1001R 19-440

NASA CR-134599

ALKALI OXIDE-TANTALUM OXIDE AND ALKALI OXIDE-NIOBIUM OXIDE IONIC CONDUCTORS

by

R. S. Roth, H. S. Parker, W. S. Brower and D. Minor

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT C-29933C

NATIONAL BUREAU OF STANDARDS WASHINGTON, D.C. 20234 .

· · ·

4

.

		the second se
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
CR-134599		NBSIR 74-440
4. Title and Subtitle		5. Report Date
ALKALI OXIDE-TANTALUM OXIDE A	ND ALKALI OXIDE-NIOBIUM OXIDE	April 1974
IONIC CONDUCTORS		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
R. S. Roth, H. S. Parker, W.	S. Brower and D. Minor	
		10. Work Unit No.
9. Performing Organization Name and Addres	s	УОК 5650
National Bureau of Standards		11. Contract or Grant No.
Washington, D.C. 20234		C - 29933C
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		Final Report
National Aeronautics and Spac	e Administration	
Lewis Research Center		14. Sponsoring Agency Code
Cleveland, Ohio 44135		
15. Supplementary Notes		
Project Manager: Patricia Of	Donnell	

16. Abstract

A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb_2O_5 -LiNbO₃, Nb_2O_5 -NaNbO₃, Nb_2O_5 -KNbO₃, Ta_2O_5 -NaTaO₃, Ta_2O_5 -LiTaO₃ and Ta_2O_5 -KTaO₃. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaulated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta_2O_5 -KTaO₃ contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

 17. Key Words (Suggested by Author(s)) Alkali ions Ionic conductors Niobates Tantalates		18, Distribution Statement Unclassified, Un	limited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (o Unclassified	of this page)	21. No. of Pages 59	22. Price*

* For sale by the National Technical Information Service, Springfield, Virginia 22151

and the second se

TABLE OF CONTENTS

SUMMAR	RY	•••	•		••	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	2
INTRO	DUCTION		•	• •	•••	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	3
DISCUS	SSION OF	RESUL	TS																				
The	e System	Nb205	-Li	Nb0 3	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	4
The	e System	Ta ₂ 05	-Li	TaO		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	4
The	e System	Nb ₂ O ₅	-Na	NbO	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
The	e System	Ta ₂ 05	-Na	TaO ₃		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	6
The	e System	Nb ₂ O ₅	-KN	bO	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
The	e System	Ta ₂ 0 ₅	-KT	aO			•	•		•	•	•	•	•	•	•	•	•	•	•	•		7
Oth	ner Syste	ems .	•	•••	• •		•	•			•	•	•	•	•	•	•	•	•	•	•	•	8
Pol	lycrysta	lline	Spe	cimer	n P	re	pai	rat	cic	on	•		•		•	•	•	•		•	•	•	9
Cry	ystal Gro	owth	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
	Nb ₂ 0 ₅ -Ki	vpo'		• •		•	•	•	•	•	•				•		•	•		•	•	•	11
	12K_0:88	3Nb_0_		• •		•	•	•	•	•		•		•	•	•	•			•	•	•	11
	17.5K_0	82.5N	, 1b_0	5 • ·		•	•	•	•	•	•	•	•	•	•	•		•			•	•	12
	Ta ₂ O ₅ :KT	TaO,	•	•••	•••	•		•	•	•	•	•		•	•	•			•	•		•	12
	Ta ₂ O ₅ :Li	iTaO,	Sys	tem		•		•	•	•	•	•	•	•	•	•			•	•	•	•	12
	Nb ₂ O ₅ -Na	aNbO ₂	Sys	tem		•		•		•	•		•	•	•	•	•	•				•	13
	Ta ₂ O ₅ -Na	aTaO,	Sys	tem .				•	•	•	•	•	•		•	•	•	•			•	•	13
Str	cuctural	Mecha	nis	ms of	ΕN	on	-SI	toi	ĹĊł	nic	ome	etr	y	ir	n A	11	al	i-	-				
Nic	obates ar	nd Tan	tal	es	•••	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	13
	HTB .	•••	•	•••	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	14
	TTB .	• • •	•	• •	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
	GTB .	•••	•	• •	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
	TTBs .		•	• •	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
	Other Ph	nases	•	•••	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17
SUMMAR	RY OF RES	SULTS	•	•••	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
FUTURE	E WORK .	•••	•	• •	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
REFERE	ENCES .	•••	•	••	•••	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	20
FIGURE	E CAPTION	4S	•	•••	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	22
TABLES	5 OF EXPI	ERIMEN	TAL	DATA	÷.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	34
DISTRI	BUTION 1	LIST .																	•				53

SUMMARY

This report summarizes work carried out between October 1972 and October 1973 under an agreement with the National Aeronautics and Space Administration, Lewis Research Center (Interagency Order C-29933-C) to study the phase equilibria of alkali oxide-tantalum and niobium oxide systems and synthesis of phases which might have interesting ionic conductivity.

The phase equilibrium relations of six systems were investigated in detail. These consisted of lithium, sodium and potassium tantalate, and niobate with the corresponding tantalum and niobium oxide. In addition, various other binary and ternary systems involving alkali oxides were examined in lesser detail. In all, thirteen phases were found to contain structures of sufficient interest to warrant further investigation. Nineteen phases were prepared as solid pellets and transmitted to LeRC for evaluation by dielectric loss measurement. Attempts were made to grow eight different phases as large single crystals, and two were submitted to LeRC for evaluation.

In terms of ionic conductivity, the most interesting phases from a structural point of view are those containing large tunnels only partially occupied by alkali ions. The potassium tantalate system contained four such phases, designated GTB, TTBs, HTB, and TTB (see table 6 for meaning of these initials). In all cases, the TB refers to a tungsten bronze type structure. Those phases which exhibit a maximum in the dielectric loss vs. temperature curves proved to be high temperature phases which are generally metastable at room temperature and do not have favorable melting characteristics for crystal growth directly from the melt.

In the coming year efforts will be expanded to include rubidium systems as well as antimonates and mixed tantalum-tungstates, in an effort to isolate an ionic conducting phase with favorable crystal growth possiblities.

INTRODUCTION

In the search for new ionic conductors, compounds in oxide systems need to be examined for structure types where packing of the complex ions of the skeletal structure has the potential to produce loosely bound alkali ions.

The compounds of alkali oxides with tantalum oxide and with niobium oxide represent a class of such materials. The program summarized in this report involved the investigation of the phase diagrams to determine the phases which are actually contained in these systems and to define selected phases of potential interest as solid ionic conductors. Subsequent to this determination specimens were prepared of single phase polycrystalline ceramic pellets for screening measurements and, finally, attempts were made to grow single crystals of those materials which appeared most interesting and feasible. All the phases encountered were identified by single crystal x-ray diffraction patterns and/or identity with previously reported structures. For fast ion transport, it is probably advantageous to have an alkali ion in a "non-stoichiometric" crystallographic position. For commerical utilization of ionic conductivity, it is necessary to limit systems to those which will contain little or no electronic conductivity and, therefore, do not contain an element which is easily reduced during the synthesis. The Ta⁺⁵ ion is apparently very difficult to reduce [1], and thus is ideally suitable as a host lattice for alkali "superionic-conductivity". Some preliminary work on alkali tantalate and niobate systems has been previously summarized by the present authors [2]. A complete detailed analysis of these systems is presently being prepared for publication and will be submitted to the Journal of Solid State Chemistry in the near future [3, 4, 5, 6].

.3

DISCUSSION OF RESULTS

The System Nb205-LiNb03

A phase equilibrium diagram for the system $\text{Li}_2\text{O}-\text{Nb}_2\text{O}_5$ was published by Reisman and Holtzberg [7]. However, this diagram does not show the compound LiNb_3O_8 which is known to occur in this system [8, 9, 10], nor does it show the solid solution of Nb_2O_5 in LiNbO_3 [11] which has been found to be important in the production of large optical quality crystals. A phase equilibrium diagram indicating these corrections was previously published [2]; and this diagram is reproduced here, essentially unchanged, in figure 1. The experiments performed in this laboratory to check this diagram are listed in table 1. The unit cell dimensions of the phases will be given in the summary table of x-ray data near the end of this report (Table 12).

The Nb₂O₅-LiNbO₃ system contains only two intermediate phases, the compound $\text{LiNb}_{3}O_{8}$ and another phase which occurs at a very narrow compositional range near $\text{Li}_{2}O:14\text{Nb}_{2}O_{5}$. This phase was reported independently by the present authors [2] and by Norin and Nolander [12] to have the N-Nb₂O₅ structure. Only this phase and LiNbO₃ itself may be considered to have any interesting non-stoichiometric properties.

A detailed analysis of the work performed in this system, including x-ray diffraction patterns, will be published in the near future [3].

The System Ta₂0₅-LiTaO₃

No phase equilibrium diagram for this system had been published prior to our preliminary work reported in reference [2]. The final phase diagram is shown in figure 2 and the experimental data from which it was constructed are listed in table 2. The present diagram differs from that given in [2] only in the first 5 mole percent Li_20 content and near the melting point of LiTa_30_{o} .

Lithium oxide has been found to stabilize the low temperature polymorph of Ta_2O_5 (L- Ta_2O_5); and, therefore, non-stoichiometric solid solutions appear on both sides of this system. There is only one intermediate compound, Li Ta_3O_8 , but it is trimorphic and apparently has no appre-

ciable non-stoichiometric region within the binary phase diagram. The low temperature form of $\text{LiTa}_{3}O_{8}$ is isostructural with $\text{LiNb}_{3}O_{8}$, the intermediate form is isostructural with the mineral wodginite, and the high temperature form is similar in structure to $\text{LiTa}_{6}O_{15}F$ and $\text{LiNb}_{6}O_{15}F$ [13].

The unit cell dimensions will be listed in the summary table of x-ray data near the end of the report (Table 12) and a detailed analysis of the work performed in this system, including x-ray diffraction patterns, will be published in the near future [3].

The System Nb205-NaNb03

This system has been studied by several different groups and phase equilibrium diagrams were published by Reisman, Holtzberg and Banks [14], and by Shafer and Roy [15]. The former group reported a 1:4 and a 1:14 compound whereas the second reference shows 1:4, 1:7, and 1:10 compounds. These type of ratios represent mole ratio of alkali oxide to niobium (or tantalum) oxide. Sten Andersson [16] has shown that the high Nb₂O₅ content phase occurs at the 1:13 ratio (NaNb₁₃O₃₃) from crystal structure analyses [17] and found the other phase to occur at the 1:3 ratio (NaNb₃O₈). He found the compounds Na₂Nb₄O₁₁ and NaNb₆O₁₅ (OH) only in hydrothermal experiments at 500-700°C and 2000 atm. In a crystal structure analysis of Andersson's NaNb₃O₈ crystals, D. C. Craig and N. C. Stephenson decided that the composition of the crystal they examined was most likely Na₁₃Nb₃₅O₉₄ [18].

The phase equilibrium diagram which we have determined for this system is given in figure 3 and the experimental data from which it was determined are listed in table 3. We confirm the 1:13 compound but do not find any other between this and the "NaNb₃O₈" phase. The latter is apparently a non-stoichiometric solid solution with a tetragonal tungsten bronzetype substructure and an orthorhombic superstructure (TTEs). In addition $Na_2Nb_4O_{11}$ was found in equilibrium at lcw temperatures (below about 1000°C) and specimens near the 1:6 ratio was found to react with atmcspheric moisture at temperatures between about 700-900°C to form $NaNb_6O_{15}(OH)$ without the necessity for hydrothermal techniques.

The unit cell dimensions of these phases will be listed in the summary table of x-ray data near the end of the report and a detailed analysis of the work performed in this system, including x-ray diffraction patterns, will be published in the near future [4].

The System Ta205-NaTa03

The phase equilibrium diagram for this system had not been reported prior to our preliminary paper [2] although Reisman [19] had made a subsolidus study up to 1300°C. The diagram given in figure 4 is similar to that of [2] but has been reevaluated for the melting relations of the distorted tetragonal tungsten bronze-like phase (TTBs) between about 20 and 25 mole % Na₂O. This is the only non-stoichiometric phase in the system although apparently a very small amount of Na₂O may be incorporated in L-Ta₂O₅, increasing the phase transition temperature. The only other phase in the system is Na₂Ta₄O₁₁ which has a hexagonal structure similar to the monoclinic Na₂Nb₄O₁₁.

The experimental data from which figure 4 has been constructed are listed in table 4. The unit cell dimensions of these phases will be listed in the summary table of x-ray data near the end of this report. A detailed analysis of the work performed in this system, including x-ray diffraction patterns, will be published in the near future [4].

The System Nb205-KNb03

A phase equilibrium diagram for this system was previously reported by Reisman and Holtzberg [20]. Additional information on compound formation, crystal growth, and unit cell dimensions has been published by Guerchais [21], Whiston and Smith [22], and Nassau <u>et al</u> [23]. The phase equilibrium diagram determined in the present study is shown in figure 5 and the experimental data from which it was constructed are listed in table 5.

The system was found to contain six intermediate phases. The unit cell dimensions of each phase are listed in the summary table near the end of this report. From these dimensions it is apparent that at least three of these phases have non-stoichiometric-type structures. These are designated in the phase diagram as GTB, TTBs, and TTB and occur at

about 11.5, 16-20, and 35 mole % K₂O respectively. The former has a structure similar to that reported by Catehouse for a rubidium niobate phase [24] and herein referred to as a Gatehouse tungsten bronze (GTB). The other two have a distorted tetragonal tungsten bronze structure (TTBs) and an undistorted 'bronze' structure (TTB) respectively.

The unit cell dimensions of the 2:3 phase indicate a layer of niobia octahedra with all the potash possibly located in planes. The hydrated form of this phase reveals different x-ray diffraction intensity distributions depending on the hydration direction and rate. This phenomena may possibly indicate different distributions of K^+ ions which depend on the hydration. Ionic conductivity of this phase in a direction parallel to the cleavage, that is, parallel to the K^+ and/or H_2^0 motion should be investigated more carefully.

A detailed analysis of the work performed in this system, including x-ray diffraction patterns, will be published in the near future [5].

The System Ta205-KTa03

The phase equilibrium diagram published for the system $K_2O-Ta_2O_5$ by Reisman <u>et al</u> contained only two compounds between Ta_2O_5 and $KTaO_3$ [25]. The preliminary diagram published by the present authors [2] indicates nine equilibrium phases in this region and two other metastable phases. The present diagram, figure 6, differs from the previous only in the estimated width of the non-stoichiometric phases. The experimental data from which this diagram was constructed are listed in table 6.

The system was found to contain four stable non-stoichiometric regions in addition to five stable, apparently stoichiometric, phases. The phases with ron-stoichiometric type structures include a Gatehouse tungsten bronze (GTB) at about 11.5 mole % K_2^{0} , an orthorhombic distorted tetragonal tungsten bronze with superstructure (TTBs) between about 15-20 mole % K_2^{0} , a hexagonal tungsten bronze (HTB) at about 21.75 mole % K_2^{0} , existing over a very narrow temperature region below the solidus, and an undistorted tetragonal tungsten bronze with no superstructure at \sim 34 mole % K_2^{0} . Figures 7, 8, 9, and 10 show the results of measuring the dielectric loss (epsilon) versus temperature at a number of frequencies

for these four non-stoichiometric phases. The GTB and HTB phases show excellent ionic mobility. Unfortunately, single crystals of these phases have not yet been grown. The difficulty is due mainly to the very narrow primary phase field. An attempt must be made to find a system with wider primary phase regions for these structures, possibly in systems with Rb₂O, which can then be ion exchanged.

Other Systems

In the course of this study, a considerable number of specimens were investigated with compositions not included in the six systems described previously. The ternary systems involving these six systems with MoO_3 were all examined briefly for the purposes of growth of small crystals [2]. The compositions of the crystal growth preparations will be detailed at a later date [3, 4, 5, 6].

Several of these six binary systems were also examined in conjunction with WO_3 , especially the psuedo-binary joins $NaTaO_3-WO_3$ and $KTaO_3-WO_3$. The $NaTaO_3-WO_3$ system proved to be completely non-binary and contained mostly solid solutions of sodium tungstates in the sodium tantalate type phases. However, the $KTaO_3-WO_3$ system is apparently a psuedo-binary system below the solidus and contains at least five phases. The compositions of the phases are about 25, 50, 50, 70, and 90 mole % WO_3 . The ternary system $KTaO_3-WO_3-K_2WO_4$ has been found to be a promising flux system for crystal growth of both the pyrochlore and hexagonal tungsten bronze (HTB) type phases. Further work on this ternary will be conducted in the next year.

Some compositions in the $\text{Li}_2\text{O}-\text{Ta}_2\text{O}_5-\text{WO}_3$ system were prepared and examined for the purpose of introducing non-stoichiometry into the H-LiTa_3O_8 structure. Other compositions in the system $\text{Li}_2\text{O}-\text{Ta}_2\text{O}_5-\text{TiO}_2$ were also prepared for the same purpose. The WO₃ gave single phase non-stoichiometric solid solutions but showed no ionic mobility (table 7). The TiO₂ specimens did not exhibit solid solution.

A study of the Li₂O-TiO₂ system or rather of the Li₂TiO₃-TiO₂ system revealed only one high temperature intermediate phase. This phase has the ramsdellite structure; but, unfortunately, melts incongruently with the peritectic very close in composition and temperature to the eutectic.

Thus, single phase crystals could not be pulled from the melt. Experiments in the $\text{Li}_2\text{O}-\text{TiO}_2-\text{MOO}_3$ ternary also did not reveal any ideal flux compositions for crystal growth of this phase. The ramsdellite lithium titanate did not exhibit appreciable ionic mobility (table 7). Other experiments with $K_2\text{O}-\text{Li}_2\text{O}-\text{TiO}_2$ and $K_2\text{O}-\text{MgO}-\text{TiO}_2$ revealed a new structure type [26] which also failed the ionic mobility screening tests.

The only experiments performed under this contract which did not involve mixed oxides were conducted in the system NaF-AlF₃-Na₂GeF₆ in an attempt to produce Ge doped NaAlF₄. These experiments were not successful and no NaAlF₄ was obtained.

A few compositions involving the systems $NaSbO_3-Sb_2O_4$ and $KSbO_3-Sb_2O_4$ have been prepared in order to survey possible compound formation in these systems, because Aurivillius [27] has reported K⁺ ions to occur in large tunnels in some potassium antimonates. In addition, several specimens were examined in the ternary systems $KSbO_3-Sb_2O_4-SiO_2$ and $KSbO_3-Sb_2O_4-Al_2O_3$ in an attempt to explain the published data of Spiegelberg [28] who reported a primitive cubic "polymorph" of $KSbO_3$ prepared in a porcelain crucible. These experiments were successful in demonstrating that a small amount of both Si⁺⁴ and Al⁺³ promote the formation of this cubic polymorph. These and similar antimonate systems will be examined in greater detail in the coming year.

Polycrystalline Specimen Preparation

The sections of this report dealing with the phase equilibrium relationships in alkali niobate and tantalate systems have described several phases which, from structual considerations alone, would appear to be worthy of screening for their potential as fast ion conductors. Accordingly, polycrystalline specimens were prepared and submitted to Lewis Research Center for dielectric and conductivity measurements.

The choice of composition and thermal treatment for use in pellet fabrication of a desired phase was made on the basis of the compositional and temperature stability limits of the phase as determined in the phase equilibrium studies. These limits are not always compatible with the sintering characteristics of the powders and, as a consequence, it was

not possible to prepare high density pellets of some of the phases of interest. Several alkali titanate pellets of interest were also prepared as an outgrowth of work under a previous contract. All compositions for use in pellet fabrication were given blending and calcining treatments similar to those utilized in the preparation of compositions for phase equilibrium studies. In the case of phases wherein alkali loss was anticipated during sintering or where a minimum temperature of stability necessitated rapid cooling of the pellets, the exact composition of the pellet was chosen to give as much latitude as possible in the sintering treatment. The appropriate 1:1 alkali niobate or tantalate was used as one constituent of the batch in these systems to avoid the use of carbonates.

Conventional ceramic dry pressing and sintering techniques were utilized for pellet preparation. Dry pressing was performed in steel dies at nominal pressures of the order of 10,000 to 18,000 psi. No organic binders or other additives were utilized except as noted. In general, several test heatings were necessary to determine a suitable time-temperature relationship for sintering. In some cases, excessive recrystallization during sintering, regardless of the schedule followed, prevented the formation of physically sound pellets. As discussed below, hot pressing was found useful in some cases.

The starting compositions after calcining, as well as the as-fired surface and interior of the sintered pellets, were characterized by x-ray diffraction techniques to insure that the final pellets were homogeneous and single phase.

Tables 8, 9, and 10 summarize the compositions, heat treatments and x-ray characterizations of the pellets submitted for evaluation. The results of screening tests conducted by LeRC are given in Table 7.

Crystal Growth

The growth of large single crystals of the various non-stoichiometric phases found in the alkali niobate and tantalate systems is complicated by many factors: (1) some of the desired phases do not exist in equilibrium with the liquid, (2) incongruency, and (3) volatility of the alkali. For these reasons only a few of the compounds found in the phase equilibrium

studies were grown successfully. These were the congruently melting compounds and those incongruent compounds which existed in equilibrium with a liquid over a wide temperature range. In all crystal growth attempts the molten material was contained in either platinum or iridium crucibles which were heated inductively and the desired phase pulled either by the conventional Czochralski technique, or by an approximation to top seeded solution growth.

A number of the more interesting phases do not lend themselves to growth by the more conventional techniques and it will be necessary to explore various flux growth techniques in an effort to obtain crystals of a size suitable for physical property measurements.

The crystal growth experiments (table 11) are summarized as follows: $Nb_2O_5-KNbO_3$

7:13 Phase (TTB)

Growth of the 7:13 phase was attempted from a melt composition of $36.5K_2O:63.5Nb_2O_5$. The first material to crystallize was the 4:9 phase, on continued pulling a small amount of 7:13 phase crystallized out on the side of the 4:9 phase as a polycrystalline mass. As the pull continued the remainder consisted of single phase 2:3. Several different melt compositions were tried and the results were essentially the same, in all cases the 4:9 phase crystallizes out and as more material is removed the composition of the crystallizing phase shifts to the 2:3 phase. Apparently the temperature-composition region over which the 7:13 exists in equilibrium is too small to successfully obtain crystals by the pulling technique.

12K₂0:88Nb₂O₅ (GTB)

Attempts to pull the (GTB) bronze-like phase $12K_2O:88Nb_2O_5$ at a melt composition of $15K_2O:85Nb_2O_5$ resulted in a polycrystalline multiphase mass. This result was not unexpected as an inspection of the phase diagram indicates a very narrow compositonal range where this phase is in equilibrium with the melt. This situation makes it extremely difficult to grow large crystals of the 12:88 phase any place in the $K_2O-Nb_2O_5$

binary. Only by going to a flux system can one possibly expect to grow this phase.

17.5K₂0:82.5Nb₂0₅ (TTBs)

Attempts to grow the TTB phase from a melt composition of $20K_20:80Nb_20_5$ resulted in essentially single phase polycrystalline TTB with very fine grain size. This phase would be a likely candidate for top seeded solution growth (TSSG) or possibly the accelerated crucible rotation technique (ACR).

Ta₂0₅:KTa0₃

TTB Phase

As determined from phase equilibria studies, the TTB phase melts incongruently. For the crystal growth attempts, a melt composition of $45K_20:55Ta_2O_5$ was chosen. With this composition and using a pull rate of 0.2 in/hr crystals of the desired phase were grown. The maximum diameter attained was the order of 1/8 in. diameter at the stated pull rate. The growth of larger crystals would necessitate much slower growth rates, as with top seeded solution growth.

Ta₂O₅:LiTaO₃ System

1:3

Single crystals of the 1:3 phase were grown both "on composition" and from compositions slightly rich in Li₂O. The "as-grown" crystals were light brown to colorless depending upon cooling rate. Subsequent annealing in air removed all traces of brown color. The reason for this change in color is not known.

5:95 Phase

The 5:95 phase or $L-Ta_2O_5$ has been grown in sizes up to as large as 2 cm long and 1.5 cm diameter. This is an incongruent melting compound and growth was by top seeded solution growth starting at a composition of $15Li_2O:85Ta_2O_5$. These are the first large crystals of $L-Ta_2O_5$ ever grown and are being used for a structure determination using neutron diffraction, in order to obtain a better knowledge of the mechanism of nonstoichiometry. The crystals are almost colorless when first grown but gradually turn yellow on exposure to light.

Nb205-NaNb03 System

1:3 Phase

Single crystals of the 1:3 phase could be readily pulled from a melt of the stoichiometric composition, however, there was a problem with cracking which limited the size of usable crystals obtained. The cause of cracking was not investigated.

Ta205-NaTa03 System

21:79 Phase (TTBs)

All attempts to grow crystals of the bronze-type phase by induction heating at ambient pressures were unsuccessful due to the rapid loss of Na $_2$ O from the melt.

Structural Mechanisms of Non-stoichiometry in Alkali-Niobates and Tantalates

An abnormally large number of phases have been found in the six systems examined and discussed in this report. In addition to the end members, the Li_2O systems contain two and three phases with Nb_2O_5 and Ta_2O_5 respectively whereas the Na_2O systems contain two and four phases each and the K_2O systems, six and nine phases each. The unit cell dimensions of each of these phases is listed in table 12 together with the pertinent crystallographic data where known.

The occurrence of the tungsten-bronze-type structures in these alkali niobate and tantalate binary systems is somewhat disconcerting, as the $A_{x}BO_{3}$ compositional range does not fall in these systems for any value other than x=1. It is quite evident, therefore, that it is impossible to have niobium and tantalum oxygen octahedra and pentagonal bipyramids form in a network structure in which only a non-stoichiometric amount of alkali ions compensate the framework for electrical neutrality. One possible hypothetical alternate of oxygen vacancies is both esthetically displeasing and structurally unsound. Furthermore, such structures have not been previously found to exist.

The most likely explanation, and one based on preliminary structural evidence of a similar phase, is that of interstitial niobium (or tantalum) ions. B. M. Gatehouse [24] has shown that niobium can occur interstitially in a rubidium hexagonal tungsten bronze structure in the 9-fold tricapped-prism interstitial vacancy common to all of the tungsten bronze-type structures. Gatehouse has suggested that the composition of this hexagonal bronze phase would be RbNb_{3.4}0₉ or 22.72 mole % Rb₂O. Some hypotheses can be made, on the basis of Gatehouse's work, concerning the mechanism of non-stoichiometry in the phases observed in this study.

In the system $Ta_2O_5-KTaO_3$, a phase having the hexagonal tungsten bronze structure has been observed to occur at about 21.75 mole % K_2O . By analogy to the $RbNb_{3.4}O_9$ phase, this can be considered to be $KTa_{3.4}O_9$. However, this formula would indicate 22.72 mole % K_2O which is definitely not the case. The composition 21.75 mole % K_2O would correspond to the formula $K_{0.95}Ta_{3.41}O_9$ and this non-stoichiometric phase must contain alkali vacancies as well as tantalum interstitials.

TTB

This same analogy may be used to explain the non-stoichiometry in the tetragonal tungsten bronze phases which occur with no sign of superstructure in both the Ta_2O_5 -KTaO_3 and Nb_2O_5 -KNbO_3 systems. The formula for one unit cell of the tetragonal tungsten bronze structure is $A_6B_{10}O_{30}$. If all the B ions have a valence of +5, then the formula for the ideal end member would be $K_6^{+1}B_{10.8}^{+5}O_{30}$ or 35.71 mole % K₂O. In the Nb_2O_5 -KNbO_3 system this phase has been observed at \sim 35 mole % K₂O corresponding to the formula K_{5.83}Nb_{10.83}O₃₀. In the Ta_2O_5 -KTaO_3 system, this phase has been observed at \sim 33 1/3 mole % K₂O corresponding to the formula K_{5.45}Ta_{10.91}O₃₀.

In his paper on rubidium niobates, Gatehouse discussed a new structure type containing 4-, 5-, 6-, and 7-sided tunnels which may be partially occupied by alkali ions. This phase has been called the Gatehouse tungsten bronze in the present paper and was observed to occur at about 11.5 mole % K₂O in both the Ta₂O₅-KTaO₂ and Nb₂O₅-KNbO₂ systems. Gatehouse was unable to arrive at a correct composition for this phase, but in a personal communication confirmed the proposed structure: ". . . having recently obtained some magnificent lattice image photographs which completely confirm the basic structure--7-sided holes and all." The basic formula for this structure is $A_8B_{54}O_{146}$. If all the B ions have a valence of +5 and the excess is supplied via interstitual B⁺⁵ ions then the ideal end member composition would be $A_8^{+1}B_{54}^{+5} + 2.8^{\circ}146^{\circ}$ This ideal formula would correspond to 12.35 mole % alkali oxide. The formula for the observed 11.5 mole % composition would be K7.4^B54 + 2.92^O146 when B is either Nb⁺⁵ or Ta⁺⁵. The solid solution region probably goes down to at least a composition of $K_{7}B_{57}O_{146}$ (10.94 mole % $K_{2}O$) and possibly even slightly lower in κ^{+} content. It should be pointed out that this hypothesis involves K^+ ions in both the six and seven (or possible four) sided tunnels whereas Gatehouse explicitly stated that the seven- and four-sided tunnels appeared to be empty. It is obvious that the details of this structure need to be examined with more accurate data. Dr. Gatehouse has informed us that he is now refining three dimensional crystallographic data on his rubidium niobate, and NBS will attempt to do an accurate single crystal crystallographic study of the chemically well-charac terized potassium niobate phase.

TTBs

The case of the TTBs phase, that is, the orthorhombic tetragonal tungsten bronze with superstructure indicating that one of the <u>a</u> tetragonal axes is tripled, is more complex then the other three. This phase occurs in all four systems of sodium and potassium with niobium and tantalum. In the Mb_2O_5 -NaNbO₃ system, it occurs between about 22.5 to 27.5 mole % Na_2O and between about 19.5 and 25.5 mole % Na_2O in the Ta_2O_5 -NaTaO₃ system.

However, in the Nb $_2^{0}$ -KNbO $_3$ and Ta $_2^{0}$ -KTaO $_3$ systems, this same structure type occurs between about 15 and 20 mole % K $_2^{0}$. Although the absolute limits of these have not been accurately located, these rough limits of about 15 to 27.5 mole % alkali oxide must be explained.

D. C. Craig and N. C. Stephenson [18] have examined the crystal structure of a specimen of NaNb₃O₈ supplied by S. Andersson [16]. They concluded that the particular crystal examined had the composition Na13Nb35094 or 27.08 mole % Na20 rather than the 25 mole % Na20 suggested by Andersson. Stephenson reports that the tripled "tetragonal-tungsten-bronze" cell has a basic structure of Na Nb 34094 and that twelve excess positive charges must be accommodated by Na and/or Nb distributed in the eight 5-sided tunnels. He considers only the cases of Nb^{+5} + $7Na^{+}$ and $2Nb^{+5}$ + $2Na^{+}$ and says that the former more nearly coincides with the experimental intensities. In this paper [18], Craig and Stephenson dismiss the possibility of Nb⁺⁵ in the three sided tunnels as being ". . . incompatible with the directional properties of the bonding orbitals of niobium (V)." This statement is subject to considerable doubt and leaves open the actual position of the "interstitial" niobium. Apparently Craig and Stephenson did not consider the possibility that this phase might have a non-integral number of Na⁺¹ and Nb⁺⁵ ions, that is, be a composition in the middle of a non-stoichiometric solid solution.

The basic-structure of the tripled tetragonal tungsten bronze (TTBs) unit cell is, therefore, $[A_6^{+1}B_{34}^{+5}O_{94}]^{-12}$ and contains a maximum of eight excess positions for alkali ions. The composition can, therefore, vary from a maximum alkali content of $A_{14}^{+1}B_{34.8}^{+5}O_{94}$ with 28.7 mole % alkali oxide to a minimum alkali content of $A_6^{+1}B_{36.4}^{+5}O_{94}$ with 14.15 mole % alkali oxide. It is noteworthy that the limits of the observed phases, 15 to 27.5 mole % alkali oxide, occur just within the theoretical minimum and maximum values of 14.15 to 28.7 mole % alkali oxide.

In the above four cases, therefore, the most likely structural mechanism for non-stoichiometry is that of transition metal interstitials plus alkali ion vacancies. However, other mechanisms can also be found in the six systems discussed in this report.

Other Phases

The N-Nb₂O₅ phase stabilized by Li_2O can be considered to be Li₂O:14Nb₂O₅ or Li₁₈ (Li_{0.45}Nb_{31.55})O₈₀ with Li⁺ ions substituting for Nb⁺⁵ and also present in interstitial four-sided channels. This non-stoichiometric phase is thus accounted for by a mechanism of alkali substitution plus alkali interstitials.

The high temperature form of LiTa₃O₈ or Li₂Ta₆O₁₆ is apparently isostructural with LiTa₆O₁₅F and Ta₄W₂O₁₆. Either fluorine or tungsten ions can be utilized to generate a non-stoichiometric phase and the structural mechanism is thus alkali ion vacancies plus cation (or anion) substitution.

The low temperature form of Ta_2O_5 (L- Ta_2O_5) is stabilized by the addition of Li_2O . This structure is apparently intrinsically non-stoichiometric with the formula $Ta_{22}O_{55}$ and five oxygen "vacancies" [25]. The Li⁺ ions either substitute for Ta^{+5} creating more anion vacancies or more likely occur interstitially filling some of the anion "vacancies" already present or a mechanism of cation substitution plus anion interstitials.

It should be remembered that all of the mechanisms discussed in this section are hypothetical and must be checked by careful single crystal x-ray diffraction or even neutron diffraction studies. Until such studies can be made, our understanding of the structural mechanisms by which nature compensates a non-stoichiometric phase for electrical neutrality will remain poorly understood.

SUMMARY OF RESULTS

 The phase equilibria of various alkali tantalates have been studied up to and including liquidus temperatures and phase equilibrium diagrams have been constructed most consistent with the experimental data in the systems:

2. The phase equilibria of various alkali niobates have been studied up to and including liquidus temperatures and phase equilibrium diagrams have been constructed most consistent with the experimental data in the systems:

$$^{Nb}2^{O_5}$$
-LiNbO₃
 $^{Nb}2^{O_5}$ -NaNbO₃
 $^{Nb}2^{O_5}$ -KNbO₃

3. Pellets of nineteen phases were transmitted to the sponsoring agency for evaluation and the following three compositions were found to show peaks in the dielectric loss vs. temperature, indicating some ionic mobility.

> $11K_{2}0:89Ta_{2}O_{5} - Gatehouse tungsten bronze structure (GTB)$ $21.75K_{2}0:78.25Ta_{2}O_{5} - Hexagonal tungsten bronze structure (HTB)$ $34K_{2}0:66Ta_{2}O_{5} - Tetragonal tungsten bronze structure (TTB)$

4. Attempts were made to grow large crystals of eight different phases and two crystals were transmitted to the sponsor for evaluation.

FUTURE WORK

- 1. The most interesting phases in the K₂O-Ta₂O₅ system (GTB and HTB) did not have phase equilibria relations favorable for crystal growth from the melt. Preliminary examination of the Rb₂O-Nb₂O₅ and Rb₂O-Ta₂O₅ systems suggests that these systems may be more favorable for melt growth of the GTB and HTB type phases. The phase equilibria in these systems will be examined in more detail and attempts made to grow crystals which might then be ion exchanged.
- 2. Small crystals of the hexagonal tungsten bronze phase in the system KTaO₃-WO₃ have been successfully grown from a potassium tungsten oxide flux. Attempts will be made to grow larger single crystals of this phase for dielectric loss and/or ionic conductivity measurements.
- 3. A cubic phase of KSbO_3 , similar to the high pressure polymorph previously demonstrated to exhibit ionic mobility, has been successfully synthesized by the addition of a small amount of either SiO_2 or Al_2O_3 . The phase equilibria of the Sb_2O_4 -NaSbO₃ and Sb_2O_4 -KSbO₃ systems will be studied and the effects will be studied of various impurities on the stabilization of the cubic modifications of KSbO_3 and NaSbO_3 . Attempts will be made to prepare single crystals of these cubic phases and/or other interesting alkali antimonates.

References

- [1] D. R. Kudrak and M. J. Sienko, J. Inorg. Chem. 6 (1967) 880.
- [2] R. S. Roth, H. S. Parker, W. S. Brower and J. L. Waring, Fast Ion Transport in Solids, Solid State Batteries and Devices, Ed. W. Von Gool. Proceeding of the NATO sponsored Advanced Study Institute, Belgirate, Italy, September 1972, North Holland Publ. Co., Amsterdam (1973) pp. 217-232.
- [3] R. S. Roth, H. S. Parker, W. S. Brower (to be submitted to J. Solid State Chem.)
- [4] R. S. Roth, H. S. Parker, W. S. Brower, J. L. Waring and D. B. Minor to be submitted to J. Solid State Chem.)
- [5] R. S. Roth, H. S. Parker, W. S. Brower and J. L. Waring (to be submitted to J. Solid State Chem.)
- [6] R. S. Roth, H. S. Parker, W. S. Brower and D. B. Minor (to be submitted to J. Solid State Chem.)
- [7] A. Reisman and F. Holtzberg, J. Am. Chem. Soc. 80 (1958) 6503.
- [8] M. Lundberg and S. Andersson, Acta Chem. Scand. 19 (1965) 1376.
- [9] M. Lundberg, Acta Chem. Scand. 25 (1971) 3337.
- [10] B. M. Gatehouse and P. Leverett, Cryst. Struct. Comm. 1 (1972) 83.
- [11] P. Lerner, C. Legras and J. P. Dumas, J. Cryst. Growth 3, 4 (1968) 231.
- [12] R. Norin and B. Nolander, Acta Chem. Scand. 25 (1971) 741.
- [13] M. Lundberg, Acta Chem. Scand. 19 (1965) 2274.
- [14] A. Reisman, F. Holtzberg and E. Banks, J. Am. Chem. Soc. 80 (1958) 37.
- [15] M. W. Shafer and R. Roy, J. Am. Ceram. Soc. 42 (1959) 482.
- [16] S. Andersson, Acta Chem. Scand 21 (1967) 1777.
- [17] S. Andersson, Acta Chem. Scand. 19 (1965) 557.
- [18] D. C. Craig and N. C. Stephenson, J. Solid State Chem. 3 (1971) 89.
- [19] A. Reisman, J. Am. Chem. Soc. 66 (1962) 15.

- [20] A. Reisman and F. Holtzberg, J. Am. Chem. Soc. 77 (1955) 2115.
- [21] J. E. Guerchais, Bull. Soc. Chim. Fr. (1962) 103.
- [22] C. D. Whiston and A. J. Smith, Acta Cryst. 19 (1965) 169.
- [23] K. Nassau, J. W. Shiever and J. L. Bernstein, J. Electrochem. Soc. 116 (1969) 348.
- [24] B. M. Gatehouse, D. J. Lloyd and B. K. Miskin, in "Solid State Chemistry" Proc. 5th Materials Research Symposium, NBS Special Publication 364 (1972) 15.
- [25] A. Reisman, F. Holtzberg, M. Berkenblit and M. Berry, J. Am. Chem. Soc. 78 (1956) 4514.
- [26] R. S. Roth, H. S. Parker and W. S. Brower, Mat. Res. Bull. 8 (1973) 327.
- [27] B. Aurvillius, Arkiv. f. Kemi. 25 (1964) 505.
- [28] P. Spiegelberg, Ark, f. Kemi. Min. och. Geol. 14 [5] (1940) 1.

Figure 1 Phase equilibrium diagram for the system Nb₂O₅-LiNbO₃ redrawn to conform with accepted published data. o - liquidus [7] • - transition [7] • - solidus and solid solution boundary [7,11] X - present work Figure 2 Phase equilibrium diagram of the system Ta₂O₅-LiTaO₃, mostly from reference [2]. o - completely melted - - partially melted • - no melting Figure 3 Phase equilibrium diagram of the system Nb₂O₅-NaNbO₃ X - liquidus values from reference [4] o - completely melted • - partially melted no melting dotted line - a phase resulting from reaction with atmospheric moisture Figure 4 Phase equilibrium diagram for the system Ta₂O₅-NaTaO₃ o - completely melted - partially melted - no melting X - quenched specimen Phase equilibrium diagram for the system Nb₂O₅-KNbO₃ Figure 5 X - liquidus values from reference [20] o - completely melted • - partially melted • - no melting

- Figure 6 Phase equilibrium diagram for the system Ta₂O₅-KTaO₃
 - - solidus and liquidus values from reference [25]
 - o completely melted
 - - partially melted
 - X no melting
- Figure 7 Dielectric loss (epsilon-2) versus reciprocal temperature (theta = $10^3 \times \text{degrees Kelvin}^{-1}$) for a specimen of $11K_20:89Ta_2O_5$ (sample No. 27) having the structure of the Gatehouse Tungsten Bronze (GTB).
- Figure 8 Dielectric loss (epsilon-2) versus reciprocal temperature (theta = 10³ x degrees Kelvin⁻¹) for a specimen of 16.67K₂0:83.33Ta₂O₅ (sample No. 23) having the structure of a Tetragonal Tungsten Bronze modified by superstructure to a tripled cell with orthorhombic (TTBs).
- Figure 9 Dielectric loss (epsilon-2) versus reciprocal temperature (theta = 10³ x degrees Kelvin⁻¹) for a specimen of 21.75K₂O:78.25Ta₂O₅ (sample No. 39) having the structure of a Hexagonal Tungsten Bronze (HTB).
- Figure 10 Dielectric loss (epsilon-2) versus reciprocal temperature (theta = 10³ x degrees Kelvin⁻¹) for a specimen of $34K_2O:66Ta_2O_5$ (sample No. 28) having the structure of a Tetragonal Tungsten Bronze with no superstructure (TTB).

Dielectric loss (epsilon-2) versus reciprocal temperature (theta = 10^3 x degrees Kelvin⁻¹) for a specimen of $11K_20:89Ta_20_5$ (sample No. 27) having the structure of the Gatehouse Tungsten Bronze (GTB).

DIELECTRIC LOSS (EPSILON-2) VERSUS RECIPROCAL TEMPERATURE (THETA = 10^3 x degrees Kelvin⁻¹) for a specimen of 16.67K 0:83.33Ta 0 (sample No. 23) having the structure of a Tetragonal Tungsten Bronze Modified by superstructure to a tripled cell with orthorhombic symmetry (TTBs)

.

Dielectric loss (epsilon-2) versus reciprocal temperature (theta = 10^3 x degrees Kelvin⁻¹) for a specimen of 21.75K₂0:78.25Ta₂0₅ (sample No. 39) having the structure of a Hexagonal Tungsten Bronze (HTB),

æ

Dielectric loss (epsilon-2) versus reciprocal temperature (theta = 10^3 x degrees Kelvin⁻¹) for a specimen of 34K₂0:66Ta₂0₅ (sample No. 28) having the structure of a Tetragonal Tungsten Bronze with no superstructure (TTB)

TABLE 1: EXPERIMENTAL DATA FOR THE SYSTEM Nb205-	LiNbOz	
--	--------	--

Composition		Initia	l Heat	Final	Heat ment ^{C/}	Results of Physical Observation	Results of X-Ray Diffraction Analyses <u>d</u>		
Mole	_% <u>a</u> ∕	Temp.	Time Hrs.	Temp. °C	Time Hrs.				
Nb ₂ O ₅	Li 20	0		_					
97,50	2,50	1000	96				$H-Nb_2O_5 + 1:3 + N-Nb_2O_5$ (tr)		
95.00	5.00	1000	63						
				1202	20		$N-Nb_2O_5+ H-Nb_2O_5$		
				1249	19	Not melted	n 11		
				1274	24	Not visibly melted			
				1294	22	Not visibly melted	$N-Nb_2O_5 + H-Nb_2O_5$		
				1318	24	Not visibly melted			
				1336	23	Some liquid present			
93,33	6,67	1000	63				H-Nb205 + 1:3		
				1202	20		N-Nb205		
				1249	19	Not melted	N→Nb2O5		
				1274	24	Not melted	,		
				1294	22	Not visibly melted	$N-Nb_2O_5 = \frac{a}{2}$		
				1318	24	Partially melted	$H-Nb_2O_5 + 1:3 + N-Nb_2O_5$		
				1336	23	Partially melted			
92.86	7.14	1000	60						
				1294	22	Not melted	$N-Nb_2O_5 + H-Nb_2O_5 + 1:3$		
92.31	7,69	1000	63						
				1202	20	Not melted	$N - Nb_2O_5 + 1:3$		
				1248	18.75	Partially melted			
90.00	10,00	1000	63						
				1202	20	NOT MEITED	N-NB ₂ 0 ₅ + 1:3		
83.33	16.67	985	64	÷		Not melted			
				1244	20	Partially melted			
80.00	20.00	985	65			Not melted	1:3 + H-Nb ₂ O ₅		
				1190	96	Not melted	$1:3 + N - Nb_2O_5$		
				1224	25	Not melted			
75,00	25,00	985	65			Not melted	1:3		
				1190	96	Not melted	1:3		
				1224	25	Not melted			
				1244	20	Partially melted	$N-Nb_2O_5 + 1:3 + 1:1$		
70.00	30,00	1000	70.5			Not melted			
				1183	23	Not melted	~		
				1195	24	No visible melting			
				1203	25	Some melting			
				1207	23	Some melting			
				1215	24	Some mercing			
66.67	33.33	985	65				1:1 + 1:3		
				1190	96	Not melted	1:1 + 1:3		
				1224	25	Melted			
63.99	36.01	1000	70.5						
				1183	23	Not melted			
				1195	24	Partially melted			
				1203	25	Melted	1:1 + 1:3		
				1207	23	Melted			

- $\underline{a'}$ For ease and accuracy of weighing ${\rm Li}_20$ was added to Nb_2O_5 as LiNbO3 not as the oxide end member.
- \underline{b}' All specimens were initially calcined in Pt crucibles at the indicated temperature and time.
- $\underline{\text{C}}'$ All subsequent heat treatments were quenched in sealed Pt tubes from the indicated temperature.
- $\frac{d'}{d}$ All phases identified are given in order of amount present at room temperature (greatest amount first). The phases are not necessarily those present at the temperature to which the specimen was heated.
- H=Nb205 = the high temperature form of Nb205 H=Nb205 = a metastable form of Nb205 apparently stabilized by Li20. l:3 = LiNb308 l:1 = LiNb03 solid solution
- $\underline{e}/$ These experiments suggest that the N-Nb2O5 phase melts incongruently between 1294° and 1318° rather than at the 1268° value given by Reisman,

TABLE 2: EXPERIMENTAL DATA FOR THE SYSTEM Ta205-LiTa03

Composition		Initial	Heat	Final	Heat	Results of Physical	Results of X-Ray Diffraction		
Mole	• <u>a</u> ∕	Treatm Temp. °C	Time	Treat Temp. °C	ment 🗹 Time Hrs.	Observation	Analyses 2		
Ta205	Li ₂ 0	· ·		•					
99	1	1000	60				·		
55	1	1000	00	1600	19.00	No melting	$H-Ta_{2}O_{5} + L-Ta_{2}O_{5}$ ss		
		-		1795	0.17	No melting	"2-52-5		
				1805	0.17	Partially melted			
98	2	1000	60						
50	-	1000	00	1600	24.00	No melting	L-Ta205 ss + H-Ta205		
				1795	0.17	No melting	" "		
				1806	0.25	Partially melted			
97	3	1000	60						
				1600	24.00	No melting	L-Ta2O5 ss		
				1795	0.17	No melting	n		
				1803	0.17	Partially melted			
				1842	0.03	Partially melted			
				1922	0.03	completely melted			
96	4	1000	60						
				1794	0.17	Partially melted			
				1820	0.33	Partially melted			
				1834	0.33	Completely melted			
95	5	1000	10						
				1350	24.00	No melting	L-Ta ₂ 0 ₅ ss		
				1594	16.00	No melting	u		
				1597	0.50	No melting			
				1732	0.17	No melting			
				1757	0.17	No melting			
				1782	0.17	Partially melted	L-Ta ₂ O ₅ ss		
				1809	0.17	Completely melted	""		
94	6	1000	10						
	•		10	1550	16.00	No melting			
	_								
93	7	1000	10				$L-Ta_{2}O_{5}$ ss + M-1:3		
				1625	24.00	No melting Partially melted			
				1025	10.00	fulling merced	1 10205 33		
92	8	1000	10						
				1615	1.00	Partially melted			
				1625	0.75	Partially melted			
				1635	0.50	Partially melted			
				1653	0.50	Partially melted			
				1663	1.00	Partially melted	L-Ta ₂ O ₅ ss + H-1:3		
00	10	1000	10						
90	10	1000	10	1350	24 00	No melting	$T = T_2 \cap cc + H = 1 \cdot 3$		
				1583	0.50	No melting			
				1590	16.00	No melting	L-Ta ₂ O ₅ ss + H-1:3		
				1593	0.50	No melting			
				1607	0.75	Partially melted	L-Ta ₂ O ₅ ss + H-1:3 + 1:1		
				1018	0.50	Partially melted			
85	15	1000	10						
				1350	24.00	No melting			
				1583	0.50	No melting			
				1605	0.75	No melting Partially melted			
80	20	1000	10				M-1:3 + L-Ta ₂ O ₅ ss		
				1350	24.00	No melting	$H-1:3 + L-Ta_{2}O_{5} ss$		
				1580	1.00	No melting			
				1609	0.50	Partially melted			
				1642	0.50	Partially melted			
				1646	0.50	Partially melted			
				1695	0.75	Probably completely melted			

7 5	25	800	307				L-1:3 + M-1:3 M-1:3
		1000	10	1077	312 00	No melting	n 14-T12
				1110	42.00	No melting	
				1111	307.00	No melting	H-1:3
				1126	96,00	No melting	
				1130	16.00	No melting	
				1143	16.00	No melting	
				1144	115.00	No melting	•
				1205	18.00	No melting	•
				1265	18.00	No melting	
				1350	24.00	No melting	H-1:3
				1573	16.00	No melting	
				1592	1.00	No melting	
				1601	1.00	Completely melted	
				1616	1.50	Completely melted	$H-1:3 + L-Ta_2O_5 ss + 1:1$
		1000	10				
		1205	18				
				1130	16.00	No melting	
				1143	115.00	No melting	
		1000	10	1144	115.00	No mercing	
		1250	10				H=1 · 3
		1250	30	1077	312 00		H-1:3
				1111	307 00		
				1126	96.00		
				1140			
70	30	1000	10				
				1350	24.00	No melting	
				1545	0.50	No melting	
				1555	0.50	Partially melted	
				1566	1.00	Partially melted	
				1572	0.75	Partially melted	
				1504	0.50	Partially melted	
				1594	0.25	malted	
				1616	0.75	"	
				1616	0.50	**	H-1:3 + 1:1 ss
66.67	33.33	1000	10		,		M-1:3 + 1:1 ss
				1350	24.00	No melting	H-1:3 + 1:1 ss
				1525	2.50	No melting	
				1551	2.50	No melting	
				1555	0.50	Probably some melting	
				1567	1.00	Considerably melted	
				1578	2.00	Completely melted	
				1581	0.25	Completely melted	
				1583	3.00	Completely melted	H-1:3 + 1:1 ss
60	40	1000	10				
80	40	1000	10	1350	24 00	No melting	
				1547	0.50	No melting	
				1555	0.50	Partly melted	
				1566	0.50	Partly melted	
				1572	0.50	Partly melted	
				1590	1.00	Considerably melted	
56	44	1000	10				
				1348	66.00	No melting	1:1 ss + H-1:3
				1440	, 70.00	No melting	
				1550	0.75	No melting	
				1565	0.50	No melting	
				1576	0.50	No melting	
				1622	0.50	Completely melted	
				1044	0.50	compretery meried	
55	45	1000	10				
				1348	66.0	No melting	l:l ss
				1350	24.00	No melting	l:l ss + H-l:3 (tr)
				1440	70.00	No melting	l:l ss
				1550	1.00	No melting	
				1572	0.75	No melting	1:1 ss
				1587	0.50	Partially melted	
				1606	0.50	Completely melted	N
				101/	0.75	combrecety merced	
54	46	1000	10				
				1348	66,00	No melting	l:l ss
				1440	70.00	No melting	••
				1550	1.00	No melting	
				1581	0.50	No melting	
				1592	0,50	No melting	
				1605	0,50	No melting	
				1612	0,50	Partially melted	
				1624	0,50	Completely melted	

53	47	1000	10				
				1348	66.00	No melting	l:l ss
				1440	70.00	No melting	
				1550	1.00	No melting	
				1612	0.50	Just begun to	o melt
				1623	0.50	Completely m	elted
52	48	1000	10				l:l ss
				1348	66.00	No melting	
				1440	70.00	No melting	
				1550	1.00	No melting	
				1612	0.75	No melting	
				1623	0.50	Just begun to	o melt
				1637	0.33	Completely m	elted
				1754	0.17	Completely m	elted
50	50 S	tarting ma	terial			Powder	1:1
				1348	19.00	No melting	
				1522	16.00	No melting	
				1538	2.50	No melting	
				1553	20.00	No melting	
				1592	1.00	No melting	
				1598	1.75	No melting	
				1607	1.00	No melting	
				1612	1.00	No melting	
				1616	1.00	Partially me	lted
				1630	0.50	Completely m	elted
				1633	1.00	Completely m	elted

 $\underline{a'}$ For ease and accuracy of weighing, Li_20 was added to Ta_20_5 as LiTaO_3 not as the oxide end member.

 $\frac{b}{all}$ All specimens were initially calcined in Pt crucibles at the indicated temperatures and time.

- \underline{c}' Specimens were heated in both open and sealed Pt tubes and seemed to show no difference or discrepancy in results, as very little, if any, volatilization takes place even from the melt.
- $\frac{d}{d}$ All phases identified are given in order of amount present at room temperature (greatest amount first). The phases are not necessarily those present at the temperature to which the specimen was heated. H-Ta₂O₅ - The high temperature polymorph of Ta₂O₅.

L-Ta205 ss - A solid solution of the low temperature polymorph of Ta205 stabilized by Li20.

- L-1:3 The low temperature polymorph of LiTa_3O_8 isostructural with LiNb_3O_8 . M-1:3 The medium temperature polymorph of LiTa_3O_8 isostructural with the mineral woodgenite.
- H-1:3 The high temperature polymorph of $LiTa_3O_8$ isostructural with $LiTa_6O_{15}F$ and $Ta_4W_2O_{16}$.
- 1:1 ss A solid solution of LiTaO3.

TABLE 3: EXPERIMENTAL DATA FOR THE SYSTEM Nb205-NaNb03

Composition		Initia) Tréatr	l Heat Ment <u>b</u> /	Final Treat	Heat ment <u>c</u> /	Results of Physical Observation	Results of X-Ray Diffraction Analyses <u>d</u> /
Mole	8 <u>a</u> ∕	°C	Time Hrs.	Temp. °C	Time Hrs.		
Nb205	Na20						
95	5	750 1000	69 69	 1200 1250	 21 21	Not melted Not melted Not melted	$H-Nb_2O_5 + 1:2$ 1:13 + $H-Nb_2O_5$
92.86	7.14	800	69	875 900	 19,5 140	Not melted Not melted	$H-Nb_2O_5 + 1:6$ 1:13 + $H-Nb_2O_5 + 1:6$
		1000	164	1200 1250	21 67	Not melted Not melted Not melted	1:13 " "
		1225	64	1000	234	Not melted Not melted	1:13
90.01	9.09	750 1000	69 69	 1200 1250	 22 21	Not melted Not melted Not melted	H-Nb ₂ O ₅ + 1:2 1:13 + TTBs + H-Nb ₂ O ₅ 1:13 + TTBs "
90	10	750 1000	64 69			Not melted	H-Nb ₂ O ₅ + 1:2 1:13 + TTBs
87.5	12.5	750 1000	69 69	 1200 1278 1285	 22 72	Not melted Not melted Partially melted Partially melted	H-Nb ₂ O ₅ + 1:2 1:13 + TTBs "
		800	114				
		1225	8			Not melted	1:13 + TTBs
83.33	16.67	750	64	 800 880 900	 113 20 18.5	Not melted Not melted Not melted	$H-Nb_2O_5 + 1:2$ 1:6 + $H-Nb_2O_5 + TTBs$ TTBs + $H-Nb_2O_5 + 1:6$
		1000	69	 1200	22	Not melted	1:13 + T T Bs "
80	20	750	64	800 840 869 880 900	 113 70 19 20 18.5	Not melted Not melted Not melted Not melted	$H-Nb_2O_5 + 1:2$ $1:6 + H-Nb_2O_5 + TTBs$ $TTBs + 1:6 + H-Nb_2O_5$ "
		1000	69	1200 1270 1275 1278	67 22 1 1.5 2.5	Not melted Not melted Not melted Not melted Partially melted	TTBS + 1:13 "
77	23	870 1100 1100	91 21 44	 1238	 19	····	TTBs + H-Nb ₂ O ₅ + 1:2 TTBs + 1:13 TTBs "
75	25	750	64	 800 980 1000	 113 18.5 20	Not melted Not melted Not melted	H-Nb ₂ O ₅ + 1:2 1:6 + TTBs + 1:2 TTBs
		1000	69	1200 1270 1275 1278	20 21 1.5 2.5	Not melted Not melted Not melted Not melted Completely melted	" " " " " " " " " " " " " " " " " " "
		1000	- 1	1280	1	Completely melted	
		1200 900 1000	21 62 96	800 1225	115 1	Not melted Not melted Not melted	TTBS TTBS "
				1225	5	Not melted	

72,92	27.08	900	19				TTBs + $1:2 + H - Nb_2O_5$
		900	135				TTBs + 1:2
				950	91		"
		1100	44			Not melted	TTBs (+ 1:1 ?)
				1238	19	Not melted	
				1249	3.5	Partially melted	
			-	1255	16.5	Partially melted	
70	30	750	64				$1:2 + 1:1 + H - Nb_2O_5$
		1000	69			Not melted	1:2 + TTBs (+1:1) <u>e</u> /
				1000	20	Not melted	"
				1200	22	Not melted	TTBs (+1:1 ?) =/
66.67	33.33	800	62				
		900	93			Not melted	
				950	93	Not melted	1:2
		800	62				
		1100	62			Not melted	TTBs + 1:1
				975	21	Not melted	1:2
				985	22	Not melted	1:2 (+TTBs + 1:1) trace
		800	89				1:2
				985	45	Not melted	1:2 (+1:1 + TTBs) trace
				1000	169	Not melted	TTBs + 1:1
				1073	67	Not melted	**
				1200	21	Not melted	"
65	35	750	64				$1:2 + 1:1 + H - Nb_2O_5$
				1241	19	Not melted	
				1254	19	Partially melted	
		1000	69			Not melted	1:2 + 1:1
				1250	21	Partially melted	TTBs + 1:1 (?)
60	40	750	64				1:2 + 1:1
				1241	19	Not melted	l:l + TTBs
				1245	65	Partially melted	
				1254	19	Partially melted	
		1000	69			Not melted	$1:2 + 1:1 (+TTBs) = \frac{e}{2}$
				1200	21	Not melted	1:1 + TTBS
				1250	21	Partially melted	
55	. 45	750	64				1.1 + 1.2
55	45	750	04	12/1	19	Not melted	1.1 + TTBS
				1241	65	Dartially melted	
				1245	19	Partially melted	
		1000	60	1254	19	Not melted	$1 \cdot 1 + 1 \cdot 2$
		1000	09			MOL METCED	1.1 + 1.2
50	50	750	64				1:1
		1000	69			Not melted	1:1

a/ For ease and accuracy of weighing Na₂O was added to Nb₂O₅ as NaNbO₃ not as the oxide end member.
 b/ All specimens were initially calcined in Pt crucibles at the indicated temperatures and time.
 c/ All subsequent heat treatments were quenched in sealed Pt tubes from the indicated temperature.

- d/ All phases identified are given in order of amount present at room temperature (greatest amount first). The phases are not necessarily those present at the temperature to which the specimen was heated. H-Nb₂O₅ - The high temperature form of Nb₂O₅ 1:13 - NaNb₁₃O₃₃
 - 1:6 NaNb₆O₁₅(OH). The presence of this phase indicates that the specimen has reacted with atmospheric moisture.
 - TTBs A nonstoichiometric solid solution having an orthorhombic distortion of a tetragonal tungsten bronze-type lattice with superstructure indicating a tripled unit cell.
 - 1:2 Na2Nb4011
 - 1:1 NaNbO3
- e/ The presence of a small amount of either 1:1 or TTBs in equilibrium with a large amount of the other cannot be determined because of a complete overlap of all of the strongest peaks.

. .

Composition		Initia]	Heat	Fina] Treat	Heat	Results of Physical	Results of X-Ray Diffraction
Mole	% <u>a</u> ∕	Temp. °C	Time Hrs.	Temp.	Time Hrs.		·
Ta ₂ 05	Na ₂ O						
95	5	1000	109				L-Ta ₂ O ₅ + 1:2
				1328	16.00	Not melted	
				1549	16.00	Not melted	H-Ta ₂ O ₅ (tri.) + TTBs
				1648	0.08	Not melted	
				1653	0.08	Partially melted	
				1664	0.08	Partially melted	
				1679	0.08	Partially melted	
83.33	16.67	1000	109				
				1328	16.00	Not melted	TTBs + $L-Ta_2O_5$
				1527	16.00	Not melted	TTBs + L-Ta $_{2}O_{5}$ ss
				1625	41.00	Not melted	$TTBs + H-Ta_{2}O_{5}$
				1643	0.08	Not melted	
				1658	0.08	Partially melted	
				1670	0.08	Partially melted	
80	20	1000	109				1.2 + L-Ta ()
00	20	1000	105	1105	552 00	No molting	1.2 1 L 12 ²⁰ 5
				1270	360.00	No melting	
				1270	560.00	No melting	"
				1329	64.00	No melting	
				1527	16.00	No melting	TIBS
				12//	19.00	No melting	
				1623	17.00	No melting	
				1643	0.16	No melting	
				1654	0.16	Partially melted	
				1660	0.08	Completely melted	
		1507	16	1670	0.08	Completely melted	
		1527	10	1195 1270	360.00	No melting No melting	TTBS + L-Ta ₂ 0 ₅
77 70	22.22	0.00	110				
11.10	22.22	800	112	1 25 0	40.00	Not welted	
				1350	48.00	Not melted	TTBS
				1527	16.00	Not melted	
				1642	0.16	Not melted	
				1004	0.16	completely melted	
75	25	1000	109				$1:2 + L-Ta_2O_5$
				1195	552.00	Not melted	$1:2 + L-Ta_2O_5 + TTBs$ (tr)
				1270	360.00	Not melted	TTBs + 1:2
				1329	64.00	Not melted	
				1527	6.00	Not melted	TTBs
				1613	17.00	Not melted	"
				1643	0.25	Completely melted	
				1722	0.08	Completely melted	
		1527	6	1195	552.00	Not melted	TTBs + 1:2 (tr)
				1270	360.00	Not melted	
		1722	0.08	1576	16.00	Not melted	TTBS
70	30	1000	109				
				1580	64.00	Not melted	l:2 + TTBs
				1612	0.08	Not melted	
				1627	0.08	Completely melted	
66.67	33.33	1000	109			Not melted	1:2
				1329	64.00	Not melted	
				1524	7.00	Not melted	
				1601	1.00	Not melted	
				1620	0.75	Not melted	
				1633	0.08	Not melted	
				1655	0.08	Completely melted	
				1698	0.08	Completely melted	'
				1750	0.08	Completely melted	
				1805	0.08	Completely melted	

60	40	1000	109				
				1602	5.00	Not melted	1:2 + 1:1
				- 1617	0.08	Not melted	
				1628	0.08	Not melted	
				-1632	0.08	Partly melted	
				1664	0.08	Partly melted	
				1685	0.08	Partly melted	
				1690	0.08	Partly melted	
				1722	0.08	Partially melted	
				1737	0.08	Completely melted	
50	50	600	4				1:1
				1328	16.00	Not melted	
				1527	0.50	Not melted	
				1622	0.50	Not melted	
				1676	0.08	Not melted	
				1782	0.08	Not melted	
				1800	0.08	Not melted	
				1821	0.08	Completely melted	

 $\frac{a}{2}$ For ease and accuracy of weighing Na₂O was added to Ta₂O₅ as NaTaO₃ not as the oxide end member.

 $\frac{b}{a}$ All specimens were initially calcined in Pt crucibles at the indicated temperatures and time.

- C/ All subsequent heat treatments below about 1650° were quenched in sealed Pt tubes from the indicated temperatures. Experiment above about 1650° were performed in an inductively heated Ir crucible using sealed 80/20 Pt/Rh tubes.
- ^d/ All phases identified are given in order of amount present at room temperature (greatest amount first). The phases are not necessarily those present at the temperature to which the specimen was heated. L-Ta₂O₅ - The low temperature polymorph of Ta₂O₅ H-Ta₂O₅ - The high temperature polymorph of Ta₂O₅ ss - Solid solution tri - Triclinic tr - Trace TTBs - A nonstoichiometric solid solution having an orthorhombic distortion of a tetragonal tungsten bronze-type lattice with superstructure indicating a tripled cell. 1:2 - Na₂Ta₄O₁₁
 - 1:1 NaTaO3

TABLE 5: EXPERIMENTAL DATA FOR THE SYSTEM Nb205-KNb03

Composition Mole % <u>a</u> /		Initia. Treatu	1 Heat ment <u>b</u> /	Final Treat	Heat ment <u>c</u> /	Results of Physical Observation	Results of X-Ray Diffraction Analyses <u>d</u> /		
WOle #		°C	Hrs.	°C	Hrs.				
Nb ₂ 0 ₅	к ₂ 0								
95	5	750	69				H-Nb205 + 1:3		
		1000	69	~ -		No melting	H-Nb ₂ O ₅ + TTBs		
				1100	114	No melting	u		
				1200	69	No melting	u a a a a a a a a a a a a a a a a a a a		
				1275	20	No melting	$H-Nb_2O_5$ + GTB		
				1350	20	Partially melted (?)	"		
90.54	9.46	800	62						
		1000	96			No melting	H-Nb205 + TTBs		
				1305	140	No melting	$GTB (+H-Nb_2O_5 ?)$		
				1315	46.5	Partially melted	$H-Nb_2O_5 + HTB + ?$		
				1325	17	Partially melted	$H \rightarrow NB_2O_5 + GTB + HTB + ?$		
90	10	750	69				H-Nb ₂ O ₅ + 1:3		
		1000	69			No melting	TTBS + $H-Nb_2O_5$		
				1100	23	No melting			
				1200	69	No melting	(mp + II NhaOr (tmmpa 2)		
				1250	40	No melting	$GTB + H = ND_2O_5 (+TTBS ?)$		
				1290	16	No melting	"		
				1350	20	Partially melted	$H-Nb_2O_5 + GTB + TTBs$ (?) + HTB (?)		
				1360	20	Partially melted	$H-Nb_2O_5 + TTBs + ?$		
				1375	40	Partially melted	$H-Nb_2O_5 + HTB$		
88.5	11.5	800	62						
		1000	96			No melting	TTBs + H-Nb ₂ O ₅		
				1200	66	No melting	TTBs + H-Nb ₂ O ₅		
				1300	18	No melting	GTB		
		1200	10	1515	1	Completely melted			
		1300	18	1190	10	No melting	GTB		
				1200	18	No melting			
				1200	66	No melting	GTB		
				1210	71	No melting	GTB		
				1230	71	No melting	GTB		
				1325	17	Partially melted	$TTBs + H-Nb_2O_5 + ?$		
				1335	70.5	Partially melted			
		1515	1	1350	43	Melted			
		1010	-	1300	72	Not melted	GTB		
90	10	750	69						
00	12	1000	69			No melting	$H = ND_2O_5 + 1:3 + 1:1$		
		2000	0,5	1100	45	No melting	1115 · II II5205		
				1200	69	No melting	0		
				1275	20	No melting	GTB + TTBS		
				1330	18	Partially melted	GTB		
				1335	71	Partially melted	$H - Nb_2O_5 + HTB + ?$		
				1350	20	Partially melted	$GTB + H - Nb_2O_5 (?)$		
				1375	40	Partially melted	$H-Nb_2O_5$ + HTB		
9.6	-	075	2.2						
00	14	1250	23			Not melted	$H=ND_2O_5 + TTBS + 1:3$ TTBC + GTB		
		1230	71	1275	19	Not melted			
				1310	19	Partially melted (?)	GTB + TTBS		
				1332	18	Partially melted	$TTBs + H-Nb_2O_5 + ?$		
				1335	120	Partially melted	Z J		
				1355	125	Partially melted			
				1913	-	completely melled			
85	15	975	23			Not wolded	$H-Nb_2O_5 + TTBs + 1:3 + 2:3$ hyd.		
		1250	91	1275	19	Not melted	TIBS + GTB		
				1310	19	Partially melted	GTB + TTBs		
				1325	16	Partially melted			
				1335	19	Partially melted	H-Nb2O5 + TTBs + ?		
				1335	125	Partially melted			
				1515	1	completely melted			
84	16	975	23				$H-Nb_2O_5 + TTBs + 1:3 + 2:3$ hyd.		
		1250	91	1275	10	Not melted	TTBS + GTB (?)		
				1310	19	Partially melted	GTB + TTBS		
				1335	19	Completely melted			
				1515	1	Completely melted			

83.66	16 34	750	69	'			
03.00	10, 34	1000	60			Not melted	TTBa
		1000	69			Not merced	1105
				1100	114	NOT MEILED	
		1		1176	24	Not melted	
				1200	69	Not melted	
				1275	21	Not melted	"
				1279	1	Not melted	
				1285	1	Partially melted	
				1287	1	Partially melted	
			-				
82	18	975	16				H-Nb ₂ O ₅ + TTBs + 1:3 + 2:3 hyd.
		1250	91			Not melted	2 5
				1275	19	Not melted	
				1335	18	Completely melted	
				1330	10	comprovery mercea	
81.25	18.75	800	62				
	20,.0	1000	96			Not melted	TTBS
		1000	20	1 2 2 5	5	Not molted	"
				1225	10	Dortially molted (2)	
				1275	19	Completely melted (7)	
				1335	18	compretery merced	
	20	75.0	6.0				1.2 (U Nb O
80	20	/50	69				$1.3 + H^{-1}M_{2}O_{5}$
				1000	69	NOT melted	T1B5 + 113 + 213
				1100	114	Not melted	TT8s
				1200	69	Not melted	TTBs + 1:3
				1275	21	Partially melted	TTBs
				1279	1	Completely melted	
		900	24				$TTBs + 1:3 + H-Nb_2O_5$
		1000	59				TTBS
				775	42		и
				800	65		**
				850	40		
		(uncal	cined)	775	40		$TTBe + 1 \cdot 3 + H = Nb \cdot 0 =$
		(uncar	cined)	,,,,	42		1163 1 1.5 1 1 16205
				800	40		
				850	40		
77 70	22.22	800	60				
11.10	22.22	800	69				
				1100	45		TTBS + 1:3
				1200	69	Not melted	
/5	25	750	69				$1:3 + 2:3 + H - Nb_2O_5$
		1000	69			Not melted	1:3 + TTB
				1100	114	Not melted	"
				1200	69	Not melted	1:3
74	26	800	45				
				1000	45	Not melted	1:3 + 4:9
73	27	800	45				
				1100	45	Not melted	1:3 + 4:9
72.2	27.8	800	62				
		1000	96			Not melted	1:3 + 4:9
70	30	750	69				4:9 + 1:3
		1000	69			Not melted	
				1100	114	Not melted	
69.23	30.77	820	73				
		1000	79				
		1000	.,	1100	21	Not moltod	4.9
				1100	15	Not moltod	
				1100	43	Not molted	4.0
				1205		Not moltod	1.2
				1205	2	NOT METTED	
68	32	800	4 5				
00	32	800	45	1100			
				1100	45	NOT merted	4:9 + TTB
<i>cc c</i> 7	22.22						
66.67	33.33	800	89				1:3 + 2:3
		1000	164			Not melted	TTB + 4:9
				975	21	Not melted	TTB + 4:9
				985	45	Not melted	TTB + 4:9
				1100	114	Not melted	0
				1195	20	Partially melted	4:9
65	35	750	64				
		1000	69			Not melted	TTB
				1100	21	Not melted	TTB
				1195	18	Partially melted	TTB
				1215	0.17	Melted	
		1398	1			Melted	(?)
				1170	2	Not melted	TTB
				1170	19	Not melted	ттв
				1183	19	Partially melted	TTB + 4.9 + 2.3 hyd
				1189	2	Partially melted	
				1103	67	Dartially melted	4.0 + 3.3 burd
		800	47	11.21	07	rarcially metted	4:9 + 2:3 nya.
		1000	47				
		1000	70				TTB
				1125	8	Not melted	TTB

63.5	36.5	800	65				
		1000	45			Not melted	TTB + 2:3 hyd.
				1143	2	Not melted	11
				115%	1	Not melted	11
				1165	1	Not melted	at at at at
				1170	2	Partially melted	TTB
				1180	2	Partially melted	(?)
				1200	0.5	Melted	TTB
62	38	800	65				
		1000	45			Not melted	2:3 hyd. + TTB
				1130	16	Not melted	ū
				1143	2	Not melted	
				1158	1	Not melted	
				1160	1	Not melted	
				1165	1	Not melted	
				1170	2	Completely melted	
				1180	2	Completely melted	
				1200	0.5	Completely melted	2:3 + TTB
60	40	750	69				1:3 + 2:3 + 1:1
		1000	69			Not melted	2:3 + 2:3 hyd.
				1000	20	Not melted	2:3
				1143	2	Not melted	
				1158	1	Not melted	
				1165	1	Completely melted	
				1170	2	Completely melted	
				1172	2	Completely melted	
				1180	2	Completely melted	
55	45	750	69				1:1 + 1:3 + 2:3
		1000	69			Not melted	1:1 + 2:3 + 2:3 hyd.
53.85	46.15	750	69				1:1 + 2:3 + 1:3
		1000	69			Not melted	1:1 + 2:3 + 2:3 hyd.
				1000	20	Not melted	0
				1100	23	Partially melted	1:1 + 2:3
50	50	750	69				1:1
		1000	69			Not melted	1:1

 \underline{a}' For ease and accuracy of weighing K₂O was added to Nb₂O₅ as KNbO₃ not as the oxide end member. $\frac{b}{all}$ All specimens were initially calcined in Pt crucibles at the indicated temperatures and time. c' All subsequent heat treatments were quenched in sealed Pt tubes from the indicated temperatures. $^{\mathrm{d}/}$ All phases identified were given in order of amount present at room temperature (greatest amount first). The phases were not necessarily those present at the temperature to which the specimen was heated. H-Nb₂O₅ - The high temperature form of Nb₂O₅. 1:3 - NaNb₃O₈. GTB - Gatehouse Tungsten Bronze - A nonstoichiometric solid solution having a large tetragonal unit cell with 7-sided tunnels first described by B. M. Gatehouse for a rubidium niobate of unknown composition. TTBs - A nonstoichiometric solid solution having an orthorhombic distortion of a tetragonal tungsten bronze-type lattice with superstructure indicating a tripled cell. 4:9 - A compound having the apparent composition 4K20:9Nb2O5 (K8Nb18O49). TTB - Tetragonal Tungsten Bronze - A nonstoichiometric solid solution having an undistorted tetragonal lattice with no superstructure. 2:3 - K4Nb6017. 2:3 hyd. - The hydrated form of $K_{L}Nb_{6}O_{17}$ in equilibrium with atmospheric moisture at room temperature. $1:1 - KNbO_3$. HTB - A phase resulting from a quenched liquid with an x-ray pattern resembling a hexagonal tungsten bronze. ? - An unknown phase which apparently results from quenching a liquid.

TABLE 6: EXPERIMENTAL DATA FOR THE SYSTEM Ta205-KTa03

Composition		Initial Heat		Final	Heat	Results of Physical	Results of X-Ray Diffraction	
Mole	<u>∗ a</u> /	Temp.	Time Time	Treat Temp.	Time Hrs.	Observation	Analyses 🗳	
Ta205	K20	· ·	-	· ·				
95	5	1000	109	1337 1549 1602	16 16 16	No melting No melting No melting	L-Ta2O5 + 1:5 + TTBS L-Ta2O5 + TTBS H-Ta2O5 + GTB "	
90	10	900	168			*****		
	F			1466 1500 1553 1609 1715 1747	168 17 1.0 17 1.5 1.5	No melting No melting No melting Partially melted Partially melted Partially melted	$TTBs + L-Ta_2O_5 + H-Ta_2O_5$ $TTBs + H-Ta_2O_5 + L-Ta_2O_5$ $GTB + H-Ta_2O_5 (?)$ $HTB + H-Ta_2O_5$ $HTB + H-Ta_2O_5$	
		1000	109	1793 1521 1601 1619 1620	44 0.75 64	No melting No melting No melting	GTB + H-Ta ₂ O ₅ GTB + H-Ta ₂ O ₅	
		1609	17	1620 1466 1500 1521 1624 1647 1657	168 17 44 0.17 0.17 0.17	No melting No melting No melting No melting No melting Partially melted	GTB + TFBs 	
89	11	800	115	 1600	 12	No melting	1:5 + L-Ta ₂ O ₅ GTB	
87.5	12.5	900	216	 1601 1640	 17 19	No melting Partially melted	1:5 + L-Ta ₂ O ₅ GTB + TTBs GTB	
83.33	16.67	800 900	192 1 68	 950	 360	No melting	L-Ta ₂ O ₅ + 1:2 1:5 1:5 + TTBs (tr)	
		1000	109	1100 1337 1532 1610 1624 1634 1635	 16 16 16 0.17 6.5 0.17	No melting Not melted Partially melted Partially melted	1:5 + THS + L-Ta ₂ O ₅ TTBs + 1:5 + L-Ta ₂ O ₅ TTBs TTBs TTBs GTB + HTB	
				1647	0.17	Partially melted		
80	20	1000	109 16	 1337 1538 1614 1617 1618 1325	 16 16 16 16 16	Not melted Not melted Not melted Not melted Not melted Not melted	TTBS + 1:5 TTBS TTBS + 9L HTB + TTBS " TTBS	
	·	1618	16	1350	144	Not melted	"	
78.25	21.75	800	91	1600	6		НТВ	
77.78	22.22	900	168	 1549 1571 1575 1581	1.0 1.0 10 19	Not melted Not melted Not melted Not melted	TTBs + 9L + HTB HTB .	
				1607 1620 1632	0.5 16 19	Not melted Partly melted (?) Partly melted	HTB + 9L	
		1581 1602	19 6.5	1549 1549 1571 1603 1613 1624	19 1.0 0.17 0.17 0.17	Not melted Not melted Not melted Not melted Partly melted	HTB + TTBs HTB + TTBs 	

75	25	900	168				1:2 + 1:5 + TTBs
				1304	96	Not melted	TTBS + TTB
				1340	19	Not melted	
				1579	16	Not melted	9L + HTB
				1600	68	Not melted	
				1692	2	Completely melted	llL + HTB
		1000	109				TTBS + TTB + 3L
				1100	64	Not melted	TTBs + TTB
				1327	120	Not melted	TTBS + TTB
				1340	19	Not melted	9L + TTBs
				1340	72	Not melted	
				1538	64	Not melted	
				1575	10	Not melted	n
				1598	0.5	Not melted	
				1611	5.5	Not melted	9L + HTB
				1634	16	Melted	HTB + H-1:3
				1646	1.0	Melted	
		1340	72				
				1600	68	Not melted	9L + HTB
				1606	16	Not melted	9L + HTB
		1340	72				
		900	1.5	1610		Not melted	9L + HTB
		1000	109				
		1538	64	1528	72	Not melted	9L + TTBs
		1600	68	1603	0.25	Not melted	
				1613	0.25	Melted	
				1624	0.25	Melted	
The of el	06.35	1.450					07
/3.85 -	26.15	1462	69			Not melted	9L
				1304	96	Not melted	9L + TTB
				1327	120	Not melted	9L + 1TB
				1603	0.17	Not melted	
				1013	0.17	Partially melted	
72 67 e/	26 22	1442	00			Not moltod	01 + 161
/3.0/	20.33	1445	69			Not merced	91 + 101
73 5 <u>e</u> /	26 5	1466	64				161. + 91. (tr)
/5.5	20.5	1400	04	1400	48	Not melted	16L + 9L + 11L
				1574	0.5	Not melted	
				1574	16	Not melted	161.
				1586	16	Not melted	
				1594	4	Not melted	
				1603	0.17	Not melted	
72.73	27.27	1000	68				
				1361	24	Not melted	9L + TTB
				1400	48	Not melted	"
				1573	0.17	Not melted	
				1573	16	Not melted	11L + 16L
				1589	0.17	Not melted	
				1629	0.17	Completely melted	
				1632	0.08	Completely melted	
71.43	28.57	1000	68				TTBs + TTB + 1:2 + 1:5 + 3L
				1361	24	Not melted	9L + TTB
				1438	75	Not melted	16L + TTB
				1465	336	Not melted	11L
				1507	139	Not melted	
				1578	1.0	Not melted	
				1583	3.5	Not melted	IIL + TTB
				1011	88	Not molted	111
				1612	0.08	Not melted	
				1610	0.1/	Not melted	
				1619	16	Not melted	
				1624	0.08	Melted	
				1626	1.5	Melted	
				1694	1.0	Melted	11L
		1575	10				llL + TTB
		1583	3.5	1438	.75.		11L + 16L + TTB
			1 · · ·	1,465	3,36		11L
				1507	137		11L
70	30	1000	68				
				1361	24	Not melted	TTB + 9L
				1622	. 1.0	Melted	llL + TTB (tr)
						3 2 3 4	

66.67	33 .3 3	800	192				1:2 + 1:1 + L-Ta ₂ O ₅
		900	168				1:2
				950	360	Not melted	
				1100	64	Not melted	TTB
		1000	109				1:2 + TTB + 3L
				798	163	Not melted	**
				1340	19	Not melted	TTB
			-	1340	72	Not melted	
				1515	64	Not melted	TTB + 11L
				1538	20	Partially melted	llL + TTB
				1 6 16	1.0	Completely melted	11L + TTB + 9L
66	34	800	90	1400	10	Not melted	TTB
65	35	800	112				1:1 + 1:2 + L-Ta ₂ 05
				1350	6 6	Not melted	TTB (+1:1 ?)
60	40	1000	92				TTB + 1:1
				1318	64	Not melted	TTB + 1:1
				1368	0.5	Not melted	
				1412	16	Partially melted	
55	45	1000	92				1:1 + TTB
				1318	64	Not melted	"
				1368	0.5	Not melted	
				1480	18	Completely melted	
50	50	600	4				1:1
				1340	19	Not melted	**
				1368	0.5	Not melted	
				1375	0.5	Completely melted	

 $\frac{a}{2}$ For ease and accuracy of weighing K₂O was added to Ta₂O₅ as KtaO₃ not as the oxide end member. b/ All specimens were initially calcined in Pt crucibles at the indicated temperature and time. c' All subsequent heat treatments were quenched in sealed Pt tubes from the indicated temperatures. All phases identified are given in order of amount present at room temperature (greatest amount first). The phases are not necessarily those present at the temperature to which the specimen was heated. $L-Ta_2O_5$ - The low temperature polymorph of Ta_2O_5 . $H-Ta_2O_5$ - The high temperature polymorph of Ta_2O_5 . 1:5 . - KTa₅O₁₃ - An orthorhombic compound of undetermined structure. GTB - Gatehouse Tungsten Bronze - A nonstoichiometric solid solution having a large tetragonal unit cell with 7-sided tunnels first described by B. M. Gatehouse for a rubidium niobate of unknown composition. TTBs - A nonstoichiometric solid solution having an orthorhombic distortion of a tetragonal tungsten bronze-type lattice with superstructure indicating a tripled cell. HTB - Hexagonal Tungsten Bronze - A nonstoichiometric solid solution with an x-ray pattern resembling a hexagonal tungsten bronze. 9-L - A hexagonal phase with a c-axis \sim 9 x 4 Å. 16-L - A hexagonal phase with a c-axis \sim 16 x 4 Å. ll-L - A hexagonal (rhombohedral) phase with a c-axis \sim ll x 4 Å. 3-L - An apparently metastable hexagonal phase with a c-axis \sim 3 x 4 Å. 1:2 - K₂Ta₄O₁₁. H-1:3 - A monoclinic phase which apparently results from quenching a liquid near the composition K20:3Ta205. TTB - Tetragonal Tungsten Bronze - A nonstoichiometric solid solution having an undistorted tetragonal lattice with no superstructure. 1:1 - KTaO3.

e/ Made from the 1000° calcines of the 75:25 and 72.73:27.27 mixtures.

Summary of LeRC Measurements <u>a</u> of Dielectric Loss on Polycrystalline NBS Samples

Composition			Frequency,	Resonance <u>c/</u>		
		10 ³	104	10 ⁵	106	
6Li ₂ 0:17TiO ₂	ε' ε"	54 622	30 67	22 9.8	19 1.9	No Peaks
^K 1.55 ^{Li} 1.26 ^{(LiTi)0} 16	ε' ε"	796 401	418 194	225 94	132 43	No Peaks
^K 1.6 ^{Mg} 0.8 ^{Ti} 3.8 ^O 8	ε" ε"	80 4.0	74 3.1	71 1.4	70 0.9	$\Delta E = 15.1 \text{ kcal/mole}$ $\rho_{25} = 2.7 \text{ x } 10^9 \Omega \text{-cm}$
5Li ₂ 0:95Ta ₂ 05 <u>d</u> /	ε' ε"	64 7	59 2	57 0.7	58 0.3	No Peaks
5Li ₂ 0:95Ta ₂ 05						No Peaks
Li _{1.8} Ta _{5.8} W0.2 ^O 16	ε' ε"	19 0.3	18 0.02	18 < 0.002	18 0.05	No Peaks
Na20:13Nb205	ε' ε"	20 0.9	19 0.4	19 0.3	19 0.2	No Peaks
NaNb308						No Peaks
Na _{10.8} Nb ₃₄ W _{1.8} O95.6			·			$\Delta E > 10$ $\rho_{25} \approx 3 \times 10^7 \ \Omega-cm$
21Na ₂ 0:79Ta ₂ 0 ₅	ε' ε"	22 0.3	22 0.2	21 0.1	21 0.2	No Peaks
7K ₂ 0:13Nb ₂ Ô ₅						Slight Peaks ΔE = 5.6 to 6.8 $\rho_{25} \sim 1$ to 5 x 10 ⁴ Ω cm
11.5K ₂ 0:88.5Nb ₂ 0 ₅	ε" ε"	25 5.1				No Peaks
3K20:13Nb205						No Peaks
KNb ₃ 0 ₈ <u>e</u> ∕	ε" ε"	< 100 < 2	< 100 < 0.1	< 100 < 0.1	< 100 < 0.1	No Peaks, two orientations.
к ₄ №6 ⁰ 17°хн ₂ 0 <u>е</u> /	ε' ε"	536 854	264 64	102 < 1	64 < 1	No Peaks, two orientations.
11K20:89Ta205	ε	52	43	38	36	High Temp. $\Delta E = 10.3$ kcal/mole
	ε"	6.1	4.7	2.6	1.1	Low Temp. $\Delta E = 8$ kcal/mole $\rho_{25} = 1 \times 10^8 \ \Omega - cm$
K ₂ 0:5Ta ₂ 05	ε" ε"	18 0.03	18 0.01	18 0.01	18 0.1	No Peaks
K20:4Ta205	ε" ε"	22 0.04		22 0.1		No Peaks
21.75K ₂ 0:78.25Ta ₂ 0 ₅						$\Delta E = 7.9 \text{ kcal/mole}$ $\rho_{25} = 1 \times 10^4 \Omega \text{-cm}$
34K ₂ 0:66Ta ₂ 05						$\Delta E \approx 20 \text{ to } 25 \text{ kcal/mole}$ $\rho_{25} = 6 \text{ x } 10^{13} \Omega \text{-cm}$
K0. 51 Ta0. 51 W0. 4903						No Peaks.

 \underline{a} Measurements made by H. E. Kautz, LeRC.

<u>b</u>/ at 25°C.

 $\underline{C}/$ Values of ΔE obtained from ϵ vs temperature measurements.

 $\frac{d}{d}$ hot pressed specimen.

 $\underline{e}/$ Single crystal specimens, supplied by K. Nassau, BTL.

ALKALI TANTALATE PELLET FABRICATION

Composition	Calcine	Porming	Sintering	X-Ray
5 L120:95 Ta205	1000°C - 144 hours	Hot pressed ^a / 1200°C Hot pressed ^a / 1300°C	Refire 1500°C 16.5 hours Refire 700°C 18 hours	Low Ta ₂ O ₅ , crystallinity improved by refiring Low Ta ₂ O ₅ , crystallinity improved by refiring
Li ₂ O:3 Ta ₂ O ₅ (LiTa ₃ O ₈)	1000°C - 23 hours 1050°C - 44 hours	10,000 psi	1300°C - 22 hours air quenched	Single phase, LiTa ₆ O ₁₅ F- type
"Substituted LiTa ₃ O ₈ " Li _{1.8} Ta _{5.8} W _{0.2} O ₁₆	1000°C - 23 hours 1050°C - 44 hours	10,000 psi	1400°C - 23 hours air quenched	Single phase, LiTa ₆ O ₁₅ F- type
"Tetragonal Bronze" 21 Na ₂ 0:79 Ta ₂ O ₅	1000°C - 23 hours 1050°C - 44 hours	10,000 psi	1400°C - 17 hours air quenched	Single phase bronze
11 K ₂ 0:89 Ta ₂ O ₅	800°C - 90 hours	10,000 psi	1600°C - 12 hours Removed at tem- perature and placed on chill block for rapid cooling	Single phase
K20:5 Ta205	800°C - 90 hours	10,000 psi	1500°C - 20 hours air quenched	Tetragonal bronze
K20:4 Ta205	800°C - 90 hours	10,000 psi	1400°C - 20 hours air quenched	Tetragonal bronze
21.75 K ₂ 0:78.25 Ta ₂ 05	800°C - 91 hours	10,000 psi	1600°C - 6 hours Pellet sealed in platinum, welded closed. Removed at temperature and water-quenched	After removal of surface layer by grinding, single phase hexagonal bronze
34 K ₂ 0:66 Ta ₂ O ₅	800°C - 90 hours	10,000 psi	1400°C - 10 hours Cooled at 120°C/hour	Single phase
K _{.51} Ta _{.51} W _{.49} O ₃ (Pyrochlore)	800°C - 34 hours	10,000 psi	$950^{\circ}C - 27$ hours Removed at tem- perature and placed in quartz tube, evacuated to $p \le 10^{-5}$ Torr and sealed to prevent hydration	X-ray of pellet im- pregnated with silicone resin to prevent hydration showed single phase pyrochlore

 $\underline{a\prime}$ Hot pressing performed by the Haselden Co., San Jose, California.

ALKALI NIOBATE PELLET FABRICATION

Composition	Calcine	Forming	Sintering	X-Ray
Li ₂ 0:14 Nb ₂ 05	1000°C - 18 hours 1250°C - 68 hours	10,000 psi	1250°C - 12 hours Cooled at 180°C/Hr.	Single phase N-Nb2O5 after surface grinding
Na20:13 Nb205	800°C - 114 hours	10,000 psi	1225°C - 8 hours Cooled at 180°C/Hr.	Single phase except for one line of phase next highest in Na ₂ O content.
NaNb ₃ O ₈	800°C - 62 hours 1000°C - 96 hours	18,000 p si	1225°C - 1 hour air quenched	Single phase 1:3
$Na_{10.8} (NbO) + (WO)_{1.8} Nb_{30}O_{90}$	800°C - 89 hours 1000°C - 70 hours	18,000 p si	1225°C - 3 hours air quenched	Single phase, pattern similar to NaNb3O8
11.5 К ₂ 0:88.5 Nb ₂ O ₅	800°C - 62 hours 1000°C - 96 hours	18,000 psi	1300°C - 6.5 hours air quenched. Specimens poorly sintered. Excessive grain growth under all conditions. Hot pressing in progress.	Gatehouse tungsten bronze
3 K ₂ O:13 Nb ₂ O ₅	800°C - 62 hours 1000°C - 96 hours	18,000 psi	1225°C - 1 hour air quenched	Tetragonal tungsten bronze with super- structure.
7 K ₂ 0:13 Nb ₂ 05	800°C - 47 hours 1000°C - 70 hours	18,000 p si	1225°C - 1 hour air quenched	Tetragonal tungsten bronze without super- structure.

Þ

ALKALI TITANATE PELLET FABRICATION

Composition	Calcine	Forming	Sintering	X-Ray
Ramsdellite 6 Li ₂ 0:17 TiO ₂ [Li _{.9} (Li _{.3} Ti _{1.7})O ₄]	<pre>9 pbw 6Li₂0:17TiO₂ calcined: 800°C - 2.5 Hr. 1050°C - 68.5 Hr. 1 pbw raw batch, 6 Li₂CO₃:17 TiO₂</pre>	10,000 psi	1200°C - 17 hours air quenched.	Single phase Ramsdellite
K ₂ O:MgO:4 TiO ₂ [K _{1.6} (Mg.8Ti3.2)O ₈]	800°C - 18 hours 1000°C - 24 hours	10,000 psi 0.5 percent by weight stearic acid as binder.	1200°C - 13 hours air quenched	Single phase, "Cmcm-phase"

TABLE 11

Summary of Crystal Growth Experiments

System	Phase	Melt Composition	Method	Comments
K20-Nb205	7:13 (TTB)	36.5K20:63.5Nb205	TSSG*	Yield: $4:9 \rightarrow \text{small amount } 7:13 \rightarrow 2:3$
	17.5:82.5 (TTBs)	17,5K ₂ 0:82.5Nb ₂ 05	TSSG	Yield: polycrystalline multiphase
	17.5:82.5 (TTBs)	20.0K20:80.0Nb205	TSSG	Yield: polycrystalline TTB
	12.5:81.5 (GTB)	15.0K20:85.0Nb205	TSSG	Yield: Nb ₂ O ₅
κ ₂ 0- т а ₂ 0 ₅	1:2 (TTB)	45K ₂ 0:55Ta ₂ 0 ₅	TSSG	Yield: single phase
Li20-Ta205	1:3	25Li ₂ 0: 75Ta ₂ 0 ₅	Czochralski	Yield: single crystals
	5:95 (L-Ta ₂ O ₅)	15Li ₂ 0:85Ta ₂ 05	TSSG	Yield: single crystals
Na20-Nb205	1:3 (TTBs)	25Na20:75Nb205	Czochralski	Yield: single crystals
Na20-Ta205	21:79 (TTBs)	25Na ₂ O:75Ta ₂ O ₅	Czochralski	Excessive vaporization of Na_2O

* Top seeded solution growth.

•

Crystallographic Data for Phases in the Nb205-Alkali Niobate and Ta205-Alkali Tantalate Systems

System	Designation	Compos Mol	ition %	Symmstry	a A	Unit C b Å	Call Dimens: C Å	ions a	ß	Y	Conditions Limiting Possible Reflections	Probable Space Groups
Nb205-LiNb03	N-Nb ₂ O ₅ 1:3	Nb205 93.33 75	Li ₂ 0 6.67 25	Monoclinic Monoclinic	25.518 7.457	3.827 5.035	17.554 15.264		124°59.1° 107°18.7		hkℓ:h+k=2n h0ℓ:ℓ=2n 0k0:k=2n	C2,Cm,C2/m P21/c
Ta ₂ 05-LiTa03	L-Ta ₂ 0 ₅ ss	Ta ₂ 05 95 75	Li ₂ 0 5	Orthorhombic Monoclinic	6.198	40.29	3.888		' 107°12'		None h0l:l=2n	$pm, pq \frac{1}{2}$
	E 1.5	75	25	Monoclinic	0.420	11 526	5 055		019221		0k0:k=2n	Co. C2/o
	H-1:3	75	25	Orthorhombic	9.420 16.716	8.941	3.840				$h0\ell:\ell=2n$ $0k\ell:\ell=2n$	Pmma,P21ma, Pm2a
Nb205-NaNb03		Nb ₂ O ₅	Na ₂ O									
	1:13 1:6**	92.86 80	7.14 20	Monoclinic Orthorhombic	22.40 ∿14.7	3.834 ∿10.2	15.37 ∿3.9		91°28.2'		hkℓ:h+k=2n hkℓ:h+k=2n	C2,Cm,C2/m C222,Cm2m, Cmm2,Cmmm
	TT8s	75	25	Orthorhombic	12.364	36.992	3.955				$0k\ell:k=2n$ $h0\ell:b=2n$	Pbam, Pba21
	1:2	66.67	33.33	Monoclinic	10.840	6,162	12.745		106°13.2'		$hk \ell: h+k=2n$ $h0 \ell: \ell=2n$	Cc,C2/c
та ₂ 05-Nата03	TT8s	та ₂ 05 80	Na ₂ 0 20	Orthorhombic	12.397	37.34	3.903				h0ℓ:h=2n	Pmam,P2jam, Pma2
	TTBs l:2	75 66.67	25 33.33	Orthorhombic Hexagonal	12,398 6.120	37.28	3.899 36.629				h0ℓ:h=2n hkℓ:−h+k+ℓ=3n h0ℓ:ℓ=2n	R3c,R3c
Nb ₂ 0 ₅ -KNb0 ₃	GT8 TTBs	Nb205 88.5 83.33	K ₂ 0 11.5 16.67	Tetragonal Orthorhombic	27.518 12.519	 37.558	3.9687 3.952				h00:h=2n h0ℓ:h=2n	P4212,P421m Pmam,P21am,
	TTBs	80	20	Orthorhombic	12.545	37.636	3.957					" "
	1:3	0nknow 75	25	Orthorhombic	8.925	21.232	3,889				None $hk\ell:k+\ell=2n$ $h0\ell:b=2n$	Amam, A2 ₁ am,
	4:9 TTB	69.23 65	30.77 35	Triclinic Tetragonal	13.353 12.589	13.915	15.022 3.981	82°11.8'	69°42' 	89°4.3' 	None h0l:h=2n	P1,P1 Pmam,P21am,
	2:3	60	40	Orthorhombic	7.822	33.019	6.481				$h0\ell:h+\ell=2n$	Pmnb, P21 nb
	2:3 hyd.	60	40	Orthorhombic	7.824	38.073	6,485				h(0): k=2n h(0): h=2n 0k0: k=2n 00l: l=2n	P212121
та ₂ 0 ₅ -кта0 ₃	GTB	Ta ₂ 0 ₅ 88.5	к ₂ 0 11.5	Tetragonal	27.55		3.899				h00:h=2n	P4212,
	1:5	83.33	16.67	Orthorhombic	5.654	10.713	16.80				h01:1=2n	Pbcm, Pbc21
	TTBS	80	20	Orthorhombic	12.547	37.641	3.922				$h0\ell:h=2n$	Pmam, P21am,
	HTB 9L	78.25 73.85	21.75 26.15	Hexagonal Hexagonal	7.527 7.55		3.901 36.583				None hhℓ:ℓ=2n	P6/mmm P63mc,P62c, P63mmc
	16L 11L	73.5 71.43	26.5 28.57	Hexagonal Hexagonal	7.542 7.54		65.57 43.512				hhl:l=2n hkl:-h+k+l=3n	R3,R3,R32, R3m,R3m
	1:2 TT8	66.67 66	33.33 34	Hexagonal Tetragonal	6.283 12.569		36.878 3.957				$hk\ell:-h+k+\ell=3n$ $h0\ell:h=2n$	Pmam, P2 ₁ am,
	3L*	75	25	Hexagonal	9.051		12.284				h0ℓ:ℓ=2n	Pmaz P6 ₃ cm,P6c2,
	H-1:3*	75	25	Monoclinic	14.615	3.774	6.557		98°30'		None	P2, Pm, P2/m

 $\frac{1}{}$ Two dimensional plane groups.

* Metastable phase obtained from quenched liquid.

** Probably due to reaction with atmospheric moisture-NaNb $_6O_{16}$ (OH).

NASA Washington, D.C. 20546 Attn: RPP/E. M. Cohn NASA Attn: G. M. Ault M.S. 3-13 Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 NASA Attn: L. Rosenblum M.S. 302-1 Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 NASA Attn: H. J. Schwartz M.S. 309-1 Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 NASA Attn: J. Singer M. S. 302-1 Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 NASA Attn: J. Toma M.S. 302-1 Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 NASA Attn: J. S. Fordcyce M.S. 309-1 Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 NASA Attn: A. C. Antoine M.S. 309-1 Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135

NASA Attn: Technology Utilization Office, M.S. 3-19 Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 G. E. Research and Development Center Physical Chemistry Laboratory Attn: Walter Roth P.O. Box 8 Schenectady, New York 12301 University of Connecticut Chemistry Department, U-60 Attn: A. F. Wells Storrs, Connecticut 06268 AFML/LPL Dr. Vincent L. Donlan Wright Patterson AFB, Ohio 45433 Yardney Electric Corporation Power Sources Division 3850 Olive Street Denver, Colorado 80207 Yardney Electric Division 82 Mechanic Street Pawcatuck, Connecticut 02891 Dr. Charles Levine Dow Chemical U.S.A. Walnut Creek Research Center 2800 Mitchell Drive Walnut Creek, California 94598 Prof. Donald M. Smyth Materials Research Center Lehigh University Bethlehem, Pennsylvania 18015 Prof. John W. Patterson Dept. of Metallurgy Iowa State University Ames, Iowa 50010

Prof. Rustum Roy Materials Science Dept. Pennsylvania State University University Park, Pennsylvania 16802

Prof. John H. Kennedy Univ. of Calif. at Santa Barbara Santa Barbara, California 93106

Dr. Paul Jorgensen Stanford Research Institute Menlo Park, California 94025

Dr. L. Topper Div. of Advanced Technology Applications National Science Foundation Washington, D.C. 20550

Mr. L. R. Rothrock Union Carbide Corp. 8888 Balboa Avenue San Diego, California 92123

Dr. Robert A. Huggins Dept. of Materials Science and Engineering Stanford University Stanford, California: 94305

Dr. M. Stanley Whittingham Esso Research and Engineering Co. Linden, New Jersey 07036

Dr. Neill T. Weber Ford Motor Co. Research Lab. Dearborn, Michigan 48121

Prof. James. I. Mueller Ceramic Engineering Div. University of Washington Seattle, Washington 98195

Dr. Douglas O. Raleigh North American Rockwell Science Center Thousand Oaks, California 91360 Dr. R. H. Doremus Rensselaer Polytechnic Institute Materials Division Troy, New York 12181

Dr. Elton J. Cairns Electrochemistry Dept. General Motors Research Lab. 12 Mile-Mound Roads Warren, Michigan 48090

NASA-Lewis Research Center (3) Attn: Patricia O'Donnell 309-1 21000 Brookpark Road Cleveland, Ohio 44135

NASA-Lewis Research Center Attn: L. W. Schopen 500-206 21000 Brookpark Road Cleveland, Ohio 44135

NASA-Lewis Research Center Attn: N. T. Musial 500-113 21000 Brookpark Road Cleveland, Ohio 44135

NASA Scientific and Technical Information Facility (10) Attn: Acquisitions Branch P.O. Box 33 College Park, Maryland 20740

NASA-Lewis Research Center (2) Attn: Library 60-3 21000 Brookpark Road Cleveland, Ohio 44135

Dr. A. M. Greg Andrus, Code SCC NASA Washington, D.C. 20546

Mr. Gerald Halpert, Code 764 Goddard Space Flight Center NASA Greenbelt, Maryland 20771

Mr. Thomas Hennigan, Code 761 Goddard Space Flight Center NASA Greenbelt, Maryland 20771 Mr. Louis Wilson, Code 450 Goddard Space Flight Center NASA Greenbelt, Maryland 20771 Mr. Jack E. Zanks, MS 488 Langley Research Center NASA Hampton, Virginia 23365 Mr. Charles B. Graff, S&E-ASTR-EP George C. Marshall Space Flt. Center NASA Huntsville, Alabama 35812 Mr. W. E. Rice, EP5 Manned Spacecraft Center NASA Houston, Texas 77058 Mr. Daniel Runkle, MS 198-220 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103 Mr. Aiji A. Uchiyama, MS 198-220 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103 Dr. R. Lutwack, MS 198-220 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103 U.S. Army Electro Technology Laboratory Energy Conversion Research Div. MERDC Fort Belvoir, Va. 22060 Harry Diamond Laboratories Room 300, Building 92 Conn. Ave. & Van Ness St., N.W. Washington, D.C. 20438 U.S. Army Electronics Command Attn: AMSEL-TL-P Fort Monmouth, New Jersey 07703

Director, Power Program, Code 473 Office of Naval Research Arlington, Virginia 22217

Mr. Harry W. Fox, Code 472 Office of Naval Research Arlington, Virginia 22217

Arthur M. Diness, Code 471 Office of Coal Research Arlington, Virginia 22217

Mr. S. Schuldiner, Code 6160 Naval Research Lab. 4555 Overlook Avenue, S.W. Washington, D.C. 20360

Mr. J.H. Harrison, Code A731 Naval Ship R&D Laboratory Annapolis, Maryland 21402

Commanding Officer Naval Ammunition Depot (305, Mr. D. G. Miley) Crane, Indiana 47522

Chemical Laboratory, Code 134.1 Mare Island Naval Shipyard Vallejo, California 94592

Mr. Phillip B. Cole, Code 232 Naval Ordnance Laboratory Silver Spring, Maryland 20910

Mr. Albert Himy, 6157D Naval Ship Engineering Center Center Bldg., Prince Georges Center Hyattsville, Maryland 20782

Mr. Robert E. Trumbule, STIC 4301 Suitland Road Suitland, Maryland 20390

Mr. Bernard B. Rosenbaum, Code 03422 Naval Ship Systems Command Washington, D.C. 20360

Mr. R. L. Kerr, POE-1 AF Aero Propulsion Laboratory Wright-Patterson AFB, Ohio 45433 Mr. Edward Raskind, LCC, Wing F AF Cambridge Research Lab. L. G. Hanscom Field Bedford, Massachusetts 01731

Mr. Frank J. Mollura, TSGD Rome Air Development Center Griffiss AFB, N.Y. 13440

HQ SAMSO (SMTAE/Lt. R. Ballard) Los Angeles Air Force Station Los Angeles, California 90045

Dr. Jesse C. Denton National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550

Aerospace Corporation Attn: Library Acquisition Group P.O. Box 95085 Los Angeles, California 90045

Dr. R. T. Foley Chemistry Department American University Mass. & Nebraska Aves., N.W. Washington, D.C. 20016

Dr. H. L. Recht Atomics International Division North American Aviation, Inc. P. O. Box 309 Canoga Park, Calif. 91304

Mr. R. F. Fogle, GF 18 Autonetics Division, NAR P.O. Box 4181 Anaheim, Calif. 92803

Dr. John McCallum Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201

Mr. W. W. Hough Bellcomm, Inc. 955 L'Enfant Plaza, S.W. Washington, D.C. 20024

Mr. D. O. Feder Bell Telephone Lab., Inc. Murray Hill, New Jersey 07974 Dr. Carl Berger 13401 Kootenay Drive Santa Ana, California 92705 Mr. Sidney Gross M.S. 84-79 The Boeing Company P.O. Box 3999 Seattle, Washington 98124 Mr. M. E. Wilke, Chief Engineer Burgess Division Gould, Inc. Freeport, Illinois 61032 Dr. Eugene Willihnganz C & D Batteries Division of ELTRA Corporation 3043 Walton Road Plymouth Meeting, Pennsylvania 19462 Prof. T. P. Dirkse Calvin College 3175 Burton Street, S.E. Grand Rapids, Michigan 49506 Mr. F. Tepper Catalyst Research Corporation 6101 Falls Road Baltimore, Maryland 21209 Mr. C. E. Thomas Chrysler Corporation Space Division P.O. Box 29200 New Orleans, Louisiana 70129 Dr. L. J. Minnich G. & W. H. Corson, Inc. Plymouth Meeting, Pennsylvania 19462

Mr. J. A. Keralla Delco Remy Division General Motors Corp. 2401 Columbus Ave. Anderson, Indiana 46011 Mr. J. M. Williams Experimental Station, Bldg. 304 Engineering Materials Lab. E.I. duPont de Nemours & Co. Wilmington, Delaware 19898

Dr. A. Salkind ESB, Inc. Research Center 19 West College Avenue Yardley, Pennsylvania 19067

Mr. E. P. Broglio
Eagle-Picher Industries, Inc.
P.O. Box 47, Couples Dept.
Joplin, MO 64801

Mr. V. L. Best Elpower Corporation 2117 South Anne Street Santa Ana, California 92704

Dr. W. P. Cadogan Emhart Corporation Box 1620 Hartford, Connecticut 06102

Dr. H. G. Oswin Energetics Science, Inc. 4461 Bronx Blvd. New York, New York 10470

Mr. Martin Klein Energy Research Corporation 15 Durant Avenue Bethel, Connecticut 06801

Dr. Arthur Fleischer 466 South Center Street Orange, New Jersey 07050

Dr. R. P. Hamlen Research and Development Center General Electric Company P.O. Box 43, Bldg. 37 Schenectady, New York 12301 Mr. Kenneth Hanson General Electric Company Valley Forge Space Tech. Center P.O. Box 8555 Philadelphia, Pennsylvania 19101

Mr. Aaron Kirpich Space Systems, Room M2614 General Electric Co. P.O. Box 8555 Philadelphia, Pennsylvania 19101

Mr. P. R. Voyentzie Battery Products Section General Electric Company P.O. Box 114 Gainsville, Florida 32601

Mr. David F. Schmidt General Electric Company 777 14th Street, N.W. Washington, D.C. 20005

Dr. R. Goodman Globe-Union, Inc. P.O. Box 591 Milwaukee, Wisconsin 53201

Dr. J. E. Oxley Gould Ionics, Inc. P.O. Box 3140 St. Paul, Minnesota 55165

Grumman Aerospace Corporation S. J. Gaston, Plant 35, Dept.567 Bethpage, Long Island, N.Y. 11714

Battery and Power Sources Division Gulton Industries 212 Durham Avenue Metuchen, New Jersey 08840

Dr. P. L. Howard Centreville, Maryland 21617 Dr. M. E. Ellion, Manager Propulsion & Power Systems Lab. Bldg. 366, MS 524 Hughes Aircraft Co. El Segundo, California 90245

Mr. R. Hamilton Institute for Defense Analyses 400 Army-Navy Drive Arlington, Virginia 22202

Dr. R. Briceland Institute for Defense Analyses 400 Army-Navy Drive Arlington, Virginia 22202

Mr. N. A. Matthews International Nickel Company 1000-16th Street, N.W. Washington, D.C. 20036

Dr. Richard E. Evans Applied Physics Laboratory Johns Hopkins Univ. 8621 Georgia Avenue Silver Spring, Maryland 20910

Dr. A. Moos Leesona Moos Laboratories Lake Success Park, Community Drive Great Neck, New York 11201

Dr. R. A. Wynveen, Pres. Life Systems, Inc. 23715 Mercantile Road Cleveland, Ohio 44122

Dr. James D. Birkett Arthur D. Little, Inc. Acorn Park Cambridge, Massachusetts 02140

Mr. Robert E. Corbett Dept. 62-25, Bldg. 151 Lockheed Aircraft Corporation P.O. Box 504 Sunnyvale, California 94088

Mr. S. J. Angelovich Chief Engineer Mallory Battery Company South Broadway Tarrytown, New York 10591 Dr. Per Bro P. R. Mallory & Co., Inc. Library Northwest Industrial Park Burlington, Massachusetts 01801 P. R. Mallory & Co., Inc. Library P.O. Box 1115 Indianapolis, Indiana 46206 Messrs. William B. Collins and M. S. Imamura Martin-Marietta Corporation P.O. Box 179 Denver, Colorado 80201 Mr. A.D. Tonelli, MS 17, Bldg. 22 A3-830 McDonnell Douglas Astronautics Co. 5301 Bolsa Avenue Huntington Beach, California 92647 Dr. Robert C. Shair Motorola, Inc. 8000 W. Sunrise Blvd. Ft. Lauderdale, Florida 33313 Rocketdyne Division North American Rockwell Corp. Attn: Library 6633 Canoga Avenue Canoga Park, California 91304 Mr. D. C. Briggs WDL Division Philco-Ford Corporation 3939 Fabian Way Palo Alto, California 94303

Power Information Center University City Science Institute 3401 Market Street, Room 2210 Philadelphia, Pennsylvania 19014 RAI Research Corporation 225 Marcus Blvd. Hauppauge, L.I., New York 11787 Southwest Research Institute Attn: Library P.O. Drawer 28510 San Antonio, Texas 78228

Mr. Joseph M. Sherfey 5261 Nautilus Drive Cape Coral, Florida 33904

Dr. W. R. Scott (M 2/2154) TRW Systems, Inc. One Space Park Redondo Beach, California 90278

Dr. Herbert P. Silverman (R-1/2094) TRW Systems, Inc. One Space Park Redondo Beach, Calif. 90278

TRW, Inc. Attn: Librarian TIM 3417 23555 Euclid Avenue Cleveland, Ohio 44117

Dr. Jose Giner Tyco Labs., Inc. Bear Hill-Hickory Drive Waltham, Massachusetts 02154

Union Carbide Corp. Development Lab. Library P.O. Box 6056 Cleveland, Ohio 44101

Dr. Robert Powers Consumer Products Div. Union Carbide Corporation P.O. Box 6116 Cleveland, Ohio 44101 Dr. C. C. Hein, Contract Admin. Research and Develpment Center Westinghouse Electric Corporation Churchill Borough Pittsburgh, Pennsylvania 15235

