NBSIR 73-162

Executive Summary of A Proficiency Test Assessment of Clinical Laboratory Capability in the United States

Peter W. Finkel, Ted R. Miller

Technical Analysis Division Institute for Applied Technology National Bureau of Standards Washington, D. C. 20234

May 1973

Final Report

Available NTIS - #_{COM74-10552} (1 superseded by IR 73-163

(12pages)

Prepared for

Division of Health Evaluation Office of the Assistant Secretary for Planning and Evaluation Department of Health, Education, and Welfare Washington, D. C. 20201

NBSIR 73-162

EXECUTIVE SUMMARY OF A PROFICIENCY TEST ASSESSMENT OF CLINICAL LABORATORY CAPABILITY IN THE UNITED STATES

Peter W. Finkel, Ted R. Miller

Technical Analysis Division Institute for Applied Technology National Bureau of Standards Washington, D. C. 20234

May 1973

Final Report

Prepared for Division of Health Evaluation Office of the Assistant Secretary for Planning and Evaluation Department of Health, Education, and Welfare Washington, D. C. 20201

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

and the second se

Background

The primary objective of this study was to obtain performance capability measures for various classes of clinical laboratories in the United States and to determine if there are significant differences in analytical accuracy which would warrant remedial action by public agencies or the private sector.

The procedure utilized was to: (1) establish a Scientific Advisory Committee of governmental and health industry representatives, (2) develop a survey design, (3) contact professional and regulatory groups to solicit laboratory participation, (4) procure and distribute two sets of laboratory samples in clinical chemistry, hematology and bacteriology to laboratories participating in the study, and (5) statistically analyze the results reported by the laboratories.

Participants

Six types or groups of clinical laboratories participated in the study:

1. Interstate—laboratories engaged in interstate commerce and licensed by the Center for Disease Control, Health Services and Mental Health Administration, under the Clinical Laboratory Improvement Act of 1967 (CLIA '67) in one or more of the specialties under consideration in this study.

2. American Academy of Family Physicians—private physician laboratories, generally small, which are currently affiliated with AAFP.

3. American Society of Internal Medicine—laboratories operated in conjunction with a private physician's practice which, like AAFP affiliated laboratories, are presently exempt from any Federal licensure program.

4. Joint Commission on Accreditation of Hospitals—laboratories within hospitals which are accredited under JCAH.

5. Medicare Certified Hospitals—laboratories in hospitals which are Medicare providers under Title XVIII, Health Insurance for the Aged. Hospitals and laboratories accredited under JCAH were excluded from this category.

6. Medicare Certified Independent—private and commercial laboratories which are reimbursed for certain laboratory procedures under Medicare, but which are not normally licensed under CLIA '67 or accredited by JCAH.

Approximately 1,000 laboratories participated in the study. The number within a category ranged from 43 (AAFP) to 231 (Interstate). A seventh category of 18 reference laboratories served as a control group.

Methodology

Separate proficiency test specimens were prepared for clinical chemistry, hematology and microbiology. Criteria for selection of the clinical chemistry and hematology constituents to be analyzed were that laboratory analysis should be routine, and that fairly well developed analytical procedures exist. Each clinical chemistry shipment included normal and abnormal samples. The laboratories were asked to determine the concentration of eight constituents: glucose, urea nitrogen, calcium, total bilirubin, cholesterol, uric acid, sodium, and total protein. Each hematology shipment required analysis of red blood count, white blood count, hemoglobin, hematocrit, and mean corpuscular volume levels in both normal and abnormal specimens. Five pure cultures of ordinary bacteria were used as sample cultures for identification in the microbiological portion of the study.

Two shipments of specimens and/or cultures were sent to each participating laboratory. All analytic results were reported by the laboratory on forms shipped with the test specimens.

Results - Clinical Chemistry

There were no significant differences (at the 90% confidence level) among the average laboratory results obtained by the groups participating in the study. The interlaboratory consistency ("interlaboratory precision") of the laboratory groups can be exhibited as follows, where groups joined by the same line did not exhibit significantly different precision at the 90% confidence level.

Rank Order	Laboratory Group
Most Precise	Medicare Independent Interstate JCAH AAFP/ASIM
Least Precise	Medicare Hospital

The techniques used had a considerable effect on the accuracy and precision of reported analyses. Table 1 lists the techniques which were most satisfactorily applied and the percentage of the participating laboratories which applied each technique. In most instances, automated methods were applied with equal or better average accuracy and considerably better precision than the corresponding manual methods. Results reported by laboratories using diagnostic kits were consistently less precise than other determinations. Table 1. Clinical Chemistry - Referee Methods and Best Applied Techniques

Constituent	Referee Method	% Using	Best Applied Techniques	% Using
Glucose	Hexokinase	1.5	Ferricyanide AutoAnalyzer	12.9
Urea Nitrogen	Diacetyl monoxime	63.2	Diacetyl monoxime Automated	34.0
Calcium	Atomic Absorption	4.0	Atomic Absorption Cresolphthalein Complexone Automated	4.0 33.4
Bilirubin	Diazo-Other Coupling (Jendrassik & Grof)	43.6	Diazo-Other Coupling (J & G) Automated	24.9
Cholesterol	Abell Kendall	0.6	FeCl ₃ -H ₂ SO ₄ with Prior Extraction Manual or Automated	5.9
Uric Acid	Uricase	2.2	Uricase Phosphotungstate Automated	2.2 24.2
Sodium	Flame Photometer	96.7	Flame Photometer Automated	12.6
Total Protein	Biuret	78.4	Biuret Automated Refractometer	34.5 15.7

iii

Insufficient information was available to assess the medical usefulness of the total bilirubin determinations. Of the remaining seven constituents, only cholesterol was analyzed by the study participants with sufficient precision to permit the interlaboratory monitoring over time of the variation in an individual patient's constituent concentrations. In contrast, reference laboratory analyses of cholesterol, uric acid, urea nitrogen, sodium and total protein were all sufficiently precise to permit interlaboratory monitoring of individual variation. Those participating laboratories using the best applied techniques also achieved acceptable interlaboratory precision in analyses of these five constituents.

Results - Hematology

As with clinical chemistry, the average laboratory results obtained by the participating groups did not differ significantly at the 95% confidence level. The interlaboratory precision of the laboratory groups can be exhibited as follows where groups joined by the same line did not exhibit significant differences at the 90% confidence level.

Rank Order	Laboratory Group
Most Precise	Medicare Independent JCAH Interstate Medicare Hospital
Least Precise	AAFP/ASIM

Table 2 shows the best applied techniques and the percentages of participating laboratories using these techniques.

Results - Microbiology

The performance of the Interstate group was significantly better than the performance of the other groups at the 95% confidence level; 7.6% of the Interstate laboratory determinations were incorrect while 19.9% of all other determinations were incorrect. However, even a 7.6% mis-identification rate is not satisfactory. Most troublesome are such mis-identifications as Neisseria NOS, N. gonorrhoeae or N. meningitidis for the pure culture of Streptococcus faecalis.

The relative performance of the laboratory groups can be portrayed as shown, where the lines join groups whose performance did not differ significantly at the 95% confidence level. Table 2. Hematology - Best Applied Techniques

Constituent	Best Applied Techniques	% Using
Red Cell Count	All Coulter Models Kits	43.3
White Cell Count	All Coulter Models Kits	45.7
Hematocrit	Microhematocrit	75.9
Hemoglobin	All techniques applied equally well	100.0
Mean Corpuscular Volume	Impossible to judge	

Rank Order	Laboratory Group
Best Performance	Interstate JCAH Medicare Independent AAFP/ASIM
Worst Performance	Medicare Hospital

Conclusions

The data indicate that high volume laboratories may be more proficient than smaller laboratories, such as those which serve Doctors' Offices and Medicare Certified Hospitals. In microbiology, 7.6% of the Interstate laboratory determinations were incorrect, while 16.5% of the determinations by other large laboratories (JCAH and Medicare Independents) were incorrect. Thus, it would appear that the CDC proficiency testing program has considerably improved the microbiology performance of the enrolled laboratories. Conversely, clinical chemistry and hematology analyses by the Interstate laboratories were no better than comparable analyses by other large laboratories, many of whom do not engage in routine proficiency testing programs. This seems to indicate that the CDC proficiency testing programs in clinical chemistry and hematology have had relatively little effect upon the performance of laboratories participating in the program. This conclusion is further substantiated in a companion report.* It is particularly important to improve the effectiveness of these programs because the interlaboratory consistency of study participants with respect to clinical chemistry and hematology was too often insufficient to support monitoring of an individual's constituent concentrations over time. It appears that poor selection of techniques is an important factor in the low rate of acceptability of laboratory determinations.

Limitations

It must be clearly understood that the results of this survey are limited by four important considerations:

1. Because all of the laboratories participated on a purely voluntary basis, no straightforward extrapolation can be made to the larger universe of unsampled clinical laboratories.

2. It is probable that the results of this study do not represent routine laboratory performance for two reasons: (a) a laboratory probably would not volunteer if its management felt that to do so would be disadvantageous, and (b) the sample materials probably received special attention in many of the smaller laboratories which were unfamiliar with analyzing proficiency test samples.

^{*}Clinical Laboratory Performance Analysis Using Proficiency Test Statistics, NBS Report, NBSIR 73 197, 1973 (to be published).

3. The clinical chemistry test specimens were prepared by a dialyzation process which removes naturally occurring reducing agents and other substances. As a result, the accuracy of some methods, as applied to the test specimens, might differ from their accuracy in analyses of human serum.

4. The true constituent concentrations of cholesterol and the hematology constituents could not be exactly determined. For these constituents accuracy was assessed relative to the mean reference laboratory assays.

Recommendations

Satisfactory performance in a microbiology proficiency testing program conducted under the auspices of either Federal or other approved authorities should be a legislative requirement for all clinical laboratories analyzing microbiological specimens.

A Technical Advisory Committee consisting of government and professional society representatives should be established to identify the most accurate and precise analytical methods available and encourage their use by the largest possible number of clinical laboratories. Zones of acceptable performance for proficiency testing should be constructed in a manner which reflects the variability associated with the more accurate and precise methods and systems. In this way, failure to accept the recommended procedures would increase the risk of unacceptable performance ratings.

An experimental study should be undertaken to determine a better design for proficiency testing programs in clinical chemistry and hematology. An empirical description of the causes of inadequate laboratory work should be used in defining alternative testing strategies for consideration. This study should deal with such questions as frequency of sampling; feedback to participants; number of levels at which to test; long-term monitoring of intralaboratory variability; follow-up procedures on outlier values; and the criteria for scoring, ranking or rating laboratory performance and its medical usefulness. Until the results of this recommended study become available, it does not appear justified (or warranted) to alter the frequency of CDC proficiency testing in clinical chemistry and hematology.

ORM NBS-114A (1-71)					
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 73-162	2. Gov't Accession No.	3. Recipient	's Accession No.	
4. TITLE AND SUBTITLE	TLE AND SUBTITLE			5. Publication Date	
Executive Summary of	of A Proficiency Test Assess	ment of Clinical			
Laboratory Capabili	ity in the United States		6. Performing	3 Organization Code	
7 AUTHOR(S)			8. Performin	g Organization	
Peter W Finkel and	d Ted R Miller		NB	SIR 73-162	
9. PERFORMING ORGANIZAT	TON NAME AND ADDRESS		10. Project/	Task/Work Unit No.	
			4314457		
NATIONAL B DEPARTMEN WASHINGTON	UREAU OF STANDARDS T OF COMMERCE I, D.C. 20234		11. Contract	/Grant No.	
12. Sponsoring Organization Na	me and Address		13. Type of	Report & Period	
Division of Health	Evaluation		Covered		
Office of the Assis	stant Secretary for Planning	, and Evaluation	Final 3/	71 - 4/73	
Room 5526 HEW North	th, Education and Welfare h Building, Washington, D. (20201	14, Sponsori	ng Agency Code	
16. ABSTRACT (A 200-word or bibliography or literature su	less factual summary of most significan	t information. If docume	nt includes a	significant	
Executive summary	of a report abstracted as fo	11ows.			
The proficioncy of	a solostod somple of physic	view hogenital or	d indonon	dont	
laboratorios was as	a selected sample of physic	n ability to an	alvzo clir	ical chomistry	
and hematology com	plos and to identify microbi	fological organi	mc For	the accossment	
of clinical chomist	try and hometalogy proficion	cy the laborat	sills. FUI	around and	
determinations of	roup accuracy and group pro	icy, the faboration	Dires were	grouped and	
were performed to	dotormino rolativo accuracy	and provision of	f the teck	n allaryses	
procently applied b	by those groups. There was	and precision of	lifforonce	iniques	
confidence level in	by these groups. There was	he various labor		at the 95%	
Clinical chemistry	and homatology analysis	Ine various labor	istme the	Modicaro-	
Cortified Independe	and Hematology analysis, i	li cimical chem	d ICAU-Ma	mborg generally	
proved more precise	a than Dhysicians! Office a	d Modicaro-Cort	ified Hosr	sitel Laboratori	
However pope of the	a laboratory groups were si	in medicale-cerc.	rate to pe	mit the	
monitoring over tir	ne function in an indivi	dual nationatic	constituer	t concontration	
It would appear the	at noor selection of technic	ues was an impor	rtant cont	ributor to this	
low performance le	vel In hematology the Phys	icians' Office I	aboratori	as proved to be	
the least precise of	of the groups There was no	noticeable dift	ference ir	nrecision	
between participant	ts in the CDC proficiency te	sting program an	id non-nar	ticinants With	
respect to microbic	alogy 76% of the identific	tions by laborat	tories par	ticipating in	
the CDC testing or	ogram were incorrect, while	19.4% of all oth	er identi	fications	
were incorrect.					
17. KEY WORDS (Alphabetica)	lorder separated by semicolons)				
Accuracy: clinical	chemistry: homotology: modi	cal usofulnoss:	microbiol	om, proficione	
testing	chemistry, hematorogy, med	la crount	TV CLASS	21 NO OF PACES	
10. AVAILABILITT STATEME	1 11	(THIS RE	EPORT)	2. NO. OF PAGES	
X UNLIMITED.			CIEIED		
		UNCLAS	SIFIED		
FOR OFFICIAL I TO NTIS.	DISTRIBUTION. DO NOT RELEASE	20. SE CURI (THIS P.	FY CLASS AGE)	22. Price	
		UNCLAS	SIFIED		
L		UNCLAS	SITIED		

