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FOREWORD

This report was prepared by the National Bureau o£ Standards,
Boulder, Colorado, under USBM Contract No. HO 133005. The
contract was initiated under the Coal Mine Health and Safety
Research Program. It was administered under the technical
direction of the Pittsburgh Mining and Safety Research Center
with Mr. Howard Parkinson and Mr. Harry Dobrowski acting as
the technical project officers.

This report is a summary of the work completed as part of this
contract during the period June 1973 to June 1974. This report
was submitted by the authors in September, 1974.
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SURFACE MAGNETIC FIELD NOISE MEASUREMENTS

AT GENEVA MINE

by

J.W. Adams, W.D. Bensema, N.C. Tomoeda

Measurements o£ surface magnetic field noise were
made at various locations over the Geneva Coal Mine
near Price, Utah, on June 12, 1973. The locations
selected were on the surface over emergency locator
beacons underground at depths between 350 meters
(1150 ft.) and 488 meters (1600 ft.). The surface
terrain where these measurements were made was
mountainous, and access was difficult. There were no
power lines within several miles, and the weather was
clear; therefore, the magnetic noise levels were about
as low as will normally occur.

Results of measurements of distant sferics indi-
cate rather sharp cutoff frequencies below which broad-
band, impulsive noise is attenuated. The mechanism
of propagation for this noise above the daytime cutoff
frequency of 3500 Hz and the nighttime cutoff frequency
of 1700 Hz is deduced to be a waveguide formed by the
D or E layers of ionosphere as an upper plane and the
earth as a lower plane.

The measurement systems used are similar to those
used earlier. The technique is to record broadband,
analog signals, digitize the data, and use a fast-
Fourier transform to obtain spectral plots. This tech-
nique is novel in that it can measure simultaneously
all magnetic field energy within a limited portion of
the spectrum for a limited time, and, after processing,
reproduce the events occurring in that time interval
in great detail

.

Key words: Earth- ionosphere waveguide; electromagnetic
noise; EMI measurement technique; sferic interference.

1 . 0 Introduction

Magnetic field strength measurements were made on June 12,

1973, over the Geneva Coal Mine in the Book Cliff Mountain

Range east of Price, Utah. The locations selected were on

the surface over emergency locator beacons underground at



depths between 350 meters (1150 ft.) and 488 meters (1600 ft.)-

The surface terrain where these measurements were made was

mountainous, and access was difficult. There were no power

lines within several miles, and the weather was clear; there-

fore, the magnetic noise levels were about as low as will'

normally occur.

The primary purpose of the measurements was to determine

surface magnetic field noise levels so that performance of

emergency subsurface locator beacons of the U.S. Bureau of

Mines could be better predicted. These emergency locator

beacons are located many hundreds of feet underground and

when activated, generate magnetic fields in a pulsed-carrier

,

on-off mode for signaling to the surface, usually in emer-

gency situations. They operate at frequencies below 3 kHz

where signal attenuation through the earth is relatively low;

however, the beacon signals are greatly attenuated by various

effects, and surface noise becomes a limiting factor.

2 . 0 Measurement System

The block diagram of the field recording measurement sys-

tem is shown in figure 1. It consists of a balanced, shielded

loop antenna, balun, filter, and analog tape recorder. Later

in the laboratory, the analog signal is filtered, digitized,

fast Fourier transformed, and plotted on microfilm. See

figure 2 for the laboratory processing system. This gives an

output plot of one component of absolute magnetic field strength

versus frequency- -a spectral plot. The transform may be

repeated to allow three-dimensional plots, where time is the

additional variable.

This system is described in more detail in the Robena

Mine report [1]

.
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3 . 0 Earth- Ionosphere Waveguide Effect

on Propagated Noise

During the time the measurements were being made, there

were no visible thunderstorms or clouds anywhere in sight,

and hence, the atmospheric noise was largely that propagated

from distant sources. During daylight, strong sferics were

present, primarily above 3500 Hz, as shown in figure 3. At

night, sferics came in above 1700 Hz, as shown in figure 4.

A three-dimensional view given in figure 5 shows more detail

of the daytime structure. A similar plot in figure 6 shows

the nighttime structure. Note the 2500 Hz and 1900 Hz sub-

surface coal mine beacon signals in figure 5. The 1900 Hz

beacon is almost obscured by the atmospheric noise at night

(see figure 6). Notice the sharp cutoff of noise at 1700 Hz

at night and the more gradual cutoff at 3500 Hz during the day.

Ionospheric effects on radio transmission have been widely

studied for years, but these measurements with this new system

show some fresh insights into earth-ionosphere waveguide

phenomena. A dramatic and sharp increase in attenuation of

propagated atmospheric noise at frequencies below the waveguide

cutoff frequency (as mentioned above) has been observed. About

ten dB of signal-to-noise ratio may be gained by operating at

a frequency below the waveguide cutoff frequency rather than

above the cutoff, as shown by the one example in figure 6.

The probable propagation mechanism is a parallel plate

waveguide formed by the D or E layers of the ionosphere and

the earth. The TE or TM modes are excited between the

parallel planes and have a cutoff frequency of

r nc T o

^c
=

2i' ^ = 1,2,...,

where c is the velocity of light, and a is the spacing between

the plates [ 2]

.
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, I£ a = 88 km, £^ = 1704 Hz, 3408 Hz, ... . If the D

layer is about 50 km above the earth, and if the E layer is

about 100 km high [3] , the cutoff frequencies calculated are

approximately correct. The height of maximum ionospheric

density may vary somewhat, and may not be the exact distance

needed for this model. This phenomenon should be further

investigated, as it relates directly to what frequencies that

should be used for the emergency locator beacons .

4.0 Other Measured Data

A map of the surface is shown in figure 7. Noise at

location Bl, 463 meters (1520 feet) over the 1900 Hz beacon, .

is shown in figure 8. Noise at location CI, 442 meters

(1450 feet) over a 1700 Hz beacon, is shown in figure 9.

All the remaining figures are of noise at location Al

,

1150 feet over a 2500 Hz beacon.

Figures 10 through 18 show spectra of day, twilight, and

night noise to 10 kHz. Figure 13 shows a distant sferic.

Figures 19 through 27 show expanded spectra of day,

twilight, and night noise. These spectra are valid from

100 Hz to 3 kHz.

Data in figures 8 through 27 is absolute and has an uncer-

tainty of ± 1 dB [1]. This uncertainty only applies over the

following frequency ranges: figures 8 and 9, 300 Hz to

2600 Hz; figures 10 through 18, 560 Hz to 10 kHz; figures 19

through 27, 100 Hz to 3 kHz. See section 9.0, Appendix, for

the code key to use in determining the meaning of the numbers

in the header block at the top of each spectrum. The resolu-

tion bandwidth is given on the ordinate of the plots.

4



5 . 0 Conclusions

The surface noise at a remote site, away from powerlines,

will not be free of powerline harmonics; their amplitudes will

be reduced.

The earth- ionosphere may provide a waveguide to propa-

gate distant noise, particularly above 3500 Hz during the day

and above 1700 Hz at night. These frequencies are valid only

during the period covered by these measurements, as ionospheric

phenomena are quite time, geographically, and seasonally

dependent

.

6 . 0 Recommendations

These limited results indicate that emergency locator

beacon frequencies should be selected below 1700 Hz and be-

tween harmonics of the 60 Hz powerline frequency.

Additional measurements should be made over a diurnal

cycle and during each of the four seasons. Higher gain baluns

and/or amplifiers should be used to lower system noise.
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Figure 2b. Fast-Fourier transform part of data processing system

8



3S10N Qi'iva Qvoya mi '^h ii^/^m WM'i^-mmmm 3no

01 BAliVl^y 9P '^H U1SN3Q 'dPiyM Hi3N3}liS-Q131i-01i3N3VW S

— LA
a:: n~>

<o

CO

0)

3

•H

9



10



Figure 5 Spectrum of magnetic field strength vs. time. Antenna

placed on surface of ground above Geneva Coal Mine,

daytime. "Lost-Miner Beacon" pulses showing at 2500 Hz

are from a transmitter beacon straight dovm 351 meters

(1150 feet) . Pulses at 1900 Hz are from a transmitter

0.8 kilometers (1/2 mile) away under 463 meters (1520 feet)

of overburden.
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Spectrum of magnetic field strength vs. time. Antenna

placed nn surface of ground above Geneva Coal Mine,

nighttime. " L ost- IVl iner Beacon" pulses at 2 500 Hz can

still be seen but those at 1900 Hz are nartially obscured

by the atmospheric pulses (lightning static) propagating

in from over the horizon. This plot shows that by placing

transmitter frequency below 1600 Hz, atmospheric

interference can be reauced at least 10 dB, a factor

of 10 to I reduction in power.
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Geneva Coal Mine Entrance

Figure 7 Map of surface over Geneva Coal Mine.

Location
Code

Overburden Beacon Frequency
(Hz)

Al 350 2500.0

Bl 463 1900.0

CI 442 1700.0

Dl 503 922.5
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Figure 8 spectrum of surface EM noise at Lila Flats over Geneva Iline,

Location Bl on Figure 7. 1900 beacon coming through
463 meters (1520 ft.) of overburden is barely visible.

Antenna sensitive axis was vertical. Daytime. June 12, 1973.
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YigUVB 9 Spectrum of surface EM noise, north side of Llla Point, over
Geneva Mine, Location CI on Figure 7. 1700 Hz beacon
throtir;'- 442 meters (1450 ft.) of overburden is not visible.
Antenna sensitive axis was vertical. Daytime. June 12, 1973.
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9 . 0 Appendix

Decoding of Spectrum Captions

Spectrum captions are generally organized into the fol-

lowing format:

First line: MP NDT NZS NDA NPO RC DF date, time, frame, serial,

where

MP = Two's power of length of Fourier transform, example,
MP

2 where MP = 12

NDT = Detrending option, example, 0 (dc removed)

NZS = Restart spectral average after output, example, 0

(restarted)

NDA = Data segment advance increment, example, 2048

NPO = Number of spectra averaged between output calls
,

example, 2 0

RC = Integration time in seconds per spectra, example, 0.168

DF = Resolution bandwidth, spectral estimate spacing in

hertz, example, 62.5

Date = Date of computer processing, example, 03/21/73

Time = Time of computer processing, example, 15:06:34

Frame= Frame set number, example, 10

Serial = Film frame serial number, example, 42.

Second line: DTA DA(1) DA(2) DA(3) NSA NRP NPP , where

DTA = Detrending filter parameter a, example, 0.00195

DA(1) = Detrending filter average, K=l , example, 59.4

DA(2) = Detrending filter average, K=2, example, 0

DA(3) = Detrending filter average, K=3, example, 0

NSA = Number of periodograms averaged, example, 20

NRP = Number of data points processed since spectrum

initialization, example, 43008

NPP = Number of data points processed since data initial-

ization, example, 43008.
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Third line: RUN, SESSION, MONTH, DAY, YEAR Gain corr. , rec. =

tot. constr. =, where

Run and Session = the title o£ the portrayed frame identifying

the digitizing session and run number,

example, 21 8 3

Month, Day, Year = date data were recorded in the mine,

example, 8 25 73

Gain corr. rec. =' receiver gain correction, example, -6

tot. const. = constant gain correction of entire system,

example , 46 .

4

Fourth line: C = , RG = , DG = , FG = , AG = , where

C = correction curve used with data, example, 25

RG = receiver gain and accompanying correction in dB added to

the data, example, 200 (-6 dB)

DG = digitizer gain, example, 0

FG = filter gain in dB, often rounded to nearest single digit,

example, 0

AG = absolute gain correction added to data, example, 52

Fifth line: Top of Scale, Standard Error, Spectral Peak, where

Top of Scale = largest scale marking for computer drawn

graph, example, 1.000+004 (1.0 x 10^)

Standard Error = standard error of curve, example, 0.3162

Spectral Peak = largest spectral peak observed, example,

4.108+003 (4.108 x lO"^)
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