NBSIR 74-498(R) Evaluation of Archival Stability of Copies From Representative Office Copying Machines

4015 800005 300.03

E. J. Parks and W. K. Wilson

Paper Evaluation Section Institute for Materials Research National Bureau of Standards

April 30, 1974

Interim Report

Prepared for National Archives and Records Service Washington, D. C. 20408

ł

EVALUATION OF ARCHIVAL STABILITY OF COPIES FROM REPRESENTATIVE OFFICE COPYING MACHINES

E. J. Parks and W. K. Wilson

Paper Evaluation Section Institute for Materials Research National Bureau of Standards

April 30, 1974

Interim Report

Note: This document has been prepared for the use of National Archives and Records Service. Responsibility for its further use rests with that agency.

Prepared for National Archives and Records Service Washington, D. C. 20408

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

f

CONTENTS

Page

SECTION I

DEVELOPMENT OF METHODS AND EVALUATION OF STABILITY OF COPIES

1.	INTRODUCTION	1
2.	SAMPLES	4
3.	METHODS OF TESTING	5
	3.1 Aging at Elevated Temperature	5 5 5 6 6 7 7 8
4.	RESULTS AND DISCUSSION	10
5.	CONCI,USIONS	14
6.	REFERENCES	15

SECTION II

SUGGESTED SPECIFICATIONS FOR COPIES FROM OFFICE COPYING MACHINES FOR PERMANENT RECORDS

PART	1	-	PAPER	•••	•	•	•	•	•	٠	•	•	•	۰	•	•	•	٠	•	•	•	٠	1
PART	2	-	IMAGED	COI	PY.		•			•		•	•	•	•	•	•	•	•	٠	•	•	14

SECTION I

DEVELOPMENT OF METHODS AND EVALUATION OF STABILITY OF COPIES

1. INTRODUCTION

Technology has been very kind to the office worker, the scientist, the librarian, the archivist, and the businessman by providing, over the past 20 years, a plethora of machines for making copies of originals by pressing a button. This kindness represents a mixed blessing to those who wish to retain copies for some time. As indicated by the deterioration of some copies that have been in file several years, it is obvious that a problem does exist. This problem is especially acute for archivists, librarians, and for county, city, and state offices that require permanent and/or durable paper.

Three factors must be considered with respect to paper for permanent records. These are: (1) physical properties that can be measured in the laboratory, (2) relationship between durability and these measured physical properties, and (3) retention of properties with time. Unfortunately, efforts to start with first principles and build paper structures that satisfy the boundary conditions of permanence (chemical stability), durability (resistance to wear), and cost in relation to known variables have not been particularly fruitful. Even alkaline-filled papers may be unstable if improperly made [1]*. Therefore, the point must be made that we are working with an incomplete matrix of data, although recent information obtained on naturally aged papers [1] may help to fill in some of the voids. Enough empirical information is available to write useful specifications.

An added complication in the use of paper in office copying machines is that the paper must be capable of being transported through the copying machine for which it is intended. Although paper for use in electrostatic copiers, either plain or coated, may be purchased from sources other than the suppliers of the copying machines, this is not frequently done. Properties of the paper in relation to transport and to imaging may be difficult to specify for specific machines. It can be done, but the purchaser must be aware of these potential problems.

^{*}Figures in brackets indicate literature references at end of report.

Standards for permanent record papers require the availability of an accelerated aging method for estimating relative stability of paper. An accelerated aging method for paper was developed by Hall [2] in which paper was heated in an oven at 100°C for various times and then checked for changes in physical and chemical properties. Rasch [3] selected 72 hours at 100°C in a circulating oven as a standard accelerated aging test. This test was adopted by TAPPI [4] and ASTM [5], but somewhere in the process of standardizing committee activity, the aging temperature was changed from 100°C to 105°C.

The validity of this test for predicting the relative stability of papers has never been widely accepted by the paper industry or by independent research laboratories. Browning and Wink [6] reasoned that the moisture content of paper should remain constant during aging and that, under the conditions used, in which the moisture content was maintained constant, accelerated aging was valid for estimating the relative permanence of paper. They used the Arrhenius approach, i.e., aging at various temperatures and extrapolating some function of change due to accelerated aging to room temperature. Stamm [7], van Royen [8], and Barrow [9] also have used this approach.

Although it is strictly empirical, one may compare the data from accelerated aging with that from natural aging. This approach has been used by the National Bureau of Standards [3, 10, 11, 12] and by van Royen [8]. Others [13, 14] have tested papers after several years of natural aging.

Work at the Institute of Paper Chemistry (IPC) [6] and previous work at NBS on the present project on preservation of records [15, 16] leaned toward a moist aging atmosphere. It was assumed that paper should contain approximately the same moisture content during an accelerated aging procedure as during natural aging. The absolute amount of water vapor in the aging atmosphere to maintain the same moisture content in the paper increased with temperature, and so the partial pressure of oxygen in the aging atmosphere, at constant moisture content of the paper, decreases. Recent work indicated that oxygen and moisture both play significant roles in the degradation of paper [17, 18, 19].

2

This work also indicated that (1) moist accelerated aging may not be superior to dry aging, and (2) that tools such as wet strength, fiber strength (zero span), and development of acidity may be valuable in the evaluation of naturally aged papers in order to make a selection between moist accelerated aging and dry aging. Folding endurance decreases in both types of accelerated aging, but it decreases more rapidly during moist aging.

The permanence of the "usual" types of printing, such as letterpress and offset, normally is not considered to be a problem, but the stability of images formed by quick copy processes is not known. Therefore, some method, or methods, of evaluation must be devised. This is not as easily said as done, for each type of copy may present a different problem in mechanism of degradation. New processes are continuously appearing on the market, so a complete evaluation represents an impossible job.

A very elementary example is provided by the zinc oxide coated paper that is widely used in direct electrostatic copying. The zinc oxide coating causes the paper to exhibit an alkaline reaction with respect to extract pH [20, 21]. The base paper itself may be quite acid, as it must be well sized to provide the proper hold-out properties in order to prevent the paper from absorbing some of the coating solvent. This would give a spotty coating.

Standards for manifold papers [22], bond and ledger papers [23], and file folders [24] have been written based on pH requirements. These papers are not coated, so a pH value can be used as a rough indicator of stability. The pH value of a coated paper, in which the extract pH of the coating may be radically different from that of the paper, cannot be used as an indicator of stability.

The only answer is to use an accelerated aging method, and test the copy before and after aging for retention of properties. Standard methods are available for the heat aging of paper [4, 5], for the irradiation of materials by carbon arc [25] or xenon arc [26], for the erasability of inked ribbons [27], and for the image evaluation of electrostatic business copies [28]. Until the question of the proper conditions for the heat aging of paper has been clarified, it will be necessary to use the present heat aging method [4, 5] in conjunction with the other tests mentioned above and to supplement these as necessary in order to provide interim standards for quick copies of archival quality. As indicated above, this approach is feasible only because data (unreported) indicate that dry accelerated aging may be useful.

2. SAMPLES

Several manufacturers of office copy machines were contacted and invited to submit samples of paper, both unimaged and imaged, for evaluation. Suppliers were requested to submit only paper and copies that would be expected to last a minimum of 50 years. The samples received were for use either in the "plain paper" copiers, or the direct electrostatic copiers that require coated papers.

Data on the unimaged papers are given in Table 1. Nos. 2100 through 2108 are uncoated, and Nos. 2111, 2112, 2113, and 2127 are coated papers. No. 2100 is an experimental alkaline-filled paper. The nominal basis weights of most of the papers are in the 20 lb. class.

Five bond papers that were used in the development of specifications for bond and ledger papers for permanent records [29] were included in this study. Data on these papers are given in Table 2. One alkaline-filled paper and one paper that apparently is neutral-sized (pH 7.3) are included.

Suppliers were asked to submit good copy for evaluation of the effect of light on the printing. These samples are described in Table 3.

In order to work out a method for evaluating the durability of images produced by office copying machines, both perfect and imperfect copies were needed. Some of the manufacturers made copies in two or three categories of perfection for this study, and these copies are described in Table 4.

3. METHODS OF TESTING

3.1 Aging at Elevated Temperature

ASTM Method D776 [5] was followed using a forced draft oven with a calibrated thermometer. Only one sample of paper was placed in the oven during an aging period, as two samples may interact and give spurious results [30].

3.2 Light Exposure, Xenon Arc

ASTM Standard Recommended Practice G27-70 [26] was followed for light exposure to the 2500-watt water-cooled type xenon arc at 25°C and 50 percent relative humidity for 24, 48, 72, and 96 hours. The light dosage was monitored with NBS Light-Sensitive Papers [31], and the output of the lamp was adjusted to correspond to the required dosage.

3.3 Image Evaluation

An ASTM recommended practice for image evaluation of electrostatic copies is available [28], but the procedures essentially are subjective in nature. The density of the image and the reflectance of the background may be measured, and this was done by using a special print contrast measuring instrument described in 3.5.

3.4 Erasability

The erasability of imaged copy was evaluated using an ASTM method of testing for erasability of inked ribbons [27]. This method specified a specific apparatus for abrasing the imaged specimen, a specific abrasion wheel, and the measurement of reflectance of a relatively large area (0.5 in. in diameter) before and after abrasion. The coefficient of image removal, C, for a pattern area = $(F-I) \times 100$, where F = final reflectance and I = initial reflectance. Print contrast, as described in 3.5, was measured instead of the reflectance of an area 0.5 in. in diameter (3.6).

3.5 Print Contrast and Reflectance of Image and Paper

The reflectance of the image and the paper was measured with a print contrast meter using a tungsten light source and a specimen area 0.008 in. in diameter. Measurements were made with the unfiltered light source and with a filter with a maximum wavelength of 460 nm. By setting the reflectance of the paper at 1.0, the print contrast, which is a function of the reflectance of the image, can be measured directly. As an infinite number of combinations of image and paper reflectances can give the same print contrast ratio value, the reflectances of the ink and paper also were measured, and print contrast ratio was calculated from

$$PC = (1 - \frac{R_{ink}}{R_{paper}}), \text{ where}$$

PC = print contrast ratio, R_{ink} = reflectance of ink, and R_{paper} = reflectance of paper.

The meter was calibrated with a barium sulfate standard with an absolute reflectance of 99 percent. A secondary opal glass standard with a reflectance of 98 percent was used as a working standard.

3.6 Reflectance

Many approaches are possible to the measurement of reflectance, and the approach depends on the requirements of the job at hand. Print contrast, described in 3.5, is one approach to the measurement of reflectance, but (1) the procedure is not standard and (2) a very small specimen area reduces the precision. ASTM D985 [32] describes the measurement of 45°, 0° directional reflectance of blue light at 457 nm of a specimen area 0.5 in. in diameter. This method is standard in the paper industry, and was used to obtain the reflectance of the unimaged paper.

3.7 Conventional Tests

Folding endurance, bursting strength, tearing resistance, thickness, basis weight, opacity, and pH were obtained by the appropriate ASTM methods [33].

3.8 Statistical Treatment of Data

The standard deviation, s, is a measure of dispersion of the data obtained from n measurements $(x_1, x_2 \dots x_n)$ of the sample, and is estimated by means of the expression

$$s = \sqrt{\frac{\Sigma (x - \bar{x})^2}{n - 1}}$$
 [34-36]

 $\bar{\mathbf{x}}$ is the arithmetic mean of n measurements.

The confidence interval is the range which is expected to include, with a certain degree of probability, the value of interest. It is a measure of the component of uncertainty of the reported average that is due to measurement error and sampling variabilities.

After the degree of probability is selected, the confidence interval may be calculated from the formula

$$\overline{x} \pm \frac{ts}{\sqrt{n}}$$
 [35, page 2-3]

The value of t is obtained from a statistical table of t distribution, and depends on the number of observations and the specified degree of probability.

In order to compare the performance of two materials (in this report, unaged and aged paper), we will assume that the variability in performance of each (A, unaged, and B, aged) is unknown, but can be assumed to be about the same. Some information already is available indicating that the difference in variability between test results of unaged and aged papers is not particularly significant [15]. After \bar{x}_A , \bar{x}_B , S_A , and S_B are calculated, a pooled value, Sp, for the standard deviation is calculated

Sp =
$$\sqrt{\frac{(n_A-1)S_A^2 + (n_B-1)S_B^2}{n_A + n_B - 2}}$$
 [35, page 3-24]

Then a value for u, the test criterion for detecting a difference at 95 percent (in this report) confidence, may be calculated:

u = t Sp
$$\sqrt{\frac{n_A + n_B}{n_A n_B}}$$
 [35, page 3-24]

If $\bar{x}_A - \bar{x}_B$ is larger than u, one can conclude that there is a true difference, with 95 percent confidence of being right, between the performances of A and B. This procedure may be used if $n_A = n_B$.

3.9 Sampling

Sheets were selected at random from the supply of paper at hand to create the sample. One half of each sheet was tested (controls), and the other half was aged and tested.

Of the blank sheets that were run through copying machines, half of each sheet was tested, and the other half was aged and tested. Thus, the controls above come from a slightly different statistical population than the sheets that were processed through copying machines. For evaluating the effect of heat aging and light on imaged copy, an attempt was made to retest the same area each time, but several measurements were made in order to obtain a reasonably small standard deviation.

The imaged copies for measuring the durability of the image were from a different statistical population than the sheets for physical testing. This should not cause any difficulty.

4. RESULTS AND DISCUSSION

The relation between physical properties of paper that can be measured in the laboratory and performance often is elusive. Specifications must be built around products that are available unless the demand is great enough to justify a special production run. Most office copies are not destined for archival use, so it is not to the advantage of either supplier or purchaser to strive for unneeded quality or permanence.

Data on office copy papers and bond papers included in this study are given in Tables 1 and 2. Further data on bond papers are given in NBS Report 10 844, Development of Specifications for Bond and Ledger Papers for Permanent Records, in Tables 1-3 [29].

Some broad generalizations may be made about the properties of the papers in Tables 1 and 2. The papers for "plain paper" copiers, 2100-2108, do not exhibit high fold or tear values. In comparison, the coated papers have somewhat lower tear values and much higher fold values. The bond papers appear to be higher in tear. Although the papers are not particularly directional with respect to tear, they are very directional with respect to fold.

Setting minimum values for tear and fold for specification purposes must be somewhat arbitrary. One is not likely to be able to achieve favorable values in all properties. For example, No. 2100 is an alkaline-filled paper, but its tear and fold values are not high. No. 2104 exhibits relatively good tear and fold values, but the pH is only 4.8, hot extraction. Therefore, a specification document should not be used too rigidly by the purchaser, as suitable paper may be obtained by relaxing one of the requirements.

A brightness minimum should be specified. Opacity may be important for imaging purposes. This, along with other properties such as curl, moisture content, smoothness, stiffness, etc., may be significant to imaging and transport through specific machines, but this is beyond the scope of this report. If a purchaser wishes to buy paper for a particular machine from an independent source, the required characteristics of the paper must be determined or obtained from the manufacturer. An alkaline filler can be specified for paper for "plain paper" copiers, but alkaline-filled coated papers are not likely to be available except on special order. Although filler and pH requirements can be given for the various levels of permanence, they are not significant for coated papers. One must rely on aging requirements.

Test data for office copy papers after aging for 72 hours at 105°C are given in Table 5, and data on percent retention after aging are given in Table 6. Data on selected bond papers after aging and percent retention are given in Table 7. Retention of fold and tear against hot extraction pH are plotted in Figures 1 and 2, respectively.

The plot in Figure 1 shows that some correlation exists between hot extraction pH and retention of fold after aging. The five ledger papers fall on a straight line, but the office copy papers are very erratic. Three of the four coated papers show good stability toward accelerated aging. The other coated paper probably is an acid paper with poor stability. The "plain paper" copier papers show considerable variation in pH values (4.1-5.2), and retention of fold after accelerated aging varies from 16 percent to 109 percent.

Resistance to tear with aging, shown in Figure 2, does not indicate a wide range in values with aging, as the lowest retention value is 60 percent. Retention of burst after aging is not particularly useful, as the lowest retention value is 78 percent. Retention of brightness was good and was never less than 90 percent.

As the effect of the processing machine on subsequent stability of paper cannot be ignored, several papers were passed through selected copying machines. Some of each sample were then tested and some were aged for 72 hours at 105°C. The test data are given in Table 8, and data on retention of properties are given in Tables 9-11. Averages, standard deviations, and numbers of specimens are given in Tables 12-14, and data for estimating statistical significance of the test data are given in Table 15.

Although fold appears to be the most sensitive criterion of change due to aging, tear next, and burst the least sensitive, the u values are much larger for fold than for tear or burst. Therefore, one must look at the $\bar{x}_A - \bar{x}_B$ values in relation to the u values. The latter usually represents about 20 percent of the fold value, which means that differences of less than about 20 percent in fold may not be significant. This figure can be reduced by making a larger number of observations. The u values for tear and burst usually lie within 5-10 percent of the average values. The significance of the data for each test, sample, and aging condition is indicated in Table 16. If $\bar{x}_A - \bar{x}_B$ is not appreciably greater than u for a specific test, aging did not produce a measurable difference in the paper with respect to this particular test. If $\bar{x}_A - \bar{x}_B$ is appreciably greater than u, significant change has occurred during the aging procedure.

It is obvious that Nos. 2100, 2111, 2112, 2127, 233, and 238 are stable toward accelerated aging. There is little indication that copying processes degrade the paper or that copy processing enhances the aging process.

Data on the effect of irradiation with a xenon arc, aging for 72 hours at 105°C, and irradiation followed by heat aging are given in Tables 17-19. Reflectance data were obtained using (1) a light source with a dominant wavelength of 460 nm, and (2) an unfiltered incandescent lamp. It is obvious that none of these aging conditions appreciably changed the print contrast ratios.

The "light" specimens described in the tables are readable, although any volume of copy with such a low print contrast ratio would not be comfortable to read.

Print contrast data obtained at a dominant wavelength of 460 nm or with an unfiltered incandescent lamp are satisfactory for evaluation of changes due to aging. Reflectance at 460 nm is more sensitive and, therefore, is preferable, but not every instrument is fitted with this filter. Print contrast data obtained by direct reading of the instrument and by calculation from reflectance data gave essentially the same results.

Changes in print contrast after various cycles of abrasion for copied material having images that are properly fused to paper, marginally fused, or poorly fused, are given in Table 20. An end point of 20 cycles was selected for comparing resistance to abrasion. The print contrast ratios for several samples after abrasion for 20 cycles are given in Table 21.

The effects of aging and of abrasion on print contrast data on several papers, with various image quality levels, are given in Table 22. With one exception, print contrast data placed the image quality in the correct order. Aging for 72 hours at 105°C did little to the unabraded specimens. Aging appeared to do little to the properly imaged specimens, but aging apparently fused the improperly imaged specimens so that they were changed little by abrasion. Data on differential thermal analysis of the paper evaluated in this project are given in Table 23. Although there is some correlation between T_2 and T_3 and pH, it is very poor. Previous data have indicated that a good correlation between pH and T_3 exists for a homogeneous group of paper [16]. For a heterogeneous group, the correlation is not as good [37].

5. CONCLUSIONS

- A plot of retention of folding endurance with accelerated aging against hot extraction pH indicates that, with the exception of some coated papers, a relationship exists between these properties.
- A similar plot of retention of tearing strength with accelerated aging against hot extraction pH is not as convincing as the plot for folding endurance, but apparently the less stable papers can be identified.
- Assuming that accelerated aging for 72 hours at 105°C is a valid test, it is possible to set arbitrary limits for retention of fold and tear after aging.
- 4. As data in the literature have shown that there is a correlation between pH and stability of paper, it is reasonable to set pH limits for paper for "plain paper" copiers.
- 5. Print contrast appears to be an adequate test for measuring the reflectance of office copy images.
- Print contrast of the samples studied did not change appreciably with accelerated aging, either after 72 hours at 105°C or by irradiation with a xenon lamp.
- 7. The abrasion test used in this study appears to be adequate to distinguish between properly fused and improperly fused images.

6. REFERENCES

- 1. Unpublished data, Paper Evaluation Section, NBS.
- Hall, Gösta, Permanence of Paper, Paper Trade J. 82 (14): 185 (April 8, 1926).
- Rasch, R. H., A Study of Purified Wood Fibers as a Paper Making Material, Bureau of Standards Journal of Research 3: 469 (1929), RP 107.
- TAPPI Method T453 su-70, Effect of Heating on Folding Endurance (Relative Stability of Paper), Technical Association of the Pulp and Paper Industry, One Dunwoody Park, Atlanta, Georgia 30341.
- 5. ASTM Method D 776, Standard Method of Test for Relative Stability of Paper (Effect of Heat on Folding Endurance), 1973 Annual Book of ASTM Standards, Part 15, American Society for Testing and Materials, 1916 Race Street, Philadelphia, Pa. 19103.
- 6. Browning, B. L. and Wink, W. A., Studies on the Permanence and Durability of Paper, Tappi 51 (4): 156 (1968).
- 7. Stamm, A. J., Ind. Eng. Chem. 48: 413 (1956).
- 9. van Royen, A. H., Comparison of the Accelerated Aging of Cellulose with Normal Aging at Room Temperature, <u>Assoc. Tech. Ind. Papetiere</u>, Bull. 6, 223 (1957); <u>Papierwereld</u> 12: 219 (1958); <u>Abstr. Bull. Inst. Paper</u> <u>Chem. 29: 92</u> (1958).
- Barrow, W. J., Permanence/Durability of the Book, A Two-Year Research Program. W. J. Barrow Research Laboratory, Richmond, Va. (1963).
- Rasch, R. H. and Scribner, B. W., Comparison of Natural Aging of Paper with Accelerated Aging by Heating, <u>Bureau</u> of Standards Journal of Research <u>11</u>: 727 (1933), RP 620.
- 11. Scribner, B. W., Comparison of Accelerated Aging of Record Papers with Normal Aging for 8 Years, <u>J. Research</u> NBS 23: 405 (1939).
- Wilson, W. K., Harvey, J. L., Mandel, J. and Worksman, T., Accelerated Aging of Record Papers Compared with Normal Aging, <u>Tappi</u> <u>38</u> (9): 543 (1955).

- Reid, L. S., Paper given before Preservation Symposium, Chesapeake and Allegheny Paper Club, Washington, D.C., (March 25, 1955).
- 14. Lewis, H., Institute of Paper Chemistry, private communication.
- 15. Wilson, W. K. and Hebert, R. L., Evaluation of the Stability of Record Papers, Tappi 52 (8): 1523 (1969).
- Wilson, W. K. and Hebert, R. L., Evaluation of the Stability of Manifold Papers, Tappi 55 (7): 1103 (1972).
- 17. Parks, E. J. and Hebert, R. L., Accelerated Aging of Laboratory Handsheets: Changes in Acidity, Fiber Strength, and Wet Strength, NBS Report 10 627 (December 27, 1971).
- 18. Parks, E. J. and Hebert, R. L., Accelerated Aging of Laboratory Handsheets: Retention of Folding Endurance, Internal Tear, Bursting Strength, and Tensile Strength, NBS Report 10 628 (December 1, 1971).
- 19. Parks, E. J. and Hebert, R. L., Accelerated Aging of Laboratory Handsheets: Reflectance, Moisture Regain, Sonic Modulus, and Differential Thermal Analysis, NBS Report 10 687 (February 22, 1972).
- 20. TAPPI Method T435 su-68, Hydrogen Ion Concentration (pH) of Paper Extracts--Hot Extraction Method (Related ASTM Method D 778).
- 21. TAPPI Method T509 su-68, Hydrogen Ion Concentration (pH) of Paper Extracts--Cold Extraction Method.
- 22. ASTM Method D 3208, Standard Specification for Manifold Papers for Permanent Records, 1974 Annual Book of ASTM Standards, Part 20.
- 23. ASTM Method D 3290, Standard Specification for Bond and Ledger Papers for Permanent Records, to be published.
- 24. ASTM Method D 3301, Standard Specification for File Folders for Storage of Permanent Records, to be published.
- 25. ASTM G 25, Standard Recommended Practice for Operating Enclosed Carbon-Arc Type Apparatus for Light Exposure of Nonmetallic Materials, 1972 Annual Book of ASTM Standards, Part 30.

- 26. ASTM G 27, Standard Recommended Practice for Operating Xenon-Arc Type Apparatus for Light Exposure of Nonmetallic Materials, 1972 Annual Book of ASTM Standards, Part 30.
- 27. ASTM F 362-72, Erasability of Inked Ribbons, 1973 Annual Book of ASTM Standards, Part 15.
- 28. ASTM F 360-72, Standard Recommended Practice for Image Evaluation of Electrostatic Business Copies, 1973 Annual Book of ASTM Standards, Part 15.
- 29. Parks, E. J., Hebert, R. L., and Limparis, G. H., Development of Specifications for Bond and Ledger Papers for Permanent Records, NBS Report 10 844 (May 1, 1972).
- 30. Wink, W. A., Institute of Paper Chemistry, Appleton, Wisconsin, private communication.
- 31. SRM 700b, Light-Sensitive Paper, and SRM 701b, Standard Faded Strips, NBS Standard Reference Materials.
- 32. ASTM D 985-50 (reapproved 1969), Standard Method of Test for 45-Deg., 0-Deg. Directional Reflectance for Blue Light (Brightness) of Paper, 1973 Annual Book of ASTM Standards, Part 15.
- 33. ASTM Method of Test for Paper in 1973 Annual Book of ASTM Standards, Part 15:

D 589-65 (1970), Opacity of Paper D 645-67, Thickness of Paper and Paperboard D 646-67, Basis Weight of Paper and Paperboard D 689-62 (1968), Internal Tearing Resistance of Paper D 774-67 (1971), Bursting Strength of Paper D 778-50 (1971), Hydrogen Ion Concentration (pH) of Buffered Paper Extracts D2176-69, Folding Endurance of Paper by the MIT Tester

- 34. SCAN-G2:63, Statistical Treatment of Test Results, Scandinavian Pulp, Paper, and Board Testing Committee, Box 5604, S11486 Stockholm, Sweden.
- 35. Natrella, Mary G., Experimental Statistics, National Bureau of Standards Handbook 91 (1963). Available from the Government Printing Office.

- 36. Davies, O. L., Statistical Methods in Research and Production, 4th edition, published for Imperial Chemical Industries, Ltd. by Hafner Publishing Co., 866 3rd Avenue, New York, N.Y. (1972).
- 37. Hebert, R. L., Tryon, M., and Wilson, W. K., Differential Thermal Analysis of Some Papers and Carbohydrate Materials, Tappi 52 (6): 1183 (1969).

Table 1. Test data for office copy papers' included in aging study.

Source of Paper			A	Ą	A	A	A	A	A	£	В	υ	υ	υ	C
Н	hot		8°8	4.9	4.6	4.1	4.8	4.8	5.1	5.2	5.2	7.7	7.2	8.3	6.7
Ω	cold		8.4	5.2	5.4	4.4	5.4	5.4	5.7	5.8	5.9	7.1	7.5	7.8	7.1
Opacity	0%P		86.2	91.0	88.3	85.9	88.1	87.2	87.4	85.7	93.6	93.7	95.2	95.7	93.2
Brightness	о ю		83.9	86.8	86.6	79.8	78.7	85.0	83.1	84.1	87.4	81.4 ³ 76.3 ⁴	83.8 81.3	80.7 77.8	79.7 75.2
Bursting Strength	points		23.6	27.4	21.6	22.8	35.2	22.4	27.5	30.6	25.0	26.2	33.6	26.0	32.8
lding ance	tg folds	CD	26	14	15	12	39	17	31	38	18	180	290	230	320
MIT FO Endura	1 J double	MD	79	70	27	55	120	42	65	96	61	360	460	620	730
ing tance		CD	38	58	45	99	55	58	59	59	57	33	42	45	32
Tear Resis	יס	MD	37	45	38	50	58	52	61	51	47	30	41	53	28
ckness	micrometer		110	94	92	110	110	66	100	100	120	74	89	79	71
Thi	in.		0.0043	.0037	.0036	.0043	.0043	.0039	.0040	.0041	.0046	.0029	.0035	.0031	.0028
lght per Lt Area	17"x22",500		16.3	20.2	20.7	20.6	20.2	20.4	20.6	19.9	19.8	22.6	24.5	21.9	24.1
Wei Uni	g/m ²		61.7	76.3	78.2	77.6	76.2	77.2	77.9	75.1	74.7	85.5	92.7	82.9	1.16
Type of Paper			U ²	n	D	D	D	D	D	D	D	υ	υ	υ	υ
Sample No.			2100	2101	2102	2103	2104	2105	2106	2107	2108	2111	2112	2113	2127

¹All were wood pulp papers. ²U = uncoated, C = coated on one side only. ³Coated side, which takes images ⁴Uncoated side. Table 2. Test data for selected bond papers' included in aging study.

Н	hot		4.7	9.5	5.1	7.2	4.4	
Ω	cold		5.3	8.6	5.7	7.3	4.9	
Opacity	010		88	91	88	86	06	
Brightness	ою		88.2	80.2	82.2	87.1	87.2	
Burst	points		24.0	31.5	21.3	37.4	32.7	
lding ance	<g folds</g 	CD	16	140	20	120	37	
MIT FO. Endura	1) double	QW	42	170	22	350	100	
ing tance		CD	50	71	49	86	70	
Tear Resis	đ	MD	45	74	49	70	62	
ickness	micrometer		119	104	107	119	132	
тh	in.		0.0047	.0041	.0042	.0047	.0052	
lght per Lt Area	17"x22",500		20.1	21.0	19.7	20.5	22.6	
Wei Uni	g/m ²		75.9	0.07	74.4	77.4	84.9	
Sample No.			231	233	235	238	258	

¹All are wood pulp papers.

Table 3. Imaged samples for evaluation of resistance to xenon arc.

Samp:	le	No	<u>.</u>	Ima	aging	Process	Ī	Jature	e of	Image	Base Paper	S	ource
2100		a b c d		rad: rad: hea hea	iant iant t and t, pre	pressure		dark dark dark dark	, un: and , un: and	iform light iform light	2100 2100 2100 2100		A
2101	-	a,	b,	с,	d						2101		A
2102	-	a,	b,	с,	d						2102		А
2103		a,	b,	с,	d						2103		А
2104		a,	b,	с,	d						2104		А
2105	-	a,	b,	с,	d						2105		Ā
2106	-	a,	b,	с,	d						2106		А
2109				rad	iant			dark	and	light	2107		В
2110				radi	iant			dark	and	light	2108		В
2114				radi	iant			dark			2111		С
2117				radi	iant			dark			2112		С
2120				rad	iant			dark			2113		С
2128				hot	air			dark			2127		D

Table 4. Imaged samples for evaluation of mechanical durability of image.

Samp. No.	le •	Imaging Process	Nature of Image	Nature of Fixing	Base Paper	Source
2100	a c	radiant heat and pressure	dark dark	proper proper	2100 2100	A A
2101	a C	radiant heat and pressure	dark dark	proper proper	2101 2101	A · A
2102	a C	radiant heat and pressure	dark dark	proper proper	2102 2102	A A
2103	a c	radiant heat and pressure	dark dark	proper proper	2103 2103	A A
2104	a c	radiant heat and pressure	dark dark	proper proper	2104 2104	A A
2105	a C	radiant heat and pressure	dark dark	proper proper	2105 2105	A A
2106	a C	radiant heat and pressure	dark dark	proper proper	2106 2106	A A
2109		radiant	dark and light	proper	2107	В
2110		radiant	dark and light	proper	2108	В
2114		radiant	dark	proper	2111	С
2115		radiant	dark and light	poor	2111	С
2116		radiant	dark and light	marginal	2111	С
2117		radiant	dark	proper	2112	С
2118		radiant	dark and light	poor	2112	С
2119		radiant	dark and light	poor	2112	С
2120		radiant	dark	proper	2113	С
2121		radiant	dark	proper		А
2122		radiant	dark and light	marginal		А
2123		radiant	dark and light	poor		А
2124		heat and pressure	dark	proper		A
2125		heat and pressure	dark and light	marginal		A.
212€		heat and pressure	dark and light	poor		А
2128		hot air	dark	proper	2127	D

Test data for office copy papers after aging for 72 hours at 105°C. Table 5.

H	hot		8°8	5.0	4.6	4.0	4.7	4.6	4.8	4.9	4.9	7.1	7.0	8 • 0	6 . 6
μ.	cold		8 . 3	5.2	5 . 3	4.4	5 ° 3	5 . 2	5.4	5.7	5 • 5	7.1	7 . 3	7 . 8	6 • 9
Brightness	0,0		80.8	80.7	80.2	75.1	74.5	78.9	79.8	79.2	81.7	81.0 ¹ 68.9 ²	82.6 72.6	84.0 69.5	78.4 66.7
Bursting Strength	points		22.6	21.8	19.9	18.2	31.0	20.0	27.4	28.7	23.2	23.1	30.4	27.8	31.5
lding ance	kg folds	CD	26	9	6	4	28	11	27	37	13	150	260	71	280
MIT FO Endur	1 double	Ш	63	17	10	7	68	24	50	100	39	320	450	160	840
ring tance		CD	37	42	36	38	45	54	58	50	49	30	37	33	29
Tear Resis	U1	QW	34	34	29	32	55	44	59	45	36	28	40	34	26
Sample No.			2100	2101	2102	2103	2104	2105	2106	2107	2108	2111	2112	2113	2127

¹Coated side, which takes images. ²rmcoated side.

Sample	Initial	Perc	ent Ret	ention A	fter A	ging ¹
No.	pH, hot	Tear ^z	Fold ²	Burst	Brigh	tness
2100	8.8	95	85	96	9	6
2101	4.9	75	27	79	9	3
2102	4.6	78	45	92	9	3
2103	4.1	60	16	80	9	4
2104	4.8	88	62	88	9	5
2105	4.8	89	59	90	9	3
2106	5.1	98	80	99	9	6
2107	5.2	86	102	94	9	4
2108	5.2	82	66	9.3	9	3
2111	7.7	92	87	88	100 ³	904
2112	7.2	93	95	91	98	89
2113	8.3	69	28	107	104	89
2127	6.7	92	107	96	98	89

Table 6. Retention of properties of office copy papers after aging for 72 hours at 105°C.

¹Percent of value for unaged paper ²Average of machine and cross directions. ³Coated side.

"Uncoated side.

Test data for selected 'ond papers after aging, and percent retention of properties after aging. 7. Table

After Aging Brightness 94 98 95 97 93 Percent Retention Tear¹ | Fold¹ | Burst 96 100 92 66 87 48 103 50 82 32 90 82 87 77 91 9.3 4.7 6.4 4.2 hot 4.4 Hd 5.0 8.1 5.7 7.0 cold 5.1 Brightness 83.3 78.5 77.8 84.7 81.3 0/0 points 22.9 31.6 19.7 37.2 28.7 Burst l kg double folds 10 MIT Folding CD 150 17 10 94 Endurance QW 18 290 170 11 27 Resistance CD 43 61 37 78 56 Tearing σ 64 40 69 38 52 MD Sample No. 231 233 235 238 258

¹Average of machine and cross direction.

Test data for office copy papers and bond papers (1) after exposure to radiant, or heat plus pressure, processing in quick copy machines (unaged); and (2) after processing followed by aging for 72 hours at 105°C (aged). Table 8.

Imaging Proces	o N	MIT F(doub	olding le fol yed	ds, Aq	urance 1 kg ed	Inte Res Una	rnal ista ged	Tea: nce, Age	ring g ed	Bursting 9 point Unaged	strength ts Aged	Bright Unaged	ness Aged
MD CD	MD CD	CD	1-	MD	CD	MD	CD	DM	CD	ollayed	nafer	naden	Aye
heat and pressure 69 27 radiant 84 30	69 27 84 30	27 30		63 70	26 25	37 37	42 40	3 9 3 9 3 9	6 6 M M	22.7 23.9	23.0 23.0	83.8 83.8	80.5 80.4
heat and pressure 82 20 radiant 53 15	82 20 53 15	20		21 17	6 1-	49 45	57 56	36 34	41 42	29.9 27.1	24.0 22.2	86.8 86.8	80.3 81.1
heat and pressure 26 14 radiant 32 15	26 14 32 15	14 15		യത	∞∞	41 37	46 46	33 31	34 34	20.8 22.1	19.7 19.2	88.2 88.0	79.8 81.5
heat and pressure 48 11 radiant 60 13	48 11 60 13	11 13		44	ቲ ቲ	51 50	62 64	27 28	35 36	23.1 23.2	17.2 17.7	81.3 81.6	76.3 76.6
heat and pressure 110 39 radiant 150 43	110 39 150 43	39 43		73	27 30	53 44	51 51	44 41	48 49	34.4 37.6	32.3 33.8	78.0 79.3	74.8 74.6
heat and pressure 39 18 radiant 50 20	39 18 50 20	18 20		22	11	49 49	57 58	44 45	52 52	22.6 21.8	19.8 20.4	85.9 85.7	79.1 79.6
heat and pressure 60 33 radiant 72 38	60 33 72 38	8 8 8 8 9 8		48 48	27 26	57 55	61 62	51 52	61 54	28.0 28.5	26.9 27.1	83.9 84.1	80.7 80.5
hot air 620 370	620 370	370		510	230	34	31	27	26	29.4	29.7		1
heat and pressure 39 17 radiant 39 20	39 17 39 20	17 20		23	12	51 48	51 51	44 43	44 44	24.1 23.4	21.2 22.8	88.2 87.9	82.6 82.2
heat and pressure 150 110 radiant 180 140	150 110 180 140	110 140		140 160	80 150	76 70	63 66	74 72	72 74	30.4 31.4	30.4 30.8	80 . 4 80 . 4	78.3 78.6
heat and pressure 20 17 radiant 22 18	20 17 22 18	17 18		10	10	49 54	47 45	40 42	42 39	20.7 22.0	18.6 18.5	82.8 82.5	78.0 78.3
heat and pressure 300 88 radiant 370 120	300 88 370 120	88 120		270 371	75 93	64 61	70 75	68 65	74 75	36.2 36.6	35.3 36.0	88.0 87.8	85.2 85.2
heat and pressure 84 30 radiant 110 40	84 30 110 40	30 40		25	15 13	61 59	70 71	49 50	5 2 2 2	30.4 29.2	27.0 26.5	87.0 86.4	80.5 80.3

Table 9. Retention of the internal tearing resistance of quick copy papers and bond papers (1) after accelerated aging for 72 hours at 105°C; (2) after exposure to quick copy process; and (3) after the latter exposure, followed by aging for 72 hours at 105°C.

			Percent	Rete	ntion ¹ Afte	r:	
					Quick Cop	y Processi	ng
a 1		Quick Cop	y Processi	ng	Plu	s Aging	1 11 - 1
Sample No.	Aging	Radiation	Pressure	HOT Air	Radiation	Pressure	Hot Air
2100	95	103	105		103	99	
2101	75	97	103		74	75	
2102	78	100	105		78	81	
2103	60	98	97		55	53	
2104	88	84	94		79	81	
2105	89	97	97		88	86	
2106	98	98	98		88	93	
2127	92			108			88
231	87	104	109		92	93	
233	90	94	96		101	101	
235	77	101	98		83	84	
238	91	87	88		90	91	
258	82	99	99		80	75	

¹Percent of value for unaged paper, average of machine and cross directions.

Table 10. Retention of folding endurance of quick copy papers and bond papers (1) after accelerated aging for 72 hours at 105°C, (2) after exposure to quick copy processes, and (3) after the latter exposure followed by aging for 72 hours at 105°C.

			Percent	: Rete	ntion ¹ Afte	r:	
					Quick Cop	y Processi	ng
Camplo		Quick Cop	Processi Host and	ng Hot	PIU	s Aging	Hot
No.	Aging	Radiation	Pressure	Air	Radiation	Pressure	Air
2100	85	109	91		90	84	
2101	27	81	121		29	36	
2102	45	112 -	95		40	38	
2103	16	109	88		12	12	
2104	62	126	94		66	66	
2105	5 9	114	94		59	54	
2106	80	115	97		77	78	
212 7	107			9 5			71
231	48	102	97_		60	60	
233	104	103	84		98	70	
2 35	50	96	91		50	48	
238	82	104	83		98	74	
258	32	101	82		25	29	

¹ percent of value for unaged paper, average of machine and cross directions.

Table 11. Retention of bursting strength of quick copy papers and bond papers (1) after accelerated aging for 72 hours at 105°C, (2) after exposure to quick copy processes, and (3) after the latter exposure followed by aging for 72 hours at 105°C.

			Percent	Rete	ntion ¹ Afte	r:	
		Quick Con	. Drogoggi	20	Quick Cop	y Processi	ng
Sample		QUICK COP	Heat and	Hot	<u> </u>	Heat and	Hot
No.	Aging	Radiation	Pressure	Air	Radiation	Pressure	Air
2100	96	101	96		97	97	
2101	79	99	109		81	88	
2102	92	102	96		89	91	
2103	80	102	101		78	75	
2104	88	107	98		96	92	
2105	90	97	101		91	88	
2106	99	104	102		99	98	
2127	96			90			91
231	96	98	100		95	88	
233	100	100	97		98	97	
235	92	103	97		87	87	
238	99	98	97		96	94	
258	87	89	93		81	83	

¹Percent of value for unaged paper

sistance and standard deviation for	nd papers before and after various celerated aging.
12. Mean internal tearing re	quick copy papers and bo treatments, including ac
Table	•

Nature of Sample Treatment Prior to Testing		R				12	12	12	12	12	12						12		10	12	12	12	12	
	ng by ion	CD	S	Б		ר 2 1.4	о С С С С С	4.6	2.8	5.8	4.5					c	4.53		1.7	8.9	2.0	8° 8	4.2	
	cessi adiat	MD	თ	σ		2.7 3.8	р. н. . н.	4.0	6.2	5.7	4.3					c	2.9 ³		5.2	9.5	9.9	4.5	3.5	
	Pro R	CD		Б		40 ער	46	64	51	58	62					c	31 3		51	66	45	75	71	
		QМ		Б		37 45	37	50	44	49	55					¢	343		48	70	54	61	59	
	Heat Aging	ч			w		10	10	10	10	10	10	10	10	10	10	12		12	12	12	12	12	
		CD	თ	σ	Paper	1.7 3.8	0 0 0 0 0	4.5	4.6	5.9	4.0	2.4	з . 9	1.1	1.4	4.4	1.6	ers	3.1	4.0	2.9	8°8	7.8	
		MD	w	Б	Copy	2.1	л. 1. 8	2.9	17.3	2.5	8.4	4.2	7.1	2.0	3°9	4.2	1.3	ıd Papı	4.6	9.7	4.1	4.4	4.7	
		CD		σ	uick	37	36	38	45	54	58	50	49	30	36	33	29	Bor	43	61	37	78	56	
		MD		σ	õ	34 34	29	32	55	44	59	45	36	28	40	34	26		40	69	38 38	64	52	
		, u				10		10	10	10	10	10	10	10	10	10	12		12	12	12	12	12	
	Treatment	CD	თ	Б		3.6	3.2	6.5	6.3	5.6	4.l	5°8	4.5	1.6	1.1	4.1	2.2		3.6	12.2	7.3	19.7	6 . 3	
		MD	s N	۵		1.7	4.9	3.4	8.4	7.3	3.7	6.1	4.1	2.5	2.7	7.6	2.1		4.5	0.6	8.2	9°2	4.6	
	NO	CD		σ		3 8 8 9 9 9	45	99	55	58	59	59	57	с С	42	45	32		50	11	49	9 e	70	
		MD		Б		37	38	50	20	52	61	51	47	30	4 I	е 2 Э	28		45	74	49	70	62	
	ample No.					2100 2101	2102	2103	2104	2105	2106	2107	2108	2111	2112	2113	2127		231	233	235	238	258	
	Heat & at Agin	CD n	S	٥		2.6] 2.1]	2.2]	4.1 1	л. Г. Г.	10.1				3.1] 16.4]	7.2 1	10.2 1	6.7]							
--------	-------------------	------	--------	---	--------	----------------	-------	-------------------	----------------	----------	----------------------	-------------	--------	------------------	-------	--------	-------	--						
	ing by e & He	MD	S	б		4°.3	4.0	2.0	T0.1	2.5				8.8 12.1	4.3	8.9	3°9							
cinq	Scess	CD		٩		39 41	34	ი ი ო	4 ∩ 8 ⊂	61				44 72	42	74	52							
Test	Pre	ДМ		Б		35 36	33	27	5 7 7	51				44 74	40	68	49							
or to	1.3	ч				12	12	12	7 C	12				12	12	12	12							
t Pric	/ Heat lre	CD	ß	б	apers	3.7 4.1	5.3	ۍ م م	, w w	5.7			л С	2°3	4.4	7 . 9	9°3							
atment	ing by Pressu	MD	S	Ъ	opy Pa	3.1 8.8	7.0	0.0	12.6	2.1			Papel	7.0 8.4	4.8	6.0	5.2							
E H	and	CD		Б	ck C	42 57	46	62	υ Γ	61			Bond	53 63	47	74	70							
ample	Pro	MD		٥	Qui	37 49	41	51	7 7 7 0	57				51 76	49	64	61							
ofs	uo	n				12	12	12		12			12	10	12	12	12							
ature	adiati ing	CD	თ	م		5 . 1 2 . 3	2.0	4.7	7°/	ч • С		۳ ا	1.7	3.1 10.4	5.0	9.1	7 . 0							
Z	g by R eat Ag	MD,	ູ ໃ	م		2.3 1.9	3.1	2.7	л с • с	5.2		er: (т. 8,	6 . 3 9 . 4	6.9	11.6	7°0							
	essin And H	CD		Б		39 42	34	9 0 7 30	ע ר ר	54		m C	2 0 7	4 4 74	39	75	55							
	Proce	MD		б		38 34	31	- 8 - 7 - 8	4 7 7	52		3 1 0	17	43 72	42	65	50							
	sample No.					2100 2101	2102	2103	2104 2105	2106	2108 2118 2111	2113	/777	231 233	235	238	258							

Table 12 continued

¹n = number of replicate tests. ²s = standard deviation of the mean. ³Processing by hot air.

		R			12 12	12	12	12	12				12		10 12	12	12	
	рУ	CD	sles		ഹ വ	2	4 U	2-	ω				383		8 57	ς α	100	
	ssing iatio	MD	s doub fold		19 11	4	14 94	6	14				1453		10 58	9	2 3	
bu	Proce	CD	ole ds		30 15	15	4 H 9 0	20	37				369 ³		20 143	18	40 40	
Testil		MD	doul fol		53 53	32	60 152	50	72				622 ³		39 181	22	110	
r to		ц			10	10		10	10		10	10	12		12 12	12	12	
Prio	ر م	CD	s s s	pers	40	2	-1 œ	7	00 - -	т 4	45	45	6 0 3	ß	46 46	ς α	000	
ment	Agin	MD	s doub fold	py Pa	12 4	0	ал 1 а	7	12	12	107	129	260	Paper	4 43	л 4	ר 00 סיי	
Teat	Heat	СD	ble ds	ck Co	26 6	<u>م</u>	2 8 4	11	27	13	150	260	280	Bond	10 150	10	17	
mple		MD	dou fol	Qui	63 17	10	68	24	50	001 100	320	450	836		18 170	11	27	
of Sa		n ¹			10	10	10	10	10		10		12		12 12	12	12	
ture	nt	CD	ble ds		4	ς Γ	12	S	9 -	- 9 -	75	124 50	119		43 43	4 ر ۲		
Na	eatme	MD	s' dou fol		15 28	90	12 59	7	L C	- 4 - 4	107	144 211	202		42	99	23	
	NO TL	CD	ble ds		26 14	12 1	л З 6 С	17	31 31	- 1 8 0	180	290	320		16 140	120	37	
		MD	dou fol		79 70	27	55 116	42	65 06	61	360	460	729		42 167	352	103	
	Sample No.				2100 2101	2102	2103	2105	2106	2108	2111	2112	2127		23 1 233	235	258	

Mean MIT folding endurance and standard deviation for quick copy papers and bond papers before and after various treatments, including accelerated aging. Table 13.

ا ھا ب	hird n			12	12	12 12	12			12	12	12 12	
Hea	CD	ble ds		ഗനാ	2 1	7 7	4			с к Ф	5	20 6	
g by	MDM	s dou fol		16 5	2 0	40 4	14			34	, m	61 5	
ting ssin	CD	le le		26 9	X 4	27 11	27			12 80	10	76 15	
to Tes Proce	MD	doub		63 21	י4 ע	75 22	48			23 138	10	271 25	
ior at	Ľ		w	172	17 17	12 12	12			12	12	12 12	~
t Pr Y He	CD	ble ds	aper	n o '	4 0	12 3	2		rs	4 C C	S	18 7	
tmen ng b	MDM	s dou fol	ч Ч Ч	13 24	11 11	ഹ ഗ ഗ	14		Pape	10	ſ	4 9 20	
Cessi Cessi	CD	uble ds	ck Co	20		39 18	33		Bond	112	17	88 30 8	
ample	QW	dou fol	Qui	82	4 8 4 4 8	108 38	0 0			39	20	302 84	
a- f	n I			12	17 17	12 12	12	12		12	12	12 12	
ture Radi	CD	s le s		м сл с	ЧЧ	9 M	9	543		4 0 X	7	7 8 7 8	
na d by	MD	s ² doub fold		17 3	ηα	м 2 М	11	153 ³		4 2	m	70	
essinc	CD	ole		25	X 4	30 13	26	230 ³		12 148	10	93 13	
Proc	MD	doul		70 17	ש ע	73	4	512 ³		23	11	369 22	
Sample				2100 2101	2103	2104 2105	2106 2107 2118 2112 2112	2127		231 233	235	2 3 8 2 5 8	

Table 13 continued

¹n = number of replicate tests. ²s = standard deviation from the mean. ³Processing by hot air.

leat	5	۲ ۲		12	12	12	12	12	4					12	12	12	12
ing by H are & He	ging	s points		1.3	Ч. Ч.	6°0	5.2	1.4 8) • •					1.8 7	1.7	2.6	1.6
Process: & Press:	A	Burst points		23.0	24°0 19,7	17.2	32.3	19.8 26.9	•					21.2	18.6 18.6	35.3	27.0
	e	с		12	12	12	12	12	3					12	12	12	12
ssing by	Pressur	s points		1.6 1	ر. د 4. [1.0	4.6	2°0 1°2) •					1.8 1	1.7	1.8	1.9
ing Proce	Heat &	Burst points		22.7	20.8 20.8	23.1	34.4	22.6) • •					23.4	20.7	36.2	30.4
Test adi-	ring	с		12	17	12	12	12	1			12		12	12	12	12
Prior to ing by F	Heat Ac	s points	ĽS	1.8 '	1.4	1.3	3.3	1.6				1.9		1.9 2.0	1.2	3.4	1.7
Process	ation &	Burst points	ору Раре	23.0	19.3	17.7	33.8	20.5	 • •			29.7 ³	Papers	22.8 30.8	18.5	36.0	26.5
oy le Tr	,	с	ick C	12	12 4	12	12	12				12	Bond	12	12	12	12
of Samp. essing 1	diation	s points	Ωu:	2.0	1.5	1.9	4.3	2.2				2.1		1.3	2.3	2.1	3.0
Nature o	Rac	Burst points		23.9	22.1	23.2	37.6	21.8 28.5				29.43		24.1 31.4	22.0	36.6	29.3
		с С		10	101	10	10	10	10	10		10		12	12	12	12
	t Aging	s points		1.2	1.3 L	0.8	4.4	1.7	1.5	1.4 7.4	3.1	1.4 1.6		1.3	1.6	2.5	7 ° T
	Hea	Burst points		22.6 21 8	19.9	18.2	31.0	20.0	28.7	23.2 27.8	30.4	23.1 31.5		22.9 31.6	19.7	37.3	7 8 7
		n^		10	10	10	10	0 0	10		10	10		12	12	12	77
	reatment	s' points		1.7 1 0	1. 4.	2.1	4.5	L.6 2.1	1.0	0°0	1.9	1.2		2.3 1.8	1.9	2.4	ч.т
	T ON	burst points		23.6 27.4	21.6	22.8	35.2	27.5	30.6	25.0	33.6	26.1 32.8		24.0 31.5	21.3	37.4	32.1
ample	No.			2100	2102	2103	2104	2106	2107	2108	2112	2113 2127		231 233	235	238	QC7

Mean bursting strength and standard deviation for guick copy papers and bond papers before and after various treatments including accelerated aging. Table 14.

1s = standard deviation from the mean. 2n = number of replicate tests. ³Processing by hot air.

in tearing strength, folding endurance, and bursting strength of office Data for estimating significance of changes at the 95% confidence level copy and bond papers after various treatments. \vec{X}_{a} = average for untreated paper, \vec{X}_{b} = average for tunctiented paper, and u is the test criterion at the 95% confidence level. R = radiant energy processing; Table 15

= 105°C for 72 hours.

and pressure processing, aging

= heat

ΗР

1.4 1.7 1.5 1.3 2.0 1.9 1.7 1.5 1.3 1.5 1.5 1.4 4. Þ I I ł Burst, points x_a-x_b 5.6 0.3 +1.5 .4 1.7 +0.5 2.3 1.9 1.0 +0.3 0.6 0.9 + 4 • 6 + 5 • 4 5 • 1 5 • 3 I 1 ł. хb 23.6 223.9 23.0 23.0 23.0 222.8 18.2 17.7 17.2 17.2 27.4 21.8 27.1 22.2 29.9 24.0 19.9 22.1 19.3 20.8 19.7 9 Ю 21.(ه ۲ 115 115 12 13 -19 17 17 þ 140404 101 100 100 100 Folding Endurance $\bar{x}_a - \bar{x}_b$ 10 10 10 10 40 49 1 5 + 48 -7 - 1 7 - 1 51 ry R ог 79 63 69 63 63 70 53 17 21 21 10 32 9 27 26 9 55 60 4 48 4 ي م 1.8 1.8 1.8 1.8 2.5.3.2.5 3.2.2 3.4 4.0 4.0 3.1 2.7 2.4 2.4 σ Þ Т L Т Tearing Resistance Xa-Xb 00100 111 + 4 9 1 0 H L 0 1 18 18 18 +1 S \sim ry R OL 3737373737373745 45 34 36 36 36 38 37 31 31 41 33 50 532 51 27 27 ы ХI aging + aging + aging HP + aging Treatment R + aging R + aging + aging R + aging aging R aging R aging aging + none none none none НP ΗР ΗР ΗР ΗР ΗР НР Ω. R R Sample No. 2100 2102 2103 2101

Table 15 continued

s	ŋ	1.8 1.8 1.8	1.8 1.8 1.8			18291 18291 18177	
point	⊼a-⊼b	1.3 3.4 3.1	+ 1 - 1 + 0 - 1 2 - 8 2 - 8	+0.1 1.00+ 1.1 1.1	+ 1 - 6 + 0 - 7 2 - 8 2 - 8 2 - 7	- 00 - 1 - 2 - 2 - 2 - 1	4.0.0.0.0
Burst,	$\overline{\mathbf{X}}_{a}$ or $\overline{\mathbf{X}}_{b}$	32.8 31.5 29.4 29.7	24.0 22.9 23.4 21.2	31.5 31.5 31.4 30.8 30.4	21.3 19.7 22.0 18.5 18.6	37.4 36.6 36.0 35.2	22.2 28.7 25.5 27.7 230.4 5 230.4 200.4 20
Ice	n	- 238 149 151	7 8 0 8 0 I	1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 40444	8009 8009 8009	してしててて
Endurar	Σ _a -Σ _b	- +107 227	- 2 4 1 0 3 19 3	+ + + + + 10 1 10 2 9 4	- 11 12 122 122	- 62 +14 +17 +12 +12	9 M H G, C I M + 80 F! F-
Folding	Xa or Xb	729 836 622 512	42 333 333 333 333 333 333 333 333 333 3	167 170 151 153 138	22 11 20 10	352 290 366 371 371	103 27 22 84 25
e, g	٦	1.7 1.7	50.44.4 5.00 1000	- 7 . 9 8 . 7 . 8 4 . 7 . 0	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.3 6.3 7.8 7.8	м ч т 4 ч • • • • • • • • • • • •
sistanc	⊼a-⊼b	1 0 9 1 + 7 1	1 0 0 0 0 1 + + +	1 10 4 10 10 0 1	0 0 7 1 1 1 1 + 1 1 + 1	เงดเกงง	10 11 13 13
Tearing Re	X _a or X _b	28 24 24	45 48 48 43 44	74 69 72 46 76	4 4 5 3 4 0 9 2 4 5 3 9	7 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Treatment		none aging R + aging	none aging R + aging HP + aging HP + aging	none aging R + aging HP HP + aging	none aging R + aging HP + aging HP + aging	none aging R + aging HP + aging HP + aging	none aging R + aging HP + aging
Sample No.		2127	231	233	235	238	258

Table 15 continued

Significance of the various tests with respect individual samples and aging processes. and aging 16. Table

t0

Process. + Aging¹ Strength 1 \approx \mathbf{x} × \approx \times \approx \approx \mathbf{x} \times \approx \simeq \times 5 1 processing Process MS \asymp \approx \Join S Bursting \approx \approx \approx \Join \approx \simeq \approx \geq ١ T I 1 T i.e., does Aging VS MS MS MS MS S \approx S MS \Join MS × \approx \Join × \approx \varkappa \Join Process. + Aging¹ aging, \Join \Join \approx \approx \approx \times \Join \approx × × 1 T T 1 Endurance × × \approx 1 plus very significant; MS Process aging with processing × × \Join \approx × \approx \Join \approx \approx \mathbf{x} \mathbf{x} \approx 50 1 1 I. T I Folding Aging VS MS VS \varkappa S S \approx MS S VS MS × \approx \approx × S \approx S 8 mil Process. + Aging¹ \approx \approx I × \approx \approx \Join \approx \approx \approx \Join \approx \approx consistent. I 1 1 L aging? 5 = significant; VS 4 = not significant. Strength comparison of . Process \Join \Join 1 L 1 \Join \mathbf{x} \Join \varkappa \mathbf{x} \Join \approx \approx \approx 1 ī \approx Tearing not Aging Data \mathbf{X}^2 S MS MS VS S \times S VS \approx \asymp \approx × × × × S ർ ¹This is enhance ²Code: Sample No. 2100 2102 2103 2104 2105 2106 2107 2108 2111 2112 2113 2127 2101 235 238 258 233 231

= marginally significant;

SX

Fable 17.	Print contrast ratios for unaged samples
	and samples irradiated 96 hours with a
	xenon arc from reflectance measurements
	using unfiltered incandescent lamp.

			Unfilter	ed Inca	ndescent	Lamp	
Samp. No	le	Pri	nt Conti	ast Rat	ios	Pape Reflect (%)	ance
		Una	ged	Ag	ed	Unaged	Aged
		Dark Image	Light Image	Dark Image	Light Image		
2100	a b c d	0.91 0.88 0.86 0.85	0.25	0.91 0.88 0.86 0.82	0.22	78 80 78 81	75 79 77 78
2101	a b c d	0.94 0.86 0.91 0.86	0.44 0.47	0.94 0.89 0.91 0.86	0.41 0.49	82 82 82 83	72 81 83 83
2102	a b c d	0.92 0.88 0.90 0.89	0.48	0.92 0.87 0.90 0.89	0.47 0.63	83 89 80 89	80 87 80 89
2103	a b c d	0.96 0.84 0.89 0.78	0.37	0.94 0.83 0.88 0.78	0.32 0.38	79 77 76 78	78 77 75 77
2104	a b c d	0.91 0.86 0.91 0.85	0.27	0.90 0.87 0.91 0.86	0.21 0.45	75 75 77 77	76 76 76 78
2105	a b c d	0.95 0.85 0.90 0.83	0.28	0.94 0.86 0.90 0.83	 0.29 0.45	80 79 79 77	81 79 78 78
2106	a b c d	0.91 0.86 0.92 0.86	0.33 0.41	0.91 0.85 0.91 0.85	0.30 0.41	78 78 80 78	78 78 80 78
2109		0.79	0.56	0.77	0.52	72	70
2110		0.86	0.67	0.84	0.62	81	80
2114		0.75		0.72		79	84
2115		0.52		0.51		81	81
2116		0.75		0.73		78	82
2117		0.76		0.76		81	83
2118		0.58		0.52		82	84
2119		0.76		0.76		78	78
2120		0.81		0.80		75	83
2128		0.85	0.21	0.83	0.19	78	83

Print Contrast Ratios Paper Reflectance Print Contrast Ratios Paper Reflectance Print Contrast Ratios Paper Reflectance 13ged Samples Oven Aged Unaged Oven Aged Oven				4	90 nm				Unfilte	red Inc	candes	cent Lamp	
Bit Oven Aged Unaged Oven Aged Number Samples		Prin	c Contra	ist Rat	ios	Paper Re (flectance %)	Print	Contras	t Rati	so	Paper Re (flectance %)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Una	aged S	Samples	Oven Samp	Aged les	Unaged Samples	Oven Aged Samples	Unaged	Samples	Oven Samp	Aged les	Unaged Samples	Oven Aged Samples
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.92	1	0.91	1	75	76	0.93	1	0.91	:	76	77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	. 84	0.33	0.83	0.30	79	75	0.86	0.36	0.86	0.32	77	79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	. 88	1	0.88		78	77	0.90	1	0.88	1	78	76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	. 78	0.33	0.79	0.32	75	75	0.81	0.34	0.80	0.35	78	76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.94	1	0.93	!	84	80	0.94	1	0.94	I	80	82
90 $$ 0.93 $$ 0.93 $$ 0.92 $$ 0.92 $$ 0.93 $$ 0.93 $$ 0.93 $$ 0.93 $$ 0.93 $$ 0.93 $$ 0.93 $$ 0.93 $$ 0.93 $$ 0.93 $$ 0.93 $$ 0.93 $$ 0.93 $$ 0.94 $$ 0.93 0.47 0.83 0.83 0.81 0.93 $$ 0.94 $$ 0.94 $$ 0.94 $$ 0.94 $$ 0.94 $$ 0.94 $$ 0.94 $$ 0.94 $$ 0.94 $$ 0.94 $$ 0.94 $$ 0.93 0.44 0.81 0.81 0.81 0.81 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 <th< td=""><td>0</td><td>. 87</td><td>0.57</td><td>0.85</td><td>0.45</td><td>82</td><td>78</td><td>0.88</td><td>0.47</td><td>0.88</td><td>0.45</td><td>80</td><td>82</td></th<>	0	. 87	0.57	0.85	0.45	82	78	0.88	0.47	0.88	0.45	80	82
86 0.56 0.88 0.58 0.3 79 0.90 0.59 0.87 0.60 80 83 92 0.93 83 82 0.93 80 81 83 90 0.94 84 78 0.93 80 83 83 90 0.94 84 78 0.94 81 81 81 81 81 81 81 81 81 78 0.93 80 0.93 80 80 81 76 81 81 78 76 77 75 76 77 76 77 77 76 77 76 77 76 77 76 77 76 77 76 77 76 77 76 77 76 77 76 77 76 77 76 77 76	o i	06	1	0.93	1	82	77	0.94	1	0.92	1	77	78
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	. 86	0.56	0.88	0.58	83	79	06.0	0.59	0.87	0.60	80	83
86 0.448 0.89 0.47 84 82 0.94 84 82 0.94 81 81 83 83 83 83 83 83 83 83 83 83 83 83 84 78 0.94 84 78 0.94 81 71 71 71 71 </td <td>0</td> <td>.92</td> <td>1</td> <td>0.93</td> <td>1</td> <td>83</td> <td>82</td> <td>0.93</td> <td>1</td> <td>0.94</td> <td>1</td> <td>80</td> <td>Ĺď</td>	0	.92	1	0.93	1	83	82	0.93	1	0.94	1	80	Ĺď
.90 $$ 0.94 $$ 84 78 0.94 $$ 0.92 $$ 81 81 $.86$ 0.64 0.89 0.62 82 80 0.90 0.64 81 81 $.92$ $$ 0.90 $$ 78 75 0.93 $$ 0.93 $$ 75 $.92$ $$ 0.90 $$ 78 77 74 0.87 0.44 78 77 $.92$ $$ 0.91 $$ 0.91 $$ 75 76 77 $.92$ $$ 0.91 $$ 0.91 0.43 76 77 $.92$ $$ 0.91 $$ 0.92 $$ 77 76 $.92$ $$ 0.91 0.47 0.81 0.43 76 77 $.92$ $$ 0.91 $$ 0.92 $$ 77 76 $.92$ $$ 0.91 0.47 0.91 0.43 76 77 $.92$ $$ 0.91 0.47 0.91 0.42 77 76 $.92$ $$ 0.93 $$ 77 0.91 0.44 77 76 $.91$ $$ 0.93 $$ 77 0.91 0.44 77 77 $.93$ $$ 0.93 $$ 77 0.91 0.44 -7 77 $.93$ $$ 0.93 $$ 77 0.92 1 77 77 $.93$	0	.86	0.48	0.89	0.47	84	82	0.89	0.47	0.87	0.46	82	1 60
86 0.64 0.89 0.62 82 80 0.90 0.64 0.89 0.64 81 81 92 0.90 78 75 75 75 75 76 92 0.90 78 75 75 75 76 92 0.90 78 74 0.93 75 76 90 0.45 0.78 0.41 78 71 0.92 75 77 90 0.45 0.78 0.41 78 71 0.92 75 77 92 0.91 76 72 0.91 0.47 78 77 91 0.91 0.47 0.81 0.42 75 76 77 91 0.92 0.47 0.91 0.42 74 75 76 76	o	. 90	1	0.94	1	84	78	0.94	!	0.92	ł	8.1	80
.92 $$ 0.90 $$ 78 75 0.93 $$ 75 75 75 76 $.87$ 0.45 0.86 0.45 81 74 0.87 0.44 78 77 $.90$ $$ 0.92 $$ 0.92 $$ 0.91 $$ 78 77 $.80$ 0.45 0.78 0.41 78 71 0.92 $$ 0.91 $$ 76 77 $.80$ 0.45 0.78 0.41 78 72 0.92 $$ 0.91 $$ 75 77 $.81$ 0.78 0.71 72 0.91 $$ 0.91 $$ 75 77 $.92$ $$ 0.91 $$ 0.91 $$ 0.92 $$ 77 76 $.92$ $$ 0.91 $$ 0.92 $$ 0.92 $$ 77 76 $.91$ 053 0.88 0.50 77 0.92 $$ 77 76 $.93$ $$ 0.93 $$ 82 77 0.92 $$ 77 76 $.93$ $$ 0.93 $$ 82 77 0.95 $$ 77 76 $.93$ $$ 0.93 $$ 82 77 0.93 $$ 77 76 $.93$ $$ 0.93 $$ 0.93 0.55 76 76 76 $.90$ $$ 0.93 $$ 0.93	0	. 86	0.64	0.89	0 • 62	82	80	06.0	0.64	0.89	0.64	81	81
87 0.43 0.86 0.45 81 74 0.87 0.45 0.87 0.44 78 78 90 $$ 0.92 $$ 78 71 0.91 $$ 75 79 80 0.45 0.78 0.41 78 71 0.91 $$ 75 79 80 0.45 0.78 0.41 78 77 0.92 $$ 76 77 92 $$ 0.91 $$ 76 77 0.91 $$ 76 77 92 $$ 0.91 $$ 76 72 0.91 $$ 76 77 91 $$ 0.91 $$ 0.91 0.47 0.92 $$ 77 76 91 $$ 0.93 $$ 79 0.94 $$ 77 76 76 93 $$ 0.93 $$ 82 77 0.95 0.94 $$ 77 93 $$ 0.93 $$ 82 77 0.95 0.76 76 76 93 $$ 0.93 $$ 82 77 0.99 0.55 76 76 93 $$ 0.93 $$ 82 77 0.99 0.76 77 76 93 $$ 0.93 $$ 0.93 0.57 80 0.94 $$ 77 90 $$ 0.91 0.65 0.98 0.66 77 77 </td <td>0</td> <td>.92</td> <td>1</td> <td>0.90</td> <td>1</td> <td>78</td> <td>75</td> <td>0.93</td> <td>!</td> <td>0.93</td> <td>1</td> <td>75</td> <td>76</td>	0	.92	1	0.90	1	78	75	0.93	!	0.93	1	75	76
.90 $$ 0.92 $$ 78 71 0.92 $$ 75 79 $.80$ 0.45 0.78 0.411 78 71 0.82 0.47 0.81 0.43 76 77 $.92$ $$ 0.91 $$ 0.91 $$ 0.92 $$ 75 77 $.92$ $$ 0.91 $$ 0.91 $$ 0.92 $$ 75 76 $.93$ 0.50 77 72 0.90 0.47 0.92 $$ 77 76 $.93$ $$ 79 0.90 0.47 0.92 $$ 77 76 $.93$ $$ 79 0.94 $$ 0.92 $$ 77 76 $.93$ $$ 0.93 $$ 82 77 0.95 $$ 77 76 $.93$ $$ 0.93 $$ 82 77 0.95 0.76 76 76 $.93$ $$ 0.93 $$ 82 77 0.95 0.76 77 76 $.90$ $$ 0.93 $$ 0.93 $$ 0.99 0.46 77 76 $.90$ $$ 0.91 0.55 0.99 0.76 0.99 0.76 77 $.93$ $$ 0.93 $$ 0.91 $$ 77 77 $.90$ $$ 0.91 $$ 0.91 $$ 77 77 $.90$ $$ 0.91 <td< td=""><td>0</td><td>. 87</td><td>0.43</td><td>0.86</td><td>0.45</td><td>81</td><td>74</td><td>0.87</td><td>0.45</td><td>0.87</td><td>0.44</td><td>78</td><td>78</td></td<>	0	. 87	0.43	0.86	0.45	81	74	0.87	0.45	0.87	0.44	78	78
.80 0.45 0.78 0.41 78 72 0.82 0.47 0.81 0.43 76 77 .92 0.91 75 76 77 75 76 77 .92 0.91 76 77 72 0.91 75 76 77 .91 0.93 79 74 0.91 0.42 74 75 .91 0.93 79 74 77 76 .93 0.53 0.86 0.52 78 72 0.94 77 76 .93 0.93 82 77 0.95 0.64 76 76 .93 0.93 82 77 0.95 76 76 .93 0.93 82 77 0.99 76 76 .93 0.93 179 0.95 0.69 76 76	0	.90	1	0.92	1	78	71	0.92	1	16.0	ł	75	79
.92 $$ 0.91 $$ 76 72 0.91 $$ 75 76 $.88$ 0.50 77 72 0.90 0.47 0.91 0.42 75 76 $.91$ $$ 0.93 $$ 79 72 0.94 $$ 77 75 76 $.85$ 0.53 0.86 0.52 78 72 0.94 $$ 0.92 $$ 77 76 $.85$ 0.53 0.86 0.52 78 72 0.94 $$ 77 77 76 $.93$ $$ 0.93 $$ 82 77 0.96 0.55 76 76 76 $.93$ $$ 0.93 $$ 82 77 0.94 $$ 77 77 $.90$ $$ 0.93 0.56 0.98 0.66 77 77 $.93$ $$ 0.91 0.65 0.98 0.66 77	0	. 80	0.45	0.78	0.41	78	72	0.82	0.47	0.81	0.43	76	22
.88 0.46 0.88 0.50 77 72 0.90 0.47 0.91 0.42 74 75 .91 0.93 79 74 0.94 77 76 .85 0.53 0.86 0.52 78 72 0.94 77 76 .85 0.53 0.86 0.52 78 72 0.99 0.55 76 76 .93 0.93 82 77 0.99 0.55 76 76 .93 0.93 82 77 0.99 0.55 76 76 .93 0.93 82 77 0.99 0.76 77 76 .90 0.93 77 0.94 77 77 .86 0.56 0.93 0.53 0.94 77 77 .90 0.91 0.65 0.98 0.46 79 78	0	.92	!	0.91	F	76	72	16.0		0.92	ł	75	76
.91 0.93 79 74 0.94 77 76 .85 0.53 0.86 0.52 78 72 0.89 0.56 0.89 0.55 76 76 .93 0.93 82 77 0.95 77 76 .93 0.93 82 77 0.95 77 .88 0.48 0.57 81 79 0.90 0.53 0.46 79 .90 0.93 79 0.94 77 76 .90 0.91 0.53 0.89 0.46 79 80 .90 79 74 0.94 75 78 .90 0.91 0.65 0.88 0.66 78 80	0	. 88	0.46	0.88	0.50	77	72	0.90	0.47	0.91	0.42	74	75
.85 0.53 0.86 0.52 78 72 0.89 0.56 0.89 0.55 76 76 .93 0.93 82 77 0.95 77 77 .88 0.48 0.57 81 79 0.90 0.53 0.46 79 80 .90 0.93 77 0.94 77 77 .86 0.56 0.90 0.53 0.94 77 78 .90 79 74 0.94 0.91 75 78 .86 0.56 0.90 0.55 0.91 0.66 78 80	0	.91	1	0.93	1	79	74	0.94	1	0.92	1	77	76
.93 0.93 82 77 0.95 77 77 .88 0.48 0.88 0.57 81 79 0.90 0.53 0.89 0.46 79 80 .90 0.93 79 0.94 77 77 77 .90 0.90 0.53 0.89 0.46 79 80 .90 0.94 74 0.94 75 78 .86 0.56 0.90 0.55 0.91 0.66 78 80	0	. 85	0.53	0.86	0.52	78	72	0.89	0.56	0.89	0.55	76	76
.88 0.48 0.88 0.57 81 79 79 80 .90 0.93 79 74 0.94 75 78 .86 0.56 0.90 0.55 79 77 0.91 0.65 78 80	0	.93	;	0.93		82	77	0.95	1	0.94	1	77	77
.90 0.93 79 74 0.94 0.91 75 78 80 .86 0.56 0.90 0.59 79 77 0.91 0.65 0.88 0.66 78 80	0	• 88	0.48	0.88	0.57	81	79	0.90	0.53	0.89	0.46	79	80
.86 0.56 0.90 0.59 79 77 0.91 0.65 0.88 0.66 78 80	0	.90	1	0.93	!	79	74	0.94	1	0.91	1	75	78
	0	. 86	0.56	0.90	0.59	79	77	0.91	0.65	0.88	0.66	78	80

	ectance	ven Aged Samples	80	80	78 78	74	78	82	79	76	77	84	81	6.9
ent Lamp	Paper Refl (%)	Unaged 0 Samples	77	78	77 78	74	78	79	78	77	81	81	78	78
andesc		lged es	1	0.46	0.64	1	1		1		1	1	1	1
red Inc	t Ratic	Oven A Sampl	0.95	0.89	0.92 0.88	0.82	0.81	0.73	0.32	0.74	0.68	0.45	0.77	0 78
Unfilte	Contras	amples	1	0.51	0.68	1		1	1		ł		1	1
	Print	Unaged S	0.95	06.0	0.95 0.91	0.81	0.77	0.74	0.38	0.71	0.74	0.34	0.74	0.78
	lectance (Oven Aged Samples	77	78	75	72	78	80	78	77	79	84	78	83
	Paper Ref (%	Unaged Samples	80	80	80 79	76	84	77	76	76	81	78	79	78
mn 0	so	lged es	ł	0.48	0.69		8	1		1	1	1	1	1
46	st Rati	Oven P Sampl	0.94	0.88	$0.94 \\ 0.90$	0.80	0.78	0.72	0.32	0.74	0.73	0.43	0.71	0.77
	t Contra:	Samples	!	0.48	0.66	1		1	!	1		1	1	1
	Prin	Unaged	0.94	0.88	0.86 0.86	0.80	0.77	0.73	0.34	0.67	0.72	0.36	0.70	0.80
	Sample No.		2106 a	q	טיט	2109	2110	2114	2115	2116	2117	2118	2119	2120

81

78

0.83 0.13

0.14

0.80

79

79

0.82 0.14

0.13

0.82

2128

Table 18 continued

Print contrast ratios for unaged samples and samples irradiated 96 hours with a xenon arc followed by aging for 72 hours at 105°C using a light source with a dominant wavelength of 460 nm and an unfiltered incandescent lamp. Table 19.

	er tance	Aged		Г. У	69	17	71	70	70	71	69	٢ ٢	7.7	20	69	68	67	68	66	99		689	68
t Lamp	Papé Reflect (%)	Unaged		۲	28 -	67	70	72	73	72	69	74	75	73	74	70	69	70	69 .	. 02	202	70	70
Indescent	cios	yed (Light Image		0.26	1	0.36	1	0.43	1	0.44	1	0.44	1	0.60	1	0.45	1	0.33	1	0.23	1	0.56
ed Inca	ast Rat	Ac	Dark Image		0.85	0.90	0.83	0.84	0.84	0.94	0.89	0,95	06.0	0.94	0.88	0.92	0.89	06.0	0.84	0.93	0.87	0.92	0.85
nfilter	t Contr	ged	Light Image		0.08	1	0.34	1	0.48	ł	0.61	1	0.47	1	0.59	1	0.39		0.35	1	0.26	1	0.50
n	Prin	Una	Dark Image		0.85	0 . 88	0.83	0.93	0.89	06.0	0.87	0,95	0.87	0.91	0.87	0.91	0.87	0.91	0.84	0.93	0.87	0.89	0.86
	ance	Aged		75	74	76	74	74	74	71	72	73	72	71	72	66	66	65	67	69	68	68	69
	Pape Reflect (%)	Unaged		α	78	78	78	82	84	83	84	85	83	83	1	78	78	78	75	76	75	78	76
60 nm	ios	ed	Light Image	1	0.18	1 1 1	0.36	t 1	0.43	1	0.46	1	0.41	1	0.55	1	0.41	1	0 . 39.	1	0.26	1	0.47
$\lambda = 4$	ast Rat	Ag	Dark Image	0 97	0.81	0.85	0.80	0.91	0.82	0.91	0.83	0.91	0.85	0.89	0.85	0.91	0.84	0.89	0.80	0.91	0.83	0.89	0.82
	t Contr	ged	Light Image	1	0.09	1	0.34	1	0.44	ł	0.49	1	0.33	1	1	1	0.35	1	0.38	1	0.26	1	0.44
	Prin	Una	Dark Image	0.90	0.83	0.86	0.79	0.91	0.84	0.88	0 • 8 3	0.92	0.86	0.92	1	16.0	0.81	0.89	0.81	0.91	0.83	0.89	0.83
	Sample No.			2100 a	1 A	υ	ק	2101 a	q	υ	ס	2102 a	q	υ	סי	2103 a	q	υ	ŋ	2104 a	q	υ	ש

	er tance	Aded		70	09	67	69	68 70	70	79	82	81	78	82	83	80	81	83
t Lamp	Pape Reflect (%	Unaged			02	72	71	72	76	80	84	81	81	83	84	78	83	78
ndescen	tios	red	Light Image		0 1 1 • 1 0 1	0.50	0	0.49	0.52	0.60	1	I I	ļ	l	l	l	1	.19
ed Inca	ast Rat	Ac	Dark Image	0.93	20.93 20.93	0.85	0.93	0.93	0.76	0.82	0.73	0.41	0.74	0.77	0.47	0.78	0.80	0.81
nfilter	t Contr	qed	Light Image	- C) 	0.56	 0.40	0.57	0.56	0.67	I I	I	1	I I	1	1	l l	.21
n	Prin	Una	Dark Image	0.93 88	06.0	0.87	0.95	0.90	0.79	0.86	0.72	0.51	0.73	0.76	0.52	0.76	0.80	0.85
	r ance	Aged		67 68	69	68	73	72 74	66	72	77	79	74	79	79	74	80	82
	Pape Reflect (%)	Unaged		79 78	67	81	80 78	78 81	78	84	79	80	78	8 0	80	62	78	82
0 nm	ios	ed	Light Image	036		0.41	 0.40	0.45	0.55	0.56	I I	l	1	I I	l	l I	I I	0.12
$\lambda = 46$	ast Rat	Ag	Dark Image	0.92	06.0	0.84	0.92	0.90	0.80	0.78	0.71	0.42	0.74	0.75	0.46	0.77	0.80	0.79
	t Contr	ged	Light Image			0.58		0.56	0.45	0 • 60	1	1	8	1	1	1	1	.15
	Prin	Una	Dark Image	0.93	0.89	0.83	0.92 0.86	0.89	0.81	0.76	0 70	0.49	0.72	0.76	0.49	0.74	0.80	0.85
	Sample No.			2105 a h	יטג	ਹ	2106 a b	טיט	2109	2110	2114	2115	2116	2117	2118	2119	2120	2128

Table 19 continued

Table 20. Effect of abrasion on print contrast ratios, using an unfiltered incandescent lamp, of (a) poorly fused, (b) marginally fused, and (c) properly fused images on office copies.

		the second se		
No. of				
Abrasion		Qualit	y of lmage	Fusion
Cycles	Imaging Process	Poor	Marginal	Proper
		Prir	nt Contrast	Ratio
0	radiant	0.75	0.85	0.84
20	radiant	0.28	0.48	0.77
30	radiant	0.28	0.27	0.73
40	radiant	0.16	0.44	0.73
50	radiant	0.16	0.40	0.74
60	radiant	0.29	0.40	0.62
0	heat, pressure	0.83	0.84	0.89
20	heat, pressure	0.24	0.46	0.73
30	heat, pressure	0.41	0.24	0.71
40	heat, pressure	0.39	0.39	0.60
50	heat, pressure	0.24	0.28	0.59
60	heat, pressure	0.29	0.21	0.56
			1	

Table 21. Print contrast ratios, using unfiltered incandescent light, of properly fused office copies before and after abrasion for 20 cycles with wheel No. CS-10F at a total load of 500 g.

		Print Con	trast Ratio
Sample	Drogogging Mothod	Before	After
NO.	Processing Method	ADIASION	ADIASION
2100	radiation	92	92
	heat, pressure	84	57
2101	radiation	93	93
	heat, pressure	90	80
2102	radiation	93	92
	heat, pressure	90	71
2103	radiation	93	93
	heat, pressure	87	55
2104	radiation	94	93
	heat, pressure	88	85
2105	radiation	92	92
	heat, pressure	90	78
2106	radiation	94	93
	heat, pressure	90	78
2109	radiation	80	69
2110	radiation	79	73
2128	hot air	86	49

Effect of oven aging at 105°C for 72 hours on the abrasion resistance of guick copy papers bearing images that had been properly, marginally, and poorly fixed on the paper. Table 22.

Sample	Tvpe of	Quality of Image		Ilhaded S	rint Contr amples	ast Ratios Oven Aded	Salues
No.	Finish	Fix	Imaging Process	Unabraded	Abraded ¹	Unabraded	Abraded
2114	coated	ргорег	radiant	.74	.71	.72	.72
2115	coated	marginal	radiant	0.74	0.60	0.74	0.69
2116	coated	poor	radiant	0.38	0.11	0.35	0.35
2117	coated	proper	radiant	0.72	0.69	0.75	0.77
2118	coated	marginal	radiant	0.75	0.56	0.79	0.65
2119	coated	poor	radiant	0.32	0.06	0.46	0.37
2120	coated	proper	radiant	0.78	0.64	0.78	0.69
2121	uncoated	proper	radiant	0.86	0.83	0.86	0.81
2122	uncoated	marginal	radiant	0.85	0.70	0.85	0.82
2123	uncoated	poor	radiant	0.77	0.21	0.77	0.70
2124	uncoated	proper	heat, pressure	06.0	0.61	06.0	0.83
2125	uncoated	marginal	heat, pressure	0.82	0.23	0.88	0.80
2126	uncoated	poor	heat, pressure	0.88	0.48	0.85	0.76

¹20 cycles; abrader load totalled 500 g.

Table	23.	Differe	ential	. therma	al ar	nalysi	is data ¹	on
		office	сору	papers	and	bond	papers.	

Sample No.	pH Hot	^Т 2 (°С)	т _з (°С)	Т ₄ (°С)
2100	8.8	258	333	352
2101	4.9	214	333	355
2102	4.6	215	325	360
2103	4.1	210	331	354
2104	4.8	237	338	362
2105	4.8	230	338	358
2106	5.1	220	349	368
2107	5.2	254	347	364
2108	5.2	240	334	362
2111	7.7	-	-	348
2112	7.2	-	-	350
2113	8.3	305	343	363
2127	6.7	252	333	353
231	4.7	238	322	360
233	9.5	270	357	375
235	5.1	230	338	358
238	7.2	267	353	374
258	4.4	220	319	355

 $^{1}\,\mathrm{T}_{2}$ is the temperature at the beginning of a massive decomposition endotherm, T_{3} is the temperature at the peak of decomposition, and T_{4} is the temperature of a small exotherm after the major decomposition.

Figure 1. Retention of folding endurance after aging for 72 hours at 105°C as a function of pH, hot extraction.

Figure 2. Retention of internal tear after aging for 72 hours at 105°C as a function of pH, hot extraction.

SECTION II

SUGGESTED SPECIFICATIONS [1] FOR COPIES FROM OFFICE COPYING MACHINES FOR PERMANENT RECORDS

PART 1 - PAPER

1. SCOPE

1.1 This specification covers coated or uncoated papers, for permanent records, for use in direct or indirect electrostatic copy processes and other types of office or quick copy processes.

1.2 It has been shown [2, 3] that permanence is at least an approximate function of the pH of an aqueous extract of the paper. Three pH levels, reflecting three levels of permanence (for plain paper) are specified.

1.3 It has been shown [3, 4] that a relationship exists between accelerated aging for 72 hours at 105°C and natural aging. Retention of properties after accelerated aging is, therefore, a part of this specification.

2. APPLICABLE DOCUMENTS

2.1 ASTM Documents [5]

D 585, Sampling and Accepting a Single Lot of Paper, Paperboard, Fiberboard, or Related Product.

D 589, Test for Opacity of Paper

D 644, Test for Moisture Content of Paper and Paperboard by Oven Drying

D 645, Test for Thickness of Paper and Paperboard.

D 646, Test for Basis Weight of Paper and Paperboard.

D 689, Test for Internal Tearing Resistance of Paper.

D 776, Test for Relative Stability of Paper (Effect of Heat on Folding Endurance).

D 778, Test for Hydrogen Ion Concentration (pH) of Buffered Paper Extracts.

D 985, Test for 45-deg, 0-deg. Directional Reflectance for Blue Light (Brightness) of Paper.

D 1030, Test for Fiber Analysis of Paper and Paperboard.

D 2176, Test for Folding Endurance of Paper by the MIT Tester.

2.2 Other Documents

U.S. Government Paper Specification Standards [6]. Determination of Fluorescence [7].

3. CLASSIFICATION

3.1 Types. Three types of paper for office copying machines, according to permanence level, are specified. These permanence levels are differentiated by (1) pH, (2) type of filler or sizing, or both, and (3) an accelerated aging requirement. For situations where the copies will be handled frequently, the grade is described as "high referral." A higher tearing resistance is specified for this category, a folding endurance requirement is optional, and the purchaser may wish to specify all or part new cotton or linen.

The coating of coated papers for use in some copying machines by present technology contains zinc oxide, and the pH of this type of paper is on the alkaline side.

3.2 Type I, maximum permanence

3.2.1 Grade 1 - Ordinary use.

3.2.2 Grade 2 - High referral.

3.3 Type II, high permanence

3.3.1 Grade 1 - Ordinary use.

3.3.2 Grade 2 - High referral.

3.4 Type III, medium permanence

3.4.1 Grade 1 - Ordinary use.

3.4.2 Grade 2 - High referral.

4. DEFINITIONS AND DESCRIPTION OF TERMS

4.1 Alkaline-filled paper - A paper containing calcium or magnesium carbonate or both. Such a paper is alkaline (pH usually in the range from 7.5 to 9.5) and contains a reserve buffering capacity that can neutralize acidic gases sorbed from the atmosphere.

4.2 Bond paper - A grade of writing or printing paper which, historically, was used where permanence, strength, and durability were required. Now, it is also used for letterheads and forms, and for many other situations where permanence and durability are unimportant. Therefore, bond papers cover a wide spectrum of quality. Most bond papers receive some printing (for example, letterheads or forms) before use, so printing properties as well as writing, erasing, cleanliness, etc., are important.

4.3 Durability - The ability of a paper to resist the effects of wear and tear in performance situations. For example, paper currency should be durable, but permanence is not a problem.

4.4 High referral - The grade that describes situations where copies are frequently handled (see 3.1).

4.5 Ledger paper - Originally, ledger paper was used especially for pen and ink records. Most ledger papers today are surface sized. They frequently are subjected to appreciable wear and must have a high degree of permanence and durability. They are characterized by high strength, high tearing resistance, erasability, water and ink resistance, uniformity of surface, and smoothness.

4.6 Paper, neutral-sized - A paper that has been sized with a rosin-alum system in which sodium aluminate has been substituted for part of the alum that normally is used, or with one of the synthetic sizes such as ketene dimer or acrylic emulsion.

4.7 Paper with a minimum pH value - Paper usually is sized in a slightly acidic medium. The specification of a minimum pH, as practiced by the U.S. Government (2.2) provides some assurance that the paper will have medium permanence, as defined in 4.8 of this specification. It has been shown that the stability of paper is an approximate function of pH, so a minimum pH is one approach to specifying a stable paper.

4.8 Permanence - This basically is a function of the chemical stability of the paper and its ability to maintain initial properties over a long period of time. Permanence must be defined with respect to the end use, as one paper might be expected to last 50 years and another to last indefinitely. The three levels of permanence covered in section 3 may be described as follows:

4.8.1 Maximum permanence - The document is expected to last several hundred years.

4.8.2 High permanence - The document is expected to last in excess of 100 years.

4.8.3 Medium permanence - The document is expected to last at least 50 years, and up to 100 years.

4.9 Coated paper - Has been surface treated with clay or some other pigment and adhesive mixture, or other suitable material, to improve the finish with respect to printing performance, color, smoothness, opacity, conductivity, or other surface properties.

4.10 "Office copies" or "quick copies" - Reproductions made by direct or indirect electrostatic printing, thermographic processing, etc., as contrasted to conventional printing such as letterpress, offset, etc.

5. BASIS OF PURCHASE

5.1 Orders shall specify type and grade, dimensions, color, and, if necessary, fiber analysis, and printing requirements. The paper shall perform suitably in the specific copying machine for which it is intended. 6. COMPOSITION AND CHEMICAL REQUIREMENTS

6.1 Fiber Analysis. The paper shall be made from cotton or linen pulp, fully bleached wood pulp, or a mixture as specified at the time of purchase. The paper shall be free of unbleached wood pulp or groundwood.

6.2 Hydrogen Ion Concentration (pH). The pH shall be as follows:

6.2.1 Type I - 7.5 to 9.5
6.2.2 Type II - minimum 6.5
6.2.3 Type III - minimum of 5.5.

6.3 Filler. Type I paper, if for use in a "plain paper" copier, shall contain an alkaline filler of calcium or magnesium carbonate, or both. The minimum shall be 2 percent, calculated to calcium carbonate, based on the oven-dry weight of the finished paper. The determination of carbonate filler shall conform to the method described in 12.4

Coated papers normally are not made with alkaline fillers, so for this kind of paper one must rely on the accelerated aging requirement in section 8.

7. PHYSICAL REQUIREMENTS

7.1 Weight per Unit Area is not a requirement of this specification, unless agreed to between buyer and seller, but the nominal weight per unit area may be used to describe the paper.

Most.copy papers are in the 75 g/m^2 class (20 lb, 17 x 22, 500), but some 60 g (16 lb) and 90 g (24 lb) papers are supplied. If the buyer specifies a weight per unit area, the variation of test unit averages within a shipment (or lot) shall be not more than 5 percent above or below the lot sample average value.

7.2 Thickness. Thickness is not a requirement of this specification unless agreed to between the buyer and the seller. If specified, thickness shall be expressed as micrometers $(1 \times 10^{-6} \text{ m})$ or as mils $(1 \times 10^{-3} \text{ in.})$, and the variation of test unit averages within a shipment (or lot) shall be not more than 5 percent above or below the average value.

7.3 Internal Tearing Resistance. The average internal tearing resistance in each direction shall be not less than that given in Table 1.

7.4 Directional Reflectance (Brightness). For white papers, the average brightness shall be not less than 75 percent with the fluorescence component excluded. The brightness requirement does not apply to colored papers. Optical brighteners are not excluded, unless specifically stated at time of purchase.

7.5 Fluorescence. The fluorescent component of brightness for white papers, if fluorescence is objectionable to the end use, shall not exceed 2 percent. Fluorescence shall be determined in accordance with 12.2.

7.6 Opacity. If the paper is to be printed on both sides, the minimum opacity shall be not less than 85 percent. For printing on one side only, the opacity requirement may be reduced to 80.

7.7 Folding Endurance. The average folding endurance for the machine and cross directions shall be not less than that given in Table 1.

7.8 Color. The paper shall be white, or colored, as specified at time of purchase.

8. RETENTION OF PHYSICAL PROPERTIES AFTER ACCELERATED AGING

After accelerated aging, the retention of tearing strength and folding endurance shall conform to the requirements listed in Table 1.

9. DIMENSIONS, GRAIN, AND TRIM

9.1 The paper shall be furnished in the size, or sizes, specified at time of purchase, to a tolerance of $\pm 1/32$ inch (0.8 mm), and shall be trimmed square.

9.2 Grain. The paper shall be supplied grain long or grain short at the option of the seller, unless otherwise specified by the purchaser.

10. ADDITIONAL REQUIREMENTS

10.1 Sizing. The paper shall be internally sized and surface sized so that it shall be suitable for the intended purpose, as indicated by the purchaser.

10.2 Printing Properties. The paper shall be suitable for the duplication process for which it is purchased.

10.3 Erasing Quality. This property shall be evaluated as follows:

Visible feathering shall not be apparent after the paper has been written on with aqueous ink, erased, and written on again in the erased area with aqueous ink.

11. SAMPLING

11.1 The paper shall be sampled in accordance with Method D 585, using Plan II for all properties.

12. METHODS OF TEST

12.1 ASTM Standards - Conduct the tests in accordance with the following ASTM Standards:

12.1.1 Opacity - Method D 589

12.1.2 Moisture Content - Method D 644

12.1.3 Thickness - Method D 645

12.1.4 Basis Weight - Method D 646

12.1.5 Hydrogen Ion Concentration (pH) -Method D 778

12.1.6 Directional Reflectance - Method D 985

12.1.7 Internal Tearing Resistance - Method D 689

12.1.8 Fiber Analysis - Method D 1030

12.1.9 Folding Endurance - Method D 2176

12.2 Fluorescence ($\triangle B$)

12.2.1 Apparatus

12.2.1.1 Filter Reflectometer, with 0 to 45° geometry.

12.2.1.2 Light Source, with a color temperature of 3100°K.

12.2.1.3 Blue Filter, approximating the CIE Z function.

12.2.1.4 Ultraviolet-absorbing Filter, movable, rermitting inclusion or exclusion of the ultraviolet component from the light falling on the test area.

12.2.1.5 Ceramic Tile Calibration Standard, with a known value for the function Z.

12.2.2 Test Specimens - Test two sheets from each test unit. The test area shall be a circle 57 mm in diameter. Make measurements at the top and bottom of both sides of each test sheet.

12.2.3 Procedure

12.2.3.1 With the calibration standard positioned at the specimen window, adjust the instrument to give the reflectance value assigned to the standard.

12.2.3.2 With the unknown test specimen at the window and the ultraviolet filter positioned to include the ultraviolet component of the incident light, obtain the reflectance of the specimen.

12.2.3.3 Without moving the test specimen and with the filter positioned to exclude the ultraviolet component, obtain the reflectance of the specimen. 12.2.3.4 Calculate the difference between readings, 12.2.3.2 and 12.2.3.3; this is ΔB .

12.2.4 Report - Report $\triangle B$ for the wire and felt sides separately, and the average for both sides.

12.3 Carbonate Content of Paper - Qualitative

12.3.1 Procedure - Place approximately 0.5 g of paper in a test tube of any convenient size. Cover it to a depth of about 10 mm with 6 N hydrochloric acid (HCl). A gentle continuous effervescence (not to be confused with initial desorption of gases from the surface of the paper) indicates the presence of carbonate.

12.4 Carbonate Content of Paper - Quantitative

12.4.1 Procedure

12.4.1.1 Weigh out approximately 1 g of paper to the nearest 1 mg, making a correction for the moisture content (Note 1) and place it in approximately 25 cm³ of water in a 125-cm³ Erlenmeyer flask. Pape 20 cm³ (Note 2) of standardized 0.1 N hydrochloric acid (HCl) into the flask, heat to boiling, and boil for approximately 1 min. Add 3 drops of aqueous methyl red. Cool to room temperature and titrate to the first lemon yellow with standardized 0.1 N sodium hydroxide solution (NaOH).

Note 1 - The specimen for analysis may be dried and weighed, or a separate portion may be used for moisture determination.

Note 2 - For a 1-g specimen, 20 cm^3 of 0.1 <u>N</u> HCl is sufficient to neutralize the carbonate in a paper containing approximately 10 percent carbonate.

12.4.1.2 If a trace of pink indicator remains adsorbed on the surface of the paper, boil the paper briefly to desorb the pink color. Usually a further drop of NaOH solution will restore the lemon yellow to the solution.

12.4.2 Calculations - Calculate the carbonate content of the paper as percent calcium carbonate (CaCO₃) as follows:

where 0.050 is the milliequivalent weight of CaCO₃. Duplicate determinations should agree within 0.3 percent CaCO₃.

12.4.3 Report - Report the carbonate content as percent $CaCO_3$ of the oven-dry paper to the nearest 0.1 percent.

13. INSPECTION

13.1 Inspection of the paper shall be agreed upon by the purchaser and the seller as part of the purchase contract.

14. CERTIFICATION

14.1 Upon request of the purchaser, a manufacturer's certification that the paper was manufactured and tested in accordance with this specification, together with a report of the test results, shall be furnished at the time of shipment.

14.2 Test results obtained by both the seller and the purchaser shall be made available, upon request, to either party.

15. PACKAGING AND MARKING

15.1 The paper shall be packaged in 500 or 1000 sheet quantities. These shall be wrapped and securely sealed, or packaged in boxes or cartons, in order to provide adequate protection during shipment and storage. Each package shall be marked to show the type of paper, quantity, color, size, basis weight (weight per unit area), and the name of the manufacturer.

15.2 Packaging in exterior containers for shipment shall be adequate to avoid damage during shipment and storage.

APPENDIX

X1. ADDITIONAL INFORMATION

X1.1 As there are many variables in the manufacture of paper and in the use and storage of records, it is impossible to place definitive values on the number of years that various categories of records will endure. It has been established that the rates of both natural and accelerated aging are approximate functions of the pH of the paper. The following information may be used as a guide:

X1.1.1 Type I Papers - Machine-made papers with an alkaline filler have existed, apparently with little change, for at least 70 years. Handmade papers containing an alkaline filler have survived for almost 400 years. Acid papers have survived this long, but their condition is, comparatively speaking, not as good and is an approximate function of acidity.

X1.1.2 Type II Papers - The probable longevity of these papers should lie somewhere between Type I and Type III papers.

X1.1.3 Type III Papers - The relative condition of paper in old books and documents has been correlated approximately with pH. Barrow has shown that the condition of naturally aged paper definitely is a function of pH. Manifold papers in U.S. Government files with pH values as low as 4.2 have survived almost 50 years, and the physical properties of these papers are an approximate function of pH. A minimum pH of 5.5 should indicate longevity greater than 50 years.

X1.2 Papers containing cotton or linen, or both, are considered by many people to be more durable than wood pulp papers. As both rag and wood pulp papers may cover a wide spectrum of permanence and durability, generalizations are not possible.

X1.3 Paper may be procured on the basis of a standard sample, on the basis of requirements other than those listed in this specification, or one or more of the requirements may be waived. In order to obtain the degree of permanence required, it is very important that the pH requirements of this specification should be met for the type and grade of paper purchased, and the retention of properties after accelerated aging should meet or exceed the specification

NOTES

- This specification is under the jurisdiction of ASTM Committee D-6, Paper and Paper Products.
- Barrow, W. J., Deterioration of Book Stock; Causes and Remedies, The Virginia State Library, Richmond, Va. (1959).
- Wilson, W. K., Harvey, J. L., Mandel, J., and Worksman, T., Accelerated Aging of Record Papers Compared with Normal Aging, Tappi 38, No. 9, 543 (1955).
- 4. van Royen, A. H., Comparison of the Accelerated Aging of Cellulose with Normal Aging at Room Temperature, <u>Assoc.</u> <u>Tech. Ind. Papetiere</u>, Bull. 6, 223 (1957); <u>Papierwereld</u> <u>12, 219 (1958)</u>; <u>Abstr. Bull. Inst. Paper Chem.</u> 29, 92 (1958).
- 5. 1974 Annual Book of ASTM Standards, Part 20.
- 6. Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
- Based on Part 2 of the U.S. Government Paper Specification Standards of the Congressional Joint Committee on Printing.

Requirements for papers for use in office copying machines for permanent records. Table 1.

on after 1, %	Fold	80	80	60
Retentic Aging	Tear	80	80	80
Opacity ³ minimum	96	85	85	85
Brightness minimum	9⁄0	75	75	75
ing ² Folding ² tance Endurance	Grade 2	200	200	200
	Grade 1	1	-	1
	Grade 2	50	50	50
Tear. Resis	Grade 1	35	35	35
		7.5-9.5		
pH1		filler,	6.5	5.5
		Alkaline	Minimum,	Minimum,
Type		н	II	III

base paper, and cannot be used as an indicator of stability. One must rely on the accelerated ¹The extract pH of the coating of a coated paper may be radically different from that of the aging test as an indicator of stability for coated papers.

for Permanent Records, may be used, but a statement, "The paper shall perform properly in the copy machine for which it is intended," should be included. ²These values are representative of stronger papers that are supplied specifically for office copying machines. Characteristics of these papers also depend on copy machine requirements. If more durable papers are required, ASTM D 3290, Specifications for Bond and Ledger Papers

³May be reduced to 80% if paper is to be printed on one side only.

PART 2 - IMAGED COPY

1. SCOPE

1.1 This specification covers the permanence and durability of images made on coated or uncoated paper used in the direct or indirect electrostatic copy processes and other types of office or quick copy systems.

1.2 It is limited to those cases where the material that forms the image is deposited on a paper substrate.

2. APPLICABLE DOCUMENTS

2.1 ASTM Standards

D 776, Test for Relative Stability of Paper (Effect of Heat on Folding Endurance)

F 360, Image Evaluation of Electrostatic Business Copies

F 362, Erasability of Inked Ribbons

G 27 , Standard Recommended Practice for Operating Xenon-Arc Type Apparatus for Light Exposure of Nonmetallic Materials.

3. CLASSIFICATION

Although many office copy processes are available for transferring images to plain paper or to coated paper, no distinctions are made among these processes.

4. DESCRIPTION OF TERMS

4.1 Imaged Copy - An imaged copy is a reproduction on paper of an original by some process, such as electrostatic, other than some form of conventional printing, such as letterpress or offset.

4.2 Permanence - Permanence is a function of the chemical stability of the image and its ability to maintain initial properties over a long period of time.

4.3 Durability - The durability of an image is its resistance to handling in use situations, and its ability to stick to the paper.

4.4 Print Contrast Ratio - Print contrast ratio is defined as $(1 - R_{ink}/R_{paper})$, where R_{ink} = reflectance of the image, and R_{paper} = reflectance of the paper. An instrument is available that gives print contrast directly when the reflectance of the paper is set at 1.0.

5. TEST ORIGINAL

This is covered in general under ASTM F 360. The test original should have an average print contrast ratio of 0.90 or greater. It may be made using a typewriter, or it may be a Test Chart for Copying Machines, both of which are described in ASTM F 360. Other test originals may be used as long as the print contrast ratio of part of the test original is 0.90, or greater.

6. COPY EVALUATION

6.1 Print Contrast - For a series of 50 random measurements, the average print contrast shall be no less than 70.

6.2 Other copy evaluation techniques, as applicable, may be used as described in ASTM F 360-72, section 7.

7. RETENTION OF PRINT CONTRAST AFTER ACCELERATED AGING

After exposure to the xenon lamp for 96 hours at 25°C and 50 percent relative humidity (2.1) or to oven aging for 72 hours at 105°C (2.1), the average print contrast ratio shall not decrease by more than 20 percent of the original value.

8. RETENTION OF PRINT CONTRAST AFTER ABRASION

After abrasion for 20 cycles with wheel No. CS-10F, the average print contrast ratio shall not decrease by more than 20 percent of the original value.

9. SAMPLING

At least 100 sheets of imaged copy shall be obtained for evaluation either from the supplier or from preparation of copy on a selected machine. The copy machine should be in good working order and properly adjusted to produce good copy. Sheets for evaluation shall be selected at random from the sample.

10. METHODS OF TEST

10.1 ASTM Standards - Conduct the tests in accordance with the following ASTM Standards:

10.1.1 Exposure to xenon arc - Method G 27, 25°C at 50 percent relative humidity.

10.1.2 Image evaluation - Method F 360, using a print contrast reflectometer capable of measuring the reflectance of an area 0.008 in. in diameter. Reflectance should preferably be in the blue end of the spectrum around 460 nm, but unfiltered incandescent light may be used.

10.1.3 Abrasion resistance - Method F 362, 20 cycles with wheel No. CS-10F with a weight of 500 g.

10.1.4 Reflectance to accelerated aging - Method D 776.
Table	1.	Summary	of	print	contrast	ratio
		requirements.				

Imaged copy, minimum	70
Maximum percentage loss after	
Exposure to xenon arc	20
Oven aging	20
Abrasion	20

11. ADDITIONAL INFORMATION

Several processes are in use for producing images on paper in office copying machines. In some cases, the machines and materials are available only from one manufacturer. In other cases, one can buy the machine from one supplier, the paper from another, and the imaging materials from yet another. In addition, a manufacturer may change composition at any time, without notice. It is desirable for a purchaser to establish a reliable source of supply, test the product, and obtain assurance that significant changes will not be made without notice. NBS-114A (REV. 7-73)

U.S. DEPT. OF COMM.	1. PUBLICATION OR REPORT NO.	2. Gov't Accession	3. Recipient's Accession No.			
SHEET	NBSIR 74-498(R)	No.				
4. TITLE AND SUBTITLE	5. Publication Date					
Evaluation of Ar	6/30/74					
From Representat	6. Performing Organization Code					
7. AUTHOR(S) E. J. Parks	8. Performing Organ. Report No. NBSIR 74-498(R)					
9. PERFORMING ORGANIZAT	10. Project/Task/Work Unit No.					
NATIONAL F	3000442					
DEPARTMEN	11. Contract/Grant No.					
WASHINGTON, D.C. 20234						
12. Sponsoring Organization Nat	13. Type of Report & Period Covered					
National Archive	Interim					
wasnington, D.C.	14. Sponsoring Agency Code					
15. SUPPLEMENTARY NOTES						

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

Information has been developed on the stability of papers used in preparing copy on office copying machines as well as stability of images formed by representative quick copy processes. Retention of physical properties after accelerated aging according to ASTM Method D776 was used as one criterion of probable stability. Acidity as measured by ASTM Method D778 also was used as a criterion of potential stability. Abrasion resistance of the image after exposure to a xenon arc and after accelerated aging according to ASTM D776 was used as a criterion of stability of image. Representative papers made especially for specific copying machines, and representative copies from these machines, were used in the testing program. Suggested specifications for copies for permanent records, based on the data developed in this report, are presented.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)

Aging of paper; office copies; office copies, permanence; paper permanence; permanence of paper; specifications for office copies; stability of office copies; stability of paper.

18.	AVAILABILITY	Unlimited	19. SECURITY CLASS (THIS REPORT)	21. NO. OF PAGES
	For Official Distribution. Do Not Release to NTIS		UNCL ASSIFIED	
	Order From Sup. of Doc., Washington, D.C. 20402,	U.S. Government Printing Office SD Cat. No. C13	20. SECURITY CLASS (THIS PAGE)	22. Price
	Order From National Tec Springfield, Virginia 221	hnical Information Service (NTIS)	UNCLASSIFIED	

USCOMM-DC 29042-P74

