

NIST PUBLICATIONS

REFERENCE

Time Series Forecasting of Highway Accident Fatalities

Alexander R. Craw

Institute for Applied Technology Technical Analysis Division National Bureau of Standards Washington, D. C. 20234

March 1973

Final Report

QC 100 .U56 73-138 1973

> Prepared for National Highway Traffic Safety Administration Department of Transportation Washington, D. C. 20590

NBSIR 73-138

TIME SERIES FORECASTING OF HIGHWAY ACCIDENT FATALITIES

Alexander R. Craw

Institute for Applied Technology Technical Analysis Division National Bureau of Standards Washington, D. C. 20234

March 1973

Final Report

Prepared for National Highway Traffic Safety Administration Department of Transportation Washington, D. C. 20590

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

ACKNOWLEDGEMENT

Particular thanks are due to Mrs. E. Leyendecker, who ran all of the computer programs and carried most of the computational analysis load. Also, to Dr. Julius Lieblein for many helpful suggestions and for discussions that provided insight into what had often been obscure.

TABLE OF CONTENTS

SUMMA	ARY		•		•	•	•	•	•						•	•							Page iii
1.0	THE PRO	BLE	ЕM	•		•	•	•	•	•		•	•	•	•								1
2.0	THE DAT	TA A	ANE) A	۲Ū	XII	LI7	\R\	(INE	'OF	RMA	λT]	101	JA	AV <i>I</i>	/II	LAE	3LI	Ξ.	•		1
3.0	READILY	X AV	7A]	LA	ABI	٦E	С	OME	PUI	'EF	ξĒ	RC	GI	RAN	1S	•		•		•			2
4.0	PLAN OF	AN	JAI	JYS	SIS	5.	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	2
5.0	PRODUCI	IOI	J F	RUN	IS	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	3
6.0	CONCLUS	SION	1S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
7.0	TABLE 1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		9
8.0	TABLE 2	2.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
9.0	TABLE 3	3.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	11
10.0	TABLE 4	Ι.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
11.0	TABLE 5	5.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	13
12.0	TABLE 6	5.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
13.0	TABLE 7	7.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
14.0	TABLE 8	3.	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•		•	•	•	16
15.0	TABLE 9).	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	17
16.0	APPENDI ANALYSI SERIES		ANE) F	OF	REC	CAS	STI	INC							2 1	119 •	ΛE •	•	•	•	•	A-1
17.0	APPENDI AT NBS																	•	•	•		•	B-l
18.0	APPEND]	EX C	с,	DE	ΞŦΑ	II	S	OF	r E	EXF	PSN	100	ρTF	III	IG	R	נטכ	eiv	1E	•	•	•	C-1

•

SUMMARY

Using twelve years of time series data on highway fatalities, the methodology currently employed by the National Highway Traffic Safety Administration (NHTSA) to forecast the annual (calendar year) total of highway accident fatalities were compared with those obtained by several computer routines based on exponential smoothing techniques and available at the National Bureau of Standards. The use of unadjusted and seasonally adjusted data was also examined.

It is found that there is no coercive evidence to lead to abandoning the present NHTSA methods in favor of readily available computer routines based on exponential smoothing methods.

Of the methods examined in this study, the best results were obtained with the EXPSMOOTHING routine using unadjusted fatality data. ъ

1. The Problem: The Technical Analysis Division has been requested to examine the National Highway Traffic Safety Administration's (NHTSA) current methodologies for forecasting the annual total of highway accident fatalities given the monthly fatalities respectively for the first three months of the year, the first six months and finally the first nine months of the year, make comparisons of the results of their methodologies with those based on readily available computer programs at the National Bureau of Standards for time series analysis and forecasting.

2. The Data and Auxiliary Information Available: Data for each month are available for the twelve (12) year period 1960 through 1971. Also available are the outputs of NHTSA's Computer Program TIMSR4: Time Series Analysis of Fatalities and Vehicle-mileage Data. This time series analysis program provides 12-month moving averages, monthly seasonal indices, seasonally adjusted data for each month and the ordered differences between the seasonally adjusted data and an uncentered twelve month moving average. The ordered differences are used to determine for any month of a time series upper and lower bounds for the trend point such that the seasonally adjusted value will fall within those limits with a known frequency.

The TIMSR4 Program does not have an automatic extrapolation (forecasting ahead) feature. The NHTSA Methods of forecasting that we were asked to review are discussed in Section 5.

3. <u>Readily Available Computer Programs</u>: A constraint imposed on the study was to use computer programs that were readily available at the National Bureau of Standards. Thus, a comprehensive study of methods is not given here.

Several time-sharing interactive systems were immediately available. These were DIALCOM, Computer Sciences Corporation Conversational Executive and General Electric Mark II. Of these time-sharing programs we chose to use the General Electric EXPSMOOTHING routine, because of the variety of options available and the existence of an automatic extrapolation feature.

The Large Scale Systems STAT-PACK for the UNIVAC 1108 lists several routines for time series analysis. These are UNIVAC system subroutines and are not necessarily National Bureau of Standards routines, but they are available for use on the NBS UNIVAC 1108. The most appropriate subroutine for the problem at hand appeared to be GEXSMO - Generalized Exponential Smoothing.

Appendix B contains a discussion of the available computer programs at NBS as well as a discussion of the background and details of the GEXSMO computer program. Appendices A and C provide the same information for the EXPSMOOTHING program.

4. Plan of Analysis:

a. Use the General Electric - EXPSMOOTHING routine and the UNIVAC STAT-PACK GEXSMO routine.

- b. Use both seasonally adjusted data and seasonal factors (as determined by the TIMSR4 program) and unadjusted data in separate runs.
- c. Base forecasts on 4, 6, 8, and 11 years of data plus data for 3, 6, and 9 months of new data.
- d. Do c. for each of the NHTSA forecasting algorithms.

5. <u>Production Runs</u>: We started production runs using the General Electric Time-share routine EXPSMOOTHING, using seasonally adjusted data that was determined by NHTSA's TIMSR4 computer program. We always chose the most complete output option, so that the routine always performed a cyclic analysis: if a cycle was indicated by the routine, the analysis part of the program took this into account. (We view this as a not too interesting bonus of the routine.) Horizon time was always chosen to exceed the lead time.* The statistical analysis of the output was accomplished by a mixture of computer and hand calculations. The results of this group of calculations are contained in Table 1.

The total amount of data available for forecasting covered ll years, with a minimum of 3 years of data considered

^{*}In the EXPSMOOTHING Program, the lead time is the term used to describe the time (in periods) between the last period of data one has as data as input and the period one is most interested in estimating correctly. The forecast will be optimized according to the lead time that is entered. The forecast horizon indicates how many periods beyond the last data point that will be forecasted, but has nothing to do with the optimization. (See Appendix A).

necessary for suitable application of the exponential smoothing process. Thus, annual "forecasts" could be made after 3, 6, and 9 months in each of 8 years. Instead of analyzing this full set of 24* periods, half of these were chosen, namely the three periods in those years with 4, 6, 8, and 11 antecedent years of data.

In the headings of Table 1, and subsequent tables, the following symbols were adopted:

- S = the actual value of the time series datum
 (in this case, fatalities)
- \hat{S} = an estimate of S
- S = seasonally adjusted value of S
- $\Delta = \hat{S} S; \text{ if } \Delta \stackrel{<}{>} 0, \text{ the estimate is above the actual value}$
- Σ = summation over the lead time
- E* = summation over the calendar year (Jan. Dec.)
- $\Sigma\Delta/\SigmaS =$ (signed) fractional error over lead time
- \signed fractional error over the calendar
 year (Jan. Dec.)
- MAD = mean absolute deviation
- α = smoothing constant
- k = length of cycle; k = l indicated data is not cyclic.

One of the interesting features of Table 1 is

that there is no apparent pattern for the cycles with the age of the data. The same holds true for the α value (smoothing constant) and the order of smoothing. This led us to dupli-

^{*}An additional 3 periods were analyzed for noncalendar twelve-month years, raising the potential sample size to 27 and the number tested to 15.

cate these computations by suppressing the cyclic analysis. The summary of the results of these computer runs is given in Table 2. Here there does appear to be some reasonableness in the variation of the smoothing constant with data age. The comparison of the forecasting results (Table 3) shows a slight advantage to the case of using the cyclic analysis, but the results are not heavily in favor of the latter.

In the case of 4 years and 3 months of seasonally adjusted data, the computer routine selected $\alpha = 0.175$ (order 2) for the optimum smoothing constant. We were interested in determing whether or not the minimum was sharp or flat, so we made runs for $\alpha = 0.170$ and 0.180. The order of smoothing remained at 2 and the minimum was found to be flat; only a very slight change in forecast error fraction could be gained by changing α from .175 to .170 (see Table 4). The change is from 0.0121 to 0.0109.

Table 5 presents the results of duplicate runs using unadjusted data in the EXPSMOOTHING routine. Cyclic analysis was permitted and each time the routine selected K=12 for the dominant cycle.

We also made matching runs starting with unadjusted data on the UNIVAC 1108 program GEXSMO, starting with a given cycle (seasonality) length of 12 and using 2 initial periods to determine the initial seasonality factors and other starting values. The GEXSMO routine always produces a forecast for the time indicated as the length of the cycle

starting from the last input datum. In the language of the EXPSMOOTHING routine, the lead time is 1 and the horizon time is the length of the cycle. The summary statistics for these runs are presented in Table 6.

It is interesting to note that in working with unadjusted data and these two computer routines, it is possible to compare the seasonally adjusted data and seasonality factors produced by these routines with those determined by the TIMSR4 program. We have not made these comparisons, preferring at this stage to look at the end results.

Table 7 presents the detailed calculations for the current methodologies employed by NHTSA to forecast the calendar year fatalities. These methods were developed in accordance with descriptions furnished by Mr. Donald F. Mela in his letter of November 30, 1972, and have been labelled 1, 2 and 3 in the same order as described by Mr. Mela. Higher order methods are possible by taking into account more years of input data in the averaging process, but we have limited ourselves to the first three methods.

The notations used in the column headings of Table 7 are:

m = current total for specified months of fatalities
o,
m = the corresponding total for specified months of
fatalities for ith previous year.

 Y_{-i} = the total fatalities for the ith previous year λ = leap year adjustment factor

 \hat{Y}_{j} = the forecast calendar year fatalities by method j With this notation the NHTSA forecast methods may be written: Method 1: $\hat{Y}_{1} = (m_{0}/m_{-1}) Y_{-1}$, Method 2: $\hat{Y}_{2} = \lambda \hat{Y}_{1}$

Method 3: $\hat{Y}_{3} = \lambda (m_{0} / \frac{3}{2} m_{-i}) \frac{3}{2} Y_{-i}$ Method k: $\hat{Y}_{k} = \lambda (m_{0} / \frac{k}{2} m_{-i}) \frac{k}{2} Y_{-i}$, k > 1

Table 8 presents a composite summary of the fractional errors by each of the methods considered. In this table and Table 9, SAC = Seasonally adjusted data with cyclic analysis.

Considering just the NHTSA's methods, we find a gradual improvement in the forecast with increasing order of the method. nowever, in certain specific cases Method 2 gives slightly better results with methods of order greater than 2. Generally, the error decreases with the shorter lead time.

Comparing the four exponential smoothing methods, the sample evidence seems to favor EXPSMOOTHING using unadjusted data. However, each of the four methods has a mean absolute deviation of approximately 1 percent, which is virtually indistinguishable from that of Method 3.

Comparing the "best" NHTSA method (Method 3) with the "best" exponential smoothing routine we find for the sample of 12 trials out of the possible 24 forecasts that method 3 was better 5 times and the best exponential smoothing method was better on 7 occasions. This is obtained by comparing the entries in columns headed $\Sigma^* \Delta / \Sigma^* S$ and Unadj C in Table 8. However, the range of the absolute deviations of the exponential methods is smaller than that of any of the methods 1, 2 or 3. Thus, it would appear that there is a small gain in going to the exponential smoothing methods.

Our experience in using the EXPSMOOTHING routine has made us wary of using long lead times, in particular L = 12. In some cases we have found that better results can be obtained in making forecasts for a year ahead by using L = 3 in place of 12. See Table 9 for the appropriate comparisons. However, no clear cut rule can be recommended. 6. Conclusions

For the forecasting problem at hand (see section 1), if one can live with the percentage range of errors indicated with the present NHTSA's methods, there is no coercive evidence to lead to abandoning the present methods in favor of readily available computer routines for exponential smoothing methods.

Of the methods examined in this study, the best results were obtained with the EXPSMOOTHING routine using unadjusted fatality data.

Table 1. Error Analysis of Forecasts of Fatalities Using EXPSMOOTHING (General Electric) and Seasonally Adjusted (TIMSR4) Data for Calendar Year: January-December

Cyclic Analysis Permitted

	~⊲	1									
	Мах	193 470			235 323 323			389 418		114	
	52/23	0508		0238	0279 .0287		0158	.0060	20195	0187	.0075
	ΣŠ	47740 35564	23915		40036 26510 13134			27297		27568	~
	ΣQ	-2425	905 432	-1262	092 092		-650	162 479	-810	-516	102
	2*4/2*3	0456	.0206	.0240	0163		0116	.01043	1210	- 0095	.0024
Ī	24/2S	0456	.0372	0240	0295		0146	.0377		0172	.0088
Ī	S*3		47700		53041 53041			54862 54862	55000	55000	55000
	ΣS	47700 37720		53041	42284 29284 14597	C 90 F 3	43518		0	30290	15010
	Σ*Δ	-2176 579	609	-1271	-1000 393	022	-635	238 572	-939	-520	132
	ΣΔ	-2176 579	609 609	-1271	863 193	0	-635	238 572	-939	-520	132
1 2 2 2	Time	12	٥m	12	nom	- C [10	9 M	a	9	m
	MAD	123.48	117.30	12.63	118.42 109.11	04 02	41.73	118.34 103.48	.33.71	119.50	26.91.
	Order	000			101				2		
	8-	.13462	.18750	.13462	.17857	13462	.17500	.37500	.12500	.25000	.37500
	K	4.4.			112	23	11	17	20	50	0 2
	Cyclic	UZZ	3 Z	υυ	000	U	0	υυ	U	<u>ი</u> ი	
Verre of I Tough of Bornal	Length of Record Years, Months	4,0 6,4	4,9	6,0	0 0 0 0 0	C &	8,3	8 8 8 8	11,3	11,6	6'TT
Acare of 1	Forecast	1964		1966		1968			1971		

 $[\Lambda$ is the error over the lead time (October, November, December); since the error for each of the months January through September is exactly zero (they are known exactly) we have $[\Delta \in [*\Delta]$. In some tables Note: In this table the values of $[\Delta \ and \ [x^{\Delta} \ are the \ same. For example, for the case 4,9]$ $\sum \Delta \neq \sum A$ in all cases (see Table 4 for example).

r Calendar Year.

 $\Sigma^{\lambda}/\Sigma^{\lambda}$ Max. Δ

784 470 409 289 517 619 336 249

-.0514

.0129 .0378 .0363 -.0326 -.0288 .0300 .0445 589 405 345 352

.0109 -.0121 .0155

405 474 319

-.0166 -.0123 .0207

Years of IndexLead Lears, MonthLead YameLead TEE	5 ofLeadLead $\Sigma \times \Sigma \times$	Table 2.	Forecasts of Fat Cyclic Analysis	alities Omitted	Using Jan	using EXPEMUUTHING January-December	cembe			General Flectric) and	and se	азопальУ	Adjust	seasonally Agjusted (TIMSK4) Data	(4) Data	for
4,0N1.134622130.9712 -2210 4770 0463 0463 0463 0463 2455 $4,3$ N1.175002122.2395793772047770 $.0154$ $.0121$ 457 $4,6$ N1.175602122.23957937720 47770 $.0154$ $.0121$ 457 $4,6$ N1.187502117.30360913280 47700 $.0459$ $.0128$ 432 $6,0$ N1.187502117.30360913280 47700 $.0459$ $.0129$ 432 $6,0$ N1.187502137.4312 -1761 53041 -0332 -1727 $6,0$ N1.114262137.4312 -1761 53041 -0312 -0120 -1154 $6,0$ N1.1552127.2569132928453041 $.0172$ 795 $6,0$ N1.1252117.923 650 14597 53041 $.0123$ -0172 795 $6,0$ N1.1252117.923 650 14597 53041 $.0123$ -0123 -0123 $6,0$ N1.12552 148.32 12 -1764 54862 -0110 -0124 -497 $8,0$ N1.12542 140.5	$4,0$ NI.134622130.9712-22104770 $\cdot 0.463$ 0463 0463 -2455 $4,3$ NI.175002122.2395793772047770 0.0372 0.0206 905 $4,6$ NI.178572120.536985 26490 47770 0.0372 0.0206 905 $4,9$ NI.187502117.3036091328047770 0.0459 0.0128 432 $6,0$ NI.187502117.3036091328047770 0.0459 0.0128 432 $6,0$ NI.187502117.30360913280 47700 0.0459 0.0128 432 $6,0$ NI.187502117.303 609 13280 47700 0.0459 0.0128 432 $6,0$ NI.187502117.303 609 13284 53041 -0332 -1027 795 $6,6$ NI1.12552127.25 6 913 29244 53041 $.00121$ 0.0127 795 $6,6$ NI1.12552117.92 3 650 14597 53041 $.0126$ 0.0128 0.0128 $8,0$ NI1.12552 148.32 12 6405 54862 0.0110 0.0128 0.0172	Years of Forecast	Length of Record Years, Month	1 1	м	ಶ		MAD	Lead Time		ΣS	Σ*S	ΣΔ/ΣS	Σ*Δ/Σ*S		
4,3NI.175002122.2395793772047770.0154.0121457 $4,6$ NI.178572120.5369852649047770.0372.0206905 $4,6$ NI.187502117.3036091328047700.0459.0121452 $6,0$ NI.187502117.3036091328047700.0459.0128432 $6,0$ NI.1187502137.4312 -1761 53041 53041 0332 0332 -1727 $6,0$ NI.11.152125.269 -1060 4228453041 0312 -0172 795 $6,9$ NI.11.152127.2569132928453041 0251 0200 -1154 $6,9$ NI.1252117.923 650 1459753041 $.0112$ -0037 -497 $8,0$ NI.1252148.3212 616 54862 -0110 -0110 -0037 -497 $8,0$ NI.12542123.996 -479 4387 54862 -0110 -0037 -497 $8,0$ NI.12552140.58 6 9 -479 4387 54862 -0110 -0037 -497 $8,0$ <t< td=""><td>4,3N1.175002122.2395793772047770.0154.0121457$4,6$N1.178572120.5369852649047770.0372.0206905$4,6$N1.187502117.3036091328047700.0459.0128432$6,0$N1.187502137.4312$-1761$5304153041$0332$$0332$$-1727$$6,0$N1.134622137.4312$-1761$53041$0332$$0332$$-1727$$6,0$N1.1152127.2569$-1060$4228453041$0123$795$6,9$N1.142862127.2569132928453041$0251$$0200$$-1154$$6,9$N1.142862127.2569132928453041$0123$595$6,9$N1.12552117.9236501459753041$0123$$-497$$8,6$N1.12552148.3212641$54862$$-0110$$-0112$$-497$$8,7$N1.12552123.4832551515354862$-0110$$-0087$$-497$$8,6$N1.12552123.4832551515354862<td>1964</td><td>4,0</td><td>N</td><td>г</td><td>.13462</td><td>7</td><td>130.97</td><td>12</td><td>-2210</td><td>47700</td><td>47700</td><td>0463</td><td>0463</td><td>2455</td><td>740</td></td></t<>	4,3N1.175002122.2395793772047770.0154.0121457 $4,6$ N1.178572120.5369852649047770.0372.0206905 $4,6$ N1.187502117.3036091328047700.0459.0128432 $6,0$ N1.187502137.4312 -1761 5304153041 0332 0332 -1727 $6,0$ N1.134622137.4312 -1761 53041 0332 0332 -1727 $6,0$ N1.1152127.2569 -1060 4228453041 0123 795 $6,9$ N1.142862127.2569132928453041 0251 0200 -1154 $6,9$ N1.142862127.2569132928453041 0123 595 $6,9$ N1.12552117.9236501459753041 0123 -497 $8,6$ N1.12552148.3212641 54862 -0110 -0112 -497 $8,7$ N1.12552123.4832551515354862 -0110 -0087 -497 $8,6$ N1.12552123.4832551515354862 <td>1964</td> <td>4,0</td> <td>N</td> <td>г</td> <td>.13462</td> <td>7</td> <td>130.97</td> <td>12</td> <td>-2210</td> <td>47700</td> <td>47700</td> <td>0463</td> <td>0463</td> <td>2455</td> <td>740</td>	1964	4,0	N	г	.13462	7	130.97	12	-2210	47700	47700	0463	0463	2455	740
4,6NI.178572120.5369852649047770.0372.0206905 $4,9$ NI.187502117.3036091328047700.0459.0128432 $6,0$ NI.187502137.4312 -1761 53041 5.0332 -1727 795 $6,3$ NI.152127.2569 -1060 4228453041 -0312 -172 $6,6$ NI.142862127.2569 -1060 4228453041 -0123 585 $6,9$ NI.11252117.923 650 1459753041 $.0172$ 0110 596 $8,0$ NI.12542117.923 650 1459753041 $.0123$ 585 $8,0$ NI.12542117.923 5254 53041 $.0123$ 795 $8,0$ NI.12542117.923 5261 53041 $.0123$ $.0172$ $.0087$ $8,0$ NI.12542123.3906 516 3075 54862 $.0110$ $.0110$ $.708$ $8,0$ NI.12542123.3906 516 3075 54862 $.01172$ $.0087$ $.423$ $8,0$ NI.12551133.24 6 -327 30290 5000 </td <td>4,6N1.178572120.5369852649047770.0372.0206965$4,9$N1.187502117.3036091328047700.0459.0128432$6,0$N1.187502117.3036091328047700.0459.0128432$6,0$N1.134622137.4312$-1761$5304153041$0332$$0332$$-1727$$6,0$N1.152125.269$-1060$4228453041$0332$$0172$795$6,9$N1.142862127.2569132928453041$0251$$0200$$-1154$$6,9$N1.1252117.923$650$1459753041$.0112$$795$$6,9$N1.1252148.3212$601$$54862$$-0110$$-0110$$-00847$$-497$$8,6$N1.12552140.58694351554862$-01120$$-00847$$-497$$8,6$N1.12552123.4832551515354862$-01120$$-00847$$-497$$8,6$N1.12552140.569$-783$43670$50067$$-01120$$-00847$$-497$$8,6$N1.12552140.56</td> <td></td> <td>4,3</td> <td>N</td> <td>Ч</td> <td>.17500</td> <td>2</td> <td>122.23</td> <td>6</td> <td>579</td> <td>37720</td> <td>47770</td> <td>.0154</td> <td>.0121</td> <td>57</td> <td>564</td>	4,6N1.178572120.5369852649047770.0372.0206965 $4,9$ N1.187502117.3036091328047700.0459.0128432 $6,0$ N1.187502117.3036091328047700.0459.0128432 $6,0$ N1.134622137.4312 -1761 5304153041 0332 0332 -1727 $6,0$ N1.152125.269 -1060 4228453041 0332 0172 795 $6,9$ N1.142862127.2569132928453041 0251 0200 -1154 $6,9$ N1.1252117.923 650 1459753041 $.0112$ 795 $6,9$ N1.1252148.3212 601 54862 -0110 -0110 -00847 -497 $8,6$ N1.12552140.58694351554862 -01120 -00847 -497 $8,6$ N1.12552123.4832551515354862 -01120 -00847 -497 $8,6$ N1.12552140.569 -783 43670 50067 -01120 -00847 -497 $8,6$ N1.12552140.56		4,3	N	Ч	.17500	2	122.23	6	579	37720	47770	.0154	.0121	57	564
4,9N1 $.18750$ 2 117.30 3609 13280 47700 $.0459$ $.0128$ 432 $6,0$ N1 $.13462$ 2 137.43 12 -1761 53041 53041 0332 -1727 $6,3$ N1 $.15$ 2 127.25 9 -1060 42284 53041 0251 0200 -1154 $6,6$ N1 $.14286$ 2 127.25 6913 29284 53041 $.0312$ $.0172$ 795 $6,9$ N1 $.1256$ 2 117.92 3 650 14597 53041 $.0312$ $.0172$ 795 $6,9$ N1 $.1256$ 2 117.92 3 650 14597 53041 $.0312$ $.0172$ 795 $8,0$ N1 $.1256$ 2 117.92 3 650 14597 53041 $.0123$ 586 $8,9$ N1 $.1256$ 2 117.92 3 650 14597 53041 $.0123$ 2008 $8,9$ N1 $.1254$ 2 140.58 9 -479 43518 54862 $.0110$ $.0087$ 423 $8,9$ N1 $.1255$ 2 140.56 9 -778 54862 $.0110$ $.0087$ 423 $8,9$ N1 $.1255$ 2 140.56 9 -783 43870 5000 $.0178$ $.0047$ 423 $8,9$ <td< td=""><td>4,9NI$.18750$2$117.30$3609$13280$$47700$$.0459$$.0128$$432$$6,0NI.13462$2$137.43$12$-1761$$53041$$0332$$0332$$-1727$$6,3NI.115462$2$127.43$12$-1761$$53041$$0332$$0332$$-1727$$6,6NI.15$2$127.25$69$-1060$$42284$$53041$$0251$$0200$$-1154$$6,6NI.14286$2$127.25$6913$29284$$53041$$0231$$0172$$795$$6,9NI.11256$2$117.92$3$650$$14597$$53041$$.0146$$.0123$$586$$8,0NI.1256$2$117.92$3$650$$14597$$53041$$.0146$$.0123$$596$$8,0NI.1256$2$140.58$9$-479$$43518$$54862$$.0110$$.0110$$796$$8,6NI.1257$2$123.90$6$5165$$30755$$54862$$.0110$$.0147$$193$$8,6NI.1256$2$140.56$9$-479$$43518$$54862$$.0110$$.0047$$193$$8,6NI.1256$2$140.56$9$-783$$43870$$5600$$.0142$<</td><td></td><td>4,6</td><td>N</td><td>Ч</td><td>.17857</td><td>2</td><td>120.53</td><td>9</td><td>985</td><td>26490</td><td>47770</td><td>.0372</td><td>.0206</td><td></td><td>915</td></td<>	4,9NI $.18750$ 2 117.30 3609 13280 47700 $.0459$ $.0128$ 432 $6,0$ NI $.13462$ 2 137.43 12 -1761 53041 0332 0332 -1727 $6,3$ NI $.115462$ 2 127.43 12 -1761 53041 0332 0332 -1727 $6,6$ NI $.15$ 2 127.25 69 -1060 42284 53041 0251 0200 -1154 $6,6$ NI $.14286$ 2 127.25 6913 29284 53041 0231 0172 795 $6,9$ NI $.11256$ 2 117.92 3 650 14597 53041 $.0146$ $.0123$ 586 $8,0$ NI $.1256$ 2 117.92 3 650 14597 53041 $.0146$ $.0123$ 596 $8,0$ NI $.1256$ 2 140.58 9 -479 43518 54862 $.0110$ $.0110$ 796 $8,6$ NI $.1257$ 2 123.90 6 5165 30755 54862 $.0110$ $.0147$ 193 $8,6$ NI $.1256$ 2 140.56 9 -479 43518 54862 $.0110$ $.0047$ 193 $8,6$ NI $.1256$ 2 140.56 9 -783 43870 5600 $.0142$ <		4,6	N	Ч	.17857	2	120.53	9	985	26490	47770	.0372	.0206		915
6,0N1.134622137.4312 -1761 5304153041 0332 0332 -1727 $6,3$ N1.152125.269 -1060 4228453041 0251 0200 -1154 $6,6$ N1.142862127.2569132928453041 $.0312$ $.0172$ 795 $6,9$ N1.1252117.923 650 1459753041 $.0312$ $.0172$ 795 $6,9$ N1.1252117.923 650 1459753041 $.0312$ $.0172$ 795 $8,0$ N1.1252148.3212 601 54862 $.0110$ $.0110$ $.0110$ 596 $8,0$ N1.1252140.589 -479 43518 54862 $.0172$ $.0087$ 423 $8,9$ N1.1252123.906 516 3075 54862 $.0110$ $.0047$ 193 $8,9$ N1.1252123.483 255 54862 $.0172$ $.0087$ $.423$ $8,9$ N1.1252 140.56 9 -783 43870 5500 0110 0142 -688 $11,6$ N1.251 123.24 6 -783 43870 55000 0178 0142 -688 $11,6$ N1 <t< td=""><td>6,0N1.134622137.4312-1761530415304103320332-17276,3N1.152125.269-1060422845304102510200-11546,6N1.142862127.2569132928453041.0312.01727956,9N1.1252117.9236501459753041.0312.01727956,9N1.1252117.9236501459753041.0146.01235968,0N1.1252148.32126015486254862.0110.01105968,3N1.1252148.321260154862.0110.0110.003744378,6N1.1252123.4832551515354862.0110.00471938,6N1.1252123.4832551515354862.0110.004719311,3N1.1252123.4832551515354862.0168.004719311,6N1.1252123.4833307554862.0168.004719311,6N1.1252140.569-7834387055000.0168.0047193<td></td><td>4,9</td><td>N</td><td>Ч</td><td>.18750</td><td>7</td><td>117.30</td><td>m</td><td>609</td><td>13280</td><td>47700</td><td>.0459</td><td>.0128</td><td></td><td>900</td></td></t<>	6,0N1.134622137.4312-1761530415304103320332-17276,3N1.152125.269-1060422845304102510200-11546,6N1.142862127.2569132928453041.0312.01727956,9N1.1252117.9236501459753041.0312.01727956,9N1.1252117.9236501459753041.0146.01235968,0N1.1252148.32126015486254862.0110.01105968,3N1.1252148.321260154862.0110.0110.003744378,6N1.1252123.4832551515354862.0110.00471938,6N1.1252123.4832551515354862.0110.004719311,3N1.1252123.4832551515354862.0168.004719311,6N1.1252123.4833307554862.0168.004719311,6N1.1252140.569-7834387055000.0168.0047193 <td></td> <td>4,9</td> <td>N</td> <td>Ч</td> <td>.18750</td> <td>7</td> <td>117.30</td> <td>m</td> <td>609</td> <td>13280</td> <td>47700</td> <td>.0459</td> <td>.0128</td> <td></td> <td>900</td>		4,9	N	Ч	.18750	7	117.30	m	609	13280	47700	.0459	.0128		900
	6,3N1.152125.269-1060422845304102510200-1154 $6,6$ N1.142862127.2569132928453041.0312.0172795 $6,9$ N1.1252117.9236501459753041.0312.0172795 $6,9$ N1.1252117.9236501459753041.0312.0172795 $8,0$ N1.1252148.321260154862.0110.0110.0110596 $8,3$ N1.12542148.321260154862.0110.0110.0037-497 $8,6$ N1.12542123.4965516307554862.0110.0110.0047193 $8,6$ N1.1252123.4832551515354862.0168.0047193 $11,3$ N1.1251133.246-327302905500001100142-688 $11,9$ N1.251128.2233323150105500001780142-688 $11,9$ N1.251128.223332905500001780142-688 $11,9$ N1.251128.22333290550000178<	1966	6,0	N	г	.13462	7	137.43	12	-1761	53041	53041	0332	0332		043
	6,6 N 1 .14286 2 127.25 6 913 29284 53041 .0312 .0172 795 6,9 N 1 .125 2 117.92 3 650 14597 53041 .0312 .0112 595 8,0 N 1 .125 2 117.92 3 650 14597 53041 .0110 .0110 596 8,0 N 1 .125 2 148.32 12 601 54862 .0110 .0110 .0110 596 8,3 N 1 .125 2 140.58 9 -479 43518 54862 .0110 .00877 -497 8,9 N 1 .125 2 123.48 3 255 15153 54862 .0110 .0047 193 11,3 N 1 .125 2 123.48 3 25500 0110 .0142 -688 11,6 N 1 .125 2 140.56 9 -783 43870<		6,3	N	г	.15	7	125.26	6	-1060	42284	53041	0251	0200		036
6,9 N 1 .125 2 117.92 3 650 14597 53041 .0446 .0123 585 8,0 N 1 .09615 2 148.32 12 601 54862 54862 .0110 .0110 596 8,0 N 1 .125 2 140.58 9 -479 43518 54862 .0110 -0087 -497 8,9 N 1 .125 2 140.58 9 -479 43518 54862 .0110 -0087 -497 8,9 N 1 .125 2 123.90 6 516 30075 54862 .0172 .0094 423 8,9 N 1 .125 2 123.48 3 255 15153 54862 .0147 193 11,6 N 1 .125 2 140.56 9 -773 30290 55000 0142 -688 11,6 N 1 .255 1 123.24 6 -3277 30290	6,9 N 1 .125 2 117.92 3 650 14597 53041 .0446 .0123 585 8,0 N 1 .09615 2 148.32 12 601 54862 54862 .0110 .0110 596 8,0 N 1 .125 2 140.58 9 -479 43518 54862 .0110 .0110 596 8,3 N 1 .125 2 1440.58 9 -4779 43518 54862 .0110 .0110 596 8,9 N 1 .125 2 123.90 6 516 30075 54862 .0172 .0087 4423 8,9 N 1 .125 2 123.48 3 2555 15153 54862 .0147 193 11,6 N 1 .125 2 140.56 9 -783 43870 55000 0142 -688 11,6 N 1 .25 1 133.24 6 -30290 550		6,6	N	Г	.14286	7	127.25	9	913	29284	53041	.0312	.0172		510
8,0 N 1 .09615 2 148.32 12 601 54862 54862 .0110 .0110 596 8,3 N 1 .125 2 140.58 9 -479 43518 54862 -0110 -0087 -497 8,6 N 1 .125 2 140.58 9 -479 43518 54862 -0110 -0087 -497 8,6 N 1 .125 2 123.90 6 516 3075 54862 .0172 .0047 193 8,9 N 1 .125 2 123.48 3 255 15153 54862 .0168 .0047 193 11,3 N 1 .125 2 140.56 9 -783 43870 55000 0178 0142 -688 11,6 N 1 .25 1 133.24 6 -327 30290 55000 0142 -688 11,6 N 1 .25 1 128.22 3 323	8,0 N 1 .09615 2 148.32 12 601 54862 54862 .0110 .0110 596 8,3 N 1 .125 2 140.58 9 -479 43518 54862 -0110 0087 -497 8,6 N 1 .125 2 140.58 9 -479 43518 54862 0110 0087 -497 8,6 N 1 .125 2 123.90 6 516 30075 54862 .0172 .0094 423 8,9 N 1 .125 2 123.48 3 255 15153 54862 .0168 .0047 193 11,3 N 1 .125 2 140.56 9 -7783 43870 55000 0142 -688 11,6 N 1 .25 1 123.22 3 30290 55000 0142 -688 11,6 N 1 .25 1 128.22 3 30290 55000 <t< td=""><td></td><td>6'9</td><td>N</td><td>г</td><td>.125</td><td>7</td><td>117.92</td><td>Υ</td><td>650</td><td>14597</td><td>53041</td><td>.0446</td><td>.0123</td><td></td><td>134</td></t<>		6'9	N	г	.125	7	117.92	Υ	650	14597	53041	.0446	.0123		134
8,3 N 1 .125 2 140.58 9 -479 43518 54862 0110 0087 -497 8,6 N 1 .10714 2 123.90 6 516 30075 54862 0110 0087 -497 8,6 N 1 .10714 2 123.90 6 516 30075 54862 .0172 .0094 423 8,9 N 1 .125 2 123.48 3 255 15153 54862 .0168 .0047 193 11,3 N 1 .125 2 140.56 9 -783 43870 55000 0178 0142 -688 11,6 N 1 .25 1 133.24 6 -327 30290 55000 0108 0060 -340 11,9 N 1 .25 1 128.22 3 323 15010 55000 .00142 .0060 -340	8,3 N 1 .125 2 140.58 9 -479 43518 54862 0110 0087 -497 8,6 N 1 .10714 2 123.90 6 516 30075 54862 0110 0087 -497 8,6 N 1 .10714 2 123.90 6 516 30075 54862 .0172 .0094 423 8,9 N 1 .125 2 123.48 3 255 15153 54862 .0168 .0047 193 11,3 N 1 .125 2 123.48 3 255 15153 54862 .0142 -688 11,6 N 1 .125 2 140.56 9 -783 43870 55000 0108 0142 -688 11,6 N 1 .255 1 128.22 3 323 15010 55000 .0160 -340 11,9 N 1 .255 1 128.22 3 323 <t< td=""><td>1968</td><td>8,0</td><td>N</td><td>Ч</td><td>.09615</td><td>7</td><td>148.32</td><td>12</td><td>601</td><td>54862</td><td>54862</td><td>.0110</td><td>.0110</td><td></td><td>616</td></t<>	1968	8,0	N	Ч	.09615	7	148.32	12	601	54862	54862	.0110	.0110		616
8,6 N 1 .10714 2 123.90 6 516 30075 54862 .0172 .0094 423 8,9 N 1 .125 2 123.48 3 255 15153 54862 .0172 .0094 423 11,3 N 1 .125 2 140.56 9 -783 43870 55000 0178 0142 -688 11,6 N 1 .25 1 133.24 6 -327 30290 55000 0108 0060 -340 11,9 N 1 .25 1 128.22 3 323 15010 55000 .0178 0142 -688 11,9 N 1 .25 1 128.22 3 323 15010 55000 .00178 .0059 281	8,6 N 1 .10714 2 123.90 6 516 30075 54862 .0172 .0094 423 8,9 N 1 .125 2 123.48 3 255 15153 54862 .0172 .0094 423 11,3 N 1 .125 2 123.48 3 255 15153 54862 .0168 .0047 193 11,3 N 1 .125 2 140.56 9 -783 43870 55000 0178 0142 -688 11,6 N 1 .255 1 133.24 6 -327 30290 55000 0108 0060 -340 11,9 N 1 .255 1 128.22 3 323 15010 55000 .0159 281		8,3	N	Ч	.125	2	140.58	6	-479	43518	54862	0110	- 0087		210
0.73 N 1 1.125 2 123.48 3 255 15153 54862 .0168 .0047 193 11,3 N 1 .125 2 140.56 9 -783 43870 55000 0178 0142 -688 11,6 N 1 .25 1 133.24 6 -327 30290 55000 0108 0060 -340 11,9 N 1 .25 1 128.22 3 323 15010 55000 .0018 .0059 281	0.7 N 1 1.12 2 123.48 3 255 15153 54862 .0168 .0047 193 11,3 N 1 .125 2 140.56 9 -783 43870 55000 0178 0142 -688 11,6 N 1 .25 1 133.24 6 -327 30290 55000 0108 0060 -340 11,6 N 1 .25 1 128.22 3 323 15010 55000 .0018 0060 -340 11,9 N 1 .25 1 128.22 3 323 15010 55000 .00159 281		8,6 0	N		.10714	00	123.90	90	516	30075	54862	.0172	.0094		297
11,3 N 1 .125 2 140.56 9 -783 43870 55000 0178 0142 -688 4148 11,6 N 1 .25 1 133.24 6 -327 30290 55000 0108 0060 -340 2756 11,9 N 1 .25 1 128.22 3 323 15010 55000 .0059 281 1358	11,3 N 1 .125 2 140.56 9 -783 43870 5500001780142 -688 11,6 N 1 .25 1 133.24 6 -327 30290 5500001080060 -340 11,9 N 1 .25 1 128.22 3 323 15010 55000 .0215 .0059 281		<i>n</i> 10	N	-	C7T.	7	LZ3.48	m	255	15153	54862	.0168	.0047	e	702
N 1 .25 1 133.24 6 -327 30290 5500001080060 -340 2756 N 1 .25 1 128.22 3 323 15010 55000 .0215 .0059 281 1358	N 1 .25 1 133.24 6 -327 30290 5500001080060 -340 N 1 .25 1 128.22 3 323 15010 55000 .0215 .0059 281	1971	11,3	N	Ч	.125	7	10	6	-783	43870	55000	0178	0142		486
N 1 .25 I 128.22 3 323 15010 55000 .0215 .0059 281 1358	N I .25 I I28.22 3 323 I5010 55000 .0215 .0059 281		11,6	N		•25 •25	н ,	33.	9	-327	30290	55000	0108	0060		568
			т т , ч	N	4	c7.		»	m	323	15010	55000	.0215	.0059		588

Note: In this table $\sum \Delta = \sum * \Delta$ and the column $\sum * \Delta$ is omitted.

10

Table 3: Comparison of Results from EXPSMOOTHING

with and without Use of Cyclic Analysis for Seasonally Adjusted Data (TIMSR4)

				Automore are the effect of the service	an Brianna an an Standard an Anna an An	-		
Lower Error		N	는 는 는				S	m
LOWE	*	υ		аааа	г	г	7	m
	;	N	.0128 ^T	.0123	.0047*	.0059	1	·LT
	L=3	υ	.0128 ^T	.0074*	.0104	.0024*	7	ΙT
		z	.0206 ^T	.0172	. 0094	- 0060*	г	11
	л Г=6	ן כי	.0206 ^T	.0163*	.0043*	0095	7	E- T-
1 Error)	2	Ŋ	.0121 ^T	0200	0087*	0142*	2	17
<pre>[*4/]*S (Cumulative Fractional Error)</pre>	С=1 С	د	.0121 ^T	0189*	0116	0171	Г	11
Cumulative	N 7T -	4	0463	 0332	*0110.	1	Ч	1
<u>[*4/[*s</u>		<u>ر</u>	0456*	0240*	.0140		N	
Length of Record	Years/Months		4,0 4,4 4,6 4,4	6,9 6,9 6,9	0,000 0,000 0,000	11,3 11,6 11,9	*	Ties
Year of Forecast			1964	1966	89 96 1 11	1971		

Year:
4) for Calendar Year:
for
(TIMSR4)
Adjusted Data (TIMSR4)
and Seasonally Adjus
and
parisons Using EXPSMOOTHING and Seasona
Using E
Comparisons
Miscellaneous
 4
Tabl

January - December

Year of Forecast	Length of, Record Years, Months Cycli	Cyclic	К	ö	Order	MAD	Lead Time	$\sum \Delta$	∑*∆	Σs	∑*S	∑∆/∑s	∑*∆∕∑*S
1964	4,4 6,4 6,4	NNN		.17500 .17000 .18000	000	122.23 122.15 122.53	იიი	579 521 635	579 521 635	37720 37720 37720	47700 47700 47700	.0154 .0138 .0168	.0121 .0109 .0133
1964	4,0	υυ	4	.18750 .13462	00	109.60 123.48	3 12	-460 -2176	-1212 -2176	9980 47700	47700 47700	0461 0456	0254 0456
1966	6,0 6,0	υυ	17 17	.13462	00	101.43 152.63	3 12	119 -1271	2517 -1271	10757 53041	53041 53041	.0110 0240	.0457 0240
1968	8,0 8,0	00	23 23	.12500 .13462	ωv	87.43 104.02	3 12	- 113 770	-1820 770	11344 54862	54862 54862	0100	0332 .0140

Table 5: Forecasts of Fatalities using EXPSMOOTHING (General Electric) and Unadjusted Data for Calender Year:

ø

January - December

Cyclic Analysis Permitted

	CYCLLC ANALYSIS FELMILLED	דווודררפמ								
.134622 142.62 12 -2300 47700 .175002 133.43 936 37720 .187502 113.47 6 27 26490 .214293 118.06 3 66 13280 .187502 166.46 12 -1685 53041 .175002 143.53 9 -1259 42284 .176502 143.53 9 -1259 42284 .177502 128.89 6 4 29284 .177502 128.89 6 4 29284 .175002 168.22 12 -230 54862 .175002 158.43 9 -7756 43518 .178572 168.22 12 -230 54862 .178572 168.22 12 -230 54862 .178572 168.22 12 -756 43518 .178572 130.11 3 -126 30075 .178572 130.11 3 -230 54862 .178572 168.22 12 -756 43518 .178572 149.92 6 -11166 43870 .1742862 140.222 6 -11166 43870 .150002 140.222 6 -11116 43270 .150002 150.29 3 353 15010	h of d s, Years	ъ	Order	MAD	Lead Time	ΣΔ	Σs	∑*S	Σ∆/∑s	[∆/[*s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.13462	2	142.62	12	-2300	47700	47700	0482	0482
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ი ⁻	.17500	0	133.43	6	36	37720	47700	.0010	.0008
.18750 3 118.06 3 66 13280.13462 2 166.46 12 -1685 53041 .17500 2 143.53 9 -1259 42284 .17500 2 128.89 6 4 29284 .18750 3 135.00 3 687 14597 .18750 2 168.22 12 -230 54862 .17500 2 168.22 12 -730 54862 .17657 2 168.22 12 -756 43518 .17857 2 158.43 9 -7766 43518 .17857 2 138.00 6 -1136 30075 .17857 2 130.11 3 184 15153 .17856 2 149.92 6 -11166 43870 .15000 2 149.92 6 -11166 43870 .15000 2 150.22 3 353 15010	9	.21429	0	113.47	9	27	26490	47700	.0010	• 0006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	.18750	m	118.06	m	99	13280	47700	.0050	.0014
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.13462	2	166.46	12	-1685	53041	53041	0318	0318
.178572128.896429284.187503135.00368714597.134622168.2212 -230 54862.175002158.439 -756 43518.178572138.006 -136 30075.250002130.11318415153.150002149.929 -1166 43870.150002140.226 -1111 30290.250002150.29335315010	e	.17500	7	143.53	6	-1259	42284	53041	0298	0234
.187503135.00368714597.134622168.2212 -230 54862.175002158.439 -756 43518.178572138.006 -1136 30075.178572130.11318415153.150002149.929 -1166 43870.150002140.226 -1111 30290.250002150.29335315010	9	.17857	7	128.89	9	4	29284	53041	.0001	.0001
.134622 168.22 12 -230 54862 .175002 158.43 9 -756 43518 .178572 138.00 6 -136 30075 .250002 130.11 3 184 15153 .150002 149.92 9 -1166 43870 .142862 140.22 6 -1111 30290 .250002 150.29 3 353 15010	6		m	135.00	m	687	14597	53041	.0471	.0130
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0	.13462	2	168.22	12	-230	54862	54862	0042	0042
.17857 2 138.00 6 -136 30075 .25000 2 130.11 3 184 15153 .15000 2 149.92 9 -1166 43870 .14286 2 140.22 6 -1111 30290 .25000 2 150.29 3 353 15010	e	.17500	7	158.43	6	-756	43518	54862	0174	0138
.25000 2 130.11 3 184 15153 .15000 2 149.92 9 -1166 43870 .14286 2 140.22 6 -1111 30290 .25000 2 150.29 3 353 15010	9	.17857	7	138.00	9	-136	30075	54862	0045	0025
.15000 2 149.92 9 -1166 43870 .14286 2 140.22 6 -1111 30290 .25000 2 150.29 3 353 15010	6	.25000	7	130.11	e	184	15153	54862	.0121	.0034
.14286 2 140.22 6 -1111 30290 .25000 2 150.29 3 353 15010	ε	.15000	7	149.92	6	-1166	43870	55000	0266	0212
.25000 2 150.29 3 353 15010	9	.14286	2	140.22	9	-1111	30290	55000	0367	0202
	6	.25000	7	150.29	ო	353	15010	55000	.0235	.0064

Table 6: Error Analysis of Forecasts of Fatalities using GEXSMO (Univac 1108) and Unadjusted Data for Calender Year:

January - December

		∑∆/∑*S	0231	.0286	.0085	.0047	0315	0041	.0104	.0128	0132	.0095	.0140	.0058	0176	0167	0027					1	
		∑∆/∑s	0231	.0362	.0154	.0169	0315	0051	0187	.0465	0132	.0120	.0256	.0210	0221	0303	0100			0751	0324	0210	
		∑*S	47700			47700		53041		53041	54862	54862	54862	54862	55000	55000	55000				1	1	
		Σs	47770	37720	26490	13280	53041	42284	29284	14597	54862	43518	30075	15153	43870	30290	15010			0866	10757	11344	
		ΣΔ	-1105	+1365	+ 407	+ 225	-1672	- 215	+ 549	+ 679	- 724	+ 522	+ 769	+ 318	- 969	- 917	- 150			- 749	- 349	- 238	
	MAD OI Forecast	Errors	150.59	155.54	151.13	148.60	147.86	43.	146.52	47.	141.86	149.34	146.12	144.53	152.68	153.32	156.32			150.59	147.86	141.86	
program	al Smoothing Factors	υ	.15	.15	.12	.14	.15	• 08	.10	.10	.01	.01	.01	.01	.01	• 09	• 00			.15	.15	.01	
Calculated by program	tial Smoot	В	.55	.49	.55	. 55	.37	.41	.36	.34	• 33	• 33	• 33	.32	.29	.32	.31			. 55	.37	• 33	
Calc	Exponenti	A	.07	.11	.10	· 09	.12	.16	.13	.13	.25	.25	.25	.25	.18	.13	.13	1/	recast	.07	.12	.25	
T.andth of	Record		4,0	4,3	4,6	4,9	6,0			6,9	8,0	8°, 3	8,6	8,9	11,3	11,6	11,9		Three month forecast	4,0	6,0	8,0	

Data picked off from 12 month forecast output

-il

	_					
Method 3	*3	49487 47979 47825	53006 43854 53647	55195 55357 55067	53469 54264 54856	56604
	14 × 4	50037 48244 48000	53006 53854 53647	55818 55663 55269	53469 54264 54856	57234
		.40850 .39396 .39197	.37746 .38350 .38203	.35982 .35882 .35628	.32276 .32756 .33113	.34520
Method 2	¥2	49854 48355 47732	53455 53740 54138	54587 55308 54962	52668 53951 54570	57818
×	(Adjustment Factor)	.98901 99451 99635	1.00000 1.00000 1.00000	.98901 .99451 .99635	1.00000 1.00000 1.00000	10686.
	(Adjustme	90/91 = 181/182 = 273/274 =	90/90 181/181 273/273	90/91 181/182 273/274	90/90 1 181/181 1 273/273 1	16/06
Method 1	<>	50408 48622 47907	53455 53740 54138	55194 55613 55163	52668 53951 54570	58460
	m_/m_1	1.1571 1.1161 1.0997	1.0873 1.0931 1.1012	1.0429 1.0508 1.0423	0.9611 0.9845 0.9958	1.0629
g months	Σ ³ ₁ m_1	24425 53858 87813	28498 61947 100630	31527 69047 100630	34484 75437 120769	34270
Corresponding months	m_3	7690 16872 27055	8625 19004 31299	9893 21733 34911	11344 24787 39709	11560
Totals by Co	п2	8110 17962 29459	9980 21210 34420	10757 23757 38444	11560 25520 40900	11580
To	u~1	8625 19004 31299	9893 21733 34911	10877 23589 38099	11580 25130 40160	11130
	m.	9980 21210 34420	10757 23757 38444	11344 24787 39709	11130 24710 39990	11380
4	Σ ³ Υ-i	122459	140427	155128	165662	165890
	Y3	38091	43564	49163	54862	56000
Totals by Year	Y_2	40804	47700	53041	56000	54800
10t	Y_1	43564	49163	52924	54800	55000
	Forecast Year	1964 LY	1966	1968 LY	1971	1972 LY
	Year, Month	4,3	4,9 6,5	6,9 8,8 9,63	8,9 11,3 11,6	11,9 12,3

7: Forecasts of Fatalities by Current NHTSA Methods

c
vitŀ
n v
ri S(
ipaı
COT
nd
ga
tin
cas
ore
ы S
-1
alił
Fat
0f]
S
ogio
101
choc
Met
A's
NHTSZ
nt
rre
Cu
οf
sis
aly
An
LOL
ΕL
able
Ta

1				1									[*^/[*S		
Forecast For	Length of Period	Method 1 Forecast	Method 2 Forecast	Method 3 Forecast	∑*∆ı Method 1	∑*∆² Method 2	∑*∆₃ Method 3	∑*S	∑*∆. /\$*S	5×∆2/5×5	5*∆. /5*S 5*∆2/5*S 5*∆. /5*S	000000000	EXPSMOOTHING	DNIHJ	
								1	- 1,	7 /= 7	7 12 7	GEXSMO	SAC	SAN	Unadj C
1964	4,3	50408	49854 48354	49487 47979	+2 1710 8 + 0.2 1	+2154 - 664	+1787	47700	.0568	.0452	.0375*	.0268	. 0121	.0121	.0008+/
	4,9	47908	47733	47825	+ 208	+ - 33 +	+ 125	47700	.0044	\$2000.	.0026	.0047	.0206	.0205	。0006+√ 。0014+
1966	6,3 6,6	53455 53740	53455 53740	53096 53854	~ 414 - 699	- 414 - 699	- 35 + 813	53041 53041	0078 0132*	0078 0132*	0007	0041+ .0104	0189 0163./	0200	0237
	6'9	54138	54138	53647	+1097	+1097	+ 606	53041	.0207	.0207	.0114*	.0128	.0074+	.0123	.0130
1968	8,3 8,6	55194 55613	54587 55308	55195 55357	+ 332 + 751	- 275 + 446	+ 333 + 495	54862 54862	+.0061+.0137	0050	+.0061 +.0090	.0095	0116	0087+	0138
	6,8	55163	54962	55067	+ 301	+ 100	+ 205	54862	+.0055	+.0018*	+.0037	0058	0104	.0047	0025+ V 0034+
1971	11,3 11,6	52668 53951	52668 53951	53469 54264	-2332 ~1049	-2332 -1049	-1531 - 736	55000 55000	0424 0191	0424 0191	0278* 0134*	0176 167	0171	0142+	0202
	лт , у	()/ 5 7 ()	0/595	54856	- 430	- 430	- 144	55000	0078	0078	0026*	0027	0024+	.0059	
		1	·· ··	Freque	ncy Distribu	Frequency Distribution of Best of 3 NHTSA Methods *	of 3 NHTSA	Methods	* 1T	4+1T	۲.	ł	ł	ł	
				Freque	ncy Distribu	Frequency Distribution of Best	ΨO	Smoothing Methods	ls +		ł	1	2	m	ي
				Freque	ncy Distribu	Frequency Distribution of Best of 7 Methods 🗸	of 7 Metho	ds /	0	2	ы	0	т	2	0 4
					Note: nT	nT = n +i⊳s									
								∑ad . Mad	.2168 .0181	.1855	.1359 .0113	.1336 .0111	.1434 .0119	.1439 .0120	.1070
								Max AD Min AD	.0568	.0452	.0375	.0268 .0041	.0206	.0206	.0237
															00000

Table 9: Effect of Lead Time on EXPSMOOTHING Forecasts

Forecast	Length of	<u>\</u> *∆/	*∆/∑*S				
for	Record	L = 12	EXPSMOOTH	HING	L = 3		
		SAC	SAN	Unadj C	SAC	SAN	Unadj C
1964	4	0456	0463	0482	0254	0304	0023
1966	9	.0240	0332	0318	.0475	0046	.0009
1968	0 00	0140	.0110	0042	0332	0237	.0029

SAC = Seasonally Adjusted Data with Cyclic Analysis SAN = Seasonally Adjusted Data with No Cyclic Analysis Unadj C = Unadjusted Data with Cyclic Analysis

.

APPENDIX A

Exponential Methods for Analysis and Forecasting of Economic Time Series

From approximately 1960, most methods of time series smoothing analysis have gone toward the use of varying weights based on the age of the data. The simple moving average ignores data beyond a certain age and weights equally each datum that is used. The most popular weighting schemes in vogue today are based on some form of "exponential" smoothing. These schemes use all of the data, with the weight given an individual datum decreasing with increasing age of the datum. The rate of decreasing weight is determined by a parameter called a smoothing constant and most frequently denoted by the Greek letter alpha (α). Depending on the nature of the time series, a variety of models may be used to represent the time series, for example, a constant process model $\xi_{+} = a_{0}$, a linear process model $\xi_t = a_0 + a_1 t$, a quadratic process model $\xi(t) = a_0 + a_1 t + a_2 t^2$, etc. In each case there is a process $\xi(t) = \sum_{i=0}^{n} a_i t^i / i!$ which is observed in the presence of noise $x(t) = \xi(t) + \varepsilon(t)$. The number of "degrees of freedom" of these models are respectively 1, 2, 3, etc., and this number is sometimes referred to as the order of the model.

Multiple Smoothing: If a constant model ($\xi_t = a$) is used to represent the time series $x(t) = \xi(t) + \varepsilon(t)$,

A-l

exponential smoothing for estimating the single coefficient in a constant model is

 $\hat{a}_{t} = S_{t}(x) = \alpha x_{t} + (1-\alpha) S_{t-1}(x)$

For estimating the two coefficients in a linear model, the notion of <u>double</u> smoothing is used. For generality the exponential smoothing for the constant model is called single smoothing and is represented by

 $S_{t}^{[1]}(x)$, i.e., $S_{t}^{[1]}(x) = S_{t}(x)$. Then <u>double</u> smoothing is defined as $S_{t}^{[2]}(x) = S_{t}^{[1]}(x) + (1-\alpha) S_{t-1}^{[2]}(x)$, Similarly, <u>multiple</u> smoothing of order k is defined by $S_{t}^{[k]}(x) = \alpha S_{t}^{[k-1]}(x) + (1-\alpha) S_{t-1}^{[k]}(x)$,

i.e., $k\frac{th}{-}$ - order smoothing is just simple exponential smoothing applied to the results of (k-1)st - order smoothing of the data.

As an example, in the case of a linear model:

 $\xi_{+} = a_{0} + a_{1}t$

the forecast of the value of the time series τ units after time T is given by

 $\hat{x}_{\tau}(T) = \hat{a}_{0}(T) + \tau \hat{a}_{1}(T)$ where $\hat{a}_{0}(T)$ and $\hat{a}_{1}(T)$ are given by $\hat{a}_{0}(T) = 2 S_{T}(x) - S_{T}^{[2]}(x)$ $\hat{a}_{1}(T) = \frac{\alpha}{1-\alpha} S_{T}(x) - S_{T}^{[2]}(x)$

A convenient, comprehensive basic reference is R.G. Brown, <u>Smoothing</u>, <u>Forecasting</u>, <u>and Prediction of</u> <u>Discrete Time Series</u>, Prentice-Hall, 1963. A summary of the fundamental formulas of multiple smoothing and forecasting are given on pages 142-144, and pages 184ff of this reference.

We remark at this time that in using multiple smoothing methods two problems arise: (a) what <u>order</u> of smoothing should be used? (b) what value of the smoothing constant should be employed? A third, but minor, problem is the determination of starting values.

The mathematical basis for the EXPSMOOTHING computer program is founded on the concepts of multiple smoothing, and utilizes the formulas presented in Brown's book.

A similar but different approach forms the basis of the UNIVAC GEXSMO program. This generalized exponential smoothing program is based on the work of P.R. Winters, "Forecasting Sales by Exponentially Weighted Moving Averages," <u>Management Science</u>, April, 1960. The essentials of this computer program are given in Appendix B under the section UNIVAC 1108.

A-3

.

APPENDIX B

Available Computer Programs at NBS for Time Series Analysis

Several time-sharing interactive systems were immediately available at NBS. These were DIALCOM, Computer Sciences Corporation Conversational Executive and General Electric Mark II. In addition the Large Scale Systems STAT-PACK for the UNIVAC 1108 tests several routines for time series analyses. A summary of the pertinent program libraries of each of these systems follows.

DIALCOM: Moving Average (A Simple Moving average) Autocovariance

Cross Covariance

Smoothed Series (A weighted moving average) Seasonal Index and Cyclical Movement

Note: No expontential smoothing method is available and none of the programs have an extrapolation feature.

<u>Computer Sciences Conversational Executive (CSCX</u> <u>Basic Library)</u>: This has a Triple Exponential Smoothing routine called ***SMOOTH. In addition to smoothing, and listing the smoothed values and differences, the routine can produce a plot of the observed values and the smoothed values (on the same graph) and an extrapolation feature is also available.

B-1

There is no routine available for first or second order smoothing and there is no automatic feature such as a mean absolute deviation. The value of the smoothing constant must be supplied by the user.

General Electric (Mark II): The EXPSMOOTHING routine is a very comprehensive routine which performs a sequence of exponential smoothing operations for a number of alpha values for each order of smoothing: 1, 2, 3. The routine then selects that combination of alpha and order of smoothing that has minimum mean absolute deviation per data point. A forecast (extrapolation) option is also available, along with a plot. A variety of output options is possible.

The routine also permits the users to override several automatic features of the routine. For example, the user has the capability to specify cycle length of known periodic data and also to specify the values of the smoothing constants, but not the order of smoothing.

A summary of the essential details of this particular routine is given in Appendix C.

UNIVAC 1108: The Large Scale Systems STAT-PACK for the UNIVAC 1108 lists several routines for time series analysis. These are UNIVAC system subroutines and are not necessarily National Bureau of Standards routines, but they are available for use on the NBS UNIVAC 1108. The most appropriate subroutine for the problem at hand appears to be GEXSMO - Generalized

B-2

Exponential Smoothing.* The routine

- Produces the seasonally adjusted series point S_ 1.
- Computes a seasonality factor F₊ to be used 2. in the next cycle
- 3. Computes the next trend value R+
- Produces a forecast for the next period, ** S 4
- 5. Compares the forecast with the actual to get the forecast error

 $e_{t,1} = S_{t+1} - S_{t,1}$

where S_{t+1} is the (t+1)st time series data point. When all the data are used, L forecasts for future periods may be produced by using the equation

 $S_{N,K} = (\hat{S}_N + KR_N) F_{N-L+K}$ K = 1, 2, ..., L (Linear increasing)

where L is the periodicity of the data, e.g., if the data is by month, L = 12 and N is the number of elements in the time series.

Three exponential smoothing factors, A, B, and C all between 0 and 1 are used respectively to produce the seasonally adjusted series, to adjust the seasonality factors and to adjust the trend. These smoothing factors and initial values may be input or may be calculated by the routine.

**In this context "next period" refers to the next time point. B-3

^{*}The notation used here is that employed in the UNIVAC Programmers Reference Manual. The mathematical background for the method as given in Winters, P.R.: Forecasting Sales by Exponentially Weighted Moving Averages, Management Science, April, 1960.

The output of the GEXSMO routine is listed under the headings: ORIGINAL SEASONALLY FORECASTED SEASONALITY TREND ERROR SERIES ADJ. SERIES SERIES and this is followed by MEAN ABSOLUTE DEVIATION OF FORECAST ERRORS ______ PERCENTAGE ERROR ______

We mention the availability of other UNIVAC time series routines:

- MOVAVG Moving Averages. This subroutine computes the smoothing coefficients in a polynomial model for a time series and smooths the given time series.
- SEASHI Shiskin's Seasonality Factors. This subroutine produces seasonality factors from a time series, and smooths, detrends and deseasonalizes the series.
- WEMAV Weighted Moving Averages. This subroutine eliminates a trend from a time series by a weighted moving average.
- TRELS Trend Analysis by Least Squares. This subroutine removes trends in a time series with a general linear model, using least squares.

- 5. VADIME Variate Difference Method. This subroutine estimates the variance of the random component in a time series and determines a lower limit for the degree of the polynomial which can be used in approximating the trend.
- 6. TSFARG Autoregressive Model. This subroutine obtains the least square coefficients in an autoregressive time series model and produces forward forecasts from the model.

The documentation of the detail of each of these seven programs is very adequately done in the UNIVAC Programmer's Reference Manual for STAT-PACK and is not repeated here.

.

APPENDIX C

Details of EXPSMOOTHING Routine

The EXPSMOOTHING routine is a very comprehensive routine which performs a sequence of exponential smoothing operations for a number of alpha values for each order of smoothing: 1, 2, 3. The routine then selects that combination of alpha and order of smoothing that has minimum mean absolute deviation per data point. A forecast (extrapolation) option is also available, along with a plot. A variety of output options is possible.

The routine also permits the users to override several automatic features of the routine. For example, the user has the capability to specify cycle length of known periodic data and also to specify the values of the smoothing constants, but not the order of smoothing.

For the convenience of the reader we present a summary of the essentials of the General Electric Time Sharing EXPSMOOTHING Routine. The discussion is based on experience in using the routine and explanations of this routine from two User's Guides* prepared by the

*Mark II User's Guide: Statistical Analysis System, General Electric Company, December, 1971 (5707.01).

C-1

GETSA\$: Mark I Marketing and Economic Forecasting, A Hands-On Users Guide, General Electric Company, 1969. (906329)

the General Electric Company, and is prepared in the sequence provided by the version in use in December, 1972. For additional details on program operation the reader is referred to the user's guides. The time series data to be subject to the EXPSMOOTHING routine is called RAW DATA by the program. The RAW DATA may be adjusted initially by what is called a BASE SERIES. This series permits one to remove known distortions that one would not expect to occur at future times. The base series may be used to take into account discontinuities, human judgment or the results of statistical analyses of the data. The base series values are subtracted from the raw data before an analysis is made and later added back into the forecast.

To operate the program, in addition to entering the raw data and the base series, one has to indicate two times, the LEAD TIME (L) and the FORECAST HORIZON (H) as well as a choice of six output options.

Lead time is the term used to describe the time (in periods) between the last piece of data one has as data as input and the period one is most interested in estimating correctly. The forecast will be optimized according to the lead time that is entered.

The forecast horizon indicates how many periods beyond the last data point will be forecasted, but has

C-2

nothing to do with the optimization. For example, if the raw data is reported monthly and the user wishes to forecast six months in the future, accurately, and also wishes to take a casual glance at the forecast one year ahead, a lead time of six and a horizon time of 12 would be indicated.

The output options are cumulative, so that option code 5 gives all options. The codes for the output options are:

0 = Simple forecast table

1 = Raw data residue

2 = Raw data list

3 = Base series list and cyclic analysis

4 = Cyclic forecast

5 = Trend and error analysis and composite forecast.

A graphical display of the raw data and forecasted (smoothed) and extrapolated data may also be obtained.

The following discussion is based on maximum output (Code 5). The output indicates whether the smoothing constant was supplied or provided automatically by the programs and

a. NUMBER OF RAW DATA POINTS

b. NUMBER OF BASE DATA POINTS

c. FORECAST HORIZON

d. LEAD TIME.

Next, the RAW DATA are printed out.

C-3

Then comes DETERMINATION OF THE OPTIMUM NUMBER OF DATA POINTS PER CYCLE. The entries are in columns K and ERR(K), where K refers to cycle length as expressed in data periods, and where K runs from 1 to half the number of data points. The ERR(K) shows a measure* of error associated with each cycle length. The GETSA\$ user's guide states:

The lower the error, the stronger is the tendency for the data to conform to a cyclic pattern. The absolute value of the error term has little significance for interpretation, but the relative value shows which cycle length fits best and that length (K value) is chosen as the optimum length and subsequent calculations assume a cycle of that length.... The optimum number of periods per cycle will be chosen based on minimum error. That cycle length is assumed for the remainder of the analyses.

If min ERR(K) occurs for K = 1, the routine will indicate that the data is not cyclic.

Then the output indicates THE OPTIMUM PERIOD FOR THE CYCLE and prints out the corrections that are used to remove the cyclic effects, under the headings T and C(T)**.

*We have been unable to determine the exact nature of this measure.

**We have been unable to determine the exact nature of this correction.

Next there appears TABULATION OF THE ACTUAL (UNSMOOTHED) RESIDUE. The residue at this stage contains the corrections for base series and cyclic effects. At this point the

> Residue (T) = Raw Data Residue (T) - $\sum_{\tau=1}^{T} C(\tau-1)$, where C(0) = 0.

The output then indicates the results of EXPONENTIAL SMOOTHING APPLIED TO RESIDUE: under the headings ALPHA TYPE OF SMOOTHING MEAN ABSOLUTE DEVIATION PER DATA POINT

If the alpha values are not supplied but are determined by the program, the program will select* eight (8) values of alpha and do exponential smoothings of orders 1, 2, and 3 for each alpha. The minimum absolute deviation per data point for this set of 24 smoothings then determines the alpha value and order of smoothing that will be employed in the so-called FORECAST section of the program. The output headings at this stage are:

OPTIMUM TYPE OF MEAN ABSOLUTE DEVIATION ALPHA SMOOTHING PER DATA POINT followed by ------FORECAST-----FORECAST-----TIME RESIDUE COMPOSITE ACTUAL ERROR

*If α is not forced, program will select 8 values of α based on $\alpha = \frac{1}{8} \frac{2}{L+1}$. The leading term is always $\alpha_1 = .01$. The second term is $\alpha_2 = \min(.05, \alpha)$. If $\alpha_2 = .05$, $\alpha_3 = \alpha$, $\alpha_4 = 2\alpha$, ..., $\alpha_8 = 6\alpha$. If $\alpha_2 = \alpha$, $\alpha_3 = 2\alpha$, $\alpha_4 = 3_{\alpha}$, ..., $\alpha_8 = 7\alpha$. C-5 Under TIME the initial entry is at time 5 + L, where L is the lead time. Several observations are required before a smoothed average can be calculated and this routine uses five.

The RESIDUE indicated is the smoothed residue.

Under COMPOSITE appear the results of putting back in the reverse corrections for cyclic effects and base series.

Under ACTUAL are listed the values that were originally listed as RAW DATA.

Under ERROR appear the results of ACTUAL minus COMPOSITE. The entries under RESIDUE and COMPOSITE beyond the last ACTUAL data point are based on the exponential smoothing forecast formulas* of orders 1, 2, 3:

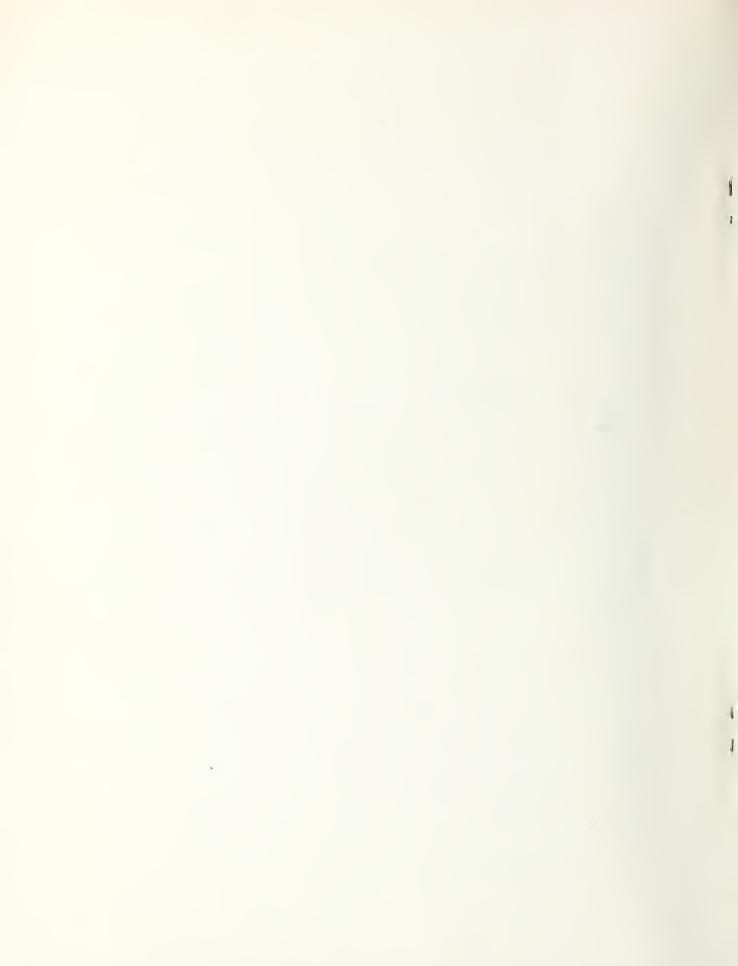
 $Fl_{t+L} = Sl_t = CEDl_t$ $F2_{t+L} = CED2_t + L(C2_t)$ $F3_{t+L} = CED3_t + L(C3_t) + 1/2 L^2(RC3_t)$

The values that are actually used in the extrapolation are listed under the headings:

Sl	S2	S 3
CED1	CED2	CED3
C2	C3	RC 3
The values shown a	e for the last raw	data point.

^{*}These and other formulas used in the exponential smoothing, process can readily be transformed into the notation used in Brown's book in pages 142-144 and pages 184ff.

This is followed by HORIZON FORECAST BEGINS AT TIME and LEAST SQUARES FIT and MEAN and VARIANCE.


The LEAST SQUARES FIT is simply an equation describing the <u>straight line</u> trend which best approximates (in the sense of least squares) movement of the raw data for all the data.

At this time the computer will ask WANT A PLOT? and WANT DATA STORED? If a plot is desired, this routine will give on one graph plots of the values listed under FORECAST COMPOSITE and ACTUAL.

FORM NBS-114A (1.71)	12 (2) 1. 4			
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SCIEET	2. Gov't Accession 3. Re No.	ecipient's Accession No.		
4. TITLE AND SUBTITLE	5. P	ublication Date		
Time Series Forecasting of Highway Accident Fatalities		rforming Organization Code		
7. AUTHOR(S) Dr. Alexander R. Craw		rforming Organization NBSIR - 73-138		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		Project/Task/Work Unit No.		
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234		4314496 Contract/Grant No.		
12. Sponsoring Organization Name and Address National Highway Traffic Safety Administration Department of Transportation		ype of Report & Period overed		
Washington, D.C. 20590		ponsoring Agency Code		
15. SUPPLEMENTARY NOTES				
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) Using twolve years of time series data on highway fatalities, the methodology currently employed by the National Highway Traffic Safety Administration (NHTSA) to forecast the annual (calendar year) total of highway accident fatalities were compared with those obtained by several computer routines based on exponential smoothing techniques and available at the National Bureau of Standards. The use of unadjusted and seasonally adjusted data was also examined. It is found that there is no coercive evidence to lead to abandoning the present NHTSA methods in favor of readily available computer routines based on exponential smoothing methods. Of the methods examined in this study, the best results were obtained with the EXPSMOOTHING routine using unadjusted fatality data.				
Exponential smoothing; fatalities; high				
18. AVAILABILITY STATEMENT	19. SECURITY CLA (THIS REPORT)	SS 21. NO. OF PAGES		
X UNLIMITED.	UNCL ASSIFIED			
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS.	20. SECURITY CLA (THIS PAGE)	ASS 22. Price		
	UNCL ASSIFIED			
		USCOMM-DC 66244-P71		

•

