may be

limited by other criteria e.g., applying only to special groups or

only for certain trips.

g) multiple-ride fares - in which special tickets good for several

rides are issued. Such tickets can be issued for a particular route

for a fixed time period (e.g. 30-day commutation ticket from Suburb
to City), for a particular number of trips on a particular route

(10 trips from Suburb to City), or for any trip anywhere during a

particular time period (similar to the 30-day Eurorail Pass). Even
the good old round trip ticket can in a sense be thought of as a
two-ride-for-reduced -price ticket.

The preceding list is not intended to be an exhaustive treatment of the
fare question, but is designed to show the complexities of existing fare

structures and thereby to point out the difficulties of providing fare

information to the caller. We do not mean to imply that such difficulties
are insurmountable or even to discourage the inclusion of fare calculation
(or quotation) as part of a PTPTM system. We only wish to point out that
fare systems are complex, and will thus need complex and careful treatment
in the computer programs, as well as requiring additional information from
the caller to establish his fare category.

(4) The access, egress and transfer times used in the automated PTPTM
system would be those required by a "typical" person. Perhaps several
values could be provided, representing slow and fast walkers. However,

it would be difficult to represent adequately the problems encountered by
the infirm or handicapped, without using special path tracing criteria and
additional characterization of transit stops. Transit systems are sometimes
required by law to provide facilities for the handicapped (Washington's
METRO was required to design facilities for wheelchair passengers, for

example), but planning trips for this special group of passengers would
require additional effort. A trip which might be optimal for most transit
passengers might be impossible for a person unable to walk 2 blocks to
transfer. The stops available to the handicapped passenger may be fewer in
number, both because of special characteristics such as curb heights
and steps and because of distance. Transferring may be difficult if not
impossible in some places. The handicapped or infirm may feel especially
vulnerable to street attack and therefore desire to avoid certain sections
of a city. It is possible that transit vehicles themselves may differ in
their accessibility to those unable to ascend steps.
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The extent to which these special characteristics and criteria are actually
contained vithin the computer coding depends on the values placed by the
transit system on providing services to this special group of passengers.
Some accommodation can be made for the handicapped or infirm using ttje

existing data base and the limited transfer criterion. The longer times
for access and egress can be represented by requesting a trip starting later
than the desired departure time to allow for additional access, and similarly
adding additional egress time to the end or requesting an earlier desired
arriA/al time. If the set of stops is limited and the passenger knows this,
he can request his trip giving particular feasible stops as origin and
destination. These "fixes" are not foolproof, but together with additional
notations (such as "high curb", "flight of steps", etc.) about stops they
may provide adequate additional information for those unable to negotiate
such obstacles. More elaborate treatment would be required to satisfy
fully the requests of this special class of passengers.
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APPENDIX D

STEP-BY -STEP COMPUTATIONAL SCHJMES FOR PTPTM

This appendix contains _step-by-Btep instructions for several computational
schemes for PTPTM. Two schemes are presented using the time expanded network

stored in forward star form, one scheme for the departure oriented and a

second for the arrival oriented criterion. Next we present two alternative
bipartite route/ stop schemes as well as a method of compactly representing
the paths output from the scheme for use in precalculating some trips.

Finally, we describe a scheme based on the transportation planning approach.

D.l Time -Expanded Network Scheme

Nodes in the time-expanded network are defined by a pair of entities, the
geographical transit stop (a separate node for each route) and a time of

day. Thus the geographical node Sixteenth and K Street will become several
nodes, one for each time a transit vehicle stops there. The network arcs
become transit trips departing one stop at a particular time and arriving
at another stop at a different (later) time. Transfer arcs, representing
allowable transfers (i.e. those obeying minimum transfer times) may be
coded directly. An example of such a network is depicted in Figure D.l.

In this example there are h transit stops and 3 hus lines: a local stopping
at each stop (its two daily runs are represented by the paths l-3-'6-^ and

12-»l6-17-«20) , a faster vehicle starting at the second stop of the first

route and proceeding directly to the last stop of that route (with four runs:

5-7, 9-10, l4-15, and l8-«19), and one coming from the last stop of the first

route back to the next to last stop of that route (its runs are represented
by 2-J+, 11-13, and 21-22). Two transfer arcs, 3-9 and l4-l8, have been
included. Note that in the left transfer, one is prevented by a minimum
transfer time restriction from making the earliest vehicle on the second
li ne

.

The h stop network has been transformed into one with 22 nodes and 15 arcs.

In general, time -expanding the network greatly increases the number of nodes,
in fact by a factor equal to the average number of transit vehicle departures
per grographical node. Generally it is desirable to decrease rather than
increase network size, but the fact that the resulting time -expanded network
is acyclic means that the increase is likely to be beneficial. On an
acyclic network the network nodes can be numbered at the outset in such a
way that for each arc (i, j), i<j. That is, in the numbering, arcs always
lead from lower numbered nodes to those with higher numbers. Of course a

similar property also holds true of paths. This limits the search for path
extensions to nodes whose numbers are greater than nodes already in the path,

so that nodes can be interrogated in the order of their numbering. The node

order assumed below is the one determined entirely by the time component of

node identity, except for "ties" which cause no trouble unless some arc

requires no time to traverse. If only major stops are included this situation

is unlikely to occur, but if it were, procedures exist to niimber nodes having
identical time components.
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The node numbering procedure allows the network to be broken up into pieces

(which will be called pages) so that the computational scheme only needs

one of them at a time and can finish with the current one before needing

the next.

The computational scheme proposed for computing transit paths in such a

network appears below and is essentially the basic label-correcting scheme.

We will use the following notation:

n(i) the geographical transit node associated with the network node
numbered i

t(i) the time associated with network node numbered i

ORG geographical node of transit origin (Note - this may
actually be a list of several nodes, in which case it will
be necessary to che'ck the whole list when asking if n(i) is

actually ORG.)

DST geographical node of transit destination

p(i) the network node preceding i in a best path from ORG to the

network node numbered i

DONE the first node associated with DST encountered (i.e. the one

for which t is minimum) in a path starting at a node associated
with ORG

The computational scheme proceeds through the following steps:

Initialization : DONE= «
; P(i)=0 for each node i.

Step 1 : Scan the arc list starting with the first node i for which t(i)

is not less than the desired departure time. Let i be the first node
encountered with n(i)=ORG.

St ep 2 : Let a=(i,j) be the first arc originating at node i. .If there are
none, go to Step 6.

Step 3 : If P(j);^0, go to Step 5. Otherwise set P(j)=i.

Step k : If n(j)^DST, go to Step 5. Otherwise set r)ONE=min (DONE, j).

Step 5 * Let a=(i,j) be the next arc originating at node i, if there is

one, and go to Step 3- Otherwise continue.

Step 6 : Let 1=1+1. Stop If i=DONE.

Step 7 : If P(i)=0 and n(i)^RG, go back to Step 6. Otherwise go to Step 2.

It is clear from this description that only the nodes numbered between the
first departure from ORG after the desired departure time (which we shall
call i ) and the node DONE are examined as arc origin nodes. In most
instances this should be considerably fewer than the total number of nodes
in the network. To take advantage of this fact, one may store information
about node i in position i-i'+l in the P array. In fact the actual number
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of active nodes at any time is considerably less than this, and information
may be stored in P in a rotating fashion using storage only for the range of
active node numbers. The values to be represented in P can be shortened
to their increments relative to i -1, which shouli generally be of the order
of 10,000 -or less, requiring only about ik bits to store each. The n and t

values are required only for the same set of nodes as P, and n requires
storage for numbers of about the same order as P (say 12 or 13 bits), while
t requires about 11 bits (since there are iM^O minutes in 2k hours).

The algorithm described above requires only one pass through the nodes,

and only a subset of the nodes at that. No sorting or sequencing of nodes
is necessary, since nodes are examined in numerical order. Since arcs are
stored sorted by origin, only that portion of the network originating at

nodes i' through DONE need be referenced for this path calculation, leading
to an efficient paging scheme for the network. The computer program can be

set up to store a fixed number of arcs, depending on the size of the computer
or of memory-share for the PTPTM function. An arc in this application
only requires identification of its origin and destination nodes since the

t and n pointers describe the relevant arc characteristics. Actual estimates
of page size and of the computer access and transfer times involved are
given in Section 3.8. The main point to be made here is that although the
time-expanded network seems to enlarge the data base to be handled, the
fact that this representation is an acyclic network means that a particularly
efficient computational scheme can be used and the scheme lends itself to a
direct paging procedure. Two additional advantages of the time-expanded
network scheme are that it handles both the overtake problem and that of
constraints in the best path criterion, producing optimal paths in both
situations, a characteristic not shared by most schemes which have only
one node for each geographical stop. (See Section 3-1 for discussion of
this point.) It furthermore provides a ready vehicle for the selective
Inclusion of transfer penalties.

The same scheme, used with the t ime -expanded network stored in backward
star form, may be applied for the arrival oriented shortest path criterion.
Alternatively, a modified version of the above scheme may be applied, using
the forward star form and examining the nodes in reverse order starting from
the last node associated with DST whose time is before the desired arrival
time. This scheme will be described below. Use of two schemes has the
advantage that only one copy of the network, the forward star form, need
be stored to handle both the departure oriented and arrival oriented criteria.

This is particularly necessary for the time-expanded network because of its

large size. Different schemes are then applied to the network for the two
criteria, the one above for the departure oriented criterion and the one
below for the arrival oriented criterion. The following array and variable
will be used in describing the scheme, together with the arrays n and t

and variable ORG and DST listed above:

S(i) the network node succeeding 1 in a best path from the network
node numbered i to DST

FIN the first node associated with ORG encountered (i.e., the one

for which t is maxiraaim) in a path ending at a node associated
with DST.
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The computational scheme proceeds through the following steps:

Initialization : FIN=0; S(i)=0 for all 1.

Step 1 : Scan the arc list backwards, starting with the last node 1 for

which t(i) is at most the desired arrival time. Let 1 be the first node

encountered with n(i)=DST. Set S(l)=i. Go to Step 6.

Step 2 : Let a=(i,j) be the first arc originating at i. If there are none,

go to Step 6.

Step 3 : If S(j)=0, go to Step 5. Otherwise set S(i)=j.

Step h : If n(i)i^ORG, go to Step 5. Otherwise set FIN=inax(FIN,l)

.

Step_5: Let a=(i,j) be the next arc originating at node 1, if there is

one, and go to Step 3. Otherwise continue.

Step 6 ; Let i=i-l. Stop if i=FrN.

Step 7 ; If n(l)^DST, go to Step 2. Otherwise, set S(i)=l and go back

to Step 6.

D.2 Bipartite Route/Stop Scheme

The nodes of the bipartite route/stop network are of two types, one

representing the geographical transit stops and the second representing
individual transit routes. Network arcs are also of two types: for each
transit stop an arc connects it to those lines stopping there, and for each
route an arc connects it to the stops along that route. (The arcs
associated with a route should appear in the order of the stops along the

route.) Thus the network described here is bipartite as defined In

Section 3.1« Figure D.2 displays an example of such a network. Note that

a dummy route was introduced for a walk transfer link connecting two other
routes. A path in this network is an alternating list of stops and routes,
beginning with the origin stop and ending with the destination stop. The
route node appearing between each pair of stops specifies the route which
should be taken between them. The number of transfers is thus one less than
the number of lines appearing in the list, or alternatively, since each stop
other than the origin and destination represents a transfer, two less than
the n\imber of stops in the path.

The network as described above does not 1-iave associated with it the time data
specifying each discrete departure. The arcs connecting the routes to the
stops actually represent a whole list of route scheduled trips, to be fetched
during the course of the algorithm as needed. An example of such a list

for one route is given in Figure D.3. Bach column gives times at a stop and
each row represents one transit vehicle's trip along the route. Thus if
the arcs emanating from a route node are listed in the order of the stops
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FIGURE D.2

Illustrative Bipartite Route/stop Network

T ^ ,\ , 6, 8 ' 9 Arcs

BIPARTITE route/stop NETWORK

.1 5 Nodes

32 Arcs (E^ch Connection is Two-way)
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FIGURE D.3

Illustrative Route Schedule

Stop 1 Stop 2 Stop 3 Stop 4

7:00 7:10 7:15 7:30

7:30 7:^5 7:55 8:10

8:00 8.15 8:25 8:40

8:30 8:40 8:45 8:55

10:00 10:05 10:09 10:15

12:00 12:07 12:15 12:25

2:00 2:05 2:09 2:15

^:00 4:07 4:15 4:25

4:30 h:ko 4:50 5:05

5:00 5:15 5:25 5:4o

5:30 5:45 5:52 6:05

6:00 6: 10 6:15 6:25

6:30 6:40 6:45 6:55

8:00 8:05 8:09 8:15

10:00 10:05 10:08 10:13
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along the route, a row of Figure D.3 represents arrival times at the arc
endpolnts in order. We will describe two computational schemes based on
this network, one using the basic label correcting procedure and a sequence
list ordered by cardinality distance (cf. Section 3.3, paragraph 3), and
the second using the label setting procedure and a list ordered by temporary
label (in this case trip arrival time). The following notation will be
used in describing the schemes,

R . the set of all transit routes

r a particular route

•S the set of all transit stops

s a particular transit stop

ORG the origin transit stop

DST the destination transit stop

N R U S the nodes of the whole bipartite network

T(i) arrival time at stop i via best path from ORG, for ieS;

P(l) node preceding i in best path from ORG (Note that if

ieR then P(i)€S while if ieS then P(i)eR.)

L(k) sequence list of nodes in S, developed by the scheme,

indicating the order in which they are to be fanned out from.

In the label-correcting method L is maintained in cardinality
distance order and in the label-setting method is ordered by
arrival time. •

.

F(i) position of node i in sequence list L.

u current position in the sequence list

v last position filled in the sequence list

END last entry in sequence list L

A computational scheme for a label-correcting procedure for use with the
bipartite route/stop network is given below.

Initialization : Set T(i)= co for all i ORG and set T(0RG)= desired
departure time. Set P(i)=0 and F(i)=0 for all ieN. Set u=0 and v=0.

Step 1 : Let i=ORG. Let r be the first listed route stopping at i.

Step 2 : Search the schedule for route r for the first departure from i

at or after T(i). Let s be the first stop occurring after i in route r.
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step 3 :
Compare the arrival time at s of the scheduled vehicle found in

"Step 2 vith the current value of T(6). If It is no less, go to Step 6;
if it is less, set P(s)=r and P(r)=i.

Step k : If T(s)= " , go to Step 5. Otherwise let k=F(s). If k>0, remove

s from its previous position by setting L(k)=0.

Step ^ : Set T(s)= the new value at node S. Let v=v+l. If v>END,

set v=l. Bet L(v) = s and F(s)=v.

Step 6 : Let s be the next stop on route r, and go to Step 3. If there

are no more stops on r, let r be the next route stopping at i and go to

Step 2. If there are no more routes stopping at i, set F(i)=0,

Step 7 : If u=v, stop. Otherwise let u=u+l. If u=END, let u=l.

Let 1=L(u). If i=0, repeat Step 7. Otherwise let r be the first route

stopping at i and go to Step 2.

These computations do actually maintain the sequence list L in cardinality
distance order. Note that successive path segments are always by different

routes, so that cardinality distance is associated with the number of

different routes used in a path. ("Actual" cardinality length of a path

in this network is twice the number of routes used since paths consist of an

alternating stop-route sequence. However since L contains only stops, it

can be used in obtaining directly the number of routes used.) If it is

desired to consider only paths using no more than some maximum number of

routes, say rt^^x^ then the computational scheme given above can be modified
easily to accommodate this additional constraint, utilizing two additional
pointers:

m the cardinality distance (actually the number of routes)
used in the current path from ORG to node i.

j the position in L of the last node of cardinality distance m.

Both m and j are initialized at 0. The computational scheme is modified
by the addition of a Step 6 l/2 between Steps 6 and 7 above.

Step 6 l/2 : If u=J, let m=m+l. If stop. Otherwise, set j=v.

A label-setting scheme for use with the bipartite route/stop network is

similar to that given above, but the sequence list L is kept ordered by
arrival time at each node. The length of L is determined by M, one plus
the maximum arc length. See [5] for a more complete discussion of the
label-setting procedure. Since for transit networks the transferring time
must be included in M, it is perhaps easiest to set it at some reasonable
trip length level (say 3 hours, or if desired 2h hours).

Initialization ; Set T(i)=cD for all nodes 1 / ORG and T(0RG)= desired
departure time. Set P(i)=0 for all nodes 1. Let u be one plus the desired
departure time (mod M).*

*By X(mod M) is meant the remainder when X Is divided by M. Its calculation
is uaually available in FORTRAN through the function M0D(X,M).
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step 1 : Let i=ORG. Let r be the first route stopping at i.

Step 2 ; Search the schedule of route r for the first departure from i

at or after T(i). Let s be the first stop occurring after i in route r.

Step 3 ; Compare the arrival time at s of the scheduled vehicle" found in
Step 2 with the current value of T(s). If it is greater, go to Step 5;
if it is less, replace the old T vrith the neu value and set P(s)=r and
P(r)=i.

Step h : Let k=T(s) (mod M) . Store s in position k+1 of L.

Step Let s be the next stop on route r and go to Step 3* If there
are no more stops on r, let r be the next route stopping at i, and go to
Step 2. If there are no more routes stopping at i, continue to Step 6.

Step 6 : Let u=u+l. If u>M, let u=l. If L(u)=DST, stop. Otherwise,
let i=L(u). If i=0, repeat Step 6. Otherwise let r be the first route

stopping at i and go to Step 2.

Note that termination occurs when DST is the node to be fanned out from.

Thus if DST is fairly close to ORG the label-setting procedure requires
much less calculation than the label correcting procedure, which terminates
only after best paths have been found to all nodes.

Both of these computational schemes for use with the bipartite route/ stop
network can be combined with a paging scheme for storing the network so

that Step 2 in both algorithms searches first that portion of the scheduled
departures for route r which occurs in a time period containing the
desired departure time. That is, instead of putting all schedules for route r

together, those for all routes for a particular time period are grouped
(but within the period grouping is by route).

As long as departures along the same route do not pass one another, the schemes

presented above handle the overtake problem, since although a route goes
through an intermediate node in reaching another, it is not necessary
that it be used as a first segment of that trip if a better route is available
to the intermediate node. Such a situation is pictured below. The best path

Since paths from ORG to different nodes may arrive at the same time,
it is necessary to accommodate several nodes in the same position in L.

The mechanism for doing this is complicated and will not be described here,

but is described in full detail in [h] and [5].
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(shovm in heavy lines) from stop 1 to stop 2 uses route I, but the best

path from 1 to 3 uses route II. Thus the bipartite route/stop scheme

handles both the overtake problem and constraints on the number of transfers.

D.3 Pj'ecalculating Paths

In the two schemes presented above, we assximed that the problem to be

solved is "find a path from ORG to DST starting after a desired departure
time and arriving soonest." We were in effect also assuming that the schemes

are being used in\ an jon-3-ine mode, in which paths are calculated as they are
requested. In this section we present a procedure which modifies the

bipartite route/stop scheme by introducing a different mathematical
representation for the best pat,h criterion. This procedure will output

shortest paths from one node ORG to all other nodes for all day long in

a compact form.

Consider the following three step functions:

R(s,t) =

S(s,t) =

T(s,t) =

for t < t <^1 o

for < t <^2
•

•

^k+1 for t < t < t
k - - o

for t < t <^1 o

for ^1 < t < ^2'2

for \ < t < t +
o

for T < T <
o -^1

^1 for ^1 < T < ^2

r,,i for T. < T £ T„ ^ 21.

We use 2h here as an example; the actual number depends on the units:
2h if hours, l44o it' minutes.
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We Interpret these three functions in the follovlng way. R(s,t) is the
last route used in the best path from ORG to s starting at ORG no earlier than

time t. The values to, t^. ...tj^ are times at which the best last line

changes. S(s,t) is the stop immediately preceding s in the best path from

ORG to s. Presumably S does not have to change whenever R does and vice

versa, but it will probably most often be the case that they both change at

the same time, so that setting up the time breakpoints to be the same for

the two will only require extra work when exactly one of the jjair change.

T(s,r) is the soonest arrival time at s when starting from ORG at time r.

It is useful to note that j>k, and in fact in most instances j would be much

larger than k since one would expect that only a few different routings

(i.e. sequences of routes used) would be found optimal, while T will change

whenever a different vehicle of the same route arrives.

These three step functions together with the schedules contain all the
information needed to retrieve a best path from ORG to DST starting at or

' after any time t. We will illustrate the procedure below. T(DST,t) is the

arrival time at the destination transit stop, r=R(DST,t) is the last route

used and s=S(r)ST,t) is the stop preceding DST in the path from ORG to DST.

If s=ORG then we have found the best path and to get the departure time from

ORG it is only necessary to look up in the schedules that departure by route r

which arrives at DST at T(DST,t). If s / ORG then we must go back one

further step, retaining the r and s found so far as the last segment of the

best path and setting a new r=R(r,t) and s=S(s,t). This is continued

until s=ORG, retrieving departure times from the schedules as described
above for each segment. - .

The three functions rriay be used in a variant of the label-correcting
scheme, described for the bipartite route/ stop network in the previous

section, with R and S taking the place of P. Rather than replacing an

old T by a new one when a better arrival time is found or storing r and s

in the appropriate positions of P, a special operation combining successive

T's, R's, and S's in a path is required. An example of the operation
applied to T is pictured in Figure D.^ In symbols,

T"'"(s,t) 0T^(s,t)=min (T"''(E,t), T^(s,t)).

1 2 12
Whereas T has four time breakpoints and T has two, the sum T ^ T has
five. The point to is not a breakpoint since T^ is less than T-^ on both
sides of to and T^ has the same value on both sides. In general each

application of© will increase the number of breakpoints, at most (but not

typically) to the sum of the two numbers of breakpoints. The R and S

functions are combined in association with the T function as follows:

R'^(s,t) for t such that

T^(G,t) @ T^(s,t) = Tl(s,t)

R2(s,t) for t such that

T^(s,t) © T2(s,t) = T2(s,t)
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FIGURE D.^

The Operation (3*> Combining Step Functions

© combines these two functions into:

T^(s,t)

o

2

t^ t^

T^(s,t) = T^(s,t) © T^(s,t)
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and similarly for S. In more conventional mathematical notation,

R-^ O 12 equivalent to rain(R-'-,R ). The number of breakpoints for R and S

will also probably increase with each application of© .

The compiutational scheme will also require simple function addition
T(s,t) + X(t ), and composition of functions, in the form /(T(s,t)). The
network will be stored in arc form where each arc is identified with a
specific route r and segment (i, s). The length i(t) associated with each
arc will be the step function representing the arrival time at s when starting
from i at time t. In referencing I during the course of the computation,
it will be necessary in adding I to the current path length to add that
value of I determined by the path arrival time at the intermediate node,

which is denoted by x(T(i,t)).

The computational scheme proceeds in a manner similar to the label-correcting
scheme already presented above in the previous section. (We will also use
the notation of that section,)

Initialization : Set T(s,t) = for all 1 / ORG, and T(ORG,t) = t

for all t. Set R(s,t) = 0 and S(s,t) = 0 for all s and t. Let u=v=0.

Let F(i) = 0 for all i.

Step 1

Step 2

Step 3

Let i = ORG. Let r be the first route departing i.

Let G be the first ctop occurring after i on route r.

Let T'(t) = T(i,t) + i(T(i,t)). Let T(s,t) = T( s, t) 0 T
'
(t ),

updating R and S at the same time. If there was no change in T, go to Step 6.

Step k : Let k = F(:')- 1^* kX)> set L(k) = 0.

Step Let v=v+l. If v>Em), set v=l. Set L(v) = s and F(s)=v.

Step 6 : Let s be the next stop on route r, and go to Step 3^ If there
are no more stops on r, let r be the next route departing i, and go to
Step 2. If there are no more routes departing i, set F(i)=G.

Step 7 : If u=v, stop. Otherwise, let u=u+l. If u=END, let u=l. Let
i=L(u ) . If i =0, repeat Step 7. Otherwise let r be the first route departing
i, and go to Step 2.

This scheme can be applied with ORG being each node in the network
successively. The three arrays T, R and S can then be stored for use
in retrieving a path as it is requested during a call. On-line computation
would consist of access calculations and unpacking the path stored in

T, R and S.
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D.^ Transportation Planning Scheme

This scheme may be used if headways are short (frequent service is provided)

or if it is acceptable to provide only routing and a general idea of the

frequency of service along pieces of the routing. Actual schedules are

not used. Instead, arcs are described by a running time and an average
headway. Different values of each may be provided for different times
of day (for instance morning peak, evening peak, mid -day, and evening
periods). For each origin one set of paths to all destinations is computed
and stored using the arc data for each of the time periods separately.

Since average headways and ru.nning times are available, the best path is

computed as that during the time period selected whose total trip length
is least. Because actual transfer information is unavailable, transfer time
is approximated as half the headway of the line to which one is transferring.
This is added into the trip length computation, which then consists of a

series of half the headway, running time, half the headway, running time,

etc.

The schemes presented in Section D.2 for the bipartite route/stop network
can be modified for use here. One using the label-setting method will be
presented below for consideration. Notation will agree with that in

Section D.2 above, with the two additional functions describing the
network:

t(a) running time on arc a

h(a) average headway on arc a.

Initialization : Set T(i)= od for all nodes i ORG and set T(0RG)=0.
Set P(i)=0 for all nodes 1. Let u=0.

Step 1 : Let i=0RG. Let r be the first rcnate departing i.

Step 2 ; Let s be the first stop after i on route r and let a be the arc
connecting i and s by r.

Step 3 : Compare T( i )+t (a)+. 5h(a) with T(e). If the first is larger, go

to Step 5« Otherwise replace T(s) with the new value and set P(s)=r and
P(r)=i.

Step h : Let k=T(s)(mod M). Store s in position k+1 of L. (See footnotes
referring to this process in the earlier description in Section D.2.)

Step ^ : Let s be the next stop on route r, and let a be the arc connecting
i to s by r. Go to Step 3^ unless there are no more stops on r. In that
case let r be the next route departing i and go to Step 2. If there are
no more routes stopping at i, continue to Step 6.

Step 6 : Let u=u+l. If u>M, let u=l. Otherwise let i=L(u). If i=0, repeat
Step 6. Note: if the whole list has been searched and no IX) was found, we

can stop. Once i ^ 0, let r be the first route departing i and go to Step 2.
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Weights may be introduced so that initial waiting time, running time, and

transfer time contribute different amounts towards the final optimality

criterion. A major advantage of using this scheme is that few enough

paths are generated that the complete set could be stored in full, without

packing, for later retrieval. In addition, in any system in which adherence

to schedule is erratic, it may be preferable to provide routing with the

information on average headways for each segment, since paths calculated

based on the ideal detailed schedules may be unattainable much of the time.

When headways are small (i.e. service is frequent), half a headway is

likely to approximate transfer time better than when they are larger. In

addition, when headways are small they are a smaller proportion of the total

trip, and so a large percentage error in transfer time still has a relatively

minor effect on the total trip time.
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