
A
N

S
I

X
3
.9

-1
9
7
8

ANSI X3.9-1978

ISO 1539-1980 (E)

i
American National Standard

Adopted for Use by

the Federal Government

FIPS PUB 69-/
See Notice on Inside

Front Cover

adopted by the

DEPARTMENT

OF

DEFENSE

see acceptance notice on

inside front cover

programming language
FORTRAN

american national standards institute, inc.
1430 broadway, new york, new york 10018

FIPS

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in FIPS PUB 69, FORTRAN. For a complete list

of the publications available in the Federal Information Processing Standards Series, write to the Office of Technical Infor¬

mation and Publications, National Bureau of Standards, Washington, D.C. 20234.

DOD

ANSI X3.9-1978

1 5 November 1978

ACCEPTANCE NOTICE

The above Industry Standardization Document was adopted 1 5 November 1978 and is approved for voluntary use by the

Departments of the Army, Navy and Air Force. The indicated industry groups have forwarded the clearances required by

existing regulations. Copies of the document are stocked by DOD Single Stock Point, U.S. Naval Publications and Forms

Center, Philadelphia, Pa., for issue to DOD activities only.

Title of Document: American National Standard Programming Language FORTRAN

Date of Specific Issue Adopted: 3 April 1978

Releasing Industry Group: American National Standards Institute

Custodians:

Army — AD

Navy — OM

Air Force — 02

Military Coordinating Activity

Air Force — 02

Project Number IPSC — 0052

ISO

This standard has been adopted as ISO International Standard ISO 1 539-1980(E). ISO (the International Organization for

Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing

International Standards is carried out through ISO technical committees. Every member body interested in a subject for

which a technical committee has been set up has the right to be represented on that committee. International organizations,

governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before

their acceptance as International Standards by the ISO Council.

International Standard ISO 1 539 was developed by Technical Committee ISO/TC 97, Computers and information processing,

and was circulated to the member bodies in March 1979.

It has been approved by the member bodies of the following countries:

Belgium

Canada

Czechoslovakia

Egypt, Arab Rep. of

Finland

France

Germany, F. R.

Hungary

Italy

Japan

Libyan Arab Jamahiriya

Netherlands

Poland

Romania

South Africa, Rep. of

Spain

Sweden

Switzerland

United Kingdom

USA

USSR

No member body expressed disapproval of the document.

This International Standard cancels and replaces ISO Recommendation R 1 539-1972, of which it constitutes a technical

revision.

ANSI®
X3.9-1978

Revision of
ANSI X3.9-1966

American National Standard
Programming Language

FORTRAN

Secretariat

Computer and Business Equipment Manufacturers Association

Approved April 3, 1978

American National Standards Institute, Inc

American
National
Standard

An American National Standard implies a consensus of those substantially concerned with its

scope and provisions. An American National Standard is intended as a guide to aid the manu¬

facturer, the consumer, and the general public. The existence of an American National Stan¬

dard does not in any respect preclude anyone, whether he has approved the standard or not,

from manufacturing, marketing, purchasing, or using products, processes, or procedures not

conforming to the standard. American National Standards are subject to periodic review and

users are cautioned to obtain the latest editions.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any

time. The procedures of the American National Standards Institute require that action be

taken to reaffirm, revise, or withdraw this standard no later than five years from the date

of publication. Purchasers of American National Standards may receive current information

on all standards by calling or writing the American National Standards Institute.

Published by

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright © 1978 by American National Standards Institute, Inc

All rights reserved.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise, without
the prior written permission of the publisher.

Printed in the United States of America

P4.5M1179/1650

Foreword (This Foreword is not a part of American National Standard Programming Language FORTRAN, ANSI X3.9-
1978.)

American National Standard Programming Language FORTRAN, ANSI X3.9-1978, specifies the

form and establishes the interpretation of programs expressed in the FORTRAN language. It con¬

sists of a full language and a subset language. Its purpose is to promote portability of FORTRAN

programs for use on a variety of data processing systems.

It is suggested that the designation FORTRAN 77 be used to distinguish this standard from pre¬

vious FORTRAN standards and any possible future revisions.

FORTRAN 77 is a revision of American National Standard FORTRAN, ANSI X3.9-1966. It de¬

scribes two levels of the FORTRAN language, referred to as FORTRAN and Subset FORTRAN.

FORTRAN is the full language and appears on the righthand pages; Subset FORTRAN is a sub¬

set of the full language and appears on the lefthand pages. Because FORTRAN 77 includes the

subset, American National Standard Basic FORTRAN, ANSI X3.10-1966, has been withdrawn.

This standard was approved as an American National Standard by the American National Stan¬

dards Institute on April 3, 1978.

Suggestions for improvement of this standard will be welcome. They should be sent to the Amer¬

ican National Standards Institute, 1430 Broadway, New York, N.Y. 10018.

This standard was processed and approved for submittal to ANSI by the American National Stan¬

dards Committee on Computers and Information Processing, X3. Committee approval of this

standard does not necessarily imply that all committee members voted for its approval. At the

time it approved this standard, the X3 Committee had the following members:

J. F. Auwaerter, Chairman

R. M. Brown, Vice-Chairman

W. F. Hanrahan, Secretary

Organization Name of Representative

Addiessograph Multigraph Corporation.(Representation Vacant)
Air Transport Association.F. C. White

C. Hart (Alt)
American Library Association.J. R. Rizzolo

J. C. Kountz (Alt)
M. S. Malinconico (Alt)

American Nuclear Society.M. L. Couchman
M. K. Butler (Alt)
D. R. Vondy (Alt)

Association of American Railroads.R. A. Petrash
Association of Computer Programmers and Analysts.L. A. Ruh

T. G. Grieb (Alt)
V. J. Van Dyke (Alt)

Association for Computing Machinery.P. Skelly
J. A. N. Lee (Alt)
H. E. Thiess (Alt)

Association of Data Processing Service Organizations.J. B. Christiansen
Association for Educational Data Systems.R. Liquori
Association for Systems Management.W. R. McPherson, Jr

R. Irwin (Alt)
Association of Time Sharing Users.W. G. Madison

H. Segal (Alt)
Burroughs Corporation.E. Lohse

J. S. Foley (Alt)
J. F. Kalbach (Alt)

California Computer Products, Inc.R. C. Derby
Computer and Communications Industry Association.N. J. Ream

A. G. W. Biddle (Alt)
Control Data Corporation.C. E. Cooper

G. I. Williams (Alt)
Data General Corporation.H. Kaikow

J. Saxena (Alt)

Organization Name of Representative

Datapoint Corporation.RW. Swanson
R. J. Stout (Alt)

Data Processing Management Association.A* E. Dubnow
E. J. Palmer (Alt)

Digital Equipment Computer Users Society.P. Caroom
B. Ham (Alt)

Digital Equipment Corporation.P. W. White
A. R. Kent (Alt)

Edison Electric Institute.S. P. Shrivastava
J. L. Weiser (Alt)

General Services Administration.D. L. Shoemaker
M. W. Burris (Alt)

GUIDE International.T. E. Wiese
L. Milligan (Alt)
D. Stanford (Alt)

Harris Corporation.T. H. Buchert
Honeywell Information Systems, Inc .T. J. McNamara

E. H. Clamons (Alt)
Institute of Electrical and Electronics Engineers, Communications Society.(Representation Vacant)
Institute of Electrical and Electronics Engineers, Computer Society.T. Feng (Alt)
International Business Machines Corporation.R. J. Holleman

C. A. Thorn (Alt)
Itel Corporation.R. A. Whitcomb

R. Baechler (Alt)
Joint Users Group.T. E. Wiese

R. McQuillian (Alt)
Life Office Management Association.R. E. Ricketts

J. F. Foley, Jr (Alt)
Litton Industries.I. Danowitz
National Association of State Information Systems.G. I. Theis

J. L. Lewis (Alt)
National Bureau of Standards.H. S. White, Jr

R. E. Rountree (Alt)
National Communications System.M. L. Cain

G. W. White (Alt)
National Machine Tool Builders Association.O. A. Rodriques
NCR Corporation.R. J. Mindlin

A. R. Daniels (Alt)
T. W. Kern (Alt)

Olivetti Corporation of America.E. J. Almquist
Printing Industries of America, Inc.N. Scharpf

E. Rudd (Alt)
Recognition Equipment, Inc.H. F. Schantz

W. E. Viering (Alt)
Scientific Apparatus Makers Association.A. Savitsky

J. E. French (Alt)
SHARE Inc.T. B. Steel, Jr

E. Brubaker (Alt)
R. H. Wahlen (Alt)

Society of Certified Data Processors.T. M. Kurihara
A. E. Dubnow (Alt)

Sperry UNIVAC.M. W. Bass
C. D. Card (Alt)

Telephone Group.V. N. Vaughan, Jr
S. M. Garland (Alt)
E. A. Patrick (Alt)

3M Company.R. C. Smith
U.S. Department of Defense.W. L. McGreer

W. C. Rinehuls (Alt)
W. B. Robertson (Alt)

U.S. Department of Health, Education, and Welfare.W. R. McPherson, Jr
W. Frederic (Alt)

VIM.E. Heinze
M. R. Speers (Alt)
S. W. White (Alt)

Xerox Corporation.J. L. Wheeler
A. R. Machell (Alt)

Subcommittee X3J3 on FORTRAN, which developed this standard, had the following members:

F. Engel, Jr, Chairman

M. Greenfield, Vice-Chairman

L W. Campbell, Secretary

J. C. Noll, International Representative

J. C Adams R. G. Langsner
J. T. Bagwell J. E. Lauer
C B. Bailey S. E. Lovell
N. H. Barth N. H. Marshall
G. M. Bauer B. A. Martin
G. A. Beck J. T. Martin
G. T. Boswell J. H. Matheny
W. S. Brainerd L. P. Meissner
R. F. Brender J. J. Mimmack
J. R. Coleman H. R. Moore
J. J. Daly D. J. Olsen
D. C. Dillon R. L. Page
W. R. Earley D. I. Paterson
D. R. Eaton B. W. Puerling
J. T. Engle R. R. Ragan
D. L. Eriksson M. A. Rainer
J. C Flint C. H. Sampson
M. F. Freeman R. J. Saunders
C. A. Giammo W. Schenk
T. A. Gibson R. R. Schieber
R. B. Grove J. C. Schwebel
D. E. Hamilton E. H. Senn
J. K. Harkins K. C. Shih
D. A. Herington R. W. Signor
F. E. Holberton R. T. Slavinski
S. Hue B. J. Swain
F. J. Infante J. F. Thorlin
G. W. Johnson R. B. Upshaw
A. R. Jones D. R. Vondy
R. A. Karp J. M. Watson
M. D. Kelley V. B. Wayland
E. W. Klein M. D. Weldon
D. T. Laird D. R. Young

Contents SECTION PAGE

1. Introduction. 1-1

1.1 Purpose. 1-1

1.2 Processor. 1-1

1.3 Scope. 1-1

1.4 Conformance. 1-2

1.5 Notation Used in This Standard. 1-3

1.6 Subset Text. 1-4

2. FORTRAN Terms and Concepts. 2-1

2.1 Sequence. 2-1

2.2 Syntactic Items.2-1

2.3 Statements, Comments, and Lines. 2-2

2.4 Program Units and Procedures . 2-2

2.5 Variable. 2-3

2.6 Array. 2-3

2.7 Substring. 2-3

2.8 Dummy Argument. 2-4

2.9 Scope of Symbolic Names and Statement Labels. 2-4

2.10 List. 2-4

2.11 Definition Status. 2-4

2.12 Reference. 2-5

2.13 Storage. 2-5

2.14 Association. 2-6

3. Characters, Lines, and Execution Sequence.3-1

3.1 FORTRAN Character Set. 3-1

3.2 Lines.3-2

3.3 Statements.3-3

3.4 Statement Labels.3-3

3.5 Order of Statements and Lines.3-3

3.6 Normal Execution Sequence and Transfer of Control. 3-5

4. Data Types and Constants ..4-1

4.1 Data Types.4-1

4.2 Constants.4-2

4.3 Integer Type.4-3

4.4 Real Type.4-3

4.5 Double Precision Type.4-3

4.6 Complex Type.4-4

4.7 Logical Type.4-4

4.8 Character Type.4-5

5. Arrays and Substrings. 5-1

5.1 Array Declarator. 5-1

5.2 Properties of an Array. 5-2

5.3 Array Element Name. 5-4

5.4 Subscript.5-4

5.5 Dummy and Actual Arrays. 5-7

5.6 Use of Array Names.5-8

5.7 Character Substring. 5-9

6. Expressions 6-1

6.1 Arithmetic Expressions. 6-1

6.2 Character Expressions.6-7

6.3 Relational Expressions. 6-9

SECTION PAGE

6.4 Logical Expressions.6-10

6.5 Precedance of Operators.6-14

6.6 Evaluation of Expressions.6-15

6.7 Constant Expressions.6-20

7. Executable and Nonexecutable Statement Classification. 7-1

7.1 Executable Statements. 7-1

7.2 Nonexecutable Statements. 7-1

8. Specification Statements. 8-1

8.1 DIMENSION Statement .8-1

8.2 EQUIVALENCE Statement. 8-1

8.3 COMMON Statement. 8-3

8.4 Type-Statements. 8-5

8.5 IMPLICIT Statement. 8-7

8.6 PARAMETER Statement. 8-8

8.7 EXTERNAL Statement. 8-9

8.8 INTRINSIC Statement. 8-9

8.9 SAVE Statement.8-10

9. DATA Statement.9-1

9.1 Form of a DATA Statement. 9-1

9.2 DATA Statement Restrictions. 9-1

9.3 Implied-DO in a DATA Statement. 9-2

9.4 Character Constant in a DATA Statement. 9-3

10. Assignment Statements.10-1

10.1 Arithmetic Assignment Statement.10-1

10.2 Logical Assignment Statement.10-2

10.3 Statement Label Assignment (ASSIGN) Statement. 10-2

10.4 Character Assignment Statement.10-2

11. Control Statements.11-1

11.1 Unconditional GO TO Statement .11-1

11.2 Computed GO TO Statement.11-2

11.3 Assigned GO TO Statement.11-2

11.4 Arithmetic IF Statement.11-2

11.5 Logical IF Statement .11-3

11.6 Block IF Statement.11-3

11.7 ELSE IF Statement.11-4

11.8 ELSE Statement .11-5

11.9 END IF Statement.11-5

11.10 DO Statement.11-5

11.11 CONTINUE Statement.11-9

11.12 STOP Statement .11-9

11.13 PAUSE Statement.11-9

11.14 END Statement.11-10

12. Input/Output Statements.12-1

12.1 Records.12-1

12.2 Files.12-2

12.3 Units.12-6

12.4 Format Specifier and Identifier.12-7

12.5 Record Specifier .12-8

12.6 Error and End-of-File Conditions.12-8

SECTION PAGE

12.7 Input/Output Status, Error, and End-of-File Specifiers.12-9

12.8 READ, WRITE, and PRINT Statements.12-10

12.9 Execution of a Data Transfer Input/Output Statement.12-13

12.10 Auxiliary Input/Output Statements.12-18

12.11 Restrictions on Function References and List Items.12-29

12.12 Restriction on Input/Output Statements.12-29

13. Format Specification.13-1

13.1 Format Specification Methods.13-1

13.2 Form of a Format Specification.13-2

13.3 Interaction Between Input/Output List and Format.13-3

13.4 Positioning by Format Control.13-4

13.5 Editing.13-5

13.6 List-Directed Formatting.13-13

14. Main Program.14-1

14.1 PROGRAM Statement.14-1

14.2 Main Program Restrictions.14-1

15. Functions and Subroutines.15-1

15.1 Categories of Functions and Subroutines.15-1

15.2 Referencing a Function.15-1

15.3 Intrinsic Functions.15-2

15.4 Statement Function.15-4

15.5 External Functions.15-6

15-6 Subroutines.15-9

15.7 ENTRY Statement.15-11

15.8 RETURN Statement.15-13

15.9 Arguments and Common Blocks.15-15

15.10 Table of Intrinsic Functions.15-22

16. Block Data Subprogram.16-1

16.1 BLOCK DATA Statement.16-1

16.2 Block Data Subprogram Restrictions.16-1

17. Association and Definition.17-1

17.1 Storage and Association.17-1

17.2 Events That Cause Entities to Become Defined.17-3

17.3 Events That Cause Entities to Become Undefined .17-4

18. Scope and Classes of Symbolic Names.18-1

18.1 Scope of Symbolic Names.18-1

18.2 Classes of Symbolic Names.18-2

Tables

Table 1 Subscript Value. 5-6

Table 2 Type and Interpretation of Result for + x2.6-5

Table 3 Type and Interpretation of Result for xx **x2.6-6

Table 4 Arithmetic Conversion and Assignment of e to v.10-1

Table 5 Intrinsic Functions. 15-22

Fig. 1 Required Order of Statements and Comment Lines. 3-4

Appendixes

Appendix A Criteria, Conflicts, and Portability.A-l

A1 Criteria.A-l

A2 Conflicts with ANSI X3.9-1966 .A-l

SECTION PAGE

A3 Standard Items That Inhibit Portability.A-4

A-» Recommendation for Enhancing Portability.A-5

Appendix B Section Notes.B-l

B1 Section 1 Notes.B-l

B2 Section 2 Notes.B-2

B3 Section 3 Notes.B-2

B4 Section 4 Notes.B-3

B5 Section 5 Notes.B-3

B6 Section 6 Notes.B-3

B7 Section 7 Notes.B-4

B8 Section 8 Notes.B-4

B9 Section 9 Notes.B-5

BIO Section 10 Notes.B-5

Bll Section 11 Notes.B-5

B12 Section 12 Notes.B-6

B13 Section 13 Notes.B-ll

B14 Section 14 Notes.B-13

B15 Section 15 Notes.B-13

B16 Section 16 Notes.B-15

B17 Section 17 Notes.B-15

B18 Section 18 Notes.B-15

Appendix C Hollerith.C-l

Cl Hollerith Data Type.C-l

C2 Hollerith Constant.C-l

C3 Restrictions on Hollerith Constants.C-l

C4 Hollerith Constant in a DATA Statement.C-2

C5 Hollerith Format Specification.C-2

C6 A Editing of Hollerith Data.C-2

C7 Hollerith Constant in a Subroutine Reference.C-3

Appendix D Subset Overview.D-l

D1 Background.D-l

D2 Criteria.D-2

D2.1 Full Language.D-2

D2.2 Subset Language.D-2

D3 Summary of Subset Differences.D-2

D3.1 Section 1: Introduction.D-2

D3.2 Section 2: FORTRAN Terms and Concepts.D-2

D3.3 Section 3: Characters, Lines, and Execution Sequence.D-2

D3.4 Section 4: Data Types and Constants.D-3

D3.5 Section 5: Arrays and Substrings.D-3

D3.6 Section 6: Expressions.D-3

D3.7 Section 7: Executable and Nonexecutable Statement Classification.D-3

D3.8 Section 8: Specification Statements.D-3

D3.9 Section 9: DATA Statement.D-4

D3.10 Section 10: Assignment Statements.D-4

D3.ll Section 11: Control Statements.D-4

D3.12 Section 12: Input/Output Statements.D-4

D3.13 Section 13: Format Specification.D-5

D3.14 Section 14: Main Program.D-5

D3.15 Section 15: Functions and Subroutines.D-5

D3.16 Section 16: Block Data Subprogram.D-6

SECTION PAGE

D3.17 Section 17: Association and Definition.

D3.18 Section 18: Scope and Gasses of Symbolic Names

D3.19 Sections 1 to 18: Character Type.

D4 Subset Conformance.

D4.1 Subset Processor Conformance.

D4.2 Subset Program Conformance .D-7

Appendix E FORTRAN Statements.E-l

Appendix F Syntax Charts.F-l

FI Chart Conventions.F-l

F2 Charts.F-2

F3 Cross-Reference Index to Syntax Charts.F-29

Index.Index-1

s
)

n
J

O
'
^

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77

1. INTRODUCTION

1 • 1 Purpose

This standard specifies the form and establishes the
interpretation of programs expressed in the FORTRAN
language. The purpose of this standard is to promote
portability of FORTRAN programs for use on a variety of data
processing sys terns.

1 • 2 Processor

The combination of a data processing system and the
mechanism by which programs are transformed for use on that
data processing system is called a processor in this
standard.

1 - 3 Scope

1.3.1 Inclusions. This standard specifies:

(1) The form of a program written in the FORTRAN language

(2) Rules for interpreting the meaning of such a program
and its data

(3) The form of writing input data to be processed by
such a program operating on data processing systems

(4) The form of the output data resulting from the use of
such a program on data processing systems

1.3.2 Exc I usions . This standard does not specify:

(1) The mechanism by which programs are transformed for
use on a data processing system

(2) The method of transcription of programs or their
input or output data to or from a data processing
medium

(3) The operations required for setup and control of the
use of programs on data processing systems

(4) The results when the rules of this standard fail to
establish an interpretation

(5) The size or complexity of a program and its data that
will exceed the capacity of any specific data
processing system or the capability of a particular
processor

(6) The range or precision of numeric quantities and the
method of rounding of numeric results

1 -1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

1. INTRODUCTION

1.1 Purpose

This standard specifies the form and establishes the
interpretation of programs expressed in the FORTRAN
language. The purpose of this standard is to promote
portability 0* FORTRAN programs for use on a variety of data
processing systems .

1 .2 Processor

The combination of a data processing system and the
mechanism by which programs are transformed for use on that
data processing system is called a processor in this
standard.

1.3 Scope

1.3.1 Inc I usions . This standard specifies:

(1) The form of a program written in the FORTRAN language

(2) Rules for interpreting the meaning of such a program
and its data

(3) The form of writing input data to be processed by
such a program operating on data processing systems

(4) The form of the output data resulting from the use of
such a program on data processing systems

1.3.2 Exclusions. This standard does not specify:

(1) The mechanism by which programs are transformed for
use on a data processing system

(2) The method of transcription of programs or their
input or output data to or from a data processing
medium

(3) The operations required for setup and control of the
use of programs on data processing systems

(4) The results when the rules of this standard fail to
establish an interpretation

(5) The size or complexity of a program and its data that
will exceed the capacity of any specific data
processing system or the capability of a particular
processor

(6) The range or precision of numeric quantities and the
method of rounding of numeric results

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 1-1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 INTRODUCTION

(7) The physical properties of input/output records,
fi I es , and units

(8) The physical properties and implementation of storage

1.4 Conformance

The requirements, prohibitions, and options specified in
this standard generally refer to permissible forms and
relationships for standard-conforming programs rather than
for processors. The obvious exceptions are the optional
output forms produced by a processor, which are not under
the control of a program. The requirements, prohibitions,
and options for a standard-conforming processor usually must
be inferred from those given for programs.

An executable program (2.4.2) conforms to this standard if
it uses only those forms and relationships described herein
and if the executable program has an interpretation
according to this standard. A program unit (2.4) conforms
to this standard if it can be included in an executable
program in a manner that allows the executable program to be
standard conforming.

A processor conforms to this standard if it executes
standard-conforming programs in a manner that fulfills the
interpretations prescribed herein. A standard-conforming
processor may allow additional forms and relationships
provided that such additions do not conflict with the
standard forms and relationships. However, a standard-
conforming processor may allow additional intrinsic
functions (15.10) even though this could cause a conflict
with the name of an external function in a standard-
conforming program. If such a conflict occurs, the
processor is permitted to use the intrinsic function unless
the name appears in an EXTERNAL statement within the program
unit. A standard-conforming program must not use intrinsic
functions that have been added by the processor. Note that
a standard-conforming program must not use any forms or
relationships that are prohibited by this standard, but a
standard-conforming processor may allow such forms and
relationships if they do not change the proper
interpretation of a standard-conforming program.

Because a standard-conforming program may place demands on
the processor that are not within the scope of this standard
or may include standard items that are not portable, such as
external procedures defined by means other than FORTRAN,
conformance to this standard does not ensure that a
standard-conforming program will execute consistently on all
or any standard-conforming processors.

1.4.1 Subset Conformance. This standard describes two
levels of the FORTRAN language, referred to as FORTRAN and
subset FORTRAN. FORTRAN is the full language. Subset
FORTRAN is a subset of the full language.

(

<

i
1 -2s Subset Language

INTRODUCTION ANSI X3.9-1978 FORTRAN 77

(7) The physical properties of input/output records,
files, and units

(8) The physical properties and implementation of storage

1 - A Conformance

The requirements, prohibitions, and options specified in
this standard generally refer to permissible forms and
relationships for stand ard-conformIng programs rather than
for processors. The obvious exceptions are the optional
output forms produced by a processor, which are not under
the control of a program. The requirements, prohibitions,
and options for a standard-conforming processor usually must
be inferred from those given for programs.

An executable program (2.4.2) conforms to this standard if
it uses only those forms and relationships described herein
and if the executable program has an interpretation
according to this standard. A program unit (2.4) conforms
to this standard if it can be included In an executable
program in a manner that allows the executable program to be
standard conforming.

A processor conforms to this standard if it executes
standard-conforming programs in a manner that fulfills the
interpretations prescribed herein. A standard-conforming
processor may allow additional forms and relationships
provided that such additions do not conflict with the
standard forms and relationships. However, a standard-
conforming processor may allow additional intrinsic
functions (15.10) even though this could cause a conflict
with the name of an external function In a standard-
conforming program. If such a conflict occurs, the
processor Is permitted to use the Intrinsic function unless
the name appears In an EXTERNAL statement within the program
unit. A standard-conforming program must not use intrinsic
functions that have been added by the processor. Note that
a standard-conforming program must not use any forms or
relationships that are prohibited by this standard, but a
standard-conforming processor may allow such forms and
relationships if they do not change the proper
interpretation of a standard-conforming program.

Because a standard-conforming program may place demands on
the processor that are not within the scope of this standard
or may include standard items that are not portable, such as
external procedures defined by means other than FORTRAN,
conformance to this standard does not ensure that a
standard-conforming program will execute consistently on all
or any standard-conforming processors.

1.4.1 Subset Conformance. This standard describes two
levels of the FORTRAN language, referred to as FORTRAN and
subset FORTRAN. FORTRAN is the full language. Subset
FORTRAN is a subset of the full language.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 1-2

ANSI X3.9-1978 FORTRAN 77 INTRODUCTION

An executable program conforms to the subset level of this
standard if it uses only those forms and relationships
described herein for that level and if the executable
program has an interpretation according to this standard at

5 that level and would have the same interpretation in the
full language. A program unit conforms to the subset level
of this standard if it can be included in an executable
program in a manner that allows the executable program to be
standard conforming at that level.

10
A subset level processor conforms to the subset level of
this standard if it executes subset level standard-
conforming programs in a manner that fulfills the
interpretations prescribed herein for subset FORTRAN. A

15 subset level processor may include an extension that has a
form and would have an interpretation at the full level only
if the extension has the interpretation provided by the full
level. A subset level processor may also include extensions
that do not have forms and interpretations in the full

20 I anguage .

1.5 Notation Used in This Standard

In this standard, "must" is to be interpreted as a
25 requirement; conversely, "must not" is to be interpreted as

a prohibition.

In describing the form of FORTRAN statements or constructs,
the following metalanguage conventions and symbols are used;

30
(1)

35 (2)

40

45 (3)

(4)

50
(5)

(6)
55

Page 1-3s

Special characters from the FORTRAN character set,
uppercase letters, and uppercase words are to be
written as shown, except where otherwise noted.

Lowercase letters and lowercase words indicate
general entities for which specific entities must be
substituted in actual statements. Once a given
lowercase letter or word is used in a syntactic
specification to represent an entity, all subsequent
occurrences of that letter or word represent the same
entity until that letter or word is used in a
subsequent syntactic specification to represent a
different entity.

Brackets, [], are used to indicate optional items.

An ellipsis.indicates that the preceding
optional items may appear one or more times in
succession.

Blanks are used to improve readability, but unless
otherwise noted have no significance.

Words or groups of words that have special
significance are underlined where their meaning is

Subset Language

INTRODUCTION ANSI X3.9-1 978 FORTRAN 77

An executable program conforms to the subset level of this
standard if it uses only those forms and relationships
described herein for that level and if the executable
program has an interpretation according to this standard at
that level and would have the same interpretation in the
full language. A program unit conforms to the subset level
of this standard if it can be included in an executable
program in a manner that allows the executable program to be
standard conforming at that level.

A subset level processor conforms to the subset level of
this standard if it executes subset level standard-
conforming programs in a manner that fulfills the
interpretations prescribed herein for subset FORTRAN. A
subset level processor may include an extension that has a
form and would have an interpretation at the full level only
if the extension has the interpretation provided by the full
level. A subset level processor may also include extensions
that do not have forms and interpretations in the full
language.

1.5 Notation Used in This Standard

In this standard, "must" is to be interpreted as a
requirement; conversely, "must not" is to be interpreted as
a prohibition.

In describing the form of FORTRAN statements or constructs,
the following metalanguage conventions and symbols are used:

(1) Special characters from the FORTRAN character set,
uppercase letters, and uppercase words are to be
written as shown, except where otherwise noted.

(2) Lowercase letters and lowercase words indicate
general entities for which specific entities must be
substituted in actual statements. Once a given
lowercase letter or word is used in a syntactic
specification to represent an entity, all subsequent
occurrences of that letter or word represent the same
entity until that letter or word is used in a
subsequent syntactic specification to represent a
different entity.

(3) Brackets, [], are used to indicate optional items.

(4) An ellipsis, ... , indicates that the preceding
optional items may appear one or more times in
succession.

(5) Blanks are used to improve readability, but unless
otherwise noted have no significance.

(6) Words or groups of words that have special
significance are underlined where their meaning is

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page 1-3

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 INTRODUCTION

described. Titles and the metalanguage symbols
described in 1.5(2) are also underlined.

An example illustrates the metalanguage,
description of the form of a statement as:

CALL s_ub. [(Ca [, aJ. . .])]

the following forms are allowed:

CALL sub
CALL sub
CALL sub
CALL sub
CALL sub
etc

()
(a)
(a., a.)
(a., a., a.)

Given a

When an actual statement is written, specific entities are
substituted for sub and each a.; for example:

CALL ABCD (X,1.0)

1.6 Subset Text

The section titles in the subset description are identical
to the section titles in the full language description.

There are some instances in which a general situation occurs
in the full language but only a restricted case applies to
the subset. For example, in 3.6, the "nonexecutable
statements" that may appear between executable statements
may only be FORMAT statements in the subset. In most of
these instances, the more general text of the full language
description has been retained in the subset description,
even though it is to be interpreted as covering only the
restricted case.

To help find differences between the full and subset
languages, vertical bars have been added in the, margins
where the text of the full and subset languages differ.

<

<

i
1-4s Subset Language

INTRODUCTION ANSI X3.9-1978 FORTRAN 77

described. Titles and the metalanguage symbols
described in 1.5(2) are also underlined.

An example illustrates the metalanguage. Given a
description of the form of a statement as:

CALL sub [([a. [, ^.3... 3)]

the following forms are allowed:

CALL sub
CALL sub ()
CALL sub (a)
CALL sub (a., a.)
CALL sub (a., a., a.)
etc

When an actual statement is written, specific entities are
substituted for sub and each a.; for example:

CALL ABCD (X,1.0)

1.6 Subset Text

The section titles in the subset description are identical
to the section titles in the full language description.

There are some instances in which a general situation occurs
in the full language but only a restricted case applies to
the subset. For example, in 3.6, the "nonexecutable
statements" that may appear between executable statements
may only be FORMAT statements in the subset. In most of
these instances, the more general text of the full language
description has been retained in the subset description,
even though it is to be interpreted as covering only the
restricted case.

To help find differences between the full and subset
languages, vertical bars have been added in the margins
where the text of the full and subset languages differ. For
example, this sentence does not appear in the subset
language text.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 1-4

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77

2. FORTRAN TERMS AND CONCEPTS

This section introduces basic terminology and concepts, some
of which are clarified further in later sections. Many
terms and concepts of more specialized meaning are also
introduced in later sections. The underlined words are
described here and used throughout this standard.

2.1 Sequence

A sequence is a set ordered by a one-to-one correspondence
with the numbers 1, 2, through n.. The number of elements in
the sequence is n.. A sequence may be empty, in which case
it contains no elements.

The elements of a nonempty sequence are referred to as the
first element, second element, etc. The nth element, where
n. is the number of elements in the sequence, is called the
last element. An empty sequence has no first or last
element.

2.2 Syntactic Items

Letters, digits, and special characters of the FORTRAN
character set (3.1) are used to form the syntactic items of
the FORTRAN language. The basic syntactic items of the
FORTRAN language are constants, symbolic names, statement
labels, keywords, operators, and special characters.

The form of a constant is described in Section 4.

A symbolic name takes the form of a sequence of one to six
letters or digits, the first of which must be a letter.
Classification of symbolic names and restrictions on their
use are described in Section 18.

A statement label takes the form of a sequence of one to
five digits, one of which must be nonzero, and is used to
identify a statement (3.4).

A keyword takes the form of a specified sequence of letters.
The keywords that are significant in the FORTRAN language
are described in Sections 7 through 16. In many instances,
a keyword or a portion of a keyword also meets the
requirements for a symbolic name. Whether a particular
sequence of characters identifies a keyword or a symbolic
name is implied by context. There is no sequence of
characters that is reserved in all contexts in FORTRAN.

The set of special characters is described in 3.1.4. A
special character may be an operator or part of a constant
or have some other special meaning. The interpretation is
implied by context.

2 -1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

2. FORTRAN TERMS AND CONCEPTS

This section introduces basic terminology and concepts, some
of which are clarified further in later sections. Many
terms and concepts of more specialized meaning are also
introduced in later sections. The underlined words are
described here and used throughout this standard.

2.1 Sequence

A sequence is a set ordered by a one-to-one correspondence
with the numbers 1, 2, through n.. The number of elements in
the sequence is n.. A sequence may be empty, in which case
it contains no elements.

The elements of a nonempty sequence are referred to as the
first element, second element, etc. The nth element, where
rj. is the number of elements in the sequence, is called the
last element. An empty ‘sequence has no first or last
eIement.

2.2 Svntactic I terns

Letters, digits, and special characters of the FORTRAN
character set (3.1) are used to form the syntactic items of
the FORTRAN language. The basic syntactic items of the
FORTRAN language are constants, symbolic names, statement
labels, keywords, operators, and special characters.

The form of a constant is described in Section 4.

A symbolic name takes the form of a sequence of one to six
letters or digits, the first of which must be a letter.
Classification of symbolic names and restrictions on their
use are described in Section 18.

A statement label takes the form of a sequence of one to
five digits, one of which must be nonzero, and is used to
identify a statement (3.4).

A keyword takes the form of a specified sequence of letters.
The keywords that are significant in the FORTRAN language
are described in Sections 7 through 16. In many instances,
a keyword or a portion of a keyword also meets the
requirements for a symbolic name. Whether a particular
sequence of characters identifies a keyword or a symbolic
name is implied by context. There is no sequence of
characters that is reserved in all contexts in FORTRAN.

The set of special characters is described in 3.1.4. A
special character may be an operator or part of a constant
or have some other special meaning. The interpretation is
implied by context.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 2-1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

2.3 Statements. Comments, and Lines

A FORTRAN statement is a sequence of syntactic items, as
described in Sections 7 through 16. Except for assignment
and statement function statements, each statement begins
with a keyword. In this standard, the keyword or keywords
that begin the statement are used to identify that
statement. For example, a DATA statement begins with the
keyword DATA.

A statement is written in one or more lines, the first of
which is called an initial line (3.2.2); succeeding lines,
if any, are called continuation lines (3.2.3).

There is also a line called a comment line (3.2.1), which is
not part of any statement and is intended to provide
documentation .

2.3.1 Classes of Statements. Each statement is classified
as executable or nonexecutable (Section 7). Executable
statements specify actions. Nonexecutable statements
describe the characteristics, arrangement, and initial
values of data; contain editing information; specify
statement functions; and classify program units.

2.4 Program Units and Procedures

A program unit consists of a sequence of statements and
optional comment lines. A program unit is either a main
program or a subprogram.

A main program is a program unit that does not have a
FUNCTION or SUBROUTINE statement as its first statement; it
may have a PROGRAM statement as its first statement.

A subprogram is a program unit that has a FUNCTION or
SUBROUTINE statement as its first statement. A subprogram
whose first statement is a FUNCTION statement is called a
f unc tion subprogram. A subprogram whose first statement is
a SUBROUTINE statement is called a subroutine subprogram.
Function subprograms and subroutine subprograms are called
procedure subprograms .

2.4.1 Procedures. Subroutines (15.6), external functions
(15.5), statement functions (15.4), and the intrinsic
functions (15.3) are called procedures. Subroutines and
external functions are called external procedures. External
procedures may also be specified by means other than FORTRAN
subprograms.

2-2s Subset Language

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

2.3 Statements, Comments, and Lines

A FORTRAN statement is a sequence of syntactic items, as
described in Sections 7 through 16. Except for assignment
and statement function statements, each statement begins
with a keyword. In this standard, the keyword or keywords
that begin the statement are used to identify that
statement. For example, a DATA statement begins with the
keyword DATA.

A statement is written in one or more lines, the first of
which is called an initial line (3.2.2); succeeding lines,
if any, are called continuation lines (3.2.3).

There is also a line called a comment line (3.2.1), which is
not part of any statement and is intended to provide
documentation.

2.3.1 Classes of Statements. Each statement is classified
as executable or nonexecutable (Section 7). Executable
statements specify actions. Nonexecutable statements
describe the characteristics, arrangement, and initial
values of data; contain editing information; specify
statement functions; classify program units; and specify
entry points within subprograms.

2.4 Program Units and Procedures

A program unit consists of a sequence of statements and
optional comment lines. A program unit is either a main
program or a subprogram.

A main program is a program unit that does not have a
FUNCTION, SUBROUTINE, or BLOCK DATA statement as its first
statement; it may have a PROGRAM statement as its first
statement.

A subprogram is a program unit that has a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statements
A subprogram whose first statement is a FUNCTION statement
is called a function subprogram. A subprogram whose first
statement is a SUBROUTINE statement is called a subroutine
subprogram. Function subprograms and subroutine subprograms
are called procedure subprograms. A subprogram whose first
statement is a BLOCK DATA statement is called a block data
subprogram.

2.4.1 Procedures. Subroutines (15.6), external functions
(15.5), statement functions (15.4), and the intrinsic
functions (15.3) are called procedures. Subroutines and
external functions are called externa I procedures. Function
subprograms and subroutine subprograms may specify one or
more external functions and subroutines, respectively
(15.7). External procedures may also be specified by means
other than FORTRAN subprograms.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 2-2

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

2.4.2 Executable Program. An executab I e program is a
collection of program units that consists of exactly one
main program and any number, including none, of subprograms
and external procedures.

2.5 Variable

A variable is an entity that has both a name and a type. A
variable name is a symbolic name of a datum. Such a datum
may be identified, defined (2.11), and referenced (2.12).
Note that the usage in this standard of the word "variable"
is more restricted than its normal usage, in that it does
not include array elements.

The type of a variable is optionally specified by the
appearance of the variable name in a type-statement (8.4).
If it is not so specified, the type of a variable is implied
by the first letter of the variable name to be integer or
real (4.1.2), unless the initial letter type implication is
changed by the use of an IMPLICIT statement (8.5).

At any given time during the execution of an executable
program, a variable is either defined or undefined (2.11).

2.6 Array

An array is a nonempty sequence of data that has a name and
a type. The name of an array is a symbolic name.

2.6.1 Array Elements. Each of the elements of an array is
called an array element. An array name qualified by a
subscript is an array element name and identifies a
particular element of the array (5.3). Such a datum may be
identified, defined (2.11), and referenced (2.12). The
number of array elements in an array is specified by an
array dec I arator (5.1).

An array element has a type. The type of all array elements
within an array is the same, and is optionally specified by
the appearance of the array name in a type-statement (8.4).
If it is not so specified, the type of an array element is
implied by the first letter of the array name to be integer
or real (4.1.2), unless the initial letter type implication
is changed by the use of an IMPLICIT statement (8.5).

At any given time during the execution of an executable
program, an array element is either defined or undefined
(2.11).

2.7 Substring

A character datum is a nonempty sequence of characters. A
substring is a contiguous portion of a character datum.
Substring names are not included in the subset.

2-3s Subset Language

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

2.4.2 Executable Program. An executabIe program is a
collection of program units that consists of exactly one
main program and any number, including none, of subprograms
and external procedures.

2.5 Variable

A variable is an entity that has both a name and a type. A
variable name is a symbolic name of a datum. Such a datum
may be identified, defined (2.11), and referenced (2.12).
Note that the usage in this standard of the word "variable"
is more restricted than its normal usage, in that it does
not include array elements.

The type of a variable is optionally specified by the
appearance of the variable name in a type-statement (8.4).
If it is not so specified, the type of a variable is implied
by the first letter of the variable name to be integer or
real (4.1.2), unless the initial letter type implication is
changed by the use of an IMPLICIT statement (8.5).

At any given time during the execution of an executable
program, a variable is either defined or undefined (2.11).

2.6 Array

An array is a nonempty sequence of data that has a name and
a type. The name of an array is a symbolic name.

2.6.1 Array Elements. Each of the elements of an array is
called an array element. An array name qualified by a
subscript is an array element name and identifies a
particular element of the array (5.3). Such a datum may be
identified, defined (2.11), and referenced (2.12). The
number of array elements in an array is specified by an
array dec I arator (5.1).

An array element has a type. The type of all array elements
within an array is the same, and is optionally specified by
the appearance of the array name in a type-statement (8.4).
If it is not so specified, the type of an array element is
implied by the first letter of the array name to be integer
or real (4.1.2), unless the initial letter type implication
is changed by the use of an IMPLICIT statement (8.5).

At any given time during the execution of an executable
program, an array element is either defined or undefined
(2.11).

2.7 Substring

A character datum is a nonempty sequence of characters. A
substring is a contiguous portion of a character datum. The
form of a substring name used to identify, define (2.11), or
reference (2.12) a substring is described in 5.7.1.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 2-3

ANSI X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

5

10

15

20

25

30

35

2.8 Dummy Argument

A dummy argument in a procedure is a symbolic name. A
symbolic name dummy argument identifies a variable, array,
or procedure that becomes associated (2.14) with an actual
argument of each reference (2.12) to the procedure (15.2,
15.4.2, 15.5.2, and 15.6.2) .

Each dummy argument name that is classified as a variable,
array, or dummy procedure may appear wherever an actual name
of the same class (Section 18) and type may appear, except
where explicitly prohibited.

2.9 Scope of Symbolic Names and Statement Labels

The scope of a symbolic name (18.1) is an executable
program, a program unit, or a statement function statement.

The name of the main program and the names of external
functions, subroutines, and common blocks have a scope of an
executable program.

The names of variables, arrays, constants, statement
functions, intrinsic functions, and dummy procedures have a
scope of a program unit.

The names of variables that appear as dummy arguments in a
statement function statement have a scope of that statement.

40
Statement labels have a scope of a program unit.

2.10 List

45 A list is a nonempty sequence (2.1) of syntactic entities
separated by commas. The entities in the list are called
HJLL items,.

2.11 Def i ni t i on„S_tatu_s
50

At any given time during the execution of an executable
program, the definition status of each variable or array
element is either defined or undefined (Section 17).

55

Page 2-4s Subset Language

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

At any given time during the execution of an executable
program, a substring is either defined or undefined (2.11).

2.8 Dummy Argument

A dummy argument in a procedure is either a symbolic name or
an asterisk. A symbolic name dummy argument identifies a
variable, array, or procedure that becomes associated (2.14)
with an actual argument of each reference (2.12) to the
procedure (15.2, 15.4.2, 15.5.2, and 15.6.2). An asterisk
dummy argument indicates that the corresponding actual
argument is an alternate return specifier (15.6.2.3, 15.8.3,
and 15.9.3.5).

Each dummy argument name that is classified as a variable,
array, or dummy procedure may appear wherever an actual name
of the same class (Section 18) and type may appear, except
where explicitly prohibited.

2.9 Scope of Symbolic Names and Statement Labels

The scope of a symbolic name (18.1) is an executable
program, a program unit, a statement function statement, or
an implied-DO list in a DATA statement.

The name of the main program and the names of block data
subprograms, external functions, subroutines, and common
blocks have a scope of an executable program.

The names of variables, arrays, constants, statement
functions, intrinsic functions, and dummy procedures have a
scope of a program unit.

The names of variables that appear as dummy arguments in a
statement function statement have a scope of that statement.

The names of variables that appear as the DO-variable of an
implied-DO in a DATA statement have a scope of the implied-
DO list.

Statement labels have a scope of a program unit.

2.10 List

A list is a nonempty sequence (2.1) of syntactic entities
separated by commas. The entities in the list are called
list items.

2.11 Definition Status

At any given time during the execution of an executable
program, the definition status of each variable, array
element, or substring is either defined or undefined
(Sect ion 17).

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 2-4

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

A defined entity has a value. The value of a defined entity
does not change until the entity becomes undefined or is
redefined with a different value.

If a variable or array element is undefined, it does not
have a predictable value.

A previously defined variable or array element may become
undefined. Subsequent definition of a defined variable or
array element is permitted, except where it is explicitly
prohibited.

A character variable or character array element is defined
if every substring of length one of the entity is defined.

An entity Is initially defined if it’is assigned a value in
a DATA statement (Section 9). Initially defined entities
are in the defined state at the beginning of execution of an
executable program. All variables and array elements not
initially defined, or associated (2.14) with an initially
defined entity, are undefined at the beginning of execution
of an executable program.

An entity must be defined at the time a reference to it is
executed.

2.12 Reference

A variable or array element reference is the appearance of a
variable or array element name, respectively, in a statement
in a context requiring the value of that entity to be used
during the execution of the executable program. When a
reference to an entity is executed, its current value is
available. In this standard, the act of defining an entity
is not considered a reference to that entity.

A procedure reference is the appearance of a procedure name
in a statement in a context that requires the actions
specified by the procedure to be executed during the
execution of the executable program. When a procedure
reference is executed, the procedure must be available.

2.13 Storage

A storage sequence is a sequence of storage units. A
storage unit is either a numeric storage unit or a character
storage unit.

An integer, real, or logical datum has one numeric storage
| unit in a storage sequence. A character datum has one

2-5s Subset Language

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

A defined entity has a value. The value of a defined entity
does not change until the entity becomes undefined or is
redefined with a different value.

If a variable, array element, or substring is undefined, it
does not have a predictable value.

A previously defined variable or array element may become
undefined. Subsequent definition of a defined variable or
array element is permitted, except where it is explicitly
prohibited.

A character variable, character array element, or character
substring is defined if every substring of length one of the
entity is defined. Note that if a string is defined, every
substring of the string is defined, and if any substring of
the string is undefined, the string is undefined. Defining
8ny substring does not cause any other string or substring
to become undefined.

An entity is initially defined if it is assigned a value in
a DATA statement (Section 9). Initially defined entities
are in the defined state at the beginning of execution of an
executable program. All variables and array elements not
initially defined, or associated (2.14) with an initially
defined entity, are undefined at the beginning of execution
of an executable program.

An entity must be defined at the time a reference to it is
executed.

2.12 Reference

A variable, array element, or substring reference is the
appearance of a variable, array element, or substring name,
respectively, in a statement in a context requiring the
value of that entity to be used during the execution of the
executable program. When a reference to an entity is
executed, its current value is available. In this standard,
the act of defining an entity is not considered a reference
to that entity .

A procedure reference is the appearance of a procedure name
in a statement in a context that requires the actions
specified by the procedure to be executed during the
execution of the executable program. When a procedure
reference is executed, the procedure must be available.

2.13 Storage

A storage sequence is a sequence of storage units. A
storage unit is either a numeric storage unit or a character
storage unit.

An integer, real, or logical datum has one numeric storage
unit in a storage sequence. A double precision or complex

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 2-5

ANSI X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

5

10

15

20

25

30

character storaae unit in a storage sequence for each
character in the datum. This standard does not specify a
relationship between a numeric storage unit and a character
storage unit.

If a datum requires more than one storage unit in a storage
sequence, those storage units are consecutive.

The concept of a storage sequence is used to describe
relationships that exist among variables, array elements,
arrays, and common blocks. This standard does not specify a
relationship between the storage sequence concept and the
physical properties or implementation of storage.

2.14 Association

Association of entities exists if the same datum may be
identified by . different symbolic names in the same program
unit, or by the same name or a different name in different
program units of the same executable program (17.1).

Entities may become associated by the following:

(1) Common association (8.3.4)

(2) Equivalence association (8.2.2)

(3) Argument association (15.9.3)

35

40

45

50

55

Page 2-6s Subset Language

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

datum has two numeric storage units in a storage sequence.
A character datum has one character storage unit in a
storage sequence for each character in the datum. This
standard does not specify a relationship between a numeric
storage unit and a character storage unit.

If a datum requires more than one storage unit in a storage
sequence, those storage units are consecutive.

The concept of a storage sequence is used to describe
relationships that exist among variables, array elements,
arrays, substrings, and common blocks. This standard does
not specify a relationship between the storage sequence
concept and the physical properties or implementation of
storage.

2.14 Association

Association of entities exists if the same datum may be
identified by different symbolic names in the same program
unit, or by the same name or a different name in different
program units of the same executable program (17.1).

Entities may become associated by the following:

(1) Common association (8.3.4)

(2) Equivalence association (8.2.2)

(3) Argument association (15.9.3)

(4) Entry association (15.7.3)

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 2-6

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77

3. CHARACTERS, LINES, AND EXECUTION SEQUENCE

3.1 FORTRAN Character Set

The FORTRAN character set consists of twenty-six letters,
| ten digits, and eleven special characters.

3.1.1 Letters. A letter is one of the twenty-six
characters :

ABCDEFGHI JKLMNOPQRSTUVWXYZ

3.1.2 Digits. A digit is one of the ten characters:

0123456789

A string of digits is interpreted in the decimal base number
system when a numeric interpretation Is appropriate.

3.1-3 Alphanumeric Characters. An a Iphanumeric character
is a Ietter or a digit.

3.1.4 Special Characters. A special character is one of
| the eleven characters:

Character Name of Character

Blank
z Equals
+ Plus
- Minus
* As terisk
/ Slash
(Left Parenthesis
) Right Parenthesis
i Comma

Decimal Point
l Apostrophe

3.1.5 Collating Sequence and Graphics. The order in which
the letters are listed in 3.1.1 specifies the collating
sequence for the letters; A is less than Z. The order in
which the digits are listed in 3.1.2 specifies the collating
sequence for the digits; 0 is less than 9. The digits and
letters must not be intermixed in the collating sequence;
all of the digits must precede A or all of the digits must
follow Z. The character blank is less than the letter A and
less than the digit 0. The order in which the special
characters are listed in 3.1.4 does not imply a collating
sequence.

«
3-1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

3. CHARACTERS, LINES, AND EXECUTION SEQUENCE

3 . 1 FORTRAN Character Set

The FORTRAN character set consists of twenty-six letters,
ten digits, and thirteen special characters.

3.1.1 Letters. A letter is one of the twenty-six
characters:

ABCDEFGHI JKLMNOPQRSTUVWXYZ

3.1.2 Diqit s. A digit is one of the ten characters:

0123456789

A string of digits is interpreted in the decimal base number
system when a numeric interpretation is appropriate.

3.1.3 Alphanumeric Characters . A n a Iohanumeric character
is a letter or a digit.

3.1.4 Special Characters. A special character is one of
the thirteen characters:

Character Name of Character

_
Blank
Equals

+ Plus
- Minus
* As t eris k
/ Slash
(Left Parenthesis
) Right Parenthesis
i Comma

Decimal Point
$ Currency Symbol

1 Apos t rophe
J Colon

3.1.5 Collating Sequence and Graphics. The order in which
the letters are listed in 3.1.1 specifies the collating
sequence for the letters; A is less than Z. The order in
which the digits are listed in 3.1.2 specifies the collating
sequence for the digits; 0 is less than 9. The digits and
letters must not be intermixed in the collating sequence;
all of the digits must precede A or all of the digits must
follow Z. The character blank is less than the letter A and
less than the digit 0. The order in which the special
characters are listed in 3.1.4 does not imply a collating
sequence.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 3-1

ANSI X3.9-1978 FORTRAN 77 CHARACTERS, LINES. AND EXECUTION SEQUENCE

5

10

15

20

25

30

35

40

45

50

The graphics used for the forty-seven characters must be as
given in 3.1.1, 3.1.2, and 3.1.4. However, the style of any
graphic is not specified.

3.1.6 Blank Character. With the exception of the uses
specified (3.2.2, 3.2.3, 3.3, 4.8, 4.8.1, 13.5.1, and
13.5.2), a blank character within a program unit has no
meaning and may be used to improve the appearance of the
program unit, subject to the restriction on the number of
consecutive continuation lines (3.3).

3.2 Lines

A line in a program unit is a sequence of 72 characters.
All characters must be from the FORTRAN character set,
except as described in 3.2.1, 4.8, 12.2.2, and 13.2.1.

The character positions in a line are called columns and are
numbered consecutively 1, 2, through 72. The number
indicates the sequential position of a character in the
line, beginning at the left and proceeding to the right.
Lines are ordered by the sequence in which they are
presented to the processor. Thus, a program unit consists
of a totally ordered set of characters.

3.2.1 Comment Line. A comment line is any line that
contains a C or an asterisk in column 1, or contains only
blank characters in columns 1 through 72. A comment line
that contains a C or an asterisk in column 1 may contain any
character capable of representation in the processor in
columns 2 through 72.

A comment line does not affect the executable program in any
way and may be used to provide documentation.

A comment line must be followed immediately by an initial
line or another comment line. A comment line must not be
followed by a continuation line. Comment lines may precede
the initial line of the first statement of any program unit.

3.2.2 Initial Line. An initial line is any line that is
not a comment line and contains the character blank or the
digit 0 in column 6. Columns 1 through 5 may contain a
statement label (3.4), or each of the columns 1 through 5
must contain the character blank.

3.2.3 Continuation Line. A continuation line is any line
that contains any character of the FORTRAN character set
other than the character blank or the digit 0 in column 6
and contains only blank characters in columns 1 through 5.
A statement must not have more than nine continuation lines.

55

Page 3-2s Subset Language

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

Except for the currency symbol, the graphics used for the
forty-nine characters must be as given in 3.1.1, 3.1.2, and
3.1.4. However, the style of any graphic is not specified.

3.1.6 BI ank Character. With the exception of the uses
specified (3.2.2, 3.2.3, 3.3, 4.8, 4.8.1, 13.5.1, and
13.5.2), a blank character within a program unit has no
meaning and may be used to improve the appearance of the
program unit, subject to the restriction on the number of
consecutive continuation lines (3.3).

3.2 Lines

A line in a program unit is a sequence of 72 characters.
All characters must be from the FORTRAN character set,
except as described in 3.2.1, 4.8, 12.2.2, and 13.2.1.

The character positions in a line are called columns and are
numbered consecutively 1, 2, through 72. The number
indicates the sequential position of a character in the
line, beginning at the left and proceeding to the right.
Lines are ordered by the sequence in which they are
presented to the processor. Thus, a program unit consists
of a totally ordered set of characters.

3.2.1 Commen t Line. A comment line is any line that
contains a C or an asterisk in column 1, or contains only
b I ank'characters in columns 1 through 72. A comment line
that contains a C or an asterisk in column 1 may contain any
character capable of representation in the processor in
co I umns 2 through 72.

A comment line does not affect the executable program in any
way and may be used to provide documentation.

Comment lines may appear anywhere in the program unit.
Comment lines may precede the initial line of the first
statement of any program unit. Comment lines may appear
between an initial line and its first continuation line or
between two continuation lines.

3.2.2 Initial Line. An initial line is any line that is
not a comment line and contains the character blank or the
digit 0 in column 6. Columns 1 through 5 may contain a
statement label (3.4), or each of the columns 1 through 5
must contain the character blank.

3.2.3 Continuation Line. A continuation line is any line
that contains any character of the FORTRAN character set
other than the character blank or the digit 0 in column 6
and contains only blank characters in columns 1 through 5.
A statement must not have more than nineteen continuation
lines.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 3-2

ANSI X3.9-1978 FORTRAN 77 CHARACTERS, LINES, AND EXECUTION SEQUENCE

5

10

1 5

20

25

30

35

40

45

50

55

3.3 Statements

The statements of the FORTRAN language are described in
Sections 7 through 16 and are used to form program units.
Each statement is written in columns 7 through 72 of an
initial line and as many as nine continuation lines. An END
statement is written only in columns 7 through 72 of an
initial line. No other statement in a program unit may have
an initial line that appears to be an END statement. Note
that a statement must contain no more than 660 characters.
Except as part of a logical IF statement (11.5), no
statement may begin on a line that contains any part of the
previous statement.

Blank characters preceding, within, or following a statement
do not change the interpretation of the statement, except
when they appear within the datum strings of character
constants or the H or apostrophe edit descriptors in FORMAT
statements. However, blank characters do count as
characters In the limit of total characters allowed in any
one statement.

3 - 4 Statement Labels

Statement labels provide a means of referring to individual
statements. Any statement may be labeled, but only labeled
executable statements and FORMAT statements may be referred
to by the use of statement labels. The form of a statement
label is a sequence of one to five digits, one of which must
be nonzero. The statement label may be placed anywhere in
columns 1 through 5 of the initial line of the statement.
The same statement label must not be given to more than one
statement in a program unit. Blanks and leading zeros are
not significant in distinguishing between statement labels.

3.5 Order of Statements and Lines

A PROGRAM statement may appear only as the first statement
of a main program. The first statement of a subprogram must
be either a FUNCTION or SUBROUTINE statement.

Within a program unit that permits the statements:

(1) FORMAT statements may appear anywhere;

(2) all specification statements must precede all DATA
statements, statement function statements, and
executable statements;

(3) all statement function statements must precede all
executable statements; and

(4) all DATA statements must appear after the
specification statements and precede all statement
function statements and executable statements.

Page 3-3s Subset Language

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

3.3 Statements

The statements of the FORTRAN language are described in
Sections 7 through 16 and are used to form program units.
Each statement is written in columns 7 through 72 of an
initial line and as many as nineteen continuation lines. An
END statement is written only in columns 7 through 72 of an
initial line. No other statement in a program unit may have
an initial line that appears to be an END statement. Note
that a statement must contain no more than 1320 characters.
Except as part of a logical IF statement (11.5), no
statement may begin on a line that contains any part of the
previous statement.

Blank characters preceding, within, or following a statement
do not change the interpretation of the statement, except
when they appear within the datum strings of character
constants or the H or apostrophe edit descriptors in FORMAT
statements. However, blank characters do count as
characters in the limit of total characters allowed in any
one statement.

3.4 Statement Labe I s

Statement labels provide a means of referring to individual
statements. Any statement may be labeled, but only labeled
executable statements and FORMAT statements may be referred
to by the use of statement labels. The form of a statement
label is a sequence of one to five digits, one of which must
be nonzero. The statement label may be placed anywhere in
columns 1 through 5 of the initial line of the statement.
The same statement label must not be given to more than one
statement in a program unit. Blanks and leading zeros are
not significant in distinguishing between statement labels.

3.5 Order of Statements and Lines

A PROGRAM statement may appear only as the first statement
of a main program. The first statement of a subprogram must
be either a FUNCTION, SUBROUTINE, or BLOCK DATA statement. |

Within a program unit that permits the statements:

(1) FORMAT statements may appear anywhere;

(2) all specification statements must
statements, statement function
executable statements;

precede all
statements,

DATA
and

(3) all statement function
executable statements;

statements must precede a 1 1

(4) DATA statements may appear anywhere after the
specification statements; and

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page 3-3

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 CHARACTERS, LINES, AND EXECUTION SEQUENCE

Within the specification statements of a program unit,
IMPLICIT statements must precede all other specification
statements.

The last line of a program unit must be an END statement.

Figure 1

Required Order of Statements and Comment Lines

Comment
Lines

PROGRAM, FUNCTION, or SUBROUTINE Statement

FORMAT
Statements

IMPLICIT Statements

Other Specification
Statements

DATA Statements

Statement Function
Statements

Executable Statements

END Statement

Figure 1 is a diagram of the required order of statements
and comment lines for a program unit. Vertical lines
delineate varieties of statements that may be interspersed.
For example, FORMAT statements may be interspersed with
statement function statements and executable statements.
Horizontal lines delineate varieties of statements that must
not be interspersed. For example, statement function
statements must not be interspersed with executable
statements. Note that an END statement is also an
executable statement and must appear only as the last
statement of a program unit.

3-4s Subset Language

CHARACTERS. LINES. AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

(5) ENTRY statements may appear anywhere except between a
block IF statement and its corresponding END IF
statement, or between a DO statement and the terminal
statement of its DO-loop.

Within the specification statements of a program unit,
IMPLICIT statements must precede all other specification
statements except PARAMETER statements. Any specification
statement that specifies the type of a symbolic name of a
constant must precede the PARAMETER statement that defines
that particular symbolic name of a constant; the PARAMETER
statement must precede all other statements containing the
symbolic names of constants that are defined in the
PARAMETER statement.

The last line of a program unit must be an END statement.

Figure 1

Required Order of Statements and Comment Lines

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement

PARAMETER
Statements

IMPLICIT
Statements

Comment
Lines

FORMAT
and

ENTRY
Statements

Other
Specification
Statements

DATA
Statements

Statement
Function

Statements

Executable
Statements

END Statement

Figure 1 is a diagram of the required order of statements
and comment lines for a program unit. Vertical lines
delineate varieties of statements that may be interspersed.
For example, FORMAT statements may be interspersed with
statement function statements and executable statements.
Horizontal lines delineate varieties of statements that must
not be interspersed. For example, statement function
statements must not be interspersed with executable
statements. Note that an END statement is also an
executable statement and must appear only as the last
statement of a program unit.

5

10

1 5

20

25

30

35

40

45

50

55

FuI I Language Page 3-4

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 CHARACTERS, LINES, AND EXECUTION SEQUENCE

3.6 Normal Execution Sequence and Transfer of Control

Norma I execution sequence is the execution of executable
statements in the order in which they appear in a program
unit. Execution of an executable program begins with the
execution of the first executable statement of the main
program. When an external procedure specified in a
subprogram is referenced, execution begins with the first
executable statement that follows the FUNCTION or SUBROUTINE
statement that specifies the referenced procedure as the
name of a procedure.

A transfer o f c o n t r o I is an alteration of the normal
execution sequence. Statements that may cause a transfer of
contro 1 are:

(1) GO TO

(2) Arithmetic IF

(3) RETURN

(4) STOP

(5) An input/output statement
specifier

containing an end-of -file

(6) A logical IF statement
forms

containing any of the above

(7) Block IF and ELSE IF

(8) The last statement, if
IF-b 1 ock

any , of an I F-b lock or ELSE

(9) DO

(10) The terminal statement o f a DO- 1 oop

(11) END

The effect of these statements on the execution sequence is
described in Sections 11, 12, and 15.

The normal execution sequence is not affected by the
appearance of nonexecutable statements or comment lines
between executable statements. Execution of a function
reference or a CALL statement is not considered a transfer
of control in the program unit that contains the reference.
Execution of a RETURN or END statement in a referenced
procedure, or execution of a transfer of control within a
referenced procedure, is not considered a transfer of
control in the program unit that contains the reference.

3-5 s Subset Language

CHARACTERS. LINES, AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

3.6 Normal Execution Sequence and Transfer of Control

Norma I execution sequence is the execution of executable
statements in the order in which they appear in a program
unit. Execution of an executable program begins with the
execution of the first executable statement of the main
program. When an external procedure specified in a
subprogram is referenced, execution begins with the first
executable statement that follows the FUNCTION, SUBROUTINE,
or ENTRY statement that specifies the referenced procedure
as the name of a procedure.

A transfer o f control is an alteration of the normal
execution sequence. Statements that may cause a transfer of
contro 1 are:

(1) GO TO

(2) Arithmetic IF

(3) RETURN

(4) STOP

(5) An input/output statement containing an
specifier or end-of-file specifier

error

(6) CALL with an a 1ternate return specifier

(7) A logical IF statement
forms

containing any of the above

(8) Block IF and ELSE IF

(9) The last statement, if
I F - b 1 o c k

any, of an IF-b lock or ELSE

(10) DO

(11) The terminal statement of a DO-loop

(12) END

The effect of these statements on the execution sequence is
described in Sections 11, 12, and 15.

The normal execution sequence is not affected by the
appearance of nonexecutable statements or comment lines
between executable statements. Execution of a function
reference or a CALL statement is not considered a transfer
of control in the program unit that contains the reference,
except when control is returned to a statement identified by
an alternate return specifier in a CALL statement.
Execution of a RETURN or END statement in a referenced
procedure, or execution of a transfer of control within a

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 3-5

ANSI X3.9-1978 FORTRAN 77 CHARACTERS, LINES. AND EXECUTION SEQUENCE

In the execution of an executable program, a procedure
5 subprogram must not be referenced a second time without the

prior execution of a RETURN or END statement in that
procedure.

10

15

20

25

30

35

AO

45

50

55

Page 3~6s Subset Language

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

referenced procedure, is not considered a transfer of
control in the program unit that contains the reference.

In the execution of an executable program, a procedure
subprogram must not be referenced a second time without the
prior execution of a RETURN or END statement in that
procedure.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 3-6

ANSI X3.9-1978 FORTRAN 77

4. DATA TYPES AND CONSTANTS

4.1 Data Tyoes

5 | The four types of data are:

(1) Integer

(2) Real
10

15

20

25

30

35

40

45

50

55

(3) LogicaI

(4) Character

Each type is different and may have a different internal
representation. The type may affect the interpretation of
the operations involving the datum.

4.1.1 Data T ype of a Name. The name employed to identify a
datum or a function also identifies its data type. A
symbolic name representing a variable, array, or function
must have only one type for each program unit. Once a
particular name is identified with a particular type in a
program unit, that type is implied for any usage of the name
in the program unit that requires a type.

4.1.2 Type Rules for Data and Procedure Identifiers. A
symbolic name that identifies a variable, array, external
function, or statement function may have its type specified
in a type-statement (8.4) as integer, real, logical, or
character, except that a function may not be of type
character. In the absence of an explicit declaration in a
type-statement, the type is implied by the first letter of
the name. A first letter of I, J, K, L, M, or N implies
type integer and any other letter implies type real, unless
an IMPLICIT statement (8.5) is used to change the default
implied type.

The data type of an array element name is the same as the
type of its array name.

The data type of a function name specifies the type of the
datum supplied by the function reference in an expression.

A symbolic name that identifies a specific intrinsic
function in a program unit has a type as specified in 15.10.
An explicit type-statement is not required; however, it is
permitted.

Page 4-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

4. DATA TYPES AND CONSTANTS

4.1 Data Types

The si x types of data are:

(1) Integer

(2) Rea 1

(3) Doub 1 e precisi on

(4) Complex

(5) Logica 1

(6) Character

Each type is different and may have a different internal
representation. The type may affect the interpretation of
the operations involving the datum.

4.1.1 Data Type of a Name. The name employed to identify a
datum or a function also identifies its data type. A
symbolic name representing a constant, variable, array, or
function (except a generic function) must have only one type
for each program unit. Once a particular name is identified
with a particular type in a program unit, that type is
implied for any usage of the name in the program unit that
requires a type.

A.1-2 Type Rules for Data and Procedure Identifiers. A
symbolic name that identifies a constant, variable, array,
external function, or statement function may have its type
specified in a type-statement (8.4) as integer, real, double
precision, complex, logical, or character. In the absence
of an explicit declaration in a type-statement, the type is
implied by the first letter of the name. A first letter of
I, J, K, L, M, or N implies type integer and any other
letter implies type real, unless an IMPLICIT statement (8.5)
is used to change the default implied type.

The data type of an array element name is the same as the
type of its array name.

The data type of a function name specifies the type of the
datum supplied by the function reference in an expression.

A symbolic name that identifies a specific intrinsic
function in a program unit has a type as specified in 15.10.
An explicit type-statement is not required; however, it is
permitted. A generic function name does not have a
predetermined type; the result of a generic function
reference assumes a type that depends on the type of the
argument, as specified in 15.10. If a generic function name

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 4-1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

In a program unit that contains an external function
reference, the type of the function is determined in the
same manner as for variables and arrays.

The type of an external function is specified implicitly by
its name, explicitly in a FUNCTION statement, or explicitly
in a type-statement. Note that an IMPLICIT statement within
a function subprogram may affect the type of the external
function specified in the subprogram.

A symbolic name that identifies a main program, subroutine,
| or common block has no data type.

4.1.3 Data Type Properties. The mathematical and
representation properties for each of the data types are
specified in the following sections. For real and integer
data, the value zero is considered neither positive nor
negative. The value of a signed zero Is the same as the
value of an unsigned zero.

A - 2 Constants

A constant is an arithmetic constant, logical constant, or
character constant. The value of a constant does not
change. Within an executable program, all constants that
have the same form have the same value.

4.2.1 Data Type of a Constant . The form of the string
representing a constant specifies both its value and data
type .

4.2.2 Blanks in Constants. Blank characters occurring in a
constant, except in a character constant, have no effect on
the value of the constant.

4.2.3 Arithmetic Constants. Integer and real constants are
arithmetic constants.

4.2.3.1 Signs of Constants . A n unsigned constant 1s a
constant without a leading sign. A signed constant is a
constant with a leading plus or minus sign. An optional Iy
signed constant is a constant that may be either signed or
unsigned. Integer and real constants may be optionally
signed constants, except where specified otherwise.

4-2s Subset Language

DATA TYPES AND CONSTANTS ANSI X3.9-1978 FORTRAN 77

appears in a type-statement, such an appearance is not
sufficient by itself to remove the generic properties from
that func tion.

In a program unit that contains an external function
reference, the type of the function is determined in the
same manner as for variables and arrays.

The type of an external function is specified implicitly by
its name, explicitly in a FUNCTION statement, or explicitly
in a type-statement. Note that an IMPLICIT statement within
a function subprogram may affect the type of the external
function specified in the subprogram.

A symbolic name that identifies a main program, subroutine,
common block, or block data subprogram has no data type.

4.1.3 Data Type Properties. The mathematical and
representation properties for each of the data types are
specified in the following sections. For real, double
precision, and integer data, the value zero is considered
neither positive nor negative. The value of a signed zero
is the same as the value of an unsigned zero.

4.2 Constants

A constant is an arithmetic constant, logical constant, or
character constant. The value of a constant does not
change. Within an executable program, all constants that
have the same form have the same value.

4.2.1 Data Type of a Constant. The form of the string
representing a constant specifies both its value and data
type. A PARAMETER statement (8.6) allows a constant to be
given a symbolic name. The symbolic name of a constant must
not be used to form part of another constant.

4.2.2 Blanks in Constants. Blank characters occurring in a
constant, except in a character constant, have no effect on
the value of the constant.

4.2.3 Arithmetic Constants. Integer, real, double
precision, and complex constants are arithmetic constants.

4.2.3.1 Signs of Constants. An unsigned constant is a
constant without a leading sign. A signed constant is a
constant with a leading plus or minus sign. An optional Iy
signed constant is a constant that may be either signed or
unsigned. Integer, real, and double precision constants may
be optionally signed constants, except where specified
otherwise.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 4-2

ANSI X3.9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

5

10

15

20

25

30

35

40

45

50

55

4.3 Inteaer Type

An integer datum is always an exact representation of an
integer value. It may assume a positive, negative, or zero
value. It may assume only an integral value. An integer
datum has one numeric storage unit in a storage sequence.

4.3.1 Integer Constant. The form of an integer constant is
an optional sign followed by a nonempty string of digits.
The digit string is interpreted as a decimal number.

4.4 Real Type

A real datum is a processor approximation to the value of a
real number. It may assume a positive, negative, or zero
value. A real datum has one numeric storage unit in a
storage sequence.

4.4.1 Basic Real Constant. The form of a basic real
constant is an optional sign, an integer part, a decimal
point, and a fractional part, in that order. Both the
integer part and the fractional part are strings of digits;
either of these parts may be omitted but not both. A basic
real constant may be written with more digits than a
processor will use to approximate the value of the constant.
A basic real constant is interpreted as a decimal number.

4.4.2 Rea I Exponent . The form cf a real exponent is the
letter E followed by an optionally signed integer constant.

A real exponent denotes a power of ten.

4.4.3 Real Constant. The forms of a real constant are:

(1) Basic real constant

(2) Basic real constant followed by a real exponent

(3) Integer constant followed by a real exponent

The value of a real constant that contains a real exponent
is the product of the constant that precedes the E and the
power of ten indicated by the integer following the E. The
integer constant part of form (3) may be written with more
digits than a processor will use to approximate the value of
the constant.

4.5 Double Precision Type

Double precision type is not included in the subset.

Page 4-3s Subset Language

DATA TYPES AND CONSTANTS ANSI X3.9-1978 FORTRAN 77

4.3 Integer Type

An integer datum is always an exact representation of an
integer value. It may assume a positive, negative, or zero
value. It may assume only an integral value. An integer
datum has one numeric storage unit in a storage sequence.

4.3.1 Integer Constant. The form of an integer constant is
an optional sign followed by a nonempty string of digits.
The digit string is interpreted as a decimal number.

4.4 Real Type

A real datum is a processor approximation to the value of a
real number. It may assume a positive, negative, or zero
value. A real datum has one numeric storage unit in a
s torage sequence .

4.4.1 Basic Real Constant. The form of a basic real
constant is an optional sign, an integer part, a decimal
point, and a fractional part, in that order. Both the
integer part and the fractional part are strings of digits;
either of these parts may be omitted but not both. A basic
real constant may be written with more digits than a
processor will use to approximate the value of the constant.
A basic real constant is interpreted as a decimal number.

4.4.2 Rea I Exponent. The form of a real exponent is the
letter E followed by an optionally signed integer constant.

A real exponent denotes a power of ten.

4.4.3 Rea I Cons tan t. The forms of a real constant are:

(1) Basic real constant

(2) Basic real constant followed by a real exponent

(3) Integer constant followed by a real exponent

The value of a real constant that contains a real exponent
is the product of the constant that precedes the E and the
power of ten indicated by the integer following the E. The
integer constant part of form (3) may be written with more
digits than a processor will use to approximate the value of
the constant.

4.5 Double Precision Type

A double precision datum is a processor approximation to the
value of a real number. The precision, although not
specified, must be greater than that of type real. A double
precision datum may assume a positive, negative, or zero
value. A double precision datum has two consecutive numeric
storage units in a storage sequence.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 4-3

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

4.5.1 Double Precision Exponent. Double precision type is
not included in the subset.

4.5.2 Double Precision Constant. Double precision type is
not included in the subset.

4.6 Complex Type

Complex type is not included in the subset.

4.6.1 Complex Constant. Complex type is not included in
the subset.

4.7 Logical Type

A logical datum may assume only the values true or false. A
logical datum has one numeric storage unit in a storage
sequence.

4-4s Subset Language

DATA TYPES AND CONSTANTS ANSI X3.9-1978 FORTRAN 77

4.5.1 Double Precision Exponent. The form of a double
precision exponent is the letter D followed by an optionally
signed integer constant. A double precision exponent
denotes a power of ten. Note that the form and
interpretation of a double precision exponent are identical
to those of a real exponent, except that the letter D is
used instead of the letter E.

4.5.2 Double Precision Constant. The forms of a double
precision cons tant are:

(1) Basic real constant followed by a double precision
exponent

(2) Integer constant followed by a double precision
exponent

The value of a double precision constant is the product of
the constant that precedes the D and the power of ten
indicated by the integer following the D. The integer
constant part of form (2) may be written with more digits
than a processor will use to approximate the value of the
constant.

4.6 Comp lex Type

A complex datum is a processor approximation to the value of
a complex number. The representation of a complex datum is
in the form of an ordered pair of real data. The first of
the pair represents the real part of the complex datum and
the second represents the imaginary part. Each part has the
same degree of approximation as for a real datum. A complex
datum has two consecutive numeric storage units in a storage
sequence; the first storage unit is the real part and the
second storage unit is the imaginary part.

4.6.1 Complex Constant. The form of a complex constant is
a left parenthesis followed by an ordered pair of real or
integer constants separated by a comma, and followed by a
right parenthesis. The first constant of the pair is the
real part of the complex constant and the second is the
imagi nary part.

4.7 Logical Type

A logical datum may assume only the values true or false. A
logical datum has one numeric storage unit in a storage
sequence.

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page 4-4

ANSI X3.9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

4.7.1 LogicaI Constant. The forms and values of a logical
constant are:

5

10

15

20

25

30

35

40

Form Value

.TRUE.

.FALSE.
true
false

4.8 Character Type

A character datum is a string of characters. The string may
consist of any characters capable of representation in the
processor. The blank character is valid and significant in
a character datum. The length of a character datum is the
number of characters in the string. A character datum has
one character storage unit in a storage sequence for each
character in the string.

Each character in the string has a character position that
is numbered consecutively 1, 2, 3, etc. The number
indicates the sequential position of a character in the
string, beginning at the left and proceeding to the right.

4.8.1 Character Constant. The form of a character constant
is an apostrophe followed by a nonempty string of characters
followed by an apostrophe. The string may consist of any
characters capable of representation in the processor. Note
that the delimiting apostrophes are not part of the datum
represented by the constant. An apostrophe within the datum
string is represented by two consecutive apostrophes with no
intervening blanks. In a character constant, blanks
embedded between the delimiting apostrophes are significant.

The length of a character constant is the number of
characters between the delimiting apostrophes, except that
each pair of consecutive apostrophes counts as a single
character. The delimiting apostrophes are not counted. The
length of a character constant must be greater than zero.

45

50

55

Page 4-5s Subset Language

DATA TYPES AND CONSTANTS ANSI X3.9-1978 FORTRAN 77

4.7.1 Logical Constant. The forms and values of a logical
constant are:

Form Value

.TRUE.

.FALSE.
true
false

4.8 Character Type

A character datum is a string of characters. The string may
consist of any characters capable of representation in the
processor. The blank character is valid and significant in
a character datum. The I eng t h of a character datum is the
number of characters in the string. A character datum has
one character storage unit in a storage sequence for each
character in the string.

Each character in the string has a character position that
is numbered consecutively 1, 2, 3, etc. The number
indicates the sequential position of a character in the
string, beginning at the left and proceeding to the right.

4.8.1 . Character Constant. The form of a character constant
is an apostrophe followed by a nonempty string of characters
followed by an apostrophe. The string may consist of any
characters capable of representation in the processor. Note
that the delimiting apostrophes are not part of the datum
represented by the constant. An apostrophe within the datum
string is represented by two consecutive apostrophes with no
intervening blanks. In a character constant, blanks
embedded between the delimiting apostrophes are significant.

The length of a character constant is the number of
characters between the delimiting apostrophes, except that
each pair of consecutive apostrophes counts as a single
character. The delimiting apostrophes are not counted. The
length of a character constant must be greater than zero.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 4-5

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77

5. ARRAYS AND SUBSTRINGS

An array is a nonempty sequence of data. An array e I ement
is one member of the sequence of data. An array name is the
symbolic name of an array. An array e I ement name is an
array name qualified by a subscript (5.3).

An array name not qualified by a subscript identifies the
entire sequence of elements of the array in certain forms
where such use is permitted (5.6); however, in an
EQUIVALENCE statement, an array name not qualified by a
subscript identifies the first element of the array (8.2.4).

An array element name identifies one element of the
sequence. The subscript value (Table 1) specifies the
element of the array being identified. A different array
element may be identified by changing the subscript value of
the array element name.

An array name is local to a program unit (18.1.2).

| Substrings are not included in the subset.

5.1 Array Declarator

An array dec I arator specifies a symbolic name that
identifies an array within a program unit and specifies
certain properties of the array. Only one array declarator
for an array name is permitted in a program unit.

5.1.1 Form of an Array Declarator. The form of an array
dec I arator is:

a (d t ,d] . . .)

where: a. is the symbolic name of the array

d. is a dimension declarator

The number of dimensions of the array is the number of
dimension declarators in the array declarator. The minimum
number of dimensions is one and the maximum is three.

5.1.1.1 Form of a Dimension Declarator. The form of a
dimension declarator is :

d

where d. is an integer constant or an integer variable name,
called the upper dimension bound . The lower dimension bound
is one. The upper dimension bound of the last dimension may
be an asterisk in assumed-size array declarators (5.1.2).
Integer variables may appear in dimension bounds only in
adjustable array declarators (5.1.2).

5-1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

5. ARRAYS AND SUBSTRINGS

An array is a nonempty sequence of data. An array e I ement
is one member of the sequence of data. An array name is the
symbolic name of an array. An array e I ement name is an
array name qualified by a subscript (5.3).

An array name not qualified by a subscript identifies the
entire sequence of elements of the array in certain forms
where such use is permitted (5.6); however, in an
EQUIVALENCE statement, an array name not qualified by a
subscript identifies the first element of the array (8.2.4).

An array element name identifies one element of the
sequence. The subscript value (Table 1) specifies the
element of the array being identified. A different array
element may be identified by changing the subscript value of
the array element name.

An array name is local to a program unit (18.1.2).

A subs t ring is a contiguous portion of a character datum.

5 . 1 Array Dec I arator

A n array declarator specifies a symbolic name that
identifies an array within a program unit and specifies
certain properties of the array. Only one array declarator
for an array name is permitted in a program unit.

5.1.1 Form of an Array Declarator. The form of an array
declarator is:

a, (d. [, d.] . . .)

where: a. is the symbolic name of the array

4 is a dimension declarator

The number of dimensions of the array is the number of
dimension declarators in the array declarator. The minimum
number of dimensions is one and the maximum is seven.

5.1 .1 .1 Form of a Dimension Declarator . The form of a
dimension dec 1arator is :

C d. j :] d.2

where: d.. is the lower dimension bound

d2 is the upper dimension bound

The 1 ower and upper dimension bounds are arithmetic
expressions, cal led dimension bound expressions, in which
all constants, symbolic names of constants, and variables
are of type integer. The upper dimension bound of the last

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 5-1

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

5

10

If a variable that appears in a dimension bound is not of
default implied integer type (4.1.2), it must be specified
as integer by an IMPLICIT statement or a type-statement
prior to its appearance in a dimension bound.

1 5

20

25

30

5.1.1.2 Value of Dimension Bounds. The value of the upper
dimension bound must be greater than or equal to one. An
upper dimension bound of an asterisk is always greater than
or equal to one.

5.1.2 Kinds and Occurrences of Array Declarators. Each
array declarator is either a constant array declarator, an
adjustable array declarator, or an assumed-size array
declarator. A constant array dec I arator is an array
declarator in which each of the dimension bounds is an
integer constant. An adjustable array dec I arator is an
array declarator that contains one or more variables. An
assumed-size array dec Iarator is a constant array declarator
or an adjustable array declarator, except that the upper
dimension bound of the last dimension is an asterisk.

Each array declarator is either an actual array declarator
35 or a dummy array declarator.

5.1.2.1 Actual Array Declarator. An actual array
declarator is an array declarator in which the array name is
not a dummy argument. Each actual array declarator must be

40 a constant array declarator. An actual array declarator is
permitted in a DIMENSION statement, type-statement, or
COMMON statement (Section 8).

5 .1 . 2.2 Dummy Array Declarator . A dummy array dec Iarator
is an array declarator in which the array name is a dummy
argument. A dummy array declarator may be either a constant
array declarator, an adjustable array declarator, or an
assumed-size array declarator. A dummy array declarator is
permitted in a DIMENSION statement or a type-statement but
not in a COMMON statement. A dummy array declarator may
appear only in a function or subroutine subprogram.

5.2 Properties of an Array

55 The following properties of an array are specified by the
array declarator: the number of dimensions of the array, the

45

50

Page 5-2s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

dimension may be an asterisk in assumed-size array
declarators (5.1.2). A dimension bound expression must not
contain a function or array element reference. Integer
variables may appear in dimension bound expressions only in
adjustable array declarators (5.1.2).

If the symbolic name of a constant or variable that appears
in a dimension bound expression is not of default implied
integer type (4.1.2), it must be specified as integer by an
IMPLICIT statement or a type-statement prior to its
appearance in a dimension bound expression.

5.1.1.2 Value of Dimension Bounds. The value of either
dimension bound may be positive, negative, or zero; however,
the value of the upper dimension bound must be greater than
or equal to the value of the lower dimension bound. If only
the upper dimension bound is specified, the value of the
lower dimension bound is one. An upper dimension bound of
an asterisk is always greater than or equal to the lower
dimension bound .

5.1.2 Kinds and Occurrences of Array Declarators. Each
array declarator is either a constant array declarator, an
adjustable array declarator, or an assumed-size array
declarator. A constant array dec Iarator is an array
declarator in which each of the dimension bound expressions
is an integer constant expression (6.1.3.1). An adjustable
array dec Iarator is an array declarator that contains one or
more variables. An assumed-size array dec Iarator is a
constant array declarator or an adjustable array declarator,
except that the upper dimension bound of the last dimension
is an asterisk.

Each array declarator is either an actual array declarator
or a dummy array declarator.

5.1.2.1 Actual Array Declarator. An actual array
dec I arator is an array declarator in which the array name is
not a dummy argument. Each actual array declarator must be
a constant array declarator. An actual array declarator is
permitted in a DIMENSION statement, type-statement, or
COMMON statement (Section 8).

5.1.2.2 Dummy Array Declarator. A dummy array dec Iarator
is an array declarator in which the array name is a dummy
argument. A dummy array declarator may be either a constant
array declarator, an adjustable array declarator, or an
assumed-size array declarator. A dummy array declarator is
permitted in a DIMENSION statement or a type-statement but
not in a COMMON statement. A dummy array declarator may
appear only in a function or subroutine subprogram.

5.2 Properties of an Array

The following properties of an array are specified by the
array declarator: the number of dimensions of the array, the

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 5-2

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

size and bounds of each dimension, and therefore the number
of array elements.

The properties of an array in a program unit are specified
by the array declarator for the array in that program unit.

5.2.1 Data Type of an Array and an Array Element . An array
name has a data type (4.1.1). An array element name has the
same data type as the array name.

5.2.2 Dimensions of an Array. The number of dimensions of
an array is equal to the number of dimension declarators in
the array dec Iarator .

The size o f a. dimension is the value of d. where d, is the
value of the upper dimension bound.

The size of a dimension whose upper bound is an asterisk is
not specified.

The number and size of dimensions in one array declarator
may be different from the number and size of dimensions in
another array declarator that is associated by common,
equivalence, or argument association.

5.2.3 Size of an Array. The size of an array is equal to
the number of elements in the array. The size of an array
is equal to the product of the sizes of the dimensions
specified by the array declarator for that array name. The
size of an assumed-size dummy array (5.5) is determined as
f oI lows:

(1) If the actual argument corresponding to the dummy
array is a noncharacter or character array name, the
size of the dummy array is the size of the actual
argument array .

(2) If the actual argument corresponding to the dummy
array name is a noncharacter or character array
element name with a subscript value of r_ in an array
of size x., the size of the dummy array is x + 1 - r..

5-3s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1 978 FORTRAN 77

size and bounds of each dimension, and therefore the number
of array eIements .

The properties of an array in a program unit are specified
by the array declarator for the array in that program unit.

5.2.1 Data Type of an Array and an Array Element. An array
name has a data type (4.1.1). An array element name has the
same data type as the array name.

5.2.2 Dimensions of an Array. The number of dimensions of
an array is equal to the number of dimension declarators in
the array dec Iarator.

The size o f a. di mensi on is the value:

d.2 - d.i +1

where: d.i is the value of the lower dimension bound

d.2 is the value of the upper dimension bound

Note that if the value of the lower dimension bound is one,
the size of the dimension is d.2 .

The size of a dimension whose upper bound is an asterisk is
not specified.

The number and size of dimensions in one array declarator
may be different from the number and size of dimensions in
another array declarator that is associated by common,
equivalence, or argument association.

5.2.3 Size of an Array. The size o f an array is equal to
the number of elements in the array. The size of an array
is equal to the product of the sizes of the dimensions
specified by the array declarator for that array name. The
size of an assumed-size dummy array (5.5) is determined as
f oI lows:

(1) If the actual argument corresponding to the dummy
array is a noncharacter array name, the size of the
dummy array is the size of the actual argument array.

(2) If the actual argument corresponding to the dummy
array name is a noncharacter array element name with
a subscript value of r_ in an array of size x_, the
size of the dummy array is x + 1 - r..

(3) If the actual argument is a character array name,
character array element name, or character array
element substring name and begins at character
storage unit X of an array with c. character storage
units, then the size of the dummy array is

5

10

1 5

20

25

30

35

40

45

50

55

FuI I Language Page 5-3

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

5

10

15

20

25

30

35

40

45

50

55

If an assumed-size dummy array has in dimensions, the product
of the sizes of the first n. - 1 dimensions must be less than
or equal to the size of the array, as determined by one of
the immediately preceding rules.

5.2.4 Array Element Ordering. The elements of an array are
ordered in a sequence (2.1). An array element name contains
a subscript (5.4.1) whose subscript value (5.4.3) determines
which element of the array is identified by the array
element name. The first element of the array has a
subscript value of one; the second element has a subscript
value of two; the last element has a subscript value equal
to the size of the array.

Whenever an array name unqualified by a subscript is used to
designate the whole array (5.6), the appearance of the array
name implies that the number of values to be processed is
equal to the number of elements in the array and that the
elements of the array are to be taken in sequential order.

5.2.5 Array Storage Sequence. An array has a storage
sequence consisting of the storage sequences of the array
elements in the order determined by the array element
ordering. The number of storage units in an array is x.*_z,
where _x is the number of the elements in the array and z is
the number of storage units for each array element.

5.3 Array El ement Name

The form of an array element name is:

a. (s_ [, s.3. . .)

where: a. is the array name

(s. [, s.] . . .) is a subscript (5.4.1)

s. is a subscript expression (5.4.2)

The number of subscript expressions must be equal to the
number of dimensions in the array declarator for the array
name.

5.4 Subscript

5.4.1 Form of a Subscript. The form of a subscript is:-

(s. [, s.] . . .)

where s. i s a subscript expression.

Note that the term "subscript" includes the parentheses that
delimit the list of subscript expressions.

Page 5-4s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

INT((c. + 1 - t.) / JLn), where J_n is the length of an
element of the dummy array.

If an assumed-size dummy array has n. dimensions, the product
of the sizes of the first n. - 1 dimensions must be less than
or equal to the size of the array, as determined by one of
the immediately preceding rules.

5.2.4 Array Element Ordering. The elements of an array are
ordered in a sequence (2.1). An array element name contains
a subscript (5.4.1) whose subscript value (5.4.3) determines
which element of the array is identified by the array
element name. The first element of the array has a
subscript value of one; the second element has a subscript
value of two; the last element has a subscript value equal
to the size of the array.

Whenever an array name unqualified by a subscript is used to
designate the whole array (5.6), the appearance of the array
name implies that the number of values to be processed is
equal to the number of elements in the array and that the
elements of the array are to be taken in sequential order.

5.2.5 Array Storage Sequence. An array has a storage
sequence consisting of the storage sequences of the array
elements in the order determined by the array element
ordering. The number of storage units in an array is x.*_z»
where x. is the number of the elements in the array and z is
the number of storage units for each array element.

5.3 Array Element Name

The form of an array element name is:

a. (s_

where: a. is the array name

(s. [, sj . . .) is a subscript (5.4.1)

s. is a subscript expression (5.4.2)

The number of subscript expressions must be equal to the
number of dimensions in the array declarator for the array
name.

5.4 Subscript

5.4.1 Form of a Subscript. The form of a subscript is:

(s. [,s.]. . - >

where s. is a subscript expression.

Note that the term "subscript" includes the parentheses that
delimit the list of subscript expressions.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 5-4

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

5.4.2 Subscript Expression. A subscript express!on is an
integer expression. A subscript expression must not contain
array element references and function references.

Within a program unit, the value of each subscript
expression must be greater than or equal to one. The value
of each subscript expression must not exceed the
corresponding upper dimension bound declared for the array
in the program unit. If the upper dimension bound is an
asterisk, the value of the corresponding subscript
expression must be such that the subscript value does not
exceed the size of the dummy array.

5.4.3 Subscript Value. The subscript value of a subscript
is specified in Table 1. The subscript value determines
which array element is identified by the array element name.
Within a program unit, the subscript value depends on the
values of the subscript expressions in the subscript and on
the dimensions of
declarator for the
subscript value is jr
identified.

the array
array in

the rt h

specified in
the program
element of

the array
unit. If the

the array is

5-5 s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

5.4.2 Subscript Expression. A subscript expression is an
integer expression. A subscript expression may contain
array element references and function references. Note that
a restriction in the evaluation of expressions (6.6)
prohibits certain side effects. In particular, evaluation
of a function must not alter the value of any other
subscript expression within the same subscript.

Within a program unit, the value of each subscript
expression must be greater than or equal to the
corresponding lower dimension bound in the array declarator
for the array. The value of each subscript expression must
not exceed the corresponding upper dimension bound declared
for the array in the program unit. If the upper dimension
bound is an asterisk, the value of the corresponding
subscript expression must be such that the subscript value
does not exceed the size of the dummy array.

5.4.3 Subscript Value. The subscript value of a subscript
is specified in Table 1. The subscript value determines
which array element is identified by the array element name.
Within a program unit, the subscript value depends on the
values of the subscript expressions in the subscript and on
the dimensions of the array specified in the array
declarator for the array in the program unit. If the
subscript value is r_, the r_th element of the array is
identified.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 5-5

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

Table 1

Subscript Value

n Dimension
Declarator

Subscript Subscript
Value

1 (d ,) (s ,) S i

2 <d , , d2) (s, , s2) 1+(s,-1)
+ (s2-1)*d ,

3 (d,,d2 , d3) (S,,s2 , s3) 1 + (s , -1)
+ (s2-1)*d ,
+(s3-1)*d,*d2

40 Notes for Table 1:

i (1) n is the number of dimensions, 1 < n < 3.

45

(2) di is the value of the upper bound of the ith
dimension. di is also the size of the ith dimension.

50 |

(3) si is the integer value of the ith subscript
expression.

55

Page 5-6s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

5

10

15

20

25

30

35

Notes for Tab Ie 1 : 40

(1) n is the number of dimensions, 1 in i 7.

(2) ji is the value of the lower
dimension.

bound of the i th
45

(3) ki is the value of the upper
dimension.

bound of the i t h

(4) If only the upper bound is specified, then ji = 1 • 50

(5) Si is the integer value of
expression .

the ith subscript

(6) di = ki-ji+1 is the size of the
the value of the lower bound is 1

it h dimension.
, then dr = k\ .

If 55

Table 1

Subscri pt Value

n Dimension
Dec 1 arator

Subscript Subscript
Value

1 <j.:k,> (s,) 1+(s,-j,)

2 (ji:k|,j2:k2) (s,,s2) 1+(s,-j,)
+(s2-j2)*d|

3 < j i *• k , , j 2 : k2, j 3: k3) (SI.S2.S3) 1 + (s j,)
+ (s 2 - j 2) * d 1

+(s3-j3)*d2*d,

■
• •

-

n (ji:k|,...,jn:kn) (S i , . . . , S n) 1+(s,-j,)
+ (s2-j 2) *d ,
+ <s3-j 3)*d2*d,
+.

+(sn-jn)*dn-i
* d n - 2 * • • .*d,

Full Language Page 5-6

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

| Note that a subscript of (1), (1,1), or (1,1,1) has a
subscript value of one and identifies the first element of

; the array. A subscript of the form (d,,...,dn) identifies
the last element of the array,* its subscript value is equal
to the number of elements in the array.

The subscript value and the subscript expression value are
not necessarily the same. In the example:

DIMENSION A(10),8(10,10)
A(2) = B(1,2)

A (2) Identifies the second element of A, the subscript is
(2) with a subscript value of two, and the subscript
expression is 2 with a value of two. B(1 ,2) identifies the
eleventh element of B, the subscript is (1,2). with a
subscript value of eleven, and the subscript expressions
are 1 and 2 with values of one and two.

5•5 Dummy and Actual Arrays

A dummy array is an array for which the array declarator is
a dummy array declarator. An assumed-size dummy array is a
dummy array for which the array declarator is an assumed-
size array declarator. A dummy array is permitted only in a
function or subroutine subprogram (Section 15).

An actual array is an array for which the array declarator
is an actual array declarator. Each array in the main
program is an actual array and must have a constant array
declarator. A dummy array may be used as an actual
argument.

5.5.1 Adjustable Arrays and Adjustable Dimensions. An
adjustable array is an array for which the array declarator
is an adjustable array declarator. In an adjustable array
declarator, those dimension declarators that contain a
variable name are called adjustable dimensions.

An adjustable array declarator must be a dummy array
declarator. The array name must appear in the dummy
argument list of the subprogram. A variable name that
appears in a dimension bound of an array must also appear as
a name either in the dummy argument list or in a common
block in that subprogram.

At the time of execution of a reference to a function or
subroutine containing an adjustable array in its dummy
argument list, each actual argument that corresponds to a
dummy argument appearing in a dimension bound for the array
and each variable in common appearing in a dimension bound
for the array must be defined with an integer value. The
values of those dummy arguments or variables in common
determine the size of the corresponding adjustable dimension

5-7s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

Note that a subscript of the form has a
subscript value of one and identifies the first element of
the array. A subscript of the form (k,,...,kn) identifies !
the last element of the array; its subscript value is equal
to the number of elements in the array.

The subscript value and the subscript expression value are
not necessarily the same, even for a one-dimensional array.
In the examp Ie:

DIMENSION A(-1:8),B(10,10) |
A(2) = B(1,2)

A<2) identifies the fourth element of A, the subscript is
(2) with a subscript value of four, and the subscript
expression is 2 with a value of two. B(1,2) identifies the
eleventh element of B, the subscript is (1,2) with a
subscript value of eleven, and the subscript expressions
are 1 and 2 with values of one and two.

5.5 Dummy and Actual Arrays

A dummy array is an array for which the array declarator is
a dummy array declarator. An assumed-size dummy array is a
dummy array for which the array declarator is an assumed-
size array declarator. A dummy array is permitted only in a
function or subroutine subprogram (Section 15).

An actual array is an array for which the array declarator
is an actual array declarator. Each array in the main
program is an actual array and must have a constant array
declarator. A dummy array may be used as an actual
argument.

5.5.1 Adjustable Arrays and Adjustable Dimensions. An
adjustable array is an array for which the array declarator
is an adjustable array declarator. In an adjustable array
declarator, those dimension declarators that contain a
variable name are called adjustable dimens ions.

An adjustable array declarator must be a dummy array
declarator. At least one dummy argument list of the
subprogram must contain the name of the adjustable array. A
variable name that appears in a dimension bound expression
of an array must also appear as a name either in every dummy
argument list that contains the array name or in a common
block in that subprogram.

At the time of execution of a reference to a function or
subroutine containing an adjustable array in its dummy
argument list, each actual argument that corresponds to a
dummy argument appearing in a dimension bound expression for
the array and each variable in common appearing in a
dimension bound expression for the array must be defined
with an integer value. The values of those dummy arguments
or variables in common, together with any constants and

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page 5-7

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

5

5.7 Character Substring

Substrings are not included in the subset.

10 5.7.1 Substrinq Name. Substrings are not included in the
subset.

15

20

25

30

35

40

5.7.2 Substring Expression. Substrings are not included in
the subset.

50

55

Page 5-9s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

(11) In a SAVE statement

5.7 Character Subs t rinq

A character substring is a contiguous portion of a character
datum and is of type character. A character substring is
identified by a substring name and may be assigned values
and referenced.

5.7.1 Substring Name. The forms of a substring name are:

v (te,] : I e.2 3)

a. (_s [,sl...)([e.i] : I e2])

where: v. is a character variable name

a (s [,_s]. . .) is a character array element name

e., and e.2 are each an integer expression and are
cal led substring expressions

The value e., specifies the leftmost character position of
the substring, and the value e2 specifies the rightmost
character position. For example, A(2:4) specifies
characters in positions two through four of the character
variable A, and B(4,3)(1:6) specifies characters in
positions one through six of the character array element
B (4,3) .

The values of e.! and e.2 must be such that:

1 _£ e.i < e.2 < I en

where I en is the length of the character variable or array
element (8.4.2). If e., is omitted, a value of one is implied
for e., . If e.2 is omitted, a value of I en is implied for e.2 .
Both e.i and e.2 may be omitted; for example, the form v.(:) is
equivalent to _v, and the form a.(s. [,sj...)(:) is equivalent
to a.(s. [.£]...). The length of a character substring is
e.2 - e, + 1 .

5.7.2 Substring Expression. A substring expression may be
any integer expression. A substring expression may contain
array element references and function references. Note that
a restriction in the evaluation of expressions (6.6)
prohibits certain side effects. In particular, evaluation
of a function must not alter the value of any other
expression within the same substring name.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 5-9

ANSI X3.9-1978 FORTRAN 77

5

10

15

20

25

30

35

40

45

50

6. EXPRESSIONS

This section describes the formation, interpretation, and
evaluation rules for arithmetic, character, relational, and
logical expressions. An expression is formed from operands,
operators, and parentheses.

6.1 Arithmetic Expressions

An arithmetic expression is used to
computation. Evaluation of an arithmetic
a numeric value.

express a numeric
expression produces

The simplest form of an arithmetic expression is an unsigned
arithmetic constant, arithmetic variable reference,
arithmetic array element reference, or arithmetic function
reference. More complicated
formed by using one or more
with arithmetic operators
operands must identify values

arithmetic expressions may be
arithmetic operands together
and parentheses. Arithmetic
of type integer or real.

6.1.1 Arithmetic Operators. The five arithmetic operators
are:

Operator Representing i

* * Exponentiation
/ Division
* Multiplication
- Subtraction or Negation
+ Addition or Identity

Each of the operators **, /, and * operates on a pair of
operands and is written between the two operands. Each of
the operators + and - either:

(1) operates on a pair of operands and is written between
the two operands, or

(2) operates on a single operand and is written
preceding that operand.

6.1.2 Form and Interpretation of Arithmetic Expressions.
The interpretation of the expression formed with each of the
arithmetic operators in each form of use Is as follows:

55

Page 6-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

6. EXPRESSIONS

This section describes the formation, interpretation, and
evaluation rules for arithmetic, character, relational, and
logical expressions. An expression is formed from operands,
operators, and parentheses.

6.1 Arithmetic Expressions

An arithmetic expression is used to express a numeric
computation. Evaluation of an arithmetic expression produces
a numeric value.

The simplest form of an arithmetic expression is an unsigned
arithmetic constant, symbolic name of an arithmetic
constant, arithmetic variable reference, arithmetic array
element reference, or arithmetic function reference. More
complicated arithmetic expressions may be formed by using
one or more arithmetic operands together with arithmetic
operators and parentheses. Arithmetic operands must
identify values of type integer, real, double precision, or
comp lex.

6.1.1 Arithmetic Operators. The five arithmetic operators
are:

Operator Representing

* t Exponentiation
/ Division
* Multiplication
- Subtraction or Negation
+ Addition or Identity

Each of the operators **, /, and * operates on a pair of
operands and is written between the two operands. Each of
the operators + and - either:

(1) operates on a pair of operands and is written between
the two operands, or

(Z) operates on a single operand and is written
preceding that operand.

6.1.Z Form and Interpretation of Arithmetic Expressions.
The interpretation of the expression formed with each of the
arithmetic operators in each form of use is as follows:

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 6-1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 EXPRESSIONS

Use of Operator Interpretation

x , * * x 2 Exponentiate x, to the power x2

X l / x2 Divide x, by x2

X i * x2 Multiply x, and x2

x 1 - X2 Subtract x2 from x,

- X2 Negate x2

XI + X2 Add x, and x2

+ X 2 Same as x2

where: x, denotes the operand to the left of the operator

x2 denotes the operand to the right of the operator

The interpretation of a division may depend on the data
types of the operands (6.1.5).

A set of formation rules is used to establish the
interpretation of an arithmetic expression that contains two
or more operators. There is a precedence among the
arithmetic operators, which determines the order in which
the operands are to be combined unless the order is changed
by the use of parentheses. The precedence of the arithmetic
operators Is as foilows:

Opera tor Precedence

* *
* and /
+ and -

Highest
Intermed!ate
Lowest

For example, in the expression

- A ** 2

the exponentiation operator (**) has precedence over the
negation operator (-); therefore, the operands of the
exponentiation operator are combined to form an expression
that is used as the operand of the negation operator. The
interpretation of the above expression is the same as the
interpretation of the expression

- (A ** 2)

The arithmetic operands are:

6-2s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

Use of Operator Interpretation

X | * * x 2 Exponentiate x, to the power x2

x, / x2 Divide x, by x2

X i * Xj Multiply x, and x2

X i " x 2 Subtract x2 from x.

- X j Negate x2

X, + X2 Add x, and x2

+ Xj Same as x2

where: xt denotes the operand to the left of the operator

X] denotes the operand to the right of the operator

The interpretation of a division may depend on the data
types of the operands (6.1.5).

A set of formation rules is used to establish the
interpretation of an arithmetic expression that contains two
or more operators. There is a precedence among the
arithmetic operators, which determines the order in which
the operands are to be combined unless the order is changed
by the use of parentheses. The precedence of the arithmetic
operators is as follows:

Operator Precedence

* *
* and /
+ and -

Highest
I ntermediate
Lowest

For example, in the expression

- A ** 2

the exponentiation operator (**) has precedence over the
negation operatbr (-); therefore, the operands of the
exponentiation operator are combined to form an expression
that is used as the operand of the negation operator. The
interpretation of the above expression is the same as the
interpretation of the expression

- (A ** 2)

Tfce arithmetic operands are:

5

10

15

20

25

30

35

40

45

50

55

FulI Language Page 6-2

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

(1) Primary

(2) Factor

5 (3) Term

(4) Arithmetic expression

The formation ru 1 es to be applied in establishing the
10 interpretation of arithmetic expressions are in 6.1.2.1

through 6.1.2.4.

6.1 .2.1 Primaries The orimaries are :

15 (1)

|

Unsigned arithmetic constant (4.2.3)

1

(2) Arit hme tic variable reference (2.5)
20

(3) Arithmetic array element reference (5 .3)

(4) Arithmetic function reference (15.2)

25 (5) Arithmetic
(6.1.2.4)

expression enc1osed i n parentheses

6.1 .2.2 Factor . The forms of a factor are:

30 (1) Primary

(2) Primary * * factor

Thus, a factor is formed from a sequence of one or more
35 primaries separated by the exponentiation operator. Form

(2) indicates that in interpreting a factor containing two
or more exponentiation operators, the primaries are combined
from right to left. For example, the factor

40 2* *3* *2

45

50

55

has the same interpretation as the factor

2* *(3* *2)

6.1.2.3 Term. The forms of a term are:

(1) Factor

(2) Term / factor

<3) Term * factor

Thus, a term is formed from a sequence of one or more
factors separated by either the multiplication operator or
the division operator. Forms (2) and (3) indicate that in

Page 6-3s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

(1) Primary

(2) Factor

(3) Term

(4) Arithmetic expression

The formation rules to be applied in establishing the
interpretation of arithmetic expressions are in 6.1.2.1
through 6.1.2.4.

6.1.2.1 Primaries. The primaries are:

(1) Unsigned arithmetic constant (4.2.3)

(2) Symbolic name of an arithmetic constant (8.6)

(3) Arithmetic variable reference (2.5)

(4) Arithmetic array element reference (5.3)

(5) Arithmetic function reference (15.2)

(6) Arithmetic expression enclosed in parentheses
(6.1.2.4)

6.1.2.2 Factor. The forms of a factor are:

(1) Primary

(2) Primary * * factor

Thus, a factor is formed from a sequence of one or more
primaries separated by the exponentiation operator. Form
(2) indicates that in interpreting a factor containing two
or more exponentiation operators, the primaries are combined
from right to left. For example, the factor

2 * * 3 * * 2

has the same interpretation as the factor

2**(3**2)

6.1.2.3 Term. The forms of a term are:

(1) Factor

(2) Term / factor

(3) Term * factor

Thus, a term is formed from a sequence of one or more
factors separated by either the multiplication operator or
the division operator. Forms (2) and (3) indicate that in

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 6-3

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 EXPRESSIONS

interpreting a term containing two or more multiplication or
division operators, the factors are combined from left to
right.

6.1.2.4 Arithmetic Expression. The forms of an arithmetic
expression are:

(1) Term

(2) + term

(3) - term

(4) Arithmetic expression + term

(5) Arithmetic expression - term

Thus, an arithmetic expression is formed from a sequence of
one or more terms separated by either the addition operator
or the subtraction operator. The first term in an
arithmetic expression may be preceded by the identity or the
negation operator. Forms (4) and (5) indicate that in
interpreting an arithmetic expression containing two or more
addition or subtraction operators, the terms are combined
from left to right.

Note that these formation rules do not permit expressions
containing two consecutive arithmetic operators, such as
A**-B or A+-B. However, expressions such as A**(-B) and
A+(-B) are permitted.

6.1.3 Arithmetic Constant Expression-
constant exoression is an arithmetic
each primary is an arithmetic constant
constant expression enclosed in
exponentiation operator is not permitted
is of type integer. Note that variable,
function references are not allowed.

An arithmetic
expression in which

or an arithmetic
parentheses. The
unless the exponent
array element, and

6.1.3.1 Integer Constant Expression. An integer constant
expression is an arithmetic constant expression in which
each constant is of type integer. Note that variable, array
element, and function references are not allowed.

The following are examples of integer constant expressions:

3
-3
-3 + 4

6.1.4 Type and Interpretation of Arithmetic Expressions.
The data type of a constant is determined by the form of the
constant (4.2.1). The data type of an arithmetic variable
reference, arithmetic array element reference, or arithmetic

6-4s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

interpreting a term containing two or more multiplication or
division operators, the factors are combined from left to
right.

6.1.2. 4 Arithmetic Expression. The forms of an arithmetic 5
exoression are:

(1) Term

(2) + term 10

(3) - term

(4) Arithmetic expression + term
15

(5) Arithmetic expression - term

Thus, an arithmetic expression is formed from a sequence of
one or more terms separated by either the addition operator
or the subtraction operator. The first term in an
arithmetic expression may be preceded by the identity or the
negation operator. Forms (4) and (5) indicate that in
interpreting an arithmetic expression containing two or more
addition or subtraction operators, the terms are combined
from left to right.

Note that these formation rules do not permit expressions
containing two consecutive arithmetic operators, such as
A**-B or A + -B. However, expressions such as A * *(-B) and
A+(-B) are permitted. 30

6.1.3 Arithmetic Constant Expression. An arithmetic
constant expression is an arithmetic expression in which
each primary is an arithmetic constant, the symbolic name of
an arithmetic constant, or an arithmetic constant expression
enclosed in parentheses. The exponentiation operator is not
permitted unless the exponent is of type integer. Note that
variable, array element, and function references are not
a I I owed.

6.1.3.1 Integer Constant Expression. An integer constant
expression is an arithmetic constant expression in which
each constant or symbolic name of a constant is of type
integer. Note that variable, array element, and function
references are not allowed.

The following are examples of integer constant expressions:

3
-3 50
-3 + 4

6.1.4 Type and Interpretation of Arithmetic Expressions.
The data type of a constant is determined by the form of the
constant (4.2.1). The data type of an arithmetic variable 55
reference, symbolic name of an arithmetic constant, |

35

40

45

20

25

FuI I Language Page 6-4

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

15

20

25

function reference is determined by the name of the datum or
function (4.1.2). The data type of an arithmetic expression
containing one or more arithmetic operators is determined
from the data types of the operands.

Integer expressions and real expressions are arithmetic
expressions whose values are of type integer and real,
respectiveIy.

When the operator + or - operates on a single operand, the
data type of the resulting expression is the same as the
data type of the operand.

When an arithmetic operator operates on a pair of operands,
the data type of the resulting expression is given in Tables
2 and 3. In these tables, each letter I or R represents an
operand or result of type integer or real, respectively.

The type of the result is indicated by the I or R that
precedes the equals, and the interpretation is indicated by
the expression to the right of the equals. REAL is the
type-conversion function described in 15.10.

Table 2

30 Type and Interpretation of Result for x, + x2

x2 Ia r2
X l

I, I = I. + la R = REAL(I,) + R2

R. R = R, + REAL(12) R - R i + R2

45

50

55

Page 6-5s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

arithmetic array element reference, or arithmetic function
reference is determined by the name of the datum or function
(4.1.2). The data type of an arithmetic expression
containing one or more arithmetic operators is determined
from the data types of the operands.

Inteoer expressions. real expressions. double precision
expressi ons. and complex expressi ons are arithmetic
expressions whose values are of type integer, real, double
precision, and complex, respectively.

When the operator + or - operates on a single operand, the
data type of the resulting expression is the same as the
data type of the operand.

When an arithmetic operator operates on a pair of operands,
the data type of the resulting expression is given in Tables
2 and 3. In these tables, each letter I, R, D, or C
represents an operand or result of type integer, real,
double precision, or complex, respectively.

The type of the result is indicated by the I, R, D, or C
that precedes the equals, and the interpretation is
indicated by the expression to the right of the equals.
REAL, DBLE, and CMPLX are the type-conversion functions
described in 15.10.

Table 2

Type and Interpretation of Result for x, + xa

x2
X 1

la Ra

I. I = I, ♦ la R = REAL CIt) + R2

R. R = R, + REAL(I2> R = R, + R2

D, D = D, + DBLE(12) D = D, + DBLE(R2>

c, C=C,+CMPLX(REAL(I2),0.) C = C, + CMPLX(R2,0.)

x2
X |

Da Ca

I, D = DBLE(I,) ♦ Da C = CMPLX(REAL(I,) ,0.> + C2

R. D = DBLE(R,) + D2 G = CMPLX(R,,0.) + C2

D, D = D, + D2 Prohibited

c, Prohibited C - C i + C 2

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 6-5

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

Tables giving the type and interpretation of expressions
involving -, *, and / may be obtained by replacing all
occurrences of + in Table 2 by *, or /, respectively.

5 Table 3

Type and Interpretation of Result for x,**x2

10

15

x2 la r2
X 1

I, I — I | * I g R = REAL(I,)**R2

j R. R = R , * * 12 R = R,* *R2

20

25

30

35

40

45

50

Except for a value raised to an integer power. Tables 2 and
3 specify that if two operands are of different type, the
operand that differs in type from the result of the
operation is converted to the type of the result and then
the operator operates on a pair of operands of the same
type. When a primary of type real is raised to an integer
power, the integer operand need not be converted. If the
value of I2 is negative, the interpretation of I,**I2 is the
same as the interpretation of 1/(I ,* * IABS(12)), which is
subject to the rules for integer division (6.1.5). For
example, 2**(-3) has the value of 1/(2**3), which is zero.

The type and interpretation of an expression that consists
55 of an operator operating on either a single operand or a

pair of operands are independent of the context in which the

Page 6-6s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

Tables giving the type and interpretation of expressions
involving *, and / may be obtained by replacing all
occurrences of + in Table 2 by *, or /, respectively.

Table 3

Type and Interpretation of Result for x,**x2

X2
X I

lz r2

I. I ” I | * I 2 R = REAL(I,)**R2

R, R = R , * * 12 R = R , * * R 2

D, D = D i * * 12 D = D,* *DBLE(R2)

c, C - C i * * 12 C = C,**CMPLX(R2,0.)

xa
X |

Da c2

I, D = DBLE(I,)**D2 C = CMPLX(REAL(I,),0.)**C2

R, D = DBLE(R,) * *02 C = CMPLX(R,,0.)**C2

D, D - D , * * D 2 Prohibited

c, Prohibited C = C , * * C 2

Four entries jn Table 3 specify an interpretation to be a
complex value raised to a complex power. In these cases,
the value of the expression is the "principal value"
determined by x,**x2 = EXP(x2*L0G(x,)), where EXP and LOG
are functions described in 15.10.

Except for a value raised to an integer power, Tables 2 and
3 specify that if two operands are of different type, the
operand that differs in type from the result of the
operation is converted to the type of the result and then
the operator operates on a pair of operands of the same
type. When a primary of type real, double precision, or
complex is raised to an integer power, the integer operand
need not be converted. If the value of I2 is negative, the
interpretation of I|**I2 is the same as the interpretation
of 1 / (I i * *ABS(I2)), which is subject to the rules for
integer division (6.1.5). For example, 2**(-3) has the
value of 1/(2**3), which is zero.

Tire type and interpretation of an expression that consists
of an operator operating on either a single operand or a
pair of operands are independent of the context in which the

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 6-6

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

15

20

25

30

35

expression appears. In particular, the type and
interpretation of such an expression are independent of the
type of any other operand of any larger expression in which
it appears. For example, if X is of type real, J is of type
integer, and INT is the rea I-to-integer conversion function,
the expression INT(X+J) is an integer expression and X+J is
a real expression.

6.1.5 Inteoer Division. One operand of type integer may be
divided by another operand of type integer. Although the
mathematical quotient of two integers is not necessarily an
integer. Table 2 specifies that an expression involving the
division operator with two operands of type integer is
interpreted as an expression of type integer. The result of
such a division is called an inteoer auotient and is
obtained as follows: If the magnitude of the mathematical
quotient is less than one, the integer quotient is zero.
Otherwise, the integer quotient is the integer whose
magnitude is the largest integer that does not exceed the
magnitude of the mathematical quotient and whose sign is the
same as the sign of the mathematical quotient. For example,
the value of the expression (-8) /3 is (-2).

6.2 Character Expressions

A character expression is used to express a character
string. Evaluation of a character expression produces a
result of type character.

The simplest form of a character expression is a character
constant, character variable reference, or character array
element reference.

6.2.1 Character Operator. The concatenation operator is
not included in the subset.

45

50

55 |

Page 6-7s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

expression appears. In particular, the type and
interpretation of such an expression are independent of the
type of any other operand of any larger expression in which
it appears. For example, if X is of type real, J is of type
integer, and INT is the rea I — t o — integer conversion function,
the expression INTCX+J) is an integer expression and X+J is
a reaI expression.

6.1.5 I nteaer Division. One operand of type integer may be
divided by another operand of type integer. Although the
mathematical quotient of two integers is not necessarily an
integer, Table 2 specifies that an expression involving the
division operator with two operands of type integer is
interpreted as an expression of type integer. The result of
such a division is called an integer quotient and is
obtained as follows: If the magnitude of the mathematical
quotient is less than one, the integer quotient is zero.
Otherwise, the integer quotient is the integer whose
magnitude is the largest integer that does not exceed the
magnitude of the mathematical quotient and whose sign is the
same as the sign of the mathematical quotient. For example,
the value of the expression (-8) / 3 is (-2).

6.2 Character Expressions

A character expression is used to express a character
string. Evaluation of a character expression produces a
result of type character.

The simplest form of a character expression is a character
constant, symbolic name of a character constant, character
variable reference, character array element reference,
character substring reference, or character function
reference. More complicated character expressions may be
formed by using one or more character operands together with
character operators and parentheses.

6.2.1 Character Operator. The character operator is:

Operator Representing

// Concatenation

The interpretation of the expression formed with the
character operator is:

Use of Operator Interpretation

x, II x2 Concatenate x, with x2

where: x, denotes the operand to the left of the operator

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 6-7

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10
6.2.2 Form and Interpretation of Character Expressions. A
character expression must identify a value of type
character .

15

20

6.2.2.1 Character Primaries. The character primaries are:

(1) Character constant (4.8.1)

25
(2) Character variable reference (2.5)

(3) Character array element reference (5.3)

30 |

(4) Character
(6.2.2.2)

expression enclosed in parentheses

35 6.2.2.2 Character Expression. The form of a character
expression is:

(1) Character primary

40

45

50 |

55 |

Page 6-8s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

x2 denotes the operand to the right of the operator

The result of a concatenation operation is a character
string whose value is the value of x, concatenated on the
right with the value of x2 and whose length is the sum of 5
the lengths of x, and x2. For example, the value of * A B' //
* CDE' is the string ABODE.

6.2.2 Form and _Interpretation of Character Expressions. A
expression and the operands of a character

must identify values of type character. Except
character
expression
in a character assignment
expression must not involve
whose length specification
(8.4.2) unless the operand
constant.

statement (10.4),
concatenation of
is an asterisk in
is the symbo I ic

a character
an operand
parentheses
name of a

10

15

6.2.2. 1 Character Primaries. The character Drimaries are:

(1) Character constant (4.8.1) 20

(2) Symbolic name of a character constant (8. 6) ■
(3) Character variable reference (2.5)

25
(4) Character array element reference (5.3)

(5) Character substring reference (5.7)

(6) Character function reference (15.2) 30

(7) Character expression enclosed in parentheses
(6.2.2.2)

6.2.2. 2 Character Exoression. The forms of a character 35
expression are:

(1) Character primary

(2) Character expression // character primary 40

Thus, a character expression is a sequence of one or more
character primaries separated by the concatenation operator.
Form (2) indicates that in a character expression containing
two or more concatenation operators, the primaries are
combined from left to right to establish the interpretation
of the expression. For example, the formation rules specify
that the interpretation of the character expression

45

• AB' // CD’ // ' EF • 50

is the
expression

same as the interpretation of the character

O
Q

<
 // 1 CD') // 'EF' 55

Full Language Page 6-8

5

10

15

20

25
•*

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 EXPRESSIONS

Parentheses have no effect on the value of a character
expression.

6.2.3 Character Constant Expression. A character constant
expression is a character expression in which each primary
is a character constant or a character constant expression
enclosed in parentheses. Note that variable, array element,
and function references are not allowed.

6.3 Relational Expressions

A relational expression is used to compare the values of two
arithmetic expressions or two character expressions. A
relational expression may not be used to compare the value
of an arithmetic expression with the value of a character
expression.

Relational expressions may appear only within logical
expressions. Evaluation of a relational expression produces
a result of type logical, with a value of true or false.

6.3.1 Relational Operators. The relational operators are:

Operator Representing

.LT. Less than

.LE. Less than or equal to

.EG. Equal to

.NE. Not equa 1 to

.GT. Greater than

.GE. Greater than or equal to

6.3.2 Arithmetic Relational Expression. The form of an
arit hme tic relational expression is :

e.i r e I op e. 2

where: e., and e.2 are each an integer or real expression

r e I op is a relational operator

6.3.3 Interpretation of Arithmetic Relational Expressions.
An arithmetic relational expression is interpreted as having
the logical value true if the values of the operands satisfy
the relation specified by the operator. An arithmetic
relational expression is interpreted as having the logical

6-9s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

The value of the character expression in this example is the
same as that of the constant 'ABCDEF'. Note that
parentheses have no effect on the value of a character
expression.

6.Z.3 Character Constant Expression. A character constant
expression is a character expression in which each primary
is a character constant, the symbolic name of a character
constant, or a character constant expression enclosed in
parentheses. Note that variable, array element, substring,
and function references are not allowed.

6.3 Relational Expressions

A relational expression is used to compare the values of two
arithmetic expressions or two character expressions. A
relational expression may not be used to compare the value
of an arithmetic expression with the value of a character
expression.

Relational expressions may appear only within logical
expressions. Evaluation of a relational expression produces
a result of type logical, with a value of true or false.

6.3.1 Relational Operators. The relational operators are:

Operator Representing

. LT. Less than

.LE. Less than or equa 1 to

.EQ. Equal to

.NE. Not equa 1 to

.GT. Greater than

.GE. Greater than or equal to

6.3.2 Arithmetic Relational Expression. The form of an
arithmetic relational expression is :

e., r e I op e_2

where: e., and e.2 are each an integer, real, double
precision, or complex expression

r e I op is a relational operator

A complex operand is permitted only when the relational
operator is .EQ. or .NE.

6.3.3 Interpretation of Arithmetic Relational Expressions.
An arithmetic relational expression is interpreted as having
the logical value true if the values of the operands satisfy
the relation specified by the operator. An arithmetic
relational expression is interpreted as having the logical

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page 6-9

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 EXPRESSIONS

value false if the values of the operands do not satisfy the
relation specified by the operator.

If the two arithmetic expressions are of different types,
the value of the relational expression

e., r e I op g_2

is the value of the expression

((e.,) - (e.2)) r e I op 0

where 0 (zero) is of the same type as the expression
((e.,) - (je2)) , and r e I op is the same relational operator in
both expressions .

6.3.4 Character Relational Expression. The form of a
character relational expression is:

e.i re I op e.2

where: and e.2 are character expressions

r e I op is a relational operator

6.3.5 Interpretation of Character Relational Expressions.
A character relational expression is interpreted as the
logical value true if the values of the operands satisfy the
relation specified by the operator. A character relational
expression is interpreted as the logical value false if the
values of the operands do not satisfy the relation specified
by the operator .

The character expression e., is considered to be less than e_2
if the value of £, precedes the value of e.2 in the collating
sequence; e., is greater than e.2 if the value of £.1 follows
the value of e.2 in the collating sequence (3.1.5). Note that
the collating sequence depends partially on the processor;
however, the result of the use of the operators .E0. and
.NE. does not depend on the collating sequence. If the
operands are of unequal length, the shorter operand is
considered as if it were extended on the right with blanks
to the length of the longer operand.

6.4 LogicaI Expressions

A logical expression is used to express a logical
computation. Evaluation of a logical expression produces a
result of type logical, with a value of true or false.

The simplest form of a logical expression is a logic a I
constant, logical variable reference, logical array element
reference, logical function reference, or relational
expression. More complicated logical expressions may be

6-1 0 s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

value false if the values of the operands do not satisfy the
relation specified by the operator.

If the two arithmetic expressions are of different types,
the value of the relational expression

e., r e I op e2

is the value of the expression

((e,,) - (e.2)) re I op 0

where 0 (zero) is of the same type as the expression
((e.,) - (e.2)) , and r e I op is the same relational operator in
both expressions. Note that the comparison of a double
precision value and a complex value is not permitted.

6.3.4 Character Relational Expression. The form of a
character relational expression is:

where:

JLi r e I op e.2

e., and e.2 are character expressions

re 1 op is a relational operator

6.3.5 Interpretation of Character Relational Expressions.
A character relational expression is interpreted as the
logical value true if the values of the operands satisfy the
relation specified by the operator. A character relational
expression is interpreted as the logical value false if the
values of the operands do not satisfy the relation specified
by the operator.

The character expression e., is considered to be less than e_2
if the value of e., precedes the value of e.2 in the collating
sequence; e., is greater than e.2 if the value of e., follows
the value of e.2 in the collating sequence (3.1.5). Note that
the collating sequence depends partially on the processor;
however, the result of the use of the operators .EQ. and
.NE. does not depend on the collating sequence. If the
operands are of unequal length, the shorter operand is
considered as if it were extended on the right with blanks
to the length of the longer operand.

6.4 Logica I Expressions

A logical expression is used
computation. Evaluation of a logica
result of type logical, with a value

to express a logical
expression produces a

of true or false.

The simplest form of a
constant, symbolic name of
variable reference, logical
function reference, or
complicated logical expressi

logical expression is a logical
a logical constant, logical

array element reference, logical
relational expression. More

ons may be formed by using one

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page 6-10

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

15

20

formed by using one or more logical operands together with
logical operators and parentheses.

6.4.1 Looica I Operators. The logical operators are:

Opera tor Representing

.NOT. Logical Negation

.AND. Logical Conjunction

.OR. Logical Inclusive Disjunction

6.4.2 Form and Interpretation of Logical Expressions. A
set of formation rules is used to establish the
interpretation of a logical expression that contains two or
more logical operators. There is a precedence among the
logical operators, which determines the order in which the
operands are to be combined unless the order is changed by
the use of parentheses. The precedence of the logical
operators is as follows:

Operator Precedence

.NOT. Highest

.AND.

.OR. Lowest

35

40

45

For example, in the expression

A .OR. B .AND. C

the .AND. operator has higher precedence than the .OR.
operator; therefore, the interpretation of the above
expression is the same as the interpretation of the
expression

A .OR. (B .AND. C)

The logical operands are:

(1) Logical primary

(2) Logical factor

(3) Logical term

(4) Logical dis j unc t

(5) Logical expression

Page 6-11 s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN

or more logical operands together with logical operators and
parentheses.

6.4.1 Looica I Operators. The logical operators are:

Operator Representing

.NOT. Logical Negation

.AND. Logical Conjunction

.OR. Logical Inclusive Disjunction

. EQV. Logica1 Equiva1ence

.NEQV. Logical Nonequivalence

6.4.Z Form and Interpretation of Logical Expressions. A
set of formation rules is used to establish the
interpretation of a logical expression that contains two or
more logical operators. There is a precedence among the
logical operators, which determines the order in which the
operands are to be combined unless the order is changed by
the use of parentheses. The precedence of the logical
operators is as follows:

Operator Precedence

.NOT. Highest

.AND.

.OR.
.EQV. or .NEQV. Lowest

For example, in the expression

A .OR. B .AND. C

the .AND. operator has higher precedence than the .OR.
operator; therefore, the interpretation of the above
expression is the same as the interpretation of the
expression

A .OR. (B .AND. C)

The logical operands are:

(1) Logical primary

(2) Logical factor

(3) Logical term

(4) Logical dis j unc t

(5) Logical expression

77

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 6-11

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 EXPRESSIONS

The formation rules to be applied in establishing the
interpretation of a logical expression are in 6.4.2.1
through 6.4.2.5.

6.4.2.

(1)

Logical Primaries. The logical primaries are:

Logical constant (4.7.1)

(2) Logical variable reference (2.5)

(3) Logical array element reference (5.3)

(4) Logical function reference (15.2)

(5) Relational expression (6.3)

(6) Logical expression enclosed in parentheses (6.4.2.5)

6.4.2.2 Logical Factor. The forms of a logical factor are:

(1) Logical primary

(2) .NOT. logical primary

6.4.2.3 Logical Term. The forms of a logical term are:

(1) Logical factor

(2) Logical term .AND. logical factor

Thus, a logical term is a sequence of logical factors
separated by the .AND. operator. Form (2) indicates that in
interpreting a logical term containing two or more .AND.
operators, the logical factors are combined from left to
right.

6.4.2.4 Logical Disjunct . The forms of a logical, disjunct
are:

(1) Logical term

(2) Logical disjunct .OR. logical term

Thus, a logical disjunct is a sequence of logical terms
separated by the .OR. operator. Form (2) indicates that in
interpreting a logical disjunct containing two or more .OR.
operators, the logical terms are combined from left to
right.

6-IZs Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

The formation rules to be applied in establishing the
interpretation of a logical expression are in 6.A.2.1
through 6.4.2.5.

6.4.2.1 Logical Primaries. The logical primaries are:

(1) Logical constant (4.7.1)

(2) Symbolic name of a logical constant (8.6)

(3) Logical variable reference (2.5)

(4) Logical array element reference (5.3)

(5) Logical function reference (15.2)

(6) Relational expression (6.3)

(7) Logical expression enclosed in parentheses (6.4.2.5)

6.4.2.2 Logica I Factor . The forms of a logical factor are:

(1) Logical primary

(2) .NOT. logical primary

6.4.2.3 Logical Term. The forms of a logical term are:

(1) Logical factor

(2) Logical term .AND. logical factor

Thus, a logical term is a sequence of logical factors
separated by the .AND. operator. Form (2) indicates that in
interpreting a logical term containing two or more .AND.
operators, the logical factors are combined from left to
right.

6.4.2.4 Logical Disjunct. The forms of a logical dis i unc t
are:

(1) Logical term

(2) Logical disjunct .OR. logical term

Thus, a logical disjunct is a sequence of logical terms
separated by the .OR. operator. Form (2) indicates that in
interpreting a logical disjunct containing two or more .OR.
operators, the logical terms are combined from left to
right.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 6-12

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

6.4. 2.5 Logical Expression. The form of a logical
exoression is:

(1) Logical dis junct

10

The logical equivalence operators, ,EQV. and .NEQV., are not
included in the subset.

15

20

25

30

35

40

45

50

6.4.3 Value of Logical Factors. Terms, Disiuncts. and
Exoressions. The value of a logical factor involving

. NOT. is shown below:

X2 .NOT. x 2

true
false

false
true

The value of a logical term involving .AND. is shown below:

X i X 2 x, .AND. x 2

true true true
true false false
false true false
false false false

The value of a logical disjunct involving .OR. is shown
below:

X i X 2 xi .OR. xa

true true true
true false true
false true true
false false false

55

Page 6-13s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

6.4.2.5 Logica I Expression . The forms of a logical
exoression are:

(1) Logica 1 disjunct

(2) Logical expression .EQV. logical disjunct

(3) Logical expression .NEQV. logical disjunct

Thus, a logical expression is a sequence of logical
disjuncts separated by either the .EQV. operator or the
.NEQV. operator. Forms (2) and (3) indicate that in
interpreting a logical expression containing two or more
.EQV. or .NEQV. operators, the logical disjuncts are
combined from left to right.

6.4.3 Value of Logical Factors. Terms. Disiuncts. and
Exoressions. The value of a logical factor involving

. NOT. is shown below:

*2 .NOT. x j

true
false

false
true

The value of a logical term involving .AND. is shown below:

X 1 X 2 x, .AND . x 2

true true true
true false false
false true false
false false false

The value of a logical disjunct involving .OR. is shown
below:

X i X 2 x, .OR . x 2

true true true
true false true
false true true
false false false

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 6-13

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 EXPRESSIONS

6.4.4 Logical Constant Expression. A logical constant
expression is a logical expression in which each primary is
a logical constant, a relational expression in which each
primary is a constant expression, or a logical constant
expression enclosed in parentheses. Note that variable,
array element, and function references are not allowed.

6.5 Precedence of Operators

In 6.1.2 and 6.4.2 precedences have been established among
the arithmetic operators and the logical operators,
respectively. No precedence has been established among the
relational operators. The precedences among the various
operators are:

Operator Precedence

Arithmetic Highest
Re 1 ationa 1
Logical Lowest

An expression may contain more than one kind of operator.
For example, the logical expression

L .OR. A + B .GE. C

where A, B, and C are of type real, and L is of type
logical, contains an arithmetic operator, a relational

6-1 4s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

The value of a logical expression involving .EQV. is shown
below:

X 1 X 2 x, .EQV. xj

true true true
true false false
false true false
false false true

The value of a logical expression involving .NEQV. is shown
below:

X i X 2 x, .NEQV. x2

true true false
true false true
false true true
false false false

6.4.4 Loaical Constant Expression. A logical constant
expression is a logical expression in which each primary is
a logical constant, the symbolic name of a logical constant,
a relational expression in which each primary is a constant
expression, or a logical constant expression enclosed in
parentheses. Note that variable, array element, and
function references are not allowed.

6.5 Precedence of Operators

In 6.1.2 and 6.4.2 precedences have been established among
the arithmetic operators and the logical operators,
respectively. There is only one character operator. No
precedence has been established among the relational
operators. The precedences among the various operators are:

Operator Precedence

Arithmetic Highest
Character
Re 1 ationa 1
Logica1 Lowest

An expression may contain more than one kind of operator.
For example, the logical expression

L .OR. A + B .GE. C

where A, B, and C are of type real, and L is of type
logical, contains an arithmetic operator, a relational

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 6-14

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

operator, and a logical operator. This expression would be
interpreted the same as the expression

c
L .OR. ((A + B) .GE. C)

J
6.5.1 Summary of I nterDretation Rules. The order in which
primaries are combined using operators
fo 1 lowing:

is determined by the

10 (1) Use of parentheses

(2) Precedence of the operators

15
(3) Right-to-left

factor
interpretation of exponentiations i n a

(4) Lef t-to-right
divisions in a

interpretation of
term

multiplications and

20 (5) Lef t-to-right
subtractions i

interpretation of add tions
n an arithmetic expression

and

25
(6) Left-to- right interpretation o f conjunctions i n a

logical term

(7) Lef t-to- right interpretation of dis j unc tions i n a
30 logical disjunct

35 6.6 Evaluation of Expressions

This section applies to arithmetic , character, relati ona 1 ,
and logical expressions

40 Any variable, array element, or function referenced as an
operand in an expression must be defined at the time the
reference is executed. An integer operand must be defined
with an integer value rather than a statement label value.
Note that if a character string is referenced, all of the

45 referenced characters must be defined at the time the
reference is executed.

Any arithmetic operation whose result is not mathematically
defined is prohibited in the execution of an executable

50 program. Examples are dividing by zero and raising a zero¬
valued primary to a zero-valued or negative-vaIued power.
Raising a negative-va I ued primary to a real power is also
prohibited .

55 The execution of a function reference in a statement may not
alter the value of any other entity within the statement in

Page 6-15s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

operator, and a logical operator. This expression would be
interpreted the same as the expression

L .OR. ((A + B) .GE. C)

6.5.1 Summary of Interpretation Rules. The order in which
primaries are combined using operators is determined by the
following:

(1) Use of parentheses

(2) Precedence of the operators

(3) Right-to-1eft interpretation
factor

o f exponentiations in a

(4) Left-to-right interpretation
divisions in a term

of multiplications and

(5) Left-to-right interpretation of additions
subtractions in an arithmetic expression

and

(6) Left-to-right interpretation
character expression

o f concatenations in a

(7) Left-to-right interpretation
logical term

of conjunctions in a

(8) Left-to-right interpretation
logical dis j unct

of disjunctions in a

(9) Left-to-right interpretation
in a logical expression

o f logical equiva 1 ences

6.6 Evaluation of Expressions

This section applies to arithmetic, character, relational,
and logical expressions.

Any variable, array element, function, or character
substring referenced as an operand in an expression must be
defined at the time the reference is executed. An integer
operand must be defined with an integer value rather than a
statement label value. Note that if a character string or
substring is referenced, all of the referenced characters
must be defined at the time the reference is executed.

Any arithmetic operation whose result is not mathematically
defined is prohibited in the execution of an executable
program. Examples are dividing by zero and raising a zero-
valued primary to a zero-valued or negative-vaIued power.
Raising a negat i ve-vaIued primary to a real or double
precision power is also prohibited.

The execution of a function reference in a statement may not
alter the value of any other entity within the statement in

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 6-15

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

15

20

25

which the function reference appears. The execution of a
function reference in a statement may not alter the value of
any entity in common (8.3) that affects the value of any
other function reference in that statement. However,
execution of a function reference in the expression e. of a
logical IF statement (11.5) is permitted to affect entities
in the statement s_t that i s^ executed when the value of the
expression e. is true. If a function reference causes
de f inition of an actual argument of the function, that
argument or any associated entities must not appear
elsewhere in the same statement. For example, the statements

A (I) = F (I)

Y = G (X) + X

are prohibited if the reference to F defines I or the
reference to G defines X.

The data type of an expression in which a function reference
appears does not affect the evaluation of the actual
arguments of the function. The data type of an expression
in which a function reference appears is not affected by the
evaluation of the actual arguments of the function.

30

35

40

45

50

55

Any execution of an array element reference requires the
evaluation of its subscript. The data type of an expression
in which a subscript appears does not affect, nor is it
affected by, the evaluation of the subscript.

6.6.1 Evaluation of Operands. It is not necessary for a
processor to evaluate all of the operands of an expression
if the value of the expression can be determined otherwise.
This principle is most often applicable to logical
expressions, but it applies to all expressions. For
example, in evaluating the logical expression

X .GT. Y .OR. L(Z)

where X, Y, and Z are reai, and Lisa logical function, the
function reference L(Z) need not be evaluated if X is
greater than Y. If a statement contains a function
reference in a part of an expression that need not be
evaluated, all entities that would have become defined in
the execution of that reference become undefined at the
completion of evaluation of the expression containing the
function reference. In the example above, evaluation of the

PaQe 6-165 Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

which the function reference appears. The execution of a
function reference in a statement may not alter the value of
any entity in common (8.3) that affects the value of any
other function reference in that statement. However,
execution of a function reference in the expression e of a
logical IF statement (11.5) is permitted to affect entities
in the statement s_t that is executed when the value of the
expression e. is true. If a function reference causes
definition of an actual argument of the function, that
argument or any associated entities must not appear
elsewhere in the same statement. For example, the statements

A (I) = F (I)

Y = G(X) + X

are prohibited if the reference to F defines I or the
reference to G defines X.

The data type of an expression in which a function reference
appears does not affect the evaluation of the actual
arguments of the function. The data type of an expression
in which a function reference appears is not affected by the
evaluation of the actual arguments of the function, except
that the result of a generic function reference assumes a
data type that depends on the data type of its arguments as
specified in 15.10.

Any execution of an array element reference requires the
evaluation of its subscript. The data type of an expression
in which a subscript appears does not affect, nor is it
affected by, the evaluation of the subscript.

Any execution of a substring reference requires the
evaluation of its substring expressions. The data type of
an expression in which a substring name appears does not
affect, nor is it affected by, the evaluation of the
substring expressions.

6.6.1 Evaluation of Operands. It is not necessary for a
processor to evaluate all of the operands of an expression
if the value of the expression can be determined otherwise.
This principle is most often applicable to logical
expressions, but it applies to all expressions. For
example, in evaluating the logical expression

X .GT. Y .OR. L(Z)

where X, Y, and Z are real, and L is a logical function, the
function reference L(Z) need not be evaluated if X is
greater than Y. If a statement contains a function
reference in a part of an expression that need not be
evaluated, all entities that would have become defined in
the execution of that reference become undefined at the
completion of evaluation of the expression containing the
function reference. In the example above, evaluation of the

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 6-16

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

1 5

20

25

30

35

40

45

50

55

expression causes Z to become undefined if L defines its
argument.

6.6.2 Order of Evaluation of Functions. If a statement
contains more than one function reference, a processor may
evaluate the functions in any order, except for a logical IF
statement and a function argument list containing function
references. For example, the statement

Y = F (G (X))

where F and G are functions, requires G to be evaluated
before F is evaluated.

In a statement that contains more than one function
reference, the value provided by each function reference
must be independent of the order chosen by the processor for
evaluation of the function references.

6.6.3 Integrity of Parentheses. The sections that follow
state certain conditions under which a processor may
evaluate an expression different from the one obtained by
applying the interpretation rules given in 6.1 through 6.5.
However, any expression contained in parentheses must be
treated as an entity. For example, in evaluating the
expression A*(B*C), the product of B and C must be evaluated
and then multiplied by A; the processor must not evaluate
the mathematically equivalent expression (A*B)*C.

6.6.4 Evaluation of Arithmetic Expressions. The rules
given in 6.1.2 specify the interpretation of an arithmetic
expression. Once the interpretation has been established in
accordance with those rules, the processor may evaluate any
mathematically equivalent expression, provided that the
integrity of parentheses is not violated.

Two arithmetic expressions are mathematically equivalent if,
for all possible values of their primaries, their
mathematical values are equal. However, mathematically
equivalent arithmetic expressions may produce different
computational results.

The mathematical definition of integer division is given in
6.1.5. The difference between the value of the expression
5/2 and 5./2. is a mathematical difference, not a
computational difference.

The following are examples of expressions, along with
allowable alternative forms that may be used by the
processor in the evaluation of those expressions. A, B, and
C represent arbitrary real operands; I and J represent
arbitrary integer operands; and X, Y, and Z represent
arbitrary arithmetic operands.

Page 6-17s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

expression causes Z to become undefined if L defines its
argument.

6.6.2 Order of Evaluation of Functions. If a statement
contains more than one function reference, a processor may
evaluate the functions in any order, except for a logical IF
statement and a function argument list containing function
references. For example, the statement

Y = F (G (X))

where F and G are functions, requires G to be evaluated
before F is eva I uated.

In a statement that contains more than one function
reference, the value provided by each function reference
must be independent of the order chosen by the processor for
evaluation of the function references.

6.6.3 Integrity of Parentheses. The sections that follow
state certain conditions under which a processor may
evaluate an expression different from the one obtained by
applying the interpretation rules given in 6.1 through 6.5.
However, any expression contained in parentheses must be
treated as an entity. For example, in evaluating the
expression A*(B*C), the product of B and C must be evaluated
and then multiplied by A; the processor must not evaluate
the mathematically equivalent expression (A * B)* C.

6.6.4 Evaluation of Arithmetic Expressions. The rules
given in 6.1.2 specify the interpretation of an arithmetic
expression. Once the interpretation has been established in
accordance with those rules, the processor may evaluate any
mathematically equivalent expression, provided that the
integrity of parentheses is not violated.

Two arithmetic expressions are mathematically equivalent if,
for all possible values of their primaries, their
mathematical values are equal. However, mathematically
equivalent arithmetic expressions may produce different
computational results.

The mathematical definition of integer division is given in
6.1.5. The difference between the value of the expression
5/2 and 5. / 2. is a mathematical difference, not a
computational difference.

The following are examples of expressions, along with
allowable alternative forms that may be used by the
processor in the evaluation of those expressions. A, B, and
C represent arbitrary real, double precision, or complex
operands; I and J represent arbitrary integer operands; and
X, Y, and Z represent arbitrary arithmetic operands. (Note
that Table 2 prohibits combinations of double precision and
comp I ex data types.)

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 6-17

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 EXPRESSIONS

Expression Allowable Alternative Form

X + Y Y + X
X * Y Y*X
-X + Y Y-X
X + Y + Z X+(Y+Z)
X-Y + Z X-(Y-Z)
X*B/Z X*(B/Z)
X*Y~X*Z X*(Y-Z)
A/B/C A/(B* C)
A/5.0 0.2 * A

The following are examples of expressions along with
forbidden forms that must not be used by the processor in
the evaluation of those expressions.

Expression Nonallowable Alternative
Form

1/2 0.5*1
X* I / J X*(I / J)
I / J/A I / (J * A)
(X* Y)-(X*Z) X*(Y-Z)
X*(Y-Z) X * Y-X * Z j

In addition to the parentheses required to establish the
desired interpretation, parentheses may be included to
restrict the alternative forms that may be used by the
processor in the actual evaluation of the expression. This
is useful for controlling the magnitude and accuracy of
intermediate values developed during the evaluation of an
expression. For example, in the expression

A+(B-C)

the term (B-C) must be evaluated and then added to A. Note
that the inclusion of parentheses may change the
mathematical value of an expression. For example, the two
expressions :

A* I / J

A* (I /J)

may have different mathematical values if I and J are
factors of integer data type.

Each operand of an arithmetic operator has a data type that
may depend on the order of evaluation used by the processor.
For example, in the evaluation of the expression

J + R + I

6-1 8s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

Expression Allowable Alternative Form

X + Y Y+X
X* Y Y *X
-X + Y Y-X
X + Y + Z X+(Y+Z)
X-Y + Z X-(Y-Z)
X*B/Z X*(B/Z)
X*Y-X*Z X*(Y-Z)
A/B/C A/(B* C)
A/5.0 0.2 * A

The following are examples of expressions along with
forbidden forms that must not be used by the processor in
the evaluation of those expressions.

Expression Nonallowable Alternative
Form

1/2 0.5*1
X* I / J X* (I /J)
I / J/A I / (J * A)
(X* Y)-(X * Z) X*(Y-Z)
X*(Y-Z) X*Y-X*Z

In addition to the parentheses required to establish the
desired interpretation, parentheses may be included to
restrict the alternative forms that may be used by the
processor in the actual evaluation of the expression. This
is useful for controlling the magnitude and accuracy of
intermediate values developed during the evaluation of an
expression. For example, in the expression

A+(B-C)

the term (B-C) must be evaluated and then added to A. Note
that the inclusion of parentheses may change the
mathematical value of an expression. For example, the two
expressions :

A* I / J

A* (I / J)

may have different mathematical values if I and J are
factors of integer data type.

Each operand of an arithmetic operator has a data type that
may depend on the order of evaluation used by the processor.
For example, in the evaluation of the expression

D + R + I

5

10

1 5

20

25

30

35

40

45

50

55

FuI I Language Page 6-18

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

where J, R, and I represent terms of integer, real, and
integer data type, respectively, the data type of the
operand that is added to I may be either integer or real,
depending on which pair of operands (J and R, R and I, or J
and I) is added first.

6.6.5 Evaluation of Character Expressions. The rules given
in 6.2.2 specify the interpretation of a character
expression as a string of characters. A processor needs to
evaluate only as much of the character expression as is
required by the context in which the expression appears.

15

20

25

30

35

40

45

50

55

6.6.6 Evaluation of Relational Expressions. The rules
given in 6.3.3 and 6.3.5 specify the interpretation of
relational expressions. Once the interpretation of an
expression has been established in accordance with those
rules, the processor may evaluate any other expression that
is relationally equivalent. For example, the processor may
choose to evaluate the relational expression

I .GT. J

where I and J are integer variables, as

J - I .LT. 0

Two relational expressions are relationally equivalent if
their logical values are equal for all possible values of
their primaries .

6.6.7 Evaluation of Logical Expressions. The rules given
in 6.4.2 specify the interpretation of a logical expression.
Once the interpretation of an expression has been
established in accordance with those rules, the processor
may evaluate any other expression that is logically
equivalent, provided that the integrity of parentheses is
not violated. For example, the processor may choose to
evaluate the logical expression

LI .AND. L2 .AND. L3

where LI, L2, and L3 are logical variables, as

LI .AND. (L2 .AND. L3)

Two logical expressions are logically equivalent if their
values are equal for all possible values of their primaries.

Page 6-19s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

where D, R, and I represent terms of double precision, real,
and integer data type, respectively, the data type of the
operand that is added to I may be either double precision or
real, depending on which pair of operands (D and R, R and I,
or D and I) is added first.

6.6.5 Evaluation of Character Expressions. The rules given
in 6.2.2 specify the interpretation of a character
expression as a string of characters. A processor needs to
evaluate only as much of the character expression as is
required by the context in which the expression appears.
For example, the statements

CHARACTER*2 C1.C2.C3.CF
Cl = C2 // CF (C3)

do not require the function CF to be evaluated, because only
the value of C2 is needed to determine the value of Cl.

6.6.6 Evaluation of Relational Expressions. The rules
given in 6.3.3 and 6.3.5 specify the interpretation of
relational expressions. Once the interpretation of an
expression has been established in accordance with those
rules, the processor may evaluate any other expression that
is relationally equivalent. For example, the processor may
choose to evaluate the relational expression

I .GT. J

where I and J are integer variables, as

J - I .LT. 0

Two relational expressions are relationally equivalent if
their logical values are equal for all possible values of
their primaries.

6.6.7 Evaluation of Logical Expressions. The rules given
in 6.4.2 specify the interpretation of a logical expression.
Once the interpretation of an expression has been'
established in accordance with those rules, the processor
may evaluate any other expression that is logically
equivalent, provided that the integrity of parentheses is
not violated. For example, the processor may choose to
evaluate the logical expression

LI .AND. L2 .AND. L3

where LI, L2, and L3 are logical variables, as

LI .AND. (L2 .AND. L3)

Two logical expressions are logically equivalent if their
values are equal for all possible values of their primaries.

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 6-19

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

6.7 ConstanL_ Expres slo rvs

A constant exoression is an arithmetic constant expression
(6.1.3), a character constant expression (6.2.3), or a

5 logical constant expression (6.4.4). Constant expressions
are defined in the subset but the concept is not used,

j Certain contexts in the subset require an unsigned or
optionally signed constant; however, every context that
permits a constant expression, other than an unsigned or

10 optionally signed constant, also permits a general
expression.

15

20

25

30

35

40

45

50

55

Page 6-20s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

6.7 Constant Expressions

A constant exoression is an arithmetic constant expression
(6.1.3), a character constant expression (6.2.3), or a
logical constant expression (6.4.4). 5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 6-20

ANSI X3.9-1978 FORTRAN 77

5

10

7. EXECUTABLE AND NONEXECUTABLE STATEMENT CLASSIFICATION

Each statement is classified as executable or nonexecutable.
Executable statements specify actions and form an execution
sequence in an executable program. Nonexecutable statements
specify characteristics, arrangement, and initial values of
data; contain editing information; specify statement
functions; and classify program units. Nonexecutable
statements are not part of the execution sequence.
Nonexecutable statements may be labeled, but such statement
labels must not be used to control the execution sequence.

15

20

25

30

35

40

45

50

55

7.1 Executable Statements

The following statements are classified as executable:

(1) Arithmetic, logical, statement label (ASSIGN), and
character assignment statements

(2) Unconditional GO TO, assigned GO TO, and computed GO
TO statements

(3) Arithmetic IF and logical IF statements

(4) Block IF, ELSE IF, ELSE, and END IF statements

(5) CONTINUE statement

(6) STOP and PAUSE statements

(7) DO statement

(8) READ and WRITE statements

(9) REWIND, BACKSPACE, ENDFILE, and OPEN statements

(10) CALL and RETURN statements

(11) END statement

7.2 Nonexecutable Statements

The following statements are classified as nonexecutable:

(1) PROGRAM, FUNCTION, and SUBROUTINE statements

(2) DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, EXTERNAL,
INTRINSIC, and SAVE statements

(3) INTEGER, REAL, LOGICAL, and CHARACTER type-statements

(4) DATA statement

Page 7-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

7. EXECUTABLE AND NONEXECUTABLE STATEMENT CLASSIFICATION

Each statement is classified as executable or nonexecutable.
Executable statements specify actions and form an execution
sequence in an executable program. Nonexecutable statements
specify characteristics, arrangement, and initial values of
data; contain editing information; specify statement
functions; classify program units; and specify entry points
within subprograms. Nonexecutable statements are not part
of the execution sequence. Nonexecutable statements may be
labeled, but such statement labels must not be used to
control the execution sequence.

7.1 Executable Statements

The following statements are classified as executable:

(1) Arithmetic, logical, statement label (ASSIGN), and
character assignment statements

(2) Unconditional GO TO, assigned GO TO, and computed GO
TO statements

(3) Arithmetic IF and logical IF statements

(4) Block IF, ELSE IF, ELSE, and END IF statements

(5) CONTINUE statement

(6) STOP and PAUSE statements

(7) DO statement

(8) READ, WRITE, and PRINT statements

(9) REWIND, BACKSPACE, ENDFILE, OPEN, CLOSE, and INQUIRE
statements

(10) CALL and RETURN statements

(11) END statement

7.2 Nonexecutable Statements

The following statements are classified as nonexecutable:

(1) PROGRAM, FUNCTION, SUBROUTINE, ENTRY, and BLOCK DATA
statements

(2) DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, PARAMETER,
EXTERNAL, INTRINSIC, and SAVE statements

(3) INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
and CHARACTER type-statements

(4) DATA statement

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 7-1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 STATEMENT CLASSIFICATION

(5) FORMAT statement

(6) Statement function statement

7-2s Subset Language

STATEMENT CLASSIFICATION ANSI X3.9-1978 FORTRAN 77

(5) FORMAT statement

(6) Statement function statement

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 7-2

ANSI X3.9-1978 FORTRAN 77 STATEMENT CLASSIFICATION

(5) FORMAT statement

(6) Statement function statement

5

10

15

20

25

30

35

40

45

50

55

Page 7-2s Subset Language

STATEMENT CLASSIFICATION ANSI X3.9-1978 FORTRAN 77

(5) FORMAT statement

(6) Statement function statement

5

10

15

20

25

30

35

40

45

50

55

Ful Language Page 7-2

ANSI X3.9-1978 FORTRAN 77

5

10

15

20

25

30

35

40

45

50

55

8. SPECIFICATION STATEMENTS

! There are eight kinds of specification statements:

(1) DIMENSION

(2) EQUIVALENCE

(3) COMMON

(4) INTEGER, REAL, LOGICAL, and CHARACTER type-statements

(5) IMPLICIT

(6) EXTERNAL

(7) INTRINSIC

(8) SAVE

All specification statements are nonexecutable.

8.1 DIMENSION Statement

A DIMENSION statement is used to specify the symbolic names
and dimension specifications of arrays.

The form of a DIMENSION statement is:

DIMENSION a(d) [,a(d)]. . .

where each a.(d.) is an array declarator (5.1).

Each symbolic name a. appearing in a DIMENSION statement
declares a. to be an array in that program unit. Note that
array declarators may also appear in COMMON statements and
type-statements. Only one appearance of a symbolic name as
an array name in an array declarator in a program unit is
permitted.

8.2 EQUIVALENCE Statement

An EQUIVALENCE statement is used to specify the sharing of
storage units by two or more entities in a program unit.
This causes association of the entities that share the
storage units.

If the equivalenced entities are of different data types,
the EQUIVALENCE statement does not cause type conversion or
imply mathematical equivalence. If a variable and an array
are equivalenced, the variable does not have array
properties and the array does not have the properties of a
variable.

Page 8-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

8. SPECIFICATION STATEMENTS

There are nine kinds of specification statements:

(1) DIMENSION

(2) EQUIVALENCE

(3) COMMON

(4) INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
and CHARACTER type-statements

(5) IMPLICIT

(6) PARAMETER

(7) EXTERNAL

(8) INTRINSIC

(9) SAVE

All specification statements are nonexecutable.

8.1 DIMENSION Statement

A DIMENSION statement is used to specify the symbolic names
and dimension specifications of arrays.

The form of a DIMENSION statement is:

DIMENSION a(d) [. a (d)]. . .

where each a.(cj.) is an array declarator (5.1).

Each symbolic name a. appearing in a DIMENSION statement
declares a. to be an array in that program unit. Note that
array declarators may also appear in COMMON statements and.
type-statements. Only one appearance of a symbolic name as
an array name in an array declarator in a program unit is
permit ted.

8.2 EQUIVALENCE Statement

An EQUIVALENCE statement is used to specify the sharing of
storage units by two or more entities in a program unit.
This causes association of the entities that share the
storage units.

If the equivalenced entities are of different data types,
the EQUIVALENCE statement does not cause type conversion or
imply mathematical equivalence. If a variable and an array
are equivalenced, the variable does not have array
properties and the array does not have the properties of a
variable.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 8-1

AN

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

8.2.1 Form of an EQUIVALENCE Statement. The form of an
EQUIVALENCE statement is:

EQUIVALENCE (nlist) [.(nlist)l...

where each n I is t is a list (2.10) of variable names, array
element names, and array names. Each list must contain at
least two names. Names of dummy arguments of an external
procedure in a subprogram must not appear in the list. If a
variable name is also a function name (15.5.1), that name
must not appear in the list.

Each subscript expression in a list n I is t must be an integer
constant.

8.2.2 Equivalence Association. An EQUIVALENCE statement
specifies that the storage sequences of the entities whose
names appear in a list n I is t have the same first storage
unit. This causes the association of the entities in the
list n I is t and may cause association of other entities
(17.1).

8.2.3 Equivalence of Character Entities. An entity of type
character may be equivalenced only with other entities of
type character. The lengths of the equivalenced entities
must be the same.

An EQUIVALENCE statement specifies that the storage
sequences of the character entities whose names appear in a
list n I is t have the same first character storage unit. This
causes the association of the entities in the list n I is t and
may cause association of other entities (17.1).

8.2.4 Array Names and Array Element Names. If an array
element name appears in an EQUIVALENCE statement, the number
of subscript expressions must be the same as the number of
dimensions specified in the array declarator for the array
name.

8-2s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

8.2.1 Form of an EQUIVALENCE Statement. The form of an
EQUIVALENCE statement is:

EQUIVALENCE (nlist) [. (n M st)] . ..

where each n M s t is a list (2.10) of variable names, array
element names, array names, and character substring names.
Each list must contain at least two names. Names of dummy
arguments of an external procedure in a subprogram must not
appear in the list. If a variable name is also a function
name (15.5.1), that name must not appear in the list.

Each subscript expression or substring expression in a list
nI i st must be an integer constant expression.

8.2.2 Equivalence Association. An EQUIVALENCE statement
specifies that the storage sequences of the entities whose
names appear in a list n I i s t have the same first storage
unit. This causes the association of the entities in the
list nIist and may cause association of other entities
(17.1).

8.2.3 Equivalence of Character Entities. An entity of type
character may be equivalenced only with other entities of
type character. The lengths of the equivalenced entities are
not required to be the same.

An EQUIVALENCE statement specifies that the storage
sequences of the character entities whose names appear in a
list n I i s t have the same first character storage unit. This
causes the association of the entities in the list n I is t and
may cause association of other entities (17.1). Any
adjacent characters in the associated entities may also have
the same character storage unit and thus may also be
associated. In the example:

CHARACTER A*4, B*4, C(2)*3
EQUIVALENCE (A,C(1)), (B,C(2))

the association of A, B, and C can be graphically
illustrated as:

|01|02|03|04|05|06|07 |

I-A-|

|--C(1)-C(2)-- |

8.2.4 Array Names and Array Element Names. If an array
element name appears in an EQUIVALENCE statement, the number
of subscript expressions must be the same as the number of
dimensions specified in the array declarator for the array
name.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 8-2

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

5

10

15

20

25

30

35

40

45

50

55

The use of an array name unqualified by a subscript in an
EQUIVALENCE statement has the same effect as using an array
element name that identifies the first element of the array.

8.2.5 Restrictions on EQUIVALENCE Statements. An
EQUIVALENCE statement must not specify that the same storage
unit is to occur more than once in a storage sequence. For
example,

DIMENSION A(2)
EQUIVALENCE (A(1),B), (A(2),B)

is prohibited, because it would specify the same storage
unit for A(1) and A(2). An EQUIVALENCE statement must not
specify that consecutive storage units are to be
nonconsecutive . For example, the following is prohibited:

REAL A(2), R(3)
EQUIVALENCE (A(I).R(D), (A(2),R<3)>

8.3 COMMON Statement

The COMMON statement provides a means of associating
entities in different program units. This allows different
program units to define and reference the same data without
using arguments, and to share storage units.

8.3.1 Form of a COMMON Statement. The form of a COMMON
statement is:

COMMON [/Icb]/] n I i st C C .] / C c_b] / n I i s t] . . .

where: c_b is a common block name (18.2.1)

nIis t is a list (2.10) of variable names, array
names, and array declarators. Only one
appearance of a symbolic name as a variable name,
array name, or array declarator is permitted in
all such lists within a program unit. Names of
dummy arguments of an external procedure in a
subprogram must not appear in the list. If a
variable name is also a function name (15.5.1),
that name must not appear in the list.

Each omitted .cb specifies the blank common block. If the
first c_b is omitted, the first two slashes are optional.

In each COMMON statement, the entities whose names appear in
an n I i s t following a block name c_b are declared to be in
common block c_b. If the first c_b is omitted, all entities
whose names appear in the first n I is t are specified to be in
blank common. Alternatively, the appearance of two slashes
with no block name between them declares the entities whose
names appear in the list n I is t that follows to be in blank
common.

Page 8-3s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

The use of an array name unqualified by a subscript in an
EQUIVALENCE statement has the same effect as using an array
element name that identifies the first element of the array.

8.2.5 Restrictions on EQUIVALENCE Statements. An
EQUIVALENCE statement must not specify that the same storage
unit is to occur more than once in a storage sequence. For
example,

DIMENSION A(2)
EQUIVALENCE (A(1),B), (A(2),B)

is prohibited, because it would specify the same storage
unit for A(1) and A(2). An EQUIVALENCE statement must not
specify that consecutive storage units are to be
nonconsecutive. For example, the following is prohibited:

REAL A(2)
DOUBLE PRECISION D(2)
EQUIVALENCE (A(1).D(1)), (A(2).D(2>>

8.3 COMMON Statement

The COMMON statement provides a means of associating
entities in different program units. This allows different
program units to define and reference the same data without
using arguments, and to share storage units.

8.3.1 Form of a COMMON Statement. The form of a COMMON
statement is:

COMMON [/ [c_b] /] n I i st [C ,] / C c_b] / n I i st]. . .

where: cj: is a common block name (18.2.1)

nIis t is a list (2.10) of variable names, array
names, and array declarators. Only one
appearance of a symbolic name as a variable name,
array name, or array declarator is permitted in
all such lists within a program unit. Names of
dummy arguments of an external procedure in a
subprogram must not appear in the list. If a
variable name is also a function name (15.5.1),
that name must not appear in the list.

Each omitted c_b specifies the blank common block. If the
first c_b is omitted, the first two slashes are optional.

In each COMMON statement, the entities whose names appear in
an n I i s t following a block name c_b are declared to be in
common block c_b. If the first .cb. is omitted, all entities
whose names appear in the first n I is t are specified to be in
blank common. Alternatively, the appearance of two slashes
with no block name between them declares the entities whose
names appear in the list n I is t that follows to be in blank
common .

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 8-3

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

Any common block name cj) or an omitted .cb. for blank common
may occur more than once in one or more COMMON statements in
a program unit. The list n I is t following each successive
appearance of the same common block name is treated as a
continuation of the list for that common block name.

If a character variable or character array is in a common
block, all of the entities in that common block must be of
type character .

8.3.2 Common Block Storage Sequence. For each common
block, a common block storage sequence is formed as follows:

(1) A storage sequence is formed consisting of the
storage sequences of all entities in the lists n I is t
for the common block. The order of the storage
sequence is the same as the order of the appearance
of the lists n I is t in the program unit.

(2) The storage sequence formed in (1) is extended to
include all storage units of any storage sequence
associated with it by equivalence association. The
sequence may be extended only by adding storage units
beyond the last storage unit. Entities associated
with an entity in a common block are considered to be
in that common block.

8.3.3 Size of a Common Block. The size of 3. common block
is the size of its common block storage sequence, including
any extensions of the sequence resulting from equivalence
association.

Within an executable program, all named common blocks that
have the same name must be the same size. Blank common
blocks within an executable program are not required to be
the same size.

8.3.4 Common Association. Within an executable program,
the common block storage sequences of all common blocks with
the same name have the same first storage unit. Within an
executable program, the common block storage sequences of
all blank common blocks have the same first storage unit.
This results in the association (17.1) of entities in
different program units.

8.3.5 Differences between Named Common and Blank Common. A
blank common block has the same properties as a named common
block, except for the following:

(1) Execution of a RETURN or END statement sometimes
causes entities in named common blocks to become
undefined but never causes entities in blank common
to become undefined (15.8.4).

(2) Named common blocks of the same name must be of the
same size in all program units of an executable

8-4s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

Any common block name cjb or an omitted c_b for blank common
may occur more than once in one or more COMMON statements in
a program unit. The list n I is t following each successive
appearance of the same common block name is treated as a
continuation of the list for that common block name.

If a character variable or character array is in a common
block, all of the entities in that common block must be of
type character .

8.3.2 Common Block Storage Sequence. For each common
block, a common block storage seauence is formed as follows:

(1) A storage sequence is formed consisting of the
storage sequences of all entities in the lists n I is t
for the common block. The order of the storage
sequence is the same as the order of the appearance
of the lists n I is t in the program unit.

(2) The storage sequence formed in (1) is extended to
include all storage units of any storage sequence
associated with it by equivalence association. The
sequence may be extended only by adding storage units
beyond the last storage unit. Entities associated
with an entity in a common block are considered to be
in that common block.

8.3.3 Size of a Common Block. The size of a. common block
is the size of its common block storage sequence, including
any extensions of the sequence resulting from equivalence
association.

Within an executable program, all named common blocks that
have the same name must be the same size. Blank common
blocks within an executable program are not required to be
the same size.

8.3.4 Common Association. Within an executable program,
the common block storage sequences of all common blocks with
the same name have the same first storage unit. Within an
executable program, the common block storage sequences of
all blank common blocks have the same first storage unit.
This results in the association (17.1) of entities in
different program units.

8.3.5 Differences between Named Common and Blank Common. A
blank common block has the same properties as a named common
block, except for the following:

(1) Execution of a RETURN or END statement sometimes
causes entities in named common blocks to become
undefined but never causes entities in blank common
to become undefined (15.8.4).

(2) Named common blocks of the same name must be of the
same size in all program units of an executable

5

10

1 5

20

25

30

35

40

45

50

55

Fu I I Language Page 8-4

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

5

10

15

20

25

30

program in which they appear, but blank common blocks
may be of different sizes.

8.3.6 Restrictions on Common and Equivalence. An
EQUIVALENCE statement must not cause the storage sequences
of two different common blocks in the same program unit to
be associated. Equivalence association must not cause a
common block storage sequence to be extended by adding
storage units preceding the first storage unit of the first
entity specified in a COMMON statement for the common block.
For example, the following is not permitted:

COMMON /X/A
REAL B(2)
EQUIVALENCE (A.B<2)>

8.4 Type-Statements

A type-statement is used to override or confirm implicit
typing and may specify dimension information.

The appearance of the symbolic name of a variable, array,
external function, or statement function in a type-statement
specifies the data type for that name for all appearances in
the program unit. Within a program unit, a name must not
have its type explicitly specified more than once.

A type-statement that confirms the type of an intrinsic
35 function whose name appears in the Specific Name column of

Table 5 is not required, but is permitted.

4°
The name of a main program or subroutine must not appear in
a type-statement.

8.4.1 INTEGER. REAL. DOUBLE PRECISION. COMPLEX, and LOGICAL
Type-Statements. An INTEGER, REAL, or LOGICAL type-

statement is of the form:

t yp x £ . v.] • • •

where: t yp is one of INTEGER, REAL, or LOGICAL

v. is a variable name, array name, array declarator,
function name, or dummy procedure name (18.2.11)

DOUBLE PRECISION and COMPLEX type-statements are not
included in the subset.

45

50

55

Page 8-5s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

program in which they appear, but blank common blocks
may be of different sizes.

(3) Entities in named common blocks may be initially
defined by means of a DATA statement in a block data
subprogram, but entities in blank common must not be
initially defined (Section 9).

8.3.6 Restrictions on Common and Equivalence. An
EQUIVALENCE statement must not cause the storage sequences
of two different common blocks in the same program unit to
be associated. Equivalence association must not cause a
common block storage sequence to be extended by adding
storage units preceding the first storage unit of the first
entity specified in a COMMON statement for the common block.
For example, the following is not permitted:

COMMON /X/A
REAL B(2>
EQUIVALENCE (A,B(2))

8.4 Type-Statements

A type-statement is used to override or confirm implicit
typing and may specify dimension information.

The appearance of the symbolic name of a constant, variable,
array, external function, or statement function in a type-
statement specifies the data type for that name for all
appearances in the program unit. Within a program unit, a
name must not have its type explicitly specified more than
once.

A type-statement that confirms the type of an intrinsic
function whose name appears in the Specific Name column of
Table 5 is not required, but is permitted. If a generic
function name appears in a type-statement, such an
appearance is not sufficient by itself to remove the generic
properties from that function.

The name of a main program, subroutine, or block data
subprogram must not appear in a type-statement.

8.4.1 INTEGER. REAL. DOUBLE PRECISION. COMPLEX, and LOGICAL
Tyoe-Statements. An INTEGER, REAL, DOUBLE PRECISION,

COMPLEX, or LOGICAL type-statement is of the form:

t yo v. t« v.] • • •

where: t yp is one of INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, or LOGICAL

v. is a variable name, array name, array declarator,
symbolic name of a constant, function name, or
dummy procedure name (18.2.11)

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 8-5

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

5

10

15

20

8.4.2 CHARACTER Type-Statement. The form of a CHARACTER
type-statement is:

CHARACTER E * Ien E , 3 3 nam E . nam 3. . .

where: nam is of one of the forms:

v. E« 1 en 3

a E(d)3 E »1en 3

^ is a variable name

Sl is an array name

,g.(.d) is an array declarator

Ien is the length (number of characters) of a
character variable or character array element,
and is called the length specification. Ien must
be an unsigned, nonzero, integer constant.

25 I

30

A length I en immediately following the word CHARACTER is the
length specification for each entity in the statement not

35 having its own length specification. A length specification
immediately following an entity is the length specification
for only that entity. Note that for an array the length
specified is for each array element. If a length is not
specified for an entity, its length is one.

40

45

50

55

Page 8-6s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

8.4.2 CHARACTER Type-Statement. The form of a CHARACTER
type-statement is:

CHARACTER [* Ie n [,]] nam [.nam 3. . .

where: nam is of one of the forms:

v [« I en 3

a. [(d) 3 [* I en 3

v. is a variable name, symbolic name of a constant,
function name, or dummy procedure name

a. is an array name

5.(d.) is an array declarator

I en is the length (number of characters) of a
character variable, character array element,
character constant that has a symbolic name, or
character function, and is called the length
specification. Ien is one of the following:

(1) An unsigned, nonzero, integer constant

(2) An integer constant expression (6.1.3.1)
enclosed in parentheses and with a positive
value

(3) An asterisk in parentheses, (*)

A length I en immediately following the word CHARACTER is the
length specification for each entity in the statement not
having its own length specification. A length specification
immediately following an entity is the length specification
for only that entity. Note that for an array the length
specified is for each array element. If a length is not
specified for an entity, its length is one.

An entity declared in a CHARACTER statement must have a
length specification that is an integer constant expression,
unless that entity is an external function, a dummy argument
of an external procedure, or a character constant that has a
symbo lie name .

If a dummy argument has a Ien of (*) declared, the dummy
argument assumes the length of the associated actual
argument for each reference of the subroutine or function.
If the associated actual argument is an array name, the
length assumed by the dummy argument is the length of an
array element in the associated actual argument array.

If an external function has a Ien of (*) declared in a
function subprogram, the function name must appear as the
name of a function in a FUNCTION or ENTRY statement in the

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 8-6

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

5

10

15

20

25

30

35

40

8.5 IMPLICIT Statement

An IMPLICIT statement is used to change or confirm the
default implied integer and real typing.

The form of an IMPLICIT statement is:

IMPLICIT txR (a [, a.] . . .) C , (a [, a 3...)].. .

where: typ is one of INTEGER, REAL, LOGICAL, or CHARACTER
[* Jen]

a. is either a single letter or a range of single
letters in alphabetical order. A range is
denoted by the first and last letter of the range
separated by a minus. Writing a range of letters
a., - a.2 has the same effect as writing a list of
the single letters a., through a. 2 .

I en is the length of the character entities and is an
unsigned, nonzero, integer constant.

45

50

55

If Ien is not specified, the length is one.

An IMPLICIT statement specifies a type for all variables,
arrays, external functions, and statement functions that
begin with any letter that appears in the specification,
either as a single letter or included in a range of letters.
IMPLICIT statements do not change the type of any intrinsic
functions. An IMPLICIT statement applies only to the
program unit that contains it.

Page 8-7s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

same subprogram. When a reference to such a function is
executed, the function assumes the length specified in the
referencing program unit.

The length specified for a character function in the program
unit that references the function must be an integer
constant expression and must agree with the length specified
in the subprogram that specifies the function. Note that
there always is agreement of length if a I en of (*) is
specified in the subprogram that specifies the function.

If a character constant that has a symbolic name has a Ien
of (*) declared, the constant assumes the length of its
corresponding constant expression in a PARAMETER statement.

The length specified for a character statement function or
statement function dummy argument of type character must be
an integer constant expression.

8.5 IMPLICIT Statement

An IMPLICIT statement is used to change or confirm the
default implied integer and real typing.

The form of an IMPLICIT statement is:

IMPLICIT t y p (a. [, a.] . . .) [. t yp (a. [,j.]...)].. .

where: t yo is one of INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, or CHARACTER [« I en 3

a. is either a single letter or a range of single
letters in alphabetical order. A range is
denoted by the first and last letter of the range
separated by a minus. Writing a range of letters
a., - a.2 has the same effect as writing a list of
the single letters a., through §_2 •

Ien is the length of the character entities and is
one of the following:

(1) An unsigned, nonzero, integer constant

(2) An integer constant expression (6.1.3.1)
enclosed in parentheses and with a positive
value

If I en is not specified, the length is one.

An IMPLICIT statement specifies a type for all variables,
arrays, symbolic names of constants, external functions, and
statement functions that begin with any letter that appears
in the specification, either as a single letter or included
in a range of letters. IMPLICIT statements do not change
the type of any intrinsic functions. An IMPLICIT statement
applies only to the program unit that contains it.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 8-7

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

Type specification by an IMPLICIT statement may be
overridden or confirmed for any particular variable, array,
external function, or statement function name by the
appearance of that name in a type-statement. An explicit
type specification in a FUNCTION statement overrides an
IMPLICIT statement for the name of that function subprogram.
Note that the length is also overridden when a particular
name appears in a CHARACTER statement.

Within the specification statements of a program unit,
IMPLICIT statements must precede all other specification
statements. A program unit may contain more than one
IMPLICIT statement.

The same letter must not appear as a single letter, or be
included in a range of letters, more than once in all of the
IMPLICIT statements in a program unit.

8.6 PARAMETER Statement

The PARAMETER statement is not Included in the subset.

8-8s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

Type specification by an IMPLICIT statement may be
overridden or confirmed for any particular variable, array,
symbolic name of a constant, external function, or statement
function name by the appearance of that name in a type-
statement. An explicit type specification in a FUNCTION
statement overrides an IMPLICIT statement for the name of
that function subprogram. Note that the length is also
overridden when a particular name appears in a CHARACTER or
CHARACTER FUNCTION statement.

Within the specification statements of a program unit,
IMPLICIT statements must precede all other specification
statements except PARAMETER statements. A program unit may
contain more than one IMPLICIT statement.

The same letter must not appear as a single letter, or be
included in a range of letters, more than once in all of the
IMPLICIT statements in a program unit.

8.6 PARAMETER Statement

A PARAMETER statement is used to give a constant a symbolic
name.

The form of a PARAMETER statement is:

PARAMETER (£=e t,£=e]...)

where: jj. is a symbolic name

fi. is a constant expression (6.7)

If the symbolic name £. is of type integer, real, double
precision, or complex, the corresponding expression e. must
be an arithmetic constant expression (6.1.3). If the
symbolic name £ is of type character or logical, the
corresponding expression must be a character constant
expression (6.2.3) or a logical constant expression (6.4.4),
respectiveIy .

Each £ is the symbolic name of a. constant that becomes
defined with the value determined from the expression e. that
appears on the right of the equals, in accordance with the
rules for assignment statements (10.1, 10.2, and 10.4).

Any symbolic name of a constant that appears in an
expression §. must have been defined previously in the same
or a different PARAMETER statement in the same program unit.

A symbolic name of a constant must not become defined more
than once in a program unit.

If a symbolic name of a constant is not of default implied
type, its type must be specified by a type-statement or
IMPLICIT statement prior to its first appearance in a
PARAMETER statement. If the length specified for the

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 8-8

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

5

10

15

20

25

30

35

40

45

50

55

8.7 EXTERNAL Statement

An EXTERNAL statement is used to identify a symbolic name as
representing an external procedure or dummy procedure, and
to permit such a name to be used as an actual argument.

The form of an EXTERNAL statement is:

EXTERNAL proc [.or oc 3. . .

where each proc is the name of an external procedure or
dummy procedure.

Appearance of a name in an EXTERNAL statement declares that
name to be an external procedure name or dummy procedure
name. If an external procedure name or a dummy procedure
name is used as an actual argument in a program unit, it
must appear in an EXTERNAL statement in that program unit.
Note that a statement function name must not appear in an
EXTERNAL statement.

If an intrinsic function name appears in an EXTERNAL
statement in a program unit, that name becomes the name of
some external procedure and an intrinsic function of the
same name is not available for reference in the program
unit.

Only one appearance of a symbolic name in all of the
EXTERNAL statements of a program unit is permitted.

8.8 INTRINSIC Statement

An INTRINSIC statement is used to identify a symbolic name
as representing an intrinsic function (15.3). It also
permits a name that represents a specific intrinsic function
to be used as an actual argument.

Page 8-9s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

symbolic name of a constant of type character is not the
default length of one, its length must be specified in a
type-statement or IMPLICIT statement prior to the first
appearance of the symbolic name of the constant. Its length
must not be changed by subsequent statements including
IMPLICIT statements.

Once such a symbolic name is defined, that name may appear
in that program unit in any subsequent statement as a
primary in an expression or in a DATA statement (9.1). A
symbolic name of a constant must not be part of a format
specification. A symbolic name of a constant must not be
used to form part of another constant, for example, any part
of a complex constant.

A symbolic name in a PARAMETER statement may identify only
the corresponding constant in that program unit.

8.7 EXTERNAL Statement

An EXTERNAL statement is used to identify a symbolic name as
representing an external procedure or dummy procedure, and
to permit such a name to be used as an actual argument.

The form of an EXTERNAL statement is:

EXTERNAL or oc [. oroc 3...

where each oroc is the name of an external procedure, dummy
procedure, or block data subprogram.

Appearance of a name in an EXTERNAL statement declares that
name to be an external procedure name, dummy procedure name,
or block data subprogram name. If an external procedure
name or a dummy procedure name is used as an actual argument
in a program unit, it must appear in an EXTERNAL statement
in that program unit. Note that a statement function name
must not appear in an EXTERNAL statement.

If an intrinsic function name appears in an EXTERNAL
statement in a program unit, that name becomes the name of
some external procedure and an intrinsic function of the
same name is not available for reference in the program
unit.

Only one appearance of a symbolic name in all of the
EXTERNAL statements of a program unit is permitted.

8.8 INTRINSIC Statement

An INTRINSIC statement is used to identify a symbolic name
as representing an intrinsic function (15.3). It also
permits a name that represents a specific intrinsic function
to be used as an actual argument.

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 8-9

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

5

10

15

The form of an INTRINSIC statement is:

INTRINSIC JLun E .fun]. . .

where each fun is an intrinsic function name.

Appearance of a name in an INTRINSIC statement declares that
name to be an intrinsic function name. If a specific name
of an intrinsic function is used as an actual argument in a
program unit, it must appear in an INTRINSIC statement in
that program unit. The names of intrinsic functions for
type conversion (INT, IFIX, IDINT, FLOAT, SNGL, REAL,
ICHAR), lexical relationship (LGE, LGT, LLE, LLT), and for
choosing the largest or smallest value (MAXO, AMAX1, AMAXO,
MAXI, MINO, AM INI, AMINO, MINI) must not be used as actual
arguments.

20

25

30

35

40

45

50

Only one appearance of a symbolic name in all of the
INTRINSIC statements of a program unit is permitted. Note
that a symbolic name must not appear in both an EXTERNAL and
an INTRINSIC statement in a program unit.

8.9 SAVE Statement

A SAVE statement is used to retain the definition status of
an entity after the execution of a RETURN or END statement
in a subprogram. Within a function or subroutine
subprogram, an entity specified by a SAVE statement does not
become undefined as a result of the execution of a RETURN or
END statement in the subprogram. However, such an entity in
a common block may become undefined or redefined in another
program unit.

The form of a SAVE statement is:

SAVE a E,a]. . .

where each a is a named common block name preceded and
followed by a slash. Redundant appearances of an item are
not permitted.

Dummy argument names, procedure names, variable names, array
names, and names of entities in a common block must not
appear in a SAVE statement.

The appearance of a common block name preceded and followed
by a slash in a SAVE statement has the effect of specifying

55 all of the entities in that common block.

Page 8-10s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

The form of an INTRINSIC statement is:

INTRINSIC ±un [.fun]...

where each fun is an intrinsic function name.

Appearance of a name in an INTRINSIC statement declares that
name to be an intrinsic function name. If a specific name
of an intrinsic function is used as an actual argument in a
program unit, it must appear in an INTRINSIC statement in
that program unit. The names of intrinsic functions for
type conversion (INT, IFIX. IDINT, FLOAT. SNGL, REAL, DBLE,
CMPLX, I CHAR, CHAR), lexical relationship (LGE , LGT, LLE,
LLT), and for choosing the largest or smallest value (MAX,
MAXO, AMAX1, DMAX1, AMAXO, MAXI, MIN, MINO, AM IN1, DM IN1,
AMINO, MINI) must not be used as actual arguments.

The appearance of a generic function name in an INTRINSIC
statement does not cause that name to lose its generic
property.

Only one appearance of a symbolic name in all of the
INTRINSIC statements of a program unit is permitted. Note
that a symbolic name must not appear in both an EXTERNAL and
an INTRINSIC statement in a program unit.

8.9 SAVE Statement

A SAVE statement is used to retain the definition status of
an entity after the execution of a RETURN or END statement
in a subprogram. Within a function or subroutine
subprogram, an entity specified by a SAVE statement does not
become undefined as a result of the execution of a RETURN or
END statement in the subprogram. However, such an entity in
a common block may become undefined or redefined in another
program unit.

The form of a SAVE statement is:

SAVE Ca [,£]...]

where each a. is a named common block name preceded and
followed by a slash, a variable name, or an array name.
Redundant appearances of an item are not permitted.

Dummy argument names, procedure names, and names of entities
in a common block must not appear in a SAVE statement.

A SAVE statement without a list is treated as though it
contained the names of all allowable items in that program
unit.

The appearance of a common block name preceded and followed
by a slash in a SAVE statement has the effect of specifying
all of the entities in that common block.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 8-10

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

If a particular common block name is specified by a SAVE
statement in a subprogram of an executable program, it must
be specified by a SAVE statement in every subprogram in
which that common block appears.

5
A SAVE statement is optional in a main program and has no
effect.

If a named common block is specified in a SAVE statement in
10 a subprogram, the current values of the entities in the

common block storage sequence (8.3.3) at the time a RETURN
or END statement is executed are made available to the next
program unit that specifies that common block name in the
execution sequence of an executable program.

15
If a named common block is specified in the main program
unit, the current values of the common block storage
sequence are made available to each subprogram that
specifies that named common block; a SAVE statement in the

20 subprogram has no effect.

The definition status of each entity in the named common
block storage sequence depends on the association that has
been established for the common block storage sequence (17.2

25 and 17.3).

30

35

40

45

The execution of a RETURN statement or an END statement
within a subprogram causes all entities within the
subprogram to become undefined except for the following:

(1) Entities specified by SAVE statements

(2) Entities in blank common

(3) Initially defined entities that have neither been
redefined nor become undefined

(4) Entities in
subprogram
unit that
indirec 11y ,

a named common block that appears in the
and appears in at least one other program
is referencing, either directly or
that subprogram

50

55

Page 8-11s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

If a particular common block name is specified by a SAVE
statement in a subprogram of an executable program, it must
be specified by a SAVE statement in every subprogram in
which that common block appears.

A SAVE statement is optional in a main program and has no
effect.

If a named common block is specified in a SAVE statement in
a subprogram, the current values of the entities in the
common block storage sequence (8.3.3) at the time a RETURN
or END statement is executed are made available to the next
program unit that specifies that common block name in the
execution sequence of an executable program.

If a named common block is specified in the main program
unit, the current values of the common block storage
sequence are made available to each subprogram that
specifies that named common block; a SAVE statement in the
subprogram has no effect.

The definition status of each entity in the named common
block storage sequence depends on the association that has
been established for the common block storage sequence (17.2
and 17.3) .

If a local entity that is specified by a SAVE statement and
is not in a common block is in a defined state at the time a
RETURN or END statement is executed in a subprogram, that
entity is defined with the same value at the next reference
of that subprogram.

The execution of a RETURN statement or an END statement
within a subprogram causes all entities within tfie
subprogram to become undefined except for the following:

(1) Entities specified by SAVE statements

(2) Entities in blank common

(3) Initially defined entities that have neither been
redefined nor become undefined

(4) Entities in a named common block that appears in the
subprogram and appears in at least one other program
unit that is referencing, either directly or
indirectly, that subprogram

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 8-11

5

10

15

20

25

30

35

40

45

50

55

Pa

X3.9-1978 FORTRAN 77

9. DATA STATEMENT

A DATA statement is used to provide initial values for
variables, arrays, and array elements. A DATA statement is
nonexecutable and may appear in a program unit after the
specification statements and before any statement function
statements or executable statements.

All initially defined entities are defined when an
executable program begins execution. All entities not
initially defined, or associated with an initially defined
entity, are undefined at the beginning of execution of an
executabIe program.

9.1 Form of a DATA Statement

The form of a DATA statement is:

DATA nI i s t / cI i s t / [[,] n I i s t / c I i s t / 3. . .

where: n I is t is a list (2.10) of variable names, array
names, and array element names

c I i s t is a list of the form:

a. [, a. 3. . .

where a. is one of the forms:

c.
r_* c.

c is a constant

r. is a nonzero, unsigned, integer constant.
The r_*c. form is equivalent to r_ successive
appearances or the constant c_.

9.2 DATA Statement Restrictions

Names of dummy arguments, functions, and entities in common
(including entities associated with an entity in common)
must not appear in the list n I is t .

There must be the same number of items specified by each
list nIis t and its corresponding list c I is t . There is a
one-to-one correspondence between the items specified by
nI i s t and the constants specified by c I is t such that the
first item of n I is t corresponds to the first constant of
cIis t. etc. By this correspondence, the initial value is
established and the entity is initially defined. If an

9-1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

9. DATA STATEMENT

A DATA statement is used to provide initial values for
variables, arrays, array elements, and substrings. A DATA
statement is nonexecutable and may appear in a program unit
anywhere after the specification statements, if any.

All initially defined entities are defined when an
executable program begins execution. All entities not
initially defined, or associated with an initially defined
entity, are undefined at the beginning of execution of an
executab I e program .

9.1 Form of a DATA Statement

The form of a DATA statement is:

DATA n I is t / c I is t / C C ,] n I is t / c I i s t /] . . .

where: n I is t is a list (2.10) of variable names, array
names, array element names, substring names, and
implied-DO lists

c I i s t is a list of the form:

a. [, a,] . . .

where a is one of the forms:

c
£,* C.

c. is a constant or the symbolic name of a
constant

r_ is a nonzero, unsigned, integer constant or
the symbolic name of such a constant. The
r_* c_ form is equivalent to r_ successive
appearances of the constant c.

9.2 DATA Statement Restrictions

Names of dummy arguments, functions, and entities in blank
common (including entities associated with an entity in
blank common) must not appear in the list n I is t. Names of
entities in a named common block may appear in the list
n I is t only within a block data subprogram.

There must be the same number of items specified by each
list n I is t and its corresponding list c I i s t. There is a
one-to-one correspondence between the items specified by
n I is t and the constants specified by c I is t such that the
first item of n I is t corresponds to the first constant of
c I is t. etc. By this correspondence, the initial value is
established and the entity is initially defined. If an

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 9-1

ANSI X3.9-1978 FORTRAN 77 DATA STATEMENT

array name without a subscript is in the list, there must be
one constant for each element of that array. The ordering
of array elements is de t ermined by the array e 1 emen t

c

subscript value (5.2 .4) .
J

The type of the nlist entity and the type of the
cor resDondina c1is t constant must agree.

10

15

20
Any variable or array element may be initially
except for:

defined

(1) an entity that is a dummy argument,

25
(2) an entity in common, which includes an

associated with an entity in common, or
en tit y

(3) a variable in a function subprogram whose
also the name of the function subprogram.

name is

30
A var i able or array element must not be initially defined
more than once in an executable program. If two entities
are associated, only one may be initially defined in a DATA
statement in the same executable program.

35
Each subscript expression in the list n I is t must be an
integer constant.

40
9.3 Implied-DQ in a DATA Statement

Implied-DO lists in DATA statements are not included in the
subset.

50

55

Page 9-2s Subset Language

DATA STATEMENT ANSI X3.9-1978 FORTRAN 77

array name without a subscript is in the list, there must be
one constant for each element of that array. The ordering
of array elements is determined by the array element
subscript value (5.2.4).

The type of the n I is t entity and the type of the
corresponding c I i s t constant must agree when either is of
type character or logical. When the n I is t entity is of type
integer, real, double precision, or complex, the
corresponding c I is t constant must also be of type integer,
real, double precision, or complex; if necessary, the cIist
constant is converted to the type of the n I is t entity
according to the rules for arithmetic conversion (Table 4).
Note that if an n I is t entity is of type double precision and
the c I is t constant is of type real, the processor may supply
more precision derived from the constant than can be
contained in a real datum.

Any variable, array element, or substring may be initially
defined except for :

(1) an entity that is a dummy argument,

(2) an entity in blank common, which includes an entity
associated with an entity in blank common, or

(3) a variable in a function subprogram whose name is
also the name of the function subprogram or an entry
in the function subprogram.

A variable, array element, or substring must not be
initially defined more than once in an executable program.
If two entities are associated, only one may be initially
defined in a DATA statement in the same executable program.

Each subscript expression in the list n I is t must be an
integer constant expression except for impIied-DO-variabIes
as noted in 9.3. Each substring expression in the list
n I i s t must be an integer constant expression.

9.3 Implied-DO in a DATA Statement

The form of an implied-DO list in a DATA statement is:

(dIis t. 1 - m, , m2 [,m3])

where: d I i s t is a list of array element names and implied-DO
lists

j_ is the name of* an integer variable, called the
imo I ied-DQ-variabIe

Mi. M2. Mj are each an integer constant expression,
except that the expression may contain implied-
DO-variables of other implied-DO lists that have
this implied-DO list within their ranges

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 9-2

5

10

13

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 DATA STATEMENT

(

9.4 Character Constant in a DATA Statement

An entity in the list n I i s t that corresponds to a character
constant must be of type character.

If the length of the character entity in the list n I is t is
greater than the length of its corresponding character
constant, the additional rightmost characters in the
entity are initially defined with blank characters.

The length of the character entity in the list n I is t must be
greater than or equal to the length of its corresponding
character constant.

Note that initial
definition of all of
each character
variabIe or array

definition of a character entity causes
the characters in the entity, and that

constant
element.

initially defines exactly one

I
9-3s Subset Language

DATA STATEMENT ANSI X3.9-1978 FORTRAN 77

The range of an implied-DO list is the list d I is t. An
iteration count and the values of the impIied-DO-variab I e
are established from m, , m2, and m.3 exactly as for a DO-loop
(11.10), except that the iteration count must be positive.
When an implied-DO list appears in a DATA statement, the
list items in d I is t are specified once for each iteration of
the implied-DO list with the appropriate substitution of
values for any occurrence of the i mp I i ed-DO-var i ab I e The
appearance of an impIied-DO-variab I e name in a DATA
statement does not affect the definition status of a
variable of the same name in the same program unit.

Each subscript expression in the list d I is t must be an
integer constant expression, except that the expression may
contain impIied-DO-variabIes of implied-DO lists that have
the subscript expression within their ranges.

The following is an example of a DATA statement that
contains implied-DO lists:

DATA ((X(J,I). 1=1,J), J=1,5) / 15*0. /

9.4 Character Constant in a DATA Statement

An entity in the list n I is t that corresponds to a character
constant must be of type character.

If the length of the character entity in the list n I is t is
greater than the length of its corresponding character
constant, the additional rightmost characters in the
entity are initially defined with blank characters.

If the length of the character entity in the list n I is t is
less than the length of its corresponding character
constant, the additional rightmost characters in the
constant are ignored.

Note that initial definition of a character entity causes
definition of all of the characters in the entity, and that
each character constant initially defines exactly one
variable, array element, or substring.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 9-3

ANSI X3.9-1978 FORTRAN 77

5

10

15

20

25

30

10. ASSIGNMENT STATEMENTS

Completion of execution of an assignment statement causes
definition of an entity.

There are four kinds of assignment statements:

(1) Arithmetic

(2) Logical

(3) Statement label (ASSIGN)

(4) Character

10.1 Arithmetic Assignment Statement

The form of an arithmetic assignment statement is:

_v - _e

where: v. is the name of a variable or array element of
type integer or real

e. is an arithmetic expression

Execution of an arithmetic assignment statement causes the
evaluation of the expression e. by the rules in Section 6,
conversion of e. to the type of v., and definition and
assignment of _v with the resulting value, as established by
the rules in Table 4.

Table 4

35 Arithmetic Conversion and Assignment of e. to v.

Type of v. Type of e. V a 1 u e
Assigned

Integer Integer e.

Real Real e.

In t eger Real INT(e)

Real Integer REAL (e.)

50 The INT and REAL functions in the "Value Assigned" column of
Table 4 are intrinsic functions described in the "Specific
Name" column of Table 5 (15.10).

55

Page 1 0-1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

10. ASSIGNMENT STATEMENTS

Completion of execution of an assignment statement causes
definition of an entity.

There are four kinds of assignment statements:

(1) Arithmetic

(2) Logical

(3) Statement label (ASSIGN)

(4) Character

10.1 Arithmetic Assignment Statement

The form of an arithmetic assignment statement is:

_v = e.

where: v. is the name of a variable or array element of
type integer, real, double precision, or complex

e. is an arithmetic expression

Execution of an arithmetic assignment statement causes the
evaluation of the expression e. by the rules in Section 6,
conversion of e. to the type of v.» and definition and
assignment of v. with the resulting value, as established by
the rules in Table 4.

Table 4

Arithmetic Conversion and Assignment of e to v

Type of v. Value
Assigned

Integer INT(e)

Real REAL (e.)

Double Precision DBLE(e)

Complex CMPLX(e)

The functions in the "Value Assigned" column of Table 4 are
generic functions described in Table 5 (15.10).

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 10-1

ANSI X3.9-1978 FORTRAN 77 ASSIGNMENT STATEMENTS

5

10

15

20

25

30

35

40

45

50

55

10.2 Logical Assignment Statement

The form of a logical assignment statement is:

v. = e.

where: v. is the name of a logical variable or logical
array element

e. is a logical expression

Execution of a logical assignment statement causes the
evaluation of the logical expression e. and the assignment
and definition of v. with the value of e.. Note that £. must
have a value of either true or false.

10.3 Statement Label Assignment (ASSIGN) Statement

The form of a statement label assignment statement is:

ASSIGN s TO i

where: s. is a statement label

j_ is an integer variable name

Execution of an ASSIGN statement causes the statement label
s. to be assigned to the integer variable j_. The statement
label must be the label of a statement that appears in the
same program unit as the ASSIGN statement. The statement
label must be the label of an executable statement or a
FORMAT statement.

Execution of a statement label assignment statement is the
only way that a variable may be defined with a statement
label value.

A variable must be defined with a statement' label value when
referenced in an assigned GO TO statement (11.3) or as a
format identifier (12.4) in an input/output statement.
While defined with a statement label value, the variable
must not be referenced in any other way.

An integer variable defined with a statement label value may
be redefined with the same or a different statement label
value or an integer value.

10.4 Character Assignment Statement

The form of a character assignment statement is:

v. - e.

where: v. is the name of a character variable or character
array el ement

Page 10-2s Subset Language

ASSIGNMENT STATEMENTS ANSI X3.9-1978 FORTRAN 77

10.2 Logical Assignment Statement

The form of a logical assignment statement is:

1 = S.

where: is the name of a logical variable or logical
array eIement

S. is a logical expression

Execution of a logical assignment statement causes the
evaluation of the logical expression e. and the assignment
and definition of v. with the value of .§.. Note that must
have a value of either true or false.

10.3 Statement Label Assignment (ASSIGN) Statement

The form of a statement label assignment statement is:

ASSIGN s TO i

where: .5. is a statement label

is an integer variable name

Execution of an ASSIGN statement causes the statement label
j. to be assigned to the integer variable j_. The statement
label must be the label of a statement that appears in the
same program unit as the ASSIGN statement. The statement
label must be the label of an executable statement or a
FORMAT statement.

Execution of a statement label assignment statement is the
only way that a variable may be defined with a statement
IabeI value.

A variable must be defined with a statement label value when
referenced in an assigned GO TO statement (11.3) or as a
format identifier (12.4) in an input/output statement.
While defined with a statement label value, the variable
must not be referenced in any other way.

An integer variable defined with a statement label value may
be redefined with the same or a different statement label
value or an integer value.

10.4 Character Assignment Statement

The form of a character assignment statement is:

X = S.

where: x is the name of a character variable, character
array element, or character substring

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 10-2

ANSI X3.9-1978 FORTRAN 77 ASSIGNMENT STATEMENTS

S. is a character expression

Execution of a character assignment statement causes the
evaluation of the expression e. and the assignment and

5 definition of v. with the value of e. None of the character
positions being defined in v. may be referenced in e.. v. and
S. may have different lengths. If the length of v. is greater
than the length of e., the effect is as though e. were
extended to the right with blank characters until it is the

10 same length as v. and then assigned. If the length of v. is
less than the length of e., the effect is as though e. were
truncated from the right until it is the same length as v.
and then assigned.

15

20

25

30

35

40

45

50

55

Page 10-3s Subset Language

ASSIGNMENT STATEMENTS ANSI X3.9-1978 FORTRAN 77

£ is a character expression

Execution of a character assignment statement causes the
evaluation of the expression e. and the assignment and
definition of v. with the value of £. None of the character
positions being defined in v. may be referenced in e.. v. and
£ may have different lengths. If the length of v. is greater
than the length of £, the effect is as though £ were
extended to the right with blank characters until it is the
same length as v. and then assigned. If the length of v. is
less than the length of £, the effect is as though £ were
truncated from the right until it is the same length as v.
and then assigned.

Only as much of the value of £ must be defined as is needed
to define v.- In the example:

CHARACTER A*Z. B*4
A = B

the assignment A=B requires that the substring B(1:2) be
defined. It does not require that the substring B(3:4) be
defined.

If v is a substring, £ is assigned only to the substring.
The definition status of substrings not specified by v. is
unchanged.

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 10-3

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77

11. CONTROL STATEMENTS

Control statements may be used to control the execution
sequence.

There are sixteen control statements:

(1) Unconditional GO TO

(2) Computed GO TO

(3) Assigned GO TO

(4) Arithmetic IF

(5) Logical IF

(6) Block IF

(7) ELSE IF

(8) ELSE

(9) END IF

(10) DO

(11) CONTINUE

(12) STOP

(13) PAUSE

(14) END

(15) CALL

(16) RETURN

The CALL and RETURN statements are described in Settion 15.

11.1 Unconditional GO TO Statement

The form of an unconditional GO TO statement is:

GO TO s

where s. is the statement label of an executable statement
that appears in the same program unit as the unconditional
GO TO statement.

Execution of an unconditional GO TO statement causes a
transfer of control so that the statement identified by the
statement label is executed next.

(
11 -1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

11. CONTROL STATEMENTS

Control statements may be used to control the execution
sequence.

There are sixteen control statements:

(1) Unconditional GO TO

(2) Computed GO TO

(3) Assigned GO TO

(4) Arithmetic IF

(5) Logical IF

(6) Block IF

(7) ELSE IF

(8) ELSE

(9) END IF

(10) DO

(11) CONTINUE

(12) STOP

(13) PAUSE

(14) END

(15) CALL

(16) RETURN

The CALL and RETURN statements are described in Section 15.

11.1 Unconditional GO TO Statement

The form of an unconditional GO TO statement is:

GO TO s.

where s. is the statement label of an executable statement
that appears in the same program unit as the unconditional
GO TO statement.

Execution of an unconditional GO TO statement causes a
transfer of control so that the statement identified by the
statement label is executed next.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 11-1

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

5

10

1 5

20

11.2 Computed GO TO Statement

The form of a computed GO TO statement is:

GO TO (s. C ,sj . . .) [.] i

where: j_ is an integer variable name

s. is the statement label of an executable statement
that appears in the same program unit as the
computed GO TO statement. The same statement
label may appear more than once in the same
computed GO TO statement.

Execution of a computed GO TO statement causes a transfer of
control so that the statement identified by the ith
statement label in the list of statement labels is executed
next, provided that 1 < _i_ < n.» where n. is the number of
statement labels in the list of statement labels. If j_< 1 or
j_> n., the execution sequence continues as though a CONTINUE
statement were executed.

25

30

35

40

45

50

55

11.3 Assigned GO TO Statement

The form of an assigned GO TO statement is:

GO TO i 11 ,] (s. C , s.] . . .)]

where: 1 is an integer variable name

s. is the statement label of an executable statement
that appears in the same program unit as the
assigned GO TO statement. The same statement
label may appear more than once in the same
assigned GO TO statement.

At the time of execution of an assigned GO TO statement, the
variable _i_ must be defined with the value of a statement
label of an executable statement that appears in the same
program unit. Note that the variable may be defined with a
statement label value only by an ASSIGN statement (10.3) in
the same program unit as the assigned GO TO statement. The
execution of the assigned GO TO statement causes a transfer
of control so that the statement identified by that
statement label is executed next.

If the parenthesized list is present, the statement label
assigned to 1 must be one of the statement labels in the
list.

11.4 Arithmetic IF Statement

The form of an arithmetic IF statement is:

IF (e.) s., , s.2 , s.3

Page 11-2s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

11.2 Computed GO TO Statement

The form of a computed GO TO statement is:

GO TO (s. [, s.]. . .) [,] i

where: _i_ is an integer expression

s. is the statement label of an executable statement
that appears in the same program unit as the
computed GO TO statement. The same statement
label may appear more than once in the same
computed GO TO statement.

Execution of a computed GO TO statement causes evaluation of
the expression j_. The evaluation of _i_ is followed by a
transfer of control so that the statement identified by the
j_th statement label in the list of statement labels is
executed next, provided that 1 < j_ < n., where n. is the
number of statement labels in the list of statement labels.
If j_< 1 or j_>£L, the execution sequence continues as though a
CONTINUE statement were executed.

11.3 Assigned GO TO Statement

The form of an assigned GO TO statement is:

GO TO i [[,] (s. [, s.] . . .)]

where: j_ is an integer variable name

s. is the statement label of an executable statement
that appears in the same program unit as the
assigned GO TO statement. The same statement
label may appear more than once in the same
assigned GO TO statement.

At the time of execution of an assigned GO TO statement, the
variable j_ must be defined with the value of a statement
label of an executable statement that appears in the same
program unit. Note that the variable may be defined with a
statement label value only by an ASSIGN statement (10.3) in
the same program unit as the assigned GO TO statement. The
execution of the assigned GO TO statement causes a transfer
of control so that the statement identified by that
statement label is executed next.

If the parenthesized list is present, the statement label
assigned to j_ must be one of the statement labels in the
list.

11.4 Arithmetic IF Statement

The form of an arithmetic IF statement is:

IF (e.) s., , s.2 , s.3

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 11-2

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

where: s. is an integer or real expression

5

10

15

20

25

30

35

40

45

50

55

s., , s.2 , and s,3 are each the statement label of an
executable statement that appears in the same
program unit as the arithmetic IF statement. The
same statement label may appear more than once in
the same arithmetic IF statement.

Execution of an arithmetic IF statement causes evaluation of
the expression e. followed by a transfer of control. The
statement Identified by s., , _sg , or s.3 is executed next as
the value of e. is less than zero, equal to zero, or greater
than zero, respectively.

11.5 Logical IF Statement

The form of a logical IF statement is:

IF (e_) st

where: e. is a logical expression

s t Is any executable statement except a DO,
block IF, ELSE IF, ELSE, END IF, END, or another

I ogical IF statement

Execution of a logical IF statement causes evaluation of the
expression e.. If the value of je is true, statement sj. is
executed. If the value of e. is false, statement s_t is not
executed and the execution sequence continues as though a
CONTINUE statement were executed.

Note that the execution of a function reference in the
expression e of a logical IF statement is permitted to
affect entities in the statement st.

11.6 Block IF Statement

The block IF statement is used with the END IF statement
and, optionally, the ELSE IF and ELSE statements to control
the execution sequence.

The form of a block IF statement is:

IF (e) THEN

where e is a logical expression.

11.6.1 I F-Le ve I . The I F- I eve I of a statement s. is

n i “Ha

where n., is the number of block IF statements from the
beginning of the program unit up to and including s_, and n2

Page 11-3 s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

where: £. is an integer, real, or double precision
expression

ii # s.2, and s.3 are each the statement label of an
executable statement that appears in the same
program unit as the arithmetic IF statement. The
same statement label may appear more than once in
the same arithmetic IF statement.

Execution of an arithmetic IF statement causes evaluation of
the expression e. followed by a transfer of control. The
statement identified by s., , s.2 , or s.3 is executed next as
the value of e. is less than zero, equal to zero, or greater
than zero, respectively.

11.5 Loaical IF Statement

The form of a logical IF statement is:

IF (e) sx

where: £ is a logical expression

is any executable statement except a DO,
block IF. ELSE IF, ELSE, END
logical IF statement

IF, END, or another

Execution of a logical IF statement causes evaluation of the
expression e.. If the value of e. is true, statement s_L is
executed. If the value of e. is false, statement s_t is not
executed and the execution sequence continues as though a
CONTINUE statement were executed.

Note that the execution of a function reference in the
expression e. of a logical IF statement is permitted to
affect entities in the statement st.

11.6 Block IF Statement

The block IF statement is used with the END IF statement
and, optionally, the ELSE IF and ELSE statements to control
the execution sequence.

The form of a block IF statement is:

IF (e) THEN

where £ is a logical expression.

11.6.1 I F-Leve I . The I F- I e ve I of a statement s. is

n, - n2

where n., is the number of block IF statements from the
beginning of the program unit up to and including s., and n.2

5

10

1 5

20

25

30

35

40

45

50

55

FuI I Language Page 11-3

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

5

10

15

20

25

30

35

AO

45

50

55

is the number of END IF statements in the program unit up to
but not including s..

The IF-level of every statement must be zero or positive.
The IF-level of each block IF, ELSE IF, ELSE, and END IF
statement must be positive. The IF-level of the END
statement of each program unit must be zero.

11.6.2 IF-BI ock. An IF-bIock consists of all of the
executable statements that appear following the block IF
statement up to, but not including, the next ELSE IF, ELSE,
or END IF statement that has the same IF-level as the
block IF statement. An IF-block may be empty.

11.6.3 Execution of a Block IF Statement. Execution of a
block IF statement causes evaluation of the expression £.
If the value of e. is true, normal execution sequence
continues with the first statement of the IF-block. If the
value of e. is true and the IF-block is empty, control is
transferred to the next END IF statement that has the same
IF-level as the block IF statement. If the value of e. is
false, control is transferred to the next ELSE IF, ELSE, or
END IF statement that has the same IF-level as the block IF
statement.

Transfer of control into an IF-block from outside the IF-
block is prohibited.

If the execution of the last statement in the IF-block does
not result in a transfer of control, control is transferred
to the next END IF statement that has the same IF-level as
the block IF statement that precedes the IF-block.

11.7 ELSE IF Statement

The form of an ELSE IF statement is:

ELSE IF (e) THEN

where e. i s a logical expression.

11.7.1 ELSE IF-Block . A n ELSE IF-block consists of all of
the executable statements that appear following the ELSE IF
statement up to, but not including, the next ELSE IF, ELSE,
or END IF statement that has the same IF-level as the
ELSE IF statement. An ELSE IF-block may be empty.

11.7.2 Execution of an ELSE IF Statement. Execution of an
ELSE IF statement causes evaluation of the expression e.. If
the value of e. is true, normal execution sequence continues
with the first statement of the ELSE IF-block. If the value
of e. is true and the ELSE IF-block is empty, control is
transferred to the next END IF statement that has the same
IF-level as the ELSE IF statement. If the value of e. is
false, control is transferred to the next ELSE IF, ELSE, or

Page 11-4s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

is the number of END IF statements in the program unit up to
but not including s..

The IF—I eve I of every statement must be zero or positive.
The IF— I eve I of each block IF, ELSE IF, ELSE, and END IF
statement must be positive. The IF-1 eve I of the END
statement of each program unit must be zero.

11.6.2 IF-Block. An IF-bIock consists of all of the
executable statements that appear following the block IF
statement up to, but not including, the next ELSE IF, ELSE,
or END IF statement that has the same IF— I eve I as the
block IF statement. An IF-block may be empty.

11.6.3 Execution of a Block IF Statement. Execution of a
block IF statement causes evaluation of the expression e_.
If the value of e. is true, normal execution sequence
continues with the first statement of the IF-block. If the
value of e. is true and the IF-block is empty, control is
transferred to the next END IF statement that has the same
IF—I eve I as the block IF statement. If the value of e. is
false, control is transferred to the next ELSE IF, ELSE, or
END IF statement that has the same IF—I eve I as the block IF
statement.

Transfer of control into an IF-block from outside the IF-
block is prohibited.

If the execution of the last statement in the IF-block does
not result in a transfer of control, control is transferred
to the next END IF statement that has the same IF-1 eve I as
the block IF statement that precedes the IF-block.

11.7 ELSE IF Statement

The form of an ELSE IF statement is:

ELSE IF (e) THEN

where e. i s a logical expression.

11.7.1 ELSE IF-BIock. An ELSE IF-block consists of all of
the executable statements that appear following the ELSE IF
statement up to, but not including, the next ELSE IF, ELSE,
or END IF statement that has the same IF-1 eve I as fhe
ELSE IF statement. An ELSE IF-block may be empty.

11.7.2 Execution of an ELSE IF Statement. Execution of an
ELSE IF statement causes evaluation of the expression e.. If
the value of e. is true, normal execution sequence continues
with the first statement of the ELSE IF-block. If the value
of e. is true and the ELSE IF-block is empty, control is
transferred to the next END IF statement that has the same
IF—I eve I as the ELSE TF statement. If the value of e. is
false, control is transferred to the next ELSE IF, ELSE, or

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 11-4

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

END IF statement that has the same IF-level as the ELSE IF
statement.

Transfer of control into an ELSE IF-block from outside the
ELSE IF-block is prohibited. The statement label, if any,
of the ELSE IF statement must not be referenced by any
statement.

If execution of the last statement in the ELSE IF-block does
not result in a transfer of control, control is transferred
to the next END IF statement that has the same IF-level as
the ELSE IF statement that precedes the ELSE IF-block.

11.8 ELSE Statement

The form of an ELSE statement is:

ELSE

11.8.1 ELSE-B lock. An ELSE-b I ock consists of all of the
executable statements that appear following the ELSE
statement up to, but not including, the next END IF
statement that has the same IF-level as the ELSE statement.
An ELSE-block may be empty.

An END IF statement of the same IF-level as the ELSE
statement must appear before the appearance of an ELSE IF or
ELSE statement of the same IF-level.

11.8.2 Execution of an ELSE Statement. Execution of an
ELSE statement has no effect.

Transfer of control into an ELSE-block from outside the
ELSE-block is prohibited. The statement label, if any, of
an ELSE statement must not be referenced by any statement.

11.9 END IF Statement

The form of an END IF statement is:

END IF

Execution of an END IF statement has no effect.

For each block IF statement there must be a corresponding
END IF statement in the same program unit. A corresoondino
END IF statement is the next END IF statement that has the
same IF-level as the block IF statement.

11.10 DO Statement

A DO statement is used to specify a loop, called a DO-1 pop.

I
11 -5s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

END IF statement that has the same IF—I eve I as the ELSE IF
statement.

Transfer of control into an ELSE IF-block from outside the
ELSE IF-block is prohibited. The statement label, if any,
of the ELSE IF statement must not be referenced by any
statement.

If execution of the last statement in the ELSE IF-block does
not result in a transfer of control, control is transferred
to the next END IF statement that has the same IF-1 eve I as
the ELSE IF statement that precedes the ELSE IF-block.

11-8 ELSE Statement

The form of an ELSE statement is:

ELSE

11.8.1 ELSE-B lock. An ELSE~b lock consists of all of the
executable statements that appear following the ELSE
statement up to, but not including, the next END IF
statement that has the same IF— I eve I as the ELSE statement.
An ELSE-block may be empty.

An END IF statement of the same IF— I eve I as the ELSE
statement must appear before the appearance of an ELSE IF or
ELSE statement of the same IF-level.

11.8.2 Execution of an ELSE Statement. Execution of an
ELSE statement has no effect.

Transfer of control into an ELSE-block from outside the
ELSE-block is prohibited. The statement label, if any, of
an ELSE statement must not be referenced by any statement.

11.9 END IF Statement

The form of an END IF statement is:

END IF

Execution of an END IF statement has no effect.

For each block IF statement there must be a corresponding
END IF statement in the same program unit. A correspondinq
END IF statement is the next END IF statement that has the
same IF-level as the block IF statement.

11.10 DO Statement

A DO statement is used to specify a loop, called a DO-1 pop .

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 11-5

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

The form of a DO statement is:

DO 1 U i = I,, e2 [, e.3]

where is the statement label of an executable
statement. The statement identified by j., called

25

30

35

40

10

the terminal statement of the DO-looo. must
follow the DO statement in the sequence of
statements within the same program unit as the DO
statement.

i is the name of an integer variable, called
DO-variab 1 e

the

15 e i , e.2 , and e.3 are each
integer variable name

an integer constant or

20

The terminal statement of a
unconditional GO TO, assigned
block IF, ELSE IF, ELSE, END IF,

DO-loop must not be
GO TO, arithmetic
RETURN, STOP, END, or

an
IF,
DO

statement. If the terminal statement of a DO-loop is a
logical IF statement, it may contain any executable
statement except a DO, block IF, ELSE IF, ELSE, END IF, END,
or another logical IF statement.

11.10.1 Range of a DQ-Lood. The range of a. DO-1 pod
consists of all of the executable statements that appear
following the DO statement that specifies the DO-loop, up to
and including the terminal statement of the DO-loop.

If a DO statement appears within the range of a DO-loop, the
range of the DO-loop specified by that DO statement must be
contained entirely within the range of the outer DO-loop.
More than one DO-loop may have the same terminal statement.

If a DO statement appears within an IF-block, ELSE IF-block,
or ELSE-block, the range of that DO-loop must be contained
entirely within that IF-block, ELSE IF-block’, or ELSE-block,
respectiveIy.

If a block IF statement appears within the range of a DO-
loop, the corresponding END IF statement must also appear
within the range of that DO-loop.

45

50

11.10.2 Active and Inactive DQ-Loops. A DO-loop is either
active or inactive. Initially inactive, a DO-loop becomes
active only when its DO statement is executed.

Once active, the DO-loop becomes inactive only when:

(1) its iteration count is tested (11.10.4) and
determined to be zero,

55
(2) a RETURN statement is executed within its range.

Page 11 -6 s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

The form of a DO statement is:

DO s. [,] i = e., , e.2 C , e.3]

where: s. is the statement label of an executable
statement. The statement identified by s_, called
the terminal statement of the DO-loop, must
follow the DO statement in the sequence of
statements within the same program unit as the DO
statement.

j_ is the name of an integer, real, or double
precision variable, called the DO-variable

e., , e.2 , and e.3 are each an integer, real, or double
precision expression

The terminal statement of a DO-loop must not be an
unconditional GO TO, assigned GO TO, arithmetic IF,
block IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or DO
statement. If the terminal statement of a DO-loop is a
logical IF statement, it may contain any executable
statement except a DO, block IF, ELSE IF, ELSE, END IF, END,
or another logical IF statement.

11.10.1 Range of a DQ-Loop. The range of a. DO-1 pop

consists of all of the executable statements that appear
following the DO statement that specifies the DO-loop, up to
and including the terminal statement of the DO-loop.

If a DO statement appears within the range of a DO-loop, the
range of the DO-loop specified by that DO statement must be
contained entirely within the range of the outer DO-loop.
More than one DO-loop may have the same terminal statement.

If a DO statement appears within an IF-block, ELSE IF — block,
or ELSE-block, the range of that DO-loop must be contained
entirely within that IF-block, ELSE IF-block, or ELSE-block,
respectiveIy.

If a block IF statement appears within the range of a DO-
loop, the corresponding END IF statement must also appear
within the range of that DO-loop.

11.10.2 Active and Inactive DQ-Loops. A DO-loop is either
active or inactive. Initially inactive, a DO-loop becomes
active only when its DO statement is executed.

Once active, the DO-loop becomes inactive only when:

(1) its iteration count is tested (11.10.4) and
determined to be zero,

(2) a RETURN statement is executed within its range,

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 11-6

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

(3) control is transferred to a statement that is in the
same program unit and is outside the range of the DO-
loop, or

(4) any STOP statement in the executable pro'gram is
executed, or execution is terminated for any other
reason (12.6).

Execution of a function reference or CALL statement that
appears in the range of a DO-loop does not cause the DO-loop
to become inactive .

When a DO-loop becomes inactive, the DO-variable of the DO-
loop retains its last defined value.

11.10.3 Executing a DO Statement. The effect of executing
a DO statement is to perform the following steps in
sequence:

(1) The initial parameter m., , the terminal parameter m2,
and the incrementation parameter m3 are established
from , e.j , and e.3 , respectively. If e.3 does not
appear, m3 has a value of one. m3 must not have a
value of zero.

(2) The DO-variable becomes defined with the value of the
initial parameter m,.

(3) The iteration count is established and is the value
of the express)on

MAX0(((m2 - m., + jn3)/m3), 0)

Note that the iteration count is zero whenever:

m, > m.2 and m.3 > 0, or

m., < m2 and m3 < 0.

At the completion of execution of the DO statement, loop
control processing begins.

11.10.4 Loop Control Processing. Loop control processing
determines if further execution of the range of the DO-loop
is required. The iteration count is tested. If it is not
zero, execution of the first statement in the range of the
DO-loop begins. If the iteration count is zero, the DO-loop
becomes inactive. If, as a result, all; of the DO-loops
sharing the terminal statement of this DO-loop are inactive,
normal execution continues with execution of the next
executable statement following the terminal statement.
However, if some of the DO-loops sharing the terminal

11 -7s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

(3) control is transferred to a statement that is in the
same program unit and is outside the range of the D0-
Ioop, or

(4) any STOP statement in the executable program is
executed, or execution is terminated for any other
reason (12.6).

Execution of a function reference or CALL statement that
appears in the range of a DO-loop does not cause the DO-loop
to become inactive, except when control is returned by means
of an alternate return specifier in a CALL statement to a
statement that is not in the range of the DO-loop.

When a 00-loop becomes inactive, the DO-variable of the DO-
loop retains its last defined value.

11.10.3 Executing a DO Statement. The effect of executing
a DO statement is to perform the following steps in
sequence:

(1) The initial parameter m.i , the terminal parameter m.2 ,
and the i ncr ementat i on parameter m.3 are established
by evaluating e., , e.z , and e.3 , respectively,
including, if necessary, conversion to the type of
the DO-variable according to the rules for arithmetic
conversion (Table 4). If e.3 does not appear, m.3 has
a value of one. m.3 must not have a value of zero.

(2) The DO-variable becomes defined with the value of the
initial parameter m,.

(3) The iteration count is established and is the value
of the expression

MAX(INT((m.2 - m., + m.3) /m.3), 0)

Note that the iteration coufft is zero whenever:

m, > m.2 and m3 > 0, or

m., < m.2 and m3 < 0.

At the completion of execution of the DO statement, loop
control processing begins.

11.10.4 Loop Control Processing. Loop control processing
determines if further execution of the range of the DO-loop
is required. The iteration count is tested. If it is not
zero, execution of the first statement in the range of the
DO-loop begins. If the iteration count is zero, the DO-loop
becomes inactive. If, as a result, all of the DO-loops
sharing the terminal statement of this DO-loop are inactive,
normal execution continues with execution of the next
executable statement following the terminal statement.
However, if some of the DO-loops sharing the terminal

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 11-7

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

5

10

15

20

25

30

35

40

45

statement are active, execution continues with
incrementation processing, as described in 11.10.7.

11.10.5 Execution of the Range. Statements in the range of
a DO-loop are executed until the terminal statement is
reached. Except by the incrementation described in 11.10.7,
the DO-variable of the DO-loop may neither be redefined nor
become undefined during execution of the range of the DO-
loop.

11.10.6 Terminal Statement Execution. Execution of the
terminal statement occurs as a result of the normal
execution sequence or as a result of transfer of control,
subject to the restrictions in 11.10.8. Unless execution of
the terminal statement results in a transfer of control,
execution then continues with incrementation processing, as
described in 11.10.7.

11.10.7 Incrementation Processing. Incrementation
processing has the effect of the following steps performed
in sequence:

(1) The DO-variable, the iteration count, and the
incrementation parameter of the active DO-loop whose
DO statement was most recently executed, are selected
for processing.

(2) The value of the DO-variable is incremented by the
value of the incrementation parameter m.3 .

(3) The iteration count is decremented by one.

(4) Execution continues with loop control processing
(11.10.4) of the same DO-loop whose iteration count
was decremented.

For examp Ie:

N = 0
DO 100 1=1,10
J=I
DO 100 K=1,5
L = K

100 N=N+1
101 CONTINUE

After execution of these statements and at the execution of
the CONTINUE statement, 1 = 11, J = 10, K = 6, L = 5, and N = 50.

50

55

Page 11-8 s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

statement are active, execution continues with
incrementation processing, as described in 11.10.7.

11.10.5 Execution of the Range. Statements in the range of
a DO-loop are executed until the terminal statement is
reached. Except by the incrementation described in 11.10.7,
the DO-variable of the DO-loop may neither be redefined nor
become undefined during execution of the range of the DO-
loop.

11.10.6 Terminal Statement Execution. Execution of the
terminal statement occurs as a result of the normal
execution sequence or as a result of transfer of control,
subject to the restrictions in 11.10.8. Unless execution of
the terminal statement results in a transfer of control,
execution then continues with incrementation processing, as
described in 11.10.7.

11.10.7 Incrementation Processing. Incrementation
processing has the effect of the following steps performed
in sequence:

(1) The DO-variable, the iteration count, and the
incrementation parameter of the active DO-loop whose
DO statement was most recently executed, are selected
for processing.

(2) The value of the DO-variable is incremented by the
value of the incrementation parameter m,3.

(3) The iteration count is decremented by one.

(4) Execution continues with loop control processing
(11.10.4) of the same DO-loop whose iteration count
was decremented.

For examp Ie :

N = 0
DO 100 1=1,10
J = I
DO 100 K=1.5
L = K

100 N=N+1
101 CONTINUE

After execution of these statements and at the execution of
the CONTINUE statement, 1 = 11, J = 10, K = 6, L = 5, and N = 50.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 11-8

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

Also consider the following example:

N = 0
DO 200 1=1,10
J=I
DO 200 K=5.1
L = K

200 N=N+1
201 CONTINUE

After execution of these statements and at the execution of
the CONTINUE statement, 1=11, J=10, K=5, and N=0. L is not
defined by these statements.

11.10.8 Transfer into the Range of a DO-Loop. Transfer of
control into the range of a DO-loop from outside the range
is not permit ted.

11.11 CONTINUE Statement

The form of a CONTINUE statement is:

CONTINUE

Execution of a CONTINUE statement has no effect.

If the CONTINUE statement is the terminal statement of a DO-
loop, the next statement executed depends on the result of
the DO-loop incrementation processing (11.10.7).

11.12 STOP Statement

The form of a STOP statement is:

STOP [n]

where n is a string of not more than five digits, or is a
character constant.

Execution of a STOP statement causes termination of
execution of the executable program. At the time of
termination, the digit string or character constant is
accessibIe.

11.13 PAUSE Statement

The form of a PAUSE statement is:

PAUSE tn]

where n is a string of not more than five digits, or is a
character constant.

Execution of a PAUSE statement causes a cessation of
execution of the executable program. Execution must be
resumable. At the time of cessation of execution, the digit

11 -9s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

Also consider the following example:

N = 0
DO 200 1=1,10
J = I
DO 200 K=5,1
L = K

200 N=N+1
201 CONTINUE

After execution of these statements and at the execution of
the CONTINUE statement, 1 = 11, J = 10, K = 5, and N = 0. L is not
defined by these statements.

11.10.8 Transfer into the Range of a DQ-Lood. Transfer of
control into the range of a DO-loop from outside the range
is not permitted.

11.11 CONTINUE Statement

The form of a CONTINUE statement is:

CONTINUE

Execution of a CONTINUE statement has no effect.

If the CONTINUE statement is the terminal statement of a DO-
loop, the next statement executed depends on the result of
the DO-loop incrementation processing (11.10.7).

11.12 STOP Statement

The form of a STOP statement is:

STOP tn]

where n. is a string of not more than five digits, or is a
character constant.

Execution of a STOP statement causes termination of
execution of the executable program. At the time of
termination, the digit string or character constant is
accessible.

11.13 PAUSE Statement

The form of a PAUSE statement is:

PAUSE [n]

where n is a string of not more than five digits, or is a
character constant.

Execution of a PAUSE statement causes a cessation of
execution of the executable program. Execution must be
resumable. At the time of cessation of execution, the digit

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 11-9

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

5

10

15

20

25

string or character constant is accessible. Resumption of
execution is not under control of the program. If execution
is resumed, the execution sequence continues as though a
CONTINUE statement were executed.

11.14 END Statement

The END statement indicates the end of the sequence of
statements and comment lines of a program unit (3.5). If
executed in a function or subroutine subprogram, it has the
effect of a RETURN statement (15.8). If executed in a main
program, it terminates the execution of the executable
program .

The form of an END statement is:

END

An END statement is written
an initial line. An END

only in columns 7 through 72 of
statement must not be continued.

initial No other statement i n a program unit may have an
line that appear s to be an END statement.

The last
statement

line of every program unit must be an END

30

35

40

45

50

55

Page 11 -10 s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

string or character constant is accessible. Resumption of
execution is not under control of the program. If execution
is resumed, the execution sequence continues as though a
CONTINUE statement were executed.

11.14 END Statement

The END statement indicates the end of the sequence of
statements and comment lines of a program unit (3.5). If
executed in a function or subroutine subprogram, it has the
effect of a RETURN statement (15.8). If executed in a main
program, it terminates the execution of the executable
program.

The form of an END statement is:

END

An END statement is written only in columns 7 through 72 of
an initial line. An END statement must not be continued.
No other statement i n a program unit may have an
line that appears to be an END statement.

The last
statement

line of every program unit must be

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 11-10

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77

12. INPUT/OUTPUT STATEMENTS

Input statements provide the means of transferring data from
external media to internal storage or from an internal file
to internal storage. This process is called reading.
Output statements provide the means of transferring data
from internal storage to external media or from internal
storage to an internal file. This process is called
writing. Some input/output statements specify that editing
of the data is to be performed.

In addition to the statements that transfer data, there are
auxiliary input/output statements to manipulate the external
medium, or to describe the properties of the connection to
the external mediurn.

There are six input/output statements:

(1) READ

(2) WRITE

(3) OPEN

(4) BACKSPACE

(5) ENDFILE

(6) REWIND

The READ and WRITE statements are data transfer inout/outout
statements (12.8). The OPEN, BACKSPACE, ENDFILE, and REWIND
statements are auxi Mary input/outout statements (12.10).
The BACKSPACE, ENDFILE, and REWIND statements are file
positioning input/outout statements (12.10.4).

12.1 Records

A record is a sequence (2.1) of values or a sequence of
characters. For example, a punched card is usually
considered to be a record. However, a record does not
necessarily correspond to a physical entity. There are
three kinds of records:

(1) Formatted

(2) Unformatted

(3) Endfi le

12-1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

12. INPUT/OUTPUT STATEMENTS

Input statements provide the means of transferring data from
external media to internal storage or from an internal file
to internal storage. This process is called reading.
Output statements provide the means of transferring data
from internal storage to external media or from internal
storage to an internal file. This process is called
nriting. Some input/output statements specify that editing
of the data is to be performed.

In addition to the statements that transfer data, there are
auxiliary input/output statements to manipulate the external
medium, or to inquire about or describe the properties of
the connection to the external medium.

There are nine input/output statements:

(1) READ

(2) WRITE

(3) PRINT

(4) OPEN

(5) CLOSE

(6) INQUIRE

(7) BACKSPACE

(8) ENDFILE

(9) REWIND

The READ, WRITE, and PRINT statements are data transfer
input/outout statements (12.8). The OPEN, CLOSE, INQUIRE,
BACKSPACE, ENDFILE, and REWIND statements are auxi Mary
input/output statements (12.10). The BACKSPACE, ENDFILE,
and REWIND statements are file positioning input/outout
statements (12.10.4).

12.1 Records

A record is a sequence (2.1) of values or a sequence of
characters. For example, a punched card is usually
considered to be a record. However, a record does not
necessarily correspond to a physical entity. There are
three kinds of records:

(1) Formatted

(2) Unformatted

(3) Endfi le

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-1

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

15

20

25

30

35

40

45

50

55

12.1.1 Formatted Record. A formatted record consists of a
sequence of characters that are capable of representation in
the processor. The length of a formatted record is measured
in characters and depends primarily on the number of
characters put into the record when it is written. However,
it may depend on the processor and the external medium. The
length may be zero. Formatted records may be read or
written only by formatted input/output statements (12.8.1).

Formatted records may be prepared by some means other than
FORTRAN; for example, by some manual input device.

12.1.2 Unformatted Record. An unformatted record consists
of a sequence of values in a processor-dependent form and
may contain both character and noncharacter data or may
contain no data. The length of an unformatted record is
measured in processor-dependent units and depends on the
output list (12.8.2) used when it is written, as well as on
the processor and the external medium. The length may be
zer o.

Unformatted records may be read or written only by
unformatted input/output statements (12.8.1).

12.1.3 EndfiIe Record. An endfile record is written by an
ENDFILE statement. An endfile record may occur only as the
last record of a file. An endfile record does not have a
I ength proper ty.

12.2 Files

A file is a sequence (2.1) of records.

There are two kinds of files:

(1) Externa I

(2) Internal

12.2.1 File Existence. At any given time, there is a
processor-determined set of files that are said to exist for
an executable program. A file may be known to the
processor, yet not exist for an executable program at a
particular time. For example, security reasons may prevent
a file from existing for an executable program. A file may
exist and contain no records; an example is a newly created
file not yet written.

To create a. file means to cause a file to exist that did not
previously exist. To delete s. file means to terminate the
existence of the file.

All input/output statements may refer to files that exist.
The OPEN, WRITE, and ENDFILE statements may also refer to
files that do not exist.

Page 12-2s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.1.1 Formatted Record. A formatted record consists of a
sequence of characters that are capable of representation in
the processor. The length of a formatted record is measured
in characters and depends primarily on the number of
characters put into the record when it is written. However,
it may depend on the processor and the external medium. The
length may be zero. Formatted records may be read or
written only by formatted input/output statements (12.8.1).

Formatted records may be prepared by some means other than
FORTRAN; for example, by some manual input device.

12.1.2 Unformatted Record. An unformatted record consists
of a sequence of values in a processor-dependent form and
may contain both character and noncharacter data or may
contain no data. The length of an unformatted record is
measured in processor-dependent units and depends on the
output list (12.8.2) used when it is written, as well as on
the processor and the external medium. The length may be
zer o.

Unformatted records may be read or written only by
unformatted input/output statements (12.8.1).

12.1.3 Endfile Record. An endfile record is written by an
ENDFILE statement. An endfile record may occur only as the
last record of a file. An endfile record does not have a
length property.

12.2 Files

A file is a sequence (2.1) of records.

There are two kinds of files;

(1) Externa I

(2) Interna I

12.2.1 File Existence. At any given time, there is a
processor-determined set of files that are said to exist for
an executable program. A file may be known to the
processor, yet not exist for an executable program at a
particular time. For example, security reasons may prevent
a file from existing for an executable program. A file may
exist and contain no records; an example is a newly created
file not yet written.

To create file means to cause a file to exist that did not
previously exist. To delete a file means to terminate the
existence of the file.

All input/output statements may refer to files that exist.
The INQUIRE, OPEN, CLOSE, WRITE. PRINT, and ENDFILE
statements may also refer to files that do not exist.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-2

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEHENTS

1Z.2.2 File Properties. At any given time, there is a
processor-determined set of a I lowed access methods. a
processor-determined set of all owed forms, and a processor-
determined set a I lowed record I enoths for a file.

5
File names are not included in the subset.

10
12.2.3 File Position. A file that is connected to a unit
(12.3) has a position property. Execution of certain
input/output statements affects the position of a file.
Certain circumstances can cause the position of a file to

15 become indeterminate.

The initial point of a file is the position just before the
first record. The terminal point is the position just after
the last record.

20
If a file is positioned within a record, that record is the
current record: otherwise, there is no current record.

Let n be the number of records in the file. If 1 < i i n.
25 and a file is positioned within the j_th record or between

the <1*1)th record and the j_th record, the (j_-1)th record is
the precedi nq record. If XL I 1 and a file is positioned at
its terminal point, the preceding record is the n.th and last
record. If XL=0 or if a file is positioned at its initial

30 point or within the first record, there is no preceding
record.

If 1 i i < xl and a file is positioned within the ith record
or between the ith and (j_+1)th record, the (i+1)th record is

35 the next record. I f XL i 1 and the Hie is positioned at its
initial point, the first record is the next record. If a-0
or if a file is positioned at its terminal point or within
the nth and last record, there is no next record.

40 12.2.4 File Access. There are two methods of accessing the
records of an external file: sequential and direct. Some
files may have more than one allowed access method,* other
files may be restricted to one access method. For example,
a processor may allow only sequential access to a file on

45 magnetic, tape. Thus, the set of allowed access methods
depends &n the file and the processor.

The method of accessing the file is determined when the file
is connected to a unit (12.3.2).

50
An internal file must be accessed sequentially.

12.2.4.1 Sequential Access. When connected for sequential
access, a file has the following properties:

55

Page 12-3s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.2.2 File Proper ties. At any given time, there is a
processor-determined set of a I lowed access methods. a
processor-determined set of all owed forms, and a processor-
determined set of a I I owed record I engths for a file.

A file may have a name; a file that has a name is called a
named file. The name of a named file is a character string.
The set of allowable names is processor dependent and may be
empty.

12.2.3 File Position. A file that is connected to a unit
(12.3) has a position property. Execution of certain
input/output statements affects the position of a file.
Certain circumstances can cause the position of a file to
become indeterminate.

The initial point of a file is the position just before the
first record. The terminal point is the position just after
the last record.

If a file is positioned within a record, that record is the
current record: otherwise, there is no current record.

Let XL be the number of records in the file. If 1 < i $ n
and a file is positioned within the j_th record or between
the (j_-1)th record and the j_th record, the (j_-1)th record is
the preceding record. If n l 1 and a file is positioned at
its terminal point, the preceding record is the nth and last
record. If n.= 0 or if a file is positioned at its initial
point or within the first record, there is no preceding
record.

If 1 (1 < H and a file is positioned within the ith record
or between the ith and (i+1)th record, the (j_+1)th record is
the next record. If n. 1 1 and the file is positioned at its
initial point, the first record is the next record. If n.= 0
or if a file is positioned at its terminal point or within
the nth and last record, there is no next record.

12.2.4 File Access. There are two methods of accessing the
records of an external file: sequential and direct. Some
files may have more than one allowed access method; other
files may be restricted to one access method. For example,
a processor may allow only sequential access to a file on
magnetic tape. Thus, the set of allowed access methods
depends on the file and the processor.

The method of accessing the file is determined when the file
is connected to a uhit (12.3.2).

An internal file must be accessed sequentially.

12.2.4.1 Sequential Access. When connected for sequential
access, a file has the following properties:

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-3

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

15

20

25

30

35

40

45

50

55

(1) The order of the records is the order in which they
were written if the direct access method is not a
member of the set of allowed access methods for the
file. If the direct access method is also a member
of the set of allowed access methods for the file,
the order of the records is the same as that
specified for direct access (12.2.4.2). The first
record accessed by sequential access is the record
whose record number is 1 for direct access. The
second record accessed by sequential access is the
record whose record number is 2 for direct access,
etc. A record that has not been written since the
file was created must not be read.

(2) The records of the file are either all formatted or
all unformatted, except that the last record of the
file may be an endfile record.

(3) The records of the file must not be read or written
by direct access input/output statements (12.8.1).

12.2.4.2 Direct Access. When connected for direct access,
a file has the following properties:

(1) The order of the records is the order of their record
numbers. The records may be read or written in any
order.

(2) The records of the file are all unformatted. If the
sequential access method is also a member of the set
of allowed access methods for the file, its endfile
record, if any, is not considered to be part of the
file while it is connected for direct access. If the
sequential access method is not a member of the set
of allowed access methods for the file, the file must
not contain an endfile record.

(3) Reading and writing records is accomplished only by
direct access input/output statements (12.8.1).

(4) All records of the file have the same length.

(5) Each record of the file is uniquely identified by a.
positive integer called the record number. The
record number of a record is specified when the
record is written. Once established, the record
number of a record can never be changed. Note that a
record may not be deleted; however, a record may be
rewritten.

(6) Records need not be read or written in the order of
their record numbers. Any record may be written into
the file while it is connected (12.3.2) to a unit.
For example, it is permissible to write record 3,
even though records 1 and 2 have not been written.

Page 12-4s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

(1) The order of the records is the order in which they
were written if the direct access method is not a
member of the set of allowed access methods for the
file. If the direct access method is also a member
of the set of allowed access methods for the file,
the order of the records is the same as that
specified for direct access (12.2.4.2). The first
record accessed by sequential access is the record
whose record number is 1 for direct access. The
second record accessed by sequential access is the
record whose record number is 2 for direct access,
etc. A record that has not been written since the
file was created must not be read.

(2) The records of the file are either all formatted or
all unformatted, except that the last record of the
file may be an endfile record.

(3) The records of the file must not be read or written
by direct access input/output statements (12.8.1).

12.2.4.2 Direct Access. When connected for direct access,
a file has the following properties:

(1) The order of the records is the order of their record
numbers. The records may be read or written in any
order.

(2) The records of the file are either all formatted or
all unformatted. If the sequential access method is
also a member of the set of allowed access methods
for the file, its endfile record, if any, is not
considered to be part of the file while it is
connected for direct access. If the sequential
access method is not a member of the set of allowed
access methods for the file, the file must not
contain an endfile record.

(3) Reading and writing records is accomplished only by
direct access input/output statements (12.8.1).

(4) All records of the file have the same length.

(5) Each record of the file is uniquely identified by a
positive integer called the record number. The
record number of a record is specified when the
record is written. Once established, the record
number of a record can never be changed. Note that a
record may not be deleted; however, a record may be
rewrit ten.

(6) Records need not be read or written in the order of
their record numbers. Any record may be written into
the file while it is connected (12.3.2) to a unit.
For example, it is permissible to write record 3,
even though records 1 and 2 have not been written.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-4

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

15

20

25

Any record may be read from the file while it is
connected to a unit, provided that the record was
written since the file was created.

12.2.5 Interna I Fi I es. Internal files provide a means of
transferring and converting data from internal storage to
internal storage.

12.2.5.1 Internal File Properties. An internal file has
the following properties:

(1) The file is a character variable or character array
eIement.

(2) A record of an internal file is a character variable
or character array element.

(3) The file consists of a single record whose length is
the same as the length of the variable or array
e I ement.

30

35

40

45

50

(4) The variable or array element that is the record of
the internal file becomes defined by writing the
record. If the number of characters written in a
record is less than the length of the record, the
remaining portion of the record is filled with
b I anks.

(5) A record may be read only if the variable or array
element that is the record is defined.

(6) A variable or array element that is a record of an
internal file may become defined (or undefined) by
me.a.ns other than an output statement. For example,
the variable or array element may become defined by a
character assignment statement.

(7) An internal file is always positioned at the
beginning of the record prior to data transfer.

55

Page 12-5s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

Any record may be read from the file while it is
connected to a unit, provided that the record was
written since the file was created.

(7) The records of the file must not be read or written
using list-directed formatting.

12.2.5 Internal Files. Internal files provide a means of
transferring and converting data from internal storage to
internal storage.

12.2.5.1 Interna I File Properties. An internal file has
the following properties:

(1) The file is a character variable, character array
element, character array, or character substring.

(2) A record of an internal file is a character variable,
character array element, or character substring.

(3) If the file is a character variable, character array
element, or character substring, it consists of a
single record whose length is the same as the length
of the variable, array element, or substring,
respectively. If the file is a character array, it
is treated as a sequence of character array elements.
Each array element is a record of the file. The
ordering of the records of the file is the same as
the ordering of the array elements in the array
(5.2.4). Every record of the file has the same
length, which is the length of an array element in
the array.

(4) The variable, array element, or substring that is the
record of the internal file becomes defined by
writing the record. If the number of characters
written in a record is less than the length of the
record, the remaining portion of the record is filled
with blanks.

(5) A record may be read only if the variable, array
element, or substring that is the record is defined.

(6) A variable, array element, or substring that is a
record of an internal file may become defined (or
undefined) by means other than an output statement.
For example, the variable, array element, or
substring may become defined by a character
assignment statement.

(7) An internal file is always positioned at the
beginning of the first record prior to data transfer.

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 12-5

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.2.5.2 Internal File Restrictions. An internal file has
the following restrictions:

(1) Reading and writing records is accomplished only by
5 sequential access formatted input/output statements

(12.8.1).

(2) An auxiliary input/output statement must not specify
10 an internal file.

12.3 Units

A unit is a means of referring to a file.
15

12.3.1 Unit Existence. At any given time, there is a
processor-determined set of units that are said to exist for
an executable program.

20 All input/output statements may refer to units that exist.

25

30

35

40

45

12.3.2 Connection of a Unit. A unit has a property of
being connected or not connected. If connected, it refers
to a file. A unit may become connected by preconnection or
by the execution of an OPEN statement. The property of
connection is symmetric: if a unit is connected to a file,
the file is connected to the unit.

Preconnection means that the unit is connected to a file at
the beginning of execution of the executable program and
therefore may be referenced by input/output statements
without the prior execution of an OPEN statement.

All input/output statements except OPEN must reference a
unit that is connected to a file and thereby make use of or
affect that file.

A file may be connected and not exist. An example is a
preconnected new file.

A unit must not be connected to more than one file at the
same time, and a file must not be connected to more than one
unit at the same time.

50

55

Page 12-6s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.2.5.2 Internal FiIe'Restrict!ons. An internal file has
the following restrictions:

(1) Reading and writing records is accomplished only by
sequential access formatted input/output statements
(12.8.1) that do not specify list-directed
formatting.

(2) An auxiliary input/output statement must not specify
an internal file.

12.3 Units

A unit is a means of referring to a file.

12.3.1 Unit Existence. At any given time, there is a
processor-determined set of units that are said to exist for
an executable program.

All input/output statements may refer to units that exist.
The INQUIRE and CLOSE statements may also refer to units
that do not exist.

12.3.2 Connect ion of a Unit. A unit has a property of
being connected or not connected. If connected, it refers
to a file. A unit may become connected by preconnection or
by the execution of an OPEN statement. The property of
connection is symmetric: if a unit is connected to a file,
the file is connected to the unit.

Preconnection means that the unit is connected to a file at
the beginning of execution of the executable program and
therefore may be referenced by input/output statements
without the prior execution of an OPEN statement.

All input/output statements except OPEN, CLOSE, and INQUIRE
must reference a unit that is connected to a file and
thereby make use of or affect that file.

A file may be connected and not exist. An example is a
preconnected new file.

A unit must not be connected to more than one file at the
same time, and a file must not be connected to more than one
unit at the same time. However, means are provided to
change the status of a unit and to connect a unit to a
different file.

After a unit has been disconnected by the execution of a
CLOSE statement, it may be connected again within the same
executable program to the same file or a different file.
After a file has been disconnected by the execution of a
CLOSE statement, it may be connected again within the same
executable program to the same unit or a different unit.
Note, however, that the only means to refer to a file that
has been disconnected is by its name in an OPEN or INQUIRE

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-6

5

10

15

20

25

30

35

40

45

50

35

X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.3.3 Unit Specifier and Identifier. The form of a uni t
specifier is:

where ii is an external unit identifier or an internal file
identifier.

An external unit identifier is used to refer to an external
file. An internal file identifier is used to refer to an
internal file.

An external unit identifier is one of the following:

(1) An integer constant j_ or integer variable j_ whose
value must be zero or positive

(2) An asterisk, identifying a particular processor-
determined external unit that is preconnected for
formatted sequential access (12.9.2)

The external unit identified by the value of j_ is the same
external unit in all program units of the executable
program. In the example:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N = 6
REMIND N

the value 6 used in both program units identifies the same
externa I unit.

An external unit identifier in an auxiliary input/output
statement (12.10) must not be an asterisk.

An internal file identifier is the name of a character
variable or character array element.

The unit specifier must be the first item in a list of
specifier s .

12.4 Format Specifier and Identifier

The form of a format specifier is:

12-7s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

statement. Therefore, there may be no means of reconnecting
an unnamed file once it is disconnected.

12.3.3 Unit Specifier and Identifier. The form of a unit
soecifier is :

[UNIT =] u

where u. is an external unit identifier or an internal file
identifier.

An external unit identifier is used to refer to an external
file. An internal file identifier is used to refer to an
internal file.

An externa I unit identifier is one of the following:

(1) An integer expression j_ whose value must be zero or
positive

(2) An asterisk, identifying a particular processor-
determined external unit that is preconnected for
formatted sequential access (12.9.2)

The external unit identified by the value of j_ is the same
external unit in all program units of the executable
program. In the example:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N = 6
REWIND N

the value 6 used in both program units identifies the same
external unit.

An external unit identifier in an auxiliary input/output
statement (12.10) must not be an asterisk.

An internal file identifier is the name of a character
variable, character array, character array element, or
character substring.

If the optional characters UNIT= are omitted from the unit
specifier, the unit specifier must be the first item in a
list of specifiers.

12.4 Format Specifier and Identifier

The form of a format soecifier is:

CFMT =] f

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 12-7

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

15

20

where f is a format identifier.

A format identifier identifies a format. A format
identifier must be one of the following:

(1) The statement label of a FORMAT statement that
appears in the same program unit as the format
identifier.

(2) An integer variable name that has been assigned the
statement label of a FORMAT statement that appears in
the same program unit as the format identifier
(10.3) .

(3) A character constant (13.1.2).

25

30

35

40

45

50

55

If present, the format specifier must be the second item in
the control information list and the first item must be the
unit specifier.

12.5 Record Specifier

The form of a record soecifier is:

REC = r_n

where r_n is an integer constant or integer variable whose
value is positive. It specifies the number of the record
that is to be read or written in a file connected for direct
access.

12.6 Error and End-of-File Conditions

The set of input/output error conditions is processor
dependent.

An end-of-file condition exists if either of the following
events occurs:

(1) An endfile record is encountered during the reading
of a file connected for sequential access. In this
case, the file is positioned after the endfile
record.

(2) An attempt is made to read a record beyond the end of
an internal file.

Page 12-8s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

where f is a format Identifier.

A format identifier identifies a format. A format
identifier must be one of the following;

(1) The statement label of a FORMAT statement that
appears in the same program unit as the format
identifier .

(2) An integer variable name that has been assigned the
statement label of a FORMAT statement that appears in
the same program unit as the format identifier
(10.3).

(3) A character array name (13.1.2).

(4) Any character expression except a character
expression involving concatenation of an operand
whose length specification is an asterisk in
parentheses unless the operand is the symbolic name
of a constant. Note that a character constant is
permitted.

(5) An asterisk, specifying I is t ~dir ec t ed formatting.

If the optional characters FMT= are omitted from the format
specifier, the format specifier must be the second item in
the control information list and the first item must be the
unit specifier without the optional characters UN I T=.

12.5 Rec_Q_rd Specifier

The form of a record specifier is;

REC = rn

where rjn is an integer expression whose va-lue is positive.
It specifies the number of the record that is to be read or
written in a file connected for direct access.

12.6 Error and End-of-FiIe Conditions

The set of input/output error conditions is processor
dependent.

An end-of-file condition exists if either of the following
events occurs:

(1) An endfile record is encountered during the reading
of a file connected for sequential access. In this
case, the file is positioned after the endfile
record.

(2) An attempt is made to read a record beyond the end of
an internal file.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-8

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

I

If an end-of-file condition occurs during execution of a
READ statement, execution of the READ statement terminates
and the entities specified by the input list and implied-DO-
variables in the input list become undefined. Note that
variables appearing only in subscripts and implied-DO
parameters in an input list do not become undefined when the
entities specified by the list become undefined.

If an error condition occurs during execution of an output
statement, execution of the output statement terminates and
impIied-DO-variabIes in the output list become undefined.

If an error condition occurs during execution of an
input/output statement, or if an end-of-file condition
occurs during execution of a READ statement that does not
contain an end-of-file specifier (12.7.2), execution of the
executable program is terminated.

12.7 Input/Qutout Status. Error, and End-of-File Specifiers

The input/output status specifier is not included in the
subset.

12.7.1 Error Specifier. The error specifier is not
included in the subset.

<

12-9s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

If an error condition occurs during execution of an
input/output statement, execution of the input/output
statement terminates and the position of the file becomes
indeterminate.

If an error condition or an end-of-file condition occurs
during execution of a READ statement, execution of the READ
statement terminates and the entities specified by the input
list and impIied-DO-variab I es in the input list become
undefined. Note that variables and array elements appearing
only in subscripts, substring expressions, and impIied-DO
parameters in an input list do not become undefined when the
entities specified by the list become undefined.

If an error condition occurs during execution of an output
statement, execution of the output statement terminates and
impIied-DO-variabIes in the output list become undefined.

If an error condition occurs during execution of an
input/output statement that contains neither an input/output
status specifier (12.7) nor an error specifier (12.7.1), or
if an end-of-file condition occurs during execution of a
READ statement that contains neither an input/output status
specifier nor an end-of-file specifier (12.7.2), execution
of the executable program is terminated.

12.7 Input/Qutout Status. Error, and End-of-File Specifiers

The form of an input/output status specifier is:

IOSTAT = ios

where ios is an integer variable or integer array element.

Execution of an input/output statement containing this
specifier causes ios to become defined:

(1) with a zero value if neither an error condition nor
an end-of-file condition is encountered by the
processor ,

(2) with a processor-dependent positive integer value if
an error condition is encountered, or

(3) with a processor-dependent negative integer value if
an end-of-file condition is encountered and no error
condition is encountered.

12.7.1 Error Soecifier. The form of an error specifier is:

ERR = 5.

where i. is the statement label of an executable statement
that appears in the same program unit as the error
specifier.

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 12-9

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

15 |

12.7.2 End-of-File Specifier. The form of an end-of-file
soec jfier is :

20 END = s

where s, is the statement label of an executable statement
that appears in the same program unit as the end-of-fi le
specifier.

25
If a READ statement contains an end-of-fi I e specifier and
the processor encounters an end-of-fi le condition and no
error condition during execution of the statement:

30 | (1) execution of the READ statement terminates, and

35

40

45

(2) execution continues with the statement labeled s..

12.8 READ, WRITE. and PRINT Statements

The READ statement is the data transfer input statement.
The WRITE statement is the data transfer output statement.
The forms of the data transfer input/output statements are:

READ (ci list) [io I is 13

50 WRITE (ci list) E i o I is 13

where: ci list is a control information list (i2.8.1) that
jj 5 includes:

Page 12-10 s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

If an input/output statement contains an error specifier and
the processor encounters an error condition during execution
of the statement:

(1) execution of the input/output statement terminates,

(2) the position of the file specified in the
input/output statement becomes indeterminate,

(3) if the input/output statement contains an
input/output status specifier (12.7), the variable or
array element ios becomes defined with a processor-
dependent positive integer value, and

(4) execution continues with the statement labeled s,.

12.7.2 End-of-File Specifier. The form of an end-of-fiIe
soecifier is :

END = s

where s, is the statement label of an executable statement
that appears in the same program unit as the end-of-fi I e
specifier .

If a READ statement contains an end-of-file specifier and
the processor encounters an end-of-file condition and no
error condition during execution of the statement:

(1) execution of the READ statement terminates,

(2) if the READ statement contains an input/output status
specifier (12.7), the variable or array element i os
becomes defined with a processor-dependent negative
integer value, and

(3) execution continues with the statement labeled s..

12.8 READ. WRITE. and PRINT Statements

The READ statement is the data transfer input statement.
The WRITE and PRINT statements are the data transfer output
statements. The forms of the data transfer input/output
statements are:

READ (ci list) Cio lis 13

READ f_ C, i o I i s 13

WRITE (ci list) [iolist]

PRINT i [.iolist]

“here: c i I i s t is a control information list (12.8.1) that
incIudes:

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-10

5

10

15

20

25

30

35

AO

A5

50

55

X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

(1) A reference to the source or destination of
the data to be transferred

(2) Optional specification of editing processes

(3) Optional specifiers that determine the
execution sequence on the occurrence of
certain events

(A) Optional specification to identify a record

io I is t is an input/output list (12.8.2) specifying
the data to be transferred

The PRINT statement and READ statement without a cilist are
not included in the subset.

12.8.1 Control Information List. A contra I information
list. ci list. is a list (2.10) whose list items may be any
of the following:

u
1
RE C = r_n
END = s

A control information list must contain exactly one unit
specifier (12.3.3), at most one for-mat specifier (12.A), at
most one record specifier (12.5), and at most one end-of-
file specifier (12.7.2).

If the control iniormation list contains a format specifier,
the statement is a formatted input/output statement:
otherwise, it is an unformatted inout/outout statement.

If the control information list contains a record specifier,
the statement is a direct access input/outout statement;
otherwise, it is a sequent i a I access inout/output statement.

The unit specifier must be the first item in the control
information list.

If present, the format specifier must be the second item in
the control information list and the first item must be the
unit specifier.

12-11s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

(1) A reference to the source or destination of
the data to be transferred

(2) Optional specification of editing processes

(3) Optional specifiers that determine the
execution sequence on the occurrence of
certain events

(4) Optional specification to identify a record

(5) Optional specification to provide the return
of the input/output status

f_ is a format identifier (12.4)

ioIis t is an input/output list (12.8.2) specifying
the data to be transferred

12.8.1 Control Information List. A contro I information
list, cilist, is a list (2.10) whose list items may be any
of the following:

[UNIT =] u
[FMT =] i
REC = rn
I0STAT - ios
ERR = s.
END = s

A control information list must contain exactly one unit
specifier (12.3.3), at most one format specifier (12.4), at
most one record specifier (12.5), at most one input/output
status specifier (12.7), at most one error specifier
(12.7.1), and at most one end-of-file specifier (12.7.2).

If the control information list contains a format specifier,
the statement is a formatted input/output statement;
otherwise, it is an unformatted inout/output statement.

If the control information list contains a record specifier,
the statement is a direct access inout /output statement:
otherwise, it is a sequentia I access inout/output statement.

If the optional characters UN IT = are omitted from the unit
specifier, the unit specifier must be the first item in the
control information list.

If the optional characters FMT= are omitted from the format
specifier, the format specifier must be the second item in

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 12-11

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

A control information list must not contain both a record
5 specifier and an end-of-file specifier, or both a format

specifier and a record specifier.

10
In a WRITE statement, the control information list must not
contain an end-of-file specifier.

If the unit specifier specifies an internal file, the
15 control information list must contain a format identifier

and must not contain a record specifier.

20

25

30

35

40

45

50

55

12.8.2 Input/Output List. An input/output list, io I is t .
specifies the entities whose values are transferred by a
data transfer input/output statement.

An input/output list is a list (2.10) of input/output list
items and implied-DO lists (12.8.2.3). An input/output list
item is either an input list item or an output list item.

If an array name appears as an input/output
treated as- if all of the elements of
specified in the order given by array
(5.2.4). The name of an assumed-size dummy
appear as an input/output list item.

list item, it is
the array were
eIement ordering
array must not

12.8.2.1 Input List Items. An input list item must be one
of the following:

(1) A variable name

(2) An array element name

(3) An array name

Only input list items may appear as input/output list items
in an input statement.

12.8.2.2 Output List I terns. An output list it em must be
one of the following:

(1) A variable name

(2) An array element name

(3) An array name

Page 12-12 s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

the control information list and the first item must be the
unit specifier without the optional characters UNIT=.

A control information list must not contain both a record
specifier and an end-of-file specifier.

If the format identifier is an asterisk, the statement is a
I ist-directed input/outout statement and a record specifier
must not be present.

In a WRITE statement, the control information list must not
contain an end-of-file specifier.

If the unit specifier specifies an internal file, the
control information list must contain a format identifier
other than an asterisk and must not contain a record
specifier.

12.8.2 Input/Output List. An inout/output list, io I is t.
specifies the entities whose values are transferred by a
data transfer input/output statement.

An input/output list is a list (2.10) of input/output list
items and implied-DO lists (12.8.2.3). An inout/output list
item is either an input list item or an output list item.

If an array name appears as an input/output list item, it is
treated as if all of the elements of the array were
specified in the order given by array element ordering
(5.2.4). The name of an assumed-size dummy array must not
appear as an input/output list item.

12.8.2.1 Input List Items. An input list itern must be one
of the following:

(1) A variable name

(2) An array element name

(3) A character substring name

(4) An array name

Only input list items may appear as input/output list items
in an input statement.

12.8.2.2 Output List I terns. An output list itern must be
one of the following:

(1) A variable name

(2) An array element name

(3) A character substring name

(4) An array name

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 12-12

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.8.2.3
f orm:

Imp 1ied-DO List. An imo 1ied-DO list i s of the

(dlist. i = e,. £.2 C ,£.3 1)

where: j_. £.i * £2» snd £.3 are as specified for the DO
statement (11.10)

d M s t is an input/output list

The range of an implied-DO list is the list d I is t. Note
that d I is t may contain implied-DO lists. The iteration
count and the values of the DO-variable j_ are established
from , £.2, and jg.3 exactly as for a DO-loop. In an input
statement, the DO-variable j_, or an associated entity, must
not appear as an input list item in d I is t. When an implied-
DO list appears in an input/output list, the list items in
dIist are specified once for each iteration of the implied-
DO list with appropriate substitution of values for any
occurrence of the DO-variable j_.

12.9 Execution of a Data Transfer Input/Qutput Statement

The effect of executing a data transfer input/output
statement must be as if the following operations were
performed in the order specified:

(1) Determine the direction of data transfer

(2) Identify the unit

(3) Establish the format if any is specified

(4) Position the file prior to data transfer

(5) Transfer data between the file and the entities
specified by the input/output list (if any)

(6) Position the file after data transfer

12 — 13 s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

(5) Any other expression except a character expression
involving concatenation of an operand whose length
specification is an asterisk in parentheses unless
the operand is the symbolic name of a constant

Note that a constant, an expression involving operators or
function references, or an expression enclosed in
parentheses may appear as an output list item but must not
appear as an input list item.

12.8.2.3 I mo Iied-DQ List. An imo I ied~D0 list is of the
f orm:

(d I i st. i = S.i . S.2 [.£3])

where: j_, £., , £.a, and £.3 are as specified for the DO
statement (11.10)

d I i s t is an input/output list

The range of an implied-DO list is the list d I is t. Note
that d I is t may contain implied-DO lists. The iteration
count and the values of the DO-variable 1 are established
from £., , £.2, and £.3 exactly as for a DO-loop. In an input
statement, the DO-variable i, or an associated entity, must
not appear as an input list item in d I is t. When an implied-
DO list appears in an input/output list, the list items in
d I i s t are specified once for each iteration of the implied-
DO list with appropriate substitution of values for any
occurrence of the DO-variable 1.

12.9 Execution of a Data Transfer Inout/Qutout Statement

The effect of executing a data transfer input/output
statement must be as if the following operations were
performed in the order specified:

(1) Determine the direction of data transfer

(2) Identify the unit

(3) Establish the format if any is specified

(4) Position the file prior to data transfer

(5) Transfer data between the file and the entities
specified by the input/output list (if any)

(6) Position the file after data transfer

(7) Cause ttre specified integer variable or array element
in the input/output status specifier (if any) to
become defined

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-13

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.9.1 Direction of Data Transfer. Execution of a READ
statement causes values to be transferred from a file to the
entities specified by the input list, if one is specified.

5 | Execution of a WRITE statement causes values to be
transferred to a file from the entities specified by the
output list and format specification (if any). Execution of
a WRITE statement for a file that does not exist creates the
file, unless an error condition occurs.

10
12.9.2 Identifyino a Unit. A data transfer input/output
statement includes a unit specifier that identifies an
external unit or an internal file. A READ statement that
contains an asterisk as the unit identifier specifies a

15 particular processor-determined unit. A WRITE statement
that contains an asterisk as the unit identifier specifies
some other processor-determined unit. Thus, each data
transfer input/output statement identifies an external unit
or an internal file.

20

25

30

The unit identified by a data transfer input/output
statement must be connected to a file when execution of the
statement begins.

12.9.3 Establishing a Format. If the control information
list contains a format identifier, the format specification
identified by the format identifier is established.

On output, if an internal file has been specified, a format
35 specification (13.1) that is in the file or is associated

(17.1) with the file must not be specified.

12.9.4 File Position Prior to Data Transfer. The
positioning of the file prior to data transfer depends on

40 the method of access: sequential or direct.

If the file contains an endfile record, the file must not be
positioned after the endfile record prior to data transfer.

45 12.9.4.1 Sequential Access. On input, the file is
positioned at the beginning of the next record. This record
becomes the current record. On output, a new record is
created and becomes the last record of the file.

50 An internal file is always positioned at the beginning of
the record of the file. This record becomes the current
record.

55

Page 12-14 s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.9.1 Direction of Data Transfer. Execution of a READ
statement causes values to be transferred from a file to the
entities specified by the input list, if one is specified.

Execution of a WRITE or PRINT statement causes values to be
transferred to a file from the entities specified by the
output list and format specification (if any). Execution of
a WRITE or PRINT statement for a file that does not exist
creates the file, unless an error condition occurs.

12.9.2 Identifying a Unit. A data transfer input/output
statement that contains a control information list (12.8.1)
includes a unit specifier that identifies an external unit
or an internal file. A READ statement that does not contain
a control information list specifies a particular processor-
determined unit, which is the same as the unit identified by
an asterisk in a READ statement that contains a control
information list. A PRINT statement specifies some other
processor-determined unit, which is the same as the unit
identified by an asterisk in a WRITE statement. Thus, each
data transfer input/output statement identifies an external
unit or an internal file.

The unit identified by a data transfer input/output
statement must be connected to a file when execution of the
statement begins.

12.9.3 Establishing a Format. If the control information
list contains a format identifier other than an asterisk,
the format specification identified by the format identifier
is established. If the format identifier is an asterisk,
list-directed formatting is established.

On output, if an internal file has been specified, a format
specification (13.1) that is in the file or is associated
(17.1) with the file must not be specified.

12.9.4 File Position Prior to Data Transfer. The
positioning of the file prior to data transfer depends on
the method of access: sequential or direct.

If the file contains an endfile record, the file must not be
positioned after the endfile record prior to data transfer.

12.9.4.1 Seauentia I Access. On input, the file is
positioned at the beginning of the next record. This record
becomes the current record. On output, a new record is
created and becomes the last record of the file.

An internal file is always positioned at the beginning of
the first record of the file. This record becomes the
current record.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-14

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.9.4.2 Direct Access. For direct access, the file is
positioned at the beginning of the record specified by the
record specifier (12.5). This record becomes the current
record.

12.9.5 Data Transfer. Data are transferred between records
and entities specified by the input/output list. The list
items are processed in the order of the input/output list.

All values needed to determine which entities are specified
by an input/output list item are determined at the beginning
of the processing of that item.

AM values are transmitted to or from the entities specified
by a list item prior to the processing of any succeeding
list item. In the example,

READ (3) N. A(N)

two values are read; one is assigned to N, and the second is
assigned to A(N) for the new value of N.

An input list item, or an entity associated with it
(17.1.3), must not contain any portion of the established
format specification.

If an interna! file has been specified, an input/output list
item must not be in the file or associated with the file.

A DO-variable becomes defined at the beginning of processing
of the items that constitute the range of an implied-DO
list.

On output, every entity whose value is to be transferred
must be defined.

On input, an attempt to read a record of a file connected
for direct access that has not previously been written
causes all entities specified by the input list to become
undefined.

12.9.5.1 Unformatted Data Transfer. During unformatted
data transfer, data are transferred without editing between
the current record and the entities specified by the
input/output list. Exactly one record is read or written.

On input, the file must be positioned so that the record
read is an unformatted record or an endfile record.

On input, the number of values required by the input list
must be less than or equal to the number of values in the
record.

On input, the type of each value in the record must agree
with the type of the corresponding entity in the input list.
If an entity in the input list is of type character, the

12-15s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.9.4.2 Direct Access. For direct access, the file is
positioned at the beginning of the record specified by the
record specifier (12.5). This record becomes the current
record.

12.9.5 Data Transfer. Data are transferred between records
and entities specified by the input/output list. The list
items are processed in the order of the input/output list.

All values needed to determine which entities are specified
by an input/output list item are determined at the beginning
of the processing of that item.

All values are transmitted to or from the entities specified
by a list item prior to the processing of any succeeding
list item. In the example,

READ (3) N, A(N)

two values are read; one is assigned to N, and the second is
assigned to A(N) for the new value of N.

An input list item, or an entity associated with it
(17.1.3), must not contain any portion of the established
format specification.

If an internal file has been specified, an input/output list
item must not be in the file or associated with the file.

A DO-variable becomes defined at the beginning of processing
of the items that constitute the range of an implied-DO
list.

On output, every entity whose value is to be transferred
must be defined.

On input, an attempt to read a record of a file connected
for direct access that has not previously been written
causes all entities specified by the input list to become
undefined.

12.9.5.1 Unformatted Data Transfer. During unformatted
data transfer, data are transferred without editing between
the current record and the entities specified by the
input/output list. Exactly one record is read or written.

On input, the file must be positioned so that the record
read is an unformatted record or an endfile record.

On input, the number of values required by the input list
must be less than or equal to the number of values in the
record.

On input, the type of each value in the record must agree
with the type of the corresponding entity in the input list,
except that one complex value may correspond to two real

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-15

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

length of the character entity must agree with the length of
the character value.

5
On output to a file connected for direct access, the output
list must not specify more values than can fit into a
record.

10 On output, if the file is connected for direct access and
the values specified by the output list do not fill the
record, the remainder of the record is undefined.

If the file is connected for formatted input/output,
15 unformatted data transfer is prohibited.

The unit specified must be an external unit.

12.9.5.2 Formatted Data Transfer. During formatted data
20 transfer, data are transferred with editing between the

entities specified by the input/output list and the file.
The current record and possibly additional records are read
or written.

25 On input, the file must be positioned so that the record
read is a formatted record or an endfile record.

If the file is connected for unformatted input/output,
formatted data transfer is prohibited.

30
12.9.5.2.1 Using a Format Specification. If a format
specification has been established, format control (13.3) is
initiated and editing is performed as described in 13.3
through 13.5.

35
On input, the input list and format specification must not
require more characters from a record than the record
contains.

40

45

50

55

Page 12-16 s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

list entities or two real values may correspond to one
complex list entity. If an entity in the input list is of
type character, the length of the character entity must
agree with the length of the character value.

On output to a file connected for direct access, the output
list must not specify more values than can fit into a
record.

On output, if the file is connected for direct access and
the values specified by the output list do not fill the
record, the remainder of the record is undefined.

If the file is connected for formatted input/output,
unformatted data transfer is prohibited.

The unit specified must be an external unit.

12.9.5.2 Formatted Data Transfer. During formatted data
transfer, data are transferred with editing between the
entities specified by the input/output list and the file.
The current record and possibly additional records are rea>d
or written.

On input, the file must be positioned so that the record
read is a formatted record or an endfile record'.

If the file is connected for unformatted input/output,
formatted data transfer is prohibited.

12.9.5.2.1 Using a Format Specification. If a format
specification has been established, format control (13.3) is
initiated and editing is performed as described in 13.3
through 13.5.

On input, the input list and format specification must not
require more characters from a record than the record
contains.

If the file is connected for direct access, the record
number is increased by one as each succeeding record is read
or written.

On output, if the file is connected for direct access or is
an internal file and the characters specified by the output
list and format do not fill a record, blank characters are
added to fill the record.

On output, if the file is connected for direct access or is
an internal file, the output list and format specification
must not specify more characters for a record than can fit
into the record.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-16

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.9.5.2.2 List-Directed Formatting. List-directed
formatting is not included in the subset.

12.9.5.2.3 Printina of Formatted Records. The transfer of
information in a formatted record to certain devices
determined by the processor is called printing. If a
formatted record is printed, the first character of the
record is not printed. The remaining characters of the
record, if any, are printed in one line beginning at the
left margin.

The first character of such a record determines vertical
spacing as f o I lows:

Character Vertical Spacing Before Printing

Blank One Line
0 Two Lines
1 To First Line of Next Page
♦ No Advance

If there are no characters in the record (13.5.4), the
vertical spacing is one line and no characters other than
blank are printed in that line.

12.9.6 File Position After Data Transfer. If an end-of-
file condition exists as a result of reading an endfile
record, the file is positioned after the endfile record.

If no error condition or end-of-file condition exists, the
file is positioned after the last record read or written and
that record becomes the preceding record. A record written
on a file connected for sequential access becomes the last
record of the file.

If the file is positioned after the endfile record,
execution of a data transfer input/output statement is
prohibited. However, a BACKSPACE or REWIND statement may be
used to reposition the file.

12.9.7 Input/Output Status Specifier Definition. The
input/output status specifier is not included in the subset.

12 -17 s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.9.5.2.2 List-Directed Formatting. If list-directed
formatting has been established, editing is performed as
described in 13.6.

12.9.5.2.3 Printina of Formatted Records. The transfer of
information in a formatted record to certain devices
determined by the processor is called printing. If a
formatted record is printed, the first character of the
record is not printed. The remaining characters of the
record, if any, are printed in one line beginning at the
left margin.

The first character of such a record determines vertical
spacing as foI Ioms:

Character Vertical Spacing Before Printing

Blank One Line
0 Tmo Lines
1 To First Line of Next Page
+ No Advance

If there are no characters in the record (13.5.4), the
vertical spacing is one line and no characters other than
blank are printed in that line.

A PRINT statement does not imply that printing Mill occur,
and a WRITE statement does not imply that printing Mill not
occur .

12.9.6 File Position After Data Transfer. If an end-of-
file condition exists as a result of reading an endfile
record, the file is positioned after the endfile record.

If no error condition or end-of-file condition exists, the
file is positioned after the last record read or Mritten and
that record becomes the preceding record. A record Mritten
on a file connected for sequential access becomes the last
record of the file.

If the file is positioned after the endfile record,
execution of a data transfer input/output statement is
prohibited. HoMever, a BACKSPACE or REWIND statement may be
used to reposition the file.

If an error condition exists, the position of the file is
indeterminate.

12.9.7 Input/Output Status Specifier Definition. If the
data transfer input/output statement contains an
input/output status specifier, the integer variable or array
element ios becomes defined. If no error condition or end-
of-file condition exists, the value of ios is zero. If an
error condition exists, the value of ios is positive. If an

5

10

1 5

20

25

30

35

40

45

50

55

Fu I I Language Page 12-17

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

12.10 Auxiliary Input/Output Statements

12.10.1 OPEN Statement. An OPEN statement may be used
connect (12.3.2) an existing file to a unit, create a file
(12.2.1) that is preconnected, or create a file and connect
it to a unit.

15

The form of an OPEN statement is:

OPEN (ol ist)

where o I is t is a list (2.10) of specifiers:

20

25

u.
ACCESS = 'DIRECT'
RECL = rl

30

35

oIist must contain exactly one external unit specifier
(12.3.3) and must contain exactly one of each of the other
specifiers. The specified unit is connected to a processor-
determined file. (See, however, 12.10.1.1.)

The other specifiers are described as follows:

40

45 |

50

55

Page 12-18 s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

end-of-file condition exists and no error condition exists,
the value of ios is negative.

12.10 Auxiliary Inout/Outout Statements

12.10.1 OPEN Statement. An OPEN statement may be used to
connect (12.3.2) an existing file to a unit, create a file
(12.2.1) that is preconnected, create a file and connect it
to a unit, or change certain specifiers of a connection
between a file and a unit.

The form of an OPEN statement is:

OPEN (o I is t)

where o I is t is a list (2.10) of specifiers:

[UNIT =] u
IOSTAT = ios
ERR = s.
FILE = fin
STATUS = sta
ACCESS = acc
FORM = im
RECL = nL
BLANK = blnk

o I i s t must contain exactly one external unit specifier
(12.3.3) and may contain at most one of each of the other
specifiers .

The other specifiers are described as follows:

IOSTAT - ios

is an input/output status specifier (12.7).
Execution of an OPEN statement containing this
specifier causes ios to become defined with a zerb
value if no error condition exists or with a
processor-dependent positive integer value if an
error condition exists.

ERR = s.

is an error specifier (12.7.1).

FILE = ±i_n

fin is a character expression whose value when any
trailing blanks are removed is the name of the file
to be connected to the specified unit. The file name
must be a name that is allowed by the processor. If
this specifier is omitted and the unit is not

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-18

5

10

15

20

25

30

35

40

45

50

55

.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

ACCESS = 'DIRECT'

specifies the access method for the connection of the
file as direct (12.2.4). For an existing file, the
specified access method must be included in the set
of allowed access methods for the file (12.2.4). For
a new file, the processor creates the file with a set
of allowed access methods that includes the specified
method.

-19s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

connected to a file, it becomes connected to a
processor-determined file. (See also 12.10.1.1.)

STATUS = sta

s t a is a character expression whose value when any
trailing blanks are removed is OLD, NEW, SCRATCH, or
UNKNOWN. If OLD or NEW is specified, a FIL E =
specifier must be given. If OLD is specified, the
file must exist. If NEW is specified, the file must
not exist. Successful execution of an OPEN statement
with NEW specified creates the file and changes the
status to OLD (12.10.1.1). If SCRATCH is specified
with an unnamed file, the file is connected to the
specified unit for use by the executable program but
is deleted (12.2.1) at the execution of a CLOSE
statement referring to the same unit or at the
termination of the executable program. SCRATCH must
not be specified with a named file. If UNKNOWN is
specified, the status is processor dependent. If
this specifier is omitted, a value of UNKNOWN is
assumed.

ACCESS = acc

acc is a character expression whose value when any
trailing blanks are removed is SEQUENTIAL or DIRECT.
It specifies the access method for the connection of
the file as being sequential or direct (12.2.4). If
this specifier is omitted, the assumed value is
SEQUENTIAL. For an existing file, the specified
access method must be included in the set of allowed
access methods for the file (12.2.4). For a new
file, the processor creates the file with a set of
allowed access methods that includes the specified
method.

FORM = fjn

fjn is a character expression whose value when any
trailing blanks are removed is FORMATTED or
UNFORMATTED. It specifies that the file is being
connected for formatted or unformatted input / output,
respectively. If this specifier is omitted, a value
of UNFORMATTED is assumed if the file is being
connected for direct access, and a value of FORMATTED
is assumed if the file is being connected for
sequential access. For an existing file, the
specified form must be included in the set of allowed
forms for the file (12.2.2). For a new file, the
processor creates the file with a set of allowed
forms that includes the specified form.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-19

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

15

RECL = rJL

rI is an integer constant or integer variable whose
value must be positive. It specifies the length of
each record in a file being connected for direct
access. The length is measured in processor-
determined units. For an existing file, the value of
r I must be included in the set of allowed record
lengths for the file (12.2.2). For a new file, the
processor creates the file with a set of allowed
record lengths that includes the specified value.
This specifier must be given when a file is being
connected for direct access.

20

25

30

35

The unit specified must exist.

A unit may be connected by execution of an OPEN statement in
40 any program unit of an executable program and, once

connected, may be referenced in any program unit of the
executable program.

12.10.1.1 Open of a Connected Unit. If a unit is connected
45 to a file that exists, execution of an OPEN statement for

that unit is not permitted.

50

55

Page 12-20s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

RECL = r_L

rI is an integer expression whose value must be
positive. It specifies the length of each record in
a file being connected for direct access. If the
file is being connected for formatted i nput/output,
the length is the number of characters. If the file
is being connected for unformatted input/output, the
length is measured in processor-dependent units. For
an existing file, the value of r_L must be included in
the set of allowed record lengths for the file
(12.2.2). For a new file, the processor creates the
file with a set of allowed record lengths that
includes the specified value. This specifier must be
given when a file is being connected for direct
access; otherwise, it must be omitted.

BLANK = blnk |

b I nk is a character expression whose value when any
trailing blanks are removed is NULL or ZERO. If NULL
is specified, all blank characters in numeric
formatted input fields on the specified unit are
ignored, except that a field of all blanks has a
value of zero. If ZERO is specified, all blanks
other than leading blanks are treated as zeros. If
this specifier is omitted, a value of NULL is
assumed. This specifier is permitted only for a file
being connected for formatted input/output.

The unit specifier is required to appear; all other
specifiers are optional, except that the record length £_L
must be specified if a file is being connected for direct
access. Note that some of the specifications have an
assumed value if they are omitted.

The unit specified must exist.

A unit may be connected by execution of an OPEN statement in
any program unit of an executable program and, once
connected, may be referenced in any program unit of the
executable program.

12.10.1.1 Ooen of a Connected Unit. If a unit is connected
to a file that exists, execution of an OPEN statement for
that unit is permitted. If the FILE = specifier is not
included in the OPEN statement, the file to be connected to
the unit is the same as the file to which the unit is
connected.

If the file to be connected to the unit does not exist, but
is the same as the file to which the unit is preconnected,
the properties specified by the OPEN statement become a part
of the connection.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-20

AN:

5

10

15

20

25

30

35

40

45

50

55

.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.10.2 CLOSE Statement. The CLOSE statement is not
included in the subset.

-21s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

If the file to be connected to the unit is not the same as
the file to which the unit is connected, the effect is as if
a CLOSE statement (12.10.2) without a STATUS= specifier had
been executed for the unit immediately prior to the
execution of the OPEN statement.

If the file to be connected to the unit is the same as the
file to which the unit is connected, only the BLANK=
specifier may have a value different from the one currently
in effect. Execution of the OPEN statement causes the new
value of the BLANK= specifier to be in effect. The position
of the file is unaffected.

If a file
statement
permit ted

is connected to
on that file

a unit,
and a

execution
dif ferent

o f
uni t

an
i s

OPEN
not

12.10.2 CLOSE Statement. A CLOSE statement i s used to
terminate the connection of a particular file to a unit.

The form of a CLOSE statement is:

CLOSE (cI I ist) |

where cl list is a list (2.10) of specifiers:

[UNIT =] a
IOSTAT = ios
ERR = 5.
STATUS = sta

cl list must contain exactly one external unit specifier
(12.3.3) and may contain at most one of each of the other
specifiers .

The other specifiers are described as follows:

IOSTAT = ifii |

is an input/output status specifier (12.7).
Execution of a CLOSE statement containing this
specifier causes ios to become defined with a zero
value if no error condition exists or with a
processor-dependent positive integer value if an
error condition exists.

ERR = i |

is an error specifier (12.7.1).

STATUS = Hi |

sta is a character expression whose value when any
trailing blanks are removed is KEEP or DELETE, sta

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 12-21

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

15

20

25

30

12.10.2.1 Implicit Close at Termination of Execution,
termination of execution of an executable program

35 reasons other than an error condition, all units that
connected are closed.

40

12.10.3 INQUIRE Statement. The INQUIRE statement is
included in the subset.

50

55

At
for
are

not

Page 12-22s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

determines the disposition of the file that is
connected to the specified unit. KEEP must not be
specified for a file whose status prior to execution
of the CLOSE statement is SCRATCH. If KEEP is
specified for a file that exists, the file continues
to exist after the execution of the CLOSE statement.
If KEEP is specified for a file that does not exist,
the file will not exist after the execution of the
CLOSE statement. If DELETE is specified, the file
will not exist after execution of the CLOSE
statement. If this specifier is omitted, the assumed
value is KEEP, unless the file status prior to
execution of the CLOSE statement is SCRATCH, in which
case the assumed value is DELETE.

Execution of a CLOSE statement that refers to a unit may
occur in any program unit of an executable program and need
not occur in the same program unit as the execution of an
OPEN statement referring to that unit.

Execution of a CLOSE statement specifying a unit that does
not exist or has no file connected to it is permitted and
affects no file.

After a unit has been disconnected by execution of a CLOSE
statement, it may be connected again within the same
executable program, either to the same file or to a
different file. After a file has been disconnected by
execution of a CLOSE statement, it may be connected again
within the same executable program, either to the same unit
or to a different unit, provided that the file still exists.

12.10.2.1 Implicit Close at Termination of Execution. At
termination of execution of an executable program for
reasons other than an error condition, all units that are
connected are closed. Each unit is closed with status KEEP
unless the file status prior to termination of execution was
SCRATCH, in which case the unit is closed with status
DELETE. Note that the effect is as though a CLOSE statement
without a STATUS= specifier were executed on each connected
unit.

12.10.3 INQUIRE Statement. An INQUIRE statement may be
used to inquire about properties of a particular named file
or of the connection to a particular unit. There are two
forms of the INQUIRE statement: inquire by file and inquire
by unit. All value assignments are done according to the
rules for assignment statements.

The INQUIRE statement may be executed before, while, or
after a file is connected to a unit. All values assigned by
the INQUIRE statement are those that are current at the time
the statement is executed.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-22

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.10.3.1
included i

| 12.10.3.2
; included i

12.10.3.3
included i

INQUIRE by File. The INQUIRE statement Is not
n the subset.

INQUIRE by Unit. The INQUIRE statement is not
n the subset.

Inquiry Specifiers. The INQUIRE statement is not
n the subset.

12-23s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.10.3.1 INQUIRE by File. The form of an INQUIRE by file
statement is:

INQUIRE (if M st)

where if M s t is a list (2.10) of specifiers that must
contain exactly one file specifier and may contain other
inquiry specifiers. The if I is t may contain at most one of
each of the inquiry specifiers described in 12.10.3.3.

The form of a file specifier is:

FILE = fin

where fin is a character expression whose value when any
trailing blanks are removed specifies the name of the file
being inquired about. The named file need not exist or be
connected to a unit. The value of fin must be of a form
acceptable to the processor as a file name.

12.10.3.2 INQUI RE by Unit. The form of an INQUIRE by unit
statement is:

INQUIRE (iul ist)

where iu I is t is a list (2.10) of specifiers that must
contain exactly one external unit specifier (12.3.3) and may
contain other inquiry specifiers. The iu I is t may contain at
most one of each of the inquiry specifiers described in
12.10.3.3. The unit specified need not exist or be
connected to a file. If it is connected to a file, the
inquiry is being made about the connection and about the
file connected.

12.10.3.3 Inouirv Soecifiers. The following inquiry
specifiers may be used in either form of the INQUIRE
statement:

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-23

5

10

15

20

25

30

35

40

45

50

55

.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

The INQUIRE statement is not included in the subset.

-24s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

IOSTAT = ios
ERR = s
EXIST = £x
OPENED = od
NUMBER = num
NAMED = nmd
NAME = ±n
ACCESS = a c c
SEQUENTIAL = sea
DIRECT = ILL
FORM = fm
FORMATTED = fmt
UNFORMATTED = urrf
RECL = rc±
NEXTREC = njL
BLANK = blnk

The specifiers are described as follows:

IOSTAT = ios

is an input/output status specifier (12.7).
Execution of an INQUIRE statement containing this
specifier causes i os to become defined with a zero
value if no error condition exists or with a
processor-dependent positive integer value if an
error condition exists.

ERR = s

is an error specifier (12.7.1).

EXIST = ex

ex is a logical variable or logical array element.
Execution of an INQUIRE by file statement causes ax.
to be assigned the value true if there exists a file
with the specified name; otherwise, is assigned
the value false. Execution of an INQUIRE by unit
statement causes e_x to be assigned the value true if
the specified unit exists; otherwise, fij<. is assigned
the value false.

OPENED = od

od is a logical variable or logical array element.
Execution of an INQUIRE by file statement causes jui
to be. assigned the value true if the file specified
is connected to a unit; otherwise, ml is assigned the
value false. Execution of an INQUIRE by unit
statement causes .od. to be assigned the value true if
the specified unit is connected to a file; otherwise,
od is assigned the value false.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-24

5

10

15

20

25

30

35

40

45

50

55

.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

The INQUIRE statement is not included in the subset.

-25s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

NUMBER = num

num is an integer variable or integer array element
that is assigned the value of the external unit
identifier of the unit that is currently connected to
the file. If there is no unit connected to the file,
num becomes undefined.

NAMED = nmd

nmd is a logical variable or logical array element
that is assigned the value true if the file has a
name; otherwise, it is assigned the value false.

NAME = In

in is a character variable or character array element
that is assigned the value of the name of the file,
if the file has a name; otherwise, it becomes
undefined. Note that if this specifier appears in an
INQUIRE by file statement, its value is not
necessarily the same as the name given in the FIL E =
specifier. For example, the processor may return a
file name qualified by a user identification.
However, the value returned must be suitable for use
as the value of a FIL E = specifier in an OPEN
statement.

ACCESS = acc

acc is a character variable or character array
element that is assigned the value SEQUENTIAL if the
file is connected for sequential access, and DIRECT
if the file is connected for direct access. If there
is no connection, acc becomes undefined.

SEQUENTIAL = seo

seo is a character variable or character array
element that is assigned the value YES if SEQUENTIAL
is included in the set of allowed access methods for
the file, NO if SEQUENTIAL is not included in the set
of allowed access methods for the file, and UNKNOWN
if the processor is unable to determine whether or
not SEQUENTIAL is included in the set of allowed
access methods for the file.

DIRECT = dir

di r is a character variable or character array
element that is assigned the value YES if DIRECT is
included in the set of allowed access methods for the
file, NO if DIRECT is not included in the set of
allowed access methods for the file, and UNKNOWN if
the processor is unable to determine whether or not

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-25

5

10

15

20

25

30

35

40

45

50

55

.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

The INQUIRE statement is not included in the subset.

26s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

DIRECT is included in the set of allowed access
methods for the file.

FORM = fm |

fm is a character variable or character array element
that is assigned the value FORMATTED if the file is
connected for formatted input/output, and is assigned
the value UNFORMATTED if the file is connected for
unformatted input/output. If there is no connection,
fm becomes undefined.

FORMATTED = fmjL |

fmt is a character variable or character array
element that is assigned the.value YES if FORMATTED
is included in the set of allowed forms for the file,
NO if FORMATTED is not included in the set of allowed
forms for the file, and UNKNOWN if the processor is
unable to determine whether or not FORMATTED is
included in the set of allowed forms for the file.

UNFORMATTED = uni |

unf is a character variable or character array
element that is assigned the value YES if UNFORMATTED
is included in the set of allowed forms for the file,
NO if UNFORMATTED is not included in the set of
allowed forms for the file, and UNKNOWN if the
processor is unable to determine whether or not
UNFORMATTED is included in the set of allowed forms
for the file.

RECL = rc± |

rcI is an integer variable or integer array element
that is assigned the value of the record length of
the file connected for direct access. If the file is
connected for formatted input/output, the length is
the number of characters. If the file is connected
for unformatted input/output, the length is measured
in processor-dependent units. If there is no
connection or if the connection is not for direct
access, rcI becomes undefined.

NEXTREC = nr |

nr is an integer variable or integer array element
that is assigned the value n + 1, where a is the record
number of the last record read or written on the file
connected for direct access. If the file is
connected but no records have been read or written
since the connection, ar is assigned the value 1. If
the file is not connected for direct access or if the
position of the file is indeterminate because of a
previous error condition, n_r becomes undefined.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-26

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

The INQUIRE statement is not included in the subset.

12.10.4 File Positioning Statements. The forms of the file
positioning statements are:

BACKSPACE ja

ENDFILE ja

REMIND ja

where: ja is an external unit identifier (12.3.3)

12-27s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

BLANK = blnk

b I nk is a character variable or character array
element that is assigned the value NULL if null blank
control is in effect for the file connected for
formatted input/output, and is assigned the value
ZERO if Z'iero blank control is in effect for the file
connected tor formatted input/output. If there is no
connection, or if the connection is not for formatted
input/output, blnk becomes undefined.

A variable or array element that may become defined or
undefined as a result of its use as a specifier in an
INQUIRE statement, or any associated entity, must not be
referenced by any other specifier in the same INQUIRE
statement.

Execution of an INQUIRE by file statement causes the
specifier variables or array elements nmd. fn. sea. dir.
fmt. and unf to be assigned values only if the value of fin
is acceptable to the processor as a file name and if there
exists a file by that name; otherwise, they become
undefined. Note that num becomes defined if and only if gd.
becomes defined with the value true. Note also that the
specifier variables or array elements acg., fjn, r c I . nr. and
blnk may become defined only if gd becomes defined with the
value true.

Execution of an INQUIRE by unit statement causes the
specifier variables or array elements num. nmd. fjn, acc,
sea. dir, fjn, f mt. unf , r c I . nr . and blnk to be assigned
values only if the specified unit exists and if a file is
connected to the unit; otherwise, they become undefined.

If an error condition occurs during execution of an INQUIRE
statement, all of the inquiry specifier variables and array
elements except ios become undefined.

Note that the specifier variables or array elements gx. and
od always become defined unless an error condition occurs.

12.10.4 File Positioning Statements. The forms of the file
positioning statements are:

BACKSPACE g
BACKSPACE (alist)

ENDFILE g
ENDFILE (alist)

REWIND g
REWIND (alist)

where: g is an external unit identifier (12.3.3)

alist is a list (2.10) of specifiers:

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-27

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

10

15

20

25

30

35

40

45

The external unit specified by a BACKSPACE, ENDFILE, or
REWIND statement must be connected for sequential access.

12.10.4.1 BACKSPACE Statement. Execution of a BACKSPACE
statement causes the file connected to the specified unit to
be positioned before the preceding record. If there is no
preceding record, the position of the file is not changed.
Note that if the preceding record is an endfile record, the
file becomes positioned before the endfile record.

Backspacing
prohibited.

file that is connected but does not exist is

12.10.4.2 ENDFILE Statement . Execution of an ENDFILE
statement writes an endfile record as the next record of the
file. The file is then positioned after the endfile record.
If the file may also be connected for direct access, only
those records before the endfile record are considered to
have been written. Thus, only those records may be read
during subsequent direct access connections to the file.

After execution of an ENDFILE statement, a BACKSPACE or
REWIND statement must be used to reposition the file prior
to execution of any data transfer input/output statement.

Execution of an ENDFILE statement for a file
connected but does not exist creates the file.

that is

12.10.4.3 REWIND Statement. Execution of a REWIND
statement causes the specified file to be positioned at its

50 initial point. Note that if the file is already positioned
at its initial point, execution of this statement has no
effect on the position of the file.

Execution of a REWIND statement for a file that is connected
55 but does not exist is permitted but has no effect.

Page 12-28s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

[UNIT =] u
IOSTAT = ios
ERR = s

a li s t must contain exactly one external unit specifier
(12.3.3) and may contain at most one of each of the other
specifier s.

The external unit specified by a BACKSPACE, ENDFILE, or
REWIND statement must be connected for sequential access.

Execution of a file positioning statement containing an
input/output status specifier causes ios to become defined
with a zero value if no error condition exists or with a
processor-dependent positive integer value if an error
condition exists.

12.10.4.1 BACKSPACE Statement. Execution of a BACKSPACE
statement causes the file connected to the specified unit to
be positioned before the preceding record. If there is no
preceding record, the position of the file is not changed.
Note that if the preceding record is an endfile record, the
file becomes positioned before the endfile record.

Backspacing a file that is connected but does not exist is
prohibited.

Backspacing over records written using list-directed
formatting is prohibited.

12.10.4.2 ENDFILE Statement. Execution of an ENDFILE
statement writes an endfile record as the next record of the
file. The file is then positioned after the endfile record.
If the file may also be connected for direct access, only
those records before the endfile record are considered to
have been written. Thus, only those records may be read
during subsequent direct access connections to the file.

After execution of an ENDFILE statement, a BACKSPACE or
REWIND statement must be used to reposition the file prior
to execution of any data transfer input/output statement.

Execution of an ENDFILE statement for a file that is
connected but does not exist creates the file.

12.10.4.3 REWIND Statement. Execution of a REWIND
statement causes the specified file to be positioned at its
initial point. Note that if the file is already positioned
at its initial point, execution of this statement has no
effect on the position of the file.

Execution of a REWIND statement for a file that is connected
but does not exist is permitted but has no effect.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 12-28

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.11 Restrictions on Function References and List Items

Function references in input/output statements are not
included in the subset.

12.12 Restriction on Inout/Outout Statements
10

If a unit, or a file connected to a unit, does not have all
of the properties required for the execution of certain
input/output statements, those statements must not refer to
the unit.

15

20

25

30

35

40

45

50

55

Page 12-29s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.11 Restrictions on Function References and List Items

A function must not be referenced within an expression
appearing anywhere in an input/output statement if such a
reference causes an input/output statement to be executed.
Note that a restriction in the evaluation of expressions
(6.6) prohibits certain side effects.

12.12 Restriction on Inout/Qutput Statements

If a unit, or a file connected to a unit, does not have all
of the properties required for the execution of certain
input/output statements, those statements must not refer to
the unit.

5

10

15

20

25

30

35

AO

45

50

55

FuI I Language Page 12-29

ANSI X3.9-1978 FORTRAN 77

5

10

13. FORMAT SPECIFICATION

A format used in conjunction with formatted input/output
statements provides information that directs the editing
between the internal representation and the character
strings of a record or a sequence of records in the file.

A format specification provides explicit editing
information.

15

20

25

30

35

13.1 Format Specification Methods

Format specifications may be given:

(1) In FORMAT statements

(2) As character constants

13.1.1 FORMAT Statement. The form of a FORMAT statement
i s:

FORMAT ±s

where f_§. is a format specification, as described in 13.2.
The statement must be labeled.

13.1.2 Character Format Specification. The format
identifier (12.4) in a formatted input/output statement may
be a character constant if the leftmost character positions
of the specified constant constitute a format specification.

A character format specification must be of the form
described in 13.2. Note that the form begins with a left

40 parenthesis and ends with a right parenthesis. Character
data may follow the right parenthesis that ends the format
specification, with no effect on the format specification.
Blank characters may precede the format specification.

45

50

55

Page 13-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

13. FORMAT SPECIFICATION

A format used in conjunction with formatted input/output
statements provides information that directs the editing
between the internal representation and the character
strings of a record or a sequence of records in the file.

A format specification provides explicit editing
information. An asterisk (*) as a format identifier in an
input/output statement indicates list-directed formatting
(13.6) .

13.1 Format Specification Methods

Format specifications may be given:

(1) In FORMAT statements

(2) As values of character arrays, character variables,
or other character expressions

13.1.1 FORMAT Statement. The form of a FORMAT statement
i s:

FORMAT f_s

where f_s. is a format specification, as described in 13.2.
The statement must be labeled.

13.1.2 Character Format Specification. If the format
identifier (12.4) in a formatted input/output statement is a
character array name, character variable name, or other
character expression, the leftmost character positions of
the specified entity must be in a defined state with
character data that constitute a format specification when
the statement is executed.

A character format specification must be of the form
described in 13.2. Note that the form begins with a left
parenthesis and ends with a right parenthesis. Character
data may follow the right parenthesis that ends the format
specification, with no effect on the format specification.
Blank characters may precede the format specification.

If the format identifier is a character array name, the
length of the format specification may exceed the length of
the first element of the array; a character array format
specification is considered to be a concatenation of all the
array elements of the array in the order given by array
element ordering (5.2.4). However, if a character array
element name is specified as a format identifier, the length
of the format specification must not exceed the length of
the array element.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 13-1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

13.2 Form of a Format Specification

The form of a format soecification is:

(If list])

where f I is t is a list (2.10). The forms of the f I is t items
ar e:

[r.] ed

ned

[r.3 f s

where: ed is a repeatable edit descriptor (13.2.1)

ned is a nonrepeatabIe edit descriptor (13.2.1)

f_s i s a format specification with a nonempty list
f I i s t

r. is a nonzero, unsigned, integer constant called a
repeat specification

(

The comma used to separate list items in the list f I i s t may
be omitted as follows:

(1) Between a P edit descriptor and an immediately
following F or E edit descriptor (13.5.9)

(2) Before or after a slash edit descriptor (13.5.4)

At most three levels of parenthesis nesting are permitted
within the outermost parentheses.

13.2.1 Edit Descriptors. An edit descriptor is either a
repeatable edit descriptor or a nonrepeatab I e edit
descriptor .

The forms of a reoeatab I e edit descriptor are:

I w

Fw.d
Ew.d
Ew.dEe

Lw
A
Aji

where: I, F, E, L, and A indicate the manner of editing

13-2s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

13.2 Form of a Format Specification

The form of a format specification is:

([f M st])

where f li s t is a list (2.10). The forms of the f I is t items
ar e:

t r.] ed

ned

[rj is.

where: ed is a repeatable edit descriptor (13.2.1)

ned is a nonrepeatabIe edit descriptor (13.2.1)

f_s i s a format specification with a nonempty list
f I i st

r. is a nonzero, unsigned, integer constant called a
repeat specification

The comma used to separate list items in the list f I i s t may
be omitted as follows:

(1) Between a P edit descriptor and an immediately
following F, E, D, or G edit descriptor (13.5.9)

(2) Before or after a slash edit descriptor (13.5.4)

(3) Before or after a colon edit descriptor (13.5.5)

13.2.1 Edit Descriptors. An edit descriptor is either a
repeatable edit descriptor or a nonrepeatabIe edit
descriptor.

The forms of a repeatable edit descriptor are:

Iji
I _w. m.
F. w. d.
Ew.. d.
Eii-d.Ee.
Dw.. d.
G. w. d.
Gw.. dEe.
L w.
A
A.w

where: I, F, E, D, G, L, and A indicate the manner of
editing

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 13-2

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

5

10

15

20

25

30

35

40

45

50

55

w. and e. are nonzero, unsigned, integer constants

d. is an unsigned integer constant

The forms of a nonreoeatabIe edit descriptor are:

‘h. h.2 ... hn'
nHh., h.a • • • Jin

nX
/

iP
BN
BZ

where apostrophe, H, X, slash, P, BN, and BZ
manner of editing

indicate the

h. is one of the characters
representation by the processor

capable of

n. is a nonzero, unsigned, integer constant

k. is an optionally signed integer constant

13.3 Interaction Between Input/Qutput List and Format

The beginning of formatted data transfer using a format
specification (12.9.5.2.1) initiates format control. Each
action of format control depends on information jointly
provided by:

(1) the next edit descriptor contained in the format
specification, and

(2) the next item in the input/output list, if one
exists.

If an input/output list specifies at least one list item, at
least one repeatable edit descriptor must exist in the
format specification. Note that an empty format
specification of the form () may be used only if no list
items are specified; in this case, one input record is
skipped or one output record containing no characters is
written. Except for an edit descriptor preceded by a repeat
specification, r. ed., and a format specification preceded by
a repeat specification', r (f I i s t), a format specification is
interpreted from left to right. A format specification or
edit descriptor preceded by a repeat specification r. is
processed as a list of r. format specifications or edit

Page 13-3s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

ji and e. are nonzero, unsigned, integer constants

d. and m. are unsigned integer constants

The forms of a nonrepeatabIe edit descriptor are:

•h, h.2 . . . hn '
n H h i h.2 . . . Jin
Tc
TLc
TRc
nX
/

S
SP
SS
kP
BN
B2

where: apostrophe, H, T, TL, TR, X, slash, colon, S, SP, SS,
P, BN, and BZ indicate the manner of editing

Jl is one of the characters capable of
representation by the processor

n. and c. are nonzero, unsigned, integer constants

Jl is an optionally signed integer constant

13.3 Interaction Between Input/Output List and Format

The beginning of formatted data transfer using a format
specification (12.9.5.2.1) initiates format contro I . Each
action of format control depends on information jointly
provided by:

(1) the next edit descriptor contained in the format
specification, and

(2) the next item in the input/output list, if one
exists.

If an input/output list specifies at least one list item, at
least one repeatable edit descriptor must exist in the
format specification. Note that an empty format
specification of the form () may be used only if no list
items are specified; in this case, one input record is
skipped or one output record containing no characters is
written. Except for an edit descriptor preceded by a repeat
specification, r. .ed., and a format specification preceded by
a repeat specification, r (f I i s t). a format specification is
interpreted from left to right. A format specification or
edit descriptor preceded by a repeat specification r. is
processed as a list of r. format specifications or edit

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 13-3

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

descriptors identical to the format specification or edit
descriptor without the repeat specification. Note that an
omitted repeat specification is treated the same as a repeat
specification whose value is one.

To each repeatable edit descriptor interpreted in a format
specification, there corresponds one item specified by the
input/output list (12.8.2). To each P, X, H, BN, BZ, slash,
or apostrophe edit descriptor, there is no corresponding
item specified by the input/output list, and format control
communicates information directly with the record.

Whenever format control encounters a repeatable edit
descriptor in a format specification, it determines whether
there is a corresponding item specified by the input/output
list. If there is such an item, it transmits appropriately
edited information between the item and the record, and then
format control proceeds. If there is no corresponding item,
format control terminates.

If format control encounters the rightmost parenthesis of a
complete format specification and another list item is not
specified, format control terminates. However, if another
list item is specified, the file is positioned at the
beginning of the next record and format control then reverts
to the beginning of the format specification terminated by
the last preceding right parenthesis. If there is no such
preceding right parenthesis, format control reverts to the
first left parenthesis of the format specification. If such
reversion occurs, the reused portion of the format
specification must contain at least one repeatable edit
descriptor. If format control reverts to a parenthesis that
is preceded by a repeat specification, the repeat
specification is reused. Reversion of format control, of
itself, has no effect on the scale factor (13.5.7) or the BN
or BZ edit descriptor blank control (13.5.8).

13.4 Positioning by Format Control

After each I, F, E, L, A, H, or apostrophe edit descriptor
is processed, the file is positioned after the last
character read or written in the current record.

After each X or slash edit descriptor is processed, the file
is positioned as described in 13.5.3 and 13.5.4.

13-4s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

descriptors identical to the format specification or edit
descriptor without the repeat specification. Note that an
omitted repeat specification is treated the same as a repeat
specification whose value is one.

To each repeatable edit descriptor interpreted in a format
specification, there corresponds one item specified by the
input/output list (12.8.2), except that a list item of type
complex requires the interpretation of two F, E, D, or G
edit descriptors. To each P, X, T, TL, TR, S, SP, SS, H,
BN, BZ, slash, colon, or apostrophe edit descriptor, there
is no corresponding item specified by the input/output list,
and format control communicates information directly with
the record.

Whenever format control encounters a repeatable edit
descriptor in a format specification, it determines whether
there is a corresponding item specified by the input/output
list. If there is such an item, it transmits appropriately
edited information between the item and the record, and then
format control proceeds. If there is no corresponding item,
format control terminates.

If format control encounters a colon edit descriptor in a
format specification and another list item is not specified,
format control terminates.

If format control encounters the rightmost parenthesis of a
complete format specification and another list item is not
specified, format control terminates. However, if another
list item is specified, t'tre file is positioned at the
beginning of the next record and format control then reverts
to the beginning of the format specification terminated by
the last preceding right parenthesis. If there is no such
preceding right parenthesis, format control reverts to the
first left parenthesis of the format specification. If such
reversion occurs, the reused portion of the format
specification must contain at least one repeatable edit
descriptor. If format control reverts to a parenthesis that
is preceded by a repeat specification, the repeat
specification is reused. Reversion of format control, of
itself, has no effect on the scale factor (13.5.7), the S,
SP, or SS edit descriptor sign control (13.5.6), or the BN
or BZ edit descriptor blank control (13.5.8).

13.4 Positioning by Format Control

After each I, F, E, D, G, L, A, H, or apostrophe edit
descriptor is processed, the file is positioned after the
last character read or written in the current record.

After each T, TL, TR, X, or slash edit descriptor is
processed, the file is positioned as described in 13.5.3 and
13.5.4.

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 13-4

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

5

10

15

20

25

30

35

40

45

If format control reverts as described in 13.3, the file is
positioned in a manner identical to the way it is positioned
when a slash edit descriptor is processed (13.5.4).

During a read operation, any unprocessed characters of the
record are skipped whenever the next record is read.

13.5 Editing

Edit descriptors are used to specify the form of a record
and to direct the editing between the characters in a record
and internal representations of data.

A field is a part of a record that is read on input or
written on output when format control processes one I, F, E,
L, A, H, or apostrophe edit descriptor. The field width is
the size in characters of the field.

The internal representation of a datum corresponds to the
internal representation of a constant of the corresponding
type (Section 4).

13.5.1 Apostrophe Editing. The apostrophe edit descriptor
has the form of a character constant. It causes characters
to be written from the enclosed characters (including
blanks) of the edit descriptor itself. An apostrophe edit
descriptor must not be used on input.

The width of the field is the number of characters contained
in, but not including, the delimiting apostrophes. Within
the field, two consecutive apostrophes with no intervening
blanks are counted as a single apostrophe.

13.5.2 H Editing. The nH edit descriptor causes character
information to be written from the n. characters (including
blanks) following the H of the nH edit descriptor in the
format specification itself. An H edit descriptor must not
be used on input.

Note that if an H edit descriptor occurs within a character
constant and includes an apostrophe, the apostrophe must be
represented by two consecutive apostrophes, which are
counted as one character in specifying n..

13.5.3 PositionaI Editing. The X edit descriptor specifies
the position at which the next character will be transmitted
to or from the record.

50

The position specified by an X edit descriptor is forward
55 from the current position. On input, a position beyond the

Page 13-5 s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

If format control reverts as described in 13.3, the file is
positioned in a manner identical to the way it is positioned
when a slash edit descriptor is processed (13.5.4).

During a read operation, any unprocessed characters of the
record are skipped whenever the next record is read.

13.5 Editing

Edit descriptors are used to specify the form of a record
and to direct the editing between the characters in a record
and internal representations of data.

A field is a part of a record that is read on input or
written on output when format control processes one I, F, E,
D, G, L, A, H, or apostrophe edit descriptor. The field
width is the size in characters of the field.

The internal representation of a datum corresponds to the
internal representation of a constant of the corresponding
type (Section 4).

13.5.1 Apostrophe Editing. The apostrophe edit descriptor
has the form of a character constant. It causes characters
to be written from the enclosed characters (including
blanks) of the edit descriptor itself. An apostrophe edit
descriptor must not be used on input.

The width of the field is the number of characters contained
in, but not including, the delimiting apostrophes. Within
the field, two consecutive apostrophes with no intervening
blanks are counted as a single apostrophe.

13.5.2 H Editing. The nH edit descriptor causes character
information to be written from the n. characters (including
blanks) following the H of the nH edit descriptor in the
format specification itself. An H edit descriptor must not
be used on input.

Note that if an H edit descriptor occurs within a character
constant and includes an apostrophe, the apostrophe must be
represented by two consecutive apostrophes, which are
counted as one character in specifying n..

13.5.3 Positional Editing. The T, TL, TR, and X edit
descriptors specify the position at which the next character
will be transmitted to or from the record.

The position specified by a T edit descriptor may be in
either direction from the current position. On input, this
allows portions of a record to be processed more than once,
possibly with different editing.

The position specified by an X edit descriptor is forward
from the current position. On input, a position beyond the

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 13-5

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

last character of the record may be specified if no
characters are transmitted from such positions.

On output, an X edit descriptor does not by itself cause
characters to be transmitted and therefore does not by
itself affect the length of the record. If characters are
transmitted to positions at or after the position specified
by an X edit descriptor, positions skipped are filled with
blanks. The result is as if the entire record were
initially filled with blanks.

13.5.3.1 T. TL. and TR Editing. The T, TL, and TR edit
descriptors are not included in the subset.

13.5.3.2 X Editing. The nX edit descriptor indicates that
the transmission of the next character to or from a record
is to occur at the position n. characters forward from the
current position.

13.5.4 Slash Editing. The slash edit descriptor indicates
the end of data transfer on the current record.

On input from a file connected for sequential access, the
remaining portion of the current record is skipped and the
file is positioned at the beginning of the next record.
This record becomes the current record. On output to a file
connected for sequential access, a new record is created and
becomes the last and current record of the file.

Note that a record that contains no characters may be
written on output. If the file is an internal file or a
file connected for direct access, the record is filled with
blank characters. Note also that an entire record may be
skipped on input.

13-6s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

last character of the record may be specified if no
characters are transmitted from such positions.

On output, a T, TL, TR, or X edit descriptor does not by
itself cause characters to be transmitted and therefore does
not by itself affect the length of the record. If
characters are transmitted to positions at or after the
position specified by a T, TL, TR, or X edit descriptor,
positions skipped and not previously filled are filled with
blanks. The result is as if the entire record were
initially filled with blanks.

On output, a character in the record may be replaced.
However, a T, TL, TR, or X edit descriptor never directly
causes a character already placed in the record to be
replaced. Such edit descriptors may result in positioning
so that subsequent editing causes a replacement.

13.5.3.1 T, TL. and TR Editing. The Tc edit descriptor
indicates that the transmission of the next character to or
from a record is to occur at the c.th character position.

The TLc. edit descriptor indicates that the transmission of
the next character to or from the record is to occur at the
character position c. characters backward from the current
position. However, if the current position is less than or
equal to position c., the TLc. edit descriptor indicates that
the transmission of the next character to or from the record
is to occur at position one of the current record.

The TRc. edit descriptor indicates that the transmission of
the next character to or from the record is to occur at the
character position c. characters forward from the current
position.

13.5.3.2 X Editing. The nX edit descriptor indicates that
the transmission of the next character to or from a record
is to occur at the position n. characters forward from the
current position.

13.5.4 Slash Editing. The slash edit descriptor indicates
the end of data transfer on the current record.

On input from a file connected for sequential access, the
remaining portion of the current record is skipped and the
file is positioned at the beginning of the next record.
This record becomes the current record. On output to a file
connected for sequential access, a new record is created and
becomes the last and current record of the file.

Note that a record that contains no characters may be
written on output. If the file is an internal file or a
file connected for direct access, the record is filled with
blank characters. Note also that an entire record may be
skipped on input.

5

10

1 5

20

25

30

35

40

45

50

55

FuI I Language Page 13-6

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

5
13.5.5 Colon Editing. The colon edit descriptor is not
included in the subset.

10
13.5.6 S. SP. and SS Editing. The S, SP, and SS edit
descriptors are not included in the subset.

15

20

25

30

35

40

45

50

55

13.5.7 P Editing. A scale factor is specified by a P edit
descriptor, which is of the form:

kP

where Jk is an optionally signed integer constant, called the
scale factor.

13.5.7.1 Sea Ie Factor. The value of the scale factor is
zero at the beginning of execution of each input/output
statement. It applies to all subsequently interpreted F and
E edit descriptors until another scale factor is
encountered, and then that scale factor is established.
Note that reversion of format control (13.3) does not affect
the established scale factor.

The scale factor k. affects the appropriate editing in the
fo I lowing manner:

(1) On input, with F and E editing (provided that no
exponent exists in the field) and F output editing,
the scale factor effect is that the externally
represented number equals the internally represented
number multiplied by 10**k_.

(2) On input, with F and E editing, the scale factor has
no effect if there is an exponent in the field.

Page 13-7s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

For a file connected for direct access, the record number is
increased by one and the file is positioned at the beginning
of the record that has that record number. This record
becomes the current record.

13.5.5 Colon Editing. The colon edit descriptor terminates
format control if there are no more items in the
input/output list (13.3). The colon edit descriptor has no
effect if there are more items in the input/output list.

13.5.6 S. SP. and SS Editing. The S, SP, and SS edit
descriptors may be used to control optional plus characters
in numeric output fields. At the beginning of execution of
each formatted output statement, the processor has the
option of producing a plus in numeric output fields. If an
SP edit descriptor is encountered in a format specification,
the processor must produce a plus in any subsequent position
that normally contains an optional plus. If an SS edit
descriptor is encountered, the processor must not produce a
plus in any subsequent position that normally contains an
optional plus. If an S edit descriptor is encountered, the
option of producing the plus is restored to the processor.

The S, SP, and SS edit descriptors affect only I, F, E, D,
and G editing during the execution of an output statement.
The S, SP, and SS edit descriptors have no effect during the
execution of an input statement.

13.5.7 P Editing. A scale factor is specified by a P edit
descriptor, which is of the form:

iP

where k. is an optionally signed integer constant, called the
scale factor .

13.5.7.1 Sea Ie Factor. The value of the scale factor is
zero at the beginning of execution of each input/output
statement. It applies to all subsequently interpreted F, E,
D, and G edit descriptors until another scale factor is
encountered, and then that scale factor is established.
Note that reversion of format control (13.3) does not affect
the established scale factor.

The scale factor k affects the appropriate editing in the
foI lowing manner :

(1) On input, with F, E, D, and G editing (provided that
no exponent exists in the field) and F output
editing, the scale factor effect is that the
externally represented number equals the internally
represented number multiplied by 10**k_.

(2) On input, with F, E, D, and G editing, the scale
factor has no effect if there is an exponent in the
field.

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 13-7

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

(3) On output, with E editing, the basic real constant
(4.4.1) part of the quantity to be produced is
multiplied by 10* * Jl and the exponent is reduced by k_.

13.5.8 BN and BZ Editing. The BN and BZ edit descriptors
may be used to specify the interpretation of blanks, other
than leading blapks, in numeric input fields. At the
beginning of execution of each formatted input statement,
such blank characters are interpreted as zeros. If a BN
edit descriptor is encountered in a format specification,
all such blank characters in succeeding numeric input fields
are ignored. The effect of ignoring blanks is to treat the
input field as if blanks had been removed, the remaining
portion of the field right-justified, and the blanks
replaced as leading blanks. However, a field of all blanks
has the value zero. If a BZ edit descriptor is encountered
in a format specification, all such blank characters in
succeeding numeric input fields are treated as zeros.

| The BN and BZ edit descriptors affect only I, F, and E
editing during execution of an input statement. They have
no effect during execution of an output statement.

13.5.9 Numeric Editing. The I, F, and E edit descriptors
are used to specify input/output of integer and real data.
The following general rules apply:

(1) On input, leading blanks are not significant. The
interpretation of blanks, other than leading blanks,
is determined by any BN or BZ blank control that is
currently in effect for the unit (13.5.8). Plus
signs may be omitted. A field of all blanks is
considered to be zero.

(2) On input, with F and E editing, a decimal point
appearing in the input field overrides the portion of
an edit descriptor that specifies the decimal point
location. The input field may have more digits than
the processor uses to approximate the value of the
datum.

(3) On output, the representation of a positive or zero
internal value in the field may be prefixed with a
plus, as controlled by the processor. The

13-8s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

(3) On output, with E and D editing, the basic real
constant (4.4.1) part of the quantity to be produced
is multiplied by 10**k. and the exponent is reduced by
Jk.

(4) On output, with G editing, the effect of the scale
factor is suspended unless the magnitude of the datum
to be edited is outside the range that permits the
use of F editing. If the use of E editing is
required, the scale factor has the same effect as
with E output editing.

13.5.8 BN and BZ Editing. The BN and BZ edit descriptors
may be used to specify the interpretation of blanks, other
than leading blanks, in numeric input fields. At the
beginning of execution of each formatted input statement,
such blank characters are interpreted as zeros or are
ignored, depending on the value of the BLANK= specifier
(12.10.1) currently in effect for the unit. If a BN edit
descriptor is encountered in a format specification, all
such blank characters in succeeding numeric input fields are
ignored. The effect of ignoring blanks is to treat the
input field as if blanks had been removed, the remaining
portion of the field right-justified, and the blanks
replaced as leading blanks. However, a field of all blanks
has the value zero. If a BZ edit descriptor is encountered
in a format specification, all such blank characters in
succeeding numeric input fields are treated as zeros.

The BN and BZ edit descriptors affect only I, F, E, D, and G
editing during execution of an input statement. They have
no effect during execution of an output statement.

13.5.9 Numeric Editino. The I, F, E, D, and G edit
descriptors are used to specify input/output of integer,
real, double precision, and complex data. The following
genera I rules appIy:

(1) On input, leading blanks are not significant. The
interpretation of blanks, other than leading blanks,
is determined by a combination of any BLANK=
specifier and any BN or BZ blank control that is
currently in effect for the unit (13.5.8;. Plus
signs may be omitted. A field of all blanks is
considered to be zero.

(2) On input, with F, E, D, and G editing, a decimal
point appearing in the input field overrides the
portion of an edit descriptor that specifies the
decimal point location. The input field may have
more digits than the processor uses to approximate
the value of the datum.

(3) On output, the representation of a positive or zero
internal value in the field may be prefixed with a
plus, as controlled by the S, SP, and SS edit

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 13-8

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

5

10

15

20

25

representation of a negative internal value in the
field must be prefixed with a minus. However, the
processor must not produce a negative signed zero in
a formatted output record.

(4) On output, the representation is right-justified in
the field. If the number of characters produced by
the editing is smaller than the field width, leading
blanks will be inserted in the field.

(5) On output, if the number of characters produced
exceeds the field width or if an exponent exceeds its
specified length using the E_w.dEe. edit descriptor,
the processor will fill the entire field of width j*
with asterisks. However, the processor must not
produce asterisks if the field width is not exceeded
when optional characters are omitted.

13.5.9.1 Integer Editing. The Ijw edit descriptor indicates
that the field to be edited occupies w. positions. The
specified input/output list item must be of type integer.
On input, the specified list item will become defined with
an integer datum. On output, the specified list item must
be defined with an integer datum.

30

In the input field, the character string must be in the form
of an optionally signed integer constant, except for the
interpretation of blanks (13.5.9, item (1)).

35
The output field for the Iw. edit descriptor consists of zero
or more leading blanks followed by a minus if the value of
the internal datum is negative, or an optional plus
otherwise, followed by the magnitude of the internal value

40 in the form of an unsigned integer constant without leading
zeros. Note that an integer constant always consists of at
I east one digit.

45

50

*55

13.5.9.2 Real and Double
edit descriptors specify
input/output list itern
descriptor must be real.

Precision Editing,
the editing of rea
corresponding to an
An input list item

The F and E
I data. An

F or E edit
wiI I become

Page 13-9s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

descriptors (13.5.6) or the processor. The
representation of a negative internal value in the
field must be prefixed with a minus. However, the
processor must not produce a negative signed zero in
a formatted output record.

(4) On output, the representation is right-justified in
the field. If the number of characters produced by
the editing is smaller than the field width, leading
blanks will be inserted in the field.

(5) On output, if the number of characters produced
exceeds the field width or if an exponent exceeds its
specified length using the E.w.dEe. or G.w.dE.£. edit
descriptor, the processor will fill the entire field
of width w. with asterisks. However, the processor
must not produce asterisks if the field width is not
exceeded when optional characters are omitted. Note
that when an SP edit descriptor is in effect, a plus
is not optional (13.5.6).

13.5.9.1 I nteaer Editing. The Iw. and I_w.m. edit descriptors
indicate that the field to be edited occupies w. positions.
The specified input/output list item must be of type
integer. On input, the specified list item will become
defined with an integer datum. On output, the specified
list item must be defined with an integer datum.

On input, an I_w.m. edit descriptor is treated identically to
an I w. edit descriptor.

In the input field, the character string must be in the form
of an optionally signed integer constant, except for the
interpretation of blanks (13.5.9, item (1)).

The output field for the Iw. edit descriptor consists of zero
or more leading blanks followed by a minus if the value of
the internal datum is negative, or an optional plus
otherwise, followed by the magnitude of the internal value
in the form of an unsigned integer constant without leading
zeros. Note that an integer constant always consists of at
I east one digit.

The output field for the Iw..m edit descriptor is the same as
for the lit edit descriptor, except that the unsigned integer
constant consists of at least m. digits and, if necessary,
has leading zeros. The value of m. must not exceed the value
of M. If]n is zero and the value of the internal datum is
zero, the output field consists of only blank characters,
regardless of the sign control in effect.

13.5.9.2 Real and Double Precision Editing. The F, E, D,
and G edit descriptors specify the editing of real, double
precision, and complex data. An input/output list item
corresponding to an F, E, D, or G edit descriptor must be
real, double precision, or complex. An input I i s-t item will

5

10

15

20

25

30

35

40

45

50

55

FulI Language Page 13-9

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

defined with a real datum. An output list item must be
defined with a real datum.

13.5.9.2.1 F Editing. The F.w.d. edit descriptor indicates
that the field occupies w. positions, the fractional part of
which consists of 4 digits.

The input field consists of an optional sign, followed by a
string of digits optionally containing a decimal point. If
the decimal point is omitted, the rightmost d. digits of the
string, with leading zeros assumed if necessary, are
interpreted as the fractional part of the value represented.
The string of digits may contain more digits than a
processor uses to approximate the value of the constant.
The basic form may be followed by an exponent of one of the
fo I lowing forms:

(1) Signed integer constant

(2) E followed by zero or more blanks, followed by an
optionally signed integer constant

(3) D followed by zero or more blanks, followed by an
optionally signed integer constant

An exponent containing a D is processed identically to an
exponent containing an E.

The output field consists of blanks, if necessary, followed
by a minus if the internal value is negative, or an optional
plus otherwise, followed by a string of digits that contains
a decimal point and represents the magnitude of the internal
value, as modified by the established scale factor and
rounded to d. fractional digits. Leading zeros are not
permitted except for an optional zero immediately to the
left of the decimal point if the magnitude of the value in
the output field is less than one. The optional zero must
appear if there would otherwise be no digits in the output
field.

13.5.9.2.2 E and D Editing. The Ejw.d. and E_w.dEe. edit
descriptors indicate that the external field occupies w.
positions, the fractional part of which consists of 4
digits, unless a scale factor greater than one is in effect,
and the exponent part consists of e. digits. The e. has no
effect on input.

The form of the input field is the same as for F editing
(13.5.9.2.1).

The form of the output field for a scale factor of zero is:

[±] [0] . X|Xj...xd exp

where: ± signifies a plus or a minus (13.5.9)

13-10s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

become defined with a datum whose type is the same as that
of the list item. An output list item must be defined with
a datum whose type is the same as that of the list item.

13.5.9.2.1 F Editing. The F.w.d. edit descriptor indicates
that the field occupies w. positions, the fractional part of
which consists of 4 digits.

The input field consists of an optional sign, followed by a
string of digits optionally containing a decimal point. If
the decimal point is omitted, the rightmost d. digits of the
string, with leading zeros assumed if necessary, are
interpreted as the fractional part of the value represented.
The string of digits may contain more digits than a
processor uses to approximate the value of the constant.
The basic form may be followed by an exponent of one of the
following forms:

(1) Signed integer constant

(2) E followed by zero or more blanks, followed by an
optionally signed integer constant

(3) D followed by zero or more blanks, followed by an
optionally signed integer constant

An exponent containing a D is processed identically to an
exponent containing an E.

The output field consists of blanks, if necessary, followed
by a minus if the internal value is negative, or an optional
plus otherwise, followed by a string of digits that contains
a decimal point and represents the magnitude of the internal
value, as modified by the established scale factor and
rounded to d. fractional digits. Leading zeros are not
permitted except for an optional zero immediately to the
left of the decimal point if the magnitude of the value in
the output field is less than one. The optional zero must
appear if there would otherwise be no digits in the output
field.

13.5.9.2.2 E and D Editing. The E_w.d., D_w.d_, and Ejw.dEe.
edit descriptors indicate that the external field occupies .w
positions, the fractional part of which consists of d.
digits, unless a scale factor greater than one is in effect,
and the exponent part consists of e. digits. The e. has no
effect on input.

The form of the input field is the same as for F editing
(13.5.9.2.1).

The form of the output field for a scale factor of zero is:

t±] t03 . x | x2...xd exp

where: ± signifies a plus or a minus (13.5.9)

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 13-10

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

x,x2...xd are the d. most significant digits of the
value of the datum after rounding

exp is a decimal exponent, of one of the following
5 forms:

Edi t Absolute Value Form of
Descriptor of Exponent Exponent

Ew.d 1 exp <99 E±z.,z.2 or ±0z, z2

99 <|exp|< 9 9 9 ±111213

Eii-d.Ee. 1 e x.B <(10**e)-1 E±z,z2...ze

where z. i s a digit. The sign in the exponent is required.
A plus sign must be used if the exponent value is zero. The

25 | form E_w.d. must not be used if [e x p | > 999.

The scale factor k. controls the decimal normalization
(13.5.7). I f - di < Jk < 0, the output field contains exactly
|k.| leading zeros and d. - |k_| significant digits after the

30 decimal point. If 0 < i < d. + 2, the output field contains
exactly k_ significant digits to the left of the decimal
point and jd -
decima1 point.

k_ + 1 s i gn i
Other va 1

ficant digits to the right
ues of k. are not permitted.

of the

35 13.5.9.2.3 G Editinq . The G edit descriptor i s not
included in the subset.

40

45

50

55

Page 13-11 s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

X|X2...xd are the d. most significant digits of the
value of the datum after rounding

exp is a decimal exponent, of one of the following
forms:

Edi t
Descriptor

Absolute Value
of Exponent

Form of
Exponent

Ew.d |exp|<99 E±_z, z.2 or ±0z.,z.2

99<|exp <999 ±lll2l3

Eii-d.Ee. | exp | <(10* * e.) -1 E±Z , z.2 - - - £e

D w.. d. |exp|<99 D±z , z.2 or E±z.,z.2

or ±0z.iZ.2

99< exp <999 ±£iZa £3

where z is a digit. The sign in the exponent is required.
A plus sign must be used if the exponent value is zero. The
forms Ew..d. and Dw..d. must not be used if | exp | > 999.

The scale factor k. controls the decimal normalization
(13.5.7). If -d. < k_ < 0, the output field contains exactly
|k.| leading zeros and d. - |k,| significant digits after the
decimal point. If 0 < k. < d. + 2, the output field contains
exactly k_ significant digits to the left of the decimal
point and d. - k. + 1 significant digits to the right of the
decimal point. Other values of k. are not permitted.

13.5.9.2.3 G Editing. The Gw..d. and Gw..dEe. edit descriptors
indicate that the external field occupies w. positions, the
fractional part of which consists of d. digits, unless a
scale factor greater than one is in effect, and the exponent
part consists of e. digits.

G input editing is the same as for F editing (13.5.9.2.1).

The method of representation in the output field depends on
the magnitude of the datum being edited. Let N be the
magnitude of the internal datum. If N < 0.1 or N l 10**d.,
Gw..d. output editing is the same as k.PEw..d. output editing and
Gw.-d.Ee. output editing is the same as k.PE.w.dEe output
editing, where k is the scale factor currently in effect.
If N is greater than or equal to 0.1 and is less than 10**d,
the scale factor has no effect, and the value of N
determines the editing as follows:

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 13-11

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

13.5.9.2.4 Comp lex Editing. Complex type is not included
in the subset.

13.5.10 L Editing. The Lw edit descriptor indicates that
the field occupies n positions. The specified input/output
list item must be of type logical. On input, the list item
will become defined with a logical datum. On output, the
specified list item must be defined with a logical datum.

The input field consists of optional blanks, optionally
followed by a decimal point, followed by a T for true or F
for false. The T or F may be followed by additional
characters in the field. Note that the logical constants
.TRUE, and .FALSE, are acceptable input forms.

The output field consists of w. - 1 blanks followed by a T or
F, as the value of the internal datum is true or false,
respective I y .

13.5.11 A Editing. The A[.w] edit descriptor is used with
an input/output list item of type character. On input, the
input list item will become defined with character data. On
output, the output list item must be defined with character
data.

If a field width jw is specified with the A edit descriptor,
the field consists of ja, characters. If a field width is

13-12s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

Magnitude of Datum Equivalent Conversion

0 .1 < N < 1 F(w-n).d, n('b')

1 < N < 1 0 F(w-n) . (d-1), n('b')

10**(d-2)<N<10**(d“1) F (.w-n.) . 1 , n.(' b.')

10**(d-1) < N < 1 0 * * d. F (.w-n.) . 0 , n.(' b.1)

where: _b is a blank

n. is 4 for Gw., d and e.+ 2 for G_w.dE.e

Note that the scale factor has no effect unless the
magnitude of the datum to be edited is outside of the range
that permits effective use of F editing.

13.5.9.2.4 Complex Editing. A complex datum consists of a
pair of separate real data; therefore, the editing is
specified by two successively interpreted F, E, D, or G edit
descriptors. The first of the edit descriptors specifies
the real part; the second specifies the imaginary part. The
two edit descriptors may be different. Note that
nonrepeatabIe edit descriptors may appear between the two
successive F, E, 0, or G edit descriptors.

13.5.10 L Editing. The L_w edit descriptor indicates that
the field occupies w. positions. The specified input/output
list item must be of type logical. On input, the list item
will become defined with a logical datum. On output, the
specified list item must be defined with a logical datum.

The input field consists of optional blanks, optionally
followed by a decimal point, followed by a T for true or F
for false. The T or F may be followed by additional
characters in the field. Note that the logical constants
.TRUE, and .FALSE, are acceptable input forms.

The output field consists of w. - 1 blanks followed by a T or
F, as the value of the internal datum is true or false,
respectively.

13.5.11 A Editing. The Atw.] edit descriptor is used with
an input/output list item of type character. On input, the
input list item will become defined with character data. On
output, the output list item must be defined with character
data.

If a field width w. is specified with the A edit descriptor,
the field consists of w. characters. If a field width jj. is

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 13-12

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

5

10

15

20

not specified with the A edit descriptor, the number of
characters in the field is the length of the character
input/output list item.

Let I en be the length of the input/output list item. If the
specified field width w. for A input is greater than or equal
to I en. the rightmost Ien characters will be taken from the
input field. If the specified field width is less than Ien.
the ii characters will appear left-justified with Ien-w
trailing blanks in the internal representation.

If the specified field width w. for A output is greater than
I en. the output field will consist of w-1en blanks followed
by the Ien characters from the internal representation. If
the specified field width w. is less than or equal to Ien,
the output field will consist of the leftmost w. characters
from the internal representation.

13.6 List-Directed Formatting

List-directed formatting is not included in the subset.

25

35

40

45

50

55

Page 13-13 s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 7l

not specified with the A edit descriptor, the number of
characters ih the field is the length of the character
input/output list item.

Let Ien be the length of the input/output list item. If the
specified field width w. for A input is greater than or equal
to Ien. the rightmost Ien characters will be taken from the
input field. If the specified field width is less than I en.
the w. characters will appear left-justified with I en- w
trailing blanks in the internal representation.

If the specified field width w. for A output is greater than
I en. the output field will consist of w-1en blanks followed
by the I en characters from the internal representation. If
the specified field width _w is less than or equal to len.
the output field will consist of the leftmost w. characters
from the internal representation.

13.6 List-Directed Formatting

The characters in one or more I ist-directed records
constitute a sequence of values and value separators. The
end of a record has the same effect as a blank character,
unless it is within a character constant. Any sequence of
two or more consecutive blanks is treated as a single blank,
unless it is within a character constant.

Each value is either a constant, a null value, or of one of
the forms :

jr * c.

where r. is an unsigned, nonzero, integer constant. The r.*c.
form is equivalent to r. successive appearances of the
constant c., and the r.* form is equivalent to r. successive
null values. Neither of these forms may contain embedded
blanks, except where permitted within the constant c..

A value separator is one of the following:

(1) A comma optionally preceded by one or more contiguous
blanks and optionally followed by one or more
contiguous blanks

(2) A slash optionally preceded by one or more contiguous
blanks and optionally followed by one or more
contiguous blanks

(3) One or more contiguous blanks between two constants
or following the last constant

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 13-13

5

10

15

20

25

30

35

40

45

50

55

.9-1978 FORTRAN 77 FORMAT SPECIFICATION

13.6.1 List-Directed Input. List-directed
not included in the subset.

formatting is

-14s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

13.6.1 List-Directed Input. Input forms acceptable to
format specifications for a given type are acceptable for
list-directed formatting, except as noted below. The form
of the input value must be acceptable for the type of the
input list item. Blanks are never used as zeros, and
embedded blanks are not permitted in constants, except
within character constants and complex constants as
specified below. Note that the end of a record has the
effect of a blank, except when it appears within a character
constant.

When the corresponding input list item is of type real or
double precision, the input form is that of a numeric input
field. A numeric input field is a field suitable for F
editing (13.5.9.2) that is assumed to have no fractional
digits unless a decimal point appears within the field.

When the corresponding list item is of type complex, the
input form consists of a left parenthesis followed by an
ordered pair of numeric input fields separated by a comma,
and followed by a right parenthesis. The first numeric
input field is the real part of the complex constant and the
second is the imaginary part. Each of the numeric input
fields may be preceded or followed by blanks. The end of a
record may occur between the real part and the comma or
between the comma and the imaginary part.

When the corresponding list item is of type logical, the
input form must not include either slashes or commas among
the optional characters permitted for L editing (13.5.10).

When the corresponding list item is of type character, the
input form consists of a nonempty string of characters
enclosed in apostrophes. Each apostrophe within a character
constant must be represented by two consecutive apostrophes
without an intervening blank or end of record. Character
constants may be continued from the end of one record to the
beginning of the next record. The end of the record does
not cause a blank or any other character to become part of
the constant. The constant may be continued on as many
records as needed. The characters blank, comma, and slash
may appear in character constants.

Let Ien be the length of the list item, and let m be the
length of the character constant. If Ien is less than or
equal to ji, the leftmost Ien characters of the constant are
transmitted to the list item. If Ien is greater than ji, the
constant is transmitted to the leftmost £ characters of the
list item and the remaining Ien-w characters of the list
item are filled with blanks. Note that the effect is as
though the constant were assigned to the list item in a
character assignment statement (10.4).

A null value is specified by having no characters between
successive value separators, no characters preceding the
first value separator in the first record read by each

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 13-14

5

10

15

20

25

30

35

40

45

50

55

.9-1978 FORTRAN 77 FORMAT SPECIFICATION

13.6.2 List-Directed Output. List-directed
not included in the subset.

formatting is

-15s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

execution of a M s t-d i r ec t ed input statement, or the r_*
form. A null value has no effect on the definition status
of the corresponding input list item. If the input list
item is defined, it retains its previous value; if it is
undefined, it remains undefined. A null value may not be
used as either the real or imaginary part of a complex
constant, but a single null value may represent an entire
complex constant. Note that the end of a record following
any other separator, with or without separating blanks, does
not specify a null value.

A slash encountered as a value separator during execution of
a I ist-directed input statement causes termination of
execution of that input statement after the assignment of
the previous value. If there are additional items in the
input list, the effect is as if null values had been
supplied for them.

Note that all blanks in a I ist~directed input record are
considered to be part of some value separator except for the
f o I lowing:

(1) Blanks embedded in a character constant

(2) Embedded blanks surrounding the real or imaginary
part of a complex constant

(3) Leading blanks in the first record read by each
execution of a I ist-directed input statement, unless
immediately followed by a slash or comma

13.6.2 List-Directed Output. The form of the values
produced is the same as that required for input, except as
noted otherwise. With the exception of character constants,
the values are separated by one of the following:

(1) One or more blanks

(2) A comma optionally preceded by one or more blanks and
optionally followed by one or more blanks

The processor may begin new records as necessary, but,
except for complex constants and character constants, the
end of a record must not occur within a constant and blanks
must not appear within a constant.

Logical output constants are T for the value true and F for
the value false.

Integer output constants are produced with the effect of an
Iw. edit descriptor, for some reasonable value of w..

Real and double precision constants are produced with the
effect of either an F edit descriptor or an E edit
descriptor, depending on the magnitude x. of the value and a
range 10 * * d., < x. < 10**d.2, where d., and d.2 are processor-

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 13-15

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

List-directed formatting is not included in the subset.

13 -16 s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

dependent integer values. If the magnitude x. is within this
range, the constant is produced using 0PF.w.ci; otherwise,
IPEjJ.dEe. is used. Reasonable processor-dependent values of
w., d., and e. are used for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma
separating the real and imaginary parts. The end of a
record may occur between the comma and the imaginary part
only if the entire constant is as long as, or longer than,
an entire record. The only embedded blanks permitted within
a complex constant are between the comma and the end of a
record and one blank at the beginning of the next record.

Character constants produced are not delimited by
apostrophes, are not preceded or followed by a value
separator, have each internal apostrophe represented
externally by one apostrophe, and have a blank character
inserted by the processor for carriage control at the
beginning of any record that begins with the continuation of
a character constant from the preceding record.

If two or more successive values in an output record
produced have identical values, the processor has the option
of producing a repeated constant of the form r.*c. instead of
the sequence of identical values.

Slashes, as value separators, and null values are not
produced by Iist-directed formatting.

Each output record begins with a blank character to provide
carriage control when the record is printed.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 13-16

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77

14. MAIN PROGRAM

A main program is a program unit that does not have a
FUNCTION or SUBROUTINE statement as its first statement. It
may have a PROGRAM statement as its first statement.

There must be exactly one main program in an executable
program. Execution of an executable program begins with the
execution of the first executable statement of the main
program.

14.1 PROGRAM Statement.

The form of a PROGRAM statement is:

PROGRAM pqm

where pqm is the symbolic name of the main program in which
the PROGRAM statement appears.

A PROGRAM statement is not required to appear in an
executable program. If it does appear, it must be the first
statement of the main program.

The symbolic name pqm is global (18.1.1) to the executable
program and must not be the same as the name of an external
procedure or common block in the same executable program.
The name pqm must not be the same as any local name in the
main program.

14.2 Main Program Restrictions

The PROGRAM statement may appear only as the first statement
of a main program. A main program may contain any other
statement except a FUNCTION, SUBROUTINE, or RETURN
statement. The appearance of a SAVE statement in a main
program has no effect.

A main program may not be referenced from a subprogram or
from itself.

14-1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

14. MAIN PROGRAM

A main program is a program unit that does not have a
FUNCTION, SUBROUTINE, or BLOCK DATA statement as its first
statement. It may have a PROGRAM statement as its first
statement.

There must be exactly one main program in an executable
program. Execution of an executable program begins with the
execution of the first executable statement of the main
program.

14.1 PROGRAM Statement

The form of a PROGRAM statement is:

PROGRAM pgm

where pgm is the symbolic name of the main program in which
the PROGRAM statement appears.

A PROGRAM statement is not required to appear in an
executable program. If it does appear, it must be the first
statement of the main program.

The symbolic name pgm is global (18.1.1) to the executable
program and must not be the same as the name of an external
procedure, block data subprogram, or common block in the
same executable program. The name pgm must not be the same
as any local name in the main program.

14.2 Main Program Restrictions

The PROGRAM statement may appear only as the first statement
of a main program. A main program may contain any other
statement except a BLOCK DATA, FUNCTION, SUBROUTINE, ENTRY,
or RETURN statement. The appearance of a SAVE statement in
a main program has no effect.

A main program may not be referenced from a subprogram or
from itself.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 14-1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77

15. FUNCTIONS AND SUBROUTINES

15.1 Categories of Functions and Subroutines

15.1.1 Procedures. Functions and subroutines are
procedures. There are four categories of procedures:

(1) Intrinsic functions

(2) Statement functions

(3) External functions

(4) Subroutines

Intrinsic functions, statement functions, and external
functions are referred to collectively as functions.

External functions and subroutines are referred to
collectively as externa I procedures .

15.1.2 External Functions. There are two categories of
externa I functions:

(1) External functions specified in function subprograms

(2) External functions specified by means other than
FORTRAN subprograms

15.1.3 Subroutines. There are two categories of
subroutines:

(1) Subroutines specified in subroutine subprograms

(2) Subroutines specified by means other than FORTRAN
subprograms

15.1.4 Dummy Procedure. A dummy procedure is a dummy
argument that is identified as a procedure (18.2.11).

15.2 Referencing a Function

A function is referenced in an expression and supplies a
value to the expression. The value supplied is the value of
the function.

An intrinsic function may be referenced in the main program
or in any procedure subprogram of an executable program.

A statement function may be referenced only in the program
unit in which the statement function statement appears.

An external function specified by a function subprogram may
be referenced within any other procedure subprogram or the
main program of the executable program. A subprogram must
not reference itself, either directly or indirectly.

1 5-1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

15. FUNCTIONS AND SUBROUTINES

15.1 Categories of Functions and Subroutines

15.1.1 Procedures. Functions and subroutines are
procedures. There are four categories of procedures:

(1) Intrinsic functions

(2) Statement functions

(3) External functions

(4) Subroutines

Intrinsic functions, statement functions, and external
functions are referred to collectively as functions.

External functions and subroutines are referred to
collectively as externa I procedures.

15.1.2 Externa I Functions. There are two categories of
external functions:

(1) External functions specified in function subprograms

(2) External functions specified by means other than
FORTRAN subprograms

15.1.3 Subroutines. There are two categories of
subroutines:

(1) Subroutines specified in subroutine subprograms

(2) Subroutines specified by means other than FORTRAN
subprograms

15.1.4 Dummy Procedure. A dummy procedure is a dummy
argument that is identified as a procedure (18.2.11).

15.2 Referencing a Function

A function is referenced in an expression and supplies a
value to the expression. The value supplied is the value of
the function.

An intrinsic function may be referenced in the main program
or in any procedure subprogram of an executable program.

A statement function may be referenced only in the program
unit in which the statement function statement appears.

An external function specified by a function subprogram may
be referenced within any other procedure subprogram or the
main program of the executable program. A subprogram must
not reference itself, either directly or indirectly.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-1

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

An external function specified by means other than a
subprogram may be referenced within any procedure subprogram
or the main program of the executable program.

15.2.1 Form of a Function Reference. A function reference
is used to reference an intrinsic function, statement
function, or external function.

The form of a function reference is:

fun ([a [, a.] . . .])

where: fun is the symbolic name of a function or a dummy
procedure

a. is an actual argument

The type of the result of a statement function or external
function reference is the same as the type of the function
name. The type is specified in the same manner as for
variables and arrays (4.1.2). The type of the result of an
intrinsic function is specified In Table 5 (15.10). A
function must not be of type character.

15.2.2 Execution of a Function Reference. A function
reference may appear only as a primary in an arithmetic or
logical expression. Execution of a function reference in
an expression causes the evaluation of the function
identified by fun.

Return of control from a referenced function completes
execution of the function reference. The value of the
function is available to the referencing expression.

15.3 Intrinsic Functions

Intrinsic functions are supplied by the processor and have a
special meaning. The specific names that identify the
intrinsic functions, their function definitions, type of
arguments, and type of results appear in Table 5.

An IMPLICIT statement does not change the type of an
intrinsic function .

15.3.1 Specific Names and Generic Names. Only a specific
intrinsic function name may be used as an actual argument
when the argument is an intrinsic function.

15-2s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

An external function specified by means other than a
subprogram may be referenced within any procedure subprogram
or the main program of the executable program.

If a character function is referenced in a program unit, the
function length specified in the program unit must be an
integer constant expression.

15.2.1 Form of a Function Reference. A function reference
is used to reference an intrinsic function, statement
function, or external function.

The form of a function reference is:

fun ([a. [, a.]. . .])

where: fun is the symbolic name of a function or a dummy
procedure

a. is an actual argument

The type of the result of a statement function or external
function reference is the same as the type of the function
name. The type is specified in the same manner as for
variables and arrays (4.1.2). The type of the result of an
intrinsic function is specified in Table 5 (15.10).

15.2.2 Execution of a Function Reference. A function
reference may appear only as a primary in an arithmetic,
logical, or character expression. Execution of a function
reference in an expression causes the evaluation of the
function identified by fun.

Return of control from a referenced function completes
execution of the function reference. The value of the
function is available to the referencing expression.

15.3 Intrinsic Functions

Intrinsic functions are supplied by the processor and have a
special meaning. The specific names that identify the
intrinsic functions, their generic names, function
definitions, type of arguments, and type of results appear
in Table 5 .

An IMPLICIT statement does not change the type of an
intrinsic function.

15.3.1 Specific Names and Generic Names. Generic names
simplify the referencing of intrinsic functions, because the
same function name may be used with more than one type of
argument. Only a specific intrinsic function name may be
used as an actual argument when the argument is an intrinsic
function.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-2

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

For those intrinsic functions that have more than one
argument, all arguments must be of the same type.

If the specific name of an intrinsic function appears in the
dummy argument list of a function or subroutine in a
subprogram, that symbolic name does not identify an
intrinsic function in the program unit. The data type
identified with the symbolic name is specified in the same
manner as for variables and arrays (4.1.2).

A name in an INTRINSIC statement must be the specific name
| of an intrinsic function.

15.3.2 Referencing an Intrinsic Function. An intrinsic
function is referenced by using its reference as a primary
in an expression. For each intrinsic function described in
Table 5, execution of an intrinsic function reference causes
the actions specified in Table 5, and the result depends on
the values of the actual arguments. The resulting value is
available to the expression that contains the function
reference.

The actual arguments that constitute the argument list must
agree in order, number, and type with the specification in
Table 5 and may be any expression of the specified type.

A specific name of an intrinsic function that appears in an
INTRINSIC statement may be used as an actual argument in an
external procedure reference; however, the names of
intrinsic functions for type conversion, lexical
relationship, and for choosing the largest or smallest value
must not be used as actual arguments. Note that such an
appearance does not cause the intrinsic function to be
classified as an external function (18.2.10).

15.3.3 Intrinsic Function Restrictions. Arguments for
which the result is not mathematically defined or exceeds
the numeric range of the processor cause the result of the
function to become undefined.

Restrictions on the range of arguments and results for
intrinsic functions are described in 15.10.1.

15-3s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

If a generic name is used to reference an intrinsic
function, the type of the result (except for intrinsic
functions performing type conversion, nearest integer, and
absolute value with a complex argument) is the same as the
type of the argument.

For thase intrinsic functions that have more than one
argument, all arguments must be of the same type.

If the specific name or generic name of an intrinsic
function appears in the dummy argument list of a function or
subroutine in a subprogram, that symbolic name does not
identify an intrinsic function in the program unit. The
data type identified with the symbolic name is specified in
the same manner as for variables and arrays (4.1.2).

A name in an INTRINSIC statement must be the specific name
or generic name of an intrinsic function.

15.3.2 Referencing an Intrinsic Function. An intrinsic
function is referenced by using its reference as a primary
in an expression. For each intrinsic function described in
Table 5, execution of an intrinsic function reference causes
the actions specified in Table 5, and the result depends on
the values of the actual arguments. The resulting value is
available to the expression that contains the function
reference.

The actual arguments that constitute the argument list must
agree in order, number, and type with the specification in
Table 5 and may be any expression of the specified type. An
actual argument in an intrinsic function reference may be
any expression except a character expression involving
concatenation of an operand whose length specification is an
asterisk in parentheses unless the operand is the symbolic
name of a constant.

A specific name of an intrinsic function that appears in an
INTRINSIC statement may be used as an actual argument in an
external procedure reference; however, the names of
intrinsic functions for type conversion, lexical
relationship, and for choosing the largest or smallest value
must not be used as actual arguments. Note that such an
appearance does not cause the intrinsic function to be
classified as an external function (18.2.10).

15.3.3 Intrinsic Function Restrictions. Arguments for
which the result is not mathematically defined or exceeds
the numeric range of the processor cause the result of the
function to become undefined.

Restrictions on the range of arguments and results for
intrinsic functions are described in 15.10.1.

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 15-3

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

15.4 Statement Function

A statement function is a procedure specified by a single
statement that is similar in form to an arithmetic or
logical assignment statement. A statement function
statement must appear only after the specification
statements and before the first executable statement of the
program unit in which it is referenced (3.5).

A statement function statement is classified as a
nonexecutable statement; it is not a part of the normal
execution sequence .

15.4.1 Form of a Statement Function Statement . The form of
a statement function statement is:

fun ([, d.] . . .]) = e.

where: fun is the symbolic name of the statement function

ji is a statement function dummy argument

£ is an expression

The relationship between fun and e. must conform to the
assignment rules in 10.1 and 10.2. Note that the type of
the expression may be different from the type of the
statement function name.

Each is a variable name called a statement function dummy
argument . The statement function dummy argument list serves
only to indicate order, number, and type of arguments for
the statement function. The variable names that appear as
dummy arguments of a statement function have a scope of that
statement (18.1). A given symbolic name may appear only
once in any statement function dummy argument list. The
symbolic name of a statement function dummy argument may be
used to identify other dummy arguments of the same type in
different statement function statements. The name may also
be used to identify a variable of the same type appearing
elsewhere in the program unit, including its appearance as a
dummy argument in a FUNCTION or SUBROUTINE statement. The
name must not be used to identify any other entity in the
program unit except a common block.

Each primary of the expression s. must be one of the
f0 I lowing:

(1) A constant

(2) A variable reference

(3) An array element reference

1 5 — 4 s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

15.4 Statement Function

A statement function is a procedure specified by a single
statement that is similar in form to an arithmetic, logical,
or character assignment statement. A statement function
statement must appear only after the specification
statements and before the first executable statement of the
program unit in which it is referenced (3.5).

A statement function statement is classified as a
nonexecutable statement; it is not a part of the normal
execution sequence.

15.4.1 Form of a Statement Function Statement. The form of
a statement function statement is:

fun ([d. [, d.]. . .]) = e.

where: fun is the symbolic name of the statement function

jd is a statement function dummy argument

£ is an expression

The relationship between fun and e. must conform to the
assignment rules in 10.1, 10.2, and 10.4. Note that the
type of the expression may be different from the type of the
statement function name.

Each 4 is a variable name called a statement function dummy
argument. The statement function dummy argument list serves
only to indicate order, number, and type of arguments for
the statement function. The variable names that appear as
dummy arguments of a statement function have a scope of that
statement (18.1). A given symbolic name may appear only
once in any statement function dummy argument list. The
symbolic name of a statement function dummy argument may be
used to identify other dummy arguments of the same type in
different statement function statements. The name may'also
be used to identify a variable of the same type appearing
elsewhere in the program unit, including its appearance as a
dummy argument in a FUNCTION, SUBROUTINE, or ENTRY
statement. The name must not be used to identify any other
entity in the program unit except a common block.

Each primary of the expression .§. must be one of the
fo I lowing:

(1) A constant

(2) The symbolic name of a constant

(3) A variable reference

(4) An array element reference

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-4

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

(4) An intrinsic function reference

(5) A reference to a statement function for which the
statement function statement appears in preceding
lines of the program unit

(6) An external function reference

(7) A dummy procedure reference

(8) An expression enclosed in parentheses that meets all
of the requirements specified for the expression e.

Each variable reference may be either a reference to a dummy
argument of the statement function or a reference to a
variable that appears within the same program unit as the
statement function statement.

If a statement function dummy argument name is the same as
the name of another entity, the appearance of that name in
the expression of a statement function statement is a
reference to the statement function dummy argument. A dummy
argument that appears in a FUNCTION or SUBROUTINE statement
may be referenced in the expression of a statement function
statement within the subprogram.

15.4.2 Referencing a Statement Function. A statement
function is referenced by using its function reference as a
primary in an expression.

Execution of a statement function reference results in:

(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the
corresponding dummy arguments,

(3) evaluation of the expression £., and

(4) conversion, if necessary, of an arithmetic expression
value to the type of the statement function according
to the assignment rules in 10.1.

The resulting value is available to the expression that
contains the function reference.

The actual arguments, which constitute the argument list,
must agree in order, number, and type with the corresponding
dummy arguments. An actual argument in a statement function
reference may be any expression.

15 - 5 s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

(5) An intrinsic function reference

(6) A reference to a statement function for which the
statement function statement appears in preceding
lines of the program unit

(7) An external function reference

(8) A dummy procedure reference

(9) An expression enclosed in parentheses that meets all
of the requirements specified for the expression £.

Each variable reference may be either a reference to a dummy
argument of the statement function or a reference to a
variable that appears within the same program unit as the
statement function statement.

If a statement function dummy argument name is the same as
the name of another entity, the appearance of that name in
the expression of a statement function statement is a
reference to the statement function dummy argument. A dummy
argument that appears in a FUNCTION or SUBROUTINE statement
may be referenced in the expression of a statement function
statement within the subprogram. A dummy argument that
appears in an ENTRY statement that precedes a statement
function statement may be referenced in the expression of
the statement function statement within the subprogram.

15.4.2 Referencing a Statement Function. A statement
function is referenced by using its function reference as a
primary in an expression.

Execution of a statement function reference results in:

(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the
corresponding dummy arguments,

(3) evaluation of the expression £., and

(4) conversion, if necessary, of an arithmetic expression
value to the type of the statement function according
to the assignment rules in 10.1 or a change, if
necessary, in the length of a character expression
value according to the rules in 10.4.

The resulting value is available to the expression that
contains the function reference.

The actual arguments, which constitute the argument list,
must agree in order, number, and type with the corresponding
dummy arguments. An actual argument in a statement function
reference may be any expression except a character
expression involving concatenation of an operand whose

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 15-5

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

10

15

20

25

30

35

40

When a statement function reference is executed, its actual
arguments must be defined.

15.4.3 Statement Function Restrictions. A statement
function may be referenced only in the program unit that
contains the statement function statement.

A statement function statement must not contain a reference
to another statement function that appears following the
reference in the sequence of lines in the program unit. The
symbolic name used to identify a statement function must not
appear as a symbolic name in any specification statement
except in a type-statement (to specify the type of the
function) or as the name of a common block in the same
program unit.

An external function reference in the expression of a
statement function statement must not cause a dummy argument
of the statement function to become undefined or redefined.

The symbolic name of a statement function is a local name
(18.1.2) and must not be the same as the name of any other
entity in the program unit except the name of a common
block.

The symbolic name of a statement function may not be an
actual argument. It must not appear in an EXTERNAL
statement.

A statement function statement in a function subprogram must
not contain a function reference to the name of the function
subprogram.

A statement function must not be of type character.

The length specification of a statement function dummy
argument of type character must be an integer constant.

45

50

55

15.5 Externa I Functions

An external function is specified externally to the program
unit that references it. An external function is a
procedure and may be specified in a function subprogram or
by some other means.

15.5.1 Function Subprogram and FUNCTION Statement. A
function subprogram specifies an external function. A
function subprogram is a program unit that has a FUNCTION
statement as its first statement. The form of a function
subprogram is as described in 2.4 and 3.5, except as noted
in 15.5.3 and 15.7.4.

Page 15-6s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

length specification is an asterisk in parentheses unless
the operand is the symbolic name of a constant.

When a statement function reference is executed, its actual
arguments must be defined.

15.4.3 Statement Function Restrictions. A statement
function may be referenced only in the program unit that
contains the statement function statement.

A statement function statement must not contain a reference
to another statement function that appears following the
reference in the sequence of lines in the program unit. The
symbolic name used to identify a statement function must not
appear as a symbolic name in any specification statement
except in a type-statement (to specify the type of the
function) or as the name of a common block in the same
program unit.

An external function reference in the expression of a
statement function statement must not cause a dummy argument
of the statement function to become undefined or redefined.

The symbolic name of a statement function is a local name
(18.1.2) and must not be the same as the name of any other
entity in the program unit except the name of a common
block.

The symbolic name of a statement function may not be an
actual argument. It must not appear in an EXTERNAL
statement.

A statement function statement in a function subprogram must
not contain a function reference to the name of the function
subprogram or an entry name in the function subprogram.

The length specification of a character statement function
or statement function dummy argument of type character must
be an integer constant expression.

15.5 External Functions

An external function is specified externally to the program
unit that references it. An external function is a
procedure and may be specified in a function subprogram or
by some other means.

15.5.1 Function Subprogram and FUNCTION Statement. A
function subprogram specifies one or more external functions
(15.7). A function subprogram is a program unit that has a
FUNCTION statement as its first statement. The form of a
function subprogram is as described in 2.4 and 3.5, except
as noted in 15.5.3 and 15.7.4.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 15-6

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

The form of a FUNCTION statement is:

[tv□] FUNCTION i±m ([£ [,4]...])

where: t yd is one of INTEGER, REAL, or LOGICAL

fun is the symbolic name of the function subprogram
in which the FUNCTION statement appears. fun is
an externa I function name.

4 is a variable name, array name, or dummy
procedure name. d is a dummy argument.

The symbolic name of a function subprogram must appear as a
variable name in the function subprogram. During every
execution of the external function, this variable must
become defined and, once defined, may be referenced or
become redefined. The value of this variable when a RETURN
or END statement is executed in the subprogram is the value
of the function .

An external function in a function subprogram may define one
or more of its dummy arguments to return values in addition
to the value of the function.

15.5.2 Referencing an External Function. An external
function is referenced by using its reference as a primary
in an expression .

15.5.2.1 Execution of an External Function Reference.
Execution of an external function reference results in:

(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the
corresponding dummy arguments, and

(3) the actions specified by the referenced function.

The type of the function name in the function reference must
be the same as the type of the function name in the
referenced function. Note that an external function must
not be of type character.

15-7s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

The form of a FUNCTION statement is:

[tvd] FUNCTION fj±n (td [.4]. . .])

where: im is one of INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, or CHARACTER C*J_en] where Ien
is the length specification of the result of the
character function. Ien may have any of the
forms allowed in a CHARACTER statement (8.4.2)
except that an integer constant expression must
not include the symbolic name of 8 constant. If
a length is not specified in a CHARACTER FUNCTION
statement, the character function has a length of
one.

fun is the symbolic name of the function subprogram
in which the FUNCTION statement appears. fun is
an external function name.

d. is a variable name, array name, or dummy
procedure name. ^ is a dummy argument.

The symbolic name of a function subprogram or an associated
entry name of the same type must appear as a variable name
in the function subprogram. During every execution of the
external function, this variable must become defined and,
once defined, may be referenced or become redefined. The
value of this variable when a RETURN or END statement is
executed in the subprogram is the value of the function. If
this variable is a character variable with a length
specification that is an asterisk in parentheses, it must
not appear as an operand for concatenation except in a
character assignment statement (10.4).

An external function in a function subprogram may define one
or more of its dummy arguments to return values in addition
to the value of the function.

15.5.2 Referencing an External Function. An external
function is referenced by using its reference as a primary
in an expression.

15.5.2.1 Execution of an External Function Reference.
Execution of an external function reference results in:

(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the
corresponding dummy arguments, and

(3) the actions specified by the referenced function.

The type of the function name in the function reference must
be the same as the type of the function name in the
referenced function. The length of the character function

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-7

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

When an external function reference is executed, the
function must be one of the external functions in the
executab I e program .

15.5.2.2 Actual Arguments for an External Function. The
actual arguments in an external function reference must
agree in order, number, and type with the corresponding
dummy arguments in the referenced function. The use of a
subroutine name as an actual argument is an exception to the
rule requiring agreement of type because subroutine names do
not have a type.

An actual argument in an external function reference must be
one of the following:

(1) An expression

(2) An array name

(3) An intrinsic function name

(4) An external procedure name

(5) A dummy procedure name

Note that an actual argument in a function reference may be
a dummy argument that appears in a dummy argument list
within the subprogram containing the reference.

15.5.3 Function Subprogram Restrictions. A FUNCTION
statement must appear only as the first statement of a
function subprogram. A function subprogram may contain any
other statement except a SUBROUTINE or PROGRAM statement.

The symbolic name of an external function is a global name
(18.1.1) and must not be the same as any other global name
or any local name, except a variable name, in the function
subprogram.

Within a function subprogram, the symbolic name of a
function specified by the FUNCTION statement must not appear
in any other nonexecutable statement, except a type-
statement. In an executable statement, such a name may
appear only as a variable.

If the type of a function is specified in a FUNCTION
statement, the function name must not appear in a type-
statement. Note that a name must not have its type
explicitly specified more than once in a program unit.

1 5 - 8 s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

in a character function reference must be the same as the
length of the character function in the referenced function.

When an external function reference is executed, the
function must be one of the external functions in the
executabIe program.

15.5.2.2 Actual Arguments for an External Function. The
actual arguments in an external function reference must
agree in order, number, and type with the corresponding
dummy arguments in the referenced function. The use of a
subroutine name as an actual argument is an exception to the
rule requiring agreement of type because subroutine names do
not have a type.

An actual argument in an external function reference must be
one of the following:

(1) An expression except a character expression involving
concatenation of an operand whose length
specification is an asterisk in parentheses unless
the operand is the symbolic name of a constant

(2) An array name

(3) An intrinsic function name

(4) An external procedure name

(5) A dummy procedure name

Note that an actual argument in a function reference may be
a dummy argument that appears in a dummy argument list
within the subprogram containing the reference.

15.5.3 Function Subprogram Restrictions. A FUNCTION
statement must appear only as the first statement of a
function subprogram. A function subprogram may contain any
other statement except a BLOCK DATA, SUBROUTINE, or PROGRAM
statement.

The symbolic name of an external function is a global name
(18.1.1) and must not be the same as any other global name
or any local name, except a variable name, in the function
subprogram.

Within a function subprogram, the symbolic name of a
function specified by a FUNCTION or ENTRY statement must not
appear in any other nonexecutable statement, except a type-
statement. In an executable statement, such a name may
appear only as a variable.

If the type of a function is specified in a FUNCTION
statement, the function name must not appear in a type-
statement. Note that a name must not have its type
explicitly specified more than once in a program unit.

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 15-8

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

A function subprogram name must not be of type character.

In a function subprogram, the symbolic name of a dummy
argument is local to the program unit and must not appear in
an EQUIVALENCE, SAVE, INTRINSIC, DATA, or COMMON statement,
except as a common block name.

A function specified in a subprogram may be referenced
within any other procedure subprogram or the main program of
the executable program. A function subprogram must not
reference itself, either directly or indirectly.

15.6 Subroutines

A subroutine is specified externally to the program unit
that references it. A subroutine is a procedure and may be
specified in a subroutine subprogram or by some other means.

15.6.1 Subroutine Subprogram and SUBROUTINE Statement. A
subroutine subprogram specifies a subroutine. A subroutine
subprogram is a program unit that has a SUBROUTINE statement
as its first statement. The form of a subroutine subprogram
is as described in 2.4 and 3.5, except as noted in 15.6.3
and 15.7.4.

The form of a SUBROUTINE statement is:

SUBROUTINE jjjb t([d [.d]...])]

where: sub is the symbolic name of the subroutine subprogram
in which the SUBROUTINE statement appears. sub
is a subroutine name.

£ is a variable name, array name, or dummy
procedure name. 4 is a dummy argument.

Note that if there are no dummy arguments, either of the
forms sub or sub() may be used in the SUBROUTINE statement.
A subroutine that is specified by either form may be
referenced by a CALL statement of the form CALL sub or CALL
sub().

One or more dummy arguments of a subroutine in a subprogram
may become defined or redefined to return results.

1 5-9s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

If the name of a function subprogram is of type character,
each entry name in the function subprogram must be of type
character. If the name of the function subprogram or any
entry in the subprogram has a length of (*) declared, all
such entities must have a length of (*) declared; otherwise,
all such entities must have a length specification of the
same integer value.

In a function subprogram, the symbolic name of a dummy
argument is local to the program unit and must not appear in
an EQUIVALENCE, PARAMETER, SAVE, INTRINSIC, DATA, or COMMON
statement, except as a common block name.

A character dummy argument whose length specification is an
asterisk in parentheses must not appear as an operand for
concatenation, except in a character assignment statement
(10.4).

A function specified in a subprogram may be referenced
within any other procedure subprogram or the main program of
the executable program. A function subprogram must not
reference itself, either directly or indirectly.

15.6 Subroutines

A subroutine is specified externally to the program unit
that references it. A subroutine is a procedure and may be
specified in a subroutine subprogram or by some other means.

15.6.1 Subroutine Subprogram and SUBROUTINE Statement. A
subroutine subprogram specifies one or more subroutines
(15.7). A subroutine subprogram is a program unit that has
a SUBROUTINE statement as its first statement. The form of
a subroutine subprogram is as described in 2.4 and 3.5,
except as noted in 15.6.3 and 15.7.4.

The form of a SUBROUTINE statement is:

SUBROUTINE sju£ C< Cd [, d] . . .])]

where: sub is the symbolic name of the subroutine subprogram
in which the SUBROUTINE statement appears. sub
is a subroutine name.

4 i s a variable name, array name, or dummy
procedure name, or is an asterisk (15.9.3.5). 4
is a dummy argument.

Note that if there are no dummy arguments, either of the
forms sub or s ub() may be used in the SUBROUTINE statement.
A subroutine that is specified by either form may be
referenced by a CALL statement of the form CALL sub or CALL
sub () .

One or more dummy arguments of a subroutine in a subprogram
may become defined or redefined to return results.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-9

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

15.6.2 Subroutine Reference. A subroutine is referenced by
a CALL statement.

15.6.2.1 Form of a CALL Statement. The form of a CALL
statement is:

CALL sub [(la. t , a.]. . .])]

where: sub is the symbolic name of a subroutine or dummy
procedure

a. is an actual argument

15.6.2.2 Execution of a CALL Statement. Execution of a
CALL statement results in

(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the
corresponding dummy arguments, and

(3) the actions specified by the referenced subroutine.

Return of control from the referenced subroutine completes
execution of the CALL statement.

A subroutine specified in a subprogram may be referenced
within any other procedure subprogram or the main program of
the executable program. A subprogram must not reference
itself, either directly or indirectly.

When a CALL statement is executed, the referenced subroutine
must be one of the subroutines specified in subroutine
subprograms or by other means in the executable program.

15.6.2.3 Actual Arguments for a Subroutine. The actual
arguments in a subroutine reference must agree in order,
number, and type with the corresponding dummy arguments in
the dummy argument list of the referenced subroutine. The
use of a subroutine name as an actual argument is an
exception to the rule requiring agreement of type.

An actual argument in a subroutine reference must be one of
the following:

(1) An expression

(2) An array name

(3) An intrinsic function name

(4) An external procedure name

1 5-10s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

15.6.2 Subroutine Reference. A subroutine is referenced by
a CALL statement.

15.6.2.1 Form of a CALL Statement. The form of a CALL
statement is:

CALL sub C([a [,al . . .])]

where: sub is the symbolic name of a subroutine or dummy
procedure

a. is an actual argument

15.6.2.2 Execution of a CALL Statement. Execution of a
CALL statement results in

(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the
corresponding dummy arguments, and

(3) the actions specified by the referenced subroutine.

Return of control from the referenced subroutine completes
execution of the CALL statement.

A subroutine specified in a subprogram may be referenced
within any other procedure subprogram or the main program of
the executable program. A subprogram must not reference
itself, either directly or indirectly.

When a CALL statement is executed, the referenced subroutine
must be one of the subroutines specified in subroutine
subprograms or by other means in the executable program.

15.6.2.3 Actual Arguments for a Subroutine. The actual
arguments in a subroutine reference must agree in order,
number, and type with the corresponding dummy arguments in
the dummy argument list of the referenced subroutine. The
use of a subroutine name or an alternate return specifier as
an actual argument is an exception to the rule requiring
agreement of t ype .

An actual argument in a subroutine reference must be one of
the foilowing :

(1) An expression except a character expression involving
concatenation of an operand whose length
specification is an asterisk in parentheses unless
the operand is the symbolic name of a constant

(2) An array name

(3) An intrinsic function name

(4) An external procedure name

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 15-10

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

(5) A dummy procedure name

5

10

Note that an actual argument in a subroutine reference may
be a dummy argument name that appears in a dummy argument
list within the subprogram containing the reference.

15.6.3 Subroutine Subprogram Restrictions. A SUBROUTINE
15 statement must appear only as the first statement of a

subroutine subprogram. A subroutine subprogram may contain
any other statement except a FUNCTION or PROGRAM statement.

20 The symbolic name of a subroutine is a global name (18.1.1)
and must not be the same as any other global name or any
local name in the program unit.

In a subroutine subprogram, the symbolic name of a dummy
25 argument is local to the program unit and must not appear in

an EQUIVALENCE, SAVE, INTRINSIC, DATA, or COMMON statement,
except as a common block name.

30

35
15.7 ENTRY Statement

The ENTRY statement is not included in the subset.

40

45

50

15.7.1 Form of an ENTRY Statement. The ENTRY statement is
not included in the subset.

55 |

Page 1 5-11s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

(5) A dummy procedure name

(6) An a I ternate return specifier, of the form *s., where
i is the statement label of an executable statement
that appears in the same program unit as the CALL
statement (15.8.3)

Note that an actual argument in a subroutine reference may
be a dummy argument name that appears in a dummy argument
list within the subprogram containing the reference. An
asterisk dummy argument must not be used as an actual
argument in a subprogram reference.

15.6.3 Subroutine Subprogram Restrictions. A SUBROUTINE
statement must appear only as the first statement of a
subroutine subprogram. A subroutine subprogram may contain
any other statement except a BLOCK DATA, FUNCTION, or
PROGRAM statement.

The symbolic name of a subroutine is a global name (18.1.1)
and must not be the same as any other global name or any
local name in the program unit.

In a subroutine subprogram, the symbolic name of a dummy
argument is local to the program unit and must not appear in
an EQUIVALENCE, PARAMETER, SAVE, INTRINSIC, DATA, or COMMON
statement, except as a common block name.

A character dummy argument whose length specification is an
asterisk in parentheses must not appear as an operand for
concatenation, except in a character assignment statement
(10.4).

15.7 ENTRY Statement

An ENTRY statement permits a procedure reference to begin
with a particular executable statement within the function
or subroutine subprogram in which the ENTRY statement
appears. It may appear anywhere within a function
subprogram after the FUNCTION statement or within a
subroutine subprogram after the SUBROUTINE statement, except'
that an ENTRY statement must not appear between a block IF
statement and its corresponding END IF statement, or between
a DO statement and the terminal statement of its DO-loop.

Optionally, a subprogram may have one or more ENTRY
statements.

An ENTRY statement is classified as a nonexecutable
statement.

15.7.1 Form of an ENTRY Statement. The form of an ENTRY
statement i s:

ENTRY en [(Id [,4]...])]

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page 15-11

5

10

15

20

25

30

35

40

45

50

55

.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

15.7.2 Referencing External Procedure by Entry Name.
ENTRY statement is not included in the subset.

15.7.3 Entry Association. The ENTRY statement i
included in the subset.

The

not

-12s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

where: is the symbolic name of an entry in a function or
subroutine subprogram and is called an entry
name. If the ENTRY statement appears in a
subroutine subprogram, £n is a subroutine name.
If the ENTRY statement appears in 8 function
subprogram, £jn is an external function name.

4 is a variable name, array name, or dummy
procedure name, or is an asterisk. 4 is a dummy
argument. An asterisk is permitted in an ENTRY
statement only in a subroutine subprogram.

Note that if there are no dummy arguments, either of the
forms or _gji() may be used in the ENTRY statement. A
function that is specified by either form must be referenced
by the form e_n() (15.2.1). A subroutine that is specified
by either form may be referenced by a CALL statement of the
form CALL jLQ. or CALL en () .

The entry name ,g_n in a function subprogram may appear in a
type-statement.

15.7.2 Referencing External Procedure by Entry Name. An
entry name in an ENTRY statement in a function subprogram
identifies an external function within the executable
program and may be referenced as an external function
(15.5.2) . An entry name in an ENTRY statement in a
subroutine subprogram identifies a subroutine within the
executable program and may be referenced as a subroutine
(15.6.2) .

When an entry name e_n is used to reference a procedure,
execution of the procedure begins with the first executable
statement that follows the ENTRY statement whose entry name
i s en.

An entry name is available for reference in any program unit
of an executable program, except in the program unit that
contains the entry name in an ENTRY statement.

The order, number, type, and names of the dummy arguments in
an ENTRY statement may be different from the order, number,
type, and names of the dummy arguments in the FUNCTION
statement or SUBROUTINE statement and other ENTRY statements
in the same subprogram. However, each reference to a
function or subroutine must use an actual argument list that
agrees in order, number, and type with the dummy argument
list in the corresponding FUNCTION, SUBROUTINE, or ENTRY
statement. The use of a subroutine name or an alternate
return specifier as an actual argument is an exception to
the rule requiring agreement of type.

15.7.3 Entry Association. Within a function subprogram,
all variables whose names are also the names of entries are
associated with each other and with the variable, if any,
whose name is also the name of the function subprogram

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-12

5

10

15

20

25

30

35

40

45

50

55

.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

15.7.4 ENTRY Statement Restrictions. The ENTRY statement
is not included in the subset.

15.8 RETURN Statement

A RETURN statement causes return of control to the
referencing program unit and may appear only in a function
subprogram or subroutine subprogram.

-13s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

(17.1.3). Therefore, any such variable that becomes defined
causes all associated variables of the same type to become
defined and all associated variables of different type to
become undefined. Such variables are not required to be of
the same type unless the type is character, but the variable
whose name is used to reference the function must be in a
defined state when a RETURN or END statement is executed in
the subprogram. An associated variable of a different type
must not become defined during the execution of the function
reference.

15.7.4 ENTRY Statement Restrictions. Within a subprogram,
an entry name must not appear both as an entry name in an
ENTRY statement and as a dummy argument in a FUNCTION,
SUBROUTINE, or ENTRY statement and must not appear in an
EXTERNAL statement.

In a function subprogram, a variable name that is the same
as an entry name must not appear in any statement that
precedes the appearance of the entry name in an ENTRY
statement, except in a type-statement.

If an entry name in a function subprogram is of type
character, each entry name and the name of the function
subprogram must be of type character. If the name of the
function subprogram or any entry in the subprogram has a
length of (*) declared, all such entities must have a length
of (*) declared; otherwise, all such entities must have a
length specification of the same integer value.

In a subprogram, a name that appears as a dummy argument in
an ENTRY statement must not appear in an executable
statement preceding that ENTRY statement unless it also
appears in a FUNCTION, SUBROUTINE, or ENTRY statement that
precedes the executable statement.

In a subprogram, a name that appears as a dummy argument in
an ENTRY statement must not appear in the expression of a
statement function statement unless the neme is also a dummy
argument of the statement function, appears in a FUNCTION or
SUBROUTINE statement, or appears in an ENTRY statement that
precedes the statement function statement.

If a dummy argument appears in an executable statement, the
execution of the executable statement is permitted during
the execution of a reference to the function or subroutine
only if the dummy argument appears in the dummy argument
list of the procedure name referenced. Note that the
association of dummy arguments with actual arguments is not
retained between references to a function or subroutine.

15.8 RETURN Statement

A RETURN statement causes return of control to the
referencing program unit and may appear only in a function
subprogram or subroutine subprogram.

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 15-13

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

15.8.1 Form of a RETURN Statement. The form of a RETURN
statement is:

RETURN

10

1 5

20

25

30

35

40

15.8.2 Execution of a RETURN Statement. Execution of a
RETURN statement terminates the reference of a function or
subroutine subprogram. Such subprograms may contain more
than one RETURN statement; however, a subprogram need not
contain a RETURN statement. Execution of an END statement
in a function or subroutine subprogram has the same effect
as executing a RETURN statement in the subprogram.

In the execution of an executable program, a function or
subroutine subprogram must not be referenced a second time
without the prior execution of a RETURN or END statement in
that procedure.

Execution of a RETURN statement in a function subprogram
causes return of control to the currently referencing
program unit. The value of the function (15.5) must be
defined and is available to the referencing program unit.

Execution of
causes return
program unit,
unit comp I etes

a RETURN statement in a subroutine subprogram
of control to the currently referencing
Return of control to the referencing program

execution of the CALL statement.

Execution of a RETURN statement terminates the association
between the dummy arguments of the external procedure in the
subprogram and the current actual arguments.

15.8.3 Alternate Return. Alternate return is not included
in the subset.

45

50

55

Page 15 — 14 s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1 978 FORTRAN 77

15.8.1 Form of a RETURN Statement. The form of a RETURN
statement in a function subprogram is:

RETURN

The form of a RETURN statement in a subroutine subprogram
i s:

RETURN tel

where e. is an integer expression.

15.8.2 Execution of a RETURN Statement. Execution of a
RETURN statement terminates the reference of a function or
subroutine subprogram. Such subprograms may contain more
than one RETURN statement; however, a subprogram need not
contain a RETURN statement. Execution of an END statement
in a function or subroutine subprogram has the same effect
as executing a RETURN statement in the subprogram.

In the execution of an executable program, a function or
subroutine subprogram must not be referenced a second time
without the prior execution of a RETURN or END statement in
that procedure.

Execution of a RETURN statement in a function subprogram
causes return of control to the currently referencing
program unit. The value of the function (15.5) must be
defined and is available to the referencing program unit.

Execution of a RETURN statement in a subroutine subprogram
causes return of control to the currently referencing
program unit. Return of control to the referencing program
unit completes execution of the CALL statement.

Execution of a RETURN statement terminates the association
between the dummy arguments of the external procedure in the
subprogram and the current actual arguments.

15.8.3 Alternate Return. If £ is not specified in a RETURN
statement, or if the value of e. is less than one or greater
than the number of asterisks in the SUBROUTINE or subroutine
ENTRY statement that specifies the currently referenced
name, control returns to the CALL statement that initiated
the subprogram reference and this completes the execution of
the CALL statement.

If 1 i £ i n., where n. is the number of asterisks in the
SUBROUTINE or subroutine ENTRY statement that specifies the
currently referenced name, the value of £ identifies the e.th
asterisk in the dummy argument list. Control is returned to
the statement identified by the alternate return specifier
in the CALL statement that is associated with the £th
asterisk in the dummy argument list of the currently
referenced name. This completes the execution of the CALL
statement.

5

10

1 5

20

25

30

35

40

45

50

55

FuI I Language Page 15-14

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

15.8.4 Definition Status. Execution of a RETURN statement
(or END statement) within a subprogram causes all entities
within the subprogram to become undefined, except for the
f o I lowing:

(1) Entities specified by SAVE statements

(2) Entities in blank common

(3) Initially defined entities that have neither been
redefined or become undefined

(4) Entities in a named common block that appears in the
subprogram and appears in at least one other program
unit that is referencing, either directly or
indirectly, the subprogram

Note that if a named common block appears in the main
program, the entities in the named common block do not
become undefined at the execution of any RETURN statement in
the executable program.

15.9 Arguments and Common Blocks

Arguments and common blocks provide means of communication
between the referencing program unit and the referenced
procedure.

Data may be communicated to a statement function or
intrinsic function by an argument list. Data may be
communicated to and from an external procedure by an
argument list or common blocks. Procedure names may be
communicated to an external procedure only by an argument
list.

A dummy argument appears in the argument list of a
procedure. An actual argument appears in the argument list
of a procedure reference.

The number of actual arguments must be the same as the
number of dummy arguments in the procedure referenced.

15.9.1 Dummy Argument s. Statement functions, function
subprograms, and subroutine subprograms use dummy arguments
to indicate the types of actual arguments and whether each
argument is a single value, array of values, or procedure.
Note that a statement function dummy argument may be only a
variable.

Each dummy argument is classified as a variable, array, or
dummy procedure. Dummy argument names may appear wherever
an actual name of the same class (Section 18) and type may
appear, except where they are explicitly prohibited.

1 5-15s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

15.8.4 Definition Status. Execution of a RETURN statement
(or END statement) within a subprogram causes all entities
within the subprogram to become undefined, except for the
f o I lowing:

(1) Entities specified by SAVE statements

(2) Entities in blank common

(3) Initially defined entities that have neither been
redefined or become undefined

(4) Entities in a named common block that appears in the
subprogram and appears in at least one other program
unit that is referencing, either directly or
indirectly, the subprogram

Note that if a named common block appears in the main
program, the entities in the named common block do not
become undefined at the execution of any RETURN statement in
the executable program.

15.9 Arguments and Common Blocks

Arguments and common blocks provide means of communication
between the referencing program unit and the referenced
procedure .

Data may be communicated to a statement function or
intrinsic function by an argument list. Data may be
communicated to and from an external procedure by an
argument list or common blocks. Procedure names may be
communicated to an external procedure only by an argument
list.

A dummy argument appears in the argument list of a
procedure. An actual argument appears in the argument list
of a procedure reference.

The number of actual arguments must be the same as the
number of dummy arguments in the procedure referenced.

15.9.1 Dummy Arguments. Statement functions, function
subprograms, and subroutine subprograms use dummy arguments
to indicate the types of actual arguments and whether each
argument is a single value, array of values, procedure, or
statement label. Note that a statement function dummy
argument may be only a variable.

Each dummy argument is classified as a variable, array,
dummy procedure, or asterisk. Dummy argument names may
appear wherever an actual name of the same class (Section
18) and type may appear, except where they are explicitly
prohibited.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 15-15

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

Dummy argument names of type integer may appear in
adjustable dimensions in dummy array declarators (5.5.1).
Dummy argument names must not appear in EQUIVALENCE, DATA,
SAVE, INTRINSIC, or COMMON statements, except as common
block names. A dummy argument name must not be the same as
the procedure name appearing in a FUNCTION, SUBROUTINE, or
statement function statement in the same program unit.

15.9.2 Actual Arguments. Actual arguments specify the
entities that are to be associated w; t h the dummy arguments
for a particular reference of a subroutine or function. An
actual argument must not be the name of a statement function
in the program unit containing the reference. Actual
arguments may be constants, function references, expressions
involving operators, and expressions enclosed in parentheses
if and only if the associated dummy argument is a variable
that is not defined during execution of the referenced
external procedure.

The type of each actual argument must agree with the type of
its associated dummy argument, except when the actual
argument is a subroutine name (15.9.3.4).

15.9.3 Association of Dummy and Actual Arguments. At the
execution of a function or subroutine reference, an
association is established between the corresponding dummy
and actual arguments. The first dummy argument becomes
associated with the first actual argument, the second dummy
argument becomes associated with the second actual argument,
etc.

All appearances within a function or subroutine subprogram
of a dummy argument whose name appears in the dummy argument
list of the procedure name referenced become associated with
the actual argument when a reference to the function or
subroutine is executed.

A valid association occurs only if the type of the actual
argument is the same as the type of the corresponding dummy
argument. A subroutine name has no type and must be
associated with a dummy procedure name.

If an actual argument is an expression, it is evaluated just
before the association of arguments takes place.

If an actual argument is an array element name, its
subscript is evaluated just before the association of
arguments takes place. Note that the subscript value
remains constant as long as that association of arguments
persists, even if the subscript contains variables that are
redefined during the association.

1 5 -16s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

Dummy argument names of type integer may appear in
adjustable dimensions in dummy array declarators (5.5.1).
Dummy argument names must not appear in EQUIVALENCE, DATA,
PARAMETER, SAVE, INTRINSIC, or COMMON statements, except as
common block names. A dummy argument name must not be the
same as the procedure name appearing in a FUNCTION,
SUBROUTINE, ENTRY, or statement function statement in the
same program unit.

15.9.2 Actual Arguments. Actual arguments specify the
entities that are to be associated with the dummy arguments
for a particular reference of a subroutine or function. An
actual argument must not be the name of a statement function
in the program unit containing the reference. Actual
arguments may be constants, symbolic names of constants,
function references, expressions involving operators, and
expressions enclosed in parentheses if and only if the
associated dummy argument is a variable that is not defined
during execution of the referenced external procedure.

The type of each actual argument must agree with the type of
its associated dummy argument, except when the actual
argument is a subroutine name (15.9.3.4) or an alternate
return specifier (15.6.2.3).

15.9.3 Association of Dummy and Actual Arguments. At the
execution of a function or subroutine reference, an
association is established between the corresponding dummy
and actual arguments. The first dummy argument becomes
associated with the first actual argument, the second dummy
argument becomes associated with the second actual argument,
etc.

All appearances within a function or subroutine subprogram
of a dummy argument whose name appears in the dummy argument
list of the procedure name referenced become associated with
the actual argument when a reference to the function or
subroutine is executed.

A valid association occurs only if the type of the actual
argument is the same as the type of the corresponding dummy
argument. A subroutine name has no type and must be
associated with a dummy procedure name. An alternate return
specifier has no type and must be associated with an
asterisk.

If an actual argument is an expression, it is evaluated just
before the association of arguments takes place.

If an actual argument is an array element name, its
subscript is evaluated just before the association of
arguments takes place. Note that the subscript value
remains constant as long as that association of arguments
persists, even if the subscript contains variables that are
redefined during the association.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 15-16

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

10

1 5

20

Z 5

30

35

40

If an actual argument is an external procedure name, the
procedure must be available at the time a reference to it is
executed.

If an actual argument becomes associated with a dummy
argument that appears in an adjustable dimension (5.5.1),
the actual argument must be defined with an integer value at
the time the procedure is referenced.

A dummy argument is undefined if it is not currently
associated with an actual argument. An adjustable array is
undefined if the dummy argument array is not currently
associated with an actual argument array or if any variable
appearing in the adjustable array declarator is not
currently associated with an actual argument and is not in a
common block.

Argument association may be carried through more than one
level of procedure reference. A valid association exists at
the last level only if a valid association exists at all
intermediate levels. Argument association within a program
unit terminates at the execution of a RETURN or END
statement in the program unit. Note that there is no
retention of argument association between one reference of a
subprogram and the next reference of the subprogram.

15.9.3.1 Length of Character Dummy and Actual Arguments.
If a dummy argument is of type character, the associated
actual argument must be of type character and the length of
the dummy argument must be equal to the length of the actual
argument .

45
If a dummy argument of type character is an array name, the
restriction on length is for each array element.

50

55

Page 1 5-17 s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

If an actual argument is a character substring name, its
substring expressions are evaluated just before the
association of arguments takes place. Note that the value
of each of the substring expressions remains constant as
long as that association of arguments persists, even if the
substring expression contains variables that are redefined
during the association.

If an actual argument is an external procedure name, the
procedure must be available at the time a reference to it is
executed.

If an actual argument becomes associated with a dummy
argument that appears in an adjustable dimension (5.5.1),
the actual argument must be defined with an integer value at
the time the procedure is referenced.

A dummy argument is undefined if it is not currently
associated with an actual argument. An adjustable array is
undefined if the dummy argument array is not currently
associated with an actual argument array or if any variable
appearing in the adjustable array declarator is not
currently associated with an actual argument and is not in a
common block.

Argument association may be carried through more than one
level of procedure reference. A valid association exists at
the last level only if a valid association exists at all
intermediate levels. Argument association within a program
unit terminates at the execution of a RETURN or END
statement in the program unit. Note that there is no
retention of argument association between one reference of a
subprogram and the next reference of the subprogram.

15.9.3.1 Length of Character Dummy and Actual Arguments.
If a dummy argument is of type character, the associated
actual argument must be of type character and the length of
the dummy argument must be less than or equal to the iength
of the actual argument. If the length Ien of a dummy
argument of type character is less than the length of an
associated actual argument, the leftmost I en characters of
the actual argument are associated with the dummy argument.

If a dummy argument of type character is an array name, the
restriction on length is for the entire array and not for
each array element. The length of an array element in the
dummy argument array may be different from the length of an
array element in an associated actual argument array, array
element, or array element substring, but the dummy argument
array must not extend beyond the eno of the associated
actual argument array.

If an actual argument is a character substring, the length
of the actual argument is the length of the substring. If
an actual argument is the concatenation of two or more

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-17

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

15.9.3.2 Variables as Dummy Arguments. A dummy argument
that is a variable may be associated with an actual argument

| that is a variable, array element, or expression.

If the actual argument is a variable name or array element
name, the associated dummy argument may be defined or
redefined within the subprogram. If the actual argument is
a constant, a function reference, an expression involving
operators, or an expression enclosed in parentheses, the
associated dummy argument must not be redefined within the
subprogram .

15.9.3.3 Arrays as Dummy Arguments. Within a program unit,
the array declarator given for an array provides all array
declarator information needed for the array in an execution
of the program unit. The number and size of dimensions in
an actual argument array declarator may be different from
the number and size of the dimensions in an associated dummy
argument array declarator.

A dummy argument that is an array may be associated with an
actual argument that is either an array or an array element.

If the actual argument is a noncharacter or character array
name, the size of the dummy argument array must not exceed
the size of the actual argument array, and each actual
argument array element becomes associated with the dummy
argument array element that has the same subscript value as
the actual argument array element. Note that association by
array elements exists for character arrays because there
must be agreement in length between the actual argument and
the dummy argument array elements.

If the actual argument is a noncharacter or character array
element name, the size of the dummy argument array must not
exceed the size of the actual argument array plus one minus
the subscript value of the array element. When an actual
argument is a noncharacter or character array element name
with a subscript value of a_s, the dummy argument array
element with a subscript value of d_s becomes associated with
the actual argument array element that has a subscript value
of as + dj. - 1 (Table 1 , 5.4.3) .

15-18s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

operands, its length is the sum of the lengths of the
operands.

15.9.3.2 Variables as Dummy Arguments. A dummy argument
that is a variable may be associated with an actual argument
that is a variable, array element, substring, or expression, j

If the actual argument is a variable name, array element
name, or substring name, the associated dummy argument may
be defined or redefined within the subprogram. If the
actual argument is a constant, a symboMc name of a
constant, a function reference, an expression involving
operators, or an expression enclosed in parentheses, the
associated dummy argument must not be redefined within the
subprogram.

15.9.3.3 Arrays as Dummy Arguments. Within a program unit,
the array declarator given for an array provides all array
declarator information needed for the array in an execution
of the program unit. The number and size of dimensions in
an actual argument array declarator may be different from
the number and size of the dimensions in an associated dummy
argument array declarator.

A dummy argument that is an array may be associated with an
actual argument that is an array, array element, or array
element substring.

If the actual argument is a noncharacter array name, the
size of the dummy argument array must not exceed the size of
the actual argument array, and each actual argument array
element becomes associated with the dummy argument array
element that has the same subscript value as the actual
argument array element. Note that association by array
elements exists for character arrays if there is agreement
in length between the actual argument and the dummy argument
array elements; if the lengths do not agree, the dummy and
actual argument array elements do not consist of the same
characters, but an association still exists.

If the actual argument is a noncharacter array element name,
the size of the dummy argument array must not exceed the
size of the actual argument array plus one minus the
subscript value of the array element. When an actual
argument is a noncharacter array element name with a
subscript value of a s, the dummy argument array element with
a subscript value of d_s becomes associated with the actual
argument array element that has a subscript value of
as. + ds - 1 (Tab I e 1 , 5.4.3).

If the actual argument is a character array name, character
array element name, or character array element substring
name and begins at character storage unit acu of an array,
character storage unit dcu of an associated dummy argument
array becomes associated with character storage unit
acu + dcu - 1 of the actual argument array.

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page 15-18

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

15.9.3.4 Procedures as Dummy Arguments. A dummy argument
that is a dummy procedure may be associated only kith an
actual argument that is an intrinsic function, external
function, subroutine, or another dummy procedure.

If a dummy argument is used as if it were an external
function, the associated actual argument must be an
intrinsic function, external function, or dummy procedure.
A dummy argument that becomes associated kith an intrinsic
function never has any automatic typing property, even if
the dummy argument name appears in Table 5 (15.10).
Therefore, the type of the dummy argument must agree kith
the type of the result of all specific actual arguments that
become associated kith the dummy argument. If a dummy
argument name is used as if it were an external function and
that name also appears in Table 5, the intrinsic function
corresponding to the dummy argument name is not available
for referencing within the subprogram.

A dummy argument that is used as a procedure name in a
function reference and is associated kith an intrinsic
function must have arguments that agree in order, number,
and type kith those specified in Table 5 for the intrinsic
function.

If a dummy argument appears in a type-statement and an
EXTERNAL statement, the actual argument must be the name of
an intrinsic function, external function, or dummy
procedure.

If the dummy argument is referenced as a subroutine, the
actual argument must be the name of a subroutine or dummy
procedure and must not appear in a type-statement or be
referenced as a function.

Note that it may not be possible to determine in a given
program unit khether a dummy procedure is associated kith a
function or a subroutine. If a procedure name appears only
in a dummy argument list, an EXTERNAL statement, and an
actual argument list, it is not possible to determine
khether the symbolic name becomes associated kith a function
or subroutine by examination of the subprogram alone.

15.9.3.5 Asterisks as Dummy Arguments. A dummy argument
that is an asterisk is not included in the subset.

15-19s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1 978 FORTRAN 77

15.9.3.4 Procedures as Dummy Arguments. A dummy argument
that is a dummy procedure may be associated only with an
actual argument that is an intrinsic function, external
function, subroutine, or another dummy procedure.

If a dummy argument is used as if it were an external
function, the associated actual argument must be an
intrinsic function, external function, or dummy procedure.
A dummy argument that becomes associated with an intrinsic
function never has any automatic typing property, even if
the dummy argument name appears in Table 5 (15.10).
Therefore, the type of the dummy argument must agree with
the type of the result of all specific actual arguments that
become associated with the dummy argument. If a dummy
argument name is used as if it were an external function and
that name also appears in Table 5, the intrinsic function
corresponding to the dummy argument name is not available
for referencing within the subprogram.

A dummy argument that is used as a procedure name in a
function reference and is associated with an intrinsic
function must have arguments that agree in order, number,
and type with those specified in Table 5 for the intrinsic
function.

If a dummy argument appears in a type-statement and an
EXTERNAL statement, the actual argument must be the name of
an intrinsic function, external function, or dummy
procedure .

If the dummy argument is referenced as a subroutine, the
actual argument must be the name of a subroutine or dummy
procedure and must not appear in a type-staternent or be
referenced as a function.

Note that it may not be possible to determine in a given
program unit whether a dummy procedure is associated with a
function or a subroutine. If a procedure name appears only
in a dummy argument list, an EXTERNAL statement, and an
actual argument list, it is not possible to determine
whether the symbolic name becomes associated with a function
or subroutine by examination of the subprogram alone.

15.9.3.5 Asterisks as Dummy Arguments. A dummy argument
that is an asterisk may appear only in the dummy argument
list of a SUBROUTINE statement or an ENTRY statement in a
subroutine subprogram.

A dummy argument that is an asterisk may be associated only
with an actual argument that is an alternate return
specifier in the CALL statement that identifies the current
referencing name. If a dummy argument is an asterisk, the
corresponding actual argument must be an alternate return
specifier .

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 15-19

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

15.9.3.6 Restrictions on Association of Entities. If a
subprogram reference causes a dummy argument in the
referenced subprogram to become associated with another
dummy argument in the referenced subprogram, neither dummy
argument may become defined during execution of that
subprogram. For example, if a subroutine is headed by

SUBROUTINE XYZ (A,B)

and is referenced by

CALL XYZ (C,C>

then the dummy arguments A and B each become associated with
the same actual argument C and therefore with each other.
Neither A nor B may become defined during this execution of
subroutine XYZ or by any procedures referenced by XYZ.

If a subprogram reference causes a dummy argument to become
associated with an entity in a common block in the
referenced subprogram or in a subprogram referenced by the
referenced subprogram, neither the dummy argument nor the
entity in the common block may become defined within the
subprogram or within a subprogram referenced by the
referenced subprogram. For example, if a subroutine
contains the statements:

SUBROUTINE XYZ (A)
COMMON C

and is referenced by a program unit that contains the
statements:

COMMON B
CALL XYZ (B)

then the dummy argument A becomes associated with the actual
argument B, which is associated with C, which is in a common
block. Neither A nor C may become defined during execution
of the subroutine XYZ or by any procedures referenced by
XYZ.

15.9.4 Common Blocks. A common block provides a means of
communication between external procedures or between a main
program and an external procedure. The variables and arrays
in a common block may be defined and referenced in all
subprograms that contain a declaration of that common block.
Because association is by storage rather than by name, the
names of the variables and arrays may be different in the
different subprograms. A reference to a datum in a common
block is proper if the datum is in a defined state of the
same type as the type of the nsme used to reference the
datum. However, an integer variable that has been assigned
a statement label must not be referenced in any program unit
other than the one in which it was assigned (10.3).

15-20s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

15.9.3.6 Restrictions on Association of Entities. If a
subprogram reference causes a dummy argument in the
referenced subprogram to become associated with another
dummy argument in the referenced subprogram, neither dummy
argument may become defined during execution of that
subprogram. For example, if a subroutine is headed by

SUBROUTINE XYZ (A,B)

and is referenced by

CALL XYZ (C,C)

then the dummy arguments A and B each become associated with
the same actual argument C and therefore with each other.
Neither A nor B may become defined during this execution of
subroutine XYZ or by any procedures referenced by XYZ.

If a subprogram reference causes a dummy argument to become
associated with an entity in a common block in the
referenced subprogram or in a subprogram referenced by the
referenced subprogram, neither the dummy argument nor the
entity in the common block may become defined within the
subprogram or within a subprogram referenced by the
referenced subprogram. For example, if a subroutine
contains the statements:

SUBROUTINE XYZ (A)
COMMON C

and is referenced by a program unit that contains the
statements:

COMMON B
CALL XYZ (B)

then the dummy argument A becomes associated with the actual
argument B, which is associated with C, which is in a common
block. Neither A nor C may become defined during execution
of the subroutine XYZ or by any procedures referenced by
XYZ.

15.9.4 Common Blocks. A common block provides a means of
communication between external procedures or between a main
program and an external procedure. The variables and arrays
in a common block may be defined and referenced in all
subprograms that contain a declaration of that common block.
Because association is by storage rather than by name, the
names of the variables and arrays may be different in the
different subprograms. A reference to a datum in a common
block is proper if the datum is in a defined state of the
same type as the type of the name used to reference the
datum. However, an integer variable that has been assigned
a statement label must not be referenced in any program unit
other than the one in which it was assigned (10.3).

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-20

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

No difference in data type is permitted between the defined
state and the type of the reference.

5 In a subprogram that has declared a named common block, the
entities in the block remain defined after the execution of
a RETURN or END statement if a common block of the same name
has been declared in any program unit that is currently
referencing the subprogram, either directly or indirectly.

10 Otherwise, such entities become undefined at the execution
of a RETURN or END statement, except for those that are
specified by SAVE statements and those that were initially
defined by DATA statements and have neither been redefined
nor become undefined.

1 5
Execution of a RETURN or END statement does not cause
entities in blank common or in any named common block that
appears in the main program to become undefined.

20 Common blocks may be used also to reduce the total number of
storage units required for an executable program by causing
two or more subprograms to share some of the same storage
units. This sharing of storage is permitted if the rules
for defining and referencing data are not violated.

25

30

35

40

45

50

55

Page 15-21s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

No difference in data type is permitted between the defined
state and the type of the reference, except that either part
of a complex datum may be referenced also as a real datum.

In a subprogram that has declared a named common block, the
entities in the block remain defined after the execution of
a RETURN or END statement if a common block of the same name
has been declared in any program unit that is currently
referencing the subprogram, either directly or indirectly.
Otherwise, such entities become undefined at the execution
of a RETURN or END statement, except for those that are
specified by SAVE statements and those that were initially
defined by DATA statements and have neither been redefined
nor become undefined.

Execution of a RETURN or END statement does not cause
entities in blank common or in any named common block that
appears in the main program to become undefined.

Common blocks may be used also to reduce the total number of
storage units required for an executable program by causing
two or more subprograms to share some of the same storage
units. This sharing of storage is permitted if the rules
for defining and referencing data are not violated.

5

10

15

20

25

30

35

AO

45

50

55

Fu I I Language Page 15-21

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

15.10 Table of Intrinsic Functions

5

10

15

20

25

30

35

40

45

50

Tabie.5
Intrinsic Functions

Intrinsic Function Oe finition
Number of
Argument s

Generic
Name

Specific
Name

T ype
Argument Function

Type Conversion Conversion
to Integer
i nt (a.)
See Note 1

1
INT
I F IX

Rea 1
Rea 1

Integer
Integer

Conver sion
to Rea 1
See Note 2

1 REAL
FLOAT

Integer
Integer

Rea 1
Rea 1

Conversion
to Double
See Note 3

Conversion
to Complex
See Note 4

Conversion
to Integer
See Note 5

1 I CHAR Character Integer

Conversion
to Character
See Note 5

Truncation in t(&)
See Note 1

1 AINT Rea 1 Rea 1

Nearest Whole
Number

i nt . 5) i f
int(a*.5) i1 i<0

1 ANINT Rea 1 Rea 1

Nearest Integer i nt (£.+ . 5) if
int(a*.5) if a<0

1 NINT Real Integer

Absolute Value 111

See Note 6
(ara+ai*) 1 /1

1 IABS
ABS

Integer
Rea 1

Integer
Rea 1

55

Page 15-2Zs Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

15.10 Table of Intrinsic Functions

Table 5
Intrinsic Functions

Number of Generic Specif i c Type of
Intrinsic Function Definition Arguments Name Name Argument Func tion

Type Conversion Conver sion 1 INT - Integer Integer
to Integer INT Rea 1 Integer
int(ft) I F IX Rea 1 Integer
See Note 1 IDI NT Doub 1 e Integer

“ Comp 1 ex Integer

Conver sion 1 REAL REAL Integer Rea 1
to Real FLOAT Integer Rea 1
See Note 2 - Rea 1 Rea 1

SNGL Doub1e Rea 1
" Comp 1 ex Rea 1

Conver sion 1 OBLE - Integer Doub 1 e
to Double - Rea 1 Doub1e
See Note 3 - Doub 1 e Doub1e

Comp 1 ex Doub 1 e

Conver si on 1 or 2 CMPLX - Integer Comp 1 ex
to Complex ~ Rea 1 Comp 1 ex
See Note 4 - Doub 1 e Comp 1 ex

Comp 1 ex Comp 1 ex

Conversion
to Integer
See Note 5

1 I CHAR Character Integer

Conversion
to Character
See Note 5

1 CHAR Integer Character

Truncation i nt (.a.) 1 AINT AINT Real Rea 1
See Note 1 DINT Doub 1 e Doub 1 e

Nearest Whole int(ft+.5) if ft>0 1 ANINT ANINT Rea 1 Rea 1
Number int(ft-.5) if ft<0 DNINT Doub1e Doub1e

Nearest Integer int(ft+.5) if fl.2 0 1 NINT NINT Rea 1 Integer
int(ft-.5) if ft<0 IDNINT Doub1e Integer

Absolute Value 111 1 ABS I ABS Integer Integer
ABS Rea 1 Rea 1

See Note 6 DABS Doub1e Doub 1 e
(ar * ♦ a i *)1 / * CABS Comp 1 ex Real

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 15-22

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

Table S (continued)
Intrinsic Functions

5

10

15

20

25

30

35

40

45

50

55

Intrinsic Function Definition
Nuaber of
Arguments

Generic
Name

Specific
Name

Type
Arguaent

Df
Function

Reaeindering £i-int <a,/ai)*a»
See Note 1

2 MOD
AM0D

Integer
Rea 1

Integer
Rea 1

Transfer of Sign |a,| if a, i 0

-Tail if aa < o
2 ISIGN

SIGN
Integer
Rea 1

Integer
Rea 1

Positiwe Difference ai-aa if a.>aa
o if a>i&i

2 IDIH
DIN

Integer
Rea 1

Integer
Rea 1

Ooub 1 e Precision
Product

a. *aa

Choosing Largest
Value

max(£,,...) 'll MAX0
AHAX1

Integer
Real

Integer
Rea 1

AMAX0
MAXI

Integer
Rea 1

Rea 1
Integer

Choosing Saa11est
Value

■i n<a. .a.) 11 NINO
API IN1

Integer
Rea 1

Integer
Rea 1

AMINO
MINI

Integer
Rea 1

Rea 1
Integer

Length Length of
Character Entity

Index of
a Substring

Location of
Substring aa
in String ai
See Note 10

1

Iaaginary Part of
Coaplex Arguaent

ai
See Note 6

Conjugate of a
Coaplex Arguaent

(ar.-ai)
See Note 6

Square Root (a>'/* 1 SORT Rea 1 Rea 1

Page 15-2 3 s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

Table 5 (continued)
Intrinsic Functions

Number of Generic Specif i c Type of
Intrinsic Function Definition Arguments Name Name Argument Function

Reaaindering a,-int(a,/a,)*aa 2 MOD MOD Integer Integer
See Note 1 AMOD Real Rea 1

DMOD Doub 1 e Doub 1 e

Transfer of Sign lAi1, if Aa * 0 2 SIGN ISIGN Integer Integer
-|Ai 1 i f aa < 0 SIGN Rea 1 Rea 1

DSIGN Doub 1 e Doub 1 e

Positive Difference A,"Aa if Ai>Aa 2 DIM IDIM Integer Integer
0 i f AiSfia DIM Rea 1 Rea 1

DDIM Doub 1 e Doub1e

Double Precision A i *Aa 2 DPR0D Rea 1 Doub1e
Product

Choosing Largest «ax(A1.Aa.•••> 22 MAX MAX0 Integer In t eger
Va 1 ue AMAX1 Rea 1 Rea 1

DMAX1 Doub1e Doub 1 e

AMAX0 Integer Rea 1
MAXI Rea 1 Integer

Choosing Sma11est «in(Ai.Aa.•••> 22 MIN MINO Integer Integer
Va 1 ue AM I N1 Rea 1 Rea 1

DMIN1 Doub 1 e Doub 1 e

AMINO Integer Rea 1
MINI Rea 1 Integer

Length Length of
Character Entity

1 LEN Character In t eger

Index of Location of 2 INDEX Character Integer
a Substring Substring Aa

in String Ai
See Note 10

Imaginary Pert of ai 1 AI HAG Comp 1 ex Real
Coaplex Arguaent See Note 6

Conjugate of a (ar.-ai) 1 CON JG Comp 1 ex Comp 1 ex
Coaplex Arguaent See Note 6

Square Root <a)1/* 1 SORT SORT Rea 1 Rea 1
DS0RT Doub 1 e Doub 1 e
CSORT Comp 1 ex Comp 1 ex

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-23

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

Table 5 (continued)
Intrinsic Func tions

Intrinsic Function Definition
Number of
Argument s

Generic
Name

Specif i c
Name

Type
Argument

D f
Func tion

Exponentia 1 e» 1 EXP Rea 1 Rea 1

Natural Logarithm 1og(4) 1 ALOG Rea 1 Rea 1

Common Logarithm 1og10(4) 1 AL0G10 Rea 1 Rea 1

Si ne sin(4) 1 SIN Rea 1 Rea 1

Cosine cos(4) 1 COS Rea 1 Rea 1

Tangent t an(4) 1 TAN Rea 1 Rea 1

Arcsine ar c sin(4) 1 ASIN Rea 1 Rea 1

Arccosine arccos(4) 1 ACOS Rea 1 Rea 1

Arctangent ar c t an(4) 1 ATAN Rea 1 Rea 1

arctan(4,/42) 2 ATAN2 Rea 1 Rea 1

Hyperbolic Sine sinh(4) 1 S I NH Rea 1 Rea 1

Hyperbolie Cosine cosh(4) 1 COSH Rea 1 Real

Hyper bo lie Tangent t anh(4) 1 TANH Rea 1 Rea 1

1

55

Page 1 5-2 4 s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

Table 5 (continued)
Intrinsic Functions

Number of Generic Specific Type of
Intrinsic Function Definition Arguments Name Name Argument Function

Exponentia 1 e * *5. 1 EXP EXP Rea 1 Rea 1
0EXP Double Double
CEXP Comp 1 ex Complex

Natural Logarithm 1 og (5.) 1 LOG AL0G Rea 1 Real
DL0G Double Doub1e
CLOG Comp 1 ex Comp 1 ex

Common Logarithm 1ogl0(&) 1 LOG10 ALOGIO Rea 1 Rea 1
DLOG10 Doub1e Doub1e

Si ne s i n (a.) 1 SIN SIN Rea 1 Real
DSIN Double Double
CSIN Comp 1 ex Comp 1 ex

Cosine cos(a) 1 COS COS Rea 1 Rea 1
ocos Double Doub 1 e
CCOS Comp 1e x Comp 1 ex

Tangent tan(a) 1 TAN TAN Rea 1 Rea 1
DTAN Double Doub1e

Arcsine ar c sin(a) 1 ASIN ASIN Rea 1 Rea 1
OASIN Doub1e Double

Arccosine arccos(a> 1 AC0S ACOS Rea 1 Rea 1
DA COS Doub1e Doub1e

Arctangent arc tan(a) 1 ATAN ATAN Rea 1 Rea 1
OATAN Doub1e Doub1e

arctan(a> /S.i > 2 ATAN2 ATAN2 Rea 1 Rea 1
DATAN2 Doub1e Doub 1 e

Hyperbo lie Sine sinh(a) 1 SI NH S I NH Rea 1 Rea 1
OS I NH Doub1e Doub 1 e

Hyper bo lie Cosine cosh(a) 1 COSH COSH Rea 1 Rea 1
0C0SH Double Doub1e

Hyperbolic Tangent tanh(a> 1 TANH TANH Rea 1 Rea 1
DTANH Double Double

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-24

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

Table 5 (continued)
Intrinsic Functions

Intrinsic Function De finition
Number of
Arguments

Generic
Name

Spec i f i c
Name

T ype
Argument

>f
Function

Lexically Greater
Than or Equal

4i * S.1
See Note 12

2 LGE Character Logica1

Lexically Greater
Than

3. 1 * 3.2
See Note 12

2 LGT Character Logica1

Lexically Less
Than or Equal

fil < S.2
See Note 12

2 LLE Character Logica1

Lexically Less
Than See Note 12

2 LLT Character Logica1

20

25

30

35

40

45

50

55

Page 15-2 5 s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

Table 5 (continued)
Intrinsic Functions

Intrinsic Function Definition
Number of
Arguments

Generic
Name

Specific
Name

Type
Argument

jf
Func tion

Lexically Greater
Than or Equal

5.1 ^ 5a
See Note 12

2 LGE Character Logical

Lexically Greater
Than

a, > a.2
See Note 12

2 LGT Character Logica1

Lexically Less
Than or Equal

3i * 3j
See Note 12

2 LLE Character Logica 1

Lexically Less
Than

3.i < 3j
See Note 12

2 LLT Character Logica1

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 15-25

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

Notes for Table 5:

(1) For a. of type real, there are two cases: if |a.|<1,
i n t (a.) = 0 ; if |a.|M, i n t (a.) is the integer whose

5 magnitude is the largest integer that does not exceed
the magnitude of a. and whose sign is the same as the
sign of a.. For example.

10 in t(-3.7) = -3

1 5

20

For a. of type real, IFIX (a.) is the same as INT(a).

(2) For a. of
of the
contain.

type integer, REALCa.) is as much precision
significant part of a. as a real datum can

For a. of type integer, FLOATfa.) is the same as
REAL (a.) .

25
(3) This note does not apply to the subset.

30

(4) This note does not apply to the subset.

35

40

45

(5) ICHAR provides a means of converting from a character
to an integer, based on the position of the character
in the processor collating sequence. The first

50 character in the collating sequence corresponds to
position 0 and the last to position n.-1 , where n. is
the number of characters in the collating sequence.

The value of ICHARCa.) is an integer in the range:
55 0 i ICHAR(.&) i n.-1, where is an argument of type

character of length one. The value of 5. must be a

Page 15-26s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

Notes for Table 5:

(1) For jl of type integer, int(a.)=.a. For a. of type real
or double precision, there are two cases: if |a.| < 1,
i n t (a.) = 0; if | a. | l 1, i n t (a.) is the integer whose
magnitude is the largest integer that does not exceed
the magnitude of a, and whose sign is the same as the
sign of a.. For examp I e ,

in t(-3.7) = -3

For jl of type complex, int(a.) is the value obtained
by applying the above rule to the real part of j,.

For at of type real, IFIX (a.) is the same as INT(a.).

(2) For a. of type real, REAKa.) is a,. For a, of type
integer or double precision, REAKa.) is as much
precision of the significant part of a. as a real
datum can contain. For a. of type complex, REAKa.) is
the real par t of a..

For a. of type integer, FLOATCa.) is the same as
REAL (a.) .

(3) For a. of type double precision, D B L E (.a) is a,. For j.
of type integer or real, DB LE (a.) is as much precision
of the significant part of a as a double precision
datum can contain. For a. of type complex, DBLE (a.) is
as much precision of the significant part of the real
part of jl as a double precision datum can contain.

(4) CMPLX may have one or two arguments. If there is one
argument, it may be of type integer, real, double
precision, or complex. If there are two arguments,
they must both be of the same type and may be of type
integer, real, or double precision.

For a. of type complex, CMP LX (a.) is a,. For a, of type
integer, real, or double precision, C M P L X (a.) is the
complex value whose real part is REALCj.) and whose
imaginary part is zero.

CMPLX (a., , a.2) is the complex value whose real part is
REAL(a.,) and whose imaginary part is REAL(a.z).

(5) I CHAR provides a means of converting from a character
to an integer, based on the position of the character
in the processor collating sequence. The first
character in the collating sequence corresponds to
position 0 and the last to position n-1, where n. is
the number of characters in the collating sequence.

The value of I CHAR (a.) is an integer in the range:
0 i I CHAR (a.) i n~ 1 , where a, is an argument of type
character of length one. The value of .& must be a

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-26

5

10

15

Z0

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

character capable of representation in the processor.
The position of that character in the collating
sequence is the value of ICHAR.

For any characters c., and c.2 capable of
representation in the processor, (c., .LE. c.2) is true
if and only if (ICHARCc.,) .LE. ICHAR(c.2)) is true,
and (c., .EQ. c.2) is true if and only if
(ICHARCc.,) .EQ. I CHAR (£.„)) is true.

The CHAR function is not included in the subset.

(6) This note does not apply to the subset.

(7) All angles are expressed in radians.

(8) This note does not apply to the subset.

(9) All arguments in an intrinsic function reference must
be of the same type.

(10) The INDEX function is not included in the subset.

(11) There are some names in Table 5 of the full language
that must not be used as intrinsic function names in
a standard-conforming program at the subset level.
If such a name is used as an external function name,
the name must appear in an EXTERNAL statement in each
program unit that references the external function.
The only names i n Table 5 that may be used
specific names
fo1 lowing:

o f intrinsic functions are

ABS AMINO COS IDIM L LT REAL
AC0S AM I N 1 COSH I FIX MAX0 SIGN
AINT AM0D DIM INT MAXI SIN
ALOG ANINT EXP ISIGN MOD SINH
AL0G10 ASIN FLOAT LGE MIN0 SORT
AMAX0 ATAN I ABS LGT MINI TAN
AMAX1 ATAN2 I CHAR LLE NINT TANH

15-27s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

character capable of representation in the processor.
The position of that character in the collating
sequence is the value of ICHAR.

For any characters c., and c.2 capable of
representation in the processor, (c., .LE. c. 2) is true
if and only if (ICHAR(c.,) .LE. ICHAR(c.2)) is true,
and (c.i . EQ. c.2) is true if and only if
(I CHAR (c.,) .EQ. ICHAR(c2)) is true.

CHAR(_i_) returns the character in the j_th position of
the processor collating sequence. The value is of
type character of length one. j_ must be an integer
expression whose value must be in the range
o mn-1.

I CHAR (CHAR (j_)) = i for 0 < i < n-1 .

CHAR (I CHAR (.c)) = c. for any character c. capable of
representation in the processor.

(6) A complex value is expressed as an ordered pair of
reals, (ax., a_i_) , where a_r is the real part and aj_ is
the imagi nary part.

(7) All angles are expressed in radians.

(8) The result of a function of type complex is the
principal value.

(9) All arguments in an intrinsic function reference must
be of the same type.

(10) I NDEX (a., ,.&2) returns an integer value indicating the
starting position within the character string a., of a
substring identical to string a.2 . If a.2 occurs more
than once in 5.,, the starting postion of the first
occurence is returned.

If £2 does not occur in a.,, the value zero is
returned. Note that zero is returned if
LEN (a.,) < LEN(a2).

(11) The value of the argument of the LEN function need
not be defined at the time the function reference is
executed.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-27

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

(12) LGE(a.i,a.2> returns the value true if a.,=a.2 or if a.,
follows a.2 in the collating sequence described in
American National Standard Code for Information
Interchange, ANSI X3.4-1977 (ASCII), and otherwise
returns the value false.

LGT(a.i,a.2) returns the value true if a., follows a.2 in
the collating sequence described in ANSI X3.4-1977
(ASCII), and otherwise returns the value false.

HE (a. i ,a.2) returns the value true if a.i=a.2 or if a.i
precedes a.2 in the collating sequence described in
ANSI X3.4-1 977 (ASCII), and otherwise returns the
value false.

LLT (a., , a.2) returns the value true if a., precedes a.2
in the collating sequence described in ANSI X3.4-1977
(ASCII), and otherwise returns the value false.

The operands for LGE, LGT, LLE, and LLT must be of
the same length.

If either of the character entities being compared
contains a character that is not in the ASCII
character set, the result is processor-dependent.

15.10.1 Restrictions on Range of Arguments and Results.
Restrictions on the range of arguments and results for
intrinsic functions are as follows:

(1) Remaindering: The result for MOD and AMOD is
undefined when the value of the second argument is
zero.

(2) Transfer of Sign: If the value of the first argument
of ISIGN or SIGN is zero, the result is zero, which
is neither positive or negative (4.1.3).

(3) Square Root: The value of the argument of SORT must
be greater than or equal to zero.

(4) Logarithms: The value of the argument of ALOG and
ALOG10 must be greater than zero.

1 5 - 2 8 s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

(12) LGE(£i,£2) returns the value true if £,=£2 or if a.,
follows £.2 in the collating sequence described in
American National Standard Code for Information
Interchange, ANSI X3.4-1977 (ASCII), and otherwise
returns the value false.

L GT (_a,, , £2) returns the value true if £, follows £2 in
the collating sequence described in ANSI X3.4-1977
(ASCII), and otherwise returns the value false.

LLE(£,,£2) returns the value true if £,=£z or if £,
precedes £2 in the collating sequence described in
ANSI X3.4-1977 (ASCII), and otherwise returns the
value false.

LLT(£,,£2) returns the value true if £, precedes £2
in the collating sequence described in ANSI X3.4-1977
(ASCII), and otherwise returns the value false.

If the operands for LGE, LGT, LLE, and LLT are of
unequal length, the shorter operand is considered as
if it were extended on the right with blanks to the
length of the longer operand.

If either of the character entities being compared
contains a character that is not in the ASCII
character set, the result is pr0cess0r-dependent.

15.10.1 Restrictions on Range of Arguments and Results.
Restrictions on the range of arguments and results for
intrinsic functions when referenced by their specific names
are as follows:

(1) Remaindering: The result for MOO, AMOD, and DMOD is |
undefined when the value of the second argument is
zer 0 .

(2) Transfer of Sign: If the value of the first argument
of ISIGN, SIGN, or DSIGN is zero, the result is zero,
which is neither positive or negative (4.1.3).

(3) Square Root: The value of the argument of SORT and
DSQRT must be greater than or equal to zero. The
result of CSQRT is the principal value with the real
part greater than or equal to zero. When the real
part of the result is zero, the imaginary part is
greater than or equal to zero.

(4) Logarithms: The value of the argument of ALOG, DLOG,
AL0G10, and DLOGIO must be greater than zero. The
value of the argument of CLOG must not be (0.,0.).
The range of the imaginary part of the result of CLOG
is: -n < imaginary part i tt . The imaginary part of
the result is n only when the real part of the
argument is less than zero and the imaginary part of
the argument is zero.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-28

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

10

15

20

25

(5) Sine, Cosine, and Tangent: The absolute value of the
argument of SIN, COS, and TAN is not restricted to be
less than 2ir.

(6) Arcsine: The absolute value of the argument of ASIN
must be less than or equal to one. The range of the
result is: -n/2 i result i n/2.

(7) Arccosine: The absolute value of the argument of ACOS
must be less than or equal to one. The range of the
result is: 0 i result i n.

(8) Arctangent: The range of the result for ATAN is: -n/2
i result i n/2. If the value of the first argument
of ATAN2 is positive, the result is positive. If the
value of the first argument is zero, the result is
zero if the second argument is positive and n if the
second argument is negative. If the value of the
first argument is negative, the result is negative.
If the value of the second argument is zero, the
absolute value of the result is n/2. The arguments
must not both have the value zero. The range of the
result for ATAN2 is: -n < result i n.

30

35

40

45

50

55

Page 15-29s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

(5) Sine, Cosine, and Tangent: The absolute value of the
argument of SIN, DSIN, COS, DCOS, TAN. and DTAN is
not restricted to be less than 2n.

(6) Arcsine: The absolute value of the argument of ASIN
and DASIN must be less than or equal to one. The
range of the result is: -n/2 i result i n/2.

(7) Arccosine: The absolute value of the argument of ACOS
and DACOS must be less than or equal to one. The
range of the result is: 0 i result i n.

(8) Arctangent: The range of the result for ATAN and
DATAN is: -n/2 i result i n/2. If the value of the
first argument of ATAN2 or DATAN2 is positive, the
result is positive. If the value of the first
argument is zero, the result is zero if the second
argument is positive and n if the second argument is
negative. If the value of the first argument is
negative, the result is negative. If the value of
the second argument is zero, the absolute value of
the result is n/2. The arguments must not both have
the value zero. The range of the result for ATAN2
and DATAN2 is: -n < result i n.

The above restrictions on arguments and results also apply
to the intrinsic functions when referenced by their generic
names.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 15-29

ANSI X3.9-1978 FORTRAN 77

16. BLOCK DATA SUBPROGRAM

Block data subprograms are not included in the subset.

5

10
16.1 BLOCK DATA Statement

I The BLOCK DATA statement is not included in the subset.

15 |

20

25

30

16.2 Block Data Subprogram Restrictions

Block data subprograms are not included in the subset.

35

40

45

50

55

Page 16 — 1s Subset Language

ANSI X3.9-1978 FORTRAN 77

16. BLOCK DATA SUBPROGRAM

Block data subprograms are used to provide initial values
for variables and array elements in named common blocks.

A block data subprogram is a program unit that has a BLOCK
DATA statement as its first statement. A block data
subprogram is nonexecutable. There may be more than one
block data subprogram in an executable program.

16.1 BLOCK DATA Statement

The form of a BLOCK DATA statement is:

BLOCK DATA [sub]

where sub is the symbolic name of the block data subprogram
in which the BLOCK DATA statement appears.

The optional name sub is a global name (18.1.1) and must not
be the same as the name of an external procedure, main
program, common block, or other block data subprogram in the
same executable program. The name sub must not be the same
as any local name in the subprogram.

16.2 Block Data Subprogram Restrictions

The BLOCK DATA statement must appear only as the first
statement of a block data subprogram. The only other
statements that may appear in a block data subprogram are
IMPLICIT, PARAMETER, DIMENSION, COMMON, SAVE, EQUIVALENCE,
DATA, END, and type-statements . Note that comment lines are
permitted.

If an entity in a named common block is initially defined,
all entities having storage units in the common block
storage sequence must be specified even if they are not all
initially defined. More than one named common block may
have entities initially defined in a single block data
subprogram.

Only an entity in a named common block may be initially
defined in a block data subprogram. Note that entities
associated with an entity in a common block are considered
to be in that common block.

The same named common block may not be specified in more
than one block data subprogram in the same executable
program.

There must not be more than one unnamed block data
subprogram in an executable program.

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page 16-1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77

17. ASSOCIATION AND DEFINITION

17.1 Storage and Association

Storage sequences are used to describe relationships that
exist among variables, array elements, common blocks, and
argument s.

17.1.1 Storage Sequence. A storage sequence is a sequence
(2.1) of storage units. The size of a. storage sequence is
the number of storage units in the storage sequence. A
storage unit is a character storage unit or a numeric
storage unit.

A variable or array element of type integer, real, or
logical has a storage sequence of one numeric storage unit.

A variable or array element of type character has a storage
sequence of character storage units. The number of
character storage units in the storage sequence is the
length of the character entity. The order of the sequence
corresponds to the ordering of character positions (4.8).

Each array and common block has a storage sequence (5.2.5
and 8.3.2).

17.1.2 Association of Storage Sequences. Two storage
sequences s, and s2 are associated if the ith storage unit
of s, is the same as the jth storage unit of s2. This
causes the (i+k)th storage unit of s, to be the same as the
(j+k)th storage unit of s2, for each integer k such that
1 i i+k i size of s, and 1 i j+k < size of s2.

17.1.3 Association of Entities. Two variables or array
elements are associated if their storage sequences are
associated. Two entities are total I y associated if they
have the same storage sequence. Partial association of
character entities is prohibited.

The definition status and value of an entity affects the
definition status and value of any associated entity. An
EQUIVALENCE statement, a COMMON statement, or a procedure
reference (argument association) may cause association of
storage sequences.

An EQUIVALENCE statement causes association of entities only
within one program unit, unless one of the equivalenced
entities is also in a common block (8.3).

1 7-1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

17. ASSOCIATION AND DEFINITION

17.1 Storage and Association

Storage sequences are used to describe relationships that
exist among variables, array elements, substrings, common
blocks, and arguments.

17.1.1 Storage Sequence. A storage sequence is a sequence
(2.1) of storage units. The size of a. storage sequence is
the number of storage units in the storage sequence. A
storage unit is a character storage unit or a numeric
storage unit.

A variable.or array element of type integer, real, or
logical has a storage sequence of one numeric storage unit.

A variable or array element of type double precision or
complex has a storage sequence of two numeric storage units.
In a complex storage sequence, the real part has the first
storage unit and the imaginary part has the second storage
unit.

A variable, array element, or substring of type character
has a storage sequence of character storage units. The
number of character storage units in the storage sequence is
the length of the character entity. The order of the
sequence corresponds to the ordering of character positions
(4.8).

Each array and common block has a storage sequence (5.2.5
and 8.3.2).

17.1.2 Association of Storage Sequences. Two storage
sequences s, and s2 are associated if the ith storage unit
of s, is the same as the jth storage unit of s 2 . This
causes the (i+k)th storage unit of s, to be the same as the
(j+k)th storage unit of s2, for each integer k such that
1 < i+k < size of s, and 1 < j+k < size of s2 .

17.1.3 Association of Entities. Two variables, array
elements, or substrings are associated if their storage
sequences are associated. Two entities are total I y
associated if they have the same storage sequence. Two
entities are partial I y associated if they are associated but
not total Iy associated .

The definition status and value of an entity affects the
definition status and value of any associated entity. An
EQUIVALENCE statement, a COMMON statement, an ENTRY
statement (15.7.3), or a procedure reference (argument
association) may cause association of storage sequences.

An EQUIVALENCE statement causes association of entities only
within one program unit, unless one of the equivalenced
entities is also in a common block (8.3).

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 17-1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 ASSOCIATION AND DEFINITION

Arguments and COMMON statements cause entities in one
program unit to become associated with entities in another
program unit (8.3 and 15.9). Note that association between
actual and dummy arguments does not imply association of
storage sequences except when the actual argument is the

| name of a variable, array element, or array.

In the example:

REAL A(4),B
EQUIVALENCE (A(2),B)

the second storage unit of A and the storage unit of B are
specified as the same. The storage sequences may be
illustrated as:

storage unit 1
A(1)

2
A (2)

3
A (3)

4
A (4)

— B —■

A(2) and B are totally associated.

1 7-2 s Subset Language

ASSOCIATION AND DEFINITION ANSI X3.9-1978 FORTRAN 77

Arguments and COMMON statements cause entities in one
program unit to become associated with entities in another
program unit (8.3 and 15.9). Note that association between
actual and dummy arguments does not imply association of
storage sequences except when the actual argument is the
name of a variable, array element, array, or substring.

In a function subprogram, an ENTRY statement causes the
entry name to become associated with the name of the
function subprogram which appears in the FUNCTION statement.

Partial association may exist only between two character
entities or between a double precision or complex entity and
an entity of type integer, real, logical, double precision,
or complex.

Except for character entities, partial association may occur
only through the use of COMMON, EQUIVALENCE. or ENTRY
statements. Partial association must not occur through
argument association, except for arguments of type
character .

In the example:

REAL A(4),B
COMPLEX C(2)
DOUBLE PRECISION D
EQUIVALENCE (C(2),A(2),B), (A,D)

the third storage unit of C, the second storage unit of A,
the storage unit of B, and the second storage unit of D are
specified as the same. The storage sequences may be
illustrated as:

storage unit 1 | 2 3 4 5
-C(1)--- -C (2)-

| A (1) A (2)
--B —

A (3) A (4)

1—~ D~ —

AC2) and B are totally associated. The following are*
partially associated: A(1) and C(1), A(2) and C(2), A(3) and
C(2), B and C(2), AC1) and D, A(2) and D, B and D, C(1) and
D, and C(2) and D. Note that although C(1) and C(2) are
each associated with D, C(1) and C(2) are not associated
with each other .

Partial association of character entities occurs when some,
but not all, of the storage units of the entities are the
same. In the example:

CHARACTER A*4,B*4,C*3
EQUIVALENCE (A(2:3),B,C)

A, B, and C are partially associated.

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page 17-2

ANSI X3.9-1978 FORTRAN 77 ASSOCIATION AND DEFINITION

5

10

15

20

25

30

35

40

17.2 Events That Cause Entities to Become Defined

Variables and array elements become defined as follows:

(1) Execution of an arithmetic, logical, or character
assignment statement causes the entity that precedes
the equals to become defined.

(2) As execution of an input statement proceeds, each
entity that is assigned a value of its corresponding
type from the input medium becomes defined at the
time of such assignment.

(3) Execution of a DO statement causes the DO-variable to
become defined.

(4) Beginning of execution of action specified by an
implied-DO list in an input/output statement causes
the impIied-DO-variabIe to become defined.

(5) A DATA statement causes entities to become initially
defined at the beginning of execution of an
executable program.

(6) Execution of an ASSIGN statement causes the variable
in the statement to become defined with a statement
label value.

(7) When an entity of a given type becomes defined, all
totally associated entities of the same type become
defined except that entities totally associated with
the variable in an ASSIGN statement become undefined
when the ASSIGN statement is executed.

(8) A reference to a subprogram causes a dummy argument
to become defined if the corresponding actual
argument is defined with a value that is not a
statement label value. Note that there must be
agreement between the actual argument and * the dummy
argument (15.9.3).

45

50

55

Page 17-3 s Subset Language

ASSOCIATION AND DEFINITION ANSI X3.9-1978 FORTRAN 77

17.2 Events That Cause Entities to Become Defined

Variables, array elements, and substrings become defined as
f oI lows:

(1) Execution of an arithmetic, logical, or character
assignment statement causes the entity that precedes
the equals to become defined.

(2) As execution of an input statement proceeds, each
entity that is assigned a value of its corresponding
type from the input medium becomes defined at the
time of such assignment.

(3) Execution of a DO statement causes the DO-variable to
become defined .

(4) Beginning of execution
implied-DO list in an
the impIied-DO-variab I e

of action specified
input/output statement
to become defined .

by an
causes

(5) A DATA statement causes entities to become initially
defined at the beginning of execution of an
executabIe program.

(6) Execution of an ASSIGN statement causes the variable
in the statement to become defined with a statement
label value.

(7) When an entity of a given type becomes defined, all
totally associated entities of the same type become
defined except that entities totally associated with
the variable in an ASSIGN statement become undefined
when the ASSIGN statement is executed.

(8) A reference to a subprogram causes a dummy argument
to become defined if the corresponding actual
argument is defined with a value that is not a
statement label value. Note that there must be
agreement between the actual argument and the dummy
argument (15.9.3).

(9) Execution of an input/output statement containing an
input/output status specifier causes the specified
integer variable or array element to become defined.

(10) Execution of an INQUIRE statement causes any entity
that is assigned a value during the execution of the
statement to become defined if no error condition
exists.

(11) When a complex entity becomes defined, all
associated real entities become defined.

partial Iy

(12) When both parts of a complex entity become defined as
a result of partially associated real or complex

5

10

15

20

25

30

3 5

40

45

50

55

Full Language Page 17-3

ANSI X3.9-1978 FORTRAN 77 ASSOCIATION AND DEFINITION

5

10

1 5

20

25

17.3 Events That Cause Entities to Become Undefined

Variables and array elements become undefined as follows:

(1) All entities are undefined at the beginning of
execution of an executable program except those
entities initially defined by DATA statements.

(2) When an entity of a given type becomes defined, all
totally associated entities of different type become
undefined.

(3) Execution of an ASSIGN statement causes the variable
in the statement to become undefined as an integer.
Entities that are associated with the variable become
undefined.

30

35

40

45

50

55

(4) When the evaluation of a function causes an argument
of the function or an entity in common to become
defined and if a reference to the function appears in
an expression in which the value of the function is
not needed to determine the value of the expression,
then the argument or the entity in common becomes
undefined when the expression is evaluated (6.6.1).

(5) The execution of a
statement within a
within the subprogram
the f o 1 lowing ;

(a) Entities in blank common

(b) Initial 1y d e f i ned entities that have
redefined nor become undefined

(c) Entities spec i fied by SAVE statements

RETURN statement or an END
subprogram causes all entities
to become undefined except for

neit her been

Page 17-4s Subset Language

ASSOCIATION AND DEFINITION ANSI X3.9-1978 FORTRAN 77

entities becoming defined, the complex entity becomes
defined.

(13) When all characters of a character entity become
defined, the character entity becomes defined.

17.3 Events That Cause Entities to Become Undefined

Variables, array elements, and substrings become undefined
as follows:

(1) All entities are undefined at the beginning of
execution of an executable program except those
entities initially defined by DATA statements.

(2) When an entity of a given type becomes defined, all
totally associated entities of different type become
undefined.

(3) Execution of an ASSIGN statement causes the variable
in the statement to become undefined as an integer.
Entities that are associated with the variable become
undefined.

(4) When an entity of type other than character becomes
defined, ail partially associated entities become
undefined. However, when an entity of type real is
partially associated with an entity of type complex,
the complex entity does not become undefined when the
real entity becomes defined and the real entity does
not become undefined when the complex entity becomes
defined. When an entity of type complex is partially
associated with another entity of type complex,
definition of one entity does not cause the other to
become undefined.

(5) When the evaluation of a function causes an argument
of the function or an entity in common to become
defined and If a reference to the function appears in
an expression in which the value of the function is
not needed to determine the value of the expression,
then the argument or the entity in common becomes
undefined when the expression is evaluated (6.6.1).

(6) The execution of a RETURN statement or an END
statement within a subprogram causes all entities
within the subprogram to become undefined except for
the following:

(a) Entities in blank common

(b) Initially defined entities that have neither been
redefined nor become undefined

(c) Entities specified by SAVE statements

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 17-4

ANSI X3.9-1978 FORTRAN 77 ASSOCIATION AND DEFINITION

5

10

15

(d) Entities in a named common block that
the subprogram and appears in at least
program unit that is either di
indirectly referencing the subprogram

appear s in
one other
r ec tIy or

(6) When an end-of-file condition occurs during execution
of an input statement, all of the entities specified
by the input list of the statement become undefined.

(7) Execution of a direct access input statement that
specifies a record that has not been previously
written causes all of the entities specified by the
input list of the statement to become undefined.

20

25

(8) When an entity becomes undefined as a result of
conditions described in (4) through (7), all totally
associated entities become undefined.

30

35

40

45

50

55

Page 17-5 s Subset Language

ASSOCIATION AND DEFINITION ANSI X3.9-1978 FORTRAN 77

(d) Entities in a named common block that appears in
the subprogram and appears in at least one other
program unit that is either directly or
indirectly referencing the subprogram

(7) When an error condition or end-of-file condition
occurs during execution of an input statement, all of
the entities specified by the input list of the
statement become undefined.

(8) Execution of a direct access input statement that
specifies a record that has not been previously
written causes all of the entities specified by the
input list of the statement to become undefined.

(9) Execution of an INQUIRE statement may cause entities
to become undefined (12.10.3).

(10) When any character of a character entity becomes
undefined, the character entity becomes undefined.

(11) When an entity becomes undefined as a result of
conditions described in (5) through (10), all totally
associated entities become undefined and all
partially associated entities of type other than
character become undefined.

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page 17-5

5

1 0

1 5

20

25

30

35

40

45

50

55

X3.9-1 978 FORTRAN 77

18. SCOPE AND CLASSES OF SYMBOLIC NAMES

A symbolic name consists of one to six alphanumeric
characters, the first of which must be a letter. Some
sequences of characters, such as format edit descriptors and
keywords that uniquely identify certain statements, for
example, GO TO, READ, FORMAT, etc, are not symbolic names in
such occurrences nor do they form the first characters of
symbolic names in such occurrences.

18.1 Scope of Symbolic Names

The scope of a symbolic name is an executable program, a
program unit, or a statement function statement.

The name of the main program and the names
functions, subroutines, and common blocks have a
executable program.

of external
scope of an

The names of variables, arrays, statement functions,
intrinsic functions, and dummy procedures have a scope of a
program unit.

The names of variables that appear as dummy arguments in a
statement function statement have a scope of that statement.

18.1.1 G I oba I Entities,
subprograms, and external
an executable program,
global entity must not be
entity in the same executable

The main program, common blocks,
procedures are global entities of

A symbolic name that identifies a
used to identify any other global

program.

18.1.1.1 Classes of Global Entities. A symbolic name in
one of the following classes is a global entity in an

executab I e program :

(1) Common block

(2) External function

(3) Subroutine

(4) Main program

18.1.2 Local E
identifies that
program unit,

entities local
another class

n titie s . The symbolic name of a local entity
entity in a single program unit. Within a
a symbolic name that is in one class of

to the program unit must not also be in
of entities local to the program unit.

1 8-1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

18. SCOPE AND CLASSES OF SYMBOLIC NAMES

A symbolic name consists of one to six alphanumeric
characters, the first of which must be a letter. Some
sequences of characters, such as format edit descriptors and
keywords that uniquely identify certain statements, for
example, GO TO, READ, FORMAT, etc, are not symbolic names in
such occurrences nor do they form the first characters of
symbolic names in such occurrences.

18.1 Scope of Symbolic Names

The scope of a symbolic name is an executable program, a
program unit, a statement function statement, or an
implied-DO list in a DATA statement.

The name of the main program and the names of block data
subprograms, external functions, subroutines, and common
blocks have a scope of an executable program.

The names of variables, arrays, constants, statement
functions, intrinsic functions, and dummy procedures have a
scope of a program unit.

The names of variables that appear as dummy arguments in a
statement function statement have a scope of that statement.

The names of variables that appear as the DO-variable of an
implied-DO in a DATA statement have a scope of the implied-
DO list.

18.1.1 Global Entities. The main program, common blocks,
subprograms, and external procedures are global entities of
an executable program. A symbolic name that identifies a
global entity must not be used to identify any other global
entity in the same executable program.

18.1.1.1 Classes of Global Entities. A symbolic name in
one of the following classes is a global entity in an
executable program:

(1) Common block

(2) Externa I function

(3) Subroutine

(4) Main program

(5) Block data subprogram

18.1.2 Local Entities. The symbolic name of a local entity
identifies that entity in a single program unit. Within a
program unit, a symbolic name that is in one class of
entities local to the program unit must not also be in
another class of entities local to the program unit.

5

10

1 5

20

25

30

35

40

45

50

55

Fu I I Language Page 18-1

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 SCOPE AND CLASSES OF SYMBOLIC NAMES

However, a symbolic name that identifies a local entity may,
in a different program unit, identify an entity of any class
that is either local to that program unit or global to the
executable program. A symbolic name that identifies a
global entity in a program unit must not be used to identify
a local entity in that program unit, except for a common
block name and an external function name (18.2.1 and
18.2.2) .

18.1.2.1 Classes of Local Entities. A symbolic name in one
of the following classes is a local entity in a program
unit.

(1) Array

(2) Variable

(3) Statement function

(4) Intrinsic function

(5) Dummy procedure

A symbolic name that is a dummy argument of a procedure is
classified as a variable, array, or dummy procedure. The
specification and usage must not violate the respective
class rules.

18.2 Classes of Symbolic Names

In a program unit, a symbolic name must not be in more than
one class except as noted in the following paragraphs of
this section. There are no restrictions on the appearances
of the same symbolic name in different program units of an
executable program other than those noted in this section.

18.2.1 Common Block. A symbolic name is the name of a
common block if and only if it appears as a block name in a
COMMON statement (8.3).

A common block name is global to the executable program.

A common block name in a program unit may also be the name
of any local entity other than an intrinsic function or a
local variable that is also an external function in a
function subprogram. If a name is used for both a common
block and a local entity, the appearance of that name in any
context other than as a common block name in a COMMON or
SAVE statement identifies only the local entity. Note that
an intrinsic function name may be a common block name in a
program unit that does not reference the intrinsic function.

18 - 2 s Subset Language

SCOPE AND CLASSES OF SYMBOLIC NAMES ANSI X3.9-1978 FORTRAN 77

However, a symbolic name that identifies a local entity may,
in a different program unit, identify an entity of any class
that is either local to that program unit or global to the
executable program. A symbolic name that identifies a
global entity in a program unit must not be used to identify
a local entity in that program unit, except for a common
block name and an external function name (18.2.1 and
18.2.2).

18.1.2 .1 Classes of Loca 1 Ent i ties. A symbolic name in one
of the
unit.

f o1 lowing classes is a local entity in a program

(1) Array

(2) Variable

(3) Constant

(4) Statement f unc tion

(5) Intrinsic function

(6) Dummy procedure

A symbolic name that is a dummy argument of a procedure is
classified as a variable, array, or dummy procedure. The
specification and usage must not violate the respective
class rules.

18.2 Classes of Symbolic Names

In a program unit, a symbolic name must not be in more than
one class except as noted in the following paragraphs of
this section. There are no restrictions on the appearances
of the same symbolic name in different program units of an
executable program other than those noted in this section.

18.2.1 Common Block. A symbolic name is the name of a
common block if and only if it appears as a block name in a
COMMON statement (8.3).

A common block name is global to the executable program.

A common block name in a program unit may also be the name
of any local entity other than a constant, intrinsic
function, or a local variable that is also an external
function in a function subprogram. If a name is used for
both a common block and a local entity, the appearance of
that name in any context other than as a common block name
in a COMMON or SAVE statement identifies only the local
entity. Note that an intrinsic function name may be a
common block name in a program unit that does not reference
the intrinsic function.

5

10

15

20

25

30

35

40

45

50

55

FuI I Language Page 18-2

ANSI X3.9-1 978 FORTRAN 77 SCOPE AND CLASSES OF SYMBOLIC NAMES

5

18.2.2 External Function. A symbolic name is the name of
an external function if it meets either of the following

conditions:

(1) The name appears immediately following the word
FUNCTION in a FUNCTION statement.

1 0

1 5

20

(2) It is not an array name, character variable name,
statement function name, intrinsic function name,

dummy argument, or subroutine name, and every
appearance is immediately followed by a left
parenthesis except in a type-statement, in an
EXTERNAL statement, or as an actual argument.

In a function subprogram, the name of a function that
appears immediately after the word FUNCTION in a FUNCTION
statement must also be the name of a variable in that
subprogram (15.5.1).

25

30

An external function
program.

name is g 1 oba 1 t 0 the executab1e

18.2.3 Subroutine . A symbolic name i s the name of a
subroutine if it meets either of the following conditions:

(1) The name appears immediately following the word
SUBROUTINE in a SUBROUTINE statement.

35

40

45

(2) The name appears immediately following the word CALL

in a CALL statement and is not a dummy argument.

A subroutine name is global to the executable program.

18.2.4 Main Program. A symbolic name is the name of a main
program if and only if it appears in a PROGRAM statement in
the main program.

A main program name is global to the executable program.

18.2.5 Block Data Subprogram. Block data subprograms are
not included in the subset.

50

18.2.6 Array. A symbolic name is the name of an array if
it appears as the array name in an array declarator (5.1) in
a DIMENSION, COMMON, or type-statement.

55
An array name is local to a program unit.

Page 18-3 s Subset Language

SCOPE AND CLASSES OF SYMBOLIC NAMES ANSI X3.9-1 978 FORTRAN 77

18.2.2 External Function. A symbolic name is the name of
an external function if it meets either of the following

conditions :

(1) The name appears immediately following the word
FUNCTION in a FUNCTION statement or the word ENTRY in
an ENTRY statement within a function subprogram.

(2) It is not an array name, character variable name,
statement function name, intrinsic function name,
dummy argument, or subroutine name, and every
appearance is immediately followed by a left
parenthesis except in a type-statement , in an
EXTERNAL statement, or as an actual argument.

In a function subprogram, the name of a function that
appears immediately after the word FUNCTION in a FUNCTION
statement or immediately after the word ENTRY in an ENTRY
statement may also be the name of a variable in that
subprogram (15.5.1). At least one such function name must
be the name of a variable in a function subprogram.

An external function name is global to the executable
program.

18.2.3 Subroutine. A symbolic name is the name of a
subroutine if it meets either of the following conditions:

(1) The name appears immediately following the word
SUBROUTINE in a SUBROUTINE statement or the word
ENTRY in an ENTRY statement within a subroutine
subprogram.

(2) The name appears immediately following the word CALL
in a CALL statement and is not a dummy argument.

A subroutine name is global to the executable program.

18.2.4 Main Program. A symbolic name is the name of a main
program if and only if it appears in a PROGRAM statement in
the main program.

A main program name is global to the executable program.

18.2.5 Block Data Subprogram. A symbolic name is the name
of a block data subprogram if and only if it appears in a
BLOCK DATA statement.

A block data subprogram name is global to the executable
program.

18.2.6 Array. A symbolic name is the name of an array if
it appears as the array name in an array declarator (5.1) in
a DIMENSION, COMMON, or type-statement.

An array name is local to a program unit.

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page 18-3

ANSI X3.9-1978 FORTRAN 77 SCOPE AND CLASSES OF SYMBOLIC NAMES

5

10

1 5

20

An array name may be the same as a common block name.

18.2.7 Variable. A symbolic name is the name of a variable
if it meets all of the following conditions:

(1) It does not appear in an INTRINSIC or EXTERNAL
statement .

(2) It is not the name of an array, subroutine, or main
program.

(3) It appears other than as the name of a common block
or the name of an external function in a FUNCTION
statement .

(4) It is never immediately followed by a left
parenthesis unless it is immediately preceded by the
word FUNCTION in a FUNCTION statement.

25

30

A variable name in the dummy argument list of a statement
function statement is local to the statement function
statement in which it occurs. Note that the use of a name
that appears in Table 5 as a dummy argument of a statement
function removes it from the class of intrinsic functions.
All other variable names are local to a program unit.

A statement function dummy argument name may also be the
name of a variable or common block in the program unit. The

35 appearance of the name in any context other than as a dummy
argument of the statement function identifies the local
variable or common block. The statement function dummy

argument name and local variable name have the same type
and, if of type character, both have the same constant

40 length.

45

50
18.2.8 Constant . * Symbolic names of constants are not
included in the subset.

18.2.9 Statement Function. A symbolic name is the name of
55 a statement function if a statement function statement

Page 18 -4 s Subset Language

SCOPE AND CLASSES OF SYMBOLIC NAMES ANSI X3.9-1978 FORTRAN 77

An array name may be the same as a common block name.

18.2.7 Variable. A symbolic name is the name of a variable
if it meets all of the following conditions:

(1) It does not appear in a PARAMETER, INTRINSIC, or
EXTERNAL statement.

(2) It is not the name of an array, subroutine, main
program, or block data subprogram.

(3) It appears other than as the name of a common block,
the name of an external function in a FUNCTION
statement, or an entry name in an ENTRY statement in
an external function.

(4) It is never immediately followed by a left
parenthesis unless it is immediately preceded by the
word FUNCTION in a FUNCTION statement, is immediately
preceded by the word ENTRY in an ENTRY statement, or
is at the beginning of a character substring name
(5.7.1).

A variable name in the dummy argument list of a statement
function statement is local to the statement function
statement in which it occurs. Note that the use of a name
that appears in Table 5 as a dummy argument of a statement
function removes it from the class of intrinsic functions.
A variable name that appears as an impIied~D0-variab I e in a
DATA statement is local to the implied-DO list. All other
variable names are local to a program unit,

A statement function dummy argument name may also be the
name of a variable or common block in the program unit. The
appearance of the name in any context other than as a dummy
argument of the statement function identifies the local
variable or common block. The statement function dummy
argument name and local variable name have the same type
and, if of type character, both have the same constant
length.

The name of an impIied-DO-variab I e in a DATA statement may
also be the name of a variable or common block in the
program unit. The appearance of the name in any context
other than as an impIied-DO-variab I e in the DATA statement
identifies the local variable or common block. The implied-
DO-variable and the local variable have the same type.

18.2.8 Constant. A symbolic name is the name of a constant
if it appears as a symbolic name in a PARAMETER statement.

The symbolic name of a constant is local to a program unit.

18.2.9 Statement Function. A symbolic name is the name of
a statement function if a statement function statement

5

10

15

20

25

30

35

40

45

50

55

Full Language Page 18-4

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1 978 FORTRAN 77 SCOPE AND CLASSES OF SYMBOLIC NAMES

(15.4) is present for that symbolic name and it is not an
array name.

A statement function name is local to a program unit. A
statement function name may be the same as a common block
name .

18.2.10 Intrinsic Function. A symbolic name is the name of
an intrinsic function if it meets all of the following
conditions :

(1) The name appears in the Specific Name column of Table
5 and In the list of subset intrinsic functions in
Note 11 of Table 5.

(2) It is not an array name, statement function name,
subroutine name, or dummy argument name.

(3) Every appearance of the symbolic name, except in an
INTRINSIC statement, a type-statement, or as an
actual argument, is Immediately followed by an actual
argument list enclosed in parentheses.

An intrinsic function name Is local to a program unit.

18.2.11 Dummy Procedure. A symbolic name is the name of a
dummy procedure if the name appears in the dummy argument
list of a FUNCTION or SUBROUTINE statement and meets one or
more of the following conditions:

(1) It appears in an EXTERNAL statement.

(2) It appears immediately following the word CALL in a
CALL statement.

(3) It is not an array name or character variable name,
and every appearance is immediately followed by a
left parenthesis except in a type-statement , in an
EXTERNAL statement, In a CALL statement, as a dummy
argument, as an actual argument, or as a common block
name in a COMMON or SAVE statement.

A dummy

A dummy

procedure

procedure

name 1 s

must not

ocal to a program unit,

be of type character.

1 8-5 s Subset Language

SCOPE AND CLASSES OF SYMBOLIC NAMES ANSI X3.9-1978 FORTRAN 77

(15.4) is present for that symbolic name and it is not an
array name.

A statement function name is local to a program unit. A
statement function name may be the same as a common block
name .

18.2.10 Intrinsic Function. A symbolic name is the name of
an intrinsic function if it meets all of the following
condi t i ons :

(1) The name appears in the Specific Name column or the
Generic Name column of Table 5.

(2) It is not an array name, statement function name,
subroutine name, or dummy argument name.

(3) Every appearance of the symbolic name, except in an
INTRINSIC statement, a type-statement, or as an
actual argument, is immediately followed by an actual
argument list enclosed In parentheses.

An intrinsic function name is local to a program unit.

18.2.11 Dummy Procedure. A symbolic name is the name of a
dummy procedure if the name appears in the dummy argument
list of a FUNCTION, SUBROUTINE, or ENTRY statement and meets
one or more of the following conditions:

(1) It appears in an EXTERNAL statement.

(2) It appears immediately following the word CALL in a
CALL statement.

(3) It is not an array name or character variable name,

and every appearance is immediately followed by a
left parenthesis except in a type - statement, in an
EXTERNAL statement, in a CALL statement, as a dummy
argument, as an actual argument, or as a common block
name in a COMMON or SAVE statement.

A dummy procedure name is local to a program unit.

5

10

1 5

20

25

30

35

40

4 5

50

55

Full Language Page 18-5

APPENDIXES

(These Appendixes are not part of American National Standard
Programming Language FORTRAN, ANSI X3.9-1978, but are
included for information purposes only.)

ANSI X3.9-1978 FORTRAN 77

APPENDIX A: CRITERIA, CONFLICTS, AND PORTABILITY

A1 Criteria

The principal criteria used in developing this FORTRAN
standard were:

(1) Interchangeability of FORTRAN programs between
processors

(2) Compatibility with ANSI X3.9-1 966, allied standards,
and existing practices

(3) Consistency and simplicity to user

(4) Suitability for efficient processor operation for a
wide range of computing equipment of varying
structure and power

(5) Allowance for future growth in the language

(6) Achievement of capabilities not currently available,
but needed for processes appropriately expressed in
FORTRAN

(7) Acceptability by a significant portion of users

(8) Improved ability to use FORTRAN programs and data in
conjunction with other languages and environments

A2 ConfIicts wi th ANSI X3.9-1966

An extremely important consideration in the preparation of
this standard was the minimization of conflicts with the
previous standard, ANSI X3.9-1966. This standard includes
changes that create conflicts with ANSI X3.9-1966 only when
such changes were necessary to correct an error in the
previous standard or to add to the power of the FORTRAN
language in a significant manner. The following is a list
of known conf I icts :

(1) A line that contains only blank characters in columns
1 through 72 is a comment line. ANSI X3.9-1966
allowed such a line to be the initial line of a
statement.

(2) Columns 1 through 5 of a continuation line must
contain blanks. A published interpretation of ANSI
X 3.9-1966 specified that columns 1-5 of a
continuation line may contain any character from the
FORTRAN character set except that column 1 must not
contain a C.

(3) Hollerith constants and Hollerith data are not
permitted in this standard. ANSI X3.9-1966 permitted
the use of Hollerith constants in DATA and CALL

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page A-1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 APPENDIX A: CRITERIA, CONFLICTS

statements, the use of noncharacter list items in
formatted input/output statements with A edit
descriptors, and the referencing of noncharacter
arrays as formats. Note that the H edit (field)
descriptor is permitted; it is not a Hollerith
constant.

(4) The value of each comma-separated subscript
expression in a subscript must not exceed its
corresponding upper bound declared for the array name
in the program unit. In the example:

DIMENSION A(10,5)
Y=A(11 , 1)

The reference to A(11,1) is not permitted for the
array A(10,5). ANSI X3.9-1966 permitted a subscript
expression to exceed its corresponding upper bound if
the maximum subscript value for the array was not
exceeded.

(5) Only an array that is declared as a one-dimensional
array in the program unit may have a one-dimensionaI
subscript in an EQUIVALENCE statement. In the
example:

DIMENSION B(2,3,4) , C(4,8)
EQUIVALENCE (B(23), C(1,D)

B(2 3) is not permitted. ANSI X3.9-1 966 permitted
arrays that were declared as two- or three-
dimensional arrays to appear in an EQUIVALENCE
statement with a one-dimensional subscript.

(6) A name must not have its type explicitly specified
more than once in a program unit. ANSI X3.9-1966 did
not explicitly have such a prohibition.

(7) This standard does not permit a transfer of control
into the range of a DO-loop from outside the range.
The range of a DO-loop may be entered only by the
execution of a DO statement. ANSI X3.9-1966
permitted transfer of control into the range of a DO-
loop under certain conditions. This involved the
concept referred to as "extended range of a DO."

(8) A labeled END statement could conflict with the
initial line of a statement in an ANSI X3.9-1966
standard-conforming program.

(9) A record must not be written after an endfile record
in a sequential file. ANSI X3.9-1 966 did not
prohibit this, but provided no interpretation for the
reading of an endfile record.

A-2 Full Language

APPENDIX A: CRITERIA. CONFLICTS ANSI X3.9-1978 FORTRAN 77

(10) A sequential file may not contain both formatted and
unformatted records. A published interpretation of
ANSI X3.9-1966 specified that this was permitted.

(11) Negative values for input/output unit identifiers are
prohibited in this standard. ANSI X3.9-1966 did not
explicitly
identifiers

prohibit them for variable unit

(12) A simple I/O list enclosed i n parentheses i s
prohibited from appearing in an I/O list.

This requires that parentheses enclosing more than
one I/O list item must mark an implied DO-loop. The
restriction was imposed to eliminate potential
syntactic ambiguities introduced by complex constants
in list-directed output lists. As all the
parentheses referred to are redundant, a program can
be made conforming with this standard by deleting
redundant parentheses enclosing more than one list
item in an I/O list.

(13) The definition of an entity associated with an entity
in an input list occurs at the same time as the
definition of the list entity. ANSI X3.9-1966
delayed the definition of such an associated entity
until the end of execution of the input statement.

(14) Reading into an H edit (field) descriptor in a FORMAT
statement is prohibited in this standard.

(15) The range of a scale factor for E, D,
fields is restricted to reasonable
X3.9-1966 had no such restriction,
provide a clear interpretation of the
unreasonable values.

and G output
values. ANSI
but did not

meaning of the

(16) A processor must not produce
containing a negative zero,
this if the internal value
precision datum was negative

a numeric output field
ANSI X3.9-1966 required
o f

(17) On output, the I edit descriptor
unnecessary leading zeros.

real or double

must not produce

(18)

(19)

On output, the F edit
unnecessary Ieading
leading zero for a va

descriptor must not produce
zeros, other than the optional
ue less than one.

Following the E or D in an E or D output
or - is required immediately prior to
field. This improves compatibility
National Standard for the Representation of Numeri
Values in Character Strings for Informatio
Interchange, ANSI X3.42-1975.

field, a
the exponen

with America!

ANSI X3.9-196i

5

10

15

20

25

30

35

40

45

50

55

Full Language Page A-3

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 APPENDIX A: CRITERIA, CONFLICTS

permitted a blank as a replacement for + in the
exponent sign.

(20) An intrinsic function name that is used as an actual
argument must appear in an INTRINSIC statement rather
than an EXTERNAL statement. Note that the intrinsic
function class includes the basic external function
class of ANSI X3.9-1966.

(21) The appearance of an intrinsic function name in a
type-statement that conflicts with the type specified
in Table 5 is not sufficient to remove the name from
the intrinsic function class. In ANSI X3.9-1 966,
this condition was sufficient to remove the name from
the intrinsic function class.

(22) More intrinsic function names have been added and
could conflict with the names of subprograms. These
names are AC0S, ANINT, ASIN, CHAR, COSH, DACOS,
DAS I N , D COSH, DDIM, DINT, DNINT, DPR0D , DSINH, DTAN ,
DTANH, ICHAR, IDNINT, INDEX, LEN, LGE, LGT, LLE, LLT,
LOG, L0G10, MAX, MIN, NINT, SINH, and TAN.

(23) The units of the arguments and results of the
intrinsic functions (and basic external functions)
were not specified in ANSI X3.9-1 966 and are
specified in this standard. The range of the
arguments and results has also been specified. These
specifications may be different from those used on
some processors conforming to ANSI X3.9-1966.

(24) An executable program must not contain more than one
unnamed block data subprogram. ANSI X3.9-1 966 did
not have this prohibition and could be interpreted to
permit more than one.

A3 Standard Items That Inhibit Portability

Although the primary purpose of this standard is to promote
portability of FORTRAN programs, there are some items in it
that tend to inhibit portability.

(1) Procedures written in languages other than FORTRAN
may not be portable.

(2) Because the collating sequence has not been
completely specified, character relational
expressions do not necessarily have the same value on
all processors. However, the intrinsic functions
LGE, LGT, LLE, and LLT can be used to provide a more
portable comparison of character entities.

(3) Character data, H edit descriptors, apostrophe edit
descriptors, and comment lines may include characters
that are acceptable to one processor but unacceptable
to another processor.

A-4 Full Language

APPENDIX A: CRITERIA, CONFLICTS ANSI X3.9-1978 FORTRAN 77

(4) No explicit requirements are specified for file
names. A file name that is acceptable to one
processor may be unacceptable to another processor.

(5) Input/output unit numbers and unit capabilities may
vary among processors.

A4 Recommendation for Enhancing Portability

To enhance the development of portable FORTRAN programs, a
producer should provide some means of identifying
nonstandard syntax supported by his processor. Alternatives
for doing this include appropriate documentation, features
of the processor, and other means.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page A~5

ANSI X3.9-1978 FORTRAN 77

APPENDIX B: SECTION NOTES

B1 Section 1 Notes

What this standard calls a "processor" is any mechanism that
can carry out the actions of a program. Commonly, this may
be any of these:

(1) The combined actions of a computer (hardware), its
operating system, a compiler, and a loader

(2) An interpreter

(3) The mind of a human, perhaps with the help of paper
and pencil

When you read this standard, it is important to keep its
point of view in mind. The standard is written from the
point of view of a programmer using the language, and not
from the point of view of the implementation of a processor.
This point of view affects the way you should interpret the
standard. For example, in 3.3 the assertion is made:

"... a statement must contain no more than 1320
characters."

This means that if a programmer writes a longer statement,
his program is not standard conforming. Therefore, it will
get different treatment on different processors. Some
processors will accept the program, and some will not. Some
may even seemingly accept the program but process it
incorrectly. The assertion means that all standard-
conforming processors must accept statements up to 1320
characters long. That is the only inference about a
standard-conforming processor that can be made from the
assertion.

The assertion does not mean that a standard-conforming
processor is prohibited from accepting longer statements.
Accepting longer statements would be an extension.

The assertion does not mean that a standard-conforming
processor must diagnose statements longer than 1320
characters, although it may do so.

In general, a standard-conforming processor is one that
accepts all standard-conforming programs and processes them
according to the rules of this standard. Thus, the
specification of a standard-conforming processor must be
inferred from this document.

In some places, explicit prohibitions or restrictions are
stated, such as the above statement-I ength restriction.
Such assertions restrict what programmers can write in
standard-conforming programs and have no more weight in the
standard than an omitted feature. For example, there is no

5

10

15

20

25

30

35

A0

45

50

55

Full Language Page B-1

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 APPENDIX B: SECTION NOTES

mention anywhere in the standard of double precision
integers. Because it is omitted, programmers must not use
this feature in standard-conforming programs. A standard-
conforming processor may or may not provide it or diagnose
its use. Thus, an explicit prohibition (such as statements
longer than 1320 characters) and an omission (such as double
precision integers) are equivalent in this standard.

B2 Section 2 Notes

Some of the terminology used in this document is different
from that used to describe other programming languages. The
following indicates terms from other languages that are
approximately equvialent to some FORTRAN terms.

FORTRAN

Variable
Array Element
Subscript Expression
Subscript
Dummy Argument

Actual Argument

Other Languages

Simple Variable
Subscripted Variable
Subscript
(none)
Formal Argument, Formal

Parameter
Actual Parameter

In particular, the FORTRAN terms "subscript" and "subscript
expression" should be studied carefully by readers who are
unfamiliar with this standard (5.4).

The term "symbolic name" is frequently shortened to "name"
throughout the standard.

B3 Section 3 Notes

A partial collating sequence is specified. If possible, a
processor should use the American National Standard Code for
Information Interchange, ANSI X3.4-1977 (ASCII), sequence
for the complete FORTRAN character set.

When a continuation line r o I lows a comment line, the
continuation line is part of the current statement; it is
not a continuation of the comment line. A comment line is
not part of a statement.

The standard does not restrict the number of consecutive
comment lines. The limit of 19 continuation lines pe rrffTt ted
for a statement should not be construed as being a
limitation on the number of consecutive comment lines.

There are 99999 unique statement labels and a processor must
accept 99999 as a statement label. Flowever, a processor may
have an implementation limit on the total number of unique
statement labels in one program unit (3.4).

B-2 Full Language

APPENDIX B: SECTION NOTES ANSI X3.9- 1 978 FORTRAN 77

Blanks and leading
distinguishing between
1 Z3 , and 0 1 Z3 are all

zeros are not significant in
statement labels. For example, 1Z 3 ,
forms of the same statement label.

B4 Section 4 Notes 5

A processor must not consider a negative zero to be
different from a positive zero.

ANSI X3.9-1966 used the term "constant" to mean an unsigned
constant. This standard uses the term "constant to have
its more normal meaning of an optionally signed constant
when describing arithmetic constants. The term "unsigned
constant" is used wherever a leading sign is not permitted
on an arithmetic constant.

A character constant is a representation of a character
value. The delimiting apostrophes are part of the
representation but not part of the value; double apostrophes
are used to represent a single embedded apostrophe. For
example:

1 0

1 5

ZO

Character Character
Constant Value

' CAT' CAT
'ISN' ’T * ISN'T

' '' I SN 1 ' ' 1T' 1 ' 'ISN'1T'

Note that the value of the character constant ' ' 1 ISN' 1 ' 1 T1 1 1
is a representation of another character constant.

Some programs that used an extension to ANSI X3.9-1966 that 35
permitted a Hollerith constant delimited by apostrophes
instead of the nH form do not conform to this standard.

B5 Sect ion 5 Notes

For the array declarator A(Z,3), the use of the array name A
in the proper context, such as in an input/output list,
specifies the following order for the array elements:
A(1 , 1) , A(Z , 1) , A(1 , Z) , A(Z , Z) , A(1,3), A(Z,3).

B6 Section 6 Notes

40

45

If Visa variable name, the interpretation and value of V,
+V, and (V) are the same. However, the three forms may not
always be used interchangeably. For example, the forms + V 50
and (V) may not be used as list items of a READ statement or
as actual arguments of a procedure reference if the
procedure defines the corresponding dummy argument.

55

Full Language Page B-3

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 APPENDIX B: SECTION NOTES

B7 Section 7 Notes

Although DIMENSION statements, type-statements , and
statement function statements are classified as
nonexecutable statements, they may contain references that
are executed. Expressions containing variables in DIMENSION
statements and type-statements may be evaluated whenever a
reference to the program unit is executed. The expression
in a statement function statement is evaluated whenever a
function reference to the statement function is executed.

B8 Section 8 Notes

If a processor allows a one-dimensional subscript for a
multidimensional array in an EQUIVALENCE statement, the
interpretation should be as though the subscript expression
were the leftmost one and the missing subscript expressions
each have their respective lower dimension bound value.

ANSI X3.9-1966 permitted two- and three-dimensional arrays
to have a one-dimensional subscript in an EQUIVALENCE
statement. The following table can be used to convert a
one-dimensional subscript to the corresponding
multidimensional subscript:

n Dimension Subscript
Value

Subscript

1 (d,) s (s)

2 (d, ,d2) s (1 +M0D(s-1,d,),
1 + (s-1)/d,)

3 (d , , d2 , d3) s (1 +M0D(s-1,d,),
1+M0D((s- 1)/d, , d2) ,
1 + (s-1)/(d , *d2))

Each expression in the last column of the table is evaluated
according to the rules for integer expressions.

A processor that allows additional intrinsic functions
should allow their names to appear in an INTRINSIC
statement.

As an extension to ANSI X3.9-1966, many processors permitted
the retention of certain values at the completion of
execution of a subprogram, such as local variables and
arrays, initially defined data that had been changed, and
named common blocks not specified in the main program,
whereas other processors prohibited the retention of such
values. In ANSI X3.9-1966 such entities were undefined at
the completion of execution of the subprogram, and therefore
a standard-conforming program could not retain these values.
The SAVE statement provides a facility for data retention.

B-4 Full Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

B9 Section 9 Notes

An entity is "initially defined"
An assignment statement may define
it does not "initially define" the

Initially defined entities
undefined at the execution
they are assigned any value,
during the execution of the
15.8.4) .

B1 0 Sect ion 10 Notes

only by a DATA statement,
or redefine an entity but
entity. 5

in a subprogram may become
of a RETURN or END statement if
including their initial value,
executable program (see 8.9 and 10

All four types of implied arithmetic conversion are 15
permitted in an arithmetic assignment statement.

B11 Section 11 Notes

A logical IF statement must not contain another logical IF
statement or a block IF statement; however, it may contain
an arithmetic IF statement. The following is allowed:

IF (logical expr.) IF (arithmetic expr.) s., , s.2 ,_s3

required to evaluate the iteration count
the same effect is achieved without

low redefinition
after the equals
of the DO-Ioop
the DO- loop is

which the D0-

A processor is not
in a DO-loop if
evaluation. However, the processor must a
of variables and array elements that appear
in a DO statement during the execution
without affecting the number of times
executed and without affecting the value by
variable is incremented.

If J1 > J2, ANSI X3.9-1 966 does not allow execution of the
following DO statement:

DO 100 J = J1 , JZ

Some processors that allowed such a case executed the range
of the DO-loop once, whereas other processors did not
execute the range of the DO-loop. This standard allows such
a case and requires that the processor execute the range of
the DO-loop zero times. The following change to the DO
statement will require that the processor execute the range
at least once:

20

25

30

35

40

45

DO 100 J-J1,MAX(J1,J2)

References to function procedures and subroutine procedures 50
may appear within the range of a DO-loop or within an IF-
block, ELSE IF-block, or ELSE-block. Execution of a
function reference or a CALL statement is not considered a
transfer of control in the program unit that contains the
reference, except when control is returned to a statement 55
identified by an alternate return specifier in a CALL

Full Language Page B-5

5

10

1 5

20

25

30

35

40

45

50

55

X3.9- 1 978 FORTRAN 77 APPENDIX B: SECTION NOTES

statement. Execution of a RETURN or END statement in a
referenced procedure, or execution of a transfer of control
within a referenced procedure, is not considered a transfer
of control in the program unit that contains the reference.

The CONTINUE statement is an executable statement that has
no effect of itself. It can serve as an executable
statement on which to place a statement label when no effect
of execution is desired. For example, it can serve as the
statement referred to by a GO TO statement or as the
terminal statement of a DO-loop. Although the CONTINUE
statement has no effect of itself, it causes execution to
continue with incrementation processing when it is the
terminal statement of a D0-loop.

The standard does not define the term "accessible'' in the
STOP or PAUSE statement in order to allow a wide latitude in
adapting to a processor environment. Some processors may
use the n. in the PAUSE or STOP statement for documentation
only. Other processors may display the n. to the user or to
the operator. In order not to confine its use, the meaning
of "accessible' is purposely left vague.

B1 2 Section 12 Notes

What is called a "record' in FORTRAN is commonly called a
"logical record.'' There is no concept in FORTRAN of a
"physical record."

An endfile record does not necessarily have
embodiment. The processor may use a record
means to register the position of the file at
ENDFILE statement is executed, so that
appropriate action when that position is
during a read operation. The endfile record
implemented, is considered to exist for
statement .

any physical
count or other
the time an
it can take

again reached
however it is

the BACKSPACE

An internal file permits data to be transferred with
conversion between internal storage areas using the 'READ and
WRITE statements. This facility was implemented as an
extension to ANSI X3.9-1 966 on many processors as ENCODE and
DECODE statements. Specifying the READ and WRITE statements
to perform this process avoids such confusion as: "Is
ENCODE like READ or is it like WRITE?"

This standard accommodates, but it does not require, file
cataloging. To do this, several concepts are introduced.

In ANSI X3.9-1966 many properties were given to a unit that
in this standard are given to the connection of a file to a
unit. Also, additional properties are introduced.

Before any input/output can be performed on a file, it must
be connected to a unit. The unit then serves as a
designator for that file as long as it is connected. To be

B-6 Full Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

connected does not imply that buffers'' have or have not
been allocated, that "file-control tables'' have or have not
been filled out, or that any other method of implementation
has been used. Connection means that (barring some other
fault) a READ or WRITE statement can be executed on the
unit, hence on the file. Without a connection, a READ or
WRITE statement cannot be executed.

Totally independent of the connection state is the property
of existence, this being a file property. The processor
"knows'' of a set of files that exist at a given time for a
given executable program. This set would include tapes
ready to read, files in a catalog, a keyboard, a printer,
etc. The set may exclude files inaccessible to the
executable program because of security, because they are
already in use by another executable program, etc. This
standard does not specify which files exist, hence wide
latitude is available to a processer to implement security,
locks, privilege techniques, etc. Existence is a convenient
concept to designate all of the files that an executable
program can potentially process.

All four combinations of connection and existence may occur:

Connect Exist Examples

Yes Yes A card reader loaded and
ready to be read

Yes N o A printer before the first
line is written

N o Yes A file named 'JOE' in
the catalog

N o N o A reel of tape destroyed
in the fire last week

Means are provided t 0 create, de

Q
J

C
D

 connect i and
di sconnect f i 1 e s .

A file may have a name. The form of a file name i s not
specified . If a system does not have some form o f
cataloging or tape label i ng for at least some of its f i 1 e s ,
all file names will disappear at the terminati on o f
execution. This is a va 1 i d implementat ion. Nowhere does
this standard require names to survi ve for any per i od o f
time longer than the execution time span of an executable
program. Therefore, this standard does not impose
cataloging as a prerequisite. The naming feature is
intended to allow use of a cataloging system where one
exists.

5

1 0

1 5

20

25

30

35

40

4 5

50

55

FulI Language Page B-7

ANSI X3.9-1978 FORTRAN 77 APPENDIX B: SECTION NOTES

A file may become connected to a unit in either of two ways:
preconnection or execution of an OPEN statement.
Preconnection is performed prior to the beginning of
execution of an executable program by means external to

5 FORTRAN. For example, it may be done by job control action
or by processor established defaults. Execution of an OPEN
statement is not required to access preconnected files.

The OPEN statement provides a means to access existing files
10 that are not preconnected . An OPEN statement may be used in

either of two ways: with a file name (open by name) and
without a file name (open by unit). A unit is given in
either case. Open by name connects the specified file to
the specified unit. Open by unit connects a processor-

15 determined default file to the specified unit. (The default
file may or may not have a name.)

Therefore, there are three ways a file may become connected
and hence processed: preconnection, open by name, and open

20 by unit. Once a file is connected, there is no means in
standard FORTRAN to determine how it became connected.

In subset FORTRAN, sequential access may be performed only
on preconnected files, and direct access only on files that

25 are opened by unit.

An OPEN statement may also be used to create a new file. In
fact, any of the foregoing three connection methods may be
performed on a file that does not exist. When a unit is

30 preconnected, writing the first record creates the file.
With the other two methods, execution of the OPEN statement
creates the file.

When a unit becomes connected to a file, either by execution
35 of an OPEN statement or by preconnection, the following

connection properties may be established:

(1) An access method, which is sequential or direct, is
established for the connection.

(2) A form, which is formatted or unformatted, is
established for a connection to a file that exists or
is created by the connection. For a connection that
results from execution of an OPEN statement, a
default form (which depends on the access method, as
described in 12.10.1) is established if no form is
specified. For a preconnected file that exists, a
form is established by preconnection. For a
preconnected file that does not exist, a form may be
established, or the establishment of a form may be
delayed until the file is created (for example, by
execution of a formatted or unformatted WRITE
statement).

55 (3) A record length may be established. If the access
method is direct, the connection establishes a record

40

45

50

Page B'-8 Full Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

length, which specifies the length of each record of
the file. A connection for sequential access does
not have this property.

(4) A blank significance property, which is ZERO or NULL,
is established for a connection for which the form is
formatted. This property has no effect on output.
For a connection that results from execution of an
OPEN statement, the blank significance property is
NULL by default if no blank significance property is
specified. For a preconnected file, the property is
established by preconnection.

The blank significance property of the connection is
effective at the beginning of each formatted input
statement. During execution of the statement, any BN
or BZ edit descriptors encountered may temporarily
change the effect of embedded and trailing blanks.

A processor has wide latitude in adapting these concepts and

actions to its own cataloging and job control conventions.
Some processors may require job control action to specify

the set of files that exist or that will be created by an
executable program. Some processors may require no job
control action prior to execution. This standard enables
processors to perform a dynamic open, close, and file

creation, but it does not require such capabilities of the
processor.

The meaning of open” in contexts other than FORTRAN may

include such things as mounting a tape, console messages,
spooling, label checking, security checking, etc. These
actions may occur upon job control action external to
FORTRAN, upon execution of an OPEN statement, or upon
execution of the first read or write of the file. The OPEN
statement describes properties of the connection to the file
and may or may not cause physical activities to take place.
It is a place for an implementation to define properties of
a file beyond those required in standard FORTRAN.

Similarly, the actions of dismounting a tape, protection,
etc. of a close'' may be implicit at the end of a run. The
CLOSE statement may or may not cause such actions to occur.
This is another place to extend file properties beyond those
of standard FORTRAN. Note, however, that the execution of a
CLOSE statement on unit 10 followed by an OPEN statement on
the same unit to the same file or to a different file is a
permissible sequence of events. The processor may not deny
this sequence solely because the implementation chooses to
do the physical act of closing the file at the termination
of execution of the program.

This standard does not address problems of security,
protection, locking, and many other concepts that may be

part of the concept of "right of access. " Such concepts are
considered to be in the province of an operating system.

5

10

15

Z0

25

30

35

40

45

50

55

Full Language Page B-9

5

10

15

20

25

30

35

40

45

50

55

X3.9-1 978 FORTRAN 77 APPENDIX B: SECTION NOTES

The OPEN and INQUIRE statements can be extended naturally to
consider these things.

Possible access methods for a file are: sequential and
direct. The processor may implement two different types of
files, each with its own access method. It may also
implement one type of file with two different access
methods .

Direct access to files is of a simple and commonly available
type, that is, fixed-length records. The key is a positive
in t eg e r .

Keyword forms of specifiers are used because there are many
specifiers and a positional notation is difficult to
remember. The keyword form sets a style for processor
extensions. The UNIT= and FMT= keywords are offered for
completeness, but their use is optional. Thus,
compatibility with ANSI X3.9-1966 is achieved.

Format specifications may be included in READ and WRITE
statements, as in:

READ (UN I T=10 , FMT='(I 3,A4,F10.2) ') K,ALPH,X

ANSI X3.9-1966 allowed a standard-conforming program to
write an endfile record but did not allow the reading of an
end file record. In this standard, the END= specifier allows
end-of-file detection and continuation of execution of the
program.

List-directed input/output allows data editing according to
the type of the list item instead of by a format specifier.
It also allows data to be free-field, that is, separated by
commas or blanks.

List-directed input/output is record oriented to or from a
formatted sequential file. Each read or write begins with a
new record. The form of Iisr-directed data on a sequential
output file is not necessarily suitable for I ist-directed
input. However, there are no mandatory errors specified for
reading I ist—directed data previously written. The results
may not be guaranteed because of the syntax using
apostrophes for character data or the £*c. form of a repeated
constant. All other applications should work, and
attempting to read previously written list-directed output
is not prohibited in a standard-conforming program.

If no list items are specified in a I ist-directed
input/output statement, one input record is skipped or one
empty output record is written.

An example of a restriction on input/output statements
(12.12) is that an input statement may not specify that data

are to be read from a printer.

B — 1 0 Full Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

B13 Sect ion 13 Notes

The term "edit descriptor" in this standard was "field
descriptor" in ANSI X3.9-1966.

If a character constant is used as a format identifier in an

input/output statement, care must be taken that the value of
the character constant is a valid format specification. In
particular, if the format specification contains an
apostrophe edit descriptor, two apostrophes must be written
to delimit the apostrophe edit descriptor and four
apostrophes must be written for each apostrophe that occurs
within the apostrophe edit descriptor. For example, the

text:

2 ISN'T 3

may be written by various combinations of output statements
and format specifications:

WR ITE(6,10 0) 2,3
100 FORMAT(IX,11,1X,'ISN''T',1X,11)

WR I TE (6 , ' (IX, II ,1X, ' ' I SN ' ' ' ' T ' ' ,1X, ID ') 2,3

WR I TE(6,2 0 0) 2,3
200 FORMAT(IX,I1,1X,5HISN'T,1X,I1)

WRITE(6,'(IX,11,IX,5HISN' 'T,IX,11)') 2,3

WRITE(6,'(A)') ' 2 ISN''T 3'

WRITE(6,'(1X,11,A.11)') 2, ' ISN1 1T ' , 3

Note that two consecutive apostrophes in an H edit
descriptor within a character constant are counted as only
one Hollerith character.

The T edit descriptor includes the carriage control
character in lines that are to be printed. T1 specifies the
carriage control character, and T2 specifies the first
character that is printed.

The length of a record is not always specified exactly and
may be processor dependent.

The number of records read by a formatted input statement
can be determined from the following rule: A record is read
at the beginning of the format scan (even if the input list
is empty), at each slash edit descriptor encountered in the
format, and when a format rescan occurs at the end of the
format.

The number of records written by a formatted output
statement can be determined from the following rule: A
record is written when a slash edit descriptor is

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page B- 1 1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 APPENDIX B: SECTION NOTES

encountered in the format, when a format rescan occurs at
the end of the format, and at completion of execution of the
output statement (even if the output list is empty). Thus,
the occurrence of n. successive slashes between two other
edit descriptors causes n. - 1 blank lines if the records are
printed. The occurrence of n. slashes at the beginning or
end of a complete format specification causes n. blank lines
if the records are printed. However, a complete format
specification containing n. slashes (n. > 0) and no other edit

descriptors causes n. + 1 blank lines if the records are
printed. For example, the statements

PRINT 3
3 FORMAT(/)

will write two records that cause two blank lines if the
records are printed.

The following examples illustrate Iist-directed input. A
blank character is represented by b..

Example 1 :

Program: J = 3
READ *.I
READ *,J

Sequentia 1 input file:

record 1: b1b.4bbbbb
record 2: .2bbbbbbbb

Result: 1=1, J=3

Explanation: The second READ statement reads the second

record. The initial comma in the record designates a null
value; therefore, J is not redefined.

Example 2 :

Program: CHARACTER A*8, B*1
READ *, A, B

Sequentia I

record
record

Result: A=

input file:

1: 1bbbbbbbb1

2: 'QXY'b'Z'

bbbbbbbb 1 . B = * Q *

Explanation: The end of a record cannot occur between two
apostrophes representing an embedded apostrophe in a
character constant; therefore, A is set to the character
constant 'bbbbbbbb' . The end of a record acts as a blank,
which in this case is a value separator because it occurs
between two constants.

B-1 2 Full Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

B1 A Sect ion 14 Notes

The name of a main program has no explicit use within the
FORTRAN language. It is available for documentation and for
possible use within a computer environment.

B1 5 Section 15 Notes

A FUNCTION
function,

specifies
SUBROUTINE
each ENTRY
additional

statement specifies the name of an external
and each ENTRY statement in a function subprogram
an additional external function name. A
statement specifies the name of a subroutine, and
statement in a subroutine subprogram specifies an
subroutine name.

The intrinsic function names IFIX, IDINT, FLOAT, and SNGL
have been retained to support programs that conform to ANSI
X3.9-1966. However, future use of these intrinsic function

names is not recommended.

For the specific functions that define the maximum and
minimum values with a function type different from the
argument type (AMAXO, MAXI, AMINO, and MINI), it is
recommended that an expression containing the generic name
preceded by a type conversion function be used, for example,
REAL (MAX (ai, , a.2 , ...)) for AMAXOCa.,, a. 2 , ...), so that these
specific function names may be deleted in a future revision
of this standard.

5

10

1 5

20

25

This standard provides that a standard-conforming processor 30
may supply intrinsic functions in addition to those defined
in Table 5 (15.10). Because of this, care must be taken
when a program is used on more than one processor because a
function name not in Table 5 may be classified as an
external function name on one processor and as an intrinsic 35
function name on another processor in the absence of a
declaration for that name in an EXTERNAL or INTRINSIC
statement.

To guard against this possibility, it is suggested that any 40
external functions referenced in a program should appear in
an EXTERNAL statement in every program unit in which a
reference to that function appears. If a program unit
references a processor-supplied intrinsic function that does
not appear in Table 5, the name of the function should 45
appear in an INTRINSIC statement in the program unit.

50

55

Full Language Page B-1 3

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1 978 FORTRAN 77 APPENDIX B: SECTION NOTES

The distinction between external functions
and intrinsic functions (processor defined)
by the following table:

(user defined)
may be clarified

Different Processor Definitions
(Table 5 extended)

Processor 1 Processor 2 Processor 3

Different
User
Specifications

Intrinsic
Integer

FROG

Intrinsic
Complex

FROG
(none)

Y = FROG(A) Intrinsic
Integer

FROG

Intrinsic
Complex

FROG

Externa 1
Real
FROG

INTRINSIC FROG
Y-FROG(A)

Intrinsic
Integer

FROG

Intrinsic
Comp 1 ex

FROG
Undefined

INTEGER FROG
Y=FR0G(A)

Intrinsic
I nteger

FROG
Undefined

External
Integer

FROG

INTRINSIC FROG
INTEGER FROG
Y = FROG(A)

Intrinsic
Integer

FROG
Undefined Undefined

EXTERNAL FROG
Y = FROG(A)

Externa 1
Real
FROG

Externa 1

Real
FROG

Externa 1
Real
FROG

EXTERNAL FROG
INTEGER FROG

Y=FR0G(A)

Externa 1
I nteger

FROG

Externa 1
Integer

FROG

Externa 1
Integer

FROG

If a generic name is the same as the specific name of an
intrinsic function for a specified type of argument, a
reference to the function with an argument of that type may
be considered to be either a specific or generic function

reference.

The use of the concatenation operator with operands of
nonconstant length has been restricted to the assignment
statement so that a processor need not implement dynamic
storage allocation.

When a character array is an actual argument, the array is
considered to be one string of characters and there need not
be correspondence between the actual array elements and the

B -1 4 Full Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

dummy array elements. Only subset FORTRAN requires such

correspondence.

The intrinsic functions I CHAR and CHAR provide a means of
converting between a character and an integer, based on the
position of the character in the processor collating
sequence. The first character in the collating sequence
corresponds to position 0 and the last to position n. - 1 ,
where n. is the number of characters in the collating

sequence.

Many processors provide a collating sequence that is the
same as the ordering of the internal representation of the
character (where the internal representation may be regarded
as either a representation of a character or of some
integer). For example, for a seven-bit character, the
internal representation of the first character is '0000000'
binary (0 decimal) and the last character is '1111111*
binary (127 decimal). For such a processor, I CHAR returns

the value of an internal character representation,
considered as an integer. CHAR takes an appropriate small
integer and returns the character having the same internal

representation.

B1 6 Section 16 Notes

The name of a block data subprogram has no explicit use
within the FORTRAN language. It is available for
documentation and for possible use within a computer

environment.

B1 7 Section 17 Notes

The size of an array is the number of elements (5.2.3), but

the storage sequence of the array also has a size, which may
be different from the number of elements (17.1.1).

The definition of character entities occurs on a character-
by-character basis. The use of substrings or partially
associated entities permits individual characters or groups
of characters within an entity to become defined or
undefined.

B1 8 Section 18 Notes

There is no explicit means for declaring an entity to be a
variable. An entity becomes a variable if it is used in a
manner that does not cause it to be exclusively something
else. Note that the name of a variable may also be the name
of a common block, except when the name of the variable is
also the name of a function.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page B-15

ANSI X3.9-1978 FORTRAN 77

APPENDIX C: HOLLERITH

The character data type was added to provide a character
data processing capability that is superior to the Hollerith
data capability that existed in ANSI X3.9-1966.

The Hollerith data type has been deleted. For processors
that extend the standard by allowing Hollerith data, the
following rules for programs are recommended:

C1 Hollerith Data Type

Hollerith

be of type
are ident i f

real, or
guise of
regarding
complex.

is a data type; however, a symbolic name must not
Hollerith. Hollerith data, other than constants,
ied under the guise of a name of type integer,
logical. They must not be identified under the
type character.
Hoi I er i t h under

No recommendation is made
the guise of double precision or

A Hollerith datum is a string of characters. The string may
consist of any characters capable of representation in the
processor. The blank character is significant in a
Hollerith datum. Hollerith data may have an internal
representation that is different from that of other data

types.

An entity of type integer, real, or logical may be defined
with a Hollerith value by means of a DATA statement (C 4) or
READ statement (C6). When an entity is defined with a
Hollerith value, its totally associated entities are also
defined with that Hollerith value. When an entity of type
integer, real, or logical is defined with a Hollerith value,
the entity and its associates become undefined for use as an
integer, real, or logical datum.

C2 Hoi I erit h Cons tant

The form of a Hollerith constant is a nonzero, unsigned,
integer constant n. followed by the letter H, followed by a
string of exactly _n contiguous characters. The string may
consist of any characters capable of representation in the
processor. The string of n. characters is the Hollerith
datum.

In a Hollerith constant, blanks are significant only in the
n_ characters following the letter H.

C3 Restrictions on Hollerith Constants

A Hollerith constant may appear only in a
in the argument list of a CALL statement.

DATA statement and

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page C-1

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1 978 FORTRAN 77 APPENDIX C: HOLLERITH

C4 Hollerith Constant in a DATA Statement

An integer, real, or logical entity may be initially defined
with a Hollerith datum by a DATA statement.

A Hollerith constant may appear in the list c I i s t . and the
corresponding entity in the list n I is t may be of type
integer, real, or logical.

For an entity of type integer, real, or logical, the number
of characters n. in the corresponding Hollerith constant must
be less than or equal to a, where a. is the maximum number of
characters that can be stored in a single numeric storage
unit at one time. If a is less than a, the entity is
initially defined with the a Hollerith characters extended

on the right with a - a blank characters.

Note that each Hollerith constant initially defines exactly
one variable or array element. Also note that a is
processor dependent.

C5 Hollerith Format Specification

A format specification may be an array name of type integer,
real, or logical.

The leftmost characters of the specified entity must contain
Hollerith data that constitute a format specification when
the statement is executed.

The format specification must be of the form described in
13.2. It must begin with a left parenthesis and must end
with a right parenthesis. Data may follow the right
parenthesis that ends the format specification and have no
effect. Blank characters may precede the format
specification.

A Hollerith format specification must not contain an
apostrophe edit descriptor or an H edit descriptor.

C6 A Editing of Hollerith Data

The Aw. edit descriptor may be
the input/output list item
logical. On input, the input
with Hollerith data. On
defined with Hollerith data.

used with Ho II

is of type i
list item will

output, the I

erit h data when
nteger, real, or

become de fined
ist item must be

Editing is as described for Aw. editing of character data
except that Ien is the maximum number of characters that can

be stored in a single numeric storage unit.

C-2 Full Language

APPENDIX C: HOLLERITH ANSI X3.9-1978 FORTRAN 77

C7 Hollerith Constant in a Subroutine Reference

An actual argument in a subroutine reference may be a
Hollerith constant. The corresponding dummy argument must
be of type integer, real, or logical. Note that this is an 5
exception to the rule that requires that the type of the
actual and dummy argument must agree.

10

1 5

20

25

30

35

40

45

50

55

Full Language Page C-3

ANSI X3.9-1978 FORTRAN 77

APPENDIX D: SUBSET OVERVIEW

This Appendix provides an overview of the two levels of
FORTRAN specified in this standard, including the general
criteria used for including or excluding a feature at a
given level, and a section-by-section summary of the
principal differences between the full language and the
subset.

D1 Background

The full FORTRAN language described in this document is a
superset of the FORTRAN language described in ANSI X3.9-
1966, with the exceptions previously noted. In formulating
a subset philosophy, the following existing FORTRAN
standards were considered:

(1) American National Standard FORTRAN, ANSI X3.9-1966

(2) American National Standard Basic FORTRAN, ANSI X3.10 —
1966

(3) International Standard Programming Language FORTRAN,
ISO R1539

The ISO R1539 document describes three levels: basic,
intermediate, and full. The ISO R1539 basic level
corresponds closely with ANSI X 3.1 0-1 966; the ISO R1539 full
level corresponds closely with ANSI X3.9-1 966; and the ISO
R1539 intermediate level is in between.

It was thought that the ISO R1539 basic level and the ANSI
X3.1 0-1 966 had not been sufficiently used, even on small
computer systems, to warrant a subset corresponding to that
level.

The ISO R1539 intermediate level has been sufficiently used
to warrant a subset of similar capability.

However, it was also thought that some of the capabilities
in the full language described here, but not part of any
current standard or recommendation, are so important for the
general use of the language that they should be present in
the subset, at least to some degree.

Furthermore, it was thought that the specification of ANSI
X3.10—1966 in such a manner that it is not a subset of ANSI
X3.9-1966 was inconsistent with the primary goal of
promoting program interchange. Consequently, careful
attention has been given to ensuring that a program that
conforms to the subset of this standard will also conform to
the full language.

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page D- 1

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 APPENDIX D: SUBSET OVERVIEW

D2 Crit eria

The criteria in D2.1 and D2.2 were adopted for the two
levels of FORTRAN within this standard.

02.1 Full Language. The most notable new elements of the
full language that have been included at both levels are:
character data type, mixed-type arithmetic, INTRINSIC
statement, SAVE statement, and direct access 1/0 statements.

D2.2 Subset Language

(1) The subset must be a proper subset of the full
language.

(2) The subset must be based on ISO R1539 intermediate
level FORTRAN.

(3) The subset must include, at a fundamental level,
those features of the full language that
significantly increase the scope of the language.

(4) The elements of the subset must make a minimum demand
on storage requirements, particularly during
execution .

(5) The subset must require a minimum of effort for the
development and maintenance of a viable FORTRAN
processor .

D3 Summary of Subset Differences

This section summarizes the differences between the full
language and the subset in this standard. It is organized
primarily on the basis of the standard itself. The
differences are discussed under the section where each
language element is primarily presented. Of course, a
difference in one section may cause changes in other
sections. Such changes are not noted here.

An exception to the above practice is the subsetting of the
character data type. The description of character data type
and its usage is so distributed throughout the standard that
a more meaningful summary is produced by collecting the
relevant items into a single presentation.

D3.1 Section 1: Introduction. The subset is the same as
the full language (see also D4).

03.2 Section 2: FORTRAN Terms and Concepts. The subset is
the same as the full language.

D3.3 Section 3: Characters. Lines, and Execution Sequence.
The subset is the same as the full language except that:

D-2 Full Language

APPENDIX D: SUBSET OVERVIEW ANSI X3.9-1978 FORTRAN 77

(1) The character set does not include the currency
symbol ($) or the colon (:).

(Z) Statements may have up to nine continuation lines.

(3) DATA statements must follow all specification
statements and precede all statement function
statements and executable statements.

(4) A comment line must not precede a continuation line.

D3.4 Section 4: Data Types and Constants. The subset is

the same as the full language except that double precision
and complex data types are not included. Note that each
entity of type character must have a constant length.

D3.5 Section 5: Arrays and Substrings. The subset is the
same as the full language except that:

(1) An array declarator must not have an explicit lower

bound.

(Z) A dimension declarator must be either an integer
constant or an integer variable. (This excludes
integer expressions, but allows a variable in
common .)

(3) An array may have up to three dimensions.

(4) A subscript expression may be an expression

containing only integer variables and constants.
(This excludes function and array element
references .)

D3.6 Section 6: Expressions. The subset is the same as the
full language except that a constant expression is allowed
only where a general expression is allowed, the logical
operators .EQV. and .NEQV. are not included, and there are
restrictions on character expressions as described in D3.19.

D3.7 Section 7: Executable and Nonexecutable Statement
Classification. The classification of a statement

in the subset is the same as in the full language. However,
the subset does not include PRINT, CLOSE, INQUIRE, ENTRY,
BLOCK DATA, PARAMETER, DOUBLE PRECISION, and COMPLEX
statements.

D3.8 Section 8: Specification Statements. The subset is
the same as the full language except that:

(1) The PARAMETER statement is not included.

(Z) Only the names of common blocks (enclosed in slashes)
may appear in the list of a SAVE statement. The form
of the SAVE statement without a list is not included.

5

10

1 5

Z0

Z 5

30

35

40

45

50

55

Full Language Page D-3

5

10

15

20

25

30

35

40

45

50

55“

X3.9-1978 FORTRAN 77 APPENDIX D: SUBSET OVERVIEW

D3.9 Section 9: DATA Statement. The subset is the same as
the full language except that:

(1) Only names of variables, arrays, and array elements
are allowed in the list n I is t . Imp Iied-D0 lists are
not included.

(2) Values in the list c I is t must agree in type with the
corresponding item in the list n I is t . Type
conversion is not included.

Note that DATA statements must follow all specification
statements and precede all statement function statements and
executable statements.

D3.10 Section 10: Assignment Statements. The subset is the
same as the full language except for restrictions on
character type presented in D3.19.

D3.11 Section 11: Control Statements,
same as the full language except that:

The subset is the

(1) A DO-variable must be an integer variable and DO
parameters must be integer constants or integer

variables.

(2) In a computed GOTO statement, the index expression
must be an integer variable.

D3.12 Section 12: Input/Output Statements,
the same as the full language except that:

(1) The CLOSE statement is not included.

(2) The INQUIRE statement is not included

The subset is

(3) List-directed READ and WRITE statements are not

included.

(4) An internal file identifier must

variable or character array element

be character

(5) Formatted direct access files and statements are not

included.

(6) External unit identifiers must be an integer constant
or integer variabIe.

(7) A format identifier must be the label of a FORMAT
statement, an integer variable that has been assigned
the label of a FORMAT statement, or a character

constant.

(8) The UNIT= and FMT= forms of unit
specifiers are not included.

and format

D-4 Full Language

APPENDIX D: SUBSET OVERVIEW ANSI X3.9-1 978 FORTRAN 77

(9) The ERR= specifier is not included.

(10) The forms READ f [. io I is 13 and PRINT f [. io I is t] are

not included.

(11) In input/output lists, the implied~DO parameters must
be integer constants and variables. Implied-DO-

variables must be of type integer.

(12) Variable names, array element names, and array names
may appear as input/output list items; constants,
character substring references, and general

expressions are not included.

(13) A limited form of OPEN statement is included with the
following o I is t specifiers required, and no others

are allowed:

(a) An integer constant unit identifier

(b) The keyword specifier A C C E S S = 'DIRECT'

(c) The record length specifier RECL= r_L, where r_L is

an integer constant

The OPEN statement is included in the subset only to

the extent needed to connect a unit to a direct
access unformatted file. Once a unit has been
connected to a direct access file, it may not be

reconnected to any other file.

(14) Named files are not included.

D3.13 Section 13:'Format Specification. The subset is the

same as the full language except that:

(1) The following edit descriptors are not included:

I _w. m. Tc S

D.w . d. Tie SP

G_w. d. TRc SS

G w.dE e

(2) At most three levels of parentheses are permitted.

(3) The format scan terminator (colon) is not included.

D3.14 Section 14: Main Program. The subset is the same as
the full I anguage .

D 3.15 Section 15: Functions and Subroutines . The subset is
the same as the full language except that the following are
not included:

(1) The ENTRY statement

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page D-5

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77 APPENDIX D: SUBSET OVERVIEW

(2) Alternate return specifier

(3) Generic function references

(4) Intrinsic functions involving arguments or results of
type double precision or complex

Other exclusions are presented in 03.19, most notably an
asterisk character length specifier, character functions,
the intrinsic functions LEN, CHAR, and INDEX, and partial
association.

D3.16 Section 16: Block Data Subprogram. Block data
subprograms are not included in the subset.

D3.17 Section 17: Association and Definition. The subset
is the same as the full language except that the concept of
partial association does not apply to the subset.

D 3.18 Section 18: Scope and Classes of Symbolic Names. The
subset is the same as the full language.

D3.19 Sections 1 to 18: Character Type. The primary intent
of the the subset character facility is to provide a minimal
character capability that is functionally comparable to what
is possible with most extensions of Hollerith data.

D3.19.1 Character Features in the Subset. The subset
includes the following character data type features:

(1) Character constants, variables, and arrays, but
character functions

not

(2) CHARACTER and IMPLICIT statements for declaring
character entities and their lengths; a length
specification must be an integer constant (not an
asterisk)

(3) Character assignment statements in which the right-
hand side is a variable, array element, or constant

(4) Character relational expressions in
operands are variables, array elements

which the
or constants

(5) Initialization of character variables,
array elements in a DATA statement

arrays. and

(6) Character variables, arrays, and array
output lists

elements in

(7) Character variables, arrays, array elements, and
constants as arguments in subprogram references

(8) Character constants (but not variables
elements) as a format specification

or array

D-6 Full Language

APPENDIX D: SUBSET OVERVIEW ANSI X3.9-1978 FORTRAN 77

(9) Total, but not partial, association of character
entities (that is, association of character entities
only of the same length by means of COMMON and
EQUIVALENCE statements or by argument association)

(10) Input/output of character data, both formatted (using
character edit descriptors) and unformatted

03.19.2 Character Features Not in the Subset. The subset
does not include the following character data type features:

(1) Substring reference and definition

(2) Concatenation operator

(3) Use of character vari
format specifications

ab 1 es or array elements

(4) Par tia 1 association of character en tities

(5) Character functions

(6) The intrinsic functions LEN, CHAR, and INDEX

(7) Character length specification
asterisk or any expression other

consisting of
than a constant

D4 Subset Conformance

Conformance at the subset level of this standard involves
requirements that relate to the full language for both
processors and programs.

D 4. 1 Subset Processor Conformance. A standard-conforming
subset processor may include an extension to the subset
language that has an interpretation in the full language
only if the processor provides the interpretation described
for the full language. That is, a standard-conforming
subset processor may not provide an extension that conflicts
with the full language. Extensions that do not have forms
and interpretations in the full language are not precl-uded
by this requirement.

As an example, a standard-conforming subset processor may
provide a double precision data type provided that the
requirements for double precision are fulfilled.

04.2 Subset Program Conformance. A program that conforms
to the subset level of this standard must have the same
interpretation at both the subset level and the full
language level. The principal implication of this
requirement concerns the use of function names that are
identified as specific or generic intrinsic function names
at the full language level but which are not available at
the subset level. Examples of such names are DSIN, MIN, and
CABS.

5

10

15

20

25

30

35

40

45

50

55

Full Language Page D-7

ANSI X3.9-1978 FORTRAN 77 APPENDIX D: SUBSET OVERVIEW

A subset-conforming program may not use such names as
intrinsic functions because these names are not defined as
intrinsic functions in the subset language. Moreover, a
subset-conforming program may not use such names as external

5 function names unless such names are identified as external
function names by appearing in an EXTERNAL statement. If
such names are not explicitly declared as external, the
names would be classified as external by a subset processor
and as intrinsic by a full language processor. Note that

10 the burden of avoiding this situation rests on the program.
A subset-conforming processor Is not required to recognize
that a full language intrinsic name is being used without
being declared as external. In effect, the full set of
names described in Table 5 may be considered as reserved

15 intrinsic function names in the subset even though only a
subset of those names is available for use.

20

25

30

35

40

45

50

55

Page D-8 Full Language

5

10

1 5

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77

APPENDIX E: FORTRAN STATEMENTS

Form Descriptive Heading

ASSIGN s TO i Statement Labe I
Assignment Statement

BACKSPACE u File Positioning
Statement

CALL sub E(t a E , a]...]) 1 Subroutine Reference:
CALL Statement

CHARACTER [*len[,]] nam [, n am] . . . Character Type-
Statement

COMMON [/Ecb]/In I Ist[[,]/Ecb]/n I ist] . . . COMMON Statement

CONTINUE CONTINUE Statement

DATA nlist/cllst/ E[,] n I ist / c I ist /] . . . DATA Statement

DIMENSION a(d) [, a(d)] . . . DIMENSION Statement

DO s C,] i=e, ,e2E , e3] DO Statement

ELSE

ELSE IF (e) THEN

END

END IF

ENDFILE u

ELSE Statement

ELSE IF Statement

END Statement

END IF Statement

File Positioning
Statement

EQUIVALENCE (nlist) E , (n I ist)] . . . EQUIVALENCE Statement

EXTERNAL proc [, p r o c] . . . EXTERNAL Statement

FORMAT fs FORMAT Statement

E-1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

APPENDIX E: FORTRAN STATEMENTS

Form

ASSIGN s TO i

BACKSPACE u
BACKSPACE (alist)

BLOCK DATA [sub]

CALL sub [([a [,a]...])]

Descriptive Heading

Statement Labe I
Assignment Statement

File Positioning

Statements j

BLOCK DATA Statement |

Subroutine Reference:
CALL Statement

CHARACTER [* Ie n C.]] nam [,nam]... Character Type-
Statement

CLOSE (cl list) CLOSE Statement

COMMON [/[cb]/]nIist[[,]/[cb]/nIist]... COMMON Statement

COMPLEX v C , v] . . . Complex Type-
Statement

CONTINUE

DATA nlist/clist/ [C ,] n I ist/cIist/].

DIMENSION a(d) [,a(d)]. . .

DO s [,3 i=e,,e2[, e3 3

DOUBLE PRECISION v [, v]. . .

ELSE

ELSE IF (e) THEN

END

END IF

ENDFILE u
ENDFILE (alist)

ENTRY en [(Id [,d] ...])]

EQUIVALENCE (nl ist) [,(nlist)3...

EXTERNAL proc [,proc3...

FORMAT fs

CONTINUE Statement

DATA Statement

DIMENSION Statement

DO Statement

Double Precision

T ype-Statement

ELSE Statement

ELSE IF Statement

END St a t emen t

END IF Statement

File Positioning

Statements

ENTRY Statement

EQUIVALENCE Statement

EXTERNAL Statement

FORMAT Statement

5

10

15

20

25

30

35

40

45

50

55

Fu I I Language Page E-1

5

10

15

20

25

30

35

40

45

50

55

X3.9-1978 FORTRAN 77

Form

fun (Id [,d]...]) = e

[typ] FUNCTION fun ([d C # d] .

GO TO i [[,] (s [, s] . . .)]

GO TO s

GO TO (s [, s]...)[,] i

IF (e) st

IF (e) si, s2, s3

IF (e) THEN

IMPLICIT typ (a [,a] . . .)
[, t y p (a [,a .

INTEGER v [, v] . . .

INTRINSIC fun [,funi . . .

LOGICAL v [,v]. . .

OPEN (olist)

I
PAUSE C n]

PROGRAM pgm

READ (cilist) [iolist]

APPENDIX E: FORTRAN STATEMENTS

Descriptive Heading

Statement Function
Statement

.]) FUNCTION Statement

Assigned GO TO
Statement

UnconditionaI GO TO
Statement

Computed GO TO
Statement

Logical IF Statement

Arithmetic IF
Statement

Block IF Statement

IMPLICIT Statement

I nteger Type-
Statement

INTRINSIC Statement

Logical Type-
Statement

OPEN Statement

PAUSE Statement

PROGRAM Statement

Data Transfer Input
Statement

E-2s Subset Language

APPENDIX E: FORTRAN STATEMENTS ANSI X3.9-1978 FORTRAN 77

Form

fun (Id [,d]...]) = e

C t yp 3 FUNCTION fun (Id

GO TO i [[,](s [,s3...

GO TO s

GO TO (s [, s]...)[,] i

IF (e) st

IF (e) s,, s2, s3

IF (e) THEN

IMPLICIT typ (a C , a]. .
[,typ (a t , a .

INQUIRE (iflist)

INQUIRE (iulist)

INTEGER v t,v]...

INTRINSIC fun [, fun]. .

LOGICAL v C , v 3...

OPEN (olist)

PARAMETER (p = e [tp=e3.

PAUSE C n 3

PRINT f [.iolistl

PROGRAM pgm

READ (cilist) [iolistl

READ f [, i o I is t]

Descriptive Headino

Statement Function
Statement

[,d 3...3) FUNCTION Statement

)] Assigned GO TO
Statement

Unconditiona I GO TO
Statement

Computed GO TO
Statement

Logical IF Statement

Arithmetic IF
Statement

Block IF Statement

.) IMPLICITStatement

INQUIRE by File
Statement

INQUIRE by Unit
Statement

I nteger Type-
Statement

INTRINSIC Statement

Logical Type-
Statement

OPEN Statement

..) PARAMETER Statement

PAUSE Statement

Data Transfer Output
Statement

PROGRAM Statement

Data Transfer Input
Statement

Data Transfer Input
Statement

5

10

1 5

20

25

30

35

40

45

50

55

Full Language Page E-2

ANSI X3.9-1978 FORTRAN 77 APPENDIX E: FORTRAN STATEMENTS

Descriptive Headinq

Real Type-Statement

RETURN Statement

File Positioning
Statement

SAVE Statement

STOP Statement

Subroutine Subprogram
and SUBROUTINE
Statement

Arithmetic Assignment
Statement

Logical Assignment
Statement

Character Assignment
Statement

Data Transfer Output
Statement

30

35

40

45

50

55

Form

REAL v C,v]. . .

5 | RETURN

REWIND u

I
10 | SAVE a [.a] . . .

STOP [n]

SUBROUTINE sub C(C d C , d]...]>]
15

v = e

20
v = e

v = e

25

WRITE (ci I i s t) Cio I is 11

Page E-3s Subset Language

APPENDIX E: FORTRAN STATEMENTS ANSI X3.9-1978 FORTRAN 77

Form

REAL v t , v] ...

RETURN tel

REWIND u
REWIND (a M s t)

SAVE [a [, a] . ..]

STOP C n]

SUBROUTINE sub [(Id [, d]...])]

v = e

v = e

v = e

WRITE (ci list) [iolistl

Descriptive Headinq

Real Type-Statement

RETURN Statement | 5

File Positioning

Statements

SAVE Statement | 10

STOP Statement

Subroutine Subprogram
and SUBROUTINE 15
Statement

Arithmetic Assignment
Statement

20
Logical Assignment
Statement

Character Assignment
Statement 25

Data Transfer Output
Statement

30

35

40

45

50

55

Full Language Page E-3

■

ANSI X3.9-1978 FORTRAN 77

APPENDIX F: SYNTAX CHARTS

The charts in this Appendix describe the syntax of the FORTRAN
language as specified in this standard.

The charts have been designed for human readability, not as a
basis for parsing. For example, the description of expressions
does not reflect the precedence of operators. Certain syntactic
features are not represented in the charts. These include:

(1) Use of blanks.

(2) The manner of writing statements on initial lines and
continuation lines.

(3) Comment lines.

(4) Context-dependent features, such as data type
requirements, uniqueness and completeness of labels
used, actual and dummy argument matching, requirements
for specification statements, restrictions on the use of
statements in a particular context, etc. Some
restrictions of this kind are given in footnotes.

If there is a discrepancy between the syntax charts of this
Appendix and the language as specified in the standard, the
language syntax is that specified by the standard.

F1 Char t Conventions

In the charts, sequences of lowercase letters and embedded
underscore characters (_) represent syntactic entities.
Uppercase letters and special characters must appear as written.

In general, names of syntactic items are identical to those used
in the standard. A few names have been shortened (for example,
"statement label"' to "label").

The charts are in the form of a "railroad track" (hence the term
"railroad normal form"). Alternative paths are specified by
"switches" in the path. A number n. in a half-circle indicates
that the path may be traversed at most n. times. A number n. in a
circle indicates that the path must be traversed exactly n. times.

For example, a symbolic name takes the form of one to six letters
or digits, the first of which must be a letter. The syntax chart
for a symboIic name is:

s ymboIic_name:

Fu I I Language Page F-1

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

F2

1

Charts

executable_program:

main_program

f uric t i on_subpr ogr am

<D—\

subr ou tine_subpr ogr am

bIock_data_subprogram

(1) An executable program must contain one and only one main
program.

An executable program may contain external procedures
specified by means other than FORTRAN.

2

3

4

5

main_program: p r o g r a m_s tatement

function_subprogram: -

subr ou tine_subpr ogr am

bIock_data_subprogram

function_statement —

subroutine_statement

bIock data statement

label format_statement —

entry_statement -

parameter_statement

impIicit_statement -

"5— label — - format_statement -—

- entry_statement -

- parameter_statement -—

other_specification_s tatement

Page F-2 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

(2) A main program may not contain an ENTRY or RETURN
statement.

(5) A block data subprogram may contain only BLOCK DATA,
IMPLICIT, PARAMETER, DIMENSION, COMMON, SAVE,
EQUIVALENCE, DATA, END, and type-statements .

6 other_specif i cation_statement:

'- dimension_statement —-\

'- equivaIence_s tatement ->

'- common_statemen: - —>

-- type_statement ->

'- external_statement ->

s- i ntrinsic_statement ->

'- save statement -*-

FuI I Language Page F-3

ANSI X3.9-197S FORTRAN 77 APPENDIX F: SYNTAX CHARTS

7

8

executable_statement:

— assignment_statement —

— goto_statement -

— ar i thmetic_if_statement

— Iogical_if_statement —

— block_if_s t a t emen t -

— eIse_if_statement -

— else statement -

end_if_statement

do statement ——

continue_statement -

stop_statement -

pause_statement -

read_statement -

write_statement -

print_statement -

remind_statement —

back spac e_s tatement

endfiIe_statement —

open_statement -

cIose_statement -

'- inquire_statement ->

'- ca I l_statement ->

- return_statement -^-

(7) An END statement is also an executable statement
must appear as the last statement of a program unit.

program_statement: - PROGRAM program_name

and

Page F-4 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

en t ry_s tatement:

- function_entry

- subroutine_entry

10 function_statement:

— INTEGER-

— REAL-

DOUBLE PRECISION-

COMPLEX—

LOGICAL-

CHARACTER-

* Ien_specifica tion

11 function_en try:

-FUNCTION-

ENTRY - function_name

(

-var i ab I e_name -

array__name -

procedure_name

)

(11) The parentheses must appear in a FUNCTION statement

12 subroutine_statement: —SUBROUTINE-

13 subroutine_entry: - ENTRY -subroutine_name

(

1

va riabIe_name -

array_name -

procedure_name

Full Language Page F-5

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

14 block data statement:

L_“ “ BLOCK DATA

I
b1ock_data_subprogra m_n a m e

15 dimension statement:

t D I MENS 10N- array_d eclarator

(16) Only a dummy array declarator (5.1.2.2) may contain an
asterisk.

18 equiv_ent i t y :

- variable name

array_e Iement_name

a r r a y_n ame —-

subs t r i ng__name -

(18) A subscript or substring expression in an EQUIVALENCE
statement must be an integer constant expression.

Page F-6 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

19 common statement: COMMON

T
common block name -r— / r 7—s— variabIe_name

A
array_name

m
array_decIarator

20 type_statement:

INTEGER

REAL —

DOUBLE PRECISION

COMPLEX -

LOGICAL ——-

function name

array_decIarator

CHARACTER * Ien_specification —

>— - constant_name —

- variabIe_name —

- array_name -

- function_name —

-array_dec I arator-

r: en_specifica tion

constant_name -—

variab I e_name -s

array_name -

Fu I I Language Page F-7

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

21 impIicit_statement: IMPLICIT-

INTEGER

REAL -

DOUBLE PRECISION

COMPLEX --

LOGICAL --

CHARACTER r * Ien_specif i ca tion

C e 1t e r

letter

22 en_specification:

- (*) -

nonzero_un signed_int_constant

(i nt_constant_expr) —

23 parameter statement:

t_ PARAMETER - (constant_name = constant_expr —*) -

24 external_statement:

t_ " EXTERNAL pr ocedur e_name

bIock_data_subprogram_name

25 intrinsic statement: t ' INTRINSIC function name

Page F-8 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

26 save_statement:

t '
SAVE

variable name

array_name

/ common block name /

27 data statement:

Full Language Page F-9

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

28 data implied do list:

t “
‘TT

array_element_name

d a t a_im pIie d_d o_list

variable name =

C n t__con s t an t_expr , int_constant_expr —^

-/i_-

) —

31 unconditional_goto: GO TO —— Iabe

32 computed_goto:

t '— GO TO (—j*— label —j—) ^ in t eger_expr

33 assigned_goto:

GO TO variable name

IX —7- I abe l~j—)

34 arithmetic_if_statement

IF (int_real_dp_expr) label , label , label

Page F-10 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

35 Iogical_if_statement:

t
'- IF (Iogical_expression) executabIe_statement -

(35) The executable statement contained in a logical IF
statement must not be a DO, block IF, ELSE IF, ELSE,
END IF, END, or another logical IF statement.

36 bIock_if_statement:

t v- IF (Iogical_expression) THEN

37 else if_statement:

t '-- ELSE IF (Iogical_expression) THEN

38 e I se__statement: - ELSE

39 end if statement: — END IF

40 do statement

r DO label

c u
var i ab I e_name - i nt__r ea l_dp_expr —j— , int_real_ap_expr

_

41 conn nue_s tatemen t:

42 stop_statement: ■ STOP

43 pause_statement: • PAUSE

CONTINUE

digit -^

character constant

FuI I Language Page F-11

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

47 controI_info_Ilst

unit identifier —

format identifier FMT = -

UNIT = unit_identifier

RE C = in t eger_e xpr

END - label -

ERR = label -

IOSTAT =

I
variable name

array_e I ement__name

(47) A controI_info_Iist must contain exactly
unit_identifier. An END= specifier must not appear
WRITE statement.

48 i o list:

expression —-

array_name -

io_im pIied_do_list

one
i n a

Page F-1Z Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

(48) In a READ statement, an input/output list expression
must be a variable name, array element name, or
substring name.

49 io implied do list

C (io_list , variabIe_name =

C n t_reaI_dp_expr , int_real_dp_expr —^—)

--

Full Language Page F-13

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

51 close statement:

Page F-14 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

52 inquire_statement:

Full Language Page F-15

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

53 backspace_statement: — — BACKSPACE —

54 end fi 1e_s tatement: ——- — ENDFILE --

55 r e wind_s tatement: -——™ — REWIND —

-unit I dentifIer

(53,54,55) BACKSPACE, ENDFILE, and REWIND statements must
contain a unit identifier.

56 unit_iden tifie r:

s- integer_expr -- —\

s-variabIe_name —--•>

'- array_name - >

"- array_eIement_name - >

"- substring_name -——s

(56) An unit identifier must be of type integer or character,
or be an asterisk.

Page F — 16 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

57 ormat_identifier:
' r

'- label -

-- vari8b Ie_name

'- array_name —

-- character_expression

- * -

(57) A format identifier that is a variable name or array
name must be of type integer or character.

58

59

format_statement: -

format_specification: —

FORMAT format_specification -

(—- fmt_specification -—)

v J

FuI I Language Page F-17

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

60

Page F-18 FuI I Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

68 k:

69 h:

nonzero_unsigned_int_constant

uns igned_int_constant

integer_constant -

processor_character

70 statement_function_statement

t_ “ function_name (—v- 7— variabIe_name

71 call_statement

L " CALL subroutine name

express!on

array_n ame

procedure_name

* label -

) - expression —

72 return_statement

t RETURN

integer_expr

(72) An alternate return is not allowed in a function
subprogram.

Fu I I Language Page F-19

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

73 function_reference:

74 express!on:
\ r

—— a r i t h m e t i c_e xpression —-n

w-- character __expressi on -—-n

- I ogi ca l__expressi on --*

75 cons tant_expr :
V

-. ar i t hme t i c__cons t_expr -

■- character__const__expr -——>

'- Iogical„const_expr ——-*

Page F-20 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

(76) A constant name, variable name, array element name, or
function reference in an arithmetic expression must be
of type integer, real, double precision, or complex.
Tables 2 and 3 (6.1.4) list prohibited combinations
involving operands of type complex.

(77) An integer expression is an arithmetic expression of
type integer .

(78) An int_rea I_dp_expression is an arithmetic expression of
type integer, real, or double precision.

Full Language Page F — Z1

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

79 ari thmeti c_const__expr :

(79) A constant name in an arithmetic constant expression
must be of type integer, real, double precision, or
complex. Tables 2 and 3 (6.1.4) list prohibited
combinations involving operands of type complex. The
right hand operand (the exponent) of the ** operator
must be of type integer.

(80) A constant name in an integer constant expression must
be of type integer.

Page F-Z2 Fu I I Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

81 dim_bound_expr:

* t

un signed_in t_c on s t an t

constant_name -

variable name -

(dim_bound_expr)

(81) Each variable name in a dimension bound expression
be of type integer and must be a dummy argument or
common block.

82 character expression:

t
>-- c har ac t er_cons t an t -

‘- constant_name -

'-- variabIe_name -

"- array_eIement_name --

"- substring_name -

'- function_reference -

^- (character_expression

"\

//

(82) A constant name, variable name, array element name
function reference must be of type character
character expression.

must
i n a

or
i n a

Full Language Page F-23

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

83 char ac t er__con s t_e xpr :

(83) A constant name must be of type character in a
constant expression.

84 logical_expression:

(84) A constant name, variable name, array element
function reference must be of type logical in
expression.

character

name, or-
a logical

Page F-24 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

(85) A constant name must be of type logical in a logical
constant expression. Also, each primary in the
relational expression must be a constant expression.

86 relational ..expression:

ar i t hme t i c__expr ess i on rel_op ar i t hme t i c_expr ess i on

character_expression rel_op character_expression 2
(86) An arithmetic expression of type complex is permitted

only when the relational operator is .EQ. or .NE.

87 reI_o p:

.LT

.LE

.EQ

.NE

.GT

.GE

88 array element name:

1_ " array_name (—7— integer_expr) —

89 subs t r i ng__name :
I

variable name

a rray_eIe m e n t_n a m e

CT s— i nteger_expr 7 : —s integer_expr

l <_______

) -

Full Language Page F-25

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

90 cons t an t_name:

91 variabIe_name:

92 array_name: —-

93 common_bIock_name

94 program_name: --

95 bIock_data„subprogram_name:

96 procedur e__name:

97 s—— subrout i ne_name: —-

98 '- function name: —-- symbo I i c__name

100 constant:

uns i gned_arit hme tic_c on st an t

character_constant -

logical_constant -

101 uns i gned_ar i t hme t i c__cons t an t:
''

"- unsigned_int_constant -\

'- unsigned_real_constant ->

s- unsigned_dp_constant ->

'- comp Iex_cons tan t -*

Page F-26 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

(103) A nonzero, unsigned, integer constant must contain a
nonzero digit.

107 comp I ex constant:

t
(' L . Jt

unsigned_real_constant —?—(?)-

unsigned_in t_c on s t an t

) -

108 Iogical_constant:

■- .TRUE.

— .FALSE.

Full Language Page F-27

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

109 character constant apostrophe

ID

r nonapostroph e_c haracter

apostrophe apostrophe —

apostrophe

(109) An apostrophe within a data string is represented by two
consecutive apostrophes with no intervening blanks.

110 label:

t digit

(110) A label must contain a nonzero digit.

111

112

113

114

115

116

processor_character:

(111) A blank is a processor character. The set of processor
characters may include additional characters recognized
by the processor.

Page F-Z8 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

F3 Cross-Reference Index to Syntax Charts

Def. I tern: Reference

112 apostrophe: 109
79 ar i thmetic_const_expr: 75, 79
76 ar i thmetic_expression: 74, 78, 86
34
16
88

a rit hme tic_if_s tatement:
array_dec1ara tor: 15, 19
array element name: 18,

7
, 20
27, 28, 29, 47, 50, 51 , 52, 55, 56,

92
78, 82, 84, 89

a r r a y__n ame : 11, 13, 16, 18, 19, 20, 26, 27, 48, 56, 57, 71, ■ “ » ■ / ■ ■ — ” ■ r — » - — * — » » — - t — * — — * — — * - ■ f

73, 88
33 as si gned__goto : 3 0
29 as s i gnmen t__s t a t emen t: 7

53 backspace_statement: 7
14 bIock_data_statement: 5
95 bIock_data_subprogram_name: 14, 24

5 bIock_data_subprogram: 1
36 bIock_if_statement: 7

65 c: 60
71 cal l_statement: 7
83 character_const_expr : 75, 83

109 character constant: 43, 82, 83, 100
82 character_expression: 50, 51, 52, 57, 74, 82, 86
51 cIose_statement: 7
93 common_bIock_name: 19, 26
19 common_statement: 6

107 complex constant: 101
32 computed_goto: 30
75 constant_expr: 23
90 constant_name: 20, 23, 27, 78, 79, 80, 81, 82, 33, 84, 85

100 constant: 27
41 cont i nue_statement: 7
47 control_info_Iist: 46

66 d: 60
28 data_impIied_do_Iist: 27, 28
27 data_statement: 5

115 digit: 43, 99, 110
81 dim_bound_expr: 16, 81
15 di mension_statement: 6
4 0 do_statement: 7

63 e: 60
37 eIse_if_statement: 7
38 els e_s tatement: 7
39 end_if_statement: 7
54 endf i Ie_statement: 7

9 entry_statement: 5
18 equiv_en tit y: 17
17 equivaIence_statement: 6

7 executabIe_statement: 5, 35
74 expression: 29, 48, 70, 71, 73

FuI I Language Page F-29

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

Def. Item: Reference

24 external_statement: 6

60 fmt_specification: 59, 60
57 format_identitier: 46, 47
59 format_specif ic a t ion: 58
58 format_statement: 5
11 f unc tion_entr y: 9
98 function_name: 1 1 , 20, 25 , 70, 73
73 function_reference: 78, 82, 84
10 f unc tion_s tatement: 3

3 function_subprogram: 1

30 goto_statement: 7

69 h: 60

21 impIicit_s tatement: 5
52 inqu i re_statement: 7
80 int_constant_expr: 22, 28, 80
78 int„real_dp_expr: 34, 40, 49

104 integer constant: 68, 105, 106
77 integer_expr: 32, 47, 50, 56, 72, 88, 89
25 in t rin sic_s tatement: 6
49 io_impIied_do_Iist: 48
48 io_list: 46, 49

68 k: 60

110 label: 5, 29, 31, 32, 33, 34, 40, 47, 50, 51, 52, 55. 57, 71
22 Ien_specification: 10, 20, 21

116 I etter : 21, 99
85 Iogical_const_expr: 75, 85

108 logical constant: 84, 85, 100
84 Iogical_expression: 35, 36, 37, 74, 84
35 I ogi ca I_i f__s t a t emen t: 7

67 m: 60
2 main_p rogram: 1

64 n: 60
113 nonapostrophe character: 109
103 nonzero unsigned int constant: 22, 27, 65

50 open_statement: 7
6 other_specification_statement: 5

23 parameter_statement: 5
43 pause_statement: 7
46 print_statement: 7
96 procedure_name: 11, 13, 24, 71, 73

111 processor character: 69
94 program_name: 8

8 program_statement: 2

Page F-30 Full Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

Def. Item: Reference

45 read_statement: 7
87 rel__op: 86
86 reI ationaI_expression: 84, 85
61 repeat_spec: 60
72 return_staternent: 7
55 rewind_statement: 7

26 save_statement: 6
114 sign: 100, 107

70 statement_function_statement: 5
42 s t op__s t a t emen t: 7
13 subroutin e_e n t ry: 9
97 subrout i ne__name : 13, 71
12 subroutine_statement: 4

4 subroutine_subprogram: 1
89 substring_name: 18, 27, 29, 56, 82
99 symboMc_name: 90

20 type_statement: 6

31 unconditional_goto: 30
56 unit_identifier: 47, 50, 51, 52, 55

101 unsigned arithmetic constant: 78, 79, 100
106 unsigned dp constant: 101
102 un signed i n t constant: 67, 80, 81, 101, 105 , 106
105 unsigned r e a 1 constant: 101 . 107

91 variable _name: 11, 13, 18, 19, 20, 26, 27, 28, 29, 33, 40,
47, 49, 50, 51, 52, 55, 56, 57, 70, 78, 81, 82, 84, 89

62 w: 60
44 write statement: 7

Full Language Page F — 31

ANSI X3.9-1978 FORTRAN 77

INDEX

All references are to page numbers wlthin a section or
appendix. For example, 12-4 refers to page 4 in Section 12,
and A-1 refers to page 1 in Appendix A.

access
direct 12-4, 12-15

input/output statement 12-11
file 12-3
sequentia I 12-3, 12-14

input/output statement 12-11
active DO-loop 11-6
actual argument 15-16

for a subroutine 15-10
for an external function 15-8
length of character 15*17

actual array 5-7
declarator 5-2

adjustable array 5-7
declarator 5-2

adjustable dimension 5-7
alphanumeric character 3-1
alternate return 15-14

specifier 15-11
ANSI X3.9-1966, conflicts with A-1
apostrophe editing 13-5
argument 15-15

actual 15-16, 15-8, 15-10, 15-17
association 15-16
dummy 2-4, 15-4, 15-15, 15-17, 15-18, 15-19

arithmetic
assignment statement 10-1
constant 4-2

expression 6-4
conversion 10-1
expression 6-1, 6-4

evaluation of 6-17
interpretation of 6-4
t ype of 6-4

IF statement 11-2
operands 6-2
operator 6-1
relational expression 6-9

interpretation of 6-9
array 2-3, 5-1, 18*3

actual 5-7
adjustable 5-7
as dummy argument 15-18
data type of 5-3
dec Iarator 2-3 , 5-1

assumed size 5*2
constant 5-2

dimension of an 5-3
dummy 5-7

FuI I Language Page INDEX-1

ANSI X3.9-1978 FORTRAN 77 INDEX

array, CONTINUED
name 5-1, 8-2

use of 5-8
proper ties of an 5-2
size of an 5-3
storage sequence 5-4

array element 2-3, 5-1
data type of 5-3
name 5-1 , 5-4, 8-2
ordering 5-4

ASSIGN statement 10-2
assigned GO TO statement 11-2
assignment

conversion, Table 4 10-1
statement

arithmetic 10-1
character 10-2
logical 10-2
s t a t emen t label 10-2

associated
partially 17-1
totally 17-1

association 2-6, 17-1
argument 15-16
common 8-4
entry 15-12
equivalence 8-2
of entities 17-1

restriction on 15-20
of storage sequence 17-1

assumed size
array declarator 5-2
dummy array 5-7

name, restriction on use of 5-8
asterisks as dummy argument 15-19
auxiliary input/output statement 12-1, 12-18
BACKSPACE statement 12-28
basic real constant 4-3
blank

character 3-2
common, differences between named common and 8-4
in constant 4-2
control 12-20, 13-8

block 11-5
IF 11-4
IF statement 11-3

BLOCK DATA
statement 16-1
subprogram 2-2, 16-1, 18-3

name 16-1, B — 15
restriction 16-1

bound
Iower dimension 5-1
upper dimension 5-1
value of dimension 5-2

CALL statement 15-10

Page INDEX-2 Full Language

INDEX ANSI X3.9-1978 FORTRAN 77

character
actual argument, length of 15-17
a Iphanumeri c 3-1
assignment statement 10-2
blank 3-2
constant 4-5

expression 6-9
in a DATA statement 9-3

dummy argument, length of 15-17
entity, equivalence of 8-2
expression 6-7, 6-8

evaluation of 6-19
format specification 13-1
operator 6-7
primary 6-8
relational expression 6-10

interpretation of 6-10
set, FORTRAN 3-1
special 3-1
storage unit 2-6
substring 5-9
type 4-5

CHARACTER statement 8-6
classes of

global entity 18-1
local entity 18-2
statement 2-2
s ymbo lie name 18-2

close at termination of execution, implicit 12-22
CLOSE statement 12-21, B-9
collating sequence 3-1, B-2, B-15
co I umns 3-2
comment 2-2

line 2-2, 3-2, B-2
common

and equivalence, restriction on 8-5
association 8-4
differences between named common and blank 8-4

common block 15-15, 15-20, 18-2
size of a 8-4
storage sequence 8-4

COMMON statement 8-3
complex

constant 4-4
editing 13-12
expression 6-5
type 4-4

COMPLEX statement 8-5
computed GO TO statement 11-2
conditions

end-o f-fi Ie 12-8
error 12-8

conflicts with ANSI X3.9-1966 A-1
conformance 1-2

subset 1-2
connected unit, open of a 12-20

Full Language Page INDEX-3

ANSI X3.9-1978 FORTRAN 77 INDEX

connection
file 12-6, B-6
unit 12-6, B-6

constant 4-2, 18-4, B-3
arithmetic 4-2
array declarator 5-2
basic real 4-3
blank in 4-2
character 4-5

in a DATA statement 9-3
comp I ex 4-4
data type of a 4-2
doub I e precision 4-4
expression 6-20

arithmetic 6-4
character 6-9
integer 6-4
logical 6-14

Hollerith C-1
in a DATA statement C-1
in a subroutine reference C~2
restriction on C-1

integer 4-3
logical 4-5
optionally signed 4-2
real 4-3
signed 4-2
signs of 4-2
symbo I ic name of a 8-8
unsigned 4-2

continuation line 2-2, 3-2, B-2
CONTINUE statement 11-9, B-6
contro I

b I ank / zero 1 2-20 , 13-8
format 13-3
information list 12-11
positioning by format 13-4
processing, loop 11-7
transfer of 3-5

conversion
and assignment, Table 4 10-1
arithmetic 10-1

corresponding END IF statement 11-5
create a file 12-2
criteria A-1
current record 12-3
DATA statement 9-1

character constant in a 9-3
Hollerith constant in a C-1
implied-DO in a 9-2
restriction 9-1

data transfer 12-15
direction of 12-14
file position

after 12-17
prior to 12-14

Page INDEX-4 Full Language

INDEX ANSI X3.9-1978 FORTRAN 77

data transfer, CONTINUED
formatted 12-16
input/output statement 12-1
unformatted 12-15

data type 4-1
Hollerith C-1
of a constant 4-2
of a name 4-1
of an array 5-3
of an array element 5-3
proper ties 4-2

dec I arator
actual array 5-2
adjustable array 5-2
array 2~3, 5-1
assumed size array 5-2
constant array 5-2
dimension 5-1
dummy array 5-2

defined 2~4
events that cause entity to become 17-3
initially 2-5

definition status 2-4, 15-15
delete a file 12-2
descriptor, edit 13-2

nonrepeatabIe 13-3
repeatable 13-2

differences between named common and blank common 8-4
digit 3-1
dimension

bound
lower 5-1
upper 5-1
value of 5-2

dec I arator 5-1
of an array 5-3
size of a 5-3

DIMENSION statement 8-1
direct access 12-4, 12-15

input/output statement 12-11
direction of data transfer 12-14
disjunct, logical 6-12
division, integer 6-7
DO

parameter 11-7
statement 11-5

DO-Ioop 11-5, B-5
active 11-6
inactive 11-6
range of a 11-6
transfer into the range of a 11-9

DO statement 11-5
executing a 11-7

Full Language Page INDEX-5

ANSI X3.9-1978 FORTRAN 77 INDEX

double precision
constant 4-4
editing 13-9
exponent 4-4
expression 6-5
type 4-3

DOUBLE PRECISION statement 8-5
dummy argument 2-4, 15-15

array as 15-18
asterisks as 15-19
length of character 15-17
procedure as 15-19
statement function 15-4
variable as 15-18

dummy array 5-7
assumed size 5-7

name, restriction on use of 5-8
dec Iarator 5-2

dummy procedure 15-1, 18-5
edit descriptor 13-2

nonrepeatab'l e 13-3
repeatable 13-2

editing 13-5
A 13-12
apostrophe 13-5
BN and BZ 13-8
colon 13-7
comp lex 13-12
0 13-10
double precision 13-9
E 13-10
F 13-10
G 13-11
H 13-5
integer 13-9
L 13-12
numeric 13-8
of Hollerith data, A C~2
P 13-7
positiona I 13-5
real 13-9
S. SP. and SS 13-7
slash 13-6
T, TL, and TR 13-6
X 13-6

ELSE statement 11-5
ELSE block 11-5
ELSE IF statement 11-4
ELSE IF block 11-4
END statement 11-10
END IF statement 11-5

corresponding 11-5

Page INDEX-6 Full Language

INDEX ANSI X3.9-1978 FORTRAN 77

end-of-f i Ie
condit i ons 12-8
specifier 12-10, 12-9

endfile record 12-2, B-6, B-10
ENDFILE statement 12-28
en tit y

association of 17-1
equivalence of character 8-2
global 18-1
local- 18-1

restriction on association of 15-20
to become defined, events that cause 17-3
to become undefined, events that cause 17-4

entry
association 15-12
name 15-12

ENTRY statement 15-11
restriction 15-13

equivalence
association 8-2
of character entity 8-2
restriction on common and 8-5

EQUIVALENCE statement 8-1
restriction on 8-3

error
conditions 12-8
specifier 12-9

evaluation
of arithmetic expression 6-17
of character expression 6-19
of expression 6-15
of function, order of 6-17
of logical expression 6-19
of operands 6-16
of relational expression 6-19

events
that cause entity to become defined 17-3
that cause entity to become undefined 17-4

execu tab Ie
program 2-3
statement 7-1

executing a DO statement 11-7
execution

implicit close at termination of 12-22
of the range 11-8
sequence, normal 3-5
terminal statement 11-8

exis tence
file 12-2, B-7
unit 12-6

exponent
double precision 4-4
real 4-3

Fu I 1 Language Page INDEX-7

ANSI X3.9-1978 FORTRAN 77 INDEX

express!on
arithmetic 6-1, 6-4

constant 6-4
relational 6-9

character 6-7, 6-8
constant 6-9
relational 6-10

comp lex 6-5
constant 6-20
doubIe precision 6-5
eva I uation of 6-15

arithmetic 6-17
character 6-19
logical 6-19
relational 6-19

integer 6-5
constant 6-4

interpretation of
arithmetic 6-4
arithmetic relational 6-9
character relational 6-10

logical 6-10, 6~12
constant 6-14

real 6-5
relational 6-9
subscript 5-5
substring 5-9
type of arithmetic 6-4

externa I
function 15-1, 15-6, 18-3

actual argument for an 15-8
name 15-12, 15-7
referencing an 15-7

procedure 2-2, 15-1
by an entry name, referencing an 15-12

unit identifier 12-7
EXTERNAL statement 8-9
factor 6-3

logical 6-12
scale 13-7

field 13-5
numeric input 13-14
width 13-5

file 12-2
access 12-3
connection 12-6, B-6
create a 12-2
delete a 12-2
existence 12-2, B-7
INQUIRE by 12-23
internal 12-5
named 12-3
position 12-3

after data transfer 12-17
prior to data transfer 12-14

Page INDEX-8 Full Language

INDEX ANSI X3.9-1978 FORTRAN 77

file, CONTINUED
positioning statement 12-1, 12-27
proper ties 12-3

format
contro I 13~3

positioning by 13-4
establishing a 12-14
identifier 12-7, 12-8
interaction between input/output list and 13-3
specification 13-2

character 13-1
Hoi Ierith C-2
methods 13-1
using a 12-16

specifier 12-7
FORMAT statement 13-1
formatted

data transfer 12-16
input/output statement 12-11
record 12-2

printing of 12-17
formatting, 1ist-directed 12-17, 13-13
FORTRAN

character set 3-1
conflicts with ANSI X3.9-1966 A-1

function 15-1
actual argument for an external 15-8
external 15-1, 15-6, 18-3
intrinsic 15-2, 18-5, B~13
name, external 15-12, 15-7
order of evaluation of 6-17
reference and list item, restriction on 12-29
referencing a 15-1
referencing an external 15-7
subprogram 2-2, 15-6

restriction 15-8
FUNCTION statement 15-6
generic name 15-2
global

entity 18-1
classes of 18-1

GO TO statement
assigned 11-2
computed 11-2
unconditionaI 11-1

Hoi Ierith
constant C-1

in a DATA statement C-1
in a subroutine reference C-2
restriction on C-1

data, A editing of C-2
data type C-1
format specification C-2

Full Language Page INDEX-9

ANSI X3.9-1978 FORTRAN 77 INDEX

iden tifier
external unit 12-7
format 12-7, 12-8
internal file 12-7
unit 12-7

identifying a unit 12-14
IF

block 11-4
level 11-3
statement

arithmetic 11-2
block 11-3
logical 11-3, B-5

implicit close at termination of execution 12-22
IMPLICIT statement 8-7
imp I ied-DO

in a DATA statement 9-2
list 12-13
variable 9-2

inactive DO-loop 11-6
incrementation processing 11-8
initial

line 2-2, 3-2
point 12-3

initially defined 2-5
input

field, numeric 13-14
list item 12-12
I ist-directed 13-14, B — 12

input 12-12
and format, interaction between 13-3
item 12-12

input / output, I i st-directed , 12-12, B- 10
input/output statement

auxiliary 12-1, 12-18
data transfer 12-1
direct access 12-11
formatted 12-11
list-directed 12-12
restriction on 12-29
sequential access 12-11
unformatted 12-11

input/output status specifier 12-9
definition 12-17

INQUIRE
by file 12-23
by unit 12-23
statement 12-22

inquiry specifier 12-23
in t eger

constant 4-3
constant expression 6-4
division 6-7

Fu I I Page INDEX-10 Language

INDEX ANSI X3.9-1978 FORTRAN 77

integer, CONTINUED
editing 13-9
expression 6~5
quotient 6-7
type 4-3

INTEGER statement 8-5
integrity of parentheses 6-17
interaction between input/output list and format 13-3
interna I file 12-5

identifier 12-7
properties 12-5
restriction 12-6

interpretation
of arithmetic expression 6-4
of arithmetic relational expression 6-9
of character relational expression 6-10
rules, summary of 6-15

intrinsic function 15-2, 18-5, B-13
referencing an 15-3
restriction 15-3
Table 5 15-22, B-13

INTRINSIC statement 8-9
i tern

input list 12-12
input/output list 12-12
list 2-4
output list 12-12
restriction on function reference and list 12-29

keyword 2-1, 18-1, B — 10
I eng t h

of character
constant 4-5
actual argument 15-17
dummy argument 15-17

of record B-11
specification 8-6

I etter 3-1
level, IF 11-3
line 2-2, 3-2

comment 2-2, 3-2, B-2
continuation 2-2, 3-2, B-2
initial 2-2, 3-2
order of 3-3

list 2-4
control information 12-11
imp I ied-DO 12-13
itern 2-4

input 12-12
output 12-12
restriction on function

list-directed
formatting 12-17, 13-13
input 13-14, B- 12
input/output 12-12, B — 10

statement 12-12
output 13-15

reference and 12-29

Full Language Page INDEX-11

ANSI X3.9-1978 FORTRAN 77 INDEX

local
entity 18-1
entity, classes of 18-2

logical
assignment statement 10-2
constant 4-5

expression 6-14
disjunct 6-12
expression 6-10, .6-12

evaluation of 6-19
factor 6-12
IF statement 11-3, B-5
operands 6-1 1
operator 6-11
primary 6-12
term 6-12
type 4-4

LOGICAL statement 8-5
loop control processing 11-7
main program 2-2, 14-1, 18-3, B-13

restriction 14-1
name

array 5-1, 8-2
array element 5-1, 5-4, 8-2
block data subprogram 16-1, B — 15
data type of a 4-1
entry 15-12
external function 15-12, 15-7
generic 15-2
referencing an external procedure by an entry 15-12
restriction on assumed size dummy array 5-8
specific 15-2
subroutine 15-12, 15-9
substring 5-9
symbolic 2-1, 8-8, 18-1, 18-2
use of array 5-8

named
common and blank common, differences between 8-4
file 12-3

nonexecutable statement 7-1
nonrepeatabIe edit descriptor 13-3
normal execution sequence 3-5
number

of records 12-3, B-1 1
record 12-4

numeric
editing 13-8
input field 13-14
storage unit 2-5

open of a connected unit 12-20
OPEN statement 12-18, B-8
operands

arithmetic 6-2
evaluation of 6-16
logical 6-11

Page INDEX-12 Full Language

INDEX ANSI X3.9-1 978 FORTRAN 77

operator
arithmetic 6-1
character 6-7
logical 6-11
precedence of 6-14
relational 6-9

optionally signed constant 4-2
order of

evaluation of functions 6-17
lines 3-3
statements 3-3

ordering, array element 5-4
output

list item 12-12
list-directed 13-15

PARAMETER statement 8-8
parentheses, integrity of 6-17
PAUSE statement 11-9, B-6
point

initial 12-3
terminal 12-3

portability, recommendation for enhancing A-5
position

after data transfer, file 12-17
file 12-3
prior to data transfer, file 12-14

positional editing 13-5
positioning

by format control 13-4
statement, file 12-1, 12-27

precedence of operator 6-14
preceding record 12-3
primary 6-3

character 6-8
logical 6-12

PRINT statement 12-10
printing 12-17

of formatted record 12-17
procedure 2-2, 15-1

as dummy argument 15-19
by an entry name, referencing an external 15-12
dummy 15-1, 18-5
external 2-2, 15-1
subprogram 2-2

processing
incrementation 11-8
Ioop controI 11-7

processor 1-1, B-1
program, executable 2-3
PROGRAM statement 14-1
program unit 2-2
proper ties

data type 4-2
file 12-3
internal file 12-5
of an array 5-2

Full Language Page INDEX-13

ANSI X3.9-1978 FORTRAN 77 INDEX

1 1-8
1 1-9

restriction on 15-32

8-5
for enhancing portability A-5

B-6

B-6, B-10

quotient, integer 6-7
range

of a DO-loop 11-6
execution of the
transfer into the

of argument and results,
READ statement 12-10
reading 12-1
real

constant 4-3
basic 4-3

editing 13-9
exponent 4-3
expression 6-5
type 4-3

REAL statement
recommenda tion
record 12-1,

current 12-3
endfiIe, 12-2,
formatted 12-2
length of 12-2, B-11
next 12-3
number 12-4
number of 12-3, B-11
preceding 12-3
printing of formatted
specifier 12-8
unformat ted 12-2

reference 2-5
and list item, restri
Hollerith constant in

referencing
a function 15-1
a statement function
a subroutine 15-10
an external function
an external procedure
an intrinsic function

relational
expression 6-9

arithmetic 6-9
character 6-10
evaluation of 6-19
interpretation

of arithmetic 6-9
of character 6-10

operator 6-9
repeat specification 13-2
repeatable edit descriptor
restriction

block data subprogram
DATA s t a t emen t 9-1
ENTRY statement 15-13
function subprogram
internal file 12-6

12-17

ction on function 12-29
a subroutine 02

15-5

15-7
by an entry name 15-12

15-3

13-2

16-1

15-8

Page INDEX-14 Full Language

INDEX ANSI X3.9-1 978 FORTRAN 77

restriction, CONTINUED
intrinsic function 15-3
main program 14-1
on association of entities 15-20
on common and equivalence 8-5
on EQUIVALENCE statement 8-3
on function reference and list item 12-29
on Hollerith constant C-1
on input/output statement 12-29
on range of argument and results 15-32
statement function 15-6
subroutine subprogram 15-11

return
alternate 15-14
specifier, alternate 15-11

RETURN statement 15-13
REWIND statement 12-28
rules, summary of interpretation 6-15
S, SP, and SS editing 13-7
SAVE statement 8-10, B-4
scale factor 13-7
scope 1-1

of statement label 2-4
of symbolic name 2-4, 18-1

separator, value 13-13
sequence 2-1

collating 3-1, B-2, B-1 5
normal execution 3-5

sequential access 12-3, 12-14
input/output statement 12-11

signed
constant 4-2

optional Iy 4-2
size of

a common block 8-4
a dimension 5-3
a storage sequence 17-1
an array 5-3

special character 3-1
specific name 15-2
specification

character format 13-1
format 13-2
Hollerith format 02
length 8-6
methods, format 13-1
repeat 13-2
using a format 12-16

specifier
alternate return 15-11
end-of-fiIe 12-10, 12-9
error 12-9
format 12-7
input/output status 12-9
inquiry 12-23
record 12-8

Full Language Page INDEX-15

ANSI X3.9-1978 FORTRAN 77 INDEX

specifier, CONTINUED
unit 12- 7

statement 2-2, 3-3
arithmetic assignment 10-1
arit hme tic IF 11-2
ASSIGN 10-2
assigned GO TO 11-2
BACKSPACE 12-28
block IF 11-3
BLOCK DATA 16-1
CALL statement 15-10
character assignment 10-2
CHARACTER 8-5
classes of 2-2
CLOSE, 12-21, B- 9
COMMON 8-3
COMPLEX 8-5
computed GO TO 11-2
CONTINUE 11-9, B-5
DATA 9-1
DIMENSION 8-1
DO 11-5
DOUBLE PRECISION 8-5
ELSE 11-5
ELSE IF 11-4
END 11-10
END IF 11-5
ENDFILE 12-28
ENTRY 15-11
EQUIVALENCE 8-1
executable 7-1
EXTERNAL 8-9
file positioning 12-1, 12-27
FORMAT 13-1
FUNCTION 15-6
IMPLICIT 8-7
INQUIRE 12-22
INTEGER 8-5
INTRINSIC 8-9
logical assignment 10-2
logical IF 11-3, B-5
LOGICAL 8-5
nonexecutable 7-1
OPEN 12-18, B-8
order of 3-3
PARAMETER 8-8
PAUSE 11-9, B-6
PRINT 12-10
PROGRAM 14-1
READ 12-10
REAL 8-5
RETURN 15-13
REWIND 12-28
SAVE 8-10, B-4
statement label assignment 10-2
STOP 11-9, B-6

Page INDEX-16 Full Language

INDEX ANSI X3.9-1978 FORTRAN 77

statement, CONTINUED
SUBROUTINE 15-9
terminal 11-6
unconditional GO TO 11-1
WRITE 12-10

statement function 15-4, 18-4
dummy argument 15-4
referencing a 15-5
restriction 15-6

statement label 2-1, 3-3, B-2
assignment statement 10-2
scope of 2-4

STOP statement 11-9, B-6
storage 2-5, 17-1
storage sequence 2-5, 17-1

array 5-4
association of 17-1
common block 8-4
size of a 17-1

storage unit 2-5, 17-1
character 2-6
numeric 2-5

subprogram 2-2
block data 2~2, 16-1, 18-3
function 2-2, 15-6
name block data 16-1, B — 15
procedure 2-2
restriction

block data 16-1
function 15-8
subroutine 15-11

subroutine 2-2, 15-9
subroutine 15-1, 15-9, 18-3

actual argument for a 15-10
name 15-12, 15-9
reference, Hollerith constant in a 02
referencing a 15-10
subprogram 2-2, 15-9

restriction 15-11
subscript 5-4, B-2

expression 5-5
value 5-5

Table 1 5-6
subset

conformance 1-2
text 1-4

substring 2-3
character 5-9
expression 5-9
name 5-9

symbolic' name 2-1
classes of 18-2
of a constant 8-8
scope of 2-4, 18-1

syntactic item 2-1
syntax charts F-1

Full Language Page INDEX-17

ANSI X3.9-1978 FORTRAN 77 INDEX

T, TL, and TR editing 13-6
Table 1 subscript value 5~6
Table 2 type and result for x,+x2 6-5
Table 3 type and result for x,**x2 6-6
Table 4 conversion and assignment 10-1
Table 5 intrinsic functions 15-22, B-13
term 6-3

logical 6-12
terminal

point 12-3
statement 11-6

execution 11-8
transfer

into the range of a DO-loop 11-9
of control 3-5

type
and result for x,+x2< Table 2 6-5
and result for x,**x2l Table 3 6-6
character 4-5
complex 4-4
doub le precision 4-3
integer 4-3
logical 4-5
of arithmetic expression 6-4
real 4-3

type-statement 8-5
unconditional GO TO statement 11-1
undefined 2-4

events that cause entity to become 17-4
unformatted

data transfer 12-15
input/output statement 12-11
record 12-2

unit 12-6
connection 12-6, B-6
existence 12-6
identifier, external 12-7
identifying a 12-14
INQUIRE by 12-23
open of a connected 12-20
specifier 12-7

unsigned constant 4-2
upper dimension bound 5-1
value separator 13-13
variable 2-3, 11-6, 18-4, B-15, B-3

as dummy argument 15-18
imp I ied-DO 9-2

width, field 13-5
WRITE statement 12-10
writing 12-1
zero 4-2, B-3

control 12-20, 13-8

Page INDEX-18 Full Language

American National Standards for Information Processing

X3.1-1976 Synchronous Signaling Rates for Data Transmission

X3.2-1970 (R1976) Print Specifications for Magnetic Ink Character

Recognition

X3.3-1970 (R1976) Bank Check Specifications for Magnetic Ink

Character Recognition

X3.4-1977 Code for Information Interchange

X3.5-1970 Flowchart Symbols and Their Usage in Information

Processing

X3.6-1965 (R1973) Perforated Tape Code for Information Interchange

X3.9-1978 FORTRAN

X3.11-1969 Specification for General Purpose Paper Cards for In¬

formation Processing

X3.14-1973 Recorded Magnetic Tape for Information Interchange

(200 CPI, NRZI)

X3.15-1976 Bit Sequencing of the American National Standard Code

for Information Interchange in Serial-by-Bit Data Transmission

X3.16-1976 Character Structure and Character Parity Sense for Serial-

by-Bit Data Communication in the American National Standard Code

for Information Interchange

X3.17-1977 Character Set and Print Quality for Optical Character

Recognition (OCR-A)

X3.18-1974 One-Inch Perforated Paper Tape for Information Inter¬

change

X3.19-1974 El even-Sixteenths-Inch Perforated Paper Tape for Infor¬

mation Interchange

X3.20-1967 (R1974) Take-Up Reels for One-Inch Perforated Tape

for Information Interchange

X3.21-1967 Rectangular Holes in Twelve-Row Punched Cards

X3.22-1973 Recorded Magnetic Tape for Information Interchange

(800 CPI, NRZI)

X3.23-1974 Programming Language COBOL

X3.24-1968 Signal Quality at Interface between Data Processing

Terminal Equipment and Synchronous Data Communication Equip¬

ment for Serial Data Transmission

X3.25-1976 Character Structure and Character Parity Sense for

Parallel-by-Bit Data Communication in the American National

Standard Code for Information Interchange

X3.26-1970 Hollerith Punched Card Code

X3.27-1978 Magnetic Tape Labels and File Structure for Informa¬

tion Interchange

X3.28-1976 Procedures for the Use of the Communication Control

Characters of American National Standard Code for Information

Interchange in Specified Data Communication Links

X3.29-1971 Specifications for Properties of Unpunched Oiled Paper

Perforator Tape

X3.30-1971 Representation for Calendar Date and Ordinal Date for

Information Interchange

X3.31-1973 Structure for the Identification of the Counties of the

United States for Information Interchange

X3.32-1973 Graphic Representation of the Control Characters of

American National Standard Code for Information Interchange

X3.34-1972 Interchange Rolls of Perforated Tape for Information

Interchange

X3.36-1975 Synchronous High-Speed Data Signaling Rates between

Data Terminal Equipment and Data Communication Equipment

X3.37-1977 Programming Language APT

X3.38-1972 (R1977) Identification of States of the United States

(Including the District of Columbia) for Information Interchange

X3.39-1973 Recorded Magnetic Tape for Information Interchange

(1600 CPI, PE)

X3.40-1976 Unrecorded Magnetic Tape for Information Interchange

(9-Track 200 and 800 CPI, NRZI, and 1600 CPI, PE)

X3.41-1974 Code Extension Techniques for Use with the 7-Bit

Coded Character Set of American National Standard Code for Infor¬

mation Interchange

X3.42-1975 Representation of Numeric Values in Character Strings

for Information Interchange

X3.43-1977 Representations of Local Time of the Day for Informa¬

tion Interchange

X3.44-1974 Determination of the Performance of Data Communica¬

tion Systems

X3.45-1974 Character Set for Handprinting

X3.46-1974 Unrecorded Magnetic Six-Disk Pack (General, Physical,

and Magnetic Characteristics)

X3.47-1977 Structure for the Identification of Named Populated

Places and Related Entities of the States of the United States for

Information Interchange

X3.48-1977 Magnetic Tape Cassettes for Information Interchange

(3.810-mm [0.1 50-in] Tape at 32 bpmm [800 bpi], PE)

X3.49-1975 Character Set for Optical Character Recognition (OCR-B)

X3.50-1976 Representations for U.S. Customary, SI, and Other

Units to Be Used in Systems with Limited Character Sets

X3.51-1975 Representations of Universal Time, Local Time Differ¬

entials, and United States Time Zone References for Information

Interchange

X3.52-1976 Unrecorded Single-Disk Cartridge (Front Loading,

2200 BPI), General, Physical, and Magnetic Requirements

X3.53-1976 Programming Language PL/I

X3.54-1976 Recorded Magnetic Tape for Information Interchange

(6250 CPI, Group Coded Recording)

X3.55-1977 Unrecorded Magnetic Tape Cartridge for Information

Interchange, 0.250 Inch (6.30 mm), 1600 bpi (63 bpmm). Phase

Encoded

X3.56-1977 Recorded Magnetic Tape Cartridge for Information

Interchange 4 Track, 0.250 Inch (6.30 mm), 1600 bpi (63 bpmm).

Phase Encoded

X3.57-1977 Structure for Formatting Message Headings for Infor¬

mation Interchange Using the American National Standard Code for

Information Interchange for Data Communication Systems Control

X3.58-1977 Unrecorded Eleven-Disk Pack General, Physical, and

Magnetic Requirements

X3.60-1978 Programming Language Minimal BASIC

X3.61-1978 Representation of Geographic Point Locations for

Information Interchange

X3.62-1979 Paper Used in Optical Character Recognition (OCR)

Systems

X3.64-1979 Additional Controls for Use with American National

Standard Code for Information Interchange

X3.66-1979 Advanced Data Communication Control Procedures

(ADCCP)

X3/TRI-77 Dictionary for Information Processing (Technical

Report)

American National Standards Institute, Inc

1430 Broadway

New York, N.Y. 10018

