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STANDARDS ANALYSIS FOR FUTURE WWMCCS COMPUTER NETWORKING

ABSTRACT

The World-Wide Military Command and Control System (WWMCCS) comprises

over 30 computer installations, evolving toward heavy dependence on terminal-

to-computer and computer- to-computer communications in serving individual

bases, commands, and national military authorities. Although a highly

standardized system has emerged through identical mainframes, hardware

devices, and basic software, the hardware/software configurations of

individual installations are not identical and significant evolutionary

changes are occurring in hardware/software components, interfaces, and

configuration rules. It is vital therefore to deliberately adopt selected

interface specifications as standards that transcend the present computer

hardware and software, and that will guide near-term reconfiguration or

redesign as well as ultimate, progressive replacement of the WWMCCS computer

network system. A previous NBS report. Technical Note 843, provided a

succinct handbook on existing computer-communications standards with

widespread applicability. This report addresses issues and methods in

interface standards analysis, to identify and partially evaluate computer-

communications techniques that would contribute to enhancing WWMCCS

interoperability. These issues include: functional decomposition of

computer-communications processes; complexity and performance analysis

of advanced data link control techniques; feasibility of common communications

front-end software; and requirements for user-oriented network protocols.

The presentation indicates the standard "ci'scipline" involved in the

evaluation and implementation of effective standards for a complex

computer network environment.

i





1. INTRODUCTION

1.1 Background

The World-Wide Military Command and Control Systems (WWMCCS),

comprising over 30 installations of Honeywell 6000 computer hardware,

is evolving toward heavy dependence on terminal -to-computer and

computer- to-computer communications in providing service to individual

bases, commands, and national military authorities. From one viewpoint,

the use of identical mainframes, hardware devices, and common software,

coupled with centralized technical assistance and management, leads to

a highly standardized system. Thus, the term "WWMCCS Standard System"

's used in reference to the Honeywell 6000 hardware/software configuration.

On the other hand, the hardware/software configuration of any one installation

is not unchanging and furthermore, significant evolutionary changes are

being made in the common hardware/software components, interfaces, and

configuration rules. Such changes impact existing and future computer -

communications operations as well as strictly data processing applications.

Without continuing effort to stabilize and manage certain interface*

specifications and configuration criteria, the benefits of selective

initial standardization may erode in a plethora of local options and

secondary modifications, resulting in degraded reliability and

interoperability, and forestalling low-cost replacement and upgrade of

system parts. It is vital then to undertake the deliberate adoption of

selected interface specifications as standards that transcend the present

hardware/software, to guide near-term reconfiguration, evolutionary

redesign, and ultimate, progressive replacement of the overall computer

netv/ork system.

*Throughout this report, the term "interfaces" is used in the general

sense, as affecting hardware, software, and system users.



1.2 Purpose of This Report

Establishing long-term standards for computer network interfaces

begins with the recognition and application of pertinent existing standards.

A previous effort by NBS[1.1] developed a succinct handbook on existing

computer -communications standards with widespread applicability. This

report addresses technical issues and methods in interface standards

analysis, to identify and partially evaluate meaningful computer-

comunications processing parameters and procedures that would contribute

to enhancing WWMCCS system interoperability. The criteria and techniques

presented are indicative of the standards "discipline" involved in the

evaluation and implementation of more effective standards for a complex

computer network environment.
'

'

'

,1.3 Scope

The evaluation and analysis herein focuses exclusively upon computer

software required for the effective operation and use of a resource-sharing

computer network. Hardware interface specifications and communications

facilities per se were outside the scope of the project and, as the

province of computer manufacturers and communications common carriers,

are relatively beyond control of ADP system operators and users. The

software functions examined, however, span the range of consideration in

establishing an integrated computer network design, ranging from Tine

control interactions in passing messages between computers to the interaction

between a human user and software for networking ADP services. The

standards issues raised by resource-sharing as suggested by the Prototype

WWMCCS Intercomputer Network (PWIN) were the major consideration.

-2-



1.4 Approach and Organization of Report

The identification of key software interfaces for potential

standardization is a guiding factor in the analyses performed, and is

accomplished through a brief review of future WWMCCS network concepts

in Chapter 2 following. As a result, the interfaces and interactions

of interest separate naturally according to a categorization of functions,

explained in Chapter 3, which distinguishes levels of control within a

network. Chapter 4 comprises an evaluation of line control, the first

level category which is most directly related to individual message

transmission. Chapter 5 investigates the feasibility of common

communications software for front-end processors which handle the second

and third functional categories - flow control and message control.

Chapter 6 analyzes the user-oriented protocols necessary for network ADP

applications, involved in the last category. Chapter 7 reviews the

techniques and conclusions from an overall standpoint, leading to a

description of possible future work in standards analysis.

The reader is assumed to be familiar with WWMCCS and its current

status, and with the design and operation of a network such as ARPANET.

The background in WWMCCS underlying this report was provided in discussions

with the sponsor representative, Mr. Kroboth, and in documents furnished

by him.

2. WWMCCS COMPUTER NETWORK MODEL

The presently operational HIS* 6000 installations of WWMCCS rely upon

a variety of communications arrangements for remote interactive and batch

processing. To a large degree, these employ the HIS Datanet 355 as a

front-end communications processor, with voice-grade lines to remote

terminals. Communications interfaces to accommodate interconnection to

the AUTODIN network of the DOD are being developed. Furthermore, the

PWIN is being used as an experimental testbed to develop requirements for

a future intercomputer network. Figure 2-1 suggests the variety of

*Honeywell Information Systems, Inc.
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potential arrangements at an individual computer.

2.1 PWIN and ARPANET

The PWIN is closely modeled after the well-known ARPANET, utilizing

three Interface Message Processors (IMPs) to interconnect three HIS 6000

sites for experimental operation. The PWIN project involves some

significant design issues in the envisioned military uses of resource-

sharing, e.g. the attainment of cormiunications security and computer

access control [2.1]. Also, because of its homogeneous computer hardware,

PWIN has been able to adopt different techniques on a few special problems

such as interfacing the IMP to the Host at the hardware level. Further,

with a central planning group, PWIN has begun to define specific

operational experiments and user-oriented software services to evaluate

resource-sharing within the envisioned operational framework for WWMCCS.

Nevertheless, the strong similarities between PWIN and ARPANET, in

conceptual, technological, and operational aspects, mean that inferences

on standards drawn from consideration of ARPANET may very likely be

applicable to the future WWMCCS.

2.2 Integrated Data Network

As a DOD system, WWMCCS will depend upon the common-use communications

media provided as the Defense Cormunications System (DCS) by DCA. DCA is

now planning toward a packet-switched data communications network, called

The Integrated Data Network, IDN [2.2]. Connection to this network would

be via a Comnunications Access Processor, providing many of the switching

functions of the current ARPANET IMPs. Even so, there may be a continued

need for a front-end prograrrmable communications processor within WWMCCS -

e.g. to handle locally connected data terminals or to implement higher-level

standard protocols that are now performed within host computers or between

hosts and IMPs. Thus, continued need for a WWMCCS - unique interface processor

is a possibility, although not mandatory depending upon the IDN design.

Therefore, figure 2-2 depicts the potential communications configuration

envisioned in the future WWMCCS.
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3, FUNCTIONAL ANALYSIS FOR NETWORK STANDARDS

3.1 Introduction

As data processing and data communications systems become increasingly

integrated (as in the currently developing computer networks), the

distinction between these two systems becomes increasingly difficult to

make. Functions which were formerly thought of as purely communications

functions, such as routing and message delivery, may be found being performed

by essentially data processing components, while, conversely, functions

formerly thought of as data processing functions such as scheduling and

accounting may be found in the data communications system. This inherent

flexibility of new computer communications systems to assign functions

to different components gives increased importance to the analysis and

implementation of effective standards. A first step toward standards

development is a functional analysis which clearly identifies the functions

which must be performed and maps them against software (or hardware)

components where they are (or may desirably be) carried out. The result

is an organized, unambiguous definition and a framework for examining

standards trade-offs and potential impact on interfaces and interoperability.
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3.1.1 A Model for Analysis

Figure 3-1 illustrates a model to be used for the functional

analysis of a computer network system. The model recognizes that

the essential function of the system is to transport a message as

rapidly and reliably as possible from a sender to a recipient. To

use the postal system as an analogy, a message may be thought of

as a letter to be sent to a recipient. The content of the letter

or semantics of the message have meaning only to the sender and

the recipient; the intervening network components neither examine

nor alter the message.

Between sender and recipient, the model identifies several

stages of control or of function. There is a stage identified as

"message control" which is concerned with the acceptance of the

message from the sender by the network, and the delivery of the

message from the network to the recipient. This is the stage at

which an address is associated with the message. Continuing with

the postal system analogy, at this stage the sender puts his

letter in an envelope and addresses it.

The second functional stage identified by the model is called

"flow control". This stage concerns itself with determining that

the message is able to be delivered. Included at this stage are

such network functions as call establishment, polling and dialing.

In the analogy, the letter is put in a mailbox with sufficient room
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for it, and the pickup time and various internal delivery mechanisms

such as train or plane are scheduled.

At the last stage there are the functions associated with the

actual transmission media. This stage is identified as the line

or device control stage. Actually, the procedures for

controlling a computer network at this level are not so different

from the procedures for controlling the postal delivery network.

The messages (letters) are conveyed from point to point towards

their destination, with care taken for their protection. At some

final distribution point, packages of messages (letters) are

turned over to a different level of control for individual

delivery to each recipient.

3.1.2 Application of the Model

Applying this model to an actual system will require attention to

the distinct operational modes of the system (which could coexist

simultaneously) and to the fine distinctions between functions that are

partially performed by separate components. After defining the generic

function in more detail, two example applications will be made for WWMCCS.

These illustrate the recognition of distinct modes (e.g. transaction

processing versus remote batch) and distinct levels of interaction

between components, which represent various levels of detail in use of

this model

.
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FIGURE 3-1. Functional Model of Network Software

3.2 Overview of Required Functions

3.2.1 Line Control
,

Line control is suggested as the generic term for those

software functions concerned with the physical flow of data over

the communications line or other media. The basic functions

performed at this level are concerned with the editing of logical

messages for physical output (and conversely or input), the

initiation of input/output operations and error detection.

In his book, SYSTEMS ANALYSIS FOR DATA TRANSMISSION, [3.1], James
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Martin lists twelve "basic functions", most of which would be

included in the line control class:

1. To initiate and control the reception of data from the

lines.

2. To assemble the bits into characters and the characters

into messages.

3. To convert the coding of the characters (into the form

used by the computer).

4. To check for errors, both in the characters, by means of

a parity check, and in the messages, by means of longitudinal

redundancy checks (where applicable).

5. To edit the messages if necessary.

6. To recognize end-of-record or end-of-transmission

characters, and carry out the housekeeping, preparing for another

transmission if necessary.

7. To deliver messages to the main programs, one at a time,

edited and converted. (We do not consider this to be a line

control function.)

8. To accept messages from the main programs when they are

ready for transmission to the terminals. (We do not consider

this to be a line control function.)

9. To prepare these messages for output. It will be

necessary to convert them from computer code to communication

line code. Control characters may have to be added.

10. To initiate the transmission of these messages.
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11. To ironitor the sending process, repeating characters or

messages if the terminal (recipient) detects an error in transmission.

12. To signal end-of-transmission to the terminal and carry

out the necessary housekeeping functions and line control functions.

As Martin recognizes, many of these functions may be performed

either by hardware or by software. Functions most frequently

implemented in hardware include bit assembly, error checking by

horizontal and longitudinal parity, and the recognition and

generation of such special characters as end-of- record and end-

of-transmission.

3.2.2 Flow Control

In the category called "flow control" we include those functions

concerned with call establishment and the scheduling and allocation

of resources (such as buffers).

Martin "lists certain polling and dialing functions which we

include here since they may be considered as call establishment

functions:

1 . Dialing terminals.

2. Scanning dial up terminals.

3. Answering when the computer is dialed.

4. Polling by programming.

5. Polling with an autopoll device.
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6. Controlling looped lines.

We recognize that many of these functions could be considered

as line control functions since they are concerned with the

detailed physical characteristics of devices. Since they are

also directly concerned with call establishment, we arbitrarily

assign them to the flow control class.

The heart of flow control is not call establishment, however,

but resource allocation and scheduling. While the physical

communications media may set upper bounds on the achievable data

transfer rate, the actual rate attained is frequently limited by

such matters as the amount of buffer space available and the

priority level assigned to handling traffic. Normally, buffers

are assigned at call establishment time so that they may be

adjusted to the type of traffic expected and the current load

level on the computer system.

In sophisticated systems where (parts of) messages may be

received out ot sequence, elaborate protocol schemes may be

employed to assure that buffer "lockup" conditions do not occur.

3.2.3 Message Control

Message control functions provide the software interface

between application-oriented modules and the data communications-

oriented modules. The primary function is to accept messages

for delivery from a number of senders and pass them to the

communications modules, and to deliver messages to
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the proper recipient which have been received through the

communications system. Other functions such as spooling,

packetizing and accounting may also be considered as message

control functions.

3.2.4 Application Control

The application control level is the only level where message

semantics are analyzed. All of the other levels were concerned

with the delivery of the message. This level, in contrast, is

concerned with the message content itself. Control may be

exercised through common routines which implement protocols for

such applications as file transfer or remote job entry, or it may

be exercised strictly by the individual application programs to

which the messages are delivered. Many logical levels of

application control may frequently be nested in a single system.

3.3 Alternative Functional Breakdowns

The classes proposed in this document are not the only ones

which could be used in the functional analysis of network software.

Reference has already been made to James Martin's book where many

communications functions are listed. Two other schema for classifying

all network functions are provided in a book by Hal Becker, and a

report by Planning Research Corporation.



3.3.1 Hal Becker

Hal Becker, in his book, FUNCTIONAL ANALYSIS OF INFORMATION NETWORKS [3. 2]

,

has suggested an alternative approach to the functional breakdovm

of network suggested here. Becker's approach provides a top-down

taxonomy for all network functions which can be identified. No

consideration is given to different logical levels of data flow.

Becker's levels consist strictly of levels of implementation.

Six levels are described, as follows:

I. Network - Any network function including both information

and network processing.

II. Processing - Initial separation into distinct information

processing and network processing functions.

III. Macro Function - Further separation of processing level

into their respective hardware and software functions.

IV. Micro Function - Identification of basic hardware and

software forms.

V. Element - Identification of specific hardware and

software forms.

VI. Device/Technique - Identification of specific hardware

devices and software techniques.

3.3.2 Planning Research Corporation (PRC)

A PRC report prepared for the Defense Communications Agency [3.3]

suggested the categorization of network functions into the following

classes:
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1. Network/Line Control Management

2. Message Queue Management

3. Message Editing Management

4. Error Recovery Management

Similarities with the functional classification proposed in

this document are evident in the PRC schema. Network/line

control management includes approximately the same functions as

device control. Message queue management includes many of the same

functions as flow control. Message editing management includes

some functions classified here as message control and some as

application control. Error recovery management does not correspond

to any specific classification in this document, since errors

are presumed possible at any level and error handling is considered

as part of the functional description in each class.

3.4 Functional Analysis for Different Network Organization

In this section we describe two separate networks in detail

according to the functional schema which have been developed.

The networks to be described are the typical remote processing

networks supported by a Honeywell Information Systems Series 6000

system, and the ARPANET.

3.4.1 HIS 6000 Star Network

Networks are generally configured for a Series 6000 system by

including one or more cormunications processors in the



configuration. GECOS (the Series 6000 operating system) controls

multiple communications processors (each with its own appropriate

software), integrating remote processing with central -site

processing in concurrent operation. Remote processing

capabilities include remote batch, remote access, transaction

processing, and time sharing [3.4].

3.4.1.1 Communications Processors j

The three communciations processors that provide the front-end

processing of Series 6000 Information Systems are:

' DATANET 355 Communications Processors

' DATANET 305 Communications Processors

' DATANET 30 Cormunications Processors

Only the DATANET 355 and the DATANET 30 are specified under

the terms of the WWMCCS procurement.

3.4.1.1.1 DATANET 355

The DATANET 355 is a high-performance, stored program communications

processor designed to service large volume communications needs of

the Series 6000 System. A DATANET 355 may have a memory size of 16K or

32K 18-bit words with a cycle time of one microsecond. Data of various word

lengths may be processed -- 6, 9, 18 or 36 bits. All data word lengths are

individually addressed to allow efficient processing of tabular data.

Ninety-eight instructions in an 18-bit format are provided,

with one single-address instruction per word. Three
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index registers and multilevel indirect addressing, with indexing

at all levels, give an addressable storage capacity of 32K words.

A sophisticated priority interrupt system is provided.

The system organization of the DATANET 355 follows the pattern

of the Series 6000 system architecture. The DATANET 355 is a memory-

oriented computer with its own independent memory, processor, and

I/O modules, all of which operate asynchronously. The processor

and I/O controller are "active" units that process data at

their own rates and request memory cycles as the need arises.

Input/output facilities of the DATANET 355 are designed

to facilitate efficient real-time, concurrent servicing of multiple

terminals and peripheral devices. Up to 16 adaptors can be

provided to accommodate a total data rate of up to 500,000

words per second (with 6, 9, 18 or 36 bits per word). The

following adaptors can be configured:

1. DATANET 355 Intercomputer Adaptor (ICA) with up to four

ICA ports to interface with the Series 6000 system controllers.

2. Up to three High-Speed Line Adaptor units (HSLA).

3. Up to six Low-Speed Line Adaptor units (LSLA).

4. A console adaptor for connection of a teletypewriter

console.

5. An adaptor link to Series 6000 mass storage.

"when attached to a Series 6000 system, the DATANET 355

operates under a complex of software routines collectively

referred to as the General Remote Terminal System (GRTS). GRTS



consists of two main parts, GRTS-355 which executes in the

DATANET 355 and GRTS-6000 which executes in the Series 6000

mainframe. GRTS-355 is naturally designed to communicate with

GRTS-6000, and GRTS-6000 is designed to interface with GCOS,

the General Comprehensive Operating System of the Series 6000.

3.4.1.1.2 DATANET 30

The DATANET 30 is the other communications processor that is

part of the WWMCCS configurations. The DATANET 30, like the

DATANET 355, is a stored program conmuni cati ons processor that

provides front-end communications processing for the Series 6000.

The DATANET 30 has 16K words of memory with a 7 microsecond

cycle time. The processor is designed to handle 18-bit words and

allows up to 60 I/O channels. Where the DATANET 355 is connected

directly to the system controller, the DATANET 30 is connected to

the lOM and IOC as any other common peripheral device.

Two software packages are available for the DATANET 30: a

mixed speed package and a low-speed package. The mixed-speed

package will service any one of the following at any time:

1. 31 teletypewriters (110 to 150 BPS).

2. 10 remote batch computers (voice grade speeds).

3. 4 remote batch computers (wideband).

4. 4 CRT terminals (voice-grade).

5. A combination of the above devices.



The low-speed program will service up to 60 teletypewriters

(110 to 150 BPS).

3.4.1.2 Remote Batch Mode

Any job that can be entered directly at the central system can

be entered remotely from a remote batch computer. A remote batch

job differs from a local batch job only in the GECOS job

input/output routines that interface with the communications

processor. Once inside the central system, local batch and remote

batch processing are identical.

3.4.1.2.1 Line Control (Remote Batch)

Remote batch jobs are expected to be submitted fron: a

Honeywell 115 remote batch station. The H-115 communicates with

the Series 6000 communications processor according to a binary

synchronous line discipline. Any other remote batch station can

submit jobs so long as it can conform to this line discipline.

At the Series 6000 side, all line control functions are provided

by the communications processor, through the combination of its

software and communications adaptor.

3.4.1.2.2 Flow Control (Remote Batch)

An incoming remote batch message stream from a Honeywell 115

or compatible terminal is buffered in the DATANET with

identifying control information. As the buffer fills, it is
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transferred by GRTS-355 to GRTS-6000, which places it on mass

storage and inforins GCOS (when the complete job has been stored)

so that the job may be scheduled for execution.

3.4.1.2.3 Message Control (Remote Batch)

Remote batch jobs have several options available for the

output files they generate. These options are selected by

control cards as follows:

Return to sending terminal

Enter into the file system.

Output at central site.

Hold until terminal calls back.

Send to another terminal.

3.4.1.2.4 Application Control (Remote Batch)

Incoming messages represent either jobs to be compiled and run

or data for such jobs; outgoing messages represent the printout

from running these jobs. Jobs submitted are queued for execution

in the normal job stream; printouts returned to the originating

terminal are printed there.

3.4.1.3 Remote Access Mode

Remote access provides direct terminal access to a program in

execution. The program, written in any batch programming

language, can be submitted as a job via local batch, remote

-21-



batch, or time-sharing. The terminal in remote access

effectively becomes an on-line peripheral to the activity in

process. The activity can send output to and receive input from

the terminal or terminals.

3.4.1.3.1 Line Control (Remote Access)

Terminals such as teletypewriters and compatible alphanumeric

displays operate asynchronously and generally at relatively low

speeds (30 characters per second and under). Line control

functions for such terminals are implemented principally in

hardware in the high-speed line adaptor (HSLA) or low-speed line

adaptor (LSLA) on the DATANET 355, and similarly in the DATANET

30. The LSLA provides the primary facility for connecting low

speed terminals to the DATANET 355. The LSLA operates with low

speed terminals in either full or half duplex mode for

asynchronous data transfer. The LSLA operates on the principle

of time-division multiplexing, developing a message frame

composed of a number of 8-bit characters, called time-slots,

where each time-slot contains one complete character associated

with a particular terminal.

3.4.1.3.2 Flow Control (Remote Access)

Flow control in remote access mode is provided by the

application programs to which the terminals are logically

connected.
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3.4.1.3.3 Message Control (Remote Access)

Once a terminal has been placed in remote access mode with a

user program, messages from the terminal are sent directly to the

program by GRTS.

3.4.1.3.4 Application Control (Remote Access)

Application control for remote access processing is provided

entirely by the program to which the terminal is connected.

3.4.1.4 Transaction Processing Mode

A Transaction Processing Executive controls the concurrent

execution of application programs under GECOS, providing on-line

real-time capability. The executive operates as a privileged

slave in the direct access mode and will generally be in

execution. The application programs will not generally be in

execution, but will be activated by the executive selectively

upon receipt of transactions (remote user inputs requiring

immediate servicing). The transaction processing application

programs are normal user application programs and may be written

in any of the Series 6000 languages.

3.4.1.4.1 Line Control (Transaction Processing)

Line control functions for transaction processing terminals

are provided as described in section 3.4.1.3.1 for the line
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control of remote access terminals. Some additional functions

concerning the compacting of messages are also performed for

transaction processing. These are described in context below in

section 3.4.1.4.2.

3.4.1.4.2 Flow Control (Transaction Processing)

Flow control is provided by the Transaction Processing

Executive (TPE). Messages arrive first at the DATANET 355, where

the characters are collected in a buffer. GRTS adds the control

characters that inform the H6000 of message origin, unpacks

messages that may have been compacted at the terminal , and sends

message segments of 324 characters (maximum) to the H6000.

If the terminal is not in direct access mode with the

application program, the TPE must first write a journal record of

the message, do any necessary code conversion, and then spawn the

appropriate application program. (Spawning an application program

would be considered message control.) If a higher priority message

is ahead of this message, the message is put in a queue for later

processing. Low priority messages are processed on a "time availabl

basis.

If the terminal is in direct access mode, the TPE is bypassed

after the first message is received from the terminal. This

means that the communications executive functions must be

performed by the application program. In all cases, however.
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checkpoint writing must be done by the application program, since

the TPE does not do it.

When the application program sends a response to the terminal,

the logic is reversed from the input. If in direct access mode,

the application program must write a journal record and

checkpoint, and then segment the message to send it to the

DATANET 355. If not in direct mode, the TPE writes the journal

and segments the message. In the DATANET, GRTS compacts the

message to remove redundant characters and places it in the

appropriate output buffer. If the line is free, the message then

is sent to the remote terminal. (These last functions are line

control functions.)

3.4.1.4.3 Message Control (Transaction Processing)

As described in section 3.4.1.4.2, message control for

transaction processing is provided either by the TPE or by GCOS.

The TPE provides message control for the initial correction by

spawning a job, if necessary. After that, or if the terminal and

program were already in direct mode, GCOS sees to it that

terminal messages are delivered to the proper application program.

3.4.1.4.4 Application Control (Transaction Processing)

Application control for transaction processing is provided
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entirely by the application programs to which the terminals are

connected.

3.4.1.5 Time Sharing Mode

A Time Sharing Executive performs the functions of selecting,

allocating, dispatching, and swapping time-sharing user programs.

The executive is structured as a single privileged slave program

operating under the control of GECOS. It, in turn, suballocates

memory and subdi spatches the processor to individual time-sharing

user programs. The Time Sharing Executive also performs various

services for individual programs, including file system I/O,

terminal I/O, and creation and modification of files and

catalogs.

3.4.1.5.1 Line Control (Time Sharing)

Line control functions for time sharing terminals are provided

as described in section 3.4.1.3.1 for the line control of remote

access terminals.

3.4.1.5.2 Flow Control (Time Sharing)

There is essentially no flow control for time sharing

terminals, since they are asynchronous and may transmit a

character at any time. Clusters of terminals are configured on

the various line adaptors according to the speed of the

terminals, so that characters will not be lost due to overloading
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at that point. However, if the software cannot keep up with the

inflow of characters from the terminals, some may be lost.

3.4.1.5.3 Message Control (Time Sharing)

The Time Sharing Executive is responsible for delivery of

messages to the proper user program, and for indicating to CRTS

the originating user program of messages so that they may be sent

to the proper terminal.

3.4.1.5.4 Application Control (Time Sharing)

Application control for time sharing is provided by each of

the processors and/or programs to which the terminals are connected.

3.4.2 ARPANET

The ARPANET is a large packet-switching network of distributed

host computers, switching processors and high speed

communications lines which was sponsored by the Department of

Defense Advanced Research Projects Agency. The switching nodes,

called Interface Message Processors (IMPs) are connected to hosts

for the acceptance or delivery of messages from or to other

hosts, and they are connected to each other for the forwarding of

messages to their ultimate destination [3.5]. Messages which are

passed to the IMPs from the hosts for transmission through the

network are broken up by the IMPs into smaller transmission
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blocks called packets. Each of the packets of a message 1s

routed individually (and perhaps differently) towards its

destination, where it is reassembled by the final IMP and delivered

to the proper host. Software in the host referred to

as the Network Control Program (NCP) accepts the message from

the IMP and delivers it to the proper user process [3.6].

The ARPANET is a very complex communications network with

different types of physical and logical transmission occurring

between different points. The levels of transmission are

generally described in terms of the various levels of protocol

which have been implemented. We will apply the functional

analysis schema here to each of these levels of protocol.

3.4.2.1 Third-Level Protocol (Process to Process)

In the ARPANET, certain application control functions are

standardized as so-called third level protocols [3.7]. No one is

constrained to use these protocols (private protocols are

permitted and even encouraged for experimentation), but many of

them have achieved wide acceptance. The TELNET protocol, for

example, which provides for a common format for representing

messages from alphanumeric communications terminals, is subscribed

to by nearly all sites. The initial connection protocol is also

very widely used. Other protocols of this type include (at

varying levels of complete definition and acceptance) data
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transfer protocol, file transfer protocol, remote job submission

protocol and network graphics protocol.

These protocols all must concern themselves with message

semantics. Even the initial connection protocol, which might

appear to be a communications-oriented function, only utilizes

lower level functions (from the ARPA second level protocol) to

accomplish its tasks. Of course, if the communications model is

to be applied to the virtual communications between hosts (and

all intervening elements are to be considered as a black box),

then we could indeed consider the initial connection protocol to

be performing the flow control function.

3.4.2.1.1 Line Control (Process to Process)

Line control mechanisms at the process to process level are

not realized in hardware, but in the software procedures by which

processes access the operating system and/or the network control

program. (This access mechanism could involve the use of special

instructions such as "executive request" or "supervisor call").

These mechanisms are likely to differ from host to host. The

function performed, that of entering messages into the

communication system and initiating their transmission, is

entirely analogous to the functions performed by low level

software control of a hardware port or channel.
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3.4.2.1.2 Flow Control (Process to Process)

There is no explicit flow control mechanism at the process to

process level. Individual host operating systems may limit the

rate at which processes may enter messages into the network and

may refuse to accept messages at particular times, but these are

local conventions only. Similarly, particular third-level

protocols may establish conventions regarding flow control for

that application, but these conventions do not hold for

third-level protocols in general.

Note that the flow control which is imposed by the subnet for

message traffic between hosts is considered in section 3.4.2.2.2

and not here, since it is not a flow control mechanism for

messages between processes, but between hosts.

3.4.2.1.3 Message Control (Process to Process)

Message control functions are provided by routines in the

host's operating system or network control program. The

operating system must provide entry points for individual

processes to send and receive messages. Since operating system

routines are normally reentrant, provision must be made for

logically multiplexing messages between the operating system

and the network. All this really means is that the operating system

must maintain tables to permit it to associate network addresses

with local processes so that messages may be delivered to their

intended recipient.

Communications between processes and the operating system will
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be in terms of messages of up to 8095 bits in length, including

control information such as message address. In addition, there

may be local conventions for operating system linkages, transfer

of control, and error recovery routines. These conventions are

likely to be different for each host system.

3.4.2.1.4 Application Control (Process to Process)

At this level of protocol, message semantics are analyzed for

the purpose of application control. Each different protocol at

this level will have its own formats and codes for communicating

information and control. Communications between processes at

this level are no different than if the processes were located in

the same host computer and communicated through the operating system.

3.4.2.2 Second-Level Protocol (Host to Host)

The second-level or host to host protocol is concerned with

the exchange of messages (as opposed to simply packets) between

the operating systems or executive level routines in each host.

Each operating system treats the entire subnet as a "black box"

communications device accessible through the host-IMP interface.

The operating system multiplexes messages which may originate

from various processes in the host and dispatches them through

that interface. The communications process within the subnet is

of no concern at this level.



3.4.2.2.1 Line Control (Host to Host)

Hosts comnunicate among themselves in terms of variable length

messages which may be up to a maximum of 8095 bits in length

(including control fields). The second-level or host to IMP

protocol is considered as the line control procedure at this

level

.

3.4.2.2.2 Flow Control (Host to Host)

: The semantics of the second-level protocol is largely oriented

towards providing flow control for third-level messages. There

are commands for opening and closing logical connections,

allocating and releasing buffers for communications according to

specified message sizes, and for various test and error recovery

capabilities. In communications jargon, these commands perform

the call establishment function for process to process communication.

Flow control for the second-level messages themselves is

provided by the conventions for host to host protocol between

network control programs in different hosts, and by subnet flow

control which applies to all messages.

The semantics of the second-level protocol indicates which

commands must be used in answer to which other commands. For

example, a request for buffer allocation must be answered by

acceptance or refusal of the request. Thus, the requirements to
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perform transactions in a specified order provide a sort of flow

control at the host to host level.

More forceful flow control over physical messages is imposed

by the subnet. Only four messages are permitted to be in transit

at any one time between any pair of source and destination IMPs.

(Recall that up to four hosts can share any IMP). This flow

control mechanism is imposed without regard to the level of

information conveyed in the message.

3.4.2.2.3 Message Control (Host to Host)

Message control functions are provided at this level by

internal linkages in the network control program between the

routines which realize the host to host protocol and routines

which control the host-IMP interface. Messages are delivered to

the proper host by the subnet according to addresses passed from

the second-level to the first-level protocol routines and

inserted in the proper field in the message leader.

3.4.2.2.4 Application Control (Host to Host)

Application control is accomplished by the use of the commands

provided by the host-host protocol:

Connection Establishment - Two commands are provided for

the purpose of establishing a one-way logical connection.

These commands identify sending and receiving internal
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addresses and connection byte size. The commands must be

exchanged between sender and recipient.

Connection Termination - A single command is provided for

closing connections. Each side must send and receive this

command before the connection is terminated.

Flow Control - Three commands are provided for allocating

buffers for the purpose of flow control. One command requests

a buffer allocation, a second command grants it, and a final

command releases the buffer.

Interrupts - Two commands are provided for sending an

"interrupt" by either sender or receiver. The meaning of the

interrupt is not defined at this level, but is available for

use by higher levels of protocol.

Test Inquiry - A command and a reply are provided for

reinitial izating connections. The semantics of this command

pair may also provide direct flow control at the host to host

level by suspending communications over a correction

period of time.

Errors - A command is provided for conveying error

information to the hosts.
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3.4.2.3 First-Level Protocol (Host to IMP)

Most hosts in the ARPANET are connected to local IMPs by means

of a "special host interface" which is a high speed serial

interface designed to permit dissimilar hosts to be connected to

IMPs in a relatively standard manner. Data are exchanged through

this interface a bit at a time at a rate determined by the host

in question.

A "very distant host" interface is also supported which

permits a host to interface with an IMP through a communications

line in essentially the same way that IMPs are connected with

each other. In this case, the host and IMP communicate using a

binary synchronous line discipline and at a rate determined by

the modems employed.

Messages between host and IMP can be for the purpose of

dispatching or receiving messages to or from other hosts or to

exchange control information between host and IMP.

3.4.2.3.1 Line Control (Host to IMP)

The special host interface is implemented as a standard

portion which is built into each IMP and a non-standard portion

which must be designed for each different type of host. The

interface is designed to allow messages to flow in both

directions at once. A bit serial interface was designed partly

because it required fewer lines for electrical interfacing and

partly to accommodate the different word lengths of different

host computers.
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The host interface operates asynchronously, each data bit

being passed across the interface via a "Ready for Next

Bit/There's Your Bit" handshake procedure. This technique

permits the bit rate to adjust tothe slower member of the pair.

A special utility routine or access method must be coded for the

host to control this interface. Hosts may have this control

routine implemented in different ways, so no generalizations may

be made about the line control strategies at this level in the host.

When a very distant host interface is employed, line control

functions are accomplished in the same manner as for IMP-IMP

communication. This is described in section 3.4.2.4.1.

3.4.2.3.2 Flow Control (Host to IMP)

Due to the asynchronous nature of the interface between the

host and the IMP, there are no flow control problems at this

level. If either host or IMP is unable to accommodate incoming

messages at a particular time, either may inhibit the flow of

data through the interface by itself.

In the case of a very distant host interface, flow control is

accomplished in a manner similar to that employed for IMP-IMP

communication (described in section 3.4.2.4.2). However, for the

very distant host interface, there are only two logical channels

established, so that only two unacknowledged messages may be

outstanding at any point in time.
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3.4.2.3.3 Message Control (Host to IMP)

Message control requirements at the host-IMP level are

minimal. The IMP must have the ability to recognize messages

from different hosts, if there is more than one host connected to

it, but each host communicates only with its own IMP at this level.

3.4.2.3.4 Application Control (Host to IMP)

Application control functions at the host-IMP level are

indicated by a 32-bit leader which occupies the first part of the

text of all messages between host and IMP. The leader contains

fields which indicate the type of the message and its

destination. (Messages may be destined for some distant host

or for a fake host in the IMP.) Message types may be regular

messages, requests for next message (RFNM), or various types of

error messages. Programs in the host and in the IMP (routines in

the network control program in the host and routines in IMPSYS in

the IMP) analyze the content of the leader and take appropriate

acti on

.

3.4.2.4 Zero-Level Protocol (IMP to IMP)

The IMPS in the subnet communicate among themselves for the

purposes of forwarding messages originating from the hosts and

exchanging routing and other control information. Most IMPs are
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connected to at least two other IMPs by means of terrestrial

leased lines operating at 50 Kbps; however, some IMPs are

connected by lines operating at other speeds, both faster and

slower, and some satellite links are in use. Modems are in use

at the end of nearly all lines and a binary synchronous line

control procedure is used for the IMP to IMP data exchange.

3.4.2.4.1 Line Control (IMP to IMP)

The IMPs in the subnet forward messages from the hosts and

exchange routing and control information in units called packets.

With the exception noted below, packets are limited in length to

1024 bits of text (including control fields). Packets are

transmitted between IMPs as the text portion of a physical

transmission block conforming to the format shown in Figure 3-2.

Special hardware is included in the line interface units of

the IMPs to facilitate the use of this line control procedure.

Specifically, the text framing characters (OLE STX and OLE ETX)

are recognized by hardware, embedded OLE characters are handled

by hardware, and the cyclic redundancy checksum is computed by

hardware. The doubling of DLE characters which occurs as part of

the test of the packet (in order to distinguish them from control

characters) provides the exception to the 1024-bit packet length

limitation. Packets may be up to nearly twice as long if many

DLE characters occur naturally as part of the packet text;

however, this extra length will only be evident during
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transmission and not in the memory of either the transmitting or

receiving IMP, since the extra DLE characters are inserted and

removed by hardware as part of the transmission process.

Control of the lines and their interfaces is effected by the

program in each IMP which designates input and output buffers for

each line/interface. The program is highly interrupt driven

;

once an input/output operation has been initiated on a particular

line, it continues without active processor intervention until

completion, when the processor is interrupted and notified.

3.4.2.4.2 Flow Control (IMP to IMP)

Two flow control mechanisms are relevant at the IMP to IMP

level. There is a mechanism for governing the flow of any type

of packets between adjacent IMPs, and a separate mechanism for

governing the flow of host message packets between source and

destination IMPs (the IMPs connected to the source and

destination hosts, respectively).

The line control procedure between IMPs requires that all

packets be acknowledged for each hop (transmission from IMP to

IMP). However, for purposes of maintaining a high rate of

data flow to make efficient utilization of the full duplex lines,

the flow control system tries to avoid waiting for

acknowledgrrents. The mechanism employed permits up to eight

unacknowledgments messages to be outstanding at any given time. By

reserving a bit in the packet header a logical control field at
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the start of each packet's text (field) for each possible

outstanding message, several messages may be acknowledged at

once. Packets are automatically retransmitted when it is noted

that they have not been acknowledged.

The order of packets is only of significance to sending and

receiving IMPs, since a message, which may consist of up to eight

packets, must be reassembled at the receiving IMP before delivery

to its host. A special flow control mechanism was instituted

between sending and receiving IMPs when it was realized that

insufficient buffer space in the receiving IMP to reassemble all

the packets of a single message (bec*use that space was occupied

by the packets of other partially assembled messages) could crash

the network. The mechanism requires that reassembly space for

multi-packet messages be reserved in advance, before all the

constituent packets are released into the subnet by the sending

IMP. For the sake of efficiency, the request for a buffer

allocation is sent "piggyback" with the first packet of the

message. For simplicity in buffer management, space is allocated

in eight packet blocks if it is available, and notice of such

allocation is sent back to the source IMP, at which time the

remaining packets are released. If no space is presently

available, no allocation notice is sent, and the source IMP must

try again.
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3.4.2.4.2 Message Control (IMP to IMP)

Each packet transmitted between IMPs in the subnet is a

complete message so far as the IMPs are concerned. That message

either tells the IMP that it must forward data to another IMP, or

it contains control information for one of a number of special

programs in the IMP. A field at the start of the text portion in

each packet identifies the packet as one to be forwarded or for

which IMP program it is intended. This identification of packet

type provides all the message control which is needed at this

level

.

3.4.2.4.3 Application Control (IMP to IMP)

Packets transmitted from IMP to IMP are either to be passed (

until they reach the destination IMP for reassembly and delivery

to the host, or they are intended for one of a number of special

background programs in the IMP itself. The background programs a

each treated as a "fake host" so that selected hosts and IMPs

can communicate with them and so that existing routines in the

IMP can be used to process this type of message. A "For IMP" bit

or "From IMP" bit in the leader (the control field at the start

of the text of each packet) indicates that a particular message

is to or from a fake host program in the IMP.

The background programs perform a variety of functions: TTY

used to handle the IMP Teletype traffic; DEBUG, to inspect or

change IMP core memory; TRACE, to transmit collected information

about traced packets; STATISTICS, to take and transmit network



^ and IMP statistics; and DISCARD, to throw away packets. Other

routines, which send incomplete transmission messages, send

allocations, return givebacks, and send RFNMs, also reside in the

background program.

Bits in the control field at the start of the packet text (the

leader) indicate which background program is associated with the

message. The text of the message is naturally application

dependent.

3.5 Interface Considerations for WWMCCS

The foregoing illustrates that the suggested model is useful in developing

comparisons of functions accomplished in the different modes and components in

the present WWMCCS. A complete and perhaps more detailed development would

allow a continuing commonality analysis during the near- term evolution of

WWMCCS (e.g. the replacement of DN 355 - CRTS by the projected NPS software,

- or alteration of the HIS 6000 - PWIN interface). Such analysis would permit

identifying trends toward replication or incompatibility in functions at

each system interface.

Returning, however, to the envisioned future WWMCCS network, figure 2-2,

it is clear that comparisons should focus on the evolution toward the major

interfaces: user to host, host to interface processor, interface processor

to communications network. In the present WWMCCS, these interfaces exist in

several forms [3.7,3.8]. For example, the host may interface to remote users through

DN 355 - GRTS, through PWIN, or (soon) through AUTODIN. An economical and

organized evolution toward the model of figure 2-2 would be guided then by

analysis of the following potential standards:
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(1) A standard line control discipline applicable to PWIN,

future IDN, and possibly other switched, synchronous

communications.

(2) A standard interface processor software concept, allowing

flexibility in interfacing to several communications

facilities as well as host software.

(3) Standard user-oriented software functions (protocols) for

readily accomplishing resource-sharing objectives, despite

the explicit communications implementation.

These standards seem promising in solving the interim interoperability

problems, and meeting the ultimate configuration goal. Hence, they have

been investigated further with results given in Sections 4.5, and 6.
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4.0 ANALYSIS OF COMMUNICATIONS CONTROL PROCEDURES

4.1 Purpose and Scope

The transmission of intelligible information betvyeen a generator

of and responder to that information is at present based upon a data

communications control procedure* [4.1] that specifies appropriate

transmission times and defines appropriate message structures. The

character oriented discipline described in the ANSI Standard X3.28 [4.2]

and based on ASCII Code, represents the culmination of efforts to use a

subset of a character code for line control purposes. The proliferation

of time-sharing terminals and the rapid development of computer

networking has multiplied the complexity of the control problem to

such an extent as to foster the development of a suggested bit-oriented

control procedure. At the international level, this is embodied in

the High-Level Data Link Control Procedures (HDLC) [4.3] and at the

national level, in the very similar Advanced Data Communication Control

Procedure (ADCCP) [4.4]. Some of the advantages of this bit-oriented

control procedure are that it reduces the total number of bits needed

for control, allows for a uniform format for and a broader variety of

control information, lends itself to modularity in the addressing

capability, and provides for explicit addressing of all conmands and

responses - a useful feature for achieving reliability in switched

networks.

In recent years, the technique of Finite State Representation ([4.1,

4.5]), developed in the field of finite state automata, has been adopted

for use in the description of these data comnunications control procedures.

This tool enables one to specify, to as detailed a level as desired, the

allowable control command/response sequences for two conmunicating

stations. This specification can be made in the form of a state-event

matrix or its equivalent graph. A particular station's communications

software, which is executed between the occurrence of events (the sending

of commands or responses), can be described and located in the appropriate

^Al ternative names for this are: data link control procedure, line protocol,

line discipline, or message discipline. The naiiie used in this report

follows ANSI terminology.
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boxes of the state-event matrix, thus completely representing the logic

accompanying the transmission between two stations. It shall be shown

in the subsequent sections how this tool might be used to compare the

complexity of the two disciplines (X3.28 and ADCCP) as used in the

control procedures of a single data link in a packet comnunications

network such as ARPA and PWIN.

4.2 Finite State Representation and Current Use
of X3. 28-1 971 in ARPA and PWIIM

The Finite State Representation technique describes a system in

terms of a finite number of states* it can assume and a finite number

of events (its alphabet of commands and responses) that can trigger its

transition from one state to another. The discussion will now proceed

to describe the systems and alphabets used in data communications with

special emphasis on ARPANET and PWIN so that the method becomes clear.

4.2.1 The Data Cormunications Link Model : In data communications, the

specific system under consideration is derived from some category of link

configuration (multipoint or point-to-point, switched or non-switched)

and directionality (one-way, two-way alternate [half-duplex], or two-way

simultaneous [ful 1 -duplex]) among a set of conmunicating stations. These

stations can be initiators of messages (a primary), responders to messages

(a secondary) or both. When a station is either a primary or a secondary

but not both, one is dealing with a centralized operation. When each

station can be either a primary or a secondary, one has a decentralized

operation.

At the most fundamental physical link level, all of the categories

of comnunications systems can be described by means of a model that uses

a primary link control (PLC), located at the primary, communicating with

a secondary link control (SLC), located at the secondary. A centralized

*A state of a transmission system is defined in terms of its being ready

to send or ready to receive a command or response.
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primary/ secondary communication with two-way alternate transmission can

be represented by a model with two sublinks, as shown in figure 4-la [4.4].

The information traverses the links alternately within the closed path

shown. A decentralized primary/ primary communication system also has two

sublinks, but they are modelled as shown in figure 4-1 b [4.4]. For two-way

alternate, two closed paths are possible as shown. The decision as to

which path is used in any transmission depends on which station assumes

the role of the primary and which one becomes the secondary. Once this

decision is made, the model is exactly the same as in figure 4-la. For

two-way simultaneous transmission, these two paths remain the same but

must be interleaved along the sublinks properly.

It is the model of figure 4-1 b that is appropriate for the IMP-IMP

links in ARPANET and PWIM since transmission is always full -duplex and

IMPs are always both originators of and responders to messages.

4.2.2 Finite State Graph/Matrix-Level 1 : The alphabet of commands and

responses chosen for a particular finite state graph or matrix is dependent

upon the level of explicitness desired. For the simplest level (level 1 in

reference [4-1]) of a system such as the two-way alternate link shown in

figure 4-la, one transmits an acceptable sequence of characters y which

causes a transition from state P (primary ready to send [generate] a message)

to state S (secondary ready to send [respond to] message). When the

secondary responds in the form of an acceptable string of characters i),

the system reverts to state P. Figure 4-2a shows what has occurred in

the system in the form of a finite state graph while figure 4-2b contains

its equivalent matrix. Any unexpected combination of alphabet and state

is termed an error and denoted by E.

' It should be noted that there is a fundamental duality imbedded in

this model of the control procedure. When the primary is sending a

message (a command), the secondary is receiving that message (the same

command) and, similarly when the secondary is sending a message (a response),

the primary is receiving that message (the same response). One can describe

the states of the system either from the point of view of 'ready to send'

or 'ready to receive'. However, this duality disappears when the
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communications software is introduced into the picture since the actions

taken at the sender (by its software) must, in general, differ from those

taken at the receiver (by its software).

The simplest level of the graph and matrix for the primary/primary

link model in the two-way alternate case is that shown in figures 4-3a

and 4-3b. Close examination shows that this case is just a linear

superposition of two primary/ secondary links finite state graphs. The

case of two-way simultaneous primary/ primary transmission requires the

proper interleaving of the information traversing sublinks 1 and 2.

This may be accomplished by the rule that when station 1 sends a message,

station 2 sends either nothing, synchronization symbols, or a message of

the same type. It is not necessary for the stations to maintain matching

mutual character-by-character sequences. The finite state graph of the

two interleaved half-duplex transmissions uses concepts found in parallel

computation and Petrie nets. Since the differences between the X3. 28-1 971

and ADCCP protocols show up before reaching this level of complexity,

implications of interleaving will not be discussed for the IMP-IMP protocols.

4.2.3 Finite State Graph/Matrix-Level 2 : In the case of IMP-IMP transmission,

the string of characters y during message transfer phase is always a

packet* of information and the string of characters y is an 'ack' or

acknowledgement of the packet. At the second level of expl ici tness,

one can explode the P and S states into substates in which the system

is ready to send different types of messages. For the ARPA and PWIN

networks these messages can be one of three types of packets: store

and forward packets (sfp), routing packets (rp), and null packets (np).

The store and forward packets contain information that is being forwarded

through the network; routing packets contain path length and delay time

information for adjacent IMPS; and null packets contain acknowledgement

*The message at the Host-Host level of communication is always broken down

into standarized packets (essentially a form of blocking) at IMP-IMP level.
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information between communicating IMPS [4.7]. Store and forward

packets as well as routing packets, additionally piggy-back acknowledgement

information between IMPS to speed the traffic through the network.

Store and forward packets and routing packets are sent by a primary,

while null packets are sent by a secondary. See figure 4-4a and 4-4b

for the second level graph of the primary/ primary two-way alternate

case. Note that there is no provision for acknowledging a routing

packet or a null packet. Also, note that only a limited set of softv/are

actions has been specified in the matrix.

4.2.4 Finite State Graph/Matrix-Level 3 : The third level of explicitness

can be shown by exploding the sending of a packet (any of the three) into

its component parts (see figure 4-5). The differences in the three packets

can be found in the number of header words used. The protocol, on the line,

used by ARPA and PWIN, contains four of the ten ASCII communication control

characters (SYN, DLE, STX, and ETX). Interpacket synchronization is achieved

with a minimum of two SYN characters; framing of a packet is achieved with the

two character sequences DLE STX and DLE ETX. The first header word in a

store and forward packet contains the logical channel number for that

packet and any acknowledgements for these logical channels. There are

currently eight logical channels from one IMP to the next. This logical

channel number performs a link address function which allows the IMPs to

tag the acknowledgements properly. The routing and null packets do not

use a channel number since there is no acknowledgement to these two type

packets. Although the earlier descriptions of the line protocol indicate

that the 24 check characters (CRC) consist of a cyclic redundancy check,

a more recent report by BBN [4.8] indicates that a faster, but less

accurate checksum technique is actually in use. A protocol feature that

has been added to produce transparency is the addition of DLE everytime

a DLE is found in the packet (states 4 to 5 in figure 4-4a). The contents

of the header words for the different packets can be found in reference [4.9].
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Error control is implicit in this protocol in that bad packets and

packets for which there is no buffer space are discarded with no

acknowledgement. Before every retransmission, the checksum is

recalculated to see whether the problem is an intra-IMP failure.

One could continue this process of expanding on the states of

this system down to the bit level, but it is not necessary for comparing

X3.28 (as implemented- in ARPANET and PWIN) and ADCCP protocols at the

IMP-IMP level of communication. The header words on a store and forward

packet, other than the first one, contain bit oriented control information

for the two outer levels of communication. Source IMP-Sink IMP and Host-Host.

It is out of the scope of this discussion to consider these protocols.

4.3 Possible Implementation of ADCCP for ARPANET and PWIN

Assuming ARPANET and PWIN use the same overall protocol at the IMP-IMP

level of communication, one can ask how ADCCP might be implemented at the

level 3 graph shown in figure 4-5. Of all the ten commands and twelve

responses (control words) described in ADCCP, only two are applicable

here: the command SR (select and respond) and the response AC (non-delayed

accept or acknowledge). For speedy transmission of packets through the

network 'naks' (not accept) and delayed responses are not used. The checking

of the IMP software code has become quite elaborate while the network is

in operation so that a prolonged period of time for non-acceptance of a

packet usually indicates a problem in the establishment of the line and

shifts the IMP's attention to that possibility while the packet is routed

via another link [4.8].

The framing structure for a message in ADCCP consists of the sequence

F, A, C, INFO, FCS, F where

F = 8 bit flag sequence (01111110)

A = Secondary Station Link Address Field (multiple of 8 bits)

C = Control Field (8 or 16 bits) with Command/Response and Its Sequence Number

INFO = Information Field

FCS ~ Frame Check Sequence (a minimum of 16 bits, incremented in

octets, for cyclic redundancy check)
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The comTiand SR could be used for both the store and forward packet and

the routing packet while the AC response could be used for the routing

packet. The address field, using two octets, could still contain the

channel number of the packet in the first octet (if applicable) and the

acknowledgements in the second octet. The control field, which enables

one to sequentially number the control words as well as specify them

need not use the numbering scheme since delayed responses and cormands

are not allowed. (See figure 4-6 for finite state graph.) Transparency

is achieved by checking between flags for sequences of five ones and

inserting a zero after each such string. A minimum of two flags frames

every message and is also used for synchronization purposes.

If one examines figures 4-5 and 4-6, one immediately sees that the

framing structure has been simplified by using two eight bit characters

(FF) of one type rather than four eight bit characters with two sequence

structures (SYN SYN DLE STX and DLE ETX SYN SYN) and four character

types (SYN, DLE, STX, ETX). The interior of the packet has a single

octet added for the two control words SR and AC so that the overall

structure is still simpler than in the present X3.28 implementation.

One would have to carefully compare the manner of implementing the

transparency feature to determine which one is more efficient. Certainly,

the adding of a single 0 bit in ADCCP adds less to the line traffic than

an eight bit DLE character, but a crucial determining factor would be the

comparative frequency of a string of five ones to a DLE character.

An overall advantage of ADCCP is that it can be separated at the

outer protocol levels. As suggested in reference [4.6], the protocol

in a computer network can be described via three nested levels (see

figure 4-7a). The A link is the innermost IMP-IMP level and uses the format

of figure 4-6. The control information for the intermediate Source IMP-

Sink IMP level (the B link) would then be located at the beginning of the

packet that transfers the system from states 4 to 6 in figure 4-6.

Similarly, for the outermost Host-Host level (C link) the control

information would appear closest to the text information in the

packet. This is a last in - first out type sequencing (see figure 4-7b).
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The B and C levels could take advantage of the wide range of coirmands

appropriate for a primary/primary link and the state variables

describing the sequencing of the coimands and responses. With the

objective of achieving standardization and efficiency, it would be

very useful to examine the implementation of ADCCP at the outer levels.

4.4 Performance Comparisons of Link Control Disciplines

The two link control disciplines presently under consideration for

transmitting packets on the backbone network of the future DCS, the

Integrated Data Network (IDN) [2.2], will be compared in this section.

The two disciplines are: (1) the character oriented protocol used for

communication between the IMF's in tne ARPA network [4,9] , and (2) the

bit oriented protocol proposed by the American National Standards

Institute (ANSI) known as the Advanced Data Communications Control

Procedure (ADCCP) [4. 4]. The network configuration to be used as a base for

the protocol comparisons is that portion of the store and forward

packet switching ARPA network used for IMP to IMP communication.

4.4.1 Performance Measurements for a Communication System : The American

National Standard Institute Task Group X3S3.5 identifies and defines four

independent performance criteria that together measure the total

performance of a system. They are: (1) The Transfer Rate of Information

Bits (TRIB) that reflects the capacity of the system to handle information,

(2) Transfer Overhead Time (TOT) that reflects the delay factors associated

with the data communication process, (3) Residual Error Rate (RER) that

reflects the accuracy or freedom from undetected errors, and (4) Availability

(A) that measures the ability of a system to operate over a period of time

without failure [4.10, 4.11].
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Prior to developing the above performance determinations, Task

Group X3S3.5 found it necessary to develop a general functional

description of the system to which the performance measurements apply

and to identify five possible phases of data communication, each

associated with a flow of activity.

Unfortunately, not all possible systems and control procedures

are applicable to the standards defined in Reference 4.10. Examples

of systems and control procedures not covered by Reference 4.10 are:

full duplex systems, packet switching systems, and bit oriented control

procedures. Nor does the proposed standard address the total system

performance for systems composed of more than one information path.

Task Group X3S3.5 is presently working on extending the applications

to include, among other things, TRIB calculations for two way simultaneous

links using ADCCP. The following questions under discussion, but to date

still unanswered, illustrate the kind of detailed thinking required for

formulating a set of standards:

(1) "How many characters should the interframe time fill

contain?"

(2) "What should be the reference points of a time

measurement?"

(3) "Are different performance criteria needed for the

different modes of operation?"

(4) "Should transmission time include acknowledgements

(explicit or implicit)?"

(5) "Is TRIB to be determined on a link or network basis?"

One can see that there still remains an enormous amount of work to

be done before a set of universal performance measurement standards can

be accepted. The following discussion will summarize the ANSI Task

Group X3S3.5 proposed standards of 1971 with comments about their use.
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4.4.1.1 System Description . The functional elements describing a

system are illustrated in figure 4-8. This description can be extended

to any level of comnunication in which imbedded levels of communication

exist. One such network is the ARPA network illustrated in figure 4-9.

One can possibly calculate performance measurements for each level -

User to User, Host to Host, IMP to IMP, or Host to IMP. However, since

the links between Host to Host and User to User are logical links, a

more complex analysis than for physical links such as IMP to IMP or

Host to IMP, would be required for determining performance measurements.

Outer level measurements would necessarily be a function of the performance

of all imbedded levels of communications. A precise measurement at any

level might require data describing variables such as transmission delays,

buffer capacities, error rates for all physical links and nodes, line

speeds, traffic flow, length of data, etc. Other factors effecting the

performance at any level are the control disciplines and software techniques

for processing and queuing messages. The system description aids one in

defining the end points of measurements and elements effecting the

different performance criteria of a system.

The system for comparing the two modes of discipline discussed in

this section is the lowest communicatics^ leva! in the ARPA network, IMP

to IMP. Figure 4-10 illustrates the elements in this portion of the

ARPA network and how they relate to the functional system elements

illustrated in figure 4-8. Note that an IMP contains the communication

control logic and buffers for controlling the traffic flow.
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The transmission facilities of the Information Transfer Channel

are synchronous, full duplex, point to point, and non-switched. The

IMP to IMP link can further be described as belonging to the Primary to

Primary Class 2 procedure class as described in reference 4.4, Each

station acts as a primary for data initiated at its own site and as a

secondary for receiving data initiated at the other site. Deferred

responses are not permitted.

4.4.1.2 Phases of Data Communication . The five phases of comnunication

defined by the ANSI Task Group X3S3.5 are as follows:

(1) Connection Establishment Phase - The information transfer

channel is established during this phase.

(2) The Link Establishment Phase - The data terminal elements

are identified during this phase. Supervisory functions

such as polling and selecting are transmitted during this

phase.

(3) The Information Transfer Phase - Messages and associated

supervisory functions (i.e, acknowledgements and retransmissions

of erroneous messages) are transmitted over the information

path from the source data terminal to the sink data terminal.

(4) Link Termination Phase

(5) Connection Clearing Phase

Phases 1 and 5 do not apply to the subject network since it is non-

switched. Phases 2 and 4 cannot be separated from phase 3 in a bit

oriented protocol since the three phases are not well defined. Therefore,

these phases would have to be redefined for bit oriented protocol.
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4.4.1.3 Performance Criteria . The Transfer Overhead Time (TOT) measures

the time required to establish and disestablish and Information Path in

order to effect the information transfer. It is the ratio of the sum of

the elapsed time in phases 1, 2, 4, and 5 divided by the number of

information bits accepted by the receiver. Since phases 1, 2, 4, and 5

are undefined for IMP to IMP communication, TOT cannot be used as a

performance criteria for comparing the two protocols discussed in this

section.

The Residual Error Rate (RER) and Availability (A) involves

characteristics that are generally hardware oriented - rate of undetected

errors, and down time. These two performance criteria are independent

of the control procedure used and will therefore not be considered in

this discussion.

This leaves the Transfer Rate of Information (TRIB) as the only

performance criteria for which a meaningful comparison can be made.

TRIB is defined in Reference 4.10 as "The ratio of the number of information

bits accepted by the receiving terminal configuration during a single

Information Transfer Phase (Phase 3) to the duration of that Information

Transfer Path". In defining information bits. Reference 4.10 assumes that

message text and controls are composed from a subset of USASCII characters.

This definition of TRIB is unacceptable for the TRIB comparison of the two

disciplines to be discussed in this section. First, TRIB is defined in

terms of Phase 3. It was previously shown that Phase 3 is undefined for

the two disciplines. Second, the message text of the packets to be

discussed later are bit oriented. The calculation of TRIB in this report

can therefore not conform to any existing standards. Instead, the TRIB

calculations will be based on suggestions presented in minutes of Task

Group X3S3.5. Arbitrary assumptions will be made for problems still

unresolved.
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Mr. R. T. Moore of NBS, a member of ANSI Task Group X3S3.5, drafted

a definition of TRIB on March 1, 1974, that is applicable to ADCCP. The

following are excerpts from this definition:

"TRIB is the number of Information Bits transferred on a data

communication link divided by the time required for their

transfer, acceptance and the availability for release of the

buffer storage space they occupied for the purpose of

contingent retransmission."

"In a Primary - to - Primary link configuration, it is the sum

of the Information Bits transmitted by a primary and received

by the colocated secondary."

"The time used in determining TRIB shall not include periods

when interframe time fill is used in the absence of message

traffic. The time required for frame retransmission, abort

sequences, or inter-frame time fill for reasons other than

lack of message traffic, is included in the determination

of TRIB."

"Information Bits are all the bits within the information field

of a frame except those zeros stuffed in for flag protection.

Flags, address, control octets and frame check sequence bits

occur outside the information field and are not counted as

Information Bi ts.

"

The effect of a control discipline on the TRIB will in large part

be due to the overhead bits used in framing the packets and the added

bits needed for message transparency. Error recovery procedures can

also affect the TRIB value. Systems characteristics such as the error

rate, speed of the line, etc., will not be considered. Nor will the

variation in packet lengths be considered. An analysis of the effect

of message length on the TRIB value can be found in Reference 4,12.
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4.4.2 Description of the Two Control Disciplines :

4.4.2.1 Bit Oriented ADCCP . Figure 4-1 la illustrates the ADCCP framing

format for a transmitted packet. Since this procedure allows options to

the implementer, a choice will be made wherever appropriate.

The flag sequence (F) is a sequence of 8 bits (01111110) which serves

a dual purpose. F is a synchronization character and a message delimiter.

Since the number of flags between packets is not a firm number, we will

assume the requirement of two flags between frames. This is comparable

to the two SYNs in the ARPA network.

The secondary station link address Field (A) is a variable length

field N octets long (N^l). A zero in the first bit of each octet signals

the addition of another octet. A one in the first bit of an octet indicates

that it is the last octet in the address field. It will be assumed for

this discussion that the address field is one octet in length.

The control field (C) contains the commands, responses, and sequence

numbers of the packets transmitted from one IMP to another IMP. This

field too is described as N octets and N will be assumed equal to one.

The frame check sequence is similar to ARPA's the same as the 24 bit

check cyclic is a redundancy check in the ARPA protocol. Since the hardware

13 responsible for the check, the length of FCS will be assumed equal to the

cyclic redundancy check in ARPA (24 bits).

Transparency in ADCCP is accomplished by inserting a zero bit following

five contiguous one bits anywhere between the beginning and ending flags

of the frame.

All sequentially numbered command frames must be transmitted and

received in sequence. The primary expects an acknowledgement for all

sequentially numbered commands. State variables are used by the receiver

to keep a record of the accepted command frames requiring acknowledgement.

If an acknowledgement is received by the Primary for command sequence N, then

it is assumed that all previous nui.ibared command frames are acknowledged. If

a command frame is in error, the exception state variable (E) is set and

all succeeding command frames are discarded. All response frames will be

assumed to contain no information field.
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4.4.2.2 Character Oriented IMP to IMP ARPA Control Procedure . The

ARPA protocol requires two SYN characters between frames. The message

delimiters (DLE STX and DLE ETX) are each two eight bit characters.

The end of Test (DLE ETX) delimiter is followed by a 24 bit cyclic

redundancy check (CCl, CC2, CCS). (See figure 4-1 lb.)

A five sixteen bit word header is tacked on to the original packet

by the source IMP before the packet is routed to the destination Host.

The first word contains the equivalent of an address and sequence

number for the neighboring IMP. The channel number with its associated

odd/even bit field can be compared to the sequence number in the ADCCP

protocol. The channel number is assigned by the sending IMP and the

corresponding acknowledge bits are identified by the receiving IMP.

The first work is peeled off by the receiving IMP and replaced with a

similar word before advancing the packet to the next IMP in the route.

The remaining four words contain, essentially, addresses, commands,

responses, and sequence numbers for upper level communication. Fields

such as priority and routing, will be ignored in this discussion. All

upper level communication control words will be considered part of the

information packet transmitted between IMPs. This assumption implies

that an equal number of words are used for upper level communication in

the ADCCP protocol. The heading field in figure 4-llb is thus reduced

to 16 bits and the maximum size information field is increased to 67 words

Transparency is provided by inserting a DLE character after all DLE

characters that appear in the heading or packet.

Only one command and one response are used in the ARPA protocol. The

command SELECT AND RESPOND is implied whenever a packet is transmitted.

A negative acknowledgement is also implied after a given interval of time

has elapsed and no positive acknowledgement has been received by the

sender. The sender after an implied negative acknovvledgement (no response

retransmits the packet. Packets are individually acknowledged by the

receiver by storing a one in the appropriate acknowledgement bit of the

header word. Eight packets can be acknowledged in one frame, and it can

be "piggy-backed" on a command frame. Acknowledgements do not have to be

in sequence. The queuing technique used for storing the packets enables

the sender to retransmit a single packet that may be out of sequence.
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4.4.3 Performance Comparisons :

It would be unrealistic at this time to compare TRIB values for an

implemented protocol (ARPA) and a theoretical protocol (ADCCP), using

data transmissions for which one would have to make unwarranted assumptions.

Thus, no assumptions will be made with respect to the start-up

procedure. The time interval in each example will be for the transmission

of eight maximum length packets. ARPA cannot transmit more than eight

packets without an acknowledgement.

The examples in figures 4-12 through 4-15 compare the TRIB values of

the protocols for normal transmission, an error in the transmission of a

packet, an error in one of the acknowledgements, and for achieving

transparency. It is beyond the scope of this report

to demonstrate the immediate negative responses available in ADCCP in

contrast to ARPA's time-out. Nor will an attempt be made to estimate the

probability of a specific i)it configuration occurring in a packet (i.e.,

01111110 or OLE).

4.4.3.1 Assumptions . The following will be assumed for both protocols:

(1) The number of information bits per packet is 1072,

(2) Overhead bits due to the address, sequence number and command/

response in the header equals 16 bits.

(3) The cyclic redundancy check equals 24 bits.

(4) The transmission time interval will start with the first of

the two interframe synchronization characters and stop with

the second interframe flag.

(5) The time for transmitting two characters will be allowed for the

propagation delay of a packet and the secondary station reaction

time.

(6) Only one station is transmitting packets.

(7) The command is SELECT and RESPOND.

Additional assumptions made for the ARPA protocol are: (1) Only

one acknowledgement is sent for all eight packets and it is sent in a

"null" packet of 16 bits , (2) The time-out before a packet is

retransmitted equals the time to transmit and acknowledge eight

maximum size packets.
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4.4.3.2 Examples . The following defines the notations used in the

examples in figure 4-12 through 4-15:

Ci <-* The comnand header for transmitting packet i.

Ri <—^ A positive acknowledgement for command i.

NRi A negative acknowledgement for command i.

P —> S Means transmission from the primary station

to the secondary station.

S —> P Means transmission from the secondary station

to the primary station.

X Indicates an error.
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4.5 Conclusions

The preceding analyses are not, by any means, a complete evaluation

of ADCCP for packet-switching computer networks. However, they do provide

initial insights into comparative complexity and performance of the bit

oriented technique versus the character oriented bisynchronous discipline.

The results tend to establish the feasibility of ADCCP as a potential

future discipline for comupter networks. A number of assumptions had to

be made here to establish meaningful comparisons in straightforward

analysis. Less restrictive assumptions and more elaborate analysis -

even computer simulations - should be undertaken, to reflect the complexity

of real applications and yield more precise comparisons. The impact of

ADCCP on the realization of higher level protocols - e.g. the flow control

and buffer allocation activity in ARPANET ~ should also be pursued in

depth. The potential for much commercial activity in implementing ADCCP

computer interfaces is already evident, and heightens the engineering

significance of this discipline.
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FIGURE 4-4a. Finite State Graph for Figure lb: Level 2

Two-Way Alternate.
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A C PACKET FCS F

F = Flag Sequence

A = Secondary Station Link Address Field

C = Control Field

FCS = Frame Check Sequence

FIGURE 4-11 a. Framing for ADCCP.
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of communication
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CCl, 2, 3 Cyclic redundancy check

FIGURE 4-1 lb. Framing for IMP-IMP ARPA Protocol
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5. FEASIBILITY OF COMMON COMMUNICATIONS SOFTWARE

For the near future, WWMCCS networking will apparently depend upon

a variety of communications interfaces and disciplines as suggested in

figure 2-1. Moreover, within the HIS 6000, a number of software components

are involved with these interfaces and the associated applications modes

that may have unique communications conventions - e.g. GRTS-6000, NCR

software for PWIN, TPE, Direct Access, etc. A concern for optimization

and high performance within individual communications modes would argue

for separate interface processors and software, tailored uniquely to the

control actions, buffer sizes, and timing criteria of each. On the other

hand, the high cost of this specialized approach, both in original

software development and in continuing consumption of host computer

resources, suggests that a single interface processor with one common

software approach, could be more economical and effective overall. Of

course, a feasibility study is necessary to determine what software

approach could meet this range of requirements and whether adequate

performance and configuration flexibility could be achieved. If proven

feasible through analysis and prototype implementation, this concept

could lead to networking standards in terms of the functional interface

between the host computer and the interface processor, and also the

functional requirements for the interface processor itself.

As a first step in such a feasibility study, this project has

examined the design structure of communications processing software in

relation to the requirements of different disciplines. It is concluded

that a uniform software approach is conceptually feasible, and further

steps in the feasibility study are suggested.
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5.1 Inherent Processing Requirements

Briefly stated, a computer-communications interface processor is a

device for buffering, control, and conversion between different

communications processes. In the simplest case, only two line types

are involved: to the host computer, and to the remote terminals

(including computers). However, experience shows that generally one

may need to accommodate several types of line procedures, whether to

local computers or remote terminals, within a computer network. Assuming

the processor is implemented via a programmable minicomputer, the state-

of-the-art design approach between hardware and software is depicted in

figure 5-1. This diagram represents what may be called an interrupt-

driven, task-oriented software concept, reflecting the inherent processing

applicable to any communications discipline. Timing, sensing, assembly

and error detection at the bit level on individual lines would of course

be implemented in the hardware line interface for each type (one or more

logic cards, for example). Line interface hardware could be reconfigured

in the field to accommodate the needed number of each type.

Software tasks include implementing the control procedure (e.g. ANSI

X3.28 or ADCCP) for each line, managing processor storage, editing of

messages or frames to recover control information, routing, etc. as

already discussed in Section 3. The first issue is what approach to

task scheduling and management would be pertinent to serving a variety

of communications disciplines?



Input Output

Sense bits, assemble
characters, store in

buffers

Detect framing.
Control codes,
and errors

Hardware

Software

Fetch characters from
buffers , shi ft and
transmit bits

I J

1
Insert framing
and error
control codes

I J

Hardware interrupt for
end of frame
detected error, timer, etc.

Analyze interrupt source
and needed action

f

Schedule software
tasks

> f

Perform priority
software task

>

Done

Wait for interrupt

FIGURE 5-1. Basic Hardware/Software Processing for Communications
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5.2 Design Approach Communications Software

The development of communication software is a costly and complex

undertaking; the minimization of that cost and complexity leads to a consideration

of common communication software and system expandability. Common coim-

uni cation software is a collection of programs which are shared among

different processes. Initially the processes are divided into subprocesses

of which as many as possible are common to more than one process. The

processes, when expressed as programs, then take the form of a collection

of subprograms which are shared among the processes. This idea-common

software- is not new since the concept of subprograms has long been used,

but the exploration of system characteristics to maximize the use of common

software still needs to be done. Related to the purpose of common software

is the idea of system expandability which is the concept of adding new

processes to an existing system with little but preferably no modifications

to the existing software. Since the communications processes of some systems

can be augmented only by complex modifications of the operating system,

expandability is an important requirement for communications systems.

Thus the characteristics of the software system that simplify the

implementation of both conmon software and expandability deserve to be

considered. The characteristics of any software system are based on the

structure of its operating system. A comnuni cation operating system differs

from a more general one only in the degree to which some features are

emphasized and some are not. The real time response and input-output rates

are emphasized while features such as higher level languages (e.g. FORTRAN,

ALGOL) or text editor are not emphasized.

One of the primary functions of an operating system is to rebuild a

computer that is non-deterministic due to cycle stealing and interrupts

into a more or less deterministic automaton. This reconstruction is necessary

to prevent system errors, to provide a means of proving the correctness of

the software, and to provide structure for implementing common software

and expandability.
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One method for taming the degree of indetenni nancy is a layered

operating system. This approach, fostered by Dijkstra [5.4], consists of

a hierarchical structure of system functions each communicating to only

the adjacent and dependent only on the lower layers and itself for its

correct functioning.

The nucleus of the system should have features to regulate the

interaction of multiple processes. This regulation can be further classified

into features of control and communication. The control of processes involves

creation, scheduling, and removal of processes. Creation of a process involves

the allocation of system resources to that process. For internal processes -

those involving programs - core storage is allocated. External processes -

input/output operations - require the allocation of peripheral devices upon

creation. A name by which the process is later referenced is associated with

it upon creation.

Scheduling of processes has a policy and implementation aspect. The

policy of scheduling is an algorithm for deciding which processes are to be

activated, which are to be stopped, and which are to be interrupted. The

algorithm for scheduling belongs outside the nucleus while the mechanisms of

implementing the algorithm belong in the nucleus. These mechanisms are the

starting, stopping, and suspension of a process.

After the creation of a process, the process is ready to be started.

The start operation may be implemented in two ways; one, the start operation

places the process name in a queue to be served by the next available processor;

two, the start operation causes the system to assign a priority to the process

after which it is placed in a queue of processes awaiting a processor.

While the start operation is simple, the stop operation is more involved

since the process may have created other processes. Thus the process to be

stopped, the parent process, may have child processes which must be stopped

before the parent process is stopped; so the stop operation may have to be

iterated along a chain of processes beginning with the parent.
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The operating system previously mentioned, a multi programmed operating

system, has a vital requirement that it allow the system manager to change

the mode of operation it controls; for otherwise his freedom to add new

conmuni cation functions to the system can be seriously limited. Unfortunately

most currently used operating systems do not allow such a change. Most are

based on a non-hierarchical structure of system functions so that they operate

in a single mode such as real time, batch processing, priority scheduling,

or time slicing. In addition, changes to a system which has non-hierarchical

structure is a complex undertaking.

When the need arises, the manager often finds it hopeless to modify an

operating system designed on rigid assumptions about a specific mode of

operation. The alternative - to replace the operating system with a new one -

is also an equally if not a more difficult matter because the other software

is tightly tied to interface conventions of the original operating system.

The main problem in the design of a mul ti programmed operating system is not to

define functions that satisfy specific operational requirements, but rather

to supply a system nucleus that can be extended in an orderly manner.

The purpose of system nucleus is to implement the following fundamental

concepts: process, interprocess communication, and process control. A process,

which often is identified with a program, is more generally the execution of

one or more programs or an input-output operation. The former are called

internal processes whi le the latter are called external operations.

The distinction between internal and external processes, based on differences

in process scheduling and storage addressing has a drastic influence on the

real time and expandability characteristics of the system. On the one hand,

input-output operations can be indicated almost immediately by interrupts and

run without preemption for several milliseconds. On the other hand, due to a

fixed type of scheduling, internal processes could only respond to urgent

external events in 10 to 100 milliseconds. The modification of any input-output

process often requires reassembly and testing of the entire operating system,

while internal processes are comparatively easy to implement and test.
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Where there are two or more processes that interact or exchange

information, mechanisms must be provided for the synchronization of these

processes. Synchronization is necessary to prevent multiple processes from

interfering with the transfer of information between them, such as may occur

when some processes write information into a buffer from which others read the

information. The mechanisms available for synchronization are Dijkstra's lock

and unlock operations operating on semiphores [5.1], Hansen's condition critical

regions [5.2], and his communication primitives [5.3]. The latter, which

implicitly uses Dijkstra's operations, avoids the pi^oblems of the programmer

error of misusing Dijkstra's operations because those operations are part of

the system nucleus normally unavailable to the programmer.

The following are Hansen's primitives:

SEND MESSAGE (RECEIVER, MESSAGE, BUFFER)

WAIT MESSAGE (SENDER, MESSAGE, BUFFER)

SEND ANSWER (RESULT, ANSWER, BUFFER)

WAIT ANSWER (RESULT, ANSWER, BUFFER)

With these primitives additional processes could more easily be added to

the system than with a convention that allows interprocess comnunication by

direct transfers. Because the communication is checked by the nucleus, errors

affect only the process that initiates the communication. Thus it is possible,

with hardware memory protection, to check out a new process while the system

is operating on the normal workload.

In the above, the parameter message refers to the location of the message

to be received or sent, buffer is the location of a system supplied buffer area

to hold either the message or the answer, and answer is the location of the

answer. As implemented on the RC4000 the primitives function in the following

manner.

Send Message copies a message into the next available buffer and puts the

buffer into the queue of the named receiver. The receiver is activated if it

is waiting for a message (if it has issued a wait message command) while the

sender, after having received the address of the buffer, continues with is process.

Wait Message delays the requesting process until a message arrives in its

queue. When the process is allowed to proceed, it is supplied with the name of

the sender, the contents of the message, and the address of the message buffer.

The buffer is then removed from the queue and held for an answer.
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Send Answer puts an answer into the buffer in which some preceeding

message was recei/ed and then puts the buffer in the queue of the original

sender. The sender is activated if it is waiting for an answer.

Wait Answer , similar to wait message, delays the process which uses it

until an answer arrives in its queue.

Synchronization between processes is obtained by using a sequence of the

above primitives. The sequence Send Message , Wait Answer synchronizes the

sending process with the receiving process which in turn, through the use of

Wait Message , Send Answer is synchronized with the sending process.

As it was previously mentioned, the characteristics of the system- real

time response, expandability, and common software feasibility- are dependent

on the structure of the operating system. The hierarchical structure can be

generalized to a tree structure which is quite suitable for achieving the

above characteristics. For example:

In this example S, which is the system nucleus, creates processes A, B,

and C. A and B in turn create D, E, F, and G. The operator of the system

may have requested that the nucleus create processes A, B, and C, where process

A assembles input messages, process B assembles output messages, and process C

edits these messages. Process A creates processes D and E which are lines from

the network and process B creates processes F and G where F is a local printer

and G is a remote line.

The tree structure affords an improvement in scheduling processes. In

some systems internal and external processes are scheduled differently whereby

internal processes are assigned to one queue to which some fixed scheduling

policy has been attached while external processes are assigned to other queues

with possibly other fixed scheduling policies. A more flexible scheduling

scheme is based on a tree structure system which has priority processes adjoined

to various nodes. The priority processes may be used at each level of the
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tree to schedule other processes at that level. Since each priority process

appears no different to the system than other processes, a priority process

may be altered or replaced in the same manner as any other process. Thus the

scheduling policy may not only be different at each subprocess, but the

individual policies may be dynamically changed. In the preceeding example the

priority process may be added as follows:

Process PI then schedules A, B, and C. P2 schedules D and E, while

P3 schedules F and 6.

The concept of common software is more easily implemented in a system

based on a tree structure. Here the various subprocesses , whether they are

derivations of programs or input-output operations, can be linked to a main

process as nodes are linked together on a tree. For example, suppose we have

a network input operation which consists of assembling a message into a buffer,

checking both for errors at the input character stream level and the assembled

message level, and finally forwarding the assembled message to a teletype

output operation. The input, which comes from a high speed line, is

buffered into a channel type of device such as a multiplex or direct memory

channel which enters a stream of bytes into a memory buffer. After a stream

enters the buffer, it is checked for errors. The character stream is then

transferred to another buffer in which the message is assembled. Later,

the pointer to the assembled message is passed to the teletype output process

which outputs the message character by character to a teletype. Finally

the message buffer is released when the output has finished.
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The common subprocesses of the above operations are:

Memory Management

Message Assembly

High Speed Line I/O Routine

Error Routine

Teletype I/O Routine

The tree diagram of these processes is:

(
High Speed

)

V Line I/O J

Other characteristics of the system are the following:

1. New operating system can be implemented as other programs without

modification of the system nucleus.

2. Operating systems can be replaced dynamically thus allowing a

communication system to switch among various modes of operation. Several

operating systems can, in fact, be operating simultaneously.

3. Programs can be executed under different operating systems without

modification, provided there is common agreement on the possible interprocess

communication. If the interprocess communication is accomplished thru a

convention like the communication primitives, the means of realizing that

agreement is made easier.
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4. System performance measurements may be made by placing

measurement processes on the link to the process that is to be

measured. Since the nucleus can create processes, such a placement

can be made by making the measured process a subprocess of the

measurement process. The following diagram illustrates this concept.

In this figure, M2, M3, etc., represent measurement processes that

measure performance features of their respective subprocesses.
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5.3 Other Feasibility Issues

The efficiency of common software will depend upon the potential

for efficient processor storage management, in view of different frame,

header, packet and message sizes, and also the possibility of some

parameter-driven routines, common to all line disciplines handled. To

assess these issues requires detailed commonality analysis, perhaps

again using a finite state diagram technique, among the disciplines to

be covered. Ultimately, a processor performance and resources projection

would need to be made, for v/hich a computer simulation would be advisable.

• /
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6.0 USER-ORIENTED NETWORK PROTOCOLS

User-oriented network protocols refer to software capabilities,

uniformly implemented at all network computer sites, which reduce

progranming burden and otherwise assist users in exploiting the

network resources. The term "protocol" signifies the concern with

interactions between different computer systems. The impact of

standard protocols for a network user is analogous to that of standard

prograiming languages for any computer user - i.e., transferability of

applications, repeatability of results, easier training, reduced

software costs.

The needs and tradeoffs underlying the feasibility of standard

protocols are examined in the following.

6.1 Overview of Types and Functions

From the user's terminal, the computers linked to a network may

exist as three distinct environments: the local computer, the extended

computer and the resource-shared computer, as distinguished by the

following considerations.

The local computer , operating in a time-shared mode, permits the user

to deal with his own files, either singly or as multifile sets. With

permission from other users at the same site, he may extend his domain to

make use of their files. When the user logs on the system from his

terminal , the information which he must supply, insures the system that

he is entitled to gain access to the limited environment defined under

his identification and that all accounting will be so recorded. Using a

formal command language, he can create, copy, move, modify, destroy, or

use data stored in files under his domain. He may call upon subsystems

available to all users, to perform more complex functions - such as an

interactive text editor, or language translator. He may compile a source

program, identified in his file, using a requested language translator,

list the program on some device, file and execute it, with results

assigned to a specified device. He may temporarily suspend the
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communication link to the computer, while the computer proceeds to

perform a lengthy function, with the ability to reconnect to the

process at some later time for the purpose of ascertaining process

status or receiving results. An attempt is made in the time-shared

system to human engineer the responses from the system and to prompt

the user or display requested information, in order to ease the task

of "thinking on line". If another user's file is requested to be

accessed, information typed at the terminal is matched with

information stored with the file, together with any security or

protective information and verified before access may be made.

When the user logs off at his terminal, all connections to the system

are terminated, and information introduced or created and not previously

filed is lost.

The extended computer environment enables the user to cause the

local computer and another computer on the network to interact. To

perform functions most efficiently, computers which interact should

be compatible in organization and file structure. Fundamental to the

operations of the extended computer concept, is the implementation of

a network standard accounting system and security procedure. The

primary functions visible to the user, not present in the local computer

environment, are the Remote Job Entry function, and the File Transfer

function. The Remote Job Entry function is a procedure whereby a user,

at one Host computer, introduces a batch job to be run at some other

Host computer on the network. The File Transfer function is a procedure

for sending files from one Host computer and receiving the data in

another Host as a new file, replacement file, or to augment an existing

file. Because the name of a file which is being sent to another computer

site may conflict with an existing file name in the receiving computer,

provisions for changing the name are provided. In the extended computer

concept, it is necessary for the user to supply the location and complete

identification of files which are requested. This means that the user

must know where the file resides in the network and what it is called in

the remote computer, in order to use the file. When a user accesses many

different computers, programs and data files over the network, the amount

of specific detailed information which he must retain becomes significant.
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The resource-shared computer can be made to appear as if there is no

logical distinction between the resources that are local and those that

are remote. Resource-sharing can make the services of other computers

on the network available to a user without the user being concerned

directly with the network details.

A computer network, built around a mission-oriented activity, can be

applied to the sharing of data, programs, hardware -software systems, the

services of people and facilities utilization, to the better achievement

of the mission objectives. Where the hardware-software facilities on a

network are semi -homogeneous , i.e., the same main frame even though

different capabilities and services (eg. core size, I/O devices, specialized

data files or programs) and varying workload, sharing of resources becomes

a potential reality.

For any single activity, within the mission, responsibility of

performing the: collection and verifying of new data, maintenance of a

data file, warehousing of data files, computer program development,

computer program testing and certification, computer program maintenance,

program execution, and the printing of final results may each rest with

a separate organization on the netv/ork, with additional back-up

organizations for strategic reasons.

Organizations linked together over a computer network can become

more responsive to change (eg., location of files, programs, and available

facilities) provided the appearance of stability can be preserved for the

user. Changes to a system can occur so fast, even in a network, that the

written word cannot be dispensed to the affected user with adequate timeliness.

Programs performed on a routine basis involving input (eg., new

data, program changes, etc.) from various organizations, require the

user to know the identification and location of each file to be used with

the set of programs, the hardware-software support requirements,

availability of computer resources, as well as the sequence of control
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events which cause the process to be performed correctly. In an on-line

batch oriented system, controls which govern the sequence of events in

the computer process are either introduced by a sequence of control

cards or by a sequence of control events which are stored within the

system, such as catalogued procedures. The user at the terminal has

the same need to preserve control sequences, so that this information

need not be introduced at the terminal for each initiation of a job

sequence.

To effect the appearance of stability over the network, for mission

oriented activities involving more than a single computer site, it may

be necessary to retain at each site specification files containing

information relating to the current status of the system. These files

would be maintained for each site by the mission office. In order to

permit each computer site to be semi -autonomous in its file naming

conventions, it would be necessary to superimpose, unique global names,

controlled by the mission office, upon program and data file names in

the specification files which are equated to the local name and computer

location so that the effects of updating or modification of files by the

responsible organization, would not be visible to the user who refers to

the file by global name in the utility procedure described below. The

four specification files are:

1. Program Identification File . For each program available on the

network, its global name - equated to its local name for each location

where the program resides - as well as the facilities required to perform

the program, its security classification, organization responsible for its

maintenance, date of issue, etc. would be stored in machine sensible form.

2. Data Identification File . For each data base available on the

network, its global name - equated to its local name and location, and

all pertinent information related to available use would be retained.

3. Computer Resources File . For each computer on the network, the

list of resources, eg., core size, software support, I/O etc., would be

retained.



4. Process Information File . This file contains a pseudo-job

control stream for each application involving shared resources. The

information would contain a sequence of events which constitute the

order of performance of a stream of activities necessary to perform

an entire sequence of programs with its data.

By the use of a utility program, operating at the applications

level of the system, a specific process could be requested by name

from the Process Information File. The utility program, using the

pseudo-job control stream, would access the Program Identification

file for the supplied global program name and determine (from the

program resources required together with the Computer Resources File)

which sites could supply the necessary resources. The data files

identified by the control stream would be matched against the global

names in the Data Identification File. The net effect would be to

change all global names supplied in the control stream to the appropriate

local name together with the site information and to create, where

necessary. File Transfer commands. The resulting job stream would

become the equivalent to a sequence of commands required to involve

the File Transfer function and the Remote Job Entry function. If the

workload status of each computer could be sent to all other computers

on the network on a periodic basis automatically, then this information

could be used to influence the distribution of the workload. This would

permit control streams to be dynamically changed to reflect the situation

on the network.

Such a facility would permit the mission office to maintain control

over the location of information on the network and to balance the traffic

and computer utilization, as well as change the responsibility of its

organizations without effecting the user of the information. It would

also permit the mission office to establish and maintain standards of

program performance and formatting of data to the better utilization of

the entire network. Any changes to the four files mentioned above would

rest with the mission office upon receipt of information from the

responsible organizations.
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6.2 Software Implications of Standard Protocols

When a computer network is developed linking existing time-shared

heterogeneous systems, the existing command language employed in the

local environment cannot be changed readily to conform to some standard

without the reprograiming of the system. The work now underway by the

Command Languages Standardization Task Group of CODASYL and other

pertinent work being done by NBS, could be applied in the future to

assist in coirmon definitions for various command functions. However,

no practical degree of standardization of language is going to be

complete in making heterogeneous systems appear to behave identically.

The feasibility of introducing a standard File Transfer function

upon an existing time-shared system depends primarily upon the modularity

of the current operating system and the ease of interfacing the function

to the system software. Because this function does not exist in a local

time-shared system, it should not become a hardship to conform to a

standard, if the function can be imbedded at all. The current definition

of the file transfer function (e.g., in ARPANET) requires the user to

cope directly with many of the problems of moving data between non-

homogeneous systems.

A standardized Remote Job Entry function for heterogeneous systems

appears infeasible unless a standard job control language exists. Only

the behavior, responses, and interaction with the File Transfer function

can be defined. Because the usual job control language is based upon

leading character (e.g., $ or //) recognition to alert the system to

commands vs data, and no two systems use the same identical form, a

consensus may not be obtainable at this time to implement a standard.

Under the current definition of the Remote Job Entry function, it is

necessary to know how each implementor performs the function. To

implement a Remote Job Entry function on an existing system, could be

a much more difficult task than a File Transfer function. How much of

the function definition can be implemented is directly related to the

current system capability and the ease with which the features could be

interfaced.

-92-



6.3 A Specific Case: File Transfer Protocol

Two major considerations in the desirability of a protocol

standard are: how well does it provide the user's needs? and, can

it be implemented readily, with full conformity to specifications,

by different installations, possibly with different hardware?

Because of potential significance for the WWMCCS distributed data

base planning, these questions were examined with regard to the

File Transfer Protocol in ARPANET, a currently operational example

of software for file-sharing. In particular, a very simple, ad-hoc

application was conducted to ascertain whether this protocol could

easily serve the most apparent needs, and whether any inconsistencies

would be encountered in different implementations. The test provided

information on the current status of FTP in ARPANET, and indicates the

type of protocol evaluation which should be conducted, but on a more

comprehensive, controlled basis.

6.3.1 Description of FTP :

The ARPANET File Transfer Protocol [6,1] is a uniform software

capability to aid users to transfer files, programs, or data reliably

and efficiently from one Host to another, thus allowing convenient use

of the remote file storage and processing resources. It supports the

following file operations:

Establish connections to the destination Host (Remote Host)

List remote directory (of files previously stored for the user)

Send local file (send, store, record name in remote directory)

Retrieve remote file (retrieve, store, record name in local directory)

Rename remote file

Delete remote file

The aim of FTP is to encourage the sharing of program and data files and

the use of remote computers. It is intended to be implemented on computers

of different word sizes, byte sizes, and internal representations, though
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not all Hosts have the specified FTP capabilities at the present time.

A server may reject those byte sizes which it has not implemented, but

must implement the default size of 8-bit bytes.

6.3.2 FTP Test in ARPANET :

The test was to verify that when program and data files are

transferred from one Host to another, their integrity is maintained and

that the results achieved in the execution of such a program at a remote

Host were the same as those produced at a local Host. Because this test

was being performed between homogeneous Hosts, the default values were

used: i.e., a 36-bit connection and IMAGE type, were assumed. When

transferring files between unlike systems, it may be desirable to convert

characters into the standard NVT*-ASCII, with the conversions to and from

the internal representations being performed by the receiving and sending

Hosts. FTP provides a limited set of data type representations:

TENEX for IMAGE, BYTE size 36

ASCII for TYPE A, BYTE size 8

EBCDIC for efficient transfer between Hosts which use

EBCDIC internally

Image recomnended for the transfer of binary data

In the test, DEC PDP-10 computers under control of the TENEX interactive

time-sharing system and File Transfer Protocol were used. Files were

generated using the BASIC language, by way of a terminal connected to the

NBS TIP. To make the verification, data and program files were generated

at Host A (BBN-TENEX). The program was executed, the results noted (see

figures 6-1 and 6-2), and the file names automatically entered into the directory.

*Network Virtual Terminal, as defined in the Telnet Protocol.
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I .S)BflSIC

READY » FDR HELP TYPE HELP

.

SAVE INDRTZ

NEW FILE NRME—PflRKEZ

READY
10 FILES INDFITZ
£0 FILE m ."INDRTZ"
30 PRIHT "X
40 INPUT "1

5 0 Y = sqrtck;'
6 0 PRINT XjY
7 0 IF X < 10 GD TO 40
80 END
SRVE PflRKEZ

SQRT'::X>

FIGURE 6-1. Source program and data created using BASIC programming
language.

PRRKEZ
, . ^USJ^:Sz::::Zj^- ^ 5-MfiY-74

X SQRT<X>11
£ 1.41421
3 1 .73205
4 £
5 £.£3607
6 £.44949
7 £.64575
8 £.8£S43
9 '-i

FIGURE 6-2. Results obtained from compilation and execution of source
program.
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The user then logged-out from Host A and logged-in at Host B (Office -1),

called FTP and issued the CONNECT command for Host A. The connection was

opened and the log-rin procedure followed. A conmand to GET file name

produced a dialogue between the user and the FTP in which the user was

requested to give a name for the file and indicate whether it was a new

file.

5L 43
Logger

pen

TENEX 1.31.39. OFFICE-1 EXEC 1 .51 .£9

SLDGIMM ?

S'LDGIH NBS-TIP
IDENT= M

_ .IDE 9 Dh TTY31 15-MfiV-^4 10:£1
"WTP
_DFFICE-1 FTP User process 1.18 .0

"CDMNECT BEN-TENEX
'

Connect I ON dpeneii
fiSSUMING 3t-BIT connect I DNS.

< EEN-TENEX FTP Seri-er 1.32.0.0 - rt I.JED . 15-r'1RY-74 1 3 .-rJE'-EnT

L06IN FIFE VBII
GET PfiRKEZ.BRSn
TO LOCftL-FILE PflRKEZ
C New j=uLE 2

< IMAGE retriei.'E dp :FIFE >PRPKEZ .BP? ; 1 strrtei. .

< Transfer completed .

12q. bytes trpnsperrei' > pun time = 150. ms !

ElpipseI' time = 69 00. t'V< ? Prte = €67

.

Erud .

/• GET INBRTZ.BRi ;i
;

to ldchl-pile IHDRTZ
[ New f ile 3

< IMRGE PETRiEt-'E DP <FIFE>IMLRTZ.ERS ;i STftRTEr..

. < Transfer completed .

128 . JEfATES TRRNrg^RRED^ji PUN TIME - 5 0 . MS !

Elrpsed time = 65 00. MS. Prte = 70S. EftUD

.

FIGURE 6-3. Execution of GET Command.
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The FTP typed-out the file name, prefixing to it the directory name,

when the retrieval of the file had started. Host A was then disconnected

from Host B; a listing was produced of the new file which compared

with that at Host A. Host C (USC-ISI) was then connected to Host B,

the log-in procedure was completed, and the command to SEND file name

was issued, the user was requested to confirm the file name and give

a name to the new file. The file transfer then proceeded with the

appropriate type-outs at the start and at the end. The user then

disconnected Host C, logged-out from Host B, and logged into Host C.

S»FTP
OFF ICE- 1 FTP User ppdcess I.IS.O
COMHECT USC-ISI
Connect I ON dfenet
RSSUMING 36-BIT CDNNECTIDNS.

< USC-ISI FTP Seri/er 1.;3£.0.i:i - rt WED 15-mY-74 10:c:9-PriT

LOGIN HUnSDM %
SEND PfiRKEZ.jl [Confirm]

TO REMOTE-FILE PRRKEZ
< Store of <HUDSnN ^PfiPKEZ . j 1 ;P7777!5c: ;R3 j iMfttSE tyfeu sTftPTEn

< Trrnsfer COMFLETEIi .

128. BYTES TRRNSFERREr. J RUN T I ME = 1 0 0 . MS J

EuRFSEr" TIME = £5950. MS? Prte = 177. Brud .

SEND INDRTZ.jl C Confirm]

TO REMOTE-FILE INDRTZ
< Store of <HUDSDN > INDRTZ .? 1 ;P77775c ;R3 j Imr.se tyfe > strrtei-

< TrRNSFER COMFLETEI" .

1£S. BYTES TRRNSFERREI' ? RUN TIME = 0. MS J

Elrfsed TIME = 14650. MS? Prte = 314. Erud .

DISCONNECT USC-ISI

FIGURE 6-4. Execution of CONNECT, SEND and DISCONNECT Comands.

Files had then been created at Host A, transferred to Host B, and listed,

then transferred from Host B to Host C.



At Host C, a DIRECTORY command showed the names of the files which had

been transferred; a TYPE command to TENEX gave a listing of the program

and a call to BASIC allowed the program to be identified and run. The

results of the execution of the run at Host C compared as expected with

those obtained at Host A. The FTP comnands, whether issued at Host A,

B, or C always produced the same results.

5BRSIC

NEW DR DLL—OLD
OLD FILE WftHE—PflRKEZ

REfiDV
RUN

PflRKEZ 10:40 15-MRY-74

X S0RTc:X>
-1 1 :

.

£ 1.414£1
3 1 .73c' 05

4 £
5 £ .£3607
6 £.44949
7 £.64575
8 £ .S£S43
9 3

FIGURE 6-5. Results obtained at Host C.

6.3.3 Status of FTP in ARPANET :

File Transfer Protocol, based on the latest information from the

Network Information Center, has been implemented by approximately eight

sites. In addition, two sites have other (private) file transfer protocols

useable in restricted circumstances. A suitable user's guide to the use of

FTP is not available and anyone desirous of using the system must glean

enough information from the cryptic list of FTP commands and an

implementor ' s specifications document.



6.4 PWIN Protocols

The PWIN project has already identified and begun implementation of

several innovative protocols [6.2], that are consistent with resource-

sharing concepts but without significant precedents. These include the

Workload Sharing, Network Control Language, and Data Transfer Protocols.

The available documentation and information within the scope of this

project was not sufficient for thorough review and understanding,

but clearly the restriction to a single system - the HIS 6000 with GCOS -

should support a uniform implementation in WWMCCS. The notion of a

"Directory Manager" described by Loret [2.1] corresponds in part to the

needed information files described earlier in this section. Thus, from

an overall standpoint, the area of user protocols still faces heavy

development and operational evaluation before an effective approach

emerges. Standardization at this time appears premature, but the

importance of the area emphasizes the need for continued evaluation.
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7. CONCLUSIONS FOR A STANDARDS DISCIPLINE

This report has undertaken an initial analysis of technical issues

underlying networking standards for WWMCCS as it evolves from its present

multi-media approach, experiencing progressive software and selective

hardware upgrades, culminating possibly in a single standard interface

with a DoD packet-switched network. Such envisioned development suggests

concentration on three areas for standardization.

First, the adoption of standards for user-oriented network protocols

is important in order to insulate operational users from a plethora of

changes as the HIS 6000 and DN 355 software is upgraded. Such standards

would also establish recognized, stable levels of resource-sharing

capability, to ease the configuration management problem as seen by

operational software users and developers. However, the degree of overall

experience with resource-sharing protocols is modest at best, and

considerable further development and experimentation must be expected

before basic needs are well recognized and a consistent family of protocols

emerges applicable to any computer network. For example, although the

' ARPANET is the forerunner, not all of its identified protocols have been

uniformly implemented by major service sites, and no concerted efforts

are underway in the community to fill some evident needs such as uniform

access protocol and a network-wide software directory. Rather than

criticism, this highlights the overall difficulty and cost in establishing

standard user-oriented software to accommodate diverging applications

interests with differing machines and operating systems. The progress

that has been made within ARPANET on uniform file transfer capabilities

for PDP-IO/TENEX sites, which was briefly examined in this project,

demonstrates that the needed protocols are not only feasible but can be

effectively used in short order by the inexperienced user. The WWMCCS

PWIW project includes an ambitious protocol development effort, partially

based upon the ARPANET accomplishments and experience. An assessment of

the currently conceived protocols as future WWMCCS standards can be
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initiated once the software is implemented and ope??ational experiments

have verified their functional sufficiency. In particular, a detailed

study could be made of their dependence on HIS 6000/GCOS concepts, to

yield recommended modifications to enhance transferability to other

host systems. This was beyond the scope of this effort. In this

regard, the current standards studies within CODASYL on operating

system control language and at MBS on remote access protocols should

be considered for pertinent results.

Second, the interim WWMCCS environment (before IDN) of multiple

communications interfaces to the HIS 6000, suggests a feasibility study

toward establishing a common interface processor, adaptable in capability

for a mix of communications disciplines and variable traffic volume, and

with one software approach incorporating all available communications

control procedures. This concept would support a simplification of

communications software within the host computers, and potentially would

produce improved performance in communications handling. An examination

of basic software design indicates that one conceptual organization

would be feasible for scheduling and control of task-oriented software

modules required to handle various disciplines concurrently. Issues of

efficiency and performance in processor storage management and real-time

control require further commonality analysis and simulation.

Third, the prospect that the new American National Standard ADCCP

procedure would be used in the DoD, IDN, and the evident commercial

interest in this procedure which would provide off-the-shelf communications

terminals and equipment, is motivation for a comprehensive evaluation of

its application in WWMCCS and packet-switched networks. A preliminary

analysis of its complexity and information transfer performance relative

to character-oriented bisynchronous procedures indicates ADCCP is at

least competitive in basic practicality and efficiency. It appears,

moreover, to have significant advantages for the implementation of

higher order network controls and protocols. This has not been
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quantitatively evaluated, however, and is a suggested area for future

standards analysis. NBS meanwhile is continuing its existing effort

in development of national standards for performance evaluation of

control procedures, and in measurement and analysis that will yield

a comprehensive evaluation of ADCCP from the information transfer

and error standpoint.

The work of this project, in an overall perspective, illustrates

that standards analysis for computer networking is a challenging

engineering activity, requiring a background in telecommunications as

well as computer science or systems programming. The basic thrust in

establishing a standards discipline is to undertake substantive

evaluations, comparing the precision and clarity of alternative design

specifications, establishing common functional characteristics, and

deriving measures of performance, utility, and complexity.
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