Outdoor Performance of Plastics X. Final Update of Weathering Data

Walter J. Rossiter, Jr.

Center for Building Technology
Institute for Applied Technology
National Bureau of Standards

March 1973

Final Report

Prepared for
Manufacturing Chemists Association
1825 Connecticut Avenue, N. W.
Washington, D. C. 20009

OURDOOR PERFORMANCE OF PLASTICS

X. FINAL UPDATE OF WEATHERING DATA

Walter J. Rossiter, Jr.

Center for Building Technology
Institute for Applied Technology
National Bureau of Standards

March 1973
Final Report

Prepared for
Manufacturing Chemists Association
1825 Connecticut Avenue, N. W.
Washington, D. C. 20009

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

Abstract

Twenty plastics samples have been weathered in Arizona, Florida, and Washington, D. C. for 72 months. The weathering of these samples has been followed by measuring changes in the specimen's color, tensile, flexure, gloss, and haze properties. Computer-generated graphs of these changes with time are presented.

This is the final updating of the Manufacturing Chemists' Association's (MCA) project which studied the outdoor performance of plastics. Since 1966, twenty plastics samples (Table I) have been exposed outdoors at three different exposure sites (Table II) which represent varying climatic conditions encountered in the United States. The MCA project and preliminary results have been described in a series of National Bureau of Standards Reports. These reports [1-9]*, all entitled Outdoor Performance of Plastics, have the following subtitles:
I. Introduction and Color-Change [1].
II. Tensile and Flexural Properties [2].
III. Statistical Model for Predicting Weatherability [3].
IV. Significance of Climate [4].
V. Surface Roughness [5].
VI. Electrical Properties [6].
VII. Haze and Gloss [7].
VIII. First Update of Weathering Data [8].
IX. Second Update of Weathering Data [9].

Changes in those properties listed in the above subtitles were the means for determining the outdoor performance of the twenty samples. A computer was used for data storage and retrieval. Graphs of property vs. outdoor exposure time were generated by the computer. These graphs were reproduced in the various reports as the method of reporting property changes.

[^0]From the preliminary results, it was decided that color, tension, flexure, gloss, and haze would be the significant properties to follow for the remainder of the project. The samples remaining have now been exposed outdoors for 72 months. These five properties have been measured for each plastic. The physical testing was again performed by MCA member companies (Table III), and the test results sent here to the National Bureau of Standards for incorporation with the earlier data. Although these data were originally reported in three separate NBS reports $[1,2,7]$, the data through 72 months for the five properties are all presented in this single report.

Experimental details are not given.here; such details can be found in the earlier reports. Again, the data are presented as reproductions of the computer-generated graphs (Figures 1-81B). These graphs differ from the earlier ones in that the X-axis (time in months) has been expanded to 72 months. Thus, the data points are compressed when compared to those of the original graphs.

This report includes all previous data. Some plastics have failed in the field and obviously there are no additional data for these samples. Graphs with the expanded time have been reproduced for those samples for which there are no additional data. This report is meant to be a replacement for the two previous supplemental ones [8, 9]. The weathering of the plastics can be followed without reference to them. The graphs are identical except for the additional data.

The color data presented in the first report [1] were erroneous. These data were corrected in the first supplemental report [8]. No
comparisons can be made between the graphs for color change in the first report and any of the updates.

This report is only intended as a presentation of the new data. No discussion of the accumulated data is presented.

References

［1］＂Outdoor Performance of Plastics．I．Introduction and Color－Change＂， J．E．Clark，N．E．Green，and P．Giesecke，NBS Report 非9912，Sept． 1968.
［2］＂Outdoor Performance of Plastics．II．Tensile and Flexural Properites＂，J．E．Clark，G．E．Gulmer，R．C．Neuman，and J．A． Slater，NBS Report 非10014，March 1969.
［3］＂Outdoor Performance of Plastics．III．Statistical Mode1 for Predicting Weatherability＂，J．E．Clark and J．A．Slater，NBS Report非10016，Oct．1969．
［4］＂Outdoor Performance of Plastics．IV．Significance of Climate＂， J．E．Clark and C．Bal Krishna，NBS Report 非10156，Jan． 1970.
［5］＂Outdoor Performance of Plastics．V．Surface Roughness＂，J．E． Clark，C．Bal Krishna，H．C．Gunst，and J．R．Dagon，NBS Report非10179，March 1970.
［6］＂Outdoor Performance of Plastics．VI．Electrical Properites＂， J．E．Clark，J．A．Slater，and V．L．Bergeron，NBS Report 非10185， March 1970.
［7］＂Outdoor Performance of Plastics．VII．Haze and Gloss＂，J．E．Clark， C．Bal Krishna，G．C．Claver，and F．H．McTigue，NBS Report 非10188， March 1970.
［8］＂Outdoor Performance of Plastics．VIII．First Update of Weathering Data＂，W．J．Rossiter，Jr．and W．D．Hayes，Jr．，NBS Report非10479，September 1971 ．
［9］＂Outdoor Performance of Plastics．IX．Second Update of Weathering Data＇，W．J．Rossiter，Jr．，NBS Report 非10856，May 1972.

List of Twenty Plastics

Base Polymer	Plastic
Polyethylene	Translucent - 1 mil
	- 60 mil

Poly (methyl methacrylate) Clear - 60 mil

Poly (vinyl fluoride)
Clear - 1 mil

Poly (ethylene terephthalate)
Clear - 5 mil

Polyester/x-1inked
Clear - 60 mil

Poly (vinyl chloride)
Clear - 4 mil

- 10 mil
- 60 mil
$\mathrm{Ba}-\mathrm{Cd}$
Clear - 4 mil
- 10 mil
- 60 mil

Sn
Clear - 60 mil
White - 4 mil

- 10 mil
- 60 mil

Ba-Cd
White - 4 mil

- 10 mil
- 60 mil

Sn
White - 60 mil

Table II

Exposure Sites

Name and Location ${ }^{*}$
Desert Sunshine Exposure Tests, Inc. Phoenix, Arizona

Letter Designation for Graphs
A

 F
Miami, Florida

O1d NBS Site
Connecticut \& Van Ness Streets W Washington, D. C.

* Samples were placed on the exposure racks facing south at 45° from the horizontal.

Property	Company \& Location
Tensile Flexure	American Cyanamid Company Stamford, Connecticut
Haze	W. R. Grace \& Company Clarksville, Maryland
Gloss	Monsanto Company Indian Orchard, Massachusetts

List of Figures

Numbers

$1-20$	Color-change, $\triangle E$ (De1ta E)
$21-40$	Ultimate Elongation (\% of Initial Value)
$41-48$	5 Percent Stress (PSI)
$49-68$	Gloss (in percent)
$69 A-81 A$	Haze at 421 nm (in percent)
$69 B-81 B$	Haze at 550 nm (in percent)

FICURE 1
colok change - deltale,

COLOR CHANGE - DELTAIEI.

COLUR GHANGE - RELTAIEI
PLASTIS 3
$A=A R I Z O N A \quad F=F L O R I D A \quad W=W A S H I N G T O N$.

FIGURE 5

COLOR CHAHGE - DELTAIEI PLASTIC S AEARIZONA FAFLORIOA WEWASHINGTON

COLOR CHANGE OELTA(E)

FIGURE 9

AEARIZONA FEFLORIOA HEWASHINGTON

colur change - deltales.

(- note. 1 points fell outside the specifieo himits and here omittcu.

$\bigcirc-\frac{2}{2} \stackrel{0}{4}$
FIGURE 13

GOLOR CHANGE - DELTA(E)

FIGURE 15
COLOR CHANGE - DELTA(E)

FIGURE 16

COLOR CHANGE = DELTA (E)
PLASTIC 19
POLYVINYL CHLORIDE - D (60 MIL)

POLYVINYL CHLORIDE - M (60 MIL)

ultimate elovgation (Depefnt me initial value)

FIGURE 26
A=ADIZONA FEFLARIDA WEWASHINETON

ULTIMATE ELONEATION (DERCFAT AE INTTIAL VALUE)

POLYVINYL CHLORIDE - B (4 MIL)
Initial value = 198.0% -
-
-
-
-
JLTI:ATF. ELOVAATION (PFRCFNT AF INITIAL VALIIF.)

$90.00+$
50.004

HIGUKE 30

UTIMATE ELONFATION (PERCFNT OF INITIAL VALUE)

FIGURE 34

ULTIMAT - ELONAATION (PERCENT OF IVITIAL VALUE)

PIGURE 37

POLYVI TIL CHLORIDE $-\mathrm{D}(60 \mathrm{MIL})$
INITIA. VALUE $=50.7 \%$

FIGURE 41

5 PERCENY STRESS (PSI)
AOFASBONA FEFLORBDA MEHASHINGPON

ELGURE 43

=																								
-																								
-																								
POLYVINXL LHLORIDE $=\underline{C}(60 \mathrm{MLL})$																								
-																								
\bigcirc																								
\sim																								
-																								
80.00*																								
-																								-
															\cdots									\bigcirc
																								-
																								-
-																								
-																								
15.000																								
080																								
- 0°																								
-0																								
-																								
-																								
-																								
-																								
10.00*																								
-																								
-																								
-																								
-																								
\sim																								
- ...																								
-																								
-																								
5.00*																								
-																								
\cdots																								
-																								
-																								
-																								
-																								
-																								
\cdots																								
-																								
. 00																								
A PR66		6.0		12.0		18.0		24.0		30.0		36.0		+2.0		40.0		54.0		60.0		4600		72.0
	$\stackrel{4}{4}$	\triangle	$\stackrel{3}{4}$	A	$\stackrel{\Delta}{4}$	\bigcirc	${ }^{4}$	$\stackrel{+}{8}$	$\stackrel{4}{4}$	$\stackrel{\square}{\square}$	${ }^{\circ}$	${ }^{*}$	$\stackrel{4}{4}$	*	0	$\stackrel{\square}{*}$	$\stackrel{4}{6}$	$\stackrel{1}{0}$	0	\triangle	\cdots	$\stackrel{1}{0}$	\triangle	A
	JUL	OCi	JAN	APR	JU6	$0 ¢ \mathrm{~T}$	J4N	4 PR	$J^{\prime} U_{L}$	$0 C 7$	JAN	$A P R$	JUL_{6}	OCT	JAN	$A P R$	$\mathrm{JUL}^{\text {d }}$	oct	JAN	APR	J_{L}	0 Cl	JAN	$\triangle D^{\prime}$
				$A 7$				68				69				70				71				72

PLASPIC 15

PIGURE 46

5 PERCENT SPRESS IPSI
AEARIZONA FOFLORIDA MEWASHINGTON

(1Sd) SS3ydS AN3Dy3ad 5
PLASTIC 20
AEARIZONA FEFLORIDA WGASMINGTON

POLYYINYL FLUORIDE (1 MIL)

150.004

$120.0 n 4$
00.004
50.004
${ }^{-}$
GL, GS (IV DERCENT)

- is (in areoce.jT)

POLYVINKL CHLORTDE - B (4 MIL)

POLYVINYL CHLORIDE $-\mathrm{B}(10 \mathrm{MLL})$
ज."งS

$$
\begin{array}{r}
150.00+ \\
= \\
= \\
= \\
= \\
= \\
= \\
120.00+
\end{array}
$$

GLOSS (IN DERCFAT)
POLYVINYL CHLORIDE - C (4 MIL)

PIGURE 60
GLOSS (IN DFDCFMT)

GLOSS (IN PERCENT)-

-GLOSS IIN PEPCENTS

FIGURE 64

A=ARIZONA FEFLORIDA WEWASHINGTON

POLYVLNYL CHLORIDE - D (60 MIL)

IIGURE 69A
HAZE AT 42ONM (IN PERCENT)

FICURE 69B

EIGURE 70A

HAZE AT SSONM IIN PERCENTI PLASTIC 2

HAZE AT 4zCNM ifn percent, Plastic 3

PIGURS 72 B

HIZE AT 42 ONM IIN PERCENT
PLASTIC 5
FIGURE 73A

FIGURE 74A

HAZE AP SSONM (IN PERCENT) PLASTIC 6
AEARIzOnA FEFLORBOA memashingion

PIGURE 75B
HAZE AT 55OH\& (IN PERGENT) PLASTIC 7

FIGURE 76B

HAZE AT $420 N H$ (IN PERCENTI

HAZE AT. 55ONM IIN PERCENTI , PLASTIC 9

FZGURS 7A

HAZE AY. 550 NH (IN PERCENT)

RIGURE 79A

AEARILUNA FEFLORIDA WEWASHINGTON

FIGURE BCA

FIGURE BLA

AGARIZONA FEFLORIUA WEWASHINGION

EIGURE 81B

U.S. DE JT. OF COMM. Ei?! ?~RAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBSIR 73-146	2. Gov't Accession No.	3. Recipient's Accession No.
4. TITLE AND SUBTITLE Outdoor Performance of Plastics. Z. Final Update of Weathering Data			5. Publication Date 6. Performing Organization Code
7. AUTHOR(S) W. Rossiter			8. Performing Organization NBSIR 73-146
9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			10. Project/Task/Work Unit No. 4616160 11. Contract/Grant No.
12. Sponsoring Organization Name and Address Manufacturing Chemists Association 1825 Connecticut Avenue, N. W. Washington, D. C. 20009			13. Type of Report \& Period Covered Final Report 1972 14. Sponsoring Agency Code
15. SUPPLEMENTARY NOTES			

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

Twenty plastics samples have been weathered in Arizona, Florida, and Washington, D. C. for 72 months. The weathering of these samples has been followed by measuring changes in the specimen's color, tensile, flexure, gloss, and haze properties. Computer-generated graphs of these changes with time are presented.
17. KEY WORDS (Alphabetical order, separated by semicolons) Manufacturing Chemists Association (MCS); performance of plastics outdoors; plastics; weathering of plastics
18. AVAILABILITY STATEMENT
[\times UNLIMTED.FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS.

19. SECURITY CLASS (THIS REPORT)	21. NO. OF PAGES		
UNCL ASSIFIED		\quad	
:---:			
20. SECURITY CLASS (THIS PAGE) UNCI.ASSIFIED			

[^0]: * Numbers in brackets refer to references which are found in the back of this report.

