

NBSIR 74-635 Method of Testing for Rating Solar Collectors Based on Thermal Performance

REFERENCE

James E. Hill Tamami Kusuda

Thermal Engineering Systems Section Center for Building Technology National Bureau of Standards Washington, D. C. 20234

December 1974

Interim Report

~

.

NBSIR 74-635

METHOD OF TESTING FOR RATING SOLAR COLLECTORS BASE ON THERMAL PERFORMANCE

James E. Hill Tamami Kusuda

Thermal Engineering Systems Section Center for Building Technology National Bureau of Standards Washington, D. C. 20234

December 1974

Interim Report

Prepared for National Science Foundation 1800 G Street Washington, D.C. 20550

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Method of Testing for Rating Solar Collectors Based on Thermal Performance

James E. Hill and Tamami Kusuda Thermal Engineering Systems Section Center for Building Technology National Bureau of Standards Washington, D. C. 20234

ABSTRACT

The National Bureau of Standards has made a study of the different techniques that could be used for testing solar collectors and rating them on the basis of thermal performance. This document outlines a proposed standard test procedure based on that study. It is written in the format of a standard of the American Society of Heating, Refrigerating, and Air Conditioning Engineers and specifies the recommended apparatus, instrumentation, and test procedure.

Key Words: Solar collector; standard test; thermal performance; solar energy; standard; solar radiation.

i

TABLE OF CONTENTS

PAGE

SECTION	1.	PURPOSE	l
SECTION	2.	SCOPE	1
SECTION	3.	DEFINITIONS	2
SECTION	4.	CLASSIFICATIONS	4
SECTION	5.	REQUIREMENTS	5
SECTION	6.	INSTRUMENTATION	6
SECTION	7.	APPARATUS AND METHOD OF TESTING	11.
SECTION	8.	TEST PROCEDURE AND CALCULATIONS	17
SECTION	9.	DATA TO BE RECORDED AND TEST REPORT	25
SECTION	10.	NOMENCLATURE	25
SECTION	11.	REFERENCES	27
TABLES	• •		30
FIGURES	• •		46

1.1 The purpose of this standard is to provide test methods for determining the thermal performance of solar collectors which heat fluids and are used in systems to provide the thermal requirements for heating, cooling, and the generation of domestic hot water in buildings.

SECTION 2. SCOPE

- 2.1 This standard applies to solar collectors in which a fluid enters the device through a single inlet and leaves the device through a single outlet. The collector containing more than one inlet and/or outlet can be tested according to this standard provided that the external piping can be connected in such a way as to effectively provide a single inlet and/or outlet for the determination of the bulk properties of the fluid entering and leaving the collector. The fluid can be either a gas or liquid but not a mixture of the two. The collector can be a concentrating collector provided that the aperture or interception area for the device can be determined. The collector may have the capability of rotating so as to track the sun.
- 2.2 This standard is not applicable to those configurations in which the flow into the collector and out of the collector cannot be reduced effectively to one inlet and one outlet. This standard is not applicable to those collectors in which the thermal storage unit is an integral part of the collector such that the collection process and storage process cannot be separated for the purpose of making measurements.
- 2.3. This standard does not address factors relating to cost or consideration of requirements for interfacing with a specific heating and cooling system.
- 2.4 The present version of the standard provides test methods for determining the steady-state efficiency of solar collectors. The transient response of solar collectors cannot be determined with the test methods outlined herein.

3.1 AMBIENT AIR

Ambient air is the outdoor air in the vicinity of the solar collector being tested.

3.2 ABSORBER

The absorber is that part of the solar collector that receives the incident solar radiation and transforms it into thermal energy. It is usually a solid surface through which energy is transferred to the transfer fluid; however, the transfer fluid itself could be the absorber in the case of a "black liquid".

3.3 APERTURE

The aperture is the opening or projected area of a solar collector through which the unconcentrated solar energy is admitted and directed to the absorber.

3.4 CONCENTRATING COLLECTOR

A concentrating collector is a solar collector that contains reflectors, lenses, or other optical elements to concentrate the energy falling on the aperture onto a heat exchanger of surface area smaller than the aperture.

3.5 CONCENTRATOR

The concentrator is that part of a concentrating collector which directs the incident solar radiation onto the absorber.

3.6 COVER PLATE

The cover plate designates the diathermanous material or materials covering the aperture and most directly exposed to the solar radiation. These materials are generally used to reduce the heat loss from the absorber to the surroundings and to protect the absorber.

3.7 FLAT-PLATE COLLECTOR

A flat-plate collector is a solar collector in which the solid surface absorbing the incident solar radiation is essentially flat and employs no concentration.

3.8 GROSS CROSS-SECTIONAL AREA

Gross cross-sectional area is the overall or outside area of a flat-plate collector. It is usually slightly larger than the absorber area since it includes the framework required to hold the absorber.

3.9 INCIDENT ANGLE

The incident angle is the angle between the sun's rays and the outward drawn normal from the solar collector.

3.10 INSOLATION

Insolation is the rate of solar radiation received by a unit surface area in unit time $(W/m^2, Btu/(h \cdot ft^2))$.

3.11 INSTANTANEOUS EFFICIENCY

The instantaneous efficiency of a solar collector is defined as the amount of energy removed by the transfer fluid per unit of transparent frontal area over a given 15 minute period divided by the total incident solar radiation onto the collector per unit area for the 15 minute period.

3.12 INTEGRATED AVERAGE INSOLATION

The integrated average insolation is the total energy per unit area received by a surface for a specified time period divided by the time period $(W/m^2$, $Btu/(h \cdot ft^2))$.

3.13 PYRANOMETER

A pyranometer is a radiometer used to measure the total incident solar energy per unit time per unit area upon a surface which includes the beam radiation from the sun, the diffuse radiation from the sky, and the shortwave radiation reflected from the foreground.

3.14 PYRHELIOMETER

A pyrheliometer is a radiometer used to measure the direct or beam radiation on a surface normal to the sun's rays.

3.15 QUASISTEADY

Quasisteady is the term used in this document to describe the state of the solar collector test when the flow rate and temperature of the fluid entering the collector is constant but the exit fluid temperature changes "gradually" due to the normal change in insolation that occurs with time for clear sky conditions.

3.16 SOLAR COLLECTOR

A solar collector is a device designed to absorb incident solar radiation and to transfer the energy to a fluid passing in contact with it.

3.17 TOTAL INCIDENT INSOLATION

Total incident insolation is the total energy received by a unit surface area for a specified time period (J/m^2) .

3.18 TRANSFER FLUID

The transfer fluid is the medium such as air, water, or other fluid which passes through or in contact with the solar collector and carries the thermal energy away from the collector.

3.19 TRANSPARENT FRONTAL AREA

The transparent frontal area is the area of the transparent frontal surface for flat-plate collectors.

3.20 STANDARD AIR

Standard air is air weighing 1.2 kg/m³ (0.075 lb/ft³), and is equivalent in density to dry air at a temperature of $21.1^{\circ}C$ (70°F) and a barometric pressure of $1.01 \times 10^{5} \text{ N/m}^{2}$ (29.92 in of Hg)

3.21 STANDARD BAROMETRIC PRESSURE

 $1.01 \times 10^5 \text{ N/m}^2$ (29.92 in. of Hg)

SECTION 4. CLASSIFICATIONS

4.1 Solar collectors may be classified according to their collecting characteristics, the way in which they are mounted, and the type of transfer fluid they employ.

- 4.1.1 <u>Collecting Characteristics</u>. A non-concentrating or "flatplate" collector is one in which the absorbing surface for solar radiation is essentially flat with no means for concentrating the incoming solar radiation. A concentrating or "focusing" collector is one which usually contains reflectors or employs other optical means to concentrate the energy falling on the aperture onto a heat exchanger of surface area smaller than the aperture.
- 4.1.2 <u>Mounting.</u> A collector can be mounted to remain stationary, be adjustable as to tilt angle (measured from the horizontal) to follow the change in solar declination, or be designed to track the sun. Tracking is done by employing either an equatorial mount or an altazimuth mounting, for the purpose of increasing the absorption of the daily solar irradiation.
- 4.1.3 <u>Type of Fluid</u>. A collector will usually use either a liquid or a gas as the transfer fluid. The most common liquids are water or a water-ethylene glycol solution. The most common gas is air.

SECTION 5. REQUIREMENTS

- 5.1 Solar collectors shall be tested for rating in accordance with the provisions set forth below and in Section 8.
 - 5.1.1 The size of collector tested shall be large enough so that the performance characteristics determined will be indicative of those that would occur when the collector is part of an installed system. If the collector is modular and the test is being done on one module, it should be mounted and insulated in such a way that the back and edge losses will be characteristic of those that will occur during operation on a structure.
 - 5.1.2 The collector shall be mounted in a location such that there will be no significant energy reflected or reradiated onto the collector from surrounding buildings or any other surfaces in the vicinity of the test stand for the duration of the test(s). This will be satisfied if the ground and immediately adjacent surfaces are diffuse with a reflectance of less than 0.20. If significent reflection will occur, provision shall be made to shield the collector by the use of a non-reflective shield. In addition, the test stand shall be located so that a shadow will not be cast onto the collector at any time during the test period.

- 5.1.3 The test(s) shall be conducted on days having weather conditions such that the 15 minute integrated average insolation measured in the plane of the collector or aperture, reported, and used for the computation of instantaneous efficiency values shall be a minimum of 630 W/m² (199.8 Btu/(h.ft²)). Specific values that can be expected for clear sky conditions are shown in Tables Al through A6 taken from reference [1]. More accurate estimates can be made using the tables in conjunction with clearness numbers*.
- 5.1.4 The orientation of the collector shall be such that the incident angle (measured from the normal to the collector surface or aperture) is less than 45° during the period in which test data is being taken. Angles of incidence can be estimated from Tables A7 through Al2 taken from reference [2]. More accurate estimates can be made using the procedures outlined in references [3], p. 393 or [4], pp. 283-292.
- 5.1.5 The air velocity across the collector surface of a flatplate collector or aperture of a concentrating collector during the test(s) shall be measured. The measurement shall be made at a distance of approximately 1 m (3.3 ft) from the collector along the direction it faces and at a height corresponding to the center of the collector panel.
- 5.1.6 The <u>range</u> of ambient temperatures for all reported test points comprising the "efficiency curve" shall be less than $30^{\circ}C$ (54°F).
- 5.1.7 The transfer fluid used in the solar collector shall have a known specific heat which varies by less than 0.5% over the temperature range of the fluid during a particular 15 minute test period.

SECTION 6. INSTRUMENTATION

6.1 SOLAR RADIATION MEASUREMENT

6.1.1 A pyranometer shall be used to measure the total short-wave radiation from both the sun and the sky. The instrument shall have the following characteristics [5]:

Reference [3], p. 394, Figure 4.

- 6.1.1.1 Change of Response Due to Variation in Ambient Temperature. The instrument shall either be equipped with a built-in temperature compensation circuit and have a temperature sensitivity of less than + 1 percent over the range of ambient temperature encountered during the test(s) or have been tested in a temperature-controlled chamber over the same temperature range so that its temperature coefficient has been determined in accordance with reference [5].
- 6.1.1.2 <u>Variation in Spectral Response</u>. Errors caused by a departure from the required spectral response of the sensor shall not exceed + 2 percent over the range of interest*.
- 6.1.1.3 <u>Nonlinearity of Response</u>. Unless the pyranometer was supplied with a calibration curve relating the output to the insolation, its response shall be within <u>+</u> 1 percent of being linear over the range of insolation existing during the tests.
- 6.1.1.4 <u>Time Response of Pyranometer</u>. The time constant of the pyranometer shall be less than 5 s.
- 6.1.1.5 Variation of Response With Attitude. The calibration factor of a pyranometer can change when the instrument is used in other than the orientation for which it was calibrated. The instruments' calibration factor (including corrections) shall change less than + 0.5 percent compared with the calibrated orientation when placed in the orientation used during the test(s).
- 6.1.1.6 <u>Variation of Response With Angle of Incidence</u>. Ideally the response of the receiver is proportional to the cosine of the zenith angle of the solar beam and is constant at all azimuth angles. The pyranometer's deviation from a true cosine response shall be less than + 1 percent for the incident angles encountered during the test(s).

^{*} Pyranometer thermopiles which are "all black" and which are coated with Parson's black or 3M 101C10 velvet black paint and which have selected optical grade hemispheres usually satisfy this requirement [5]. Note: Identification of commercial materials does not imply recommendation or endorsement by the National Bureau of Standards.

6.1.2 The pyranometer shall be calibrated within six months of the collector test(s) against other pyranometers whose calibration uncertainty relative to recognized measurement standards is known*.

6.2 TEMPERATURE MEASUREMENTS

- 6.2.1 Temperature measurements shall be made in accordance with ASHRAE Standard 41-66, Part 1 [6].
- 6.2.2 <u>Temperature Difference Measurements Across the Solar Col-</u> <u>lector</u>. The temperature difference of the transfer fluid across the solar collector shall be measured with:
 - a. Thermopile (air or water as the transfer fluid)
 - b. Calibrated resistance thermometers connected in two arms of a bridge circuit (only when a liquid is the transfer fluid)
- 6.2.3 The accuracy and precision of the instruments and their associated readout devices shall be within the limits as follows:

	Instrument Accuracy**	Instrument Precision***
Temperature	<u>+</u> 0.5°C (<u>+</u> 0.9°F)	± 0.2℃ (± 0.4℉)
Temperature Difference	+ 0.1°C (+ 0.2°F)	<u>+</u> 0.1°C (<u>+</u> 0.2°F)

*

**

The ability of the instrument to indicate the true value of the measured quantity.

Closeness of agreement among repeated measurements of the same physical quantity.

One nationally recognized calibration center is the Eppley Laboratory in Newport, Rhode Island. The calibration data are commonly expressed in cal/($cm^2 \cdot min$) or in langleys/min. In some meteorological services, calibration data are supplied in milliwatt/cm². The following equivalent units shall be used:

 $^{1 \}text{ cal/(cm}^2 \cdot \text{min}) = 1 \text{ ly/min} = .001434 \text{ W/m}^2$ $1 \text{ mW/cm}^2 = 0.1 \text{ W/m}^2$

- 6.2.4 In no case should the smallest scale division of the instrument or instrument system exceed 2 1/2 times the specified precision. For example, if the specified precision is \pm 0.1 °C (\pm 0.2 °F), the smallest scale division shall not exceed 0.25 °C (0.5 °F).
- 6.2.5 The instruments shall be configured and used in accordance with Section 7. of this standard.
- 6.2.6 When using thermopiles, they shall be constructed in accordance with ANSI Standard C96.1-1964 (R 1969) [7].

6.3 LIQUID FLOW MEASUREMENTS

6.3.1 The accuracy of the liquid flow rate measurement using the calibration, if furnished shall be equal to or better than + 1.0% of the measured value.

6.4 INTEGRATORS AND RECORDERS

- 6.4.1 Strip chart recorders used shall have an accuracy equal to or better than + 0.5% of the temperature difference and/or voltage measured and have a time constant of 1 s or less.
- 6.4.2 Electronic integrators used shall have an accuracy equal to or better than + 1.0% of the measured value.

6.5 AIR FLOW MEASUREMENTS

When air is used as the transfer fluid, air flow rate shall be determined as described in Section 7.

6.6 PRESSURE MEASUREMENTS

6.6.1 <u>Nozzle Throat Pressure</u>. The pressure measurement at the nozzle throat shall be made with instruments which shall permit measurements of pressure to within ± 2.0% absolute and whose smallest scale division shall not exceed 2 1/2 times the specified accuracy [11].

- 6.6.2 <u>Air Flow Measurements</u>. The static pressure across the nozzle and the velocity pressure at the nozzle throat shall be measured with manometers which have been calibrated to have an accuracy to within + 1.0% of the reading. The smallest manometer scale division shall not exceed 2.0% of the reading [11].
- 6.6.3 <u>Pressure Drop Across Collector</u>. The static pressure drop across the solar collector shall be measured with a manometer having an accuracy of 2.49 N/m² (0.01 in. of water).

6.7 <u>TIME AND</u> MASS MEASUREMENTS

Time measurements and mass measurements shall be made to an accuracy of + 0.20% [11].

6.8 WIND VELOCITY

The wind velocity shall be measured with an instrument and associated readout device that can determine the integrated average wind velocity for each 15 minute test period to an accuracy of ± 0.08 m/s (1.8 mph).

7.1 LIQUID AS THE TRANSFER FLUID

The test configuration for the solar collector employing liquid as the transfer fluid is shown in Figure Al*.

- 7.1.1 <u>Solar Collector</u>. The solar collector should be mounted in its rigid frame at the predetermined tilt angle (for stationary collectors) or movable frame (for movable collectors) and anchored rigidly enough to a foundation so that the collector can hold its selected angular position against a strong gust of wind.
- 7.1.2 <u>Ambient Temperature</u>. The ambient temperature sensor shall be housed in a well-ventilated instrumentation shelter with its bottom 1.25 m (4.1 ft) above the ground and with its door facing north, so that the sun's direct beam cannot fall upon the sensor when the door is opened. The instrument shelter shall be painted white outside and shall not be closer to any obstruction than twice the height of the obstruction itself (i.e., trees, fences, buildings, etc.) [15].
- 7.1.3 <u>Pyranometer</u>. The pyranometer shall be mounted on the surface parallel to the collector surface in such a manner that it does not cast a shadow onto the collector plate. Precautions should be always taken to avoid subjecting the instrument to mechanical shocks or vibration during the installation. The pyranometer should be oriented so that the emerging leads or the connector are located north of the receiving surface (in the Northern Hemisphere) or are in some other manner shaded. This minimizes heating of the electrical connections by the sun.

Care should also be taken to minimize reflected and reradiated energy from the solar collector onto the pyranometer. Some pyranometers come supplied with shields. This should be adjusted so that the highest point on the shield lies parallel to and just below the plane of the thermopile. Some pyranometers not supplied with a shield may be susceptible to error due to reflections by radiation that originates below the plane of the thermopile. Precautions can be taken by constructing a cylindrical shield, the top of which should be coplaner with the thermopile [5].

The recommended apparatus consists of a closed loop configuration. An open loop configuration is an acceptable alternative provided that the test conditions specified herein can be satisfied.

Temperature Measurement Across the Solar Collector. The 7.1.4 temperature difference of the transfer fluid between entering and leaving the solar collector shall be measured using either two calibrated resistance thermometers connected in two arms of a bridge or a thermopile made from calibrated. type T thermocouple wire all taken from a single spool. The thermopile shall contain any even number of junctions constructed according to the recommendations in reference [7]. Each resistance thermometer or each end of the thermopile is to be inserted into a well [8] located as shown in Figure Al. To insure good thermal contact, the wells shall be filled with light oil. The wells should be located just downstream of a right angle bend to insure proper mixing [6].

To minimize temperature measurement error, each probe should be located as close as possible to the inlet or outlet of the solar collector device. In addition, the piping between the wells and the collector shall be insulated in such a manner that the calculated heat loss or gain from the ambient air would not cause a temperature change for any test of more than $0.05^{\circ}C$ ($0.09^{\circ}F$) between each well and the collector.

- 7.1.5 Additional Temperature Measurements. The temperature of the transfer fluid at the two positions cited above shall also be measured by inserting appropriate sensors into the wells. Reference [6] should be followed in making these measurements.
- 7.1.6 Pressure Drop Across the Solar Collector. The pressure drop across the solar collector shall be measured using static pressure tap holes and a manometer. The edges of the holes on the inside surface of the pipe should be free of burrs and should be as small as practicable and not exceeding 1.6 mm (1/16 inch) diameter [12]. The thickness of the pipe wall should be 2 1/2 times the hole diameter [12].
- 7.1.7 <u>Reconditioning Apparatus</u>. As shown in Figure A1, a heat exchanger is used to cool the transfer fluid to simulate the building load and an adjustable electric resistance heater is used to control the inlet temperature to the prescribed test value. This combination of equipment or equivalent shall control the temperature of the fluid entering the solar collector to within $\pm 0.5^{\circ}$ C ($\pm 0.9^{\circ}$ F) at all times during the tests.
- 7.1.8 Additional Equipment. A pressure gauge, a pump, and a means of adjusting the flow rate of the transfer fluid shall be provided at the relative locations shown in Figure Al. Depending upon the test apparatus design, an additional throttle valve may be required in the line just preceding the solar collector for proper control. An expansion tank and

a pressure relief valve should be installed to allow the transfer fluid to freely expand and contract in the apparatus*. In addition, filters should be installed within the apparatus as well as a sight glass to insure that the transfer fluid passing through the collector is free of contaminants including air bubbles.

7.2 AIR AS THE TRANSFER FLUID

*

The test configuration for the solar collector employing air as the transfer fluid is shown in Figure $A2^{**}$.

- 7.2.1 <u>Solar Collector</u>. The solar collector should be mounted in its rigid frame at the predetermined tilt angle (for stationary collectors) or movable frame (for movable collectors) and anchored rigidly enough to a foundation so that the collector can hold its selected angular position against a strong gust of wind.
- 7.2.2 <u>Ambient Temperature</u>. The ambient temperature sensor shall be housed in a well-ventilated instrumentation shelter with its bottom 1.25 m (4.1 ft) above the ground and with its door facing north, so that the sun's direct beam cannot fall upon the sensor when the door is opened. The instrument shelter shall be painted white outside and shall not be closer to any obstruction than twice the height of the obstruction itself (i.e., trees, fences, buildings, etc.) [15].
- 7.2.3 <u>Pyranometer</u>. The pyranometer shall be mounted on the surface parallel to the collector surface in such a manner that it does not cast a shadow onto the collector plate. Precautions should be always taken to avoid subjecting the instrument to mechanical shocks or vibration during the installation. The pyranometer should be oriented so that the emerging leads or the connector are located north of the receiving surface (in the Northern Hemisphere) or are in some other manner shaded. This minimizes heating of the electrical connections by the sun.

Figure Al should not be interpreted to mean that the relief valve and expansion tank necessarily be located below the solar collector.

^{**} The recommended apparatus consists of a closed loop configuration. An open loop configuration is an acceptable alternative provided that the test conditions specified herein can be satisfied.

Care should also be taken to minimize reflected and reradiated energy from the solar collector onto the pyranometer. Some pyranometers come supplied with shields. This should be adjusted to be parallel to and to lie just below the plane of the thermopile. Some pyranometers not supplied with a shield may be susceptible to error due to reflections by radiation that originates below the plane of the thermopile. Precautions can be taken by constructing a cylindrical shield, the top of which should be coplaner with the thermopile [5].

- 7.2.4 Test Ducts. The air inlet duct, between the air flow measuring apparatus and the solar collector, shall have the same cross-sectional dimensions as the inlet manifold to the solar collector. The air outlet duct, between the solar collector and the reconditioning apparatus, shall have the same cross-sectional dimensions as the outlet manifold from the solar collector*.
- 7.2.5 Temperature Measurement Across the Solar Collector. A thermopile shall be used to measure the difference between the inlet air temperature and outlet air temperature of the solar collector. It shall be constructed from calibrated type T thermocouple wire all taken from a single spool. No extension wires are to be used in either its fabrication or installation. The wire diameter must be no larger than 0.51mm (24 AWG) and the thermopile shall be fabricated as shown in Figure A3. There shall be a minimum of six junctions in the air inlet test duct and six junctions in the air outlet test duct. These junctions shall be located at the center of equal cross-sectional areas.

During all tests, the variation in temperature at a given cross section of the air inlet and air outlet test ducts shall be less than $\pm 0.5^{\circ}$ C ($\pm 0.9^{\circ}$ F) at the location of the thermopile junctions. The variation shall be checked prior to testing utilizing instrumentation and procedures outlined in reference [6]. If the variation exceeds the limits above, mixing devices shall be installed to achieve this degree of temperature uniformity. Reference [16] discusses the positioning and performance of several types of air mixers.

The ends of the thermopile should be located as near as possible to the inlet and outlet of the solar collector. The air inlet and air outlet ducts shall be insulated in such a manner that the calculated heat loss or gain to or from the ambient air would not cause a temperature change for any test

The performance of air heaters is expected to be affected by the ductwork entering and leaving the solar collector considerably more so than in the case of solar collectors using a liquid as the transfer fluid.

of more than $0.05^{\circ}C$ (0.09°F) between the temperature measuring locations and the collector.

- 7.2.6 <u>Temperature Measurements</u>. Sensors and read-out devices meeting the accuracy requirements of Section 6. and giving a continuous reading shall be used to measure the temperature at the locations in the air inlet and air outlet ducts shown in Figure A2. Reference [6] should be followed in making these measurements.
- 7.2.7 Duct Pressure Measurements. The static pressure drop across the solar collector shall be measured using a manometer as shown in Figures A2 and A4 [11]. Each side of the manometer shall be connected to four externally manifolded pressure taps on the air inlet and air outlet ducts. The pressure taps should consist of 6.4 mm (1/4 inch) nipples soldered to the duct and centered over 1 mm (0.040 inch) diameter holes. The edges of these holes on the inside surfaces of the ducts should be free of burrs and other surface irregularities [12].
- 7.2.8 Air Flow Measuring Apparatus. Where the air flow rate is sufficiently large, it shall be measured with the nozzle apparatus discussed in Section 7. of reference [11]. As shown in Figure A5, this apparatus consists basically of a receiving chamber, a discharge chamber and an air flow measuring nozzle. The distance from the center of the nozzle to the side walls shall not be less than 1 1/2 times the nozzle throat diameter, and the diffusion baffles shall be installed in the receiving chamber at least 1 1/2 nozzle throat diameters upstream of the nozzle and 2 1/2 nozzle throat diameters downstream of the nozzle. The apparatus should be designed so that the nozzle can be easily changed and the nozzle used on each test shall be selected so that the throat velocity is between 15 m/s (2960 fpm) and 35 m/s (6900 fpm). When nozzles are constructed in accordance with Figure A6 and installed in accordance with Section 7.2.9 of this Standard, the discharge coefficient may be assumed to be as follows:

Reynolds Number,	Coefficient of Discharge,
NRe	C
20,000	0.96
50,000	0.97
100,000	0.98
150,000	0.98
200,000	0.99
250,000	0.99
300,000	0.99
400,000	0.99
500,000	0.99

If the throat diameter of the nozzle is 0.13 m (5 in.) or larger, the discharge coefficient may be assumed to be 0.99. For nozzles smaller than 0.05 m (2 in.) and where a more precise discharge coefficient than given above is desired, the nozzle should be calibrated. The area of the nozzle shall be determined by measuring its diameter to an accuracy of \pm 0.20% in four places approximately 45 degrees apart around the nozzle in each of two planes through the nozzle throat, one at the outlet and the other in the straight section near the radius [11].

Where the nozzle apparatus is used, an exhaust fan capable of providing the desired flow rates through the solar collector shall be installed in the end wall of the discharge chamber rather than separate from the air flow measuring apparatus as shown in Figure A2. The dry and wet bulb temperature of the air entering the nozzle shall be measured in accordance with reference [6]. The velocity of the air passing through the nozzle shall be determined by either measuring the velocity head by means of a commercially available pitot tube or by measuring the static pressure drop across the nozzle with a manometer. If the latter method is used, one end of the manometer shall be connected to a static pressure tap located flush with the inner wall of the discharge chamber, or preferably, several taps in each chamber should be manifolded to a single manometer. A means shall also be provided for measuring the absolute pressure of the air in the nozzle throat.

Where the air flow rate is sufficiently small so that a nozzle constructed and installed in accordance with the requirements above would have a throat diameter of smaller than 0.025 m (l in.), the above configuration should not be used and the air flow measuring apparatus as shown in Figure A2 should consist of a calibrated flow element* where at least 10 pipe diameters of upstream and downstream pipe section have been included in the calibration**.

- 7.2.9 <u>Air Leakage</u>. Air leakage through the air flow measuring apparatus, air inlet test duct, the solar collector and the air outlet test duct shall not exceed + 1.0% of the measured air flow.
- 7.2.10 Air Reconditioning Apparatus. The reconditioning apparatus shall control the dry bulb temperature of the transfer medium entering the solar collector to within ± 1.0°C (± 1.8°F) of the desired test values at all times during the tests. Its heating and cooling capacity shall be selected so that dry bulb temperature of the air entering the reconditioning apparatus may be raised or lowered the required amount to meet the applicable test conditions in Section 8.

SECTION 8. TEST PROCEDURE AND CALCULATIONS

8.1 GENERAL

The performance of the solar collector is determined by obtaining values of instantaneous efficiency for a large combination of values of incident insolation, ambient temperature, and inlet fluid temperature. This requires experimentally measuring the rate of incident solar radiation onto the solar collector as well as the rate of energy addition to the transfer fluid as it passes through the collector, all under quasi-steady conditions.

8.2 INSTANTANEOUS EFFICIENCY

It has been shown and discussed by a number of investigators [17, 18, 19 and 20] that the performance of flat plate solar collector operating under steady conditions can be successfully described by the following relationship:

**

*

Usually an orifice, venturi, or flow nozzle.

For small flow elements, the discharge coefficients associated with elements varies considerably from those associated with the larger elements. In addition, for small pipe or duct sizes, the ratio of pipe circumference to pipe area becomes large and the characteristics of the upstream and downstream pipe sections affect the behavior of the element itself.

$$\frac{q_u}{A} = I (\tau \alpha)_e - U_L (t_p - t_a)$$
(1)

A very similar equation can be used to describe the performance of concentrating collectors [21, 22 and 23]. Equation (1) becomes modified as follows [21]:

$$\frac{q_u}{A_a} = I (\tau \alpha)_e \rho \gamma - U_L \frac{A_r}{A_a} (t_r - t_a)$$
(2)

To assist in obtaining detailed information about the performance of collectors and to prevent the necessity of determining some average surface temperature, it has been convenient to introduce a parameter F' where

F' = actual useful energy collected useful energy collected if the entire collector surface were at the average fluid temperature

Introducing this factor into equation (1) results in

$$\frac{q_{u}}{A} = F' \left[I \left(\tau \alpha \right)_{e} - U_{L} \left(\frac{t_{f,i} + t_{f,e}}{2} - t_{a} \right)^{-} \right]$$
(3)

If the solar collector efficiency can be defined as

or in equation form

$$\eta = \frac{q_u^{/A}}{I} , \qquad (4)$$

then the efficiency of the flat-plate collector is given by:

Equation (5) indicates that if the efficiency is plotted against an appropriate Δt , a straight line will result where the slope is some function of U_L and the y intercept is some function of $(\tau \alpha)_e$. In reality U_L is not a constant but rather a function of the temperature of the collector and of the ambient weather conditions. In addition, the product $(\tau \alpha)_e$ varies with incident angle to the collector.

The procedures outlined in this document have been developed in an attempt to control the test conditions so that a well defined efficiency "curve" can be obtained with a minimum of scatter. Figure A7 shows typical test results taken from reference [24] for two flat-plate collectors using air as the transfer fluid. The collector tests were conducted outside and the scatter about the two lines in each figure indicates " ... apart from experimental errors, the order of variation on account of the variations in heat loss coefficient U_L , and the parameter F' due to variations in ambient wind speed and sky temperatures". Figure A10 was taken from reference [25] and is for a flat-plate collector using water as the transfer fluid. There is less scatter due to the fact that the tests were conducted indoors using a "solar simulator".

The curves shown in Figures A7 and A10 are duplicates of those reported in references [24] and [25], respectively. The abscissa in the first case is in metric units and in the second, english units. The curves to be presented in the test report described herein should be done so the abscissa is either in the SI units of $(^{O}C \cdot m^{2})/W$ (as in Figures A8 and A11) or as shown in Figures A9 and A12. Here the experimentally determined temperature difference has been divided by the difference in temperature between the boiling point and freezing point on the respective scale (100^oC, 180^oF) and the insolation has been divided by the solar constant, I_{SC} (1353 W/m²), in appropriate units [26]. The result is an abscissa whose units are dimensionless.

It is expected that a "straight-line" representation will suffice for most conventional flat-plate collectors but that an attempt to represent the performance of a concentrating collector on such a plot will require the use of a "higher-order fit" due to the larger variation in $U_{\rm L}$ and the product $(\tau \alpha)_{\rm e}$.

8.3 TESTING PROCEDURE

The testing of the solar collector shall be conducted in such a way that an "efficiency curve" is determined for the collector under test conditions described in Section 5. and 8.3. At least four different values of inlet fluid temperature shall be used to obtain the values of $\Delta t/I$. Ideally the inlet fluid temperature should correspond to 10, 30, 50, and $70^{\circ}C$ (18, 54, 90, and $126^{\circ}F$) above the ambient temperature; however the values that can realistically be used will depend upon the particular collector design and the environmental conditions at the location and time of year when the collector is being tested. Consequently, the four different inlet fluid temperatures selected should be as close to the above values as is feasible. At least four "data points" shall be taken for each value of t_f; two during the time period preceding solar noon and two in the period following solar noon, the specific periods being chosen so that the data points represent times symmetrical to solar noon. This latter requirement is made so that any "transient effects" that may be present will not bias the test results when they are used for design purposes. All test data shall be reported in addition to the fitted curve (see Section 9.) so that any difference in efficiency due solely to the operating temperature level of the collector can be discerned in the test report. The curve shall be established by "data points" that represent 15 minute integrated efficiency values. In other words, the integrated value of incident solar energy will be divided into the integrated value of energy obtained from the collector to obtain the efficiency value for that "instant". Care should be taken to insure that the incident solar energy is steady for each 15 minute segment during which an efficiency value is calculated. Either electronic integrators or continuous pen strip chart recorders may be used to determine the integrated values of incident solar radiation and temperature rise across the collector. However, a strip chart recorder with a recommended chart speed of 30 cm/hr must always be used to monitor the output of the pyranometer to insure that the incident radiation has remained steady during the 15 minute segment. Figures A13 and A14 show a strip chart recording of incident solar radiation on a horizontal surface at the National Bureau of Standards site in Gaithersburg, Maryland. Whereas the conditions of Figure A13 would be perfectly acceptable for obtaining efficiency values, those of Figure Al4 would not be*.

 $_{\star}$

One or two "blips" of 10 s or less occurring during the 15 minute period such as at 12:18 in Figure All is acceptable.

The surface of the collector cover plate (if present) as well as exposed envelope of the pyranometer should be wiped clean and dry prior to the tests. If local pollution or sand has formed a deposit on the transparent surfaces, the wiping should be carried out very gently, preferably after blowing off most of the loose material or after wetting it a little, in order to prevent scratching of the surface. This is particularly important for the pyranometer since such abrasive action can appreciably alter the original transmission properties of the enclosing envelope.

The pyranometer shall be checked prior to testing to see if there is any accumulation of water vapor enclosed within the glass cover. The use of "wet" pyranometers (where moisture is visible) shall not be allowed.

In order to obtain sufficiently good "quasi-steady" conditions for the solar collection process, the collector should stand in the sun under no flow conditions until the contained fluid heats up to a temperature equivalent to or slightly greater than the inlet fluid temperature for the test. The transfer fluid should then be circulated through the collector at the appropriate temperature level for at least 30 minutes* prior to the period in which data will be taken to calculate the efficiency values. During this period, a check should be made to insure that the flow rate of the transfer fluid does not vary by more than $\pm 1\%$ and that the incident solar radiation is steady as described above.

The flow rate of transfer fluid through the collector shall be standardized at one value for all data points. The recommended value of flow rate per unit area (transparent frontal or aperture) for tests are 0.02 kg/(s·m²) (14.7 lbm/(h·ft²)) when a liquid is the transfer fluid and 0.01 m³/(s·m²) (1.96 cfm per ft²) of standard are when the transfer fluid is air. It is recognized that in some cases the collector will have been designed for a flow rate much different than specified above. In such cases, the design flow rate should be used.

In order to determine and report the fraction of the incident solar radiation that is diffuse for each efficiency value, the sensing element of the pyranometer shall be shaded from the direct beam of sun just prior and just following each 15 minute testing

*

³⁰ minutes is felt to be sufficient for typical tube and sheet type solar collectors using water as the transfer fluid. For those collectors having higher thermal capacity, a longer time period may be necessary.

period and the value of the incident radiation determined*. This shall be accomplished by using a small disk attached to a slender rod held on a direct line between the pyranometer and the sun. The disk should be just large enough to shade the sensing element alone. In reference [5], this is accomplished by a disk 100 mm in diameter and held at a distance of 1 m from the sensing element**.

8.4 CALCULATION OF INSTANTANEOUS EFFICIENCY

For each 15 minute segment for which an efficiency value is to be determined, the value is calculated using the equation:

$$\eta = \frac{\int_{\tau_{1}}^{\pi} c_{p} \int_{\tau_{1}}^{\tau_{2}} (t_{f,e} - t_{f,i}) d\tau / A_{a}}{\int_{\tau_{1}}^{\tau_{2}} I d_{\tau}}$$
(6)

The quantities \dot{m} and c_p have been taken out of the integration in the numerator since they remain essentially constant during the test. Note that the collector area used for the calculation is not the absorbing surface area but rather the transparent frontal area or aperture area.

At least sixteen data points shall be obtained for the establishment of the "efficiency curve" and an equation for the curve shall be obtained using the standard technique of a least-squares fit to a second-order polynomial***.

8.5 AN EXPERIMENTAL CHECK

As an independent check on the experimental results, the inlet temperature, $t_{f,i}$, and the outlet temperature, $t_{f,e}$, of the collector shall be recorded on continuous pen strip chart recorders. The

**

A normal incidence pyrheliometer can be used in lieu of shading the sensing element of the pyranometer.

This was when using a Moll-Gorszynski Pyranometer made by Kipp and Zonen.

One should consult any standard text discussing analysis of experimental data for a presentation of this technique (i.e., [27] and [28]).

quantity $\int_{\tau_1}^{\tau_2} (t_{f,e} - t_{f,i}) d\tau$ shall be approximated using these re-

cordings and compared with the identical quantity obtained by using the primary method which measures the temperature difference directly.

8.6 CALCULATION OF AIR FLOW RATE

The air flow rate through the nozzle is calculated by the following equations:

$$Q_{mi} = 1.41 C A_n (P_v v'_n)^{0.5}$$
 (7)

$$v_n' = 10.1 \times 10^4 v_n / P_n (1 + W_n)$$
 (8)

The air flow rate of standard air is then:

$$Q_{s} = Q_{mi} / (1.2 v'_{n})$$
 (9)

8.7 CALCULATION OF NOZZLE REYNOLDS NUMBER

The Reynolds number is calculated as follows:

$$N_{\text{Re}} = f V_{\text{a}} D \tag{10}$$

The temperature factor is as follows:

Temperature,^oC Factor, f

-6.7	78275
+4.4	72 075
+15.6	67425
+26.7	62775
+37.8	58125
+48.9	55025
+60.0	51925
+71.1	48825

8.8 CALCULATION OF THEORETICAL POWER REQUIREMENTS

In order to calculate the theoretical power required to move the transfer fluid through the solar collector, the following equation shall be used:

$$P_{th} = \dot{m} \Delta P / \rho$$
 (11)

9.1 TEST DATA

Table A13 lists the measurements which are to be made at the beginning of the testing day and during the individual tests to obtain an efficiency "data point".

9.2 TEST REPORT

Table Al4 specifies the data and information that shall be reported in testing the solar collector.

SECTION 10. NOMENCLATURE

A cross-sectional area, m²

- A transparent frontal area for a flat-plate collector or aperture for a concentrating collector, m^2
- A area of nozzle, m^2
- A absorbing or receiving area of the concentrating solar collector, m²

C nozzle coefficient of discharge

c specific heat of the transfer fluid, J/kg.)

D nozzle throat diameter, m

f temperature factor for the calculation of nozzle N_{Re}

F' solar collector efficiency factor

- h outside surface heat transfer coefficient (includes radiation and convection) for the solar collector, W/m^{2.0}C)
- I total solar energy incident upon the plane of the solar collector per unit time per unit area, W/m²
- I diffuse solar energy incident upon the plane of the solar collector per unit time per unit area, W/m²

I solar constant, 1353 W/m²

mass flow rate of the transfer fluid, kg/s 414 Revnolds number NRO absolute pressure at the nozzle throat, N/m^2 P_ Pth theoretical power required to move the transfer fluid through the solar collector, W Pv velocity pressure at the nozzle throat or the static pressure difference across the nozzle, N/m^2 pressure drop across the solar collector, N/m^2 $\Delta \mathbf{P}$ Q_{mi} measured air flow rate, m^3/s standard air flow rate, m³/s Q rate of useful energy extraction from the solar collector, W q., ambient air temperature, ^oC t temperature of the boiling point on a temperature scale, ^OC or ^OF t_{bp} temperature of the fluid leaving the collector, ^OC t_{f.e} temperature of the fluid entering the collector, ^oC t_{f,i} temperature of freezing point on a temperature scale, ^oC or ^oF tfp average temperature of the absorber surface of the solar collectp tor, ^oĈ average temperature of the absorber surface of the concentrating tr solar collector, ^oC ∆t temperature difference, oC heat transfer loss coefficient for the solar collector, $W/m^2 \cdot C$) UT Va velocity of the air at the nozzle throat, m/s specific volume of the air at dry and wet bulb temperature convn ditions existing at the nozzle but at standard barometric pressure, m³/kg dry air specific volume of the air at the nozzle, $m^3/kg dry air$ v, ' Wn humidity ratio at the nozzle, kg H_0/kg dry air absorptance of the solar collector absorbing surface to solar α radiation the fraction of specularly reflected radiation from the reflector γ which is intercepted by the solar collector absorbing surface

- n solar collector efficiency, %
- o specular reflectance of the solar collector reflector, or density, kg/m³

τ time, s, or transmittance of the solar collector cover plate

- (τα) effective transmission-absorptance factor for the solar collector
- τ_1 time at the beginning of a 15 minute test period, s
- τ_2 time at the end of a 15 minute test period, s

SECTION 11. REFERENCES

- Morrison, C. A., and E. A. Farber, "Development and Use of Insolation Data for South Facing Surfaces in Northern Latitudes", paper presented at the ASHRAE Symposium, Solar Energy Applications, Montreal, Canada, June 22, 1974.
- Personal communication with J. I. Yellott, Arizona State University, Tempe, Arizona, data to be published in 1975 revised edition of the ASHRAE publication, <u>Low Temperature Engineering Application of Solar Energy</u>.
- 3. <u>ASHRAE Handbook of Fundamentals</u>, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 345 East 47th Street, New York, N. Y. 10017, 1972.
- 4. Threlkeld, J. L., <u>Thermal Environmental Engineering</u>, Prentice-Hall, Englewood Cliffs, New Jersey, Second Edition, 1970.
- 5. Latimer, J. R., "Radiation Measurement", <u>International Field Year for the Great Lakes, Technical Manual Series, No. 2</u>, The Secretariet, Canadian National Committee for the International Hydrological Decade, No. 8 Building, Carling Avenue, Ottawa, Canada, 1971.
- 6. "Standard Measurements Guide: Section on Temperature Measurements", <u>ASHRAE Standard 41-66, Part 1</u>, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 345 East 47th Street, New York, N. Y. 10017, January, 1966.
- "American Standard for Temperature Measurement Thermocouples C96.1-1964" (R 1969), American National Standards Institute, 1969.
- "Instruments and Apparatus, Part 3, Temperature Measurement", Supplement to the ASME Power Test Codes, American Society of Mechanical Engineers, 345 East 47th Street, New York, N. Y. 10017, March, 1961.

- 9. Davis, J. C., "Radiation Errors in Air Ducts Under Isothermal Conditions Using Thermocouples, Thermistors, and a Resistance Thermometer", <u>NBS Building Science Series 26</u>, November, 1969. (Available from the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402 - order by SD Catalog No. C 13.29/2:26, \$0.25.)
- Davis, J. C., Faison, T. K., and P. R. Achenbach, "Errors in Temperature Measurement of Moving Air Under Isothermal Conditions Using Thermocouples, Thermistors, and Thermometers, <u>ASHRAE Transactions</u>, Vol. 72, Part 1, 1966.
- 11. "Methods of Testing for Rating Unitary Air Conditioning and Heat Pump Equipment", <u>ASHRAE Standard 37-69</u>, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 345 East 47th Street, New York, N. Y. 10017, April, 1969.
- 12. "Instruments and Apparatus, Part 2, Pressure Measurement", Supplement to the ASME Power Test Codes, American Society of Mechanical Engineers, 345 East 47th Street, New York, N. Y. 10017, July, 1964.
- "Instruments and Apparatus, Part 5, Measurement of Quantity of Materials, Chapter 4, Flow Measurement", Supplement to the ASME Power Test Codes, American Society of Mechanical Engineers, 345 East 47th Street, New York, N. Y. 10017, February, 1959.
- 14. "Fluid Meters, Their Theory and Application", 5th edition, American Society of Mechanical Engineers, 345 East 47th Street, New York, N. Y. 10017, 1959.
- 15. "Instructions for Climatological Observations, Circular B", United States Weather Bureau Service, 11th edition, January, 1962.
- 16. Faison, T. K., Davis, J. C., and P. R. Achenbach, "Performance of Louvered Devices as Air Mixers, <u>NBS Building Science Series 27</u>, March, 1970. (Available from the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402 - order by SD Catalog No. C 13.29/2:27, \$0.30.)
- 17. Hottel, H. C., and B. B. Woertz, "The Performance of Flat-Plate Solar-Heat Collectors", <u>ASME Transactions</u>, Vol. 64, p. 91, 1942.
- Hottel, H. C., and A. Whillier, "Evaluation of Flat-Plate Collector Performance", <u>Transactions of the Conference on the Use of</u> <u>Solar Energy</u>, Vol. 2, Part I, p. 74, University of Arizona Press, 1958.
- Bliss, R. W., "The Derivation of Several 'Plate-Efficiency Factors' Useful in the Design of Flat-Plate Solar Heat Collectors", <u>Solar</u> <u>Energy</u>, Vol. 3, No. 4, p. 55, 1959.

- 20. Whillier, A., "Design Factors Influencing Collector Performance", <u>Low Temperature Engineering Application of Solar Energy</u>, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 345 East 47th Street, New York, N. Y. 10017, 1967.
- 21. Duffie, J. A., and W. A. Beckman, <u>Solar Energy Thermal Processes</u>, John Wiley and Sons, 1974.
- 22. Nevins, R. G., and P. E. McNall, "A High-Flux Low-Temperature Solar Collector", ASHRAE Transactions, Vol. 64, pp. 69-82, 1958.
- 23. Löf, G. O. G., Fester, D. A., and J. A. Duffie, "Energy Balance on a Parabolic Cylinder Solar Reflector", <u>ASME Transactions</u>, Vol. 84A, p. 24, 1962.
- 24. Gupta, C. L., and H. P. Garg, "Performance Studies on Solar Air Heaters", Solar Energy, Vol. 11, No. 1, 1967.
- 25. Simon, F. F., and P. Harlament, "Flat-Plate Collector Performance Evaluation: The Case for a Solar Simulator Approach", <u>NASA TM X-</u> <u>71427</u>, October, 1973.
- 26. Thekaekara, M. P., "Solar Energy Outside the Earth's Atmosphere", Solar Energy, Vol. 14, No. 2, p. 109, 1973.
- 27. Holman, J. P., <u>Experimental Methods for Engineers</u>, McGraw-Hill, Second Edition, 1971.
- 28. Bevington, P.R., Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, 1969.

TABLE A1 ... SOLAR POSITION AND INSOLATION VALUES FOR 24 DEGREES NORTH LATITUDE

	HORIZ.	00	9	13	16	α Γ	2	17	32	36	746		~1	1	16	39	, C,	12	12	120	25	50	70	رت ما1	121	125	001	10	7 00	138	165	182	1,88	442	29	124	172	204	222	228	730	34	130	184	217	236	245	808 I
	WITH	-															-			+		-						-						1						-							-	-
×ι	E ANGLE	44	σ,	717	104	161		20.0	235	245	1766		t	2	118	181	230	261	272	1050		126	DCT .	002	107	202	2010		145	221	279	314	327	2346	27	142	224	283	320	332	2324	12	139	223	283	320	552	2286
- I	G SURFACE		10			_					┢	+		09	134	200	252	285	296	2160	C0T7	2112	017 017	226	2002	201	170	101	144	223	282	319	332	2364	24	135	217	278	316	328	22.68	11	129	214	275	312	525	12204
	H FACING	24	Π	73	143	207		067	287	298	22ED	1	T	69	146	214	268	202	313	2120	UTC2	1/16	0 H T	177	315	202	7266	11	130	217	277	315	328	2314	20	123	205	265	302	315	2146	01	116	198	258	295	% 80	2058
	SOUTH	N,	16	-			-				1	1								ľ	1	_		-		_	1	1	125		_						-	_				-	-		_	270	1	Ċ
			23	98	169	120	170	Q /7	307	317	12576	1/1	-	82	158	223	273	201	315	auro	57	126		20.7	100		7010	202	111	180	234	268	279	1928	10	82	150	203	236	247	1610	m	71	137	189	221	232	1474
		NORMAL	81	195	239	261	1010	7/7	278	280	6206	707	5	186	241	265	278	284	286	20611	173	01/C	040	000	7000	201	100	120	2001	284	301	309	311	2868	67	232	282	303	312	315	2706	30	225	281	304	314	31/	1030
	AZM		100°ú	103,8	<u>9</u> ,2	977 E		0,40	79.2	0'0	TOTALS	101 7	C'TAT	92,6	89.7	82.9	73.0	6 25	0.0	TOTAL	101AL5 87 8	0 ° U	010/		11 22		TOTAL C	74.1	14.1	57.1	43.8	24.7	0'0	TOTALS	65,8	58.4	48,9	36,3	19.7	0.0	TOTALS	62,6	55.3	46.0	33 .7	18.2	0,0	TOTAL
	ALT		8.2	21.4	34,8	18 11		T' 70	75.7	86, 6	CACE DATLY		n'c	18.5	32.2	45.0	50.3	71.6	78.3		13 7 T	0 LC	- 1 /7	1 1					1°6	34.1	44.7	52.5	55.5	FACE DAILY	4.9	17.0	28,0	37,3	43.8	46.2	FACE DAILY	3.2	14.9	25.5	34,3	40.4	42.6	×11+4 10+1010
	ЫM		9	ſ	4	2		7					c	ſ	4	~	~	-			2 DR	٦ <i>-</i>	7 P	- c	- v	-			n =	- M	2	Г		SUR	Ś	7	2	2	1		SUR	5	4	M	2	-		0110
	AM		9	7	~	σ		DT -	11	12			ن	~	α.	0		; =			7	0	υc	, c	11	1	T	r	< a:	σ	10	11	12		7	∞	<u>б</u>	10	11	12		2	00	сл	10	11		
DALE			JUL 21										AUG 21								cen 21								061 21						Nov 21							DEC 21						
	HORIZ.	6	۲.	127	17F	207		1 Q/7	232	1766.	ΔE.		707	141	168	185	101	1476	77	ì	E 8	001	120		1002	57.T	۲ ۲ ۲	1	01	9	74	79	483	5	12	15	16	22	112	37	246	7	13	16	8	18	5	22
	ANGLE WITH	3	28	145	228	787	101	h7C	336	2360	L L		101	228	287 .	373	335	1 1000	29	11.5	747	517	205	212	1000	2 2	۔۔۔ ۲		186	237	260	280	2016	6	144	106	165	211	240	250	1200	11	H1	66	155	199	22/	1 320
- 1	SURFACE	34	25	137	221	787	10	5TG	332	2300	5		- T	230	291	328	341	1 907	63	1/10	20E	200	200	070	110	771.	+ C	127	206	259	293	305	228	თ	59	127	190	239	270	281	072	12	28	122	182	229	56	1 090
	FAC ING																																													253		
	SOUTH	14	17	110	188	246	200	ć97	296	1984	11		<u>.</u>	213	273	210	323	2276	63		20E	0.72	667	77.	20110	5775		157	707	282	316	328	2458	15	35	159	224	275	307	317	2447	20	87	158	221	269	200	210
		HORIZ	10	83	151	100	- 22	107	249	1627	35	111	4TT	187	241	276	28.8	1008	60	141	171	212	200	000	7770	1 1 2 2	78		101 101	278	310	321	2454	22	86	171	233	281	311	322	2556	29	103	173	234	280	503	310
		NORMAL	71	239	288	308		/TC	320	2766	152		547	298	314	371	324	3036	194	267	205	200	215	212	2078	0 /01	203	200	062 280	292	298	299	3036	86	203	248	269	280	286	288	3032	67	201	242	263	274	6/7	281
10111001	AZM	1	65.6	58,3	48.8	1 26		0.51	0.0	TOTALS	7461		7' /9	57.6	44.2	25.0	0.0	TOTAL S	83.8	76.9	67.0	0 12	14.0	, c	1 0.0	100 6 1	0,001		0,50	71.8	51.6	0.0	TOTALS	108.4	103.2	98.5	93.6	87.7	76.9	0.0	TOTALS	111.6	106.8	102.6	98.7	95.0	80.8	00
É	ALT	-	4.8	I6.9	27.9	7 2	1.1.1	0,04	46.0	FACE DAILY	2 0		C122	34.4	45.1	53.0	56.0	SURFACE DATLY	13.7	27.7	- C UT	101	0.70	010		1 2 1	18.3	0 02	112.6	59.0	71.1	77.6	SURFACE DAILY	8.0	21.2	34.6	48.3	62.0	75.5	86.0	SURFACE DAILY	9.3	22.3	35.5	10.04	62.6	(P12)	80 11
	Md		5	4	M	6	1 -	Ţ		SURF	ч	1 =	7	m	2	-		SIIP	2		5 14 1		7	-	ī	2	o u	.=	7 M	0 0	-1		SURF	9	Ś	η	m	2	-		SURF	9	5	4	m	5	-	
Į	AM		7	00	5	10		11	12		-	. c	o	σ,	10	11	1		1	. 00	0 0	- C	9 6	10	77	u	2	. 0	0 0	10	I	12		9	7	œ	σ.	10	11	12		9	7	~	6	10	11	1
Ĩ			JAN 21								cco 21			-	-	-		Γ	MAR 21					-		10 004								MAY 21					4			JUN 21						

30

387 IN 1 BTUH/SQ. FT. = 3.152 W/m^2 2E; 1.0

NOTE: 1) BASED ON DATA IN TABLE 1, P. 387 IN REF. [3]; 0% GROUND REFLECTANCE; 1.0 CLEARNESS FACTOR.

2) SEE FIG. 4, P. 394 IN [3] FOR TYPICAL REGIONAL CLEARNESS FACTORS.

3) GROUND REFLECTION NOT INCLUDED ON NORMAL OR HORIZONTAL SURFACES.

	AM	Wd	ALT	AZM			SOUTH	FACING SL	RFACE AND	SLE WITH	HORIZ.								SOUTH	EACTNG STIP	FACE ANGI	0 0110 0	1100
		╞			NORMAL	HORIZ.	22	32	42	52	60		AM	Md	ALT	AZM	NORMAL	NORMAL HOR IZ	22 32	32	42 57 90	57	00
JAN 21	7		1.4	65.2	1	0	0	0	0	1	-												
	∞	4	12.5	56.5	203	26	63	106	116	123	115	JUL 21	9	9	10.7	107.7	113	37	22	14		12	00
	6		22.5	46.0	269	118	175	193	206	212	181		7	5	23.1	100.6	203	107	87	75		44	14
	10		30.6	33.1	295	167	235	256	269	274	221		œ	4	35.7	93,6	241	174	158	143		104	16
	11	-	36.1	17.5	306	198	273	295	308	312	245		5	m	48,4	85.5	261	231	220	205		159	31
	12		38.0	0.0	310	209	285	308	321	324	253		9	2	60.9	74.3	271	274	269	254		204	54
		SURFA	ACE DAILY	TOTALS	2458	1288	1839	2008	2118	2166	1779		Π	Ч	72.4	53.3	277	302	300	285	-	232	69
FEB 21	7	5	7.1	73.5	121	22	34	37	9	45	38		-	~	78.6	0'0	279	311	310	296	273	242	74
	00		19.0	64.4	247	5	127	136	140	141	108			SUR	ACE DAILY	' TOTALS,	3012	2558	2422	2250	1-	754	458
	თ		29.9	53.4	288	161	206	217	222	220	158	AUG 21	٩	و	6,5	100,5	59	14	6	2	1-	9	4
	10		39.1	39.4	306	212	266	278	283	279	193		7	Ś	19,1	92.8	190	85	11	69	-	50	12
	H		45.6	21.4	315	244	304	317	321	315	214		80	4	31.8	84.7	240	156	152	144		116	i 12
	12	Г	48.0	0.0	317	255	316	330	334	328	222		σ	~	44.3	75.0	263	216	220	212		178	ι K
		CIDEA	ACE DATLY	TOTALS	2872	1774	2188	2300	7345	2222	1644				1 93	21.2	97C	202	240	1120	~~~		2.8
MAD 21		-	12 7 1	81 9	185	175	9	E0	5	25	62		9 =	- r		1 02	0/7	202	212	107		077	1.5
T7 NAM	. 0		1 20	0 22	260	1 2	911	711		137	78	*		-	00.0	+ 0	707	767	5	267		/67	
	2 0		102		007	777		Ì							C'0/	0'0	H07	ZNC	/TC	503	+	268	115
	م		56.8	1' Zq	067	5	777	h77	720	507	1			SUR	FACE DAILY	TOTALS	2902	2352	2388	2296		934	736
	10		47.3	47.5	304	245	280	283	278	265	150	SEP 21	~	Ś	12.7	81,9	163	51	56	56		52	30
	11		55.0	26.8	311	277	317	321	315	300	170		00	4	25.1	73.0	240	124	140	141		121	75
	12	Γ	58.0	0.0	313	287	329	333	327	312	177		ന	~	36.8	62.1	272	188	213	215		201	114
		SURFACE	ACE DATLY	TOTAL S	3012	2084	2378	2403	2358	2246	1276		Ę		2 27	17 E	287	227	270	272		101	141
400 J1	-	1 3	E 1		1111	111	0						4 =	1 -			100		0/7	C /7		000	C+1
APK 21	0 1	0 6	100	n	00	t v	n 0	° F	^ی د	ם ר				-	0,02	ζ0'Ω	h67	202	90 i	509		289	164
	~ (n -	0.1	7.76	2007	8		T/ ;	70	7.5	3 1		T		U.84	0'0	962	8/7	518	521	-	300	171
	×	.	31.5	84,0	255	841	156	148	156	170	<u>ب</u>			SURI	ACE DAILY	TOTALS	2808	2014	2288	2308	-	154	1226
	Б	~	43.9	74.2	278	220	225	217	202	183	89	OCT 21	~	5	6.8	73.1	66	19	29	32	\vdash	36	32
	10	2	55.7	60.3	290	267	279	272	256	234	62		~~~	4	18.7	64.0	229	60	120	128		134	104
	11	-	65.4	37.5	295	297	313	306	290	265	112		<i>ه</i>	m	29.5	53.0	273	155	198	208		212	153
	12		69.6	0.0	297	307	325	318	301	276	118		10	2	38.7	39.1	293	204	757	269		270 1	188
		SURFA	IRFACE DAILY	TOTALS	3076	12390	2444	2356	2206	1994	764		=	-	45 1	21 1	2U2	776	100	202		200	
MAY 21	9	9	10.4	107.2	119	36	21	13	13	12	-				L7 L		300	2112	A DF	200		212	512
	2	2	22.8	100.1	211	107	88	75	60	44	13			SUR	ACE DATI V	TOTALS	2696	1654	2100	2208	+-	010	1500
	~	17	35.4	9.79	250	175	159	145	127	105	15	NOV 21	6	L.	1 5	65 11 1	6	C	0017	004	+	- 14	-
		. M	1 01	2 10	250	224	202	200	188	167	2		. 0	n =	1 5		105	- t					-1 -
				2 22		25	120		220		1		0 0	7 P	/ 77	0,00	05T	ŝ	7	+OT		511	
	P. ;		0.00		100	77	777		102		26		ית	<u> </u>	Q 77	T'95	592	811	1/5	190		208	176
		-	0'7/	6.14	C87		ŝ	067	207	107	21		2	2	30.8	33,2	289	166	233	252	_	270	217
	71		/8,0	0,0	987	515	515	TOS	8/7	74/	2	_		-	36.2	17.6	301	197	270	291		307	241
		SURFACE	ACE DAILY	TOTALS	3112	2582	2454	2284	2064	1788	f9		12		38.2	0'0	304	207	282	304		320	249
JUN 21	و	_	12.2	110.2	131	5	26	16	15	14	σ			SURF	ACE DAILY	TOTALS	2406	1280	1816	1980	-	130	1742
	7		24.3	103.4	210	115	6	76	65	17	14	DEC 21	~	4	10.3	53.8	176	41	17	06	+	108	107
	~	4	36,9	96.8	245	180	159	143	122	6	16		თ	m	19.8	43.6	257	102	161	180		204	183
	б		49.6	89.4	264	236	221	204	181	153	19		10	6	27. F	51.2	288	150	221	2010		267	200
	10		62.2	7.97	274	279	268	251	227	197	17		3 =	J -	2 62	15 /1	201	100	177		_	205	251
	2 1		74.2	6.03	579	306	60	282	257	224	<u>ب</u> ہے ا			-	211 5		TOC	100	007	707 70E			167
	1		81.5	0.0	280	315	306	292	267	234			77				104	112C	1701	1000	+	210	-10L
		CIDEACE	VCE DATLY		3084	7530	2436	7774	1000	1690	370			SUKE	ACE PAILY	IUIALS	0407	OCTT	+0/T	T000	\neg	190	μ., /T
		11000	ארר האורו	-			77.7		DOD T	0007	2	-			,								
NOTE	1)	BASED	FD ON	DATA	IN	TABLE	1, P	. 387	IN			-	0/11110	Ē			ć,						
TTOM		7410										ן. ק	BTUH/SQ	О. Ч	ני) װ בי	3.152 W	W/m≁						

BTUH/SQ. FT. TOTAL INSOLATION ON SURFACES

SOLAR TIME SOLAR POSITION

DATE

TABLE A2 ... SOLAR POSITION AND INSOLATION VALUES FOR 32 DEGREES NORTH LATITUDE

BTUH/SQ, FT, TOTAL INSOLATION ON SURFACES

SOLAR TIME SOLAR POSITION

DATE

SEE FIG. 4, P. 394 IN [3] FOR TYPICAL REGIONAL CLEARNESS FACTORS.

GROUND REFLECTION NOT INCLUDED ON NORMAL

3)

OR HORIZONTAL SURFACES.

-

CLEARNESS FACTOR. 5)

REF. [3]; 0% GROUND REFLECTANCE; 1.0

1 BTUH/SQ. FT. = 3.152 W/m²

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SOLAR TIME	SOLAR P	SOLAR POSITION	BTUH/S(BTUH/SQ. FT. TOTA	_ }	INSOLATION ON	ON SUR			DATE	AR	ŀ	SOLAR POSITION	IT ION	BTUH/S	0. FT.	TOTAL IN	SOLAT ION	BTUH/ SQ, FT, TOTAL INSOLATION ON SURFACES	ICES	10017
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T	ALT	AZM			20014	FACING S			HUKIZ.		AM	+	ALI	MZM			HINNS UZ	LACING 2	ED F		00
			- 0	CC 2	NORMAL	7	20	40	10	D0	100	10	Ľ	7	2 2 0	115.0	NURMAL	U HUKIZ			R		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	10	0.00	747			17,4	10	201	+ ⁶	17 JUL 21	n 4	- u	1.1	7101	720		o u	2	с ц		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1C,0	- 0 - +++	667			1/1	707	75/1	1/T		0 1		1017	7'00T	0CT	25	07	12		11	ر 114
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0	5.00	+/7			107	647	100	C77		<u> </u>	- 		71/0	D07	121			100		4 č
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ULU CH HM CU CH C	Τ	+ 0 Z	0'9T	507			//7	067	667	60		0 0	- T P	0,00	0, 10	147	1: LCC		747	+7T	701	5 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0,Uc	N*N	54	- 1	+	167	ch c	ofic	502		ר ק	<u> </u>		/10/	607	C77	017		707	/cT	с ц г, с
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Зľ	FACE DAIL	Y TOTALS	7817		+	018T	1906	Tatt	1/Zp		PT	7	۲. / C	/.19	597	CQ7	407	107	677	- G07	00
0.2 2.1 7 114 127 116 127 116 127 126 239 230	R_{2} Z_{2} Z_{11} Z_{11} Z_{11} Z_{11} Z_{11} Z_{11} Z_{12}	-	4.8	72.7	69			21	23	24	22		11	-1	66./	5/ ,9	2/2	067	2962	187	847	977	101
9.2 3.2 1.2 1.2 3.2 3.2 3.1 3.01 3.03 3.03 3.03 3.04 1.0 3.05 </td <td>912 754 175 759 274 175 259 276 277 276<td></td><td>15.4</td><td>62.2</td><td>224</td><td></td><td></td><td>122</td><td>126</td><td>127</td><td>1ū2</td><td></td><td>12</td><td></td><td>70.6</td><td>0.0</td><td>276</td><td>298</td><td>307</td><td>292</td><td>269</td><td>238</td><td>111</td></td>	912 754 175 759 274 175 259 276 277 276 <td></td> <td>15.4</td> <td>62.2</td> <td>224</td> <td></td> <td></td> <td>122</td> <td>126</td> <td>127</td> <td>1ū2</td> <td></td> <td>12</td> <td></td> <td>70.6</td> <td>0.0</td> <td>276</td> <td>298</td> <td>307</td> <td>292</td> <td>269</td> <td>238</td> <td>111</td>		15.4	62.2	224			122	126	127	1ū2		12		70.6	0.0	276	298	307	292	269	238	111
35.9 375 176 376 377 390 37 37 390 37 37 390 37 390 37 390 37 390 37 390 37 390 37 390 37 390 37 390 37 390 370 310 370 310 370 310 370 310 370 310 370 310 370 <	55.9 355 17 56 7.9 57 50 31 7 6 6 6 7.9 50.0 27 50.0 150 160 160 160 160 170 160 170 160 170 160 170 160 27 20.0 257 20.0 257 20.0 277 160 277 160 277 160 277 160 277 160 277 200 277 200 277 200 277 200 277 200 277 200 277 200 277 200 277 200 277 200 277 200 277 200 277 200 277 200 277 200 277 200		25.0	50.2	274			205	209	208	167			SURFA	CE DAILY	TOTALS	3062	2534	2409	2230	2006	1728	2002
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	32.8	35.9	295			267	271	267	210	AIIG 21	 ب	9	7.9	99.5	81	21	12	6	~	2	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	2017	0 81	305			30F	10	1702	236	1	~ ~	, ц	2 01	0 00	101	87	14	69	9	110	17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T	1001					210	202	212	2/15		. 0) =	202	70.0	727	150	150	141	120	113	12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	40.0	0.0	0110		+	670	170	/TC	647		0 0	T 1	1,00	5 F C	167				271		R
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.4 60.2 71 73 24.6 75.7 25.	SUR	FACE DAIL	Y TOTALS	2640	- 1	-	2162	2202	2176	1750		5		41.8	67.9	260	205	216	207	195	1/2	68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5.5 6.6.6 2.50 114 140 141 140 141 151 201 202 201 153 151 203 203 203 203 203 203 203 203 203 201 103 201 203 20		11,4	80,2	171			5	54	21	35		10	2	51.7	52.1	272	246	267	259	244	221	120
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2 3.7.3 2.2.5 2.2.7 2.2.5 2.2.6 2.2.7 2.2.5 2.2.6 2.2.7 2		22.5	69.6	250			141	138	131	68		11	-	59,3	29.7	278	273	300	292	276	252	140
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	U17 U17 U17 U17 U14 U17 U14 U14 <thu14< th=""> <thu14< th=""> <thu14< th=""></thu14<></thu14<></thu14<>		37.8	57.3	282			217	512	202	138		1	Γ	62.3	0.0	280	282	311	303	287	262	147
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	1 1 1	0	202			276	120	252	176					TOTAL	2016	2744	2354	2258	1010	1894	978
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1 6	206			212	117	200			-		11 11 11	00 2	0111	21/		212	10	117	5
9.0.0 1.0.0 20 200	9.1 0.1 0.0 <td>T</td> <td>/ / /</td> <td>Q' 77</td> <td>5</td> <td></td> <td></td> <td>1</td> <td>/NC</td> <td>667</td> <td>0.17</td> <td></td> <td>~ (</td> <td><u> </u></td> <td>+ 1</td> <td>2100</td> <td></td> <td>.</td> <td></td> <td>7</td> <td></td> <td>t ic</td> <td>2 8</td>	T	/ / /	Q' 77	5			1	/NC	667	0.17		~ (<u> </u>	+ 1	2100		.		7		t ic	2 8
Number Environment 236 239 231 239 239 231 239 239 231 239 239 231 239 239 231 239 239 231 239 239 231 239 239 231 239 239 231 239 239 231 239 231 239 231 239 231 239 231 239 231 239 231 239 231	Supract DALY TOTAL 236 1382 238 233 228 127 7 1	1	50.0	0'0	307		+	326	520	305	208		œ	3	22.5	69,6	250	60T	155	154	151	174	N ⁴
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SUR	"ACE DAIL	Y TOTALS	2916			2330	2284	2174	1484;		σ	m	32.8	57,3	263	167	206	208	203	193	132
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.9 89.5 206 87 77 70 61 50 12 11 1 47.7 22.6 239 239 239 231		7.4	6.89	68			00	2	7	4		10	2	41.6	41.9	280	211	262	265	260	247	168
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		18.9	89.5	206			70	9	20	12		1	-	47.7	22.6	287	239	298	301	295	281	192
67.7 27.4 207 221 213 199 179 19 200 228 2204 2117 116 117	6/7 77 277 277 277 276 277 228 210 228 210 228 210 228 210 228 210 228 210 228 210 228 210 218 21 11 15 21 11 12 22 126 127 218 210 218 210 218 210 218 210 218 210 <		30.3	79.3	252			145	133	117	23		12		50.0	0.0	290	249	310	313	307	292	20J
51.4 286 251 27 39 12 1.5	51.4 286 250 277 206 277 206 277 206 271 14 15 17 29.2 277 308 301 266 271 197 215 195 11 1 37.6 187 196 196 196 111 1 37.6 187 196 280 170 245 257 261 114.7 1 0 0 0 0 0 0 0 0 111 1 37.6 280 170 245 257 261 178 166 124		41.3	67.2	274			213	199	179	56			SURFA	CE DAILY	TOTALS	2708	1788	2210	2228	2182	2074	1416
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	58.7 29.2 27 36 30 26 271 154 15.0 61.9 204 68 166 113 117 61.6 0.0 293 270 313 266 271 154 17.0 29.1 29.2 277 56 197 27.6 197 27.5 197 27.6 193 287 295 295 293 295 296 293 295 296 293 295 206 209 201 206 209 206<	-	51.2	1	286			767	252	920	126		7	5	1 5	72.3	48	~	14	15	17	17	١٤
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Image: black 0.0 2.95 2.97 7.00 1.0 2.97 2.00 2.97 2.00 2.97 2.01 2.95 2.97 2.01 2.95 2.97 2.01 2.95 2.95 2.91 2.93 2.95 2.93 2.95 2.93 2.95 2.93 2.93 2.95 2.93 2.94 2.73		111	000	200			301	285	260	107		< 0	n =		61 a	17UC	68	106		117	118	1001
Inferential 3092 2274 2412 7370 2168 1027 111 1 37.6 18.7 291 199 283 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 295 299 294 293 295 294 295 294 294 273 294 273 294 273 294 273 294 273 294 273 294 273 294 273 294 273 294 273	Matrix 399 2274 2412 7370 216 197 10 2 27.6 18.7 291 199 237 267 261 27.6 269 <th2< td=""><td>T</td><td>9 19</td><td></td><td>202</td><td></td><td></td><td>112</td><td>206</td><td>221</td><td>154</td><td></td><td></td><td>- M</td><td>211 5</td><td>8 01</td><td>257</td><td>126</td><td>185</td><td>195</td><td>200</td><td>198</td><td>160</td></th2<>	T	9 19		202			112	206	221	154			- M	211 5	8 01	257	126	185	195	200	198	160
Marke bit in the indication of the indicating of the indication of the indication of the indicat	Marke Matrix Dir Dir <thdir< th=""> <th< td=""><td>1</td><td>0.10</td><td>0.0</td><td>2002</td><td></td><td>+-</td><td>0626</td><td>2160</td><td>1056</td><td>1000</td><td></td><td>, c</td><td></td><td></td><td></td><td>000</td><td>170</td><td>2110</td><td>257</td><td>261</td><td>257</td><td>202</td></th<></thdir<>	1	0.10	0.0	2002		+-	0626	2160	1056	1000		, c				000	170	2110	257	261	257	202
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.3 1.14, 1 4 9 5 15 14 15 14 15 14 15 16 14 15 16 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 17 15 16 16 17 15 16 16 17 15 16	SUR	FACE DAIL	Y 101ALS	7200		+	0777	ONT7	UCT	7707		3:	7 -	+ 70	0 0	102		647	100		100	
Lin Lin <thlin< th=""> <thlin< th=""> <thlin< th=""></thlin<></thlin<></thlin<>	LL LL <thll< th=""> LL LL LL<</thll<>		P.T.	1.4./	1.11	⊃ ç		D Ļ		0 [-	5/ .b	18./	T67	667	285	CF2	667	194	677
Z4.0 9.6 2.16 2.14 89 76 76 216 2.16 2.16 2.16 2.16 2.16 2.06	24.0 95.6 214 89 76 104 15 Nov 21 8 Nov 21 Nov 21 </td <td></td> <td>/* 7T</td> <td>4.601</td> <td>Tud</td> <td>64.5</td> <td></td> <td></td> <td>10</td> <td>а :</td> <td>ן ת</td> <td></td> <td>71</td> <td></td> <td>1 6'66</td> <td>0.0</td> <td>167</td> <td>207</td> <td>667</td> <td>000</td> <td>710</td> <td>000</td> <td>2007</td>		/* 7T	4.601	Tud	64.5			10	а :	ן ת		71		1 6'66	0.0	167	207	667	000	710	000	2007
35,4 87,2 250 175 158 144 125 104 255 17,0 136 28 55,4 137 136 28 57 72 78 82 46.8 7.6.0 277 227 227 226 136 166 186 166 66.2 37.1 238 254 273 285 288 295 217 178 183 183 70.0 0.0 284 301 312 297 274 243 111 1 28.6 16.1 283 157 254 273 285 288 301 50.0 0.0 284 2040 1760 724 214 2040 1760 724 217 283 157 254 277 286 286 287 288 286 288 286 288 286 288 286 288 286 288 286 284 217 137	35,4 87.2 250 175 188 144 125 104 255 Nov 21 8 4 8.2 55.4 136 28 63 72 78 46.8 76.0 277 221 206 160 60 9 5 17.0 141.1 732 88 157 275 727 287 245 178 165 275 273 287 245 257 244 217 283 157 245 275 285 157 216 178 245 257 286 141 1 12 281 157 267 287 259 257	-	24.0	9°96	9T2	hT7		9/	20	44	ц Ц			SURFA	CE DAILY	TOTALS	2454	1548	796T	Nouz	2098	2U/4	TP2H
46.8 76.0 267 227 221 206 186 160 6 9 3 17.0 44.1 232 82 157 167 178 183 183 57.5 57.5 57.7 267 277 267 273 249 233 249 233 249 233 249 233 249 233 249 233 249 233 249 233 249 233 249 233 249 233 249 261 249 261 279 261 279 261 279 261 279 261 279 261 274 274 275 257 258 301 287 257 258 301 287 561 279 261 270 129 27 288 161 178 197 196 791 196 791 196 791 197 197 197 196 245 576	46.8 76.0 267 221 221 206 160 60 9 3 17.0 44.1 732 82 157 157 157 157 157 277 270 253 233 203 311 283 137 287 254 273 245 114 112 1 283 157 254 233 285 285 286 126 1778 1373 285 285 286 167 1778 187 283 215 254 273 285 285 286 167 1778 285 285 286 266 2173 285 285 285 286 276 287 286 276 277 286 1778 1870 275 264 277 286 1778 1870 275 264 277 286 1778 1870 275 264 275 264 275 265 1778 1870 <		35.4	87.2	250	175	~	144	125	104	25		~	4	8.2	55.4	136	28	63	72	78	82	81
57.5 60.9 277 267 270 255 233 205 89 10 2 24.0 31.0 268 125 233 245 249 <td>57.5 60.9 277 267 270 255 233 245 233 245 233 245 233 245 233 245 233 245 240 11 1 286 126 126 215 233 245 243 114 11 1 286 16.1 283 153 254 233 245 285 264 270 255 244 273 285 264 271 283 153 254 273 285 285 285 286 1778 187 285 287 264 273 285 287 285</td> <td></td> <td>46.8</td> <td>76.0</td> <td>267</td> <td>227</td> <td></td> <td>206</td> <td>186</td> <td>160</td> <td>60</td> <td></td> <td>5</td> <td>~</td> <td>17,0</td> <td>44.1</td> <td>232</td> <td>82</td> <td>152</td> <td>167</td> <td>178</td> <td>183</td> <td>167</td>	57.5 60.9 277 267 270 255 233 245 233 245 233 245 233 245 233 245 233 245 240 11 1 286 126 126 215 233 245 243 114 11 1 286 16.1 283 153 254 233 245 285 264 270 255 244 273 285 264 271 283 153 254 273 285 285 285 286 1778 187 285 287 264 273 285 287 285		46.8	76.0	267	227		206	186	160	60		5	~	17,0	44.1	232	82	152	167	178	183	167
66.2 37.1 283 293 301 287 264 234 108 11.1 1 28.6 16.1 283 137 289 301 312 297 224 2114 112 12 30.2 0.0 289 131 287 289 301 312 244 214 264 271 289 301 289 301 312 244 216 724 217 89 301 288 301 389 301 389 301 380 301 380 301 380 301 380 301 380 301 380 301 380 301 380 301 380 301 380 301 380 301 380 301 380 301 380 301 380 301 380 301 380 190 30 380	66.2 37.1 283 293 301 287 264 234 108 11 1 28.6 16.1 283 157 284 273 285 157 284 273 284 273 285 173 285 175 267 274 274 273 283 165 175 267 287 288 167 267 287 288 167 267 287 288 163 175 264 273 288 165 267 287 288 167 267 287 288 167 267 287 288 167 187 16 110 1 1 1 28.6 178 167 164 179 41 39 41 39 415 164 179 160 171 10 27.7 286 137 210 210 216 217 29 43 29 455 56 56		57.5	60.9	277	267		255	233	205	6 α		10	2	24.0	31.0	268	126	215	233	245	249	219
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	70.0 0.0 284 301 312 297 274 243 114 12 30.2 0.0 288 165 267 287 298 163 267 287 298 163 267 287 298 1870 298 165 1778 1870 1870 1870 201 193 14 39 14 39 14 39 44 55 55.0 89 14 39 45 55 155 157 1870 14.18 108.4 155 217 59 41 55 51.0 49 45 55.0 89 14 39 45 55 155 157 164 26.0 37.4 90.7 246 182 121 97 16 11 1 250.0 147 215 164 135 155 155 155 154 135 154 135 154 135 154 <td< td=""><td></td><td>66.2</td><td>37,1</td><td>283</td><td>293</td><td></td><td>287</td><td>264</td><td>234</td><td>108</td><td></td><td>П</td><td>1</td><td>28.6</td><td>16.1</td><td>283</td><td>153</td><td>254</td><td>273</td><td>285</td><td>288</td><td>248</td></td<>		66.2	37,1	283	293		287	264	234	108		П	1	28.6	16.1	283	153	254	273	285	288	248
Surface Dally Toriols 3160 2552 2442 2040 1760 724 Surface Dally Torials 2128 942 1656 1778 1870 1908 4.2 117.3 22 4 3 3 2 2 1 bec 8 4 5.5 53.0 89 14 39 45 50 54 14.8 108.4 155 60 30 18 17 16 10 41.9 217 65 1778 1870 1908 26.0 99.7 246 123 92 171 14 11 1 25.0 177 29,4 275 264 171 37.4 90.7 246 123 92 121 14 71 1 25.0 157 165 275 264 212 255 242 242 242 242 242 242 242 242 255.0 250,4 251 275	SURFACE DAILY TOTALS 3160 2552 2442 2040 1760 724 - SURFACE DAILY TOTALS 2128 942 1656 1778 1870 4.2 117.3 22 4 3 3 2 2 1 DEC 8 4 5.5 55.0 89 14 39 45 50 14.8 108.4 155 0.3 12 16 10 2 14,0 2017 29 14 39 45 50 26.0 30 18 17 16 10 2 26,0 37 14 30 45 50 154 356 157 164 356 157 164 356 157 164 10 20 201 265 157 164 107 205 164 137 235 235 235 236 237 236 235 237 236 237 236 236 237		70.0	0.0	284	301	~	297	274	243	114		12		30.2	0.0	288	163	267	287	298	301	258
4.2 117.3 22 4 3 3 2 2 1 $16c$ 8 4 5.5 53.0 89 14 36 45 50 54 57 56 51 55 157 164 171 26.0 99.7 216 123 92 77 59 41 14 110 2 20.7 59.4 57.2 164 171 26.0 99.7 216 123 92 177 59.4 277 294 277 294 277 294 276 276 237 242 244 276 276 237 242 244 244 244 244 244 244 244 266 248 224 294 276	4.2 117.3 22 4 3 3 2 2 1 DEC 8 4 5.5 53.0 89 14 39 45 50 14.8 108.4 155 60 30 18 17 16 10 41.9 217 65 135 152 164 14.8 108.4 125 66 30 18 17 19 41 10 41.9 217 65 135 152 164 37.4 90.7 246 182 121 97 16 11 1 25.0 261 137 203 225 276 59.8 65.8 277 294 147 700 235 275 290 280 134 273 235 290 275 290 275 290 275 290 275 290 275 290 275 290 275 290 275 290 275 290 275 290 275 290 275 290 275	SUR	FACE DAIL	Y TOTOLS	3160	2552		2264	2040	1760	724			SURF	CE DAILY	TOTALS	2128	942	1636	1778	1870	1908	1686
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.8 108.4 155 60 30 18 17 16 10 2 20.7 29.4 26.1 175 152 152 152 164 175 16 137 152 152 152 164 172 200 221 255 157 157 157 164 11 1 26.0 37.4 26.1 137 139 132 139 132 139 137 14 26.1 177 200 221 235 239 267 234 239 267 234 236 267 236 137 137 137 14 235 237 239 267 276		4.2	117.3	22	7		~	2	2		DEC	~	1	5.5	53.0	89	11	39	45	5	Æ	56
26.0 99.7 216 123 92 77 59 41 14 10 2 20.7 29.4 261 107 200 221 255 242 37.4 90.7 246 182 193 112 121 97 16 111 1 25.0 15.2 280 134 239 262 276 283 48.8 55.8 273 206 157 197 151 1 25.0 15.2 280 134 239 262 276 283 48.8 55.8 273 206 157 19 782 143 1740 1796 59.2 41.9 277 296 288 223 194 744 200 216 170 1796 69.2 41.9 277 296 288 253 220 98 253 230 98 73.5 0.0 273 304 365 283 253 290 296 73.5 0.0 273 273 292 276 283 296 296 73.5 0.0 273 276 279 290 296 <t< td=""><td>26.0 99.7 216 123 92 77 59 41 14 10 2 20.7 29.4 261 107 200 221 235 37.4 90.7 246 182 159 142 121 97 16 11 1 25.0 15.2 280 134 239 262 275 290 48.8 80.2 265 226 248 121 97 16 11 1 25.0 157.2 280 134 239 262 275 290 59.8 65.8 277 266 248 194 74 12 12 47 14 14 164 1740 59.8 65.8 277 294 78 194 74 50 1670 575 290 69.2 0.0 278 253 220 98 575 220 98 775 196 164 1740<</td><td></td><td>14.8</td><td>108.4</td><td>155</td><td></td><td></td><td>18</td><td>17</td><td>16</td><td>10</td><td>2</td><td>0</td><td>. M</td><td>14.0</td><td>6 [7</td><td>217</td><td>5</td><td>135</td><td>157</td><td>164</td><td>171</td><td>163</td></t<>	26.0 99.7 216 123 92 77 59 41 14 10 2 20.7 29.4 261 107 200 221 235 37.4 90.7 246 182 159 142 121 97 16 11 1 25.0 15.2 280 134 239 262 275 290 48.8 80.2 265 226 248 121 97 16 11 1 25.0 157.2 280 134 239 262 275 290 59.8 65.8 277 266 248 194 74 12 12 47 14 14 164 1740 59.8 65.8 277 294 78 194 74 50 1670 575 290 69.2 0.0 278 253 220 98 575 220 98 775 196 164 1740<		14.8	108.4	155			18	17	16	10	2	0	. M	14.0	6 [7	217	5	135	157	164	171	163
37.4 90.7 246 182 12 12 13 1 1 1 2 20.7 25.0 134 239 262 276 283 48.8 80.2 253 233 219 202 179 151 47 12 25.0 15.7 280 147 235 296 296 48.8 80.2 253 233 219 202 179 194 74 239 267 236 59.8 65.8 272 266 248 224 194 74 74 12 56.6 0.0 285 143 257 290 296 69.2 41.9 277 296 296 278 253 221 92 179 1740 1796 73.5 0.0 277 296 296 278 253 221 92 276 296 296 73.5 0.0 279 504 367 270 179 1740 1796 73.5 0.0 297 296 296 283 253 290 296 73.5 0.0 297 596 296 298 2	77.4 90.7 246 182 123 12 13 12 25.0 134 239 262 276 77.4 90.7 246 182 123 12 97 16 11 1 25.0 134 239 262 276 48.8 80.2 253 219 202 179 151 47 12 26.6 0.0 285 143 253 275 290 59.8 65.8 277 266 248 224 194 74 12 26.6 0.0 285 143 253 275 290 69.2 0.0 277 266 278 271 92 1480 1634 1740 65.5 0.0 279 504 283 223 230 98 65.5 0.0 279 566 278 271 98 782 1480 1634 1740 65.5			2 00	216			2 5	À L	21	11						251	201		221	735	2112	201
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37,4 90,7 24 122 134 124 124 234 235 202 124 48,8 69,2 233 219 202 179 151 47 12 26,6 0,0 285 143 253 202 275 59,8 65,8 277 256 286 248 224 134 74 29,0 69,2 41,9 277 256 266 288 221 92 69,2 41,9 277 256 289 253 273 275 73,5 0,0 279 304 306 289 263 283 253 290 50,7 5,6 0,0 279 304 306 289 263 283 271 1974 1740 50,7 5,7 0,0 273 304 274 1574 1740 50,6 0,0 273 304 273 273 290 290 51,5 0,0 279 304 274 1670 610 410		1 1 2 2	/*00	210			011	5	7 6			3;	 				121	020	111	210	202	252
9.0 0.0.2 2.23 2.13 1.24	40.0 00.1 273 213 204 174 47		+ · / C	20.0	642			747	171	2	0] [-	7. r	7'CT	700	+CT	202	202 27E	0/7	205	200
03.0 2/2 2/2 2/2 2/9 2/2 134 /4 0.0 0.0 2/2 12/9 1/70 1/70 1/70 1/70 1/70 1/70 1/70 1/70	03-00 2/12 2/12 2/12 2/12 2/10 2/14 139 7/1 2/12 139 7/1 2/14 130 2/14 2/10 14.19 2/7 2/92 2/1 2/92 2/12 2/9 2/10 2/14 14.10 2/19 2/19 2/10 2/14 2/10 14.10 2/19 2/19 2/19 2/19 12/14 15/0 6.10 2/19 2/19 2/19 2/224 12/14 15/0 6.10		0.0	2100	607			202	F/T	101	÷				T 0.02	n'n	1070	C+1	0011	1231	0121	1705	16/16
41.9 2/7 2/9 2/9 2/6 2/8 2/8 2/5 2/1 0.0 2/9 3/04 3/6 2/8 2/8 2/5 2/1 10.0 5/10 5/10 102/1 2/20	41.3 21/ 296 296 296 203 201 0.0 279 304 306 289 263 230 TOTALS 3180 2648 2434 2224 1974 1670		0.0	0.00	7/7			040	+77	+6T	1 7 8			SURF	CE DAILY	TOTALS	0/61	70/	THON	+COT	0+ /T	nc / T	TUHOT
	TOTALS 3180 2648 2434 2224 1974 1670	Τ	7.60	5.1H	1/7			8/7	CC2	177	76												
	1014LS 518U 2648 2454 2224 14/4 16/0	1	0.01		6/7	T		1000	107	0231	02												

TABLE A3 ... SOLAR POSITION AND INSOLATION VALUES FOR 40 DEGREES NORTH LATITUDE

1 BTUH/SQ. FT. = 3.152 W/m^2 SEE FIG. 4, P. 394 IN [3] FOR TYPICAL REF. [3]; 0% GROUND REFLECTANCE; 1.0 CLEARNESS FACTOR.

BASED ON DATA IN TABLE 1, P. 387 IN

7

NOTE:

- GROUND REFLECTION NOT INCLUDED ON NORMAL REGIONAL CLEARNESS FACTORS.

 - Э) Э

 - OR HORIZONTAL SURFACES.
- 5)

SOLAR POSITION AND INSOLATION VALUES FOR 48 DEGREES NORTH LATITUDE
8 DEGREES
48
FOR
VALUES
INSOLATION
I AND
SOLAR POSITION
SOLAR
•
A4
TABLE

	HORIZ,	06	2	11	14	43	83	116	137	101	1+1	046	9	20	59	011	011	947	60T	1//	1208	31	6	143	185	212	221	1546		т 87	157	202	10.7	247	1626	22	135	100	Tn7	200	007	7447	109	190	231	244	1304				
SURFACES	ANGLE WITH	68	4	15	42	66	153	195	202	220	777	1034	[∞]	47	109	160	001	4T7	547	667	1836	07	115	183	236	249	281	1966		- R	178	0.7T	275 276	288	1866	22	111	215	117	967	7/7	T244	110	197	244	260	1364				
S	SURFACE	58	T.	16	23	121	178	224	253	252	1201	5 /6T	5	28	125	187	10/	/070	202	6/7	2046	£1	121	193	248	186	296	2070	-	- 6	180	001	767	294	1890	16	127	010	717	667	2/0	9TCT	105	192	239	254	1326				
INSOLATION	FACING	48	5	18	75	140	199	246	276	286	0000	0022	10	67	137	100		707	202	067	2200	44	124	197	254	289	202	2118	-	16	176	020	122	291	1860	61	120	200	202	242 242	6471	2448	86	180	226	241	1250				
TOTAL I	SOUTH	. 38	2	58	68	154	214	261	162	102	TOC	0007	14	75	145	010		no7	102	204	2300	17	124	196	251	287	500	2102	-	198	167	20%	250	279	1774	-	117	100	D O T	/77	744 TH7	152B	87	164	207	222	1136				
0. FT.		HORIZ	10	8	118	171	215	250	277	270	21.71	4/47	78	85	141	180		C77	240	007	2086	35	92	142	181	202	213	1522	C	110	110			166	1022	ſ	16		0 0			970	27	63	86	6	944				
BTUH/SQ.		NORMAL	43	156	211	240	256	266	271	272	7150	OCTO	66	190	232	254	100	007	717	4/7	2898	131	215	251	269	278	280	2568	1	165	222	267	202	278	2154	36	170	226	777	CC7	197	1008	140	214	242	250	1444				
POSITION	AZM		114.7	104.1	93.5	82,1	68,8	51.9	0.62			IULALS	98.5	87,2	75.4	61.8		1.0	C 47	0.0	TOTALS	78.7	66.8	53.4	37.8	8.61	0.0	TOTAL S	71 0	6 U 9	7 77		11/1	0.0	TOTALS	54.7	10 7	100	C 167	1,41	n'n	TOTALS	40.9	28.2	14 H	0'0	TOTALS				
SOLAR POS	ALT		5.7	15.2	25.1	35.1	44.8	53.5	60.1	60 F		FACE DAILY	9,1	19,1	29.0	1 82	1 97	1 C	2170	1 C14C	FACE DAILY	10.0	19.5	28.2	35.4	10.2	42.0	FACE DATLY	0 0	0.7	10 3	25.7	20.02	31.5	FACE DAILY	3.6	0.11	1 2 1 2 1	T*/T	5,02	- E1	21	8.0	13.6	17.3	18.6	SURFACE DAILY				
TIME	ŧ		7	91	5	7	~	~	1	1		SUR	9	5	Ц	M	<u>،</u>	7 -	-		SUR	5	ti ti	m	~	1 -	-	SUR	2	n -3	- M	00	۰ ۱	-	SUR	1 1	. M		7	-		SUR	m	2	1		SURI				
SOLAR	AM		5	9 1	7	~	б	10		11	1		9	7	~	σ		9:		71		7	~~~	б	01	25	12	77	7	< «	σ		9 2	12		×	0		2		71		бŋ	10	11	12					
OATE			JUL 21										AUG 21									SEP 21							ACT 21							NOV 21							0EC 21								
	H HORIZ.	90	22	139	206	243	255	1478	1	r y		/0T	217	247	258	1720	17/T	ť :	£	741	195	223	232	1632	1	<u>ا</u> د	12	511		741	101	1969	7071	7 U	1	Ϋ́	5 5	00	07T	141	149	982	2	12	15	150	74	105	126	- 2.5	
CES	GLE WETH	68	22	145	220	263	278	578	1	1.00	3 6	20	251	288	201	170	0/0	£ 6	771	145	248	283	294	174		1:0		174	200	C77	100	107	202	0 22	27	2			002	228	238	728	7	16	39	32	147	189	216	-	511
ON SURFACES	SURFACE ANGLE	┡	21					F	+						_	+	+	-		_	_			+	+					CH2 870		+	+	- 1 -							+	_			_				248	-	_
INSOLATION 0		+	_					F	+							+	╉							┝	╈		~					+	+	1 t		_	_	_	-		-	_	-					-	273 273		
AL INSOL	OUTH FACING	817 8	_					F	+					_		f	+							1	+	<u> </u>			0		- M		4	27									-				. y	2			-
FT. TOT	s	HORIZ, 38	4 17						T				-			T	Τ	-	141 06					Γ	Т	_				27 27		Ť	1	- Ig					-	-	1		1								
BTUH/SQ. FT.		IAL						t	$^{+}$				_	_		╈	╧	_	_	-			-	t	t						-	Ť	+	141		_	_				-	-	1-								
-					-		_		$\left \right $				_	_					_													+	+								_		-								
SOLAR POSITION	AZM		54.6	42.6	29.4	15.1	0.0	V TOTALS	72.7	2177		1.14	33.3	17.2			LY TOTALS	/8/	99.6	4°54	37.8	19.8	0.0	V TOTALS	07 0	3/ 1G	211 0	6.13	111	3144		10 10	LY TOTALS	C"HTT	201	4 10		8 1	17	28.6	0'0	LY TOTALS	116.5	106.2	95.8	84.F	71.6	54.8	31.2	0	-
SOLAR	ALT		3*5 ·	11.0	16.9	20.7	22.0			L 7 []		13°/	26.2	30.5	200	74.0		0.0	4'6T	28.2	35.4	40.3	42.0	SUBFACE DAT		10.0		C107				0.00	FACE DAI	2'C	20.6	2 12		2 C	0.25	23.5	62.0	SURFACE DAI	6'2	17.2	27.0	37.1	46.9	55.8	62.7	1	c
TIME	μd		4	m	2		2	CLIDE	2	n =		2	2	-	-		SURF	Ω.	.	~	2	-	2	S I I	200	0 4	-	7 M		7-	-	7	SUF -	< 4) L2	1 =	T P	<u> </u>	2		2	SUI	2	9	ۍ د ا	1	· m	~			
SOLAR	AM		21	6	10	П			2 10	17	0 0	_	10	П	11	1	+	21	20 0	σ	10	11		-	15	17	. 0	0 0		3 5			ē	5 J	~ ~	. 0	0 0	י ת	9	11			21		2		00	10	1		
OATE			JAN							LB								MAR							00.4	APR								МАҮ									NOC								

1 BTUH/SQ. FT. = 3.152 W/m^2

GROUND REFLECTION NOT INCLUDED ON NORMAL REGIONAL CLEARNESS FACTORS. OR HORIZONTAL SURFACES.

SEE FIG. 4, P. 394 IN [3] FOR TYPICAL

CLEARNESS FACTOR.

2)

3)

REF. [3]; 0% GROUND REFLECTANCE; 1.0 BASED ON DATA IN TABLE 1, P. 387 IN

1)

NOTE:

TABLE A5 ... SOLAR POSITION AND INSOLATION VALUES FOR 56 DEGREES NORTH LATITUDE

			[-														-							-							Γ			Ţ					Т	7				
		5		5	1	5	G	, 1	142	165	173	1186	0	2	28	78	126	166	191	200	1392	28	68	147	193	223	CC7	1594	12.	158	261 020	192	1480	28	148	196	211	1016	4	103	164	182	122				
ES	GLE WITH	76	C	0 00	14	41	96	147	189	216	225	1646	0	6	45	104	160	206	235	245	1760	32	102	168	221	254	607	1820	23	14/	210	248 261	1588	59	152	203	219	1046	4	104	167	186	734				
V SURFAC	REACE AN	99	C		16	22	117	173	217	245	255	1926	0	10	56	119	179	227	258	269	1966	34	108	178	232	267	£/7	1918	65	148	215	222 266	1612	27	149	201	217	1032	4	101	163	182	716				
ATION OF	SOUTH FACING SURFACE ANGLE WITH HOP	56	C	01	18	74	136	193	239	268	278	2152	0	11	65	131	193	242	274	285	2118	36	111	182	237	273	687	1962	12	145	210	263	1586	54	143	193	209	986	4	- 62	154	173	678				
FT. TOTAL INSOLATION ON SURFACES	SOUTH F/	116	c) [30	000	151	208	254	283	293	342	0	16	73	140	202	251	282	293	218	36	111	181	236	271	(87	950	12	158	10Z	240	516	64	132	179	194	914	m	86	141	159	620				
		HORIZ.	1									1									-						1	-				511	1	\top			-					1	156				
BTUH/SO.		NORMAL	1							-		1															1					248	T	T									748				
																						_												-			-		_								
POSITION	AZM		125.8	113.7	101.9	89,7	76.7	62,0	44.6	23.7	0.0	/ TOTALS	109.2	97,0	84.5	71.3	56.7	40.0	20.9	0.0	/ TOTALS	77.5	64.4	50.3	34.9	17.9	n'n.	/ TOTALS	59.1	15.7	31.5	0'9T	TOTALS	41.9	28.5	14.5	0'0	Y TOTALS	40.5	27.5	13.9	0.0	Y TOTALS				
SOLAR PO	ALT		1.7	0.6	17,0	25,3	33.6	41.4	48.2	52,9	54.6	ACE DAILY	2.0	10.2	18.5	26,7	34.3	40.5	44.8	46.3	ACE DAILY	8,3	16.2	23,3	29,0	32.7	54.0	ACE DAIL'	1'1	13.8	19.0	1 22'2 27'5	ACF DATI	5.2	10.0	13.1	14.2	ACE DAIL	1,9	6,6	9.5	10,6	SURFACE DAILY TOTALS				
TIME	Md) 	9	2	4	M	2	-		SURF/	-	9	5	4	m	2	1		SURFACE	2	4	м	2	1		SURF/	31	~ 0	2 -	-	SURF/		2	-		SURF/		2	-		SURFI				
SOLAR 1	AM		7		9	~	∞	6	10	11	12		5	و	7	00	6	10	11	12		7	∞	6	10	11	H		00	о ;	01:		11	6	10	11	12		6	10	- 1	12					
DATE			16 111										AUG 21									sep 21							ост 21					NOV 21					DEC 21								
	12,	06	1		201	217	044	69	151	208	243	255		32	67	154	205	236	246	700	0	L	29	82	135	174		209		0 1	9;	11	2 12			170	178	218	-		12	12	1	98	156	164	120
	WITH HORIZ,		+										-								\vdash							_									_	-									
REACES	SURFACE ANGLE WITH	1 76	+				\vdash						-	\vdash						-	-					214		-		•														143			F
IN ON SURFACES			+			-	+	-						-		_				-	-					236			+									-						21/1			-
NSOLAT JON	H FACING	56		146	197	21	1010	9	150	225	265	279	1716	┝						-	-	0,	90	135	200	251	787	295	-+								_			<u> </u>	i.	2	13/	193	2.65	276	216(
FT. TOTAL INSO	SOUTH F.	<u> </u>	-	135	183	198	934	65	151	215	254	268	1640	97	119	192	249	285	297	2066	0	14	74	143	208	259	767	303				28					-		1 2	14	34	32	154	211	284	294	2388
	-	AI HORIZ	-	3 52	28	65	282	25	6	8	119	126	240	28	75	118	151	172	179	1268						201				0 1	52	110	163	201	231	249	255	2374	4	07	86	132	175	212	258	264	2562
BTUH/SO.		NORMAL	78	170	207	217	1126	129	214	250	266	270	1986	128	215	253	272	282	284	2586	0	122	201	239	260	272	2/2	280	3024	0	93	2/I 919	244	259	268	273	275	3340	21	122	185	222	243	257 265	202	271	3438
ION	AZM		8 [7	28.5	14.5	0,0	TOTALS	59.4	45.9	31.5	16.1	0.0	TOTALS	77.5	64.4	50.3	34.9	17,9	0.0	TOTALS	08,8	96,5	84.1	70.9	56,3	39.7	ZU./	0'0	TOTALS	25.5	13.4	2,101 2,08	29.2	61.6	44.2	23.4	0,0	OTALS	27.2	15.3	03,6	91.7	78.8	64.1 //6 //	10°1	0.0	TOTALS
AR POSITION	\vdash						12	-					ILV.	-				-		11 1	-								117 1									ILY T									
SOLAR	┝		L.	σ	12.9	14.(SURFACE DA	7.	14.	19.4	22.8	24.(SURFACE DA	-	16.2				34.0	SURFACE DA	1'[9,6	18.(26.1	33.(39,9	=	45.(SURFACE DA	- 0	00	16.5	5 6	10	47.6	22	54.1	SURFACE DA	4.2	11.1	19.	27.1	32.5	43.8 E0.7	2.5	1	SURFACE DAILY
AR TIME						12		7				12		_	4				12	0,				4			-1	12				מים					12	5,						m c		121	
SOLAR	AM			1				╞			11				~~~	σ	10	I	L			9	2	00	6	10	=				Ļņ i	9	. ~	00	10	Ξ			-	5	9	~	00	о <u>с</u>	3 =	1	
DATE			JAN 21					FFR 21						MAR 21							APR 21									may 21									JUN 21								

1 BTUH/SQ. FT. = 3.152 W/m^2

REF. [3]; 0% GROUND REFLECTANCE; 1.0 BASED ON DATA IN TABLE 1, P. 387 IN **1** NOTE:

SEE FIG. 4, P. 394 in [3] FOR TYPICAL CLEARNESS FACTOR. 2)

GROUND REFLECTION NOT INCLUDED ON NORMAL

3)

OR HORIZONTAL SURFACES.

REGIONAL CLEARNESS FACTORS.

TABLE A6 ... SOLAR POSITION AND INSOLATION VALUES FOR 64 DECREES NORTH LATITUDE

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DATE	SOLAR TIME	\vdash	SOLAR POSITION	BTUH/SQ.	Ë		z	I SURFACES		DATE	SOLAR	F	SOLAR POSITION	SITION	BTUH/S	Q. FT. TI	DTAL INSO	BTUH/SQ. FT. TOTAL INSOLATION ON SURFACES	I SURFACE		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		AM PM	ALT ALT	AZM	_		DTH	ي ارد	REACE ANG		12.	AM	Md	ALT	AZM			SOUTH F	ACING SUF	RACE ANG		OR12.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					NORMAL	HORIZ.	25	19	74	-	,					NORMAL	HORIZ.	54	64	74	84	60
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21				22	2	17	19	20		JUL		~	6.4	125.3	23	13	9	5	5		t
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					81	10	72	27	80			-	2	12.1	112.4	128	44	14	13	11	10	σ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1			001	91	6	ö	100		103	<u>ب</u>	. u	18 11	17 bb	179	81	30	17	16	13	11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	100	t	1000		101	┝	-102	C							ìŕ		10	4 6
$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 &$		-	SURF	עורא דם	anc	1	007	1067	202	+	1	\ .	n .	0°C7	00,0	117	011	00	7/	5	0	91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	-	-	-	35		17	19	19	-	19	∞	4	31.4	71.8	251	152	140	151	115	6	11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_			147	-	103	108	III	_	107	Б	M	37.3	56.3	245	182	201	186	166	141	124
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			199		170	178	181		173	UL	6	47.2	39.2	253	100	245	230	208	181	162
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					222		210	000	222		212	1 =		115 11	20.2	257	218	273	258	236	202	187
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Τ		777	-	110	220	12		111	-	+		107		200				210	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		71	1 T0'0	_	977	T	c77	607	/07	+	077		7	40.0	0'0	£C7	C77	707	/07	C+7	017	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			RF	AILY TOTALS	1432		1230	1286	1302	_	252		SUR	FACE DAILY	TOTALS	3372	2248	2280	2090	1864]	1588	1400
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21				56		30	29	29	-	AUG		7	4.6	108,8	29	و	m	m	2	2	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					185	-	101	100	Ъ	-			ع	0 11	95 2	123	59	16	1	10	00	7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				_	201		171	175			152		ы	17.6	0 10	101	12		1 1	5	1.5	v v
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					/77		1/1	7/T					n .	0'/T	T TO	TOT		D F	10	70	7 1	2 5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					54A		22/	672	224		2U5	~	4	25,9	b/,8	514	115	122	125	717	٦/	20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					260		262	265	259		235	б	M	29.6	52,6	234	144	190	182	169	150	138
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	26.0		263		274	277	271		246	UL	6	34.2	36.2	246	168	237	529	215	194	179
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					2000	t	1056	1070	1070	.		2		10			107	000		1110		100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		¥-		0677	t	nrot	TO/OT	TOTO		000	4	-	1.10	n o o	777		007	010		777	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	77				/7		7	7	7	-	-		7	1 6.86	0'0	HC7 1	100	2/2	0/7	CC7	707	CT7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					133		15	6	00		9	_	SUR	FACE DAILY	TOTALS	2808	1646	2108	1008	1860	1662	1522
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					194		20	63	2		SEP		ы	6,5	76.5	77	16	25	25	24	23	21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					228		136	128	116		16	~	4	12.7	72.6	163	5	32	92	6	85	81
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					248		197	189	176		145	σ	~	18.1	48.1	206	83	159	159	156	147	141
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					260		246	539	274		188		. ~	22.3	7.75	229	108	212	213	209	198	189
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	266		278	220	255		216	3 =	1 -	25 1	16.6	240	124	246	248	243	230	220
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		61 77	4.69		268		2 2 4	281	266		225		1	26.0		244	124	258	260	254	241	230
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		77	a Lorio		2002	T	2176	2000	1076	F	20/1		-		1010	2071	202	1726	1776	1696	1608	1527
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	$\left \right $		ł	7007	T	J 17	7007	11			+				L 103	4 6	0 0				101
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	77	_	-		7 5		• ;	Ŧ ;	± (001		T 1	<u>,</u> ,	000	/1	7 10		n 5		2 6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					761		а :	=:	PT :		0	ר ק	<u> </u>	2'T	0, 1 1	771	9		7,5	5	77	2 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					C81		FZ :	q	1			OT .	2	12.1	50.2	٩/T	λ.	74	FCT C	101	RCT C	
8 4 30,9 71,5 239 152 148 133 115 94 80 71 215 217 215 217 213 215 217 213 215 217 213 215 217 213 215 217 213 215 217 213 215 217 213 215 217 213 215 217 213 215 217 213 216 217 213 216 217 213 214 4					218		98	72	<u>م</u>		28	=	-	14.6	15.2	201	ድ 1	251	107	205	700	CR7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					239		148	133	115		80		2	15,5	0.0	208	71	207	215	217	213	208
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					252		204	190	170		128		SUR	FACE DAILY	TOTALS	1238	358	1088	1136	1152	1134	1106
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					261		249	235	213		VOV		2	3,0	28,1	23	m	18	20	21	21	21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					265		278	264	242				-	5.4	14.2	52	12	20	76	79	80	79
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	46.0		267		288	274	251		201		2	6.2	0.0	67	17	68	96	100	101	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			L L			Γ	2312	2124	1898		436		SUR	FACE DAILY	TOTALS	302	710	266	286	298	302	300
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	~	┢	-		T	~	~	~		U H L	┢	-	8.[13.7	4	0	m	4	4	7	1-3
7 14,7 113,6 154 60 16 15 13 11 10 suprace bally Totals 24 2 20 22 24 6 21.0 100.8 194 96 34 19 17 14 13 5 27.5 87.5 221 122 91 74 55 36 23 4 34,0 73.3 239 166 137 112 88 73 3 34,9 96.3 12 138 17 137 113 114 7 34,9 96.1 177 157 138 13 119 1 46.3 20.9 266 237 207 181 1 46.3 20.9 266 267 217 149 1 46.5 20.0 266 267 217 189 12 94.5 0.0 266 267 217 189 12 14.5 10.4 186 171 189	1						1 [ισ	1 00		2	.L.	1	2.6	0.0	16	~	14	15	16	17	17
6 21.0 100.8 194 96 74 19 17 14 13 5 27.5 87.5 221 132 91 74 55 36 23 4 34.0 73.5 253 166 133 112 88 73 3 39.9 55.1 135 164 177 137 119 2 44,9 40.4 253 204 181 264 177 157 1 48.3 20.9 266 177 157 159 119 12 49.5 0.0 265 231 277 247 159 12 49.5 0.0 266 267 292 281 181 12 49.5 0.0 266 267 292 281 189		· ·	_				19	5	13			-		EACE DATLY	TOTALS	24	~	20	. 22	24	24	21
5 7.1.5 8.7.5 2.2.1 1.2.5 9.1 7.4 5.5 3.6 4 34.0 73.5 239 116 117 9.1 7.4 5.5 3.6 5 39.9 57.8 251 195 204 187 164 137 2 44.9 40.4 258 217 247 230 206 177 1 48.3 20.9 262 231 275 230 206 177 12 49.5 0.0 262 231 275 258 233 202 12 49.5 0.0 266 273 289 267 201			-	_			172	1 2	1 1		2 1				10120	;	,	3				
4 34,0 73,5 239 166 150 133 112 88 5 39,9 57,8 251 195 204 187 164 137 2 44,9 40,4 258 217 247 230 206 177 1 48,3 20,9 262 231 275 230 206 177 12 48,3 20,9 262 231 275 258 233 202 12 49,5 0,0 265 231 284 267 201 12 49,5 0,0 265 233 284 267 242 211							. e	77	÷ ۲		22											
7 7,0 7.5,5 2.57 100 7.5,5 2.57 100 7.5 7.5 2 14,9 9,0 7,8 251 155 204 184 17 2 14,9 40,1 255 135 204 184 17 1 48,3 20,9 262 231 275 258 233 202 12 49,5 0,0 266 233 284 217 247 247 216 217 12 49,5 0,0 266 233 234 207 201 201 202 216 217 12 49,5 0,0 266 233 284 217 247 211			-				1 1	221			12											
2 39.5 9.0.6 251 139 204 100 104 137 2 1 48.5 20.9 262 231 274 230 206 177 12 48.5 20.9 262 231 275 258 233 202 12 49.5 0.0 265 233 284 267 211 12 49.5 0.0 265 233 284 267 211								C 10	711													
2 44.5 40.4 256 21/ 24/ 200 10/ 12 49.5 20.9 262 231 24/ 233 233 222 12 49.5 0.0 267 235 284 242 211 12 49.5 0.0 265 235 284 242 211							+07	/0T	+0T	-	113											
1 46.5 20.5 20.2 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 211 212 212 211 212 211 212 211 212 211 211 211 211 211 211 211 211 212 211 212 211 212 212 211 212 212 211 211 211 211 211 212 2			-				74/	750	007		/01											
1 77 767 710 707 707 700 720 701 701 701 701 701 701 701 701 701 70			Т				c/7	807	C (7		100											
		7T	1.04		70.0	Ť	107	0110	7100		101											

35

1 BTUH/SQ. FT. = 3.152 W/m^2

GROUND REFLECTION NOT INCLUDED ON NORMAL

SEF FIG. 4, P. 394 IN [3] FOR TYPICAL

CLEARNESS FACTOR.

2)

REGIONAL CLEARNESS FACTORS.

BASED ON DATA IN TABLE 1, P. 387 IN REF. [3]; 0% GROUND REFLECTANCE; 1.0

1

NOTE :

OR HORIZONTAL SURFACES.

3)

	AND SC						
Γ		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Dates: (Dec1.) Dec. 21 (-23.45)	7 5 8 4 9 3 10 2 11 1	86.8 75.1 64.5 55.7 49.6	80.5 67.5 55.3 44.5 36.5	76.3 62.7 49.6 37.4 27.6	72,4 58.6 44.9 31.6 19.6	68.9 55.4 41.8 28.0 14.3	62.6 56.6 51.1 46.6 43.6
	12	47.4	33.4	23.5	13.5	3.4	42.5
ł							
		Horíz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Jan. 21 (-19.9) Nov. 21 (-19.9)	7 5 8 4 9 3 10 2 11 1	85.2 73.1 62.1 52.8 46.4	79.6 66.2 53.5 42.1 33.4	75.9 62.0 48.4 35.5 24.8	72.6 58.5 44.5 30.6 17.6	69.8 56.0 42.2 28.2 14.1	65.7 59.8 54.4 50.0 47.0
	12	44.0	30.0	20.0	10.0	0.0	46.0
+							'
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Feb. 21 (-10.6) Oct. 21 (-10.7)	7 5 8 4 9 3 10 2 11 1	80.7 67.7 55.6 44.9 37.0	77.2 62.9 49.0 35.9 25.0	75.2 60.5 45.9 31.5 18.0	73.7 59.0 44.3 29.5 14.8	72.6 58.5 44.5 30.6 17.6	74.8 69.0 63.8 59.6 56.9
-	12	34.0	20.0	10.0	0.0	10.0	56.0
*	r						
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Mar. 21 (0.0) Sep. 21 (0.0)	7 5 8 4 9 3 10 2 11 1	76.3 62.8 49.8 37.7 28.1	75.2 60.5 45.9 31.5 18.0	75.0 60.0 45.0 30.0 15.0	75.2 60.5 45.9 31.5 18.0	75.9 62.0 48.4 35.5 24.8	84.0 78.3 73.3 69.4 66.9
	12	24.0	10.0	0.0	10.0	20.0	66.0
	ļ	- L					·
		'Hortz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Apr. 21 (+11.9) Aug. 21 (+12.1)	6 6 7 5 8 4 9 3 10 2 11 1 12	85.3 71.7 58.0 44.4 31.0 18.9 12.4	88.0 73.5 58.9 44.2 29.5 14.8 1.6	90.0 75.3 60.7 46.2 32.0 18.9 11.6	92.0 77.6 63.4 49.7 36.8 26.2 21.6	93.9 80.2 67.0 54.4 43.2 34.9 31.6	100.6 94.6 89.1 84.4 80.7 78.4 77.6
	p					1	
		Hor1z.	L ~ 10	Lat.	Lat. + 10	Lat. + 20	Vert.
May 21 (+20.3) Jul 21 (+20.5)	6 6 7 5 8 4 9 3 10 2 11 1	82.0 68.8 55.4 41.7 28.0 14.5	86.0 72.6 58.5 44.5 30.6 17.6	90.0 75.9 62.0 48.4 35.5 24.8	93.4 79.6 66.2 53.5 42.1 33.4	96.7 83.6 71.1 59.5 49.6 42.6	108.2 102.3 97.0 92.4 88.9 86.7
	12	4.0	10.0	20.0	30.0	40.0	86.0
		- r		1	+	ł	<u>+</u> }
		Hor1z.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Jun. 21 (+23.45)	6 6 7 5 8 4 9 3 10 2 11 1	80.7 67.7 54.5 41.0 27.4 13.7	86.0 72.4 58.6 44.9 31.6 19.7	90.0 76.3 62.7 49.6 37.4 27.6	94.0 80.5 67.5 55.8 44.5 36.5	97.8 85.0 72.8 61.7 52.4 45.9	111.3 105.5 100.2 95.7 92.3 90.2
	12	0.6	13.4	23.4	. 33.4	43.4	89.4

TABLE A7 LATITUDE 24°N. INCIDENT ANGLES FOR HORIZONTAL AND SOUTH-FACING TILTED SURFACES

	AND S	OUTH-FAU	ING IIL	IED SUKF	ALES		
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Dates (Decl.)	8 4 9 3	79.7 70.2	67.5	62.7	58.6	55.4	54.5
Dec. 21 (-23.45	10 2	62.4 57.3	55.3 44.5 36.5	49.6 37.4	44.9 31.6	41.8 28.0	47.1
·		57.5	30.5	27.6	19.6	14.3	36.2
	12	55.4	33.4	23.4	13.5	3.5	34.5
					¥		·
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	7 5 8 4	88.6 77.5	79.6 66.2	75.9 62.0	72.6	69.8	65.2
Jan. 21 (-19.9) Nov. 21 (-19.9)	9 3 10 2	67.5 59.4	53.5	48.4	44.5	56.0 42.2	57.4 50.0
•	ii i	53.9	33.4	24.8	30.6 17.6	28.2 14.1	43.8 39.6
	12	52.0	30.0	20.0	10.0	0.0	38.0
	F					l	<u> </u>
		Horiz.	L - 10	Lat,	Lat. + 10	Lat. + 20	Vert.
F.1. 01. (7 5	82.9	77.2	75.2	73.7	72.6	73.6
Feb. 21 (-10.6) Oct. 21 (-10.7)	9 3	71.0	62.9 49.0	60.5 45.9	59.0 44.3	58.5 44.5	65.9 58.9
	10 2 11 1	50.9 44.4	35.9 25.0	31.5 18.0	29.5 14.8	30.6 17.6	53.2
	12	42.0	20.0	10.0	0.0	10.0	48.0
			-L				40.0
	_	Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	7 5	77.3	75.2	75.0	75.2	75.9	82.1
Mar. 21 (0.0) Sep. 21 (0.0)	8 4 9 3	64.9 53.2	60.5 45.9	60.0 45.0	60.5 45.9	62.0	74.6
3ep. 21 (0.0)	10 2 11 1	42.7 35.0	31.5 18.0	30.0 15.0	43.9 31.5 18.0	48.4 35.5	68.0 62.7
	12	32.0	10.0	0.0	10.0	24.8 20.9	59.2 · 58.0
1	· · ·	1					38.0
	·····	T	1				
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	6 6 7 5	83.9 71.2	88.0 73.5	90.0 75.3	92.0 77.6	93.9 80.2	99.8 92.1
Apr. 21 (+11.9) Aug. 21 (+12.1)	8 4 9 3	58.5 46.1	58.9 44.2	60.7	63.4	67.0 54.4	84.9
Aug. 21 (+12.1)	10 2 11 1	34.3	29.5 14.8	46.2	49.7 36.8	43.2	78.7
	12	20.4	14.6	18.9	26.2	34.9	70.7
	l		1.0	11.6	21.6	31.6	69.6
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	6 6	79.6	86.6	90.0	93.4	96.7	106.9
May 21 (+20.3)	7 5	67.2 54.6	72.6	75.9 62.0	79.6	83.6	99.3 92.4
Jul. 21 (+20.5)	9 3	41.9 29.4	44.5 30.6	48.4 35.5	53.5 42.1	59.5 49.6	86.4 81.9
	10 2 11 1	18.0	17.6	24.8	33.4	42.6	79.0
	12	12.0	10.0	20.0	30.0	40.0	78.0
	P		······			·····	
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	6 6 7 5	77.8 65.7	86.0 72.4	90.0 76.3	94.0 80.5	97.8 85.0	109.7 102.2
Jun. 21 (+23.45)	8 4	53.1 40.4	58.6	62.7 49.6	67.5 55.3	72.8	95.4 89.6
	9 3 10 2 11 1	27.8	31.6	37.4 27.6	44.5	52.4 45.8	85.2 82.4
	12	8.6	13.4	23.4	33.4	45.8	81.4
	·						

TABLE A8 LATITUDE 32°N. INCIDENT ANGLES FOR HORIZONTAL AND SOUTH-FACING TILTED SURFACES

	AND 20	JUIN-FAC	ING TIL	IED SURF	ACES		
		Horíz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Date: (Decl.) Dec. 21 (-23.45)	8 4 9 3 10 2 11 1	84.5 76.0 69.3 65.0	67.5 55.3 44.5 36.5	62.7 49.6 37.4 27.6	58.6 44.9 31.6 19.6	55.4 41.8 28.0 14.3	53.2 43.8 35.4 29.0
	12	63.4	33.4	23.4	13.5	3.5	26.6
1						L	
•		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Jan. 21 (-19.9) Nov. 21 (-19.9)	8 4 9 3 10 2 11 1	81.9 73.2 66.2 61.6	66.2 53.5 42.1 33.4	62.0 48.4 35.5 24.8	58.5 44.5 30.6 17.6	56.0 42.2 28.2 14.1	55.7 46.4 38.3 32.3
	12	60.0	30.0	20.0	10.0	0.0	30.0
		ļ					il
		Horíz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Feb. 21 (-10.6) Oct. 21 (-10.7)	7 5 8 4 9 3 10 2 11 1	85.2 74.6 65.0 57.2	77.2 62.9 49.0 35.9	75.2 60.5 45.9 31.5	73.7 59.0 44.3 29.5	72.6 58.5 44.5 30.6	72.7 63.3 59.5 47.1
	12	51.9 50.0	. ^{25.0} 20.0	18.0 10.0	14.8 0.0	17.6 10.0	41.9 40.0
ĺ					0.0		
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	7 5	78.6					
Mar. 21 (0.0)	8 4 9 3	67.5 57.2	75.2 60.5 45.9	75.0	75.2	75.9	80.4
Sep. 21 (0.0)	10 2 11 1	48.4	31.5 18.0	45.0 30.0 15.0	45.9	48.4	63.0 56.2
	12	40.0	10.0	0.0	18.0	24.8 20.0	51.6 50.0
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	6 6	82.6	88.0	90.0	92.0	93.9	98.9
Apr. 21 (+11.9) Aug. 21 (+12.1)	7 5	71.1	73.5	75.3 60.7	77.6	80.2 67.0	89.5 80.7
AUG. 21 (+12.1)	9 3 10 2	48.7 38.8	44.2 29.5	46.2 32.0	49.7 36.8	54.4 43.2	73.1 67.0
	<u>ii 1</u>	31.3	14.8	18.9	26.2	34.9	63.0
,	12	28.4	1.6	11.6	21.6	31.6	61.6
			,		1		·
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	5 7	88.1	100.4	104.1	107.4	110.2	114.7 105.2
May 21 (+20.3) Jul. 21 (+20.5)	6 6 7 5 8 4	77.3 66.0 54.6	86.6 72.6 58.5	90.0 75.9 62.0	93.4 79.6 66.2	96.7 83.6 71.1	96.1 87.7
	9 3 10 2	43.2 32.5	44.5 30.6	62.0 48.4 35.5	66.2 53.5 42.1	59.5 49.6	80.5 74.9
	11 1	23.8	17.6	24.8	33.4	49.6	71.2
	12	20.0	10.0	20.0	30.0	40.0	70.0
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	5 7	85.8	99.5	103.7	107.6	• 111.1	117.2
Jun. 21 (+23.45)	6 6 7 5	75.2 64.0	86.0 72.4	90.0 76.3	94.0 80.5	97.8 85.0	107.7 98.8
	8 4 9 3	52.6 41.2	58.6 44.9	62.7 49.6	67.5 55.3	72.8 61.7	90.6 83.6
	10 2 11 1	30.2 20.8	31.6 19.6	37.4 27.6	44.5 36.5	52.4 45.8	78.1 74.6
	12	16.6	13.4	23.4	33.4	43.4	73.4
				Laura			

TABLE A9 LATITUDE 40°N. INCIDENT ANGLES FOR HORIZONTAL AND SOUTH-FACING TILTED SURFACES

TABLE A10 LATITUDE 48°N. INCIDENT ANGLES FOR HORIZONTAL AND SOUTH-FACING TILTED SURFACES

	1	Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	9 3	82.0	55.3	49.6	44.9	41,8	41.6
Dec. 21 (-23.45)	10 2 11 1	76.4 72.7	44.5 36.5	37.4 27.6	31.6 19.6	28.0 14.3	31.1
	12	71.4	33.4	23.4	13.5	3.5	18.5
1			l				
		Y					
		Horiz.	L ~ 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	8 4 9 3	86.5 79.0	66.2 53.5	62.0 49.4	58.5 44.5	56.0 42.2	54.7 43.7
Jan. 21 (-19.9) Nov. 21 (-19.9)	10 2 11 1	73.1 69.3	42.1	35.5 24.8	30.6	28.2	33.5 25.4
	12	68.0	30.0	20.0	10.0	0.0	22.0
1		·····	•		*	•	(
1		Hortz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	7 5	87.6	17.2	75,2	73.7	72.6	12.2
Feb. 21 (-10.6)	8 4 9 3	78.4	62.9 49.0	60.5 45.9	59.0 44.3	58.5	61.2
Oct. 21 (-10.7)	10 2 11 1	63.8 59.5	35.9 25.0	31.5	29.5 14.8	30.6	41.4
:							
	12	58.0	20.0	10.0	0.0	10.0	32.0
	il	L			1	£	<u> </u>
1		Horiz.	1. 10		1 10		1 var. 1
			L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Mag. 21 (0.0)	7 5 8 4	80.0 70.5	75.2	75.0 60.0	75.2	75.9 62.0	78.9 68.2
Mar. 21 (0.0) Sep. 21 (0.0)	9 3 10 2 11 1	61.8 54.6 49.7	45.9 31.5 18.0	45.0 30.0 15.0	45.9 31.5 18.0	48.4 35.5 24.8	58.3 49.9 44.1
			10.0	13.0	10.0	24.0	
!	12	48.0	10.0	0.0	10.0	20.0	42.0
	LI		1	1	1	1	L]
							+
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	6 6 7 5	81.4 71.4	88.0 73.5	90.0 75.3	92.0 77.6	93.9 80.2	97.7 86.9
Apr. 21 (+11.9) Aug. 21 (+12.1)	8 4 9 3	61.5 52.2	58.9 44.2	60.7 46.2	63.4 49.7	67.0 54.4	76.7
hug. et (sterry	10 2 11 1	44.2 38.5	29.5 14.8	32.0 18.9	36.8	43.2 34.9	60.3 55.3
	12	36.4	1.6	11.6	21.6	31.6	53.6
	L Ï						
				·			+
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	5 7 6 6	84.8 75.3	100.4 66.6	104.1 90.0	107.4 93.4	110.2 96.7	114.2 103.2
May 21 (+20.3) Jul. 21 (+20.5)	7 5 8 4	65.4 55.4	72.0 58.5	75.9 62.0	79.6	83.6 71.1	92.8
	9 3 10 2 11 1	45.7 37.0 30.5	44.5 30.6 17.6	48.4 35.5 24.8	53.5 42.1 33.4	59.5 49.6 42.6	74.6 67.9 63.5
		30.5	17.0	24.0	33.4	44.0	03.3
	12	28.0	10.0	20.0	30.0	40.0	62.0
	·	· · · · · · · · · · · · · · · · · · ·					
	J	Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	5 7 6	82.1 72.8	99.5 86.0	103.7 90.0	107.6 94.0	111.1 97.8	116.3 105.4
Jun. 21 (+23.45) 7 5 8 4	63.0 52.9	72.4 58.6	76.3	80.5 67.5	85.0 72.8	95.2 85.7
	9 3 10 2	43.1	44.9	49.6	55.3 44.5	61.7 52.4	77.5
		27.3	19.6	27.6	36.5	45.8	66.9
	12	24.6	13.4	23.4	33,4	43.5	65.4

TABLE A11 LATITUDE 56°N. INCIDENT ANGLES FOR HORIZONTAL AND SOUTH-FACING TILTED SURFACES

۰.

		Horiz.	L - 10	Lat.	Lat. + 10	Lat. • 70	Vert.
Dec. 21 (-23.45)	9 3 10 2 11 1	83.1 83.4 80.5	55.3 44.5 36.5	49.6 37.4 27.6	44.9 31.6 19.6	41,8 28.0 14,3	40.5 28.2 16.8
	12	79.4	33.4	23.4	13.5	3.4	10.5
·	•						
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Jan. 21 (-19.9) Nov. 21 (-19.9)	9 3 10 2 11 1	85.0 80.1 77.1	53.5 42.1 33.4	48.4 35.5 24.8	44.5 30.6 17.6	42.2 28.2 14.1	42,1 30,0 19,3
	12	76.0	30.0	20.0	10.0	0.0	14.0
1							!
1		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 70	Vert.
	8 4	82.5	62.9	60.5	59.0	58.5	59.6
Feb. 21 (-10.6) Oct. 21 (-10.7)	9 3 10 2 11 1	75.8 70.6 67.2	49.0 35.9 25.0	45.9 31.5 18.0	44.3 29.5 14.8	44.5 30.6 17.6	47.6 36.5 27.7
	12	66.0	20. 0	10.0	0.0	10.0	24.0
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Mar 21 (0.0)	7 5 8 4 9 3	81.7 73.9	75.2 60.5	75.0 60.0	75.2 60.5	75.9 62.0	77.6 65.0
Mar. 21 (0.0) Sep. 21 (0.0)	10 2 11 1	66.7 61.0 57.3	45.9 31.5 18.0	45.0 30.0 15.0	45.9 31.5 18.0	48.4 35.5 24.8	54.1 44.1 36.8
	12	56.0	10.0	0.0	10.0	20.0	34.0
						20.0	34.0
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	5 7	88.6	102.4	104,7	106.5	107.9	108.8
Apr. 21 (+11.9) Aug. 21 (+12.1)	6 6 7 5 8 4	80.4 72.0 63.9	88.0 73.5 58.9	90.0 75.3	92.0 77.6	93.9 80.2	96.5 84.4
	9 3 10 2	56.4 50.1	44.2 29.5	60.7 46.2 32.0	63.4 49.7 36.8	67.0 54.4 43.2	72.9 62.5 53.8
		45.9	14.8	18.9	26.2	34.9	47.8
	12	44.4	1.6	11.6	21.6	31.6	45.6
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 29	Vert.
May 21 (+20.3)	4 8 5 7 6 6	88.8 81.5 73.5	113.8 100.4 86.6	118.0 104.1 90.0	121.5 107.4 93.4	124.0 110.2 96.7	125.5 113.1 101.0
Jul. 21 (+20.5)	7 5 8 4	65.2 56.9	72.6 58.5	75.9 62.0	79.6 66.2	83.6 71.1	89.4 78.6
	9 3 10 2 11 1	49.1 42.4 37.7	44.5 30.6 17.6	48.4 35.5 24.8	53.5 42.1 33.4	59.5 49.6 42.6	68.9 61.1 55.9
		36.0	10.0	20.0	30.0	40.0	54.0
		Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	4 8 5 7	85.8 78.6	112.5	117.3 103.7	121.4 1C7.6	124.6	127.1
Jun. 21 (+23.45) 6 6 '	70.7	86.0 72.4	90.0 76.3	94.0 80.5	97.8 85.0	102.9 91.5
	8 4 9 3 10 2	54.1 46.2 39.3	58.6 44.9 31.6	62.7 49.6 37.4	67.5 55.3 44.5	72.8	80.9 71.6
	<u>ii i</u>	34.4	19.6	27.6	36.5	52.4 45.8	64.1 59.2

23.4 40

13.4

32.6

12

33,4

43.4

57.4

TABLE A12 LATITUDE 64°N. INCIDENT ANGLES FOR HORIZONTAL AND SOUTH-FACING TILTED SURFACES

			p	+			•	
			Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
Dec. 21 (-23.45)	11	1	88.2	36.5	27.6	19.6	14.3	13.9
		2	87.4	33.4	23.4	13.5	3.4	2.5
						•		
			Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	10	2	87.2	42.1	35.5	30.6	28.2	28.2
Jan. 21 (-19.9) Nov. 21 (-19.9)	11 	1	84.8	33.4	24.8	17.6	14,1	15.0
		2	84.0	30.0	20.0	10.0	0.0	` 6.0
			Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
		4	86.6	62.9	60.5	59.0	58.5	58.8
	9	3	81.4	49.0	45.9	44.3	44.5	45.4
feb. 21 (-10.6) Oct. 21 (-10.7)	10	2	77.4 74.9	35.9	31.5 18.0	29.5 14.8	30.6 17.6	21.4
					1			
	12	2	74.0	20.0	10.0	0.0	10.0	16.0
1	+		ļ	ļ	·	4	4	4
			Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	7	5	83.5 77.3	75.2	75.0	75.2	75.9	76.5
Nar. 21 (0.0) Sep. 21 (0.0)	9	3	71.9	45.9	60.0 45.0	60.5 45.9	62,0 48,4	63.3 50.5
Sep. 21 (0.0)	10 11	2 1	67.7 64.9	31.5	30.0	31.5	35.5	38.9
			ļ					
	1	2	64.0	10.0	0.0	10.0	20.0	26.0
		,	Horiz.	L - 10	Lat.	Lat. + 10	Lat. + 20	Vert.
	5	7 6	86.0 79.6	102.4 88.0	104.7 90.0	106.5 92.0	107.9 93.9	108.4 95.1
Apr. 21 (+11.9) Aug. 21 (+12.1)	6 7 8	6 5 4	86.0 79.6 73.0 66.7	102.4 88.0 73.5 58.9	104.7 90.0 75.3 60.7	106.5 92.0 77.6 63.4	107.9 73.9 80.2 67.0	108.4 95.1 82.0 69.4
Apr. 21 (+11.9) Aug. 21 (+12.1)	67	6 5 4 3 2	86.0 79.6 73.0	102.4 88.0 73.5	104.7 90.0 75.3	106.5 92.0 77.6	107.9 73.9 80.2	108.4 95.1 82.0 69.4 57.7
Apr. 21 (+11.9) Aug. 21 (+12.1)	6 7 8 9	6 5 4 3	86.0 79.6 73.0 66.7 61.0	102.4 88.0 73.5 58.9 44.2	104.7 90.0 75.3 60.7 46.2	106.5 92.0 77.6 63.4 49.7	107.9 73.9 80.2 67.0 54.4	108.4 95.1 82.0 69.4
Apr. 21 (+11.9) Aug. 21 (+12.1)	6 7 8 9 10	6 5 4 3 2 1	86.0 79.6 73.0 66.7 61.0 56.5	102.4 88.0 73.5 58.9 44.2 29.5	104.7 90.0 75.3 60.7 46.2 32.0	106.5 92.0 77.6 63.4 49.7 36.8	107.9 73.9 80.2 67.0 54.4 43.2	108.4 95.1 82.0 69.4 57.7 47.6
Apr. 21 (+11.9) Aug. 21 (+12.1)	6 7 8 9 10 11	6 5 4 3 2 1	86.0 79.6 73.0 66.7 61.0 56.5 53.5	102.4 88.0 73.5 58.9 44.2 29.5 14.8	104.7 90.0 75.3 60.7 46.2 32.0 18.9	106.5 92.0 77.6 63.4 49.7 36.8 26.2	107.9 73.9 80.2 67.0 54.4 43.2 34.9	108.4 95.1 82.0 69.4 57.7 47.6 40.3
Apr. 21 (+11.9) Aug. 21 (+12.1)	6 7 8 9 10 11	6 5 4 3 2 1	86.0 79.6 73.0 66.7 61.0 56.5 53.5	102.4 88.0 73.5 58.9 44.2 29.5 14.8	104.7 90.0 75.3 60.7 46.2 32.0 18.9	106.5 92.0 77.6 63.4 49.7 36.8 26.2	107.9 73.9 80.2 67.0 54.4 43.2 34.9	108.4 95.1 82.0 69.4 57.7 47.6 40.3
Apr. 21 (+11.9) Aug. 21 (+12.1)	6 7 8 9 10 11 12	6 5 4 3 2 1	86.0 79.6 73.0 66.7 61.0 56.5 53.5 52.4 Horiz. 84.2	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 L - 10 113.8	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 Lat.	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 Lat. + 10 121.5	107.9 73.9 80.2 67.0 67.0 43.2 34.9 31.6	100.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6
May 21 (+20.3)	6 7 8 9 10 11 11 12 4 5 6	6 5 4 3 2 1 1 8 7 6	86.0 79.6 73.0 66.7 56.5 53.5 52.4 Hor12. 84.2 78.4 72.1	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 21.6 Lat. + 10 121.5 107.4 93.4	107.9 73.9 80.2 67.0 54.4 43.2 34.9 31.6	105.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6
	6 7 8 9 10 11 11 12 4 5	6 5 4 3 2 1	86.0 79.6 73.0 66.7 61.0 56.5 53.5 52.4 Hor12. 84.2 78.4 72.1 65.5	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 L - 10 113.8 100.4 86.6 72.6	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 Lat. 116.0 104.1 90.0 75.9	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 Lat. + 10 121.5 107.4 93.4 79.6	107.9 73.9 80.2 67.0 54.4 43.2 34.9 31.6	100.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6 Vert. 124.9 111.6 98.6 86.1
May 21 (+20.3)	6 7 8 9 10 11 12 4 5 6 7 8 9	6 5 4 3 2 1 1 8 7 6 5 4 3	86.0 79.6 73.0 66.7 56.5 53.5 52.4 Hor12. 84.2 78.4 72.1 65.5 59.1 53.2	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 L - 10 113.8 100.4 86.6 72.6 58.5 54.5	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 14.1 90.0 75.9 62.0 48.4	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 21.6 107.4 93.4 79.6 66.2 53.5	107.9 73.9 80.2 67.0 54.4 43.2 34.9 31.6 Lat. + 20 124.0 110.2 96.7 83.6 71.1 85.5	100.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6 Vert. 124.9 111.6 98.6 86.1 74.2 63.4
May 21 (+20.3)	6 7 8 9 10 11 11 12 4 5 6 7 8	6 5 4 3 2 1 1 8 7 6 5 4	86.0 79.6 73.0 66.7 61.0 56.5 53.5 52.4 Hor12. 84.2 78.4 72.1 65.5 59.1	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 L - 10 113.8 100.4 86.6 72.6 58.5	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 Lat. 118.0 104.1 90.0 75.9 62.0	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 Lat. + 10 121.5 107.4 93.4 79.6 66.2	107.9 73.9 80.2 67.0 54.4 43.2 34.9 31.6 Lat. + 20 124.0 110.2 96.7 83.6 71.1	100.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6 Vert. 124.9 111.6 98.6 86.1 74.2
May 21 (+20.3)	6 7 8 9 10 11 12 4 5 6 7 8 9 10	6 5 4 3 2 1 1 8 7 6 5 4 3 2 1	86.0 79.6 73.0 66.7 61.0 56.5 53.5 52.4 Hor12. 84.2 78.4 72.1 65.5 59.1 51.2 48.4	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 L - 10 113.8 100.4 86.6 72.6 58.5 44.5 30.6	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 18.0 11.6 18.0 104.1 90.0 75.9 62.0 48.4 35.5	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 Lat. + 10 121.5 107.4 93.4 79.6 66.2 53.5 42.1	107.9 73.9 80.2 67.0 54.4 43.2 34.9 31.6 Lat. + 20 124.0 110.2 96.7 83.6 71.1 55.5 49.6	101.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6
May 21 (+20.3)	6 7 9 10 11 12 4 5 6 7 8 9 10 11	6 5 4 3 2 1 1 8 7 6 5 4 3 2 1	86.0 79.6 73.0 66.7 56.5 53.5 52.4 Hor12. 84.2 78.4 72.1 65.5 59.1 51.2 48.4 45.1	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 L - 10 113.8 100.4 86.6 72.6 58.5 54.5 30.6 17.6	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 11.6 104.1 90.0 75.9 62.0 48.4 35.5 24.8	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 21.6 107.4 93.4 79.6 66.2 53.5 42.1 33.4	107.9 73.9 80.2 67.0 67.0 54.4 43.2 34.9 31.6 Lat. + 20 124.0 110.2 96.7 83.6 71.1 83.6 71.1 83.6 71.1 83.6 71.1 83.6 72.5 49.6 42.6	100.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6 37.6 124.9 111.6 98.6 86.1 74.2 63.4 54.4 48.3
May 21 (+20.3)	6 7 9 10 11 12 4 5 6 7 8 9 10 11	6 5 4 3 2 1 1 8 7 6 5 4 3 2 1	86.0 79.6 73.0 66.7 56.5 53.5 52.4 Hor12. 84.2 78.4 72.1 65.5 59.1 51.2 48.4 45.1	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 L - 10 113.8 100.4 86.6 72.6 58.5 54.5 30.6 17.6	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 11.6 104.1 90.0 75.9 62.0 48.4 35.5 24.8	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 21.6 107.4 93.4 79.6 66.2 53.5 42.1 33.4	107.9 73.9 80.2 67.0 54.4 43.2 34.9 31.6 Let. + 20 124.0 110.2 83.6 71.1 59.5 49.6 42.6 40.0	100.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6 37.6 124.9 111.6 98.6 86.1 74.2 63.4 54.4 48.3
May 21 (+20.3)	6 7 8 9 10 11 11 12 4 5 6 6 7 8 9 10 11 11 12 12	6 5 4 3 2 1 1 8 7 6 5 5 4 3 2 2 1	86.0 79.6 73.0 66.7 61.0 55.5 53.5 52.4 Hor1z. 84.2 78.4 72.1 65.5 59.1 51.2 48.4 45.1 44.0 Horiz. 85.8	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 L - 10 113.8 100.4 86.6 72.6 58.5 44.5 58.5 44.5 17.6 10.0 L - 10 124.7	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 18.0 104.1 90.0 75.9 62.0 48.4 35.5 24.8 20.0	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 Lat. + 10 121.5 107.4 93.4 79.6 66.2 53.5 42.1 33.4 30.0	107.9 73.9 80.2 67.0 54.4 43.2 34.9 31.6 Lat. + 20 124.0 110.2 96.7 83.6 71.1 59.5 42.6 40.0 • Lat. + 20 139.2	100.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6 Vert. 124.9 111.6 98.6 86.1 74.2 63.4 54.4 48.3 46.0
May 21 (+20.3)	6 7 8 9 10 11 11 12 4 5 6 7 8 9 9 10 11 11 11 12 2 2 3 4 5	654 3211 876554 3211 9987	86.0 79.6 73.0 66.7 61.0 55.5 53.5 52.4 Hor1z. 84.2 78.4 72.1 59.1 59.1 59.1 53.5 59.1 53.2 48.4 45.1 44.0 Hor1z. 85.8 81.0 75.3	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 1.6 1.6 113.8 100.4 86.6 72.6 58.5 44.5 30.6 17.6 10.0 L - 10 124.7 112.5 99.5	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 146.2 18.9 11.6 14.0 104.1 90.0 75.9 62.0 48.4 35.5 24.8 20.0 Lat. 130.4 117.3 103.7	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 121.5 107.4 93.4 79.6 66.2 53.5 42.1 33.4 30.0	107.9 73.9 80.2 67.0 54.4 43.2 34.9 31.6 124.0 124.0 124.0 110.2 96.7 83.6 71.1 59.5 49.6 42.6 40.0 • Lat. + 20 138.2 124.6 111.1	100.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6 Vert. 124.9 111.6 98.6 86.1 74.2 63.4 48.3 46.0 Vert. 139.2 125.9 112.8
May 21 (+20.3) Ju1. 21 (+20.5)	6 7 8 9 10 11 11 12 4 5 6 7 8 9 9 10 11 11 12 3 4 5 5 6 7	6 5 4 3 2 1 1 8 7 6 5 4 3 2 1 1 9 8 7 6 5	86.0 79.6 73.0 66.7 55.5 53.5 52.4 Hor1z. 84.2 78.4 72.1 65.5 59.1 53.2 48.4 45.1 44.0 Hor1z. 85.8 81.0 75.3 69.0	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 18.9 11.6 104.1 90.0 75.9 62.0 48.4 35.5 24.8 20.0 Lat. 130.4 117.3 103.7 90.0 76.3	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 121.5 107.4 93.4 79.6 66.2 53.5 42.1 33.4 30.0 Lat. + 10 135.1 121.4 107.6 94.0 80.5	107.9 73.9 80.2 67.0 54.4 43.2 34.9 31.6 Let. + 20 124.0 110.2 96.7 83.6 71.1 59.5 49.6 42.6 40.0 * Let. + 20 134.2 124.4 111.1 97.8 85.0	100.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6 747.6 40.3 37.6 747.6 40.3 37.6 747.6 40.3 137.6 74.2 63.4 54.6 48.1 48.1 46.0 74.2 725.9 112.8 100.0 87.8
May 21 (+20.3) Ju1. 21 (+20.5)	6 7 8 9 10 11 12 4 5 6 7 7 8 9 9 10 11 11 12 3 4 5 5 6 7 7 8 9	6 5 4 3 2 1 1 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 1	86.0 79.6 71.0 66.7 61.0 56.5 53.5 52.4 Hor12. 84.2 78.4 72.1 65.5 59.1 51.2 44.0 Hor12. 85.8 81.0 75.3 62.5 56.0 50.1	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 1.6 1.6 1.3.8 100.4 86.6 72.6 58.5 44.5 30.6 17.6 10.0 L - 10 124.7 112.5 99.5 88.6 72.4 58.6 72.4 58.6	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 18.0 11.6 18.0 104.1 90.0 75.9 62.0 48.4 35.5 24.8 20.0 Lat. 130.4 117.3 103.7 90.0 76.3 62.7 49.6	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 121.5 107.4 93.4 79.6 66.2 53.5 42.1 33.4 30.0 125.1 121.4 107.6 90.5 67.5 55.6	107.9 73.9 80.2 67.0 54.4 43.2 34.9 31.6 124.0 124.0 110.2 96.7 83.6 71.1 59.5 49.6 42.6 40.0 • Lat. + 20 134.2 124.6 111.1 97.8	101.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6
May 21 (+20.3) Ju1. 21 (+20.5)	6 7 8 9 10 11 11 12 4 5 6 7 8 9 10 11 11 12 7 8 9 10 11 11 12 7 8	6 5 4 3 2 1 1 8 7 6 5 5 4 3 2 2 1 1 9 8 7 6 5 5 4 5 4	86.0 79.6 73.0 66.7 61.0 55.5 53.5 52.4 Hor12. 84.2 78.4 72.1 55.5 59.1 59.1 53.2 48.4 45.1 44.0 Hor12. 85.8 81.0 75.3 69.0 62.5	102.4 88.0 73.5 58.9 44.2 29.5 14.8 1.6 1.6 113.8 100.4 86.6 72.6 58.5 44.5 58.5 44.5 17.6 10.0 L - 10 124.7 112.5 99.5 86.0 72.4 58.6	104.7 90.0 75.3 60.7 46.2 32.0 18.9 11.6 18.0 104.1 90.0 75.9 62.0 40.4 35.5 24.8 20.0 Lat. 130.4 117.3 103.7 90.0 76.3 62.7	106.5 92.0 77.6 63.4 49.7 36.8 26.2 21.6 121.5 107.4 93.4 79.6 66.2 53.5 42.1 33.4 30.0 125.1 121.4 107.6 94.0 80.5 67.5	107.9 73.9 80.2 67.0 54.4 43.2 34.9 31.6 Lat. + 20 124.0 110.2 96.7 83.6 71.1 59.5 42.6 40.0 • Lat. + 20 138.2 124.6 111.1 97.8 85.0 72.8	100.4 95.1 82.0 69.4 57.7 47.6 40.3 37.6 Vert. 124.9 111.6 98.6 86.1 74.2 63.4 54.4 48.3 46.0 Vert. 139.2 175.9 112.8 100.0 87.8 76.2

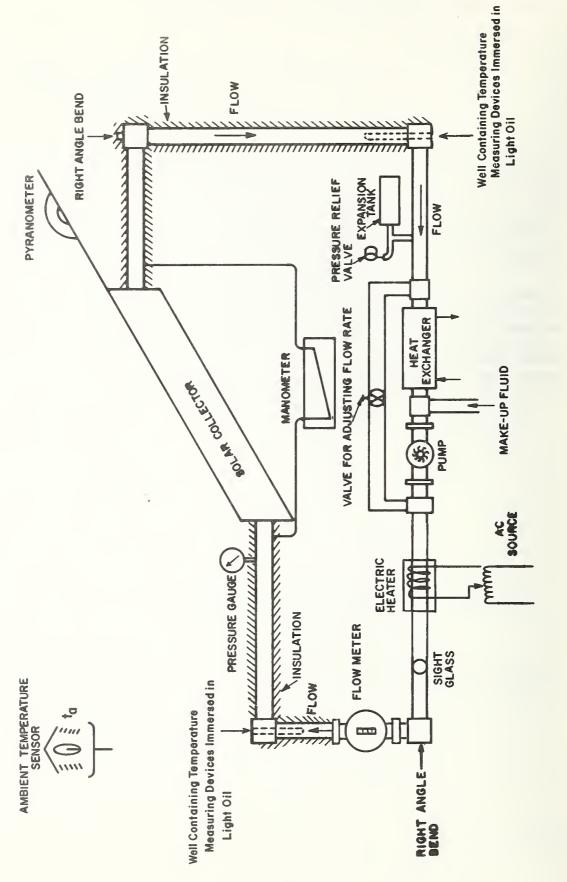
Item	Test Involving Air as the Transfer Fluid	Test Involving a Liquid as the Trans- fer Fluid
Date	Х	Х
Observer(s)	Х	х
Equipment name plate data	Х	х
Collector tilt angle	Х	х
Collector azimuth angle (as a function of time if movable)	x	х
Collector aperture area or frontal transparent area	х	X
Local standard time, at the beginning of collector warm-up and at the beginning and end of each 15 minute test period	x	х
Barometric pressure	Х	
Ambient air temperature (at the beginning and end of each 15 minute test period)	х	Х
<pre>\Lambda t = tf,e - tf,i across solar collector (either as</pre>	x	х
Inlet temperature, t _{f,i} (as a continuous function of time	х	х
Outlet temperature, $t_{f,e}$ (as a continuous function of time	х	х

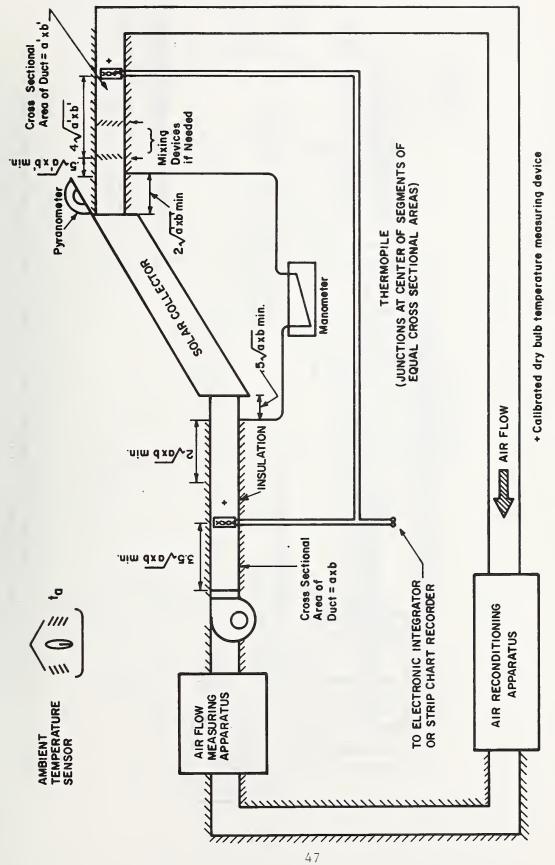
Table A13 - continued

Item	Test Involving Air as the Transfer Fluid	Test Involving a Liquid as the Trans- fer Fluid
Liquid flow rate		х
Gauge pressure at solar collector inlet		Х
Gauge pressure at nozzle throat	Х	
Nozzle throat diameter	Х	
Velocity pressure at nozzle throat or static pres- sure difference across nozzle	Х	
Dry bulb temperature at nozzle throat	Х	
Wet bulb temperature at nozzle throat	Х	
Pressure drop across solar collector	Х	Х
Height of the collector outlet above the collector inlet	Х	Х
Wind velocity near the collector surface or ap- erture (15 minute average)	х	Х
I, the incident solar radiation onto the collec- tor (as a continuous function of time and as a 15 minute integrated quantity if desired)	x	X
I _d , the diffuse component of the solar radiation onto the collector (at the beginning of the 15 minute period and after the completion of the 15 minute period)	X	Х

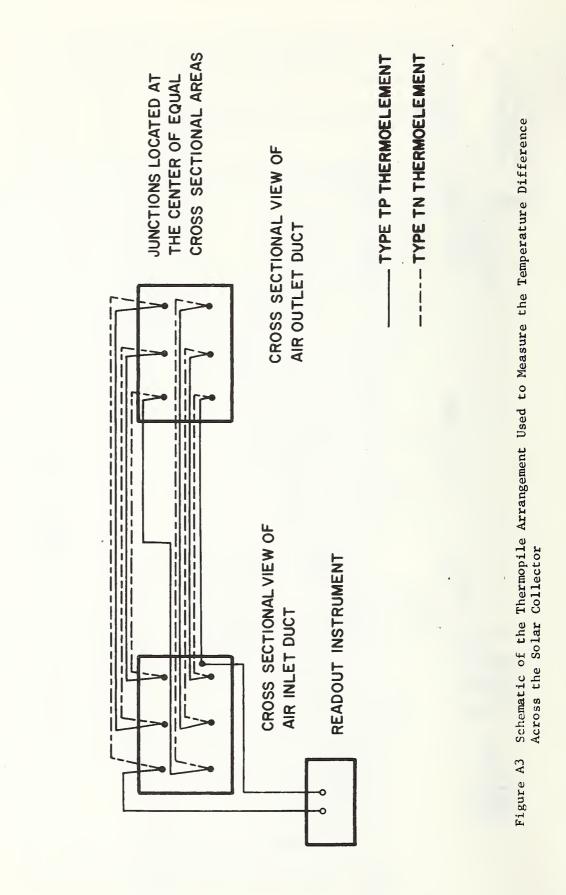
Table Al4 Data to be Reported

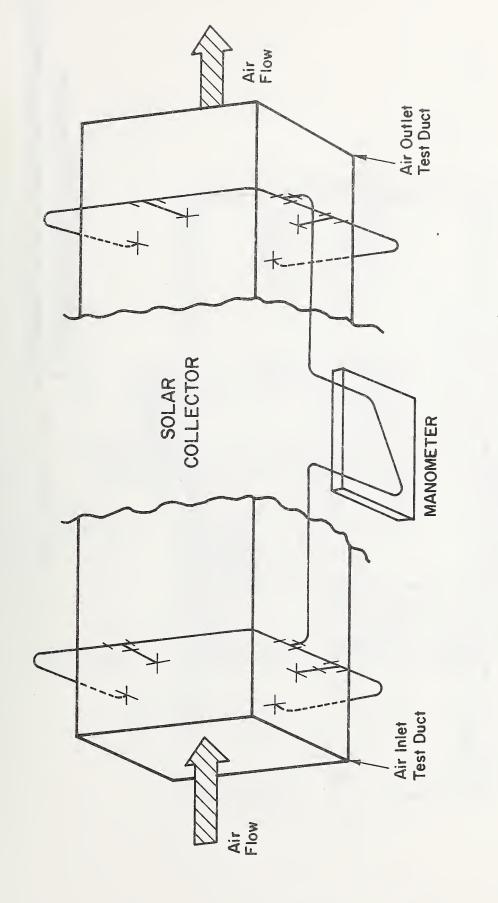
General Information


Manufacturer or Project Name	
<pre>gross dimensions and area</pre>	
insulation*, material, thickness, thermal properties	
Transfer fluid used and its properties	
Weight of collector per m^2 of gross cross-sectional area	
Volumetric capacity of the collector per m^2 of gross cross-sectional area if designed to operate with a liquid as the transfer fluid	
Normal operating temperature range	
Minimum transfer fluid flow rate	
Maximum transfer fluid flow rate	
Maximum operating pressure	
Description of apparatus, including flow configuration and instrumen- tation used in testing (include photographs)	
Description of the mounting of the collector for testing	
Location of tests (longitude, latitude, and elevation above see level)	


Efficiency Tests

A plot of the efficiency versus $\left(\frac{t_{f,i} + t_{f,e}}{2} - \frac{t_{a}}{2}\right)/I$


^{*} if applicable


An equation for the efficiency curve For each "data point" m. c_p • • . • • . . ٠ ^τ2 ∫ $(t_{f,e} - t_{f,i}) d\tau$ τ_1 ^τ2 I dτ τ_1 pressure drop across the solar collector collector azimuth angle (as a function of time if movable) . .

Testing Configuration for the Solar Collector When the Transfer Fluid is Air Figure A2

Schematic Representation of the Measurement of Pressure Drop Across the Solar Collector When Air is the Transfer Fluid Figure A4

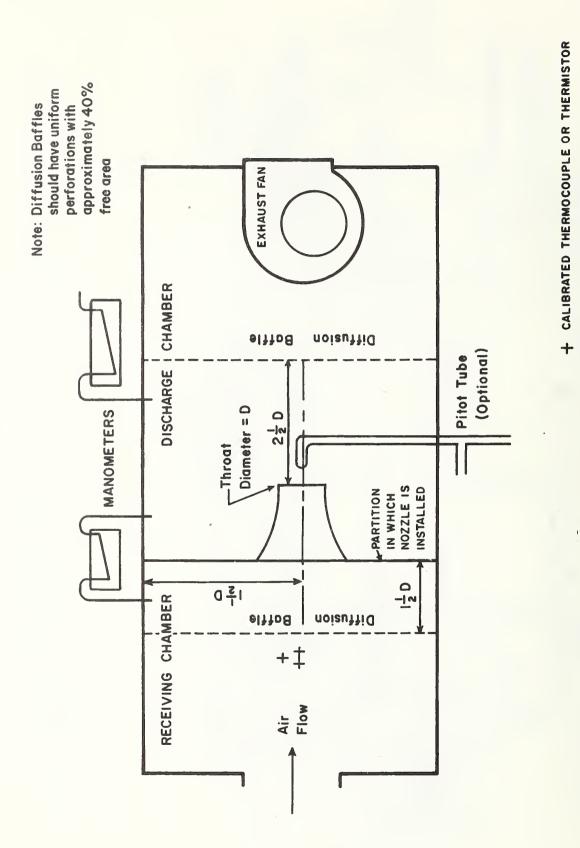


Figure A5 Nozzle Apparatus for Measuring Air Flow Rate

H CALIBRATED WET BULB TEMPERATURE MEASURING DEVICE

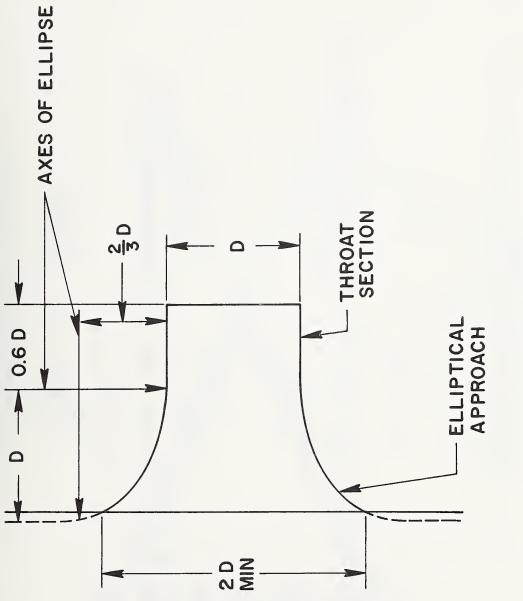
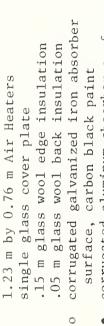
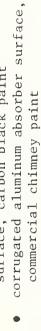
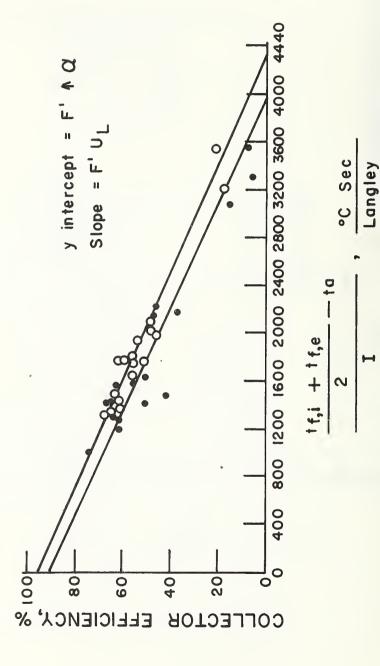
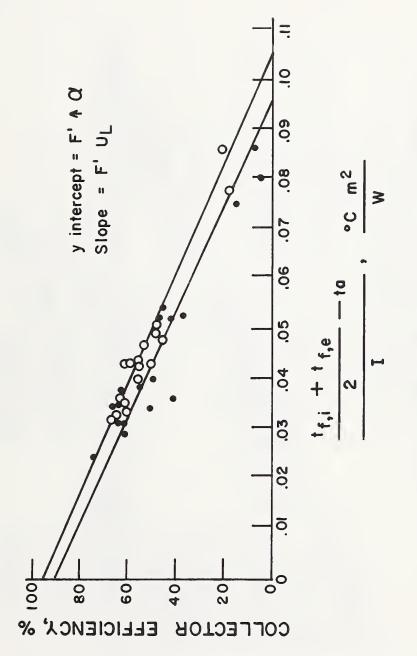
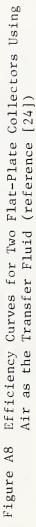
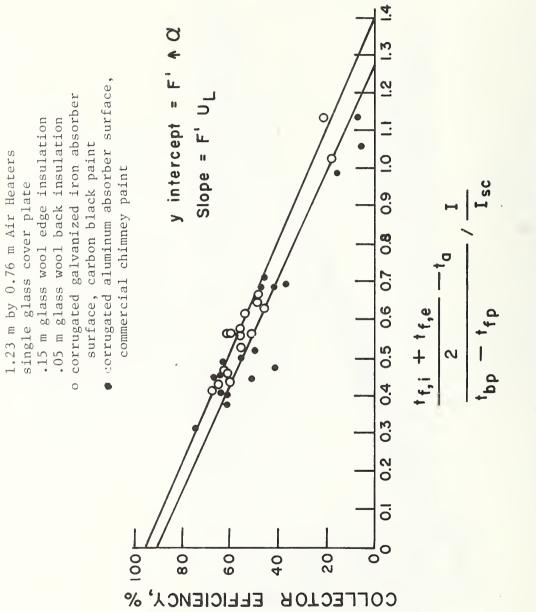





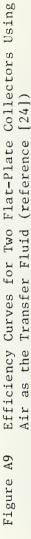
Figure A6 Air Flow Measuring Nozzle

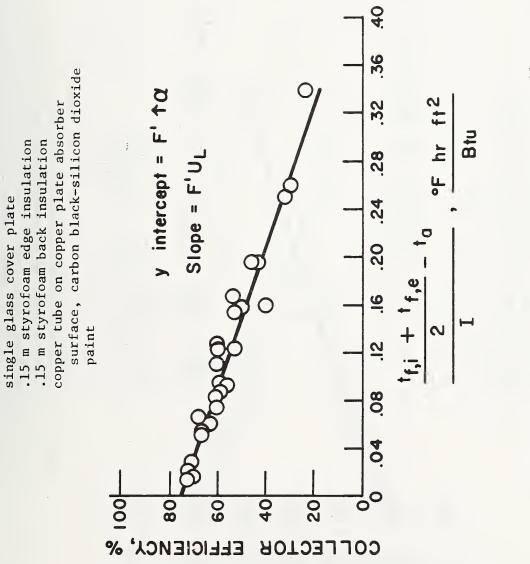
'. s'










 1.23 m by 0.76 m Air Heaters single glass cover plate
 15 m glass wool edge insulation
 05 m glass wool back insulation
 o corrugated galvanized iron absorber surface, carbon black paint
 corrugated aluminum absorber surface, commercial chimney paint

.03 m by 0.3 m Flat-Plate Collector

Figure Al0 Efficiency Curve for a Flat-Plate Collector Using Water as the Transfer Fluid (reference [25])

07 90. surface, carbon black-silicon dioxide 0 4 copper tube on copper plate absorber 0.0 .15 m styrofoam back insulation y intercept = Slope = F'U 40 f,i + ¹f,e Ю. paint 0 0 ō 10 1001 % 60 40 20 80 **EFFICIENCY**, **ЕСТО**В ٦

.03 m by 0.3 m Flat-Plate Collector

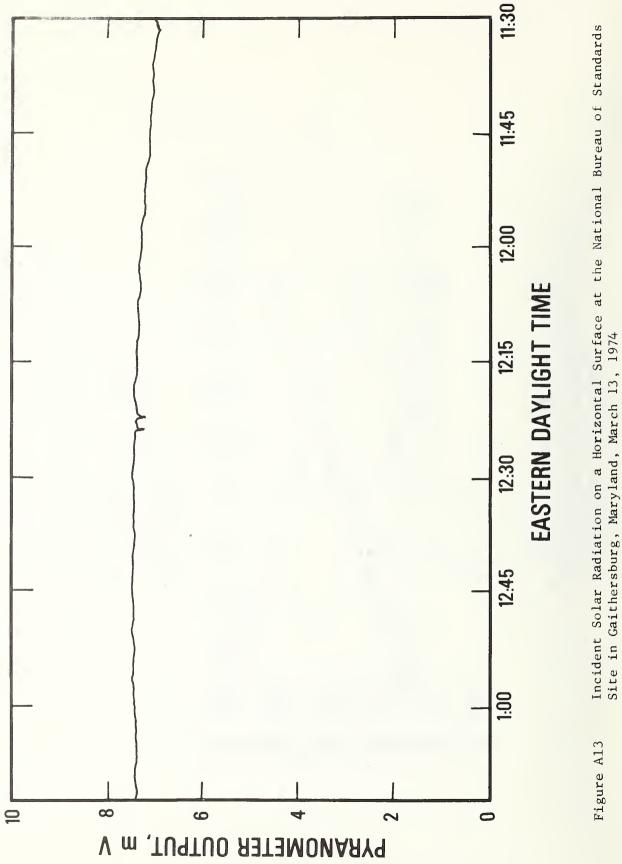
.15 m styrofoam edge insulation

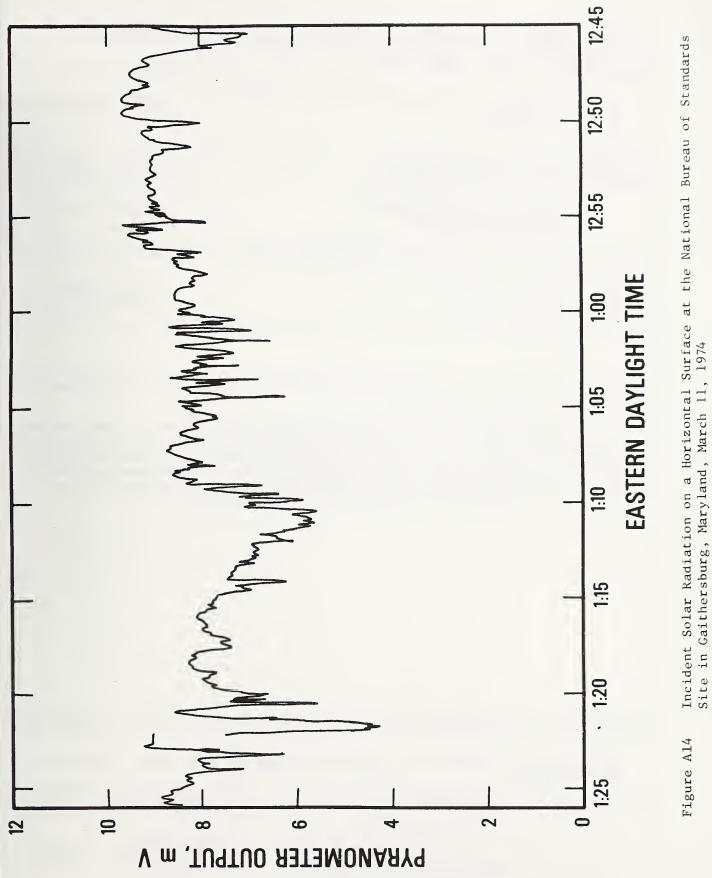
single glass cover plate

S E

ပ

0


N


00

≥

<u>o</u> <u>6</u>.0 Using Water as the Transfer Fluid (reference Efficiency Curve for a Flat-Plate Collector **8**.0 4 Q Ο 0.7 y intercept = I sc 0.0 Ē Slope = 0.5 **4**.0 t f, i + t f, e 0.3 paint N [25]) d q 0.2 Figure Al2 0.1 0 $\overline{\mathbf{o}}$ 000 40 80 60 20 EFFICIE NCY, **ЕСТО**В % 100 ٦

.03 m by 0.3 m Flat-Plate Collector single glass cover plate .15 m styrofoam edge insulation .15 m styrofoam back insulation copper tube on copper plate absorber surface, carbon black-silicon dioxide

NBS-114A (REV. 7-73)	84 U -		فدرر	atter 18 water
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA	1. PUBLICATION OR REPORT NO.	2. Gov't Accession No.	3. Recipies	nt's Accession No.
SHEET	NBSIR 74-635			:
4. TITLE AND SUBTITLE		5. Publicat	tion Date	
Method of Testing for Rating Solar Collectors Based on Thermal Performance		Decem	ber 1974	
		6. Perform	ing Organization Code	
7. AUTHOR(S)			8. Perform	ing Organ. Report No.
James E. Hill and Tamami Kusuda			74-635	
9. PERFORMING ORGANIZATION NAME AND ADDRESS			/Task/Work Unit No.	
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			11. Contract/Grant No. AG493	
12. Sponsoring Organization Nat	me and Complete Address (Street, City, S	tate, ZIP)		f Report & Period
National Science Foundation			Covered	
1800 G. Street Washington, D.C.	20550			im Report
15. SUPPLEMEN FARY NOTES				*
that could be use thermal performan that study. It i of Heating, Refri recommended appar	Bureau of Standards has ma d for testing solar collect ce. This document outlines s written in the format of gerating, and Air Condition atus, instrumentation, and	ors and rating t a standard test a standard of th ing Engineers an test procedure.	hem on th procedun e America d specifi	ne basis of re based on an Society ies the
name; separated by semicolo Solar collector; s	entries; alphabetical order; capitalize on ons) standard test; thermal perfo			
solar radiation.				
18. AVAILABILITY	X Unlimited	19. SECURIT (THIS RE		21. NO. OF PAGES
For Official Distribution	n. Do Not Release to NTIS	UNCL ASS	SIFIED	63
Order From Sup. of Doc. Washington, D.C. 20402	, U.S. Government Printing Office , <u>SD Cat. No. C13</u>	20. SECURIT (THIS PA		22. Price
Order From National Ter Springfield, Virginia 221	chnical Information Service (NTIS) 151	UNCLASS		\$4.25

