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A Method of Calibrating Two-dimensional
Reference Plates

by

Charles P. Reeve

1. Introduction

The Dimensional Technology Section recently began investigating the
problem of precisely measuring two-dimensional reference plates. The
study was motivated by two factors:

(1) The awareness of a growing need for this type of calibration
service.

(2) The acquisition of a sophisticated three coordinate measuring
machine

.

After the hardware was secured the immediate goal of the investigation
became the development of a measurement algorithm. In particular, an
algorithm was needed which would estimate both the mean and standard
deviation of the relative (x,y) coordinates of the points on the refer-
ence plate. Additionally, it was desired to place as few restrictions
as possible on the placement of the plate on the measuring machine and
to include some machine parameters in the mathematical model if possible.
A search of the literature revealed one model which incorporated redun-
dant measurements and polar coordinates. An examination of the struc-
ture of this model was helpful in developing a model in rectangular
coordinates

.

The mathematical model which was developed is nonlinear and has a

high level of redundancy. It lays no claim to being the ultimate in so-
phistication for this complex measurement problem, but is felt to be ade-
quate. This report is concerned with the attainment of this immediate
goal. The material is divided into two main parts, the physical model
and the mathematical model. The physical model is not meant to be
strongly emphasized here and therefore is described briefly. The main
thrust is the presentation in detail of the mathematical model and its

data reduction algorithm.

The ultimate goal of the investigation is to develop a measurement
process which is under statistical control. On the way to attaining this

goal, the measurement process must be applied enough times to see if un-
modeled systematic errors are significantly large and can be identified
and accounted for. Possible sources of such errors are machine scale
inaccuries, temperature effects, and bending effects, to name a few.

Hopefully, future reports will evolve as progress is made.



2. The Physical Model

2.1. Reference Plate

2.1.1. Properties

A "two-dimensional reference plate" is a rigid and flat surface on
which a number of points, all in the same plane, are defined. The plate
is made so that the surface containing the points is parallel to the sur-
face upon which the plate is resting. The current facility is capable of
measuring two types of plates, grid plates and ball plates. The points
on a grid plate are defined by the intersection of the centers of straight
lines which are engraved on the surface. The points on a ball plate are
defined to be at the center of each ball.

2.1.2. Coordinate System

The plate coordinate system is coplanar with the points and is des-
th

ignated by (x,y) where the coordinates of the i point are (x^,y^) . The

axes of the system could reasonably be defined in a number of ways. The
system which was adopted defines the coordinate axes in terms of the two

points p and q which are arbitrarily chosen unless otherwise specified by
the user. The x axis is defined to pass through points p and q while the

y axis is defined to pass through p and be perpendicular to the x axis.
Thus,

x = y = y =0.
P P q

The value of x
q

is defined to be positive and the positive direction of

the y axis is defined such that it forms a left-handed coordinate system
which is compatible with the present machine coordinate system (see fig 1)

.

2.2. Measuring Machine

2.2.1. Capacity

The present facility has a measuring range of 48 inches on the X axis
and 24 inches on the Y axis . The vertical clearance is 12 inches . Any
plate which has a horizontal dimension greater than 32 inches will not
clear the measuring machine in the Y direction and thus cannot be normally
rotated to the different positions required during measurement.

2.2.2. Coordinate System

The measuring machine coordinate system lies in the horizontal plane
and is denoted by (X,Y) . As shown in fig 1, the X axis is defined to be

2
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colinear with the X' machine axis of measurement and the Y axis is defined
to be perpendicular to the X axis. The Y 1 machine axis of measurement is

out-of-parallel with the Y axis by a small angle a. The Y and Y' axes
intersect the colinear X and X' axes at the same point. The coordinates

tti th
of the i point in the j plate position are given by (X^.,Y^).

2.2.3. Location of Points

The points on a grid plate are located by centering each intersection
of two lines under the crosshairs of a microscope either manually or auto-
matically. The precision with which the points can be located is depend-
ent on the quality of the lines and the precision of the instrument which
locates the intersections.

The points on a ball plate are located by centering each ball on the
vertical axis of a spindle while the spindle is rotating around the equa-
tor of the ball and giving a readout of the horizontal deflection. The
ball is considered to be centered when the deflection is minimized. The
precision with which the ball can be centered is dependent on the round-
ness of the ball, the sensitivity of the indicator, and the skill of the

operator.

2.3. Setup Procedures

The measurement algorithm calls for the reference plate to be meas-
ured in m different positions where m >_ 3. The degree of translation of
the plate between positions is basically irrelevant, but the angles of

rotation are important. Each rotation should be made approximately 360/m
degrees (2ir/m radians) clockwise so that the plate will be measured in m
equally spaced positions.

Before making any measurements, the procedure for rotating the plate
should be thoroughly understood so there is no danger of it being unex-
pectedly obstructed by any part of the measuring machine. In cases where
the geometry is such that the plate cannot be measured in equally spaced
intervals, it is permissible to choose an alternate method of spacing.
Note that setting the angles of rotation by eyesight gives sufficient
accuracy

.

3 . Mathematical Model

3.1. Parameters

3.1.1. Description

The mathematical model is an abstraction of the known parameters of
the physical model. Parameters whose existence or form is unknown are
initially assumed to have a negligible effect and are put in the category
of "random measurement error".

4



The angle a which is associated with the out-of-perpendicularity of
the measurement axes has already been described. The angles ^_ , ^
represent the angles of rotation of the plate in its m positions. The
angles are measured clockwise from the \\> = 0 position which occurs when
the x axis of the plate coordinate system is aligned with the X axis of
the machine coordinate system. Also associated with the m plate positions
are the 2m parameters X .. , .... X and Y , , . . . , Y which taken pair-

pi pm pi pm
wise are the coordinates of point p with respect to the machine coordinate
system.

Since the values x , y , and y were defined to be zero, they are
P P q

not considered to be parameters of the system. The remaining 2n-3 co-
ordinates of the n points relative to the (x,y) coordinate system are the
n-1 values excluded) and the n-2 values y, , . . . , y

l n p J 1 J n

(y^, y^ excluded). To simplify later expressions, let the entire set of

2n+3m-2 parameters be designated by the vector 8 where

6 - (a X . Y . % . . . X Y i> x. y. . . . x y )
'

pi pi 1 pm pm m 1 J l n J n

~ (3
1

S
2

'•• 82n+3m-2
)T

'

A complete set of measurements gives the 2mn observations \0..> and

where i = l,n and j = i,m. The system then has 2mn-2n-3m+2 degrees

of freedom.

3.1.2. Initial Estimates

The nonlinear mathematical model is solved by an iterative process
which requires initial estimates for all parameters. Estimates for the

values X . and Y . are given by
PJ PJ

X (0) = 0
X

. and Y
(0) = 0

Y
.

PJ PJ PJ PJ

where j = l,m. The corresponding i\> . can be estimated by

\ qj pj /

where the value of k^ is dependent on the signs of the numerator and de-

nominator as follows

:

5



num den

+ +0
+ 1

1

+ 2

Since a is normally very small, it can be estimated zero. The remaining
2n-3 plate coordinates can be estimated from the measurements made with
the plate in the first position by

CO)
. rnx _C0), na AO), rnY v (0)> . .CO)

x. - (0
±1

- X
p]_

)cos ^ + C0
i;L

- Y
p]_

,sxn ^

-iff)- »> - < -^ )Cos »>.

3.2. Measurement Equations

X Y
Let 0.. and 0.. denote the observed and, if necessary, corrected co-

13 ij
th th

ordinates of the i point in the j position relative to the CX,Y)

coordinate system. Then, as shown in fig 1,

0?. = b + X . + a + e:. and
ij PJ iJ

Y Y
0. . = (c + Y .) sec a + e.

.

ij PJ iJ

where b = x. cos K - y. sin . ,

c = x. sin Ui . + y. cos <l» . , and
i J i 3

a = Cc + Y .) tan a.
PJ

X Y
The values e.. and e , . are independent error values from a distribution

iJ iJ
2

with mean zero and variance a . The 2mn observational equations are
given by



Y
= f

X
.

Y

0
Y

.

13
+ e

Y
.

13

where i = 1, n and j = 1, m. The regression function f is defined accord-

ing to the value of i as follows:

(1) if i ^ p and i j* q,

f^. = x. cos i> . - y. sin ib . + X
,

13 1 31 3 P3

+(x. sin ib . + y. cos i> . + Y .) tan a

Y
f . . = (x . sin tLi . + y . cos ib . + Y . ) sec a .

(2) if i = p,

f
X

. = X . + Y . tan a
13 P3 P3

,Y
f . .

= Y . sec a .

13 P3

(3) if i = q :

v
f . . = x . cos i> . + X . + (x . sin . -I- Y . ) tan a
13 1 3 P3 1 3 P3

Y
f . . = (x . sin 4> . + Y . ) sec a .

13 1 3 P3

In vector notation

S - ? (a, X
pl ,

Y
?1 ,

*L,
x
n> yn) + e

= ? (3) + e .
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3.3. Method of Solution

This nonlinear model can be solved by the Gauss-Seidel method as

described by Himmelblau [5]~. The model is first linearized by expanding
it about initial guesses for its parameters in a truncated Taylor series.
The approximations are given by

(0)

and

2n+3m-2
f = Cf ) + Y

2n+3m-2
= (£^ + &

where 6^ = 3^ - 3^^ • The 3^ are the initial estimates for the param-

eters, and the subscripts on the functions and partial derivatives indi-
cate they are evaluated using those initial estimates. (The expressions
for the partial derivatives are given in Appendix A.) Let

^Figures in brackets designate listing in the bibliography of the paper.



Then the linearized model is given by the mn pairs of equations,

_ 2n+3m-2/ 3ff

.

v 2n+3m-2f 3f

where Var [(z
X
.)_J = Var [(z

Y
.)J = a

2
. Let

ij 0 i] 0

2
o

=

•

•

•

•

•

•

(0)

1

(0)

2

, and

-CO)
>

2n+3m-2

1.1

36
2n+3m-2/ 0

3f
Y

.

u.
36
2n+3m-2/0

The least squares estimation then takes the form

E Cz
Q
} = T

Q
6
CO)

where

Var Cz
Q
) - a I .



The normal equations take the form

T- T
Q

«
C0) = T' Z

Q
.

After solving for the vector of unknowns 5 , the new approximations for
the parameters are given by

gd) . 3
(0) + 6

C0)
_

The calculation is then repeated with the new approximations substituted

into z^ and T^ to give the estimates 6 . The iterations are continued

according to the recursion relation

3
(k+l) m g

(k) + 5
(k)

(k
Q
)

until for some k=kg, the vector 6 is sufficiently near zero. The final

estimates are then given by

(k +1) (k ) (k )

3 =3 +6 .

The number of iterations needed is, of course, dependent on the close-

ness of the initial approximations to their true values and on the strict-
ness of the convergence criterion. One criterion is that for some small
value oj,

4
<k>

< a) for i=l,2n+3m-2.

(The computer algorithm for storing the matrices and solving the normal
equations is given in Appendix B.)

3.4. Error Analysis

The variance-covariance matrix of the estimates is given by

(T
k

T
k

)_1 = \ •

0 0 0

The predicted values of the observations are given by

Ck
Q
)

z, = T, 6

10



and the deviations by

d =

The estimate of a is given by

s = yj d'd/Umn-Zn-Sm+Z)

and the approximate standard deviation of the estimates by

i o

The estimate of the standard deviation of a single measurement , s

,

is likely to include effects from systematic errors such as machine scale
inaccuracies, thermal expansion, and elasticity of the plate and machine.
With a machine of high quality and a carefully controlled environment,
these errors may be small enough to pass as random errors. In that case,
the uncertainty of the calibrated values can be taken to be the three
standard deviation limit for random error,

If additional systematic errors are determined to be significant, the

estimated limit, E^, to these errors can be added giving a total uncer-

tainty of the estimates of

Plates whose dimensions exceed the measuring range of the X' and Y 1

axes can still be calibrated if each point on the plate can be measured
in at least two positions. The complete model is modified to become an
incomplete model where the measurements of off-scale points are omitted.
In the matrix T and vector z, the row elements corresponding to omitted

measurements are set to zero, or in effect, the omitted measurements are

weighted zero. The calculations then proceed as usual except that the

degrees of freedom are reduced. Suppose that t is the number of times a

4. The Incomplete Mathematical Model

11



point is omitted from measurement, then the total number of measurements
is decreased by 2t, thus the degrees of freedom are reduced to

2mn-2n-3m+2-2t

.

5 . Example

This measurement process has been successfully implemented in the
calibration of ball plates. One of the first test calibrations involved
a plate with 34 one-half inch balls mounted in an irregular pattern with-
in a 30 x 18 inch rectangle. The plate was measured in four positions
roughly 90° apart, but not every ball could be measured in each position.
The incomplete model was used with the following parameters

:

n = 34 (number of points)

m = 4 (number of positions)

t = 10 (total number of points omitted)

df = 174 (degrees of freedom)

P = 1 (point used for origin)

q - 11 (other point used for x axis)

.

The computed standard deviation of a single measurement was 18.8
microinches. The numbers in table 1 show how the estimates for six
selected parameters converged during three iterations. If the initial
estimates had not been so close, it may have taken an additional iter-
ation to converge . The convergence criterion was

:

I 5 J < .0000005 for i = l,2n+3m-2.
x —

*

The uncertainty of the computed values was taken to be the three
standard deviation limit for random error.

6. Conclusion

The idea of using redundant measurements to calibrate two-dimensional
plates came about after reading of the experience that Brown [2] had with
his two-dimensional comparator which made radial measurements. The incor-
poration of his ideas into a system with X and Y measurements seems to have
been successful.

As of now this method has been applied to three different ball plates

.

The standard deviation of a single measurement has ranged between 15 and
18 microinches with the standard deviation of the ball coordinates being

12



slightly less. If this level of precision can be maintained then this
method will have significantly increased the precision with which ball
plates can be calibrated. Hopefully, the same will hold true for other
types of two-dimensional plates.

I wish to acknowledge three people who were of great assistance to

me in the development of the methods described in this paper. I thank
Dr. Fred Johnson of the Applied Mathematics Division, a one-time asso-
ciate of Duane Brown, for being kind enough to share with me the ideas
behind the sparse matrix algorithm. I also thank Dr. Chris E. Kuyatt of

the Optical Physics Division for his most helpful suggestions on linear-
izing the model and solving by iteration. I finally thank Dr. John A.

Simpson, also of the Optical Physics Division, for his initial ideas
which got this project off the ground, and for his encouragement which
helped me through the early stages of its development.
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Appendix A

Partial Derivatives of the Regression Functions

The partial derivatives of the functions fT. and f . . are given in

terms of the original parameters of the problem as follows where j=l,m:

Cl) i=l,n where i^p and i^q

3ff, r ... .
f

v 2
ii = (x. sin \b . + y. cos iJj . + Y .) sec a
7T i J 1 j PJ8a

3f
X

.

b —£L = 1

PJ

c. 3y^" = tan a

Pj

d. - = -x. sin .
- y. cos . + x. tan a cos i> . - y. tan a sin to.

3^ i j i J 1 J 1 3

3f
X

.

e. -
X^ = cos Tb . + tan a sin ii

.

3x
±

y
j j

3 f
X

.

f .
= -sin ty^ + tan a cos

i

y
3f . .

3f

PJ

Y

(x. sin 4> . + y. cos + Y .) sec a tan a
3a v

i
r
j PJ

3f
Y

.

PJ

"I-
i. 3y^" = sec a

i. -,
^ = x. sec a cos .

- y. sec a sin ib
J

3^. i J 1
:

15



Y
3f . .

k U
x

Y
3f

.

= sec a sin lii

.

J

i « = sec a cos ii>

.

J

C2) i=p

3f
X

.

3a
• = : Y . sec a

PJ

3f?.
b . —Il = i

3X .

X

PJ

3f
X

.

c "gy^" = tan a

PJ

= 0

3f
X

.

d. -^L
J

3f
Y

.

1Je - - Y . sec a tan a3a pj

3f
Y

.

3X .

U

PJ

3f
Y

12. _
3Y

PJ

y
3f

= sec a

(3) i=q

3f
X

.-1 = (x. sin H>. + Y
pj

) sec
2
a

16



tan a

x. (-sin to. + tan a cos
l 3

cos to . + tan a sin to .

3 . 3

(x . sin to . + Y . ) sec a
i J PJ

0

sec a

x. sec a cos to.
i 3

sec a sin to . .

17



Appendix B

Computer Reduction using Sparse Matrix Algorithm

The normal equations which were given in section 3.3 can be written

where t instead of ' is used to indicate transposition. Let N = T T and

b = T
t
z. Then the normal equations are given by

where T is 2mn x (2n+3m+l)

,

N is (2n+3m+l) x (2n+3m+l)

,

z is 2mn x 1,

b is (2n+3m+l) x 1, and
5 is (2n+3m+l) x 1.

Recall that the three parameters x , y , and y were excluded from
p V 'q

the original model. For the purpose of the computer reduction, it is

more convenient to reinsert these in their proper columns in the T mat-
rix and set all elements of those columns equal to zero. When the N mat-
rix is computed, the three rows and columns corresponding to the three
parameters will contain only zeros. The three diagonal elements are then

set equal to one. The three corresponding elements in the T
t
z vector are

automatically forced to be zero. The result of this manipulation is that
the estimates of x^, y , and y^ are forced to be exactly zero, and they

appear in their natural order in the computer printout.

The solution to the normal equations is given by

If the normal equations are formed and solved by the usual full matrix
methods on the computer, then the storage required for the six vectors

2
and matrices given above is 24n + 220n + 364 for m = 4 (which is gen-
erally the case) . The storage can be computed for several values of n
as shown in the following table.

N <5 = b

6 = N'H) = Mb.

n storage required

4 1,628
20,864

262,364
3,928,364

25

100
400

18



Obviously for large values of n the storage requirements get out of hand.
Fortunately, the matrices T and N are sparse, that is, they have only a

small percentage of nonzero elements. If they are properly partitioned
then their submatrices which are of block diagonal form can be compacted
so that only the blocks are carried in storage. An example is shown in

figure 2 where n = 8 and m = 3. The matrix T can be written as T = (T T)

where T is 2mn x (3m+l) and T is 2mn x 2n. Then

N

N

and

The normal equations can then be written in the partitioned form

where N is a (3m+l) x (3m+l) matrix with full first row column
and m 3x3 blocks,

N is a (3m+l) x 2n full matrix,
N is a 2n x 2n block diagonal matrix of n 2x2 blocks,

and the 6 vector is partitioned to be compatible with the partitioning
of N.

/k m >

Let N~^" = M 4 | . The equations for the partitioned inverse are

M = (N - NN V)"1

M = -MNN"
1

, and

M = N"
1
+ N

-1^

19
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The equations for 5 and <S are

<5 = Mb + Mb

= M(b - wTH) , and

5 = mH + Mb

= N"
1
^ + N^^^CNN

-1
^" - b) .

The sequence of computations and the required storage are given be-

low. The matrices which are carried in compact form are bracketed.

1 . Input

1.1 It]

1.2 [T]

1.3 z

2. Compute N and b

2.1 N = [T
t
]lT]

2.2 N = [T
t

] [TJ

2.3 [N]= [T^IT]

2.4 b = [T
t
]z

2.5 b = [T
t
]z

3 . Compute M

3.1 [A]=[N"
1

]

3.2 B = N[A]

3.3 C = BN
1"

3.4 C = N - C

3.5 M = C"
1

Dimension

2mnx4

2mnx2

2mnxl

(3m+l)x(3m-fl)

C3m+l)x2n

2nx2

(3m+l)xl

2nxl

Storage

8mn

4mn

2mn
Subtotal: 14mn

9m +6m+l

6mn+2n

4n

3m+l

2
2n

Subtotal: 9m +6mn+9m-!-8n+2

(store in N)

C3m+l)x2n

(3m+l)x(3m+l)

6mn+2n

9m +6m+l

(store in C)

Subtotal: 9m +6mn+6m+2n+l

21



4. Compute <S

4.1 D = [A]b 2nxl

4.2 E = ND (3m+l)xl

4.3 5 = M(b - E) (3m+l)xl

5 . Compute 5

5.1 F = B
1^ 2nxC3m+l)

5.2 E = E -b

5.3 5 = D + FE 2nxl

6 . Compute diagonal elements of M

6.1 G = diag(FB)

6.2 diag (M) =

diagQN"1]) + G

Subtotal:

Subtotal:

2nxl

(store in G)

2n

3m+l

3m+l
6mn+2n+2

6mn+2n

2n
6mn+4n

2n

Subtotal; 2n

Additional storage
for inversion of
the C matrix: (3m+l)x(3m+l)

Grand Total Storage:

9m +6m+l

2 7m +32mn+27m+18n+6

Note that the inversion of N involves only the simple inversion of sev-
eral 2x2 matrices.

The following table compares the storage required for the sparse
matrix algorithm with the storage required for the full matrix algorithm
for several values of n with m = 4.

storage required ratxo

4

25

100
400

sparse

1,130
4,196

15,146
58,946

full

1,628
20,864

262,364
3,928,364

sparse/full

.694

.201

.058

.015
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Additional storage is required by the computer algorithm for some

single variables and a few other vectors, but it is only a small fraction
of the above amounts. Using the sparse matrix algorithm, the present
computer facilities at the National Bureau of Standards can handle val-
ues of n at least as large as 400.

This method of partitioning and solving the matrix equations is

given in a form similar to the one which was worked out by Brown [1]

.

There can be no doubt of its value because of the tremendous savings
in computer storage that it affords.
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