
Reference NBS PUBLICATIONS

American National Standard

for information systems -

representation of geographic point locations for information interchange

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in Federal Information Processing Standards Publication 70-1, Representation of Geographic Point Locations for Information Interchange. For a complete list of the publications available in the Federal Information Processing Standards Series, write to the Standards Processing Coordinator (ADP), Institute for Computer Sciences and Technology, National Bureau of Standards, Gaithersburg, MD 20899. Research Information Center National Bureau of Standards Gaithersburg, Maryland 20899

ANSI^(**) X3.61-1986 Revision of ANSI X3.61-1978

American National Standard for Information Systems -

Representation of Geographic Point Locations for Information Interchange

Secretariat
Computer and Business Equipment Manufacturers Association

Approved June 23, 1986 American National Standards Institute, Inc

American National Standard

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of approval. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

American National Standards Institute 1430 Broadway, New York, New York 10018

Copyright © 1986 by American National Standards Institute, Inc All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America

A2M487/7

Foreword (This Foreword is not part of American National Standard N3.61-1986.)

This standard provides uniform formats for representing geographic point location data in digital form for interchange between and among data systems and to enhance man-to-man communication. Geographic point location refers to the use of a coordinate system to define the position of a point which may be on, above, or below the earth's surface.

Suggestions for the improvement of this standard will be welcome. They should be sent to the Computer and Business Equipment Manufacturers Association, 311 First Street, NW, Suite 500, Washington, DC 20001.

This standard was processed and approved for submittal to ANS1 by Accredited Standards Committee on Information Processing Systems, X3. Committee approval of the standard does not necessarily imply that all members voted for its approval. At the time it approved this standard, the X3 Committee had the following members:

Edward Lohse, Chair Richard Gibson, Vice-Chair Catherine A. Kachurik, Administrative Secretary

Organization Represented	Name of Representative
American Express	
	Lucille Durfee (Alt)
American Library Association	
	D. R. Vondy (Alt)
AMP Incorporated	
	Edward Kelly (Alt)
Association for Computing Machinery	Kenneth Magel
	Jon A. Meads (Alt)
Association of the Institute for	The MARK 1
Certification of Computer Professionals AT&T Communications	Happy I. Marchasa
	Richard Gibson (Alt)
AT&T Technologies	
	Paul D. Bartoli (Alt)
	Stuart M. Garland (Alt)
Burroughs Corporation	
Control Data Corporation	Charles E. Cooper Keith Lucke (Alt)
Cooperating Users of Burroughs Equipment	
	Donald Miller (Alt)
Data General Corporation	John Pilat
	Lyman Chapin (Alt)
Data Processing Management Association	
	Terrance H. Felker (Alt) Ward Arrington (Alt)
Digital Equipment Computer Users Society	6
	Dennis Perry (Alt)
Digital Equipment Corporation	Gary S. Robinson
	Delbert L. Shoemaker (Alt)
Eastman Kodak	Gary Haines Charleton C. Bard (Alt)
General Electric Company	
	William R. Kruesi (Alt)
General Services Administration	William C. Rinehuls
	Larry I. Jackson (Alt)
GUIDE International	
Harris Corporation	Sandra Swartz Abraham (Alt) Walter G. Fredrickson
	Rajiv Sinha (Alt)
Hewlett-Packard	
Honeywell Information Systems	Thomas J. McNamara
	David M. Taylor (Alt)

Organization Represented	Name of Representative
1BM Corporation	Mary Anne Gray Robert H. Follett (Alt)
IEFF Computer Society	Sava I. Sherr Thomas A. Varetoni (Alt) T. M. Kurihara (Alt)
I awrence Berkeley Laboratory	
Moore Business Forms	2
National Communications System	George W. White Thomas W. Kern
Prime Computer, Inc	
Recognition Technology Users Association	Herbert F. Schantz G. W. Wetzel (Alt)
Scientific Computer Systems Corporation	Carl Haberland (Alt)
SHARE, Inc	Robert A. Rannie (Alt)
Sperry Corporation	Jean G. Smith (Alt)
Texas Instruments, Inc	Richard F. Trow, Jr (Alt)
3M Company	J. Wade Van Valkenburg (Alt)
U.S. Department of Defense	
VIM	
VISA U.S.A	Jean T. McKenna Susan Crawford (Alt)
Wang Laboratories, Inc	Joseph St. Amand (Alt)
Xerox Corporation	John L. Wheeler Roy Pierce (Alt)

Technical Committee X3L8 on Data Representation, which was responsible for the development of this standard, had the following members:

William H. Kenworthey, Chair

Theodore M. Albert Martin V. Appel Joseph E. Beltramea Philip H. Diamond Gordon R. Douglas Ronald L. Gatto Roy F. Hendrix Karen H. Kirkbride Duane J. Marquis Bruce K. Rosen Roy G. Saltman C. Ronald Trueworthy Arthur J. Wright Robert S. Drake (Alt) Steven M. Goldstein (Alt) Paul Haefner (Alt) Paul R. Miller (Alt) Dwight H. Ormond (Alt) Robert L. Register (Alt) Paul J. Sorvo (Alt) Henry Tom (Alt) Lois A. Winneberger (Alt)

Contents SECTION

1.7.0	1

Ι.	Purpe	ose and Scope	6
2.	Specil	fications for Geographic Point Location Systems	6
	2.I I	Representations for Fatitude and Longitude	6
	2.2 1	Representations for Universal Transverse Mercator System (UFM)	8
	2.3	Representations for State Plane Coordinate Systems (SPCSs)	10
3.	Specil	fications for Altitude Data (Optional)	16
	3.1 0	General	16
	3.2 1	Representation of Altitude	16
4.	Relate	ed Publications	17
Tal	bles		
]	Lable I	Universal Transverse Mercator Zone Locations and	
		Central Meridians	9
I	l able 2	Zone Representation Codes	E I
1	Lable 3	Jurisdictions and State Plane Coordinate Systems	12
l	Lable 4	Jurisdictions, State Plane Coordinate Systems, and Alternate Zone	
		Representations	13
]	Table 5	List of Publications Necessary for Conversion Computations on the	
		State Plane Coordinate Systems	19

American National Standard for Information Systems –

Representation of Geographic Point Locations for Information Interchange

1. Purpose and Scope

Geographic point location refers to the use of a coordinate system to define the position of a point that may be on, above, or below the earth's surface.

This standard is designed to establish uniform formats for geographic point location data. It provides a means for representing these data in digital form for the purpose of interchanging information among data systems and for improving clarity and accuracy in interpersonal communications.

Specifically, this standard is intended to:

(1) Provide for uniform representation of geographic point location data

(2) Minimize the amount of human intervention required for communicating geographic point location data

(3) Reduce the time required to format and transmit the elements of geographic point location data

There are many systems available for indicating point locations. This standard is applicable only to the three most widely used in the United States: Latitude and Longitude, the Universal Transverse Mercator (UTM) System, and State Plane Coordinate Systems (SPCS). These systems are mathematically interconvertible and are recognized officially by the many surveying and mapping agencies of federal and state governments. This standard does not provide a methodology for use of the three systems covered, nor does it recommend any particular system.

This standard applies to uniquely identified locations and does not necessarily apply to a series of coordinates at small intervals, such as digital cartographic data used to represent linear map features, terrain profiles, or elevation models.

For defining points on, above, or below the earth's surface or for describing the topography,

altitude is required. Therefore, specifications for altitude data are provided as an optional feature of this standard. For consistency with international usage, the word "altitude" is used in preference to elevation.

Determination of specific geographic point location information is the user's responsibility, as is the accuracy and reliability of the information. This standard does not prescribe file sequences, storage media, programming languages, or other features of information processing to be used in its implementation.

A list of references is provided in Section 4 and Table 5 for detailed information on the methodology, techniques, and applications of the three systems.

2. Specifications for Geographic Point Location Systems

2.1 Representations for Latitude and Longitude. Latitude and longitude are coordinate representations that show locations on the surface of the earth using the earth's equator and the prime meridian (Greenwich, England) as the respective latitudinal and longitudinal origins.

Although there are applications in which only latitude or longitude needs to be recorded, both are usually stated. The sequencing of latitude and longitude then becomes important and is addressed in this standard. Because latitude and longitude are angular quantities, they are expressed in degrees, minutes, and seconds, or, optionally, in radians. The standard provides for the representation of latitude and longitude in decimal fractions of degrees, minutes, seconds, or radians. The designation of the Northern, Southern, Eastern, and Western Hemispheres is also treated. **2.1.1 Sequencing of Latitude and Longitude.** I atitude shall be given first — to the feft when inscribed with longitude on one fine, or above when latitude and longitude are given vertically in relationship to each other. Sequencing shall be from high order to low order (left-to-right direction) in expressing degrees, minutes, and seconds in either latitude or longitude. When a decimal fraction of a degree is used, neither minutes nor seconds may be expressed; similarly, when a decimal fraction of a minute is used, no seconds may be expressed.

2.1.2 Use of Separators. Separators are permissible to enhance understanding of the contents of data files. When separators are used, the following guidelines are to be followed:

(1) Separators between Latitude and Longitude: Latitude shall be separated from longitude by a comma or a blank. No other symbol shalt be used as a separator between these items.

(2) Separators between Elements within Latitude or Longitude: No separators shall be used other than the decimal point, as specified in 2.1.3 through 2.1.6.

It is recognized that degrees, minutes, and seconds are conventionally denoted and separated in textual material by using superscripted symbols. For this standard, such designations have not been included as permissible primarily because many data processing machines cannot recognize or reproduce the conventional superscripts.

2.1.3 Representation of Degrees. For both latitude and longitude, when a decimal fraction of a degree is specified, it shall be separated from the whole number of degrees by a decimal point and expressed numerically to the number of places required by the desired precision.

2.1.3.1 Latitude. The degree of latitude shall be represented by a decimal number ranging from 0 through 90. For all values less than 10, a feading zero or blank shall be given (for example, 01, 15, or b3 where b represents a blank or space). All records in the same file shall use either leading blanks or zeros, but not both.

2.1.3.2 Longitude. The degrees of longitude shall be represented by a decimal number ranging from 0 through 180. For values less than 100, leading zero(s) or blanks shall be given (for example, 001, 027, b18, or bb3). All records in the same file shall use either feading blanks or zeros, but not both.

2.1.4 Representation of Minutes. For both fatitude and fongitude, the minutes shall be represented by a two-digit decimal number ranging from 00 through 59. For values less than 10, a leading zero shaft be given. When a locatron is indicated by degrees, minutes, and decimal fractions of a minute, the decimal fraction shall be separated from the whole number of minutes by a decimal point and expressed numerically to the number of places required by the desired precision.

2.1.5 Representation of Seconds. For both fatitude and longitude, seconds shall be represented by a two-digit decimal number ranging from 00 through 59. For values less than 10, a leading zero shall be given. When a focation is indicated by degrees, minutes, seconds, and decimal fractions of a second, the decimal fraction shall be separated from the whole number of seconds by a decimal point and expressed numerically to the number of places required by the desired precision.

2.1.6 Representation of Radians. Another way of representing latitude and longitude is by converting degrees to radians. One degree is equal to 0.017453292519943 radians.

2.1.6.1 Latitude. Radians of latitude shall be expressed as a one-digit number (0 or 1) followed by a decimal fraction. The maximum value of latitude in radians should not exceed one-half pi (1.570 796 327). See 2.1.8 for a discussion of the precision.

2.1.6.2 Longitude. Radians of longitude shall be expressed as a one-digit number (0, 1, 2, or 3) followed by a decimal fraction. The maximum value of longitude should not exceed pi (3.141 592 654). See 2.1.8 for a discussion of the necessary precision.

2.1.7 Representation of Hemispheric Information. Two methods of representing the hemisphere are permitted. If the alternate representation is used, that information must be included in the documentation accompanying the interchange.

With the exception of radian values, latitudes north of the equator may be specified by an uppercase "N" immediately following the last digit for latitude. Latitudes south of the equator may be designated by an uppercase "S" immediately following the last digit for latitude. A point on the equator shall be assigned to the Northern Hemisphere.

With the exception of radian values, longitudes east of the prime meridian may be specified by an uppercase "E" immediately following the last digit for longitude. Longitudes west of the prime meridian may be designated by an uppercase "W" immediately following the last digit for longitude. A point on the prime meridian shall be assigned to the Eastern Hemisphere. A point on the f80th meridian shall be assigned to the Western Hemisphere. All radian values shall use the alternate representation of hemispheric information, which is as follows:

Latitudes north of the equator may be specified by a plus sign (+) immediately preceding the digits designating degrees. Latitudes south of the equator may be designated by a minus sign (-) preceding the digits designating degrees. A point on the equator shall be assigned to the Northern Hemisphere. Longitudes east of the prime meridian may be specified by a plus sign (+) immediately preceding the digits designating degrees of longitude. Longitudes west of the meridian may be designated by a minus sign (-) preceding the digits designating degrees. A point on the prime meridian shall be assigned to the Eastern Hemisphere. A point on the 180th meridian shall be assigned to the Western Hemisphere.

2.1.8 Precision. A point can be represented at various levels of precision, as illustrated in the numbered examples below. (Separation is shown by using a comma, with the understanding that a space (blank) could have been used instead of a comma.) The number of digits does not necessarily imply precision.

(1)	Degrees and decimal	40.20364N,075.00420W
	Iractions of a degree	or +40.20364, -075.00420
(2)	Degrees and minutes	4012N,07500W
		or +4012, 07500
(3)	Degrees, minutes,	4012.22N,07500.25W
	and decimal frac-	or +4012.22, -b7500.25
	tions of a minute	
(4)	Degrees, minutes,	401213N,0750015W
	and seconds	or +401213,-b750015
(5)	Degrees, minutes,	401213.1N,0750015.1W
	seconds, and deci-	or +401213.1,-b750015.1
	mal fractions	
	of a second	
(6)	Radians	$\pm 0.7017, \pm 1.3091$

For longitude at the equator, and for latitude anywhere on the earth, the location of a point to the level of precision of 0.01 foot (0.003 meter) on the face of the earth corresponds approximately to angular values (on a great circle) of 0.000000000048 radian, 0.000000028 degree, 0.0000017 minute, or 0.00010 second. This accuracy is the preferred representation and is accomplished by use of the maximum precision in this standard.

Using these values, the preceding examples of latitude and longitude at this level of precision are as follows. The b represents a blank space.

(1)	Degrees and decimal	40.20364255N,075.00420039W
	fractions of a degree	or +40.20364255, -b75.00420039
(3)	Degrees, minutes,	4012.218553N,07500.252023W
	and decimal	or +4012.218553,-b7500.252023
	Iractions of	
	a minute	

(5)	Degrees, minutes,	
	seconds, and	or +
	decimal fractions	
	of a second	
(6)	Radians	+

401213.1132N,0750015.1214W r +401213.1132,-b750015.1214

+0.7016859338,-1.3090702496

The number of decimal places to which any representation of latitude or longitude is carried must, of course, depend on the user's requirements, the accuracy of measuring instruments, and similar factors.

2.2 Representations for Universal Transverse Mercator System (UTM). The Universal Transverse Mercator (UTM) System provides rectangular coordinates that may be used to indicate locations of points on the surface of the earth. The unit of measure is the meter. A point is located by specifying a hemispheric indicator, a zone number, an easting value, and a northing value.

UTM is designed for world use between 80 degrees south latitude, and 84 degrees north latitude. The globe is divided into narrow zones, 6 degrees of longitude in width, starting at the 180 degree meridian of longitude and progressing eastward. The zones are numbered 1 through 60. Each zone has, as its east and west limits, a meridian of longitude. Each zone also has a critical meridian passing through the center of the zone. Table 1 demonstrates the coverage and central meridian of each zone.

A value of 500,000 meters is assigned to the central meridian of each zone in order to avoid negative numbers at the west edge of the zone. The values increase from west to east. For north-south values in the Northern Hemisphere, the equator is assigned 0 meters, and the numbers increase toward the North Pole. In the Southern Hemisphere, the equator has an implied value of 10,000,000 meters and the numbers decrease toward the South Pole.

The location of any point within a zone is given in relation to the central meridian within that zone and the equator. A point's north-south location is obtained by either adding or subtracting the point's distance north or south of the equator. Similarly, a point's east-west location is obtained by either adding or subtracting the point's distance cast or west of the central meridian.

A point on the equator, if not otherwise specified, is assigned a default value of zero for its northing and is treated as if it were in the Northern Hemisphere. The default zone assignment for a point on a boundary meridian is the zone to the east of the point.

Zone	Central Meridian	Range	Zone	Central Meridian	Range
01	177W	180W 174W	31	003F	000E 006
02	171W	174W 168W	32	009F	0061 012
0.3	165W	168W-162W	3.3	015F	012E 018
()4	159W	162W 156W	34	021F	018E 024
05	153W	156W 150W	35	0271-	024E 030
06	147 W	150W-144W	36	033F	030E 036
()7	141W	144W 138W	37	039F	036E 042
08	135W	138W 132W	38	045 F	042E 048
09	129 W	132W 126W	39	051F	048E 054
10	123W	126W 120W	40	057F	054E 060
11	117W	120W 114W	41	063E	060E 066
12	111W	114W 108W	42	069F	066E 072
13	105W	108W-102W	43	075F	072E 078
14	099W	102W 096W	44	081F	078E 084
15	093W	096W 090W	45	087E	0841 090
16	087 W	090W 084W	46	093E	090E 096
17	081W	084W 078W	47	099E	0961 102
18	075W	078W 072W	48	105F	1021 108
19	069 W	072W 066W	49	111E	108E-114
20	063W	066W 060W	50	117E	1141 120
21	057W	060W 054W	5 E	123E	120F 126
22	051W	054W 048W	52	129F	126E 132
23	045W	048W-042W	53	135 E	132F 138
24	0.39 W	042W-036W	54	141F	138F 144
25	033W	036W 030W	55	147 F	144E 150
26	027W	030W-024W	56	153E	150E 156
27	021W	024W-018W	57	159F	156F 162
28	015W	018W 012W	58	165E	162F 168
29	009W	012W 006W	59	171E	168E 174
30	003 W	006W 000F	60	177E	174F - 180

Table 1 Universal Transverse Mercator Zone Locations and Central Meridians

Specification of the ellipsoid used for the UTM projection depends on the portion of the earth's surface being referenced. No provision is made within this standard to define ellipsoid codes or parameters. This information must be communicated within the documentation accompanying the data interchange.

2.2.1 Sequencing of UTM and Hemisphere Codes. The first item of information shall be a code to indicate the hemisphere in which the point is located. A plus sign (+) shall be used to indicate the Northern Hemisphere, and a minus sign (-) to indicate the Southern Hemisphere. The second item of information shall be the zone number indicating the six-degree longitudinal band in which the point is located (01, 02, ... 60). The third item of information shall be the easting in meters. The last item of information shall be the northing in meters.

2.2.2 Precision. In order to provide the precision

equivalent to that used with the Latitude and Longitude and State Plane Coordinate Systems, UTM shall be recorded to three decimal places.

2.2.3 Use of Separators. Optional separators are permissible to enhance understanding of the contents of data files. When separators are used, the following guidelines shall be followed:

(1) Separators between Hemisphere Code and Zone Number: The hemisphere code shall not be separated from the zone number.

(2) Separators between Zone Number and Easting Value: The zone number shall be separated from the easting value by a comma or a blank.

(3) Separators between Elements of UTM Measurements: The easting value shall be separated from the northing value by a comma or a blank.

(4) Separators for Precision: For both easting and northing values, when a deeimal fraction of a meter is specified, it shall be separated from the unit value by a decimal point followed by three digits to provide the necessary precision. The following are examples of the use of UTM positional information:

+18,520381,516,3684572,632-18,520381,516,6315427,368

The above examples illustrate two points within the same zone that are equidistant from the equator

one in the Northern Hemisphere and one in the Southern Hemisphere.

The following are examples of UTM geographic point location eodes.

Alaska	+05,426453.473,6596814.917
Point on the equator in Columbia, South America	+18,593681.510,0000000.000
A point one millimete south of the one des- ignated immediately	r
above	-18,593681.510,99999999.999

2.3 Representations for State Plane Coordinate

Systems (SPCSs). The State Plane Coordinate Systems (SPCSs) are designed to define the locations of points within a geographic grid system. Similar systems were used in the nineteenth century, but the first formal use was in 1932. There are now State Plane Coordinate Systems in use in each of the 50 United States, as well as in the Commonwealth of Puerto Rieo, the U.S. Virgin Islands, American Samoa, and Guam. The District of Columbia is included with the State of Maryland. State Plane Coordinate Systems represent separate, distinct systems for the political jurisdictions involved, as opposed to the universally applicable Latitude and Longitude (see 2.1) and Universal Transverse Mercator (UTM) Systems (see 2.2.).

Nine states, Puerto Rieo, American Samoa, and Guam are covered individually by one State Plane Coordinate System or projection. The nine states are: Connecticut, Delaware, Maryland, New Hampshire, New Jersey, North Carolina, Rhode Island, Tennessee, and Vermont. The remaining 41 States and the Virgin Islands are covered individually by from two to ten SPCS projection zones. These systems fall into three general categories, based upon the conformal mapping projection methods utilized:

(1) The Lambert Projection

(2) The Transverse Mercator (TM) Projection (not to be confused with the UTM)

(3) The Oblique Mereator Projection in southeastern Alaska

A zone may be defined in one of three ways. In each of these three methods, an arbitrary point of origin in latitude and longitude is one element of the definition of the zone. The other element of definition varies with the conformal mapping projection system used in the zone:

(1) Lambert Projection: Two standard parallels of latitude bounding the zone

(2) Transverse Mercator Projection: One central (longitudinal) meridian at a designated longitude

(3) Alaska Oblique Mercator Projection: As defined in detailed Alaska State Plane Coordinate System specifications (see Section 4).

The arbitrary point of origin for each zone is typically located outside the geographic area it covers. This is designed to meet the objective that no coordinate may have a negative value.

2.3.1 Jurisdictional Representation. This representation identifies the 50 states that comprise the United States, as well as the Commonwealth of Puerto Rico, the U.S. Virgin Islands, American Samoa, and Guam. There are two alternative methods for representation of jurisdictions: A twocharacter abbreviation and a two-digit numeric code. These representations can be found in Table 4 and are derived from FIPS PUB 5-1, "States and Outlying Areas of the United States (including the District of Columbia)." These representations are not used when the four-character zone representation is used (see 2.3.2.2).

2.3.2 Zone Representation. This representation uniquely identifies each of the zones or State Plane Coordinate Systems found within a jurisdiction as represented in accordance with 2.3.1. Two methods are provided in 2.3.2.1 and 2.3.2.2.

2.3.2.1 One-Character or Two-Character Representation. The first method for zone or SPCS representation provides for a left-justified code of one or two characters, which may be alphabetic or numeric. This code will accommodate all zones in the jurisdictions using SPCSs; it is mnemonic and is based on common nomenelature used in the jurisdictions to indicate specific zones. Table 2 shows this eode; a "b" represents a blank (space) in the individual code entry. Table 3 is a summary listing of representations for the State Plane Coordinate Systems and zones within all jurisdictions.

2.3.2.2 Four-Character Representation. In this representation, each of the zones or SPCSs in each jurisdiction is uniquely identified by a fourcharacter numeric code. Table 4 is a summary listing of the alternate representations for State Plane Coordinate Systems and zone codes within all jurisdictions. This representation uniquely identifies the jurisdiction as well as the zone.

Code	SPCS Zone Represented	Jurisdictions Concerned						
bb	Single zone in a state	Nine states, which have only one SPCS zone, American Samoa, Guam						
SH	Offshore	Louisiana						
Mb	Mainland	Massachusetts (one of two zones)						
[b	Island	Massachusetts (one of two zones)						
СM	Central (TM)	Michigan (see Note 4)						
Lb	Long Island	New York (one of four zones)						
NC	North Central	Texas (one of fives zones)						
SC	South Central	Texas (one of five zones)						
EC	East Central	Wyoming (one of four zones) (see Notes 1 and 2)						
WC	West Central	Wyoming (one of four zones) (see Notes 1 and 2)						
Eb	East	Many (see Table 4)						
Sb	South	Many (see Table 4)						
Wb	West	Many (see Table 4)						
Nb	North	Many (see Table 4)						
Cb	Central	Many (see Table 4)						
01 10	Numerically designated zones	For the following states, as shown: Alaska 01 through 10						
	designated zones	California 01 through 07						
		Hawaii 01 through 05						
		Wyoming 01 through 04 (see Notes 1 and 2)						
Z1	Zone 1	Puerto Rico and U.S. Virgin Islands						
		(St. John, St. Thomas) (see Note 3)						
SX	Zone 2	U.S. Virgin Islands (St. Croix) (see Note 3)						

Table 2Zone Representation Codes

NOTES:

(1) Wyoming is shown with two designations; it is shown in Table 3 in the same fashion. It is the only state with both alphabetic and numeric official zone designations.

(2) The codes indicated in 2.3.1 and 2.3.2 shall be applied to the zones indicated in Table 3. For Wyoming only, the numeric zone designations or the alphabetic zone designations are expected to he used separately, without intermixing of codes.

(3) The Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands share one zone, except for the Island of St. Croix which is a second, separate zone,

(4) Although three Transverse Mercator zones were originally devised for Michigan hy the U.S. Coast and Geodetic Survey, the State has mandated use of Lambert zones devised by Prof. R. M. Berry of the University of Michigan. The Lambert zones are designed for a special spheroid that, although related to the Clarke Spheroid of 1866, is a reference surface above that spheroid. Use of the Lambert zones has supplanted use of the Mercator.

Jurisidictions	Abbrev	Numeric Code	E	S	W	N	С	C M	E C	S C	W C	N C	М	Ι	Z I	S X	L	S H	Blank (One)	Zone Numbers
Alabama	AL	01	Х		Х															
Alaska	AK	02																		01-10
Arizona	AZ	04	Х		Х		Х													
Arkansas	AR	05		Х		Х					—									
California	CA	06		_																01-07
Colorado	CO	08		Х		X	Х	-												
Connecticut	CT	09		n															X	
Delaware	DE	10																	Х	
District of Columbia (See Maryland)																				
Florida	FL	12	Х		Х	Х														
Georgia	GA	13	Х		Х															
Hawaii	HI	15																		01-05
Idaho	1D	16	Х		Х		-Χ													
Illinois	IL	17	Х		Х															_
Indiana	IN	18	Х		Х															
lowa	IA	19		Х		X														
Kansas	KS	20		Х		Х														
Kentucky	ΚY	21		X		Х												_		
Louisiana	LA	22		Х		Х												X		
Maine	ME	23	Х		Х															
Maryland	MD	24																	Х	
Massachusetts	MA	25	_										Х	Х						
Michigan	MI	26	Х	X	Х	Х	- X	X												
Minnesota	MN	27		Х		Х	Х													
Mississippi	MS	28	Х		X															
Missouri	MO	29	Х		Х	X														
Montana	MT	30		X		X	Х													
Nebraska	NE	31	v	Х		Х	X													
Nevada	NV	32 33	X		X		A												X	
New Hampshire	NH	33																	X	
New Jersey New Mexico	NJ NM	35	X		x		X												~	
New Mexico New York	NY	36	X		X		X										x			
New York North Carolina	NC	30	~		Δ 												1		X	
North Dakota	ND	38		X		X														
Ohio	OH	39		X		X														
Oklahoma	OK	40		X		X														
Oregon	OR	41		X		X														
Pennsylvania	PA	42		X		X														
Rhode Island	RI	44		~		<u></u>													Х	
South Carolina	SC	45		Х		Х														
South Dakota	SD	46		X		X														
Tennessee	TN	47				_													Х	
Texas	TX	48		X		Х	Х			Х		X								
Utah	UT	49		X		X	X													
Vermont	VT	50		_		_													Х	
Virginia	VA	51		Х		Х													~	
Washington	WA	53		X		X														
West Virginia	WV	54		X		X														
Wisconsin	WI	55		X		X	Х													
Wyoming	WY	56	Х		Х				X		Х									01 04
American Samoa	AS	60							_										X	
Guam	GU	66																	X	
Puerto Rico* U.S. Virgin	PR	72													Х				-	
Islands*	VI	78													Х	Х				

Table 3 Jurisdictions and State Plane Coordinate Systems

*See note 3, 1 able 2.

Jurisdiction		Numeric	1
Zone Name or Number	Abbreviation	Code	Zone Code
labama	AL	0.1	
Fast			010
West			010
Jaska	AK	02	
01 through 10			5001 through 501
vrizona	AZ	04	
East			020
Central			020
West			020
Arkansas	AR	05	
North			030
South			030
California	CA	06	
01 through 07			0401 through 040
Colorado	CO	08	
North			050
Central			050
			050
South	СТ	09	060
Connecticut	DE	10	070
Delaware District of Columbia	1-		
District of Columbia			
(See Maryland)	FT.	12	
Florida	4.4.		090
East			09
West			09
North	GA	13	
Georgia	GA		10
Fast			10
West	HI	15	
Hawaii	111		5101 through 51
01 through 05	1D	16	_
Idaho	10		11
East			11
Central			11
West	1L	17	
Illinois	11.	17	12
East			12
West	IN	18	
Indiana		10	13
East			13
West	1.4	19	
Iowa	IA	12	14
North			14
South	N.C.	20	
Kansas	KS	20	13
North			
South		21	
Kentucky	ΚY	21	1
North			
South		22	I
Louisiana	LA	22	1
North			1
South			1
Offshore		~ ~	I
Maine	MF	23	1
East			
West			1
Maryland	MĐ	24	1
Massachusetts	MA	25	-
Mainland			2
Island			2

Table 4Jurisdictions, State Plane Coordinate Systems,
and Alternate Zone Representations

(Continued)

Jurisdiction Zone Name or Number	Abbreviation	Numeric Code	Zone Code
Michigan	MI	26	
Fast			210
Central (Transverse			
Mercator)			210
West			210.
North			211
Central (Lambert)			211.
South			211.
Minnesota	MN	27	
North			220
Central			2202
South			2203
Mississippi	MS	28	
East			230
West			2302
Missouri	MO	29	
Fast			2401
Central			2402
West			240.
Montana	MT	30	
North			2501
Central			2502
South			2503
Nebraska	NE	31	
North			2601
South			2602
Nevada	NV	32	
East			2701
Central			2702
West			2703
New Hampshire	NH	33	2800
New Jersey	N.1	34	2900
New Mexico	NM	35	
East			3001
Central			3002
West	2127	27	3003
New York	NY	36	210
Fast			3101
Central			3102
West			3103
Long Island		27	3104
North Carolina	NC	37	3200
North Dakota	ND	38	2201
North South			3301
	()11	20	3302
Dhio	OH	39	2401
North			3401
South	(512	40	3402
Oklahoma North	OK	40	3501
			3501
South	()))	41	3502
Dregon	OR	41	3701
North South			3601
Pennsylvania	13.4	42	3602
-	PA	42	3744
North			3701
South Disude folger (0.1	4.4	3702
Rhode Island	R1	44	3800
South Carolina	SC	45	300
North			3901
South			3902

Table 4Jurisdictions, State Plane Coordinate Systems,and Alternate Zone Representations (Continued)

(Continued)

Table 4Jurisdictions, State Plane Coordinate Systems,and Alternate Zone Representations (Continued)

Jurisdiction Zone Name or Number	Abbreviation	Numeric Code	Zone Code
South Dakota	SD	46	
North			400
South			400.
Tennessee	TN	47	4100
Texas	LX	48	
North			420
North Central			4202
Central			4203
South Central			4204
South			4205
Utah	UT	49	
North			4301
Central			4302
South			4303
Vermont	VT	50	4400
Virginia	$V \Delta$	51	
North			4501
South			4502
Washington	WA	53	
North			4601
South			4602
West Virginia	WV	54	
North			4701
South			4702
Wisconsin	WI	55	
North			4801
Central			4802
South			4803
Wyoming	WY	56	
East (01)			4901
East Central (02)			4902
West Central (03)			490.
West (04)			4904
Puerto Rico	PR	72	5201
U.S. Virgin Islands	VI	78	
St. John, St. Thomas			5201
St. Croix			5202
American Samoa	AS	60	5300
Guam	GU	66	5400

2.3.3 Sequencing of X Coordinates and Y Coordinates. The X coordinate, which is the east-west location indicator, shall precede (be to the left of, when on one line, and be above, when shown vertically) the Y coordinate, which is the north-south location indicator.

2.3.4 Use of Separators. Separators are permissible to enhance understanding of the contents of data files. When separators are used, the following guidelines shall be followed:

When a choice is indicated between a pair of separator symbols, one symbol alone shall be chosen, so that the same symbol is used as a separator between every field in a record where a separator is used. This is intended to facilitate data interchange. The items described in 2.3.1, 2.3.2, 2.3.5, and 2.3.6 shall be used in left-to-right sequence.

(1) Separator between Jurisdictional Representation (2.3.1) and the One-Character or Two-Character Zone Representation (2.3.2): A single comma or blank shall be used. If the four-character representation is chosen, it is preceded by a blank.

(2) Separator between Zone Representation (2.3.2) and X Coordinate Representation (2.3.5): A single comma or blank shall be used.

(3) Separator between X Coordinate Representation (2.3.5) and Y Coordinate Representation (2.3.6): A single comma or blank shall be used.

2.3.5 X Coordinate Representation. Three methods are available for the designation of this east-west location indicator: (1) the Lambert Projection, (2) the Transverse Mercator Projection, and (3) the Oblique Mercator Projection used in Alaska.

For cach of these three methods, the precision requirements shall be the same as those for the Latitude and Longitude (2.1) and Universal Transverse Mercator (2.2) systems. This shall be at the maximum level for precision of 0.01 foot (0.003 metcr).

The notation of an X coordinate in an existing SPCS may be expressed by a number of the general magnitude of NNNNNN.NN. This will suffice for a range of X of not less than 0.01 foot and not more than 9,999,999.99 feet, and is considered to be appropriate for this standard.

As many digits as are required may be used for purposes of internal processing and storage of X coordinate data. For interchange purposes, the following conventions shall apply to the X eoordinate representation:

(1) Leading zeros or blanks shall be used in numbers with fewer digits than the permissible maximum. (2) Where a decimal fraction is used, it shall be one or two positions in length, as required (for example, .1, .15).

(3) Where a decimal fraction is not used, the X coordinate shall be not less than 0000001 foot, and not more than 9999999 feet.

Therefore, for interchange purposes, the maximum size coordinate shall consist of seven highorder decimal digits, that is, NNNNNN.NN.

2.3.6 Y Coordinate Representation. The requirements for this coordinate shall be the same as those set forth in 2.3.5 for X coordinate representation.

2.3.7 Examples of SPCS Representation. The following are examples of SPCS representation (b represents a blank space):

A point in the Virginia North zone: VA,Nb,2178364.86,0408632.16 b4501,2178364.86,0408632.16 51,Nb,2178364.86,0408632.16

A point in the Wyoming West Central zone: WY,WC,0496132.81,3467187.28 b4903,0496132.81,3467187.28 56,WC,0496132.81,3467187.28

2.3.8 Z Coordinate Representation. The altitude coordinate is utilized in some applications, although it is not part of an official SPCS. See Section 3 for formatting of altitude data.

2.3.9 Conversion Computations. Publications containing projection tables for the State Plane Coordinate Systems are available to assist with conversion computations. These are listed in Section 4.

3. Specifications for Altitude Data (Optional)

3.1 General. Altitude of a point, as used in this standard, is defined as the vertical distance in meters either above or below a reference surface. In the United States, this reference surface is the National Geodetic Vertical Datum of 1929, which approximates mean sea level.

If altitude data are included in the representation of the point, those data shall follow the geographic data. They shall be separated by a comma or blank, whichever is used for the geographic portion.

3.2 Representation of Altitude

3.2.1 Precision. Representation of altitude may or may not contain a decimal point. If a representation for an altitude contains a decimal point, the

number of places after the decimal point should reflect the inherent precision of the measurement.

3.2.2 Altitude Data. All altitude measurements shall include a character specifying sign. All altitude measurements below the reference datum shall be designated by a minus sign (—) preceding the number. Measurements at or above the reference datum may be designated by a blank or a plus sign (+), but usage should be consistent throughout a set of data.

3.2.3 Unit of Measurement. When the point data are given in the State Plane Coordinate System, feet are used as the unit measure. Otherwise, the meter is assumed to be the unit measure and the use of feet is optional. When feet are used optionally, this information shall be specified in the documentation associated with the interchange.

3.2.4 Representation of Numbers. The representation for maximum precision in meters will consist of four digits before the decimal point and three digits after the decimal point, for a total of nine characters, including the character for the sign. The representation for maximum precision in feet will consist of five digits before the decimal point and two digits after the decimal point, for a total of nine characters, including the character for the sign. Leading zeros are required for use in numbers that are less than the prescribed maximum number of digits when the maximum precision is specified.

A permissible alternate representation of numbers is as follows: For ocean subsurface or for aircraft and spacecraft data, five or more digits are used before the decimal point, and the number of digits after the decimal point is reduced accordingly to maintain the total of nine characters.

The following are examples of altitude data (b represents a blank space):

Less than

maximum precision	+45
	-130
	b200
	b10.5
Maximum precision	+0132.417
	-2067.008
	b1054.020

3.2.5 Sequencing of Data. When present, the altitude data shall follow and be separated from the geographic coordinate data by either a comma or a blank, whichever is used within the geographic coordinate data, or shall be shown below the geographic coordinate data when displayed vertically.

3.2.6 Examples of Altitude Data Using Feet as the Optional Unit of Measurement (b represents a blank space)

Less than	
maximum precision	± 125
	= 390
	31625
	31.5
Maximum precision	+13396.22
	=16201.02
	b13152.07

3.2.7 Examples of Altitude Data with Point Coordinate Data (b represents a blank space)

352215.2417N,0800000.1234W,+1000.467 +352215.2417b-0800000.1234bb1000.467 WY,WC,496132.81,3467187.28,+06172.53 +05,426453.473,6596814.917,b1000.467 +435698.2402,-1031213.5568,+bb45.663

4. Related Publications (see Table 5)

Claire, Charles N. State plane coordinates by automatic data processing. Coast and Geodetic Survey Publication No. 62-4. Washington, DC: 1968.

Mitchell, Hugh C.; Lansing, G. Simmons. The State Coordinate Systems (A Manual for Surveyors). Coast and Geodetic Survey Special Publication No. 235. Washington, DC: 1945.

Morgan, Charles O.; McNellis, Jesse M. FOR-TRAN IV program KANS, for the conversion of general land office locations to latitude and longitude coordinates. State Geological Survey Special Distribution Publication No. 42. Lawrence, Kansas: University of Kansas; 1969.

Renshaw, Richard W. Geo-references — The language of geobase systems. Presented at URISA Conference, San Francisco, California; 1972 August 29 September 2.

U.S. Department of the Army. Universal transverse mercator grid. Technical Report TR 5-241-8; 1958 July.

U.S. Department of Commerce. Geographic base file system; correction update-extension: Bureau of the census procedural manual for the review and correction of the addresses range edit (ADDEDIT) listing (GEO-MT 502); 1973 January.

AMERICAN NATIONAL STANDARD X3.61-1986

U.S. Department of Commerce, National Bureau of Standards. States and outlying areas of the United States (including the District of Columbia). FIPS PUB 5.1. Washington, DC: 1970 June 15. U.S. Department of Commerce, National Technical Information Service. Geoplanning research program systems conceptualization task 2 report. Des Moines, Iowa: 1973 April. Table 5 ms Necessary

List of Publications Necessary for Conversion Computations on the State Plane Coordinate Systems

Coast and Geodetic Survey Special		Publ	Publication			Coast and Geodetic Survey Special		Publ. T	Publication Title		
Publication Number		-	Title			Fublication Number		-	100		
30A	Plane (Plane Coordinate Projection Tables	Projection	n Tables	Alabama	286	Plane C	oordinate .	Plane Coordinate Projection Tables		Nebraska
65-1	plane (Plane Coordinate Intersection Tables	Intersection	on Tables		318	и	"	11		Nevada
1-20	Plane (Plane Coordinate Projection Tables	Projection	n Tables		317	"	"	"	"	New Hampshire
1020	1 10112	"			Arkansas	316	z	2	11	11	New Jersey
207	"	"	"	u	California	324	"			11	New Mexico
976	"	"	11	**	Colorado	323		"	u	16	New York
246	"	"	11	r	Connecticut	272	11	11	"	44	North Carolina
205	"	"	"	"	Delaware	262	11	"	"		North Dakota
220	и	"	"	"	Florida	269	44	z	"		Ohio
CC2	"	11		"	Georgia	287	11				Oklahoma
776	"	"		"	Hawaiian Islands	270	11	11			Oregon
200	"	11	2		Idabo	267	11		"		Pennsylvania
000	"	"	11	"		65-2	"	11	"		Puerto Rico and
030	"	11	"		Indiana						U.S. Virgin Islands
6C7	"	11		14	louid	315	"	11	"		Rhode Island
284	. 2	2	2		V	273	"	"	"	"	South Carolina
285	: 7	: 2	2	"	N ansas	243	"	11	11		South Dakota
290		:		:	Nentucky	070	"	11	"		Tennessee
291		11			Louisiana (Kevised)	202	2	"	"		Tevac
256	11	11	"	"	Maine	707	2	11	"	"	1 LAdo 1 Itab
292	44	11	и	11	Maryland	117	40			"	Vormont
					(includes Washington, D.C.)	314	2	: :	: 1		vermont
274	~~	"	11	"	Massachusetts	293	**	11	42	2	Virginia
65-3	11	"	"	"	Michigan	271	4	11	11	2	Washington
264		**	"	11	Minnesota	275	"	"		2	West Virginia
321	**		11	"	Mississippi	288		"			Wisconsin
319	"	"	11	"	Missouri	258		2			w yoning
	3										

X3.115-1984 Unformatted 80 Megabyte Trident Pack for Use at 370 tpi and 6000 bpi (General, Physical, and Magnetic Characteristics)

X3.116-1986 Recorded Magnetic Tape Cartridge, 4-Track, Serial 0.250 Inch (6.30 mm) 6400 bpi (252 bpmm), Inverted Modified Frequency Modulation Encoded

X3.117-1984 Printable/Image Areas for Text and Facsimile Communication Equipment

X3.118-1984 Financial Services – Personal Identification Number – PIN Pad

X3.119-1984 Contact Start/Stop Storage Disk, 158361 Flux Transitions per Track, 8.268 Inch (210 mm) Outer Diameter and 3.937 inch (100 mm) Inner Diameter

X3.120-1984 Contact Start/Stop Storage Disk

X3.121-1984 Two-Sided, Unformatted, 8-Inch (200-mm), 48-tpi, Double-Density, Flexible Disk Cartridge for 13 262 ftpr Two-Headed Application

X3.122-1986 Computer Graphics Metafile for the Storage and Transfer of Picture Description Information

X3.124-1985 Graphical Kernel System (GKS) Functional Description

X3.124.1-1985 Graphical Kernel System (GKS) FORTRAN Binding

X3.125-1985 Two-Sided, Double-Density, Unformatted 5.25-inch (130-mm), 48-tpi (1,9-tpmm), Flexible Disk Cartridge for 7958 bpr Use

X3.126-1986 One- or Two-Sided Double-Density Unformatted 5.25-inch (130-mm), 96 Tracks per Inch, Flexible Disk Cartridge X3.127-1987 Unrecorded Magnetic Tape Cartridge for Information Interchange

 $\times 3.128\text{-}1986$ Contact Start-Stop Storage Disk - 83 000 Flux Transitions per Track, 130-mm (5.118-in) Outer Diameter and 40-mm (1.575-in) Inner Diameter

X3.129-1986 Intelligent Peripheral Interface, Physical Level X3.130-1986 Intelligent Peripheral Interface, Logical Device Specific Command Sets for Magnetic Disk Drive

X3.131-1986 Small Computer Systems Interface X3.132-1987 Intelligent Peripheral Interface - Logical Device Generic Command Set for Optical and Magnetic Disks X3.133-1986 Database Language -- NDL X3.135-1986 Database Language - SQL X3.136-1986 Serial Recorded Magnetic Tape Cartridge for Information Interchange, Four and Nine Track X3.139-1987 Fiber Distributed Data Interface (FDDI) Token Ring Media Access Control (MAC) X3.140-1986 Open Systems Interconnection -- Connection Oriented Transport Layer Protocol Specification X3.141-1987 Data Communication Systems and Services - Measurement Methods for User-Oriented Performance Evaluation X3.146-1987 Device Level Interface for Streaming Cartridge and Cassette Tape Drives X3.147-1987 Intelligent Peripheral Interface - Logical Device Generic Command Set for Magnetic Tapes X3.153-1987 Open Systems Interconnection - Basic Connection **Oriented Session Protocol Specification** X11.1-1977 Programming Language MUMPS IEEE 416-1978 Abbreviated Test Language for All Systems (ATLAS) IEEE 716-1982 Standard C/ATLAS Language IEEE 717-1982 Standard C/ATLAS Syntax IEEE 770X3.97-1983 Programming Language PASCAL IEEE 771-1980 Guide to the Use of ATLAS ISO 8211-1986 Specifications for a Data Descriptive File for Information Interchange MIL-STD-1815A-1983 Reference Manual for the Ada Programming Language NBS-ICST 1-1986 Fingerprint Identification - Data Format for Information Interchange

X3/TRI-82 Dictionary for Information Processing Systems (Technical Report)

American National Standards for Information Processing

X3.1-1976 Synchronous Signaling Rates for Data Transmission X3.2-1970 Print Specifications for Magnetic Ink Character Recognition X3.4-1986 Coded Character Sets - 7-Bit ASCII X3.5-1970 Flowchart Symbols and Their Usage X3.6-1965 Perforated Tape Code X3.9-1978 Programming Language FORTRAN X3.11-1969 General Purpose Paper Cards X3.14-1983 Recorded Magnetic Tape (200 CPI, NRZI) X3.15-1976 Bit Sequencing of the American National Standard Code for Information Interchange in Serial-by-Bit Data Transmission X3.16-1976 Character Structure and Character Parity Sense for Serial-by-Bit Data Communication in the American National Standard Code for Information Interchange X3.17-1981 Character Set for Optical Character Recognition (OCR-A) X3.18-1974 One-Inch Perforated Paper Tape X3.19-1974 Eleven-Sixteenths-Inch Perforated Paper Tape X3.20-1967 Take-Up Reels for One-Inch Perforated Tape X3.21-1967 Rectangular Holes in Twelve-Row Punched Cards X3.22-1983 Recorded Magnetic Tape (800 CPL NRZI) X3.23-1985 Programming Language COBOL X3.25-1976 Character Structure and Character Parity Sense for Parallel-by-Bit Data Communication in the American National Standard Code for Information Interchange X3.26-1980 Hollerith Punched Card Code X3.27-1978 Magnetic Tape Labels and File Structure X3.28-1976 Procedures for the Use of the Communication Control Characters of American National Standard Code for Information Interchange in Specified Data Communication Links X3.29-1971 Specifications for Properties of Unpunched Oiled Paper Perforator Tape X3.30-1986 Representation for Calendar Date and Ordinal Date X3.31-1973 Structure for the Identification of the Counties of the United States X3.32-1973 Graphic Representation of the Control Characters of American National Standard Code for Information Interchange X3.34-1972 Interchange Rolls of Perforated Tape X3.37-1980 Programming Language APT X3.38-1972 Identification of States of the United States (Including the District of Columbia) X3.39-1986 Recorded Magnetic Tape (1600 CPI, PE) X3.40-1983 Unrecorded Magnetic Tape (9-Track 800 CPI, NRZI; 1600 CPI, PE; and 6250 CPI, GCR) X3.41-1974 Code Extension Techniques for Use with the 7-Bit Coded Character Set of American National Standard Code for Information Interchange X3.42-1975 Representation of Numeric Values in Character Strings X3.43-1986 Representations of Local Time of Day X3.44-1974 Determination of the Performance of Data Communication Systems X3.45-1982 Character Set for Handprinting X3.46-1974 Unrecorded Magnetic Six-Disk Pack (General, Physical, and Magnetic Characteristics) X3.47-1977 Structure for the Identification of Named Populated Places and Related Entities of the States of the United States for Information Interchange X3.48-1986 Magnetic Tape Cassettes (3.81-mm [0.150-Inch] Tape at 32 bpmm [800 bpi], PE) X3.49-1975 Character Set for Optical Character Recognition (OCR-B) X3.50-1986 Representations for U.S. Customary, SI, and Other Units to Be Used in Systems with Limited Character Sets X3.51-1986 Representations of Universal Time, Local Time Differentials, and United States Time Zone References X3.52-1976 Unrecorded Single-Disk Cartridge (Front Loading, 2200 BPI) (General, Physical, and Magnetic Requirements) X3.53-1976 Programming Language PL/I X3.54-1986 Recorded Magnetic Tape (6250 CPI, Group Coded Recording) X3.55-1982 Unrecorded Magnetic Tape Cartridge, 0.250 Inch (6.30 mm), 1600 bpi (63 bpmm), Phase encoded X3.56-1986 Recorded Magnetic Tape Cartridge, 4 Track, 0.250 Inch (6.30 mm), 1600 bpi (63 bpmm), Phase Encoded X3.57-1977 Structure for Formatting Message Headings Using the American National Standard Code for Information Interchange for

Data Communication Systems Control

X3.58-1977 Unrecorded Eleven-Disk Pack (General, Physical, and Magnetic Requirements)

X3.59-1981 Magnetic Tape Cassettes, Dual Track Complementary Return-to-Bias (CRB) Four-States Recording on 3.81-mm (0.150-Inch) Tape

X3.60-1978 Programming Language Minimal BASIC

X3.61-1986 Representation of Geographic Point Locations X3.62-1979 Paper Used in Optical Character Recognition (OCR)

Systems

X3.63-1981 Unrecorded Twelve-Disk Pack (100 Megabytes) (General, Physical, and Magnetic Requirements)

X3.64-1979 Additional Controls for Use with American National Standard Code for Information Interchange

X3.66-1979 Advanced Data Communication Control Procedures (ADCCP)

X3.72-1981 Parallel Recorded Magnetic Tape Cartridge, 4 Track, 0.250 Inch (6.30 mm), 1600 bpi (63 bpmm), Phase Encoded X3.73-1980 Single-Sided Unformatted Flexible Disk Cartridge (for 6631-BPR Use)

X3.74-1981 Programming Language PL/I, General-Purpose Subset X3.76-1981 Unformatted Single-Disk Cartridge (Top Loading, 200 tpi 4400 bpi) (General, Physical, and Magnetic Requirements)

X3.77-1980 Representation of Pocket Select Characters X3.78-1981 Representation of Vertical Carriage Positioning Char-

X3.78-1981 Representation of Vertical Carriage Positioning Characters in Information Interchange

X3.79-1981 Determination of Performance of Data Communications Systems That Use Bit-Oriented Communication Procedures X3.80-1981 Interfaces between Flexible Disk Cartridge Drives and Their Host Controllers

X3.82-1980 One-Sided Single-Density Unformatted 5.25-Inch Flexible Disk Cartridge (for 3979-BPR Use)

X3.83-1980 ANSI Sponsorship Procedures for ISO Registration According to ISO 2375

X3.84-1981 Unformatted Twelve-Disk Pack (200 Megabytes)(General, Physical, and Magnetic Requirements

X3.85-1981 1/2-Inch Magnetic Tape Interchange Using a Self Loading Cartridge

X3.86-1980 Optical Character Recognition (OCR) Inks

X3.88-1981 Computer Program Abstracts

X3.89-1981 Unrecorded Single-Disk, Double-Density Cartridge (Front Loading, 2200 bpi, 200 tpi) (General, Physical, and Magnetic Requirements)

X3.91M-1987 Storage Module Interfaces

X3.92-1981 Data Encryption Algorithm

X3.93M-1981 OCR Character Positioning

X3.94-1985 Programming Language PANCM

X3.95-1982 Microprocessors – Hexadecimal Input/Output, Using 5-Bit and 7-Bit Teleprinters

X3.96-1983 Continuous Business Forms (Single-Part)

X3.98-1983 Text Information Interchange in Page Image Format (PIF)

X3.99-1983 Print Quality Guideline for Optical Character Recognition (OCR)

X3.100-1983 Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment for Packet Mode Operation with Packet Switched Data Communications Network

X3.101-1984 Interfaces Between Rigid Disk Drive(s) and Host(s) X3.102-1983 Data Communication Systems and Services – User-Oriented Performance Parameters

X3.103-1983 Unrecorded Magnetic Tape Minicassette for Information Interchange, Coplanar 3.81 mm (0.150 in)

X3.104-1983 Recorded Magnetic Tape Minicassette for Information Interchange, Coplanar 3.81 mm (0.150 in), Phase Encoded X3.105-1983 Data Link Encryption

X3.106-1983 Modes of Operation for the Data Encryption Algorithm X3.110-1983 Videotex/Teletext Presentation Level Protocol Syntax

X3.111-1986 Optical Character Recognition (OCR) Matrix Character Sets for OCR-M

X3.112-1984 14-in (356-mm) Diameter Low-Surface-Friction Magnetic Storage Disk

X3.113-1987 Programming Language FULL BASIC

X3.114-1984 Alphanumeric Machines; Coded Character Sets for Keyboard Arrangements in ANSI X4.23-1982 and X4.22-1983 (Continued on reverse)

February 1987