Dennis A. Swyt

Institute for Basic Standards National Bureau of Standards
Washington. D. C. 20234

February 20. 1973
Final Report

U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

A SYSTEM FOR COMPUTERIZED SURFACE ROUGHNESS MEASUREMENT

Dennis A. Swyt

Institute for Basic Standards
National Bureau of Standards
Washington, D. C. 20234

February 20. 1973
Final Report
U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

CONTENTS

Page

Introduction 1
Data Acquisition 2
Data Analysis of Step Heights 2
Data Analysis of Surface Roughnesses 3
Calibration of Step Heights and AA Values 3
Program Operations 4
The AA Calculation and the ANSI Standard 5
Noise Effect in AA Measurements 9
Partial Estimate of Accuracy 10
Preliminary Results 12
Appendix A. The Linear Least Squares Curve Fit 18
Appendix B. Step Location 20
Appendix C. The Mean Distance Between Two Non-Parallel Lines 22
Appendix D. Slope Scale Factor 25
Appendix E. Filter Characteristics 27
Appendix F. Program Operation 28
Appendix G. Operator's Instructions: Interdata 3/Talysurf 4 System 34
Appendix H. Checklist for Proper Electrical Operation 38

ILLUSTRATIONS

Page
Figure 1. Function Diagram of Talysurf/Interdata System 2a
Figure 2. Step Height Calculation 2b
Figure 3. Teletype Output of Step/Surface Roughness Calibration $4 a$
Figure 4. Noise Effect Measurement 9a
Figure 5. Noise Effects in AA Readings 10a
Figure 6. Uncertainties in AA Readings 12a
Figure 7. Chart Paper/Memory Location Map 20a
Figure 8. Proper Location of Step Relative to Event Marker 20b
Figure 9. Selection of A_{1} and A_{2} Locations 20c
Figure 10. Proper and Improper Selection of A_{1} and A_{2} 21a
Figure 11. Vector Analysis of Step 24a
Figure 12. Filter-Amplifier Gain-Bandpass Characteristics $27 a$
Figure 13. Observed Amplifier-Filter Phase Delay 27b
Figure 14. Internal Computer Lead Connections $34 a$
Figure 15. Interface AC Power Connection $34 b$
Figure 16. System Lead Connections $34 c$

TABLES

Page
Table 1. Time Study of Measurement Procedure: Step 6
Time Study of Measurement Procedure: Roughness 7
Table 2. Contributions to Uncertainties in AA Readings 13
Table 3. Uncertainties in AA readings for Different Magnifi- cations 14
Table 4. Comparison of Results for NBS Master Roughness Block 15
Table 5. Preliminary Measurements on NBS-1 Caliblock 16
Table 6. Summary of Preliminary Results 17
Table 7. Master Program Outline 29
Table 8. Numerical Values in Sample Program Operation 31
Table 9. Characteristic Parameters of Entire System 32

Dennis A. Swyt

Introduction

Prior to the development of the system to be described, the available basis for calibrations by NBS of roughness specimens for industrial consumers was by means of comparisons with a roughness master. The values assigned to the master involved single displacement calibrations of stylus instruments and hand calculations from planimeter measurements of surface profiles. The overall method has several limitations. Individual calibrations are referred to the historical values of roughness assigned to a unique artifact which is subject to loss, damage and deterioration with ordinary use. AA values, indicated on an integrating meter, are only accurate to 3% of full scale, cannot be displayed digitally, and must be subjectively interpolated between scale divisions. To eliminate these difficulties, a new system has been developed. At present, an Interdata 3 Minicomputer has been fully interfaced with a Talysurf 4 Stylus instrument. The completely operational system offers:
(1) instrument calibration at each use by means of interferometrically measured gage block steps;
(2) considerably more accurate AA values, computer -calculated for arbitrary specimens;
(3) computer-calculated thin film thicknesses;
(4) precise, digital print-out of measurement results in permanent record format;
(5) access to punched tape surface profile data which may be analyzed by a larger, faster computer to yield further information, e.g. peak height and roughness wavelength distributions.

Scheduled to be completed before the end of FY 1973 are:
(1) a complete determination of the dynamic operating characteristics of the entire system;
(2) the development of a range of interferometrically measured thin-film and gage-block steps;
(3) a changeover of surface roughness calibration setvices from those based on a roughness artifact to the new system;
(4) the introduction of thin-film thicknesses measurement services based in part on the computerized stylus instrument system.

Data Acquisition*

The means by which topographical profiles are converted to surface roughness data is represented by the functional schematic in figure 1. When the stylus is traversed across a surface, the profile is indicated on the strip chart recorder; the signal driving the recorder, amplified and filtered, appears at the analog-to-digital converter (A/D).

At a particular point in the stroke, the stylus arm activates a relay, which in turn generates two pulses. The first pulse, one second long, appears at the common input of the recorder and interface amplifier. (The source of the event pulse is in the information channel only for the duration of the pulse). Coincident with the leading edge of the event pulse is a fifty-microsecond interrupt pulse to the A/D converter. On receipt of the interrupt at the A / D, a programmed one-second delay is executed, and the analog signal at the filter output is converted to binary data points and stored sequentially in computer memory. (Thus the event mark, recorded on the strip chart, does not appear in the digital data). The results of the computer analysis of the stored data are output to the Teletype, Model 33.

Data Analysis of Step Heights
In order to efficiently handle the discontinuity in the trace which comprises the step height and to eliminate restrictions on the alignment of the step artifact, a mathematical model of the step data in the computer memory has been devised. Figure 2 a represents a general step profile in which the traces on opposite sides of the discontinuity are wavy and parallel neither to each other nor to the sides of the strip chart.

Linear least-squares curves are fitted to the segments designated by Ll and L2 in figure 2 b (appendix A); the segments are located at

[^0]a) H
$$
-\infty---\infty-\frac{12}{L 2}-\infty
$$
b)
$$
-\infty-\frac{11}{L I}----\infty
$$
c)
d)
\[

$$
\begin{aligned}
& \text { PIGURE 2. STEP HEIGHT CALCULATION } \\
& \text { a) Step Profile Input } \\
& \text { b) Linear Least Squares Line Segments } \\
& \text { c) Perpendicular Distances at } X_{m} \text { between the Two Lines } \\
& \text { d) Mean Distance of Step Height }{ }^{\text {d }}
\end{aligned}
$$
\]

the operator's discretion relative to the event mark (appendix B), are of equal lengths and constitute one-half of the total trace. From the slopes and intercepts of the two computed lines, $S 1$ and $S 2$ in figure $2 c$, are calculated the distances H 1 and H 2 (appendices C and D) ; the two heights are the perpendicular distances from the points on each line, having the coordinate $x m$, to the opposite lines. The distance $H M$ in figure 2 d is the arithmetic mean of H 1 and H 2 .

Data Analysis of Surface Roughnesses

The AA roughness for a surface profile is computed from the data in memory in a manner analogous to the operation of an integrating meter. Since the profile signal has wavelength cut-off restrictions imposed by analog filtering (appendix E), no digital filtering or signal conditioning is involved. The value corresponding to the center line of the profile is the arithmetic average of all points in the record. The AA value is the arithmetic average of the magnitudes of the deviations of each point from the mean.

Calibration of Step Heights and AA Values

When the binary $H M$ value of the calibration step profile has been computed and the decimal Ho value of the interferometrically measured calibration step entered at the T eletype, a conversion constant, KCAL, is computed:

$$
\mathrm{KCAL}=\mathrm{Ho} \mathrm{(decimal)/HM} \mathrm{(binary).}
$$

The calibrated values of unknown steps and surface roughnesses are then of the form:

```
HM (decimal) = HM (binary) x KCAL
```

and

$$
A A(\text { decimal })=A A(\text { binary }) \times \text { KCAL. }
$$

Program Operations

An example of a calibration, wherein an unknown step and rough ness are measured, may be illustrative. A sample Teletype output is given in figure 3. Further details appear in appendix F.

After an appropriate magnification has been selected, the corresponding gage block step is aligned on the Talysurf and program execution begun. At the proper point in the program, the operator is informed at the teletype to begin the stylus stroke in order to enter the calibration step profile. In this case, a 50 microinch step at 20,000 mangification produces a one-inch displacement on the chart and a one-volt output to the amplifier. The signal is amplified by 10, filtered (appendix E), converted to 512 twelve-bit data points over a 25 second record length and stored in memory. The operator is then instructed to enter HO , the measured value of the gage block step, at the teletype; this four decimal-digit number is converted to binary and stored. The operator now enters the information at the teletype which locates the step discontinuity in the stored data; the information is derived from the chart trace and the step locator chart (appendix B).

The step height is computed, converted to decimal and printed; the printed calibration step height $H M$ should conform within tolerances

```
ENTEK DATA/ IN ENTER HO 9014 ENIER UNITS TU ENTER Al 11RA ENTER AR 1?14
H1 H2 HO UNITS
000090140000901400009014 TU MORE? Y H OR R? H
ENTER DATA/ IN ENTER HO ENTER UNITS TU ENTER A1 118A ENTER A2 1214
Hl H2 HO UNITS
0 0 0 0 8 9 9 3 0 0 0 0 8 9 9 3 ~ 0 0 0 0 8 9 9 3 ~ T U ~ M O R E ? ~ Y ~ H ~ O R ~ R ? ~ H
ENTER DATA/ IN ENTER HO ENTER UNITS TU ENTER A1 118A ENTER A2 1214
Hl H2 HO UNITS
0 0 0 0 8 9 9 8 0 0 0 0 8 9 9 8 0 0 0 0 8 9 9 8 ~ T U ~ M O R E ? ~ Y ~ H ~ O R ~ R ? ~ H ,
ENTER DATA/ IN ENTER HO ENTER UNITS TU ENTER A1 118A ENTER A2 1214
H1 H2 HO UNITS
000090150000901500009015 TU MORE? Y H OR R? H
ENTEK DATA/ IN ENTER HO ENTER UNITS TU ENTER A1 118A ENTER AZ 1214
Hl H2 HO UNITS
0 0 0 0 9 0 0 9 ~ 0 0 0 0 9 0 0 9 ~ 0 0 0 0 9 0 0 9 ~ T U ~ M O R E ? ~ Y ~ H ~ O R ~ R ? ~ H
ENTER DATA/ IN ENTER HO ENTER UNITS TU ENTER A1 11%A ENTER A2 1214
Hl H2 HO UNITS
000090130000901300009013 TU
```

```
AA
```

AA
UNITS
UNITS
00001214 TU
0 0 0 0 1 2 1 7
00001213
00001205
00001211
00001202

```

\section*{AA UN ITS}

00001204 00001208 00001210 00001213 00001206 00001208

TU
\begin{tabular}{ll} 
AA & UNITS \\
00001202 & TU \\
00001205 & \\
00001199 & \\
00001201 & \\
00001204 & \\
00001209 & \\
& \\
AA & \\
00001212 & TU \\
00001201 & \\
00001210 & \\
00001208 & \\
00001207 & \\
00001204 &
\end{tabular}
MORE? Y H OR R? R ENTER DATA/ INMORE? Y H OR R? R ENTER DATA/ IN
MORE? N FINI
the HO previously entered.
The operator now aligns the specimen to be measured on the stylus instrument. On being queried at the Teletype, the operator indicates the type of artifact. If it is a step, an \(H\) is entered and the procedure for entering a step profile repeated. If a roughness is to be measured, the proper filter cut-off and stroke speeds are selected, an \(R\) entered at the teletype and the stroke begun. The computer calculates either a step height or roughness AA, prints the result, and asks if more measurements are to be made from the same calibration. If more are to be made, \(a \operatorname{Y}\) is entered at the teletype and the measurement of the unknown as described in this paragraph repeated. If no more measurements or those at a different magnification are to be made, an \(N\) is entered and the program is terminated.

A rough timetable for the program operation is given in table 1. The AA Calculation and the ANSI Standard

The AA roughness value of a surface profile is defined as the arithmetic average deviation from the center line; the center line in turn is defined by the ANSI B46.1 standard as "the line parallel to the general direction of the profile within the limits of the roughness width cut-off, such that the sums of the areas contained between it and those parts which lie on either side of it are equal".

The specific details involved in the implementation of these definitions in the operation of analog or digital devices are not delineated in the standard. While band-pass characteristics in
```

Align Calibration Artifact; Begin Program (5 min.)

```

Select A1 and A2 from Chart \& Scale, enter (1 min.)

Align Unknown Step (5 min.)

Select A1 \& A2 from Chart \& Scale, enter (1 min.)

Operator Function Time
(12 min.)

\section*{Machine Function:}


Compute Unknown; Exit ( 0.25 min.\()\)

Machine Function Time ( 1.5 min.)

Total Time
13.5 min .

Table 1

\section*{Machine Function}

Align Calibration Artifact; Begin
Program (5 min.)

Select A1 and A2 from Chart \& Scale; Enter (1 min.)

Align Unknown Roughness (5 min.)

Operator Function Time (11 mina)


Total Time
12 min。
terms of half-power points and roll-off rates are specified, the exact nature of center-line, to which a profile is instantaneously referenced, is not clearly specified (again see appendix E for filter characteristics).

In the operation of an integrating-meter stylus instrument, the filtered signal represents the surface profile with wavelength cut-off restrictions imposed. The continuous analog computations of the center line and average deviation from the center line are made by integrating circuitry. Specifically, the stylus instrument stroke is begun and the resulting signal integrated to establish a center-line; at a particular point in the stroke, the instantaneous signal is compared to the established center line and the magnitude of the difference integrated for the remaining length of the stroke. Mathematically, the operation corresponds to the integral:
\[
A A=\frac{1}{T_{3}-T_{2}} \int_{T_{2}}^{T}\left[A b s\left(f(t)-\frac{1}{t-T_{1}} \int_{T_{1}}^{t} f\left(t^{\prime}\right) d t^{\prime}\right)\right] d t
\]

This equation reflects the necessity in an analog device of comparing the instantaneous signal to a center line which does not bracket the signal, but rather represents a segment of the profile of which the signal is the trailing edge.

In the operation of the present digital system, the filtered signal is digitized and stored in the computer memory; the conversion rate ( 1.64 kHZ ) is sufficiently high to reproduce the analog
information in the filter bandpass ( \(f_{c}=300 \mathrm{HZ}\) ) with no loss of fidelity. The record length of the data corresponds to five wavelength cut-off widths. Since wavelength cut-off restrictions have been imposed on the signal by filtering, the center line is computed over the record length. Mathematically, the operation corresponds to the integral:
\[
A A=\frac{1}{T} \int_{0}^{T}\left[A b s\left(f(t)-\frac{1}{T} \int_{0}^{T} f\left(t^{\prime}\right) d t^{\prime}\right)\right] d t
\]

Although the mathematical descriptions of the analog and digital computations differ, it is believed that the digital computations are in accord with the present ANSI B46.1 surface texture standard, in terms of the fundamental definitions of \(A A\) and the center line. Since the effective center line is computed as the mean over the record length and the record width is five times the cut-off width, the effect of a fractional roughness wavelength in the record length is greatly diminished.

\section*{Noise Effect in AA Measurements}

It is known that measurements of ultrafine finishes are limited in accuracy by the inherent noise level of the stylus instrument itself. The specific effect of this noise has been established by a study of the computer measured AA values as a function of the signal-to-noise ratio. The experimental set-up is shown in figure 4. An operational amplifier was employed as an inverting adder without

FIGURE 4


FIGURE 5
weighting. The apparatus allowed the stylus instrument output to be measured separately and combined with a measured signal. Measurements were made of the inherent electronic noise in the system (with the stylus stationary), the mechanical and electronic noise (stylus resting on a plane which traversed with the stylus), and the stylus output while traversing an ultrafine surface (a float-formed glass substrate). The results for each case, normalized to the zero signal input level, are indicated in figure 5. The smooth curve represents the equation:
\[
\text { Signal Output }=\left[(\text { Signal Input })^{2}+(\text { Noise })^{2}\right]^{1 / 2}
\]

The actual "noise" levels associated with the three cases above indicated: (1) an electronic noise of \(\cdot 13 \mu^{\prime \prime}\), (2) a mechanical and electronic noise of \(.16 \mu^{\prime \prime}\) and (3) a probable minimum AA reading of \(.25 \mu^{\prime \prime}\). It has not been determined what portion of the minimum \(A A\) reading is due to the highly polished surface. Therefore, it is assumed that the full minimum reading is due to the instrument; thus, the total inherent noise is taken to be \(.25 \mu^{\prime \prime}\) and its effect on \(A A\) readings is also shown in figure 5.

\section*{Partial Estimate of Accuracy}

The elements which contribute to the overall accuracy of the roughness measurements are manifold; they include the accuracy of the interferometry measurement of the calibration step, the transfer characteristics of the stylus instrument and interface hardware, the computational precision of the software, the suitability of the
mathematical models, and the noise levels in the system.
In table 2, the contributions of the operating characteristics of the interface hardware (amplifier, filter and A/D converter) are itemized; the total error in the signal due to the interface is estimated to be \(.15 \%\). The uncertainty in the computation of the AA values due to the intermediate calculations of the calibration step height, calibration constant and AA values, is considered to be . \(075 \%\). The sum of the effects of the interface and computation is, therefore, about \(.25 \%\), as indicated by \(\Delta\) (comp) in table 2.

The uncertainty in the interferometric measurements of the gage block steps is \(\pm 1\) microinch. The corresponding percentage uncertainties, \(\triangle\) (cal), range from \(5 \%\) to \(.025 \%\) for the different magnifications involved.

Finally, a constant noise level of about .25 microinches contributes uncertainties at different magnifications ranging from 170 to \(\%\).

The effect on the observed \(A A\) values of incremental changes in the calibration, computation and noise levels appears as:
\[
A A(\text { obs })=(1+\Delta(\text { cal }))(1+\triangle(\text { comp })) \sqrt{A A(\text { true })^{2}+N^{2}}
\]
which leads to the first order uncertainty in the \(A A\) values given by:
\[
\triangle A A=A A[\mid \triangle(\text { cal })|+| \triangle(\text { comp })|+| \triangle(N)]
\]
where
\[
\left.\Delta N=\left(1+\frac{N}{A A}\right)^{2}\right)^{1 / 2}-1
\]

The uncertainty of the AA measurements (exclusive of stylus-
preamplifier response) as indicated in table 3 is shown in the graph of figure 6. The curve indicates accuracies for the standard 20 and 120 microinch patches of \(\pm .2\) and \(\pm .4\) microinches, respectively. These partial estimates of accuracy correspond to uncertainties of \(\pm 1.2\) and \(\pm 12.0\) for integrating meter readings of the stylus instrument and \(\pm 2.04\) and \(\pm 0.93\) for the round-robin determinations of the NBS master artifact; a comparison summary of these results appears in table 4.

\section*{Preliminary Results}

Trial measurements of the round-robin calibrated artifact, designated NBS -1 , have been made on the nominal 20 and 125 microinch patches. The roughnesses were measured at least four times at each of five different locations on each of the two masked regions of the patches. The results, including \(3 \sigma\) values, are given in table 5. A general summary, including the estimate of accuracies of individual readings based on figure 6 and including the results of the round-robin calibration, appear in table 6.

Some interesting effects are indicated in tables 5 and 6. First, the reproducibility of readings at individual scan locations is not significantly different than the reproducibility of readings for the masked regions of the patch; i.e.,
\[
3 \sigma(\operatorname{scan}) \approx 3 \sigma(\text { patch })
\]

This result may indicate an important contribution of stylus response to overall accuracy. Second, the results of the computer AA values and


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Systern & Component & Contribution: & Factor & Sits & 70FS & Total \\
\hline \multirow[t]{8}{*}{Mardvare} & Interface & Linearit & .02\% & & . \(20 \sim\) & \\
\hline & & Filter : inple & . C1 d 1 & & . 107 & \\
\hline & & lioise & . 5 nv & & . 00.5 & \\
\hline & Subtotal & & --.-.-- & & . 125 & \\
\hline & A/D Converter & Linearity & . 010 & & . 010 & \\
\hline & & Noise & & I \(1 / 2\) & . 005 & \\
\hline & & Resolution & & 1 & . 025 & \\
\hline & Subtotal & & ------ & & . 025 & . 150 \\
\hline \multirow[t]{8}{*}{Software} & Step & Confornity & . 025 & & . 025 & \\
\hline & & Computation & & 32 & . 000 & \\
\hline & Subtotal & & ----- & & . 025 & \\
\hline & KCAL & Computation & & 14 & . 025 & \\
\hline & Subtotal & & ------ & & . 025 & \\
\hline & MA & Conformity & . 025 & & . 025 & \\
\hline & & Computation & & 32 & . 000 & \\
\hline & Subtotal & & ------ & & . 025 & . 075 \\
\hline Sum & & & & & & . 225 \\
\hline
\end{tabular}


\footnotetext{
?
?
?
\(\ddagger\)
}
\begin{tabular}{cccc}
\begin{tabular}{c} 
Nominal AA \\
\(\left(\mu^{\prime \prime}\right)\)
\end{tabular} & \begin{tabular}{c} 
Computed AA \\
\(\left(\mu^{\prime \prime}\right)\)
\end{tabular} & \begin{tabular}{c} 
Meter Output \\
\(\left(\mu^{\prime \prime}\right)\)
\end{tabular} & \begin{tabular}{c} 
Round-Robin \\
\(35\left(\mu^{\prime \prime}\right)\)
\end{tabular} \\
\hline 20 & \(\pm 0.2\) & \(\pm 1.2\) & \\
120 & \(\pm 0.4\) & \(\pm 12.0\) & \(\pm 2.04\) \\
& & & \(\pm 0.93\) \\
\hline
\end{tabular}

\footnotetext{
Table 4. A comparison of the computational accuracy of one reading
by the computer method and the integrating meter method with the
\(3 \sigma\) of the round-robin determination of the roughness of the NBS
}

Table 5. Preliminary measurements on NBS-1 Caliblock.

Nominal 20 microinch patch
\begin{tabular}{ccc} 
Scan Location & \(A A\left(\mu^{\prime \prime}\right) *\) & \(3 \sigma\left(\mu^{\prime \prime}\right)\) \\
1 & 20.74 & 0.24 \\
2 & 20.69 & 021 \\
3 & 20.87 & 0.24 \\
4 & 20.77 & 0.10 \\
5 & 20.90 & 0.15 \\
\hline
\end{tabular}
*Average of four readings with an estimated accuracy in each reading of \(0.2 \mu^{\prime \prime}\) based on Figure 6 .

Nominal 125 microinch patch
\begin{tabular}{ccc} 
Scan Location & \(A A\left(\mu^{\prime \prime}\right)^{t}\) & \(3 \sigma\left(\mu^{\prime \prime}\right)\) \\
\hline 1 & 121.0 & 1.4 \\
2 & 121.1 & 1.2 \\
3 & 121.3 & 1.5 \\
4 & 121.6 & 1.2 \\
5 & 121.6 & 1.2 \\
\hline
\end{tabular}
\({ }^{t}\) Average of five readings with an estimated accuracy in each reading of \(0.4 \mu^{\prime \prime}\) based on Figure 6 .
the round-robin values agree almost within the one \(\sigma\) of either measurement; i.e.,
\[
(A A \pm \sigma) \text { computer } \simeq(A A \pm \sigma) \text { round-robin. }
\]

Further studies into the overall precision and accuracies of the computer calculated surface roughnesses are to be made and may reveal the bases for these results.

Table 6. Summary of Preliminary Results
\begin{tabular}{ccccccc}
\hline \begin{tabular}{c} 
Nominal \\
\(A A\) \\
\(\left(\mu^{\prime \prime}\right)\)
\end{tabular} & \begin{tabular}{c} 
Calibration \\
Step \\
\(\left(\mu^{\prime \prime}\right)\)
\end{tabular} & \begin{tabular}{c} 
Calibration \\
Check \\
\(\left(\mu^{\prime \prime}\right)\)
\end{tabular} & \begin{tabular}{c} 
Average \\
AA \\
\(\left(\mu^{\prime \prime}\right)\)
\end{tabular} & \begin{tabular}{c}
\(3 \sigma\) \\
\(\left(\mu^{\prime \prime}\right)\)
\end{tabular} & \begin{tabular}{c} 
Round - \\
Robin \\
\(\left(\mu^{\prime \prime}\right)\)
\end{tabular} & \begin{tabular}{c}
\(3 \sigma\) \\
\(\left(\mu^{\prime \prime}\right)\)
\end{tabular} \\
\hline 125 & \(901.4 \pm 1.0\) & 901.5 & 121.3 & 1.5 & 120.76 & 2.04 \\
20 & \(75.0 \pm 1.0\) & 74.4 & 20.79 & 0.3 & 20.34 & 0.93
\end{tabular}

\section*{Appendix A \\ The Linear Least Squares Curve Fit}

For the general case of a linear least squares (LSQ) curve fit of the form:
\[
y=a x+b,
\]
where \(y\) is the dependent variable, \(x\) the independent, a the slope, and b the intercept, the following formulae apply:
\[
\begin{equation*}
\mathrm{b}=\frac{1}{\mathrm{~N}} \Sigma \mathrm{y}_{\mathrm{i}}-\frac{\mathrm{a}}{\mathrm{~N}} \Sigma \mathrm{x}_{\mathrm{i}} \tag{1}
\end{equation*}
\]
(2)
\[
a=\frac{N \sum x_{i} y_{i}-\left(\Sigma x_{i}\right)\left(\sum y_{i}\right)}{N \Sigma x_{i}^{2}-\left(\Sigma x_{i}\right)^{2}}
\]
where \(\Sigma\) indicates the \(s\) ummation over the \(n\) index from 1 to \(N\).
For the special case of equally spaced \(x\) increments, \(x_{i}\) may be replaced by an integer \(n\) corresponding to the value of \(i\) and the summations over \(x_{i}\) and \(x_{i}^{2}\) evaluated as standard series.
(3) \(\quad \Sigma x_{i}=\Sigma n=\frac{N}{2}(N+1)\)
(4) \(\quad \sum x_{i}^{2}=\sum n^{2}=\frac{N}{6}(N+1)(2 N+1)\)

Substitution of equations (3) and (4) into equations (1) and (2), with some simplification, leads to:
(5) \(\quad b=\frac{1}{N} \Sigma y_{i}-\frac{a}{2}(N+1)\)
(6) \(\quad a=\frac{12 \sum n y_{i}-6(N+1) \sum y_{i}}{N(N+1)(N-1)}\)

Where N is large, the denominator may be approximated by \(\mathrm{N}^{3}\). (In the case of 128 data points, the subsequent error in the calculated slope is about . \(005 \%\).) Thus,
(7) \(\quad a=\frac{1}{N^{3}}\left[12 \sum n y_{n}-6(N+1) \sum y_{n}\right]\).

\section*{Appendix B}

\section*{Step Location}

At the interrupt signal generated at the appropriate position in the stylus stroke, a one second delay is executed by the computer and data is read into memory for twenty-five seconds at the rate of approximately twenty points per second. Since the event marker is in the information channel, the delay is necessary to avoid reading the event marker as data. The signal which is recorded in those twenty-five seconds is thus entered as 512 data points in memory locations 100016 to \(1400{ }^{16}\). The memory locations of selected points and the correspond ing positions on the strip chart (measured in mm relative to the trailing edge of the event marker as in figure 7) are indicated in figure 8.

Figure 8a represents a properly positioned step, approximately centered within the 40 mm - 110 mm region. A representation of the data recorded im memory is given in figure 8 b .

The length of the segment on the chart, corresponding to the 128 points over which a least-squares straight line is computed, is 37.5 mm . The address \(A_{1}\) (input during program execution) must correspond to a location in the region 40 mm to the step edge; similarly, \(\mathrm{A}_{2}\) must correspond to a location in the region between the step edge and the 110 mm position (see figure 9a). The line segments corresponding to the \(A_{1}\) and \(A_{2}\) selected are indicated in figure \(9 b\). Choices for \(A_{1}\) and \(A_{2}\) are limited to pairs of points situated equally distant to the left
\begin{tabular}{llll}
0040 & 1116 & 0075 & 1206 \\
0041 & \(111 E\) & 0076 & 120 E \\
0042 & 1124 & 0077 & 1214 \\
0043 & 112 A & 0078 & 121 A \\
0044 & 1132 & 0079 & 1222 \\
0045 & 1138 & 0080 & 1228 \\
0046 & 1140 & 0081 & 1230 \\
0047 & 1146 & 0082 & 1236 \\
0048 & 114 E & 0083 & 123 E \\
0049 & 1154 & 0084 & 1244 \\
0050 & 115 A & 0085 & 124 A \\
0051 & 1162 & 0086 & 1252 \\
0052 & 1168 & 0087 & 1258 \\
0053 & 1170 & 0088 & 1260 \\
0054 & 1176 & 0089 & 1266 \\
0055 & 117 E & 0090 & 126 E \\
0056 & 1184 & 0091 & 1274 \\
0057 & 118 A & 0092 & 127 A \\
0058 & 1192 & 0093 & 1282 \\
0059 & 1198 & 0094 & 1288 \\
0060 & 11 AO & 0095 & 1290 \\
0061 & 11 A 6 & 0096 & 1296 \\
0062 & 11 AE & 0097 & 129 E \\
0063 & \(11 \mathrm{B4}\) & 0098 & 12 A 4 \\
0064 & 11 BA & 0099 & 12 AA \\
0065 & 11 C 2 & 0100 & 12 B 2 \\
0066 & 11 C 8 & 0101 & 12 B 8 \\
0067 & 11 DO & 0102 & 12 C 0 \\
0068 & 11 D 6 & 0103 & 12 C 6 \\
0069 & 11 DE & 0104 & 12 CE \\
0070 & 11 E 4 & 0105 & 12 D 4 \\
0071 & 11 EA & 0106 & 12 DA \\
0072 & 11 F 2 & 0107 & 12 E 2 \\
0073 & 11 F 8 & 0109 & 12 E 8 \\
0074 & 1200 & &
\end{tabular}

FIGURE 7

(b) REPRESENTATION OF DATA IN MEMORY


FIGURE 8. PROPER LOCATION OF STEP RELATIVE TO EVENT MARKER
(a) STRIP CHART RECORD


FIGURE 9 . SELECTION OF \(A_{1}\) AND \(A_{2}\) LOCATIONS
and right of the step location, \(S\), such that:
\[
S(m m)-A_{1}(m m)=A_{2}(m m)-S(m m)
\]
\(A_{1}\) and \(A_{2}\) determine individually over which segment lines are to be computed; the mean of \(A_{1}\) and \(A_{2}\) determines the location at which a step is to be computed from the two lines. The effect on the calculation of the step height of proper (figure 10a) and improper (figure \(10 b\) ) selection of \(A_{1}\) and \(A_{2}\) may be significant.
a) EFFECT OF PROPER SEIECTION OF \(A_{1}\) AND \(A_{2}\) (SYMMETRICALLY ABOUT STEP)

b) EFFECT OF IMPROPER SELECTION OF \(A_{1}\) AND \(A_{2}\) (NON-SYMMETRICALLY)


FIGURE 10. PROPER AND IMPROPER SELECTION OF A AND \(A_{2}\)

\section*{Appendix C}

\section*{The Mean Distance Between Two Non-Parallel Lines}

The following vector analysis is employed to define the "mean perpendicular distance" between two non-parallel lines at some x coordinate xm. Line \(L_{1}\) is defined by its slope, \(a_{1}\), and the point \(A_{1}\) with \(x\) and \(y\) coordinates \(\left(0, b_{1}\right) ;\) line \(L_{2}\) is similarly defined by \(a_{2}\) and point \(A_{2}\) at \(\left(x, b_{2}\right)\) as in figure 11. The general approach is to define vectors, \(V_{1}\) and \(V_{2}\), coincident with lines \(L_{1}\) and \(L_{2}\), respectively, and to find the perpendicular distances: \(h_{1}\) from the point on \(V_{1}\), with coordinate \(x_{m}\), to \(V_{2}\); and \(h_{2}\) from the point on \(V_{2}\), with coordinate \(x_{m}\), to \(V_{1}\). The mean distance, \(h_{m}\), is then defined as the arithmetic average of \(h_{1}\) and \(h_{2}\).

The vector \(\mathrm{V}_{1}\) is defined as the difference between the vector to the general point \(P_{1}\) and that to \(A_{1}^{\prime}\) :
(1) \(\quad V_{1}=P_{1}-A_{1}^{\prime}\)
\[
\begin{equation*}
=\left[i\left(x_{1}\right)+j\left(a_{1} x_{1}+b_{1}\right)\right]-\left[i(0)+j\left(b_{1}\right)\right] \tag{2}
\end{equation*}
\]
(3) \(\quad=\left(i+a_{1} j\right) x_{1}\).

Similarly:
(4)
\[
V_{2}=P_{2}-A_{2}^{\prime}
\]
(5) \(v_{2}=\left(i+a_{2} j\right) x_{2}\).

The general vector between points \(P_{2}\) and \(P_{1}\) is:
(6)
\[
\mathrm{H}=\mathrm{P}_{1}-\mathrm{P}_{2}
\]
(7)
\[
=i\left(x_{1}-x_{2}\right)+j\left(a_{1} x_{1}-a_{2} x_{2}+b_{1}-b_{2}^{\prime}\right) .
\]

To find the perpendicular distance from point \(P_{1}\) to the line \(V_{2}\), the product \(H \cdot V_{1}\) is evaluated, set equal to zero, and the coordinate \(x_{2}\) determined as a function of \(x_{1}\) 。

Thus,
(8) \(H \cdot V_{1}=x_{1}\left(x_{1}-x_{2}\right)+a_{1} x_{1}\left(a_{1} x_{1}-a_{2} x_{2}+b_{1}-b_{2}^{\prime}\right)=0\)
and
(9)
\[
x_{2}=\frac{x_{1}\left(1+a_{1}^{2}\right)+a_{1}\left(b_{1}-b_{2}^{\prime}\right)}{\left(1+a_{1} a_{2}\right)}
\]

The magnitude of the perpendicular distance, \(H_{1}\), is:
(10) \(\quad H_{1}=\left[\left(x_{1}-x_{2}\right)^{2}+\left(a_{1} x_{1}-a_{2} x_{2}+b_{1}-b_{2}^{\prime}\right)^{2}\right]^{1 / 2}\).

Substitution of equation 9 into equation 10 yields:
(11) \(H_{1}=\left[\left(a_{1}-a_{2}\right) x_{1}+\left(b_{1}-b_{2}^{\prime}\right)\right]\left(1+a_{1}{ }^{2}\right)^{1 / 2}\left(1+a_{1} a_{2}\right)^{-1}\).

To find the perpendicular distance, \(H_{2}\), from point \(P_{2}\) to the line \(V_{1}\), the product \(H \cdot V_{2}\) is evaluated similarly, with the result.
\[
\text { (12) } H_{2}=\left[\left(a_{1}-a_{2}\right) x_{2}+\left(b_{1}-b_{2}^{\prime}\right)\right]\left(1+a_{2}^{2}\right)^{1 / 2}\left(1+a_{1} a_{2}\right)^{-1}
\]

Since \(b_{2}^{\prime}=b_{2}-a_{2} x\) and \(x_{1}\) and \(x_{2}\) are chosen to be \(x_{m}\), the distances \(h_{1}\) and \(h_{2}\) as indicated in figure 11 are given by:
(13) \(h_{1}=\left[\left(a_{1}-a_{2}\right) x_{m}+\left(b_{1}-b_{2}+a_{2} x\right)\right]\left(1+a_{1}^{2}\right)^{1 / 2}\left(1+a_{1} a_{2}\right)^{-1}\)
and
(14) \(h_{2}=\left[\left(a_{1}-a_{2}\right) x_{m}+\left(b_{1}-b_{2}+a_{2} x\right)\right]\left(1+a_{2}^{2}\right)^{1 / 2}\left(1+a_{1} a_{2}\right)^{-1}\).

The mean perpendicular distance is then:
\[
\begin{equation*}
h_{m}=1 / 2\left(h_{1}+h_{2}\right) \tag{15}
\end{equation*}
\]

FIGURE 11

\section*{Appendix D}

\section*{Slope Scale Factor}

Since the linear least squares curve fit utilizes single prescision hexadecimal numbers as \(y\) coordinates and hexadecimal memory addresses as x coordinates, it is necessary to scale this coordinate system to that of the chart recorder.

The following transformation applies:
(1) \(\quad y(\) chart \()=k y(\) hex \()\)
(2) \(\quad x(\) chart \()=x(\) hex \()\)

The slopes are then related by:
(3) \(\quad a(\) char \(t)=\frac{d y(\text { chart })}{d x(\text { char } t)}=k \frac{d y \text { (hex) }}{d x(\text { hex })}\)
(4) \(\quad a(\) chart \()=k a(h e x)\).

Substitution of equations 1,2 and 4 into equation 11 of appendix \(C\) produces:
(5) \(H_{1}=\left[\left(k a_{1}-k a_{2}\right) x_{1}+\left(k b_{1}-k b_{2}+k a_{1} x\right)\right] x\)
\[
\begin{aligned}
& {\left[1+\left(k a_{1}\right)^{2}\right]^{1 / 2}\left[1+\left(k a_{1}\right)\left(k a_{2}\right)\right]^{-1}} \\
& =k\left[\left(a_{1}-a_{2}\right) x_{1}+\left(b_{1}-b_{2}+a_{1} x\right)\right]\left[1+\left(k a_{1}\right)^{2}\right]^{1 / 2}\left[1+k^{2} a_{1} a_{2}\right]^{-1} .
\end{aligned}
\]

Since similar equations apply to \(\mathrm{H}_{1}\) and \(\mathrm{H}_{2}\), the relationship between
the two is independent of the leading multiplier and it may be omitted to give heights of the form:
(6) \(\left.H_{1}=\left[\left(a_{1}-a_{2}\right) x_{1}+\left(b_{1}-b_{2}+a_{1} x\right)\right]\left[1+k a_{1}\right)^{2}\right]\left[1+\left(k a_{1}\right)\left(k a_{2}\right)\right]^{-1}\)

Equation 3 may be evaluated using the full scale parameters of the chart and hexadecimal coordinate systems:
(5) \(25.4 \mathrm{~mm} / 37.5 \mathrm{~mm}=\mathrm{k}\left(07 \mathrm{ff}_{16} / 0100_{16}\right)\)
which yields in hexadecimal and decimal values:
(6) \(\mathrm{k}_{10}=0.08466\)
(7) \(\mathrm{k}_{16}=0.15 \mathrm{ACD}\).

\section*{Appendix E}

\section*{Filter Characteristics}

The gain-bandpass characteristics of the filter circuits have been designed to conform with ANSI Standards when the device is used in conjunction with a Talysurf 4. The filter 3 db down points are related to the conventional wavelength cut-offs through the stylus speed:
\[
f(H z)=.06 \mathrm{in} / \mathrm{sec} \div \lambda_{c}(\mathrm{in})
\]

The filters are active Butterworths with selectable high-pass cut-off frequencies as indicated by figure 12. Roughness measurements are made with one of three high-pass filters in series with the single low-pass filter. Step height measurements are made with only the low-pass filter in the circuit.

The conformity of the filters to specified operation is indicated by the band pass curves in figure 12 and the observed phase delay in the low pass filter in figure 13.



\section*{Appendix F}

\section*{Program Operation}

A flow-chart indicating the points in the program operation at which information is input at the \(A / D\) converter and Teletype and at which results are output at the eletype is shown in table 7. In table 8 are shown numerical values of parameters involved in a sample program operation in which a fifty microinch calibration step is used in the measurement of an unknown step height and an unknown roughness specimen. A compilation of characteristic parameters of the entire system is given in table 9.

Clear Flag
Print
Heading
Print
Fnter Data
Set Step Parameter
Wait for Interrupt
Read Step Step Data
Reset AA Parameters
Print
Print
Read 4 ( HO ) но

Print
Read Units
Print
Read 4 (A1)
Print
Read 4 (A2)
Print
Units

Calculate Step
Y - Test Flag - N
Compute KCAL
Convert/Print-Steps
Steps
Print
Branch Uncond.
Interrogate
H - Branch-R


Set Flag
Branch Uncond.
Print
Enter Data
Wait
Read MA MA Data
Print
In

Table 7 cont.


Table 7
\begin{tabular}{llll} 
Artifact: type & Step & Step & Roughness \\
value & & Un " & Unknown
\end{tabular}

\section*{Characteristic Parameters}

\section*{Talysurf 4}
\begin{tabular}{ll} 
Profile Output (nominal) & \(\pm 1 V\) \\
Relay Output (nominal) & -4 V \\
Magnification (vertical, nax.) & \(10^{5}\) \\
Stylus Speed (4X) & \(3.6^{\prime \prime} / \mathrm{min}\). \\
& \((20 \%)\) \\
( 100 X ) & \(0.72^{\prime \prime} / \mathrm{min}\). \\
Scan Distance (.030" cutoff, 4X) & \(0.14^{\prime \prime} / \mathrm{min}\). \\
Chart Speed & \(.150^{\prime \prime}\) \\
\end{tabular}

\section*{Filter-Amplifier}
\begin{tabular}{|c|c|}
\hline Input (limited) & \(\pm 1 \mathrm{~V}\) \\
\hline Input Impedance & 100 ks \\
\hline Gain (nominal) & 10x \\
\hline High Frequency cut-off & 300 HZ \\
\hline Low Frequency cut-off & 6 HZ \\
\hline & 2 HZ \\
\hline & . 6 Hz \\
\hline Filter Roll-Off & -12 db/octave \\
\hline Flatness & \(\pm .02 \mathrm{db}\) \\
\hline Overall Linearity & .02\% \\
\hline Output (nominal) & \(\pm 10 \mathrm{~V}\) \\
\hline Noise Output & <5 mv. \\
\hline \multicolumn{2}{|c|}{Interface Circuitry} \\
\hline Inverter Output & +4V \\
\hline Event Marker Output & \(\pm 1.35 \mathrm{~V}\) (1 sec.) \\
\hline Interrupt Signal Output & \(\overline{3} \mathrm{~V}\) ( 50 msec ) \\
\hline
\end{tabular}

\section*{Data Input: Step Mode}


\section*{Appendix G}

Operator's Instructions: Interdata 3/Talysurf 4 System
I. Preliminary Set-up
A. Instrumentation: the following connections are necessary:
1. those on the Talysurf for normal operation as indicated by the Talysurf Operating Instructions manual;
2. those internal to the A/D converter as shown in figure 14;
3. the power cord of the interface electronics as in figure 15 (N.B. Disconnect main power line to computer when connecting this line).
4. The external leads between the Talysurf, interface electronics and \(A / D\) converter as in figure 16.
B. Software: the following programs must reside in memory:
1. the hexadecimal monitor (3A80-3FFF);
2. the arithmetic subroutines (3010-35FF);
3. the master program (0080-1000).

\section*{II. General System Operation}
A. Calibration of Stylus Instrument
1. Magnification Selection
(a) Align unknown specimen on Talysurf;
(b) traverse stylus with chart recorder on and select magnification on Talysurf electronic unit to obtain approximately three-quarters of maximum on-scale deflection of recorder pen;
(c) turn off recorder and select calibration step
FIGURE 14

İTEERFACE ELECTRONICS: AC PONER CONNECTION
FIGURE IS

FIGURE 16
artifact of appropriate size.
2. Input of Calibration Step: Set-up
(a) Set switches
(1) Talysurf Electronic Control Unit
(1) Magnification: as determined in
(2) Cut-off: K
(3) Operation: N
(2) Talysurf Gear Box
(1) Stroke knob: L
(2) Speed knob: X20
(3) Interface Electronics
(1) Mode Select: 10X
(2) Cut-off: Step
(b) Align artifact and traverse stylus to obtain trace with step edge in proper position relative to the event mark (see appendix B).
(c) Rotate the Talysurf Setting Lever at the left (CCN) position (see p. 4 of Talysurf Manual and Note 1 below).
3. Input of Calibration Step: Program Execution
(a) Begin program executive from TTY Control (OEOOG)
(b) At "enter data": turn on the chart recorder and gently move the Setting Lever to the right (OW); data will be read for twenty-five seconds.
(c) At In: shut off the chart recorder and tear off the recorded trace;
(d) A1 and A2 selection:
(1) with the "Step Locator Scale", determine the position in mm of the step edge relative to the trailing edge of the event mark (see appendix B);
(2) select A1 and A2 symmetrically about the step edge.
(3) Decord on the strip chart the mm and address locations of A1 and A2;
(e) At "Enter HO": type in the step height value as four digits and depress the space bar on the TTY;
(f) At "Enter Units": type in a two character unit symbol (do not press the space bar);
(g) At "Enter A1"; type in the four-digit address A1 and depress the space bar;
(h) at "Enter A2"; either A2 as above; the computer will now print out the computed step heights H1, H2 and HM with units.
(i) At "More?":
(1) If the computed step heights are unsatisfactory, type \(N\) and repeat the procedure from step 3a;
(2) If the heights are satisfactory, type Y.

\section*{B. Calibration of Unknown Specimen}
1. Align the specimen on the Talysurf and traverse the stylus to obtain a properly centered trace.
2. Calibration of a Step
(a) Repeat procedure in IIA2, b and c ;
(b) At "H or R?": type in \(H\);
(c) At "Enter Data", follow procedure from IIA3, b thru h; 3. Calibration of a Roughness
(a) Select filter cut-off on interface; select \(X 4\) stroke speed on Talysurf; type R.
(b) At "Enter Data", rotate the Setting Lever to right position (CW); data will be read for 3.5 seconds.
(c) The computed AA and units will now be printed. 4. At "More?":
(a) If a step is to be calibrated, type \(Y\); then at
"H or R?", type H.
(b) If a roughness is to be calibrated, type \(Y\), then at "H or R?", type R.
(c) If no more measurements are to be made, exit from program by typing N.

Note 1. The Event Marker appears on the chart recorder at the "Start of cut-off average" position in the stroke. With the stroke knob on the gear box at position \(L\), the event mark appears when the marks on the gear box window are aligned as indicated below. Therefore, in returning the Setting Lever to the left (CCW) position, it is necessary only for \(L\) mark to be to the left of the rightmost mark on the upper scale.

\section*{Checklist for Proper Electrical Operation}

\section*{Talysurf Outputs}
(1) The profile Output should produce a voltage of nominally +1 volt when the pen is at the 2 inch mark on the strip chart and -1 volt at the zero inch mark.
(2) The relay output should be a negative - going step of four volts at the "Start of cut-off average" position of the stylus stroke (see Talysurf Manual). A/D Outputs
(1) With the Talysurf relay output connected to the Interrupt Input terminal on the \(A / D\) converter front panel, the \(A / D\) output at the Pulse Output terminal should be a zero to volts pulse of about one second duration; (simultaneously the computer interrupt should trigger internally).

Interface Electronics Outputs
(1) With the system fully wired (figure 16), the output at the X10 OUT should be the amplified, filtered Profile Out Signal;
(2) A one-second pulse of nominally one volt should be present at the "PROFILE IN" terminal (and a similar one recorded on the chart recorder) at the "Start of cut-off average" stroke position. Internal A/D Signals (A/D Multiplex or Board).

With the Talysurf relay signal at the Interrupt Input:
(1) the output of the signal inverter (daughter board 44) should be a positive-going step of four volts;
(2) the output of the A/D Interrupt pulse (daughter board 40) should be a 50 microsecond positive-going pulse of about four volts.

15. SUPPLEMENTARY NOTES
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

An overall system for computerized surface roughness measurements, invalving a commercial stylus profile instrument and a minicomputer, is described. The method allows: direct displacement calibration of the stylus instrument by means of interferometrically measured gage block steps; the elimination of roughness artifacts as calibration standards; and access to punched-tape surface profile data which may be given detailed analysis on a larger, faster computer. Details of system operation and precision are incIuded.
17. KEY WORDS (Alphabetical order, separated by semicolons)

Surface profile instrumentation; surface roughness calibrations; surface roughness measurement.
18. AVAILABILITY STATEMENTUNLIMIT ED.
x FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS.
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { 19. SECURITY CLASS } \\
& \text { (THIS REPORT) }
\end{aligned}
\] & 21. NO. OF PAGES \\
\hline UNCL ASSIFIED & \\
\hline 20. SECURITY CLASS (THIS PAGE) & 22. Price \\
\hline UNCLASSIFIED & \\
\hline
\end{tabular}```


[^0]:    *Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material or equipment identified is necessarily the best available for the purpose.

