REF. SP-480-2

NBSIR 73-211 Published as U.S. Department of Justice Law Enforcement Assistance Administration National Institute of Law Enforcement and Criminal Justice report LESP-RPT-0002.00; May 1974

LEAA Police Equipment Survey of 1972 Volume II: Communications Equipment and Supplies

S. Mumford, P. Klaus, E. Bunten, R. Cunitz

Technical Analysis Division
Institute for Applied Technology
National Bureau of Standards
Washington, D. C. 20234

Final July 1971 - July 1973

[^0]The present report is one in a series of reports produced from data gathered by the LEAA Police Equipment Survey of 1972. Listed below are the seven reports of that survey.

National Bureau of Standards Report 73-211 (The present report). LEAA POLICE EQUIPMENT SURVEY OF 1972, Volume II: Communications Equipment and Supplies.

National Bureau of Standards Report 73-210. LEAA POLICE EQUIPMENT SURVEY OF 1972, Volume I: The Need for Standards -- Priorities for Police Equipment.

National Bureau of Standards Report 73-212. LEAA POLICE EQUIPMENT SURVEY OF 1972, Volume III: Sirens and Emergency Warning Lights.

National Bureau of Standards Report 73-213. LEAA POLICE EQUIPMENT SURVEY OF 1972, Volume IV: Alarm Displays, Security Equipment, and Surveillance Equipment.

National Bureau of Standards Report 73-214. LEAA POLICE EQUIPMENT SURVEY OF 1972, Volume V: Handguns and Handgun Ammunition.

National Bureau of Standards Report 73-215. LEAA POLICE EQUIPMENT SURVEY OF 1972, Volume VI: Body Armor and Confiscated Weapons.

National Bureau of Standards Report 73-216. LEAA POLICE EQUIPMENT SURVEY CF 1972, Volume VII: patrolcars.

LEAA POLICE EQUIPMENT SURVEY OF 1972
 VOLUME: COMMUNICATIONS EQUIPMENT
 AND SUPPLIES

S. Mumford, P. Klaus, E. Bunten, R. Cunitz

Technical Analysis Division
Institute for Applied Technology
National Bureau of Standards
Washington, D. C. 20234

Prepared for
National Institute of Law Enforcement and Criminal Justice (NILECJ)
Law Enforcement Assistance Administration (LEAA)
Department of Justice
Washington, D. C. 20530

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

ACKNOWLEDGEMENTS

We are grateful to the 428 police departments throughout the United States who contributed their time and knowledge to make this report possible. Special thanks go to the police departments whose officers and administrators helped the survey team during the developmental and testing phases of the work. In addition, we thank Marshall J. Treado of the Law Enforcement Standards Laboratory, for providing invaluable information. The support and assistance of Lester Shubin, NILECJ, project monitor and consultant, is also gratefully acknowledged.

Although there are only four authors for this repart, the work could not have been accomplished without the capable and conscientious efforts of the many members of the Technical Analysis Division who provided support for the whole survey effort:

William L. O'Neal for his help in computerizing the sample selection and for helping design and programming interactive record-keeping system; Jenny L. Eldreth and F. Clare Peiser for maintaining the computerized record-keeping system; June R. Cornog, for her advice, support and help with initial interviews; Diane R. Beall for the many typings of the various versions of the questionnaires; Suellen Halpin, Mary L. Friend, and Susan E. Bergsman, for making follow-up telephone calls; Lorraine S. Freeman for her administrative support; Karen Jackson, a summer employee, for her help with questionnaire coding and record-keeping; Cassandra Streeter and Janice Davis, summer employees, for their help with record-keeping; and Mary Hawkins for typing the report.

Michael R. Vogt receives special thanks for his help in carrying cut the computerized edit and tabulation of the data. Special thanks also go to Dwight F. Doxey for coding this questionnaire and contributing to the preliminary data analysis.
Page
REPORTS FROM THE LEAA POLICE EQUIPMENT SURVEY ACKNOWLEDGEMENTS iii
LIST OF TABLES vii
EXECUTIVES' SUMMARY xiii
1.0 INTRODUCTION 1
1.1 Project Background 1
1.2 Sample Design 2
1.3 Questionnaire Administration 6
1.4 Development and Design of the Communications DQ 10
1.5 Characteristics of Subsample Groups 11
2.0 QUESTION BY QUESTION DISCUSSION 15
2.1 Advice to the Reader 15
2.2 Discussion 20
2.2.1 Characteristics of Respondents 20
2.2.2 Number of Officers and Characteristics of Jurisdiction 22
2.2.3 Mobile Radios 26
2.2.3.1 Number of Mobile Radios 26
2.2.3.2 Spectrum Utilization: Mobile Radios 28
2.2.3.3 Characteristics of Mobile Radios 37
2.2.4 Portable Radios 43
2.2.4.1 Number of Portable Radios 44
2.2.4.2 Spectrum Utilization: Portable Radios 46
2.2.4.3 Characteristics of Portable Radios 49
2.2.5 Special Systems 61
2.2.5.1 Mobile Repeaters 61
2.2.5.2 Fixed Repeaters 64
2.2.5.3 Portamobile Radios with Voting Systems 69
2.2.5.4 Scrambler Systems 72
2.2.5.5 Communications Helmet 78
2.2.6 General Information 81
2.2.6.1 Needs for Standards and Expected Gains from Standards 81
2.2.6.2 Communications Needs 85
2.2.6.3 Problems With and Failures of Comrunications Equipment 87
2.2.7 Comments 89

APPENDIX A. Communications Questionnaire APPENDIX B. Raw Data Tables

LIST OF TABLES

1.0 INTRODUCTION

Table Number Page
i Rank of Primary Respondent 20
ii Years of Experience of Primary Respondent in Law Enforcement. 21
iii Number of Officers and Characteristics of Jurisdiction 22
1.2-1 Stratification Categories 3
1.2-2 Number of Police Departments 5
1.2-3 Number in Sample of Departments Selected to Receive the Communications Questionnaires by Region and Department Type 7
1.3-1 Number of Departments Returning Acceptable Communications Questionnaires 9
1.5-1 Percent of Sample Departments Having
Each Activity 12
1.5-2 Descriptive Data by Department Type (Means) 14

1. 5-3 Descriptive Data by LEAA Region (Means) 14
2.0 QUESTION BY QUESTION DISCUSSIONThis list has been ordered by table number, and this orderingfollows the sequence of the questions in the CommunicationsQuestionnaire (Appendix A). For quick reference, find thequestion of interest in the questionnaire, note the questionnumber, and find that question number in the List of Tables.(e.g., Tables lC-l., lC-2., lC-3., etc., are all tables refer-ring to Question lC.)
1A-1 Distribution of Transmitting Frequencies Within Bands 30

1A-2	Percent Use of More Than One Frequency Band for Transmitting
1A-3	Mean Number of Transmitting Frequencies per Department, by Department Type and Band
1B-1	Departments Whose Trasmitting and Receiving Frequencies Were Not All the Same
$1 \mathrm{C}-1$	Frequency Count of Reported Output Power.
1C-2	Of Departments Citing Output Powers of 90-110 Watts.
1C-3	Average Output Power by Department Type
1D\&E	Comparison of Channels Authorized with Channels in Use for Mobile Radios
1D\&E \& 5B	Comparison of Average Number of Channels In Use, Authorized and In Area for Mobile Radios
2A-1	Number of Car Radios
2A-2	Estimated Total U.S. Population of Police Car Radios
$2 \mathrm{~B}-1$	Car Radios in Use in Departments Made by Various Manufacturers.
2B-2	Proportions of Different Manufacturers Represented Within One Department .
3	Period of Time Within Which Departments Bought Most of Their Car Radios.
4	Cost of the Car Radios Most Frequently Used in a Department.
5A-1	Average Size of Communications Jurisdiction
5A-2	Comparison Between Average Number of Officers in Department and Average Size of Jurisdiction
6	General Character of Jurisdiction

7A-1	Use of Fixed Repeaters by Department Type, as Compared to Average Size of Jurisdiction
7A-2	Use of Fixed Repeaters and Character of Jurisdiction, by LEAA Region
7B-1	Total Repeaters in USe, and Mean Number per Department
7B-2	Average Number of Fixed Repeaters, by LEAA Region, Compared to Percentage of Departments in Region which Use Fixed Repeaters .
8A	Preference for FlFl or FlF2 Repeaters . . .
9	Use of Portable Radios .
10A-1	Comparison of Total Transmitting Frequencies, by Band, for Mobile and Portable Radios
10A-2	Mobile and Portable Frequencies, By Band, for County and 50 Largest City Departments.
10A-3	Mean Numbers of Portable and Mobile Radio Transmitting Frequencies.
10B	Portable Radio Frequencies Used for Both Transmitting and Receiving
10C	Mean Output Power in Watts for Portable Radios
1OD \& E-I	Comparison of Channels Authorized and In Use for Portable Radios
1OD \& E-2	Comparison of Channels Authorized and In Use for Portable and Mobile Radios
11A-1	Number of Portable Radios
11A-2	Mean Number of Officers per Department Type, Mean Number of Car Radios and Mean Number of Portable Radios. .

16-2 Expected Gains from Standardization of Communications Equipment 85
17-1 Availability of Scramblers 7317-218
Perceived Need of Scrambler System by Departments Which Currently Do Not Have the system 73
Purposes for Which Scramblexs Were(Or Would Be) Used75
19 Use of Scramblers with Car Radios, Portable Radios, and Special Vehicles 76Amounts tre Departments Would be willing toPay for a Reliable Scrambler System78
Need for Built-In Communications in Helmets 7921-322Priorities Assigned to Standards for PowerSupplies for Portable Radios51
$23 \& 24$ 52
Comparison Between Batteries Now In Use and Batteries Preferred, by the Departments Using Portable Radios25
25A, B, C \& D 55
Length of Time to Partially and Completely
Recharge Batteries
26-1 Most Critical Communications Needs
Reasons for Not Needing Built-In Helmet Communications 80
2l-2
Reasons for Needing Built-In Helmet
Reasons for Needing Built-In Helmet Communications 79
Use of Batteries which Must Be Recharged by Departments Which Used Portable Radios 53
26-2 Most Critical Communications Needs Indicated by 40% OR MORE of the Departments Within Each Department Type 87

27 | | Most Serious Problems with Communications | |
| :--- | :--- | :--- |
| | Equipment | 88 |
| 28 | Most Common Equipment Failures 89 | |

I. SUMMARY OF BACKGROUND AND METHODOLOGY

A. Backgrcund (pp. 1-2)

- Law Enforcement Standards Laboratory (IFSL) was established in 1970 and became part of the NILECJ iqquipment systems Improvement Program (ESIP).
- NILECJ asked the Behavioral Sciences Group of the National Bureau of Standards to develop and carry out a procedure to get information from the users of law enforcement equipment.
- "User" information would aid NILECJ in setting priorities for LESL programs and would provide some detailed information so that research to develop standards could begin.
- In addition, gathering information from the users would help to make police agencies aware of LESL and ESIP.
- A nationwide mail sample survey was selected as the best procedure to collect user information.
- An Equipment Priorities Questionnaire (EPQ) and 6 Detailed Questionnaires (DQs) were developed and administered. A separate report was prepared for each of these seven questionnaires.
B. Design of Questionnaires (p. 10)
- Questionnaires were developed in conjunction with NILECJ, LESI, and cooperating police departments. Questionnaires were pretested at various times with approximately 45 police departments.
- The EPQ was designed to provide information about priority needs for standards for various types of equipment.
- In addition, the EPQ asked for data about numbers of fulland part-time officers, activities performed in the department, budget, size of jurisdiction, etc.
- The six DQs (Alarms, Security and Surveillance Equipment; Communications Equipment and Supplies; Handguns and Handgun Amnunition; Sircns and Emergency Warning Lights; Body Armor ard Confiscated Weapons; and Patrolcars) were each developed separately.
- The DQs asked about kinds and quantities of equipment in use, problems with existing equipment, suggestions for improving equipment, needs for standards related to the equipment, etc. Although entitled Detailed Questionnaires, these questionnaires were designed to give an overview of the use of specific items of equipment.
C. Sample (pp. 2-6)
- The population sampled was made up of all police departments listed in a computerized file and maintained by the LEAA Statistical Service.
- Courts, correctional institutions, forensic labs, special police agencies, etc., were excluded.
- The sample was stratified by LEAA Georgraphic Region (10 Regions) and by Department Type (7 Department Types: State Police; County Police and Sheriffs; City Departments with 1-9 officers; City Departments with 10-49 officers; City Departments with 50 or more officers, excluding the Fifty Largest Cities; the Fifty Largest U.S. Cities by population; and Township Departments).
- Overall, approximately 10% of the 12,836 departments in the population were selected as respondents (See Table 1.2-2).
- The Equipment Priorities Questionnaire was sent to every sample department (1386). Each Detailed Questionnaire was sent to all States, to all of the Fifty Largest Cities, and to a randomly selected subsample of the main sample (about 530 departments received each DQ).
- Thus, States and the Fifty Largest Cities were asked to fill in all seven questionnaires. Each of the remaining 1186 departments were asked to fill in the EPQ and two of the DQs.
- The sample for the Communications DQ consisted of 528 departments (See Table 1.2-3).
D. Questionnaire Administration (pp. 6-9)
- Stringent control of administration was required.
- Introductory letters were sent to heads of departments asking cooperation.
- On June 1, 1972, questionnaire packages mailed.
- In July 1972, follow-up by self-return post card was begun.
- In August 1972, follow-up by telephone was begun. Departments which had not returned questionnaires were called. Also, calls were made to clear up ambiguities in the returned questionnaires. About 1300 calls were made. About 70% of the sample departments were called at least once.
- Each questionnaire was edited and coded by a specialized team to ensure consistency; they were then keypunched and tabulated.
- Completed questionnaires were accepted for tabulation through January 7, 1973.
E. Rates of Return (pp. 8-9)
- 83% of the 1386 departments returned usable EPQs.
- 81% of the 528 departments returned usable Communications DQs.
- 81 - 85 \% of the other DQ subsamples returned usable questionnaires.
- Highest rates of return (over 90%) were from States, the Fifty Largest Cities, and Cities with 50 or more officers.
- Lowest rates of return were from Counties and Townships (less than 75\%).

F. Characteristics of Responding Departments (pp. 11-15)

- The activities most commonly carried out by the respondents (to the EPQ) were Serving Traffic and Criminal Warrants (88\%), Traffic Safety and Traffic Control (87\%), and Intra-departmental Communications (87\%).
- All of the responding Fifty Largest Cities said they provided In-House Training and Criminal Investigations. This compared to 68% and 86%, respectively, of all responding departments.
- Only 13\% of all respondents had Crime Laboratories. 73\% of the Fifty Largest Cities and 55% of the States had Crime Laboratories.
- About three-fifths of the departments in all Department Types were providing Emergency Aid and Rescue: Ranging from 60% of the Cities with 50 or More Officers to 67\% of the Counties.
- Overall, the reported Equipment Budgets represented somewhat over 10% of the Total Budgets reported.
- Among Department Types, there was a wide range of total equipment expenditures: From a mean of about $\$ 10,000$ for Cities with l-9 Officers to a mean of almost $\$ 2.6$ million for the Fifty Largest Cities.
- One of the Fifty Largest Cities reported an Equipment Budget of $\$ 40$ million.
- Overall, the Fifty Largest Cities reported a mean of 2491 Full-Time Sworn Officers. However, one of the Fifty Largest Cities had 27\% of all the Full-Time Officers reported by that Department Type and another had about 12%.
G. Presentation of Data
- Data in this report are presented in two forms: Text tables and full tables (Appendix B). Text tables do not always present a complete break out of the data.
- All tables (text and full) present the data in unweighted. form, (i.e., numbers and percentages of the responding departments from the sample for this oruestionnaire, not figures that have been weighted to expand the data to the total population of police departments in the U.S.)
- The sample selected for this questionnaire was not proportional to the total population of police departments. If decisions are to be made which require estimates of population figures, the appropriate extrapolation must be performed. (See Appendix B, page $B-1$.

A. Car Radios (pp. 26-43)

- A total of 67,807 car radios were reported by the 428 respondents.
- About nine-tenths of the car radios reported were in State and Fifty Largest City departments.
- About two-thirds of the car radios were bought within the last 5 years.
- Three-fourths of the car radios reported cost less than \$1001.
- Almost 6 out of every 10 car radios were made by one manufacturer.
B. Portable Radios (pp. 43-61)
- A total of 22,660 portable radios were reported by the 347 respondents which were using portable radios.
- Almost three-fourths of the portable radios reported were in the Fifty Largest Cities.
- More than four-fifths of these radios were bought within the last 5 years.
- Slightly more than three-fourths of the portable radios cost less than $\$ 901$.
- About 7 out of every 10 were made by one manufacturer.
- About seven-tenths of them weighed between $1-1 / 4$ and $2-1 / 2$ pounds.
- Nickel-Cadmium batteries were used in about seven-tenths of them.
- Ninety percent of the departments used rechargeable batteries in their portables.
C. Channels and Frequencies (pp. 29-37, 46-49)
- An average of 3.5 channels per department were authorized to responding departments.
- An average of 3.2 channels per department were currently in use.
- About one-half of the reported channels were being used by the Fifty Largest Cities and State police.
D. Fixed Repeaters (pp. 64-69)
- About one-third of the departments used fixed repeaters.
- Almost nine-tenths of departments with fixed repeaters were State or Fifty Largest City departments.
E. Scramblers (pp. 72-78)
- Scramblers were currently being used by only $9 \%(n=40)$ of the respondents.
- Of departments which did not have a scrambler system, almost 60% felt they needed that system.
- Departments most commonly used (or would use) scramblers for undercover investigations and long-term stake outs.
- More than four-fifths of departments which had or said they needed scramblers, said they would be willing to pay no more than $\$ 500$ for a reliable scrambler.
F. Need for Other Communications Equipment (pp. 78-80)
- About one-third of departments expressed a need for helmets with built-in communications. This need was most often expressed by State police and departments in the Fifty Largest Cities.
- Slightly more than two-fifths of the respondents indicated a need for mobile repeaters.
- Twenty-eight percent of departments favored the voting system; over half of departments were unfamiliar with this system.
G. Need for Standards for Communications Equipment (pp. 81-84)
- The three items most commonly chosen as needing standards were mobile radios, portable radios, and batteries.
- State police and larger City departments chose more items as needing standards than did other Department Types.
- Gains expected from standardization were more often expected to come from interchangeability of equipment than from either savings in training costs or savings in equipment costs.

H. Most Critical Communications Needs (pp. 85-87)

- The four most critical communications needs of the respondents were for new equipment, more frequencies, personal transceivers for each officer, and standardization of all equipment.
- Personal transceivers for all officers was the most critical need of larger City departments.
- New equipment was the greatest need of small City departments and Counties.
- More channels was the greatest need of State police.

1.0 INTRODUCTION

1.1 Project Background

During the past several years, law enforcement agencies in the United States have become more aware of the importance of equipment in the performance of their duties. Much of their equipment had originally been designed for other uses and had to be modified. Other equipment items had to be used as given. No standards existed against which equipment performance could be measured nor were any standard test methods or procedures available. It has been difficult for agencies to compare the performance of equipment items. Recognizing this problem, in 1970, the Law Enforcement Assistance Administration (LEAA) of the Department of Justice began a concentrated program toward the improvement of law enforcement equipment.

As the first step in its Equipment Systems Improvement Program (ESIP), LEAA, in cooperation with the Department of commerce established a Law Enforcement Standards Laboratory (LESL) at the National Bureau of Standards (NBS). The broad goal of LESL is to establish voluntary performance standards which can be used as guidelines for the selection of equipment by law enforcement agencies. Additionally, LESL is developing standard test methods and procedures, so that the relative performance of similar items may be evaluated by departments themselves.

In order to provide equipment user information for the ESIP program, in 1971 the National Institute of Law Enforcement and

Criminal Justice (NILECJ) of LEAA asked the Behavioral Sciences Group of the Technical Analysis Division at NBS to gather information from the users of law enforcement equipment about their specialized equipment needs and problems. Although face-toface interviews with a large sample of representatives from law enforcement agencies would have been desirable, time and manpower constraints led to the development of a nationwide, mail sample survey having two general objectives: (l) To assist NILECJ in the establishment of priorities for LESL's standards development activities; and (2) to obtain detailed information about certain broad equipment categories so that research to develop standards in these areas could begin.

This report fulfills part of the second general objective and the associated survey questionnaire (See Appendix A) will be referred to as the Communications Detailed Questionnaire (DQ). The remainder of the second objective is accomplished in the reports of the other five DQs: Alarms, security, and Surveillance Systems; Handguns and Handgun Ammunition; Sirens and Emergency Warning Lights; Body Armor and Confiscated Weapons; and Patrolcars. The first general objective (above) is accomplished in the report on the Equipment Priorities Questionnaire (EPQ)*. A Complete listing of these seven reports may be found on the inside front cover of this report.

[^1]Although the objective of ESIP is to serve all types of law enforcement agencies, this particular study was purposefully limited to police departments as the largest single group of law enforcement agencies with identifiable equipment needs. No attempt was made to survey correctional institutions, courts, forensic laboratories, or special police agencies such as park police, harbor patrols or university police. The computerized directory of approximately 14,000 police agencies, compiled and maintained by LEAA's statistics Division, provided the populaticn from which the sample was drawn. Care was taken to exclude the double listings that existed for some agencies. (Details of the selection process are given in Appendix B of the Equipment Priorities Questionnaire.)

The final list of 12,842 departments was cross-stratified by LEAA geographic region and department type by the mutual agreement of $N B S$ and NILECJ. The assignment of states to regions and the seven department types chosen for study are snown in Table l.2-1.

Table 1.2-1. Stratification Categories

DEPARTMENT TYPES:

State Police
County Police \& Sheriffs
City with 1-9 Officers
City with 10-49 Officers
City with 50 or more Officers*
The 50 Largest U.S. Cities**
Township Departments

LEAA GEOGRAPHIC REGIONS:

```
l=Conn.,Maine, Mass., N.H.,
    R.I.,V安.
    2 = N.J., N.Y.
    3 = Del.,Md., Penn.,Va.,
        W. Va., D.C.
    4 = Ala., Fla., Ga., Ky., Miss.,
        N.C., S.C., Tenn.
    5 = Ill., Ind., Mich., Ohio,
        Wis., Minn.
    6 = Ark., La., N.M., Okla., Tex.
    7 = Iowa, Kan., Mo., Neb.
    8= Colo., Mont.,N.D., S.D.,
        Utah, Wyo.
    9 = Ariz., Calif., Nev., Hawaii
10 = Alas., Idaho, Ore., Wash.
```

* Does not include the 50 Largest Cities.
** By Population, U.S. 1970 Census.

The breakdown of the population of police departments by crossstrata is exhibited in Table $1.2-2$. As can be seen from the table, there were no Townships in Regions 4, 6, 7, 8, 9 and 10 . Almost 63% of the departments were City police, 43% having $1-9$ full-time officers. County departments comprised about 24% of the population. By Region, the smallest (Region lo) contained only 3.4\% of the police departments, while Region 5, the largest, had 22.5%. The variation in the number of departments in a cell (Region/Department Type combination) was even greater than that across the strata, i.e. the number of departments in each cell ranged from 0 to 1470 .

The considerations discussed in the previous paragraph led to the sampling plan discussed briefly below. All of the state departments and the Fifty Largest City departments were included
Table 1.2-2
LEAA REGION

こan:RTMENT TYPE	1	2	3	4	5	6	7	8	9	10	TOTAL
State	6	2	5	8	6	5	4	6	4	4	50*
County	66	84	257	764	536	506	413	288	103	120	3137
City (1-9 Officers)	27	348	713	979	1470	703	611	283	135	217	5486
City (10-49 Officers)	40	237	166	344	508	230	142	71	168	79	1985
City (50 or More officers	60	64	36	83	119	46	23	19	87	17	554
50 Largest Cities	1	4	5	8	10	8	3	1	8	2	50
Township	629	349	362	-	234	-	-	-	-	-	157.4
TO'SAL	829	1088	1544	2186	2883	1498	1196	668	505	439	12,836

* Questionnaires were actually sent to 56 State Police departments since there were 6 State Departments which listed two police agencies without reference to a common central agency. However, only one set of questionnaires was accepted from each of these 6 agencies as described in Volume I, Appendix B,
in the sample and were anced to complete all six DQs, i.e., they were sent the entire package of seven questionnaires. For the remaining cells the variation in cell size presented a problem: If the same fraction of the entire population was to be selected from the members of each cell, a constant sampling fraction large enough to make the total sample manageable would yield too few sample units in small cells. To solve this problem, a fixed sample of 30 police departments/cell was chosen, wherever possible, resulting in a different sampling fraction for each cell. A fixed sample size of 30 departments/cell was chosen to facilitate the equitable distribution of the six DQs. This plan resulted in sending the Communications DQ to 534 departments. The departments were selected randomly within each cell, from the total cell population, each department (other than the States and Fifty Largest Cities) receiving two DQs. Thus, in cells having 30 sample units, the Communication $D Q$ was mailed to 10 departments; cells having fewer sample units were allocated proportionally fewer Communications DQs. Table l.2-3 presents the total sample for the Communications, DQ by Region and Department Type.

Once the sample was selected, each sample unit was assigned a unique seven-digit identification number, coding region, type, and questionnaire assignment.
1.3 Questionnaire Administration

From the beginning of the project, it was evident that
stringent control would be required in administering the questionnaires to ensure a high rate or response. Computer-stored

Table 1.2-3.

DEPARTMENT TYPE:
LEA GEOGRAPHIC REGION :

$$
\begin{array}{r|}
0 \\
-1
\end{array}
$$

아 0

* Questionnaires were actually sent to 56 state departments since there were six state
x
-1
u
u
central

$a |$| 0 | 0 | 0 | 0 | ∞ | 1 | $\underset{-1}{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | | | | | | |

43

∞
N
1

daily status records were input via a teletypewriter for. each sample department. In general, the following procedure was used:
(a) Each department in the sample was mailed a letter, signed by the director of NILECJ, addressed ṭo the survey and requested cooperation.
(b) About one week later, the questionnaire packages were mailed.
(c) Departments not returning the questionnaires within a month were identified by the computer and were sent a self return postcard requesting information as to the status of the questionnaires. Departments not receiving the questionnaire package were sent another; those not returning the postcard were placed on a list for telephone follow-up.
(d) About a month and a half later, departments with which no contact had been made were called by telephone.
(e) Returned questionnaires were reviewed for completeness and either coded for keypunching or filed for telephone call-back to supply missing data or to resulve ambiguities.

Considerable effort was expended to ensure a high rate of response, and this effort was rewarded with an 80% response for the Communications DQ, and between 80% and 85% for each of the other questionnaires. In the course of the survey more than 70% of the sample departments were contacted at least once by telephone. More than 1300 phone calls were made by the survey team.

The distribution of respondents (departments which returned usable Communications DQs) is exhibited in Table l.3-1. The highest percentages of response were from the states and larger Cities (89-94\%), while Counties and Townships had the poorest response rates (under 70%). These data would seem to be partly explained by the fact that the larger departments use more equipment than do smaller departments and, therefore, have a greater

1.4 Development and Design of the Communications DQ

The survey plan and questionnaire design (of all seven questionnaires) evolved over a 12 -month period. During this time, the survey team consulted at length with NILECJ equipment experts,
Table 1.3-1.
Number of Sample of Departments Returning Acceptable Detailed Communications
DEPARTMENT TYPE:

$$
\frac{N \mid N}{N-0}
$$

LEA GEOGRAPHIC REGION:
Te70山
?

47	94
69	69
78	89
86	\vdots
46	\vdots
23	\vdots

80

LESI program managers, and equipment manufacturers. In addition, the officers and administrators of about 40 police departments served as consultants and/or as respondents for pretests of various versions of the questionnaires.

The Communications $D Q$, in its final form, is reproduced in Appendix A. This DQ asked respondents to provide data about car radios and portable radios in use in their departments, to answer questions about the power supplies used in portable radios, to provide information about other kinds of communications equipment such as scramblers, helmets with built-in communications and portable/mobile radios; to indicate the need for standards for various kinds of communications equipment and to discuss problems with communications equipment. The questionnaire was limited to general topics because (1) it was not possible, considering the scope of the present survey, to explore in a detailed manner all of the many facets of the various communications systems in use in police departments throughout the United states, and (2) it was felt that the general data gathered in the present effort would provide important direction for research in the development of standards, the main objective of the survey.

The EPQ of the LEAA Police Equipment Survey* requested data from each department about population served, physical size of jurisdiction served, type of jurisdiction, number of full- and part-time officers, approximate total, equipment, and personnel budgets during l971, and activities handled by the department. Table 1.5-1 presents a partial tabulation, by department type, of the responses to a check list of 30 typical police activities by the respondents to the EPQ. (The EPQ respondents include, but are not limited to, the respondents to the Communications DQ. See Section l.2.) The activities most frequently checked by all departments were (l) Serve Traffic and Criminal Warrants (88\%), (2) Traffic Safety and Traffic Control (87\%), and (3) Communications for Own Department (87\%). The activity with the most consistent level across ali ronatment types was that of Emergency Aid and Rescue; ranging from 60% (Cities with $50+$ Officers) to 67\% (Counties).

Higher percentages of State and Fifty Largest City departments were handing certain of these activities. For example: all of the 45 Fifty Largest City departments responding, and 98\% of the State departments, said that their departments provided Police Training for Own Department. These compare to 68\% for the total sample of departments. All of the responding Fifty Largest Cities said that they handed criminal Investigation in

[^2]| $\begin{array}{r} \text { Table 1.5-1. Activities Handled by } \\ \text { Department Type, and } \end{array}$ | | $\begin{aligned} & \text { TONE } \\ & \text { OF TO } \end{aligned}$ | HI
 1 D | of Th artme | Dep
 Ha | ment T g Each | $\begin{aligned} & \text { e by } \\ & \text { ctivity } \end{aligned}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION OF ACTIVITY: | State $\%$ | County | $\begin{gathered} \text { City } \\ 1-9 \\ \% \end{gathered}$ | $\begin{gathered} \text { City } \\ 10-49 \\ \% \end{gathered}$ | $\begin{gathered} \text { City } \\ 50+ \\ \% \end{gathered}$ | $\begin{gathered} 50 \\ \text { Largest } \\ \% \end{gathered}$ | $\begin{gathered} \text { Township } \\ \% \end{gathered}$ | $\begin{gathered} \text { Total } \\ \% \end{gathered}$ |
| Serve Traffic and Criminal Warrants | 70 | 89 | 84 | 89 | 94 | 87 | 93 | 88 |
| Traffic Safety and Traffic Control | 92 | 56 | 94 | 96 | 96 | 98 | 94 | 87 |
| Communications for Own Department | 94 | 86 | 76 | 95 | 94 | 96 | 70 | 87 |
| Criminal Investigation | 66 | 86 | 71 | 95 | 97 | 100 | 79 | 86 |
| Police Tramning for Own Department | 98 | 55 | 48 | 77 | 87 | 100 | 42 | 68 |
| Custody/Detention-Less than 1 Day | - | 79 | 51 | 73 | 72 | 80 | 43 | 65 |
| Breath-Alcohol Test | 89 | 46 | 47 | 72 | 83 | 91 | 49 | 64 |
| Emergency Aid and Rescue | 62 | 67 | 62 | 63 | 60 | 67 | 62 | 63 |
| Public Building Protection | - | 40 | 63 | 60 | 58 | 44 | 68 | 54 |
| Service Function | - | - | 48 | 55 | 60 | 60 | 42 | 48 |
| Animal Control (Dog Catcher) | - | - | 58 | 63 | 42 | 6 | 37 | 44 |
| Highway Patrol | 96 | 38 | 48 | 36 | 42 | - | 88 | 43 |
| Maintenance of Police Buildings | 51 | 36 | 34 | 41 | 48 | 47 | | 40 |
| Custody/Detention-1 week or Less | - | 73 | | 36 | 46 | 49 | | 38 |
| Communications for other Agency | 66 | 56 | | 40 | 4 | - | | 36 |
| Serve Civil Process | - | 88 | | | - | - | | 32 |
| Police Training for Other Agency | 77 | 88 | | | 4.2 | 84 | | 34 |
| Custody/Detention-Up to 1 Year | - | 78 | | | . 2 | 84 | | 22 |
| Underwater Recovery | 34 | 42 | | | - | 42 | | $\frac{22}{19}$ |
| Bomb Disposal | 45 | | | | - | 82 | | 17 |
| Polygraph | 62 | | | | 36 | 90 | | 17 |
| Vehicle Inspection | 55 | | | | | 9 | | 17 |
| Crime Laboratory | 55 | | | | | 73 | | 13 |
| Narcotics Laboratory Analysis | 43 | | | | | 62 | | $\frac{11}{11}$ |
| Harbor Patrol | - | | | | | 62 | | $\frac{11}{7}$ |
| Lab Analysis for Blood Alcohol | 34 | | | | , | 53 | | 7 |
| Other | - | - | | | - | | | 6 |
| Coroner | - | | | | | | | 5 |
| Torta for Drivers License | 34 | | | | | - | | $\frac{3}{3}$ |
| Custody/Detention-More than l Year | | | | | | - | | 3 |

their own departments. This compares to 86% of the total sample of departments. Although only 13% of the departments overall had Crime Laboratories, 73\% of the Fifty Largest Cities and 55\% of the States had them.

Counties appeared to be the only Department Type with significant responsibilities for custody and detention for more than l week. Seventy-eight percent of those departments had Custody/Detention-Up to 1 Year, as compared with 22% of all responding departments.

Tables 1.5-2 and l.5-3 present summaries of descriptive data by Department Type and LEAA Region, respectively. As can be seen from the column for Annual Equipment Budget (Table 1.5-2), there was a wide range of expenditures among different Department Types: From a mean of about 10 thousand dollars for Cities (1-9) to almost 2.6 million dollars for the Fifty Largest Cities. Overall, equipment budgets represented somewhat over 10% of the Annual Total Budgets.

The mean Number of Part-time Officers was based on those respondents having part-time officers in their departments. Of the 45 responding from the Fifty Largest Cities, only six had part-time officers, including one city which had nearly 6000 . Thus, the mean value of 1115 for this department type is somewhat misleading. It should be noted that the category Part-time Officers included officers described as auxiliary, volunteer, reserve, school-crossing guard, dispatcher, summer, special agent,
Table 1.5-2. Descriptive Data by Department Type (Means)

Department Type	Area (Sq. Miles)	Population	Number of Full-Time Officers	Number of Part-Time Officers	Annual Total Budget	Annual Equipment Budget	Annual Personnel Budget
50 Largest	187	851342	2491	1115	\$ 43, 268 ,865	\$ 2,669,920	\$34,712,818
State	62580	3936410	889	18	\$16,377,358	\$2,304,339.	\$12,020,572
County	1518	130254	60	25	\$ 1,089,919	\$ 58,539	\$ 859,984
City (50+)	31	83344	132	26	\$ 1,733,340	\$ 173,099	\$ 1,407,177
City (10-49)	12	15849	22	9	\$ 257,927	\$ 24,362	\$ 206,18
Township	28	132.28	14	8	\$ 175,654	\$ 20,854	\$ 141,675
City (1-9)	9	5038	8	5	\$ 82,381	\$ 9,764	\$ 60,061

traffic supervisor, posse, and cadet. All of these classifications were counted in the Part-time Officer category since it has different meanings for different departments.

Variations in these descriptive averages by LEAA region (Table l.5-3) were considerably smaller than variations by department type. Regions 1 and 8 had smaller budgets than the others, primarily because each had only one of the fifty Largest Cities.

2.0 QUESTION BY QUESTION DISCUSSION

2.1 Advice to the Reader

In reading Section 2 , certain points should be kept in mind:
(a) THIS REPORT IS NOT AN EVALUATION OF ANY OF THE EQUIPMENT DESCRIBED OR DISCUSSED WITHIN IT. IT

IS A PRESENTATION OF INFORMATION AND OPINIONS OF A STRATIFIED RANDOM SAMPLE OF POLICE DEPARTMENTS GIVEN IN RESPONSE TO A SPECIFIC SET OF QUESTIONS. IT DOES NOT, IN ANY WAY, REFLECT OBJECTIVE TESTING OF ANY EQUIPMENT BY THE NATIONAL BUREAU OF STANDARDS.
(b) The report reflects only what police departments were willing and able to say in response to a specific set of questions. In most cases, no attempt was made to verify the accuracy of the information given or the level of sophistication of the respondent.
(c) Each discussion begins with the presentation of the question that appeared in the questionnaire, and in most cases the choices supplied, if any, set off in a box. However, the reader is cautioned to become familiar with the questionnaire sent to sample departments (See Appendix A) and to evaluate the data in terms of the exact questions asked.
(d) The text tables that appear in Section 2 are almost never the complete tables that were tabulated for that question. Data categories for text tables may have been collapsed from the full table, or certain categories of interest may have been singled out for fuller discussion. Appendix B contains the complete tables from which the text tables were extracted. Text tables have been numbered after the question number (e.g., the text tables for question 6 A. would be numbered 6A-1, 6A-2, etc.). The tables in Appendix B are also numbered the same as question number, in the same manner. In some cases, tables that appear in the Appendix B will not have been discussed at all in the text.
(e) Data in the text of this report are usually presented by nearest whole percent of the froup under
consideration. In Appendix B, the data are usually presented by number of respondents and percent. Because of statistical limitations imposed by the sample sizes used in this study, the reader is cautioned to be wary of assigning importance to percentage differences of less than 5% when percentages are based on the total number of respondents, to percentage differences of less than 10% when percentages are based on one of the subsample groups, (e.g., a particular Department Type or Region). No tests of statistical significance are reported.
(f) Data were always tabulated by each of the choices supplied, if any, in the questionnaire. Any "other" choices written in by the respondents were also tabulated and/or recorded verbatim. In most cases, the numbers of respondents giving a specific "other" response do not reflect the numbers of respondents who might have marked that choice if it had been one of those provided. Therefore, in most cases, this report lists or gives examples of "other" responses, but does not present numbers or percents of departments giving that response. For those questions for which choices were not provided in the questionnaire, coding categories were developed after approximately one-fourth of the questionnaires had been returned.
(g) The subsample groups (Department Types and Regions) are capitalized when they are discussed in the text. In addition, the four Department Types which are composed of city departments are at times discussed as a group. In those cases, the word "city" is also capitalized. The following convention has been adopted in the report to designate the four City Department Types:

City with 1-9 Officers = City (1-9)
City with 10-49 Officers = City (10-49) City with 50 or more Officers $=$ City (50+)

The Fifty Largest Cities = Fifty Largest In table headings this same convention has been used except that the parentheses have been removed, and the Fifty Largest Cities are designated "50 Largest"。

The reader should keep in mind that when these subsample groups are discussed, (e.g., "Counties said..." or "Cities (1-9) said...") the reference is to that particular subsample group as selected in the sample.
(h) Questions which asked departments to identify manufacturers of their equipment were asked in this manner only to make the question clearer; NOT TO EVALUATE A MANUFACTURER'S PRODUCT.
(i) In an attempt to make this report more readable, the main topics of the questionnaire have been reordered in the report; the discussion of the findings does not follow the order of the questions. To find the discussion of a particular question quickly, consult the Table of contents or the List of Tables.
(j) When the subsample groups are discussed (e.g., "Counties said..." or "Cities (l-9) said ...") the reference is to the responding departments from one of the sample strata. It is particularly important to note that when the text or tables refer to "All Departments" or "All Responding Departments," the reference is to all responding departments from the sample described in Section l.2. This sample was not proportional to the total population of police departments, and although it is possible to do so, the data in this report have not been weighted to allow direct extrapolation to the total population. (See page $B-1$, Appendix B.)
2.2.l Characteristics of Respondents

Title of Respondents

All of the questionnaires in the LEAA Police Equipment Survey were mailed to the chief (or highest official) of the department with a request that the questionnaires be directed to the person or persons within the department who were felt to be best qualified to answer the questions.

The Communications Questionnaire was usually filled in by the Chief/Unit Head in smaller City departments and Townships and by a communications specialist in states and the fifty Largest Cities.

Table i. Rank of Primary Respondent for Communications Questionnaire, by Department Type*.

RANK/TITLE:

Chief
Asst. Chief
Comm. Spec.

DEPARTMENT TYPE:

$\%$	$\%$	$\%$	$\%$	$\%$	$\%$	
City	City	City	50			Town-
$1-9$	10-49	$50+$	Largest	State	ship	
	42	14	4		0	52
3	9	6	0	0	0	
0	2	28	67	77	4	

* Excluding Counties

In Cities (50+) about one-fourth (28\%) of the primary respondents were communications specialists and one-fifth (20\%) were either Chiefs or Assistant Chiefs. Questionnaires from Counties were most often filled in by the sheriff.

Number of Years of Law Enforcement Experience of Respondent

In general, the questionnaire was filled in by experienced officers. About three-fourths of the respondents had more than 5 years of experience. Although a majority of the respondents had more than 10 years of experience in law enforcement, there were variations among Department Types. More than 70% of the respondents in the fifty Largest Cities and States had this much experience, while less than half of the respondents in Counties, Cities (l-9), and Townships had more than 10 years in law enforcement work.

Table ii. Years of Experience in Law Enforcement of Primary Respondent.

DEPARTMENT TYPE: NUMBER OF YEARS OF LAW ENFORCEMENT EXPERIENCE:

50 Largest
State
City (10-49)
City (50+)
City (l-9)
County
Township

More than 5 Years	More than 10 Years	More than 20 Years	More than 25 Years
\% Dept. Type	\% Dept. Type	\% Dept. Type	\% Dept. Type
88	77	24	13
81	72	17	4
84	57	13	5
77	61	22	14
62	43	21	13
58	36	17	13
57	48	9	9

The communications needs and requirements of police departments are usually based on two prime considerations: (a) number of officers in the department and (b) size of jurisdiction.

Data about the average number of officers per Department Type are reproduced in Table iii.

Table iif. Average Number of Full-Time Officers, by Department Type.

DEPARTMENT TYPE:
MEAN NO. FULI-TIME OFFICERS:
50 Largest 2491
State 890
City (50+) 125
County 113
City (10-49) 23
Township 16
City (1-9) 9

The largest mean number of officers per department was in the Fifty Largest Cities. States averaged slightly less than one-third as many officers as the Fifty Largest Cities. Counties averaged about five times as many officers as did Cities (10-49).

5A. What is the total area within your jurisdiction which must be covered by a communications system? (IN SQUARE MILES)
\qquad Square Miles

Table 5A-1. Average Size of Communications Jurisdiction, by Department Type.

DEPARTMENT TYPE:

State
County
50 Largest
City (10-49)
City (1-9)
City (50+)
Township

Overall Mean
62,704
2,551
237
68
67
34
32

SIZE:
$\frac{\text { Minimum }}{\text { Square Miles }}$

1. 497

14
24
1 1 $\begin{array}{lr}1 & 1,200 \\ 2 & 310\end{array}$ 2 5
$\frac{\text { Maximum }}{\text { Square Miles }}$
263.449

64,000
841
2,000
310
67

The average sizes of communication jurisdictions which State and County police had to cover were larger than those of all types of City departments and Townships. The larger Cities, in terms of number of officers, were not necessarily larger in geographical size. Cities (1-9) and (10-49) had geographically larger jurisdictions than Cities (50+). The relationships between number of officers and geographical size can be seen more clearly in Table 5A-2.

Table 5A-2. Comparison Between Average Number of Officers in Department and Average Size of Jurisdiction.

DEPARTMENT TYPE:

50 Largest State
City (50+)
County
City (10-49)
Township
City (1-9)

NUMBER OF OFFICERS AND SIZE OF JURISDICTION:
Mean No. Full-

Time Officers \quad| Mean Size of Juris- |
| :---: |
| diction (Sq. Mi.) |
| 2491 |

Mean Size of Juris-
diction (Sq. Mi.)
237
890
34
$113 \quad 2.551$
$23 \quad 68$
$16 \quad 32$
$9 \quad 67$
6. Which of the following best describes the general character of your jurisdiction? (MARK X BY MORE THAN ONE, IF NECESSARY)
skyscrapers, many tall buildings
Some tall buildings
Almost no tall buildings
Primarily mountainous or very hilly
Valley area surrounded by mountains
Generally flat with some hills
Flat area, no hills

The departments which characterized their jurisdictions as being Mountainous or in a Valley Surrounded by Mountains were most often located in LEAA Regions 1 (New England), 8 (Mountain States), 9 (Far West/Hawaii), and 10 (Northwest/Alaska). Respondents who reported Flat, with Some or No Hills, were most often in LEAA Regions 6 (South/Southwest) and 7 (Midwest). There were few differences among LEAA Regions in the percentages of departments which said they had Almost No Tall Buildings. Departments in Region 5 (Great Lakes) gave the greatest percentage of responses for Skyscrapers, Many Tall Buildings or Some Tall Buildings; this response was given least often by departments in Region 1 (New England).

Table 6. General Character of Jurisdiction, by LEAA Region.

LEAA REGION:

	Flat/Some or no Hills	Valley Surrounded By Mountains/or Mountainous, Very Hilly	Almost No Tall Bldgs.	Skyscrapers or Some Tall Buildings
	\% Region	\% Region	\% Region	\% Region
New England	31	81	32	12
New York/New Jersey	63	43	33	31
Middle Atlantic	33	67	20	35
South	79	36	28	30
Great Lakes	73	22	27	53
South/Southwest	91	18	28	33
Midwest	86	11	28	28
Mountain	45	81	27	24
Far West/Hawaii	46	80	35	31
Northwest/Alaska	35	70	26	18

2.2.3 Mobile Radios
2.2.3.1 Number of Mobile Radios

2A. How many car radios are there in your department?
Number \qquad

State departments accounted for slightly more than half (51\%) of all the car radios reported by the 428 responding departments. The Fifty Largest Cities accounted for an additional 40\% of all radios reported. Thus, less than lo\% of all radios reported were found in the other five Department Types.

Table 2A-1. Number of Car Radios, by Department Type.

	No. of Respondents	Total. No. Radios	\% Total Radios	Mean No. Per Dept.	Max. in any Dept.	Min. in any Dept.
State	47	34365	51	731	3510	97
50 Largest	46	27221	40	592	4275	101
County	69	2653	4	38	900	1
City (50+)	79	2597	4	33	177	7
City (10-49)	86	631	1	7	21	1
City (l-9)	78	239	*	3	28	1
Township	23	101	*	4	26	1
All Departments	428	67807	100	158	4275	1

* Less than 1%.

Within the seven Department $T y p e s$, there were wide ranges of minimum and maximum numbers of mobile radios reported. For example, some County departments had as few as one car radio, while
one County had 900.
Total numbers of car radios were compared with the numbers of patrolcars reported in response to the Patrolcars Questionnaire.* A total of 67,807 car radios were reported by the respondents to the Communications Questionnaire. A total of 46,462 patrolcars were reported by the respondents to the Patrolcars questionnaire. Therefore, about 46% more car radios than patrolcars were reported by these subsample groups.

Calls were made to a few departments to determine possible reasons for the large observed difference between the number of cars and the number of car radios. Several reasons were given for this apparent discrepancy: (1) Many departments said that they kept extra mobile radios available; some said that they kept a $10-20 \%$ backup inventory. (2) Many departments were using communications channels on two different frequency bands, and needed two radios in each patrolcar in order to operate on both bands. In some departments, one band was used for emergencies (and was sometimes part of an area or statewide communications system) and the other was used to handle local jurisdiction communications. (3) In a smaller number of departments, it appeared that errors in reporting the numbers of mobile radios may have occurred. For instance, some of the county departments contacted said that they had included other mobile radios in their jurisdictions which, although they were not used by the county

[^3]police, were tied into the central dispatch system operated by the county. It was also possible that a small number of departments may have included portable radios in their statistics on car radios, even though information about portable radios was specifically requested in Question llA.
in suimary, while it appears that departments did, in fact, have considerably more mobile radios in their departments than they had patrolcars; there is reason to believe that the total of 67,807 car radios reported in the survey may have been somewhat high. Nevertheless, the estimate of the total number of police mobile radios in the country, shown in T able $2 \mathrm{~A}-2$, is not likely to have been seriously affected.

Table 2 A-2. Estimated Total Population of Police Car Radios in U.S., by Department Type.

DEPARTMENT TYPE:	Mean Number Car Radios Per Dept.	No. Depts. That Type: Total Population	Estimated No. Car Radios
County	38	3137	119,206
State	731	50	36,550
50 Largest	592	50	29,600
City (50+)	33	554	18,282
City (1-9)	3	5486	16,458
City (10-49)	7	1985	13,895
Township	4	1574	6,296
		Total:	240,287

2.2.3.2 Spectrum Utilization: Mobile Radios

In this section, mobile communications are considered in terms of police department spectrum utilization. The frequency bands used for transmitting and receiving and the number of
channels authorized and in use by the responding departments are reported.

1. Give the following information about your car radios:
lA. List ALL transmitting frequencies (in $k H z, M H z, ~ e t c$.

The reported frequencies were compiled in four categories: VHF low band ($30-50 \mathrm{MHz}$), VHF high band (150-174 MHz), UHF band (4,50-470 MHz) and an "other" category which included such answers as call letters, which could not be categorized by band.

VHF high band and UHF frequencies can usually be received in buildings. VHF high band has better penetration, while UHF frequencies are more likely to pass through windows and other nonmetallic openings. One of the main attractions of the UHF band is the availability of unused frequencies compared to VHF low and high bands, which are relatively saturated.

Of all the transmitting frequencies reported by responding departments, almost half (49\%) were in the VHF high band (150$174 \mathrm{MHz})$. The VHF low band ($30-50 \mathrm{MHz}$) accounted for 29% of the reported frequencies and only 19% were in the UHF band.

Since VHF low band frequencies provide the greatest range and are least affected by terrain and foliage, they are more suitable for those departments with the largest jurisdictions, such as States and counties. In both of these Department Types, over half of the reported transmitting frequencies were in the VHF low band.

Table
FREQUENCY
BAND:
30-50 MHz
$150-174 \mathrm{MHz}$
$450-470 \mathrm{MHz}$
Other
Distribution of Transmitting Frequencies within Bands,

$$
\text { by Department Type (} 406 \text { departments responding) }
$$

The three largest City Department Types and Townships reported the greatest proportions of VHF high band transmitting frequencies. VHF high band, being more line-of-sight, does not provide as much range as low band does, but does transmit farther than $U H F$ for the same transmitter output power. VHF frequencies have been available for law enforcement use longer than the UHF frequencies. As shown by the data, UHF frequencies were not generally being used, with the exception of the two largest City Department Types (50+ and Fifty Largest).

Of the responding departments, 79% said all their transmitting frequencies were in a single band. The remaining 21% used one of the combinations shown in Table lA-2. Only five departments reported using transmitting frequencies in all three bands.

Table la-2. Percent Use of More Than One Frequency Band for Transmitting by the 65 Departments Reporting Concurrent Usage.

BAND COMBINATION:
$30-50$ and $150-174 \mathrm{MHz} 60$
$30-50$ and $450-470 \mathrm{MHz} 10$
$150-174$ and 450-470 MHz 30
\% All Departments Which Were Using
More Than One Band: $\quad(n=65)$

The means shown in Table $1 A-3$ were calculated by counting the total number of transmitting frequencies reported within a particular band by departments within a particular Department Type and dividing this total by the number of departments within that Department $T y p e$ who reported at least one transmitting fre-
quency within the band in question. Thus, for example, if 20 departments of a particular type reported using a total of 30 transmitting frequencies in the VHF low band, the statistic entered in the table would be "l.5".

Table la-3. Mean Number of Transmitting Frequencies per Department, by Department Type and Band.

FREQUENCY BAND:
DEPARTMENT TYPE:

All Depts.	State	County	City $1-9$	City lo- 49	City $50+$	50 Largest	Town- Ship
2.3	4.2	2.1	1.4	1.5	1.8	1.7	1.4
2.7	5.7	2.8	1.4	1.6	2.1	5.6	1.6
4.4	5.7	2.6	2.3	2.2	2.6	6.8	3.0
3.3	6.2	2.6	1.6	1.8	2.3	8.7	1.7

Historically, the VHF low band has been available for police department use longer than the other two bands. Increasing pressure for channel assignments and technological improvements have permitted the opening of the VHF high band and, most recently, the UHF band for law enforcement communications. With the exception of Counties, all Department Types, if they had made the switch to UHF at all, were using more channels per department in the UHF Band than in the lower two bands. This trend was particularly noticeable in the 50 Largest Cities which reported 5.6 and 6.8 frequencies per department in the VHF high and UHF bands, respectively, vs. only 1.7 frequencies per department in the VHF
low band. Increased spectrum space and the lack of co-channel interference at the UHF frequencies should result in an increase in the proportion of frequency assignments (now 19\%, see Table lA-l) in this band.
lB. List ALL receiving frequencies; if different from Question la.

About two-thirds of the Fifty Largest City departments indicated that they were using at least one receiving frequency Which was different from their transmitting frequencies. Their responses imply the use of some type of duplex system*. The majority of departments in other Department Types appeared to be operating in the simplex mode. Since the Fifty Largest Cities were the primary users of different receiving frequencies, as well as being the primary users of the $U H F$ Band, they heavily influenced this picture.

[^4]Table lB-l. Percent Departments Whose Transmitting and Re-
Ceiving Frequencies Were Not All The Same $(\mathrm{n}=130)$.

DEPARTMENT TYPE:

Township 14
City (10-49)
City (l-9)
County
State
City (50+)
50 Largest

20
24
25
36
40
67

Different Transmitting and $\frac{\text { Receiving Frequencies }}{\% \text { Dept. Type }}$

1. Give the following information about your car radios:

1D. Number of Channels Authorized \qquad
le. Number of Channels In Use \qquad

Although the data for this question. (and for Q. 5B. to. follow) are reported, the reader is cautioned to interpret them carefully. Discussions with departments and the FCC after the survey was conducted, revealed that the term "channel" was defined differently by different people. The major area of confusion was concerned with the meaning of simplex and duplex channel assignments.

In terms of all responding departments, 1452 authorized channels were reported and 1332 channels were reported in use. At the time of this survey, of the channels authorized but not in use (120 channels), State departments and the Fifty Largest Cities accounted for just over half (68).

Table lD. \& E. Comparison of Channels Authorized with Channels In Use for Mobile Radios, by Department Type. (Department Types Listed from Largest to Smallest Based on Mean Number of Full-Time Officers.)

DEPARTMENT TYPE:

50 Largest
State
County
City (50+)
City (10-49)
City (1-9)
Township
All Departments

No. Channels
Authorized
411
309
195
184
169
144
40

1452
40

No. Channels In Use
\% of Authorized In Use

378
92
$309 \quad 274$
$195 \quad 18695$
89
184174
95
158
94
$144 \quad 124 \quad 86$
38
95
1332
92

In general, the more officers in the department, the greater was the number of channels authorized for its communications and departments were using almost all (92\%) of the channels authorized to them. The overall average number of authorized channels per department was 3.5 and the average number in use was 3.2.

5B. If possible, please tell us how many different law enforcement channels serve this area. This figure would include not only those channels used by your department, but also those used by other law enforcement agencies operating in the same geographical area (e.g., state and local police).

Channels
Don't Know

Responding departments reported an average of 11.6 law enforcement communications channels in use in their areas. This is slightly over three times the average number reported for their
own use. However, of the 428 departments which returned communications Questionnaires, 132 departments (31\%) did not answer or did not know the number of different law enforcement channels serving their areas.

Table lD. \& E. \& 5B. Comparison of Average Number of Channels Authorized, In Use, and In Area for Mobile Radios, by Department Type.*

DEPARTMENT TYPE:

50 Largest
state
County
City (50+)
City (10-49)
City (1-9)
Township

CHANNELS:

$$
\begin{array}{ccc}
\text { Authorized } & \frac{\text { In Use }}{(n=418)} & \frac{\text { In Area }}{(n=417)} \\
9.1 & 8 . & 32.6 \\
6.6 & 5.8 & 71.7 \\
2.9 & 2.8 & 5.7 \\
2.4 & 2.5 & 6.2 \\
2.0 & 1.8 & 4.9 \\
2.0 & 1.7 & 4.0 \\
1.7 & 1.6 & 5.1
\end{array}
$$

* "No Answers" were excluded from the calculation of averages.

Although state departments who answered this question (18 departments) reported the greatest number of channels in their areas, they also had by far the largest areas. The Fifty Largest Cities had slightly less than half as many authorized channels in their areas as state departments, but these channels were concentrated in much smaller jurisdictions.

5C. Do you have. one common frequency for routine and emergency traffic?

Yes
\square No (If "No") Do you think you need a common frequency?

This question was originally intended to obtain information on interdepartmental sharing of frequencies. That is: did the different departments in one district or region have a common frequency for communicating with each other on both a routine and emergency basis? It was subsequently discovered that it had sometimes been interpreted to refer to intra-departmental capability. Consequently, the data received in answer to this question are not presented here.
2.2.3.3 Characteristics of Mobile Radios
l. Give the following information about your car radios: lC. Output power (in watts) \qquad -

This was a difficult question for some departments to answer and 39 of the respondents did not answer it. Four departments gave output powers under 10 watts (they were using repeaters) and 36 departments gave output powers above 110 watts (probably their base station output power since the maximum power available from commercial mobile radios is llo watts.)

Table lc-1. Frequency count of Reported output Power, for All Responding Departments.

OUTPUT POWER IN WATTS:

Less than lo	4	1
$10-29$	28	7
$30-49$	73	17
$50-69$	65	15
$70-89$	24	6
$60-110$	36	37
More than 110	39	8
No Answer		9
Total	428	100

The frequency count shows that the most frequently cited output power was in the 90-llo watt range. State departments, as expected by the size of their jurisdictions, showed the greatest use (81\%) of high (90-llo watts) output power. Only in the fifty Largest Cities did the highest proportion of departments cite one of the lower ranges of output power, (i.e., 33\% of the Fifty Largest reported output in the $30-49$ watt range while 26% reported output powers of 90-llo watts).

Table lC-2. Percentages of Each Department Type Which Cited Output Power of 90-110 Watts.

DEPARTMENT TYPE:
\% Department Type Citing 90-110 Watts

State	81
County	52
Township	35
City (50+)	34
50 Largest	26
City (10-49)	24
City (1-9)	22

The overall average (mean) output power reported by police departments in this survey was 70.9 watts, the median was 75 watts, and the most often cited (mode) output power was 100 watts. The average output power per Department Type arranged according to average size of jurisdiction is shown in $T a b l e$ lC-3. County and State departments had the highest average output power and also were larger in physical size than other Department Types.

Table lC-3. Average Output Power, by Department Type, Arranged by Average Size of Jurisdiction.

DEPARTMENT	TYPE:	Output Power
		Mean No. Watts
(smallest)	Township	74
	City (50+)	68
	City (1-9)	64
	City (10-49)	64
	50 Largest	56
	County	84
(largest)	State	91

3. How recently were most of the car radios bought by your department? (MARK X BY YOUR BEST ESTIMATE)

Within the last calendar year
l-3 years ago
4-5 years ago
More than 5 years ago

Almost half (47\%) of the responding departments (evenly across Department Types) had purchased the bulk of their car radios within the last three years and about two-thirds of the departments (65\%) had bought most of their car radios within the last five years. The other one-third (34\%) bought them more than 5 years ago.*

Of the 65% which had bought most of their radios within the last five years, about half had bought them l-3 years ago, about one-fourth had bought them 4-5 years ago and the remaining onefourth had bought them within the last year.

* Data about purchase of equipment was provided as of Summer, 1972. The term "most" in the question was used to solicit responses concerning the most recent major purchase(s) of mobile radios.

Table 3. Cumulative Percentages for Period of Time Within Which 428 Departments Bought Most of Their Car Radios, by Department Type.

DEPARTMENT TYPE:

City (50+)
Township
City (10-49)
County
City (1-9)
50 Largest
state
All Departments

TIME PERIOD:

Within the Last Year	3 Years Ago or Less	5 Years Ago or Less
\% Dept. Type	\% Dept. Type	\% Dept. Type
25	42	62
22	44	79
19	56	65
13	40	63
10	48	61
7	48	68
6	46	67
15	47	65

5 Years Ago
$\frac{\text { or Less }}{\text { \% Dept. Type }}$
62
79
2244
65
13
40
63
48
68
46

47
65

There were no major differences among Department Types, although Townships were slightly more likely than the others to have bought their car radios within the last 5 years.
4. About how much did each of the car radios cost that are most frequently used in your department (including base plate, control head, microphone, and speaker)? For example, if most of the radios now in use are Motorolas, please give us the cost of one set. (MARK X BY YOUR BEST ESTIMATE BELOW)

$$
\begin{aligned}
& \text { Less than } \$ 700 \\
& \$ 701-\$ 800 \\
& \$ 801-\$ 900 \\
& \$ 901-\$ 1000 \\
& \$ 1001-\$ 1500 \\
& \text { Over } \$ 1500
\end{aligned}
$$

More than half (56\%) of the responding departments paid $\$ 900$ or less for their most frequently used car radios. Very few departments (4\% overall) paid more than $\$ 1500$ per unit. State departments paid significantly less per unit, and Counties and

Townships paid significantly more per unit. It might have been expected that states and counties would pay more per unit because of a need for higher output power and increased channel capacity to serve their larger jurisdictions. However, this hypothesis held true only for the counties, suggesting perhaps, that a further examination of the purchasing practices of these two Department Types would be needed to explain the survey results.

Table 4 . Cumulative Percentages for Cost of the Car Radios Most Frequently Used in a Department (Including Base Plate, Control Head, Microphone and Speaker), by Department Type.

COST:

$\$ 700$ or less	22	51	29	24	15	14	13	9
$\$ 800$ or less	40	64	52	44	38	23	33	22
$\$ 900$ or less	56	83	70	57	54	32	53	31
$\$ 1000$ or less	73	87	79	61	81	54	75	57
$\$ 1500$ or less	96	98	97	91	98	93	94	87

2B. (How many car radios are there in your department?)
Of those car radios, about how many were made by each of the following manufacturers?

Number	Manufacturer
	Motorola
\square	GCA
\square	Other

Ninety-nine percent of all the car radios reported were manufactured by only three companies, and over half (57\%) were pro-
duced by just one manufacturer. The three largest City Department Types seemed to favor Manufacturer C for roughly two-thirds of their car radio purchases. State departments distributed their buying equally between Manufacturers B and C. Manufacturer A captured only 8% of the reported market. Other manufacturers combined represented 1% of the respondents' police mobile radio purchases.

Table 2B-1. Percentages of Car Radios in Use in Department Made by Various Manufacturers, by Department Type.

DEPARTMENT TYPE:
MANUFACTURER:

\% Radion of	$\% \operatorname{Rad} \frac{B}{i o s} \text { of }$	\% Radios of	$\% \quad \text { Rather } \frac{\text { Othos }}{\text { diof }}$
Dept. Type	Dept. Type	Dept. Type	Dept. Type
5	23	71	0
6	23	69	2
14	22	63	0
3	38	59	0
5	37	52	5
3	44	52	1
11	44	45	1
8	34	57	1

Thirty-nine percent of the responding departments had a mixture of brands of mobile radios within their departments. Radios produced by different manufacturers are not always compatible, that is, control heads, microphone jacks, etc. may not mate, and interchangeability of equipment is difficult. This problem was mentioned by many departments (see Section 2.2.6). On the other hand, these data may only be a reflection of the fact that many departments (see Section 2.2.3.2) operated communications equipment on more than one band and consequently may have purchased the
radios for use on one band from one manufacturer and those for use on the other band from another manufacturer (see Section 2.2.3-1.).

Table 2B-2. Proportions of Different Manufacturers Represented Within One Department.

RADIOS MADE BY:
\% ALL DEPARTMENTS:

ONE Manufacturer 60
TWO Manufacturers 30
THREE Manufacturers 8
FOUR Manufacturers 1

No Answer l
2.2.4 Portable Radios
9. Do you now use portable (hand-held) radios in your department?
\qquad Yes
_ No

Most of the responding departments (8l\%) used portable radios, with the greatest proportions of users in the larger departments All of the responding State and Fifty Largest City departments reported using them.

Table 9. Use of Portable Radios, by Department Type.

DEPARTMENT TYPE:
Departments Using
$\frac{\text { Portable Radios }}{\text { \% Dept. Type }}$
50 Largest 100
State 100
City (50+) 99
City (10-49) 90
Township 70
County 62
City (1-9) 53
2.2.4.1 Number of Portable Radios
llA. How many portable radios do you now have in your department? Number \qquad

Almost three-fourths (72\%) of the portable radios reported were used in the Fifty Largest Cities. Although departments in the Fifty Largest Cities averaged about 356 portable radios per department, use of these radios varied greatly among particular cities. For example, the numbers of portable radios available in any single police department, within the fifty Largest cities group, ranged from a maximum of 4500 radios in one of these departments to a minimum of only 15 radios in another.

Table lla-l. Number of Portable Radios by Department Type. DEPARTMENT TYPE:

50 Largest State
City (50+)
County
City (10-49)
City (1-9)
Township

All Depts.

No. Of Respondents	Total No Portable Radios	\% Total Portable Radios	Mean No. Per Dept.	Max. in Any De- partment	Min. in Any Department
46	16,363	72	355.7	4500	15
47	3,621	16	77.0	419	5
78	1,682	7	21.6	108	2
42	464	2	ll.l	125	1
77	366	2	4.8	21	1
41	109	*	2.7	11	1
16	55	*	3.4	17	1
347	22,660	100	65.3	4500	1

*Less than 1%.

As the mean number of officers per Department Type increased, $L^{2} \Leftrightarrow$ mean number of portable radios per Department Type increased. As was discussed in Section 2.2.3.l, (and is repeated in Table
llA-2. below), State Departments averaged many more mobile radios per department than did the Fifty Largest Cities, even though they averaged fewer officers per department. This anomaly did not occur with respect to portable radios.

Table llA-2. Comparison Between Mean Number of Officers per Department Type, Mean Number of Car Radios and Mean Number of Portable Radios.

DEPARTMENT TYPE:

50 Largest State
City (50+)
County
City (10-49)
Township
City (1-9)

Mean No. Officers	Mean No. Car Radios	Mean No. Portable Radios
2491	591.8	355.7
890	731.2	77.0
125	32.9	32.6
113	38.5	11.1
23	7.3	4.8
16	4.4	3.4
9	3.1	2.7

Table lla-3. Comparison of Estimated Number of Police Portable Radios and Car Radios in the United States, by Department Type.

DEPARTMENT TYPE:

50 Largest State
City (50+)
County
City (10-49)
Township
City (l-9)
Total

Estimated No. Portable Radios

17,785
3,850
11,966
34,820
9,528
5,352
14,812
98,113

Estimated No.
Car Radios
29,600
36,550
18,282
119,206
13,895
6,296
16,458
240,287
10. Give the following information about your portable radios. A. List all transmitting frequencies (in $k H z, M H z, ~ e t c$.

Three percent of the 348 departments using portable radios did not report their transmitting frequencies. Of the remaining 329 departments, the most used transmitting band for portable radio.s was the VHF high band (150-174 MHz), with approximately the same proportion of total frequencies as was found for mobile radios.

Table 10A-1. Comparison of Percentages of Total Transmitting Frequencies, by Band, for Mobile and Portable Radios for All Departments.

RADIO:

Mobile Portable

\% Freq. in VHF Low Band	\% Freq. in	\% Freq. in
29	VHF High Band 22	UHF Band 29

Within Department Types, in all but two cases (Counties and Fifty Largest Cities), the band in which the highest percentage of total mobile transmitting frequencies were used was also the band in which the highest percentage of portable transmitting frequencies existed. In contrast, over half of the portable radio transmitting frequencies reported by Counties were in the VHF high band, while the majority of their mobile transmitting frequencies were VHF low band. The Fifty Largest Cities, which tended to use a greater proportion of UHF frequencies for their
mobile radios, tended to use a greater proportion of VHF high band frequencies for their portable radios.

Table loA-2. Percentages of Total Mobile and Portable Frequencies, by Band, for County and 50 Largest City Departments.

$\begin{gathered} \text { FREQUENCY } \\ \text { BAND: } \end{gathered}$	DEPARTMENT TYPE:			
	\% Mobile	\% Portable	\% Mobile	\% Portable
30-50 MHz	51	36	3	3
150-174 MHz	42	59	33	50
450-470 MHz	5	1	42	44

Within the seven Department Types, the numbers of transmitting frequencies per department for mobile and portable radios were very similar, except for state departments. It is probable that the higher mean number of mobile radio transmitting frequencies reported by states was a reflection of their relative emphasis on highway patrol activities.

Table loA-3. Mean* Numbers of Portable and Mobile Radio Transmitting Frequencies, by Department Type. (Department Types Ordered from Largest to Smallest by Number of Full-time Officers.)

DEPARTMENT TYPE:

50 Largest
State
City (50+)
county
City (10-49)
Township
City (1-9)

PORTABLE RADIOS:
Mean No. Frequencies

MOBILE RADIOS:
Mean No. Frequencies

8.6	8.7
4.1	6.2
1.9	2.4
2.1	2.6
1.4	1.8
1.7	1.7
1.5	1.6

* Means calculated only for those departments reporting any mobile transmitting frequencies or any portable transmitting frequencies.
lOB. List ALL receiving frequencies, if different from loÁ.

Most departments were using the same set of frequencies for receiving as for transmitting to their portable radios. Only 62 departments reported receiving frequencies that were different from their transmitting frequencies, and the majority of these were departments in the Fifty Largest Cities.

Table lob. Percentages of Total Portable Radio Frequencies Used for Both Transmitting and Receiving, by Department Type.

DEPARTMENT TYPE:	\% Same
City (1-9)	97
City (10-49)	93
State	91
Township	87
County	82
City (50+)	77
50 Largest	43

l0. Give the following information about your portable radios. D. Number of Channels Authorized \qquad
E. Number of Channels in Use \qquad

The three largest Department Types (by average number of officers) accounted for 71% of all the authorized portable radio channels reported by responding departments and $\mathbf{Z 2} \%$ of those actually in use. These Department Types also accounted for almost two-thirds (64\%) of the authorized but not yet used channels. A total of 162 channels (l4\% of all authorized channels) were reported to be authorized but not used.

Table 10 D \& E-l. Comparison of Channels Authorized and In Use for Portable Radios, by Department Type

DEPARTMENT TYPE:
CHANVELS:

	Authorized		In Use	
	No.	\%	No.	\%
50 Largest	431	37	374	37
State	228	19	205	20
City _($\underline{0}_{0 \pm \text {) }}$	171	15	148	15
City (10-49)	126	11	111	$1 \overline{1}$
County	96	8	84	8
City (1-9)	95	8	65	6
Township	27	2	25	2
All Departments	1174	100	1012	100

The number of channels used for mobile communications exceeded that for portable radios.

Table lo D \& E-2. Comparison of Channels Authorized and In Use For Portable and Mobile Radios, by All Department Types.

USE
CATEGORY:

Tot. \#ortable Average
Authorized
In Use
3.4
10122.9
($n=247$)

CHANNELS:
Tot. Mobile \# Average
1452
3. 5
1332 3.2
($n=417$)
2.2.4.3 Characteristics of Portable Radios
10. Give the following information about your portable radios:
loC. Output Power in Watts \qquad .

As was expected, due to the nature of the power supplies employed, the average output power for portable radios was far
lower than the output power for moloile radios. The mean output power, for all departments, for portable radios was 3.9 watts, while the mean output power for mobile radios was 70.9 watts. (Most portable radios currently on the market transmit with an RF output of 5 watts or less.)

In general, the larger the average size of Department Type jurisdiction, the greater the mean reported output power for portable radios. There was only one exception to this general trend: The Fifty Largest Cities, which had the third largest mean size of jurisdiction, reported the lowest mean output power for their portable radios.

Table loc. Mean Output Power in Watts for portable Radios, by Department Type -- Arranged from Smallest to Largest Mean Size of Jurisdiction.

DEPARTMENT TYPE:
Mean Output Power in Watts
3. 4

Township
City (50+)
City (l-9)
City (10-49)
50 Largest
County
state
3. 4
3.6
4. 2
2.8
4.6
5.1

A few departments reported very high portable radio output powers, but the problem was not as great, either in frequency or degree, as for mobile radios. Follow-up telephone calls to some of these departments revealed that they had estimated the output power of their portable equipment rather than actually checking the specifications.
22. Should standards for power supplies such as charging equipment, and batteries for portable radios be given -

- High Priority
- Medium Priority
- Low Priority
- Standards are not needed for these items

About three-fourths of departments which used portable radios felt that either High or Medium Priority should be assigned to developing standards for power supplies for portable radios.

These departments were evenly divided between those which assigned High versus Medium Priorities. About 25 \% of all departments using portables either said that no standards for power supplies were needed or that such standards should have Low Priority. The fifty Largest Cities, which were the biggest users of portable radios, were most likely to assign High Priority to standards for power supplies for portable radios.

Table 22. Priorities Assigned to Standards for Power Supplies for Portable Radios by 348 Departments which Used Portable Radios as Compared to Average Number of Portables Available, by Department Type.

Don't

High	Medium	Low	Need
Priority	Priority	Priority	Standards

DEPARTMENT TYPE:
$\begin{array}{ll}\text { \% Dept. } & \text { \% Dept. } \\ \text { Type } & \text { Type }\end{array}$
50 Largest
61
26
City (50+)
State
county
City (10-49)
Township
37
36
37

25
City (1-9) 24

33

$$
36
$$

35
44 50 37
\% Dept. Type

7 $19 \quad 9$ $11 \quad 17$

19 $17 \quad 8$ $12 \quad 12$

17

Average No. of Portable Radios
355.7
21.6
77.0
11.1
4.8
3.4
2.7
23. What types of batteries do you now use for your portable radios? (Mark X by each item that applies)

24 What types of batteries do you prefer to use for your portable radios? (Mark X by one of the following) Alkaline-Manganese
Carbon-Zinc
Mercury
NiCad (Nickel-Cadmium)
Silver Oxide
Other

More than 80% of the 348 departments which were using portable radios said that they were using Nickel-Cadmium batteries for those radios. A similar percentage also said that Nickel-Cadmium was the battery they would prefer to use with their portable radios. Although 25% of the portable radio users said they were currently using at least some Alkaline-Manganese or some Mercury batteries, less than half of those who used these two types of batteries said that they, would prefer to use them.

Table 23 \& 24. Comparison Between Batteries Now in Use and Batteries Preferred, by the 348 Departments Using Portable Radios.

ALL DEPARTMENTS USING PORTABLE RADIOS:

```
(2.23) (Q. 24)
% All Depts.
Now Using*
```

\% All Depts. Would Prefer to Use

Alkaline-Manganese
Carbon-Zinc
Mercury
Nickel-Cadmium
Silver Oxide
other
No Answer
*Percentages add to more than 100% since departments could give more than one answer to question 23.
25. Do you use batteries for your portable radios which must be recharged?
\qquad No

Nine out of every 10 departments which had portable radios used batteries which had to be recharged. There were no major differences among Department Types, although percentages of departments using batteries which must be recharged were slightly smaller for State, County and small City (1-9) departments than for larger City types. These differences may not be statistically significant.

Table 25. Use of Batteries Which Must Be Recharged, by 348 Departments Which Used Portable Radios. DEPARTMENT TYPE:

Batteries Must
Be Recharged
\% Dept. Type
50 Largest
98

City (50+)
94
City (10-49) 94
Township 94
County 84
State
83
City (1-9) 80
All Depts. 90
(Do you use batteries for your portable radio which must be recharged?) YES

25A. How long can you use the battery before it must be recharged?

Hours

25B. How long does it usually take to recharge the battery to a point where it can be used again? Hours
25 C . How long does it usually take to fully recharge the battery? Hours
25D. How long can you usually use these batteries before they must be replaced?

Months

Responses from the departments using rechargeable batteries showed that they averaged 8 hours of battery use before recharging was required. This was also the most commonly reported figure by all Department Types (modal response).

On the average, departments reported that a portable radio could be recharged enough to be usable in a little more than half the time it took for a full charge: Mean time. to fully recharge $=9.2$ hours; mean time to recharge to usable point $=5.6$ hours. There was, however, considerable variability to their answers. Some departments said that it took a minimum of 24 hours to recharge portable radio batteries to a usable point while others said it required only one hour. Similarly, for full recharging, some departments said one hour was sufficient, several said 24 hours were required, and at least one County department said full recharging took 48 hours. This wide range of responses
probably was a reflection of the use of "quick-charge" and "slowcharge" systems, the ages of the charging systems in use, and the design parameters of many different portable radio/battery systems in use.

Table 25. Length of Time to Partially and Completely Recharge A. \&B. \&C. \& D. Batteries: Length of Time Batteries Can Be Used Before Needing Recharging, and Needing Replacement, by Departments which Use Rechargeable Batteries in Their Portable Radios.

QUESTION:
A. No. of hours battery can be used before needing recharging (261 responses)
B. No. of hours required to recharge
battery to point where it can be used again (260 responses)
C. No. of hours required to fully recharge battery (259 responses)
D. No. of months battery can be used before being replaced (206 responses)

No. of Depts. never needing to replace batteries: 26 (8%)

DEPARTMENTS RECHARGING BATTERIES:
Mean Maximum Minimum
No. Hours No. Hours No. Hours
8.0

50
I
5.6

24
9.248
$\frac{\text { Months }}{16.7} \quad \frac{\text { Months }}{60} \quad \frac{\text { Months }}{3}$

Departments replaced their rechargeable batteries, on the average, every 16.7 months. Excluding those departments (8%) who had never needed to replace their batteries (no data is available on how long these batteries had been in use), battery life ranged from as little as three months to as long as five years.

The larger departments (States, 50 Largest, Cities (50+), and Cities (10-49) reported average battery lives between $I \quad 1 / 2$
and 2 years. On the other hand, Counties and Cities (1-9) were only able to use their batteries for six or seven months before replacement. Follow-up phone calls revealed that few departments kept actual battery use and life records; these data, therefore, are probably based, in large measure, on estimates.
12. About how much does one of these "most used" portable radios weigh?

Less than 20 oz.	33 oz to 38 oz.
20 oz. to $26 \mathrm{oz}$.	More than 38 oz.

$$
27 \text { oz. to } 32 \text { oz. }
$$

13. How do you feel about the weight of the "most used" portable radios?

The weight is about right
The unit is somewhat heavy
The unit is entirely too heavy

Table 12 \& l3-1. Weight of Portable Radios, by 348 Departments Using Portable Radios.

WEIGHT:
\% Depts. Using Portables
Less than 20 oz. 5
20 oz. to 26 oz. 26
27 oz. to 32 oz. 25
33 oz . to 38 oz. 20
More than 38 oz. 21
ivo Inswer 2

About 7 out of every 10 departments reported that their portable radios weighed between 20 and $380 z .(.567$ to 1.077 Kg$)$. About one-fifth of the departments had radios weighing more than 1.077 Kg.

Table 12 \& 13-2. Comparison Between Weight of Most Used Portable Radios and Respondents' Feeling About That Weight

HOW RESPONDENTS
FEEL ABOUT WEIGHT:

Weight is right Somewhat heavy Entirely too heavy

REPORTED WEIGHT OF PORTABLE RADIOS:

\% Less Than \qquad	$\begin{array}{r} \% \\ \hline \\ -\quad 26 \mathrm{oz} . \\ \hline \end{array}$	$\begin{array}{r} \circ \\ \hline \\ -\quad 32 \mathrm{oz} . \\ \hline \end{array}$	$\begin{array}{r} \% \quad 33 \mathrm{oz} \\ -\quad 38 \mathrm{oz} . \\ \hline \end{array}$	\% More Than 38 oz	\% No Answer
7	38	29	17	9	1
2	17	28	36	23	3
4	6	8	18	60	4

Departments with units weighing over l.077 Kg. (38oz.) more frequently reported that the radios were "entirely too heavy" than those which had lighter weight sets.

12A. When did you buy most of these "most used" portable radios? Within the last calendar year l-3 years ago 4-5 years ago More than 5 years ago

Table l2A . When Departments Bought Most of Their Most Often Used" Brands of Portable Radios.

WHEN PURCHASED:

$$
\frac{\text { \% Depts. Using Portables }}{(n=348)}
$$

$$
17
$$

Within last year 67
3 years ago or less 90
5 years ago or less
No Answer
1

Half of the departments in the sample had bought the portable radios most commonly used in their department, one to three years ago.* About one-fourth had bught them four to five years ago.

[^5]Seventeen percent had purchased their radios within the previous year and the remaining 10% had radios which were more than five years old. All seven Department Types reflected roughly these same proportions.

It appears that departments had made major purchases of portable radios more recently than they had made major purchases of mobile radios (90\% of the departments had purchased portables, and 65% had purchased mobile radios in quantity within the last 5 years). This finding may have resulted in part because of improved portable radio technology, the recent availability of Federal Purchase funds and/or the relatively shorter life of portable radios.

12B. About how much did you pay for one of these "most used" portable radios (including antenna, carrying case, and spare batteries)?

Less than \$500
\$501-\$700
\$701-\$900
\$901-\$1100
\$1101-\$1500
Over \$1.500

Fourty-four percent of the departments paid between $\$ 700$ and $\$ 900$ apiece for thier portable radios and 77% of them paid $\$ 900$ or less. About one-fourth of Cities (1-9) bad bought their portables for less than $\$ 500$, these small cities along with the 50 Largest Cities, paid a wide range of prices. Two percent of Cities (1-9) paid more than $\$ 1101$ as did 13% of the

50 Largest Cities. Counties, in general, paid higher prices for their portable radios and states paid lower prices.

Table l2B. Cumulative Percentages for costs of "Most Commonly Used" Portable Radios in 348 Departments.

DEPARTMENT TYPE:

COST :	*** CUMULATIVE PERCENTAGES ***						
	$\begin{aligned} & \text { City } \\ & (1-9) \\ & \hline \end{aligned}$	Township	County	$\begin{aligned} & \text { City } \\ & (10-49) \\ & \hline \end{aligned}$	State	50 Largest	$\begin{aligned} & \text { City } \\ & (50+) \\ & \hline \end{aligned}$
Less Than \$500	2.4	12	9	6	2	2	0
\$700 or Less	41	24	15	35	54	24	22
\$900 or Less	78	74	66	89	89	52	69
\$1100 or Less	98	93	78	98	99	85	96
No Answer	0	6	5	0	0	2	0

llB. (How many portable radios do you now have in your department?) Of those portable radios, about how many were made by the following manufacturers?

Manufacturer A made roughly 7 out of every lo portable radios used by the respondents. There were no major differences among Department Types, except that a smaller percentage of portables in States and Cities (l-9) were made by this company than in the larger City Department Types. Manufacturer B made slightly more than 1 out of every 10 portable radios and Manufacturers C and D each made only l out of every 20 radios reported. Only in

Cities (1-9) did a manufacturer other than Manufacturer A capture a significant proportion of the reported market (35\% - Manufacturer B) .

Table llB. Percentage of Portable Radios In Use in Departments Made by Various Manufacturers, by Department Type.

DEPARTMENT TYPE:
$\frac{A}{O f} \frac{B}{O f} \quad \% \frac{C}{O f} \quad \% \frac{D}{O f} \quad \frac{\text { Other }}{\circ \text { Of }}$

50 Largest	76	10	3	6	5
City $(10-49)$	76	14	4	0	6
Township	75	2	7	0	16
City $(50+)$	72	17	6	4	0
County	67	11	0	0	22
City $(1-9)$	54	35	0	0	11
State	48	14	13	2	23

12. What model of portable radio do you have more of in your department than any other?

Manufacturer Model or Model No.

Although only $l \%$ of the portable radio users failed to answer this question at all, l4\% gave a manufacturer but not model, and 6% gave insufficient information to identify a particular model. A total of 26 different portable radio models were mentioned by the respondents, but half of those 348 respondents listed one of two models: 27% for one model and 23% for another. Both of these models are produced by the same manufacturer.

Table 12. Of the 348 Departments Using portable Radios, Percent Listing Each of Two "Most Used" Models, by Department Type.

DEPARTMENT

TYPE:

No Answer,
Manufacturer Only,
$\frac{\text { Model Uncertain }}{\text { \% Dept. Type }}$

State	36	4	15
50 Largest	36	33	6
City $(10-49)$	31	26	20
City $(50+)$	27	29	18
County	23	14	33
City $(1-9)$	17	20	29
Township	12	31	37

2.2.5 Special Systems

2.2.5.1 Mobile Repeaters

13. A portable radio can be used with a repeater by a patrolman when he is out of his car. The portable radio transmits to the car radio which then relays the signals to the base radio. Do you need repeaters like this in your communication system?
\qquad
Yes \qquad NO
Why? \qquad

Table l3-1. Percent Departments Which Neea Repeaters Within Their Mobile Systems, by Department Type, zrranged According to Average Size of Jurisdiction.

DEPARTMENT TYPE:
NEED:
\%Yes
Township
31
City (50+)
35
City (1-9)
44
City (10-49)
40
50 Largest
County
State2658

Almost half of the respondents (43\%) indicated a need for

 a mobile repeater system, (i.e. a system in which a mobile car radio is used to relay transmissions from a low powered portable radio to a base station location). Generally, the larger the average size of the Department Type jurisdiction, the higher the percentage of departments saying they needed mobile repeater systems. In exception to this pattern, only 26% of the Fifty Largest Cities indicated a need for mobile repeater systems.Table l3-2. If "Yes", Why Do You Need Mobile Repeaters?

REASONS:

1. To overcome distance (range) problems
2. To improve or strengthen portables
3. Constant communication necessary
4. To overcome terrain caused problems
5. Mobility of officers improved

All Depts. $\frac{\text { Saying Yes* }}{(\mathrm{n}=150)}$

23
21
18
16
11
6. Good for special assignments 9

Other
7
No Answer
*Percentages add to more than 100% bec̣ase the respondents could give more than one reason.

Since there is a relationship between jurisdiction size and
frequency of need for mobile repeaters (except for the Fifty Largest Cities), it was not surprising that the most frequently given reason for needing this system was to Overcome Distance iRange) Problems. The other four most commonly given reasons for choosing this system were all somewhat related to the problems of covering large areas of territory (To Strengthen the

Portable system, To Remain in Constant Communication, To Overcome Terrain-Caused Problems and To Increase Officer Mobility).

Table 13-3. If "No", Why Don't You Need Mobile Repeaters?

REASONS:

1. Not needed - current equipment adequate

All Depts.
$\frac{\text { Saying No* }}{(n=194)}$
2. Use or prefer other system

21
3. Not needed - area not large enough to warrant use

18
4. Have no hand and/or car radios

Other 9 No Answer 38
$\overline{* P e r c e n t a g e s ~ a d d ~ t o ~ m o r e ~ t h a n ~} 100 \%$ because respondents could give more than one reason.

Departments usually indicated that they did not need a mobile repeater system when their Current Equipment was Adequate, when their Area was Not Large Enough to warrant use, or when they used or Preferred other systems for handling problems of distance, such as fixed repeaters and/or voting systems.

Half of the 32 departments in the Fifty Largest Cities which did not need mobile repeater systems said that they Use or Prefer other Systems. This probably accounted for the atypical response of the Fifty Largest Cities which often indicated that they did not need a mobile repeater system even though they had larger average jurisdictions to cover than Townships and other City Department Types.

7A. Do you use fixed repeaters in your area (to cover dead spots in communication which otherwise would exist
\qquad

Fixed repeaters can be used to overcome obstacles, either natural or man-made which would otherwise create dead spots in communications and to increase the range of system coverage. They are also used to cut mobile transmitter costs because, in general, less powerful car transmitters are needed when repeater systems are employed.

About one-third of the 428 responding departments used repeaters. State police and police in the Fifty Largest Cities were the two most frequent users of this equipment.

It might be hypothesized that there could be a relationship between the size of the jurisdiction to be covered and the use of fixed repeaters. It can be seen that state police departments, which were the most frequent users of fixed repeaters did have the largest jurisdictions to cover. However, less than onethird of county police, who had the second largest average size of jurisdiction, used repeaters. Within City Department Types, the frequency of use of repeaters increased with the size of the Department Type in terms of number of officers, rather than in terms of average size of jurisdiction.

Table 7A-1. Use of Fixed Repeaters by Department Type, as Compared to Average Size of Jurisdiction.

DEPARTMENT TYPE:

State

50 Largest
City (50+)
County
City (10-49)
City (1-9)
Township

USE OF REPEATERS AND JURISDICTION SIZE:
\% Use Mean Size of
Repeaters
77
65
37
30
20
13

- 67

931

7B. (IF "YES" TO QUESTION 7A.) How many fixed repeaters does your department have?

Fixed Repeaters

Most of the fixed repeaters were found in state police departments or in the Fifty Largest Cities. About 3 out of every 5 repeaters cited were used by state police departments. A little more than one-fourth of all repeaters were operated by the Fifty Largest Cities. Thus, almost 90% of fixed repeaters were employed by these 2 groups. Of the departments reporting fixed repeater operations, state police departments each operated 21 repeater units and the Fifty Largest Cities each operated 11 repeater units (means). Between 20% and 37% of other larger City Department Types (at least lo officers or more) and county
police, reported using fixed repeaters (Q. 7A.) but these Department Types generally had an average (mean) of only one or two repeaters in each department.

Table 7B-l. Percentage of Total Repeaters in Use, and Mean Number Per Department of Those Using Repeaters, by Department Type.

DEPARTMENT TYPE:	\% Total Reported Repeaters ($\mathrm{n}=1197$)	Mean No. Rep Dept. of Th Any Repeate
State	62	20.6
50 Largest	27	10.9
City (50+)	5	2.1
County	4	1.9
City (10-49)	2	1.1
City (l-9)	1	* *
Township	*	* *
All Depts.	100	

[^6]The largest mean numbers of repeaters were found in departments along the East Coast (in the Middle Atlantic and New York/ New Jersey areas) and along the West coast (in the Region which includes California, Nevada, Arizona and also Hawaii). Although more than two-thirds of departments in Region lo (which includes the Northwestern states of Washington, Oregon, Idaho and Alaska) reported using fixed repeaters, this Region had the smallest average number of repeaters per department.

Table 7B-2. Average Number of Fixed Repeaters, by LEAA Region, Compared to Percentage of Departments in Region which Use Fixed Repeaters.

LEAA REGION:

9 (Far West/Hawaii)
3 (Middle Atlantic)
2 (New York/New Jersey)
7 (Midwest)
5 (Great Lakes)
4 (South)
6 (South/Southwest)
8 (Mountain)
1 (New England)
10 (Northwest/Alaska)

NUMBER AND USE OF REPEATERS:
Mean No. Repeaters
in Region
\% Departments Which Use Fixed Repeaters
$15.7 \quad 48$
$15.6 \quad 17$
$13.6 \quad 17$
9.419
$6.8 \quad 39$
$6.4 \quad 38$
$6.2 \quad 26$
$6.1 \quad 45$
5.1 27
$4.0 \quad 68$
8. If you use, or will be using fixed repeaters, which of the following types do you prefer?

Will not use fixed repeaters
FlFl repeater (same frequency in and out)
FlF2 repeater (two different frequencies)
No preference

The Flfl system, in which communications are transmitted and received on the same frequency is not generally being marketed because it has not yet been perfected. Thus, state departments and large City departments (Fifty Largest and $50+$) preferred the FlF 2 system (in which communications are transmitted and received on different frequencies). Smaller Department Types also selected this system if they indicated a preference at all.

Table 8A. Preference for FlFl or FlF2 Repeaters, by Department Type.

DEPARTMENT TYPE:
\% Favor- \% Favor- \% Having ing Flf2 ing FlFl No Repeaters Repeaters Preference
\% Indicating Will Not Use or No Answer

4
22
$5 \quad 33 \quad 52$

19

37

2.2.5.3 Portamobile Radios with Voting Systems

14. Some law enforcement agencies use portamobile radios with several receivers and a voting system. Do you favor such a system?

\qquad
_ Unfamiliar with voting system

More than half of the respondents who used portable radios ($N=348$) were unfamiliar with voting systems, an arrangement which provides more reliable communications by employing one or more satellite receivers for each channel. These receivers are situated at scattered locations throughout the coverage area. The audio output signals of the satellite receivers are transmitted to a selector or comparator at the base station by radio or land lines. The comparator performs the voting process by selecting the strongest of the several possible signals received from the portable or mobile radio via the satellite receivers. State
police and police in the Fifty Largest cities were the only Department Types in which most respondents had knowledge of voting systems. About three-fourths (74\%) of the respondents in the Fifty Largest Cities and about half (53\%) in the state departments favored the system.

Data from this question further explained why, in Question 13, only 26% of the Fifty Largest Cities said they needed mobile repeaters and most often gave as a reason their preference for other systems. About three-fourths of the fifty Largest Cities favored the voting system. Twenty-eight of the 45 respondents (65%) familiar with the concept favored the use of such a system.

Table l4-l. Of the 348 Departments with portable Radios, Percentages of Responses About Voting Systems, by Department Type.

DEPARTMENT
TYPE: DO YOU FAVOR A VOTING SYSTEM?
\% Unfamiliar
With System

100 $12 \quad 78$ $12 \quad 72$ $24 \quad 71$ $17 \quad 55$ $32 \quad 15$ 1313
$17 \quad 55$

The three reasons most often given for favoring the voting system (by all respondents, and also by the fifty Largest cities) were that the system Improves Transmitting/Receiving Coverage
and extends range, that the department Already Uses the System and likes it and that the system Increases the Flexibility and Usefulness of the portable radios.

Table $14-2$. Reasons Given for Favoring A Portamobile Radio With A Voting System, by 98 Departments Which Favored This System.

REASONS:
\% Depts. Favoring $\frac{\text { Voting System* }}{(n=98)}$
l. Improves transmitting/receiving coverage and extends range 31
2. Already use and/or think it's a good system 23
3. Increases portable usefulness and flexibility 20
4. Voter relays best signal lo
5. For extra back-up 4
6. Miscellaneous $\quad 11$

No Answer 11
$\overline{* P e r c e n t a g e s ~ a d d ~ t o ~ m o r e ~ t h a n ~} 100 \%$ since departments allowed multiple answers.

Departments which did not favor the voting system most commonly gave as reasons that they had No Need or practical use for the system or that they Considered the Voting system Inadequate.

Table 14-3. Reasons Given for Not Favoring A Portamobile Radio With A Voting System, by 58 Departments Which Do Not Favor This System.

REASONS:

\% Depts. Not Favoring $\frac{\text { Voting } S y s t e m *}{(n=58)}$

1. No need or practical use 21
2. Consider voting system inadequate

17
3. Current system adequate

10
4. Area too small to warrant use 10
5. Too expensive 7
6. Important calls voted out** 3
7. Miscellaneous 10
No Answer 31
*Percentages add to more than 100% since departments allowed multiple answers.
**This answer cannot really be considered a valid reason for not favoring a voting system. It is probably better interpreted as an indication of lack of knowledge about this system.

2.2.5.4 Scrambler Systems

17. In some areas, police use voice privacy systems which scramble messages so that they cannot be received by people other than police. Do you HAVE a system of this type?

Yes
No
(IF "NO.") Do you NEED a scrambler system of this type? Yes
No (IF "NO", SKIP TO QUESTION 21)

Scramblers were in use in less than 10% of the 428 responding departments. Cities $(50+)$, States, and the Fifty Largest Cities tended to have greater percentages of departments using scramblers. Counties and the two smallest City Department Types tended to have lower percentages of users.

Table 17-1. Availability of Scramblers, by Department Type.

DEPARTMENT TYPE:

City (50+) 18
state
50 Largest 11 13

Township
9
City (10-49) 8
City (1-9) 5
County

$$
\frac{\text { Have Scramblers: }}{\% \text { Dept. Type }}
$$

18. If "Yes" (in Q. 17) For which of the following
purposes do you need, or would you like, a scrambler system? (MARK X BY EACH ITEM THAT APPLIES.)

General Communications
During robberies
Long-term stake out Demonstrations or protests Undercover investigations Other (Specify)

Departments which had scramblers ($n=40,9 \%$) and departments which said they needec scramblers $(n=225,53 \%)$ were adked to answer this question. For three of the choices (Undercover Investigations, Robberies, and Long-Term Stake Out) the percentages of votes from the "have" and the "need" groups were fairly comparable. However, departments which did not currently have scramblers were much more likely to say they would use them for General Communications (49\%) than were those departments which already had them (15\%). In contrast, those departments which were already using scramblers were more likely to say they would use them during Demonstrations or Protests (60\%) than were those departments which said they needed but did not yet iave scramblers (45\%).

Table l8. Purposes for Which Scramblers Were (Or would Be) Used, By All Departments Currently Using Scramblers and All Departments Saying Scramblers Were Needed.

USE FOR SCRAMBLER:	\% Depts. Using Scramblers*	\% Depts. Needing Scramblers*
	($n=40$)	($\mathrm{n}=225$)
Undercover Investigations	82	78
Demonstrations	60	45
Robberies	52	42
Long-Term Stake Out	50	63
General Communications	15	49
Other	37	16

$\overline{* P e r c e n t a g e s ~ a d d ~ t o ~ m o r e ~ t h a n ~} 100 \%$ since multiple answers were allowed.

Nineteen percent of departments which had, or needed, scramblers indicated Other uses for scramblers. Some of the more commonly mentioned otner uses were: For fires and accidents, for administrative operations, for crimes in progress (in addition to robberies), and for use in command units (communications vans).
19. (IF "YES" TO Q. 17) How do you (would you) use your scramblers? (MARK X BY ONE OF THE FOLLOWING.) With car radios With portable radios With both car radios and portable radios Only in special vehicles (Specify)

The perceptions of the 225 departments which did not have, but said they needed scramblers were very different from the answers of the 40 departments which were currently using scramblers. More than half (58\%) of the users of scramblers said
they were using them with Car Radios only. An additional 35% of the current users said they were using their scramblers with Both Car Radios and Portable Radios.

In contrast, three-quarters (76\%) of the departments which
said they needed scramblers said they would use them with Both Car Radios and Portable Radios. Only 15% said they would use them with Car Radios only.

Table 19. Use of Scramblers with Car Radios, portable Radios, and Special Vehicles, By All Departments Currently Using Scramblers and All Departments saying scramblers Were Needed.

USE WITH:

Car Radios Only
Portable Radios Only
Both Car \& Portable Radios
Special Vehicles

$$
\begin{array}{ll}
\text { \% Depts. Using } & \text { \% Depts. Needing } \\
\text { Scramblers } & \begin{array}{l}
\text { Scramblers } \\
(\mathrm{n}=40)
\end{array} \\
(\mathrm{lQ} \cdot 17 .) *
\end{array}
$$

58	15
2	3
35	76
18	8

*The categories were meant to be mutually exclusive. However, a number of departments marked more than one of the available choices. The first three categories were made mutually exclusive in the tabulations. Double responses using the special Vehicles category were permitted and therefore, the total percentages add to more than 100%.
20. (IF "YES" TO 2. 17.) How much do you think your
department would pay for a good, reliable scrambler system? (MARK X BY YOUR BEST ESTIMATE BELOW.)

Less than $\$ 250$ per unit
$\$ 251$ - $\$ 500$ per unit
$\$ 501$ - $\$ 750$ per unit
$\$ 751$ - $\$ 1000$ per unit
More than $\$ 1000$ per unit

These data were useful as an indication of the accuracy of the respondents' perceptions of the costs of voice privacy systems. The simplest scramblers now on the market are inverters. They cost between $\$ 200$ and $\$ 400$ each, provide good intelligibility but offer only a low degree of privacy (an electronic hobbyist can easily build a low cost unscrambler). Eighty-three percent of the respondents which had (or needed) scramblers said that they were willing to pay $\$ 500$ or less for a "good, reliable scrambler system." These departments would only be able to buy a "low privacy" inverter system.

Scramblers, using cryptographic techniques, provide many different key settings, a substantial degree of privacy, and cost $\$ 800-\$ 2000$. Only 2% of the respondents with an interest in scramblers said they would be willing to pay more than $\$ 750$-enough to buy a cryptographic type system. More of the Fifty Largest Cities (30%) than any other Department Type said they would be willing to pay more than $\$ 500$ for a reliable scrambler system.

Table 20. Amounts the 265 Departments Which Used or Said They Needed Scramblers Would be Willing to Pay for A Reliable Scrambler System, by Department Type.

DEPARTMENT
TYPE:
AMOUNT:

	\% Less Than $\$ 25 u$	\%	$\begin{aligned} & \$ 251 \\ & \$ 500 \end{aligned}$	\%	$\begin{aligned} & \$ 501 \\ & \$ 750 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { \% More } \\ & \text { Than } \\ & \$ 750 \\ & \hline \end{aligned}$	$\begin{gathered} \text { No } \\ \text { Answer } \\ \hline \end{gathered}$
City (50+)	52		43		2	0	4
City (10-49)	52		30		8	0	10
City (1-9)	50		42		0	3	5
County	49		30		2	2	16
State	42		37		8	4	8
50 Largest	30		37		30	0	4
Township	21		43		14	7	14

2.2.5.5 Communications Helmet

2l. Helmets with built-in communications have been developed and are now on the market. Is there a need for such helmets in your department? Yes
No
Why? or Why Not?

Although only about one-third of all 428 respondents to the Communications Questionnaire said they needed helmets with builtin communications, almost three-quarters of the state and fifty Largest City departments said they needed them.

Table 2l-1. Need for Built-in Communications in Helmets, by Department Type. (All Respondents, $n=428$)

DEPARTMENT TYPE: \quad| Need Built-in |
| :--- |
| $\frac{\text { Communications }}{\text { \% Dept. Type }}$ |

50 Largest 72
State 72
City (50+) 34
County 22
City (10-49) 19
City (1-9) 15
Township 9

Half of the 139 departments which expressed need for helmet communications gave as their reason the usefulness of this system in Crowd Control or Riots. About one-third of those departments said it would be useful for Motorcycle Duty. These two reasons. were also most often chosen by the States and Fifty Largest Cities. For state police, Motorcycle Duty was most often chosen while Crowd Control was second; the reverse was true of departments in the Fifty Largest Cities.

Table 2l-2. Reasons for Needing Built-in Helmet Communications, by 139 Departments Which Said They Needed This System.

REASONS:

For crowd control/riots
For motorcycle duty
Frees hands

> \% All Depts. Needing Helmets With Built-in $\frac{\text { Communications.* }}{(n=l 39)}$9Improves operations/more efficient

Useful when away from base or mobile unit
Counteracts noise (other than crowds)

No Answer

[^7]The majority of respondents (67\%, $n=286$) said that their departments did not need built-in helmet communications. Many of the reasons for saying "no" to Question $2 l$ were simply that the respondents saw no need for that type of communications system in their departments: Use Not Warranted Based on Department or Area (22\%), Impractical/Don't Need (l6\%), No Helmets Used by Department (l3\%). The reason given with greatest frequency (Expense Not Warranted, 66\%) might also be said to be in the general "no need" category. Only 4\% of those saying builtin helmet communications were not needed mentioned a perceived negative aspect of this system as their reason.

Table 2l-3. Reasons for Not Needing Built-in Helmet Communications, by 286 Departments which Said They Did Not Need This System.

REASONS:
\% Depts. Not Needing Helmet $\frac{\text { Communications* }}{(n=286)}$

Expense not warranted66
Use not warranted based on dept. or area 22
Impractical/don't need 16
No helmets used by dept. 13
Have or prefer other equipment for same job 6
Too cumbersome/dangerous 3
Low priority 2
Not enough power 1
Other 2
No Answer 32

[^8]2.2.6.1 Need for Standards and Expected Gains from Standards

```
15. Many policemen have indicated the need for standardi-
zation of communications equipment. Which of the
following equipment and components would you like to
see standardized? (MARK X BY EACH ITEM THAT APPLIES)
                Portable radios
                Mobile radios
                Batteries for portable radios
                Control heads
                Microphones
                Switches on control heads
                Mounting brackets
                Cable between microphone and control head
                Other (specify)
```


About two-thirds of the respondents said standards were

 needed for Mobile Radios (70\%) and Portable Radios (66\%). More than half of the departments said Batteries for Portable Radios needed standards (56\%). No item listed was selected by less than one-third of the respondents. This interest in standards for communications equipment further supports the findings of the Equipment Priorities Questionnaire of this survey in which communications equipment was either the first or second most important category of equipment for every Department Type in terms of need for standards.Table l5-1. Need for Standards for Communications Equipment, by All Respondents.

EQUIPMENT ITEM:
\% Depts. Indicating Standards are Needed

Mobile Radios 70
Portable Radios
66
Batteries 56
Control Heads 42
Mounting Brackets 37
Microphones 36
Switches on Control Heads 36
Cable Between Microphone
and Control Head 33
Other . 12
No Answer
2

States and Fifty Largest Cities tended to say that more of the items in the list needed standards than did the other Department Types. In five of the Department Types (Cities l-9, Cities 10-49, Cities 50+, Counties, and Townships) Portable Radios, Mobile Radios, and Batteries for Portable Radios always received one of the three highest percentages of votes. States chose Mobile Radios and Batteries for Portable Radios among the top three, but not Portable Radios. The Fifty Largest Cities chose Portable Radios and Batteries for Portable Radios among the top three, but not Mobile Radios.

Table l5-2. Items Said to Need Standards by 40% OR MORE Of the Departments Within a Department Type. Ordered from Highest to Lowest Frequency of Response by All 428 Departments.

EQUIPMENT ITEM:
DEPARTMENT TYPE:

	$\begin{gathered} \% \\ \text { State } \\ \hline \end{gathered}$	\% 50 Largest	$\begin{aligned} & \% \text { Cities } \\ & 50+ \\ & \hline \end{aligned}$	$\begin{aligned} & \text { \%Cities } \\ & 10-49 \\ & \hline \end{aligned}$	\% County	Township	$\begin{gathered} \text { \% Cities } \\ 1-9 \end{gathered}$
Mobile Radios	64	59	57	76	72	83	79
Portable Radios	49	70	68	67	68	70	68
Batteries for Portables	66	78	67	55	49	61	
Control Heads	68	63	42	43			
Mounting Brackets	49	-	41	-			
Microphones	57	46		-			
Switches on Con Head	49	43		41			
Cable btw Mike \& Con Head	51	46					

Items not listed in the questionnaire which were sometimes mentioned as needing standards included: Chargers, antennas, crystals, connectors, other controls, and other cables.
16. What will your department gain by the standardization discussed above? (MARK X BY EACH ITEM THAT APPLIES) l0\% lower cost of equipment 25\% lower cost of equipment 50% lower cost of equipment Interchangeability of radios Interchangeability of components Savings in training of technicians Savings in training of patrolmen Interchangeability with other communications systems Other (specify)

According to all 428 respondents as a group, and according to each Department Type, the biggest gain that would be realized by police departments if standards were set for communications equipment would be an improvement in the interchangeability of equipment; about half or more of all respondents chose each Interchangeability item. About a quarter of the respondents chose each of the Savings in Training items.

Table 16-1. Expected Gains from Standardization of Communications Equipment, by All Respondents.

EXPECTED GAIN:
$\frac{\text { \% All Depts.* }}{(n=428)}$
Interchangeability...
of Radios 62
of Components 52
with Other Comm. Systems 47

Savings in Training...
of Technicians 28
of Patrolmen
23

Lower Cost of Equipment...
10% Lower Cost 16
25% Lower Cost 13
50% Lower Cost 3
*Percentages add to more than loo\% since multiple answers were allowed. The reader should be particularly careful in interpretations of Tables l6-l. and l6-2. because of the multiple responses. It is much more likely, for example, that a responent would have selected only one of the three fower Cost of Equipment choices than it is that he would have selected only one of the two or three choices in the other two general categories.

Among the seven Department Types, the same general proportions of responses were found. The States and the Fifty Largest Cities tended to have higher percentages of departments expecting to see better Interchangeability of Radios and Components result from standardization. These two Department Types also had higher percentages of departments expecting savings in Training of Technicians. States and Townships had higher percentages expecting Savings in Training of Patrolmen. Cities (l-9) appeared to feel they had the least to gain overall from the standardization of communications equipment.

In terms of expected cost benefits from standardization, departments most often said they expected to see costs lowered
by 25% or less. Only about one-third of the respondents said that they expected any cost benefit from standardization of communications equipment.

Table l6-2. Expected Gains from Standardization of Communications Equipment, by Department Type.*

EXPECTED GAIN:	$\begin{aligned} & \% 50 \\ & \text { Larges } \\ & \hline \end{aligned}$	State	DEPARTM \% City $50+$	NT TYPE \% City $10-49$	\% County	$\begin{aligned} & \% \text { City } \\ & 1-9 \\ & \hline \end{aligned}$	\% Township
Interchangeability...							
of Radios	78	74	67	63	55	50	43
of Components	70	72	59	53	42	28	48
with Other Systems	52	30	4.6	55	54	37	57
Savings in Training...							
of Patrolmen	30	40	32	26	25	17	43
of Technicians	57	43	20	12	16	8	35
Lower Cost of Equipment...							
10\% Lower Cost	22	19	18	15	17	14	0
25\% Lower Cost	15	19	13	13	13	6	13
50\% Lower Cost	4	0	3	2	3	4	4

*Percentages add to more than 100% since multiple answers were allowed.
2.2.6.2 Communications Needs
26. What are your most critical communications needs?
(MARK X BY EACH ITEM THAT APPLIES)
More frequencies and channels
New equipment
More reliable equipment
Personal transceivers for each officer
Portamobile voting system
Scramblers
Standardization of all equipment
Other (specify)

Five of the eight choices in the questionnaire mere cited as "critical communications needs" by one-thirdor more of the respondents. Nearly half of the departments saic liem Equipment, More Frequencies/Channels, and Personal Transceivers for Each Officer were eritical communications needs.

Table 26-1. Most Critical Communications Needs, by Rll Respondents.
\% All Departments*
New Equipment $\quad 45$
More Frequencies/Channels 44
Personal Transceivers 43
Standardize all Equipment 38
Scramblers 34
More Reliable Equipment 2 I
Portamobile Voting System 8
Other 11
*Percentages add to more than 100% since multiple ansmers were allowed.

Personal Transceivers for Each Officer seemed to be the most critical communications need for all City Department types with more than 10 officers and Townships. Cities (1-9) and Counties most often said they needed Nem Equipment. Almost three-quarters of the States said that More Frequencies ana Channels was a critical communications need. The fact that 45% of The Cities (10-49) said the same thing is not surprising in view of their answers to Question 17: 7l\% of the Cities (10-49) which did not currently have scramblers said that this equipment was needed in their departments.

Table 26-2. Most Critical Communications Needs Indicated by 40\% OR MORE of the Departments Within Each Department Type.*

COMMUNICATIONS
NEED :

DEPARTMENT TYPE:

	\% 50 Largest	$\begin{aligned} & \text { \% City } \\ & 50+ \end{aligned}$	$\begin{aligned} & \text { \% City } \\ & 10-49 \end{aligned}$	$\begin{aligned} & \text { \% City } \\ & 1-9 \end{aligned}$	\% County	\% Township
45	43	43	41	51	49	-
57	48	46	44		41	-
-	74	47	48			52
51	43		42			
			45			

More Reliable Equipment
Portamobile Voting System

Other

* Percentages add to more than 100% since multiple answers were allowed.
2.2.6.3 Problems with and Failures of Communications Equipment

27. What are your most serious problems with communications equipment?

Question 27 was "open-ended" allowing respondents to write
in their problems with communications equipment.add categories for these narrative responses were developed after the questionnaires were returned. Many of the responses to this question were related to the "critical communications needs" discussed in the previous question. Some of the most commonly indicated problems were: Overcrowding and Congestion of channels, problems with old Equipment, and problems having to do with Repairs, Maintenance and Lack of Reliability of equipment. Since there were many
different answers to this question, none of the categories of problems in Table 27. was mentioned by as many as one-quarter of the respondents. Perhaps the most important aspect of this question is the fact that more than 75% of the departments listed some communications problem that they considered to be serious. (100\%-11\% No Answer - 13% "No Problems".)

Table 27. Most Serious Problems with Communications Equipment, by All Respondents.

PROBLEM:
$\frac{\text { \%All Depts.* }}{(n=428)}$
Overcrowding/congestion 19
Old equipment/need new or more 16
Malfunctions, breakdowns, failures 14
Repair, maintenance, service ll
Inadequacy of equipment (range, power) 10
Electrical/Mechanical interference (skip) 8
Reliability/lack of Quality Control 6
Character of area/terrain causing dead spots 5
Unauthorized monitoring 4
Standardization, interchangeability needs 3
Expense/high cost 2
Other 6
No problems 13
No Answer ll
*Percentages add to more than 100% since multiple answers were allowed.
28. What are your most common equipment failures, whether entire units or specific components?

As in Question 27 ., response categories were developed from the narrative answers supplied to this question. Eighty-two percent of the respondents listed at least one common equipment
failure (l6\% No Answer and 12% "No Problems"). Three failure categories stood out: Tubes, Transistors, Capacitors (25\%); Specific Components, Normal Wear and Tear (18\%); and Mike Cables, Connections, Wiring (l5\%).

Table 28. Most Common Equipment Failures, by All Respondents.

FAILURE CATEGORY:

$\frac{\text { \%All Depts.* }}{(n=428)}$

Tubes, transistors, capacitors
25
Specific components, normal wear and tear
18
Mike cables, connections wiring 15
Antennas, relays, cables
9
Switches/Fuses (circuit breakers)
. 9
Crystals, trimmers frequency problems 9
Transmitter problems/failures 7
Portable/Mobile radios and accessories 6
Power supplies, vibrators, inverters, reeds 4
Other
7

No failures 12
No answer 16
*Percentages add to more than 100% since multiple answers were allowed.
29. Do you have any other general comments or observations about communications equipment that might be helpful to the people who will be studying and testing this equipment for police use?

No attempt was made to actually code the comments received to this question. They have been retained verbatim, and can be made available for research purposes (without identification of specific respondents).

When a "comments" section is provided at the end of a lengthy questionnaire such as this one, the response rate is usually expected to be low. However, in the case of the Communications Questionnaire, over one-fourth of the 428 respondents provided an additional comment or statement.

Table 29. Additional Comments/Observations About Communications Equipment, by Department Type.

DEPARTMENT TYPE:

State
45
City (10-49)
50 Largest
38

Township
City (50+)
County
City (1-9) 17
All Respondents 29
\% All Respondents

36
33
26

29

The comments appeared to be well thought out and expressed the high degree of concern the respondents felt about their communications equipment. Several areas of particular concern were identified: High expense of communications equipment, maintenance for the equipment, the need for scramblers, overcrowding of frequency bands, and need for improvement in portable radios and power sources. Examples of the expression of these concerns follow:

The High Expense of Communications Equipment:
"Communications equipment and systems are expensive. It appears each manufacturer adds new features one at a time so obsolescence comes at shorter intervals. An advanced technology by one manufactorer may not be
available by another causing a problem in developing an open specification. Or the technology may be similar yet different enough to create not only bidding difficulties but maintenance differences requiring different techniques and test equipment."
"Cost of equipment - many P.D.s operate on small limited budgets; therefore, cannot afford to purchase proper amount of equipment for proper security."
"Require LEAA expenditures be made only for equipment that meets the same performance standards of best make tested. Money spent for inferior equipment is money wasted."
"Some replacement components are priced too high. More standard components are needed."
"Would like to see standardized equipment at lower cost so departments with limited budgets can get more equipment."
"Small departments are unable to purchase much needed equipment because of budgets \& city leaders who think in the past."
"Keep the price down."
"The biggest problem that my department has is the monitoring of the frequency that we are assigned. A call can be transmitted and the person we are looking for can be gone upon the arrival of officers, since he or she has heard our transmissions. This will occur daily. Or someone will call by public service wanting to know why their name or their neighbor's name was mentioned or why we are looking for them. To insure or secure efficient police work we must cut down on outside monitors."
"In our department what is needed is a scrambler system which can be used with the base station, mobile radios, and handheld radios, which is priced within reach of the average department."
"A well built and high quality scramble device at a moderate price range is one of the greatest needs of law enforcement today. Studying and testing scramble devices should have a high priority."
"For purposes of security, we would like to see an absolutely foolproof scrambler system."
"We also need good scramblers at a reasonable cost."

The Problem of Maintenance:
"There should be a survey on maintenance, new methods of servicing electronic equipment, standards for electronic technicians and some means of providing good in-service training regarding all electronic equipment the men service."
"Manufacturers, due to feedback from users, are informed of common equipment failure but they do not pass information on to local repair shops."
"Any study of Police communications should also consider estimated life of hardware, general maintenance, installation and other long term requirements for reliability and performance. There should be no "down time" on Police Communication facilities, which are often used 15 years or more. Especially true of Base facilities."
"Current Communications Maintenance programs are inadequate. Equipment receives no attention until it fails. Often no "backup" hardware is available, pressuring technicians into "hurry-up" jobs and inadequate service."
"The use of power allocations and frequency allocations should be checked more closely. Crowded conditions and non-essential chatter is causing a great deal of problems in emergency situations."
"We are on a frequency with at least 15 other towns. We are constantly drowned out by others who must be overmodulated."
"Frequency coordination has always been a problem. At the present time, we have cities operating on our channel which are less than 40 miles away."
"We would like to see, in this area, a frequency with a channel of our own with no outsiders."

The Need for Improvements in Portable Radios and Power Sources:
"Our portables are useless. They almost never work right."
"This department purchased two hand portable units. We've had them about 18 months and they have been returned to factories several times for repairs."
"Portable radios with capacity for long distance receiving and transmitting."
"Consideration should be given to designing a radio for a police officer that would be durable and waterproof under the most extreme condition a police officer may be called upon to perform service."
"Handheld radio
lighter in weight but retain and improve the present power output levels."
"One of the biggest problems is the weight and size of the portable radios. The output power is low, but the weight of the unit makes it cumbersome."
"I believe there is a great need for reasonably priced integrated-circuit designed radios to be carried or worn by all officers for constant communication availability. Might eventually eliminate need for radios in cars."
"Battery size and weight reduction should receive high priority."
"We feel that batteries used in portable and handcarried equipment are too large and too heavy -- that the power source development have not been kept with circuitry sophistication. We would like to see a 5watt hand-carried portable transceiver with very small dimensions."
"One suggestion is that manufacturers of power source batteries be given the necessary incentive to "catch up" with the communications industry by making compatible batteries that are smaller in size, weigh less, have a longer life and increase the power output."

NBS-885
May 1972

OMB 41-F72030

Approval Expires June 30, 1973
U.S. Department of Commerce

National Bureau of Standards

DETAILED QUESTIONNAIRE: COMMUNICATIONS

POLICE EQUIPMENT SURVEY

Sponsored By:
National Institute of Law Enforcement and Criminal Justice Law Enforcement Assistance Administration U. S. Department of Justice

Directed and Conducted By:
Behavioral Sciences Group
National Bureau of Standards
Washington, D.C. 20234
Phone: 301-921-3558

INTRODUCTION: Maintaining good communications under very poor conditions is important to good police action. Many departments have lost communication when they needed it most. System parts often cannot be interchanged, batteries are unreliable and some equipment is too expensive for many departments to buy. In order to make it easier for law enforcement departments to be able to buy communications equipment that meets their needs, the Law Enforcement Standards Laboratory will be writing performance standards for this equipment. These standards will be available to any department that wishes to use them.

PURPOSE OF THIS QUESTIONNAIRE: The purpose of this "detailed" questionnaire is to get answers from YOU, the user, about the communications equipment you are now using, and the problems you find in using it. Your answers will be used to determine what kinds of testing need to be done, and what sorts of problems must be solved. We must find out what YOUR needs are.

GENERAI INSTRUCTIONS:

1. Fill in the questionnaire completely. Even if you do not have all the information you need "at your fingertips", please make your best effort to supply every answer AS ACCURATELY AS POSSIBLE.
2. Answer all questions FOR YOUR OWN DEPARTMENT. Do not attempt to supply information that might exist in some other department.
3. The results of this questionnaire will be compiled by computer. It is very important that you follow directions and answer every question in the boxes and spaces provided.
4. No individual department will be identified in the report of this survey; the results will be published only in table form.
5. Additional instructions for filling in your answers appear after some questions. Follow the directions given.
6. Please PRINT all answers and comments CLEARLY.
7. When this questionnaire has been completely filled in; place it, with the other questionnaires sent to your department, in the stamped, addressed envelope supplied. Return all of them to: Technology Building, A-110 National Bureau of Standards Washington, D.C. 20234
8. If you have any questions, write to the above address or call collect: E. Bunten, or P. Klaus

Phone: 301-921-3558
9. Remember that it is only by getting YOUR DEPARTMENT'S answers to these questions that it will be possible to begin really working on problems that police have with communications equipment and supplies.
l. Give the following information about your car radios:
1.A. List ALL transmitting frequencies (in $\mathrm{KHz}, \mathrm{MHz}$, etc.)
(Attach an additional sheet if necessary.)

(18-25)
(26-28) 1.C. Output power (in watts)
(29-30) 1.D. Number of Channels Authorized
(31-32) 1.E. Number of Channels in Use
2.A. How many car radios are there in your department?

Number \qquad
2.B. Of those car radios, about how many were made by each of the following manufacturers?

NUMBER MANUFACTURER
\qquad Motorola
\qquad
-
-
Other (Specify) \qquad
3. How recently were most of the car radios bought by your department? (Mark X by your best estimate)
(53-56)

Within the last calendar year
1-3 years ago
4-5 years ago
More than 5 years ago
***Numbers in parentheses are for computer use only.
$A-3$
(57-62)
4. About how much did each of the car radios cost that are most frequently used in your department (including base plate, control head, microphone, and speaker)? For example, if most of the radios now in use are Motorolas, please give us the cost of one set. (MARK X BY YOUR BEST ESTIMATE BELOW)

Less than $\$ 700$
$\$ 701-\$ 800$
$\$ 801-\$ 900$
$\$ 901-\$ 1000$
$\$ 1001-\$ 1500$

5.A. What is the total area within your jurisdiction which must be covered by a communication system? (IN SQUARE MILES)

If possible, please tell us how many different law enforcement channels serve this area. This figure would include not only those channels used by your department, but also those used by other law enforcement agencies operating in the same geographical area (e.g., state and local police).
\qquad Channels
\qquad Don't Know
5.C. Do you have one common frequency for routine and emergency traffic?
\square
Yes
\qquad No (IF "NO") Do you think you need a common frequency?
\qquad Yes
\qquad

$$
A-4
$$

6. Which of the following best describes the general character of your jurisdiction? (MARK X BY MORE THAN ONE, IF NECESSARY)
(74-80)
___ Skyscrapers, many tall buildings
___ Some tall buildings
___ Almost no tall buildings
___ Primarily mountainous or vexy hilly
\qquad Valley area surrounded by mountains
\qquad Generally flat with some hills
\qquad Flat area, no hills
7.A. Do you use fixed repeaters in your area (to cover dead spots in communication which otherwise would exist)?

7.B. (IF "YES" TO QUESTION 7.A.) How many fixed repeaters does your department have?
(11-12) \qquad Fixed Repeaters
7. If you use, or will be using fixed repeaters, which of the following types do you prefer?
(13-16) \qquad Wili not use fixed repeaters
\qquad FIFI repeater (same frequency in and out)
\qquad FlF2 repeater (two different frequencies)
\qquad No preference
8. Do you now úse portable (hand-held) radios in your department?
\qquad Yes

No (IF "NO" SKIP TO PART III, QUESTION 15)
(IF "YES" TO QUESTION 9, ANSWER QUESTIONS 10-14)
10. Give the following information about your portable radios:
10.A. List ALL transmitting frequencies (in $\mathrm{KHz}, \mathrm{MHz}$, etc.) (Attach an additional sheet if necessary.)
(18-25)

10.B. List ALL receiving frequencies; if different from Question 1.A. (26-33)
(34-35) lo.C. Output power (in watts)
(36-37) 10.D. Number of Channels Authorized \qquad
(38-39) 10.E. Number of Channels in Use \qquad
11.A. How many portable radios do you now have in your department?
$(40-44)$ Number \qquad
ll. B. Of those portable radios, about how many were made by the following manufacturers?

NUMBER
\qquad

MANUFACTURER

Motorola

RCA
General Electric
Halicrafters
Other (Specify) \qquad
Other (Specify) \qquad
12. What model of portable radio do you have more of in your department than any other?
(70-71)
(72-80)
(10-13)
(14-19)
(20-24)
(25-27)

MANUFACTURER \qquad
MODEL OR MODEL NUMBER \qquad
12.A. When did you buy most of these "most used" portable radios?

Within the last calendar year
___ l-3 years ago
_4-5 years ago
\qquad More than 5 years ago
12.B. About how much did you pay for one of these "most used" portable radios (including antenna, carrying case, and spare batteries)?
\qquad Less than $\$ 500$
_
_ \$701-\$900
\qquad \$901-\$1100
\qquad \$1101-\$1500
\qquad Over $\$ 1500$
12.C. About how much does one of these "most used" portable radios weigh?
\qquad Less than 20 oz .
\qquad 20 oz . to 26 oz.
_ 27 oz . to 32 oz .
_ 33 oz . to 38 oz .
\qquad More than 38 oz .
12.D. How do you feel about the weight of the "most used" portable radios?
\qquad The weight is about right
\qquad The unit is somewhat heavy
\qquad The unit is entirely too heavy
13. A portable radio can be used with a repeater by a patrolman when he is out of, his car. The portable radio transmits to the car radio which then relays the signals to the base radio. Do you need repeaters like this in your communications system?
(28)

Why? \qquad
\qquad
\qquad
14. Some law enforcement agencies use portamobile radios with several receivers and a voting system. Do you favor such a system?
(IF "YES" OR "NO", WHY?

PART III: NEED FOR STANDARDS

15. Many policemen have indicated the need for standardization of communications equipment. Which of the following equipment and components would you like to see standardized? (MARK X BY EACH ITEM THAT APPLIES)
(30-38) \qquad Portable radios
\qquad Mobile radios
___ Batteries for portable radios
\qquad Control heads
\qquad Microphones
\qquad Switches on control heads
___ Mounting brackets
\qquad Cable between microphone and control head
\qquad Other (Specify)
\qquad Other (Specify)
16. What will your department gain by the standardization discussed above? (X EACH ITEM THAT APPLIES)
(39-47)
10\% lower cost of equipment
_ 25\% lower cost of equipment
_ 50% lower cost of equipment
___ Interchangeability of radios
_ Interchangeability of components
___ Savings in training of technicians
\qquad Savings in training of patrolmen
\qquad Interchangeability with other communications systems
\qquad Other (Specify)

PART IV: SCRAMBLERS

17. In some areas, police use "voice privacy" systems which scramble messages so that they cannot be received by people other than police. Do you HAVE a scrambler system of this type?
\qquad Yes
___ No (IF "NO") Do you NEED a scrambler system of this type?
\qquad Yes
\qquad No (IF "NO" SKIP TO QUESTION 21)
18. For which of the following purposes do you need, or would you use, a scrambler system? (MARK X BY EACH ITEM THAT APPLIES)
(50-55)
___ General communications
__ During robberies
\qquad Long-term stake out
___ Demonstrations or protests
_ Undercover investigations
\qquad Other (Specify) \qquad
\qquad Other (Specify)
\qquad Other (Specify)
19. How do you (would you) use your scramblers? (MARK X BY ONE OF THE FOILOWING)
(56-59) \qquad With car radios
\qquad With portable radios
\qquad With both car radios and portable radios
\qquad Only in special vehicles (Specify) \qquad
20. How much do you think your department would pay for a good, reliable scrambler system? (MARK X BY YOUR BEST ESTIMATE BELOW.)
\qquad Less than $\$ 250$ per unit
\$751-\$1000 per unit
\qquad \$251-\$500 per unit \qquad More than $\$ 1000$ per unit
\qquad $\$ 501-\$ 750$ per unit

PART V: HELMET COMMUNICATIONS

21. Helmets with built-in communications have been developed and are now on the market. Is there a need for such helmets in your department?
(65)
_Yes
_ No
Why? or Why not?
\qquad
\qquad
\qquad

PART VI: POWER SUPPLIES

22. Should standards for power supplies such as charging equipment, and batteries for portable radios be given? (CHOOSE ONE OF THE FOLLOWING)
(66-69)
_ High priority
___ Medium priority
___ Low priority
_ Standards are not needed for these items
23. What types of batteries do you now use for your portable radios? (MARK X BY EACH ITEM THAT APPLIES)
(70-75) \qquad Alkaline-Manganese
\qquad Carbon-Zinc
\qquad Mercury
\qquad NiCad (Nickel-cadmium)
\qquad Silver Oxide
\qquad Other (Specify)
24. What type of batteries do you prefer to use for your portable radios? (MARK X BY ONE OF THE FOLLOWING)
\qquad Alkaline-Manganese
\qquad Carbon-Zinc
\qquad Mercury
\qquad NiCad (Nickel-Cadmium)
\qquad Silver Oxide
\qquad Other (Specify)
25. Do you use batteries for your portable radios which must be recharged?
(16) \qquad Yes ___ (IF "NO" SKIP TO QUESTION 26, PART VII)
25.A. (IF "YES" TO Q. 25) How long can you use the battery before it must be recharged?
(17-19)
(20-21)
(22-23)
(24-25)

Hours
25.B. (IF "YES" TO Q. 25) How long does it usually take to recharge the battery to a point where it can be used again?
\qquad
25.C. (IF " YES" TO Q. 25) How long does it usually take to fully recharge the battery?
\qquad Hours
25.D. (IF "YES" TO Q. 25) How long can you usually use these batteries before they must be replaced?
\qquad Months
26. What are your most critical communications needs? (MARK X BY EACH ITEM THAT APPLIES)
(26-31) \qquad More frequencies and channels
___ New equipment
___ More reliable equipment
___ Personal transceivers for each officer
___ Portamobile voting system
___ Scramblers
__ Standardization of all equipment
___ Other (Specify) \qquad
_ Other (Specify)
27. What are your most serious problems with communications equipment?
(32-33)
28. What are your most common equipment failures, whether entire units or specific components?
29. Do you have any other general comments or observations about communications equipment that might be helpful to the people who will be studying and testing this equipment for police use?
\qquad

\qquad
\qquad

IDENTIFYING INFORMATION:
(All identifying information will be kept confidential)

Name of Department:
Address:

Name of person who answered this questionnaire:

Name

Title: \qquad Rank:

No. of years experience in law enforcement: \qquad
Telephone Number: \qquad

Others who helped: 1. \qquad

Title: \qquad Rank: \qquad
No. of years experience in law enforcement: \qquad
Telephone Number: \qquad
2. \qquad

Title: \qquad Rank: \qquad
No. of years experience in law enforcement: \qquad
Telephone Number: \qquad

APPENDIX B

DATA TABLES

B. 1 Advice to the Reader

(a) The data presented in the following tables resulted from the responses of a stratified random sample (see Section l.2) of police departments in response to a specific set of questions (see Appendix A). These data do not, in any way, reflect objective testing of any of the equipment by the National Bureau of Standards. The reader is cautioned to become familiar with the questionnaire and to evaluate the data in terms of the exact questions asked.
(b) Tables have been numbered after the question number (e.g., the tables for Question 6A. would be numbered 6A-1, 6A-2, etc.). The data are ususlly presented by number of respondents and nearest whole percentage. Because of the statistical limitations imposed by the sample sizes used in this study, the reader is cautioned to be wary of assigning importance to percentage differences of less than 5% when percentages are based on all respondents, and to percentage differences of less than 10% when percentages are based on one of the subsample groups, (e.g., a particular Department Type or Region). No statistical tests of significance are reported.
(c) These tables are based on the responding departments from the specific sample selected for this questionnaire. This sample was not proportional to the total population of police departments, and although it is possible to do so, the data in these tables have nct been weighted to allow direct extrapolation to the total population.
(d) In order to extrapolate to the total population from the respondent data presented in this report, use the fullowing procedure: For each Department Type, multiply the percentage of respondents of a particular Department Type giving the answer of interest (See B. 2 Data Type, Appendix B) by the total number of departments of that Department Type in the population (See Table 1.2-2, Section 1.2); add those seven subtotals; and divide the total by the total number of police departments in the population (Table 1.2-2). The quotient of this division will be an estimate of the percentage of all U.S. police departments that would choose the answer of interest.

B. 2 Data Tables

Table i-2

rotals

$$
\begin{aligned}
& \text { ONCOOONJOOONOOJOJONO ब }
\end{aligned}
$$

	\bigcirc	$\begin{aligned} & \underset{\sim}{n} \alpha \in m \\ & \exists M M O- \end{aligned}$	- 0	$\underset{\sim}{x}$				∞ 0 \bullet -	$\begin{aligned} & \underset{\sim}{7} \\ & \stackrel{y}{x} \\ & \underset{s}{\times} \end{aligned}$	

RESPONSE
FREQUENCY CATEGORY

TOTALS
$30-50 \quad \mathrm{MHZ}$
$150-174$
$450-170$
0 MHZ
0 MER

$$
\begin{gathered}
\text { ALL } \\
\text { DEPAQTMENT } \\
\text { TYPES }
\end{gathered}
$$

$$
\begin{array}{rr}
\text { NO. } & \text { * } \\
306 & 29 \\
662 & 49 \\
261 & 19 \\
14 & 1 \\
22 & 2 \\
1355 & 100 \\
& \\
428 &
\end{array}
$$

GIVE THE FOLLOWING INFORMATION ABOUT YOUF CAR HADIOS:
1.d. LIST ALL RECEIVIVG FREQUENCIES; IF DIFEERENT FROM OUESTION 1.A.

$$
\begin{aligned}
& \text { UEPARTMENT }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { CIIY } \\
\text { (1-9 } \\
\text { OFFICERS) } \\
\text { NO. } \% \\
5176
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { DEPARTMENTS WITH SAME } \\
\text { TRANS. AND REC. FREQS. }
\end{array}
\end{aligned}
$$

RESPONSE

AVERAGE WATTAGE

WATTAGE RANGE

NUMBER OF RESPONDENTS RESPONSE

$\underset{\sim}{a} \quad * \quad m m$

$$
\lambda
$$

$$
\hat{c} \hat{c}
$$

GIVE THE FOLLOWING InFORMATION ABOUT YOUR CAR RADIOS: 1.O. NUMBER OF CHANNELS AJTHORIZEN

$$
\hat{f}
$$

NUMBER OF RESPONDENTS
NUMBER OF RESPONDENTS
RESPONSE

CHANNELS AUTHORIZED
CHANNELS IN USE
range
CHANIJELS AUTHORIZE:
CHANNELS IN USE

$$
\text { Table } 2 A-1
$$

Z. Ao MOU MANY CAR RAUIOS ARE THERF IA YOUR JEPARTMENT?

$$
\begin{aligned}
& \text { E.A. HOU MANY CAR RAOIOS ARE THERF IA YOUR JEPARTMEVT? } \\
& \text { RESPOVSE } \\
& \begin{array}{l}
\text { ALL } \\
\text { OEPARTMENT } \\
\text { TYPES }
\end{array} \\
& \text { STATE }
\end{aligned}
$$

C.B. UF THOSE CAF RAJIOS. AZOUT HCW MANY NERE MADE BY EACH OF THE FOLLUWIIVG MANUFACTURERS?
JEPARTMENT TYPE

ti	${ }^{*}$	$\text { oon } \mathrm{moc}$
$\stackrel{\sim}{¢}$		$\operatorname{on}_{n} \mathrm{O}_{\mathrm{m}} \pm 0$
\sim	$\stackrel{\square}{\square}$	

 $\begin{array}{cc}67813100 \\ 428 & \end{array}$

3. HOW RECENTLY :ERE MOST OF THE CAR RADIOS ROUGHT BY YOUD JEDMRTMENT?

RESPONSE	UEPARTMENT TYPE															
	$\begin{gathered} \text { ALL } \\ \text { DEPARTMENT } \\ \text { TYPES } \end{gathered}$		State		COIINTY		C1TY $11-9$ OFFICERS)		$\begin{gathered} \text { CITY } \\ (10-49 \\ \text { OFFICE.125) } \end{gathered}$		こTTY (50 OR MORE OFFICEPS)		FIFTYLARGESTCITIES		TOWNSHIP	
	No.	*	งo.	*	No.	\%	No.	\%	No.	\%	NO.	*	NO.	χ	NO.	*
mithiv the last year	64	15	3	6	\bigcirc	13	\bigcirc		10	19	20	25	3	7	5	
1 - 3 YEARS AGO	139	32	19	40	19	27	31	38	32		14	17	19		5	
4 - 5 YEARS AGO	78	18	10	21	16	23	11		8	9	10	20	9	20	8	
OVER 5 YEARS AGO	146	34	15	32	24	34	30		30	35	2 B	35	14		5	
NO ANSWER	7	?	0	0	$?$	3	c	2	0	0	2	2	1	2	0	
totals	434	101	47	99	70	100	OC	100	86	100	80	99	45	100	23	101
SUMBER OF RESPONDENTS	428		47		69		70		80		79		46		23	

B.A. WHAT IS THE TOTAL AREA RITHIY YOUR JURISOICTION WHICH WIST BE CUVENEL ÓY A COMMJ:IICATION SYSTEM? (IN SOUARE VILES) 7501.27 AVERAGE AREA II SG. MILES
RANGE OF AREA IN SQ. MILES
MINIMUY
MAXIMUM
書

RESPONSE

AVERAGE AREA II SO. MILES

$$
\begin{gathered}
\text { ALL } \\
\text { DEPARTMENT } \\
\text { IYPES } \\
\text { AVERAGE }
\end{gathered}
$$

$$
7501.27
$$

$$
\begin{aligned}
& \text { STATE } \\
& \text { AVERAGE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AVERAGE } \\
& 62704.25
\end{aligned}
$$

$$
\begin{array}{rr}
\text { OVERALL } & \text { SO. MI } \\
& \\
1 & 1497 \\
263449 & 263449
\end{array}
$$

COUATY
AVERAGE

$$
1582.33
$$

$$
\begin{gathered}
\text { So. wI. } \\
10300
\end{gathered}
$$

$$
\begin{array}{ll}
\text { JLPARTMENT IYPE } \\
\text { CITY } & \text { CITY }
\end{array}
$$

$$
\begin{array}{ll}
\text { OFFICERS } & \text { OFFICEMS }
\end{array}
$$

AVERAGE AVERAGE

$$
1200 \quad 2000
$$

$$
\begin{aligned}
& (50 \text { OR MORE } \\
& \text { OFFICERS) }
\end{aligned}
$$

AVFRAGE

$$
2
$$

$$
33.47
$$

$$
310^{2}
$$

FIFTY
LARTIEST CITIES
5.3. IF POSSİLE. PLEASE TELL US HOW MAVY JIFFERENT LAN ENFORCEMENT CHANTVELS SERWE THIS AHEEA.

$$
\begin{aligned}
& \text { DEPARTMENTT TYPE }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{x}{4} \\
& \text { 춫 } \\
& \begin{array}{l}
\text { ALL } \\
\text { OEPAOTMENT } \\
\text { TYPES } \\
\text { AVFRAGE } \\
11.55 \\
132
\end{array}
\end{aligned}
$$

Table 5 B-1 (1)

Table 7 A-2
7. . D DO YOU USE FIXEJ REPEATERS IN YOUR ADEA (TO COVER DEAD SPOTS IN CUMAUNICATION THAT NOULD OTHERNISE FXIST)?

$$
\times \quad m \text { nn }
$$

$$
\dot{B} \quad \rightarrow \curvearrowleft \sim \quad m
$$

$$
\begin{gathered}
\circ \sigma \pi \\
\therefore \quad \circ \\
\text { on } \\
0
\end{gathered}
$$

$$
\dot{0}
$$

$$
\begin{array}{r}
\text { onm orr } \\
\text { * O- } \\
\text { - } \\
\text { O } \\
z
\end{array}
$$

RESPOWSE
NESPOVSE
$A: .5 』 E R$
? totals

 Table 7 B-I
8. IF YOU USE, OR WILL BE USING FIXED RFPEATERS, WHICH OF THE FOLLCWING TYFES DO YJU PRFFER?
TYPE

$$
\underset{\mp}{\sim}
$$

$$
{ }^{10}
$$

UEPARTMENT

$\stackrel{c}{c}$
$\underset{\sim}{\sim}$
$\underset{\sim}{s}$

RESPOUSE
ULDAFTMEVT
$=1815$
Table $10 \mathrm{~B}-1$

UEPARTMENI
CITY
(I-9
JFFICERS)

STATE

NO.	*
3	$3\}$
1	12
4	50
0	0
0	0
8	90
4	

$$
\begin{aligned}
& 0 \\
& 0 \\
& \underset{\sim}{2} \\
& \underset{\sim}{3}
\end{aligned}
$$

RESPO:ASE

OEPGITMENT

$$
\begin{array}{ll}
001 & \pi 12 \\
6 & 61 \\
1 & \vdots \\
\pi 5 & 011 \\
\pi \varepsilon & 2 L \\
2 & 5 \\
x & \cdot c i r
\end{array}
$$

ARE THE SAME.
 DEPARTMENTS WITH SAME
TRANS. ANU REC. FREQS.
Table $10 \mathrm{C}-1$
(PORTABLE RADIOS)
10.C. OUTPUT POWER (IN WATTS)
10.C. OUTMUT POWER (I.N WATTS
RESPONSE

 ALL
DEPARTMENT
TYPES
AVEHAGE
3.87
OVERALL
18
\geq
$\stackrel{\leftarrow}{\approx}$
ô
?
c

309

NUMBER OF RESPINDENTS

Table 10 DTI IF VES TU DUESTIU.J 9. GIVE IHE FOLLOWING INFORMATION AZOUT YMUR OORTAULE RADIUS: 1U.D. NUMHER JF CHAN:NELS AJTHORIZET 10.E. NUUMGUER
TaisIe I(1) $\mathbb{E}-\mathbb{I}$

Table $1(\mathbb{E}$ -
NESPOUSE

ALL
DEPARTMENT
TYPES
NO.
1174
1012

347
0
\vec{m}
$\stackrel{N}{J}$

NUMBER OF RESPONDENTS
NUMBETR OF RESPONDENTS
RESPOVSE
CHANNELSS MUTHUHIZED
CHANNELS IEN USE
CHANMELS AUTHOHIZED
CHANNELS IN HSE
RANGE
CHANNIELS AUTHONIZE:
CHANMELS INA USE

$$
\text { Table } 11 \mathrm{~A}-1
$$

11. A. HOW MANY PORTAOLE RADIOS DO YOU NOW HAVE IN YOJR DEPARTMENT?


```
                            \(\sum_{\sum_{0}^{L}}^{\sim}\)0
-
-1
```

$\stackrel{\star}{2}$

$$
\frac{\stackrel{4}{6}}{\stackrel{a}{6}}
$$

12．WHAT MODEL OF PORTABLE RADIO DO YOU HAVE MORE OF IM YOUR GEPARTMENT THAIV ANY UTHER？

TOWHSHIP	
NO．	＊
4	25
2	12
5	31
0	0
0	0
0	0
0	D
0	0
u	0
0	0
，	0
0	0
0	0
0	0
0	9
0	0
\bigcirc	10
1	6
0	0
0	0
－	0
1	¢
－	0
0	0
0	0
0	0
1	5

FIFGEST
CITIES

○へきに

YPPE
CITY
10－49
 $\stackrel{\text { 을 }}{2}$
r
UEPAKTMEN

\＆NMNNOOONNNONONOOONOOOOCNONOR
county

©
○OJONONHOOONONCNOTOOOONOONOO
$+$

MN～OーOHNOOO－OHOHONJOOOHOONOJ I

Table 12－2
 Table 12 B-1

STATE		COUNTY	
NO.	*	No.	*
	12	6	
	42	26	60
	29	7	
	17	?	
	0	$?$	5
48	100	43	100
47		43	

$\begin{aligned} & \text { ALL } \\ & \text { PARTMENT } \\ & \text { TYPES } \end{aligned}$	
NO.	8
59	17
176	50
50	23
36	10
	1
353	
348	

12．C．ABOUT HOW UUCH JOES ONE OF THESE MOST USED PORTABLE RADIOS WEIOH？

RESPO：VSE	UEPARTMENT TYPE															
	$\begin{gathered} \text { ALL } \\ \text { DEPARTVENT } \\ \text { TYPES } \end{gathered}$		STATE		COUNTY		$\begin{gathered} C 1 r Y \\ (1-9 \\ \text { OFFICEHS) } \end{gathered}$		$\begin{gathered} \text { CITY } \\ \text { (10-49 } \\ \text { OFFICERS) } \end{gathered}$		$\begin{array}{r} \text { CIT } \\ 150 \text { OR } \\ \text { OFFIC } \end{array}$		FIFTY LARGEST CITIES		TOW：SHIP	
	NO．	\％	NO．	＊	NO	\％	NO．	\％	is 0.	＊	NiO．	\％	NO．	＊	NU．	\％
LESS THAN 20 UL。	17	5	0	0	1	2	3	7	4	5	6	8	？	4	1	5
20 OZ．TO 26 OL．	c1	25	9	19	10	23	13	32	25	32	20	26	9	20	5	31
27 OZ．TO 32 OZ．	89	25	12	25	12	27	8	20	15	19	23	29	12	26	7	44
33 OZ．TO 38 OZ．	71	20	14	30	4	9	7	17	15	19	16	21	12	26	3	
MORE THAN 33 OZ．	75	21	12	26	15	34	9	22	16	21	13	17	10	22	0	
NO ANSUER	7	2	0	0	2	5	1	2	3	4	0	0	1	$?$	0	0
TOTALS	350	99	47	101	44	100		100	78	100	78	101	40	100	16	100
NUMBER OF RESPONDENTS	348		47		43		41		77		78		4n		10	

12．D．HOW DO YOU FEEL AЭJUT THE WEIGHT OF THE MOST USET DORTAQLE RADIOS？

TYPE
CITY
IIO－49
OFFICERS
NO．
40
27
27
10
0
0 UEPARTMEN

＊जिञの 气
 ALL
SEPAPTMENT
TYPES
NO．$\%$
165
133
49
48
1
348
348
348

RESPONSE
WEIGHT IS RIGHIT ENTIRELY TOO HEAVY NO A＇JSWER TOTALS

NUMBER OF RESPONJEVTS
COUPRRRISOW BEEAEE：WEIGHT OF VOST IJSED PORTABLE RADIOS AND THE RESDONJENTS FEELING ABOUT TIAT WEIGHT．

12．C．We ight uf portable rajius
HORE THAN

$$
\begin{gathered}
33 \\
38 \\
38 \\
\\
27
\end{gathered}
$$

38

$$
\begin{aligned}
& 2702 .- \\
& 320<
\end{aligned}
$$

$$
\begin{array}{lll}
\dot{j} \dot{j} & 0 \\
\hline 0 & 1
\end{array}
$$

$$
\begin{array}{cc}
\bullet z 0 & 02 \\
\text { N甘H1 } & \text { SSシר ר }
\end{array}
$$

HESPONSE

12．D．HON DO YOU FEEL
AJOUT THEIR WEIGHI？
WEIGHT IS RIGHT SOVEWHAT HEAVY
EVITYELY TOD MIEAVY
NO ANSNER NO ANSNER

$$
\begin{aligned}
& 2002 .- \\
& 2607 .
\end{aligned}
$$

Table $13-1$
I3．A PORTABLE RADIO CAN BE USED WITH A REPEATER GY A PATROLMAN WHEN HE IS OUT OF HIS CAR．THE PORTAELE RADIO TKANSUITS TO
THE CAHR RADIO WHICH THEN RELAYS THE SIGNALS TO THE BASE RADIO．DO YOU NELU REPEATERS LIKE THIS IN YOUR COMMUNICATIONS SYSTEM？

69	1 T
18	S
$(1$	0
＊	－ON
	SNMOL

0
0
-1
-

$$
\begin{aligned}
& \text { ALL } \\
& \text { DEPAPTMENT } \\
& \text { TYPES } \\
& \text { NO. } \\
& \text { * } \\
& 4 \\
& 150 \\
& 174 \\
& \hline
\end{aligned}
$$

Table 13-2
13. A PORTABLE RADIO CAV ZE JSED WITH A KEDEATER TY A PATROLMAV WHEN HE IS JUT OF HIS CAR. THE PORTAILE RAJIO T-ZANSUITS TO THE CAR RADIO WHICH THEN RELAYS THE SIGNALS TO THE BASE RADIO. DO YOU NEE REPEATERS LIKE THIS IN YOUR COMMUNICATIONS SYSTEM?

$$
\begin{aligned}
& \text { DEPARTMENT } \\
& \text { CITY }
\end{aligned}
$$

CURRENT EQUIPMENT ADEQUATE
-NOT NEEDED
AREA NOT LARGE ENOUGH TO
WARRANT USE
USE OR PREFER OTHER SYSTEM
-VOTERS, SATELLITES. ETC
HAVE NO HAND AND/OR CAR
RADIOS
NO ADVANTAGE FOR HIGHWAY
PATROL
OTHER
NO ANSWER
TOTALS
NUMBER OF RESPUNOEVTS

$$
\begin{array}{lllllllllll}
a & e & 0 & 0 & 0 & = & c & 0 & c & c & \\
& \cdots & & 0 & 0 & c & 0 & 0 & 0 & 0 & 0
\end{array} 0
$$

-n31515

response

I5．WANY POLICEMLN HAVE INDICATED THE NEED FOR STANOARJIZATIOY OF CO．MMUNICATIONS EQUIPAENT．
WHICH OF THE FOLLOWING EOUIPMENT AND COMPONENTS WOULD YOU LIKE TO SEE STANLARDIZEU？

\therefore	＊		\cdots	
$\begin{aligned} & I \\ & \frac{I}{\pi} \\ & \vdots \\ & 0 \end{aligned}$	$\stackrel{\circ}{7}$	$\stackrel{\circ}{\sim} \pm \infty 0.0 \infty \infty \rightarrow 0$	$\begin{aligned} & \sigma \\ & c \end{aligned}$	$\stackrel{\sim}{\sim}$

 $\therefore \quad O N$
$3 \perp \forall \perp S$

$$
\begin{gathered}
\text { ALL } \\
\text { DEPARTMENT } \\
\text { TYPES }
\end{gathered}
$$

 06\＆2L9！

$$
\text { * } \cdot \mathrm{CN}
$$

Table 16
RESPONSE
PORTABLE RAJIOS
MOBILE RAUIOS
MICROP
SWIITCHES ON HEADS
MOUNTIING BRACKETS
C甘 3 H CNH 3 YIw－RIM IE BTEWD
INO ANSWER
TOTALS
TUWHER OF RESPONJENTS

DEPARTMENT

$\underset{\substack{\text { m } \\ \\ \hline}}{ }$

$\stackrel{1}{\square}$	＊	Cry ncturano		
$\begin{aligned} & \pi \\ & n \\ & \vdots \\ & 0 \\ & 1 \end{aligned}$	8	つッーココロロッn=		

$$
\begin{aligned}
& \stackrel{a}{a}
\end{aligned}
$$

STATE
10．＊

$\underset{\sim}{\underset{u}{u}} \backsim$	A	ゅMMNNMががッ 6 にNさって	N
－${ }_{5}$			
			\sim
く	은	～～～N	\exists
山			

Table 17
17. IV SOME AREAS, PULICE USE VOICE PRIVACY SYSTEYS WHICH SCRAMRLE MESSAGLS SO THAT THEY CANi,UT BE RECEIVEO BY PEOPLE OTHER THAN POLICE. DO YOU HAVE A SCRAMBLER SYSTEM OF THIS TYPE?

RESPONSE	ULPARTMENT TYPE															
	$\begin{aligned} & \text { ALL } \\ & \text { OEPARTMENT } \\ & \text { TYPES } \end{aligned}$		StATE		COUNTY		$\begin{gathered} \text { CDYY } \\ \text { (1-9 } \\ \text { OFFICERS) } \end{gathered}$		$\begin{gathered} \text { CITY } \\ \text { (10-49 } \\ \text { OFFICERS) } \end{gathered}$		$\begin{aligned} & \text { CITY } \\ & \text { (50 OK YORE } \\ & \text { OFFICERS) } \end{aligned}$		$\begin{gathered} \text { FIFTY } \\ \text { LARGEST } \\ \text { CITIES } \end{gathered}$		TOMiNshir	
	No.	*	10.	*	No.	k	NO.	*	ivo.	*	NJ.	*	NO.	*	No.	\%
NO AISSNER	0	0	0		0		\cup	0	7	0	0	0	9	0	0	
YES		9	6	13	2		4	5	7	8	14		5		2	
NO	388	91	41		67	97	74		79	92	65	82	41		21	
TOTALS	428	100	47	100	69	100	76	100	86	100	79	100	$4 n$	100	23	100
(IF NO) do you need a Sçavbler systev of this type?																
RESPO:JSE							UEPARTMENT TYPE									
	$\begin{aligned} & \text { ALL } \\ & \text { OEPARTMENT } \\ & \text { TYPES } \end{aligned}$		STATE		COUNTY		$\begin{gathered} \text { CITY } \\ \text { (1-9 } \\ \text { OFFICERS) } \end{gathered}$		$\begin{gathered} \text { CITY } \\ \text { (10-49 } \\ \text { OFFICERS) } \end{gathered}$		$\begin{aligned} & \text { CITY } \\ & \text { (50 OR NORE } \\ & \text { OFFICEMS) } \end{aligned}$		$\begin{aligned} & \text { FIFTY } \\ & \text { LARGEST } \\ & \text { CITIES } \end{aligned}$		TOWVSHIP	
	iso.	\%	NO.	*	vo.	*	ino.	*	iso.	-	NJ.	*	vo.	*	NO.	*
VO AISSWER		4	2	5	?		\angle	3	3	4	3	5			0	
YES	225	58	18	44	41	61	34		56		42	65	2?		12	
NO	147	38		51			38		20		20	31			9	
TOTALS	388	100		100		100	74	100	79	100	65	100	41	100	21	100

IF YES IN NUESTION 17
18. FOR WHICH OF THE
18. FOR WHICH OF THE FOLLOWING PJRPOSES OO YOU NEED. QR NOULT YOU U'JE. A SCRAMBLER SYSTEV?
UEPARTMENT TYFE

$$
\begin{array}{ll}
\stackrel{m}{\sigma} \\
\sim \\
\sim & \\
\stackrel{\infty}{N} & \stackrel{\sim}{c} \\
\stackrel{N}{\sim} &
\end{array}
$$

FUNCTIONS FOR WHICH DEPARTMENTS WHICH HAVE SCRAMBLER SYSTEMS USE THEM

$$
\begin{aligned}
& \text { All Dept. }
\end{aligned}
$$

$\begin{aligned} & \text { City } \\ & \text { (50 }\end{aligned}$

functions for which departments which do not have but need scramblers would use then

 Genl. Communications
Robberies
Long-Terin Stake Out
Demonstrations
Undercover Investigations
Other
No Answer
Totals
Number of Respondents
Table 19
IF YES IN QUESTION 17 (ALL DEPARTMENTS WHICH DID NOT HAVE SCRAMBLERS BUT SAID THEY NEEDED SCRAMBLERS.)
19. HO\# (wOULD YOU) USE YOUR SCRAMBLERS?
RESPONSE ALL
DEPARTMENT
TYPES
10 . \%

$\begin{array}{rr}34 & 3 \\ 171 & 76\end{array}$

$$
\begin{aligned}
& \neq \\
& \dot{0}
\end{aligned}
$$

state

Tod 1NJW1ヶ甘d?n

IF YES IR QUESTION 17 (All Departments Which Had Scramblers.)
19. HO H DO YOU USE YOUR SCRAMBLERS? $229 \quad 102$

 -

21. HELMETS MITH JUILT-IV COVVUNICATIONS HAVE GEEN JEVFLODEN AND ARE NON UN THE MARKET.
IS THERE A NEO FOR SUCH HELMETS I YOUR DEPARTMENT?
IF YES. WHY?

RESPONSE

$$
\begin{aligned}
& \text { 21. HELMETS WITH BUILT-I'A COMPUNICATIONS HAVE BEEN DEVFLOPED AND ARE NOW ON THE MARKET. } \\
& \text { IS THERE A NEED FOR SUCH HELMETS IN YOUR DEPARTMENT? }
\end{aligned}
$$

RESPOVSE

RAJIOS GE GIVEN?

FIFTY
LARGEST
CITIES
NO.
0
0
0 0
RAJIOS BE GIVENO
BE GIVEN?

$$
\begin{array}{cc}
\begin{array}{c}
\text { ALL } \\
\text { DEPARTMENT } \\
\text { TYPES }
\end{array} \\
\text { NO. } & * \\
17 & 22 \\
26 & 33 \\
7 & 9 \\
15 & 19 \\
15 & 19 \\
78 & 100
\end{array}
$$

$$
\text { *. } \begin{aligned}
& \sigma+ \pm \infty<\infty \infty \\
& \sigma
\end{aligned}
$$

$$
1 F \text { YES TO } 9:
$$

1F YES TO 9:
23. WHAT TYPES OF BATTERIES 30 YOU NOW IJSE FOR YOUR PORTABLE RADIOS?

Table 24

RESPONSE
ALKALINE-MANGANESE.
CARBOIN-ZIINC
MERCURY
NICAD (NICKEL-CADMIUM) SILVER OXIDE NO ANSWER

TOTALS
NUMBER OF RESPONDENTS

[^9]
Table 25
25. JJ YOU USE GAPTERIES FOR YOUR PORTABLE RADIOS WHICH MUST RE RECHARGED?
It YES TO 9:
25. JU YOU

RESPONSE

Table 25 A

department type

$\stackrel{\infty}{\dot{j}}$

25.A. how Long can you use the battery before it must ge recharged?

$\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\sim}+a=0$筑
$\underset{\dot{x}}{\stackrel{\circ}{i}} \sim \infty \quad \infty \quad-$
$\begin{aligned} & a \\ & \\ & \\ & 0 \\ & 0 \\ & 0\end{aligned}$
$\stackrel{m}{\dot{x}} \curvearrowleft$
Table 25 B
IF YES TO 9:
25. B. HOW LON

RESPONSE

HOURS
Table 25 C
25.C. HOW LONG DOES IT USUALLY TAKE TO FULLY RECHARGE THE BATTERY?

ALL
DEPARTMENT
TYPES
COUNTY
state

$\underset{\dot{0}}{\underset{\sim}{\circ}} \stackrel{\propto}{\rightrightarrows} \rightarrow \underset{\sim}{\sim}$
HYDE
CITY
(10-49
OFFICERS

$\stackrel{\sim}{\sim}$ ~
$-$
FIFTY
CREST
$\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\sim} \rightarrow-$
 $\underset{i}{\sim} \stackrel{\sim}{\sim} \sim \infty \quad 0 \quad-$

CIT Y
(50 OR MORE
OFFICERS)

TYPE
CITY
$(10-4.9$
$\underset{\sim}{\hat{N}} \underset{\sim}{\sim} \rightarrow x \rightarrow 0$

COUNTY
$\begin{array}{rr}7.59 & 3.97 \\ 24 & 24 \\ 1 & 1 \\ R & * * * \\ 0 & 4 \\ 10 & 9\end{array}$

10
-

$$
\begin{array}{r}
5.63 \\
24 \\
1 \\
8 \\
10 \\
43
\end{array}
$$

ALL
DEPARTMENT
TYPES

RESPONSE HOURS
MEAN
MAXIMUM
MINI MUM
MODE
DUNT MISO
NO A ABNER

 2
\vdots
各
0

3コロาd7ネ 2103033 N H3＾3N

Table $26-1$
26．WHAT ARE YOUR MOST CRITICAL COMMUNICATIONS NEEOS？

$$
\sum_{\dot{\Phi}}^{\Sigma}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { ALL } \\
\text { dEPARTMENT } \\
\text { TYPES }
\end{array} \\
& \text { NO. * }
\end{aligned}
$$

NUMBER OF RESPONOEIITS
COMPARISON GETAEEN INADERJACY OF EGUIPMENT (DOWER: RANGE) PROBLEM AND NEED MOUILE REPEATERS ANOIOR FAVOR VOTING SYSTEY.
Table 28-1 LG. WHAT ARE YOUR YOST COMYO:N EQUIPMENT FAILURES, WHETHER ENTIRE UNITS OR SPGCIFIC COMPONENTS?
RESPONSE RESPONSE

$$
\begin{aligned}
& \text { Q } \\
& \text { In } \\
& n \\
& \vdots \\
& \vdots \\
& \hline
\end{aligned}
$$

者

THOSE WHO INDICATED UNAUTHORIZED YONITORING AS ONE OF THE MOST SERIOUS PROBLEMS WITH COMMUNICATIONS EQUIPMENT （OUESTION 27）COMPAREJ WITH THOSE WHO EXPRESSEJ VEEOING OR NOT NEEDING A SCRAMBLER SYSTEM（QUESTIOV 17）．							
RESPO USE	DLPARTMENT TYPE						
	$\begin{gathered} \text { ALL } \\ \text { DEPARTMFVT } \\ \text { TYPES } \end{gathered}$	STATE	COUNTY	$\begin{gathered} \text { CITY } \\ \text { (II-9 } \\ \text { OFFICERS) } \end{gathered}$	$\begin{gathered} \text { CITY } \\ \text { (10-49 } \\ \text { OFFICERS) } \end{gathered}$	（5I）OR NORE． OFFICERS）	$\begin{gathered} \text { FIFTY } \\ \text { LARGEST } \\ \text { CITIES } \end{gathered}$
		0	3	2	4	6	0
NEED SCRAMBLER SYSTE DONT NEED SCRAMBLER SYSTEM	1	0	0	1	0		
tutals	17	0	3	3	4	6	0

[^0]: Prepared for
 National Institute of Law Enforcement and Criminal Justice (NILECJ) Law Enforcement Assistance Administration (LEAA)
 Department of Justice
 Washington, D. C. 20530

[^1]: * LEAA POLICE EQUIPMENT SURVEY OF l972, Volume I: The Need for Standards -- Priorities for Police Equipment.

[^2]: * LeAA POLICE EQUIPMENT SURVEy OF 1972, Vol. I, op. cit.

[^3]: * These two questionnaires were sent to different but equivalent subsamples, except for States and the Fifty Largest Cities which always filled in both.

[^4]: * Note, that if one wishes, it is possible to determine the number of departments using simplex and duplex systems by calculating the number of different transmitting and receiving frequencies (from Q. lA and Q. $1 B$) and the number ur channels (Q. lD).

[^5]: *Data about. purchase of equipment was provided as of Summer, 1972 .

[^6]: * Less Than 1\%
 **Mean probably not valid; number of respondents too small.

[^7]: *Percentages add to more than 100% since multiple answers were allowed.

[^8]: *Percentages add to more than 100% since multiple answers were allowed.

[^9]: RESPONSE

