NBSIR 74-482 An Automated System for Precision Calibration of Accelerometers

B. F. Payne

Vibration Section, Mechanics Division Institute for Basic Standards National Bureau of Standards Washington, D. C. 20234

April 1974

Final Report

Prepared for Department of Defense Calibration Coordination Group

NBSIR 74-482

AN AUTOMATED SYSTEM FOR PRECISION CALIBRATION OF ACCELEROMETERS

B. F. Payne

Vibration Section, Mechanics Division Institute for Basic Standards National Bureau of Standards Washington, D. C. 20234

April 1974

Final Report

Prepared for Department of Defense Calibration Coordination Group

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

FORWORD

The development of the automated calibration system for accelerometers was sponsored by the Department of Defense Calibration Coordination Group (DoD/CCG) consisting of: the Aerospace Guidance and Metrology Center, Newark Air Force Station, Newark, Ohio 43055; the Metrology and Calibration Center, Redstone Arsenal, Alabama 35809; and the Metrology Engineering Center, Bureau of Naval Weapons Representative, Pomona, California 91766. The Atomic Energy Commission was represented by an observer from Sandia Laboratory, Albuquerque, New Mexico 87115. The project was coordinated by the Aerospace Guidance and Metrology Center.

The Dod/CCG project number assigned was CCG 69-13 and work was performed under NBS cost center 2130423.

.

TABLE OF CONTENTS

Abstract	t
----------	---

1.	Introdu	ction .	• •	٠	•	•••	·	•	•	•	•	• •	•	•	•	1-1
2.	Hardward	e • •	• •	•	•	•••	•	•	•	• •		•	•	•	•	2-1
	2.1	Circuit	Α.	•	•	• •		•	•			•	•			2-1
	2.2	Circuit	в .	•	•			•		•		•				2-1
	2.3	Signal J	uncti	on Bo	ъх							•				2-2
	2.4	Minicomp	uter													2 - 2
	2 5	Patch Pat	nele	-										•	•	2-2
	2.5 1	Patch Pat	$n \ge 1$	ircu	it Δ	for	Man	1121	0na	rati	on		•		•	2-2
	2.5.1	Datah Da		i zoui	LL A	for	Mon	uai	Ope	rati	on	•	•	•	•	2-2
	2.5.2	Manutia	Taut	Dud		101	riali	uaı	ope	Iau	.011	•	•	•	•	2-5
	2.0	Magnetic	Tape	DIT	ve	•••	•	•	•	• •	•	•	•	•	•	2-12
	2.7	Exciters	•	•	•	• •	•	•	•	• •	•	•	•	•	•	2-12
	2.8	Interface	es •	•	•	•••	•	•	•	• •	•	•	•	•	•	2-12
	2.8.1	DVM Inte:	rface	•	• •	• •	•	•	•	• •	•	•	•	•	•	2-12
	2.8.2	Frequency	y Cou	nter	Inte	erfa	ce	•	•	• •	•	•	•	•	•	2-15
	2.8.3	Relay In	terfa	ce	•	•••	•	•	•	• •	•		•	•	•	2-18
	2.8.4	Oscillate	or In	terfa	ace			•	•	• •	•		•			2-18
	2.8.5	X-Y Plot	ter I	nterí	ace			•	•							2-23
	2.9	Calibrat	ion o	f the	e Sys	stem		•	•	• •	•	•	•	•	•	2-25
3	Software															3_1
J.	SULLWALE	•	•••	•	• •	•••	•	•	•	•••	•	•	•	•	•	J-1
	3.1	Computer	Capa	bilit	y .	• •	•	•	•	•••	•	•	•	•	•	3-1
	3.2	Software	Phil	osoph	iy •	•	•	•	•	• •	•	•	•	•	•	3-1
	3.3	Data Bloo	ck ·	•	• •	•	•	•	•	• •	•	•	•	•	•	3-2
	3.4	Start 1,	Star	t 2	• •	•	•	•	•	• •	•	•	•	•	•	3-2
	3.5	Halt and	Stop	Feat	ures	s .		•	•	• •		•		•	•	3-6
	3.6	Provision	ns fo	r Aut	omai	tic S	Sele	ctic	on o	f Ci	rcu	its	and			
		Automatic	e Ran	ging	of 7	ſest	Equ	ipme	ent .	• •	•	•	•	•	•	3-6
4.	Software	Program	Desc	ripti	ons				•							4-1
	4.1	Hexidecin	nal-t	o-Dec	ima	l Cor	ver	sion	fo	r Te	st	Sens	itiv	<i>r</i> ity	,	4-2
	4:2	Range Tes	st for	r Tes	t Ad	ccele	erome	eter	-					•		4-7
	4.3	Check for		ERSE	FLA	G and	i Sei	t Re	1 av	s.						4-12
	4.4	Check for		ERSE	FLA(G and	l Ca	lcu1	ate	Cal	ibr	atic	n Fa	acto	r	**
		for Test	Acce	leron	eter	r If	Set									4-15
	4.5	Clear Tab	les	for A	ince'	leror	nete	r Da	ita i	Bloc	k.		•		•	4-18
	4.6	*Round-Of	FF Sul		ino.	LCLU.				0100		•	•	•	•	4 - 21
	4.0	*ASCII-to		imol	Cuby	rout i		•	• •	•	•	•	•	• •	•	4 ZI
	4.7	Check for	- UNC	гмат глоте	וסטכי		пе . ат.		 Ma ai	•	τf		•	•	•	4-25
	4.0	Check Ioi	UNS.	IADLE	, "L <i>E</i>	ag ar	ia Iy	ype	mes	sage	11	Set	•	•	•	4-26
	4.9	ASave Keg	giste:	rs Su	Droi	utine	· ·	•	• •	•	•	•	•	•	•	4-28
	4.10	*Kestore	Regis	sters	Sub	prout	ine	•	• •	•	•	•	•	•	•	4-29
	4.11	Calibrati	on Fa	actor	's Er	kcite	er 2	•	• •	•	•	•	•	•	•	4-30
	4.12	Calibrati	on Fa	actor	s Er	kcite	er 1	•		•	•		•	•	•	4-31
	4.13	Start 1	• •	٠	• •	•		•						•	•	4-32
	4.14	Start 2	• •													4-34
	4.15	Set Relay	's for	r Rat	io 1	[, Οι	itput	t Os	cil.	lato	r C	ode,	Rea	d		
		Frequency	Cour	nter,	Typ	be It	on	TTY								4-35

TABLE OF CONTENTS

4.15.1	Programming Relay Banks 1 and 2 · · · · · · · ·	•		.4-35
4.15.2	Programming the Decade Oscillator • • • • • •		•	.4-38
4.15.3	B Reading the Frequency Counter		•	. 4-39
4.16	Set Relays for Ratio II, Calculate Test Accelerometer			
	Sensitivity · · · · · · · · · · · · · · · · · · ·		0	. 4-47
4.16.1	Programming Relay Banks 1 and 2	•	•	.4-47
4.16.2	Calculation of Test Accelerometer Calibration Factor	•	•	.4-47
4.17	Storage Table for Oscillator Code • • • • • • • • • • • • • • • • • • •			• 4-52
4.18	TTY Printout			• / - 53
/ 19	Table of Defined Constants			4-56
4.20	*Decimal to Hevidecimal Subroutine	•	4	/-50
4.20	*Weit Subroutine for TTY	•	•	/-61
4.22	*Decimal Point Typeout	•	•	4-61
4.22	Storage Table for Exciter Calibration Factors (Hex.)	•	•	.4 01
4.25	Shut Off Oscillator Ping Boll Start Over	•	•	.4-02
4.24	*Delay for DVM Subrouting	•	•	•4-03
4.2)	Halt Stop or Continue	•	•	•4-00
4.20	*Constant Assolutation Closed Loop Control Subrouting	•	*	•4-66
4.21	*Constant Acceleration closed Loop control Subroutine	•	•	•4-69
4.20	*Bound Off Subrouting (for Constant Accoloration)	•	٠	•4-76
4.29	*Round off Subfourne (for Constant Acceleration)	•	۰	•4-77
4.30	*Rexidecimal-to-Decimal Subjourne	•	٠	•4-79
4.JL /. 32	Deta Block Control Constants (1/00 Tables)	•	•	•4-83
4.32	*Valtage/Frequency Data Modified to Proper Oscillator C	• ada	•	•4-84
4.35	*Sot Slow/Fast Code for as/de Convertore Subreutine	Jue	•	•4-84
4.34	Store Calibration Data in Vab les	•	•	•4-90
4.35	Decimal to ASCII Routine (5 digits)	•	•	•4-92
4.30	*Decimal to ASCII Subrouting (1 digit)	•	•	•4-90
4.38	Check for Correct Range of Signal ac/de Converter	•	•	•4-98
/ 30	*Multiple Readings (DVM) and Digital Filter Subroutine	•	•	•4-100
4 40	*Read Data Subroutine	•	•	•4-103
4.40	*ASCII to Decimal Subroutine	•	•	•4-109
4 42	Desired Frequency Table	•	•	•4-110
4.43	*Check for Proper Frequency Subroutine	•		•4=120
4.44	*Type=Out Subroutine			• 4-121
4.45	*Message Entry Subroutine			*4-124
4.46	Accelerometer Data Block Entry Program			• 4-130
4.47	Storage Table for Type Out -Constants and Save Locations		÷	*4-133
	storage rable for type out combeanes and save bocacions	·	·	•4-142
5.	Discussion	•	•	.5-1
6.	Acknowledgments			.6-1
7.	References		•	.7-1

Page

LIST OF TABLES

Page

2-1.	Hardware Components							*
2-2.	DVM Cabling	•	• •				•	2-14
2-3.	Counter Digital Output Connector Cabli	ng						. 2-16
2-4.	Remote Preset Connector Cabling	•	• •				•	. 2-17
2-5.	Relay Pin Connections	•	• •	•	• •	•	•	. 2-19
2-6.	Relay Control Line Connections	•	• •	•	• •	•	•	. 2-20
2-7.	Oscillator Cabling	•	• •	•	• •	•	•	. 2-21
4-1.	Relay Bank 1 Coding	•	• •	•	• •	•	•	• 4-36
4-2.	Relay Bank 2 Coding	•	•••	•	• •	•	•	. 4-37
4-3.	Data File Format	•	• •	•	• •	•	•	. 4-95

LIST OF FIGURES

1-1.	Oscillator Driving Voltage vs. Frequency for 10 g		
0 1		•	· 1-2
2-1.	Diagram of System Interconnections	•	• 2-4
2-2.	Block Diagram of Automated Accelerometer System	•	· 2-5
2-3.	Signal Junction Box Part 1		· 2-6
2-4.	Signal Junction Box Part 2		• 2-7
2-5.	Impedance Matching Capacitor Bank Schematic		· 2-8
2-6.	Schematic of Automated Accelerometer System		. 2-9
2-7.	Automated Calibration System .		2-10
2-8.	Exciters 1 and 2	•	2_11
2-9.	Calibration Circuit Schematic	•	• 2-11
3-1.	Sense Status Loop		2-20
3-2	Data Block Format	•	•)-)
J-2.		•	• 3-4
J-J.	Condensed Flow Chart by Program Name	•	• 3–5
3-4.	Summary Flow Chart	•	• *
4-1.	Hexidecimal-to-Decimal conversion	•	• 4-6
4-2.	Range Test for Test Accelerometer Flowchart	•	• 4-11
4-3.	Check for Inverse Flag and Set Relays Flowchart		• 4-14
4-4.	Check for Inverse Flag and Calculate S _m if Set Flow Chart		• 4-16
4-5.	Five Byte ASCII-to-Decimal Flowchart		• 4-25
4-6.	Teletypewriter Printout Flow Chart		• 4-57
4-7.	Decimal-to-Hexidecimal Flowchart		- 4-57
4 7 8	Halt Stop or Continue Elevebart	•	• 4-60
4-0.	Canatart Assolution Classic Lass Control Classic	•	• 4-68
4-9.	Constant Acceleration Closed Loop Control Subroutine		
	Flowchart	•	• 4-75

*Located in the back; after Page 7-1.

.

LIST OF FIGURES

4-10.	Hexidecimal-to-Decimal Subroutine Flowchart			4-81
4-11.	Voltage/Frequency Data Modified to Proper Oscillator			
	Code Flowchart			4-89
4-12.	Decimal to ASCII Flowchart			4-99
4-13.	Multiple DVM Reading and Delay Subroutine Flowchart .	•		4-102
4-14.	Read Data Subroutine Flowchart			4-111
4-15.	ASCII-to-Decimal Subroutine Flowchart			4-119
4-16.	Accelerometer Data Block Entry Program Flowchart		•	4-141
5-1.	History of a Control Accelerometer for 1972			5-2
5-2.	History of a Control Accelerometer for 1973			5-3
5-3.	Histogram of a Control Accelerometer for 1972			5-4
5-4.	Histogram of a Control Accelerometer for 1973			5-5

PAGE

AN AUTOMATED SYSTEM FOR PRECISION CALIBRATION

OF ACCELEROMETERS

bу

B. F. Payne

ABSTRACT

The report describes an automated system for accelerometer calibration under real time control by a small, dedicated digital computer. The hardware components of the system are described and the software programs are given. The software automatically regulates the rate and amount of data collected based on analysis of input data. Printouts of the frequency response of test accelerometers is on a teletypewriter and also the response can be stored on a magnetic tape. Manual operation of the system is also described.

KEYWORDS: Acceleration, automation, calibration, measurements, minicomputer, shakers, standards, transducers, vibration, vibration exciters, vibration pickups.

.

1. INTRODUCTION

An automated process controller for precision accelerometer calibration has been developed by the Vibration Section of the National Bureau of Standards. The system is composed for the most part of commercially available test equipment. This system was designed to meet the need for an accurate automated calibration system for accelerometers. This final report describes the hardware and gives a complete listing of the software. The system is controlled by a minicomputer with 16,384 bytes of core memory (1 byte - 8 bits) and a Teletype (TTY). Since the physical phenomena involved react relatively slowly, the cycle time of the small computer is more than adequate for this purpose. The system controls two electrodynamic vibration exciters. Unlike some commercial exciters, the NBS standard Dimoff exciters [1,2]* have transfer functions which are easily adapted to closed loop acceleration control. Figure 1-1 shows the driving voltage of a Dimoff Type 200 exciter plotted against frequency with and without a capacitive impedance matching network.

The exciters have built-in standard accelerometers. They are first calibrated by absolute methods from 10 Hz to 10 kHz.[3,4] The automated system stores frequency and voltage ratio data at test acceleration levels. The frequencies and acceleration levels are stored in a Data Block table of values in the core of the computer. For maximum usefulness, the program is written so that changes in frequency and acceleration level can be made quickly at the teletype terminal or by loading paper or magnetic tape with no changes in the operating program required.

This system of accelerometer calibration differs from other automatic systems in that the software includes a selective procedure for screening data to minimize the effects of noise and drift. This program is called Multiple Readings (DVM) and Digital Filter Subroutine and it regulates the quantity of the test measurements to obtain data which lie within the established repeatability criteria (Section 4.38).

* The numbers in brackets refer to references found at the end of this report.

1 - 1

1-2

2. HARDWARE

The hardware components for the automated system are listed in table 2-1 and are shown in a block diagram in figures 2-1* and 2-2 and manufacturer and model numbers are given in [4]. The internal connections of the signal junction box are shown in figures 2-3 and 2-4. The impedance matching capacitor bank schematic is shown in figure 2-5. The electrical schematic for the automated system is shown in figure 2-6. In this schematic, the relay positions are all shown in the normally closed position. Refer to the software description of program Set Relays for Ratio I, Output Oscillator Code for details in programming the relays for the circuit desired (Sect. 4.15).

The circuitry of this system allows voltage ratios to be taken by either of two circuits. The circuit used is chosen by a program based on data taken from the test accelerometer. For test accelerometers whose sensitivity is $\leq 566 \text{ mV/g}$, the circuit used will be called Circuit A. For sensitivities >566 mV/g, the circuit will be called Circuit B. The gain of the power amplifier should be set for approximately 60 percent of full gain for a 250-watt amplifier in order to utilize the full amplitude range of the digital oscillator.

2.1 Circuit A

This is the circuit used for most accelerometer calibrations. Referring to figure 2-6, the relays are set for RI ratio as described in Programming Relay Banks 1 and 2, Section 4.15.1. The program will then cause data to be read with the relays in this position. This is denoted as Ratio I or RI. After this is completed the relays are reset for RII ratio as described in Set Relays for Ratio II, Section 4.16. The program then causes data to be read. This is denoted as Ratio II or RII. The test accelerometer sensitivity can be calculated from these ratios as described in Section 4.16. The data are read under the supervision of the Multiple Readings subroutine, Section 4.39. This program will be described in detail in the Software section of this report.

2.2 Circuit B

This circuit is used for accelerometers whose sensitivity is >566 mV/g. If this circuit is chosen the INVERSE FLAG is set which triggers a program to reset the relays. See Check for INVERSE FLAG and Set Relays, Section 4.3. Referring again to figure 2-6, this program reverses the standard and test signals at the input to the readout circuitry and bypasses the amplifiers. Only Ratio RII is read in this case. See Section 4.3 for details. The sensitivity of the test accelerometer can then be computed as described in Section 4.4.

*This figure is at the end of the report.

2.3 Signal Junction Box

The signal junction box (figures 2-1, 2-3, and 2-4) allows for the test instruments to be connected to a junction box. The back of the junction box is interconnected with the relays controlled by the computer. In this manner the software can control the circuitry in the setup. For example, in circuits A and B described above, the software decides which circuit can be used based upon data taken from the test accelerometer. Once this decision has been made, the software sets the relays for the proper circuit and then proceeds with the calibration. Likewise, the computer can set the range of the ac/dc converters based upon data taken during the test.

Figure 2-7 shows the automated accelerometer calibration system with the associated electronic equipment. Figure 2-8 shows two vibration exciters used with the system.

2.4 Minicomputer

The commuter system has 16,384 bytes of core memory and a Teletype (TTY). It includes High Speed Arithmetic and Read/Write Block Instructions. It includes six interface units to control the digital voltmeter (DVM), oscillator, frequency counter, X-Y plotter, a bank of 32 relays (12 double-pole, and 20 single-pole), and a 9-track magnetic drive unit.

2.5 Patch Panels

The only time the patch panels are used in the automatic mode is for selecting exciter 1 or 2 to be used as the calibration exciter. The plugs should connect points 21-22 for exciter 1 and points 45-46 for exciter 2 on Patch Panel 1 (Figure 2-1).

2.5.1 Patch Panel Circuit A for Manual Operation. The system can also be operated in a manual mode by use of the patch panels. For manual operation, the oscillator is in the manual mode with the desired frequency selected on the front panel of the oscillator. The output should be set for 5 to 10 volts. The acceleration level of the exciter is then controlled by the gain potentiometer of the power amplifier. For the manual equivalent of circuit A described above, additional plugs and patch cords are needed in Patch Panel 1: 1-2*, 7-8, and 22-23 for exciter 1, or 46-47 for exciter 2. To obtain RI use a plug to connect 9-10 and for RII connect 33-34. Cable 36 will have to be disconnected from point J on the junction box, the oscillator switched from auto to manual, switches S1 and S2 opened or their cables disconnected, and the DVM switched to ratio on the front panel. By adjusting the volta divider until the RI equals the magnitude of the standard accelerometer sensitivity, the RII will equal the test accelerometer sensitivity. Example: If the standard accelerometer sensitivity $S_{Std} = 20.09 \text{ mV/g}$, then by adjusting the voltage divider until RI = 20090 on the DVM, RII will be the test accelerometer sensitivity, RII = 18532, and $S_{Test} = 18.53 \text{ mV/g}$.

*1-2, etc., indicates a connection between points 1 and 2 in figure 2-1.

2.5.2 Patch Panel Circuit B for Manual Operation. For circuit B manual operation, the plugs and patch cords are removed. Plugs or patch cords are used to connect points 1-10, 32-33, and 22-23 for exciter 1 or 46-47 for exciter 2. Cable 36 will be disconnected from point J and cable 8 will be disconnected from point J and cable 8 will be disconnected from point to take the computer controlled relays out of the circuit. The oscillator will be switched from auto to manual, switches S1 and S2 opened or their cables disconnected, and the DVM switched to ratio on the front panel. The voltage divider is not used in this circuit. This circuit is set up for RII. Only RII data are taken. The test sensitivity must be computed in this case from the following equation

$$S_{\text{Test}} = \frac{S_{\text{Std}}}{\text{RII}}$$

Minicomputer

Teletype

Magnetic Tape Drive

Signal Junction Box (Relay Controlled)

Patch Panels 1 and 2 (Manual)

Test Equipment Controlled by Computer:

- 1 Digital voltmeter
- 1 Digital oscillator
- 1 Frequency counter
- 1 X-Y Plotter

Support Test Equipment:

- 3 Panel voltmeters
- 1 Power amplifier
- 2 dc voltage amplifiers
- 1 Manual capacitor bank
- 1 Voltage divider
- 1 Cathode follower
- 1 Phase meter

Test Equipment Controlled by Computer Controlled Relays:

- 2 ac/dc converters
- *1 dc power supply
- 1 Capacitor bank (16 capacitor)
- 1 Oscilloscope
- *1 Wave analyzer

*Equipment for future expansion of system to measure distortion.

2-5

FIGURE 2-2. BLOCK DIAGRAM OF AUTOMATED ACCELEROMETER SYSTEM

2-E

FIGURE 2-4. SIGNAL JUNCTION BOX PART 2

INPUT	(BNC)		BNCOUTPUT		
		-1 G -1μ		G	ло п 1
		2 R	ſ	R	17
		3 24			
		4 0 1 J		0	2
	R18	5 G	ſ	G	33
		6 3.1			
		7 G	_	G	3
	R19	8 R		R	19
		9 .4,11			11
		10 BL	· · ·	BL	4
	R20	11 0		0	20
		12 .5 _µ t			
		13 G	r	G	5
	R21	14 R		R	21
	-	15 1μf			
		16 BLK	Г	BLK	6
	R22	17 BL		BL	
	-	18 2 _µ †			-,
			, r	G	1/22
	R23	20 R		R	- 23
œ	•	$\frac{21}{3\mu^{f}}$		P D	8
SO	D 24	22 BR	·ſ	BIK	24
ES	H24	24			11
8		$\frac{24}{25}$ $4\mu^{\dagger}$		0	9
PR	P 25	26 8	·	R	25
	In23	27			11
	-	28 BL		BL	10
	B26	29 BR	ſ	BR	26
		30 10 1			1[
		31 0 JI		0	11
	R27	32 R		R	27
		33 20.1			
		34 BLK		BLK	12
	R28	35 Y		Υ	28
		36 30 // 1			
		37 0	, –	0	13
	R29	38 0		0	29
	-	39 40,,,f			
		40 BR	·	BR	14
	R30	41 Y	J	Y	30
	-	42 100µf	1		115
		43 BL		BL	15
	R31	44 BL		BL.	131
		45 00			16
			Г	BLK	132
	R32	4/ Y	· · · · · · · · · · · · · · · · · · ·	Y	1 2
					u

FIGURE 2-5. IMPEDANCE MATCHING CAPACITOR BANK SCHEMATIC

2-ô

FIGURE 2-7. AUTOMATED CALIBRAFION SYSTEM

2-11

EXCITERS 1 AND 2

FIGURE 2-8.

2.6 Magnetic Tape Drive

The digital magnetic tape drive is a nine-track 800-bpi (315-bpc) read after write version. The speed is 25 inches per second (63.5 cm per second) in both the forward and reverse directions. Tape capacity is 2400 feet (731.5 m) of 1/2 inch, 1.5 mil (1.27 cm, 0.038 mm) computer tape on standard 10-1/2 inch (26.67 cm) IBM compatible reels.

2.7 Exciters

Two Dimoff air bearing exciters are shown in figure 2-8. These are described in references 3 and 4. These exciters are calibrated by absolute methods of reciprocity and interferometry as described in references 1, 2, and 5. The exciter 2 has a frequency range of 10 Hz to 10,000 Hz and the exciter 1 has a frequency range of 10 Hz to 5000 Hz. They employ ceramic moving elements, air bearings, and permanent magnets.

2.8 Interfaces

2.8.1 <u>DVM Interface</u>. The interface has the ability, under program control to:

- 1. Select volt or ratio function,
- 2. Command DVM to convert, and
- 3. Read polarity code; five digits, and range code from the DVM. The polarity and data digits are converted, in the interface, to ASCII codes.

A priority interrupt circuit is included which, if enabled, will interrupt the processor when service is required. The Print Command line from the DVM will generate an interrupt when data are available to be read.

Program Notes

- Strap options provide for the selection of any device address from X'00' to X'FF'.
- 2. Control functions are executed via OC (Output Command) instructions:

Bit	**	0	1	2	3	4	5	6	7
Command		DIS	EBL	CNVT	CCTR			RATIO	VOLT

DIS - Disables device interrupt from interrupting the processor. This does not prevent an interrupt from being queued up in the ATN (Attention) FF (Flip-Flop).

EBL - Enables device interrupt.

CNVT - Commands the DVM to perform a conversion of its inputs.

CCTR - Clear the Read Steering FF's (This counter controls the sequence of data being read).

RATIO - Selects ratio function of the DVM.

VOLT - Selects the voltage function of the DVM.

- 3. The Print Command line can also be interrogated via an SS (Sense Status) instruction. This function appears on the BSY (Busy) line (bit 4). When set to a "1" the DVM will be in the process of a conversion. When set to a "0" the DVM has completed its conversion and data are available to be read.
- 4. Data can be transferred to the processor via RD (Read Data) instruction. Data are read by five consecutive RD's. The Read Steering flip-flops must be reset before each Data Transfer.

The order of data transfer is as follows:

Polarity Ten-thousands digit Thousands digit Hundreds digit Tens digit Units digit Range code

5. The System clear signal will:

a. Clear address FF,

- b. Clear the ATN FF,
- c. Disable Interrupts,
- d. Set the BSY FF, and
- e. Clear the Read Steering FF's.

Hardware Components

1. The DVM Interface consists of:

1	ea.	NBS	DVM		SK-148
2	ea.	I/0	Cables	(14 pr)	17-002F01
1	ea.	I/0	Cables	(8pr)	17-037

Table 2-2 shows the connection pin numbers.

TABLE 2-2. NBS DVM Cabling

Desig	SK-148 MB From	Cinch 15 Pin To	Mating Conn From	Unit To	Command
Desig P15 P15 CONVO RATDC HD10 HD20 HD40 D080 TH10 TH20 TH40 TH40 TH40 TH40 TH40 TH40 TH40 TH40 TH40 TH40 TH40 TH40 TH40 TH10 TH20 TH40 TH80 PRINT0 MP0L0 UN10 UN20 UN40 UN30 TN10 TN10 TN20 TN10 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN10 TN20 TN40 TN10 TN20 TN40 TN10 TN20 TN40 TN10 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN20 TN40 TN80 RG10 RG20 GRD CDD	$\begin{array}{c} \text{SK-148 MB} \\ \text{From} \\ \hline 10-42 \\ 20 \\ 30 \\ 40-42 \\ 10-41 \\ 20 \\ 30 \\ 40 \\ 50 \\ 70 \\ 21 \\ 41 \\ 60 \\ 11 \\ 31 \\ 51 \\ 61-41 \\ 40-40 \\ 50 \\ 60 \\ 70 \\ 11 \\ 21 \\ 31 \\ 41 \\ 51 \\ 61 \\ 71 \\ 00-40 \\ 0$	Cinch 15 Pin To P01-1 2 3 4 P02-1 2 3 4 5 7 9 11 6 8 10 12 P02-13 P02-13 P02-13 P03-4 5 6 7 8 9 10 11 12 P02-13 P03-4 5 6 7 8 9 10 11 12 P02-13 P03-4 5 10 11 12 P02-13 P03-14 P03-15	Mating Conn From J01-1 2 3 4 J02-1 2 3 4 5 7 9 11 6 8 10 12 J02-13 J02-13 J03-4 5 6 7 8 9 10 11 12 J02-13 J02-13 J03-4 5 6 7 8 9 10 11 12 J02-13 J03-4 5 10 11 12 J02-13 J03-4 5 10 11 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 11 12 10 12 10 12 10 12 10 11 12 10 11 12 10 12 10 12 10 12 10 10 12 10 10 11 12 10 12 10 10 11 12 10 10 11 10 12 10 10 11 11 12 10 10 11 11 12 10 11 11 10 12 10 10 11 11 12 10 10 11 11 10 11 11 12 10 10 11 11 12 10 10 11 11 12 10 10 11 12 10 10 11 12 10 10 11 12 13 10 11 12 13 10 11 12 13 10 11 12 13 10 15 15 15 15 15 15 15 15 15 15	Unit To J204-A B E D J202-5 6 30 31 7 8 32 33 9 10 34 35 48 11 1 2 26 27 3 4 28 29 13 14 25	Command 100(X1) (X2) (X3) (X4) 1000(X1) (X2) (X3) (X4) 10,000(X1) (X2) (X3) (X4) Print Command Sign 1(X1) (X2) (X3) (X4) Print Command Sign 1(X1) (X2) (X3) (X4) Range(X1) (X2) (X2) (X3) (X4) 10(X1) (X2) (X3) (X4) 10(X1) (X2) (X3) (X4) 10(X1) (X2) (X3) (X4) 10(X1) (X2) (X3) (X4) Print Command Sign 1(X1) (X2) (X3) (X4) 10(X1) (X2) (X3) (X4) Print Command Sign 1(X1) (X2) (X3) (X4) 10(X1) (X2) (X3) (X4) Print Command Sign 1(X1) (X2) (X3) (X4) 10(X1) (X2) (X3) (X4) Print Command Sign 1(X1) (X2) (X3) (X4) 10(X1) (X2) (X3) (X4) Print Command (X2) (X3) (X4) 10(X1) (X2) (X3) (X4) Print Command (X2) (X3) (X4) Print Command (X2) (X2) Reference
GRD GRD	00-41 00-42	P02-15 P01-15	J02-15 J01-15	25 25	Reference Reference

2.8.2 Frequency Counter Interface. The counter may be operated in the preset, rate, time or ratio modes by operation of controls on the counter. The interface provides "read into memory" circuitry for the five digits of the display. The "read in" is accomplished by execution of consecutive RD (Read Data) instructions in the program. An "end of count" signal is generated by the counter which is used by the controller to initiate the "read in" sequence or interrupt the processor so that appropriate program strategy may be applied.

Programming Considerations

The following table shows the "Output Command" and status structure of the interface:

Comman d	Bit	Status
DISABLE INT. ENABLE INT.	0 1	
*INITIALIZE START COUNT STOP COUNT	3 4 5 6 7	** BUSY

- * In the initialize state, the counter is stopped and the display reset.
- ** The controller recognizes a busy condition during all counter functions.

Hardware Components

The counter interface board may be plugged into any I/O slot in the expansion card file. The strap lead from 214-0 to 114-0 should be removed from the wiring side of the slot chosen. The counter cabling connections are given in Tables 2-3 and 2-4.

TABLE 2-3. Counter Cabling

DIGITAL OUTPUT CONNECTIONS

Desig.	MB Term.	Back Panel	Counter Digital Output Connection	
DIU11 DIU21 DIU21 DIU41 DIU81 DIT11 DIT21 DIT41 DIT41 DIT81 DIH11 DIH21 DIH41 DIH41 DITH11 DITH21 DITH41 DITH41 DITH81 DITT11 DITT21 DITT41 DITT81 EOC1 GND	10-40 $20-1$ $30-40-50-60-70-11-21-31-41-51-61-71-40$ $10-41$ $20-130-40-50-60-70-41$	$ \begin{array}{c} J04-1 \\ \uparrow & -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \\ J04-14 \\ J05-1 \\ \uparrow & -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ J05-7 \\ J04-15 \end{array} $	$\begin{array}{c c} P04-1 \\ & -2 \\ & -3 \\ & -4 \\ & -5 \\ & -6 \\ & -7 \\ & -8 \\ & -9 \\ & -10 \\ & -11 \\ & -12 \\ & -13 \\ P04-14 \\ P05-1 \\ & -2 \\ & -13 \\ P04-14 \\ P05-1 \\ & -2 \\ & -3 \\ & -4 \\ & -5 \\ & -6 \\ P05-7 \\ P04-15 \end{array}$	$ \begin{array}{c} 1\\ 2\\ 26\\ 27\\ 3\\ 4\\ 28\\ 29\\ 5\\ 6\\ 30\\ 31\\ 7\\ 8\\ 32\\ 33\\ 9\\ 10\\ 34\\ 35\\ 47\\ 50\\ \end{array} $

REMOTE RESET CABLE

RST1 11-42 J08	P08	EXT. TEST BNC CONN.
----------------	-----	------------------------

TABLE 2-4. Counter Cabling

REMOTE PRESET CONNECTIONS

Desig.	MB Term.	Back Panel Connection		Remote Preset Connection
U11	10-40	J06-1	P06-1	1
U21	20-	-2	-2	2
U41	30-	-3	-3	26
U81	40-	-4	-4	27
T11	50-	-5	-5	3
T21	60-	-6	-6	4
T41	70-	-7	-7	28 .
T81	11-	-8	-8	. 29
H11	21-	-9	-9	5
H21	31-	-10	-10	6
H41	41-	-11	-11	30
H81	51-	-12	-12	31
TH11	61-	-13	-13	7
TH21	71-40	J06-14	P06-14	8
TH41	10-41	J07-1	P07-1	32
TH81	20-	-2	-2	33
TT11	30-	-3	-3	9
TT21	40-	-4	-4	10
TT41	50-	-5	-5	34
TT81	60-	-6	-6	35
P 10	70-	-7	<u> </u>	44
GND	00-41	J07-15	P05-15	50

2.8.3 <u>Relay Interface</u>. This interface provides computer control of 32 relays via two Control Line Modules. The relays to be controlled consist of 20 single-pole normally open contacts and 12 double-pole normally open contacts. The normally closed contacts of all relays are available on a provided cable.

A 32-bit memory location is loaded with the condition of the 32 relay contacts. For normally open operation, a "one" bit in its associated memory bit location will close the contact. The "memory image" of the relay contacts is updated via the program. A "write data" instruction must be issued for each set of eight relays. Therefore, four consecutive WD (Write Data) instructions will update the 32 contacts. An "output command" instruction to one of the Control Line Modules will open all 16 contacts associated with the module. Where normally closed contacts are used, the OC (Output Command) instruction will leave the contact in a closed state. Since 16 relays are controlled by each Control Line Module, two consecutive device numbers have been chosen for the two modules. See tables 2-5 and 2-6.

Mechanical Considerations

The relays are located in a special unit mounted in the system cabinet. Cables connect the control lines to the relay chassis. The relay chassis contains its own power supply (+24V) for coil voltage and the relays are plugged into sockets for ease of replacement. The contact lines are brought to the back panel of the cabinet to 15 pin connectors. (See table 2-5).

The Control Line Modules may be placed in any two adjacent I/O slots. The device numbers chosen for the two modules are X'71' and X'72'.

2.8.4 Oscillator Interface. The Oscillator Controller is a special controller used exclusively with the oscillator for converting four data bytes to the necessary signals to control amplitude and frequency output of the oscillator. The controller uses a general purpose Input/Output Mother Board SK-174, and a general purpose Mother Board SK-175.

The Controller provides 31 data output lines and one clear line to the oscillator. The 31 data lines each have a storage flip-flop which will hold the data for 15ms after the fourth "write data" instruction. The clear line operates in the same manner if cleared by data configuration.

Also provided are one active status line which is active for 15ms following the fourth data byte, and one priority interrupt line which will be activated by an illegal code only.

TABLE 2-5. Relay Banks' Pin Connectors

1

-

Relay	Swinger	Norm.	Norm.	Back Panel	Pin No.	Pin No.	Pin No.
	1	Open	Closed	Connection	Swinger	NO	NC
	\	NOT	NGI	T(A)	1	0	2
R1	DPTI	NOT	NCI	J(A)		2	3
	DPT2	NO2	NC2		6	. 5	4
R2	DPTI	NOL	NCI		/	8	9
	DPT2	NO2	NC2		12		10
R3	DPTI	NOT	NCL		13	14	15
_	DPT2	NO2	_ NC2		18	17	16
R4	DPT1	NO 1	NC1		19	20	21
	DPT2	NO2	NC2		24	23	22
R5	DPT1	NO1	NC1		25	26	27
	DPT2	NO2	NC2		30	29	28
R6	DPT1	N01	NC1		31	32	33
	DPT2	NO2	NC2		36	35	34
R7	DPT1	N01	NC1		37	38	39
	DPT2	NO2	NC2		42	41	40
88	DPT1	NO1	NC1		43	44	45
RO	DPT2	NO2	NC2		48	47	46
Rð	DPT1	NO1	NC1	J(A)	49	1J(B)	2J(B)
10	DPT2	NO2	NC2	J(B)	5	4J(B)	3J(B)
P10	DPT1	NO1	NC1		6	7	8
K10	DPT2	NO2	NC2		11	10	9
וויס	DPT1	NO1	NC1		12	13	14
K11	DPT2	NO2	NC2		17	16	15
010	DPT1	NO1	NC1		18	19	20
K12	DPT2	NO2	NC2		23	22	21
P13	SPT1	NOI	NC1		38	40	39
R14	SPT1	NOI	NC1		41	43	42
R14 R15	SPT1	NOI	NC1		44	46	45
R15 P16	SPT1	NOI	NC1	I(B)	47	49 -	48
R10 R17	SPT1	NOI	NC1	I(C)	1	3	2
D19	SPT1	NOI	NC1	3(0)	4	6	5
RIO RIO	STI1 CPT1	NOI	NC1		7	9	8
R19 R20	SPT1	NOI	NC1		10	12	11
R20	CDT1	NOI	NC1		13	15	14
R21 R22	SI II CDT 1	NOI	NC1		16	18	17
R22	SI I I	NOI	NCI		19	21	20
R23	SFI1 CDT1	NOI	NC1		22	24	23
R24	SF 1 L CDT 1	NOI	NC1		25	27	26
R20 R26	ST 11	NOI	NCI		28	30	29
R20	SFIL	NOI	NCI		31	33	32
R2/		NOT	NCI		34	36	35
KZ8	SFIL	NOT	NCI		37	30	38
K29	SFIL	NOT	NCI		57	1.2	/ 1
K30	SPTI	NOT	NCI		40	42	41
R31	SPTI	NOT	NCI	I(C)	43	4.9	44
R32	SPTI	NOT	NCI	J (C)	40	40	47

Note: Pin Number 50 of J(A), J(B), and J(C) is ground.

Device X'71' CL000 R1 1 CL010 R2 1 CL020 R3 2 CL030 R4 3 CL040 R5 4 CL050 R6 DPDT CL060 R7 6 CL070 R8 7 CL080 R9 8 CL090 R10 9 CL100 R11 10 CL100 R12 11 CL120 R13 12 CL130 R14 13 CL140 R15 SPDT					
CL000 R1	Device X'71'				
CL010 R2 1 CL020 R3 2 CL030 R4 3 CL040 R5 4 CL050 R6 DPDT CL060 R7 6 CL070 R8 7 CL080 R9 8 CL090 R10 9 CL100 R11 10 CL100 R12 11 CL120 R13 12 CL130 R14 13 CL140 R15 SPDT					
CL020 R3 2 CL030 R4 3 CL040 R5 4 CL050 R6 DPDT 5 CL060 R7 6 CL070 R8 7 CL080 R9 8 CL090 R10 9 CL100 R11 10 CL110 R12 11 CL120 R13 12 CL130 R14 13 CL140 R15 SPDT 14					
CL030 R4 3 CL040 R5 4 CL050 R6 DPDT 5 CL060 R7 6 CL070 R8 7 CL080 R9 8 CL090 R10 9 CL100 R11 10 CL100 R12 11 CL120 R13 12 CL130 R14 13 CL140 R15 SPDT 14					
CL040 R5 4 CL050 R6 DPDT 5 CL060 R7 6 CL070 R8 7 CL080 R9 8 CL090 R10 9 CL100 R11 10 CL110 R12 11 CL120 R13 12 CL130 R14 13 CL140 R15 SPDT 14					
CL050 R6 DPDT 5 CL060 R7 6 CL070 R8 7 CL080 R9 8 CL090 R10 9 CL100 R11 10 CL100 R12 11 CL120 R13 12 CL130 R14 13 CL140 R15 SPDT					
CL060 R7 6 CL070 R8 7 CL080 R9 8 CL090 R10 9 CL100 R11 10 CL100 R12 11 CL120 R13 12 CL130 R14 13 CL140 R15 SPDT					
CL070 R8 7 CL080 R9 8 CL090 R10 9 CL100 R11 10 CL110 R12 11 CL120 R13 12 CL130 R14 13 CL140 R15 SPDT					
CL080 R9 8 CL090 R10 9 CL100 R11 10 CL110 R12 11 CL120 R13 12 CL130 R14 13 CL140 R15 SPDT					
CL090 R10 9 CL100 R11 10 CL110 R12 11 CL120 R13 12 CL130 R14 13 CL140 R15 SPDT					
CL100 R11 10 CL110 R12 11 CL120 R13 12 CL130 R14 13 CL140 R15 SPDT					
CL110 R12 + 11 CL120 R13 † 12 CL130 R14 13 CL140 R15 SPDT 14					
CL120 R13 12 CL130 R14 13 CL140 R15 SPDT 14					
CL130 R14 1 13 CL140 R15 SPDT 14					
CL140 R15 SPDT 1 14					
CL150 R16 <u>+</u> 15					
Device X'72'					
CL000 R17 0					
CL010 R18 1					
CL020 R19 2					
CL0 30 R20 3					
CL040 R21 4					
CL050 R22 5					
CLO60 R23 SPDT 6					
CL070 R24 7					
CL080 R25 8					
CL090 - R26 9					
CL100 R27 10					
CL110 R28 11					
CL120 R29 12					
CL130 R30 13					
CL140 R31 14					
CL150 R32 15					

TABLE 2-6. Relay Banks^{*}1 and 2 Coding Format

TABLE 2-7. Oscillator Cabling

Signal	MB Location	Back Panel Location		Program Input Connection	
OSCLRA	50-42	$ \begin{array}{c} P8-5 \\ \downarrow -4 \\ -3 \\ \downarrow -2 \end{array} $	J8−5	2-7-12-17-27-32-37	
OPE 311	40-		-4	38	
301	30-		-3	39	
291	20-		-2	40	
281	10-42	P8-1	J8-1	41	
271	71-41	P7-14	J7-14	33	
261	61-	-13	-13	34	
251	51-	-12	-12	35	
241	41-	-11	-11	36	
231	31-	-10	-10	28	
221	21-	-9	-9	29	
211	11-	-8	-8	30	
201	70-	-7	-7	31	
191	60-	-6	-6	18	
181	50-	-5	-5	19	
171	40-	-4	-4	20	
161	30-	-3	-3	21	
151	20-	-2	-2	13	
141	10-41	P7-1	J7-1	14	
131	71-40	P6-14	J6-14	15	
121	61-	-13	-13	16	
111	51-	-12	-12	8	
101	41-	-11	-11	9	
091	31-	-10	-10	10	
081	21-	-9	-9	11	
071	11-40	-8	-8	3	
061	70-	-7	-7	4	
051	60-	-6	-6	5	
041 031 021 OPE 011 Ground Ground Ground	50- 40- 30- 20-40 81-40 81-41 81-42	-5 -4 -3 -2 P6-15 P7-15 P8-15	-5 -4 -3 -2 J6-15 J7-15 J8-15	6 24 23 22 1 1 1 1	

Oscillator Interface Specifications

Output Signals

Logical zero is $-13.5V \pm 2V$ at 0.0ma. Logical one is 0V $\pm 0.5V$ at 4ma.

Input Signals

Logical zero is OV $\pm 0.5V$ at 1.2ma. Logical one is 5V $\pm 2V$ at 0.0ma.

Programming Notes

Any command to the controller will clear the controller resulting in no change in device output. Data are transferred to the device via "write data" or write block instruction of four bytes.

<u>First Half-Byte</u> (least significant four bits of first-byte) This half-byte is variable from X'0' to X'9' to control the oscillator amplitude in steps of 0.01V rms per step. X'0' = no output. X'1' = 0.01V rms output. X'9' = 0.09V rms output. Decodes from this half-byte of X'A' through X'F' are illegal and will result in an interrupt being generated. (See byte four most significant bit for exception).

Second Half-Byte (most significant four bits of first-byte) Used to control the amplitude in steps of 0.1V rms per step. X'O' = no output, X'I' = 0.1V output, and X'9' = 0.9V output. Output is additive to first half-byte. X'A' through X'F' have the same properties as described in first half-byte.

<u>Third Half-Byte</u> (least significant four bit of second-byte) Used to control the output in steps of 1.0V. X'O' = 0V output. X'9' = 9V output. Output is additive to the first byte X'A' through X'F', as previously described.

Fourth Half-Byte (most significant four bits of second-byte) Used to control the output frequency in steps of 0.1 Hz per step from X'0' to X'9'. X'A' through X'F', as previously described.

<u>Fifth Half-Byte</u> (least significant four bits of third-byte) Controls output frequency in steps of 1.0 Hz per step as described above.

<u>Sixth Half-Byte</u> (most significant four bits of third-byte) Controls output frequency in steps of 10.0 Hz per step.

Seventh Half-Byte (least significant four bits of fourth-byte) Controls output frequency in steps of 100.0 Hz per step.
<u>Eighth Half-Byte</u> (most significant four bits of fourth-byte) Controls the multiplication factor of the last four half-bytes. X'l' = multiplication factor of 1.0. X'2' = multiplication factor of 10.0. X'4' = multiplication factor of 100.0. One of these numbers must be used for correct operation.

Any number less than X'8' and not specified here is illegal and will result in an interrupt being generated. If this byte is \geq X'8' (most significant bit = one), none of the illegal codes will be recognized, and the oscillator will be cleared resulting in no output. No interrupt will be generated. This bit may, therefore, be used as a wait bit or clear bit. The device will also be cleared by the console initiate. The device may have an address of X'00' through X'FF' by use of the address strap option.

Hardware Components

1 ε	ea.	Oscillator Controller Module	Part	SK-174
1 e	ea.	Oscillator Controller Module	Part	SK-175
3 е	ea.	General Purpose I/O Cables	Part	17-002

Table 2-7 shows the oscillator cabling.

2.8.5 <u>X-Y Plotter Interface</u>. The SK-149 X-Y plotter interface is designed to interface to the X-Y plotter. The interface has the ability, under program control to:

- 1. Output +10 volts to -10 volts coordinates on the X and Y inputs to the plotter
- 2. Output Y coordinates, only for the time Y mode
- 3. Output both X and Y coordinates simultaneously in the X-Y mode
- 4. Trigger the trace in the time Y mode, and
- 5. Control the Pen-up/Pen-down function.

The interface also contains a priority interrupt circuit which, if armed, can interrupt the processor for service. Two interrupt functions are provided:

- 1. Internal clock interrupt which can generate an interrupt approximately every 20ms. This interrupt is under control of the ARM function.
- An external interrupt line which will interrupt the processor on the transision from the "O" state (OV ±0.5V, 1.2ma) to the "one" state (5V +0.5V).

This interrupt line is not under control of the ARM function; but the function should be put into the DISARM state to prevent multiple interrupts from the internal clock.

Program Notes

- Strap options provide for the selection of any device address from X'00' to X'FF'.
- 2. Control functions are executed via OC (Output Command) instructions. The command structure is as follows:

Bit	0	1	2	3	4	5	6	7
Command	TIME	Х-Ү	TRG	INIT	DIS	ARM	DOWN	UP

- TIME Puts the controller in the Time-Y mode.
- X-Y Puts the controller in the X-Y mode.
- TRG Generates a Trigger Command to the plotter for the Time-Y mode. INIT - Initializes the controller: lifts pen; disarms interrupts; clears the write steering FF; clears the ATN FF; puts controller in the T-Y plot mode.
- DIS Disarms internal clock interrupt.
- ARM Arms internal clock interrupt.
- DOWN Lowers the pen to the paper.
- UP Raises the pen from the paper.
- 3. The X-Y coordinate are controlled by WD (Write Data) instructions. Four consecutive WD instructions (initially the data steering FF must be cleared) are necessary to update the X-Y coordinate:

WD	DEV,	Y	DATA	
WD	DEV,	Y	DATA	+1
WD	DEV,	Х	DATA	
WD	DEV,	Х	DATA	+1

The DATA layout is as follows: 2 3 4 5 7 0 1 6 Y/X DATA SIGN MSD -2 3 4 5 7 1 6 0 → LSD Y/X DATA + 1

In the Time-Y mode only two WD's are necessary per point. The ten bit resolution provides plotting steps of 19 millivolts. The DAC is accurate to within the least significant bit.

4. The time interval between the output of points or the pen state changes must be facilitated with the interrupt. For example: the maximum tracking velocity of the plotter is 15 inches per second, or approximately 70 milliseconds per inch. Using the 20-ms interrupt, the pen can traverse approximately 2/7 of an inch per interrupt. If it is desired to plot a line two inches long, it will take eight (7+1, for safety factor) interrupts before the line is completed. For the pen to go from the down state to the up state, two interrupts are needed for completion. For the pen to go from the up state to the down state, four interrupts are needed.

Hardware Components

1. The SK-149 interface module consists of:

1	ea.	X-Y Plotter Interface Board	SK-149
1	ea.	10 Bit Dual Chan DAC	35-074F04
1	ea.	Cable	17-037
2	ea.	Coax Cables	17-055F01

- The two boards may be inserted into any two available adjacent I/O slots in the expansion card file, with the DAC to the left (facing front) of the controller board. Rack/Tack strap must be removed from these slots.
- 3. On the DAC board the upper coaxial connector is the X-Channel and the lower is the Y-Channel.
- 4. X-Y Plotter Cabling

From	То
J9-8	J102A
J9-9	B
J9-11	C
J9-15	D

2.9 Calibration of the System

For calibration of the ratio readout system, plugs connecting points 3-4, 5-6, 11-12, 17-41, 18-42 are removed. Plugs and patch cords for points 41-8, 42-4, 5-12, and 36-53 are connected. This will give a circuit shown in figure 2-9. Cable 36 from point J and cable 8 from point I of the junction box are disconnected. Switch the oscillator to manual and open switch S1.

The following procedure has proven reliable for calibration purposes. Set the oscillator for 100 Hz, 5 V rms output. Adjust the voltage divider for 70 mV rms on the input to the test converter (meter 1). Using some transfer voltmeter such as a high quality differential voltmeter, check the accuracy of the test converter (1 V range) by switching the DVM to the voltage mode. If the ac/dc converter is in error, adjustments can be made by adjusting R37, R35, C18, and C23 as explained in its instruction manual. After the 100 Hz point is checked, switch the oscillator to 10,000 Hz and check the accuracy at this frequency. High and low frequency adjustments can be

FIGURE 2-9. CALIBRATION CIRCUIT SCHEMATIC

made on the ac/dc converter. After this adjustment, switch back again to the 100 Hz point and recheck the accuracy. Switching back and forth between low and high frequency points several times may be necessary as there is some interaction between the two adjustments. After the accuracy has been established at the two extremes, a check should be made at the midpoints and at 10 Hz, 30 Hz, and 50 Hz to ensure accuracy over the entire frequency range. In case adjustment cannot bring the ac/dc converter into 0.1 percent of reading accuracy with these adjustments, converter performance is no longer acceptable and it will be necessary to repair the converter. The errors in the converters are the limiting factors in the overall accuracy of the system.

Now switch to the ratio mode and compare the DVM ratio with the voltage divider setting. Do the same kind of adjustment on the reference converter (10 V range) at 100 Hz and 10,000 Hz to bring the voltage divider settings and the DVM ratio to 0.1 percent agreement.

In addition to the 70 mV rms on the input to the test converter, the accuracy of the system should also be checked at levels from 14 mV to 1 V rms to ensure amplitude linearity. The 14 mV rms lower level is established for a 10 mV/g accelerometer. For a 2 g calibration, the rms voltage will be approximately 14 mV rms. Now the system should be in calibration on the 1 V rms range. Because the 10-V rms range on the signal converter is used occasionally, the 10-V range should be checked also using the same procedure as given above for the 1-V rms range. This calibration need not be done above 4 V rms because for a voltage greater than approximately 4 V rms the inverse circuit (circuit b) is used.

From a user's standpoint, a calibration once a month is good practice. Time involved for a calibration is usually about 20 minutes.

Also, periodically, the input from the standard accelerometer is connected to both the reference and the test input and a calibration run by computer control. The sensitivities typed out should agree with the calibration factors of the standard accelerometer at the test frequencies.

3. SOFTWARE

3.1 Computer Capability

The minicomputer has 16 general purpose registers, each 16 bits in length. These registers are available for use as accumulators and all sixteen can be used as index registers. The computer has high speed arithmetic hardware options of fixed point Multiply/Divide and Read Block/ Write Block capabilities.

Two methods of programming I/O (Input/Output) are available:

1. Interrupt - Controlled by priority level as determined by relative plug position of device mother boards, or

2. Sense - status basis.

Most of the programming for the I/O in the automated system is of the sense-status type since great speed is not required and the software is somewhat easier to write for this type. In this method the device to be serviced is interrogated for a device busy bit and the program continues in this sense-status loop until the device is available as shown in figure 3-1. In the interrupt method, the computer can be interrupted to service a device instead of waiting in a sense status loop.

In the present program, all coding has been in machine language using hexidecimal notation. This makes for efficient use of core space and for ease in programming I/O instructions.

3.2 Software Philosophy

The basic design philosophy in the automated accelerometer calibration system was twofold; first, to provide an accurate and reliable system for accelerometer calibration utilizing state-of-the-art techniques and equipment. Speed of calibration is of some importance since sufficient data for statistical analysis are desirable. However, accuracy must not be sacrificed for the sake of a quick calibration. Secondly, the design should make use of techniques in such a manner that the software of the system assumes the responsibility for control and decisions as much as possible, leaving the operator of the system free for other tasks. The operation of running the system can be carried out at the technician level. The operator technician should be able to make small changes in the system such as changes in the DATA BLOCK described in the next section. He should be able to reload the core from the magnetic tape, and make use of the HALT and STOP features described below. But, he should not have to make major changes in the operating programs. The software should be flexible enough to accommodate any accelerometers that may need calibration.

The quality of data collected may vary with the accelerometer under test. Variations in accelerometer and signal conditioning circuits may result in varying noise conditions and settling times. In the software for this system, this is taken into account and the quantity of data collected will vary from one accelerometer to another. Details of this procedure are found in the Multiple Readings (Section 4.38) program.

3.3 Data Block

The program has been organized about the current test point as found in the Data Block (core location 1400). This data block consists of control constants for all the test points to be performed. Each test point occupies 6 bytes. The organization of this table is shown in figure 3-2. The first four bytes contain the frequency data. The coding for the four bytes to program the frequency is as follows:

0	1		2		_	3	
	100 Hz	10 Hz	1 Hz	0.1 Hz			Multiplier

Example: 0010 0001 is the code for 10 Hz. The last digit is the multiplier which is either 1 or 2. Example: 0998 2002 is the code for 9982 Hz.

Bytes 4 and 5 shown in figure 3-2 give the oscillator voltage necessary for this test point in millivolts for exciter 2. This voltage is trimmed each time the program goes through the Acceleration Level Set program. The new voltage value will then replace the old one in this table. Bytes 6 and 7 are the same information for exciter 1. Bytes 8 and 9 give the capacitor coding to set the relay bank 2 for the proper impedance matching network (see Section 4.15.1) for exciter 2. Bytes C and D are the same information for exciter 1. Bytes A and E and F give the desired millivolt output from the standard accelerometer for exciter 2 and 1 respectively. These values may easily be changed by use of the monitor to obtain different acceleration levels. Several sets of Data Block constants are saved on paper tape for convenience in quick changeover of desired acceleration levels.

If the total number of test points is to be changed, the contents of the following core locations must be changed. Location OE8E contains a constant for exciter 2 and location OE90 contains a constant for exciter 1. The constant must be four times the number of test points. The constant must be in hexidecimal notation. In the program given in this report, the exciter 1 constant is 0064 (25 test points) and for exciter 2 the constant is 0094 (37 test points).

3.4 Start 1, Start 2

The program for automatic calibration of accelerometers starts with either the Start 1 or Start 2 programs. These correspond to exciter 1 or exciter 2. The summary flow chart for the automated system is shown in figure 3-3. The read Ratio I and Ratio II are handled by the Multiple Readings and Digital Filter Subroutine (see Section 4.39) which regulates the number of readings based upon the scatter in the data. The individual programs are described in the listing at the end of this software section. The more complicated programs have flow charts accompaning them.

FIGURE 3-1. Sense Status Loop.

6 8 A C E	Exciter 1Exciter 2Exciter 2Exciter 1Exciter 1Osc.Osc.CapacitorDesiredDesiredVoltageCodeVoltageCodeVoltage			
4	Exciter 2 Osc. Voltage	ţ		
e 6	First Test Frequency	Second Tes Frequency	• • •	
Relatíve byt addresses:	1400 Test Pt. 1	1410 Test Pt. 2		1640 Test

FIGURE 3-2. Data Block Format.

3.5 Halt and Stop Features

The HALT feature permits the operator to type an H character on the TTY after a test frequency has been typed by computer control. This activates a program which, after the completion of the current test point, will cause the program to halt but leave the exciter energized. The computer will continue in the HALT mode until the execute button is pushed on the computer console whereupon the program will continue with the next test point.

The STOP feature is similar in that when the S character is typed the computer will halt after completion of the current test point. In this case however, the program will start over with the first test point when the execute button is pressed. Also, an extra line feed is programmed to separate the two sets of data.

3.6 Provisions for Automatic Selection of Circuits and Automatic Ranging of Test Equipment

The voltage ratio circuit can be either circuit a or circuit b as explained in the hardware section. The software selects one of these two circuits to obtain voltage ratio data. The program which selects this circuit is the Check For Inverse Flag and Set Relays. The circuit chosen is based upon the test accelerometer sensitivity as explained in Section 2.

The automatic ranging of the ac/dc voltage converters is also selected by the software. Only the test ac/dc converter range needs to be automatic. The range is normally one volt full scale but switched to ten volts full scale, if needed. The range selection is accomplished by a relay either open or closed (See Section 4.38). The reference converter is always at 10 volts full scale and the DVM is always at 10 volts full scale range.

The ac/dc converters mode (Slow or Fast) is also set by the software. For frequencies greater than 100 Hz, they operate in the Fast mode; otherwise, they operate in the Slow mode.

The DVM function (either ratio or voltage) is selected by the software. The voltage mode is used to monitor accelerometer voltage levels for setting the acceleration levels, whereas the ratio mode is used for all other data collection. The function selection is provided as a part of the DVM interface package (see Section 2.8.1).

4. SOFTWARE PROGRAM DESCRIPTIONS

This section is a listing of programs by core location sequence. A description of each program and a flow chart for the more complicated ones precedes the program listing. The hexidecimal core contents printout was prepared by use of the software monitor. This monitor was developed at NBS for the purpose of programming the subject minicomputer. It occupies approximately 640 bytes of core and is used to enter hexidecimal code directly into core locations. It is also used to punch paper tapes of core locations, read paper tapes, and to type out blocks of core on the TTY.

Figure 3-3 shows a condensed flow chart by program name and location. Figure 3-4*shows a detailed flow chart by type of operation.

The software for the automated system was written in machine language code. At the time this project was started, the higher order languages were not developed for small computers to the extent to make it a practical approach to software. In the present generation of minicomputers, the higher order languages of Fortran and Basic are more fully developed for these machines. In planning for new systems, use of the higher order languages may be practical. However, the system designer should be prepared to invest in larger amounts of memory to handle the higher order languages.

One of the most frequent criticisms of real-time systems using machine language code for programming is poor documentation. Programs written by one person are often quite difficult to understand and modify by another person. For this reason the entire software package is included in this report with documentation for easier understanding of the machine language coding.

The following FLAGS are used throughout the software.

EXCITER (SHAKER) FLAG: This flag tells which exciter is being used for a test. The program must know this in order to know which data to use in the DATA BLOCK since each exciter requires different programming. It is also needed when the test sensitivity is calculated since each exciter has a different calibration for the standard accelerometer sensitivity.

INVERSE FLAG: This flag tells which circuit to use: a or b. For test accelerometers with high sensitivities, circuit b must be used to calibrate the accelerometer.

THRU FLAG: This flag tells the program if the program has cycled "thru" once to check for overranging on the test ac/dc converter. If program has checked for the overrange condition, it does not recheck it again.

LOW/NORM FLAG: If the sensitivity of the test accelerometer is so low that only four digits of significant data can be read (first digit zero on DVM), this flag is set to indicate a LOW signal from the accelerometer. This is used in the computation of the test sensitivity to extend the printout to one extra digit. For example: 9.954 instead of 9.95 mV/g. This feature can be used to regulate the number of digits typed out by adjusting the voltage divider to give only four significant digits on the DVM at the point where an extra digit of typeout is desired.

* This figure is at the end of the report.

STABLE/UNSTABLE FLAG: This flag is set if the data do not meet the program requirements of the Multiple Readings program (see Section 4.39). It indicates the test accelerometer does not meet the stability requirements in this program. In the typeout, it triggers a diagnostic message to be typed beside the sensitivity typeout.

RANGE FLAG: This flag is set for 0001 for a range of one volt on the test ac/dc converter or 0010 for a range of 10 volts on the test ac/dc converter. The range of the converter is needed in the computation of the test sensitivity.

4.1 Hexidecimal-to-Decimal Conversion for Test Sensitivity

This routine takes the test sensitivity in hexidecimal and converts it to decimal for type out. It also calculates where to place the decimal point. Three parameters calculated here are used in the Store Data program. These are:

1. Total number of digits to be typed ≡C1 (01A8)

- 2. Number of digits typed before decimal point \equiv C2 (01A6)⁻
- 3. C1-C2 = C3 (09E0)

Hexidecimal-to-Decimal Conversion for Test Sensitivity; Set Typeout Constants.

0100	4030	09FA	SAVE	TEST	SENSI	TIVIT	Y		IN ON	R3	PB
0104	4 OE 0	01A4	SAVE	RE					001 0	RC	, RD,
0108	4200	0000	NOP							KE	
0100	0630	2710	LOAD	CONST	ANTS	FOR C	ONVER	SION			
0110	Crrj	03E8									
0114	C850	0064									
0118	C870	000A									
0110	0E22		CLEAR	R2 F	OF DI	VISIO	N USE				
011F	0200		NOP								
0120	0029		DIVID	E HEX	. NO.	PY F	IFST	CONST.			
0122	0200		NOP								

0124	08A 3	PUT QUOT. IN FA (FIRST DECIMAL DIGIT)
0126	0200	NOP
0128	0832	PUT REMAINDER IN R3
012A	0F22	CLEAR R2
0120	8300	DIVIDE BY SECOND CONST.
012E	0200	NOP
0130	08B3	PUT QUOT. IN RB (2 ND. DECIMAL DIGIT)
0132	0200	NOP
0134	0832	PUT PEMAINDER IN R3
0136	0222	CLEAR R2
0138	4200 0000	NOP
013C	0025	DIVIDE REMAINDER BY 3 RD CONST.
013F	0200	NOP
0140	0803	PUT QUOT. IN FC- (3 FD. DECIMAL DIGIT)
0142	0200	NOP
0144	0832	PUT REMAINDER IN R3
0146	0P 22	CLEAF F2
0148	0D27	DIVIDE REMAINDER BY 4 TH. CONST.
0144	0200	NOP
014C	08D3	PUT QUOT. IN RD (4 TH DECIMAL DIGIT)
014E	0200	NOP
0150	08E2	PUT REMAINDER IN RE (5 TH DECIMAL DIGIT)
0152	OB 44	CLEAR R4
0154	4540 09F6	WAS THE FIRST DIGIT IN RII ZERO?
0158	4330 0168	IF SO GO TO 0168

.

015C	C850	0003	IF NOT, LOAD 3 INTO R2
0160	4020	0146	STORF IN STORAGE LOC. (# DIGITS PRINTED BEFORE DE
0164	4300	0170	BRANCH
0168	C820	0002	LOAD 2 INTO R2
0160	4020	0146	STORE (# DIGITS PRINTED PEFORE DEC. PT.)
0170	4200	0000	NOP
0174	4200	0000	NOP
0178	C 5A 0	0000	IS FIRST DECIMAL DIGIT ZERO ?
017C	4330	018C	IF SO PRANCH
0180	C820	0004	IF NOT LOAD 4 INTO R2
0184	4020	01A8	STORE THIS NUMBER (# DIGITS TO BE PRINTED OUT)
9188	4300	0198	BRANCH
0180	C820	0005	LOAD 5 INTO R2
0190	4020	0148	STORE THIS NUMPER (# DIGITS TO BE PRINTED OUT)
0194	4200	0000	NOP
0198	40E.0	OIAA	STOPE 5 TH. DECIMAL DIGIT FOR LATER USE
01 9C	4830	0146	LOAD # DIGITS BEFORE DECIMAL PT. CODE
0140	4300	OIAC	BRANCH
01A4	0 0 P 6		STOFAGE LOC. (NOT USED)
0146	0005		STOPAGE LOC. (# DIGITS PEFORE DEC. PT.)
SAIO	0005		STORAGE LOC. (# OF DIGITS PRINTED OUT)
OIAA	0005		STORAGE FOR FITH DECIMAL DIGIT
01AC	4880	09EE	LOAD INVERSE PATIO FLAG
0180	C580	0000	NOT SET?
NIR A	4330	0100	LE NOT SET, BRANCH TO CONTINUE

0188	C830	0005	IT IS SET, LOAD 5 INTO R3
OIBC	4030	0146	STORE THIS MUMBER (#DIGITS BEFORE DEC. PT.)
0100	4820	0148	LOAD CODE FOR # DIGITS TO BE PRINTED OUT
01C4	0°23		SUPTRACT THESE 2 NUMBERS
0106	0200		NOP
0108	4020	09E0	STORE THIS NUMBER (USED IN STORE DATA IN TABLES)
0100	4300	1800	GO TO STORE DATA IN TAPLES PROGRAM

4.2 Range Test for Test Accelerometer

This routine activates the exciter for 2000 Hz at 2 g, reads the test accelerometer voltage, and compares this reading to an upper limit. For test voltages below this upper limit the INVERSE FLAG is reset (0000 is stored in core location 09EE), and for test voltages above this limit, the INVERSE FLAG is set (0001 in location 09EE). The INVERSE FLAG will be used later on to determine which ratio circuit will be used for the voltage ratio reading of standard-to-test accelerometer output. The upper limit voltage is set to get the maximum accuracy from the voltage ratio circuit. For the present circuit configuration, the upper limit is 800 mV rms for 2 g peak acceleration at 2000 Hz.

Range Test for Test Accelerometer

CIDO	0250	0072	LOAD RELAY FANK 2 DEVICE #
0104	DA 50	1408	SET CAPITANCE AT ZERO
010 2	DA 5 0	1409	
OIDC	C870	OCOF	LCAD OSCILLAIOF DEVICE #
OIFO	C2 60	0050	SET INDEX FEG. FOP F=2000 HZ.
OLEZ	4190	1600	PAL TO SET UP OSC. CODE
0155	9D 75		SENSE STATUS OF OSC.
015A	0555		FUSY?
01EC	4230	01E8 ·	IF SO SS AGAIN
01F 0	DA76	0080	WRITE DATA TO OSC.
01F4	CA 60	0001	ADD 1 TO INDEX
CIFS	05.60	0954	HAVE 4 PYTES EEEN WEITTEN?
OIFC	4230	0188	IF NOT, WEITE AGAIN
0030	4200	0000	NOP
0204	CED 0	0004	LOAD 4 INTO RD
0208	C830	A000	LOAD DVM DEVICE ADDRESS

0200	DE 30	0B24	ENABLE INTERUPTS FOR DVM
0210	9F44		CLEAR INTERUPTS
0212	0200		NOP
0214	0.080	0002	LOAD VOLTAGE CODE
0218	7F3C		SET DVM FOR VOLTAGE MODE
A1 \$0	0200		N.O.N.
.021C	0480	0071	LOAD FELAY BANK I DEVICE ADDRESS
0220	C 2 4 0	0000	LOAD I VOLT FANGE CODE FOR SIG. CONVERTER
0224	C 8 5 0	OOES	LOAD CODE FOR RATIO I, FAST MODE
0228	3AA5		SET RELAYS
0220	90A 4		77 - 47
0220	100	OE 78	PELAY
0230	9630		LOAD INDEX INTO R9
0232	0C&!.		MULT INDEX EY 4, STORE IN R9
02.34	4090	(1904	STORF CAPACITANCE INDEX IN COFE
0238	4140	INFO	PAL IO CONST. G SUF.
0230	C830	A 3 0 0	FESTORE DVG DEVICE ADDRESS
0240	0030	0071	LOAD RELAY PAND I DEVICE ADDRESS
0244	C840	0002	LCAD 10 VOLI HANGE CODE
0248	C850	0002	LOAD RATIO II CODF
024C	94.0.0		SET FELAYS
024F	9A 0 4		
02.5 0	4190	OFIE	PAL TO MULTIPLE READINGS OF DVM SUP.
0254	4200	0000	X OP

0258 4200 0000	NOP
025C 9F95	ACKNOWLEDGE INTERUPTS
025E 0539	IS IT THE DVM?
0260 4230 0250	IF NOT LOOK AGAIN
0264 OB 77	CLFAR R7
0266 0200	NOP
0268 0890 0005	LOAD LIMIT INTO RO
0260 0830 0001	LOAD INCREMENT INTO F8
0270 DE37 0258	READ DATA INTO CORE
0274 4120 1010	DELAY
0278 C170 0270	EXLE (LOOP)
0270 4200 0000	NOP
0280 4190 0500	RAL TO DECODE DVM DATA
0284 4200 0000	NOP
0288 4800 0554	LOAD I ST DICIT INTO EX
028C C 520 0000	COMPARE IT IC O
0290 4230 0244	BRANCH ON NOT = TO SET INVERSE FLAG
0294 4820 0556	LOAD DIGITS 2-4 INTO F2
0298 C520 8000	COMPARE TO 8000 (800 MV + VOLTS OF FIRST DIGIT)
0290 4320 0208	BRANCH ON NOT + TO RETURN
0240 4200 0000	NOP
02A4 C860 0000	RESET RE TO DESIRED STARTING FRED.
0248 4060 0904	CLEAF INDEX STORAGE AFEA
02AC C820 0001	LOAD 1 (SETS INVEFSE FLAG)

028.0	4020 09FE	STORE IN FLAG LOCATION IN CORE
02B 4	4300 08PC	FEIUFN
02B8	ABEO E OB 2	STOPAGE
025 C	F 710 0000	STORAGE
0200	0000	**
0202	0000	
02C 4	4200 0000	NOP
0208	C820 0000	LOAD O INTO 52 (RESETS INVERSE FLAG)
0200	4020 09EE	STORE FLAG
0200	CE60 0000	CLEAR R6 (OF SET FOF DESIRED STARTING FREQ.)
02D 4	4300 OEAO	GO TO SET RELAYS

>

••

FIGURE 4-2. RANGE TEST FOR TEST ACCELEROMETER FLOWCHART

4.3 Check for INVERSE FLAG and Set Relays

This routine checks the INVERSE FLAG. If it is not set, the circuit remains in the a position (see Hardware Section). In this case, the relays are set as described in Section 4.15.

If the INVERSE FLAG is set, this is because the output of the test accelerometer is too high for circuit a and circuit b must be used as described in the Hardware Section of this report. In this case, relay eight must be activated (closed) and the binary code for the relays will be:

> 0000 0000 1110 0001 for "SLOW" mode, and 0000 0000 1110 0011 for "FAST" mode.

This can be seen schematically in figure 2-6. The solid line with the arrow at the end represents an O condition in the binary coding; a l condition in the binary coding is represented with no line connecting the pins. In this case only RII will be read.

Check for Inverse Flag and Set Relays

0304 C520 0001 IS IT SET?

0307 4330 0314 PRANCH ON = ID SET RELAY & FOR INVERSE RATIO

- 030C CRCO 0001 LOAD RATIO CODE
- 0310 4300 0A6A GO PACK TO MAIN PROGRAM
- 0314 4200 0000 NOP
- 0318 CECO 0001 LOAD FATIO CODE
- 0310 CEOO 0071 LOAD RELAY PANK I DEVICE ADDRESS
- 0320 CE40 0000 LOAD I VOLT CODE
- 0324 4900 0676 RESTORE R2 (FAST/SLOV CODE)
- 0328 CA20 0001 ADD 1 TO SET FELAY 8

0320 4200 0000 NOP

0330 9402	SET RELAY EANK 1
0332 9404	** **
0334 4200 0000	NOP
0338 4200 0000	NOP
033C 4300 0AP 4	CO IO RATIO II PROGRAM
0340 0000	
0342 0000	
0344 0000	
0346 0000	
0348 0000	
0344 0000	
0340 0000	
0345 CC00	
0350 0000	
0352 0000	
0354 0000	
0356 0000	
0358 1000	
(354 9000	

4-14

0

4.4 Check for INVERSE FLAG and Calculate Calibration Factor for Test Accelerometer if Set

This routine determines if the INVERSE FLAG is set (circuit b as outlined in the Hardware Section). If set, the program will calculate the test accelerometer sensitivity and then go to Hexidecimal-to-Decimal routine. If the INVERSE FLAG is not set the program will continue at OAD4.

	Che	ck for INV	ERSE FLAG and Calculate Calibration Factor
0360	4200	0000	NOP
0364	4820	09FF	LOAD INVERSE FLAG
0368	C 520	0000	IS IT NOT SET?
036C	4330	OAD4	BRANCH IF NOT SET TO RETURN TO MAIN PROG.
0370	4200	0000	NOP
0374	4830	09F8	LOAD RII
0379	0200		NOP
037A	0200		NOP
037C	4200	0000	N OP
0380	487F	0F 5 4	LOAD CAL. FACTOP OF STANDARD
0384	C850	03F8	LOAD 1000 OF 10000 (THIS IS SET IN DECODING PROG.)
0388	0P'44		CLEAR R4
038A	0200		NOP
038C	OC 4 7		MULT. CAL OF STANDARD BY CONSTANT ABOVE
038E	0200		NOP
0390	0D 4 3		DIVIDE THIS BY RII
0392	0200		NOP
0394	0835		SAVE R5 IN R3
0396	0200		NOP
0398	4300	0100	CONVERT TO DECIMAL
0390	4200	0000	NOP

>

FIGURE 4-4. CHECK FOR INVERSE FLAG AND CALCULATE S_T IF SET FLOW CHART

Table of Constants Used in Accelerometer Data Block Entry Program

The following code is part of Section 4.46, Accelerometer Data Note: Block Entry Program.

03AC) C64E	D44E	FN	ΤN
03A4	C341	504D	CA	PM
U3A8	504E	5053	P-N	PS
03AC	414D	414E	AM	AN
03B 0	4153	C355	AS	CU
03B	4 44C	3 C 5 B 1	DC	E 1
03B 8	C 5B 2	53B1	E2	S 1
03B C	53B2	4741	S 2	GA
03C 0	D748	41D4	WH	ΑT
03C 4	3FAO	8D0A	?	CR,LF
0308	D748	C 9C 3	WH	IC
0300	483F	8D0A	Н?	CR,LF
03D0	5009	C34B	ΡI	СК
03D4	5550	A04D	UP	Μ
03D8	CF44	A O 4E	OD	N
03DC	CF3F	8D0A	0?	CR,LF
03E 0	414D	50A0	AM	Р
03E 4	4DCF	44A0	MO	D
03E 8	4ECF	3F8D	NO	?C R
03EC	0 A A O		LF,	
03EE	0000			

4.5 Clear Tables for Accelerometer Data Block

The first program on the following pages is used in the PARTIAL entry mode of the Entry Program (3740). When a parameter is called for in the PARTIAL mode, the existing record space is erased (set equal to 0000 for all bytes) for that parameter. The second program is used in the ALL entry mode of the Entry Program (3740). When ALL is typed in response to the question "All or Partial Changes?", the entire record space is cleared for the parameter entry program.

Clear Tables for Accelerometer Data Block

0400	4200	0000	NOP
0404	0B11		CLEAR RI
0406	0B22		CLEAR R2
0408	4200	0000	NOP
040C	4200	0000	NOP
0410	4012	2B00	CLEAR LOCATION (2BOO + (R2))
0414	C520	0100	X = 100?
0418	4330	0424	BRANCH ON = TO EXIT
0410	CA20	0002	ADD 2 TO X
0420	4300	0410	CONTINUE
0424	4300	3790	EXIT CLEAR TAPLES ROUTINE
0428	0000		
042A	0000		
042C	0000		
042E	0000		
0430	4843	38A 6	LOAD # BYTES TO BE CLEARED
0434	0811		CLEAR RI

0436	0B 55		CLEAR R5
0438	4823	38A 4	LOAD START LOCATION FOR CLEARING
043C	4200	0000	NOP
0440	D212	0000	CLEAR LOCATION ((R2))
0444	CA50	0001	ADD 1 TO COUNTER 1
0448	CA20	0001	ADD 1 TO COUNTER 2
044C	4200	0000	NOP -
0450	0554		COMPARE COUNTER TO # PYTES TO CLEAR
0452	0200		NOP
0 45 4	4230	0440	BRANCH ON NOT = TO CONTINUE CLEARING
0458	4300	37PC	EXIT CLEAR TAPLES ROUTINE

>

Table of Messages

Note: The following memory locations are a storage area for messages used throughout the software programs.

Ρ

- 0492 0000
- 0494 0000
- 0496 0000

0498 0000

>

4.6 *Round-Off Subroutine

Called on RE

This subroutine is used for data from the digital voltmeter. The DVM gives five digits of data, of which four digits would overload registers in certain operations (addition for example).

Entry Requirements: Five digit decimal number RO, R1 and core location 0554, 0556.

Output: Hexidecimal number equivalent to the decimal entry number rounded to four digits, output in R3 and core location 26EC.

*Round-Off Subroutine

IN ON RO, R1 AND 0554, 0556 OUT ON R3 AND 26EC

:.

0490	40E 0	04F4	SAVE RE 001
04A 0	C500	0000	IS FIRST DECIMAL DIGIT ZERO?
04A 4	4330	04E 0	BRANCH ON = (<9999)
0448	C D 0 0	000 C	SHIFT LEFT C BITS
04AC	CC10	0004	SHIFT RIGHT 4 BITS
04P 0	0A 1 0		R1+R0=R1
04B2	0B 0 0		CLEAR RO
04B 4	4200	0000	NOP
04P 8	4190	0E 9A	DECIMAL TO HEX (BACK ON R3)
04BC	4850	0556	LOAD DECIMAL # (LAST 4 DIGITS)
04C 0	C 45 0	000F	PICK OFF LAST DIGIT=D
04C 4	CB50	0005	D-5=R5
04C8	4210	04D0	BRANCH ON NEGATIVE
04CC	CA30	0001	ADD 1 TO HEX. #

04D0	4030	26EC	SAVE
04D 4	C840	A000	LOAD MULTIPLIER CODE
04D8	4040	04F6	SAVE
04DC	4300	04F8	GO TO EXIT
04E 0	4190	0E 9A	DECIMAL TO HEX (R 3)
04E 4	4030	26EC	SAVE
04E 8	C840	0001	LOAD MULTIPLIER CODE
04E C	4040	04F6	SAVE
04F0	4300	04F8	GO TO EXIT
04F 4	26E0	A000	STORAGE FOR RE AND MULTIPLIER CODE
04F8	48E 0	04F4	RESTORE RE
04FC	030E		EXIT

`

ς.

4.7 *ASCII-to-Decimal Subroutine

Call on R9

This subroutine converts five bytes of ASCII code to two half-word decimal code.

Input Requirements: ASCII code in core locations 02B9-02BD.

Output: Decimal code in core locations 0554 and 0556.

*ASCII-to-Decimal Subroutine

ΕE

500	4200 0000	NOP
0504	D3A0 02F9	LOAD DATA INTO REG'S PA TO
05.08	D 38 0 028A	
0500	D3C0 0222	
0510	D3D0 0280	
0514	73E0 0225	
0518	C 440 000F	PICK OFF LAST 4 FITS
C51C	C4P0 000F	
0520	C4C0 000F	
0524	C 4D0 000F	
0528	C 4EC 000F	
0520	CDE0 000C	SFIFT LEFT 12
0530	3000 0002	SMIFT LEF1 8
0534	CDD0 0004	SHIFT LEFT 4
0538	OABC	FB+RC
053A	CAPD	RI +RD
05.30	OAPE	FL +KE

053E	0200							
0540	40A0	0554	STORE	FA	(FIRS:	II	DIGIT)	
0544	4080	0556	STORE	RP	(LAST	4	DIGIT	S)
0548	4200	0000						
054C	4200	0000				,		
0550	0309		FETUEN	\$				
0552	0200							
0554	0000		STOFAGE AREA					
0556	0136			••				
0558	0000							
055^	0000							
055C	0000							
055F	0000							

>

FIGURE 4-5. FIVE BYTE ASCII-TO-DECIMAL FLOWCHART

4.8 Check for UNSTABLE/FLAG and Type Message if Set

This routine checks the STABLE/UNSTABLE FLAG. This flag is set for either 0000 or 0001 in the Multiple Readings program. This flag indicates that the test accelerometer data fall within the stability requirements or that the data do not fall within the requirements. The data must not show a scatter of more than 0.1 percent to meet the requirements in the Multiple Readings program. In the case of unstable data, a diagnostic is typed out after the calibration factor on the TTY.

Check for UNSTABLE/FLAG and Type Message if Set

05B0 4810	230E	LOAD STABLE/UNSTAPLE FLAG
05B 4 C51	0000	COMPARE TO O (STABLE?)
05B 8 4330	1020	BRANCH ON = TO LOOK FOR H OR S
05BC 41E0	3478	TYPE OUT MESSAGE
05C0 05D0		STARTING ADDRESS OF MESSAGE
05C2 05E7		ENDING ADDRESS OF MESSAGE
0504 0001		CODE INDICATING ASCII FORMAT
0506 0200		NOP
0508 4300	1020	GO LOOK FOR H OR S
05CC A 0A 0	A 0 A 0	STORAGE FOR MESSAGE
05D0 A 0A 0	A 0 A 0	·
05 D 4 A 0A 0	OAOA	
05D8 554E	53D4	
05DC 4142	CCC5	
05E0 A 053	C947	
05E4 4E41	CCAO	
05E8 A 0A 0	AOAO	
05EC AOAO	0A0A	

Storage For Save Registers Subroutine

Saves All Registers Except E

- Note: The following memory locations are reserved for the Save Registers Subroutine Section 4.9.
- 0670 2900 1010 STOFACE
- 0674 6300 1510
- 0678 3101 3010
- 0670 3901 5010
- CEED 5571 2910
- 0684 7670 9910
- 0688 3070 9910
- 0690 6771 3911
- 0690 7351 9912

4.9 *Save Registers Subroutine

(Call on RE)

06DE	4200	0000	NOP
CEDC	4200	0000	MOP
06F 0	4010	0674	SAVE FI IN LOCATION 0674
06F4	4020	0676	FTC.
06E8	4030	0678	
06EC	4040	0674	
06F0	4050	0670	
06F4	4060	067F	
0655	4070	0680	
OGEC	1081	0682	
0700	2030	0684	
0704	4040	0686	
0708	40E 0	0688	
0700	40 0 0	0624	
0710	40110	0680	
0714	4CFC	N 6 8 E	
0719	4000	N6 90	
0710	030E		RETURN TO CALL
071E	0200		

4.10 *Restore Registers Subroutine

٤

(Call on RE)

0720	4800	0690		RESTOR	E R	С
0724	4910	0674		ETC.		
0728	4820	0676				
078C	4830	0678	-			
0730	4940	0674				
0734	4850	0670				
0738	4860	067F				
0730	4870	0650				
0740	2080	0680				
0744	4890	0684				
0749	490 C	0686				
C74C	485 0	0625				
0750	4F C D	4°30				
0754	482.0	0620				
0758	48F0	068E				
0750	030E			RETURN	IO	(

>

CALL

4.11 Calibration Factors Exciter 2

0760	1009	1009
0764	1009	1009
0768	1009	1009
0760	1009	1009
0770	1009	1009
0774	1009	1009
0778	1009	1009
077C	1009	1009
0780	1010	1010
0784	1010	1010
0788	1010	1010
0780	1010	1010
0790	1011	1011
0794	1012	1012
0798	1012	1012
0790	1013	1013
07A0	1013	1014
07A4	1014	1014
07A8	1014	0300

4.12 Calibration Factors Exciter 1

07E02004200407E42004200407E82004200407E02004200407E02004200407F02004200407F42003200607F220122013080020182020080420232029080520302031080620312023

4.13 Start 1

Location 081A is the starting location for the automated accelerometer calibration program for exciter 1. The calibration factors for this exciter are converted to hexidecimal and transferred into the working storage area starting at location 0F54. The RANGE FLAG is reset to 0001 and saved in location 09E4. The SHAKER FLAG is set equal to 140C and saved in location 09C0. Register 6 is cleared for starting the program at the initial frequency.

Start 1

**** START I (SHAKER I) 081A OPFF CLEAR RF 081C OBAA CLEAR RA 081F 0800 CIFAR RO LOAD SHAKER 1 CAL. FACTOR 0820 481A 07FO 0824 4190 0E9A CONVERT TO HEX. STORE IN MAIN PROGRAM 0828 403A 0F54 ADD 2 TO RA 082C CAAO 0002 0830 C540 0032 COMPARE TO UPPER LIMIT IF NOT = GO LOAD ANOTHER FACTOR 0834 4230 0820 0838 4820 0E90 LOAD CUI OFF FREQ. CODE 083C 4020 0E8C STORE CODE 0240 0810 0001 LOAD 1 SET PANGE FLAG =1 0844 4010 09E4 0848 0822 CLEAR R2

084A	4020	20 A 0	CLEAR THIS LOC. FOR MAG. TAPE PROG
084E	0200	•••	NOP
0850	C810	1400	LOAD SHAKER I FLAG
0854	4010	0900	STORE
0858	0B66		CLEAR R6 TO START AT FIRST TEST FREQ.
085A	4300	0100	GO TO SET PELAYS PROG.

4.14 Start 2

Location 085E is the starting location for the automated accelerometer calibration program for exciter 2. This program performs the same function as Start 1 except for setting the SHAKER FLAG equal to 1408.

Start 2

***** START 2 (SHAKER 2)

- 085E OBFF CLEAR RF
- 0860 4820 OEBE LOAD CUT OFF FREQ. CODE
- 0864 4020 OE8C STORE IN MAIN PROG.
- 0868 OBAA CLEAR RA
- 086A OBOO CLEAR RO
- 086C 481A 0760 LOAD SHAKER 2 CALIBRATION FACTOR
- 0870 4190 OE9A CONVERT IT TO HEX.
- 0874 403A OF54 STORE IN MAIN PROG.
- 0878 CAAO 0002 ADD 2 TO RA
- 087C C5AO 004A COMPARE TO UPPER LIMIT
- 0880 4230 086C IF NOT = LOAD ANOTHER FACTOR
- 0884 C810 0001 SET RANGE FLAG = 1 AND SAVE
- 0888 4010 09E4
- 088C 4200 0000
- 0890 0B22 CLEAR R2
- 0892 0200
- 0894 C810 1408 LOAD SHAKER 2 FLAG
- 0898 4010 09C0 STORE FLAG
- 089C 4300 01D0 GO TO RANGE TEST

4.15 Set Relays for Ratio I, Output Oscillator Code, Read Frequency Counter, Type it on TTY

4.15.1 <u>Programming Relay Banks 1 and 2</u>. This routine sets up relay banks 1 and 2. Relay bank 1 sets up the electrical circuit for either Ratio I or Ratio II (see figure 1-1). In this program, the relays will be set up to read Ratio I. The Ratio I readings will be:

 $RI = \frac{Standard Accelerometer Voltage}{Standard Accelerometer Voltage} \cdot G_{\bullet}$

where G = the gain of the amplifying circuit in figure 1-1.

The hexidecimal code, OOEO, is found in location O8B6. Converting this to binary:

0000 0000 1110 0000

Disregarding the first eight bits, because a Write Data statement uses only the last eight bits, the useful part is:

1110 0000.

The first bit on the left represents the position of relay 1, the second bit of relay 2, etcetera up to bit eight which represents the position of relay 8. In figure 1-1, the schematic of the voltage ratio circuit is given. The relays 1 through 14 are shown. The solid line with the arrow at the end represents a 0 condition in the binary coding, and no line represents a 1 condition in the binary coding.

The binary code for relays 9 through 16 is:

0000 0000,

which indicates that in figure 1-1, relays 13 and 14 are set in the solid line position.

The following table summarizes the coding for relays 1 through 16.

TABLE 4-1. Relay Bank 1 Coding

Relay Number		Code O	Code 1
1	Connects relay 6 to	Ref. signal 2	Ref. signal 1
2	Connects relay 5 to	Test signal 2	Test signal 1
3	Connects test converter to	Test signal	Ref. signal
4	Connects output of test converter to	DVM input	Wave analyzer
5	Connects test signal to	Relay 3	Wave analyzer
6	Connects reference signal to	Relay 6	
7	Sets ac/dc converters to	"Slow" mode	"Fast" mode
8	Connects reference ac/dc converter input to	Output of amp.	Test signal
9	A		
10 .	Controls polarity of power supply output to wave analyzer circuit (see fig. 2-4)	Negative	Positive
11	See figure 2-4 Power Supply	Disconnected	Connected
12			
13	Reference ac/dc converter range	l Volt	10 Volts
14	Signal ac/dc converter range	l Volt	10 Volts
15			
16	Contact for "seek" on oscilloscope	Opens	Closes

Relays 17 through 32 control a bank of capacitors. This is for impedance matching of the exciter drive coil to the power amplifier, and is connected in series between the power amplifier output and the exciter drive coil. The following table gives the values of the capacitors which each relay controls.

Relay Number	Capacitance (µF)*
17	0.1
18	0.2
19	0.3
20	0.4
21	0.5
22	1.0
23	2.0
24	3.0
25	4.0
26	5.0
27	10.0
28	20.0
29	30.0
30	40.0
31	100.0
32	Shunt

TABLE 4-2. Relay Bank 2 Coding

*The binary code of 0 disconnects a capacitor; a code of 1 connects a capacitor. (See figure 2-5.)

The following diagram illustrates the binary coding for the two bytes of code which control the capacitance bank. The number in the boxes is the number of the relay.

17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

A 0 code disconnects a capacitor; a code of 1 connects a capacitor. The following examples of the capacitor bank coding are found in the 1400 Data Block Control Constants.

Example 1: at core location 140C, the hexidecimal coding is 0001. This code will mean all capacitors except number 32 are disconnected from the circuit. On the previous chart, relay number 32 is a shunt.

Example 2: at location 147C, the hexidecimal coding is 00A6. This converted to binary is 0000 0000 1010 0110. From the diagram above this is found to mean capacitors corresponding to relays 25, 27, 30, 31 are connected. The capacitor bank is wired so that these selected capacitors are connected in parallel. The capacitance is then the sum in the above example which is 154μ F. The total available capacitance is 221.5 μ F, excluding the shunt.

4.15.2 <u>Programming the Decade Oscillator</u>. The oscillator has the following decade controls:

Voltage:	<pre>1 volt increments from 1 to 9 volts 0.1 volt increments from 1.0 to 0.9 0.01 volt increments from 0.01 to 0.09</pre>
Frequency:	100 Hz increments from 100 to 900 10 Hz increments from 10 to 90 1 Hz increments from 1 to 9 0.1 Hz increments from 0.1 to 0.9

Multiplier of any of the above: X1, X10, X100.

The oscillator is programmed by four successive Write Data instructions. The coding must be in the following format:

First byte of coding:	0.1 volt increment 0.01 volt increment
Second byte:	0.1 Hz increment 1 volt increment
Third byte:	10 Hz increment 1 Hz increment
Fourth byte:	Multiplier, 100 Hz increment

The subroutine at 16C0 translates the code of the 1400 DATA BLOCK to the previous format. The first two columns in the 1400 DATA BLOCK entitled "FREQ" are reformated for each test frequency prior to programming the oscillator. This routine programs the oscillator initially. The Constant Acceleration Subroutine (see Section 4.27) programs the oscillator for a desired acceleration level.

4.15.3 <u>Reading the Frequency Counter</u>. To read the frequency counter the following operations are required:

- 1. Execute an output command to start the counter, and
- Sense status of counter and, when "not busy" condition is reached, execute six Read Data instructions.

3. The counter can be stopped by an output command to stop.

The code read into computer core is in the ASCII format, which is ready to be sent to the teletype. In the present program, it is desirable to start the counter counting after the initial count is finished in order that the operator can see the current test frequency displayed on the counter (see location 0A30).

> Set Relays for Ratio I, Output Oscillator Code, Read Frequency Counter, Type it on TTY

	DARD	0830	0004	LOAD	COUNTER	STOP	COMMAN
--	------	------	------	------	---------	------	--------

- 08A4 4060 09C4 CLEAR INDEX STORAGE AREA
- OBAS C800 000E LOAD COUNTER DEVICE ADDRESS INTO RO
- OBAC 9E03 STOP COUNTER
- OBAE OB33 CLEAR R3 FOR RELAY CODE
- OEBO CEOO 0071 LOAD RELAY BANK 1 DEVICE ADDRESS INTO RO
- 08B4 CE20 00E0 LOAD CODE FOR RELAY BANK 1
- 0888 9A02 WRITE DATA TO RELAY BANK I FOR RATIO

11

08BA 9A03

OBBC OB22 CLEAR R2

08BE	C870	000F	LOAD OSCILLATOR DEVICE ADDRESS
08C2	9D75		SENSE STATUS OF OSCILLATOR
08C4	0552		BUSY?
0806	4230	08C2	IF SO, SENSE AGAIN
08 C A	48E0	0900	LOAD SHAKER FLAG INTO RE (TO IDENTIFY WHICH SHAKE
08CE	DA 70	0830	TURN OFF OSCILLATOR
08D2	DA 70	0830	
08D6	DA70	0080	
08DA	DA 70	0080	
08DE	4020	09E2	STORE 0000 (USED IN CHECK FREQ. ROUTINE)
08E0	0200		
08E2	OBAA		CLEAR RA (USED TO OUTPUT CODE TO OSCILLATOR)
08E4	4880	09C4	LOAD CAPACITOR INDEX INTO R8
08E8	40E0	08 F E	STORE SHAKER FLAG BELOW TO SET RELAYS
08 E C	C850	0072	LOAD RELAY BANK 2 DEVICE ADDRESS (FOR CAPACITORS)
08 F O	C8D0	0001	LOAD I INTO RD
08F4	OADE		ADD I TO SHAKER FLAG TO SET RELAYS
08F6	40D0	0902	STORE BELOW FOR OUTPUT TO RELAY BANK 2
08 F A	0200		NOP
08FC	DA58	1408	WRITE DATA TO RELAY BANK 2 (CAPACITORS)
090 0	DA58	1409	60 88
0904	4190	1600	BAL TO SET UP OSCILLATOR CODE FOR THIS FREQ.
9060	9D75		SENSE STATUS OF OSC
090@	0552		BUSY?

4-40

0900	4230	0908	IF SO, GO SENSE AGAIN
0910	DA76	0 C8 C	WRITE DATA TO OSCILLATOR
0914	0888		CLEAR R8
0916	0800		CLEAR RO
0918	4560	0E8C	IS THIS THE LAST TEST POINT?
0910	4330	0 F9E	IF SO, GO RING BELLS, ETC.
0920	CA60	0001	ADD 1 TO INDEX REGISTER
0924	4200	0000	NOP
0928	CAAO	0001	ADD 1 TO OSC. COUNTER INDEX
0920	C5A0	0004	HAVE 4 BYTES BEEN WRITTEN TO OSC?
0930	4230	0908	IF NOT, GO WRITE ANOTHER BYTE
0934	0896		LOAD INDEX REG. INTO R9
0936	C8A0	0004	LOAD 4 INTO RA
093A	0 C8 A		R9*RA PUT RESULTS INTO R8,R9
0930	4090	09C4	STORE CAPACITOR INDEX
0940	C810	0000	LOAD O
0944	4010	0 9 E A	CLEAR "THRU"FLAG (USED IN RANGE TEST)
0948	C800	000E	LOAD COUNTER DEVICE ADDRESS INTO RO
094C	C810	0002	LOAD TTW DEVICE ADDRESS INTO RI
0950	C830	0004	LOAD STOP COMMAND FOR COUNTER INTO R3
0954	C840	8000	LOAD START COMMAND FOR COUNTER INTO R4
0958	4190	0E78	BAL TO DELAY ROUTINE FOR COUNTER
095C	9E04		STARTS COUNTER
09 5 E	9009		SENSE STATUS OF COUNTER
0960	4280	095 E	IF BUSY SENSE STATUS AGAIN

0964	OBBB		CLEAR RB
0966	C8 C 0	0001	LOAD I INTO RC (INCREMENT REGISTER FOR LOOP)
096 A	08 D 4		LOAD & INTO RD (LIMIT REGISTER FOR LOOP)
096C	DBOB	09B6	READ COUNTER INTO MEMORY
0970	C1B0	096C	BXLE
0974	9 E O 3		STOPS COUNTER
0976	4300	2560	BRANCH TO CHECK FOR PROPER FREQ.
097A	C8 D0	0006	LOAD 6 INTO RD (LIMIT REGISTER FOR TTW LOOP)
097E	C880	0006	LOAD 6 INTO RB
0982	OBBB		CLEAR RB (BXLE REGISTER)
0984	DEIO	0982	PUT TTW IN WRITE MODE
0988	DAIB	0984	OUTPUT TO TTW: CR, LF, FREQ. DATA
098C	9DIE		SENSE STATUS OF TTW
098E	4280	098C	IF BUSY GO SENSE STATUS AGAIN
0992	010	8,360	PYLE (LOOP FOR TIY PRINTOUT)
0996	0630	0002	LOAD 2 INTO F3
0994	DE 30	C 9F 0	PUT TTY IN READ MODE (TO ACCEPT 4 OF S)
)99F	4300	0430	CONTINUE WITH MAIN PROGRAM

****	¢	STOR	AGE LOCATIONS
09A2	09F2		
09A 4	0000		
09A 6	F 000	0000	
0 9A A	8000	3340	TEMP. STOP COMMAND
09AE	0000		
09B 0	9400		READ MODE CODE FOR ITY
09B2	9898		WRITE MODE CODE FOR TTY
09B 4	8D8A	BOBO	CODE FOR CR, LF, FREQ DATA STORAGE
09B 8	BOB5	BOBO	FREQ DATA STORAGE
09B C	BOBO	B000	**
09C 0 09C 4	1408 0040	0000	SHAKER FLAG STORAGE 140C=SHAKER 1, 1408=SHAKER 2 STORAGE FOR R9 (TTY DATA) STORAGE FOR R9 (INDEX FOR CAPACITOR CODES)
0906	0005		STOR. FOR LOOP COUNTER FOR CONST G. ROUTINE
0908	0000		
09CA	0014		STOR. FOR R5 IN SUB. CONST G
0900	0000		
09CE	0000		
09D0	0000		
09D2	8000	2864	TEMP. STOP COMMANDS
0906	8000	3320	••
09DA	0000		
09DC	0904		ADDRESS OF PSW
09DE	OA SE		STORAGE FOR R4

09E 0	0002	STOR. FOR R5 IN DECODE DATA ROUTINE (TELLS WHERE	
09E2	0000	STOR. FOR COUNTER IN CHECK FREQ. ROUTINE	
09E4	0001	STOR. FOR RANGE FLAG FOR SIGNAL CONV. 1 OR 10 RANG	E
09E 6	AOOO	STOR. FOR RI (RATIO I DECIMAL)	
09E8	8677 0000	STORAGE FOR RII (RATIO II DEC.) STOR. FOR # TIMES THEIL BANGE CHECK BOUTINE	1
09EC	055E	STOR. FOR RI (RATIO I HEX.)	
09EE	0000	INVERSE FLAG (O=NOT INVERSE; I=INVERSE)	the second
09F0	0000		
09F2	0 0 E 0	STOR. FOR R2,R4 (FELAY CODES)	3
09F4	0000	e9 -	7
0 9F6	0000	STORAGE FOR ZERO/NON ZERO FLAG(FIRST DIGIT OF RII	10
09F8	1B8D 2756	RATIO II (HEX) TEST CAL FACTOR(HEX)	10
09FC	03E8	NOT ASSIGNED	10
09FE	2710 0000	NOT ASSIGNED NOT ASSIGNED	
0A 0 2	0000	STORAGE FOR COUNTER IN MAG TAPE PROG.	
0A 0 4	A 400 F 000	TTY UNBLOCK, READ STORAGE FOR R3 IN DEC/HEX /H	
80 A0	188F F000	HEX # IN OPEA ROUTINE NOT ASSIGNED	LE UH
OA OC	0000	NOT ASSIGNED	UH I AA
OA OE	F000 0000		RU DA
0A 1 2	F000 0000		UH
DAIG	F000 0000		UR I
OA I A	F000 0000		OA -
OAIE	F000 0000		M.
0A22	F000 0000		OA 7
0A26	F000 0000		UR /
0A2A	F000 0000		
0A 2 E	0000		

4-44

Set Relays for Ration I, Set Acceleration Level, Read Ratio

- OA 30 9E04 TURN COUNTER BACK ON (FOR CONTINUOUS DISPLAY)
- 0A32 41A0 12D0 BAL TO SCOPE SCALE ROUTINE
- 0A36 C840 0000 LOAD RELAY CODE IN R4
- OA 3A CEOO 0071 LOAD RELAY BANK I DEVICE ADDRESS

0A3E 41E0 17B4 BAL TO DETERMINE FAST/SLOW FOR AC/DC CONVERTERS (SETS UP R2)

- 0A 42 4020 09F2 SAVE R2
- 0A46 4040 09F4 SAVE R4

0A4A 9A02 WRITE DATA TO RELAY BANK 1

- 0A4C 9A04
- OA 4E DE 30 OB 24 ENABLE INTERUPT FOR DVM
- OA52 9F44 CLEAR PENDING INTERUPTS
- 0A54 C8CO 0002 LOAD VOLT CODE
- 0A58 9E3C SET DVM FOR VOLT READ
- OA5A 4140 10FO BAL TO SET ACCELERATION LEVEL
- 0A 5E 4200 0000 NOP
- 0A62 C830 OOCA LOAD DVM DEVICE ADDRESS
- 0A66 4300 0300 GO CHECK FOR INVERSE FLAG
- OAGA 9E3C SET DVM FOR RATIO
- OAGC 4190 1A00 BAL TO MULTIPLE READINGS SUBROUTINE
- OA 70 4810 230C LOAD AVERAGE RATIO I (HEX)
- 0A 74 4010 09EC SAVE
- OA78 C810 0001 RESET RANGE FLAG = 1

OA 7C	4010	09E4				
08 AO	4200	0000	NO	>		
0A 8 4	4300	0440	GO	T 0	RII	PROGRAM
0A 88	0000					
0A 8A	0000					
0A 8C	0000					
0A 8E	0000					
06 A0	0000					
0A 92	0000					
0A 94	0000					
0A 96	0000					
0A 98	0000					
0 A 9 A	0000					
0A 9C	0000					
0A 9E	0000					

4.16 Set Relays for Ratio II, Calculate Test Accelerometer Sensitivity

4.16.1 <u>Programming Relay Banks 1 and 2</u>. This routine sets up relay bank 1 for Ratio II readings.

RII = Test Accelerometer Voltage Standard Accel. Voltage G

where G is the gain of the amplifying circuit in figure 1-1. The binary code for this will be:

0000 0000 1100 0000 for the "SLOW" position of converters, and for the "FAST" position of converters.

See figure 1-1 and explanation under Programming Relays for RI for explanations.

4.16.2 <u>Calculation of Test Accelerometer Calibration Factor</u>. The calibration factor for the test accelerometer is given by:

 $S_{\text{Test}} = \frac{\text{RII} \cdot S(\text{Standard})}{\text{RI}}$. RANGE FLAG (0001 or 0010) .

The RANGE FLAG is 0001 if test converter was set for 1 volt full scale and 0010 if test converter was set for 10 volts full scale. This converter range is automatically tested at each test point at the routine at 19A0. If the INVERSE FLAG is set (set at Range Test program 01D0) a different formula is used in the computation of the Test Accelerometer Sensitivity. In this case,

 $S_{\text{Test}} = \frac{(1000 \text{ or } 10000) \cdot \text{S(Standard)}}{\text{RII}}$

The multiplying constant is set at 1000 if the LOW/NORM FLAG is 1 and is set at 10000 if the LOW/NORM FLAG is 0. The LOW/NORM FLAG is determined when RII is read; a Ratio II with the first digit of zero sets the LOW/NORM FLAG at 0 and a non-zero digit sets the flag at 1-1. (See Read Data Subroutine location 2000).

Set Relays for Ratio II, Read Ratio II, Calculate Test Accelerometer Sensitivity

0A A 0	C800	0071	LOAD RELAY BANK I DEVICE ADDRESS
OAA4	41E0	1708	PAL TO DETERMINE FAST/SLOW MODE FOR CONVERTERS
0A A 8	41AO	1 2D 4	BAL TO SCOPE SCALE
OAAC	C840	0000	RELOAD RELAY CODE
OABO	9A02		SET RELAY BANK I
0AB2	9A04		67 00 00
OAB4	C830	00CA	LOAD DVM DEVICE ADDRESS
0AB8	DE 30	0824	ENABLE INTERUPTS FOR DVM
OABC	9F 4 4		CLEAR INTERUPTS
OABE	9E 3C		SET DVM FOR RATIO
0 A C 0	4190	1000	BAL TO MULTIPLE READINGS SUBROUTINE
0A C 4	4810	2300	LOAD RATIO II (HEX)
0AC2	4010	09F8	SAVE
OACC	4200	0000	NOP
OADO	4300	0804	CHECK FOR INVERSE FLAG
OAD4	48B 0	09F8	LOAD RATIO II (HEX)
0AD8	4300	1940	CHECK FOR CORRECT RANGE OF TEST CONVERTER
OADC	4830	09F8	RELOAD RATIO II (HEX)
OAE O	4870	09EC	LOAD FATIO I
OAE 4	485F	OF 54	LOAD CAL. FACTOR OF STANDARD
0AE8	CAFO	0002	ADD 2 TO INDEX
OAEC	4890	09F4	LOAD RANGE FLAG (0001 OR 000A)

OAFO	0C25		RATIO II * CAL. FACTOR OF STD.
OAF2	0D27		DIVIDE BY RATIO I
0A F 4	0C29		MULT. BY RANGE (0001 OR 000A)
OAF6	0200		NOP
0A F 8	4200	0000	NOP
OAFC	4200	0000	NOP
0B 0 0	4300	0100	GO- CONVERT CAL. FACTOR TO DECIMAL
0B04	4840	09F6	LOAD LOW/NORM FLAG
0B08	C 540	0000	EQUAL TO 0?
OBOC	4330	0B18	BRANCH ON =
0B10	0680	03E8	LOAD CONST.
0314	4300	OBIC	BRANCH
0P18	C890	2710	LOAD CONST.
0110	4090	0386	STORE CONST. IN CALCULATION PROGRAM
0B 20	4300	0360	CHECK FOR INVERSE FLAG
0B24	4030	0000	CODE FOR DEVICE INTERUPT ENAPLE, OUTPUT CONVERT
0B28	0000		
082A	0000		
08 2 C	0000		
082E	0000		
0B 30	0000		
0B 32	0000		
08 3 4	0000		
0B36	0000		

+*

0B38	0000
OB 3 A	0000
08 3C	0000
OB 3E	0000
0B 40	0000
0842	0000
0B 4 4	0000
0B 4 6	0000
0B 48	0000
OB 4A	0000
0B 4C	0000
OB 4E	0000

Storage Space for Digital Filter Subroutine

Note: The following memory locations are reserved for the Multiple Readings subroutine Section 4.39.

0B50

٠

•

OC 6E

Note: The following memory locations are reserved for storage for oscillator code as calculated in Section 4.33.

0C80 0C82 0C84 0C86 0C88 0C88 0C8A 0C8C 0C90 0C94	0000 0000 0000 0000 0000 4000 8500 4401	101,0 1510 3010
86.00	4901	5010
OCAO	8470	9910
OCA4	33.70	9910
8 A 20	7371	9911
OCAE	9912	
OCBO	1452	9913
OCB4	3752	9814
OCBE	2842	9815
00000	0423	3110
00000	9717	
0C C 4	2703	9718
0008.	5003	0021
	1194	4921
OCD2	6921	7995
OCD6	9921	
OCD8	8592	9921
OCDC	1391	9921
OCE 0	5276	4922
OCE 8	0867	7766
OCEA	4923	2767
OCEE	9923	
OCFO	0010	C 1 0 1
OCF6	9924	0101
	a di bard	

OCF8	7091	4825
OCFC	7091	9825
0D O O	7571	4826
0D04	8161	9826
ODO8	1552	4827
ODOC	9041	
ODOE	9827	
0D 1 O	9041	
0D12	4828	9431
OD 1 6	9828	
0D18	9841	
ODIA	4829	1442
ODIE	9829	

4-52

4.18 TTY Printout

This routine types the test accelerometer calibration factor on the teletype. There are three codes which are important here. They are:

Decimal Point Code:	Number of digits to be typed before decimal point is typed,
Digits to be Printed Code:	Total number of digits to be typed,
INVERSE FLAG:	Determined which ratio circuit was used to calculate calibration factor (set in Range Test OlDO). If the flag is set, a different printout routine is used.

The first two codes above were set in the O1DO Hexidecimal-to-Decimal routine for Test Accelerometer Sensitivity. From TTY Printout routine, the program branches to OB50 to test for STABLE/UNSTABLE condition.

TTY Printout

UDAU DETU U962	FOI III IN WRITE HODE
ODA4 4180 OEEC	BAL TO WAIT
ODA8 DA10 OE5C	OUTPUT SPACE
ODAC 4180 OEEC	WAIT
ODBO DAIO OESC	OUTPUT SPACE
CDE 4 4180 OEEC	WAIT
ODEE 9AIA	OUTPUT FIRST DIGIT
008A 0200	NOP
ODBC 4180 OEEC	WAIT
ODCO 9A1B	OUTPUT SECOND DIGIT
ODC2 0200	NOP
ODC4 4180 OEEC	WAIT
ODC8 4820 01A6	LOAD DEC. PT. CODE
ODCC C520 0002	IS IT 2?

ODDO	4330 ODE0	IF SO, BRANCH
ODD4	4300 OE20	GO CHECK FOR INVERSE FLAG
OD D 8	4190 OEF6	OUTPUT DECIMAL PT.
ODDC	4300 ODEC	BRANCH
ODEO	4190 OEF6	OUTPUT DECIMAL PT.
ODE 4	4180 OEEC	WAIT
OD E 8	9A1C	OUTPUT THIRD DIGIT
ODEA	0200	NCP
ODEC	4180 OEEC	WAIT
ODFO	9A 1 D	OUTPUT FOURTH DIGIT
ODF2	0200	NOP
ODF4	4820 0148	LOAD # DIGITS TO BE PRINTED CODE
ODF8	C 520 0005	IS IT 5 ?
ODFC	4230 OE10	BRANCH ON NOT =
0E 0 0	4180 OEEC	WAIT
0 E 0 4	4200 0000	NOP
0E08	4200 0000	NOP
OEOC	9A 1 E	OUTPUT FIFTH DIGIT
OEOE	0200	NOP
0E10	C870 000F	LOAD OSC. DEVICE ADDRESS
0E I 4	4180 OEEC	WAIT
DE 18	4300 05B0	LOOK FOR STABLE/UNSTABLE FLAG
OEIC	0000	
OFIE	0000	

0E20	4820 09EE	LOAD INVERSE FLAG
0E24	C 520 0000	IS IT NOT SET ?
0E 2 8	4330 OE4C	BRANCH ON =
OE2C	9A 1C	OUTPUT THIRD DIGIT
0E 2 E	0200	NOP
0E30	4180 OEEC	WAIT
0E34	9A 1 D	OUTPUT FOURTH DIGIT
0E 3 6	0200	NOP -
0E38	4180 OEEC	WAIT
0E 3C	9A 1 E	OUTPUT FIFTH DIGIT
0E3E	0200	NOP
0E 40	4180 OEEC	WAIT
0E 4 4	4190 OEF6	OUTPUT DECIMAL PT.
0E48	4300 OE18	EXIT
0E 4C	9A 1C	OUTPUT THIRD DIGIT
0E 4E	0200	NOP
0E 5 0	4300 ODD8	RETURN

4.19 Table of Defined Constants

1 .

0E58 F000 0000

- OE 5C A OA O OOOO SPACE, SPACE
- 0E60 8700 0000 BELL
- 0E64 F000 0000
- 0E68 F000 0000
- 0E6C F000 0000
- 0E70 F000 0000
- 0E74 F000 0000

DELAY ROUTINE FOR FREQ. COUNTER

- OE 78 OP PB CLEAR RB
- OE 74 4200 0000 NOP
- OE 7E CAEO 0001 ADD 1 TO RE
- OE 82 C5BO 0800 COMPARE COUNTER TO DESIRED LIMIT
- OE86 4230 OE7E IF NOT EQUAL, ADD ONE MORE TO THE COUNT
- OE8A 0309 RETURN

DEFINED CONSTANTS

E8C	0064		CUT	OFF	FREQ.	CODE	(PROC	S. SE	TS	THIS	VALUE	2)
0E 8E	0094		CUT	OFF	FREQ.	CODE	FOR	SHAK	ER	2		
0E 90	0064		CUT	OFF	FREQ.	CODE	FOR	SHAKI	ER	1		
0E 92	F000	0000										
0E 96	F 000	0000										

4-56

FIGURE 4-6. TELETYPEWRITER PRINTOUT FLOW CHART

4.20 *Decimal-to-Hexidecimal Subroutine

Call on R9

Input requirements: Decimal number up to five digits in RO and R1.

Example: decimal number: 29345 (RO) = 0002 (R1) = 9345

Output requirements: Four digit hexidecimal number in R3.

Decimal-to-Hexidecimal Subroutine (Call on R9 in on R0, R1 Out on R3)

0E 9A	08E 9		LOAD R9 INTO RA TO SAVE IT
0E 9C	0851		LOAD DEC. # INTO R5 (LAST 4 DIGITS)
0E 9E	C450	F000	PICK OFF BITS 0-3
OEA 2	0891		RELOAD DEC. #
OEA4	0200		NOP
OEA 6	C490	0F00	PICK OFF BITS 4-7
OEAA	C870	0064	LOAD 64
OEAE	06 00	9008	SHIFT R9 RIGHT 8 BITS
OEB 2	0087		MULT THIRD DEC. DIGIT BY 64
OEB 4	C830	03E8	LOAD 03E8
OEB 8	CC50	000 C	SHIFT RIGHT 12 BITS
OEBC	0 C 25		MULT FOURTH DIGIT BY 03E8
OEB E	0A 3 9		ADD R3 AND R9
OECO	0200		NOP
OEC2	0891		LOAD DEC. #

OEC4	C490	00F0	PICK OFF BITS 8-11
OEC8	C 870	000A	LOAD A
OECC	0600	0004	SHIFT RIGHT 4 BITS
OEDO	0087		MULT SECOND DIGIT BY A
0ED2	0A 39		ADD THIS TO SUM
0ED 4	0891		LOAD DEC #
OED6	C490	000F	PICK OFF BITS 12-15
OEDA	0A39		ADD THIS TO SUM
OEDC	C890	2710	LOAD 2710
0 E E O	0080		MULT FIFTH DEC. DIGIT BY 2710
OEE2	0A 3 9		ADD THIS TO SUM
OEE4	4030	0A 08	SAVE HEX. #
0E E 8	030E		RETURN

FIGURE 4-7. DECIMAL-TO-HEXIDECIMAL FLOWCHART
4.21 *Wait Subroutine for TTY

(Call on R8)

OEEC 9D19SENSE STATUS OF TTYOEEE 4280 OEECIF BUSY SENSE AGAINOEF2 0308IF NOT BUSY RETURN TO CALL

4.22 *Decimal Point Typeout (Call on R9)

0E F 6	0200		NOP
0EF8	4090	OFOE	SAVE R9
OEFC	4180	OEEC	WAIT
0F 0 0	C830	00AE	LOAD DEC. PT. CODE
0F 0 4	9A13		OUTPUT DEC. PI.
0F 06	0200		NOP
0F 08	4890	OFOE	RESTORE R9
OFOC	0309		RETURN
0F	ODDC		STORAGE

>

>

4.23 Storage Table for Exciter Calibration Factors (Hexidecimal)

This table stores the calibration factors for the current exciter performing a calibration. These hexidecimal numbers are stored in this table by either START 1 (Section 4.13) or START 2 (Section 4.14).

Storage Table for Exciter Calibration Factors (Hexidecimal)

OF54 07D4 OF56 07D4 OF58 07D4 OF5A 07D4 OF5C 07D4 OF5E 07D4 0F60 07D4 0F62 07D4 0F64 07D4 OF66 07D4 nF68 07D3 OF6A 07D6 OF6C 07D8 OF6E 07DA OF70 07DC OF72 07DD OF74 07E2 OF76 07E4 OF78 07E7 OFTA OTET OF7C 07E7 OFTE OTEE 0F80 07ED OF82 07D2 OF84 07D4 OF86 07D6 OF88 07D8 OF8A 07DB OF8C 07DF **OF8E 07E4** OF90 07E9 0F92 07EF 0F94 07F5 OF96 07FC OF98 0803 0F9A 080B OF9C 0813

≥

4.24 Shut Off Oscillator, Ring Bell, Start Over

This routine shuts off the oscillator and rings the teletypewriter bell five times to indicate an end of test. The program is routed here after the last frequency test point in the Data Block has been completed or after a STOP command has been entered on the TTY.

Shut Off Oscillator, Ring Bells, Start Over

0F 9E	0183	0002	LOAD TTY DEVICE ADDRESS INTO RI
OFA 2	DEIO	09B2	PUT TTY IN WRITE MODE
OFA 6	4200	0000	NOP
OFAA	0B22		CLEAR R2
OFAC	DA70	0C7A	TURN OFF OSCILLATOR
OFBO	DA 70	0C78	
OFF 4	DA7	0 C7 C	
OFB8	DA70	0 C7 D	
OFBC	4180	OEFC	SENSE STATUS UF TTY
OFCO	DAIO	0Ė60	FING BELL
CFC⊿	4180	OEFC	S S
OFCE	DAIO	0E 6 0	RING BELL
OFCC	4180	OEFC	S S
CFDO	DAIO	0E60	FING BELL
OFD4	4190	0E78	DELAY
OFD8	4180	OEEC	S S
OFDC	DAIO	0E 6 0	RING BELL
OFEO	4180	OEEC	S S

OFE 4	DAIO OE60	RING BELL
OFE8	4180 OEEC	S S
OFEC	DA10 0985	OUTPUT LINE FEED TO TTY
0F F 0	OBFF	CLEAR RF
OFF2	OB 66	CLEAR R6
OFF4	4060 09 C4	CLEAR STORAGE AREA OF CAPACITOR CODE INDES
OFF8	C200 OFFC	LPSW
OFFC	0000	DISABLE INTERUPTS CODE
OFFE	01D0	TRANSFER TO RANGE TEST

ŧ

1000 FFFF FFFF
1004 FFFF FFFF
1008 FFFF FFFF
1000 FFFF 0200

>

4.25 *Delay for DVM Subroutine

Call on R2

This subroutine is used by the Read Data Subroutine (Section 4.39). Its purpose is to delay the sequential Read instructions of the computer. It was found that without this delay between Read instruction, errors would occur in the recorded data. This was due to timing differences (supposedly) between the DVM and the computer.

*Delay for DVM Subroutine (Used by DVM Read Program)

100E 0200

1010	OEBB		CLEAR RB
1012	CABO	0001	ADD I TO RB
1016	C5B0	0100	COMPARE RB TO 0100
101A	4230	1012	IF NOT = GO ADD 1 TO RB
101E	0302		RETURN TO CALL

≻

4.26 Halt, Stop, or Continue

After the completion of each test point, this routine checks for any operator input to the teletypewriter. This routine allows the operator to type an S or H after the frequency has been typed. This is read and stored in core. This routine checks this and alters the direction of the program accordingly.

- S: STOP The STOP command halts the program, leaves the exciter energized, and waits for an execute by the operator. When the execute button is pushed, the program is started over at the first test point in the Data Block.
- H: HALT The HALT command halts the program, leaves the exciter energized, and waits for an execute by the operator. When the execute button is pushed, the program is started at the next test point in line to be executed.

Any character other than H or S is presently ignored by the program. This can be expanded to include other interactions with the operator and computer. For example, a command could be given to go back one or two test points and repeat them.

Halt, Stop, or Continue (Comes Here from OE12)

1020	C830	0002	LOAD TTY DEVICE ADDRESS INTO R3
1024	DE30	09B0	OUTPUT TO TTY: DISABLE, BLOCK, AND READ
1028	4200	0000	NOP
102C	0B88		CLEAR R8
102E	0200		NOP
1030	9D 3 4		SENSE STATUS OF TTY INTO R4
1032	0844		LOAD R4 TO SET CONDITION CODE
1034	4330	1044	IF ANY INPUT GO TO READ
1038	4890	0902	LOAD ANY TTY DATA TAKEN AFTER FREQ. PRINTOUT
103C	4080	0902	CLEAR OUT STORAGE AREA FOR TTY DATA
1040	4300	1046	GO TO TEST FOR H OR S

1044	9E 3 9	READ DATA FROM TIY
1046	C590 0048	IS IT H?
104A	4330 1062	IF SO, GO TO HALT ROUTINE
104E	C 590 0053	IS IT S?
1052	4330 1076	IF SO, GO TO STOP ROUTINE
1056	4300 106E	IF NEITHER, CONTINUE
105A	F000 0000	-
105E	OB 6 6	CLEAR R6 TO START AT FIRST TEST FREQ,
1060	0200	NOP
1062	C200 1066	LPSW
1066	8000 08AE	RETURN TO OBAE AND STOP
106A	FFFF	
106C	FFFF	
106E	C200 1072	COMES HERE IF INPUT IS NEITHER H OR S
1072	0000	
1074	OBAF	DISABLE INTERUPTS AND GO TO OBAE
1076	0B 6 6	**** STOP ROUTINE **** CLEAR R6 TO START OVER
1078	DE30 0962	PUT TTY IN WRITE MODE
1070	DA30 0985	WRITE DATA TO TTY LINE FEED
1080	0813	LOAD R3 INTO R1 (TO PUT DEVICE ADDRESS IN R1)
1082	4180 OEEC	BAL TO WAIT FOR TTY
1086	C200 108A	LPSW
108A	8000 OFA6	DISAPLE INTERUPTS, STOP AT OFAC (RING BELLS, ETC.

4-67

>

⁴⁻⁶⁸

4.27 *Constant Acceleration Closed Loop Control Subroutine

Call on R4

This is a closed-loop control of acceleration level. The standard accelerometer voltage output is read by the DVM and compared to column 6 (exciter 2) or column 8 (exciter 1) of the 1400 Data Block. These columns give the desired voltage levels for the test point. Any deviation of standard accelerometer voltage from desired level over one millivolt triggers the program to trim the oscillator to obtain the desired value. An upper limit is set on the number of trimming operations to prevent an endless loop in case the desired value cannot be obtained. The trimmed oscillator voltage is stored in the DATA BLOCK at column 4 (exciter 1) or column 3 (exciter 2).

*Constant Acceleration Closed Loop Control

10FC	0E88		CLEAR R8
10F2	4080	0906	STORE 0000 IN LOOP COUNTER
10F6	4040	O9DE	SAVE R4
10 FA	41E0	06D8	BAL TO SAVE REGISTERS
IOFE	0200		NOP
1100	0588		CLEAR R8
1102	OBBB		CLEAR RB
1104	CABO	0001	ADD 1 TO RB
1108	C560	0004	COMPARE RE(INDEX COUNTER) TO 4 (10 HZ.)
110C	4330	1118	IF = , GO TO 10 HZ. PROGRAM
1110	4300	1 3CC	GO TO SET SPEED OF DVM READINGS
1114	4300	111C	
1118	C5B0	0500	COMPARE COUNTER OT 0500
111C	4230	1104	IF NOT = CONTINUE COUNTING
1120	CASC	0001	ADD I TO RE

1124	DE30	0B25	OUTPUT CONVERT DVM
1128	C580	A000	HAS THE DVM TAKEN 10 READINGS?
1120	4230	1102	IF NOT, GO READ ANOTHER TIME
1130	9 F 88		CLEAR. INTERUPTS
1132	4300	1146	BRANCH
1136	F000	0000	
113A	F000.	0000	
113E	F000	0000	
1142	F000	0000	
1146	9F95		ACKNOWLEDGE INTERUPTS
1148	0539		IS IT THE DVM?
114A	4330	1152	IF SO CONTINUE
114E	4300	1146	IF NOT, GO BACK TO AIR
1152	0B77		CLEAR R7
		READS To nea	VOLTAGE INTO CORE, ROUNDS OFF REST MV.LEAVES OPS. MV. IN RI
1154	4200	0000	NOP
1158	C890	0005	LOAD BXLE LIMIT REGISTER FOR READING DATA
115C	C880	0001	LOAD BXLE INCREMENT REGISTER
1160	DB37	1290	READ DATA INTO CORE STARTING AT 129C
1164	4120	1010	DELAY
1168	C170	1160	BXLE
1160	4200	0000	NOP .
1170	4200	0000	NOP
1174	D3A0	129D	LOAD FIRST DIGIT OF DATA INTO RA
1178	D3B0	129E	2'ND RB

117C	C3C0	129F	3°RD RC	
1180	D3D0	12A0	4°TH RD	
1184	D3E0	1241	5'TH RE	
1188	4190	1300	BAL TO ROUNDOFF ROUTINE	
1180	0B11		CLEAR RI	
118E	0800		CLEAR RO	
1190	931A		LOAD-FIRST DIGIT INTO RI	
1192	C410	COOF	PICK OFF' BITS 12-15	
1196	CDIO	0000	SHIFT LEFT 12 BITS	
11 9 A	08 0 0		CLEAR RO	
1190	0200		NOP	
11 9E	082B		LOAD 2'ND DIGIT	
1140	C420	000F	PICK OFF BITS 12-15	
11A4	C D 2 0	8000	SHIFT LEFT 8 BIIS	
11A8	0A12		ADD FIRST AND SEC. DIGIT, PUT INTO RI	
1144	933C		LOAD 3°RD DIGIT INTO R3	
IIAC	C430	000F	PICK OFF BITS 12-15	
1180	CD30	0004	SHIFT LEFT 4 BITS	
1184	0A13		ADD ON 3'RD DIGIT TO RI	
		GEIS ▲MV,	DESIRED MV FROM TABLE, CALCULATES CALCULATES AV FOR OSCILLATOR	
1186	0100	0004	SHIFT RIGHT 4 BITS (MV OBS. NOW IN RI)	
11BA	0888		CLEAR R8	
IIBC	CEAO	0002	LOAD 2 INTO RA	
1100	4190	OF94	BAL TO CONVERT OBS. VALUE TO HEX. (BACK IN	R3)

11C4	48C0	09C4	LOAD TABLE OF VALUES INDEX INTO RC
1108	48P0	0900	LOAD SHAKER FLAG (ADDRESS OF TABLE) INTO RB
1100	CABO	0002	ADD 2 TO THIS ADDRESS TO GET MV LOCATION
11D0	CBCO	0010	SUBTRACT 10 FROM RC TO GET CORRECT INDEX
11D4	4080	11DA	STORE MV. TABLE ADDRESS BELOW
1108	481C	140A	LOAD MV. DESIRED INTO RI
IIDC	0843		LOAD OBS. VALUE(HEX.) INTO R4
IIDE	CB60	0004	SUBTRACT 4 FROM INDEX
11E2	4190	OE9A	BAL TO CONVERT DES. VALUE TO HEX.
11E6	0823		PUT MV. DESIRED IN R2 (HEX.)
1158	0824		MV. DESIRED-MV. OFSERVED = A MV.
11EA	0200		NOP
11 E C	C820	0001	SUBTRACT 1 FROM AMV.
11F0	4320	12AC	IF NOT PLUS GO TO TEST FOR O
11F4	4300	1284	GO TEST LOOP COUNTER FOR MAX. NO. OF TRIES
11F8	4190	13E4	BAL TO CALCULATE AV FOR OSCILLATOR (OUT ON R5)
11FC	4810	0900	LOAD SHAKER FLAG
1200	C510	:408	IS IT SHAKER 2?
1204	4330	1210	IF SO, BRANCH
1208	481C	1406	LOAD OSC. VOLTAGE INTO RI
120 C	4300	1214	BRANCH
1210	481C	1404	COMES HERE FOR SHAKER 2, LOAD OSC. VOLTAGE IN
1214	4050	09CA	STORE R5 (A V FOR OSCILLATOR)
1218	4080	0906	STORE LOOP COUNTER
121C	4190	OE9A	BAL TO CONVERT VOLTAGE (OLD) TO HEX.
1220	4850	09CA	RESTORE R5 (A V FOR OACILLATOR)

and the

CALCULATES CORRECTED VOLTAGE FOR OSCILLATOR, OUTPUTS CODE TO OSC

1224 CD30 0004 SHIFT LEFT 4 BITS ADD AV TO OLD VOLTAGE VALUE 1228 0A35 NOP 122A 0200 122C CC30 0004 SHIFT RIGHT 4 BITS BAL TO CONVERT NEW VOLTAGE TO DECIMAL (BACK IN R2) 1230 4190 1370 1234 4810 0900 LOAD SHAKER FLAG IS IT SHAKER 2 123g C510 1408 1230 4330 1248 IF SO GO TO 1248 1240 4020 1406 STORE OSC CODE IN TABLE BRANCH 1244 4300 1240 COMES HERE IF SHAKER 2, STORE OSC CODE IN TABLE 1248 4020 1404 BAL TO CONVERT TO ORIGINAL OSC. CODE FORMAT 1240 4190 1600 1250 C870 000F LOAD OSC DEVICE NO. CLEAF R2 1254 0822 1256 OPAA CLEAR FA SENSE STATUS 1258 9075 IS OSC. BUSY? 125A 0552 IF SO, SENSE AGAIN 1250 4230 1258 WRITE DATA TO OSC. 1260 DA76 OC8C ADD 1 TO INDEX REGISTER 1264 CA60 0001 1268 CAAO 0001 ADD 1 TO RA HAVE 4 BYTES BEEN WRITTEN? 126C C5A0 0004 IF NOT. WRITE AGAIN 1270 4230 125A 1274 4200 0000 NOP

1278	C830	00CA	LOAD DVM DEVICE ADDRESS
127C	4300	1100	GO READ VOLTAGE AGAIN
1280	4300	12C4	GO TO RESTORE R4 AND EXIT
1284	CA20	0001	ADD ONE TO R2(TO RESTORE TO ORIG. VALUE)
1288	4880	0906	LOAD LOOP COUNTER

LOOP COUNTER TEST, AMV TESTED FOR -1 CONDITION, PREPARE TO LEAVE SUB.

128C CA80 0001 ADD 1 TO LOOP COUNTER COMPARE TO UPPER LIMIT 1290 0580 0020 1294 4330 12BC IF = . GO TO EXITGO BACK TO CALCULATE A MV. 1298 4300 11F8 STORAGE FOR VOLTAGE READINGS OF DVM 129C ABB1 8480 12 AO B1B3 OB11 12A4 0000 12A6 0000 12A8 F000 0000 IF AMV. =0 EXIT 12AC 4330 12BC 1280 C520 FFFF COMPARE AMV. TO -1 12B4 4330 12BC IF =, EXIT IF NOT, CONTINUE 12B8 4300 11F4 12BC CA60 0004 COMES HERE IF LOOP COUNTER IS IN LIMIT ADD 4 TO INDEX GO TO EXIT 1200 4300 1280 RESTORE R4 (BAL REGISTER FOR THIS SUBROUTINE) 12C4 4840 09DE EXIT (RETURN TO CALL) 1208 0304

4.28 *Scope Scaling Subroutine

Call on RA

This subroutine permits a relay (relay 16) in bank 1 to close and thereby activating the "seek" feature of the oscilloscope. This seek feature triggers the scope and automatically sets the time base and amplifier units for a constant display of number of cycles and amplitude of the display.

In this subroutine, the relay closes and opens twice. This is necessary sometimes because the first closing may not get a proper triggering.

Scope Scaling Subroutine

12D0	C820 00E0	LOAD RELAY CODE FOR RATIO I (RATIO I PROG. ENTERS
12D4	C800 0071	LOAD RELAY BANK I DEVICE ADDRESS
1208	CA40 0001	ADD I FOR SCOPE RELAY
12DC	9A 02	WRITE DATA TO RELAY BANK 1
1-2DE	9A 0 4	
12E0	4190 OE 78	DELAY
12E4	C840 0000	LOAD RELAY CODE TO DEACTIVATE SCOPE RELAY
12E8	9A 0 2	DEACTIVATE SCOPE RELAY
IZEA	9A 0 4	**
12EC	4190 OE 78	DELAY
12F0	C840 0001	LOAD CODE TO ACTIVATE SCOPE RELAY
12F4	9A02	ACTIVATE SCOPE RELAY
12F6	9A 04	"
12F8	4190 OE78	DELAY
12FC	A020	RETURN TO CALL
12FE	0B 9A	

>

4.29 *Round Off Subroutine (for Constant Acceleration)

Call on R9

This subroutine takes a five digit number (base ten) in registers RA, RB, RC, RD, RE and rounds the number to a four digit number in registers RA, RB, RC, RD. This subroutine is used in the Constant Acceleration routine (Section 4.27).

*Round Off Subroutine

1300	C 4A 0	000F	PICK OFF BIIS 12-15 OF	KA
1304	C4BO	000F	89	RB
1308	C4C0	000F	**	RC
1300	C4D0	000F	99	RD
1310	C4E0	000F	89	RE
1314	CBDO	0005	SUBTRACT 5 FROM RD	
1318	4220	1320	IF PLUS GO TO 1320	
1310	4210	1354	IF MINUS GO TO 1354	
1320	CECO	0009	SUBTRACT 9 FROM RC	
1324	4210	1350	IF MINUS GO TO 1350	
1328	CBBO	0009	SUBTRACT 9 FROM RE	
1320	4210	1344	IF MINUS GO TO 1344	
1330	4200	0000	NOP	
1334	CAAO	0001	ADD 1 TO RA	
1338	CSPO	0000	LOAD C INTO RE	
1330	CECO	0000	LOAD O INTO RC	
1340	4300	1354	GO TO 1354	

1344	CABO	000A	ADD A TO RE	(1	PLUS	9	THAT	WAS	SUBTRACTED)
1348	00330	0000	LOAD O INTO	RC					
134C	4300	1354	GO TO 1354						
1350	CACO	000A	ADD A TO RC						
1354	4200	0000	NOP						
1358	0309		RETURN TO CA	LL					

4.30 *Hexidecimal-to-Decimal Subroutine

Call on R9

Input requirements: Hexidecimal number in R3.

Output requirements: Up to four digits decimal number in R2.

Hexidecimal-to-Decimal Subroutine Converts a Four Digit Hex Number to a Decimal Number In on R3, Out on R2

1370	C880 03E8	LOAD OJES INTO RS
1374	C850 0064	LOAD 0064 INTO R5
1378	C870 000A	LOAD OOOA INTO RA
137C	0E22	CLEAR R2
137E	0 D 2 8	DIVIDE HEX NO. BY 03E8, QUOT IN R3, REM. IN R2
1380	08A3	PUT QUOT. IN RA (1'ST DECIMAL DIGIT)
1382	0832	PUT REM. IN R3
1384	0522	CLEAR R2
1386	0025	DIVIDE THIS BY 64
1388	0883	PUT QUOT IN RB (2'ND DIGIT)
138A	0200	NOP
138C	0832	PUT REM. IN R3
138E	0200	NOP
1390	0822	CLEAR R2
1392	0027	DIVIDE THIS BY A
1394	08E3	PUT QUOT. IN RE (3"RD DIGIT)
1396	08D2	PUT REM. IN RD (4°TH DIGIT)
1398	CDA0 000C	SHIFT RA LEFT 12 PITS

1390	CDEO	0008	SHIFT RB LEFT 8 BITS
13A0	CDEO	0004	SHIFT RE LEFT 4 BITS
13A4	OAAB		ADD RB TO RA
1346	OAAE		ADD RE TO RA
1348	OAAD		ADD RD TO RA
13AA	082A		LOAD RA INTO R2
13AC	0309		RETURN TO CALL

>

FIGURE 4-10. HEXIDECIMAL-TO-DECIMAL SUBROUTINE FLOWCHART 4-81

4.27(con't) *Constant Acceleration Closed Loop Control

Speed Set For DVM

- Note: The following is part of Section 4.27, Constant Acceleration Closed Loop Control.
- 13CC C560 001C FREQ: 200 HZ.
- 13D0 4320 13DC BRANCH ON NEG. (<200 HZ.)
- 13D4 C5BO 0020 COMPARE COUNTER TO UPPER LIMIT
- 13D8 4300 1114 RETURN TO MAIN PROG.
- 13DC C5B0 0200 COMPARE COUNTER TO UPPER LIMIT FOR F<200 HZ.
- 13E0 4300 1114 RETURN TO MAIN PROG.

4.31 *Calculate Delta V Subroutine

Call on R9

This subroutine is used by the Constant Acceleration Control subroutine (Section 4.27) to calculate the trimming voltage for output to the oscillator. At present, the delta millivolt of the standard accelerometer is multiplied by a constant to trim the oscillator to approximately 70 percent of the desired value.

From figure 1-1, it can be seen that approximately two volts is needed for an acceleration of 10 g on exciter 2. A typical value for the standard accelerometer voltage output is 140 mV for one NBS exciter and 70 mV for another exciter at 10 g. For the 140 mV exciter, a change of 14 mV of oscillator voltage will produce one millivolt change in accelerometer voltage. The equation used to compute the trim voltage for this exciter is:

Delta V = Delta mV·(10)

where Delta V: amount of trim voltage for oscillator, and

Delta mV: millivolt standard accelerometer differs from desired value.

For the 70 mV exciter (10 g) the equation used is:

Delta V= Delta mV · (8).

The constant in these equations will vary with the exciter being used in the system and the power amplifier gain. A value for this constant should be used to trim the voltage output of the oscillator from 60 to 80 percent of the desired difference per cycle so as not to overshoot the final codesired value.

Calculate Delta V Subroutine

13E4	C850	0004	LOAL A
1358	0042	4840	DELIA MV*A LOAD SHAKEE FLAG
13EC	0900	C540	IS IT SHAKEE 2?
13F C	1409		
13F2	4230	13FC	IF MOT EQUAL, BRANCH
13F6	C°50	3000	LOAD 8 INTO F5
13FA	0042	·	DELTA MV×8
13FC	0309		STIUSN .

4.32 Data Block Control Constants (1400 Tables)

This table contains the control parameters for the test points. Each row represents a test point and contains the frequency, oscillator voltage for the first try, code for selecting the proper capacitance match, and the desired millivolt output from the standard accelerometer. This table is set up for two exciters, but could be expanded to contain data for additional exciters that may be added to the setup. The code for the capacitor match is explained in Section 4.15.1.

The program selects the test point corresponding to the data in the first row. After completing this test point, the second test point corresponding to the second row is processed, etcetera, until the last test point is finished. Upon finishing the last test point, the program starts over again at the first test point.

The data in columns 3 and 4 are updated each time a calibration is run, as explained in Section 4.27.

4.33 *Voltage/Frequency Data Modified to Proper Oscillator Code

Call on R9

This subroutine converts the 1400 DATA BLOCK data columns 1, 2, 3, 4 which will program the oscillator. See Section 4.15.2 for a description of the proper oscillator format.

Input requirements: R6 must contain proper index number (in hexidecimal)
for the desired frequency. The index number is
four (test point number). The test point number
starts at zero and ends at N. In the present program
N = 38.

Output requirements: The properly coded output is stored in the Storage Table for Oscillator Code (OC8C).

This subroutine is called for each test point processed. It does not set up the entire OC8C table with one call instruction.

, 4-84

			Voltage		Cap.	mV.	Cap.	mV.
			~~~~~~		- Exci	- Exciter		>
	Frequency		1	2	2	2	1	1
	[· · · · · · · · · · · · · · · · · · ·	[]		
1400	0010	0001	0029	0043	0001	0028	0001	0028
1410	0012	0001	0147	0000	0001	0140	0001	0140
14.30	0030	0001	0155	0140	0001	0140	0001	0140
1440	0099	7001	0167	0155	0001	0140	0001	0140
1450	0099	7001	0083	0076	0001	0070	0001	0070
1460	0099	7001	0032	0029	0001	0028	0001	0028
1470	0199	7001	0175	0156	0001	0140	00A6	0140
1480	0299	5001	0187	0171	00A6	0140	0054	0140
1490	0399	5001	0185	0175	020A	0140	00A4	0140
1 4A O	0498	5001	0187	0187	00C2	0140	0208	0140
1480	0598	4001	0188	0198	0000	0140	0210	0140
1400	0697	3001	0191	0208	0014	0140	0260	0140
1400	0997	2001	0191	0220	0004	0140	0120	0140
1420	0100	0001	0195	0233	02.04	0140	0420	0140
1470	0100	9002	0194	0247	0000	0140	0000	0140
1510	0169	9002	0196	0321	0120	0140	0900	0140
1520	0199	9002	0200	0355	0020	0140	1200	0140
1530	0199	9002	0098	0172	0020	0070	1200	0070
1540	0199	9002	0039	0069	0020	0028	1200	0028
1550	.0249	7002	0197	0425	0440	0140	8 C 00	0140
1560	0299	70 02	0206	0473	0080	0140	4400	0140
1570	0349	6002	0205	0000	4100	0140	0000	0000
1580	0399	6002	0208	0000	0000	0140	0000	0000
1590	0449	1002	0214	0000	0200	0140	0000	0000
IDAU ISBO	0499	0002	0214	0000	2000	0140	0000	0000
1500	05 98	9002	0219	0000	1400	0140	0000	0000
	0598	7002	0202	0000	0400	0140	00000	0000
15 F O	0698	6002	0241	0000	2800	0140	0000	0000
15F0	0748	5002	0246	0000	4800	0140	0000	0000
600	0798	4002	0274	0000	8800	0140	0000	0000
1610	0848	4002	0246	0000	8800	0140	0000	0000
620	0898	3002	0270	0000	0800	0140	0000	0000
630	0948	2002	0250	0000	0080	0140	0000	0000
640	0998	2002	0259	0000	0800	0140	0000	0000

*Voltage/Frequency Data Modified to Proper Oscillator Code

1600	C8B0	0004	LOAD 4 INTO RB
16C4	0CA6		R6*4 RESULT IN RA, RB
1606	081B		LOAD RB INTO RI
1608	4200	0000	NOP
1600	4050	16F8	STORE R5
16D0	4850	0900	LOAD SHAKER FLAG INTO R5
16D4	C550	1408	IS IT 201?
16.08	4330	16E0	IF SO , GO TO 16E0
16DC	4300	16EC	IF NOT, GO TO 16EC
16E0	4831	1405	LOAD VOLTAGE FROM TABLE INTO R3
16E4	4841	1404	**
16E8	4300	1700	BRANCH
16EC	4831	1407	LOAD VOLTAGE FROM TAPLE INTO R3
16F0	4841	1406	**
16F4	4300	1700	BRANCH
16F8	0072		STORAGE FOR R5
16FA	0000		
16FC	4200	0000	NOP
1700	4200	0000	· · ·
1704	0200		
1706	0200		
1708	4200	0000	

1700	08A3		LOAD VOLTAGE INTO RA
170E	0200		
1710	C4A0	0070	MASK OFF 3'RD DIGIT (.1 VOLTS)
1714	CDAO	0008	SHIFT LEFT 8 BITS
1718	08BA		LOAD VOLTAGE INTO RB
171A	08A3		LOAD VOLTAGE INTO RA
1710	0200		NÕP
171E	C4A0	000F	MASK OFF 4'TH DIGIT (.01 VOLTS)
1722	CDAO	0008	SHIFT LEFT 8 BITS
1726	OABA	•	ADD THIS TO RB
1728	D3A1	1402	LOAD FREQ. INFORMATION INTO RA
1720	C4A0	00F0	MASK OFF 3 RD DIGIT (.1 HZ.)
1730	OABA		ADD THIS TO RB
1732	08A4		LOAD VOLTAGE INTO RA
1734	0200		NOP
1736	C4AO	0 F 00	MASK OFF 2'ND DIGIT (VOLTS)
173A	CCAO	0008	SHIFT RIGHT 8 BITS
173E	OABA		ADD THIS TO RE
1740	40B6	0080	STORE RB IN OC8C (INDEX R6)
1744	4200	0000	NOP
1748	4200	0000	
174C	4200	0000	
1750	D3A1	1401	LOAD FREQ. INFOR. INTO RA
1754	C4A0	00F0	MASK OFF 3 RD DIGIT (10 HZ.)
1758	CDAO	0008	SHIFT LEFT 8 BITS

1750	08CA		PUT THIS IN RC	
175E	D3A1	1401	LOAD SOME MORE CODE INTO RA	
1762	C4AO	000F	MASK OFF 4°TH DIGIT (1 HZ.)	
1766	CDAO	0008	SHIFT LEFT 8 BITS	
176A	OACA		ADD THIS TO RC	
1760	DJAI	1403	LOAD MORE CODE INTO RA	
1770	C4A0	000F	MASK OFF 4'TH DIGIT (MULTIPLIER)	
1774	CDAO	0004	SHIFT LEFT 4 BITS	
1778	OACA		ADD THIS TO RC	
177A	DJAI	1400	LOAD MORE CODE INTO RA	
177E	C4A0	00 0F	MASK OFF 4°TH DIGIT (100 HZ.)	
1782	OACA		ADD THIS TO RC	
1784	40C6	0 C8 E	STORE RC IN OC8E (INDEX R6)	
1788	C 870	0 00F	LOAD OSC. DEVICE NO. IN R7	
178C	OBAA		CLEAR RA	
178E	0B 00		CLEAR RO	
1790	4850	16F8	RESTORE R5	
1794	4200	0000	NOP	
1798	4200	0000		
1790	4200	0000		
17A0	4200	0000		
17A4	4200	0000		
1748	4200	0000		
17AC	4200	0000		
1780	0309		RETURN TO CALL	
NOTE	****	NEW C	ODE NOW LOOKS LIKE THIS:	
		(.1V	.01V .1HZ 1V 10 HZ 1HZ X 100HZ	Ζ

)

4.34 *Set Slow/Fast Code for ac/dc Converters Subroutine

Call on RE

This subroutine sets up the code for either slow (frequency <200 Hz) or fast mode (frequency equal to or greater than 200 Hz) for the ac/dc converters. This mode is controlled by relay 7 (see Section 4.15.1). This subroutine has two entry points, one if RATIO I is being taken and one if Ratio II is being taken.

*Set Slow/Fast Code for ac/dc Converters Subroutine

Ratio I Program

- 17B 4 0836 LOAD R6 INTO R3
- 17B 6 0200 NOP
- 17B8 CB30 001C SUBTRACT IC FROM R3 (IC=CODE FOR 200 HZ.)
- 17BC 4220 17C4 BRANCH ON +
- 17CO 4300 17CC CONTINUE IN SLOW MODE
- 17C 4 C820 00E2 LOAD 'FAST' CODE INTO R2
- 17C8 4300 17D0 BRANCH
- 17CC CB20 ODEO LOAD 'SLOW'CODE INTO R2
- 17D0 C830 OOCA RESTORE R3
- 17D4 030E RETURN

17D6 0200

PROGRAM FOR RII

17D8	0836	100 A.	LOAD R6 INTO R3
17DA	0200		NOP
17DC	CB 30	0010	SUBTRACT IC FROM R3
17E0	4220	17E8	BRANCH ON +
17E4	4300	17F0	CONT. IN SLOW MODE
17E8	C820	00C2	LOAD 'FAST' CODE INTO R2
17EC	4300	17F4	BRANCH TO EXIT
17F0	C820	0000	LOAD 'SLOW' CODE INTO R2
17F4	C830	00CA	RESTORE R3
17F8	030E		RETURN

.

4.35 Store Calibration Data in Tables

This routine stores the calibration frequency and sensitivity in core as the test points are being performed. The locations set aside for this purpose are:

> Exciter 1: 2C00-2E00 Exciter 2: 2E00-3000

The following examples illustrate the format of the stored data.

0000	0010	1009	0002	10 H	z, 10).09 mV	//g
0000	1500	9988	0003	1500	Hz,	9.988	mV/g

The purpose of this storage is to transfer these data to magnetic tape for storage at the end of a test. Additional storage space is set aside as shown in table 4-3.

The data starting at 2800 are entered into the computer by the Accelerometer Data Block Entry program (see Section 4.45). The data from 2C00-3000 are stored as the calibration program steps through the test points. The summary data starting at 3000 are read in by paper tape or typed in on the TTY. The summary data are these which are reported in a calibration report. It includes all data used to make up a complete calibration. Usually they are prepared by feeding all the data into a time-sharing computer program. This program combines the data by averaging techniques to provide final output report data.

The interferometer data consist of data on three piezoelectric exciters for each accelerometer calibrated. These data are kept on paper tape. It is desirable to keep not only the final summary, but all the data collected on the accelerometer on the magnetic tape files. These data can then easily be recalled for future checking and comparisons.

Store Calibration Data in Tables

1800	41E0 06E0	SAVE REGISTERS	
1804	41E0 23FC	BAL TO DECODE FREQ. DATA	
1808	0200	NOP	
180A	081A	LOAD FIRST DIGIT (CAL. FACTOR OF TEST)	
1800	CD10 000C	SHIFT LEFT C BITS	
1810	082B	LOAD 2'ND DIGIT	

1812	0200	NOP
1814	4880 246C	LOAD FIRST FREQ. DIGIT
1818	CD20 0008	SHIFT LEFT 8 BITS
1810	0830	LOAD 3 'RD DIGIT
181E	0200	NOP
1820	CD30 0004	SHIFT LEFT 4 BITS
1824	0A 12	ADD RI AND R2
1826	0A I 3	ADD RI AND R3
1828	0820	LOAD 4'TH DIGIT
182A	0200	NOP
1820	0A12.	ADD THIS TO ABOVE SUM
182E	0200	NOP
1830	C840 0002	LOAD 2
1834	0836	LOAD FREQ INDEX(R6)
1836	0200	NOP
1838	0C24	MULT. BY 2
183A	0200	NOP
183C	4890 246E	LOAD FRIQ. DIGITS 2-5
1840	082A	RELOAD FIRST DIGIT
1842	0200	NOP
1844	4230 1868	BRANCH ON NOT O
1848	CD10 0004	(RA=0) SHIFT LEFT 4 BITS
1840	4820 OIAA	LOAD DIGIT 5
1850	0A 12	ADD IT TO SUM
1852	0200	NOP

				B
1854	4200	0000	NOP	and the second
1858	4200	0000		AND CALL IN A
1850	4200	0000		Street Provide
1860	4200	0000		and the second of the second
1864	4200	0000		and the second second
1868	4840	0 9F 0	LOAD DEC. PT. CODE (TELLS WHEFE DEC. PT. IS LOCATED)	and the second second
1860	4820	0900	LOAD SHAKER ID	Contraction of the local distance
1870	C520	140C	SHAKER 2?	and the second second
1874	4230	1880	IF NOT, BRANCH	and the second second
1878	4013	2BFC	STORE TEST CAL. FACTOR (FOR SHAKER 1)	Contraction of the local distribution of the
1870	4083	28 F8	STORE FREQ.	
1880	4093	2BFA	89	
1884	4043	2BFE	STORE DEC. PT. CODE	
1888	4300	1840	BRANCH	
1880	4013	2DFC	STORE TEST CAL. FACTOR (FOR SHAKER 2)	
1890	4083	2DF8	STORE FREQ. DATA	a service of the serv
1894	4093	2DFA	60 	
1898	4043	2DFE	STORE DEC. PT. CODE	
1890	4200	0000	NOP	5
18A 0	41E0	0720	RESTORE REGISTERS	
18A 4	4300	18FC	GO TO DEC/ASCII ROUTINE	

>

TABLE 4-3. Data File Format

2900		
•	Interferometer fringe disappearance dat	а
2AF0	2 4 6 8 A C E * * * * * * * *	*
2B00	/file number/test number / xxx	/
2B10	/pickup mfgr. /pickup s.n	/
2B20	/pickup model number / xxx	/
2 B 30	/amp. mfgr. /amp. s.n.	/
2B40	/amp. model number / xxx	/
2850	/customer	/
2B60	/date of calib /exciter 1/exciter 2/xxx	/
2B70	/std. 1 /std. 2 /capacitance	/
2880	gain	
2BFO	11	
2 C 0 0	Exciter 1 data	
2DF0	11	
2E00	Exciter 2 data	
2EFO	11	
3000	Summary Data (data reported in a calibrat	tion)
31F0		

4.36 Decimal to ASCII Routine (5 digits)

This routine converts five digits of decimal code to five digits of ASCII code. This routine utilized subroutine Section 4.37.

Decimal to ASCII Routine (5 digits) (In/Out on RA, RB, RC, RD, RE)

- 18FC 48EO OLAA RESTORE FIFTH DIGIT
- 1900 OPOA LOAD FIRST HEX. #

1902 0200

- 1904 4190 1954 BAL TO ASCII CONVERT
- 1908 OBA2 PUT ASCII INTO RA
- 190A 0200
- 190C DEOP SAME FOR 2'ND #
- 190E 0200
- 1910 4190 1954
- 1914 08B2
- 1916 OBOC SAME FOR 3 PD
- 1918 4190 1954
- 1910 0802
- 191E OPOL: SAME FOR 4 TH
- 1920 4190 1954
- 1924 08D?
- 1926 ORCE SAME FOR 5"TH
- 1928 4190 1954

1920 08E2
192E 0200

1930	0130	0002	LOAD TTY DEVICE ADDRESS
1934	9D15		SENSE STATUS OF TTY
1936	0855		LOAD TO SET CC
1938	4330	1940	BRANCH ON ZERO
1930	4300	ODAO	BRANCH TO PRINTOUT
1940	9B 1 9		READ TTY
1942	4090	0902	STORE DATA
1946	4300	ODA O	BRANCH TO PRINTOUT

194A 0200

.

4.37 *Decimal -to-ASCII Subroutine (1 Digit)

Call on R9

This subroutine converts a one digit decimal number to ASCII code. Input requirements: decimal number in RO Output requirements: ASCII code in R2

*Decimal/ASCII Subroutine (1 Digit)

196E	0309		RETURN
1960	0821		LOAD
1968	C610	0000	OR, MUST BE ALPHA CHAR.
1966	0309		RETURN
1964	0820		LOAD
1960	C600	00B0	OR
195C	4220	1968	BRANCH ON +
1958	CB10	0009	R1-9=R1
1956	0200		
1954	0810		LCAD
1950	4200	0000	
194C	4200	0000	

FIGURE 4-12. DECIMAL TO ASCII FLOWCHART

4.38 Check for Correct Range of Signal ac/dc Converter

This routine checks Ratio II for all nines (out of range) and if this condition if found, the code for the relays is set to program the signal converter for 10-volt range. The RANGE FLAG is set for 000A: the THRU FLAG is set for 0001. The THRU FLAG is set to indicate that this routine has been executed once and should not be repeated on the next pass for this test point. If the converter is set for 10-volt range, the program is transferred to read Ratio II again; if the one-volt range is sufficient, the program continues with the calculation of the test accelerometer sensitivity (0ADC) in Section 4.16.

Check for Correct Range of Signal ac/dc Converter

19A O	4300	1 9E 8	BRANCH TO CHECK "INRU FLAG"
19A 4	C 5B 0	2710	ALL 9'S (DEC) IN RII?
1948	4230	1 90 0	BRANCH ON NOT =
19AC	C840	0004	LOAD CODE FOR 10 VOLT RANGE
19B0	C810	A000	LOAD IO VOLT RANGE FLAG
1984	4010	09E 4	STORE FLAG
19B8	C80 0	0071	RELOAD RELAY BANK I DEVICE ADDRESS
19BC	4300	I 9D8	BRANCH
1900	C810	0001	SET FLAG FOR I VOLT RANGE
19C4	4010	0 9E 4	STORE RANGE FLAG
1908	C810	0000	LOAD 0000
1900	4010	09EA	STORE "NOT THRU"FLAG
19D0	4200	0000	NOP
19D4	4300	OADC	CONTINUE WITH MAIN PROG.
19D8	C8C 0	1000	RESET RATIO MODE CODE FOR DVM
19DC	C810	0001	LOAD 0001
19E0	4010	09EA	STORE "THRU" FLAG

19E 4	4300 19F8	RETURN
19E8	4810 09EA	LOAD "THRU"FLAG
1 9E C	C510 0001	HAVE I BEEN HERE BEFORE?
19F0	4230 19A4	BRANCH IF NOT TO CHECK FOR OVERANGE COND. (9999)
19F4	4300 OADC	HAS BEEN THRU, BY PASS THIS ROUTINE
19F8	41E0 17D8	BAL TO FAST/SLOW ROUTINE FOR CONVERTERS(FIXES UP R2)
19FC	4300 OABO	RETURN

4.39 *Multiple Readings (DVM) and Digital Filter Subroutine

Call on R9

This subroutine handles the actual data collection by the DVM. The first part of the subroutine sets up the timing delays for the frequency ranges. The three ranges are:

10 Hz	Typical	delay	constant	23	3000	(1A36)
10 <f<100< td=""><td>**</td><td>8.8</td><td>11</td><td>=</td><td>500</td><td>(1A2E)</td></f<100<>	**	8.8	11	=	500	(1A2E)
F>100	н	11	F8	=	100	(1A3E)

This delay allows for settling time for the exciter and also for the ac/dc converters. The larger the constant, the longer the delay. COUNTER 1 counts up to the delay constant before a ratio is read by the DVM.

After the timing delay is set up, the program executes three output convert instructions. An output convert instruction triggers the DVM to take a reading but does not read the data into core. The reason for executing these initial output convert instructions is to take care of any transient signals that may occur because of the switching circuitry. These readings are not saved and do not enter into the subsequent calculations.

COUNTER 2 keeps track of the number of ratio readings in the subroutine. Starting with reading number four, the data are stored in a table. Beginning with reading number five, deviations are calculated as shown in the accompanying flow chart (see figure 4-13). As can be seen from this flow chart, deviations are calculated from the current ratios as follows:

delta R =
$$R_N - R_{N-3}$$

The reason for going three readings back to calculate the deviations is to catch any slow drift in the system. Since a decision on whether or not to accept a series of readings is based on the percentage deviation of the readings, a slow drift in the readings would not be detected if the deviations were based on a $R_{\rm N} - R_{\rm N-1}$ deviation calculation. Once seven readings have been taken, the program then has three deviations to look at. These deviations are converted to absolute values, and the maximum of the three is picked out and savet. If this maximum deviation is less than 0.1 percent of the average of the last three readings, this average is saved as the desired ratio and the STABLE/UNSTABLE FLAG is reset (0000). If the deviation is equal or greater than 0.1 percent, another reading is taken. The last three readings are then compared as above. This process is continued until three readings are taken successively which are acceptable or an upper limit is reached of 32 readings. It the upper limit is reached and three acceptable readings were not found, the average of the last three is used and the STABLE/ UNSTABLE FLAG is set (0001). If set, the UNSTABLE FLAG causes a message to be typed after the calibration for this test point: "UNSTABLE SIGNAL".

Important Core Locations:

(2303)	Number of ratios taken to get 0.1 percent maximum delt
(2304)	Ratio (N-2)
(2306)	Ratio (N-1)
(2308)	Ratio (N)
(230A)	Maximum deviation of last three ratios tested
(230C)	Average of last three ratios taken
(230E)	STABLE/UNSTABLE FLAG (0000, stable; 0001, unstable)

Input Requirements:

DVM must be in ratio mode.

*Multiple Reading (DVM) and Digital Filter Subroutine

1400	4200 0000	NOP
1A 04	4200 0000	NOP
1A 08	0888	CLEAR R8 (TABLE INDEX)
1A OA	0200	NOP
IA OC	C830 00CA	LOAD DVM DEVICE ADDRESS
1A 10	OBBB	CLEAR RB (COUNTER INDEX)
1412	0200	NOP
1A I 4	4200 0000	NOP
1A 18	C560 0004	F=10 HZ.?
1A 1C	4330 1A34	IF SO BRANCH
1420	0876	IF NOT,LOAD FREQ. INDEX REGISTER (R6) INTO R7
1422	0200	NOP
1424	CB70 001C	SUBTRACT IC

1428	4220	1 A 3C	IF F>100 HZ. BRANCH
1 A 2C	C870	0500	10 <f<100 a="" is="" parameter<="" set="" t="" td="" timing=""></f<100>
1A 30	4300	1A40	BRANCH
1A 3 4	C870	3000	F=10 HZ., SET T=3000
1A 38	4300	1A40	BRANCH
1 A 3C	C 870	0100	F>100 HZ. SET T= 100
IA 40	05B 7		RB:R7 COMPARE COUNTER TO T
1442	0200		NOP
1A 4 4	4330	1450	BRANCH ON =
1A 48	CABO	0001	ADD 1 TO COUNTER
1 A 4C	4300	1A40	GO TEST FOR UPPER LIMIT
1450	C A 80	0001	ADD 1 TO # OF READINGS INDEX
1A54	DE30	0B25	OUTPUT CONVERT DVM
1A 58	0878		LOAD
1A 5A	08B 8		LOAD
1A 5C	CB 70	0004	SUB. 4 FROM # OF READINGS
1A60	4310	1468	BRANCH IF #READINGS IS24
1464	4300	IAOC	IF < 4 BRANCH BACK
1468	C820	0008	LOAD 8
1A6C	0CA2		MULT #READINGS * 8
1A6E	08AB		LOAD INTO RA
1470	4200	0000	NOP
1A74	CBAO	0020	SUB. 20 FROM ABOVE PRODUCT
1A78	0878		LOAD #READINGS INTO R7
1A7A	0200		NOP

1A7C	CB70	0005	SUBTRACT 5
1880	4320	1 A 9C	BRANCH ON NOT + (#EQUAL OR LESS THAN 5)
1884	C 580	0006	# READINGS = 6?
1488	4230	1B 0C	IF NOT BRANCH
1A 8C	4100	2000	# READINGS = 6 BAL TO READ DATA SUBROUTINE
1A 90	4830	26EC	RESTORE RATIO
1A 94	4300	IAAC	GO CALCULATE DELTA I
1A 98	4200	0000	NOP
1A 9C	41C0	2000	BAL TO READ DATA
1440	4830	26EC	RESTORE RATIO
1444	403A	0B50	STORE RATIO IN TABLE
1448	4300	1 A O C	GO TAKE ANOTHER RATIO READING
IAAC	403A	0B50	STORE RATIO 6
IABO	4840	0B58	LOAD RATIO 5
1AB4	4200	0000	NOP
IAB8	4200	0000	NOP
IABC	4830	0B 50	LOAD RATIO 4
1AC0	4200	0000	NOP
1AC4	4200	0000	NOP
1408	0B 43		RATIO 5-RATIO 4
IACA	0834		LOAD
IACC	4200	0000	NOP
IADO	4030	0B 5A	STORE DELTA I IN TABLE
IAD4	4200	0000	NOP
IAD8	4840	0860	LOAD RATIO 6

4.6

4200	0000	NOP
4200	0000	NOP
4200	0000	NOP
4830	0B 50	LOAD RATIO 4
4200	0000	NOP
4200	0000	NOP
0B 4	3	RATIO 6- RATIO 4
0200		NOP
4200	0000	NOP
4040	0862	STORE DELTA 2
4200	0000	NOP
4300	2310	GO TO TAKE ABSOLUTE VALUE OF DELTAS
4300	1 A OC	CONTINUE READINGS
0878		LOAD # READINGS
0200		NOP
CB 70	0023	SUBTRACT OFF UPPER LIMIT OF # READINGS ALLOWED
4220	22F0	IF MAXIMUM # HAS BEEN REACHED, BRANCH
41C 0	2000	IF NOT, BAL TO READ DATA
4830	26EC	RESTORE RATIO N
4080	2302	SAVE # TRIES
403A	0850	STORE RATIO N
4200	0000	NOP
4200	0000	NOP
4200	0000	NOP
	4200 4200 4200 4200 4200 4200 4200 4200	4200 00004200 00004200 00004830 08504200 00004200 000008 430200 00004200 00004200 00004300 23104300 1A0C087802004220 22F041C0 20004830 26EC4080 2302403A 08504200 00004200 0000

I

1B 3 4	0843		LOAD RATIO N
1B 3 6	0200		NOP
IB 38	4200	0000	
1B 3C	4200	0000	
1B 40	CBAO	0018	LOAD PATIO(N-3)
18 4 4	481A	0B 50	00
IB 48	4200	0000	NOP
1B 4C	4200	0000	
1850	0B 4 1		RATIO N- RATIO(N-3)= DELTA N
IB 52	0834		LOAD
IB 54	4310	1860	BRANCH ON NOT MINUS
1B 58	C 85 0	FFFF	LOAD -1
IB 5C	0C 44		MULT DELTA N BY -1
1B 5E	0845		LOAD
IB 60	CAAO	0018	ADD 18 TO RESTORE INDEX
IB 6 4	404A	0B 56	STORE ABSOLUTE VALUE OF DELTA N
IB 68	4300	2200	GO TO MORE SPACE
IB 6C	0872		STORAGE FOR R8

.

4.40 *Read Data Subroutine

Call on RC

This subroutine programs the DVM to read one time. The decimal reading is stored in R9 and core locations 0554 and 0556. If the first digit is zero, the LOW/NORM FLAG is set at 0000 and if the first digit is not zero, the flag is reset at 0001. This subroutine also calls the Round Off Subroutine (049C) (see Section 4.29) which gives, as output, a hexidecimal number equivalent to the decimal entry rounded to four digits. This will be stored in 26EC.

Input Requirements: DVM must be set for Ratio or Voltage mode as desired.

Output Requirements: Decimal data will be in core locations 0554, 0556 and R9. Hexidecimal data equivalent to rounded decimal data will be in core location 26EC.

> *Read Data Subroutine (Data will be in R9 and 0554, 0556)

2000	0000	OUCH	
2004	DE 30	0B24	ENABLE INTERUPTS FOR DVM
2008	41E0	06D8	SAVE REGISTERS
200C	9F 95		ACKNOWLEDGE INTERUPTS
200E	0539		IS IT DVM?
2010	4330	2018	IF SO, BRANCH TO READ DATA
2014	4300	2008	IF NOT,LOOK AGAIN FOR INTERUPT
2018	0B77		CLEAR R7
201A	0200		NOP
201C	C890	0005	LOAD LIMIT INTO R9
2020	0880	0001	LOAD INCREMENT INTO R8
2024	DB37	02B8	READ DATA INTO CORE
2028	4120	1010	DELAY
2020	C170	2024	BXLE

2000 CR30 OOCA LOAD DVM DEVICE ADDRESS

2030	4200	0000	NOP
2034	4200	0000	
2038	4190	0500	BAL TO ASCII/DEC. ROUTINE
203C	4870	0554	LOAD FIRST DEC. DIGIT
2040	4230	205C	BRANCH ON NOT O
2044	C840	0000	LOAD O
2048	40 40	09F6	SET LOW/NORM FLAG=1
204C	4890	0556	LOAD 2'ND HALFWORD OF DEC. #
2050	4800	0554	LOAD 1'ST HALFWORD
2054	0819		LOAD
2056	0200		NOP
2058	4300	2608	BRANCH
205C	C840	0001	LOAD 1
2060	40 40	09F6	SET LOW/NORM FLAG =1
2064	4800	0554	LOAD FIRST HALFWORD
2068	4810	0556	LOAD SECOND HALFWORD
2060	4200	0000	NOP
2070	4200	0000	NOP
2074	4200	0000	NOP
2078	4300	26D0	BRANCH TO NEW SPACE

FIGURE 4-14. READ DATA SUBROUTINE FLOWCHART

Multiple Readings and Digital Filter Subroutine Calculate Max Delta of Last Three Deltas

Note: The following is part of Section 4.39, Multiple Readings Subroutine.

2200	483A	0B56	LOAD DELTA N
2204	CBAO	8000	SUB. 8 FROM INDEX
2208	482A	0B56	LOAD DELTA(N-1)
220C	CBAO	0008	SUB. 8 FROM INDEX
2210	481A	OB 56	LOAD DELTA (N-2)
2214	CAAO	0010	ADD 10 TO INDEX TO RESTORE
2218	0512		COMPARE DELTA(N-2):DELTA (N-1)
221A	0200		NOP
221C	4280	2228	BRANCH ON LOW DELTA (N-2) < DELTA (N-1)
2220	0841		LOAD DELTA (N-2) AS MAX I
2222	0200		NOP
2224	4300	2 22C	SKIP NEXT INSTR.
2228	0842		LOAD DELTA(N-1) AS MAX 1
222A	0200		NOP
222C	0543		COMPARE MAXI:DELTA N
222E	0200		NOP
2230	4280	223C	BRANCH IF MAX I < DELTA N
2234	0854		SAVE MAX 1 AS MAX DELTA IN R5
2236	0200		NOP
2238	4300	2240	SKIP NEXT INST.
223C	0853		DELTA N IS MAX DELTA, SAVE IN R5

4-112

223E	0200		NOP			
2240	4050	230A	STORE	MAX	DELTA	
2244	4200	0000	NOP			
2248	4200	0000				
224C	4200	0000				

Calculate Average of Last Three Ratios

2250	483A	0B 50	LOAD RATIO N
2254	CBAO	0008	SUB. 8 FROM INDEX
2258	482A	0B50	LOAD RATIO (N-1)
225C	CBAO	0008	SUB. 8 FROM INDEX
2260	481A	0850	LOAD RATIO (N-2)
2264	CAAO	0010	ADD 10 TO INDEX TO RESTORE
2268	4200	0000	NOP
2260	4200	0000	•
2270	4010	2304	SAVE RATIO (N-2)
2274	4020	2306	SAVE RATIO (N-1)
2278	4030	2308	SAVE RATIO N N WILL BE LAST RATIO READ
227C	4200	0000	NOP
2280	4200	0000	
2284	4200	0000	
2288	4200	0000	
228C	4A 30	2306	N+(N-1)
2290	4A 30	2304	N+(N-1)+(N-2)

2294	4200	0000	
2298	4200	0000	
229 C	C840	0003	LOAD
22A 0	0B22		CLEAR R2
22A2	0200		
22A 4	0D24		(N+(N-1)+(N-2))/3 QUOT. IN R3 (AVERAGE OF 3 RATIOS
22A 6	0200		
22A 8	4030	230C	SAVE AVERAGE
22A C	C830	03E8	LOAD CONST.
22B 0	4 C 20	230A	1000*DELTA (MAX)
22B 4	4D 20	230C	1000*DELTA(MAX)/AVER. RATIO
22B 8	0833		LOAD TO SET CONDITION CODE
228A	0200		
22BC	4220	1 A OC	BRANCH ON + (QUOT. > 0) TO CONTINUE READINGS
22C O	C810	0000	LOAD O
22C 4	4010	230E	STORE "STABLE" FLAG MAX DELTA < .1% OF RATIO AV
2208	0309		RETURN TO CALL
22C A	0000		
22F0	0180	0001	LOAD 1
22F4	4010	230E	STORE "UNSTABLE FLAG"
22F8	4200	0000	
22FC	4200	0000	
2300	0309		RETURN TO CALL
2302	8000		STORAGE # OF RATIOS READ TO GET .1% MAX DELTA

2304	1B 8D	IB8D	87	RATIO (N	1-2)	RATIO (N-1)	
2308	1B 8E	0001	**	RATIO N		MAX DEL	TA	
2300	1B 8D	0000	**	AVERAGE	RATIO	STABL	E/UNSTABLE	FLAG
			Calculate	Absolute	Value of D	eltas		
2310	4840	0862	LOAD DE	LTA I				
2314	4200	0000	-					
2318	4200	0000	-					
231C	4200	0000						
2320	4310	2320	BRANCH	ON NOT -				
2324	C850	FFFF	LOAD -1					
2328	0C 44		DELTA I	*(-1)				
232A	0845		LOAD QU	στ				
2320	4040	0866	STORE /1	DELTA 1/	IN TABLE			
2330	4200	0000						
2334	4840	0B72	LOAD DE	LTA 2				
2338	4200	0000						
233C	4200	0000						
2340	4200	0000						
2344	4310	2350	BRANCH (DN NOT +				
2348	C850	FFFF	LOAD -1					
2 3 4 C	0 C 44		DELTA 2	* (-1)				
2 3 4 E	0845		LOAD QU	DT.				
2350	4040	0B 76	STORE /	DELTA 2/	IN TABLE			
2354	4200	0000						
2358	4300	1B08	RETURN 1	TO MAIN P	PROG.			

4-115

4.41 *ASCII/Decimal Subroutine

Call on RE

This subroutine converts five bytes of ASCII code to decimal code. Input Requirements: ASCII code in locations 09B6-09BA Output Requirements: Decimal data in locations 246C-246F This subroutine saves all registers except RE (see figure 4-15.)

*ASCII/Decimal Subroutine

23FC	40F 0	2470	SAVE RE
2400	41E 0	06E0	BAL TO SAVE REGISTERS
2404	D 3A 0	09B7	LOAD ASCII #'S INTO REGISTERS
2408	D 3B 0	09B8	
2400	D 3C 0	0 9B 9	
2410	D 3 D O	09EA	
2414	D 3 E 0	09B6	
2418	0B11		CLEAR RI
241A	0B 7 7		CLEAR R7
241C	0800		CLEAR RO
241E	0200		
2420	930A		LOAD FIRST ASCII #
2422	0200		
2424	0810		ALSO INTO RI
2426	0200		
2428	C410	000F	PICK OFF BITS 12-15
242C	CDIO	0000	SHIFT LEFT 12

2430	930F		LOAD SEC. #
2432	0200		
2434	0820		ALSO IN R2
2436	0200		
2438	C420	000F	PICK OFF BITS 12-15
243C	CD20	8000	SHIFT LEFT 8
2440	0A 1 2		ADD R2 TO RI
2442	0200		
2444	933C		LOAD 3 RD # ·
2446	0200		
2448	C430	000F	PICK OFF BITS 12-15
244C	CD30	0004	SHIFT LEFT 4 BITS
2450	OA 13		ADD R3 TO RI
2452	0200		
2454	933D		LOAD 4°TH #
2456	0200		
2458	C430	000F	PICK OFF BITS 12-15
245C	OA 1 3		ADD R3 TO R1 (R1 NOW CONTAINS FIRST 4 DIGITS)
245E	0200		
2460	93 3 E		LOAD 5 TH DIGIT
2462	0200		
2464	C430	000F	PICK OFF BITS 12-15
2468	4300	2474	BRANCH

246C	0000		STORAGE
246E	3000	1808	**
2472	0000		
2474	4200	0000	
2478	4200	0000	
2470	4030	246C	STORE FIRST DIGIT
2480	4010	246E	STORE LAST 4 DIGITS
2484	41E0	0720	RESTORE REGISTERS
2488	'48E 0	2470	RESTORE RE
2480	030E		RETURN

FIGURE 4-15. ASCII-TO-DECIMAL SUBROUTINE FLOWCHART

4.42 Desired Frequency Table

This table gives a set of desired frequency test points which is used to check against the reading of the frequency counter. These desired frequencies are compared to the counter reading in the Check for Proper Frequency program (see Section 4.43).

Desired Frequency Table

2480	0000	24D 6	0400		2506	2500	0000
24E2	0010	24D8	0000		25 OA	3000	0000
2 4 B 4	0000	24DA	0500		25 OE	3500	0000
24B6	0015	24D C	0000		2512	4000	0000
24B8	0000	24DE	0600		2516	4500	0000
248A	0030	24E 0	0000		25 I A	5000	0000
24BC	0000	24E2	0700		251E	5500	0000
24BE	0050	24E 4	0000		2522	6000	0000
24C0	0000	24E 6	0800		2526	6500	0000
2402	0100	24E8	0000		252A	7000	0000
24C4	0000	24EA	0900		252E	7500	0000
2406	0100	24EC	0000		2532	8000	0000
2408	0000	24EE	1000	0000	2536	8500	0000
24CA	0100	24F2	1500	0000	25 3 A	9000	
24CC	0000	24F6	1700	0000	253C	0000	
24CE	0200	24FA	2000	0000	253E	9500	
24D0	0000	24FE	2000	0000	2540	0001	
24D2	0300	2502	2000	0000	25 42	0000	
24D4	0000				>		

4.43 *Check for Proper Frequency Subroutine

Call on R8

This subroutine compares the frequency counter reading with a desired frequency and if the two do not agree, reprograms the oscillator again and reads the frequency again. This is repeated up to three times. After three tries, the program continues with whatever frequency exists at that time.

*Check- for Proper Frequency Subroutine

2560	41E 0	06E0	BAL TO SAVE REGISTERS
2564	4200	0000	
2568	41E 0	23FC	BAL TO DECODE FREQ DATA
25 6C	4200	0000	
2570	4880	2460	LOAD FREQ. DATA DIGIT 1
2574	4890	246E	" 2-5
25 7 8	4586	24AC	COMPARE FIRST DIGIT WITH TABLE VALUE
2570	4330	2588	BRANCH ON =
2580	4300	25A0	GO TO TRY AGAIN
2584	4200	0000	
2588	4596	24AE	COMPARE DIGITS 2-5
25 8C	4230	25A0	BRANCH ON NOT = TO TRY AGAIN
2590	4200	0000	
2594	4200	0000	
2598	41E0	0720	BAL TO RESTORE REGISTERS
2590	4300	097A	CONTINUE
25A0	4200	0000	

25A4	4870	09E2	LOAD COUNTER IN F7
2548	C570	0003	IS IT 3?
25AC	4330	2598	BRANCH ON = TO RESTORE AND CONT.
25B O	CA 7 0	0001	ADD 1 TO R7
25B 4	4070	09E2	STORE COUNTER
25B 8	4200	0000	
25B C	4 1 E O	0720	BAL TO RESTORE REGISTERS
2500	C870	000F	LOAD OSC. DEVICE ADDRESS
25C4	C8AO	0000	CLEAR RA
2508	CB60	0004	SUB. 4 FROM R6
2500	4300	0908	RETURN

*Read Data Subroutine (Continued from Section 4.40) Note: The following is part of Section 4.40 Read Data subroutine.

26BC	4200	0000	NOP
2600	4200	0000	
26C 4	4200	0000	
2608	4200	0000	
2600	4200	0000 .	
26D0	4200	0000	
26D4	4200	0000	
26D8	4200	0000	
26DC	41E0	0490	BAL TO ROUND OFF, DEC/HEX ROUTINE
26E 0	4200	0000	NOP
26E 4	41E0	0720	RESTORE REGISTERS
26E 8	0300		RETURN TO CALL
26E A	0000		HEX. STORAGE
26E C	1B8E	6356	STORAGE
26F0	B564	3269	
26 F 4	3232	3559	
26F8	6935	6435	
26FC	3332	6944	

4.44 *Type-Out Subroutine

Call on RE

This subroutine permits type-out of a message or data by a subroutine call with three transfer parameters. The calling sequence is as follows:

xxxx 41E0 3478
Parameter 1 Parameter 2
Parameter 3
Parameter 1: starting address of type message or data.
Parameter 2: ending address of type message or data.
Parameter 3: either 0000 for binary data or 0001 for ASCII data.

If the data to be typed are in ASCII code, the type-out will be as stored in the core without any additional spaces, carriage returns or line feeds. These must be supplied in the table of constants in core to be typed. Messages to be typed may be entered by using the Message Entry Subroutine(3600),Sect: 4.45

If the data to be typed are in binary, spaces will be placed after every two bytes typed out. A carriage return, line feed will be output after the maximum bytes per line. This constant (maximum bytes per line) is entered in location 340A.

*Type-Out Subroutine

3478	4200	0000	NOP
347C	40E0	3554	SAVE RETURN ADDRESS
3480	488E	0000	LOAD ADDRESS OF START
3484	0B 55		CLEAR
3486	0200		
3488	4050	3558	STORE COUNTER X
348C	4050	355A	STORE COUNTER 1
3490	4050	355C	STORE COUNTER 2
3494	4080	355E	SAVE STARTING ADDRESS
3498	CAEO	0002	ADD 2 TO RETURN ADDRESS
349C	488E	0000	LOAD END ADDRESS

34A O	4300	3598	GO CHECK FOR ASCII CODE			
34A 4	4870	355E	(COMES HERE IF NOT ASCII)	LOAD	START	ADDRESS
34A 8	4A 70	3558	ADD X			
34AC	D307	0000	LOAD BYTE TO BE TYPED			
34B 0	0830		LOAD			
34B2	C 40 0	00F0	PICK OFF 1 ST. CHARACTER			
34B6	CC 00	0004	SHIFT RIGHT			
34BA	C4 30	000 F	PICK OFF 2 ND. CHAR.			
3 4B E	4190	1954	BAL. DEC/ASCII			
34C 2	41E0	3564	TYPE FIRST CHAR.			
34C6	0803		LOAD 2 ND. CHAR.			
34C 8	4190	1 95 4	DEC/ASCII			
34C C	41E0	3564	TYPE 2 ND. CHAR.			
34D0	4850	355A	LOAD COUNTER 1			
34D 4	CA 50	0001	ADD 1			
34D8	4050	355A	STORE COUNTER 1			
34DC	C 550	0002	COUNTER $2 = 2?$			
34E 0	4230	34F4	BRANCH ON NOT =			
34E 4	D320	0E 5 C	LOAD SPACE CHAR.			
34E 8	41E0	3564	TYPE IT			
34E C	0B 55	•	CLEAR COUNTER 1			
34E E	0200					
34F0	4050	355A	STORE			
34F 4	48A 0	3558	LOAD COUNTER X			
34F8	CAAO	0001	ADD 1			

æ

34FC	4850	355C	LOAD COUNTER 2
3500	CA 50	0001	ADD 1
3504	4050	355C	STORE COUNTER 2
3508	C550	0008	COUNTER 2 = MAX. BYTES PER LINE?
35 OC	4230	3548	IF NOT BRANCH
3510	D320	09B4	LOAD CARRIAGE RETURN CODE
3514	41E0	3564	TYPE OUT
3518	D320	09B 5	LOAD LINE FEED CODE
351C	41E0	3564	TYPE OUT
3520	4200	0000	
3524	4820	35 60	LOAD END ADDRESS
3528	4840	355E	LOAD START ADDRESS
35 2C	0B24		SUBTRACT
352E	0200		
3530	CA20	0001	ADD 1 TO ABOVE DIFFERENCE
3534	0B2A		SUBTRACT OFF # TIMES THRU
3536	0200		
3538	4220	3540	BRANCH ON + (NOT FINISHED)
35 3 C	4300	35 7C	BRANCH
3540	0200		
3542	0B77		RETURN
3544	4070	355C	CLEAR COUNTER 2
3548	40A 0	3558	SAVE X
35 4C	4200	0000	
3550	4300	3444	CONTINUE

4-126

3554	0500		STORAGE	FOR	RE	
3556	0000					
3558	0018		**		COUNTER	хx
355A	0000		84		COUNTER	R 1
355C	0000		**		COUNTER	R 2
355E	05D0		84		START	
3560	05E7		-96		END	
35 62	0000					
3564	C810	0002	LOAD TTY	r dev	ICE ADE	RESS
35 68	DEIO	09E2	PUT TTY	IN W	RITE MO	DDE
35 6C	4180	OEEC	WAIT			
3570	9A 12		TYPE			
3572	0200					
3574	030E		RETURN			
3576	0200					
35 78	0000					
35 7 A	0000					
35 7C	48E 0	3554	RESTORE	RE		
3580	CAEO	0006	ADD 6			
3584	030E		RETURN			
3586	0200					
3588	0000					
358A	0000					

3598	4080	3560	SAVE END ADDRESS
35 9C	48E 0	3554	RESTORE RE
35 A O	CAEO	0004	ADD 4
35A 4	480E	0000	LOAD CODE FOR ASCII OR BINARY IDENTIFICATION
35A 8	C500	0000	IS IT 0 ?
35 A C	4330	3 4 A 4	BRANCH ON = TO CONTINUE
35B O	4870	355E	LOAD START ADDRESS
35B 4	4A 7 C	3558	ADD COUNTER X
35B 8	D327	0000	LOAD BYTE TO BY TYPED
35B C	08B2		SAVE IT IN RB
35B E	0200		
3500	48A0	3558	LOAD COUNTER X
35C4	4200	0000	
3508	4200	0000	
35CC	4200	0000	
35DO	4820	3560	LOAD END ADDRESS
35D4	4840	355E	LOAD START ADDRESS
35D8	0824		SUBTRACT
35 D A	0200		
35DC	CA20	0001	ADD 1
35E O	0200		
35E2	0B2A		(END -START) - # TIMES THRU
35E4	4220	35EC	BRANCH ON + (NOT FINISHED)

35E8	4300	357C	GO TO EXIT
35E.C	082B		LOAD
35EE	0200		
35F O	41E0	3564	TYPE BYTE
35F 4	CAAO	0001	ADD I TO COUNTER X
35F8	40A0	3558	SAVE COUNTER X
35FC	4300	35B O	EXIT

4.45 *Message Entry Subroutine

Call on RE

This subroutine permits entry of messages to be typed out by the Type-Out Subroutine (see Section 4.44). This subroutine has two transfer parameters. The calling sequence is as follows:

xxxx 41E0 3600 Parameter 1 Parameter 2

> Parameter 1: number of bytes allowed in the message. Parameter 2: starting address for stored message (core location)

Upon calling this subroutine, a message can be typed and transferred directly into core (ASCII code). Upon reaching the maximum bytes allowed, a message is typed on the TTY: NO MORE MESSAGE SPACE. If end-of-message is reached before all the message space is used, control A will cause the program to terminate and exit to the monitor. If a mistake is made in typing a character or characters the backward arrow < will backspace one character (one ASCII byte) for each < typed. The correct character or characters then may be typed.

*Message Entry Subroutine

3600	4300	36E0	GO TO MORE SPACE
3604	4200	0000	
3608	4200	0000	
3600	0P 00		CLEAR RO
360E	0200		
3610	4000	3608	SAVE COUNTER X
3614	C830	0002	PUT TTY IN READ MODE
3618	DE 30	0A04	67
3610	9D34		SENSE STATUS, LOAP COND. CODE
361F	0844		
3620	4230	3610	BRANCH ON BUSY TO SENSE STATUS

11.21	624	9F 3 9		READ DATA
10	626	0200		
1	628	4300	3708	GO CHECK FOR < CHARACTER (A < IS TYPED TO ERACE
5	62C	C 5 9 0	0081	IS THE CHAR. A CONTROL A (CHAR. FOR END OF MESSAGE)?
2.0	630	4330	36D0	IF SO, GO IO EXIT
ò	634	4B 1 0	36CA	HAS MAXIMUM # OF BYTES BEEN TYPED?
15	638	4310	3678	IF SO, TYPE OUT "NO MORE MESSAGE SPACE"
3	63C	C590	0021	IS THE CHAR. "!"?
3	640	4330	3664	BRANCH ON =
3	644	4810	3608	LOAD COUNTER
3	648	D291	3720	STORE BYTE IN CORE
3	64C	CA10	0001	ADD 1 TO X
5	650	4010	3608	SAVE
3	654	4200	0000	
ß	65 8	4200	0000	
3	65C	4300	3610	CONTINUE
5	660	4200	υυυυ	
3	664	41 E O	3478	COMES HERE IF CHAR IS "1" GO TO TYPE OUT
3	668	368E	369F	
3	66C	0001		
3	66E	0200		
3	670	4300	36D0 ·	GO TO EXIT
3	674	4200	0000	
3	678	41E0	3478	TYPE OUT "NO MORE MESSAGE SPACE"
3	67C	36A8	3 6C 1	

3680 00) 1						
3682 02	00						
3684 43	00 36D0	GO TO EX	IT				
3688 00	00						
368A 00	00						
3680 00	00						
368E 8D	A COCE	STORAGE	FOR TTY	CODE	CR,LF	END OF M	IESSAGE
3692 C4	O CFC6						
3696 A 0	CD C5D3						
369A D3	CI C7C5						
369E 8D	BA 0000						
36A 2 00	00						
36A4 00	00						
36A6 00	00						
36A 8 8D	BA AOCE	**			CR,LF	NO MORE SPACE	MESSAGE
36AC CF	AO CDCF						
3680 D2	C5 AOCD						
3684 C5	D3 D3C1						
3688 C7	C5 AOD3						
36PC DO	C1 C3C5						
36C0 8D	8A 0000	STORAGE	FOR TTY	CONSTANT	[S	•	
3604 00	00						
3606 00	00						
3608	0003		STORAGE FOR COUNTER				
-------	-------	-------	--------------------------------------				
36CA	0003		" MAXIMUM # BYTES ALLOWED IN MESSAGE				
3600	3814	0000	** RE				
3600	48E 0	3600	RESTORE RE				
36D4	CAEO	0004	ADD 4				
36D8	030F	•	RETURN				
36DA	0000						
36DC	0000						
36DE	0000						
36E 0	40E 0	3600	SAVE FE				
36E 4	488F	0000	LOAD ((RE)) INTO R6				
36E8	4080	36CA	SAVE MAXIMUM # OF BYTES				
36EC	CAEO	0002	ADD 2 TO RE				
36F0	488E	0000	LOAD ((RE)) INTO R8				
36F4	4080	3644	SAVE STARTING LOCATION				
36F8	4300	3604	GO BACK AND CONTINUE				
367C	73EE	73EC					
3700	73EC	73EC					
3704	73EC	73EC					
3708	4810	3608	LOAD COUNTER				
370C	C590	003C	IS IT "<"?				
3710	4230	3 620	BRANCH ON NOT =				
3714	CB10	0001	SUBTRACT I FROM COUNTER				
3718	4010	3608	STORE				
3710	4300	3610	CONTINUE				

3720	FFD7	0704	STURAGE FOR REPLY
3724	C941	CC00	
3728	0000		
372A	73EA	73EC	
372F	73EC	73EC	•
3732	73EC	41E0	SAMPLE PROG FOR USING MESSAGE ENTRY
3736	3600	0020	BAL TO MESSAGE ENTRY
373A	05D0		FIRST PARAMETER* # OF BYTES ALLOWED SECOND PARAMETER* STORAGE PLACE FOR ANSWER
373C	4300	1080	GO TO MONITOR

>

4.46 Accelerometer Data Block Entry Program

This program allows the user of the system to enter data about the accelerometer under test such as manufacturer, model number, serial number, amplifier used, etcetera. The program is started at location 3740 (see figure 4-16). The program then asks the operator a series of questions about the accelerometer and associated equipment. As the answers are typed on the TTY by the operator, the ASCII code is stored in proper locations in core (see Section 4.35).

There are two options at the beginning of the program, the "PARTIAL" and the "ALL" modes. If the operator types "ALL" in response to the question "ALL OR PARTIAL", the program then goes through and asks a series of sixteen questions. At the end of the sixteen questions, the program returns to Monitor. For the "PARTIAL" option, the operator must request which parameter he wishes to enter by typing one of the following two letter codes.

FN	for	file number	AS	for	amplifier serial number
TN		test number	CU		customer
CA		capacitance	DC		data of calibration
PM		accelerometer manufacturer	E1		exciter 1
PN		accelerometer model number	E2		exciter 2
PS		accelerometer serial number	\$ 1		standard 1
AM		amplifier manufacturer	S2		standard 2
AN		amplifier model number	GA		gain

The operator must enter one of the codes above. The program then asks the question corresponding to the code which was entered. In the "PARTIAL" mode, the program always types "ANOTHER CHANGE?" after each entry. The proper answer is "YES" or "NO".

The data entered by this program together with the data of the calibration factors form a data package located in 2900-3200 (see Section 4.35). This data package can then be entered into a file on magnetic tape by a subroutine call.

Accelerometer Data Block Entry Program

3740	4200	0000	
3744	4200	0000	
3748	41E O	3478	TYPE OUT "ALL OR PARTIAL CHANGES?"
374C	3920	3939	
3750	0001		
3752	0200		
3754	4200	0000	
3758	41E0	3600	BAL TO ENTRY PROGRAM FOR ANSWER
375C	0007		TRANSFER PARAMETERS
375 E	3720	D310 ,	" LOAD ENTRY DATA
3762	3720	C410	PICK OFF LAST 4 PITS
3766	000F		
3768	0811		LOAD RI TO SET CONDITION CODE
376A	0200		
376C	4330	3780	BRANCH IF ANSWEF WAS "PARTIAL"
3770	4200	0000	
3774	0030	0001	LOAD 1
3778	4000	378C	STORE "ALL" FLAG
377C	4300	0400	CLEAR STORAGE TABLES
3780	C800	0000	LOAD O
3784	4000	378C	STORE "PARTIAL" FLAG
3788	4300	3844	BRANCH TO CONTINUE
3790	0000		STORAGE FOR ALL/PARTIAL FLAG
378E	0200		

3790	41C 0	3888	OUTPUT CR,LF
3794	0833		CLEAP R3
3796	0200		
3798	4030	3890	CLEAR COUNTER X, SAVE
3790	4823	38A0	LOAD START LOCATION
37A O	4843	38A2	LOAD # BYTES ALLOWED IN ANSWER
37A4	0A42		ADD TO GET FNDING LOCATION
37A6	4020	3 7B2	STORE START LOCATION
37AA	4040	37P4	STORE END LOCATION
37AE	41E0	3478	TYPE QUESTION
37B2	0000		
37P 4	4 0000	ו	
37R6	0001		
37B8	4300	0430	CLEAR TABLES
37BC	4823	3844	LOAD STORAGE LOCATION
3700	4843	3846	LCAD # PYTES ALLOWED
37C4	4020	37D2	STORE
3708	4040	3700	STORE
37CC	41F0	3600	GO TO MESSAGE ENTRY SUPROUTINE
37D0	000 C		•
37D2	28 7 8	4810	LOAD ALL/PARTIAL FLAG
37D6	378C	4330	PRANCH ON PARTIAL
37DA	3800	4840	LOAD INDEX X
37DE	3890	4830	••
37E2	3890	4200	

37E.6	0000		
37F 8	CB 40	0078	HAS LAST QUESTION BEEN ASKED?
37F C	4310	1080	IF SO GO TO MONITOR
3 7F 0	CA 30	8000	IF NOT, ADD 8 TO INDEX X
37F 4	4030	389C	STORE
37F8	41C 0	3888	OUTPUT CR,LF
37F C	; <u>⊿</u> 300	3790	CONTINUF
008C	4200	0000	
3804	41E0	3478	TYPE "ANOTHER CHANGE?" (ANSWER MUST BE YES OR NO
3808	39DC	39EF	
3800	0001		
380F	0200		
3810	41E 0	3600	BAL TO MESSAGE ENTRY FOR REPLY
3814	0003		
3816	3720	4830	LOAD REPLY
381A	3720	C 530	WAS IT YES?
381E	5905	4330	IF SO, BRANCH
3822	3844	4200	
3826	0000		
3828	C530	4FCF	WAS IT NO?
3820	4330	1080	IF SO, GO TO MONITOR
3830	41F0	3478	IF NEITHER YES OR NO TYPE "WHAT?"
3834	0300		

4-138

3836	0305		
3838	0001		
383A	0200		
383C	4300	3810	TRY AGAIN
3840	4200	0000	
3844	41E0	3478	TYPE "WHICH ?"
3848	0306		
384A	03CF		
384C	0001		
384E	0200		
3850	41F0	3600	BAL TO MESSAGE ENTRY FOR REPLY
3854	0003		
3856	3720	4830	LOAD REPLY
385A	3720	41C0	TYPE CR LF
385 E	3888	0B 55	CLEAR R5
3862	0200		
3864	4535	0340	COMPARE (E3): (03A0+(R5)) WHICH PARAMETER ?
3868	4230	3878	BRANCH IF THIS IS NOT IT
386C	C830	0004	LOAD 4
3870	0025		MULT COUNTER R5 BY 4
3872	0200		
3874	4300	3790	GO TO TYPE OUT THE QUESTION
3878	CA 50	0002	ADD 2 TO INDEX
387C	0550	0080	COMPARE COUNTER 55 TO UPPER LIMIT

ł

3880	4330	3844	IF IMPROPER PARAMETER WAS TYPED, TYPE	"WHICH ?"
3884	4300	3864	CONTINUE	
3888	41E0	3478	OUTPUT CR,LF SUBROUTINE	
388C	03CE			
388F	03CF			
3890	0001			
3892	030C			
3894	0200			
3896	73EC	73EC		
389A	73EA	0079	XXXX, STORAGE FOR COUNTER	
389E	73EC	393A		

>

4.47 Storage Table for Type-Out Constants and Save Locations

This is a storage table for the Accelerometer Data Block Entry Program (see Section 4.46).

Storage Table for Type-Out Constants and Save Locations

?

38A 0	393A	0009	FN
38A 4	2B 00	0004	
38A8	3944	8000	TN
38AC	2B 0	4 0008	
38B 0	394E	0009	CAPAC.=?
38B 4	2B 78	0000	
38B8	3958	000E	PICKUP MNFG?
38BC	2B 1 0	0006	
3800	0300		PICKUP MOD NO
38C2	00 0F		
38C4	2820°	A000	
3808	3968	000C	PICKUP SN=?
38CC	2B I 6	000A	
38D O	3976	000B	AMP MNFG=?
38D4	25 3 0	0006	
38D8	03E0		AMP MOD NO?
38DA	000F		
38DC	2B 40	A0 0 0	
38E 0	3982	0009	AMP SN=?
38E4	2B 3 6	000A	

38E 8	3 3980	C 00 0 B	CUSTOMER?
38E0	2B50	0010 3 000F	DATE OF CALLET?
38F4	2860	0006	DELL OF OFFICE
38F 8	3 3 9 A 8	E 000D	EXCITER #1=?
38F 0	2B66	S 0004	
3900	39B8	000D	EXCITER #2=?
3904	2B 6A	0004	
3908	3908	0009	STD #1=?
390C	2B 70	0004	
3910	39D4	0009	STD #2=?
3914	2B74	0004	
3918	39F0	0007	GAIN?
3910	2B 8 4	007C	
3920	41CC	CCAO	ALL OR PARTIAL CHANGES?
3924	CFD2	A050	
3928	41D2	D 4C 9	
392C	4100	A OC 3	
3930	4841	4E 4 7	
3934	C553	3F8D	• *
3938	0 4 4 0		
393A	C6C9	CCC5	FILE #=?
393E	A 3B D	3F8D	
3942	OAAO		

3944	D4C5	53D4	TEST #=?
3948	A 3B D	3 F 8D	
394C	0 A A 0		
394E	C341	5041	CAPAC.=?
3952	C 32E	BD3F	
3956	8D0A	5 OC 9	PICKUP MNFG=?
395A	C 3 4P	5550	
395E	A 04D	4EÇ6	
3962	47BD	3F8D	
3966	0 A A O		
3968	50C9	C34B	PICKUP SN=?
396C	5550	A 053	
3970	4EBD	3 F 8D	
3974	OAAO		
3976	414D	50A0	AMP MNFG= ?
397A	4D 4F	C647	
397E	BD3F	8D OA	
39 82	414D	50A0	AMP SN=?
3986	534È	BD3F	
398A	8DOA	C355	CUSTOMER = ?
398E	53D4	CF4D	
3992	C 5 D 2	BD3F	
3996	ADDS	4441	DATA OF CALIP=?

•

3994 D4C5 AOCF 399E C6AO C341 39A2 CCC9 423F 39A6 PDDA C5DP FXCITER #1=? 39AA C3C9 D4C5 39AE FRAD A3P1 39P2 PD3F PD0A EXCITER #2=? 39P6 A 0A 0 C5D8 39PA C3C9 04C5 39PE D2AD A3E2 3902 RD3F 8DOA 3906 A CAO 53D4 STD #1=? 39CA 442E A3B1 39CE BD3F 8D0A 39D2 A0A0 53D4 STP #2=? 3.9D6 442E A3P2 39DA PD3F 8DOA 39DE 414F CED4 ANOTHER CHANGE? 37F2 48C5 D2A0 39E6 C348 414E 39EA 47C5 3F8D 39FF DAAD 39F0 4741 C94F CAIN? 39F4 3FPD OAAD

>

DISCUSSION

Accurate reference accelerometers need to be calibrated with a minimum of time spent in recalibration consistent with accuracy requirements. The automated system for accelerometer calibration was set up to provide a precision calibration facility and to shorten the time required to perform Another advantage of this type of system is that it is possible calibrations. to collect more data on control accelerometers. Those control accelerometers which are known to be reliable are maintained as control units for measuring the repeatability of the system. One of the control accelerometers is calibrated each day the system is in use on two exciters and the results are kept on file. Although deviations from the normal sensitivity may be spotted by the operator, checking the deviations based on data collected over a long time frame is desirable. Data have been collected over a four-year period on the control accelerometers using the automated system. Figures 5-1 and 5-2 show the history at 400 Hz over a two-year time span. All the data in figure 5-1 are from one control accelerometer on one exciter. The data in figure 5-2 are for the same accelerometer (number 1) up to day 256. From day 256 on, the data are for a second control accelerometer (number 2) with the same nominal sensitivity. Figure 5-3 shows a histogram for 1972 for control accelerometer 1 in terms of accumulative average percent deviation from the mean for a frequency of 400 Hz on two exciters. This is based on 131 data points on each exciter. This gives a measure of the probability that a given data point will deviate from the mean sensitivity by a certain amount in percent. For example, figure 5-3 indicates that 90 percent of the time the deviation from the mean at 400 Hz should be 0.5 percent or less. Figure 5-4 shows the same histogram for 1973.

By accumulating data over a long period of time, a data bank can be valuable for quality control of the system. This type of information can be incorporated into a software program in the minicomputer to set upper and lower bands for deviations of the control accelerometer. For data falling outside these bands, the computer can be programmed to respond with messages on the TTY or if desirable, to halt the system. Instead of a go or no go diagnostic, an analysis of the current data from a control accelerometer could give deviations from the mean based on the mean in the data bank for each test frequency. These deviations could then be translated into frequency of occurence as seen in figures 5-3 and 5-4. A diagnostic message can be printed to indicate in what region the current data lie in terms of the probability density of the data bank.

O F Y E A R

D A Y

5-4

FIGURE 5-4. HISTOGRAM OF A CONTROL ACCELEROMETER FOR 1973

.

...

In Section 2 of this report the hardware components listed a wave analyzer and dc power supply as equipment for future expansion of the system. The wave analyzer is tunable by a dc voltage and can be programmed by remotely tuning it to read harmonic distortion. One of the digital to analog converters used with the x-y plotter can be used to tune the analyzer. Since the digital to analog converter has a range of ± 10 volts dc, a dc power supply is needed to supplement it to give ± 20 volts dc. This can be accomplished by switching in either a +10 volts or a -10 volts in series with the analog to digital converter. The software for the analyzer would tune the analyzer for each harmonic of a given test frequency, one at a time. The output from the analyzer would then be read by the DVM and the percentage distortion calculated for each harmonic. This could be printed out after each test point on the TTY or it could be stored and printed in a summary statement at the end of a test. Such a procedure would slow down the calibration process considerably. However, it would add valuable information regarding the calibration process.

An alternative procedure would be the use of a real time programable analyzer now commercially available. This could be programmed to take a spectrum analysis at each test frequency and the harmonic amplitudes could be stored for analysis and for a summary statement.

The major source of failure in the hardware has been in the interface cards. These cards were not as reliable as the other minicomputer hardware. During the course of over four years of operation, the main frame computer hardware has needed only two service calls. The interface cards needed several service calls during the first two years of operation. Apparently, most of the bugs were removed during these two years. The test instruments which are used by the automated system have proven reliable except for the ac/dc converters which have a fairly high rate of failure. A good procedure is to have a backup instrument for each test instrument used by the system. This is necessary if continuous use is to be made of the system.

6. ACKNOWLEDGMENTS

The sponsorship of this project by the Department of the Defense Calibration Coordination Group is gratefully acknowledged. The success of this project is indebted to the following people whose contributions are gratefully acknowledged: Seymour Edelman, Roscoe Bloss, and John Ramboz for planning and encouragement; Carson Meadors and Benton Durley III for component layout and wiring; Charles Federman for assisting in schematic drawings; Jim Pollard for checkout and testing; Phillip Stein for use of his monitor program and magnetic tape drive software; and Linda Ross for aid in manuscript preparation and typing.

7. **REFERENCES**

- B. F. Payne, "Absolute Calibration of Vibration Generators with Time-Sharing Computer as Integral Part of System", <u>The Shock and</u> <u>Vibration Bulletin</u>, 36, Part 6, Feb. 1967, pp. 183-194.
- Samuel Levy and Raymond R. Bouche, "Calibration of Vibration Pickups by the Reciprocity Method", <u>Journal of Research NBS 57</u>, pp. 227-243 (1956) RP2714.
- T. Dimoff, "Electrodynamic Vibration Standard with a Ceramic Moving Element", Journal of the Acoustical Society of America, Vol. 40, No. 3, Sept. 1966, pp. 671-676.
- B. F. Payne, "An Automated Precision Calibration System for Accelerometers", 17th National Aerospace Instrumentation Symposium, May 1971.
- 5. V. A. Schmidt, S. Edelman, E. R. Smith, and E. T. Pierce, "Modulated Photoelectric Measurement of Vibration", <u>Journal of</u> <u>the Acoustical Society of America</u>, Vol 34, No. 4, pp. 445-458 (1962).

SYSTEM INSTRUMENTS

ADDITION COLOR					
BIBLIUGRAPHIC DATA SHEET	NESTR 74-482	2. Gove Arces ind No.	3. Leopone - Allocision No.		
4. TITLE AND SUBTITLE			5. Publication Date		
AN AUTOMATED OVETEM	FOR PRECISION CALIBRATION		April 1974		
OF ACCELEROMETERS		6. Performing Organization Code			
7. AUTHOR(S)			8. Performing Organ. Report No.		
9. PERFORMING ORGANIZAT	ION NAME AND ADDRESS		10. Project/Task/Work Unit No.		
NATIONAL E DEPARTMEN WASHINGTO	BUREAU OF STANDARDS IT OF COMMERCE N, D.C. 20234		11. Contract/Grant No.		
12. Sponsoring Organization Na	me and Complete Address (Street, City,	State, ZIP)	13. Type of Report & Period Covered		
	· ·		14. Sponsoring Agency Code CCG 69-13		
15 SUDDI EMENTARY NOTES					

5. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

The report describes an automated system for accelerometer calibration under realtime control by a small, dedicated digital computer. The hardware components of the system and the software programs are given. The software automatically regulates the rate and amount of data collected based on analysis of input data. Printout of the frequency response of test accelerometers is on a teletypewriter and also can be stored on a magnetic tape. Manual operation of the system is also described.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons)

Acceleration, automation, calibration, measurements, minicomputer, shakers, standards, transducers, vibration, vibration exciters, vibration pickups.

18.	AVAILABILITY	X Unlimited	19. SECURITY CLASS (THIS REPORT)	21. NO. OF PAGES
	For Official Distribution. Do Not Release to NTIS		UNCL ASSIFIED	
	Order From Sup. of Doc., Nashington, D.C. 20402,	U.S. Government Printing Office SD Cat. No. C13	20. SECURITY CLASS (THIS PAGE)	22. Price
	Crder From National Tec Springfield, Virginia 2215	hnical Information Service (NTIS)	UNCLASSIFIED	

FIGURE 3-4. SUMMARY FLOW CHART

•

