NBSIR 73-139 (R)

A Preliminary Investigation of the Effect of Humidity on the Ignition, Heat Release, and Smoke Density Tests for Typical Room Finishing Materials

W. J. Parker, D. C. Brackett, R. E. Willard, R. H. Zile

Center for Building Technology Institute for Applied Technology National Bureau of Standards Washington, D. C. 20234

March 1973

Interim Report

Prepared for

Naval Ships Systems Command Department of the Navy Washington, D. C. 20360

A PRELIMINARY INVESTIGATION OF THE EFFECT OF HUMIDITY ON THE IGNITION, HEAT RELEASE, AND SMOKE DENSITY TESTS FOR TYPICAL ROOM FINISHING MATERIALS

W. J. Parker, D. E. Brackett, R. E. Willard, R. H. Zile

Center for Building Technology Institute for Applied Technology National Bureau of Standards Washington, D. C. 20234

March 1973

Interim Report

This report is to be superseded by a future publication which will receive general distribution and should be cited as a reference. Please consult the NBS Office of Technical Information and Publications to obtain the proper citation.

Prepared for Navy Ships Systems Command Department of the Navy Washington, D. C. 20360

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

A Preliminary Investigation of the Effect of Humidity on the Ignition, Heat Release, and Smoke Density Tests for Typical Room Finishing Materials

by

W. J. Parker D. E. Brackett* R. E. Willard R. H. Zile Building Fires & Safety Section Structures, Materials and Life Safety Division Center for Building Technology Institute for Applied Technology National Bureau of Standards

ABSTRACT

Nine commonly used room finishing materials were subjected to the heat release and ignition tests under development at NBS and to the NBS smoke density test. Each material was tested with three different moisture contents representing 50 percent relative humidity(RH), 0 percent RH, and one intermediate RH value. The purpose of the tests was to gain experience with the test methods under development in order to determine whether instrumental or procedural modifications are needed and (2) to examine the problem of testing a material at 50 percent RH and using it under much lower humidity conditions.

Some procedural changes are recommended for both the ease of ignition and the heat release rate tests. The rates of heat release were found to be as much as 50 percent higher for the dried specimens than for those conditioned at 50 percent RH. The ignition times were found to decrease by as much as 50 percent after being dried.

*Manager, Building Code Services, Gypsum Association

i

Key Words: building materials, fire tests, heat release, ignition, smoke density

LIST OF TABLES

I	Data on Gypsum Board
II	Data on Gypsum Board with Fire Retardant Treated Vinyl Latex Paint
III .	Data on Gypsum Board with Two Coats of Latex Paint
IV	Data on Gypsum Board with Predecorated Vinyl Film
۷	Data on 4-Mil. Lauan Panel
VI	Data on 1/4-in. Tempered Hardboard
VII	Data on 1/2-in. Painted, Wood Fibered Insulation Board
VIII	Data on 25/32-in. Red Oak
IX	Data on 25/32-in. Red Oak + 3 Coats of Varnish
X	Summary of Test Results
XI	Materials Listed in Order of Decreasing Hazard

iii

Y

LIST OF FIGURES

- Weight Changes in Oak Specimens as a Function of Temperature and Time
- 2. Ease of Ignition Apparatus
- 3. Heat Release Rate Calorimeter

TABLE OF CONTENTS

•	Page
Abstract	. i
ist of Tables	. iii
ist of Figures	. iv
.O Introduction	. 1
2.0 Materials	. 2
3.0 Moisture Content	. 2
.O Descriptions of Tests	. 4
4.1 Ease of Ignition	. 4
4.2 Heat Release Rate	. 4
4.3 Smoke Density	. 5
5.0 Test Data	. 5
5.0 Discussion of Results	. 6
6.1 Ease of Ignition	. 6
6.2 Heat Release	. 8
6.3 Smoke Generation	. 10
6.4 General	. 10
0 Conclusions	. 11
3.0 Recommendations for Future Work	. 12
References	. 14
ppendix	. 15

A Preliminary Investigation of the Effect of Humidity on the Ignition, Heat Release, and Smoke Density Tests for Typical Room Finishing Materials

1.0 INTRODUCTION

The Building Fires and Safety Section of the Center for Building Technology at the National Bureau of Standards is active in the design of fire test methods for building materials. The radiant panel has been accepted as ASTM Standard Test $E-162^{1*}$. A test for potential heat and the smoke density chamber $\frac{3}{3}$ are being considered for adoption as ASTM Standards. Tests for the ease of ignition and the rate of heat release are under development. Additional tests on ignition and flame spread are anticipated. The tests are normally performed at NBS on specimens which have equilibrated in a 68 °F atmosphere with a relative humidity of 50 percent. Materials which may indicate a low hazard under these conditions might prove to be a high hazard where the relative humidity in a typical room is much lower. In order to gain some experience with the ease of ignition and heat release rate tests on typical interior finishing materials and to determine the sensitivity of these tests to the relative humidity, the measurements described in this report were conducted. Tests for the sensitivity of optical density of the smoke to the relative humidity were also included.

Since a fairly large amount of materials were examined in a short time, the number of repetitions was necessarily small. Hence these measurements must be considered preliminary. Nevertheless, some conclusions on the effect of moisture can be drawn and enough information * Superscripts refer to the references to the literature.

can be provided to form the basis of more comprehensive tests at a later date.

2.0 MATERIALS

The materials examined included solid red oak 25/32 in. thick with and without three coats of floor varnish; 1/2-in. regular gypsum board with one coat of fire retardant vinyl latex paint (Note: the undercoat recommended by the manufacturer was not used on these specimens), with two coats of flat latex paint, with a predecorated 10 mil vinyl coat, and with an uncoated surface; 4-mil prefinished Lauan mahogany plywood; 1/2-in. natural wood fiber insulating board; and 1/4-in. tempered hardboard. All of these materials were tested without any backing. The painting of the gypsum board and the varnishing of the oak were done in the laboratory.

3.0 MOISTURE CONTENT

In order to find the length of time which specimens must be kept in the conditioning room to achieve a constant weight at 50 percent relative humidity and to determine the time and temperature requirements to produce dry specimens, the following measurements were made on samples of oak.

The weight change as a function of conditioning time is illustrated in figure 1. In Run "A" the specimens were cut as received from boards obtained from a local lumber yard and put in a 60 °C oven. A constant weight loss of 16percent was achieved after five days. The oven temperature was increased to 115 °C after seven days and another 4 percent

was lost within four days. Another group of specimens was conditioned to a constant weight loss in a room whose relative humidity was maintained at 50 percent and were then heated at 115°C in an oven for 24 hours with a weight loss of 7-1/2 percent. It took 17 days in the 50 percent RH conditioning room (Run "B") to bring their moisture content back up to a constant 4-1/2 percent. Part of the weight loss at 115°C was not recovered. In Run "C" the specimens from the 50 percent RH conditioning room were dried in a desiccator for 30 days before achieving a 6-1/2 percent weight loss. In Run "D" specimens from the same lot were dried in the oven at 60 °C for six days with a 6.7 percent weight loss.

From these preliminary measurements it appears that the specimens to be equilibrated at 5C percent RH should be in the conditioning room for at least 30 days and that dry specimens can be produced by heating materials either directly from the conditioning room or the lumber yard in a 60 °C oven for six days. The specimens heated in the oven at 115 °C appeared to have a greater weight loss than would be achieved by a building material exposed to low humidity atmospheres in practice and hence the faster drying time is not recommended. However, it is possible even with a low rate of evaporation that after many years of exposure in a low humidity atmosphere at ambient temperature, the greater weight loss could be achieved. For the purposes of these experiments, the specimens were assumed to be dry after heating at 60 °C for six days.

Each of the materials were tested under three moisture conditions: equilibrated at 50 percent relative humidity, dried in an oven at 60°C for 24 hours, and dried in an oven at 60 °C for six days. The middle

treatment was intended to produce an intermediate relative humidity condition. However, it does have the disadvantage of a non-uniform moisture distribution with the surface layers being drier than the interior.

For a more refined study, it is suggested that specimens representing intermediate relative numidity conditions be maintained in a constant humidity atmosphere until a constant weight loss is achieved. The conditioning times would vary with the materials and its thickness.

4.0 DESCRIPTIONS OF TESTS

4.1 Ease of Ignition

The ease of ignition test⁴ utilized a pair of specimens 5-1/2 in. x 6 in. facing each other at a distance of 7/8 in. apart. They are exposed to a heat flux of 3 W/cm² produced by flame contact. The time to sustained ignition, i.e. the exposure time required to produce sustained flaming, is found by trial and error. The specimen is exposed for a predetermined period of time and the presence or absence of flaming is noted. The presence of flame at any point on the specimen one minute after exposure flame has been removed constitutes sustained ignition. The exposure time is then increased or decreased appropriately until the ignition time is bracketed. The ease of ignition test apparatus is represented schematically in figure 2.

4.2 Heat Release Rate

In the heat release rate calorimeter the front surface of a vertical specimen 4-1/2 in. x 6 in. which represents a small section of a wall is exposed to a thermal radiation level of 6 W/cm^2 from

three radiant panels similar to the one used in the radiant panel test². The edges of the specimen are shielded and the rear surface is separated from a water cooled brass block by an air space. The brass block represents a small section of the wall behind the one represented by the specimen. The heat removed from the rear surface of the specimen is measured by the rate of temperature rise in the cooling water. A propane burner inside of the calorimeter produces heat at a considerably greater rate than that of the burning specimen. When the specimen is burning, the propane flow is automatically reduced by the amount necessary to maintain the flue gas temperature constant. The rate of heat release through the front surface of the specimen is determined from the reduction in propane flow. The heat released at the front surface only is quoted in this report. The calorimeter is represented schematically in figure 3.

4.3 Smoke Density

In the smoke density chamber a specimen 3 in. x 3 in. is exposed to a thermal radiation level of 3 W/cm² from an electrical heating element. A small pilot flame may be employed to ignite the pyrolysis gases. However, the smoldering mode was used in the measurements reported here and the pilot was omitted. The smoke density chamber is 3 feet high, 3-feet wide, and 2-feet deep. The smoke density is measured over a vertical path from the floor to the ceiling with a S-4 response phototube and a tungsten light source.

5.0 TEST DATA

The data collected on the tests are included in Tables I through

IX. The data for each material are given in separate tables. The average moisture content is quoted along with the drying conditions at the left of the table. The exposure times which were used to determine the sustained ignition time are tabulated along with the number of sides of the specimen that ignited and the time of sustained flaming if it was less than 60 seconds. The estimated values of the times to ignition are stated. Each ignition time is based on six pairs of specimens. The calorimeter and smoke chamber data are based on three or four repetitions which are listed in the table followed by their average values. The exception is the total heat release which is based on only one measurement in order to avoid the long burning times.

The average values of the most important parameters are compared in Table X for each of the moisture conditions. Conditions 1, 2, and 3 are equilibration at 50 percent RH, held at 60°C for 24 hours and held at 60 °C for six days, respectively. The numbers in parentheses below the ignition times represent the percent moisture content for each material under conditions 1, 2, and 3. These moisture contents were assumed to be the same for the heat release and smoke specimens.

CY

6.0 DISCUSSION OF RESULTS

6.1 Ease of Ignition

None of the coated gypsum board specimens sustained flaming in the ease of ignition test. The uncoated gypsum boards exhibited sustained flaming but only within a narrow range of exposure times. For longer times the fuel vapors would all be driven out during the exposure period. There appears to be a reduction in the ignition

time with increasing moisture content for the gypsum board. Even when flaming is sustained it is limited to small areas where the paper is in poor thermal contact with the substrate. Otherwise most of the heat required for pyrolysis is simply conducted into the comparably inert gypsum material and the flame cannot sustain itself without external sources of heat. The random nature of these areas of poor thermal contact can account for some of the scatter in the ignition data for gypsum board.

The ease of ignition test does not seem to provide any useful information regarding the fire hazard of gypsum board. While the test indicates that gypsum board ignites easier than red oak, the small flamelets were inconsequential compared with the much more intense flaming exhibited by the other materials when sustained flaming was established. The local flames on the gypsum board shortly extinguished themselves without involving a large percentage of the rest of the surface whereas the other materials after flaming for one minute burned to completion. As a result of these tests it seems desirable to add the additional restriction of a minimum area of flaming to the criteria for sustained flaming. For example, sustained flaming could be said to have occurred if there is a flaming area at least 2 inches wide at the end of 60 seconds. This width requirement is sufficient to exclude the small flamelets described above. Under these conditions only those specimens which burned to completion would have satisfied the criteria for sustained ignition.

All of the materials tested except for gypsum board showed a decrease in ignition time with decreasing moisture content. In some

cases these decreases were as much as 50 percent. This is due to the extra heat required to vaporize the water in moist specimens and to the greater flow of combustible vapors necessary to make up for the dilution by the water. There are other factors present in the case of the gypsum board that are apparently more important than the increase in heat content.

6.2 Heat Release Rate

The variation in the heat release rates with moisture content was within the rather large scatter of data except in the three following cases. The oak specimens with the three coats of varnish showed a substantial increase in the peak heat release rate with decreasing moisture content although there was no change in the highest one minute average heat release rate. The tempered hardboard and the Lauan paneling showed an increase in both the peak heat release rate and the highest one minute average heat release rate with decreasing moisture content. The observed increases in heat release rate with decreasing moisture content were as high at 50 percent. Both the tempered hardboard and Lauan paneling were thin enough to experience an appreciable temperature rise on the rear surface by the end of one minute.

The peak and the highest one minute average heat release rates were essentially the same, except for gypsum board and the varnished oak, indicating a nearly constant rate of heat release over the one minute duration. For those finished materials with a thin coating which is more combustible than the substrate, the time interval over which the averaging takes place has a strong influence on their ranking as to heat release rate. Although one minute has been

tentatively chosen as the averaging time in the heat release rate calorimeter based on the time required to ignite a typical building material by flame contact, the exact time is still rather arbitrary. The assignment of an arbitrary averaging time in which a slight change could qualify or disqualify a material would certainly be unacceptable from an industrial point of view. The heat release rate of all of the materials tested was nearly constant over a 15 second time interval. If the averaging time were reduced to 10 seconds the average heat release rate would be approximately equal to the peak heat release rate and independent of small changes in the averaging interval.

The specification of a finite averaging interval would still serve the purpose of eliminating the false identification of electrical or mechanical transients in the measuring system as the peak heat release rate. The peak and the highest 10 second average heat release rates are indistinguishable for the materials tested on this project. The peak heat release rate for the dried plain gypsum board was very close to that of the solid oak.

This would indicate a similar effect with regard to the heat release rate. However, the total heat release from the oak was over 30 times as high as that from the gypsum board. For building code purposes both the peak heat release rate and the total heat release should be quoted for a particular material. The limits should be established for each of these heat release parameters. For eventual use in the engineering design of buildings for fire safety, the complete curve of heat release rate versus time will be required.

đ

Because of the limited amount of data obtained the expected trend

between the total heat release and the moisture content was not apparent. While the total heat released should be independent of the moisture content, the division of heat between the front and rear surfaces of the specimen could be altered. The total heat release quoted in the tables of this report refer only to that portion which is released at the front surface. Also the vaporization of the water consumes some heat that must be subtracted from the total.

6.3 Smoke Generation

There appears to be a significant increase in the smoke production with an increase in moisture content in the oak specimens, both varnished and unfinished. No trends are noted in the smoke production for the other materials tested relative to moisture content.

6.4 General

There is a scatter of up to 50 percent in the heat release data for a particular material at the same moisture content partly due to the performance of the measurement system and partly due to the variability of the materials including coating thicknesses. An extensive evaluation of the precision and accuracy of the heat release rate calorimeter is planned.

:*

In Table XI the materials are ranked in descending order of their fire hazard in regard to ignition, peak heat release rate, total heat release and smoke density. The data for 50 percent RH was used for this ranking. The large difference in order illustrates the problem of designing a single fire test which will rank the materials in a unique order of fire hazard. The ranking orders would also depend to some extent on the relative humidity.

7.0 CONCLUSIONS

(1) Drying the specimens at 60 °C to a constant weight in the oven results in the same weight loss as drying them to constant weight in a desiccator at room temperature. This takes about six days for a 25/32 - in. thick oak board at 60°C.

(2) The criteria for sustained ignition in the ease of ignition test should include a flaming area with a minimum width of two inches as well as a minimum flaming time of one minute. This would allow the presence of small flames which are too small to spread to other areas or to ignite other combustibles.

(3) With this additional requirement gypsum board coated and uncoated will not sustain ignition in the ease of ignition test.

(4) All of the other materials sustained ignition by the above definition and showed an increase in ignition time with moisture content.

(5) There was a significant increase in the heat release rate due to drying for some of the materials. For others the effect was within the present limits of error of the calorimeter.

(6) The ease of ignition and heat release rate tests should be run on materials conditioned to the lowest relative humidity that they would be likely to encounter in practice. (To be more exact, they should have the lowest moisture content encountered in practice which would depend on both the relative humidity and the ambient temperature.)

(7) In addition to supplying a curve of heat release rate versus time for analytical purposes, the results of the heat release

rate test should be characterized by two numbers for potential use in the building codes. These would be the peak heat release rate and the total heat released. In order to eliminate confusion with the electrical and mechanical transients in the measurement system, the peak value should be defined as the highest 10 second average. The actual peak and the highest 10 second average are indistinguishable for all of the materials tested in this project.

(8) Limits should be established for both the peak heat release rate and the total heat release.

(9) The differences in the relative ranking of the materials with regard to fire hazard by the ignition, heat release rate, total heat release, and smoke tests indicate the impossibility of designing a single test on which to classify the fire hazards of materials.

(10) The large scatter in the data included in this report indicates the need for improvements in the precision of the test methods.

8.0 RECOMMENDATIONS FOR FUTURE WORK

This preliminary set of tests should be repeated on an equivalent set of specimens chosen to include as large a variety of popular finishing materials as possible. Flame spread with the radiant panel, potential heat, and smoking in the flaming mode should be included among the tests as well as projected tests on critical incident heat flux for spontaneous ignition and critical incident heat flux for flame spread. The heat flux passing through the rear of the specimen as well as the heat leaving through the exposed surface should be

measured. The causes of the significantly large scatter in the data should be tracked down to either material variability or poor instrument precision or a combination of both.

Examine some small scale enclosure fires with these finishing materials as an exercise in determining how to evaluate the results of the tests in terms of a real enclosure fire. Use these materials to refinish a room in each of several houses which are scheduled to be burned down by the fire department. Compare the predictions obtained by use of the fire test results with temperature, heat flux, and smoke measurements in the full scale fire.

CY

REFERENCES

- Robertson, A. F., Gross, D. and Loftus, J. J., "A Method for Measuring Surface Flammability of Materials Using a Radiant Energy Source," ASTM Proc. <u>56</u>, 1437-1453, (1956).
- Loftus, J. J., Gross, D. and Robertson, A. F., "Potential Heat-A Method for Measuring the Heat Release of Materials in Building Fires," ASTM Proc. <u>61</u>, 1336-1348, (1961).
- Gross, D., Loftus, J. J. and Robertson, A. F., "Method for Measuring Smoke from Burning Materials," ASTM Special Technical Publication No. 422, (1967).
- 4. Parker, W. J., "The Development of a Test for Ease of Ignition by Flame Impingement," NBS Report 10495, (February 1972).
- 5. Parker, W. J. and Long, M. E., "Development of a Heat Release Rate Calorimeter at NBS," NBS Report 10462, (March 1972).

APPENDIX

Conversion Factors for Units Used in the Text

ł

÷

1 Btu/(ft².sec) = 1.14 W/cm²
1 inch = 2.54 cm
1 mil = 2.54 x 10⁻³ cm
1 foot = 0.305 m
140 °F = 60 °C
239 °F = 115 °C

. .

Treatment	Eas (3	Ease of Ignition (3 Watts/cm ²)	tion 2)	Cal	Heat Release Rate Calorimeter (6 Watts/	ease Rate (6 Watts/cm ²)		Smoke (Smoldering)	Density (3 Vatts/cm ²)
	Exposure Time	Sides Ignited	Sustained Flaming	Peak Heat Release Rate	Highest One Minute Average	Time to Ignition	Total Heat Release	Specific Optical Density	Time to Peak
	(Sec.)		(Sec.)	(Watts/cm ²)	Rate (Watts/cm ²)	(Sec.)	(Joules/cm ²)	(Ds)	(Sec.)
50% R. H. AVERAGE 8.1% MOISTURE CONTENT	96 100 112 115	000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.58 8.67 8.75 8.75	8.08 5.72 4.57	26.9 29.4 27.0	352	64 64 68	540 540 480
	Time to	Ignition	= 103 Sec.	. 8.7*	6.1*	27.7*	352*	65*	520*
1 DAY AT 60 AVERAGE 7.1% MOISTURE CONTENT	72 84. 38 115 120 132	0000-0	0000000	17.9 20.2 15.3 17.18	5.72 6.86 5.72 5.23	18.4 19.8 21.2 23.2	330	71 73 72	523 540 516
	Time to	Ignition	= 118 Sec.	+9.71	5.9*	20 . 6*	330*	72*	528*
6 DAYS AT 60°C AVERAGE 0% MOISTURE CONTENT	115 120 125 135 137 139		000 e a e a ^ 000 e a e a	17.89 15.02 17.89	5.72 4.43 5.72	23.1 23.5 23.5	339	63 74 72	420 456 438
	Time to	Ignition	= 136 Sec.	16.9*	5.3*	23.4*	339*	414	436*

Table I Data on Gypsum Wallboard 1/2 Inch Thick

•

* Average Value

Table II Data on Gypsum Wallboard 1/2 Inch Thick (W/One Coat Vinyl Latex Fire Retardant Paint)

Treatment	Ease (3 1	e of Ignition Watts/cm ²)	tion 2)	Cal	Heat Release Rate Calorimeter (6 Watts/cm ²)	e Rate latts/cm ²)		Smoke [(Smoldering)	Density (3 Watts/cm ²)
	Exposure Time	Sides Ignited	Sustained Flaming	Peak Heat Release Rate	Highest One Minute Average	Time to Ignition	Total Heat Release	Specific Optical Density	Time to Peak.
	(Sec.)		(Sec.)	(Watts/cm ²)	Rate (Watts/cm ²)	(Sec.)	(Joules/cm ²)	(Ds)	(Sec.)
50% R. H. AVERAGE 4.4% MOISTURE CONTENT	130 140 147 155 165 180	00000	000000	10.72 12.16 10.72	5.72 5.57 6.86	9.7 10.5 11.5	463	94 104 95	330 342 300
	Time to	Ignition	8 11	11.2*	×1*9 .	10.6*	463*	+25	324*
1 DAY AT 60°C AVERAGE 3.7% MOISTURE CONTENT	90 95 105 120 130	000000	00000	10.15 8.58 10.72	6.86 6.86 5.57	17.3 11.8 20.0	339	97 98 104	360 330 372
	Time to	Ignition	8	9,8*	6.4*	16.4*	339*	*66	354*
6 DAYS AT 60°C	90 95 110 1110 1110	000000	000000	10.72 9.30 10.01	6.86 4.79 1.57	12.6 9.9 11.6	532	95 88 88	270 - 240 240
	Time to	Ignition	3	10.0*	5.4*	11.4*	532*	*06	250*
~									

* Average Value

.

Data on Gypsum Wallboard 1/2 Inch Thick (W/2 Coats Flat Latex Paint) Table III

(3 1.atts/cm²) (Sec.) 452* Time to Peak 540* 490* 414 480 492 570 540 510 510 480 480 Smoke Density Smoldering) Specific Optical Density 57* 54* (sa) 60* 55 56 50 50 50 (Joules/cm²) 248.8 205.9 235.9 205.9 224.1 Release 352* 330* Total Heat 352 330 Heat Release Rate Calorimeter (6 Watts/cm²) Ignition (Sec.) 26.2* 24.0* Time 31.4 23.0 29.5 21.0 27.3 21.9 21.9 24.8 16.4 20.6 21.0 28.2 20.8 4 5 (Watts/cm²) Minute Average Highest One 5.72 5.14 4.57 3.50 4.7* 5.1* 4.57 4.14 3.43 3.93 3.43 3.9* 5.14 4.57 5.07 5.72 Rdice (Watts/cm²) Peak Heat Release Rate 25.36 20.0 26.23 26.23 22.0 18.86 25.36 15.0 20.3* 23.0* ഹ 15.0 26.1 26.4 20.0 15.0 20. Sustained Flaming (Sec.) 000000 8 8 8 ၀၈ဖက္၀၀ 040000 Ease of Ignition (3 Watts/cm²) H H ŧ Sides Ignited to Ignition Ignition to Ignition 00--00 00-0-- 0 0 00 Exposure Time t t (Sec.) 100 1115 1120 145 Time Time Time 100 95 97 100 108 1108 DAYS AT 60°C AVERAGE 0% MOISTURE CONTENT / AT 60°C AVERAGE MOISTURE CONTENT MOISTURE R. H. AVERAGE ţ CONTENT Treatment 1 DAY 7.1% 6.3% 50% ە

Average Value

*

Data on Gypsum Wallboard 1/2 Inch Thick (Covered W/010 Inch Vinyl)	ion Heat Release Rate Smoke Density (Smoldering) (3 Fatts/cm ²)	Sustained Peak Heat Highest Time Total Specific Time Flaming Release One to Heat Optical to Rate Minute Ignition Release Density Peak	(Sec.) (Watts/cm ²) (Watts/cm ²) (Sec.) (Joules/cm ²) (Ds) (Sec.)	$ \begin{smallmatrix} 0 & 6.73 & 4.57 & 15.0 & 626 & 122 & 486 \\ 0 & 8.86 & 5.72 & 16.1 & 122 & 540 \\ 0 & 10.01 & 3.64 & 15.0 & 122 & 540 \\ 0 & 10.01 & 6.77 & 16.5 & 16.5 & 510 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & $	∞ 8.9 5.2 15.6 626* 123* 512	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	∞ 8 .3 5.8* 16.5* 532* 121* 696*	0 8.15 6.86 8.0 433.3 112 456 0 8.87 5.43 13.5 433.3 120 486 0 11.4 10.29 13.0 433.3 120 486 0 0 11.4 10.29 13.0 433.3 105 522 0 0 0 13.0 433.3 105 522	8
	Heat Re Calorimeter	Peak Heat Release Rate	(Watts/cm ²)		2.		2		9°2* 7.5
	Ease of Ignition (3 Watts/cm ²)	Exposure Sides Sustain Time Ignited Flamin	(Sec.) (Sec.	95 0 0 0 0 115 0 0 0 1125 0 0 0 1137 0 0 0 1137 150 0 0 0 1137 150 0 0 0 0 1137 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Time to Ignition = ∞	95 105 110 117 117 117 0 117 0 0 117 0 0 0 0 0	Time to Ignition = ∞	65 75 85 95 115 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Time to Ignition = ∞
•	Treatment			50% R. H. AVERAGE 7.1% HOISTURE CONTENT		1 DAY AT 60°C AVERAGE 5.8% MOISTURE CONTENT		6 DAYS AT 60°C AVERAGE 0% MOISTURE CONTENT	-

Table IV Data on Gypsum Wallboard 1/2 Inch Thick (Covered W/010 Inch Vinyl)

.

* Average Value

Data on Lauan Mahogany Paneling 3/16 Inch Thick (Prefinished W/4 Mil) Table V

(3 Vatts/cm²) (Sec.) to Peak. Time 370* 312* 356* 366 354 348 380 378 372 330 336 336 Smoke Density Smoldering) Specific Optical Density 380* 406* 375* (s) 413 438 369 355 390 380 366 396 380 (Joules/cm²) Release** Total Heat Ignition Calorimeter (6 Watts/cm²) (Sec.) 9.1* 10.0* 5.9× Time 11.2 8.2 9.2 11.4 9.2 8.4 11.2 5.8 6.0 6.1 t t Heat Release Rate ** Specimens fell out of holder (Watts/cm²) Average Highest 16.46 17.75 20.02 16.43 17.18 25.05 13.58 12.0 12.88 12.88 12.8* 8.1* *0.61 Minute One Rate (Watts/cm²) Peak Heat Release Rate 16.46 17.75 20.02 16.43 17.18 25.05 13.58 12.0 12.88 12.88 18.1* 12.8* *0°61 Sustained Flaming (Sec.) Sec. Sec. Sec. 000000 Ease of Ignition (3 Watts/cm²) 86 7,0 to Ignition = 65 н н Sides Ignited Ignition Ignition 00-000 0 --00-000000 Exposure Time с t с t (Sec.) 79 87 98 120 120 Time Time Time 58 66 68 68 73 DAYS AT 60°C AVERAGE 0% MOISTURE CONTENT MOISTURE R. H. AVERAGE MOISTURE CONTENT AT.60°C AVERAGE * Treatment Å. DAY 6.3% 0.2% 50% 9

Average Value

Table VI Data on Tempered Hardboard 1/4 Inch Thick

n²)		1			•				1
Density (3 Patts/cm ²)	Time to Peak	(Sec.)	660 660 660	660*	600 600 570	590*	720 498 540	. 586*	•
Smoke (Smoldering)	Specific Optical Density	(Ds)	920 922 898	913*	915 919 922	918*	921	921*	
	Total Heat Release**	(Joules/cm ²)							
: Rate latts/cm ²)	Time to Ignition	(Sec.)	33. 33. 21.2	29.1*	15.5 14. 16. 16.	15.4*	23.0 21.2 22.0	22.1*	
Heat Release Rate Calorimeter (6 Watts/cm ²)	Highest One Minute Average	Kaie (Watts/cm ²)	15.02 14.3 20.0	16.4*	25.38 24.14 23.92 23.30	24.2*	24.28 25.05 24.28	24.5*	of holder
Cal	Peak Heat Release Rate	(Watts/cm ²)	20.3 22.9 20.0	21.1*	25.38 24.14 23.92 23.30	24.2*	24.28 25.05 24.28	24 .5*	fell out
tion 2)	Sustained Flaming	(Sec.)	0 % 1 0 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= 245 Sec.	10 200 200 200 200 200 200 200 200 200 2	= 163 Sec.	10 9 ~60 ~60 ~60	= 160 Sec.	** Specimens
Ease of Ignition (3 Watts/cm ²)	Sides Ignited		0	Ignition	0000	Ignition		Ignition	
Eas (3	Exposure Time	(Sec.)	205 235 245 245 245 245 250	Time to	160 162 165 165 176	Time to	144 150 158 161 163	Time to	Value
Treatment		•	50% R. H. AVERAGE 4.1% MOISTURE CONTENT		1 DAY AT 60°C AVERAGE 0.3% MOISTURE CONTENT		6 DAYS AT 60°C AVERAGE 0% MOISTURE CONTENT		* Average

X

and the West of

1

÷

						611 AD INCIT	0001		
Treatment	Eas (3	Ease of Ignition (3 Watts/cm ²)	tion 2)	Cal	Heat Release Rate Calorimeter (6 Watts/cm ²)	e Rate latts/cm ²)		Smoke (Smoldering)	Density (3 Matts/cm ²)
	Exposure Time	Sides Ignited	Sustained Flaming	Peak Heat Release Rate	Highest One Minute Average	Time to Ignition	Total Heat Release	Specific Optical Density	Time to Peak
	(Sec.)		(Sec.)	(Watts/cm ²)	(Watts/cm ²)	(Sec.)	(Joules/cm ²)	(Ds)	(Sec.)
50% R. H. AVERAGE 6.8% MOISTURE CONTENT	52 56 60 71 75	000	0004€00°	10.1 11.1 10.7	10.1 11.1 10.7	5.5 6.1	2880	300 376 421	960 846 822
	Time to	Ignition	= 73 Sec.	10.6*	10.6*	5.7*	2880*	365*	876*
1 DAY AT 60°C AVERAGE 0.5% MOISTURE CONTENT	36 38 40 549 549	- 000á0	12 >60 >60 >60 >60 >60	12.15 13.59 12.89	12.15 13.59 12.89	10.2 4.0 3.8	3980	327 294 320	774 840 756
	Time to	Ignition	= 37 Sec.	12.9*	12.9*	• °9	3980*	313*	790*
6 DAYS AT 60°C AVERAGE 0% MOISTURE CONTENT	30 32 36 41 45	00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.01 9.30 9.30	10.01 9.30 9.30	7.5 6.0 4.5	3290	. 343 361 371	834 816 828
	Time to	Ignition	= 33 Sec.	9.5*	. 9 . 5*	6 °0*	3290*	358*	826*
* AVP	Averane Value								

•

Table VII Data on Painted Wood Fiber Insulating Board

* Average Value

(Unfinished)
Thick
Inch
25/32
d Oak
d Red
Solid
ta on
Data
lIIV
Table

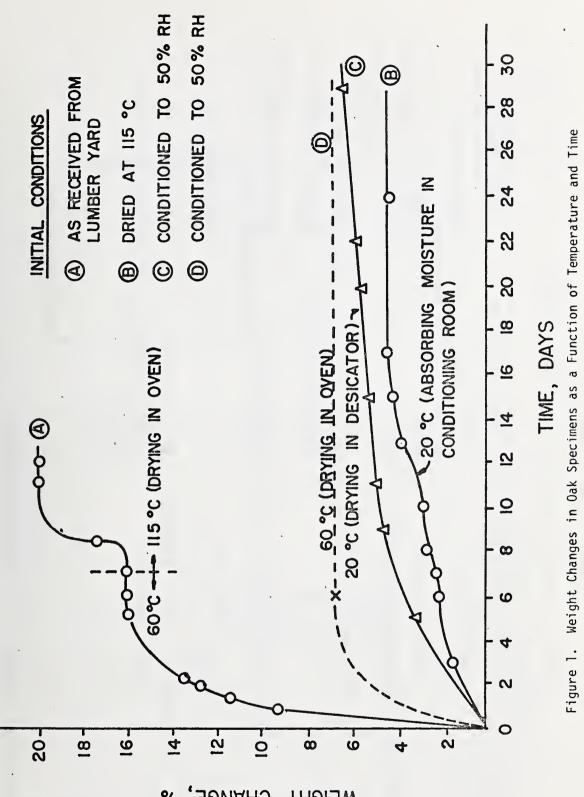
Ease of IgnitionHeat Release Rate(3 Watts/cm2)Calorimeter (6 Watts/cm2)	Time Total Specific to Heat Optical Ignition Release Density	(Sec.) (Sec.) (Watts/cm ²) (Watts/cm ²) (Sec.) (Joules/cm ²) (Ds) (Sec.)	162 0 0 17.9 17.9 15. 11250 762 >1200 162 1 3 18.6 15.1 15.1 759 >1200 164 2 3 17.18 17.18 16. 759 >1200 164 2 3 17.18 17.18 16. 731 >1200 166 1 >60 17.18 16. 731 >1200 166 2 >60 17.18 16. 731 >1200 170 2 >60 75.1 731 >1200 170 2 >60 76. 731 731	Time to Ignition = 165 Sec. 17.9* 17.9* 15.4* 11250* 751* >1200*	$ \begin{bmatrix} 125 & 0 & 0 & 0 \\ 128 & 1 & 3 & 20.02 & 19.48 & 19.48 & 9. \\ 130 & 1 & 3 & 20.02 & 20.02 & 10.2 & 11670 & 921 & >1200 \\ 131 & 1 & >60 & 19.61 & 8. & 921 & >1200 \\ 131 & 1 & >60 & 19.61 & 8. & 921 & >1200 \\ 141 & 1 & >60 & 161 & 19.61 & 8. & 921 & >1200 \\ 155 & 1 & >60 & 10 & 10 & 10 & 10 \\ 155 & 1 & >60 & 10 & 10 & 10 & 10 \\ 156 & 1 & >60 & 10 & 10 & 10 & 10 \\ 156 & 1 & >60 & 10 & 10 & 10 & 10 \\ 156 & 1 & 10 & 10 & 10 & 10 & 10 \\ 156 & 1 & 10 & 10 & 10 & 10 & 10 \\ 156 & 1 & 10 & 10 & 10 & 10 & 10 \\ 161 & 1 & 10 & 10 & 10 & 10 & 10 \\ 161 & 1 & 10 & 10 & 10 & 10 & 10 \\ 161 & 1 & 10 & 10 & 10 & 10 & 10 \\ 170 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 \\ 180 & 10 & 10 & 10 & 10 & 10 & 10 & 10 $	Time to Ignition = 131 Sec. 19.7* 19.7* 9.* 11670 907* >1200*	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	to Ignition
of	Sides Ignited	(Sec.)		to Ignition = 1		to Ignition = l		Time to Ignition = 1
Treatment			50% R. H. AVERAGE 6.7% MOISTURE CONTENT		1 DAY AT 60°C AVERAGE 2.9% MOISTURE CONTENT		6 DAYS AT 60°C AVERAGE 0% MOISTURE CONTENT	

* Average Value

		iable 1X	Vata on so	ITA KEA UAK 2	orni non 26/d	CK (W/3 LOA	on solid Ked Uak 25/34 Inch inick (W/3 Coats of Clear Varnish)	(nstnr	
Treatment	Eas (3	Ease of Ignition (3 Watts/cm ²)	tion 2)	Cal	Heat Release Rate Calorimeter (6 Watts/cm ²)	: Rate latts/cm ²)		Smoke ((Smoldering)	Density (3 Latts/cm ²)
	Exposure Time	Sides Ignited	Sustained Flaming	Peak Heat Release Rate	Highest One Minute Average	Time to Ignition	Total Heat Release	Specific Optical Density	Time to Peak
	(Sec.)		(Sec.)	(Watts/cm ²)	. (Watts/cm ²)	(Sec.)	(Joules/cm ²)	(Ds)	(Sec.)
50% R. H. AVERAGE 6.1% MOISTURE CONTENT	120 125 131 131 133 137	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	61.5 34.5 32.9	19.32 19.32 20.02	29.5 21.3 17.6	12800	767 761 693	>1200 >1200 >1200
	Time to	Ignition	= 132 Sec.	42.9*	19. 6*	22.8	12800*	740*	>1200*
1 DAY AT 60°C AVERAGE 2.2% MOISTURE CONTENT	90 94 98 98 99 99	000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43.7 55.7 56.2	20.02 20.02 21.2	18. 20.1 25.	12400	920 859 883	-1200 -1200 -1200
	Time to	Ignition	= 99 Sec.	51.8*	20.4*	21.0*	12400*	887*	>1200*
6 DAYS AT 60°C AVERAGE 0% MOISTURE CONTENT	76 78 80 83 88 88	0000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	64.4 65.5 61.5	17.89 17.89 18.18	22.5 29.1 27.7	14500	921 922	>1200 >1200
	Time to	Ignition	= 83 Sec.	63.8*	18.0*	26.5*	14500*	921 ×	×0071<.
*			1						

.

Table IX Data on Solid Red Oak 25/32 Inch Thick (W/3 Coats of Clear Varnish)


* Average Value

.

ł

Table X Summary of Test Results

	C-3	17	06	54	112	380	921	358	946	921
Smoke Density	C-2	72	66	60	121	375	918	313	, 907	887
	C-1	65	97	57	123	406	913	365	751	740
ţ	C-3	339	532	224	. 433	lder	lder	3290	01601	14490
Total Heat Release	C-2	343	339	330	532	out of holder	out of holder 	39 80	11670	12420
·	C-1	206	463	352	626	Fell o	Fell o	2880	11250	12770
eat te	C-3	5.3	5.4	3.9	7.5	19.0	24.5	9.5	17.9	18.0
Min Avg Heat Release Rate	C-2	5.9	6.4	5.]	5.8	18.1	24.2	12.9	19.7	20.4
1 M- Re		6.1	6.]	4.7	5.2	12.8	16.4	10.6	17.9	19.6
, ei	C-3	16.9	10.0	20.5	9.5	19.0	24.5	9.5	17.9	64
Peak Heat Release Rate	C-2	17.6	9°8	23.0	с. 8	18,1	24.2	12.9	19.7	52
Pe Rele	5	8.7	11.2	20.3	6 . 8	12.8	21.1	10.6	17.9	43
ion	C-3	136 (0)	° (0)	∞ (0)	» (0)	65 (0)	160 (0)	33 (0)	106 (0)	(0) 83
Time to Ignition	C-2	118 (3.7)	。 (3.7)	د.3) (6.3)	。 (5.8)	70 (.2)	163 (0.3)	37 (0.5)	131 (2.9)	99 (2.2)
Time t	C-]	103 (8.1)	。 (4.4)	« (۲.۱)	ر(۲.٦) ۳	86 (6.3)	245 (4.1)	73 (6.8)	165 (6.7)	132 (6.1)
Material	. 3	Gypsum Board	Gypsum Board Fire Retar- dant Latex	Gypsum Board Plus 2 Coats of Latex	Gypsum Board Plus Pre- decorated Vinyl	Lauan Panel	Tempered Hardboard	Wood Fiber Insulating Board	Red Oak	Red Oak and 3 Coats of Varnish

CHANGE % **MEIGHT**

Ignition	Heat Release Rate	Total Heat Released	Smoke Density
Wood Fiber Insulating Board	Red Oak & Varnish	Red Oak & Varnish	Tempered Hardboard
Lauan	Tempered Hardboard	Red Oak	Red Oak
Red Oak & Varnish	Gypsum Board & 2 Latex	Wood Fiber Insulating Board	Red Oak & Varnish
Red Oak	Red Oak	*	Lauan
Tempered Hardboard	Lauan	Gypsum Board with Vinyl Coating	Wood Fiber Insulating Board
Gypsum Board	Gypsum Board & Fire Retardant Latex ·	Gypsum Board & Fire Retardant Latex Coating	Gypsum Board & Vinyl Coat
	Wood Fiber Insulating Board	Gypsum Board & 2 Latex	Gypsum Board & Fire Retardant Latex
	Gypsum Board & Vinyl	Gypsum Board Plain	Gypsum Board Plain
	Gypsum Board Plain	*Tempered Hardboard & Lauan Samples fell out of holder. No data obtained.	Gypsum Board & 2 Latex

Table XI Materials Listed in Order of Decreasing Hazard

.

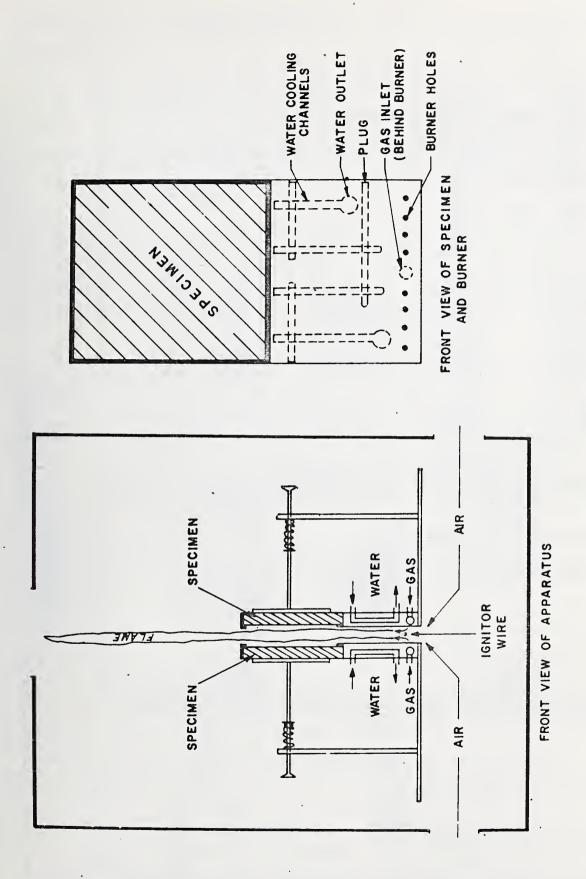
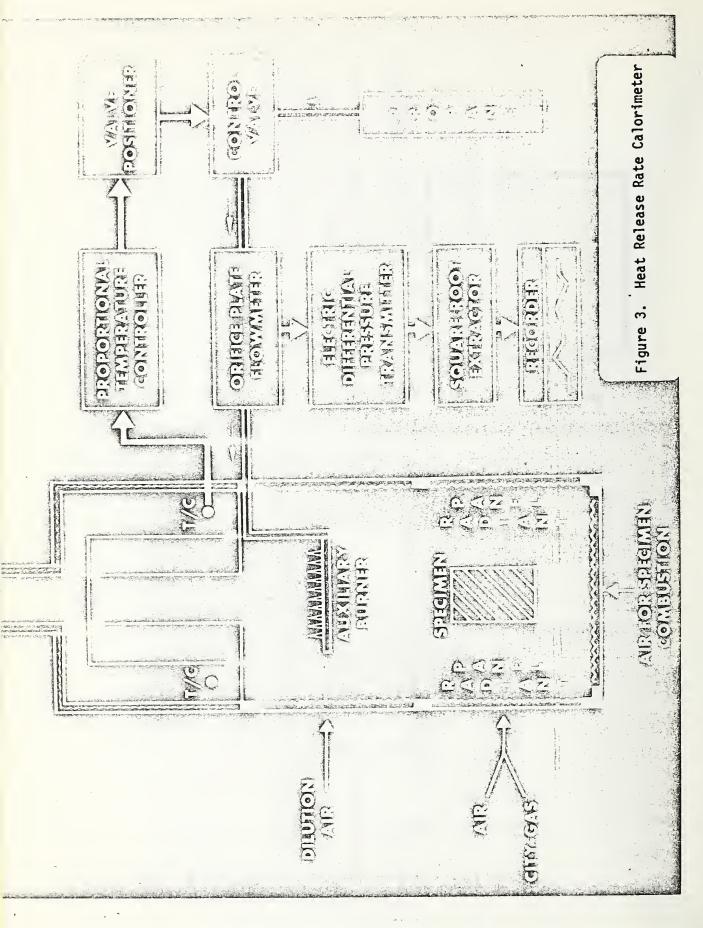



Figure 2. Ease of Ignition Apparatus

>

•

FORM NBS-114A (1-71)				
U.S. DEPT. OF COMM.	1. PUBLICATION OR REPORT NO.	2. Gov't Accession No.	3. Recipient'	's Accession No.
BIBLIOGRAPHIC DATA SHEET	NBSIR 73-139			
4. TITLE AND SUBTITLE 5. Publication Date				
A preliminary Investigation of the Effect of Humidity on the				
Ignition, Heat Release, and Smoke Density Tests for Typical			6. Performing	Organization Code
Room Finishing Mate	erials			
7. AUTHOR(S)			8. Performin	g Organization
			NESIR 7	
9. PERFORMING ORGANIZATION NAME AND ADDRESS			10. Project/	Task. Work Unit No.
			4619474	
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE			11. Contract/	Grant No.
WASHINGTON, D.C. 20234			N00024-69-F-5177	
			100024-1	59-F-51//
12. Sponsoring Organization Name and Address			13. Type of I Covered	Report & Period
Naval Ships System Command				
Department of the Navy				
Washington, D.C. 20360			14. Sponsorin	ng Agency Code
15. SUPPLEMENTARY NOTES				
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant				
bibliography or literature survey, mention it here.)				
Nine commonly used room finishing materials were subjected to the heat release				
and ignition tests under development at NBS and to the NBS smoke density test. Each				
	l with three different moistu			
humidity (RH), 0% RH, and one intermediate RH value. The purpose of the tests was				
to (1) gain experience with the test methods under development in order to determine				
whether instrumental or procedural modifications are needed and (2) to examine the				
problem of testing a material at 50% RH and using it under much lower humidity				
conditions.				
Some precedural changes are recommended for both the error of invition and the best				
Some procedural changes are recommended for both the ease of ignition and the heat release rate tests. The rates of heat release were found to be as much as 50%				
higher for the dried specimens than for those conditioned at 50% RH. The ignition				
times were found to decrease by as much as 50% after being dried.				
and all to desirable by ab mach ab yok areer being arrea.				
17. KEY WORDS (Alphabetical order, separated by semicolons)				
	fire tests; heat release; i	anition, amaka	donaitu	
building materials,	THE LESIS, Meat Telease, 1	giillion, smoke	density	
18. AVAILABILITY STATEME	NT	19. SECURIT		21. NO. OF PAGES
		(THIS RE	PORT)	
UNLIMITED.				
		UNCL ASS	SIFIED	
	DISTRIBUTION. DO NOT RELEASE	20. SECURIT (THIS PA		22. Price
TO NTIS.		(THISPA	GE/	
		UNCLASS	SIFIED	
				USCOMM-DC 66244-P71

.

•

