NBSIR 73-180

Testing of the NBS Clinical Microcalorimeter

Alllo6 449244

NIST PUBLICATIONS

REFERENCE

E. J. Prosen and R. N. Goldberg

Thermochemistry Section Physical Chemistry Division Institute for Materials Research National Bureau of Standards Washington, D. C. 20234

April 1973

Interim Report

X

ared for nal Institute of General Medical Sciences nal Institutes of Health ssda, Maryland 20014

NBSIR 73-180

TESTING OF THE NBS CLINICAL MICROCALORIMETER

E. J. Prosen and R. N. Goldberg

Thermochemistry Section Physical Chemistry Division Institute for Materials Research National Bureau of Standards Washington, D. C. 20234

April 1973

Interim Report

This report is to be superseded by a future publication which will receive general distribution and should be cited as a reference. Please consult the NBS Office of Technical Information and Publications to obtain the proper citation.

Prepared for National Institute of General Medical Sciences National Institutes of Health Bethesda, Maryland 20014

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Foreword

The use of clinical laboratory tests of physiological fluids for specific components has been rapidly increasing in the past few years. One aspect of this has been an increase in the number of tests for well-known particular substances for which satisfactory tests are available. Another equally important aspect is the increasing need of the physician and of the research biochemist for ready methods for determining other substances present in varying amounts in normal and pathological states. For this reason, the development of new techniques applicable to problems for which optimum solutions have not been found are of considerable interest in clinical and biological chemistry.

The universal occurrence of energy changes in chemical and physiological processes has caused the calorimeter to be considered as a potential tool for clinical chemical analysis and for observing biological processes for some years. The actual applicability, however, has been limited previously by lack or insufficiency of one or more necessary factors. Such factors include: instrument sensitivity and operational noise levels, instruments adapted to use of small samples, simplicity of instrumental operation and data reduction, and suitable mechanisms for sorting out specific processes from a melange of potential interferences. It was the judgment of the authors and of the National Institute of General Medical Sciences (NIGMS) that the understanding of these factors had developed to a point where a well coordinated attack on the application of microcalorimetry would now lead to successful results.

A program was established in the Thermochemistry Section (Physical Chemistry Division, Institute of Materials Research) at the National Bureau of Standards, and after some months was augmented with support from the NIGMS to demonstrate the feasibility of microcalorimetry in some specific areas useful in the Clinical Chemistry Laboratory. Dr. Robert S. Melville is the program officer for NIGMS. Collaborative support has been provided by the Clinical Chemistry Service (Dr. Donald Young, Chief), and by the Laboratory for Technical Development (Dr. Robert L. Bowman, Chief, and Dr. Robert L. Berger).

This is a report provided at the end of the first year of the NIGMS support of this work and summarizes a portion of the ,

work done. This report is one of four covering different aspects of the NBS Program. For the information of the reader, the titles and NBS Report numbers of the four reports are as follows:

- NBS Report 73-178 Microcalorimetric Assay for Glucose in Human Serum and Plasma
 - 73-179 Design and Construction of the NBS Clinical Microcalorimeter
 - 73-180 Testing of the NBS Clinical Microcalorimeter
 - 73-181 Fine Structure in Thermal Growth Patterns of Bacteria by Microcalorimetry

Gurge J. Constion 2

George T. Armstrong Principal Investigator

Edward J. Prosen

Edward J. Prosen Project Leader

Testing of the NBS Clinical Microalorimeter

by

E. J. Prosen and R. N. Goldberg

ABSTRACT

The NBS Clinical Microcalorimeter has been tested for stability, sensitivity, ease of operation, and accuracy. The accuracy was tested by means of electrical calibration and the determination of the heat of neutralization of HCl(aq) with NaOH(aq). The heat of this reaction agrees with the best literature value within the precision of the calorimeter. The precision is about 0.6 percent when measuring about 50 mJ of heat of chemical reaction. The accuracy is estimated as 1 percent. The precision of electrical energy determination is about 0.4 percent for energies of from 1 to 1400 mJ.

Table of Contents

1.	Introduction	•
2.	Measurement of Thermopile Voltage	2
3.	Calculation of Areas	4
4.	Temperature of the Calorimeter	6
5.	Time Constant and Speed of Operation of Calorimeter	7
6.	Quality of Baseline	8
7.	Electrical Calibrations	9
8.	Procedures Used in Calorimetric Experiments	11
9.	Blank Heat Effects	14
10.	Acid-Base Test Reaction	15
11.	Ease and Reliability of Operation	18
12.	References	19
13.	Acknowledgements	21
	Tables	
	 Results of Electrical Calibrations (Series I) Temperature is 29.85°C	22
	2. Results of Electrical Calibrations (Series II) Temperature is 30.80°C	23 23
	3. Blank Heats of Mixing	24
	4. Results of Acid-Base Calorimetric Experiments	26

Page

1. Introduction

This report describes tests of the performance of the NBS Clinical Microcalorimeter. This calorimeter was designed and constructed [1] in order to be able to perform microcalorimetric measurements as part of a program, sponsored by the National Institutes of Health, investigating the applicability of microcalorimetry to clinical chemistry and to biochemistry.

The reader is referred to several books and articles [2, 3, 4] to obtain further background on the subject of microcalorimetry.

2. Measurement of Thermopile Voltage

The thermopile voltage of the NBS Clinical Microcalorimeter was amplified using a linear D.C. amplifier¹ (Keithley Model 140), the gain setting of which was generally set at 10⁵ and only rarely set at 10⁴. The rise time of the amplifier was set at 5 seconds and it was not found necessary to use either the amplifier's zero suppression or input filter. Electrical ground for the thermopile signal was established at the input to the amplifier.

Calibration of the amplifier was periodically performed in the following manner: a stable current from a D.C. power supply (Sorensen Model QHS 40-.5) was passed thru four standard resistors $(1-\Omega, 10-\Omega,$ $100-\Omega$, and $10-k \Omega$) in series with each other. The input voltage to the amplifier was then selected to be across one of the lower valued resistors. By measuring the voltage across both the entire voltage divider network and the amplifier's output terminal and by application of a small correction for the amplifier zero, the gain of the amplifier was calculated. The amplifier's gain, as measured in this manner, was found to be within 0.02% of its nominal value on the 10^5 scale and stable to within $\pm 0.006\%$ over a period of one year.

¹Certain commercial products and instruments are identified in this paper in order to specify adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the products or equipment identified are necessarily the best available for the purpose.

The amplifier output was recorded both in analog and in digital form. The purpose of the analog record (obtained either with a Leeds and Northrup Speedomax XL-600 or Varian F80 recorder) was to give the calorimeter operator a visual picture of the course of an experiment, while the digital record was used to obtain all numerical results. The analog to digital conversion was accomplished using an autoranging digital voltmeter (Hewlett-Packard Model 3450A, $\pm 1 \mu v$ or $\pm 10 \mu v$ sensitivity, depending on range). The stability and accuracy of this voltmeter were checked periodically against saturated standard cells calibrated by the National Bureau of Standards. Using this procedure, the accuracy of the digital voltmeter was found to be within 0.0025% at a reading of 1.018 v, and to have a stability of ±0.001% over a period of one year. During an experiment, a digital clock, having the line frequency as its time base, sent 'read' commands to the digital voltmeter every 3 seconds. The time and voltage information was then processed thru a digital coupler (Hewlett-Packard 2547A) and recorded in typewritten form and on punched paper tape.

.

3. Calculation of Areas

In a properly designed heat conduction calorimeter, the thermopile voltage is a measure of the rate of heat transfer between calorimeter vessel and heat sink. A calorimetric experiments thus consists of measuring the thermopile voltage as a function of time continuously (or at 3 second intervals). These readings may be divided into three periods: a fore period, a main period, and an after period. During the fore period, no process heat is being liberated in the reaction vessel. Ideally, the mean of the measured voltages would be zero volts and flucuations about the mean would be due only to Johnson noise. The main period begins with the initiation of the reaction or electrical heating and the accompanying heat effect, which is detectable as a heat flow across the thermopile and a corresponding change in the thermopile voltage. After completion of the reaction or electrical heating, there will be an exponential decay of the voltage to the after period baseline which ideally should be the same as the fore period baseline.

- - -

The total heat effect, Q, to be associated with the reaction is proportional to the area, A, of the plot of voltage readings, E, versus time, t.

$$Q = k \cdot A$$

This area, A, in millivolt-seconds (mv·s) is the area of the curve above the extrapolated baseline from time t_1 (at the end of the fore period) to time t_2 (at the beginning of the after period).

To obtain the extrapolated baseline during the reaction period, a straight line was assumed from $E(t_1)$, the voltage at the end of the fore period, to $E(t_2)$, the voltage at the beginning of the after period. $E(t_1)$ and $E(t_2)$ were obtained by a least-squares straight line fit of the fore and after period readings, respectively. The area was obtained by the use of the trapezoidal rule.

All of the above calculations were done on a digital computer utilizing the digital voltage and time readings (taken at 3-second intervals throughout the experiment).

The electrical calibration experiments gave the value of k:

$$k = Q/A$$

where, in this case, Q is the electrical energy added to the calorimeter heater.

4. Temperature of the Calorimeter

The temperature of the microcalorimeter was controlled by controlling the current through a heater wound on the inner jacket [1].

A modified Quartz Thermometer [6] was used to check the temperature stability of the inner jacket. In performing this test, the quartz thermometer probe was taped to the inside of the calorimeter's inner jacket, and a temperature record (sensitivity $\pm 10 \ \mu$ K) was obtained over a 15 hour period. This record indicated a steady drift of 0.00094 K for this entire period, while short term variations in temperature were with ± 0.0002 K.

The absolute temperature of the inner jacket, as measured with an NBS calibrated mercury-in-glass thermometer and a copper-constantan thermocouple junctioned between the inner jacket of the microcalorimeter and the mercury-in-glass thermometer, was determined initially to be 29.85°C. Several weeks later an abrupt change in temperature to 30.80°C was noted. It is believed that this jump was due to a break in a wire that connected a 20-k Ω resistor, which had been put in parallel with one of the manganin arms of the wheatstone bridge of the temperature control circuit on the inner jacket. More recently, the temperature of the calorimeter has been observed to be drifting gradually higher to 31.00°C. This may be attributable to relaxation effects in the resistors comprising the regulation network.

.

5. Time Constant and Speed of Operation of Calorimeter

The half-response time of the microcalorimeter, as determined by observation of the exponentially decaying portion of reaction peaks, was observed to be about 30 to 40 seconds. This corresponds to a time constant of about 50 seconds. This time constant has important implications as regards the speed of operation of a microcalorimeter. For example, it has been empirically found that a wait of twenty half-response times, or 10 minutes, is generally adequate to insure proper thermal equilibration of a calorimetric cell with the calorimeter block and thermopiles when an external heatsink, kept to within a degree of the calorimeter's temperature is employed to pre-equilibrate the reaction cell and its contents before inserting the cell into the calorimeter (pre-equilibration time approximately 5 minutes). The amount of time required to complete a run, following the thermal equilibration period in the calorimeter, is about 15 minutes. This allows sufficient time for both a mix and remix operation with the necessary recording of the fore, main, and after period voltage readings for each. Thus, total time elapsed from the inserting a cell into the calorimeter to end of a run is about 25 to 35 minutes. Using manual methods it is possible to do about 15 separate experiments during the course of an 8 hour day.

6. Quality of Baseline

The quality of the baseline or thermopile voltage readings, is an important characteristic of a heat conduction microcalorimeter, and is determined by the absence of electrial or thermal interferences and is ultimately limited by Johnson noise. For measurement of the heat effects accompanying rapid processes, as a consequence of the calorimeter's rapid response time, it is necessary to be concerned about the quality of the baseline over only a 15 to 20 minute interval. Observations of the baseline have indicated that peak-to-peak noise is generally within 30 nv over this sort of time interval. Since the sensitivity of the instrument is $16.7 \text{ J} \cdot \text{v}^{-1} \cdot \text{s}^{-1}$ (see Section 7), or 60 nv. μW^{-1} , this 30 nv peak-to-peak corresponds to 0.5 μW of power peak-to-peak over a 30 second interval. The long term drift of the baseline has been found to be less than 100 nv over a 24 hour period.

It is worthwhile to note that the measured value of the thermopile voltage was generally within 0.5 μ v of electrical zero. Occasional severe deviations from electrical zero were attributable to the following causes: (1) water leaks from the reaction cells; (2) a severe thermal disturbance of the calorimeter, such as unscrewing the lids, and (3) an effect believed to be due to a pressure disturbance of the thermopiles whenever a reaction cell was fit too tightly into the silver box of the microcalorimeter. This latter effect was observed, for example, when excess wax, used in sealing earlier cells, was left on the side of that cell.

2

.

7. Electrical Calibrations

Electrical calibrations of the NBS clinical Microcalorimeter were performed using the permanent resistance heater installed in the silver box which is between the calorimeter thermopiles [1]. Current from a well-regulated D.C. power supply (Sorensen Model QHS 40-.5, stability 0.0005% + 50 uv), operated in the constant voltage mode, was passed thru this calibrating resistor and thru a $1000-\Omega$ standard resistor in series with it. Measurements of the voltages across the heater and across the standard resistor were made using a digital voltmeter (Hewlett-Packard Model 3450A, + 1 µv or + 10 µv sensitivity, depending on range). The interval of heating was determined [5] by means of an electronic counter (Hewlett-Packard Model 5325B) set to read to the nearest millisecond. Grounding of this calibration circuit was done at the heater connection to the power supply. The saturated standard cells, against which the digital voltmeter was checked, and the standard resistor were intercompared with other standards in this laboratory that had been calibrated by the National Bureau of Standards. The internal oscillator of the counter was checked periodically against the NBS 100 kHz frequency (stability of 1 part in 10¹¹) and found to be stable to within 5 parts in 10⁷ over a period of one year. Power input to the calorimeter was calculated as the product of the potential across the heater and the current thru it, with a small correction (0.005%) applied for power generated in the heater leads. In applying this correction, it was assumed that onehalf the power generated in the heater leads could be apportioned to the jacket (i.e. the aluminum block) and the other half to the calorimeter vessel. Total heat input to the calorimeter was the product of power

and time interval of heating.

The results of electrical calibrations are given in Tables 1 and 2. The results, shown in Table 1 were obtained when the calorimeter was at a temperature of 29.85°C and were performed (with the exception of run no. 52) with no sample cell contained in the silver box of the microcalorimeter. In Table 2, the results reported were taken at an assigned calorimeter temperature of 30.80°C and a sample cell, containing approximately 300 µl of water, was contained in the calorimeter's silver box. The calibration constant (units of $W \cdot v^{-1}$ or $J \cdot v^{-1} \cdot s^{-1}$) was calculated as the ratio of the heat input (mJ) to the calorimeter to the measured area (units of mv·s). A second way of obtaining this calibration constant was by application of a steady state power for a long time (13 to 16 half-response times of the calorimeter). Using this procedure [2], the calibration constant is calculated as the ratio of the steady state power to the steady state deflection of the thermopile voltage from its baseline. The values of the calibration constant, obtained in this manner, are given in parenthesis in Tables 1 and 2.

It will be noted that the calibration constant is the same, within the precision of the measurements, whether we use the integral energies or the steady power-deflection method (values in parentheses). The integral energy results are used since the areas were determined in the same way as in chemical reaction experiments. The calibration constant is thus taken as $16.67 \text{ W} \cdot \text{v}^{-1}$ at either temperature. Measurements have not yet been made at widely different temperatures. Inspection of the data in Tables 1 and 2 shows no obvious trend with power level from 0.01 to 2.00 mW, time of heating from 10 to 800 seconds, or energy from 1 to

1400 mJ. Below 1 mJ, the area or electrical energy was perhaps not measured accurately enough and runs number 21, 24, 27, and 209 were omitted in averaging.

The precision of the determinations of the calibration constant with electrical energy can thus be taken as approximately 0.4 percent for energies from 1 to 1400 mJ.

8. Procedures Used in Calorimetric Experiments

A calorimetric experiment consists of several distinct operations, the details of which are described in this section.

Preparation of Reaction Cell Α.

Since the Kel-F reaction cells are not yet disposable, it is first necessary to clean a previously used cell by appropriate means. For acid-base experiments, the cleaning procedure employed was to rinse the cell several times with distilled water. After the last rinsing, the water was sucked out using a vacuum line in such a way as to not completely dry the inside of the cell. This procedure, identified as the "wet cell" procedure, was used to facilitate the mixing of the solutions. However, as will be shown, this procedure introduces a heat of dilution which can have serious effects on the accuracy of the results. More recently, it has been found that a "dry cell" procedure, i.e. one where the inside of the cell is completely dry, can be made to mix reliably if the solutions being used contain a trace amount (. 1 part in 10⁶) of an inert wetting agent such as alkylphenoxy polyethoxy ethanol (trade name, Triton X-100). New cells, which have a hydrophillic surface treatment, do not require the use of the wetting agent nor the "wet cell" procedure. The "wet cell" procedure was used in all experiments summarized in this report. 11

.

B. Cell Loading and Sealing

Solutions were introduced into the reaction cells with syringes. Following the loading of one side of a cell with that solution containing an excess quantity of one of the reactants (solution A), that side of the cell was tilted 90 degrees to the side so that the solution would wet that side of the cell and thus would flow when mixing was desired. The other side of the cell was then loaded carefully with the solution containing the limiting amount of reactant (solution B). Quantities of solutions introduced into a reaction cell were determined by weighing the empty cell, the cell containing solution A alone, and the cell containing both solutions A and B. Care was taken not to wet the "O"-ring seat at the top of a cell.

Cell sealing was done in one of two ways: (1) use of small Kel-F or Teflon plugs that fit into the cell entrance portals and that were sealed over with melted wax and (2) use of no. 2-1 Buna-N "O"-rings that were compressed by means of small Teflon plugs. The sealing process is extremely important, for if a cell is not properly sealed, the heat of vaporization of water, as indicated by a large endothermic voltage signal from the microcalorimeter, will generally dwarf the heat effect being measured and make its determination uncertain. Initial difficulties with the "O"-ring technique necessitated use of method (1) above. However, the use of wax was neither convenient nor desirable in that excess wax left on the side of a cell could adversely affect the thermal sensors (see Section 6). Recent experience with slightly modified cells and "O"-ring plugs has given highly reliable and convenient sealing.

A second possible point of leakage of water from the cell was at the epoxy seal of the top of the cell to the base. If this point of leakage could not be repaired by regluing as was found to be generally the case, the cell was worthless as far as meaningful measurements were concerned. Even more serious, was the case when water from a leaky cell would remain in the silver box of the microcalorimeter. Until evaporation of that water was complete, reliable measurements could not be performed.

C. Pre-equilibration and Actual Run

Following the sealing of a cell, it was then put into a pre-equilibrator or aluminum block maintained at a temperature within one Kelvin of that of the microcalorimeter. Following a five to ten minute wait, the cell was the transferred to the microcalorimeter for final equilibration. This generally took about 15 minutes (see Section 5). The actual run consisted of obtaining a digital and graphical record of the thermopile output as a function of time for the fore period, main period, and after period. The main period was initiated by a 360-degree rotation of the microcalorimeter block and 360-degrees back. After an adequate number of data points had been accumulated in the after period, a remix was performed to ascertain the completeness of reaction. The cell was then removed from the calorimeter and prepared for the next run.

•

9. Blank Heat Effects

A factor which effects the precision and accuracy of the microcalorimeter is reproducibility of the heat effect accompanying the necessary experimental operation of reaction initiation by mixing. The results of measurements of the magnitude of this heat effect are given in Table 3. In performing these runs, the "wet cell procedure", as described in Section 8, was used. The results show that one simple operation of mechanical rotation of the calorimeter block yields an apparent endothermic heat effect of -40 \pm 18 μ J (average deviation). The cause of this effect is not fully understood and may be due to movement of wires during rotation.

The results obtained when solutions are present in the Kel-F reaction cell indicate that the heat effect accompanying the first rotation is always larger than that accompanying the second rotation or remix. The reason for this, in the case of the mixing of water with water, may possibly be attributable to a heat of wetting of Kel-F or to some other surface interaction. However, in the case when hydrochloric acid and sodium hydroxide are mixed with themselves, the effect is due to the 'wet cell' procedure used and was the results of the heat of dilution of acid or of base by the pure water on the walls above the solutions in the cell. A series of mixing experiments, employing the dry cell procedure is planned.

10. Acid-Base Test Reaction

The heat of neutralization of hydrochloric acid with sodium hydroxide has been used as a test of the accuracy of the microcalorimeter. The hydrochloric acid used in these experiments was obtained from George Marinenko of the Analytical Chemistry Division (NBS) and had been analyzed by him using a coulometric procedure [6, 7]. This stock acid, as received, had a concentration of 1.99242 x 10⁻⁴ equivalents g⁻¹ and was believed to be accurate to within \pm 0.02%. This stock solution was used in the preparation by weight of more dilute acid solutions. A saturated stock solution of sodium hydroxide was prepared using Baker analyzed sodium hydroxide pellets and water distilled at the National Bureau of Standards. After allowing this solution to stand for several weeks to permit precipitation of sodium carbonate, a portion of the clear solution was withdrawn from the saturated sodium hydroxide solution and diluted using freshly boiled distilled water. The concentration of this sodium hydroxide solution was determined by titration against potassium acid phthalate (NBS Standard Reference Material No. 84 g). In all calorimetric runs, the sodium hydroxide was used in substantial excess of stoichiometric. The cell loading procedure used was the "wet cell procedure".

The results of calorimetric measurements of the heat of neutralization of hydrochloric acid with sodium hydroxide are given in Table 4. In analyzing these results, a calibration constant of 16.67 $J \cdot v^{-1} \cdot s^{-1}$ was used (see Section 7). The measured heat (Q), given in Table 4, includes a correction, -1147 μ J, for the blank heat of mixing as determined when 0.08 N sodium hydroxide was mixed with itself. This correction is not very satisfactory but until dry-cell experiments are available, this effect is our best estimate of the correction to be applied. It amounts to about 2 percent of the heat of the reaction measured. Corrections for heats of dilution to the standard state [12] were applied using tabulated data [8] for the relative apparent molal enthalpy and heat capacity of the reactants and products. Also a correction was applied [8] to convert the data to 25°C. The final value, ΔU° , is the internal energy change of ionization of water at 25°C.

No correction was applied for the change in vapor pressure of water above the solutions in the reaction of this space upon reaction. The total estimated effect was ~0.02%. The vapor pressure before reaction was taken as the average of that of the NaOH and of the HCl and after reaction was that of NaCl and NaOH in water. The change in volume of the liquid phase was taken from Harned and Owen [9], the enthalpy of vaporization of water from Wagman et al [10], and vapor pressures calculated from osmotic coefficients of Robinson and Stokes [11]. Since $(\triangle PV)^{\circ}$ is small $\triangle U^{\circ}$ is taken as equal to $\triangle H^{\circ}$, the enthalpy of ionization of water.

The resulting values of ΔJ° , given in Table 4 were averaged (with the exceptions of runs no. 56, 151, 156, and 166) to yield a value of $\Delta J^{\circ} = -55.74 \text{ kJ} \cdot \text{mol}^{-1}$ with an average deviation of 0.33 kJ \cdot mol⁻¹. The four runs discarded, out of a total of 22 measurements, all differed from the average of the remaining results by at least a factor of seven times the average deviation. It is believed that these four runs yielded results much lower than the rest due to poor handling of the reaction cell and some attendant pre-reaction of the hydrochloric acid. The result of -55.74 kJ \cdot mol⁻¹ agrees, within the experimental precision, with the "best" literature value of -55.835 ± 0.104 kJ \cdot mol⁻¹ [8]. At present, new lots of hydrochloric acid sodium hydroxide are being prepared and analyzed by G. Marinenko. Another series of calorimetric acid-base measurements using these materials and the "dry cell" technique is anticipated.

The precision of measurement of the heat of a chemical reaction is thus about 0.6 percent when the heat is of the magnitude of 50 mJ or more. In the present experiments it was necessary to make a 1 mJ correction for the blank mixing effect caused by the "wet cell" procedure. It is estimated that this correction may introduce a systematic error of about one percent in the final result. Thus, at present, we can estimate the accuracy of the calorimeter to be about 1 percent.

11. Ease and Reliability of Operation

Various aspects of the ease and reliability of operation of the microcalorimeter have been discussed at various points throughout this report. Difficulties were encountered with sealing the cells and obtaining reliable mixing of the solutions at the appropriate time. Both of these problems now appear to be under reasonable control. As pointed out in Section 5, the speed of operation of the calorimeter itself is such that, at present, a run can be performed once every thirty to forty minutes. The use of automated cell loading and running techniques, automated computation of results, disposable cells, and other devices could in principle greatly improve the reliability, speed of operation, and number of measurements possible in a given period of time. ÷,

12. References

- E. J. Prosen, NBS Report on the design and construction of microcalorimeter, in preparation. NBS Report No. 73-179 (1973).
- [2] E. Calvet and H. Prat, "Recent Progress in Microcalorimetry", The MacMillan Company, New York, 1963.
- [3] T. H. Benzinger in "A Laboratory Method of Analytical Methods of Protein Chemistry", P. Alexander and H. P. Lundgren, editors, Pergammon Press, Oxford and New York, 1969.
- [4] "Biochemical Microcalorimetry", H. D. Brown, editor, Academic Press, New York, 1969.
- [5] A. P. Brunetti, E. J. Prosen, and R. N. Goldberg, "The Enthalpy of Reaction of Tris(hydroxymethyl)aminomethane with Hydrochloric Acid", manuscript in review.
- [6] G. K. Marinenko and J. K. Taylor, Analytical Chemistry, <u>40</u>, 1645 (1968).
- [7] G. Marinenko and C. E. Champion, Jour. Res. Natl. Bur. Stds., <u>75A</u>, 421 (1971).
- [8] V. B. Parker, "Thermal Properties of Aqueous Uni-univalent Electrolytes", Report NSRDS-NBS 2, U.S. National Bureau of Standards, U.S. Government Printing Office, Washington, D.C., 1965.
- [9] H. S. Harned and B. B. Owen, "The Physical Chemistry of Electrolytic Solutions", Reinhold Book Corporation, New York, 1958.
- [10] D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, NBS Technical Note 270-1, U.S. Government Printing Office, Washington, D.C., 1965.

- [11] R. A. Robinson and R. H. Stokes, "Electrolyte Solutions", 2nd ed., Butterworth and Co., Ltd., London, 1959.
- [12] C. E. Vanderzee and J. A. Swanson, J. Phys. Chem. 67, 2608 (1963).

13. Acknowledgements

We acknowledge the assistance of Ms. Ruby N. Boyd with some of the calorimetric measurements. We thank George Marinenko for providing the coulometrically analyzed hydrochloric acid.

1000000000000000000000000000000000000	0.0118 0.3626 0.6066 0.0607	
22 0.010010 600.125 6.0123 0.3626 0.3606 23 0.010019 100.254 1.0065 0.0607 24 0.020037 10.457 0.2005 0.0104 25 0.020037 100.256 2.0032 0.1211 25 0.020017 100.256 2.0033 0.1211 26 0.050117 10.222 0.5133 0.1211 27 0.050117 10.222 0.5193 0.1211 27 0.050117 10.222 0.5193 0.1211 28 0.050117 10.228 0.5193 0.1211 21 0.059820 10.0147 5.0191 0.2396 21 0.059820 10.228 0.2053 1.0710 21 0.099820 10.239 1.0310 0.2916 21 0.19726 10.2929 1.07047 0.2	0.3626 0.6066 0.0607 0.0144	*16.996
23 0.01001 100.254 1.0045 0.0607 24 0.020037 10.457 0.2095 0.0144 25 0.020037 10.2543 12.0332 0.1211 26 0.020017 100.226 2.0833 0.1211 26 0.050117 10.0226 0.5153 0.02233 27 0.050117 10.0226 0.5153 0.0233 27 0.050117 100.247 5.0191 0.0233 28 0.050117 10.0147 5.0191 0.2998 29 0.050117 10.228 0.5193 0.1793 21 0.099820 10.227 0.5191 0.2998 21 0.19726 10.0233 1.02047 0.5196 21 0.19726 10.2263 1.19239 21 0.19726 10.2263 1.19239 1.1844 -	0.0607 0.0144	16.582 (16.517)
24 0.02003 10.457 0.2095 0.0144 \cdots 25 0.020037 0.0253 12.0332 0.7226 1.2135 27 0.020017 100.226 2.0083 0.01211 \cdots 27 0.050117 100.226 0.0323 0.0323 \cdots 28 0.050117 100.247 0.030165 1.7793 2.991 29 0.056117 100.247 0.01610 0.0332 $-\cdots$ 210 0.099820 10.226 10.2109 0.0610 $-\cdots$ 210 0.099820 10.227 10.2101 0.2393 1.0210 0.2056 $-\cdots$ 210 0.099820 10.2379 10.047 0.2276 0.1223 0.1176 0.1184 210 0.099820 10.2379 10.047 0.2296 0.2470 0.2296 0.2916 210 0.197256 0.197256 0.197276 0.19292 0.1223	0.0144	16.548
25 0.02003 600.543 12.0332 0.726 1.2135 26 0.020011 10.226 2.0083 0.1211 $$ 27 0.050117 10.226 0.5133 0.0323 $$ 28 0.050117 10.226 10.226 1.7933 2.991 29 0.050117 10.228 10.0147 5.0191 0.2398 2.991 21 0.099820 100.147 5.0191 0.2398 2.991 21 0.099820 100.147 5.0191 0.2398 2.991 21 0.099820 100.147 5.09263 3.5666 5.9866 21 0.19726 10.327 10.0470 0.2238 11.840 21 0.19726 10.237 119.299 7.1509 11.840 21 0.19726 0.19726 10.2363 11.846 $ 21 0.19929 0.19929 0.19929 *14.551$		* 14 .551
26 0.02003 100.226 2.0083 0.1211 27 0.050117 10.282 0.5153 0.0323 28 0.050117 10.282 0.5191 5.093 2.991 29 0.050117 10.282 0.05117 5.0191 0.0323 29 0.050117 10.282 10.0147 5.0191 0.298 21 0.099320 10.0128 1.0210 0.0610 31 0.099320 10.217 10.027 5.016 5.086 5.986 32 0.197266 10.233 119.199 0.1966 5.986 34 0.197266 100.233 119.745 11.840 34 0.197266 100.233 19.745 11.840 35 0.19726 100.233 19.745 11.840 36 0.19726 10.0233 19.745 11.840 36 0.498069<	0.7226 1.2135	16.653 (16.512)
27 0.030117 10.282 0.5153 0.0323 28 0.030117 59.925 30.0665 1.7993 2.991 29 0.030117 100.147 5.0191 0.2398 30 0.050117 100.147 5.0191 0.2998 31 0.099820 0.0342 5.9263 3.5866 5.986 31 0.099820 100.227 10.047 0.2998 32 0.197256 10.379 10.047 0.2986 34 0.19726 100.233 119.399 7.1509 11.460 35 0.19726 100.233 19.745 11.846 35 0.19726 100.236 7.1509 11.460 36 0.498069 10.233 19.745 1.1844 37 0.19726 10.236 7.1509 11.460 36 0.498069 10.283 9.19745 1.1844 -	0.1211	16.583
28 0.050117 599.925 30.0665 1.7993 2.991 29 0.050117 100.147 5.0191 0.2998 30 0.050117 100.147 5.0191 0.2998 31 0.098820 10.0147 5.0191 0.2998 31 0.098820 10.0227 10.047 0.5985 32 0.098820 100.227 10.047 0.5985 32 0.197226 10.0272 10.047 0.5985 34 0.197226 10.0233 119.399 7.1509 11.840 35 0.19726 10.0233 119.399 7.1509 11.840 36 0.19726 10.0233 119.399 7.1509 11.840 37 0.19726 10.0233 119.399 7.1509 11.840 37 0.19909 10.283 119.399 7.1509 11.840 38 0.49069 10.283 11.940 2.85	0.0323	*15.954
29 0.050117 100.147 5.0191 0.2998 30 0.099820 10.228 1.0210 0.0610 31 0.099820 600.342 59.9263 3.5866 5.986 32 0.099820 100.227 10.0047 0.5985 32 0.197266 10.379 2.0470 0.1223 34 0.197266 10.379 2.0470 0.1223 35 0.197266 10.379 2.0470 0.1223 36 0.197266 100.263 119.399 7.1509 11.840 36 0.498069 10.285 5.1226 0.3066 37 0.498069 10.283 5.1226 0.3066 37 0.498069 10.285 5.1226 0.3066 38 0.498069 10.283 11.8440 38 0.498069 10.385 1.1844 38 </td <td>1.7993 2.991</td> <td>16.710 (16.756)</td>	1.7993 2.991	16.710 (16.756)
30 0.09820 10.228 1.0210 0.0610 31 0.09820 600.342 59.9263 3.5866 5.986 32 0.09820 600.342 59.9263 3.5866 5.986 32 0.19726 10.027 10.0047 0.5985 34 0.19726 10.379 2.0470 0.1323 35 0.19726 10.023 19.7745 11.840 35 0.19726 100.253 19.7745 1.1840 36 0.498059 10.235 19.7745 1.1840 37 0.498059 10.235 5.1226 0.3066 37 0.498059 10.231 10.302 2.921 38 0.498059 10.311 10.302 2.921 39 0.498059 10.311 10.302 2.921 40 0.998949 10.311 10.302 0.6185 <td>0.2998</td> <td>16.741</td>	0.2998	16.741
31 0.099820 600.342 59.9263 3.5866 5.986 32 0.099820 100.227 10.0047 0.5985 33 0.197226 10.379 2.0470 0.1223 34 0.197226 10.379 2.0470 0.1223 35 0.197226 100.263 119.399 7.1509 11.840 36 0.197226 100.263 19.1745 1.1844 36 0.498069 100.285 5.1226 0.3066 37 0.498069 10.285 5.1226 0.3066 37 0.498069 10.285 5.1226 0.3066 38 0.498069 10.285 5.126 0.3066 39 0.498069 10.285 5.1226 0.3066 39 0.498069 10.311 10.302 0.59824 40 0.998949 10.311 10.302 0.6185	0.0610	16.737
32 0.099820 100.227 10.0047 0.5985 33 0.197226 10.379 2.0470 0.1223 34 0.197226 10.379 2.0470 0.1223 35 0.197226 100.263 19.7745 1.1844 35 0.197226 100.263 19.7745 1.1844 36 0.498069 10.285 5.1226 0.3066 37 0.498069 10.285 5.1226 0.3066 37 0.498069 10.2131 10.3002 1.1844 38 0.498069 10.285 5.1226 0.3066 39 0.498069 10.311 10.3002 29.820 39 0.498069 10.311 10.3002 2.9821 31 0.49781 10.3002 0.6185 31 0.99849 10.0151 10.0046 5.9821 -	3.5866 5.986	16.708 (16.676)
33 0.19726 10.379 2.0470 0.1223 34 0.19726 605.393 119.399 7.1509 11.840 35 0.19726 100.263 19.7745 1.1840 35 0.19726 100.263 19.7745 1.1840 36 0.498069 100.285 5.1226 0.3066 37 0.498069 617.153 307.385 18.4100 29.820 38 0.498069 617.153 307.385 18.4100 29.820 39 0.498069 617.153 307.385 18.4100 29.820 39 0.498069 10.311 10.302 0.5981 40 0.998949 10.311 10.302 0.6185 41 0.998949 10.311 10.302 0.6185 41 0.998949 10.311 10.302 0.6185 42 1.99239 10.910.31 10.302 5.948 </td <td>0.5985</td> <td>16.716</td>	0.5985	16.716
34 0.197226 605.393 119.399 7.1509 11.840 35 0.197226 100.263 19.7745 1.1844 36 0.498069 10.285 5.1226 0.3066 37 0.498069 10.285 5.1226 0.3066 38 0.498069 617.153 307.385 18.4100 29.820 39 0.498069 99.949 49.7815 2.9821 39 0.498069 99.949 10.311 10.3002 29.820 40 0.998949 10.311 10.3002 0.6185 41 0.998949 10.311 10.3002 0.6185 42 0.998949 10.131 10.3002 0.6185 43 1.99239 10.0151 100.046 5.9948 43 1.99239 10.9104 20.5296 1.2054 44	0.1223	16.738
35 0.19726 100.263 19.7745 1.1844 36 0.498069 10.285 5.1226 0.3066 37 0.498069 10.285 5.1226 0.3066 38 0.498069 10.285 307.385 18.4100 29.820 38 0.498069 99.949 49.7815 2.9821 39 0.498069 99.949 49.7815 2.9821 40 0.998949 10.311 10.3002 0.6185 41 0.998949 10.311 10.3002 0.6185 42 1.99239 100.151 100.046 5.9948 43 1.99239 10.304 20.5296 1.2304 44 1.99239 100.188 199.614 11.955 45 1.99239 100.188 199.614 11.955 45 0.99901 600.194 199.614 11.955	7.1509 11.840	16.697 (16.658)
36 0.498069 10.285 5.1226 0.3066 37 0.498069 617.153 307.385 18.4100 29.820 38 0.498069 99.949 49.7815 2.9821 38 0.498069 99.949 49.7815 2.9821 39 0.998949 10.311 10.3002 0.6185 40 0.998949 10.311 10.3002 0.6185 41 0.998949 10.311 10.3002 5.9621 59.824 42 1.99239 10.0151 10.00046 5.9948 43 1.99239 10.304 20.5296 1.2304 44 1.99239 100.188 199.614 11.932 45 1.99239 100.188 199.614 11.955 47 0.99901 600.194 199.614 11.965	1.1844	16.696
37 0.498069 617.153 307.385 18.4100 29.820 38 0.498069 99.949 49.7815 2.9821 39 0.498069 99.949 49.7815 2.9821 39 0.998949 10.311 10.3002 0.6185 40 0.998949 10.151 10.3002 0.6185 41 0.998949 100.151 10.00046 5.948 42 1.99239 100.151 100.046 5.948 43 1.99239 10.304 20.5296 1.2304 44 1.99239 100.188 199.614 11.932 45 0.99901 600.198 199.614 38.8935	0.3066	16.708
38 0.498069 99.949 49.7815 2.9821 39 0.998949 10.311 10.302 0.6185 40 0.998949 10.311 10.302 0.6185 41 0.998949 600.808 600.177 35.9621 59.824 42 1.99239 100.151 100.046 5.9948 42 1.99239 10.304 20.5296 1.2304 43 1.99239 10.304 20.5296 1.2304 44 1.99239 100.188 199.614 11.937 119.32 52 A 0.99901 650.401 649.754 38.8935 59.783	18.4100 29.820	16.697 (16.703)
39 0.998949 10.311 10.302 0.6185 40 0.998949 600.808 600.177 35.9621 59.824 41 0.998949 100.151 100.046 5.9948 42 1.99239 10.304 20.5296 1.2304 43 1.99239 600.194 1195.82 71.6537 119.32 44 1.99239 100.188 199.614 11.965 52 A 0.99901 650.401 649.754 38.8935 59.783	2.9821	16.693
40 0.998949 600.808 600.177 35.9621 59.824 41 0.998949 100.151 100.046 5.9948 42 1.99239 10.304 20.5296 1.2304 43 1.99239 600.194 1195.82 71.6537 119.32 44 1.99239 100.188 199.614 11.965 52 A 0.99901 650.401 649.754 38.8935 59.783	0.6185	16.654
41 0.998949 100.151 100.046 5.9948 42 1.99239 10.304 20.5296 1.2304 43 1.99239 600.194 1195.82 71.6537 119.32 44 1.99239 100.188 199.614 11.965 52 A 0.99901 650.401 649.754 38.8935 59.783	35.9621 59.824	16.689 (16.698)
42 1.99239 10.304 20.5296 1.2304 43 1.99239 600.194 1195.82 71.6537 119.32 44 1.99239 100.188 199.614 11.965 52 A 0.99901 650.401 649.754 38.8935 59.783	5.9948	16.689
43 1.99239 600.194 1195.82 71.6537 119.32 44 1.99239 100.188 199.614 11.965 52 A 0.99901 650.401 649.754 38.8935 59.783	1.2304	16.685
44 1.99239 100.188 199.614 11.965 52 A 0.99901 650.401 649.754 38.8935 59.783	71.6537 119.32	16.689 (16.698)
52 Å 0.99901 650.401 649.754 38.8935 59.783	11.965	16.683
	38.8935 59.783	16.706 (16.711)
Mean calibration cons	Mean calibration constant, W+v ⁻¹	16.682 (16.659)
Average devia	Average deviation, W.v ⁻¹	±0.035 (≐0.21 [°])

Table 1. Results of Electrical Calibrations (Series I). Temperature is 29.85°C.

22

*Omitted

			ſ			
Run No.	Power Introduced (mW)	Time of Heating (s)	Heat Input (mJ)	Area (mv.s)	Steady State Deflection (µv)	Calibration Constant $(W \cdot v^{-1})$
110	0.49728	10.979	5.4596	0.3263	:	16.732
111	0.49728	11.570	5.7535	0.3492		16.476
112	0.49728	10.227	5.0857	0.3021	;	16.835
128	0.49740	9.981	4.9645	0.2971		16.710
140	0.49736	20.428	10,1601	0.6082		16.705
209	0.099715	10.220	1.0191	0.0593		*17.185
210	0.099715	100.197	9.9912	0.5987	+ .	16.688
211	0.099715	755.170	75.3019	4.5161	6.039	16.674 (16.512)
212	0.49761	10.457	5.2035	0.3164		16.446
213	0.49761	100.210	49.8652	2.9798		16.734
214	0.49761	699.751	348.201	20.890	29.79	16.668 (16.704)
215	0.99806	10.477	10.4566	0.6309	:	16.574
216	0.99806	100.256	100.061	5.9993		16.679
217	0.99806	809.019	807.446	48.433	59.834	16.671 (16.680)
218	1.99062	10.201	20,3063	1.2276		16.541
219	1.99062	100.117	199.294	11.954	-	16.672
220	1.99062	729.464	1452.08	87.119	119.380	16.668 (16.675)
				Me	an calibration constant	W·v ⁻¹ 16.655 (16.643)
					Average deviation	, W•v ⁻¹ ±0.072 (±0.43%)
						*Omitted

Table 2. Results of Electrical Calibrations (Series II). Temperature is 30.80°C.

23

, •

Table 3. Blank Heats of Mixing

Simple Mechanical Rotation

Run No.	Area (mv·s)
65	-0.0020
67	-0.0038
68	-0.0006
69	-0.0021
75	-0.0015
76	-0.0045
78	-0.0020

Average Area = -0.0024 \pm 0.0011 mv^s Q = -40 \pm 18 µJ

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Water vs Water

Area (mv·s)

Run No.	1st Rotation	2nd Rotation
188	+0.0114	+0.0045
189	+0.0056	+0.0035
190	+0.0150	+0.0000
191	+0.0075	+0.0009
192A	+0.0104	-0.0013

1st Rotation: Average Area = +0.0100 \pm 0.0028 mv·s Q = +167 \pm 47 μ J 2nd Rotation: Average Area = +0.0015 \pm 0.0020 mv·s Q = +25 \pm 33 μ J

Table 3. (cont.)

0.08 N NaOH vs 0.08 N NaOH (Wet-cell)

Area (mv·s)

Run No.	1st Rotation	2nd Rotation
192B	+0.0658	-0.0006
193	+0.0710	+0.0009
194	+0.0782	-0.0004
195	+0.0719	-0.0004
196	+0.0568	+0.0020

1st Rotation: Average Area = +0.0687 \pm 0.0060 mv·s $Q = +1147 \pm 100 \ \mu J$

2nd Rotation: Average Area = +0.0003 \pm 0.0010 mv's Q = +5 \pm 17 μJ

- - -

0.01 N HC1 vs 0.01 N HC1 (Wet-cell)

Area (mv·s)

Run No.	1st Rotation	2nd Rotation
198	+0.0010	-0.0004
200	+0.0046	-0.0025
202	+0.0183	-0.0039
203	+0.0227	-0.0094

lst Rotation: Average Area = +0.0117 \pm 0.0089 mv·s $Q = +195 \pm 148 \ \mu J$

2nd Rotation: Average Area = -0.0041 \pm 0.0027 mv·s $Q = -68 ~\pm~45~\mu J$

		Mass of acid	Mass of base	Acid concentration	Mix	Remix	Hea t**	- W	Correction Srd Srate	Correction	° 1,
Run No.	Temperature (°C)	(g in air)	(g in air)	(mol kg ⁻¹)	Area (mv·s)	Area (mv·s)	(mJ)	(kJ mol ⁻¹)	(kJ mol-1)	(kJ mol - 1)	(kJ mol ⁻¹)
52	29.85	0.101753	0.100950	0.010322	3.5720	+0.0003	58.505	55.592	-1.195	1.040	55.437
53	29.85	0.100650	0.100550	0.010332	3.5577	+0.0004	58.268	55.973	-1.198	1.040	55,816
54	29.85	0.094590	0.101715	0.010332	3.3740	-0.0001	55.192	56.415	-1.228	1.040	56.227
56	29.85	0.100865	0.101550	0.010332	3.4084	+0.0081	55.903	53.587	-1.201	1.040	*53,426
59	29.85	0.095260	0.102130	0.010332	3.4000	-0.0053	55.539	56.371	-1.182	1.040	56,184
62	29.85	0, 06380	0.104790	0.010577	3.8102	+0.0107	62.657	55.628	-1.172	1.040	55.497
70	29.85	0.101067	0.102005	0.010577	3.6311	-0.0033	59.432	55.539	-1.182	1.040	55.398
71	29.85	0.102465	0.102143	0.010577	3.7063	40.0031	60.795	56.037	-1.176	1.040	55.901
149	30.80	0.145795	0,153165	0.019669	9.6496	+0.0003	159.81	55.670	-0.859	1.234	56.045
150	30.80	0.149850	0.150615	0.019669	9.8576	+0.0006	163.28	55.341	- 0.848	1.234	55.727
151	30,80	0.149341	0.153744	0.019669	8.0123	+0.0003	132.50	45.067	-0.854	1.234	*45.443
152	30.80	0.149345	0.151745	0.0099243	4.9772	+0.0007	81.880	55.187	-1.311	1.234	55.110
156	30,80	0.152340	0.104840	0.0053055	2.4034	+0.2595	43.266	53.476	-1.857	1.234	* 52.852
157	30.80	0.149549	0.101190	0.0053055	2.7310	-0.0050	44.319	55.802	-1.841	1.234	55.195
158	30,80	0.145230	0.101675	0.0053055	2,6529	-0.0037	43.038	55.798	- 1.874	1.234	55.158
159	30.80	0,149160	0.100730	0.0097799	4.9209	+0.00 05	80.938	55.426	- 1.114	1.234	55.545
160	30,80	0.150840	0.101715	0.0097799	4.9828	-0.0004	81.956	55.498	- 1.113	1.234	55.618
163	30,80	0.148924	0.102438	0.0097799	4.9785	+0.0015	81.915	56.184	-1.124	1.234	56.294
164	30.80	0.150645	0.101251	0.0097799	4.9776	+0.0160	82.142	55.696	- 1.112	1.234	55.818
165	30.80	0.147990	0.102026	0,0097799	4.9199	+0.0004	8.920	55.852	- 1.125	1.234	55.960
166	30.80	0.148834	0.102352	0.0097799	7.6777	-0.0239	126.51	43,196	- 0,748	1.234	* 43.681
167	30.80	0.150233	0.102176	0.0097799	9.9808	-0.0013	165.31	55.916	- 0.745	1.2 34	56.404
									Nean	of - ΔU° at 25°C, kJ·mol ⁻¹	554
Base	concentration is 0.	.080856 mol kg	' ¹ in all exper	iments.					AV	verage deviation, kJ·mol-1	=0.33
40 Om 2 1											(=0.59 [°] ;)

Table 4. Results of Acid-Base Calorimetric Experiments

* Omitted

** Corrected by -1.147 mJ for "blank" mixing.

FORM NBS-114A (1-71)				
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 73-180	2. Gov't Accession No.	3. Recipien	t's Accession No.
4. TITLE AND SUBTITLE			5. Publicat	ion Date
			4-73	
Testing of the N	BS Clinical Microcalorimeter		6. Performin	g Organiza tion Codé
7. AUTHOR(S)			8. Performin	ng Organization
E. J. Prose	n and R. N. Goldberg		NBSIR	73-180
9. PERFORMING ORGANIZAT	TION NAME AND ADDRESS		10. Project/	Task/Work Unit No.
	TON MILL MED MODILESS		2160/11	and 2160110
NATIONAL E	BUREAU OF STANDARDS		11 6	
DEPARTMEN WASHINGTON	NT OF COMMERCE N, D.C. 20234		III Contract	t/Grant No.
12. Sponsoring Organization N	ame and Address		13. Type of Covered	Report & Period
National	Institutes of Health		·	
Bethesda.	Marvland 20014		Int	terim
,			14. Sponson	ing Agency Code
19. SUPPLEMENTART NOTE:	5			
bibliography or literature s The NBS Clinic ease of operation, calibration and th NaOH(aq). The hea the precision of t about 50 mJ of hea The precision of e of from 1 to 1400	survey, mention it here.) cal Microcalorimeter has been , and accuracy. The accuracy he determination of the heat at of this reaction agrees w the calorimeter. The precis at of chemical reaction. The electrical energy determinat mJ.	n tested for sta y was tested by y of neutralizati ith the best lit ion is about 0.6 e accuracy is es ion is about 0.4	bility, s means of o on of HCl erature v percent timated a percent	ensitivity, electrical (aq) with alue within when measuring s l percent. for energies
microcalorimeter; NE	N order, separated by semicolons) Clinic 3S microcalorimetry; testing	of microcalorime	eter.	<pre>icrocalorimetry;</pre>
18. AVAILABILITY STATEME	ENT	19. SECURIT	Y CLASS	21. NO. OF PAGES
		(THIS RE	PORT)	
INI DUTED				
UNLIMITED.		UNCLAS	SIFIED	
FOR OFFICIAL I TO NTIS.	DISTRIBUTION. DO NOT RELEASE	20. SE CURIT (THIS PA	TY CLASS IGE)	22. Price

