
FIPS PUB 99
NBS

RESEARCH
INFORMATION

CENTER

FEDERAL INFORMATION
PROCESSING STANDARDS PUBLICATION

1983 MARCH 31

U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

GUIDELINE:
A FRAMEWORK FOR THE

EVALUATION AND COMPARISON OF
SOFTWARE DEVELOPMENT TOOLS

—jk DRY: SOFTWARE
468 TEGORY: SOFTWARE ENGINEERING

) .A8A3

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Foreword

The Federal Information Processing Standards Publication Series of the National Bureau of

Standards is the official publication relating to standards adopted and promulgated under the

provisions of Public Law 89-306 (Brooks Act) and under Part 6 of Title 15, Code of Federal

Regulations. These legislative and executive mandates have given the Secretary of Commerce

important responsibilities for improving the utilization and management of computers and

automatic data processing in the Federal Government. To carry out the Secretary’s

responsibilities, the NBS, through its Institute for Computer Sciences and Technology, provides

leadership, technical guidance, and coordination of government efforts in the development of

guidelines and standards in these areas.

Comments concerning Federal Information Processing Standards Publications are welcomed

and should be addressed to the Director, Institute for Computer Sciences and Technology,

National Bureau of Standards, Washington, DC 20234.

James H. Burrows, Director

Institute for Computer Sciences and Technology

Abstract

A framework for the evaluation and comparison of software development tools is introduced and presented. The

framework is a hierarchical structure of tool features that provides the level of detail necessary to analyze and classify the

capabilities of tools. Through a careful analysis of tool features, one can obtain a better understanding of the characteristics

of a tool and can compare these characteristics with those of other tools.

Key words: dynamic analysis; Federal Information Processing Standards Publication; programming aids; software

development; software engineering; software tools; static analysis; taxonomy.

Natl. Bur. Stand. (U.S.) Fed. Info. Process. Stand. Publ. (FIPS PUB) 99, 26 pages

(1983)

CODENFIPPAT

For sale by the National Technical Information Service, U.S. Department of Commerci, Springfield, VA 22161.

Federal Information

Processing Standards Publication 99

1983 March 31

FIPS PUB 99

ANNOUNCING THE

GUIDELINE: A FRAMEWORK FOR THE EVALUATION AND
COMPARISON OF SOFTWARE DEVELOPMENT TOOLS

Federal Information Processing Standards Publications are issued by the National Bureau of Standards pursuant to the Federal

Property and Administrative Services Act of 1949, as amended, Public Law 89-306 (79 Stat 1127), and as implemented by Executive

Order 11717 (38 FR 12315, dated May 11, 1973), and Part 6 of Title 15 Code of Federal Regulations (CFR)

Name of Guideline: A Framework for the Evaluation and Comparison of Software Development Tools.

Category of Guideline: Software; Software Engineering.

Explanation: This Guideline presents a structure that can be used as a basis for the analysis and

classification of software development tools.

Approving Authority: U.S. Department of Commerce, National Bureau of Standards (Institute for

Computer Sciences and Technology).

Maintenance Authority: U.S. Department of Commerce, National Bureau of Standards (Institute for

Computer Sciences and Technology).

Cross Index: None.

Applicability: This Guideline is a basic reference document for general use by Federal departments and

agencies in the planning and acquisition of software development tools.

Implementation: This Guideline should be consulted when Federal agencies are: considering, acquiring, or

implementing software development tools; developing policies and procedures for implementing and using

software development tools; or reviewing the current use of software development tools.

Specifications: Federal Information Processing Standards Publication 99 (FIPS PUB 99), Guidelint : A

Framework for the Evaluation and Comparison of Software Development Tools (affixed).

Definitions: The following definitions apply in this document:

Software. (ISO) Computer programs, procedures, rules, and possibly associated documentation

concerned with the operation of a data processing system.

Software Development Tools. Computer programs that aid the specification, construction, testing,

analysis, management, documentation, or maintenance of other computer programs.

Qualifications: This Guideline represents a recommended framework for evaluating and comparing

software tools; it is not offered as an unqualified recommendation. In applying this Guideline, it is important

to bear in mind that software development tools are part of an emerging technology. Each Federal agency,

office, or project should take into consideration their own specific circumstances when applying or

referencing this publication.

Where to Obtain Copies of this Guideline: Copies of this publication are for sale by the National Technical

Information Service, U.S. Department of Commerce, Springfield, VA 22161. When ordering, refer to

Federal Information Processing Standards Publication 99 (FIPS PUB 99) and title. When microfiche is

desired, this should be specified. Payment may be made by check, money order, or NTIS deposit account.

1

FIPS PUB 99

Federal Information
Processing Standards Publication 99

1983 March 31

Specifications for

GUIDELINE: A FRAMEWORK FOR THE EVALUATION AND
COMPARISON OF SOFTWARE DEVELOPMENT TOOLS

Contents

Page

1. PURPOSE. 5

1.1 Identification. 5

1.2 Comparison and Evaluation. 6

1.3 Classification. 7

2. THE FRAMEWORK. 8

2.1 Taxonomy of Tool Features. 8

2.2 Expansion Issues. 16

2.3 Missing Features. 16

3. REFERENCES. 16

Appendix A EVENT SEQUENCES FOR THE ACQUISITION OF TOOLS. 18

Appendix B. TAXONOMY BACKGROUND INFORMATION. 27

FIGURES

Figure A.I. Precedence relation for event sequence. 21

TABLES

Table 1. Input. 8

Table 2. Function. 9

Table 3. Output. 14

Table A.l. Event sequence for tool introduction. 20

Note: Certain commercial products are identified in this Guideline for clarification of specific concepts. In no case does such

identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material

identified is necessarily the best for the purpose.

3

FIPS PUB 99

1. PURPOSE

This Guideline is a basic reference document in evaluating and comparing software development tools.

It presents a recommended framework, based on tool features, for identifying, discussing, evaluating, and

comparing software development tools.

Federal departments and agencies should consult it when they are:

• acquiring or implementing software development tools;

• developing policies and procedures for acquiring, implementing, and using development tools; and

• reviewing the current use of software development tools.

Software development tools have become increasingly complex. Most early software tools performed a

single function and were easy to understand. Current tools are multifunctional systems which, for

commercial reasons, emphasize their uniqueness. For example, early compilers were simple tools that

performed translation from high-level language to machine language. Current compilers, in addition to

translating, may interpret, optimize, format, perform run-time checks, generate cross-reference tables, and

provide other forms of documentation. The term “compiler” is no longer sufficient to clarify the

functionality of the tool.

To compare and select existing tools, an accepted framework of individual tool features comprising

more complex tools is needed. The classification scheme presented here provides such a framework. It

establishes a basis for communication, understanding, and analysis of software development tools. Complex

tools can be reduced to a collection of tool features. The classification scheme thus provides a basis for

fundamental understanding and comparison of existing tools. The framework also presents a concise picture

of software development tool technology, since it details a complete list of constituent tool features. It can

be used as a checklist when considering desirable tool functionality.

The classification scheme, or framework, of software development tools presented here will be referred

to in the remainder of the document as a taxonomy. To make the taxonomy easily understood, the tool

features are organized into three major categories:

• Input

• Function

• Output

Most tools possess tool features in each of the major categories. Each major category is further

subdivided into classes. For example, the function category has four classes: transformation, static analysis,

dynamic analysis, and management. Any functional tool feature can be placed in one of the four classes.

These functional classes are further subdivided into specific tool features. The details of this organization

and definition of features are presented in the taxonomy itself in section 2.

The benefits of using this framework include:

• Facilitating the identification, evaluation, and selection of tools to satisfy a given set of user

requirements.

• Providing a means for comparing the features of one tool with those of another.

• Fostering basic communication and understanding. The definitions of tool features in the taxonomy

establish a common terminology for discussing software development tools.

The following sections expand on these benefits.

1.1 Identification

Careful identification of features establishes the essential characterization of candidate development

tools and permits the determination of the specific tool most appropriate for a given application. However,

feature identification requires detailed information about a tool including:

• what a tool accepts as input and how it accepts it.

• the way it manipulates and analyzes the input.

• what a tool produces as output for both the tool user and for further processing by other tools.

The taxonomy acts as a guide or checklist and provides the framework for feature identification.

5

FIPS PUB 99

Since tool developers use numerous terms to describe the capabilities of a tool, it is necessary for the

tool analyst to translate these terms into features of the taxonomy. For example, the feature, “coverage

analysis,” has been discussed in developers’ literature under the following names:

• Automated verification

• Path flow analysis

• Language analysis

• Decision-to-decision path analysis

• Segment testing

• Statement coverage

• Branch testing

• Testing metrics

• Execution monitoring

• Frequency analysis

Unfortunately, many of these terms have been used by other developers to refer to features other than

“coverage analysis.” Therefore, tool functionality must be clearly understood to identify tool features. The

taxonomy, in addition to providing a comprehensive listing and structure of tool features, establishes a

standard description for each feature and in most cases provides further references.

1.2 Comparison and Evaluation

Successful acquisition and use of tools require the completion of a number of events in which the

taxonomy can play an important role. The complete event sequence is contained in Appendix A. The

following procedure formalizes the use of the taxonomy to compare and evaluate candidate tools:

1. Review the taxonomy and determine the features that have the best potential for satisfying the

goals and objectives of the user organization (Events 1-2, Appendix A).

2. Obtain a catalog of software tools, such as NBS Special Publication 500-88 (Houg82), the DACS

Software Tools Database [DACS82], the OSD/FCTC Software Tool Catalog |FSTC82], RCI’s

Software Tools Directory [RCI82], or SRA’s Software Engineering Automated Tool Index

[SRA82],

3. Review the catalog and make a list of the tools that provide the features of interest. Using the

taxonomy as a checklist, identify the additional features that are provided by these tools.

4. Obtain from either the catalog or the tool supplier descriptive characteristics about the tool that are

important environmental constraints. This can include cost data, implementation languages,

application languages, hardware and software requirements, availability, performance,

portability, support, and available documentation.

5. List the tools having the required features and meeting the environmental constraints.

The resulting list is a set of candidate tools that can be further considered for introduction into the user’s

organization (Events A4-A6, Appendix A).

Much of the above procedure can be automated by using a database of information on software tools.

Since features permit the comparison of software tools, one of their uses is as a key for retrieval in a

database. Just as library searches are based on key words, tool searches can be based on features. For

example, a user who was interested in a tool that has the feature of “coverage analysis” might specify a

retrieval request as follows:

List all tools which perform the function of coverage analysis.

A retrieval of this request might yield the following list of tools:

NBS ANALYZER JOVIAL TCA EAVS

PET RXVP DYNA

NODAL PACE PACE-C

ITDEM TEST PREDICTOR JIGSAW

COTUNE II TATTLE TPT

LOGIC PDS JAYS

FAYS CAYS

6

FIPS PUB 99

After examining and comparing the application languages and the additional features offered by these

tools, the retrieval request could be further specified as follows:

List all tools which accept FORTRAN programs as input and perform the functions of

dynamic analysis and either auditing or data flow analysis.

This retrieval request would narrow the above list to the following tools:

PET FAVS TPT

Note that the number of candidate tools to be considered by a potential user has been greatly reduced.

1.3 Classification

Classification formalizes the identification of tool features through use of the hierarchical structure of

the taxonomy. For example, a tool that has the following features:

code input;

command control;

code instrumentation;

complexity measurement;

cross reference generation;

dynamic coverage analysis;

listing output;

cross reference and coverage reports output; and

instrumented code output

would have the following taxonomy classification:

INPUT

SUBJECT (I)

CODE (13)

CONTROL INPUT (C)

COMMANDS (Cl)

FUNCTION

TRANSFORMATION (T)

INSTRUMENTATION (T3)

STATIC ANALYSIS (S)

COMPLEXITY MEASUREMENT (S3)

CROSS REFERENCE (S6)

DYNAMIC ANALYSIS (D)

COVERAGE ANALYSIS (D3)

OUTPUT

USER OUTPUT (U)

LISTINGS (U4)

TABLES (U5)

MACHINE OUTPUT (M)

SOURCE CODE (M6)

7

FIPS PUB 99

Note that indentation is used to show the input, functional, and output features. Following each feature

name is the key that is associated with each feature (see sec. 2.1 for key definitions). The classification can

be abbreviated by using the keys. The abbreviation is formed by collecting the individual feature keys

according to their position in the taxonomy. For example, the abbreviated classification for the above tool

would be:

I3.C1/T3.S3.S6.D3/U4.U5.M6.

The slash is used to separate the input, functional, and output features and the period is used to separate

individual features. It can be seen from the example that the key provides a short-hand representation for

the classification.

2. THE FRAMEWORK

2.1 Taxonomy of Tool Features

Input. Tool input features are based on the forms of input provided to a tool. As shown in table 2,

these features fall into two classes, one based on what the tool should operate on, i.e., the subject, and the

other based on how the tool should operate, i.e., the control.

Table 1. Input

Subject Control input

II. Text Cl Commands

12. VHLL C2. Parameters

I2A Description language

12B Requirements language

12C Design language

13 Code

14 Date

a. Subject (key: I). The subject is usually the main input to a tool. It is the input which is subjected to

the main functions performed by a tool. The four types of subjects are text, VHLL (very high level

language), code, and data. Although the difference between these types is somewhat arbitrary, the

taxonomy has very specific definitions for each.

11. Text—accepts statements in a natural language form. Certain types of tools are designed to

operate on text only (e.g., text editors, document preparation systems) and require no other input

except directives or commands.

12. VHLL—accepts a specification written in a very high level language that is typically not in an

executable form. Tools with this feature may define programs, track program requirements

throughout their development, or synthesize programs through use of some nonprocedural VHLL.

There are three recognized types of VHLLs. Each is briefly described as follows:

I2A. Description language—accepts a formal language with special constructs used to describe the

subject in a high-level nonprocedural form. An example of a description language is Backus-Naur

Form (BNF).

I2B. Requirements language—accepts a formal language with special constructs and verification

protocols used to specify, verify, and document requirements. Examples of requirements languages

include the Problem Statement Language (Teic77j and the Requirements Statement Language

| Bel 1771.

8

HI'S PUB 99

I2C. Design language—accepts a forma! language with special constructs and verification

protocols used to represent, verify, and document a design. Design languages are normally

procedural (i.e., they specify how a program is going to work in an algorithmic manner). An

example of a design language is Program Design Language |Cain75|.

13. Code—accepts a program written in a high-level language, assembler, or object level language.

Code is the language form in which most programming solutions are expressed.

14. Data—accepts a string of characters or numeric quantities to which meaning is or might be

assigned. The input (e.g., raw data) is not in an easily interpreted, natural language form. A simulator

that accepts numeric data to initialize its program variables is an example of a tool that has data as

input.

Some tools, such as editors, operate on any of these four input forms. In these cases, the input form is

chosen from the viewpoint of the tool. Since most editors view the input form as text, the correct

subject for this tool is text.

b. Control input (key: C). Control inputs specify the type of operation and the detail associated with

an operation. They describe any separable commands that are entered as part of the input stream.

Cl. Commands—accept character strings consisting primarily of procedural operators, each capable

of invoking a system function to be executed. A directive invoking a series of diagnostic commands

(i.e., TRACE, DUMP, etc.) at selected breakpoints is an example. A tool performing a single

function will not have this feature but will likely have the next.

C2. Parameters—accept character strings consisting of identifiers that further qualify the operation

to be performed by a tool. Parameters are usually entered as a result of a prompt from a tool or may

be embedded in the tool input. An interactive trace routine that prompts for breakpoints is an

example of a tool with parametric input.

Function. The features for this class are shown in table 2. They describe the processing functions

performed by a tool and fall into four classes: transformation, static analysis, dynamic analysis, and

management.

Table 2. Function

Transformation Static analysis Dynamic analysis Management

Tl. Editing SI. Auditing D1 Assertion checking Gl. Configuration control

T2 Formatting S2. Comparison D2 Constraint evaluation G2 Information management

T3 Instrumentation S3. Complexity measurement D3. Coverage analysis G2A Data dictionary management

T4 Optimization S4. Completeness checking D4 Resource utilization G2B Documentation management

T5 Restructuring S5. Consistency checking D5 Simulation G2C File managei cm

T6 Translation S6. Cross reference D6. Symbolic execution G2D Test data management

T6A Assembling S7. Data flow analysis D7. Timing G3 Project management

T6B Compilation S8. Error checking D8 Tracing G3A Cost estimation

T6C Conversion S9 Interface analysis D8A Breakpoint control G3B Resource estimation

T6D Macro expansion S10. Scanning D8B Data flow tracing G3C Scheduling

T6E Structure preprocessing SI 1 Statistical analysis D8C. Path flow tracing C.3D T racking

T7 Synthesis S12. Structure checking D9 Tuning

SI 3. Type analysis DIO Regression testing

S14 Units analysis

S15. I/O specification analysis

9

FIPS PUB 99

a. Transformation (key: T). Transformation features describe how the subject is manipulated to

accommodate the users' needs. They describe what transformations take place as the input to the tool is

processed. There are seven transformation features. Each of these features is briefly defined as follows:

Tl. Editing—modifying the content of the input by inserting, deleting, or moving characters,

numbers, or data.

T2. Formatting—arranging a program according to predefined or user defined conventions. A tool

that “cleans up” a program by making all statement numbers sequential, alphabetizing variable

declarations, indenting statements, and making other standardizing changes has this feature.

T3. Instrumentation—adding sensors and counters to a program for the purpose of collecting

information useful for dynamic analysis [Paig74|. Most code analyzers instrument the source code at

strategic points in the program to collect execution statistics required for assertion checking,

coverage analysis, or tuning. See Dl, D3, and D9.

T4. Optimization—modifying a program to improve performance, e.g., to make it run faster or to

make it use fewer resources. Many vendors’ compilers provide this feature. Many tools claim this

feature, but do not modify the subject program. Instead, these tools provide data on the results of

execution which may be used for tuning purposes. See D9.

T5. Restructuring—reconstructing and arranging the subject in a new form according to well-

defined rules. A tool that generates structured code from unstructured code is an example of a tool

with this feature.

T6. Translation—converting from one language form to another. There are five types of translation

features. Each is defined as follows:

T6A. Assembling—translating a program expressed in an assembler language into object code.

T6B. Compilation—translating a computer program expressed in a problem-oriented language

into object code.

T6C. Conversion—modifying an existing program to enable it to operate with similar functional

capabilities in a different environment. Examples include CDC FORTRAN to IBM FORTRAN,

ANSI COBOL (1968) to ANSI COBOL (1974), and Pascal to PI /l.

T6D. Macro expansion—augmenting instructions in a source language with user defined

sequences of instructions in the same source language.

T6E. Structure preprocessing—translating a computer program with structured constructs into its

equivalent without structured constructs.

T7. Synthesis—generating programs according to predefined rules from a program specification or

intermediate language. Tools having this feature include program generators, compiler compilers,

and preprocessor generators.

b. Static analysis (key: S). Static analysis features specify operations on the subject without regard to

the executability of the subject [Howd78]. They describe the manner in which the subject is analyzed.

There are 15 static analysis features. Each is briefly described as follows:

SI. Auditing—conducting an examination to determine whether or not predefined rules have been

followed. A tool that examines the source code to determine whether or not coding standards are

complied with is an example of a tool with this feature.

10

FIPS PUB 99

52. Comparison—determining and assessing similarities between two or more items. A tool that

determines changes made in one file that are not contained in another has this feature.

53. Complexity measurement—determining how complicated an entity (e.g., routine, program,

system, etc.) is by evaluating some associated characteristics [Mcca76] [Hals77]. For example, the

following characteristics can impact complexity: instruction mix, data references, structure/control

flow, number of interactions/interconnections, size, and number of computations.

54. Completeness checking—assessing whether or not an entity has all its parts present and if those

parts are fully developed (Boeh78). A tool that examines the source code for missing parameter

values has this feature.

55. Consistency checking—determining whether or not an entity is internally consistent in the sense

that it contains uniform notation and terminology [Walt78], or is consistent with its specification

[Robi77], Tools that check for consistent usage of variable names or tools that check for consistency

between design specifications and code are examples of tools with this feature.

56. Cross reference—referencing entities to other entities by logical means. Tools that identify all

variable references in a subprogram have this feature.

57. Data flow analysis—graphical analysis of the sequential patterns of definitions and references of

data [Oste76|. Tools that identify undefined variables on certain paths in a program have this feature.

58. Error checking—determining discrepancies, their importance, and/or their cause. Tools used to

identify possible program errors, such as misspelled variable names, arrays out of bounds, and

modifications of a loop index are examples of tools with this feature.

59. Interface analysis—checking the interfaces between program elements for consistency and

adherence to predefined rules and/or axioms. A tool that examines interfaces between modules to

determine if axiomatic rules for data exchange were obeyed has this feature.

510. Scanning—examining an entity sequentially to identify key areas or structure. A tool that

examines source code and extracts key information for generating documentation is an example of a

tool with this feature.

511. Statistical analysis—performing statistical data collection and analysis. A tool that uses

statistical test models to identify where programmers should concentrate their testing is one example.

A tool that tallies occurrences of statement types is another example of a tool with this feature.

512. Structure checking—detecting structural flaws within a program (e.g., improper loop nestings,

unreferenced labels, unreachable statements, and statements with no successors).

513. Type analysis—evaluating whether or not the domain of values attributed to an entity are

properly and consistently defined. A tool that type checks variables has this feature.

514. Units analysis—determining whether or not the units or physical dimensions attributed to an

entity are properly defined and consistently used. A tool that can check a program to ensure

variables used in computations have proper units (e.g., hertz = cycles/seconds) is an example of a tool

with this feature.

515. I/O Specification analysis—analyzing the input and output specifications in a program usually

for the generation of test data. A tool that analyzes the types and ranges of data defined in an input

file specification to generate an input test file is an example of a tool with this feature.

11

FIPS PUB 99

c. Dynamic analysis (key: D). Dynamic analysis features specify operations that are determined

during or after execution |Howd78aJ. Dynamic analysis features differ from those classified as static by

virtue of the fact that they require some form of symbolic or machine execution. They describe the

techniques used by the tool to derive meaningful information about a program’s execution behavior.

There are 10 dynamic analysis features. Each is briefly described as follows:

Dl. Assertion checking—checking of user-embedded statements that assert relationships between

elements of a program. An assertion is a logical expression that specifies a condition or relation

among the program variables. Checking may be performed with symbolic or run-time data. Tools

that test the validity of assertions as the program is executing or tools that perform formal

verification of assertions have this feature.

D2. Constraint evaluation—generating and/or solving path input or output constraints for

determining test input or for proving programs correct |Clar76], Tools that assist in the generation of

or automatically generate test data have this feature.

D3. Coverage analysis—determining and assessing measures associated with the invocation of

program structural elements to determine the adequacy of a test run [Fair78]. Coverage analysis is

useful when attempting to execute each statement, branch, path, or iterative structure (e.g., DO loops

in FORTRAN) in a program. Tools that capture this data and provide reports summarizing relevant

information have this feature.

D4. Resource utilization—analysis of resource utilization associated with system hardware or

software. A tool that provides detailed run-time statistics on core usage, disk usage, queue lengths,

etc., is an example of a tool with this feature.

D5. Simulation—representing certain features of the behavior of a physical or abstract system by

means of operations performed by a computer. A tool that simulates the environment under which

operational programs will run has this feature.

D6. Symbolic execution—reconstructing logic and computations along a program path by executing

the path with symbolic rather than actual values of data |Darr78|.

D7. Timing—reporting actual CPU, wall-clock, or other times associated with parts of a program.

D8. Tracing—monitoring the historical record of execution of a program. There are three types of

tracing features. Each is described as follows:

D8A. Breakpoint control—controlling the execution of a program by specifying points (usually

source instructions) where execution is to be interrupted.

D8B. Data flow tracing—monitoring the current state of variables in a program. Tools that

dynamically detect uninitialized variables or tools that allow users to interactively retrieve and

update the current values of variables have this feature.

D8C. Path Jlow tracing—recording the source statements and/or branches that are executed in a

program in the order that they are executed.

D9. Tuning—determining what parts of a program are being executed the most. A tool that

instruments a program to obtain execution frequencies of statements is a tool with this feature.

DIO. Regression testing—rerunning test cases which a program has previously executed correctly in

order to detect errors spawned by changes or corrections made during software development and

maintenance. A tool that automatically “drives” the execution of programs through their input test

data and reports discrepancies between the current and prior output is an example of a tool with this

feature.

12

FIPS PUB 99

d. Management (key: G). Management features aid the management or control of software

development. There are three types of management features. Each is described as follows:

Gl. Configuration control—aiding the establishment of baselines for configuration items, the control

of changes to these baselines, and the control of releases to the operational environment.

G2. Information management—aiding the organization, accessibility, modification, dissemination,

and processing of information that is associated with the development of a software system.

G2A. Data dictionary management—aiding the development and control of a list of the names,

lengths, representations, and definitions of all data elements used in a software system.

G2B. Documentation management—aiding the development and control of software

documentation.

G2C. File management—providing and controlling access to files associated with the

development of software.

G2D. Test data management—aiding the development and control of software test data.

G3. Project management—aiding the management of a software development project. Tools that

have this feature commonly provide milestone charts, personnel schedules, and activity diagrams as

output.

G3A. Cost estimation—assessing the behavior of the variables which impact life cycle cost. A

tool to estimate project cost and investigate its sensitivity to parameter changes has this feature.

G3B. Resource estimation—estimating the resources attributed to an entity. Tools that estimate

whether or not memory limits, input/output capacity, or throughput constraints are being

exceeded have this feature.

G3C. Scheduling—assessing the schedule attributed to an entity. A tool that examines the project

schedule to determine its critical path (shortest time to complete) has this feature.

G3D. Tracking—tracking the development of an entity through the software life cycle. Tools

used to trace requirements from their specification to their implementation in code have this

feature.

13

FIPS PUB 99

Output. Output features, which provide the link from the tool to the user, are illustrated in table 3.

They describe what type of output the tool produces for both the human user and the target machine

(where applicable). Again using a compiler as an example, the user output would be diagnostics and

possibly listings and tables (cross reference), and the machine output would be object code or possibly

intermediate code.

Table 3. Output

User output Machine output

Ul. Computational results Ml. Assembly language

U2. Diagnostics M2. Data

U3. Graphics M3 Intermediate code

U3A. Activity diagrams M4. Object code

U3B Data flow diagrams M5. Prompts

U3C. Design charts M6. Source code

U3D Histograms M7. Text

U3E. Milestone charts M8. VHLL

U3F. Program flow charts

U3G. Tree diagrams

U4 Listings

U5. Tables

U6. Text

a. User output (key: U). User output features describe the types of information that are returned from

the tool to the human user and the forms in which these outputs are presented. There are six user

output features. Each is briefly described as follows:

Ul. Computational results—output that simply presents the result of a computation. The output is

not in an easily interpreted natural language form (e.g., text or tables).

U2. Diagnostics—output that simply indicates what software discrepancies have occurred. An error

flag from a compiler is an example.

U3. Graphics—a graphical representation with symbols indicating operations, flow, etc. There are

seven types of graphics output, each described as follows:

U3A. Activity diagrams—diagrams presenting actions or states of a software development activity

and their interrelationships. Also, diagrams representing or summarizing the major aspects of

system performance. Examples of activity diagrams are control diagrams, pert charts, and system

profiles.

U3B. Data flow diagrams—diagrams that represent the path of data in the solving of a problem

and that define the major phases of the processing as well as the various data media used.

Examples of data flow diagrams are Jackson diagrams [Jack75], DFD’s [DeMa78|, and Bubble

Charts |Your75).

U3C. Design charts—charts which represent the software architecture components, modules, and

interfaces for a software system. Examples of design charts are HIPO diagrams, structure charts,

and block diagrams.

U3D. Histograms—graphic representations of frequency distributions where the graph height is

proportional to a class frequency. Tools that perform statistical analysis or coverage analysis often

provide histograms.

14

FIPS PUB 99

U3E. Milestone charts—a chart which represents the schedule of events used to measure the

progress of software development efforts. Milestone charts are often provided by project

management tools.

U3F. Program flow charts—graphical representation of the sequence of operations in a computer

program. Examples of program flow charts include FIPS Flow Charts (FIPS72], Chapin Charts

[Chap74|, and Nassi-Shneiderman Charts [Nass73|.

U3G. Tree diagrams—diagrams that represent the hierarchical structure of software modules or

data and are generated from a root node. A tree diagram does not show iteration or cycles. An

example of a tree diagram is a “call tree” or module hierarchical diagram.

U4. Listings—an output from the tool is a computer listing of a source program or data and may be

annotated. Many different forms of listings can be generated. Some may be user controlled through

directives.

U5. Tables—an output from the tool is arranged in parallel columns to exhibit a set of facts or

relations in a definite, compact, and comprehensive form. A tool that produces a decision table

identifying a program’s logic (conditions, actions, and rules that are the basis of decisions) is an

example.

U6. Text—an output from the tool is in a natural language form. The output may be a choice of

many different types of reports and the formats may be user defined.

b. Machine output (key: M). Machine output features handle the interface from the tool to either

another tool or a machine environment. They describe what a machine or tool expects to see as output.

There are eight machine output features. Each is briefly described as follows:

Ml. Assembly code—a low level code whose instructions are usually in one-to-one correspondence

with computer instructions.

M2. Data—a set of representations of characters or numeric quantities to which meaning has been

assigned. A tool generating input to a plotter is an example.

M3. Intermediate code—a code between source code and assembly code. A tool producing P-code

for direct machine interpretation is an example.

M4. Object code—a code expressed in machine language which is normally an output of a given

translation process. A tool producing relocatable load modules for subsequent execution is an

example.

M5. Prompts—a series of procedural operators used to interactively inform the system in which the

tool operates that it is ready for the next input.

M6. Source code—a code written in a high level procedural language that must be input to a

translation process before execution can take place.

M7. Text—statements in a natural language form. A tool producing English text which is passed to

a word processor is an example.

M8. VHLL—statements written in a very high level language. A tool which produces a

requirements language or design language for use by another tool is an example.

15

FIPS PUB 99

2.2 Expansion Issues

Although it would be structurally satisfying to have all features expanded to the same level (it would

keep the taxonomy looking like a trimmed pine), there are many features which represent relatively new

technology that make this task impossible. These areas are maturing and are not yet well understood. For

example, features such as synthesis, restructuring, complexity measurement, cost estimation, regression

testing, and constraint evaluation are the subject of current research. Expansion of these features to the

same level as features such as translation, tracing, or project management is premature.

Another reason for expanding to a lower level is to keep the granularity of the taxonomy consistent at

the bottom level. For example, translation and instrumentation are both transformation features at the fourth

level. Translation, however is broader in scope than instrumentation. Consequently, translation is further

expanded to keep the granularity of its features consistent with other transformation features.

2.3 Missing Features

On occasion, a tool may have a characteristic that can not be easily classified with the taxonomy. It

may be that the taxonomy is missing a feature. When this situation occurs, the classification for this tool

remains at the lowest level possible. For example, it has been proposed that test generation and query

languages be added to VHLL Input. Since these languages are not currently part of the taxonomy, the

classification would not proceed below VHLL Input. Test generation and query languages will be reviewed

for need, desirability, and appropriateness in future revisions of the taxonomy.

All occurrences of missing features are important to ICST. The taxonomy reflects tool technology at

the time of revision. New features and new tools may require future changes to the taxonomy to keep it up

to date. Anyone with comments or problems relating to the taxonomy is encouraged to forward them to:

The Institute for Computer Sciences and Technology, National Bureau of Standards, Technology Bldg.,

Room B266, Washington, DC 20234.

3. REFERENCES

| Be I 177 | Bell, T. E.; Bixler, D. C.; Dyer, M. E. An extendable approach to computer-aided software

requirements engineering. IEEE Transactions on Software Engineering, Vol. SE-3, No. 1;
1977.

|Boeh78| Boehm, B. W.; Brown, J. R.; Kaspar, H.; Lipow, M.; MacLeod, G. J.; Merritt, M. J.

Characteristics of Software Quality. New York: North-Holland Publishing Company; 1978.

|Cain75| Caine, S. H.; Gordon, E. K. PDL: A tool for software design. Proceedings of the National

Computer Conference; 1975.

i Chap74 | Chapin, N. New format for flowcharts. Software—Practice and Experience; 1974 Oct.-Dec.

IC1 ar76 | Clarke, L. A. A system to generate test data and symbolically execute programs. IEEE

Transactions on Software Engineering, Vol. SE-2; September 1976.

| DACS82 | .. Software tools—custom searches. DACS Newsletter, Data & Analysis Center for

Software, Griffiss AFB, NY; 1982 September.

| Darr781 Darringer, J. A.; King, J. C. Applications of symbolic execution to program testing.

Computer; 1978 April.

| DeMa78 | DeMarco, T. Structured Analysis and System Specification. Prentice-Hall, Inc.; 1978.

| Fa i r78 | Fairley, R. E. Tutorial: Static analysis and dynamic testing of computer software. Computer;

1978 April.

| FIPS72 | U.S. Dept, of Commerce. Flowchart symbols and their usage in information processing. Natl.

Bur. Stand. (U.S.) Fed. Info. Process. Stand. (FIPS PUB) 24; 1972 June.

| FSTC82 | .. Software tool catalog. Federal Software Testing Center, Report No. OSD 82-013,

Falls Church, VA; 1982 April.

| Ha 1 s77 | Halstead, M. H. Elements of Software Science. New York: Elsevier-North Holland Publ. Co.;

1977.

| Hech82 | Hecht, H. The introduction of software tools. Natl. Bur. Stand. (U.S.) Spec. Publ. 500-91; 1982

September.

16

FIPS PUB 99

[Houg81)

[Houg82]

[Howd78]

[Howd78a]

[Jack75]

[Mcca76]

[Nass73]

[0SD82]

[Oste76]

[Paig74]

[RCI82]

[Robi77 J

[SRA82]

[Teic77]

[Wal178]

[Your75]

NBS Special

DC 20402.

Houghton, R., ed. NBS/IEEE/ACM software tool fair. Natl. Bur. Stand. (U.S.) Spec. Publ.

500-80; 1981 October.

Houghton, R. Software development tools. Natl. Bur. Stand. (U.S.) Spec. Publ. 500-88; 1982

March.

Howden, W. E. A survey of static analysis methods. Tutorial: Software Testing and

Validation Techniques, IEEE Cat. No. EH0138-8; 1978.

Howden, W. E. A survey of dynamic analysis methods. Tutorial: Software Testing and

Validation Techniques, IEEE Cat. No. EH0138-8; 1978.

Jackson, M. A. Principle of Program Design. Academic Press; 1975.

McCabe, T. J. A complexity measure, IEEE Transactions on Software Engineering, Vol. SE-

2; 1976 December.

Nassi, I.; Shneiderman, B. Flowchart techniques for structured programming. SIGPLAN

Notices of the ACM; 1973 August.

.. A software tools project: A means of capturing technology and improving engineering.

Office of Software Development, Report OSD-82-101, GSA; 1982 February.

Osterweil, L. J.; Fosdick, L. D. DAVE—a validation error detection and documentation

system for FORTRAN programs. Software—Practice and Experience; 1976 October.

Paige, M. R.; Benson, J. P. The use of software probes in testing FORTRAN programs.

Computer; 1974 July.

.. Software Tools Directory. Torrance, CA: Reifer Consultants, Inc.; 1982.

Robinson, L.; Levitt, K. N. Proof techniques for hierarchically structured programs.

Communications of the ACM; 1977 April.

.. Software Engineering Automated Tool Index. San Francisco, CA: Software Research

Associates; 1982.

Teichroew, D.; Hershey III, E. PSL/PSA: A computer-aided technique for structured

documentation of information processing systems. IEEE Transactions on Software

Engineering, Vol. SE-3, No. 1; 1977.

Walters, G.; McCall, J. The development of metrics for software reliability and

maintainability. Proceedings of the Annual Reliability and Maintainability Symposium; 1978

January.

Yourdon, E.; Constantine, L. Structured Design, New York: Yourdon Press; 1975.

Publications can be ordered from the Superintendent of Documents, U S Government Printing Office, Washington.

17

FIPS PUB 99

APPENDIX A
EVENT SEQUENCES FOR THE ACQUISITION OF TOOLS

A,! Purpose of Event Sequences

The management of any significant project requires that the work be divided into tasks for which

completion criteria can be defined. The transition from one task to another is called an event and to permit

orderly progress of the activities, here the introduction of a software tool, the scheduling of these events

must be determined in advance. A general outline for such a schedule is provided by the event sequence

described in the next section. The actual calendar time schedule will depend on many factors to be

determined for each specific tool use (particularly on the time required for procurement of the tool and

training). One of the formats used for the event sequence is consistent with the critical path method (CPM)

of project scheduling and can be used with that technique for the development of an optimum calendar time

schedule.

Most of the activities included in the event sequence are obviously necessary but a few were included

specifically to avoid difficulties encountered in tool procurements. Quite frequently tools are obtained

‘through the side door’ without adequate consideration of the resources required for the effective

employment of the tool and without determination by a responsible manager that the tool serves a primary

need of the organization. Tools acquired in this manner are seldom used in an optimal way and are

sometimes discarded. Experiences of this type are not conducive to gaining widespread acceptance of tools

in programming environments where the activities required for the introduction of tools will impose a drain

on resources. A key feature of the proposed approach is, therefore, that tool usage will be initiated only in

response to an expressed management goal for software development or for the entire computing function.

Difficulties in the introduction of tools can arise in three areas:

• organizational obstacles

• problems arising from the tools

• obstacles in the computer environment

The individual activities described below as well as the ordering of the event sequence are designed to

eliminate as many of these difficulties as possible. They are most effective with regard to the first category

and probably least effective with regard to the last category. The need for involving a reponsible

management level in the tool introduction has already been mentioned, and this is indeed the key provision

for avoiding organizational obstacles. “Responsible management” is that level that has the authority to

obligate the resources required for the introduction process. The scope of the resource requirement will

become clearer after all introduction activities have been described. Because the criterion for the selection

of the management focus is its ability to commit funds, this management level is hereafter referred to as

funding management. In some organizations this may be the project management, in some it may be

functional management, and in yet others it may be an agency or department management not specifically

identified with a computing function. It should be involved in at least the following activities associated

with the introduction of tools:

1. Identifying the goals to be met by the tool (or by the technique supported by the tool), and

assigning responsibility for the activities required to meet these goals.

2. Approving a detailed tool acquisition plan that defines the resource requirements for procurement

and in-house activities.

3. Approving the procurement of tools and training if this is not explicit in the approval of the

acquisition plan.

4. Determining after some period of tool use whether the goals have been met.

Additional organizational obstacles must be overcome by actions of the software management (local

management of the organization that will introduce the tool). A pitfall to be avoided is assigning the details

of the tool acquisition as a sideline to an individual who carries many other responsibilities. Even in a small

software organization (up to 14 programmers), it should be possible to make the tool introduction the

principal assignment of an experienced individual with adequate professional background. This person is

referred to as the software engineer. In medium size organizations (15 to 39 programmers), several

18

FIPS PUB 99

individuals may be involved in software engineering tasks (not restricted to tool usage), and this may

constitute a software engineering function.

Further, the event sequence includes activities of a toolsmith who, in most cases, will not be the same

person as the software engineer. The former assignment requires expertise in systems programming and

specialized knowledge of the tool to be introduced. The duties of the software engineer involve planning,

project management and obtaining cooperation from a variety of individuals and organizations. Where there

is a software engineering function, the toolsmith is typically a member of it.

Obstacles arising from the tools themselves are expected to be avoided in the event sequence by a

careful, methodical selection of tools. In particular, distinct contributions to the tool selection are specified

for software management and the software engineer. Software management is assigned responsibility for:

* identifying tool objectives;

* approving the acquisition plan (it may also require approval by funding management);

* defining selection criteria; and

* making the final selection of the tool or the source.

The software engineer is responsible for:

* identifying candidate tools;

* applying the selection criteria (in informal procurement) or preparing RFP inputs (in formal

procurement); and

* preparing a ranked list of tools or sources.

Further, the ultimate user of the tool is involved in the recommended event sequence in reviewing either

the list of candidate tools or, for formal procurement, the tool requirements.

This distribution of responsibilities reduces the chances of selecting a tool that (1) does not meet the

recognized needs of the organization, (2) is difficult to use, (3) requires excessive computer resources, or (4)

lacks adequate documentation. The repeated exchange of information required by the process outlined

above will also avoid undue emphasis on very short-term objectives which may lead to selection of a tool

on the basis of availability rather than suitability.

The obstacles to tool usage that reside in the computer environment are primarily due to the great

diversity of computer architectures and operating system procedures, and to the lack of portability in most

software tools. Activities associated with the introduction of tools can only modestly alleviate these

difficulties. The event sequence provides the following help in this area:

1. A methodical process of identifying candidate tools and selecting among these on the basis of

established criteria. This will avoid some of the worst pitfalls associated with "borrowing” a tool

from an acquaintance or procuring one from the most accessible or persuasive tool vendor.

2. The assignment and training of a toolsmith who can make minor modifications to both the

computer environment and the tool. This is expected to provide relief where there are version-

related or release-related incompatibilities with the operating system, or where the memory

requirements of the tool exceed the capabilities of the installation. In the latter case, remedies

may be provided by removing tool options or by structuring the tool program into overlays.

The event sequence described below is conceived as a procedure generally applicable to the

introduction of tools to Federal agencies falling into pertinent programming environment categories. For

this reason, a systematic reporting of the experience with the introduction process as well as with the tool is

desirable. The evaluation plan and the evaluation report specified in the event sequence support these goals.

A.2 Recommended Event Sequence

The event sequence described in this subsection is applicable to both business and scientific

programming environments. The general scope of the introduction activities and their sequence are identical

for the two environments. Because of differences in tool requirements, personnel qualifications, and

organizational structure, some differences in the content of the individual events will be expected. The

event sequence addresses only the introduction of existing tools. Where a newly developed tool is

introduced, a considerable modification of the activities and their sequence will be necessary.

The recommended event sequence allows for two procurement methods: informal procurement (e.g.,

by purchase order) or formal procurement (by request for bids). Obviously, the latter is much more time

consuming but it may lead to the procurement of better or cheaper tools. Acquisition of tools from the

General Services Administration or from other Government agencies should follow the informal

19

FIPS PUB 99

procurement steps even when there is no procedural requirement for this. As mentioned above, tool

acquisitions which do not obtain the concurrence of all affected operational elements frequently do not

achieve their objectives.

The presentation of the event sequence in table A.l is tailored to tools which are being introduced for

the first time into a user community which shares software support information (e.g., a Federal agency or a

private sector company). As a result, some steps are shown which can be combined or eliminated where less

formal control is exercised or where plans or modifications required for the introduction of a tool are

available from a prior user. The event sequence is intended to cover a wide range of applications, and it was

constructed with the thought that it is easier for the tool user to eliminate steps than to be confronted with

the need for adding some that had not been covered in this volume.

The key functions which contribute to the introouction of tools are listed across the top of table A.l,

and events for which each function is responsible are listed in the column under it. The preferred order of

tasks for each function can thus be directly found from this table. The precedence relationships between

events is shown in graph form in figure A.l. This figure will be found particularly helpful for scheduling

activities by the critical path method and for the general development of a project schedule. The numbering

of events is the same in table A.l and figure A.l. A detailed description of each of the numbered events, and

of the activities associated with it, is presented after the table and figure.

Table A.l. Event sequence for tool introduction

Funding Software Software Tool

management management engineer user

I Goals

3. Procure tool

7 Receive tool

14 Goals met?

A ^

B5 Issue RFP

Tool objectives

Acquisition, see A or B below

9. Orientation

4. Evaluation plan

5. Toolsmithing plan-S

.6. Training plan——— ■participates

8. Acceptance test

10- Modifications-S

Training ■

13. Evaluation report

I. Acquisition Activities for Informal Procurement

■ A 1 Acquisition plan

A2- Select'n criteria

Ab. Select tool

continue with step 3 above.

A3. Ident. candidates

A5. Score candidates

B. Acquisition Activities for Formal Procurement

— Bl. Acquisition plan

B7 Select source

continue with step 3 above

B2 Technical req'mts

■B4 Generate RFP

B6. Proposal Evaluation

12. Use

A4. Review

B3. Review

A = Approval required S = Toolsmith responsibility

20

FIPS PUB 99

Events

1. Goals

2. Tool objectives

3. Procure tool

4. Evaluation plan

5. Toolsmithing plan

6. Training plan

7. Receive tool

8. Acceptance test

9. Orientation

10. Modifications

11. Training

12. Use

13. Evaluation report

14. Goals met?

Al. Acquisition plan

A2. Selection criteria

A3. Identify candidates

A4. User review

A5. Score candidates

A6. Select tool

Bl. Acquisition plan

B2. Technical requirements

B3. User review

B4 Generate RFP

B5. Issue RFP

B6. Proposal evaluation

B7 Select source

1. Goals

The goals to be accomplished should be identified in a format that will later permit determination

(event 14) that they have been met. Typical goal statements are: reduce average processing time of COBOL

programs by one-fifth, achieve complete interchangeability of programs or data sets with organization Y,

and adhere to an established standard for documentation format.

The statement of goals shall also identify responsibilities, in particular the role that headquarters staff

organization may have and coordination requirements with other organizations. Where a decentralized

management method is employed, the statement of goals may have associated with it a not-to-exceed budget

and a desired completion date. Once these constraints are specified, funding management may delegate the

approval of the acquisition plan to a lower level.

2. Tool Objectives

The goals generated in event 1 are translated into desired tool features and requirements arising from

the development and operating environment are identified. Constraints on tool cost and availability may

also be added at this event. A typical statement of tool objectives for a program formatter is: Provide

header identification, uniform indentation, and the facility of printing listing and comments separately for all

FORTRAN X3.9-1978 and ABC Extended FORTRAN programs. Program must run on our ABC

computer under XOSnn. Only tools which have been in commercial use for at least 1 year and at no less

than ./V different sites shall be considered.

At this point the sequence continues with either A1 or B1 below

21

FIPS PUB 99

A. Acquisition Activities for Informal Procurement

Al. Acquisition Plan

The acquisition plan communicates the actions of software management both upward and downward.

The plan may also be combined with the statement of the tool objectives (event 2). The acquisition plan

should include the budgets and schedules for subsequent steps in the tool introduction, a justification of

resource requirements in the light of expected benefits, contributions to the introduction expected from

other organizations (e.g., the tool itself, modification patches, or training materials), and the assignment of

responsibility for subsequent events within the software organization, particularly the identification of the

software engineer. Minimum tool documentation requirements shall also be specified in the plan.

A2. Selection Criteria

The criteria shall include a ranked or weighted listing of attributes that will support effective utilization

of the tool by the user. Typical selection criteria are:

• accomplishment of specified tool objectives

• ease of use

• ease of installation

• minimum processing time

• compatibility with other tools

• low purchase or lease cost

Most of these criteria need to be factored further to permit objective evaluation, but this step may be

left up to the individual who does the scoring. Together with the criteria (most of which will normally be

capable of a scalar evaluation), constraints which have been imposed by the preceding events or are

generated at this step should be summarized.

A3. Identify Candidate Toois

This is the first event for which the software engineer is responsible. The starting point for preparing a

listing of candidate tools is a comprehensive tool catalog, such as [Houg82j* A desirable but not manda

tory practice is to prepare two lists. The first does not consider the constraints and contains all tools

meeting the functional requirements. The cross-reference by tool features in the appendices of

|Houg82] will be found particularly valuable in generating this list of candidates. For the program for¬

matting tool used in event 2, 16 entries are found. Some of these may be eliminated by further review of

their description in the body of the catalog (e.g., because they do not process the specified FORTRAN

dialects). For the remaining viable candidates, literature should be requested from the developer and

examined for conformance with the given constraints. At this point a second list is generated, con¬

taining tools meeting both the functional requirements and the constraints. If this list does not have an

adequate number of entries, relaxation of some constraints will have to be considered.

A4. User Review of Candidates

The user reviews the list of candidate tools prepared by the software engineer. Because few users can

be expected to be very knowledgeable in the software tools area, specific questions may need to be asked by

software management such as: “Will this tool handle the present file format? Are tool commands consistent

with those of the editor? How much training will be required?” Adequate time should be budgeted for this

review and a due date for responses should be indicated. Because the user views this as a long-term task and

of lower priority than many immediate obligations, considerable follow-up by line management will be

required. If tools can be obtained for trial use, or if a demonstration at another facility can be arranged, this

step will be much more significant.

* See references in section 3 of this Guideline.

22

FIPS PUB 99

A5. Score Candidates

For each of the criteria previously identified, a numerical score is generated on the basis of information
obtained from vendor’s literature, from demonstration of the tool, from the user’s review, from observation
in a working environment, or from comments of prior users. If weighting factors for the criteria are
specified, the score for each criterion is multiplied by the appropriate factor and the sum of the products
represents the overall tool score. Where only a ranking of the criteria was provided, the outcome of the
scoring may be simply a ranking of each candidate under each of the criteria headings. Frequently a single
tool is recognized as clearly superior in this process.

A6. Select Tool

This decision is reserved for software management to provide review of the scoring and to permit
additional factors not expressed in the criteria to be taken into consideration. For example, a report just
received from another agency might indicate that the selected vendor did not provide adequate service. If
the selected tool was not scored highest, the software engineer should have an opportunity to review the
tool characteristics thoroughly to avoid unexpected installation difficulties. The selection concludes the
separate sequence for informal procurement. Continue with event 3.

B. Acquisition Activities for Formal Procurement

Bl. Acquisition Plan

The plan generated here must include all elements mentioned under A1 plus the constraints on the
procurement process (e.g., set aside for high labor surplus areas) and the detailed responsibilities for all
procurement documents (statement of work, technical and administrative provisions in the Request for
Proposal, etc.).

B2. Technical Requirements Document

The technical requirements document is an informal description of the tool requirements and the
constraints under which the tool has to operate. It will utilize much of the material from the acquisition plan
but should add enough detail to support a meaningful review by the tool user.

B3. User Review of Requirements

The user reviews the technical requirements for the proposed procurement. As in event A4, the user
may need to be prompted with pertinent questions, and there should be close management follow-up in
order to get a timely response.

B4. RFP Generation

From the technical requirements document and the user comments on it, the technical portions of the
RFP can be generated. Usually these include:

1. A specification of the tool as delivered. This should include applicable documents, a definition of the
operating environment, and the quality assurance provisions.

2. A statement of work governing the tool procurement. This should state any applicable standards for
the process by which the tool is generated (e.g., configuration management of the tool), and
documentation or test reports to be furnished with the tool. Training and operational support
requirements are also identified in the statement of work.

3. Proposal evaluation criteria and format requirements. Evaluation criteria are listed in the approximate
order of importance. Subfactors for each may be identified. Restrictions on proposal format
(major headings, page count, desired sample outputs) may also be included.

23

FIPS PUB 99

B5. Solicitation of Proposals

This activity is carried out by administrative personnel. Capability lists of potential sources are

maintained by most purchasing organizations. Where the software organization knows of potential bidders,

their names should be given to the procurement office. When responses are received, they are screened for

compliance with major legal provisions of the RFP.

B6» Technical Evaluation

Each of the proposals received in response to the RFP is evaluated against the criteria previously

established. Failure to meet major technical requirements can lead to outright disqualification of a proposal.

Those deemed to be in “the competitive range" will be assigned point scores that will then be used together

with cost and schedule factors separately evaluated by administrative personnel.

B7. Source Selection

On the basis of the combined cost, schedule, and technical factors, a source for the tool is selected. If

this was not the highest rated technical proposal, prudent management will require additional reviews by

software management and the software engineer to determine that it is indeed acceptable.

The source selection concludes the separate sequence for formal procurement. Continue with event 3.

3. Procure Tool

In addition to determining that the cost of the selected tool is within the approved budget, the

procurement process will also consider the adequacy of licensing and other contractual provisions and

compliance with the “fine print" associated with all Government procurements. The vendor's responsibility

for furnishing the source program, for meeting specific test and performance requirements, and for tool

maintenance need to be identified. In informal procurement, a period of trial use may be considered if this

had not already taken place under one of the previous events.

If the acquisition plan indicates the need for outside training, the ability of the vendor to supply the

training and the cost advantages from combined procurement of tool and training should be investigated. If

substantial savings can be realized through simultaneous purchase of tool and training, procurement may be

held up until outside training requirements are defined (event 6).

4. Evaluation Plan

The evaluation plan is based on the goals identified in event 1 and the tool objectives derived from

these in event 2. It describes how the attainment of these objectives is to be evaluated for the specific tool

selected. Typical items to be covered in the plan are milestones for installation, dates, and performance

levels for the initial operational capability and for subsequent enhancements. Where improvements in

throughput, response time, or turn-around time are expected, the reports from which these data are to be

obtained should be identified. Responsibility for tests, reports, and other actions should be assigned in the

plan. A topical outline of the evaluation report should be included.

The procedure for the acceptance test is a part of the evaluation plan, although in a major tool

procurement it may be a separate document. It lists the detailed steps necessary to test the tool in

accordance with the procurement provisions when it is received, to evaluate the interaction of the tool with

the computer environment (e.g., adverse effects on throughput), and for generating an acceptance report.

5. Toolsmithing Plan

The plan will describe the selection of the toolsmith, the responsibilities for the adaptation of the tool,

and the training which will be required. The toolsmith should preferably be an experienced system

programmer, famiiiar with the current operating system. Training in the operation and installation of the

selected tool in the form of review of documentation, visits to current users of the tool, or training by the

vendor must be arranged. The toolsmithing plan is listed here as an event for which the software engineer is

responsible, and in the discussion of further events it is assumed that the toolsmith will work under the

direction of the software engineer. The toolsmithing plan should be approved by software management.

24

FIPS PUB 99

6. Training Plan

The training plan should first consider the training inherently provided with the tool, e.g.,

documentation, test cases, on-line diagnostics, HELP. These features may be supplemented by standard

training aids supplied by the vendor for in-house training such as audio or video cassettes and lecturers.

Because of the expense, training sessions at other locations should be considered only where none of the

previous categories is available. The number of personnel to receive formal training should also be specified

in the plan and adequacy of in-house facilities (number of terminals, computer time, etc.) should be

addressed. If training by the tool vendor is desired, this should be identified as soon as possible to permit

training to be procured with the tool (see step 3). User involvement in the preparation of the training plan is

highly desirable and coordination with the user is considered essential. The training plan is normally

prepared by the software engineer and approved by software management. Portions of the plan should be

furnished to procurement staff if outside personnel or facilities are to be utilized.

7. Tool Received

The tool is turned over by the procuring organization to the software engineer.

8. Acceptance Test

The software engineer or staff test the tool. This is done as much as possible in an “as received”

condition making only those modifications that are essential for bringing it up on the host computer. A

report on the test is issued. Approval by software management constitutes official acceptance of the tool.

9. Orientation

When it has been determined that the tool has been received in a satisfactory condition, software

management holds an orientation meeting for all personnel involved in the use of the too! and tool products

(reports or listings generated by the tool). The main purpose is to communicate as directly as possible

objectives of the tool use (such as increased throughput or improved legibility of listings). Highlights of the

evaluation plan should also be presented and any changes in duties associated with the introduction of the

tool should be described. Personnel should be reassured that allowance will be made for problems

encountered during the introduction and that the full benefits of the tool may not be felt for some time.

10. Modifications

This step is carried out by the toolsmith in accordance with the approved toolsmithing plan. It includes

modifications of the tool itself, of the documentation, and of the operating system. In rare cases some

modification of the computer proper may also be necessary (channel assignments, etc.). Typical tool

modifications involve deletion of unused options, changes in prompts or diagnostics, and other adaptations

made for efficient use in the prevailing environment. Documentation of the modifications is an essential part

of this event.

Vendor literature for the tool is reviewed in detail and is tailored for the prevailing computer

environment and for the tool modifications which have been made. Deleting sections which are not

applicable can be just as useful as adding material that is required for the specific programming

environment. Unused options shall be clearly marked or removed from the manuals. If there is some

resident software for which the tool should not be used (e.g., because of language incompatibility or

conflicts in the operating system interface), warning notices should be inserted into the tool manual.

11. Training

Training is a joint responsibility of the software engineer and the too! user. The former is responsible

for the content (in accordance with the approved training plan); the latter should have control over the

length and scheduling of sessions. Training is an excellent opportunity to motivate the user to utilize the

tool. The tool user should have the privilege of terminating steps in the training that are not helpful and of

extending portions that are helpful but in which greater depth is desired. Training is not a one-time activity.

Retraining or training in the use of additional options after the introductory period is desirable and provides

an opportunity for users to talk about problems with the tool.

25

FIPS PUB 99

12. Use in the Operating Environment

The first use of the tool in the operational environment should involve the most qualified user

personnel and minimal use of options. The first use should not be on a project with tight schedule

constraints. Any difficulties resulting from this use must be resolved before expanded service is initiated. If

the first use is successful, then use by additional personnel and use of further options may commence.

User comments on training, first use of the tool, and use of extended capabilities are prepared and

furnished to the software engineer. Desired improvements in the user interface, speed or format of response,

and in utilization of computer resources are appropriate topics. Formal comments may be solicited shortly

after the initial use, after 6 months, and again after 1 year.

13. Evaluation Report

The software engineer prepares the evaluation report, using the outline generated in event 4. The user

comments and observations of the toolsmith form important inputs to this document. Most of all, it must

discuss how the general goals and the tool objectives were met. The report may include, observations on

the installation and use of the tool, cooperation received from the vendor in installation or training, and any

other “lessons learned.” It may contain a section of comments useful to future users of the tool. Tool and

host computer modifications shall also be described in the report. The report is approved by software

management and preferably also by funding management.

14. Determine If Goals Are Met

Funding management receives the evaluation report and determines whether the goals established in

event 1 have been met. This determination shall be in writing and should include:

e attainment of technical objectives

• adherence to budget and other resource constraints

* timeliness of the effort

• cooperation from other agencies

* recommendations for future tool acquisitions

26

FIPS PUB 99

APPENDIX B
TAXONOMY BACKGROUND INFORMATION

Appendix B includes background information on the taxonomy including a brief history of its

development, the most recent updates, and references.

B.l History

The initial development of the taxonomy was performed under contract* to the National Bureau of

Standards. Since its initial development, the taxonomy has evolved through in-house and public review. The

first public review of the taxonomy took place at a workshop held at NBS on 11 April 1980. Continued

development by ICST has clarified the definitions and removed several inconsistencies. The taxonomy was

released for general public review through two NBS reports** [Houg81a| [ICST81] and two conference

papers** [Houg81b| |Reif8la].

The workshop and the response to the publications led to the formation of a review group composed of

people from industry, Government, and academe. Comments from this group plus adjustments made as a

result of in-house classification experience resulted in the taxonomy reported in this Guideline. This revision

was distributed to the review group on 18 July 1981. The comments received with discussion, resolution,

and summary statistics for each proposed change are available from the Institute for Computer Sciences and

Technology, National Bureau of Standards, Room B266, Technology Bldg., Washington, DC 20234.

B.2 Changes from SP 500-74

The taxonomy reported in section 2 of this publication has evolved, through use, from the taxonomy

presented in NBS Special Publication 500-74 [Houg81a|. To enhance the usefulness of the taxonomy, several

areas have been expanded and several new features have been added. The following list summarizes the

changes:

• Expansions

- VHLL to description language, requirements language, and design language.

- Translation to compilation, conversion, macro expansion, and structure preprocessing.

- Management to configuration control, information management, and project management.

- Information management to data dictionary management, documentation management, files

management, and test data management.

- Project management to cost estimation, resource estimation, scheduling, and tracking.

- Tracing to breakpoint control, data flow tracing, and path flow tracing.

- Graphics to activity diagrams, data flow diagrams, design charts, histograms, milestone charts,

program flow charts, and tree diagrams.

• Additions

- Synthesis under transformation.

- I/O specification analysis under static analysis.

- Regression testing under dynamic analysis.

- VHLL under machine output.

* Contract NB79SBCA0273 to SoHar, Inc., and SoHaR Subcontract No. 102 to Software Management Consultants (now Reifer

Consultants, Inc.).

** See references in section B.3 of this Guideline.

27

FIPS PUB 99

B.3 References

|Houg81a| Houghton, R. Features of software development tools. Natl. Bur. Stand. (U.S.) NBS Spec.

Publ. 500-74; 1981 February.

| Houg81 b I Houghton, R. An inverted view of software development tools. Proceedings of the 20th

Annual Technical Symposium of the Washington, D.C. Chapter of the ACM; 1981 June.

[ICST81 | .. Software development tools; a reference guide to a taxonomy of tool features. U.S.

Department of Commerce, LC-1127; 1981 February.

j Re i f81 a] Reifer, D. Tool standards—It's about time. Proceedings of the Software Engineering

Standards Application Workshop, IEEE No. 81CH1633-7; 1981 August.

28

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop¬

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization

Also included from time to lime are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media Issued six limes a year Annual subscription domestic

$18, foreign $22.50 Single copy, $5 50 domestic; $6 90 foreign.

NONPERIODICALS

Monographs—Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac¬

tivities

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in¬

terested industries, professional organizations, and regulatory

bodies

Special Publications—Include proceedings of conferences spon¬

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and

bibliographies

Applied Mathematics Series—-Mathematical tables, manuals, and

studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work

National Standard Reference Data Series—Provides quantitative

data on the physical and chemical properties of materials, com¬

piled from the world's literature and critically evaluated

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)

published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP) Subscriptions,

reprints, and supplements available from ACS, 1155 Sixteenth St.,

NW, Washington, DC 20056

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and

environmental functions and the durability and safety charac¬

teristics of building elements and systems

Technical Notes—Studies or reports which are complete in them¬

selves but restrictive in their treatment of a subject Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations

Consumer Information Series—Practical information, based on

N BS research and experience, covering areas of interest to the con¬

sumer Easily understandable language and illustrations provide

useful background knowledge for shopping in today’s tech¬

nological marketplace.

Order the above NBS publications from: Superintendent oj Docu¬

ments, Government Printing Office. Washington. DC 20402.

Order the following NBS publications—FIPS and NBSIR's—Jrom

the National Technical Information Service. Springfield. VA 22161.

Federal Information Processing Standards Publications (FIPS
PUB)—Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern¬

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stal. 1127), and as implemented by Ex¬

ecutive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis¬

tribution is handled by the sponsor; public distribution is by the

National Technical Information Service , Springfield, VA 22161,

in paper copy or microfiche form.

POSTAGE AND FEES PAID
U.S. DEPARTMENT DF COMMERCE

COM-211

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
52S5 Port Royal Road
Springfield, Virginia 22161

OFFICIAL BUSINESS 3rd Class Bulk Rate

