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PREFACE

This is the second part of a two-part work on electro-

magnetic scattering by a thin wire with continuous impedance

loading. In the first part [1] we have solved the problem in

the frequency domain. Since the frequency domain and the

time domain analysis are related to each other mathematically

by the Fourier transform, the transient scattering of a time

pulse by a thin wire can be synthesized from the results

obtained for the scattering of plane waves via the Fourier

trans form

.
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ELECTROMAGNETIC SCATTERING BY A THIN WIRE WITH

CONTINUOUS IMPEDANCE LOADING PART II: TIME DOMAIN ANALYSIS

Tommy C. Tong*

ABSTRACT

The scattering o£ electromagnetic pulses by a

thin wire with continuous impedance loading is

investigated theoretically. The basic approach used
is the numerical Fourier transform of the frequency
response. The incident pulse is assumed a truncated
periodic Gaussian pulse. Numerical results for the
transient current distribution and the transient
scattered field in different directions of observation
are presented. It is found that the shapes of the
transient current distribution on the wire and of
the scattered field can be controlled by loading
the wire with some impedance.

Key Words: Electromagnetic scattering; Impedance
loading; Pulses; Thin wire.

I. INTRODUCTION

In recent years, the time domain analysis of field

problems has been receiving increasing attention partly

because of the demand for generation of high power pulses

and partly because of the fact that radar interrogation is

essentially a transient process. In the case of wire struc-

tures, substantial work [2,3,4] has been devoted to the

study of transient radiation of a dipole antenna. But

very little work [5,6] has been done on investigating the

*Pos tdoctoral Fellow.



transient scattering characteristics of the dipole, and

apparently none when the dipole is modified with some kind

of impedance loading.

' The present study investigates the scattering of electro-

magnetic pulses by a thin wire with continuous loading. In

general, there are two different approaches to obtain the

time domain response to an electromagnetic scattering problem.

The first approach makes use of numerically evaluated fre-

quency domain solutions and the Fourier transform. The second

approach [7,8] is one which originates from a strictly time

domain viewpoint , and requires solving the time dependent

differential or integral equation directly.

The first approach is preferred in the present investi-

gation, because mathematically it is easier to solve a time

independent differential or integral equation than a time

dependent one. Moreover, recent development of the fast

numerical algorithm has made this approach more appropriate

for this study.

Here we assume that the incident pulse is a Gaussian

distribution, but any band-limited real time function can be

used as well.
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II. FREQUENCY DOMAIN AND TIME DOMAIN

A. Incident Pulse

As shown in Fig. 1, the thin wire (a/L << 1) which is

loaded symmetrically about z=0 with a continuous impedance

function Z(z) is illuminated by a truncated Gaussian pulse

varying periodically at a frequency oj^ = Zir/T with T being

the period. The Gaussian whose pulse width is t (T >_ 4t)

is given by (Jig. 2 (a))

p(t) = exp(-tV2a2) ,
|t| < T/2 (1)

where o" is a time constant.

The frequency spectrum of a truncated single pulse is

CFig. 2(b))

CO

P(w) = / p(t) e"^'^''^ dt
- 00

=i a /TtT exp (-a^to^/2) . (2)

Since p(t) is a real time function we must have

P(ca) = P*(-^) C3)

where * denotes the complex conjugate.

B . Scattered Field

In the frequency domain the scattered field is given by

E ro,) = ^ e-j^^ sin 9 I (z ' ,a))e-^^^ '

^ dz ' (4)
" 47Tr -L/2

where is the intrinsic impedance of free space, and I(z,a))

the current distribution for an incident plane wave of unit

amplitude.
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Then, the scattered field in the time domain for a

periodic pulse can be obtained by superposition (since the

system is linear) thus

n L/2
EP(t) = I ja3. P(a).) / sin 9 I(z',c..)

47rr 00^=-°° -L/2

-3^ A -J'^.-i^

z ' cos 0 L_
c c

i oj . t
1

'
' X e ^ e ^ e ^ dz' (5)

where o)^ = i = ±1, ±2,

which after terminating to a finite number of terms 2N + 1

is approximately given by

D N L/2
E^Ct) ^ I jo). P(a).) / sin 6 I(z',a).)
^ 47Tr a3^=-N ^ ^ -L/2

-jo)^ -joj^r

z' cose joo-t
X e ^ e ^ e ^ dz' . (6)

Using Eq. (3) and the relation

I(z',-a3.) = I*(z',a).),

we obtain

N
T /?

EUt') - — ° 5: ja3. P(a3.) / sin 6 I(z',a).)
4TTr 0)^=1 ^ ^ -L/2

-jo).

Z ' cos e 10). t '

X e ^ e^ dz'

+ complex conjugate term

where t' = t-r/c is the retarded time, and c the velocity of

propagation.



In the frequency domain the scattered field due to the

pulse is given by

00
.

^

= / E^(t')e"^"'^ dt

n =° N L/2
- I { I joj. P(a3.) / sin 6 I(z' ,lo.)

47Tr -°° C0j^ = l -L/2

Z ' cos e j CO . t '
.

,xe^ e^+cc} e"^'^^ dt ' (8)

n =° N L/2—^ Re / { I jco. PCoj.) / sin 9 ICz','^-) (9)
27rr -°° 03^ = 1 -L/2

-jo:

z ' cos 9 i oj . t ' . ^ ,

X e " e " }e^"" dt

'

where c c represents the complex conjugate term.

C. The Surface Current

In a similar manner, the transient current induced on

the wire is given by

°° j 0) . t

I(z,t) = I I(z,a..)P(a3.3e ^ . (10}
OJ .

=-co
1
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III. NUMERICAL RESULTS

Fig. 3 shows the transient current at z = L/2 for a wire

with L = 0.125 A and a = 0.00 5 A at the fundamental frequency

for two different impedance loadings . The width and the perio

of an incident pulse are equal to 10 ns and 40 ns respec-

tively. The Gaussian pulse is truncated when the amplitude

is equal to II of the maximum amplitude. It is seen that

there are marked differences between these two current dis-

tributions. If we take a Fourier analysis of them, we

would find that the one corresponding to no loading (Z = 0)

is rich in the second harmonic while the one corresponding

to loading is rich in the third harmonic. This indicates

that it is possible to control the harmonic content of the

transient current response by loading the wire with some

impedance.

The transient scattered fields for different angles of

observation for the same wire and same incident pulse are

shown in Figs. 4-6. The kind of impedance loading used here

is distributed capacitive . Properties of antennas with such

loading were first described by Hallen [9] who made a monopole

antenna in the form of a row of small conducting cylinders,

between which dielectric discs of increasing thickness toward

the antenna end were inserted. In this manner the antenna

had a variable capacitive impedance which increased toward

the end. It is seen that in each case the response with

such loading decays at a faster rate than that without load-

ing. Perhaps it should be pointed out that the shape of the



scattered field in the time domain is closely related to the

first derivative of the incident pulse, because Eq((jo) has a

j CO factor (Eq . (4) ) .

Figs. 7-9 show the scattered field versus the retarded

time for a wire with longer length (L = 0.75 X and a = 0.01 A).

Besides the continuous capacitive loading, a nonreflect ing

resistive loading is also investigated. This kind of load-

ing was used by Wu and King [10] in antenna analysis. It is

seen that except for 9=90°, the shapes of the scattered fields

with or without loading differ significantly from those we

saw previously for shorter wires. This difference can be

understood if we realize that when the wire is illuminated by

a pulse, a transient current is induced on the wire. This

current travels along the wire at the speed of light, and

when it encounters the ends of the wire, it will be reflected

back. This process will continue until the current dies

down. The longer the wire, the longer the time the current

takes. Since the electrical length of the antenna is propor-

tional to the frequency, the contributions due to the differ-

ent harmonics would not add in phase in the far field. The

case for 0=90° is a special one, because the phase factor

cos 0 z

'

e in Eq. (4) is equal to unity under this

circumstance. Note that the scattered field for the nonre-

flecting loading is not shown in Fig. 9 for 0=90°, since it

is very close to that for the no loading case.
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The effect of reducing the pulse duration is illustrated

in Fig. 10. As the pulse width reduces, higher harmonics

will become more important. For the numerical calculations

we used ten harmonics (N = ±10) for the longer pulse (t = 10

ns) and twenty two harmonics (N = ±22) for the shorter pulse

(t = 5 ns) . In each case the period of the pulse is 40 ns

.

IV. INCIDENT FIELD OF ARBITRARY TIME DEPENDENCE

For a linear system, the superposition theorem says

that the time response of the scattered field from a dipole,

illuminated by a plane wave of arbitrary time dependence

y(t) is given by the convolution

t

E (t) = / y(t-T)h(T) dx (11)
" 0

where h(T) is the impulse response of the dipole and is

related to Eg(aj) , the frequency response, by

00

h(t) = — / EqCo)) e^'^'^ do). (12)
2 IT - 0°

Therefore, once we get the impulse response we have solved

the time domain problem entirely. Numerically, the impulse

response is difficult to obtain because its frequency spec-

trum is constant. In other words, the delta function is

not a band limited function. But there are various approxi-

mate functions that can be used for the delta function.

However, we will not pursue this matter further in this study.
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V. CONCLUSION

The scattering of electromagnetic pulses by a thin

wire with continuous impedance loading has been investigated

using the numerical Fourier transform of the frequency

response. Numerical results show that the shapes of

the induced current and the scattered field in the time

domain can be modified by using the impedance loading tech-

nique .
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A

Fig. 1. Geometry of the Thin Wire
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APPENDIX A - COMPUTER PROGRAM

Subroutine FORTID performs the fast Fourier transform

on a one -dime ns ional array of complex numbers A. It assumes

the real parts of the elements of A are stored in the odd-

indexed locations and the imaginary parts in the even-

indexed ones. Suppose it is desired to evaluate

F(X) = / exp(-j2TrAx) f(x) dx

where f has limited support

fCx) =0 |x| > a.

Then F(X) is approximated by

N/2-1
F„ ^ 1//N y exp(jmn/N) f , -N/2 < m < N/2
^ n=-N/2 ^ ~ "

where f^ = f(ns) and F^^ = FCm/T) . The range of sampling T

and the period of sampling s are related to the number of

samples, N, by

T/s = N = 2^, p is an integer.
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• J0B»2727277 »T0NG»2
'FTn»L»X»*

PROGRAM FOURIER
DIMENSION A(256)
COMPLEX Ul
DO 1 I =1 ^256
A( I ) =0 •

CONT 1 NUE
Ul= (6. 53490E-003
1*(0. .1 . )

A( 131 ) =REAL{U1

)

A( 132 ) =AIMAG{U1

)

A( 127

)

=A( 131

)

A( 128

)

=-A( 132

)

Ul= (2. 26778E-001
1*{0. .1 .)

A( 133 ) =REAL (Ul

)

A(134 ) =AIMAG( Ul

)

A( 125 ) =A( 133

)

A{ 126

)

=-A( 134

)

Ul= ( 2. 09957E+000»
1*(0. ! . )

A ( 135 ) = REAL ( Ul )

A( 136 ) =AIMAG( Ul

)

A( 123 ) =A(135)
A ( 124

)

=-A (136

)

Ul= (4. 28172E-t-000»
1*(0. »1 . )

A( 137

)

=REAL(U1

)

A( 138 ) =AIMAG{U1

)

A( 121 ) =A( 137)
A( 122 ) =-A( 138

)

Ul= (3. 46354E +000
1*(0. »1 .)

A{ 139

)

=REAL(U1

)

A( 140

)

=AIMAGI Ul

)

A( 119) =A( 139

)

A( 120 ) =-A( 140

)

Ul= (2. 75311E+000.
1*(0. »1 . )

A( 141

)

=REAL ( Ul

)

A( 142

)

=AIMAG(U1

)

A( 117) =A( 141

)

At 118 ) = -A ( 142 )

Ul= (2. 35476E+000*
1*(0. tl . )

A( 143 ) =REAL(U1

)

A( 144) =AIMAG(U1

)

A( 115 ) =A( 143

)

A( 116

)

=-A( 144

)

Ul= ( 2. 08824E +000 »

1*(0. »1 . )

A{ 145 ) =REAL ( Ul

)

A( 146

)

=AIMAG(U1

)

1 .57600 E-0 01 ) * ( 5 .40 7 5 7E-00 1 ,2 . 4394 5E-004 ) *1

.

9.20442E-001 ) * ( 5.29174E-00 l,4.50751E-004)*2.

2.06968E +000 ) *( 5 . 10402 E-00 1 5 . 8 893 5 E-004 ) *3.

1 .633 52E-001 ) * ( 4 • 8 5 205 E-00 1 » 6 . 3 745 7E-004 ) *4

.

1 .78828E+000) *( 4.54582E-001 » 5 . 88934E-004 ) *5

.

2.163 72E+000 ) 4. 19705E-001 »4 . 50 75 lE-004 ) *5

•

2.26 216E+00 0 )*( 3 . 81846 E-00 1 »2 .43946E-004 ) *7

•

2.31764E+0 0 0 )*{ 3 . 42 3 04E-00 1 » 4 . 64 752E-0 10 )*8.
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A ( 113) = A ( 145 )

A ( 114 ) = -A ( 146 )

Ul = ( 1 • V29dV h + OOO
1* ( 0 • 1 •

)

A I
1 / "7 \

1 4 M _ (-» (r A 1 MM \

A ( 1 A-8 ) = A I M A G ( U 1 )

A ( 111' = A ( 147 )

A ( 112) =-A ( 148

)

U 1 = { 1 • 80 j56E + 000
1* ( 0 • » 1 • 1

A I 1 49 ' = REAL I Ui J

A ( 1 50 ) = A I MAG I Ul )

A ( 109) = A ( 149 )

A ( 1 10 ) =-A(l50)
U i = ( 1 .67960E +000 »

1^- ( U • » i

A ( X J 1 1
- D F A 1 (111 1

A ( 1 J c. ' = A T M A G ( LJ 1 )

A ( 107) = A ( 1 5 1 )

A ( 1 Oft ) = -A ( 1 5 7 )

U i = ( i • 5 3 167E + 000
1* ( 0 • »

1

, )

A ( 15^)L ^ J ' = RF Al ( U 1 )

A ( 1 54 ) = A T MAG ( U 1 )

A ( 105 ) =A ( 15 3)

A { 10^"!) = _A ( 1 54 )

i 1 ^U 1 = ( 1 . 320 86E +000 »

1 ^ I 0 • »

1

, )

A I 155 ) = REAL ( Ul )

A ( 156 ) =AIMAG( Ul

)

A ( 103 ) =A( 155

)

A ( 104) =-A( 156

)

1 1

1

u i = ( 1 .05350E+000
1^ ( 0. ! . )

A ( 157) =REAL ( Ul

)

A ( 158 ) = AIMAG( Ul )

A (A \ 101 ) =A{ 157

)

A ( 102 ) = -A ( 158 )

Ul = ( 7 .06912E-001
1">^ V 0 . »

1

.)

A I 159 ) =REAL(U1

)

A ( 160 ) =AIMAG( Ul

)

A ( 99 ) = A( 159 )

A ( 100 ) =-A ( 160

)

U

1

= ( 3.06016E-001
0 . »

1

. )

A ( 161 ) =REAL ( Ul

)

A ( 162 ) =AIMAG( Ul

)

A ( 97 ) = A{ 161

)

A ( 98 ) = -A( 162

)

U

1

= ( -1 .01943E-001
1* ( 0 . »

1

. )

A ( 163 ) =REAL ( Ul

)

A ( 164 ) =AIMAG( Ul

)

•2.39637E-t-000)*( 3,02 3 36E-001 -2 . 4 394 3 E-Oo 4 )
^i- 9 .

•2 ,52007E + 0O0)*( 2.63087E-001 -4 . 5 0 749 E-0 0^ )*10

-2.696 70E+00U)*(2.25546E-UUl»-5.88932E-UO4)*ll.

-2,92654E+00U )*(1.90 506E-0 0l»-6.3 74 56E-U04)*12,

-3 .19377E + U00)*( 1 . 5 8 549 E-0 0 1
» - 6 . 3 74 56 E-0 04 ) *1 3.

,-3.48155E + 0 00)*(1 .30038E-Oul , -4 . 50 75UE-O04 ) *14.

,-3.73998E + 0 00)->^( 1 .05134E-0 01 , -2 . 43 944 E-U 04 ) *15.

-3.92222E + 0 00)^( 8 . 3 8 1 70 E-0 02 7 . 5488 1 E-0 1 1 ) *16.

»-4.00l39E+0 00)*(6 . 5 92 0 5 E-0 0 2 , 2 . 4 3 944E -00 4 ) *17.
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A(95)=A( 163)
A{96 ) =-A( 164

)

Ul= ( -4.55164E-001 »-4.01742E +000 ) * ( 5 . 1 1 6 9 1 E-0 0 2 4 . 50 7 5 OE-QO 4 ) * 1 8 .

1*(0. »1 • )

A( 165 ) =REAL ( Ul

)

A( 166 ) =AIMAG( Ul

)

A(93 ) =A( 165

'

A(94)=-A( 166

)

Ul= { -7,52346E-00l »-4.00 571E+000 ) * ( 3 . 92 1 66 E-00 2 , 5 . 8 893 3E-0U4 ) *19.
1* ( 0 . » 1 . )

A(167)=REAL(U1)
A(168)=AIMAG(U1

)

A(91)=A(167)
A(92 ) =-A( 168

)

Ul= (-1 .0l354E+000»-3.99996E+000 )* ( 2.96826E-002 ,6.37456E-004 ) *2 0.
1*(0. jI . )

A( 169 ) =REAL ( Ul

)

A( 170 ) =AI MAG(U1

)

A(89)=A( 169)
A(90)=-A( 170)
Ul= (-1 .2 7136E +000 »-4,012 66E +U00 )*

( 2 .2 1831E-002 »5 .889 33E-UU4 ) *21 .

1* ( 0. » 1 . )

A{171)=REAL(U1)
A( 172 )=AIMAG( Ul

)

A{87)=A(17l)
A(88 ) =-A( 172

)

Ul= (-1 •55684E +000,-4,0 3862E +000 )*( 1 . 63 5 52 E-002 , 4 . 5075 OE-OO4 ) *22 .

1*{0. »!• )

A(173 ) =REAL(U1

)

A( 174 ) =AIMAG( Ul

)

A(85 ) =A{ 173

)

A(86)=-A( 174)
PRINT 3,( I»A( I) ,I = 84»175)
CALL FORTID( A,128»l )

PRINT 3» ( I »A( I ) ,1 = 1,256)
3 FORMAT (15 ,E20.5

)

STOP
END
SUBROUTINE FORT I D ( A , N , I FS

)

C A=1D ARRAY»SIZE 2*N
C N=2**P, NO. OF COMPLEX ELEMENTS,? AN INTEGER
C IFS=-1, FOR FOURIER ANALYSIS
C IFS=1, FOR FOURIER SYNTHESIS

DIMENSION A(256)
NN=2*N
FN=N
PI=3. 14159265

C SUPPLY PHASE TO A TO SHIFT THE TRANSFORM TO THE CENTER
DO 1 J=1,N
JJ=J-1
L=MOD( JJ,2)
A(2*J-1 ) = {

( -1. ) **L ) *A( 2*J-1 ) /SORT ( FN)
A(2*J ) = ((-!.) **L) -x-A ( 2*J ) / SORT ( FN)

1 CONTINUE
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C PERFORM BINARY SORT
J=l
DO 34 I=1»NN»2
IF (I-J)2»3»3

2 TEMPR=A(J)
TtMPI=A(J+l)
A ( J ) =A ( I )

- A ( J + 1 ) =A( I + l )

A ( I ) = FEMPR
A(I+1)=TEMPI

3 M=NN/2
4 IF(J-M) 6»6»5
5 J=J-M

M = M/2
IF (M-2) 6*4 »

4

6 J=J+M
34 CONTINUE

C START MAIN LOOP
MMAX=2

7 IF (MMAX-NN) 8»11,11
8 ISTEP=2*MMAX

THETA = 2.*PI/ ( IFS^MMAX

)

SINTH=SIN ( THETA/2.

)

WSTPR = -2.*SINTH*-SINTH
WSTP I=SIN ( THETA

)

WR=1.
WI = 0.

DO 10 M=1»MMAX»2
DO 9 I=M»NN»ISTEP
J=I+MMAX
TEMPR=WR*A ( J ) -W I*A ( J+1

)

TEMPI =WR*A( J+1 )+WI*A( J)

A( J)=A(

I

)-TlMPR
A( J+1 )=A{ I+l )-TEMPI
A{ I )=A ( I ) +TEMPR
A( I+l )=A( I+l )+TEMPI

9 CONTINUE
TEMPR=WR
WR = WR*WSTPR-W r^WSTP I+WR
WI = WI-s^WSTPR + TEMPR^-WSTP I+WI

10 CONTINUE
MMAX= ISTEP
GO TO 7

C END OF TRANSFORM
C CORRECT PHASE ON TRANSFORM DUE TO SHIFTED A

11 DO 12 J=1»N
JJ=J-1
L=M0D(JJ»2)
IF (L .EQ. 0) GO TO 12
JR=2*J-1
JI=JR+1
A { JR ) =-A ( JR

)

A( JI ) =-A( JI

)

12 CONTINUE
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RETURN
END

SCOPE
• LOAD
»RUN»10»1500
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