÷

NBSIR 73-124 (R)

Evaluation of Currency and Stamp Papers

E. L. Graminski and E. E. Toth

Paper Evaluation Section Product Evaluation Technology Division Institute for Applied Technology

January 30, 1973

Progress Report covering the period July 1 - December 31, 1972

Prepared for Bureau of Engraving and Printing

.

U. S. Department of the Treasury Washington, D. C. 20401

NBSIR 73-124

EVALUATION OF CURRENCY AND STAMP PAPERS

15/

E. L. Graminski and E. E. Toth

Paper Evaluation Section Product Evaluation Technology Division Institute for Applied Technology

January 30, 1973

Progress Report covering the period July 1 - December 31, 1972

Note

The results contained and the conclusions reached in this progress report are preliminary. Final results and conclusions will be presented in the final report.

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director · ·

CONTENTS

																			-	
1.	SUMM	ARY	• •	• •	• • •	• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	1
2.	EDGE	TEA	R OF	RED	EEMEI	CT	JRRI	ENC	Y	•	•	٠	•	۰	•	•	٠	•	•	3
3.	MODII ACRYI	FICA LIC	TION LATE:	OF I XES	PAPEI	R B)	Y TI •	REA'	TME •	ENI •	: V	rIV.	H	•	٠	•	٠	٠	•	5
	3.1	Bea	ter <i>l</i>	Addi	tion	of	Act	ryl	ic	Pc	ly	me	ers	5	•	•	•	•	•	5
		А. В.	Expe Resu	erimo ults	ental and	De Dis	eta: scus	ils ssi	on	•	•	•	•	•	•	•	•	•	•	5 6
	3.2	Pap	er Sa	atur	atior	n wi	ith	Ac	ryl	lic	: I	at	ex	ces	5	•	•	•	•	8
		А. В.	Expe Rest	erim ults	ental and	Dis Dis	eta: scu:	ils ssid	on	•	•	•	•	•	•	•	•	•	•	8 9
4.	FREP	ARAT	ION (OF TI	HE NI	IAG/	ARA	BE	ATE	ER	•	•	3	•	•	•	•	•	•	11
5.	PLANS	S FO	R FU	FURE	WORI	ζ.	•	••	•	٠	•	•	•	•	•	•	•	•	•	12
6.	PIBL	IOGR	APHY		• • •	•	•	• •	•	•	•	•		•		•				13

Page

1. SUMMARY

As part of a continuing study for the Bureau of Engraving and Printing of the U.S. Department of Treasury, the disparity in the edge tear* of flexed currency paper and redeemed currency and the possibility of improving the stiffness retention of paper by treatment with acrylic resins was studied.

The edge tear of currency increases substantially as the condition of a note deteriorates during circulation. Conversely, the edge tear of currency paper increases only slightly at first then decreases during laboratory flexing. An investigation was conducted to determine if this disparity in edge tear behavior was due to significant differences in the structural changes of currency paper occurring during flexing and circulation or whether the disparity was due to the sampling procedure used to test redeemed currency and flexed currency paper. An investigation also was conducted to determine whether modification of paper with acrylic latexes could improve the stiffness retention of paper and whether the method of modification affected the results.

In determining the edge tear of redeemed currency, the actual edges of notes are tested. In determining the edge tear of flexed currency paper, the edges of the flexed paper are purposely avoided. The edge tear specimens of redeemed currency were retested on the edge opposite to the first test. This simulated sampling for edge tear testing of laboratory flexed paper since the edge used in the retest came from the interior of the note.

The edge tear of redeemed currency in the interior of a note is significantly lower than on the actual edge of the note and is essentially the same as it is for moderately flexed currency paper. Apparently, the increase in edge tear of currency during circulation is caused by edge wear and is not due to the flexing a note receives during circulation. These results further indicate that there is good agreement in the changes that occur in the properties of currency paper during currency circulation and laboratory flexing.

*Edge tear is the resistance offered by paper to the onset of tearing at the edge of a sheet. Handsheets were modified with acrylic polymers by beater addition and paper saturation techniques. The effect of polymer concentration on the extent of change in paper properties was also investigated. The handsheets were prepared from a kraft wood pulp beaten in a PFI laboratory mill.

The investigation of acrylic latexes demonstrated that modification of paper with acrylics can result in marked improvement in stiffness retention with flexing and that the best results are obtained when the modification is produced by paper saturation. There is a possibility that wood pulp paper, modified with polymer latexes, could be superior to currency paper manufactured from rag pulps.

The effect of acrylic polymer modification of paper on the retention of cantilever stiffness during flexing will be continued during the next reporting period.

2. EDGE TEAR OF REDEEMED CURRENCY

The edge tear of redeemed currency is appreciably higher than that of uncirculated currency [1]. The edge tear of printed currency paper increases during the early stages of flexing but then decreases as flexing continues [1]. In any event, the average edge tear of flexed printed currency paper is never as high as the edge tear of redeemed currency. The difference in edge tear between flexed currency paper and redeemed currency may be due to significant differences in the structural changes of paper occurring during flexing and currency circulation.

In determining the edge tear of currency, care was taken in cutting the specimens to include the actual edge of the redeemed note [2]. In obtaining specimens for testing from flexed currency paper, care is taken not to include the actual edge of the flexed sample so as to avoid edge effects in testing. Therefore, the disparity in edge tear between redeemed currency and flexed currency paper could also be due to sampling procedures.

In determining the edge tear of redeemed currency or flexed currency paper, only one edge is tested per specimen and not both edges as suggested in TAPPI Method T 470 os-66. Photographs of the edge tear device used at NBS are shown in Figure 3.

The same specimens used in determining the edge tear of redeemed currency [2] were tested a second time but on the opposite edge. This edge came from the interior of the note and would be free of edge effects. The second edge tear determination was made in the area directly opposite the first determination as shown in Figure 1. The results are given in Table 1.

The edge tear of redeemed currency is significantly lower in the interior of the note than on the actual edge of the note. However, it could be argued that the edge tear should be lower by virtue of the specimens being subjected to tensile forces during the first edge tear test. Therefore, the remainder of the untested portion of each redeemed bill was cut (as shown in Figure 1) into two specimens for additional edge tear testing. The previously untested specimens were tested on the side adjacent to the outer specimens and in approximately the same area (see Figure 1). The results are given in Table 1 under the column heading, Top and/or Bottom Control. The average edge tear for the control specimens was the same as the average for the original specimens tested on the side from the interior of the note. This indicates that the first edge tear test had no effect on the edge tear of the opposite side of the specimen.

The average edge tear of the interior of redeemed currency is essentially the same as it is for uncirculated currency. The higher edge tear for the actual edge of redeemed currency is apparently due to the wear such as abrasion, etc., received during circulation and not due to the flexing it receives. The edge tear data from the interior of redeemed currency are also in good agreement with the edge tear data obtained from flexed, printed currency paper, giving further indication that laboratory flexing is an excellent method for evaluating the durability of paper.

3. MODIFICATION OF PAPER BY TREATMENT WITH ACRYLIC LATEXES

There are two methods for modifying paper with polymer latexes. One is the so-called beater addition which actually does not take place in a beater but in a mixing chest where the beaten pulp can be agitated gently in the presence of a latex. The second method is called paper saturation which involves saturating dry paper with a latex, squeezing out the excess, followed by drying. In beater addition, the fibers are completely coated with polymer prior to sheet formation. In paper saturation, the polymer is deposited only on the exposed portion of the fibers. It is apparent that the effect of polymer on the physical properties of paper will be dependent on the method of polymer application to the paper. The object of this investigation was to determine the effect of acrylic polymers on the retention of stiffness when applied to paper by beater addition and paper saturation.

Four acrylic latexes (designated E-631, P-339, E-610, and AC-61) were chosen for this investigation. The polymer stiffness was estimated by the manufacturer from the torsional modulus of an air-dried film. E-631 was the softest polymer, P-339 and E-610 were intermediate, and AC-61 was the stiffest of the four polymers evaluated.

3.1 Beater Addition of Acrylic Polymers

A. Experimental Details

A bleached kraft wood pulp was beaten in a PFI laboratory mill at a 10 percent consistency with no clearance between bedplate and roll for 5,000 revolutions at 3.4 kilograms force and a relative velocity of roll to bedplate of 6 m/sec. The beating was done in distilled water. Aliquots of this pulp, sufficient to make a 12" x 12" handsheet of 70 q/m^2 basis weight, were diluted with 1.5 liters of distilled water and disintegrated for 7,500 revolutions in a British disintegrator. The pH is adjusted to pH 9 with 1N NaOH. A retention aid is added to the pulp slurry in the amount of 2 percent based on latex solids to be deposited on the fibers. The retention aid is added from a sufficient quantity of a 1 percent solution, diluted with 50 cm³ of distilled water. Only two-thirds of the retention aid was added at the start. The mixture of pulp suspension and retention aid was stirred 5 minutes prior to latex addition to exhaust the retention aid from solution. The pH of the mixture was then decreased to 4.0 with 0.5 N H2SO4.

The acrylic emulsion was diluted with approximately 50 cm³ distilled water and added to the pulp suspension in three equal portions with moderate stirring. Five minutes was allowed between each addition to exhaust the acrylic latex. Only moderate stirring was used in order not to remove any adsorbed polymer by shearing. After all of the latex was added, the remainder of retention aid was added and the mixture stirred for an additional 5 minutes. Handsheets were then prepared by placing the mixture in the deckle box of the handsheet machine and forming the sheet in the usual way using tap water. The sheets were dried at 95°C for approximately 3 minutes on a drum dryer.

The effect of the acrylics on the retention of cantilever stiffness was evaluated by determining the decline in cantilever stiffness after 1,000 double flexes over 1/8" rollers on the NBS paper flexer. All of the tensile properties and other physical properties were determined in addition to the cantilever stiffness. The results are given in Tables 2-5 and the standard deviation of the results are given in Tables 6-9.

B. Results and Discussion

The extensional stiffness of the handsheets decreased as the amount of polymer deposited on the fibers increased. The decrease in extensional stiffness was greatest with E-631, the softest acrylic evaluated, and least with AC-61, the stiffest of the four acrylics. Breaking strength was affected most by the stiffest polymer (AC-61), while improvement in elongation to break was greatest with P-339, an acrylic with moderate stiffness. The effect of acrylic polymer on the energy to break, yield load, and elongation to break was not very great. Plastic stiffness decreased extensively with handsheets containing E-631, while the remaining three polymers had somewhat less effect on this property.

None of the acrylic polymers evaluated appeared to have any great effect on the initial cantilever stiffness of paper. Their effect on folding endurance ranged from a significant decrease with E-631 (two sided t-test at 95 percent confidence interval) to a significant increase with P-339 and E-610. With the exception of AC-61, each of the acrylic latexes caused the air permeability to increase with increasing amounts of polymer treatment. Of the tensile properties, only initial stiffness and elongation to yield are affected substantially after 1,000 flexes. There is a large decrease in the initial stiffness and a large increase in elongation to yield. Small but significant increases in elongation to break occurred with all handsheets investigated. The remaining tensile properties exhibited little or no change after 1,000 flexes.

Cantilever stiffness declined extensively after 1,000 flexes. The only real significant improvement in stiffness retention over the controls occurred with handsheets containing 5 and 10 percent AC-61. However, the improvement in stiffness retention was not as great as observed in handsheets treated with wet strength resin.

It is apparent from the above results that none of the acrylics evaluated when deposited in paper by beater addition improve stiffness retention of papers adequately.

3.2 Paper Saturation with Acrylic Latexes

A. Experimental Details

The same wood pulp was used in this investigation as was used in the beater addition investigation, and the beating was done as described in section 3.1A. A total of 600 g pulp was beaten in 15 separate charges then combined in a large stainless steel container. The pulp was diluted with sufficient distilled water to make a 1 percent suspension and was stirred vigorously for 1 hour prior to handsheet preparation. Aliquots of the 1 percent suspension were treated in the British disintegrator for 7,500 revolutions, transferred to the deckle box of the handsheet mold, and sheets were made in the usual way. Each sheet was weighed after drying and only those sheets whose basis weight was 70 g/m² + 5 percent were retained. The sheets were then separated into ten groups of six sheets each by a random selection.

The paper saturation was performed as follows: The felts which are used in wet pressing of handsheets were saturated with either a 5 or 10 percent emulsion of the acrylic. A handsheet was placed in the felt and passed through the calender rolls on the sheet machine. As the felt passed through the calendar rolls, the excess latex was squeezed out, saturating the paper with latex. As the felt and paper proceeded through the rolls, the excess latex in the paper was squeezed out. The wet sheet saturated with acrylic was lifted from the felt and dried on the drying drum at 95°C for approximately 3 minutes. The weight of the sheet was determined after drying and by difference, the percent of polymer in the sheet was determined.

The effect of acrylic on the retention of physical properties was evaluated by determining the decline in physical properties after 1,000 double flexes over 1/8 inch rollers on the NBS paper flexer. The results are given in Tables 10-13, and the standard deviation of the results are given in Tables 14-17.

B. Results and Discussion

It is quite apparent from the results that more and greater changes occurred in tensile properties when the handsheets were modified with acrylics by saturation than by beater addition. Extensional stiffness, breaking strength, elongation to break, energy to break, and plastic stiffness all exhibited significant increases (two sided t-test) over the controls for all of the latexes except E-631. Overall, the greatest increase in tensile properties occurred with sheets modified with AC-61.

With the exception of sheets modified with E-631, Elmendorf tear decreased as a result of saturation with acrylic latexes. Fold endurance either remained essentially unchanged or increased, and in practically every case, air permeability decreased after modification. Cantilever stiffness decreased in all instances except for sheets containing AC-61.

The decline in extensional stiffness with flexing is less with the handsheets modified by the saturation technique than with those treated by beater addition, while the increase in elongation to yield is lower for the saturated sheets. The only other tensile property exhibiting a significant change after flexing is the increase in elongation to break. All other tensile properties were virtually unchanged after 1,000 flexes.

Of greatest importance is the retention of stiffness of the sheets modified by saturation. Stiffness retention for all the modified handsheets was greater than the controls as shown in Figure 2. There is no doubt about the superiority of paper saturation over beater addition with respect to stiffness retention. In fact, stiffness retention was greater for handsheets modified with 8.5 percent AC-61 than for any paper evaluated to date, which includes currency paper. This is significant, as the pulp used in this evaluation was a wood pulp and not a rag pulp. Rag pulp is considerably more expensive and considered to be superior to wood pulp.

These investigations indicate that paper can be modified with acrylic resins resulting in a significant improvement in cantilever stiffness retention. The magnitude of the improvement in stiffness retention apparently depends to a degree on the rheology of the polymer as indicated by the results and quite probably on paper structure and pulp fiber rheology. The great improvement in stiffness retention of a wood pulp paper might result in a superior currency paper which is less expensive than currency paper made from rag pulps.

4. PREPARATION OF THE NIAGARA BEATER

The Niagara beater closely resembles the type of beater generally used in rag paper manufacture. It enables rag pulp to be fibrillated extensively without reduction of fiber length which up to now has been an important requirement for currency paper and for durable papers in general.

A newly acquired Niagara beater must first be "ground in" (a time-consuming operation) before reproducible results can be obtained. During this reporting period, the beater was "ground in," and it is anticipated that a schedule for beating cotton and linen will be worked out during the next reporting period.

5. PLANS FOR FUTURE WORK

- 1. Continue the investigation on the improvement of stiffness retention by paper saturation of polymeric latexes.
- Develop beater schedules for rag pulps on the Niagara beater for producing a currency type paper in the laboratory.

6. BIBLIOGRAPHY

- 1. Graminski, E. L. and Toth, E. E., NBS Report 10 090, Evaluation of Currency and Stamp Papers.
- Graminski, E. L. and Forshee, B. W., NBS Report 9597, Evaluation of Currency and Stamp Papers, July 31, 1967.
- 3. Wilson, W. K. and Forshee, B. W., NBS Report 7198, Evaluation of Currency and Stamp Papers, July 15, 1961.

·# .

Table 1. Edge tear of redeemed currency at various positions in a note.

Serial No. of Note	Top Edge	Top Interior Edge	Top Control	Bottom Edge	Bottom Interior Edge	Bottom Control
			force, k	ilograms		
C13322220A	1.43	0.95	0.52	0.93	0.68	0.50
E48965305B	0.85	1.09	1.15	2.03	0.74	0.33
L70573237B	0.80	0.36	0.84	1.16	0.62	0.81
F03214779A	1.04	0.72	0.56	1.10	0.69	0.43
B44442898A	0.56	0.58	0.58	0.71	0.68	0.82
C12248091A	1.34	0.90	1.46	1.40	0.87	0.50
E54593181B	1.92	0.68	0.60	1.36	0.65	0.58
F87500623B	0.89	0.89	0.59	1.12	0.53	1.01
A51449725A	0.60	0.66	0.46	0.92	0.66	0.93
I01112392A	1.93	1.01	0.81	0.80	1.14	0.69
B45657992A	1.34	0.56	0.84	0.52	0.38	0.66
E30313683A	1.81	0.46	0.65	1.18	0.66	0.85
E27910176A	1.62	1.49	0.79	0.68	1.05	1.36
B53207398B	1.19	0.83	0.73	0.60	0.62	0.53
E49645561B	0.92	0.92	0.66	0.54	0.61	0.97
H62119580A	0.90	0.68	0.57	1.05	0.34	0.61
F62862627A	1.22	0.73	0.92	1.48	1.12	0.92
J21513136A	0.76	0.39	0.65	0.85	0.89	0.36
L11257762B	0.77	0.58	0.69	1.58	1.82	0.78
B21823744A	2.00	0.47	0.85	0.84	0.66	0.95
Average	1.19	0.75	0.75	1.04	0.77	0.71
Std. Dev.	0.46	0.27	0.23	0.39	0.33	0.25
95% confi- dence in- terval for true mean	1.19 <u>+</u> .22	0.75 <u>+</u> .13	0.75 <u>+</u> .11	1.04 <u>+</u> .18	0.77 <u>+</u> .15	0.71 <u>+</u> .12

Tensile properties of unflexed wood pulp handsheets treated with various acrylic resins by beater addition. Table 2.

and and a second s	The second		Language Summer and the	alternatives and south the second	and the second s	Monorentario del Philosophi Scowdol	and an order of the second sec	Annual Contraction of the Contra	ALC: NO ALC: NO ALC: A CONTRACT OF A CONTRAC	A CONTRACT OF A CONTRACT OF A CONTRACT OF		And in the second se			dia dia mandri mini
Acrylic R	esin	Extens Stiff	ional ness	Brea	king ngth	Elong: to B1	ation	Energ Bre	y to ak	Loa at Yi	eld	Elonge at Yi	tion	Plast Stiffr	tic less
Type	010	kg		X	, Д	0/0		kg-	cm	kg		0/0		kg	
		Μ	Ч	Μ	ч	Μ	Ъ	Μ	Ч	Μ	ц	Μ	ы	M	1
E-631	Ч	592	609	6 . 3	6.1	с ° С	2.8	1.5	1.2	4.1.	4.1	0.7	0.7	87	96
	2	519	497	5 ° 6	5.7	З°2	3.4	l.4	1.4	З°9	3.8	0 . 8	0.8	78	79
	10	428	415	4°0	5.0	з°д	4 • 0	l.4	Т.5	3.4	3.6	0.8	6.0	54	53
P339		629	634	7.1	6 . 8	3°2	с. Э.Э	1.7	1.6	4.4	4.3	0 • 7	0.7	66	66
	S	535	540	6.4	7.0	3.6	о° с	l.5	۲°8	4.0	4.2	0。8	0.8	88	5 S
	10	484	491	7 • 0	7.3	4.3	4.2	2.0	2.0	4 . 0	4.2	0 ° 8	0.9	16	96
E610	1	624	657	6.8	7.3	3 . 2	3.6	1 °5	1.8	4.5	4.7	0 • 8	0.7	67	94
	Ŋ	557	529	7.4	7.5	з•8	3°8	1.8	1.9	4.5	4.6	0 . 8	0.9	101	66
	10	446	443	7.0	7.6	₫•0	4.4	1.8	2.2	4.2	4.5	0.9	1.0	97	95
AC-61		657	681	7 . 2	6 ° 8	3°5	2.9	1.7	1 ° 4	4.6	4.5	0 . 8	0.7	98	108
	ß	656	629	8 ° 0	7.6	3°8	3.5	2.1	1.8	4.7	4.9	0.7	0.8	103	103
	10	594	620	8 0	7.8	3.7	с. С.	1.9	1.7	4.7	4.8	0°8	0.8	116	114
controls	aid ¹	677	690	7.8	7.4	3.6	3.3	1.9	1.7	4.6	4.9	0.7	0.7	107	66
	water	629	676	7 ° 0	7.1	3°2	с с с	1.7	1.6	4.4	4.6	0 . 8	0.7	94	100
	and the second state of th		white many plants to improve where we	And a second of the second							-				

same amount of retention aid ¹Handsheets made from water containing used in beater addition of acrylics. Tensile properties of wood pulp handsheets treated with various resins by beater addition after flexing 1000 times over 1/8 inch rollers. acrylic 3 Table

91 101 116 101 105 **J**16 92 55 100 147 130 113 Stiffness Plastic Н kg . 66 84 7054 103 89 93 IOI 100 104 110 116 100 66 \mathbb{R} Elongation ω 9 50 045 9 0 at Yield P 0 1 L O N N H H H N F N N H -Г 0/0 1.0 1.2 1.0 1.2 0.9 1.1 1.2 0.8 0.9 1.1 6°0 \leq 4.4 4.4 3 **.** 8 4.8 4.8 4.6 с. С. С. С. 4.1. at Yield Ч Load 4 4 4 4 4 4 4 4 ¥д 4.0 3.8 3.4 4.2 4.1 4.4 4.1 4.3 4.0 4.2 4.4 1 0 \mathbb{R} 4 . 4 **1.4** 1.4 1.4 1.5 1.7 2.0 1.4 1.8 1.7 1.6 1.6 Energy to 8 8 8 Ч Break kg-cm 1.5 1.6 2.0 1.6 1.9 1.3 1.7 1.7 1.5 1.6 \mathbb{R} Elongation 3.7 4.2 4.6 4.4 3.8 4.0 4.8 3.5 4.0 3.7 3.7 to Break Ч 0/0 3.5 4.1 3.4 3.9 4.4 3.1 3.8 4.1 3.6 3.8 3.6 T \geq 6.9 6.9 6.1 5.7 4.9 6.8 7.1 7.4 6.5 7.6 7.8 7.1 6.9 Breaking Strength Ч Ъg 6.1 5.4 4.7 6.7 7.3 6.3 7.1 6.7 7.0 7.7 6.6 6.7 \geq Extensional 298 260 194 184 264 234 240 284 229 334 364 287 336 Stiffness 361 Ч kg 338 486 405 374 496 428 355 526 444 284 520 451 475 477 \mathbb{R} water aid¹ Resin 0/0 101 101 10 10 10 10 Acrylic controls Туре P-339 E-610 E-631 AC-61

of retention aid used amount same ¹Handsheets made from water containing in beater addition of acrylics Physical properties of unflexed wood pulp handsheets treated with various acrylic resins by beater addition. ч Ч Table

Basis Weight	g/m ²		70	74	02	75	78	70	74	78	70	74	76	71	20
Air Permeability	csm ²		958	1313 1992		L363	1517	800	978	1366	641	810	740	866	606
lever ness	cm	Ч	2 . 4	2.2	2.2	2.3	2.1	2 . 2	2.1	2 . 0	2.3	2.4	2.4	2.2	2.3
Canti Stiff	đ	Μ	2.3	2.3	2.4	2.5	2.2	2.3	2.3	2.2	2.3	2.5	2.5	2.5	2.4
Fold ance	0 g folds	Н	920	1170 890	1600	2300	2880	1460	2660	3680	1500	2020	2120	1500	1520
MIT Endur	100 double	Μ	930	1100 880	1400	2140	2860	1300	2810	3320	1560	2070	2070	1690	1240
ıdorf ar	Ĵ	П	103	93 100	96	100	85	91	94	82	90	91	87	06	108
Elmen Tea	0.	M	97	97 102	101	67	83	97	87	81	77	85	8	95	63
nic ¹ ulus	2 _{x10-3}	Ч	13°1	10.1	13.8	11.5	11°1	13.4	12.5	11.1	14.0	13. J	13.3	14.0	14.1
So Mod	kg/cm	Μ	13°0	11.4 9.6	13.6	11.7	11.1	13.7	12.3	11.5	13.5	13.7	12.8	14.5	13.9
Resin	0/0			10 N	-	n ا	10	Ч	Ś	10	Ц	പ	10	aid ³	water
Acrylic	Type		E-631		P-339			E-610			AC-61			controls	

¹Sonic modulus calculations were based on cellulose density of 1.54. ²csm = 1 cm³ of air per second through an area of 1 m² when impelled by a pressure difference of 1g force/cm².

³Handsheets made from water containing same amount of retention aid used in beater addition of acrylics. Physical properties of wood pulp handsheets treated with various acrylic resins by beater addition after flexing 1000 times over 1/8 inch rollers. Table 5.

		Son	ic1	Elmer	ldorf	MIT	Fold	Canti	lever	Air
Acrylic	Resin	Modu	lus	Tea	١٢	Endur	ance	Stiff	ness	Permeability
Type	0%	kg/cm ²	x10 ⁻³	0,	-	100 double	0 g e folds	g-(cm	${\tt csm}^2$
		W	Ц	Μ	ц,	Μ	Ч	Μ	ч	
E-631	Г	10.2	6.9	85	84	1020	760	1.3	0.7	918
	2	9.5	6.2	81	85	1120	970	1.3	0.6	1358
	10	8.4	6.0	88	87	860	820	1.3	0.6	2040
P-339	г.	11.3	7.5	81	79	1420	1070	1.3	0.8	686
	ß	10.4	7.1	82	81	2010	2020	l.5	0.8	1376
	10	10.7	7.7	78	76	2950	2560	1.4	0.9	1440
E-610	-	11.1	7.4	86	77	1280	1250	1.4	0 . 8	822
	S	10.9	8.2	76	71	2370	1820	1.5	0.8	874
	10	10.3	8 2	75	74	3080	2760	1.5	0.8	1400
AC-61	Ч	11.8	8.1	82	81	1580	1080	l.5	0.8	626
	IJ	12.2	8.5	74	78	2130	1650	1.7	1.0	752
	10	11.9	9.1	80	77	1890	1970	1.8	1.2	682
controls	aid ³	11.5	7.7	78	73	1390	1440	1.5	0.8	1032
	water	12.7	8.0	87	83	1520	1350	l.8	0.8	647
¹ Density	used in	n calcul	ating :	sonic	modul	us was	1.54 (đ	ensity	of ce	llulose).
$^{2} \operatorname{csm} = \hat{\mathbf{l}}$	cm ³ of	air per	second	d thro	ough a	un area	of 1 m ²	when	impell	ed by a

³Handsheets were made from water containing same amount of retention aid pressure difference of 1 g force/cm².

used in 10 percent beater addition of acrylic.

Standard deviation for tensile properties given in Table 2 of unflexed wood pulp handsheets treated with various acrylic resins by beater addition. Table 6.

Acrylic Tvpe	Resin	No. Speci	of mens	Extens Stiff ka	ional ness	Brea ^j Strer ko	king ngth	Elong to B	ation reak	Energ) Bred ka-o	v to ak	at Y ko	ad ield	Elonga at Yj %	ation ield	Plast Stiffn ko	ess
7		Μ	Г	M	Г	M	Г	Μ	Г	M	Г	M	П	M	Г	M	Г
E-631	ч ю о Н	000	000	67.3 38.5 47.2	47.6 40.3 48.4	0.83 0.45 0.26	0.69 0.55 0.21	0.32 0.33 0.30	0.48 0.44 0.34	0.32 0.16 0.15	0.31 0.27 0.10	0.40 0.32 0.19	0.35 0.31 0.17	0.04 0.03 0.11	0 • 06 0 • 07 0 • 08	10.2 6.6	4.6 7.3 5.5
Р-339	н 10 О Н	000	ល០ល	60.3 32.6 31.5	21.0 78.6 36.6	0.67 0.34 0.38	0.54 0.37 0.35	0.25 0.32 0.41	0.46 0.21 0.40	0.26 0.21 0.22	0.35 0.07 0.24	0.45 0.28 0.27	0.30 0.33 0.24	0.08 0.06 0.03	0.35 0.07 0.12	5.5 4.7 9.8	7.3 5.5 12.9
E-610	- 1 0 С - Г	000	o o n	49.9 57.9 25.1	51.7 39.8 39.8	0.37 0.36 0.48	0.36 0.77 0.42	0.21 0.14 0.27	0.19 0.37 0.21	0.12 0.05 0.19	0.12 0.35 0.19	0.34 0.31 0.46	0.11 0.49 0.21	0.05 0.06 09	0.04 0.05 0.06	13.0 10.0 7.9	10.6 6.4 3.9
AC-61	1021	ហហហ	ហហ	79.8 13.1 30.3	39.7 30.0 44.6	0.91 0.20 0.41	0.83 0.41 0.82	0.46 0.17 0.37	0.58 0.20 0.47	0.41 0.12 0.29	0.39 0.14 0.38	0.32 0.36 0.27	0 . 30 0 . 34 0 . 48	0.07 0.05 0.08	0.04 0.05 0.05	10.7 7.1 7.6	7.8 6.8 16.2
controls	aid water	n o	ى ى	30.3 12.1	49.4 39.0	0.60	0.73	0.23 0.37	0.470.23	0.23 0.25	0.34	0.30 0.42	0.41 0.42	0.04 0.11	0.05 0.05	9.0 15.3	10.1 6.0
								and the state of t							And a state of the state of the state		

Standard deviation for tensile properties given in Table 3 of wood pulp handsheets treated with various acrylic resins by beater addition after flexing 1000 times over 1/8 inch rollers. Table 7.

Acrylic Type	Resin %	No. Speci	of mens	Extens Stiff kg	ional ness	Breal Strei ko	king 1gth J	Elong to B: %	ation reak	Energ) Brea kg-c	/ to ak cm	at Yi ko	ad ield j	Elong: at Y: %	ation ield	Plast Stiffr kg	ric less
		Μ	ц	М	Ц	Μ	ы	· M	ц	Μ	ц	Μ	Ы	Μ	ц	Μ	Ы
E-631	Ч	9	9	38.4	26.0	0.44	0.60	0.26	0.16	0.20	0.18	0.42	0.55	0.08	0.30	8.1	9.3
	ъ	9	9	32.6	10.2	0.40	0.39	0.19	0.22	0.16	0.13	0.40	0.43	0.09	0.22	6.3	10.2
	10	9	<u>م</u>	24.0	15.9	0.27	0.24	0.30	0.20	0.14	0.08	0.13	0.39	0.09	0.31	4.5	4.4
P-339	1	9	9	, 30.9	13.3	0.62	0.35	0.21	0.19	0.16	0.15	0.50	0.41	0.46	0.18	8.6	10.4
	Ъ	9	9	58.8	24.4	0.58	0.40	0.22	0.24	0.22	0.09	0.48	0.44	0.11	0.30	46.1	10.0
	10	9	9	26.2	17.6	0.69	0.81	0.20	0.52	0.27	0.37	0。73	0.82	0.13	0.45	7.0	7.3
E-610	Г	9	9	42.7	27.5	0.53	0.41	0.27	0.17	0.19	0.15	0.35	0.68	0.06	0.31	6.2	8.4
	ß	9	9	38.3	25.2	0.36	0.44	0.21	0.26	0.14	0.20	0.57	0.46	0.18	0.35	13.9	8。()
	10	9	9	31.5	35.0	0.45	0.35	0.50	0.31	0.38	0.21	0.44	0.57	0.14	0.49	8.7	9.2
AC-61	I	СJ	ъ	38.6	62.1	0.42	0.84	0.15	0.64	0.11	0.43	0.25	0.60	0.06	0.32	9.3	11.3
	Ŋ	Ð	ъ	37.2	45.9	0.50	0.21	0.08	0.16	0.16	0.14	0.32	0.59	0.07	0.32	5.0	9.2
	10	IJ	ഹ	70.0	31.8	0.52	0.37	0.33	0.36	0.29	0.24	0.47	0.73	0.21	0.27	7.7	17.0
controls	aid	9	9	39.2	31.6	0.54	0.53	0.34	0.21	0.26	0.22	0.16	0.33	0.13	0.22	6.1	16.6
	water	Ŋ	ம	16.9	51.0	0.45	0.48	0.39	0.36	0.32	0.25	0.12	0.50	0.08	0,31	6.2	5 . 7

Standard deviation for physical properties given in Table 4 of unflexed wood pulp handsheets treated with various acrylic resins by beater addition. Table 8.

Air Permeabilit	csm	131.4 213.3 200.4	63.6 145.9 181.3	47.8 150.6 145.5	69.2 72.9 53.6	96.6 56.0
Lever I	T	0.37 0.10 0.37	0.08 0.30 0.20	0.20 0.28 0.28	0.19 0.36 0.13	0.20 0.09
Canti] Stiffr	g-o M	0.31 0.10 0.15	0.16 0.32 0.17	0.21 0.12 0.22	0.23 0.29 0.12	0.15 0.20
Fold ance	flexes	344.8 294.3 140.1	201.7 429.7 368.0	324.5 717.8 557.8	245.3 230.1 260.1	249.5 214.1
MIT Endur	double W	376.5 277.7 213.5	515.8 281.3 436.6	148.1 412.1 475.4	323.4 340.3 400.1	284.2 469.3
dorf r	Ц	12.1 8.6 3.7	12.7 22.8 5.4	15.3 14.3 6.2	10.3 11.2 10.6	7.9 21.7
Elmeno Tea	g W	11.0 8.6 11.2	13.5 19.9 8.5	13.5 11.9 10.9	1.6 8.2 18.4	16.1 18.9
of imens	Ч	000	000	vou	ហហហ	٥u
No. Spec.	Μ	000	000	000	ហហហ	20
Resin	0%	101	101	101	1021	aid water
vcrylic	Type	-631	- 339	-610	C-61	ontrols

Standard deviation for physical properties given in Table 5 of wood pulp handsheets treated with various acrylic resins by beater addition after flexing 1000 times over 1/8 inch rollers. Table 9.

Air Permeability	CSM	155.5	226.2 290.4	56.6 274.3	177.3	85 . 8	104.1 222.0	67.9	52.9	73.9 61.9	
lever ness	cm	L 0.07	0.08	0.06 0.04	0.08	0.10	0.050.04	60.0	0.06	0.04 0.07	
Canti Stiff	g-	w 0.16	0.16	0.17 0.13	0.12	0.14	0.20 0.11	0.13	0.19	0.18 0.09	
Fold rance	flexes	л 373.2	484.0 257.4	414.3 244.6	471.9	263.0	392.3 434.6	207.5	162.1	319.0 438.6	
MIT Enduj 100(double	w 286.1	297.3 354.4	395.2 327.2	779.8	276.8	519.9 302.9	226.4	206.5	299.7 291.0	
dorf r	1	4°.8	10.2 17.8	6.3 15.5	11.7	5 • 5	3.3 6.4	6.7	6°.2	13.5 9.1	
Elmen Tea	g	w 7.6	4 . 8	6 9	4 .3	12.1	ເມີ ເມີ	0 r	15.7	14.4 12.1	
of imens		2 O	99	9 9	9	9	99	IJ	nц	20	
No. Spec	IAT	s 9	99	99	9	9	00	IJ U	Ъ	0 10	
Resin	0/0	Н	10	Ч́л	10	1	Τ0 2	- и	10	aid water	
Acrylic	Type	E-631		Р-339		E-610		AC-61		controls	

Tensile properties of unflexed wood pulp handsheets treated with various acrylic resins by paper saturation. Table 10.

Acrylic Tvpe	Resin %	Extens: Stiffr ka	ional ness	Brea. Strei ko	king ngth a	Elong to B:	ation reak	Energ Bre ka-	yy to ak cm	Loa at Yj ko	ad Leld	Elonga at Yj 8	ation ield	Plas Stiff kq	tic ness
<u> </u>		M	L	Μ	L	M	L	ß	L	M	L	W	Ц	M	L
3-631	6.3 10.5	572	646 681	6.5 7.0	7.8	4 ° 1	3.5 9	1.5 2.0	1 ° 4	4 • 0 4 • 2	4 . 5 5 . 0	0.7	0。7 0。7	100 95	120 117
-339	2.7 4.9	653 633	730 695	8°4 4. 4.	80 0.4	4 ° 7	3.4 3.84	2.1 2.6	2.0	4 . 5 4 . 8	ຕ. ບ.ບ.	0。7 0。8	0.7	124 134	140 146
2-610	4 • 5 7 • 0	636 745	664 747	8.7 9.4	0 0 0 0	4°.1	3 . 5 3 . 7	2.J 2.5	2.0 2.3	4.8 4.7	۵ ۳ م ۲	0 . 8 0 . 7	0.8	133 138	139 152
AC-61	4 • 5 • 5	708 786	841 799	8°7 10.4	9.8 10.5	3 . 5 4 . 0	3°0 3°0	2.0	2.1	5°3	5.7 5.6	0 • 7 0 • 7	0.7 0.7	139 151	165 168
controls	water ¹ reg. ²	714 761	736	6.9 7.6	7.1 8.0	3 ° 2 3 ° 4	3°0 3°0	1.5 1.7	л. 1.9	4.3 4.9	4.7 4.7	0.6	0.7 0.7	103 101	105 108
							The second s	and the second se	A						Carry and a line of the local data

¹Post treatment was done with water only. ²Handsheets made in conventional manner with no post treatment

acrylic resins by paper saturation after flexing 1000 times over 1/8 inch rollers. Tensile properties of wood pulp handsheets treated with various Table 11.

tic	Г	101 93	151 150	148 154	176 159	105 109
Plas Stiff kg	Μ	81 76	123 138	135 136	128 144	94 111
ation ield	L	1.9 1.7	1.1 1.3	1.3 1.2	0.9 1.0	1.5 1.3
Elonga at Y	Μ	1.0 1.0	0 8 0	0.9	0.70.8	0.8
ad ield q	Г	ى بى ى بى	5.1 4.8	4.8 4.9	46 5.1	4.4 4.5
Lo at Y k	Μ	4 °0 4 3	4 • 0 3 • 9	3.94.6	4 ° 7 4 ° 6	3.6 4.2
ry to ak cm	Г	1.5 1.8	2.0	2.1	1.9	1.4 1.8
Energ Bre kq-	M	1.5 1.8	1.8	1.8 2.6	2.2	1.2 1.3
ution reak	L	3.6 4.0	6 6 	3.9 4.0	က ထ က က	3.6 4.0
Elonge to Bi %	Μ	3 ° 7 ·	3 ° 7 4	3.7 4.5	3.9 4.2	3.2 2.9
king ngth	L	6.97.3	8.7 8.6	8.7 9.1	9.6 .6	6.6 7.5
Breal Strei k	M	6.1 6.4	7 • 4 8 • 4	7.8 9.5	8.8 10.0	5.8 6.5
ional ness	Г	294 330	375 400	397 414	492 532	302 343
Extens Stiff kq	M	426 421	493 531	513 542	665 627	456 617
Resin %		6.3 10.5	2.7	4.5 7.0	4 • 5 8 • 5	water ¹ reg. ²
Acrylic Tvpe	4 7	E-631	P-339	E-610	AC-61	control

¹Post treatment was done with water only.

²Handsheets were made in conventional manner with no post treatment.

treated with various acrylic resins by paper saturation. Physical properties of unflexed wood pulp handsheets Table 12.

			protection of the second s								
Acrvlic	Resin	Son Modu	lic lus ¹	Elmend	lorf	Enduré Enduré	rold ance	Canti] Stiffr	lever ness	Air Permeability	Basis Weight
Type	0/0	kg/cm ²	x10-3	g		100(double) g folds	g-0	m	csm ²	g/m ²
		M	T.	Μ	Г	M	Ч	Μ	Г		
E-631	6.3 10.5	12.9 12.4	14.2 14.0	95 76	94 78	2290 2810	1610 2530	2.1 2.1	2.0	562 391	0 8 8 8
P-339	2.74.9	14.7 15.9	14.2 15.3	88 77	82 74	1910 2980	1.850 2810	2.2	2.2	504 380	78 80
E-610	4.5 7.0	14.3 14.6	14.9 15.7	74	78 74	2440 2820	2070 2750	2.2	2.1 2.2	460 296	79 82
AC-61	4 ° 5 8 ° 5	14.7 15.5	16.6 15.7	80 75	83 72	1480 2020	1620 2140	2.6	2.5 2.6	539 366	78 82
controls	water ³ reg. ⁴	14.6 14.7	14.1 14.7	100 89	104 89	1280 1700	1350 1670	2.4 2.9	2.3	642 544	75 76
				_							

¹Sonic modulus calculations were based on cellulose density of 1.54. ²csm = 1 cm³ of air per second through an area of 1 m² when impelled by a pressure difference of 1 g force/cm².

³Post treatment was done with water only.

"Handhseets made in conventional manner with no post treatment.

various acrylic resins by paper saturation after flexing Physical properties of wood pulp handsheets treated with 1000 times over 1/8 inch rollers. 13. Table

Permeability csm² 580 385 Air 742 584 468 517330 899 758 491 Cantilever 0°9 1.1 1.0 0.9 Stiffness 1.4 1.7 0.7 Ч g-cm 1.3 1.5 1.6 1.6 1.6 2.0 1.3 1.9 3 1480 2580 1790 1760 1330 1950 2060 2900 2490 3010 double folds Н MIT Fold Endurance 1000 g 2480 $\frac{1840}{1830}$ 1960 3070 3490 2800 3890 1970 2320 \mathbb{R} Elmendorf 83 84 06 88 75 85 79 Ч Tear σ 7870 81 74 77 69 7670 99 85 Μ 10.0 10.8 10.3 11.6 kg/cm^2xl0^{-3} 8.4 9.4 10.7 11.6 6.8 7.4 Ч Modulus Sonic¹ 10.5 10.7 11.8 12.4 12.1 13.0 12.9 9.6 11.6 \mathbb{R} water³ reg. 4 2.74.9-6.3 10.5 4.57.0 Acrylic Resin ഗവ 0/0 4 00 controls Type P-339 E-610 AC-61 E-631

ർ impelled by ¹Sonic modulus calculations were based on cellulose density of 1.54. ²csm = 1 cm^3 of air per second through an area of 1 m^2 when impelled pressure difference of 1 g force/cm²

³Post treatment was done with water only.

"Handsheets made in conventional manner with no

post treatment.

Standard deviation of tensile properties given in Table 10 for unflexed wood pulp handsheets treated with various acrylic resins by paper saturation Table 14.

Acrylic 1 Type	Resin %	No. of Specimens	Extens Stiff kg	ional ness	Break Strer ko	cing ngth y	Elonga to Br %	ttion teak	Energ) Break	/ to ak cm	at Y k	ad ield y	Elonga at Y %	ation ield	Plast Stiffn kg	i c e s s
		W L	M	ц	M	ы	M	Ц	Μ	ы	Μ	ц	Μ	ц	M	Ц
1-631	6.3 10.5	6 6 6	21.0 42.4	79.3 35.0	0.2 0.4	0.5	0.3	0.2	0.2	0.2	0.20.4	0.4	0.05 0.09	0.08 0.05	7.3	3.9 10.7
-339	2.7	6 6 6	50.1 34.0	61.8 47.5	0°20	0.5	0.2	0.2	0.1	0 . 2 0 . 3	0.2	0.0 00	0.06 0.05	0.11 0.08	2.4 9.6	7.28.3
-610	4 . 5 7 . 0	e e 2	85.1 118.4	76.1 49.9	0.6 0.3	0.60.4	0.2	0.6	0.2	с с 0 о о	0.50.4	0.7 0.4	0.09 0.13	0.03	16.5 15.6	16.9 8.0
1C-61	4.5 .5	0 0 2	40.7 54.0	46.6 64.2	0.4 0.6	тт 00	с . 0	0.1	с с 0 • С 0	0.1	0.1 0.3	0.30.4	0.06 0.07	0.05 0.06	12.9 7.8	5.6 13.4
controls	water reg.	0 0 0 0	41.5 77.4	36.7 45.9	0.6	0.50.4	0.3 0.4	0.3	0.2	0.2	0.20.2	0.2	0.06 0.12	0.07	11.7 5.7	11.4 5.6

Standard deviation of tensile properties given in Table 11 for wood pulp handsheets treated with various acrylic resins by paper saturation after flexing 1000 times over 1/8 inch rollers. Table 15.

1 Plastic Stiffness kg	M	11.2 14.4 5.2 13.0	5.8 14.6 7.4 15.4	0 13.7 23.2 5 15.2 13.4	12.6 10.2 7.4 8.9	6 4.7 11.3 4.6 10.2
ngatior Yield %	L	1 0.40 3 0.20	1 0.28 2 0.35	2 0.30	4 0.11 9 0.22	6 0.30 0.130
Elor at	M	0.18	0.12	0.10	- T • 0	0.0
Load Yield ka	L	0.2	3 0.5 0.6	4 0 8 0.6	4 0.6 5 0.5	09 0.6 3 0.2
a d	M	00	00	00	00	00
rgy to reak	Γ	2 0.2	2 0 ° 1 4 0 ° 1	2 0.3 1 0.2	4 0.2	4 0.2
D Enel Bl	M	00	00	00	00	00
ngatio Break %	Г	0.3	2 0 . 2 1 0 . 2	3 0 4 2 0 2	10.2 0.3	4 0 3
Elor to	M	00	00	00	00	00
aking rength ka		0.0	50.4 0.4	0.0	0.6	0.5
Bre Str	M	00	0.13	0.0	00	00
ffness a	I	38.5 35.2	52.0 63.6	48.0 47.8	27.1 71.6	49.8 27.5
Exter Stif	M	32.3 28.3	32.4	52.6 24.6	90.7 52.0	26.8 59.6
. of cimens	Г	00	0 0	വ	00	n o
Spec	M	00	00	00	00	ыю
Resin		6.3 10.5	2.7	4 · 5 7 · 0	4 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	water reg.
Acrylic		E-631	P-339	E-610	AC-61	controls

Standard deviation for physical properties given in Table 12 of unflexed wood pulp handsheets treated wtih various acrylic resins by paper saturation. Table 16.

	2 	No.	of	Elmene	dorf	TIM	Fold	Canti	lever	Air
ACTATIC	IITSAL	r D P D P C P C P C P C P C P C P C P C P	SUAIIT	T G d		1000	g	SCLEE	ness	гегшеартиту
Type	0/0			σ		double	flexes	- 5	cm	CSM
		Μ	J	Μ	ц	Μ	Ţ	Μ	Ы	
E-631	6.3	9	Ŋ	15.4	10.2	474.0	222.0	0.11	0.18	39.7
	10.5	9	9	6 . 8	8.2	690.2	527.7	0.16	0.16	36.6
P-339	2.7	9	9	14.2	7.2	288.7	146.6	0.11	0.16	21.3
	4.9	9	9	10.1	6.6	1°086	302.0	0.18	0.16	32.3
E-610	4.5	9	9	2.8	15.0	399.7	422.3	0.17	0.26	32.9
	7.0	9	9	9.8	7.3	529.1	323.1	0.15	0.14	22.8
AC-61	4.5	9	9	3.6	9.4	174.2	273.5	0.22	0.20	43.9
	8.5	9	9	8.0	5°8	291.2	442.3	0.09	0.24	42.6
controls	water	9	9	14.5	16.0	204.5	277.1	0.24	0.15	45.6
	reg.	9	9	11.6	9.1	207.0	260.6	0.13	0.16	11.2

Standard deviation for physical properties given in Table 13 of wood pulp handsheets treated with various acrylic resins by paper saturation after flexing 1000 times over 1/8 inch rollers. Table 17.

ility							
Air Permeab	CSM	no na mana pan de La la Carlo Caranne angene pan	69.6 42.7	16.8 42.0	32.6 32.7	37.7 42.1	32.7 32.6
lever ness	cm	П	0.050.07	0.06 0.07	0.10 0.09	0.09 0.16	0.09 0.10
Canti Stiff	d I	M	0.170.09	0.16 0.14	0.29 0.18	0.24 0.13	0.18 0.29
Fold rance	0 g flexes	П	341.0 471.0	212.9 358.0	616.3 565.6	237.3 473.9	565.6 616.3
MIT Endu	100 double	М	778.5 488.4	436.2 628.1	333.9 357.6	413.9 388.3	357.6 333.9
dorf r		17	12.3 8.6	7.2 23.4	7.96.9	8.9 7.8	6.9 7.9
Elmen Tea	יס	M	13.1 8.2	4.6 6.3	7 . 8 6 . 4	10.4 7.4	6 . 4 7 . 8
of imens		Ц	99	00	99	00	വ
No. Spec.		Μ	00	00	99	99	ഗഗ
Resin	0/0		6.3 10.5	2.7 4.9	4 • 5 7 • 0	4.5 8.5	water reg.
Acrylic	Type	determines to a local to the fill for the second	E-631	P-339	E-610	AC-61	controls

Retention of cantilever stiffness during flexing of handsheets modified with acrylic resins. 2. Figure

FIGURE 3. SPECIAL EDGE TEAR DEVICE FOR USE IN TENSILE TESTING MACHINES

FORM NBS-114A (1-71)		45		
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	NBSIR 73-124	2. Gov't Accession No.	3. Recipient's	Accession No.
4. TITLE AND SUBTITLE			5. Publication	n Date
Evaluation of C	urrency and Stamp Papers		6. Performing (Organization Code
7. AUTHOR(S)			8. Performing	Organization
E. L. Graminski	ION NAME AND ADDRESS		10. Project/Ta	ask/Work Unit No.
7. PERFORMING ORGANIZAT	ION NAME AND ADDRESS		41104	43
NATIONAL B DEPARTMEN WASHINGTON	T OF COMMERCE I, D.C. 20234		11. Contract/(Grant No.
12. Sponsoring Organization Na	ume and Address		13. Type of Re	eport & Period
Bureau of Engra	ving and Printing		Report	Progress 7/1-12/31/72
Washington, D.C	. 20401		14 Spansoring	Accura Code
			NRCTP	73-12A
15. SUPPLEMENTARY NOTES	3		NDDTK	75-124
As part of a co Printing of the edge tear of flo possibility of treatment with increase in edge wear and is not tion. Also, pay saturation tech improvement in	ntinuing study for the E U.S. Department of Trea exed currency paper and improving the stiffness acrylic resins was studi e tear of currency durin due to the flexing a no per can be modified with nique with the result th stiffness retention with	ureau of Engr sury, the disp redeemed current retention of p ed. It was so g circulation te receives do acrylic late at the paper of flexing.	aving an parity i ency and paper by hown tha is caus uring ci xes by a has a ma	d n the t the ed by rcula- paper rked
17. KEY WORDS (Alphabetical	order, separated by semicolons)			
Acrylic latexes	; edge tear; paper; pape	r durability;	stiffne	SS
18. AVAILABILITY STATEME	NT	19. SECURITY	CLASS	21. NO. OF PAGES
4		(THIS REP	ORT)	
UNLIMIT ED.		LINCI ASSI	FIED	
FOR OFFICIAL D TO NTIS.	DISTRIBUTION. DO NOT RELEASE	20. SECURITY (THIS PAG	CLASS E)	22. Price
		UNCL ASSI	FIED	

INSTRUCTIONS

FORM NBS-114A: BIBLIOGRAPHIC DATA SHEET (REVERSE SIDE). This Bibliographic Data Sheet is an NBS adaptation of the form prescribed by COSATI guidelines (Appendix F. NBS Manual for Scientific and Technical Communications). Please complete with extreme care. This sheet will provide the basis for the literature citation of the publication, and in most cases it will become an integral part of the final publication itself.

- A. Complete item 1 if information is available; otherwise, OTIP will complete later. (See K below.)
- B. Ignore toned items 2, 6, 8, and 14; these are reserved for possible future use. Also, ignore item 3.
- C. Complete items 4 and 7.
- D. Leave items 5, 21, and 22 blank; OTIP will complete.
- E. Items 9, 19, and 20 are preprinted; you need add nothing.
- F. Complete items 10, 11, and/or 12 when applicable.
- G. For item 13, enter "Final" or "Interim" and calendar period covered, as appropriate.
- H. For item 15, enter other relevant information. (For example, upon receipt of completed Form NBS-266 from author, OTIP will enter the complete citation for NBS - authored papers published in non-NBS media.)
- 1. Complete items 16 and 17. Guidance is given in Section 4 and Appendix B of the NBS Manual for Scientific and Technical Communications.
- J. For item 18, enter one of the following:

"Unlimited" - for open-literature documents cleared under NBS editorial procedures, or "For official distribution. Do not release to NTIS" - for limited, restricted, or need-to-know material. (Other availability statements are being developed. If the above are not applicable, contact OTIP for guidance.)

K. In completing item 1, use the brief designators shown in the right-hand column below. Each designator will be followed by the specific publication number for that item. This number will be the same in both the longer and briefer designators for the same document. For example: NBS Technical Note 548 will be equivalent to NBS-TN-548. You would enter NBS-TN-548 in item 1 of Form NBS-114A.

MDC Identification

ND3 Identification	
NBS Technical Note	NBS-TN-
NBS Monograph	NBS-MN-
NBS Handbook	NBS-HB-
NBS Special Publication	NBS-SP-
NBS Applied Mathematics Series	NBS-AMS-
NBS National Standard Reference Data Series	NBS-NSRDS
NBS Building Science Series	NBS-BSS
NBS Federal Information Processing Standards Publication	NBS-FIPS-
NBS Voluntary Product Standards	NBS-PS-
NBS Consumer Information Series	NBS-CIS-
NBS Journal of Research Section A	NBS-JRA-
NBS Journal of Research Section B	NBS-JRB-
NBS Journal of Research Section C	NBS-JRC-
NBS Technical News Bulletin	NBS-TNB-

Since each paper in the three-volume NBS Journal of Research is assigned a specific designator, OTIP will add that designator to the appropriate Journal designator shown in the above right-hand column to obtain the entry for item 1.

. .