
A
N

S
I

X
3
.1

1
3
-1

9
8
7

ANSI X3.113-1987

American National Standard
A d opted lor Use by

the Federal Government

flp
U><»(s'1

FIPS PUB 68-2

See Notice on Inside

Front Cover

for information systems -

programming languages -
full BASIC

319
american national standards institute, inc

1430 broadway, new york, new york 10018

American
National
Standard

Approval of an American National Standard requires verification by ANSI that the re¬

quirements for due process, consensus, and other criteria for approval have been met by

the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,

substantial agreement has been reached by directly and materially affected interests. Sub¬

stantial agreement means much more than a simple majority, but not necessarily unanim¬

ity. Consensus requires that all views and objections be considered, and that a concerted

effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not

in any respect preclude anyone, whether he has approved the standards or not, from man¬

ufacturing, marketing, purchasing, or using products, processes, or procedures not con¬

forming to the standards.

The American National Standards Institute does not develop standards and will in no cir¬

cumstances give an interpretation of any American National Standard. Moreover, no per¬

son shall have the right or authority to issue an interpretation of an American National

Standard in the name of the American National Standards Institute. Requests for inter¬

pretations should be addressed to the secretariat or sponsor whose name appears on the

title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at

any time. The procedures of the American National Standards Institute require that

action be taken to reaffirm, revise, or withdraw this standard no later than five years from

the date of approval. Purchasers of American National Standards may receive current infor¬

mation on all standards by calling or writing the American National Standards Institute.

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in Federal

Information Processing Standards Publication 68-2, BASIC. For a complete list of the

publications available in the Federal Information Processing Standards Series, write to

the Standards Processing Coordinator (ADP), Institute for Computer Sciences and

Technology, National Bureau of Standards, Gaithersburg, MD 20899.

Published by

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright © 1987 by American National Standards Institute, Inc

All rights reserved.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise, without
the prior written permission of the publisher.

Printed in the United States of America

PCIV2MI 2 87/36

ANSI®
X3.113-1987

American National Standard
for Information Systems -

Programming Languages -
Full BASIC

Secretariat

Computer and Business Equipment Manufacturers Association

Approved January 28, 1987

American National Standards Institute, Inc

Abstract

This standard presents the form for and the interpretation of programs written in the BASIC program¬

ming language for use on computers and information processing systems.

Foreword (This Foreword is not part of American National Standard X3.113-1987.)

This American National Standard specifies the form for and the interpretation of programs

written in the BASIC programming languages for use on computers and information pro¬

cessing systems. Its purpose is to promote portability of BASIC programs for use on a vari¬

ety of machines.

This standard was approved as an American National Standard by the American National

Standards Institute on January 28, 1987.

Suggestions for improvement of this standard will be welcome. They should be sent to the

Computer and Business Equipment Manufacturers Association, 311 First Street, NW, Suite

500. Washington, DC 20001.

This standard was processed and approved for submittal to ANSI by the Accredited Stan¬

dards Committee on Information Processing Systems, X3. Committee approval of this

standard does not necessarily imply that all committee members voted for its approval.

At the time it approved this standard, the X3 Committee had the following members:

Edward Lohse, Chair

Richard Gibson, Vice-Chair

Catherine A. Kachurik, Administrative Secretary

Organization Represented Name of Representative

American Express.

American Library Association.
American Nuclear Society.

AMP Incorporated.

Association for Computing Machinery.

Association of the Institute for Certification of
Computer Professionals.

AT&T Communications.

AT&T Technologies.

Burroughs Corporation.

Control Data Corporation.

Cooperating Users of Burroughs Equipment. .

Data General Corporation.

Data Processing Management Association . . .

Digital Equipment Computer Users Society . . .

Digital Equipment Corporation..

Eastman Kodak.

General Electric Company.
General Services Administration.

GUIDE International.

Harris Corporation.

Hewlett-Packard.
Honeywell Information Systems.

D. L. Seigal
Lucille Durfee (Alt)
Paul Peters
Geraldine C. Main
D. R. Vondy (Alt)
Patrick E. Lannan
Edward Kelly (Alt)
Kenneth Magel
Jon A. Meads (Alt)

Thomas M. Kurihara
Henry L. Marchese
Richard Gibson (Alt)
Herbert V. Bertine
Paul D. Bartoli (Alt)
Ira R. Purchis
Stanley Fenner (Alt)
Charles E. Cooper
Keith Lucke (Alt)
Thomas Easterday
Donald Miller (Alt)
John Pilat
Lyman Chapin (Alt)
Christian G. Meyer
Ward Arrington (Alt)
Terrance H. Felker (Alt)
William Hancock
Dennis Perry (Alt)
Gary S. Robinson
Delbert L. Shoemaker (Alt)
Gary Haines
Charleton C. Bard (Alt)
William R. Kruesi
William C. Rinehuls
Larry L. Jackson (Alt)
.Frank Kirshenbaum
Sandra Swartz Abraham (Alt)
Walter G. Fredrickson
Rajiv Sinha (Alt)
Donald C. Loughry
Thomas J. McNamara
David M. Taylor (Alt)

Organization Represented Name of Representative

IBM Corporation

IEEE Computer Society

Lawrence Berkeley Laboratory

Moore Business Forms ..
National Bureau of Standards

National Communications System.
NCR Corporation..

Perkin-Elmer Corporation

Prime Computer, Inc ..

Railinc Corporation.
Recognition Technology Users Association

SHARE, Inc

Sperry Corporation...

Texas Instruments, Inc.. .

3M Company..
Travelers Insurance Companies, Inc.
U.S. Department of Defense. . ..

VIM...

VISA U.S .A..

Wang Laboratories, Inc.

Xerox Corporation.. .

Mary Anne Gray
Robert H. Follett (Alt)
Sava I. Sherr
Thomas M. Kurihara (Alt)
Thomas A. Varetoni (Alt)
David F. Stevens
Robert L. Fink (Alt)
Delmer H. Oddy
Robert E. Rountree
James H. Burrows (Alt)
George W. White
Thomas W. Kern
A. Raymond Daniels (Alt)
Christopher Beling
Russ Lombardo (Alt)
Joseph Schmidt
John McHugh (Alt)
R. A. Petrash
Herbert F. Schantz
G. W. Wetzel (Alt)
Thomas B. Steel
Robert A. Rannie (Alt)
Marvin W. Bass
Jean G. Smith (Alt)
Presley Smith
Richard F. Trow, Jr (Alt)
J. Wade Van Valkenburg
Joseph T. Brophy
Fred Virtue
Belkis Leong-Hong (Alt)
Chris Tanner
Madeleine Sparks (Alt)
Jean T. McKenna
Susan Crawford (Alt)
Marsha Hayek
Joseph St. Amand (Alt)
John L. Wheeler
Roy Pierce (Alt)

Technical Committee X3J2 on BASIC developed this standard. The following X3J2 mem¬

bers attended at least three committee meetings during the development phase of the stan¬

dard.

J. M. Totton, Chair

T. E. Kurtz, Past Chair

J. Cugini, Past Vice Chair

S. Garland, Past Vice Chair

J. A. N. Lee

Past Vice Chair

B. Zino, Secretary

G. J.Hornik

Past Secretary

N. Abel
S. Auditore
T. Bair
D. B. Bearisto
R. E. Bruce
G. M. Bull
M. D. Busch
G. A. Cook
D. Denman
F. Dollak
D. Dudley
M. O. Duke
D. E. Elliott
J. K. Elliott
D. M. Esbensen
J. L. Evans
C. French
D. E. Gilsinn
G. K. Haas
H. H. Hall
I. T. Hardy
J. A. Harle
D. Hedges

R. E. Holzman
M. Hui
G. L. Isaacs
C. G. Jeans
H. Kaikow
N. Kareemi
T. D. Keerl
B. Kenner
A. Klossner
M.Koo
M. Kovalick
J. B. Lane
H. D. Leeds
J. J. Leicht
D. Levine
D. A. Lillie
A. Luehrmann
D. S. Martin
S. Miller
R. A. Miner
L. D. Montgomery
R. Nelson
D. A. Nobles

B. G. Noparstak
R. Onasch
D. Petersen
C. Phillips
L. Piazza
D. Pitsch
T. Powderly
J. Raskin
A. Riccomi
W. Roberts
R. D. Ross
R. D. Shurtleff, Jr
G. H. Smith
L. Stabile
D.H.Su
D. E. Taylor
S. Taylor
J. E. Tuecke
K. Warner
W. Watson
W. M. Wedel

Contents SECTION PAGE

1. Scope, Purpose, and Referenced and Related Standards. 7

1.1 Scope. 7

1.2 Purpose. 8

1.3 Referenced and Related Standards. 8

2. Conformance. 9

2.1 Program Conformance. 9

2.2 Implementation Conformance.10

2.3 Errors.11

2.4 Exceptions.11

3. Syntax Specification and Definitions.13

3.1 Method of Syntax Specification.13

3.2 Definitions.15

4. Program Elements.22

4.1 Characters.22

4.2 Programs, Lines, and Blocks.25

4.3 Program Annotation.29

4.4 Identifiers.30

5. Numbers.33

5.1 Numeric Constants.33

5.2 Numeric Variables.35

5.3 Numeric Expressions.37

5.4 Implementation-Supplied Numeric Functions.40

5.5 Numeric Assignment Statements.46

5.6 Numeric Arithmetic and Angle.47

6. Strings.50

6.1 String Constants.50

6.2 String Variables. 52

6.3 String Expressions.55

6.4 Implementation-Supplied String Functions. 57

6.5 String Assignment Statements.61

6.6 String Declarations.63

7. Arrays.65

7.1 Array Declarations.65

7.2 Numeric Arrays.69

7.3 String Arrays.74

8. Control Structures.77

8.1 Relational Expressions.77

8.2 Control Statements.80

8.3 Loop Structures.83

8.4 Decision Structures.86

9. Program Segmentation.90

9.1 User-Defined Functions.91

9.2 Subprograms.98

9.3 Chaining.106

SECTION PAGE

10. Input and Output.108

10.1 Internal Data.108

10.2 Input.Ill

10.3 Output.116

10.4 Formatted Output. 122

10.5 Array Input and Output.129

11. Files.135

11.1 File Operations.141

11.2 File Pointer Manipulation.155

11.3 File Data Creation.160

11.4 File Data Retrieval.171

11.5 File Data Modification.182

12. Exception Handling and Debugging.186

12.1 Exception Handling.186

12.2 Debugging.195

13. Graphics.198

13.1 Coordinate Systems.198

13.2 Attributes and Screen Control.205

13.3 Graphic Output.213

13.4 Graphic Input.219

13.5 Graphic Pictures and Moving Point Output.226

14. Real-Time.234

14.1 Real-Time Programs.234

14.2 Real-Time Declarations.238

14.3 Scheduling.243

14.4 Process Input and Output.247

14.5 Shared Data.250

14.6 Message Passing.252

14.7 Bit Patterns and Operations.257

14.8 Resource Management.259

15. Fixed Decimal Numbers.262

15.1 Fixed Decimal Precision.262

15.2 Fixed Decimal Program Segmentation.267

16. Editing.270

16.1 Unsorted Programs.270

16.2 Editing Commands.271

Tables

Table 1 BASIC Keywords. 17

Table 2 File-Organization vs Operations and Record-Setters.:... 138

Table 3 Record Operations vs Controls.140

Table 4 File-Organization vs Record-Type. 140

Tables Values for Ask-Statements.150

Table 6 Ask-Statement with Channel Zero.152

Table 7 Association of File-Element with Exception.173

Table 8 Standard BASIC Character Set.274

Table 9 Exception Codes.277

SECTION PAGE

Figures

Figure 1 Relationships of Windows and Viewports.201

Figure 2 Text Attributes Associated with JUSTIFY.210

Appendixes

Appendix A Organization of Standard.284

Appendix B Scope Rules.286

Appendix C Implementation-Defined Features.287

Appendix D Index of Syntactic Objects.294

Appendix E Combined List of Production Rules.318

Appendix F Binding of GKS Level Ob to BASIC.342

Appendix G Differences between Minimal BASIC and BASIC.358

Appendix H Language Elements under Consideration for Future Removal.360

American National Standard
for Information Systems -

Programming Languages -
Full BASIC

1. Scope, Purpose, and Referenced and Related Standards

1.1 .Scope. This standard establishes:

(1) The syntax of programs written in BASIC, including

"core" BASIC and various extensions thereto

(2) The formats of data and the minimum precision and range

of numeric representations and the minimum length and set of

characters in strings that are acceptable as input to an

automatic data processing system being controlled by a program

written in BASIC

(3) The formats of data and the minimum precision and range

of numeric representations and the minimum length and set of

characters in strings that can be generated as output by an

automatic data processing system being controlled by a program

written in BASIC

(4) The semantic rules for interpreting the meaning of a

program written in BA.SIC

(5) The errors and exceptional circumstances that shall be

detected and also the manner in which such errors and exceptional

circumstances shall be handled

In addition, this standard contains an optional module

containing editing facilities for BASIC programs.

Although the BASIC language was originally designed

primarily for interactive use, this standard describes a language

that is not so restricted. This standard is not meant to

7

AMERICAN NATIONAL STANDARD X3.113-1987

preclude the use of any particular implementation technique; for

example, interpreters or incremental or one-pass compilers.

1.2 Purpose. This standard is designed to promote the

interchangeability of BASIC programs among a variety of automatic

data processing systems. Programs conforming to this standard

will be said to be written in American National Standard (ANS)

BASIC.

1.3 Referenced and Related Standards

1.3.1 Referenced American National Standard. This standard

is to be used in conjunction with the American National Standard

for Information Systems - Coded Character Sets - 7-Bit American

National Standard Code for Information Interchange (7-Bit ASCII),

ANSI X3.4-1986. When this standard is superseded by a revision

approved by the American National Standards Institute, Inc., the

revision shall apply.

1.3.2 Related Standards. The standards listed here are for

information only and are not essential for the completion of the

requirements of this standard:

ANSI X3.30-1985, Information Systems - Representation for

Calendar Date and Ordinal Date for Information Interchange

ANSI X3.42-1975, The Representation of Numerical Values in

Character Strings for Information Interchange

ANSI X3.43-1986, Information Systems - Representation of Local

Time of Day for Information Interchange

ANSI X3.60-1978, Minimal BASIC

ANSI X3.124-1985, Information Systems - Computer Grapshics -

Graphical Kernel System (GKS), Functional Description

ANSl/lEEE 726-1982, Real-time BASIC for CAMAC

ISO 7942-1985, Information Processing - Computer Graphics -

Graphical Kernel System (GKS), Functional Description

8

AMERICAN NATIONAL STANDARD X3.113-1987

2. Conformance

This standard is organized in a modular fashion; conformance to

it is defined with respect to particular sets of the following

seven modules :

(1) A core module, which encompasses all programs whose

syntax conforms to Sections 4 through 12, excluding those

portions of Section 11 that describe enhanced files.

(2) Two enhanced files modules, one for internal-format

records and one for native-format records, each of which

encompasses all programs whose syntax conforms to the productions

so indicated in Section 11, together with the core.

(3) A graphics module, which encompasses all programs whose

syntax conforms to Section 13 together with the core.

(4) A real-time module, which encompasses all programs

whose syntax conforms to Section 14 together with the core.

(5) A fixed decimal module, which encompasses all programs

whose syntax conforms to Section 15 together with the core.

(6) An editing module, which encompasses all unsorted

programs and editing commands whose syntax conforms to Section

16.

There are two aspects of conformance to a set of modules in

this standard: conformance by a program written in the BASIC

language, and conformance by an implementation which processes

such programs. Broadly speaking, the conformance requirements

are structured so that any program conforming to a set of modules

will produce the same results when executed by any implementation

conforming to the same or an encompassing set of modules (though

certain implementation-dependent features are noted in Appendix

C) .

2.1 Program Conformance. A program conforms to a set of

modules in this standard only when:

(1) The program and each statement or other syntactic

element contained therein is syntactically valid according to the

syntactic rules specified by this standard as belonging to that

set

9

AMERICAN NATIONAL STANDARD X3.113-1987

(2) The program as a whole violates none of the global
constraints imposed by this standard on the application of the
syntactic rules

2.2 Implementation Conformance. An implementation conforms to
a set of modules in this standard only when:

(1) It accepts and processes all programs conforming to
that set of modules in this standard

(2) It reports reasons for rejecting any program which does
not conform to that set of modules in this standard

(3) It interprets errors and exceptional circumstances
according to the specifications of this standard

(4) It interprets the semantics of each statement of a
conforming program according to the specifications in this
standard

(5) It interprets the semantics of a conforming program as
a whole according to the specifications in this standard

(6) It accepts as input, manipulates, and can generate as
output numbers of at least the precision and range specified in
this standard

(7) It accepts as input, manipulates, and can generate as
output strings of at least the length and composed of at least
those characters specified in this standard

(8) It is accompanied by documentation available to the
user that describes the actions taken in regard to features
referred to as "undefined" or "implementation-defined" in this
standard

(9) It is accompanied by documentation available to the
user that describes and identifies all enhancements to the
language defined in this standard

This standard makes no requirement concerning the
interpretation of the semantics of any statement or program as a
whole that does not conform to this standard.

In addition, an implementation conforms to the editing
requirements of this standard if it accepts and processes

10

AMERICAN NATIONAL STANDARD X3.113-1987

unsorted programs and editing commands according to the

specifications in Section 16.

2.3 Errors. This standard does not include specific

requirements for reporting syntactic errors in the text of a

program. Implementations conforming to a set of modules in this

standard may accept programs written in an enhanced language

without having to report all constructs not conforming to that

set of modules.

Whenever a statement, or other program element, does not

conform to the syntactic rules given herein, and that statement,

or program element, does not have a clear, well-documented

implementation-defined meaning, an error shall be reported.

Errors shall be reported in a clear and well-documented way, and

whenever feasible the implementation should indicate the

erroneous statement and the position of the error within the

statement.

2.4 Exceptions. An exception is a circumstance arising in the

course of execution of a program when an implementation

recognizes that the semantic rules of this standard cannot be

followed or that some resource constraint is about to be

exceeded. All exceptions described in this standard shall be

detected, reported, and processed when they occur, unless some

mechanism provided in 12.1 or in an enhancement to this standard

has been invoked by the user to handle exceptions.

In the absence of programmer-specified recovery procedures,

exceptions shall be handled by the recovery procedures specified

in this standard. If no recovery procedure is specified in this

standard, or if restrictions imposed by the hardware or the

operating environment make it impossible to follow the procedure

specified in this standard, then the way in which the exception

is handled depends on the context. If the exception occurred in

an invocation of a function, picture, or subprogram, then the

exception is "propagated back" to the invoking statement in the

invoking program unit (see 12.1). If this propagation procedure

reaches the main-program or a parallel-section, or if the

exception occurred in the main-program or a parallel-section,

then the exception shall be handled by terminating the program

or, in the case of real-time-programs, the parallel-section,

generating the exception.

The way in which the default exception handling mechanism

reports an exception is implementation-defined, except that the

11

AMERICAN NATIONAL STANDARD X3.113-1987

contents of the report shall identify at least the original

exception code and the line number of the line in which the

original exception occurred.

Except in the case of files, when several exceptions are

caused by the execution of a single statement of a program this

standard does not specify an order in which these exceptions

shall be detected, reported, or processed.

If an implementation determines that a particular statement

in a conforming program will always cause an exception v/hen

executed, the implementation may issue a warning to the user.

Nonetheless, the implementation shall accept and execute the

program, according to the normal semantic rules specified herein.

12

AMERICAN NATIONAL STANDARD X3.113-1987

3. Syntax Specification and Definitions

3.1 Method of Syntax Specification. The syntax, through a

series of rewriting rules known as "productions," defines

syntactic objects of various types, such as program or

expression, and describes which strings of symbols are objects of

these types.

In the syntax, upper-case-letters, digits, and (possibly

hyphenated) lowercase words are used as "metanames," i.e., as

names of syntactic objects. Most of these metanames are defined

by productions in terms of other metanames. In order that this

process terminate, certain metanames are designated as "terminal"

metanames, and productions for them are not included in the

syntax. With the exception of the construct "[implementation-

defined] ," all terminal metanames occur for the first time and

are defined in 4.1. It should be noted in particular that all

upper-case-letters are terminal metanames that generally denote

both themselves and their lowercase equivalents (except in the

productions defining upper-case- and lower-case-letters, in which

the letters denote only themselves). The digits are terminal

metanames that denote themselves. In addition, the construct

"[implementation-defined]" is not a unique syntactic object, but

each occurrence of it is defined by each implementation in an

appropriate fashion for the object in question. In some cases a

recommendation as to the representation of the object is given in

the corresponding remarks section.

We illustrate further details of the syntax by considering

some examples from 5.1. The production

fraction = period integer

indicates that a fraction is a period followed by an integer.

Since "period" is a terminal metaname (i.e., it does not occur on

the left-hand side of any production), the semantics in 4.1

identify the particular character denoted by a period.

What is an integer? The production

integer = digit digit*

indicates that an integer is a digit followed by an arbitrary

number of other digits. An asterisk is a syntactic operator

indicating that the object it follows may be repeated any number

of times, including zero times.

What is a digit? In 4.1 the production

13

AMERICAN NATIONAL STANDARD X3.113-1987

digit -0/1/2/3/4/5/6/7/8/9

indicates that a digit is either a 0, a 1, . .., or a 9. The
slant is a syntactic operator meaning "or" and is used to
indicate that a metaname can be rewritten in one of several ways.
Since the digits are terminal metanames, our decipherment of the
syntax for a fraction comes to an end. The semantics in 4.1
identify the digits in terms of the characters they represent.

A question-mark is a syntactic operator like the asterisk,
indicating that the object it follows may be omitted. For
example, the production

exrad = E sign? integer

indicates that an exrad consists of the letter E or e followed by
an optional sign followed by an integer.

Parentheses may be used to group sequences of metanames
together. For example,

variable-list = variable (comma variable)*

defines a variable-list to consist of a variable followed by an
arbitrary number of other variables separated by commas. If we
want parentheses actually to appear in syntactic objects, rather
than just want to use them to describe syntactic objects, then we
indicate their presence by the metanames "left-parenthesis" and
"right-parenthesis . "

When several syntactic operators occur in the same
production, the following order of precedence is employed. The
operators "?" and "*" apply only to the word or parenthesized
expression they immediately follow. The operator "/" applies to
the sequence of words and expressions, separated by spaces, which
occur since the beginning of the entire expression, the last "/",
or the last unmatched left parenthesis. Thus, for example,

significand = integer period? / integer? fraction

is equivalent to

significand = (integer (period)?) /
((integer)? fraction)

Spaces in the syntax are used to separate terms in a
production from each other. Special conventions are observed
regarding spaces in BASIC programs (see 4.1).

14

AMERICAN NATIONAL STANDARD X3.113-1987

Some syntactic objects are defined by more than one
production. For example, in 5.2 we find

simple-variable > simple-numeric-variable

and in 6.2 we find

simple-variable > simple-string-variable.

Those two productions are equivalent to the single production
below (provided no other definition of simple-variable exists)

simple-variable = simple-numeric-variable /
simple-string-variable

In all cases, a greater-than-sign is used in place of an equals-
sign to indicate a multiple definition; such definitions are
equivalent to a single definition containing the various right-
hand sides separated by slants.

As an illustration of the method of syntax specification,
following is a description of the syntax of this method. The
terminal metanames occurring below are defined in 4.1.

1. production

2. metaname
3. metacharacter
4. spaces
5. syntax-expression

6. syntax-term
7. syntax-factor
8. syntax-primary

9. repetition

= metaname spaces
(equals-sign / greater-than-sign)
spaces syntax-expression

= lower-case-letter metacharacter*
= lower-case-letter / hyphen
= space* end-of-line? space* space
= syntax-term

(spaces? slant spaces? syntax-term)*
= syntax-factor (spaces syntax-factor)*
= syntax-primary repetition?
= metaname / digit digit* /

upper-case-letter upper-case-letter* /
left-parenthesis space*
syntax-expression space*
right-parenthesis

= asterisk / question-mark

3.2 Definitions. For the purpose of this standard, the
following terms have the meanings indicated.

BASIC, A term applied as a name to members of a special
class of languages that possess similar syntaxes and semantic

15

AMERICAN NATIONAL STANDARD X3.113-1987

meanings; acronym for Beginner's All-purpose Symbolic Instruction
Code .

batch-mode, The processing of programs in an environment
where no provision is made for user interaction.

can, The term used in a descriptive sense to indicate that
standard-conforming programs are allowed to contain certain
constructions and that standard-conforming implementations are
required to process such programs correctly.

end-of-line, The characters or indicators that identify the
termination of a line. Lines of three kinds may be identified in
BASIC: program lines, print lines, and input-reply lines.
End-of-lines may vary between the three cases and may also vary
depending upon context. Thus, for example, the end-of-line in an
input-reply may vary on a given system depending on the source
for input being used in interactive or batch mode.

Typical examples of end-of-line are carriage-return,
carriage-return line-feed, and end-of-record (such as end-of-
card).

error, A flaw in the syntax of a program that causes the
program to be incorrect.

exception, A circumstance arising in the course of executing
a program when an implementation recognizes that the semantic
rules of this standard cannot be followed or that some resource
constraint is about to be exceeded. Certain exceptions (nonfatal
exceptions) may be handled by automatic recovery procedures
specified in this standard. These and other exceptions may also
be handled by recovery procedures specified in the program (cf.
12.1). If no recovery procedure is given in this standard (fatal
exceptions) or if restrictions imposed by the hardware or
operating environment make it impossible to follow the given
procedure, and if no recovery procedure is specified in the
program, then the way in which the exception is handled depends
on the context. If the exception occurred in an invocation of a
function, picture, or subprogram, then the exception is
"propagated back" to the invoking statement of the invoking
program unit (see 12.1). If this propagation procedure reaches
the main-program or a parallel-section, or if the exception
occurred in the main-program or a parallel-section, then the
exception shall be handled by terminating the program or, in the
case of real-time-programs, the parallel-section, generating the
exception.

16

AMERICAN NATIONAL STANDARD X3.113-1987

external, With respect to procedures, this term refers to a
procedure lexically not contained within a larger program-unit.

identifier, A character string used to name a variable, an
array, an array-value, an exception-handler, a function, picture,
subprogram, or a program. In a real-time-program, identifiers
are also used to name parallel-sections, events, structures,
process-ports, data-ports, and message-ports.

interactive mode, The processing of programs in an
environment that permits the user to respond directly to the
actions of individual programs and to control the initiation and
termination of these programs.

internal, With respect to record-type, this term refers to
data representations such that both the type and exact value of
the written data are preserved and retrievable by subsequent read
operations. With respect to procedures, this term refers to a
procedure lexically contained within a larger program-unit and
sharing data with that unit.

keyword, A character string, usually with the spelling of a
commonly used or mnemonic word, that provides a distinctive
identification of a statement or a component of a statement of a
programming language.

Table 1 lists all the keywords defined in this standard.
Because of the modular nature of the standard, some keywords may
be required in certain modules, but not in others. Following
each keyword is a code indicating which modules contain that
keyword.

Table 1. BASIC Keywords

c = core
f = enhanced
g = graphics

files
r =
d =
e =

real-time
fixed decimal
editing

ACCESS c AND c ANGLE eg
AREA g ARITHMETIC cd ARRAY g
ASK eg AT ge BASE c
BEGIN c BREAK c CALL c
CASE cr CAUSE c CELLS g
CHAIN c CHOICE g CLEAR g
CLIP g CLOSE c COLLATE cf
COLOR g CONNECT r CONTINUE c
DATA c DATUM c DEBUG c

17

AMERICAN NATIONAL STANDARD X3.113-1987

DECIMAL c DECLARE cr DEF cd

DEGREES c DELAY r DELETE f e

DEVICE g DIM c DISCONNECT r

DISPLAY c DO c DRAW g
ELAPSED c ELSE c ELSEIF c

END cgr ERASABLE c ERASE c

EVENT r EXCEPTION c EXIT cgr

EXTERNAL cgd EXTRACT e FILETYPE c

FIRST e FIXED d FOR c

FROM r FUNCTION cd GET gr

GO c GOSUB c GOTO c

GRAPH g HANDLER c HEIGHT g
IF c IMAGE c IN cgr

INPUT cr INTERNAL c IS c

JUSTIFY g KEY f KEYED f

LAST e LENGTH c LET c

LIMIT g LINE eg LINES g
LIST e LOCATE g LOOP c

MARGIN c MAT cfg MESSAGE r

MISSING c MIX g MULTIPOINT g
NAME c NATIVE cf NEXT c

NOT c NUMERIC cf rd OF fr

OFF c ON cr OPEN c

OPTION c OR c ORGANIZATION c

OUT r OUTIN cr OUTPUT cr

PARACT r PARSTOP r PICTURE g
PIXEL g PLOT g POINT g
POINTER c POINTS g PORT r

PRINT c PROCESS r PROGRAM c

PROMPT c PUT r RADIANS c

RANDOMIZE c RANGE g READ c

RECEIVE r RECORD f RECSIZE c

RECTYPE c RELATIVE f REM c

RENUMBER e REST c RESTORE c

RETRY c RETURN c REWRITE f

SAME c SEIZE r SELECT cr

SEND r SEQUENTIAL c SET c

SETTER c SHARED r SIGNAL r

SIZE eg SKIP cf standard cf

START r STATUS g STEP ce

STOP c STREAM c STRING cf r

STRUCTURE r STYLE g SUB c

TAB c TEMPLATE f TEXT g
THEN c THERE c TIME r

TIMEOUT cr TO egre TRACE c

UNTIL c URGENCY r USE c

USING eg VALUE g VARIABLE c

VIEWPORT g WAIT r WHEN c

18

AMERICAN NATIONAL STANDARD X3.113-1987

WHILE c WINDOW g WITH cfg

WRITE c ZONEWIDTH c

Keywords may also be spelled using lowercase letters or

mixed uppercase and lowercase letters.

line, Two types of lines are described in the standard, a

physical line and a logical line. A physical line is an ordered

sequence of characters that terminates with an end-of-line. A

physical line starts with a line-number or with an ampersand. A

logical line consists of a line-number followed by an ordered

sequence of text in which each line-continuation has logically

been replaced by a space.

machine infinitesimal, The smallest positive value (other

than zero) that can be represented and manipulated by a BASIC

implementation.

may, The term used in a permissive sense to indicate that a

standard-conforming implementation may or may not provide a

particular feature.

native, With respect to record-type, this term refers to a

record with a specified structure for the fields within the

record, so as to be compatible with records generated by other

languages on the same system. With respect to (numeric or

string) data, this term refers to data for which certain semantic

rules are left implementation-defined (e.g., collating sequence,

precision) so as to be directly implementable on the host

hardware.

overflow. With respect to numeric operations, the term that

is applied to the condition that exists when a prior operation

has attempted to generate a result whose magnitude exceeds MAXNUM

(cf. 5.4.4), or that exceeds the maximum value that can be

represented by the declared format of a fixed point variable or

array.

With respect to string operations, the term that is applied

to the condition that exists when a prior operation has attempted

to generate a result that has more characters than can be

contained in a string of maximal length, as determined by the

language processor.

With respect to string assignment, the term that is applied

to the condition that exists when a prior operation has attempted

19

AMERICAN NATIONAL STANDARD X3.113-1987

to assign a value that is longer than the declared or default

maximum of a string-variable or string-defined-function.

print zone, A contiguous set of character positions in a

printed output line which may contain an evaluated print-

statement element.

program unit, A self-contained part of a BASIC program

consisting either of the main-program, which is the sequence of

lines up to and including the line containing an END statement,

or of an external-sub-def, external-function-def, external-

picture-def, or parallel-section.

reserved word, A character string whose usage as a routine-,

string-, or numeric-identifier is forbidden in a BASIC program.

These words are:

(1) The no-argument supplied function names: DATE, EXLINE,

EXTYPE, MAXNUM, PI, RND, TIME, TRANSFORM, DATE$, and TIME$

(2) The identifiers used in array-values: CON, IDN, ZER,

and NUL$

(3) The keywords: NOT, ELSE, PRINT, and REM

rounding, The process by which a representation of a value

with lower precision is generated from a representation of higher

precision taking into account the value of that portion of the

original number that is to be omitted. For example, rounding X

to the nearest integer may be accomplished by INT(X+0.5) (cf.

5.4).

shall, The term that is used in an imperative sense to

indicate that a program is required to be constructed, or that an

implementation is required to act, as specified in order to meet

the constraints of standard conformance.

significant digits, The contiguous sequence of digits

between the high-order nonzero digit and the low-order digit,

without regard for the location of the radix point. Commonly, in

a normalized floating point internal representation, only the

significant digits of a representation are maintained in the

significand. In fixed-point representation, the low order digit

is the rightmost one explicitly specified, and nonsignificant

high order digits may be maintained.

truncation, The process by which a representation of a value

with lower precision is generated from a representation of higher

20

AMERICAN NATIONAL STANDARD X3.113-1987

precision by merely deleting the unwanted low-order digits of the

original representation.

underflow. With respect to numeric operations, the term

applied to the condition that exists when a prior operation has

attempted to generate a result, other than zero, that is less in

magnitude than machine infinitesimal.

21

AMERICAN NATIONAL STANDARD X3.113-1987

4. Program Elements

A BASIC program is a sequence of lines containing statements.

Each line is itself a sequence of characters.

4.1 Characters

4.1.1 General Description

The character set for BASIC shall be the character set as

described in ANSI X3.4-1986 (ASCII).

4.1.2 Syntax

1. character

2. quoted-string-character

3 . non-quote-character

4. double-quote

5. unquoted-string-character

6. plain-string-character

7. digit

8. letter

9. upper-case-letter

10. lower-case-letter

11. other-character

- quotation-mark /

non-quote-character

= double-quote /

non-quote-character

= ampersand / apostrophe /

asterisk / circumflex-accent /

colon / comma / dollar-sign /

equals-sign /

exclamation-point /

greater-than-sign /

left-parenthesis /

less~than~sign / number-sign /

percent-sign / question-mark /

right-parenthesis / semicolon /

slant / underline /

unquoted-string-character

= quotation-mark quotation-mark

= space / plain-string-character

- digit / letter / period /

pius-sign / minus-sign

- 0/1/2/3/4/5/6/7/8/9

= upper-case-letter /

lower-case-letter

= a/b/c/d/e/f/g/h/i/j/k/l/m/

n/o/p/q/r/s/t/u/v/w/x/y/z

= a/b/c/d/e/f/g/h/i/j/k/l/m/

n/o/p/q/r/s/t/u/v/w/x/y/z

- [implementation-defined]

The syntax as described generates programs that contain no

spaces other than those occurring in remark-strings, in certain

quoted-strings, unquoted-strings, and literal-strings, or where

the presence of a space is explicitly indicated by the metaname

space.

22

AMERICAN NATIONAL STANDARD X3.113-1987

Special conventions shall be observed regarding spaces.

With the following exceptions, spaces may occur anywhere in a

BASIC program without affecting the execution of that program and

may be used to improve the appearance and readability of the

program. Spaces shall not appear:

(1) Immediately preceding the line-number of a line

(2) Within line-numbers

(3) Within keywords

(4) Within identifiers

(5) Within numeric-constants

(6) Within multicharacter relation symbols

In addition, spaces that appear in quoted-strings, unquoted-

strings, and format-strings shall be significant (though spaces

that precede or follow an unquoted-string are not part of that

string).

All keywords in a program, when used as such, shall be

preceded and followed by some character other than a letter,

digit, underline, or dollar-sign. A keyword may also be followed

by an end-of-line.

4.1.3 Examples

None.

4.1.4 Semantics

The letters shall be the set of upper-case and lower-case

Roman letters contained in the ASCII character set in positions

4/l through 5/10 and 6/1 through 7/lQ, respectively.

The digits shall be the set of Arabic digits contained in

the ASCII, character set in positions 3/0 through 3/9.

The remaining characters shall correspond to the remaining

graphic characters in positions 2/0 through 2/15, 3/10 through

3/15, 5/14, and 5/15 of the ASCII character set.

The names of the characters are specified in Table 1. Table

1 shall apply when the standard collating sequence is in effect,

either by default or by explicit use of a COLLATE option (cf.

6.4, 6.6, and 8.1). The coding for the native collating sequence

shall be implementation-defined.

All characters other than letters denote themselves.

Letters denote themselves within quoted-strings, unquoted-

23

AMERICAN NATIONAL STANDARD X3.113-1987

strings, and line-input-replies. Corresponding upper-case- and

lower-case-letters shall be equivalent when used in identifiers

and keywords. Quoted-string-characters also denote themselves,

except for the double-quote, which denotes one occurrence of the

quotation-mark in the value of the string.

4.1.5 Exceptions

None .

4.1.6 Remarks

Other-characters may be defined by an implementation to be

part of the character set for BASIC. These characters may be

used in strings and may be accepted as characters in data

supplied in response to a request for input or generated as the

value of the CHR$ function (cf. 6.4). The effects of these

other-characters are implementation-defined.

Programs written using other-characters (except for end-of-

line characters) do not conform to this standard.

24

AMERICAN NATIONAL STANDARD X3.113-1987

4.2 Programs, Lines, and Blocks

4.2.1 General Description

A BASIC program is a sequence of lines. Each line contains

a unique line-number that facilitates program editing and serves

as a label for the statement contained in that line.

A BASIC program is divided logically into a number of

program-units. The first of these is the main-program, which is

terminated by an end-line. Following the main-program may be

zero or more external-sub-defs, external-function-defs, or

external-picture-defs. A BASIC program may contain a series of

parallel-sections, each of which is a separate program-unit.

Certain logical groupings of lines within a BASIC program

are called blocks.

4.2.2 Syntax

1.

2 .

3.

4.

5 .

6 .

7.

8.
9 .

10.

11.

12.

program >

program-name-line =

program-name -

main-program =

unit-block =

internal-proc-def >

block >

statement-line =

line-number =

statement >

declarative-statement >

imperative-statement >

program-name-line? main-program

procedure-part*

line-number PROGRAM program-name

function-parm-list? tail

routine-identifier

unit-block* end-line

internal-proc-def / block

internal-function-def /

internal-sub-def /

detached-handler

statement-line / loop /

if-block / select-block /

image-line / protection-block

line-number statement tail

digit digit*

declarative-statement /

imperative-statement /

conditional-statement

data-statement /

declare-statement /

dimension-statement /

null-statement /

option-statement / remark-statement

array-assignment /

array-input-statement /

array-line-input-statement /

array-print-statement /

array-read-statement /

25

AMERICAN NATIONAL STANDARD X3.113-1987

13 .

14.

15.

16.

17.

18.

19.

20.
21.

22 .

array-write-statement /
ask-statement /
break-statement / call-statement /
cause-statement / chain-statement /
close-statement / debug-statement /
erase-statement /
exit-do-statement /
exit-tor-statement /
exit-function-statement /
exit-handler-statement /
exit-sub-statement /
gosub-statement / goto-statement /
handler-return-statement /
input-statement / let-statement /
line-input-statement /
numeric-function-let-statement /
open-statement / print-statement /
randomize-statement /
read-statement / restore-statement /
return-statement / set-statement /
stop-statement /
string-function-let-statement /
trace-statement / write-statement

stop-statement = STOP
conditional-statement = if-statement /

on-gosub-statement /
on-goto-statement

- tail-comment? end-of-line
= [implementation-defined]
- line-number end-statement tail
= END

- remark-line* procedure
> external-function-def /

externa1-sub-def
= line-number

(null-statement / remark-statement)
end-of-line

> case-line / case-else-line /
do-line / else-line /
elseif-then-line /
end-function-line /
end-handler-line /
end-if-line / end-line /
end-select-line / end-sub-line /
end-when-line /
external-function-line /
external-sub-line /
for-line / handler-line /

tail

end-of-line

end-line

end-statement

procedure-part

procedure

remark-line

line

26

AMERICAN NATIONAL STANDARD X3.113-1987

internal-def-line /
internal-function-line /
internal-sub-line /
if-then-line / image-line /
loop-line / next-line /
program-name-line / remark-line /
select-line / statement-line /
use-line / when-line /
when-use-name-line

23. program-unit > main-program / procedure
24. line-continuation = ampersand space* tail ampersand

A program shall be composed of a sequence of lines. In the
case of a non real-time-program, exactly one of these lines shall
be an end-line; the lines up to and including this end-line
constitute the main-program.

Line-number zero is not allowed; leading zeroes shall have
no effect. Lines shall occur in ascending line-number order (cf.
Section 16). All references to line-numbers within a program-
unit shall be to line-numbers of lines within that program-unit.
The number of digits in a line-number shall not exceed 5. The
value of a line-number shall not exceed 50000.

The manner in which the end of a line is detected is
determined by the implementation; e.g., the end-of-line may be a
carriage-return character, a carriage-return character followed
by a line-feed character, or the end of a physical record.

A physical line in a program shall contain at most 132
characters before each end-of-line indicator.

At any place in which a space may be used, except in quoted-
strings, unquoted-strings, literal-strings, and remark-strings
(cf. 4.1 and 4.3), a line-continuation may be substituted for a
space with no effect other than that of the space it replaces.

Parameters in the program-name-line shall not be explicitly
dimensioned or declared in the main-program, or first parallel-
section of a real-time-program (see 14.1).

4 .2.3 Examples

2. 100 PROGRAM Graphit & » This program draws
& (x, & I x is x-coordinate

15 .
&
999

y)
END

1 y is y-coordinate

27

AMERICAN NATIONAL STANDARD X3.113-1987

4.2.4 Semantics

The program-name-line is the operand of the chain-statement

(cf. 9.3). The relationship between the program-name and the

program-designator in a program executing a chain-statement is

implementation-defined. Parameters in the program-name-line are

evaluated as described in 9.1. Their scope is the main-program

or the lexically first parallel-section (see 14.1). For a

program executed in isolation, the program-name has no effect.

The effect of a parameter-list in a program-name-line for a

program executed in isolation is implementation-defined.

Lines in a program shall be executed in sequential order,

starting with the first line, until

(1) Some other action is dictated by execution of a line

(2) An exception occurs (unless it is a nonfatal exception

that is not handled by a user defined exception-handler)

(3) A chain-statement is executed

(4) A stop-statement or end-statement is executed

The end-statement shall serve both to mark the physical end

of the main-program and to terminate execution of the program

when encountered.

Execution of a stop-statement shall also cause termination

of execution of the program.

4.2.5 Exceptions

None .

4.2.6 Remarks

References to nonexistent line-numbers in a program-unit are

syntax errors. Implementations may therefore treat them as

exceptions, if they are documented as such.

28

AMERICAN NATIONAL STANDARD X3.113-1987

4.3 Program Annotation

4.3.1 General Description

BASIC programs may be annotated by comments at the end of

program lines or by separate

4.3.2 Syntax

1. remark-statement =

2. remark-string =

3. null-statement =

4. tail-comment =

Line-continuations shall

4.3.3 Examples

1. REM FINAL CHECK

4. ! COMPUTE AVERAGE

4.3.4 Semantics

emark-statements.

REM remark-string

character*

tail-comment

exclamation-point remark-string

not occur in remark-strings.

If the execution of a program reaches a line containing a

remark-statement or null-statement, then it shall proceed to the

next line with no other effect.

A tail-comment has no effect upon the execution of the line

in which it occurs. The remark-string in the tail-comment serves

solely as a comment about the line.

4.3.5 Exceptions

None .

4.3.6 Remarks

None.

29

AMERICAN NATIONAL STANDARD X3.113-1987

4.4 Identifiers

4.4.1 General Description

Identifiers are used to name variables, arrays, array-

values, functions, programs, subprograms, exception-handlers, and

pictures. In a real-time-program, they are also used to name

parallel-sections, events, structures, and ports (cf. Section

14).

4.4.2 Syntax

1. identifier

2. numeric-identifier

3. identifier-character

4. string-identifier

5. routine-identifier

numeric-identifier /

string-identifier /

routine-identifier

letter identifier-character*

letter / digit / underline

letter identifier-character*

dollar-sign

letter identifier-character*

An identifier shall contain at most 31 characters, including

the dollar-sign in the case of a string-identifier.

A given numeric-identifier may name a simple-numeric-

variable, a one-, two-, or three-dimensional numeric-array, a

numeric-function, or a numeric-array-value, but not more than one

of these in a program-unit. Likewise, a given string-identifier

may name a simple-string-variable, a one-, two-, or three-

dimensional string-array, a string-function, or a string-array-

value, but not more than one of these in a program-unit.

A given identifier may name an internal-sub-def, an

internal-function-def, a detached-handler, or an internal-

picture-def, but not more than one of these in a program-unit.

A given routine-identifier shall not name more than one of

an external-function-def, an external-sub-def, an external-

picture-def, a main-program, or a parallel-section in a program.

A numeric-identifier that names an external-function-def may

not be used as a routine-identifier.

The names of the no-argument supplied functions or array-

values CON, DATE, EXLINE, EXTYPE, IDN, MAXNUM, PI, RND, TIME,
TRANSFORM, and ZER shall not be used as numeric-identifiers to

name any other entity. The names of the no-argument supplied

functions or array-values DATE$, NUL$, and TIME? shall not be

30

AMERICAN NATIONAL STANDARD X3.113-1987

used as string-identifiers to name any other entity. The
keywords NOT, ELSE, PRINT, and REM shall not be used as
identifiers.

4.4.3 Examples

2. X
sum

4. A$
last__name$

5. INVERT

4.4.4 Semantics

Each program-unit is a distinct entity in that identifiers
used to name variables, arrays, detached-handlers, internal-
function-defs, internal-sub-defs, or internal-picture-defs (see
13.5) defined within program-units shall be local to each
invocation of the program-unit in which they occur (i.e., they
shall name different objects in different program-units and in
different invocations of the same program-unit). Identifiers
used to name supplied-functions or program-units, however, shall
be global to the entire program (i.e., they shall name the same
object wherever they occur).

If the name of an implementation-supplied function or the
keyword TAB is implicitly or explicitly defined or declared as
the identifier of a user-defined function, array, or variable,
then the defined or declared interpretation of the identifier
shall override the interpretation specified by the standard
within the scope of the definition or declaration. Therefore,
within that scope, the implementation-supplied function or the
tab-call shall be unavailable.

Within any program-unit, identifiers that differ only in the
cases of the letters they contain shall denote the same object
(e.g., XI identifies the same object as xl). Identifiers that
differ in any other respect shall denote different objects.

4.4.5 Exceptions

None.

4.4.6 Remarks

No implementation-defined enhancement to this standard may
extend the list of words unavailable for use as simple-variables.
Since all arrays shall be declared (cf. 7.1), and since all

31

AMERICAN NATIONAL STANDARD X3.113-1987

defined-functions shall be declared or defined in the program-
unit in which they are referenced, implementations may supply
built-in functions other than those specified in this standard
provided that any declaration for such identifiers within a
program overrides the implementation-supplied interpretation.
Note, however, that in some cases the use of a parameterless
function supplied by an implementation as an enhancement would be
syntactically indistinguishable from a variable having the same
name. Therefore, implementations that provide such functions
shall also provide a syntactic means for identifying them as
functions. Examples of such syntax are (1) a requirement to
declare such functions explicitly in any program-unit where they
are used, or (2) requiring the use of empty parentheses (e.g.,
"NEWFUNCTION()") with references to such functions.

An operating system may impose additional restrictions on
the length and form of identifiers for procedures that are
compiled independently of the main-program.

A supplied-function may be overridden by defining a user-
defined function or simple-variable with the same name. An
identifier may have the same spelling as a keyword (other than
PRINT, ELSE, REM, or NOT).

32

AMERICAN NATIONAL STANDARD X3.113-1987

5. Numbers

Numbers constitute one of two primitive data types in BASIC (the

other is strings). Constants, variables, and implementation-

supplied functions, which can be used to form expressions, are

associated with numbers.

5.1 Numeric Constants

5.1.1 General Description

Numeric-constants denote scalar numeric values. A numeric-

constant is a decimal representation, in positional notation, of

a number. There are four general syntactic forms of numeric-

constants :

(1) Implicit point unsealed representation sd

(2) Explicit point unsealed representation sd

(3) Explicit point scaled representation sd

(4) Implicit point scaled representation sd

.d

.drd...d

.drd...dEsd...d

.dEsd...d

where d is a digit, r is a period, s is an optional sign, and E

is the explicit character E or e. A numeric-constant not

preceded by a sign is assumed to be positive.

5.1.2 Syntax

1. constant > numeric-constant

2. numeric-constant — sign? numeric-rep

3 . sign = plus-sign / minus-sign

4. numeric-rep - significand exrad?

5. significand = integer period? / integer?

6. integer digit digit*

7. fraction = period integer

8. exrad = E sign? integer

5.1.3 Examples

2 . -21.

4. 1E10

5e-l

. 4E+1

5 . 500.

1.2

7. .255

33

AMERICAN NATIONAL STANDARD X3.113-1987

5.1.4 Semantics

The value of a numeric-constant is the number represented by
that constant. "E" and "e" stand for "times ten to the power";
if no sign follows the symbols E or e, then a plus-sign is
understood.

A program can contain numeric-constants that have an
arbitrary number of digits. An implementation shall retain
either the exact value of a numeric-constant, or that value
rounded to an implementation-defined precision. The implemen¬
tation-defined precision for numeric-constants shall be not less
than ten or six significant decimal digits, depending upon
whether the arithmetic option in force is DECIMAL or NATIVE
respectively (cf. 5.6). Numeric-constants can also have an
arbitrary number of digits in the exrad, though nonzero constants
whose magnitude is outside an implementation-defined range may be
treated as exceptions (cf. 5.6). Nonzero constants whose
magnitudes are less than machine infinitesimal shall be be
replaced by zero, while constants whose magnitudes are larger
than MAXNUM shall be reported as causing an overflow.

5.1.5 Exceptions

The evaluation of a numeric-constant causes an overflow
(1001, fatal).

5.1.6 Remarks

It is recommended that implementations report constants
whose magnitudes are less than machine infinitesimal as
underflows (1501, nonfatal: replace by zero and continue) to
permit interception by exception handlers.

Although this standard contains no provision for named
constants, their effect can be achieved through no-argument
defined-functions (cf. 9.1).

34

AMERICAN NATIONAL STANDARD X3.113-1987

5.2 Numeric Variables

5.2.1 General Description

Numeric-variables may be either simple-numeric-variables or

references to elements of numeric-arrays.

5.2.2 Syntax

1. variable > numeric-variable

2. numeric-variable — simple-numeric-variable /

numeric-array-element

3. simple-numeric-variable - numeric-identifier

4. numeric-array-element - numeric-array subscript-part

5. numeric-array = numeric-identifier

6 . subscript-part left-parenthesis subscript

(comma subscript)*

right-parenthesis

7. subscript - index

8. index numeric-expression

9. simple-variable > simple-numeric-variable

10. array-name > numeric-array

two,

The number of subscripts

or three.

in a subscript-part shall be one,

5.2.3 Examples

3. X

sum

4. V(4)

table(i,j+1)

5.2.4 Semantics

At any instant in the execution of a program, a numeric-

variable is associated with a single numeric value. The value

associated with a numeric-variable may be changed by the

execution of statements in the program.

Simple-numeric-variables are declared implicitly through

their appearance in a program-unit. The scope of a numeric-

variable shall be the program-unit in which it appears, unless it

is a parameter of an internal-function-def (cf. 9.1).

An index is a numeric-expression whose value shall be

rounded to the nearest integer; the rounded value of X is defined

to be INT(X+.5).

35

AMERICAN NATIONAL STANDARD X3.113-1987

A numeric-array-element is called a subscripted numeric-
variable and refers to the element in the array selected by the
value(s) of the subscript(s). The acceptable range of values
shall be explicitly declared in a dimension-statement or a
declare-statement (cf. 7.1). Subscripts shall have values within
the appropriate range.

At the initiation of execution the values associated with
all numeric-variables shall be implementation-defined.

5.2.5 Exceptions

A subscript is not in the range of the declared bounds
(2001, fatal).

5.2.6 Remarks

Since initialization of variables is not specified, and
hence may vary from implementation to implementation, programs
that are intended to be transportable should explicitly assign a
value to each variable before any expression involving that
variable is evaluated.

There are many commonly used alternatives for associating
implementation-defined initial values with variables; it is
recommended that all variables be recognizably undefined in the
sense that an exception will result from any attempt to access
the value of any variable before that variable is explicitly
assigned a value (3101, nonfatal: supply an implementation-
defined value and continue).

36

AMERICAN NATIONAL STANDARD X3.113-1987

5.3 Numeric Expressions

5.3.1 General Description

Numeric-expressions may be constructed from numeric-
variables, numeric-reps, and numeric-function-refs using the
operations of addition, subtraction, multiplication, division,
and exponentiation (i.e., raising to a power).

5.3.2 Syntax

1.
2.
3 .
4.
5 .

6 .
7.

8.

9.
10.
11.

expression >
numeric-expression =
term =
factor =
primary =

numeric-function-ref >
numeric-function =

function-arg-list =

function-argument
actual-array
multiplier

numeric-expression
sign? term (sign term)*
factor (multiplier factor)*
primary (circumflex-accent primary)*
numeric-rep / numeric-variable /
numeric-function-ref /
left-parenthesis numeric-expression
right-parenthesis
numeric-function function-arg-list?
numeric-defined-function /
numeric-supplied-function
left-parenthesis function-argument
(comma function-argument)*
right-parenthesis
expression / actual-array
array-name
asterisk / slant

The number and types of arguments in a numeric-function-ref
shall agree with the number and types of corresponding parameters
in the definition of the numeric-function. An actual-array shall
have the same number of dimensions as the corresponding
parameter.

Whenever numeric arguments are passed to an external-
function-def, the ARITHMETIC options in effect for the external-
function-def and the invoking program-unit shall agree.

Each numeric-function referenced in an expression within a
program-unit shall either be implementation-supplied, or shall be
defined in an internal-function-def or declared in a declare-
statement occurring in a lower-numbered line, within the same
program-unit, than the first reference to that numeric-function.

37

AMERICAN NATIONAL STANDARD X3.113-1987

5.3.3 Examples

2. 3*X - Y~2
cost*quantity + overhead

4. 2~(-X)
5. SQR(X*2+Y* 2)
6. value(X,Y,a$)

minimum(Xvector)

5.3.4 Semantics

The formation and evaluation of numeric-expressions follows
the normal algebraic rules. The symbols circumflex-accent (~),
asterisk (*), slant (/), plus-sign (+), and minus-sign (-)
represent the operations of exponentiation, multiplication,
division, addition, and subtraction or negation, respectively.
Unless parentheses dictate otherwise, exponentiations shall be
performed first, then multiplications and divisions, and finally
additions, subtractions, and negations. In the absence of
parentheses, operations of the same precedence shall be evaluated
from left to right. Thus A-B-C shall be interpreted as (A-B)-C;

A~B~C, as (A~B)"C; A/B/C, as (A/B)/C; -A+B as (~A)+B; and -A^B as
-(A~B).

For those mathematical operators that are associative,
commutative, or both, full use of these properties may be made in
order to revise the order of evaluation of the numeric-
expression, except where constrained by the use of parentheses.

If an underflow occurs in the evaluation of a numeric-
expression, then the value generated by the operation that
resulted in the underflow shall be replaced by zero.

0A0 is defined to be 1.

A numeric-function-ref is a notation for the invocation of a
predefined algorithm, into which the argument values, if any,
shall be substituted for the parameters (cf. 5.4, 6.4, and 9.1)
used in the function-def. The result of evaluating a numeric-
function, achieved by the execution of the defining algorithm,
shall be a scalar numeric value, which replaces the numeric-
function-ref in the numeric-expression.

5.3.5 Exceptions

Evaluation of a numeric-expression results in division by
zero (3001, fatal).

38

AMERICAN NATIONAL STANDARD X3.113-1987

Evaluation of a numeric-expression results in an overflow
(1002, fatal).

Evaluation of the operation of exponentiation results in a
negative number being raised to a non-integer power (3002,
fatal).

Evaluation of the operation of exponentiation results in
zero being raised to a negative power (3003, fatal).

5.3.6 Remarks

The accuracy with which the evaluation of a numeric-
expression takes place may vary from implementation to
implementation, subject to the constraints of 5.6.

It is recommended that implementations report underflow as
an exception (.1.502, nonfatal: replace by zero and continue) to
permit interception by exception handlers.

Implementations may evaluate primaries and operations within
a numeric-expression in any order that is consistent with the
semantics of 5.3.4. (Of course, an operation must be evaluated
after its operands.) For example, in the expression "A+B+C+D*E",
the primaries and additions may be evaluated in any order.
However, the multiplication must be performed before the addition
implied by the third plus-sign, since the product "D*E" is one of
the operands of that addition.

39

AMERICAN NATIONAL STANDARD X3.113-1987

5.4 Implementation-Supplied Numeric Functions

5.4.1 General Description

Predefined algorithms are supplied by the implementation for
the evaluation of commonly used numeric functions. Additional
functions related to other features of this standard are defined
in 6.4, 7.1, 7.2, 12.1, 13.5, and 14.7.

5.4.2 Syntax

1. numeric-supplied-function > ABS / ACOS / ANGLE / ASIN /
ATN / CEIL / COS / COSH / COT /
CSC / DATE / DEG / EPS / EXP /
FP / MAXNUM / INT / IP / LOG /
LOGIO / LOG2 / MAX / MIN / MOD /
PI / RAD / REMAINDER / RND /
ROUND / SEC / SGN / SIN / SINH /
SQR / TAN / TANH / TIME /
TRUNCATE

2. randomize-statement = RANDOMIZE

5.4.3 Examples

2. RANDOMIZE

5.4.4 Semantics

The values of the numeric-supplied functions, as well as the
number of arguments required for each function, shall be as
described below. In all cases, X and Y stand for numeric-
expressions, and N stands for an index, i.e., the rounded integer
value of a numeric-expression. Each function accepts numeric
arguments within the range of the negative number with the
largest magnitude to the largest positive number, except where
noted. For functions that return a value in angle measure (ACOS,
ANGLE, ASIN, and ATN), the value shall be in radians unless
OPTION ANGLE DEGREES is in effect (cf. 5.6), when the value shall
be in degrees. In the semantics below, "pi" (lower-case) stands
for the true value of that constant.

Function Function Value

ABS(X) The absolute value of X.

40

AMERICAN NATIONAL STANDARD X3.113-1987

ACOS(X) The arccosine of X in radians or degrees
(cf. 5.6), where 0 < ACOS(X) < pi;

X shall be in the range -1 < X < 1.

ANGLE(X,Y) The angle in radians or degrees (cf. 5.6) between
the positive x-axis and the vector joining the
origin to the point with coordinates (X,Y),
where -pi < ANGLE(X,Y) < pi. X and Y shall not
both be 0. Note that counterclockwise is
positive (e.g., ANGLE(1,1) = 45 degrees).

ASIN(X) The arcsine of X in radians or degrees (cf. 5.6),
where -pi/2 < ASIN(X) < pi/2; X shall be in
the range -1 < X < 1.

ATN(X) The arctangent of X in radians or degrees (cf. 5.6),
i.e., the angle whose tangent is X,
where -(pi/2) < ATN(X) < (pi/2).

CEIL(X) The smallest integer not less than X.

COS(X) The cosine of X, where X is in radians or
degrees (cf. 5.6).

COSH(X) The hyperbolic cosine of X.

COT(X) The cotangent of X, where X is in radians or
degrees (cf. 5.6).

CSC(X) The cosecant of X, where X is in radians or
degrees (cf. 5.6).

DATE The current date in decimal form YYDDD, where YY are
the last two digits of the year and DDD is the
ordinal number of the current day of the year (e.g.,
the value of DATE on May 9, 1977 was 77129). If
there is no calendar available, then the value of
DATE shall be -1.

DEG(X) The number of degrees in X radians.

EPS(X) The maximum of (X-X', X"-X, sigma) where X' and X"
are the predecessor and successor of X and sigma is
the smallest positive value representable. If X has
no predecessor, then X' is X; if X has no successor,
then X" is X. Note EPS(O) is the smallest positive
number representable by the implementation, and is
therefore implementation-defined. Note also that

41

AMERICAN NATIONAL STANDARD X3.113-1987

EPS may produce different results for different
arithmetic options (cf. 5.6).

EXP(X) The exponential of X, i.e., the value of the base of
natural logarithms (e = 2.71828...) raised to the
power X; if EXP(X) is less than machine infinites¬
imal, then its value shall be replaced by zero.

FP (X) The fractional part of X, i.e., X - IP(X).

INT(X) The largest integer not greater than X; e.g.,

INT(1.3) = 1 and’INT(-1.3) = ~2.

IP (X) The integer part of X, i.e., SGN(X)*INT(ABS(X)).

LOG(X) The natural logarithm of X; X shall be greater than
zero.

LOG10(X) The common logarithm of X; X shall be greater than
zero.

LOG2(X) The base 2 logarithm of X; X shall be greater than
zero.

MAX(X,Y) The larger (algebraically) of X and Y.

MAXNUM The largest finite positive number representable and
manipulable by the implementation; implementation-
defined. MAXNUM may represent different numbers
for different arithmetic options (cf. 5.6).

MIN(X,Y) The smaller (algebraically) of X and Y.

MOD(X,Y) X modulo Y, i.e., X-Y*INT(X/Y). Y shall not equal
zero.

PI The constant 3.14159..., which is the ratio of
the circumference of a circle to its diameter.

RAD(X) The number of radians in X degrees.

REMAINDER(X,Y) The remainder function, i.e . , X-Y*IP(X/Y) .

RND

Y shall not equal zero.

The next pseudorandom number in an implementation-
defined sequence of pseudorandom numbers uniformly
distributed in the range 0 < RND < 1.

42

AMERICAN NATIONAL STANDARD X3.113-1987

ROUND(X,N) The value of X rounded to N decimal digits to the

right of the decimal point (or -N digits to the left

if N < 0); i.e., INT(X*10~N+.5)/10AN.

SEC(X) The secant of X, where X is in radians or degrees

(cf. 5.6).

SGN(X) The sign of X: -1 if X < 0, 0 if X = 0,

and +1 if X > 0.

SIN(X) The sine of X, where X is in radians or

degrees (cf. 5.6).

SINH(X) The hyperbolic sine of X.

SQR(X) The nonnegative square root of X; X shall be

nonnegative.

TAN(X) The tangent of X, where X is in radians or

degrees (cf. 5.6).

TANH(X) The hyperbolic tangent of X.

TIME The time elapsed since the previous midnight,

expressed in seconds; e.g., the value of TIME

at 11:15 AM is 40500. If there is no clock

available, then the value of TIME shall be -1.

The value of TIME at midnight shall be zero

(not 86400) .

TRUNCATE(X,N) The value of X truncated to N decimal digits

to the right of the decimal point (or -N digits

to the left if N < 0); i.e., IP(X*10~N)/10~N.

If OPTION ANGLE DEGREES is in effect, the term "in radians

or degrees" in the above list of function values shall mean

degrees. If OPTION ANGLE RADIANS is in effect, the term "in

radians or degrees" shall mean radians. The accuracy require¬

ments (cf. 5.6.4) for the periodic trigonometric functions SIN,

COS, TAN, SEC, CSC, COT are limited to providing full accuracy of

m+1 decimal digits only for arguments in the range of -2*pi to

2*pi. Loss of accuracy outside this range is limited to the

result of loss of precision in performing those range reductions

on arguments necessary to compute values of these functions,

i.e., "SIN (x)" may be evaluated as if it were written "SIN (MOD

(x, 2*pi))" and similarly for the other functions.

43

AMERICAN NATIONAL STANDARD X3.113-1987

If no randomize-statement is executed, then the RND function
shall generate the same sequence of pseudo-random numbers each
time a program is run. Execution of a randomize-statement shall
override this implementation-supplied sequence of pseudorandom
numbers, generating a new (and unpredictable) starting point for
the list of pseudorandom numbers used subsequently by the RND
function. The sequence of pseudorandom numbers shall be global
to the entire program, not local to individual program-units.

5.4.5 Exceptions

The value of the argument of the LOG, LOGIO, or L0G2
function is zero or negative (3004, fatal).

The value of the argument of the SQR function is negative
(3005, fatal).

The magnitude of the value of a numeric-supplied-function is
larger than MAXNUM or is mathematical infinity (1003, fatal).

The value of the second argument of the MOD or REMAINDER
function is zero (3006, fatal).

The value of the argument of the ACOS or ASIN function is
less than -1 or greater than 1 (3007, fatal).

An attempt is made to evaluate ANGLE(0,0) (3008, fatal).

5.4.6 Remarks

In the case of implementations that do not have access to a
randomizing device such as a real-time clock, the randomize-
statement may be implemented by means of an interaction with the
user .

This standard requires that overflows be reported only for
the final values of numeric-supplied-functions; exceptions that
occur in the evaluation of these functions need not be reported,
though implementations shall take appropriate actions in the
event of such exceptions to insure the accuracy of the final
values. When overflows are reported for the final values of
numeric-supplied-functions, it is recommended that the name of
the function generating the overflow be reported also.

It is recommended that, if the magnitude of the value of a
numeric-supplied-function is nonzero, but less than machine
infinitesimal, implementations report this as an underflow, set

44

AMERICAN NATIONAL STANDARD X3.113-1987

the value to zero (1503, nonfatal: return zero and continue) to

permit interception by exception handlers.

The time-zone used for DATE and TIME is implementation-

defined .

It may not be possible, for reasons of overflow, to express

the year in full format in DATE. When this full format is

needed, the function DATE? should be used.

45

AMERICAN NATIONAL STANDARD X3.113-1987

5.5 Numeric Assignment Statements

5.5.1 General Description

A let-statement provides for the simultaneous assignment of

the computed value of a numeric-expression to a list of numeric-

variables .

5.5.2 Syntax

1. let-statement > numeric-let-statement

2. numeric-let-statement = LET numeric-variable-list

equals-sign numeric-expression

3. numeric-variable-list = numeric-variable

(comma numeric-variable)*

5.5.3 Examples

2. LET P = 3.14159

LET A(X,3) = SIN(X)*Y + 1

LET A, Y(I), Z = I + 1

LET T(I,J), I, J = I + J

5.5.4 Semantics

The subscripts, if any, of variables in the numeric-

variable-list shall be evaluated in sequence from left to right.

Next the numeric-expression on the right of the equals-sign shall

be evaluated (cf. 5.3). Finally, the value of that numeric-

expression, if necessary rounded to the nearest value that can be

retained by the variable, shall be assigned to the numeric-

variables in the numeric-variable-list in order from left to

right.

5.5.5 Exceptions

None .

5.5.6 Remarks

Note that: LET A = 1

LET A, B(A) =

is not equivalent to: LET A = 1

LET A = 2

LET B(A) = 2

46

AMERICAN NATIONAL STANDARD X3.113-1987

5.6 Numeric Arithmetic and Angle

5.6.1 General Description

Unless specified otherwise, the values of all numeric-

variables shall behave logically as floating-point decimal

numbers with an implementation-defined precision of at least ten

decimal digits. By use of an option-statement, a program may

choose to take advantage of a more efficient, but possibly less

accurate, representation for numeric values.

Unless specified otherwise, the trigonometric functions (cf.

5.4) and the graphical transform-functions (cf. 13.4) require

arguments or generate values in radian measure. By use of an

option-statement, a program may change the angle measure of all

such functions to degrees.

5.6.2 Syntax

1. option-statement =

2. option-list =

3. option >

4. declare-statement =

5. type-declaration >

6. numeric-type >

7. numeric-declaration >

OPTION option-list

option (comma option)*

ARITHMETIC (DECIMAL / NATIVE) /

ANGLE (DEGREES / RADIANS)

DECLARE type-declaration

numeric-type

NUMERIC numeric-declaration

(comma numeric-declaration)*

simple-numeric-variable

An option-statement with an ARITHMETIC option, if present at

all, shall occur in a lower-numbered line than any numeric-

expression, or a dimension-statement or a declare-statement

referencing a numeric-array or fixed-declaration in the same

program-unit.

A program-unit shall contain at most one ARITHMETIC option.

An ANGLE option, if present at all, shall occur in a lower-

numbered line than any reference to any numeric-supplied-function

or transform-function in the same program-unit.

A program-unit shall contain at most one ANGLE option.

A declare-statement, if present at all, shall occur in a

lower-numbered line than any reference to the variables declared

therein.

47

AMERICAN NATIONAL STANDARD X3.113-1987

5.6.3 Examples

1. OPTION ARITHMETIC DECIMAL, ANGLE DEGREES

5.6.4 Semantics

The ARITHMETIC option controls the logical behavior of

numeric entities within the program-unit containing the option.

If OPTION ARITHMETIC DECIMAL is specified, or if no

ARITHMETIC option is specified, then the values of the numeric-

variables shall behave logically as decimal floating-point

numbers, with an implementation-defined precision, say m, of at

least ten significant decimal digits and with an implementation-

defined range of at least IE-38 to 1E+38.

The results of decimal computations can be described in

terms of floating-point decimal intermediate results with at

least m+1 decimal digits of precision (but may be implemented in

some other equivalent fashion). The value of a numeric-variable

shall be assumed to be exact. Numeric-constants shall be

evaluated accurately to at least m decimal digits of precision.

Numeric operations and functions shall also be evaluated

accurately to at least m+1 decimal digits of precision with

respect to the computed value of their operands and arguments

(which may themselves be intermediate results). In all cases,

the intermediate result of an evaluation shall be represented as

a floating-point decimal number with at least m+1 decimal digits

of precision; thus, when the true result can be expressed as a

decimal number with m+1 significant digits, the computed result

shall be exact. In no case shall the error for evaluation of an

individual constant, operation, or function be greater than 5 in

the (m+2)nd significant digit. Implementations are free to use

any method of numeric evaluation that always yields results whose

absolute error (with respect to the true result) is no greater

than the absolute error of the results generated by the preceding

specification.

If OPTION ARITHMETIC NATIVE is specified, then the values of

numeric variables and constants shall be represented and

manipulated in an implementation-defined fashion, with an

implementation-defined precision of at least six decimal digits

and with an implementation-defined range of at least 2E-38 to

1E+38. Decimal values need not be represented exactly, as long

as the error is within the limits of this precision.

The ANGLE option controls the evaluation of the trigono¬

metric functions within the program-unit containing the option.

48

AMERICAN NATIONAL STANDARD X3.113-1987

If OPTION ANGLE RADIANS is specified, or if no ANGLE option is
specified, then the numeric-supplied-functions COS, COT, CSC,
SEC, SIN, and TAN, as well as the graphic transform-functions
ROTATE and SHEAR, use arguments in radian measure, and the
numeric-supplied-functions ACOS, ANGLE, ASIN, and ATN generate
results in radian measure.

If OPTION ANGLE DEGREES is specified, then the numeric-
supplied-functions COS, COT, CSC, SEC, SIN, and TAN, as well as
the graphic transform-functions ROTATE and SHEAR, use arguments
in degree measure, and the numeric-supplied-functions ACOS,
ANGLE, ASIN, and ATN generate results in degree measure.

If the execution of a program reaches a line containing an
option-statement, then it shall proceed to the next line with no
further effect.

A simple-numeric-variable that appears in a numeric-type
shall establish that variable as a simple-numeric-variable.

If execution reaches a line containing a declare-statement,
it shall proceed to the next line with no further effect.

5.6.5 Exceptions

None.

5.6.6 Remarks

The representations chosen for numeric values when OPTION
ARITHMETIC NATIVE is specified may be the same as that for OPTION
ARITHMETIC DECIMAL.

No minimum accuracy is specified for the evaluation of
numeric expressions and functions when OPTION ARITHMETIC NATIVE
has been chosen. However, it is recommended that implementations
maintain at least six decimal digits of precision.

The value 2E-38 is specified for the maximum value of the
lower bound of positive numbers to allow an implementation
employing the IEEE floating point binary arithmetic to be
standard conforming.

49

AMERICAN NATIONAL STANDARD X3.113-1987

6. Strings

Character strings constitute one of two primitive data types in
BASIC (the other is numbers). Strings consist of arbitrary
sequences of characters. Their lengths are variable, not fixed,
although a maximum length for a string may be specified. With
strings are associated constants, variables, and implementation-
supplied functions, from which expressions can be formed.

6.1 String Constants

6.1.1 General Description

A string-constant is a character string of fixed length
enclosed within quotation-marks. A quotation-mark itself may be
included in a string-constant by representing it by two adjacent
quotation-marks.

6.1.2 Syntax

1. constant > string-constant
2. string-constant = quoted-string
3. quoted-string = quotation-mark quoted-string-character*

quotation-mark

The length of a string-constant (i.e., the number of quoted-
string-characters contained between the quotation-marks) shall be
limited only by the implementation-defined maximum number of
characters preceding each end-of-line indicator (i.e., at least
132).

6.1.3 Examples

2. "XYZ"
"1E10"
"He said, ""Don't""."

6.1.4 Semantics

The value of a string-constant shall be the sequence of all
quoted-string-characters between the initial and final quotation-
marks. The double-quote, when appearing inside a quoted-string,
shall denote a single quotation-mark. Spaces in string-
constants, including trailing spaces, shall be significant. A
string consisting only of two quotation-marks shall represent the
null string. Upper-case- and lower-case-letters shall be
distinct within string-constants.

50

AMERICAN NATIONAL STANDARD X3.113-1987

6.1.5 Exceptions

None.

6.1.6 Remarks

The maximum length of a string-constant is constrained by
the maximum length of a physical line. The maximum length of the
constant would therefore be 3 less than that for the line,
allowing for a continuation character ("&"), and the leading and
trailing quotation-mark, e.g.:

100 LET A$ = Sc

&"abc... unseen characters here...xyz"

As the maximum physical line length shall be at least 132, the
maximum string-constant length shall be at least 129.

51

AMERICAN NATIONAL STANDARD X3.113-1987

6.2 String Variables

6.2.1 General Description

String-variables may be either simple-string-variables or
references to elements of one-, two-, or three-dimensional
string-arrays.

Explicit declarations of simple-string-variables are not
required. A dollar-sign serves to distinguish a string-variable
from a numeric-variable.

6.2.2 Syntax

1. variable
2. string-variable

3. simple-string-variable
4. string-array-element
5. string-array
6. substring-qualifier

7. simple-variable
8. array-name

6.2.3 Examples

2. K$
name?(X:Y)
ITEM$(1,n)(z:z+5)

4. A$(4)
tables(I,J)

6.2.4 Semantics

At any instant in the execution of a program, a string-
variable is associated with a single string value. The value
associated with a string-variable may be changed by the execution
of statements in the program.

The length of the character string associated with a string-
variable can vary during the execution of a program from a length
of zero characters (signifying the null or empty string) to the
maximum allowed for that string-variable (cf. 6.6.4).

> string-variable
= (simple-string-variable /

string-array-element)
substring-qualifier?

= string-identifier
= string-array subscript-part
= string-identifier
= left-parenthesis index colon

index right-parenthesis
> simple-string-variable
> string-array

52

AMERICAN NATIONAL STANDARD X3.113-1987

Simple-string-variables may be declared explicitly (cf.
6.6) or may be declared implicitly through their appearance in a
program-unit. The scope of a string-variable shall be the
program-unit in which it appears, unless it is a parameter of an
internal-proc-def, in which case its scope is that definition.

A string-array element is called a subscripted string-
variable and refers to the element in the one-, two-, or three-
dimensional array selected by the value(s) of the subscript(s).
Subscripts shall have values within the appropriate range (cf.
7.1).

The substring-qualifier provides a means for specifying a
portion of the value associated with a string-variable. A$(M:N)
shall specify that substring of the value associated with A$ from
its Mth through its Nth characters (M and N are indices).
Characters in a string shall be numbered from the left starting
with one. There are no exceptions associated with substring-
qualifiers; if either M or N is not in the range from 1 to
LEN(A$), then M shall be considered to be MAX(M,1) and N shall be
considered to be MIN(N,LEN(A$)). If M > N, even after this
adjustment, then A$(M:N) shall be the null string occurring
before the Mth character of A$ if M < LEN(A$) or the null string
immediately following A$ if M > LEN(A$). For example, if A$ =
"1234", then A$(1:1) = "1", A$(1:3) = "123", A$(0:3) = "123",
A$(2:5) = "234", A$(3:2) is the null string preceding the third
character of A$, and A$(5;7) is the null string following A$.

At the initiation of execution the values associated with
all string-variables shall be implementation-defined.

6.2.5 Exceptions

A subscript is not in the range of the declared bounds
(2001, fatal) .

6.2.6 Remarks

Since initialization of variables is not specified, and
hence may vary from implementation to implementation, programs
that are intended to be transportable should explicitly assign a
value to each variable before any expression involving that
variable is evaluated.

53

AMERICAN NATIONAL STANDARD X3.113-1987

There are many commonly used alternatives for associating
implementation-defined initial values with variables; it is
recommended that all variables be recognizably undefined in the
sense that an exception will result from any attempt to access
the value of any variable before that variable is explicitly
assigned a value (3102, nonfatal: supply an implementation-
defined value and continue).

54

AMERICAN NATIONAL STANDARD X3.113-1987

6.3 String Expressions

6.3.1 General Description

String-expressions are composed of string-variables, string-
constants, string-function-references, or a concatenation of
these.

6.3.2 Syntax

1. expression
2. string-expression

3. string-primary

4. string-function-ref
5. string-function

6. concatenation

> string-expression
= string-primary

(concatenation string-primary)*
= string-constant /

string-variable /
string-function-ref /
left-parenthesis string-expression
right-parenthesis

= string-function function-arg-list?
= string-defined-function /

string-supplied-function
= ampersand

The number and types of arguments in a string-function-ref
shall agree with the number and types of the corresponding
parameters specified in the definition of the string-function.
An actual-array shall have the same number of dimensions as the
corresponding parameter.

Each string-function referenced in an expression within a
program-unit shall either be implementation-supplied, or shall be
defined in an internal-function-def or declared in a declare-
statement occurring in a lower-numbered line, within the same
program-unit, than the first reference to that string-function.

6.3.3 Examples

2. A2$ & B$(4:22) & "223"
3. X$(1,3)(I:J)

6.3.4 Semantics

The value of a string-expression
of the values of the string-primaries
A$ = "COME " and B$ = "IN", then A$ &
= "INCOME ").

shall be the concatenation
in the expression (e.g., if
B$ = "COME IN" and B$ & A$

55

AMERICAN NATIONAL STANDARD X3.113-1987

Within a string-expression, string-primaries shall be
evaluated from left to right. For each string-primary, the
subscripts, if any, shall be evaluated first, then the substring-
qualifiers, and then the value of the primary itself.

A string-function-ref is a notation for the invocation of a
predefined algorithm, into which the argument values, if any,
shall be substituted for the parameters (cf. 6.4 and 9.1) used in
the function-def. The result of evaluating a string-function,
achieved by the execution of the defining algorithm, shall be a
scalar string value which replaces the string-function-ref in the
string-expression.

6.3.5 Exceptions

Evaluation of a string-expression causes a string overflow
(1051, fatal).

6.3.6 Remarks

The ampersand is used both for concatenation and line-
continuation. Thus:

100 PRINT "ABC" &&
& "XYZ"

will print the sequence of characters ABCXYZ.

56

AMERICAN NATIONAL STANDARD X3.113-1987

6.4 Implementation-Supplied String Functions

6.4.1 General Description

Predefined algorithms are supplied by the implementation for
the evaluation of commonly used string-valued functions and
numeric-valued functions whose arguments are strings.

6.4.2 Syntax

1. string-supplied-function

2. numeric-supplied-function
3. numeric-function-ref

(CHR / DATE / LCASE / LTRIM /
REPEAT / RTRIM / STR / TIME /
UCASE / USING) dollar-sign
LEN / ORD / POS / VAL
MAXLEN left-parenthesis
(simple-string-variable /
string-array) right-parenthesis

6.4.3 Examples

None .

6.4.4 Semantics

The values of the implementation-supplied functions, as well
as the number and types of arguments required for each function,
are described below. In all cases, M represents an index, i.e.,
the rounded integer value of some numeric-expression; X stands
for a numeric-expression; V$ represents a simple-string-variable
or string-array; and A$ and B$ stand for string-expressions.

Function Function value

CHR$(M)

DATE$

The one-character string consisting of the
character occupying ordinal position M+l in the
collating sequence for the declared character
set, i.e., the first character is returned for
an argument of zero. M shall be at least zero and
less than the number of characters in the declared
character set (cf. Table 8). For example, for
the standard character set, CHR$(53) = "5", and
CHR$(65) = "A". The values of CHR$ for the native
character set are implementation-defined.

The date in the string representation "YYYYMMDD"
according to ANSI X3.30-1985. For example,
the value of DATE$ on May 9, 1977 was "19770509".

57

AMERICAN NATIONAL STANDARD X3.113-1987

If there is no calendar available, then the value

of DATE$ shall be ”00000000".

LCASE?(A$) The string of characters resulting from the value

associated with A$ by replacing each uppercase

letter in the string by its lowercase version.

LEN(A$) The number of characters in the value associated

with A$. Note that LEN("""") = 1, since the

value of the string constant consists of precisely

one quotation-mark.

LTRIM$(A$) The string of characters resulting from the value

associated with A$ by deleting all leading space

characters.

MAXLEN(V$) The maximum length associated with the simple-

string-variable or string-array (cf. 6.6).

If there is no effective limit on string length,

the value returned shall be MAXNUM.

ORD(A$) The ordinal position of the character named by the

string associated with A$ in the collating

sequence of the declared character set, where the

first member of the character set is in ordinal

position zero. The acceptable values of A$ are

single characters in the character set and two-

or three-character mnemonics for characters in

the character set. Values of A$ with two or more

characters shall be treated with upper-case- and

lower-case-letters equivalent. The acceptable

values for the standard character set are shown in

Table 8. The acceptable values for the native

character set are implementation-defined. For

example, for the standard character set,

ORDC'BS") = 8, ORD ("A") = 65, ORD ("a") = 97,

ORD("5") = 53, ORD("SOH") = 1, 0RD("Soh") = 1,

and 0RD("ABC") causes an exception.

POS(A$,B$) The character position, within the value associ¬

ated with A$, of the first character of the first

occurrence of the value associated with B$.

If there is no such occurrence, then POS(A$,B$)

shall be zero. POS(A$,"") shall be one, for all

values of A$.

POS(A$,B$,M) The character position, within the value

associated with A$, of the first character of the

58

AMERICAN NATIONAL STANDARD X3.113-1987

REPEAT?(A?,

RTRIM?(A?)

STR?(X)

TIME?

UCASE?(A?)

USING?(A?,X)

first occurrence of the value associated with B?,
starting at the Mth character of A?. If the value

associated with B? does not occur within the

designated portion of the value associated with

A?, or if M is greater than LEN(A?), the value

returned is zero. Otherwise, the value returned

is equivalent to

LET tempi - MAX(1, MIN(M, LEN(A?) +1))

LET temp2? = A?(tempi: LEN(A?))

LET temp3 = POS(temp2?, B?)

IF temp3 - 0 THEN

LET POS = 0

ELSE

LET POS = temp3 + tempi - 1

END IF

For example, if A? has the value "GRANDSTANDING",

then POS(A?,"AN",1) = 3, POS(A?,"AN",4) = 8,

and POS(A?,"AN",9) - 0. POS(A?,"",M) shall be

MAX(M,1), as long as M £ LEN(A?).

) The string consisting of M copies of A?; M _> 0.

The string of characters resulting from the value

associated with A? by deleting all trailing space

characters.

The string generated by the print-statement as

the numeric-representation of the value associated

with X. No leading or trailing spaces shall be

included in this numeric-representation. For

example, STR?(123.5) = "123.5" and

STR?(-3.14) = "-3.14".

The time of day in 24-hour notation according to

ANSI X3.43-1986 (HH:MM:SS). For example,

the value of TIME? at 11:15 AM is "11:15:00". If

there is no clock available, then the value of

TIME? shall be "99:99:99". The value of TIME?

at midnight is "00:00:00".

The string of characters resulting from the value

associated with A? by replacing each lowercase

letter in the string by its uppercase version.

The string consisting of the formatted represen¬

tation of X, using A? as a format-item, according

to the semantics of 10.4. The exceptions defined

in 10.4.5 for formatted output also apply to the

59

AMERICAN NATIONAL STANDARD X3.113-1987

USING$ function.

VAL(A$) The value of the numeric-constant associated with
A$, if the string associated with A$ is a numeric-
constant. Leading and trailing spaces in the
string are ignored. If the evaluation of the
numeric-constant would result in a value that
causes an underflow, then the value returned shall
be zero. For example, VAL(" 123.5 ") = 123.5,
VAL("2.E-99") could be zero, and VAL("MCMXVII")
causes an exception.

6.4.5 Exceptions

The value of the argument of VAL is not a valid numeric-
constant (4001, fatal).

The value of the argument of VAL is a valid numeric-
constant, but evaluating this constant results in an overflow
(1004, fatal).

The value of the argument of CHR$ is not in the appropriate
range (4002, fatal).

The value of the argument of ORD is neither a valid single
character nor a valid mnemonic (4003, fatal).

The value of the second argument of REPEAT$ is not >_ 0
(4010, fatal).

6.4.6 Remarks

It is recommended that if the magnitude of the value of the
VAL function is less than machine infinitesimal, implementations
report this as an exception (1504, nonfatal: replace with zero
and continue) to permit interception by exception handlers.

The time zone used for DATE$ and TIME$ is implementation-
defined .

The effect of the functions UCASE$ and LCASE$ is fully
defined only for the ASCII character set as defined in 4.1.4.
For other-characters, such as accented letters, the effect is
implementation-defined, and may be specified in other national
versions of this standard to accommodate the needs of local
alphabets.

60

AMERICAN NATIONAL STANDARD X3.113-1987

6.5 String Assignment Statements

6.5.1 General Description

A let-statement provides for the simultaneous assignment of
the computed value of a string-expression to a list of string-
variables .

6.5.2 Syntax

1. let-statement
2. string-let-statement

3. string-variable-list

> string-let-statement
= LET string-variable-list

equals-sign string-expression
= string-variable

(comma string-variable)*

6.5.3 Examples

2. LET A$ = "ABC"
LET A$(I) = B$(3:4)
LET A$, B$ = "NEGATIVE DISCRIMINANT"
LET C$(7:10) = "wxyz"
LET A$ = "ABCD" &&
& "XYZ"

6.5.4 Semantics

The subscripts and substring-qualifiers, if any, of
variables in the string-variable-list shall be evaluated in
sequence from left to right. Next the string-expression on the
right of the equals-sign shall be evaluated (cf. 6.3). Finally,
the value of that string-expression shall be assigned to the
string-variables in the string-variable-list in order from left
to right.

When a value is assigned to a string-variable with a
substring-qualifier, it shall replace the substring of the value
of the string-variable specified by the substring-qualifier. The
length of the value of the string-variable may change as a result
of this replacement. For example, if A$ = "1234", then assigning
"32" to A$(2:3) results in "1324", assigning "" to A$(2:3)
results in "14", assigning A$(1:2) to A$(2:3) results in "1124",
and assigning "5" to A$(2:1) results in "15234".

61

AMERICAN NATIONAL STANDARD X3.113-1987

6.5.5 Exceptions

The assignment of a value to a string-variable causes a

string overflow (1106, fatal).

6.5.6 Remarks

The order of assignment of values to string-variables in the

string-variable-list is important in statements such as

LET A$(1:2), A$(2:3) = "X"

where different orders of assignment may produce different

results.

62

AMERICAN NATIONAL STANDARD X3.113-1987

6.6 String Declarations

6.6.1 General Description

An option-statement may be used to define an ordering on the

set of all string characters.

A declare-statement may be used to set a maximum length for

specified string-variables in a program-unit.

6.6.2 Syntax

1. option

2. type-declaration

3. string-type

4. length-max

5. string-declaration

6. simple-string-declaration

> COLLATE (NATIVE / STANDARD)

> string-type

= STRING length-max?

string-declaration

(comma string-declaration)*

= asterisk integer

> simple-string-declaration

= simple-string-variable

length-max?

An option-statement with a COLLATE option, if present at

all, shall occur in a lower-numbered line than any string-

expression, or a dimension-statement or declare-statement

referencing a string-array or string-variable within the same

program-unit. A program-unit shall contain at most one COLLATE

option.

No simple-string-variable shall be declared more than once

in a program-unit. A simple-string-variable that is a formal-

parameter or a parameter shall not occur in a declare-statement

6.6.3 Examples

1. COLLATE NATIVE

3. STRING*8 last_name$ *20, first_name$, middle_name$

6.6.4 Semantics

The COLLATE option identifies the collating sequence to be

used within a program-unit for comparing strings (cf. 8.1) and

for computing values of the CHR$ and ORD functions (cf. 6.4).

OPTION COLLATE NATIVE specifies that the native collating

sequence of the host system shall be used. OPTION COLLATE

STANDARD specifies that the collating sequence shall correspond

to the order of the characters in Table 8. If no COLLATE option

63

AMERICAN NATIONAL STANDARD X3.113-1987

appears in a program-unit, then the STANDARD collating sequence

shall be used within that program-unit.

Simple-string-variables whose string-identifiers appear in

string-types may have a maximum length less than or equal to the

implementation-defined default value. The maximum is determined,

in descending order of precedence, from (1) the length-max in the

string-declaration for that variable, (2) the length-max in the

string-type of the declare-statement containing that variable, or

(3) the implementation-defined default. The length-max

guarantees that string values up to that length may be stored in

the variable and that an attempt to store a longer value will

cause a string overflow exception. The implementation-defined

maximum string length default shall be at least 132 characters.

A length-max of 0 in a string-type shall establish the

associated string-variable as having a maximum length of 0 (i.e.,

the null string).

6.6.5 Exceptions

None .

6.6.6 Remarks

The native collating sequence may be the standard collating

sequence.

The COLLATE option may be extended, on other national

versions of this standard, to accommodate specific needs of local

alphabets.

64

AMERICAN NATIONAL STANDARD X3.113-1987

7. Arrays

Arrays are indexed collections of numbers or strings. Array

elements can be manipulated by scalar numeric and string

operations (cf. Sections 5 and 6). In addition, entire arrays

may be manipulated by matrix statements.

7.1 Array Declarations

7.1.1 General Description

An option in the option-statement may be used to define the

lower bound for all array subscripts within a program-unit that

are not explicitly stated. By use of an option-statement the

subscripts of all such arrays may be declared to have a lower

bound of zero or one; if no such declaration occurs, the lower

bound shall be one.

Arrays may have one, two, or three dimensions. The number

of dimensions and subscript bounds for each dimension are

declared in the declare-statement or dimension-statement. All

array-names, except those appearing in a function-parm-list or a

procedure-parm-list, shall be declared in one and only one such

statement. If not explicitly declared, the lower subscript bound

for a given dimension is one or zero, depending on the BASE

option. Upper bounds shall always be explicitly declared.

A one-dimensional array with subscripts 1 to 10 or 1980 to

1989 or -9 to 0 contains 10 elements. A two-dimensional array

with subscript bounds 1 to 10 for each dimension contains 100

elements. Similarly, a three-dimensional array with subscript-

bounds 1 to 10 for each dimension contains 1000 elements.

A declare-statement can be used to dimension numeric-arrays

as well as to declare maximum lengths for string-variables and

string-arrays, and to dimension string-arrays. A dimension-

statement can be used to dimension arrays, but not to declare the

maximum length of strings in string-arrays.

7.1.2 Syntax

1. dimension-statement

2. dimension-list

3. array-declaration

4. numeric-array-declaration

- DIM dimension-list

= array-declaration

(comma array-declaration)*

= numeric-array-declaration /

string-array-declaration

- numeric-array bounds

65

AMERICAN NATIONAL STANDARD X3.113-1987

5 . bounds —

6. bounds-range =

7. signed-integer =

8. string-array-declaration =

9. option >

10. string-declaration >

11. numeric-declaration >

12 . numeric-function-ref >

13. maxsize-argument —

14. bound-argument =

The number of bounds-ranges

or three.

left-parenthesis bounds-range

(comma bounds-range)*

right-parenthesis

signed-integer TO

signed-integer / signed-integer

sign? integer

string-array bounds

BASE (0 / 1)

string-array-declaration

length-max?

numeric-array-declaration

MAXSIZE maxsize-argument /

SIZE bound-argument /

LBOUND bound-argument /

UBOUND bound-argument

left-parenthesis actual-array

right-parenthesis

left-parenthesis actual-array

(comma index)? right-parenthesis

in a bounds shall be one, two.

An array that is named as a formal-array of a defined-

function, a subprogram, a program, or a picture-def shall not be

declared in a declare-statement or dimension-statement (since the

formal-array in the function- or procedure-parm-list serves as

its declaration). Any other array shall be so declared in a

lower numbered line than any reference to that array or one of

its elements. Any reference to an array and its elements shall

agree in dimensionality with the declaration of that array in a

declare-statement, a dimension-statement, or as a function- or

procedure-parameter.

No numeric- or string-array shall be dimensioned or declared

more than once in a program-unit.

If the optional lower bound (the first signed-integer) is

included in the bounds-range, it shall be less than or equal to

the upper bound (the second signed-integer).

If the lower bound is not specified, then the upper bound

shall not be less than the default lower bound, which may be zero

or one, depending on the BASE option.

An option-statement with a BASE option, if present at all,

shall occur in a lower-numbered line than any declare-statement

or dimension-statement or any MAT statement that uses a numeric-

66

AMERICAN NATIONAL STANDARD X3.113-1987

array-value in the same program-unit. A program-unit shall
contain at most one BASE option.

If a bound-argument does not specify an index, the actual-
array shall be declared as one-dimensional.

7.1.3 Examples

1. DIM A(6), B(10,10), B$(100), D(1 TO 5, 1980 TO 1989)
DIM A$ (4,4), C(-5 TO 10)

10. A$(3 TO 21) * 8
12. SIZE(A,1)

SIZE(B$,2)
SIZE(X)
LBOUND(A)
UBOUND(C$,2)

7.1.4 Semantics

Each array-declaration declares the named array named to be
either one-, two-, or three-dimensional, according to whether
one, two, or three bounds-ranges are specified in the bounds for
the array. In addition, the bounds specify the maximum and
optionally minimum values that subscripts for the array shall
have. If a minimum subscript is not explicitly declared and no
BASE option occurs within the program-unit, then it shall be
implicitly declared to be one.

The BASE option in an option-statement is local to the
program-unit in which it occurs and declares the minimum value
for all array subscripts in that program-unit that are not
explicitly declared.

If the execution of a program reaches a line containing a
dimension-statement, then it shall proceed to the next line with
no further effect.

String-array-declarations appearing in a string-declaration
may include a length-max, which sets the maximum length of each
element of the string-array. As with simple-string-variables, if
there is no length-max in the string-declaration, then the
length-max, if any, of the string-type shall take effect. If
there is no length-max in either, then the implementation-defined
length-max, if any, shall take effect.

The value of SIZE(A,N) in which A is an actual-array and N
is an index shall be the current number of permissible values for
the Nth subscript of the array named by A (the value of N is

67

AMERICAN NATIONAL STANDARD X3.113-1987

rounded to the nearest integer, and the subscripts of A are

indexed from left to right, starting at one). The value of

SIZE (A) shall be the current number o.f elements in the entire

array A.

The value of MAXSIZE(A) shall be the total number of

elements of the entire array named by A permitted by the array-

declaration .

The value of LBOUND(A,N), where A is an actual-array and N

is an index, shall be the current minimum value allowed for the

Nth subscript of the array named by A. The value of UBOUND(A,N)

shall be the current maximum value allowed for the Nth subscript

of array A. As in the SIZE function, the value of N is rounded

to the nearest integer, and the subscripts of array A are indexed

from left to right, starting at one. The LBOUND and UBOUND

functions may be called with a single argument, provided that

argument is a vector, in which case the values of LBOUND and

UBOUND are the current minimum and maximum values allowed for the

subscript of the vector. (Here, and in the rest of Section 7,

the word "vector" shall mean a "one-dimensional array" and the

word "matrix" shall mean a "two-dimensional array".

7.1.5 Exceptions

The value of the index in a SIZE reference is less than one

or greater than the number of dimensions in the array (4004,

fatal).

The value of the index in an LBOUND reference is less than

one or greater than the number of dimensions in the array (4008,

fata 1) .

The value of the index in a UBOUND reference is less than

one or greater than the number of dimensions in the array (4009,

fatal).

7.1.6 Remarks

The dimension statement is retained for compatibility with

minimal BASIC. All its capabilities are included within the

declare-statement.

If an implementation supports more than three dimensions,

SIZE, LBOUND, and UBOUND should work for those extra dimensions,

and an exception should be generated only when an attempt is made

to inquire about a dimension beyond those declared.

68

AMERICAN NATIONAL STANDARD X3.113-1987

7.2 Numeric Arrays

7.2.1 General Description

Numeric-arrays in BASIC may be manipulated element-by-

element. However, it is often more convenient to regard numeric

arrays as entities rather than as indexed collections of

entities, and to manipulate the entire entity at once. BASIC

provides a number of standard operations to facilitate such

manipulations.

7.2.2 Syntax

1. array-assignment

2. numeric-array-assignment

3. numeric-array-expression

4. numeric-array-operator

5. scalar-multiplier

6. numeric-array-value

7. redim

8. redim-bounds

9. numeric-array-function-ref

10. numeric-function-ref

The number of redim-bounds

three.

> numeric-array-assignment

= MAT numeric-array equals-sign

numeric-array-expression

= (numeric-array

numeric-array-operator)?

numeric-array /

scalar-multiplier

numeric-array /

numeric-array-value /

numeric-array-function-ref

= sign / asterisk

= primary asterisk

> scalar-multiplier?

(CON / IDN / ZER) redim?

= left-parenthesis redim-bounds

(comma redim-bounds)*

right-parenthesis

= (index TO)? index

= (TRN / INV) left-parenthesis

numeric-array

right-parenthesis

> DET (left-parenthesis

numeric-array

right-parenthesis) /

DOT left-parenthesis

numeric-array comma

numeric-array

right-parenthesis

in a redim shall be one, two, or

A numeric-array being assigned a value by a numeric-array-

assignment shall have the same number of dimensions as the value

of the numeric-array-expression.

69

AMERICAN NATIONAL STANDARD X3.113-1987

The numeric-arrays in a numeric-function-ref involving DOT

shall be one-dimensional.

There shall be no more than two redim-bounds following IDN.

The numeric-arrays in a sum or difference shall have the

same number of dimensions. The numeric-array serving as the

argument of DET, INV, or TRN shall be two-dimensional.

The numeric-arrays serving as operands for the numeric-

array-operator asterisk (matrix multiply) shall be either one¬

dimensional or two-dimensional, and at least one of them shall be

two-dimensional.

7.2.3 Examples

In the following examples A, B, and C are doubly-subscripted

numeric-arrays, X, Y, and Z are singly-subscripted numeric-

arrays, and W is a numeric-expression.

2. MAT A = B MAT X = Y

MAT A = B + C MAT X = Y - Z

MAT A = B*C MAT X = A*Y

MAT A = W * B MAT X = w * co:
MAT A = ZER(4,3) MAT X = ZER
MAT A = INV(B) MAT A = TRN(B)

10. DET(B) DOT(X,Y)

7.2.4 Semantics

MAT X = Y*A

7.2.4.1 Array Assignments and Redimensioning♦ Execution

of a numeric-array-assignment shall cause the numeric-array-

expression to be evaluated and its value assigned to the array

named to the left of the equals-sign. If necessary, this array

shall have its size changed dynamically (i.e., its number of

dimensions shall be unchanged, but its size in each dimension

shall be changed to conform to the size of the array given by the

value of the numeric-array-expression).

When the size of a numeric-array is changed dynamically, the

current upper bounds for its subscripts shall be changed to

conform to the new sizes. That is,

new_lower_bound = old_lower_bound

new_upper_bound = old_lower_bound + new_size - 1

The new sizes need not individually be less than or equal to the

sizes determined in the array-declaration for that numeric-array,

as long as the new total number of elements for the numeric-array

70

AMERICAN NATIONAL STANDARD X3.113-1987

does not exceed the total number of elements determined by the

array-declaration for that array.

7.2.4.2 Array expressions. The evaluation of numeric-

array-expressions shall follow the normal rules of matrix

algebra. The symbols asterisk plus and minus shall

represent the operations of multiplication, addition, and

subtraction, respectively.

The dimensions of numeric-arrays in numeric-array-

expressions shall conform to the rules of matrix algebra. The

numeric-arrays in a sum or difference shall have the same sizes

in each dimension. The numeric-arrays in a product shall have

sizes L x M and M x N for some L, M, and N (in which case the

product shall have size L x N), or an M element vector and a size

M x N matrix (in which case the product shall be an N element

vector), or a size L x M matrix and an M element vector (in which

case the product shall be an L element vector). All elements in

a numeric-array shall be used when evaluating a numeric-array-

expression; i.e., each numeric-array shall be treated as an

entity.

When a scalar-multiplier is present in a numeric-array-

expression, the primary shall be evaluated, and then each element

of the numeric-array shall be multiplied by this value.

If an underflow occurs in the evaluation of a numeric-array-

expression, then the value generated by the operation that

resulted in the underflow shall be replaced by zero.

7.2.4.3 Array values. Numeric-array-values shall be

assigned to the numeric-array on the left of the equals sign. If

no redim is present, the size of the numeric-array generated

shall be the same as the size of the numeric-array to which it is

to be assigned. If a redim is present, a numeric-array of the

dimensions specified shall be generated, and the numeric-array to

which it is assigned shall be redimensioned as described in

7.2.4.1. In a redim-bounds, the values of the indices are the

lower and upper bounds of the corresponding dimension in the

associated array-value. If the redim-bounds consists of a single

index, its value shall be the upper bound, and the lower bound

shall be the current default lower bound in effect. If a redim

is used with the IDN constant, then it shall produce a square

matrix; i.e., the number of rows shall equal the number of

columns. If a redim is not used with the IDN constant, the

numeric-array being assigned to shall be square.

71

AMERICAN NATIONAL STANDARD X3.113-1987

The ZER constant shall generate a numeric-array, all of

whose elements are zero. The CON constant shall generate a

numeric-array, all of whose elements are one. The IDN constant

shall generate an identity matrix, i.e., a square matrix with

ones on the main diagonal and zeroes elsewhere. If only one

redim-bounds is used with IDN, then the effect is just as if that

redim-bounds had been specified twice.

If a scalar-multiplier is used with an IDN, ZER, or CON

constant, then the primary (see 5.3) is evaluated and each

nonzero element of the IDN, ZER, or CON constant is replaced by

the value of the primary.

7.2.4.4 Array functions. The function TRN shall produce

the transpose of its argument. An N x M matrix is returned for

an M x N argument.

The function INV shall produce the inverse of its argument.

The argument shall be a square matrix.

The function DET shall return the determinant of its

argument. The argument shall be a square matrix.

The value of DOT(X,Y) shall result in a scalar value, which

is the result of the inner product multiplication of the one¬

dimensional numeric-vectors X and Y.

7.2.5 Exceptions

The sizes of numeric-arrays in a numeric-array-expression do

not conform to the rules of matrix algebra (6001, fatal).

The total number of elements required for a redimensioned

array exceeds the number of elements reserved by the array's

original dimensions (5001, fatal).

The first index in a redim-bounds is greater than the second

(6005, fatal).

A redim-bounds consists of a single index that is less than

the default lower bound in effect (6005, fatal).

The redim following IDN does not specify a square matrix, or

no redim is present and the receiving matrix is not square (6004,

fatal).

The argument of the DET function is not a square numeric

matrix (6002, fatal).

72

AMERICAN NATIONAL STANDARD X3.113-1987

The argument of the INV function is not a square numeric

matrix (6003, fatal).

Evaluation of a numeric-array-expression results in an

overflow (1005, fatal).

Evaluation of DET or DOT results in an overflow (1009,

fatal).

Application of INV to a singular matrix, or loss of all

significant digits (3009, fatal).

7.2.6 Remarks

It is recommended that implementations report underflow as

an exception (1505, nonfatal: replace by zero and continue) to

permit interception by exception handlers.

73

AMERICAN NATIONAL STANDARD X3.113-1987

7.3 String Arrays

7.3.1 General Description

As with numeric-arrays, string-arrays may be regarded as

entities rather than as indexed collections of entities. BASIC

provides the ability to concatenate and assign entire arrays of

strings.

7.3.2 Syntax

> string-array-assignment

= MAT string-array

substring-qualifier?

equals-sign

string-array-expression

- string-array-primary

(concatenation

string-array-primary)? /

string-primary

concatenation

string-array-primary /

string-array-primary

concatenation

string-primary /

string-array-value

- string-array

substring-qualifier?

= (string-primary

concatenation)?

NUL dollar-sign redim?

A string-array being assigned a value by a string-array-

assignment shall have the same number of dimensions as the value

of the string-array-expression.

Two string-arrays being concatenated shall have the same

number of dimensions.

7.3.3 Examples

2. MAT A$ = A$ & B$
MAT A$ = NUL$(5,6)
MAT A$ = ("Number") & B$
MAT A$(4:6) = (" ") & B$

1. array-assignment

2. string-array-assignment

3. string-array-expression

4. string-array-primary

5. string-array-value

74

AMERICAN NATIONAL STANDARD X3.113-1987

7.3.4 Semantics

Execution of a string-array-assignment shall cause the

string-array-expression to be evaluated and its value assigned to

the array named to the left of the equals-sign. If appropriate,

this array shall have its size changed dynamically (i.e., its

number of dimensions shall be unchanged, but its size in each

dimension shall be changed to conform to the size of the array

given by the value of the string-array-expression).

When the size of a string-array is changed dynamically, the

current upper bounds for its subscripts shall be changed to

conform to the new sizes. That is,

new_lower_bound = old_lower_bound

new__upper_bound = old_lower_bound + new_size - 1

The new sizes need not individually be less than or equal to the

sizes determined in the string-array-declaration for that string-

array, as long as the new total number of elements for the

string-array does not exceed the total number of elements

determined by the array-declaration for that array.

When a string-array on the left of a string-array-assignment

has a substring-qualifier, the assignment to each element of the

string-array shall replace the substring of the value of each

element specified by the substring-qualifier. The substring-

qualifier on the left shall be evaluated before the string-array-

expression .

String-array-expressions involve the operations of

concatenation and substring extraction. Two string-arrays being

concatenated shall have the same size in each dimension; the

concatenation shall be performed element-by-element. When

concatenation is by a scalar, this scalar shall be prefixed or

suffixed, as appropriate, to every element of the string-array.

When a substring-qualifier is applied to a string-array, then the

specified substring shall be extracted from each element in the

array.

75

AMERICAN NATIONAL STANDARD X3.113-1987

The order of evaluation and assignment shall be as follows:

(1) Evaluate the substring-qualifiers in the string-array

on the left.

(2) Evaluate the string-array-expression from left to

right, by evaluating each string-primary or string-array-primary

as follows: evaluate first the subscripts, if any, then the

substring qualifiers, and then the value of the primary itself.

(3) Concatenate.

(4) Make the assignment.

The string-array-value NUL$ is an array all of whose

elements are the null string. If a redim is not present, the

size of the string-array generated shall be the same as the size

of the string-array to which it is to be assigned. If a redim is

present, a string-array of the dimensions specified shall be

generated and the string-array to which it is assigned shall be

redimensioned as described above. The rules in 7.2.4 for redims

with numeric-array-values apply to NUL$ as well.

7.3.5 Exceptions

The arrays in a string-array-expression have different sizes

(6101, fatal).

The first index in a redim-bounds is greater than the second

(6005, fatal).

A redim-bounds consists of a single index that is less than

the default lower bound in effect (6005, fatal).

The total number of elements required for a redimensioned

array exceeds the number of elements reserved by the array's

original dimensions (5001, fatal).

Evaluation of a string-array-expression results in a string

overflow (1052, fatal).

Assignment of a value to a string-array causes a string

overflow (1106, fatal).

7.3.6 Remarks

None .

76

AMERICAN NATIONAL STANDARD X3.113-1987

8. Control Structures

Control structures govern the order of execution of lines in a

program, both by statements that make explicit reference to

line-numbers and also by explicitly-constructed loops and

decision mechanisms, which make no reference to line-numbers.

8.1 Relational Expressions

8.1.1 General Description

Relational-expressions enable the values of expressions to

be compared in order to influence the flow of control in a

program.

8.1.2 Syntax

1. relational-expression

2. disjunction

3. conjunction

4. relational-term

5. relational-primary

6. comparison

7. relation

8. equality-relation

9. not-equals

10. not-less

11. not-greater

8.1.3 Examples

= disjunction

= conjunction (OR conjunction)*

= relational-term

(AND relational-term)*

= NOT? relational-primary

= comparison / left-parenthesis

relational-expression

right-parenthesis

= numeric-expression relation

numeric-expression /

string-expression relation

string-expression

= equality-relation /

greater-than-sign /

less-than-sign / not-greater /

not-less

= equals-sign / not-equals

= less-than-sign greater-than-sign /

greater-than-sign less-than-sign

= greater-than-sign equals-sign /

equals-sign greater-than-sign

= less-than-sign equals-sign /

equals-sign less-than-sign

2. NOT X < Y OR A$ = B$ AND B$ = C$

3. A <= X AND X <= B

1 <= I AND I <= 10 AND A(I) = X

I < N AND (J > M OR A(I) < B(J))

77

AMERICAN NATIONAL STANDARD X3.113-1987

8.1.4 Semantics

The relation "less than or equal to" is denoted by not-
greater. The relation "greater than or equal to" is denoted by
not-less. The relation "not equal to" is denoted by not-equals.
The relations "greater than," "less than," and "equals" are
denoted by the corresponding syntactic sign.

The relation of equality shall hold between two numeric-
expressions if and only if the two numeric-expressions have the
same value.

The relation of equality shall hold between two string-
expressions if and only if the values of the two string-
expressions have the same length and contain identical sequences
of characters.

In the evaluation of relational-expressions involving
string-expressions, the relation "less than" shall be interpreted
to mean "earlier in the collating sequence than", and the other
relations shall be defined in a corresponding manner. More
precisely, if two unequal strings in a relational-expression have
the same length, then one shall be "less than" the other if, in
the leftmost character position in which they differ, the
character in that string precedes the character in the other
according to the established collating sequence (cf. 6.6). If
the two strings in a relational-expression have different lengths
and one has zero length or is an initial leftmost segment of the
other, then the shorter string shall be "less than" the other.
Otherwise, the relationship between two strings of unequal length
shall be determined by the contents of the shorter string and the
leftmost portion of the longer string that is of the same length
as the shorter string.

The precedence of the operators AND, OR, and NOT shall be as
implied by the formal syntax. That is, NOT operates only on the
relational-primary immediately following it, AND applies to the
relational-terms immediately preceding and following it, and OR
applies to the conjunctions immediately preceding and following
it.

The order of evaluation of relational-expressions shall be
as follows. The relational-expression shall take on the truth-
value of the disjunction that constitutes it. The conjunctions
immediately contained in the disjunction shall be evaluated from
left to right until a true conjunction is found or none are left.
As soon as a true conjunction is found, the whole disjunction is
evaluated as true, and any remaining conjunctions are not

78

AMERICAN NATIONAL STANDARD X3.113-1987

evaluated. If no true conjunctions are found, the disjunction is
false. For each conjunction, the relational-terms immediately
contained in it are evaluated from left to right until a false
relational-term is found or none are left. As soon as a false
relational-term is found, the whole conjunction is evaluated as
false and any remaining relational-terms are not evaluated. If
all the relational-terms are true, then the conjunction is true.
For each relational-term, the relational-primary immediately
contained in it is evaluated, its truth value reversed if and
only if NOT is also immediately contained in the term, and the
resulting value assigned to the relational-term. A relational¬
primary shall be evaluated according to the description above of
the various relations, if it is a comparison. Otherwise, it
shall take on the value of the relational-expression immediately
contained within it. This relational-expression shall be
evaluated by re-applying the rules of this paragraph to it.

8.1.5 Exceptions

None .

8.1.6 Remarks

The specification for evaluation of relational-expressions
guarantees that certain parts of the expression will not be
evaluated if not necessary. For instance, if an array A has
subscripts from 1 to 10:

1 <= X AND X <= 10 AND A(X) = KEY

will never cause an exception for subscript out of range.

79

AMERICAN NATIONAL STANDARD X3.113-1987

8.2 Control Statements

8.2.1 General Description

Control statements allow for the interruption of the normal

sequence of execution of statements by causing execution to

continue at a specified line, rather than at the one with the

next higher line-number.

The goto-statement allows for an unconditional transfer.

The on-goto-statement allows control to be transferred to a

selected line. The gosub-statement and return-statement allow

for subroutine calls. The on-gosub-statement and return-

statement allow for selected subroutine calls.

8.2.2 Syntax

1. control-transfer

2. goto-statement

3. on-goto-statement

4. gosub-statement

5. return-statement

6. on-gosub-statement

8.2.3 Examples

2. GO TO 999

GOTO 999

3. ON L+l GO TO 400, 400, 500

ON X GO TO 100, 200, 150, 9999 ELSE LET A = 1

4. GO SUB 5000

GOSUB 5160

6. ON A+7 GOSUB 1000, 2000, 7000, 4000

ON Fl-2 GOSUB 4360, 4460, 4660 ELSE PRINT F$

8.2.4 Semantics

Execution of a goto-statement shall cause execution of the

program to be continued at the line with the specified line-

number .

= gosub-statement / goto-statement /

if-statement / io-recovery /

on-gosub-statement /

on-goto-statement

= (GOTO / GO TO) line-number

= ON index (GOTO / GO TO)

line-number (comma line-number)*

(ELSE imperative-statement)?

= (GOSUB / GO SUB) line-number

= RETURN

= ON index (GOSUB / GO SUB)

line-number (comma line-number)*

(ELSE imperative-statement)?

80

AMERICAN NATIONAL STANDARD X3.113-1987

The index in an on-goto-statement shall be evaluated and its
value rounded to obtain an integer, whose value shall be used to
select a line-number from the list following the GOTO (the line-
numbers in the list are indexed from left to right, starting with
1). Execution of the program shall continue at the line with the
selected line-number. If the on-goto-statement contains an ELSE
clause, and the value of the index in the on-goto-statement is
less than one or greater than the number of line-numbers in the
list, then the imperative-statement following the ELSE shall be
executed; if the imperative-statement in the ELSE part does not
transfer control to another line, then execution shall be
continued in sequence (i.e., with the line following that
containing the on-goto-statement).

The execution of the gosub-statement or on-gosub-statement
and the return-statement can be described in terms of stacks of
line-numbers, one associated with each invocation of a program-
unit or internal-proc-def (but may be implemented in some other
fashion). (The stack is conceptual; the standard does not
require that this method be used.) Prior to execution of the
first gosub-statement or on-gosub-statement in the invocation of
a program-unit or internal-proc-def, the stack in that entity
shall be empty. Each time a gosub-statement is executed, the
line-number of the gosub-statement shall be placed on top of this
stack and execution of the program-unit or internal-proc-def
shall be continued at the line specified in the gosub-statement.

The index in an on-gosub-statement shall be evaluated by
rounding to obtain an integer, whose value shall be used to
select a line-number from the list following the GOSUB (the
numbers in the list are indexed from left to right, starting with
1). The line-number of the on-gosub statement shall be placed on
top of the stack for the appropriate program-unit or internal-
proc-def, and execution shall continue at the line with the line-
number selected by the index. If the on-gosub-statement contains
an ELSE clause, and the value of the index in the on-gosub-
statement is less than one or greater than the number of line-
numbers in the list, then the imperative-statement following the
ELSE shall be executed and the stack of line-numbers shall not be
changed; if the imperative-statement in the ELSE part does not
transfer control to another line, execution shall then continue
in sequence (i.e., with the line following that containing the
on-gosub-statement).

Each time a return-statement is executed, the line-number on
top of the stack shall be removed from the stack and execution of
the program-unit or internal-proc-def shall continue at the line
following the one with that line-number.

81

AMERICAN NATIONAL STANDARD X3.113-1987

A return-, gosub-, and on-gosub-statement within an
internal-proc-def shall interact only with the stack for that
internal-proc-def. All other such statements interact only with
the stack for the program-unit containing the statement.

It is not necessary that equal numbers of gosub-statements
or on-gosub-statements and return-statements be executed before
termination of a program-unit or internal-proc-def; the stack of
line-numbers associated with the current invocation of a program-
unit or internal-proc-def shall be emptied upon termination of
that program-unit or internal-proc-def.

8.2.5 Exceptions

The value of the index in an on-goto-statement or an on-
gosub-statement without an ELSE clause is less than one or
greater than the number of line-numbers in the list (10001,
fatal).

An attempt is made to execute a return-statement without
having executed a corresponding gosub-statement or on-gosub-
statement within the same program-unit or internal-proc-def
(10002, fatal).

8.2.6 Remarks

The syntactic element control-transfer is defined solely to
permit describing limitations on transfers to line numbers. It
is not generated by other productions.

References to nonexistent line-numbers in a program-unit,
including those in control-transfers, are syntax errors (see
4.2). There is, therefore, no exception defined in this standard
for such references. Implementations may, however, choose to
treat them as exceptions, if they are so documented, since the
effect of nonstandard programs is implementation-defined.

82

AMERICAN NATIONAL STANDARD X3.113-1987

8.3 Loop Structures

8.3.1 General Description

Loops provide for the repeated execution of a sequence of
statements. Do-loops provide for the construction of loops with
arbitrary exit conditions. The for-stateraent and next-statement
provide for the construction of counter-controlled loops.

8.3.2 Syntax

1. loop = do-loop / for-loop
2. do-loop = do-line do-body
3. do-line = line-number do-statement tail
4. do-statement = DO exit-condition?
5 . exit-condition = (WHILE / UNTIL) relational-expression
6. do-body = block* loop-line
7. exit-do-statement = EXIT DO
8. loop-line = line-number loop-statement tail
9. loop-statement = LOOP exit-condition?

10. for-loop = for-line for-body
11. for-line = line-number for-statement tail
12. for-statement FOR control-variable equals-sign

initial-value TO limit
(STEP increment)?

13. control-variable = simple-numeric-variable
14. initial-value = numeric-expression
15. limit = numeric-expression
16. increment — numeric-expression
17. for-body = block* next-line
18. exit-for-statement = EXIT FOR
19. next-line = line-number next-statement tail
20. next-statement = NEXT control-variable

The control-variable in the next-statement that terminates a
for-loop shall be the same as the control-variable in the for-
statement that begins the for-loop.

A for-loop contained in the for-body of another for-loop
shall not employ the same control-variable as that other for-
loop. No line-numbers in a control-transfer outside a for-loop
or do-loop shall refer to a line in the for-body of that for-loop
or in the do-body of that do-loop.

An exit-do-statement may only occur in a do-loop. An exit-
for-statement may only occur in a for-loop.

83

AMERICAN NATIONAL STANDARD X3.113-1987

8.3.3 Examples

2. 10 DO WHILE I <= N AND A(l) <> 0
20 LET 1=1+1
30 LOOP

2. 100 DO
110
120
130
140 LOOP

2. 10 DO
20 INPUT X
30 IF 0 < X AND X <= 7 AND X = INT(X) THEN EXIT DO
40 PRINT "INPUT AN INTEGER BETWEEN 1 AND 7"
50 LOOP

10. 100 FOR I = 1 TO 10
150 LET A(I) = I
200 NEXT I

12. FOR I = A TO B STEP -1

20. NEXT C7

8.3.4 Semantics

An exit-condition shall be said to require exit from a loop
if the value of the relational-expression following the keyword
WHILE is false or if the value of the relational expression
following the keyword UNTIL is true.

If execution of a program reaches a do-line, then the exit-
condition, if any, in that do-line shall be evaluated. If there
is no exit-condition, or if it does not require exit from the
loop, then execution shall proceed to the next line. If the
condition requires exit from the loop, then execution shall
continue at the line following the associated loop-line. If
execution of a program reaches a loop-line, then the exit-
condition in that loop-line, if any, shall be evaluated. If
there is no exit condition, or if it does not require exit from
the loop, then execution shall resume at the associated do-line;
if the condition requires exit from the loop, then execution
shall continue at the line following the loop-line.

The action of the for-statement and the next-statement is
defined in terms of other statements, as follows.

LET I = 1+1
PRINT "MORE ENTRIES (ENTER 'NO' IF NONE)"
INPUT A$(I)
UNTIL A$(I) = "NO"

84

AMERICAN NATIONAL STANDARD X3.113-1987

110 FOR v = initial-value TO limit STEP increment
(lines)

150 NEXT v

shall be equivalent to

110 LET ownl = limit
120 LET own2 - increment
130 LET v — initial-value
140 DO UNTIL (v-ownl) * SON(own2) > 0

(lines)
150 LET v - v + own2
160 LOOP

Here v is any simple-numeric-variable, and ownl and own2 are
variables associated with the particular for-loop and not
accessible to the programmer. Similarly, the line numbers 120-
140, and 160 are illustrative only; the for-loop does not
actually generate additional line numbers. The variables ownl
and own2 shall be distinct from similar variables associated with
other for-loops. In the above equivalence, a control-transfer to
the for-line shall be interpreted as a control-transfer to the
first let-statement, and a control-transfer to the next-line
shall be interpreted as a control-transfer to the last let-
statement .

In the absence of a STEP clause in a for-statement, the
value of the increment shall be +1.

Execution of an exit-do-statement shall cause execution to
continue at the line following the loop-line of the smallest do-
loop in which the exit-do-statement occurs. Execution of the
exit-for-statement shall cause execution to continue at the line
following the next-line of the smallest for-loop in which the
exit-for-statement occurs.

8.3.5 Exceptions

None.

8.3.6 Remarks

On exit from a for-loop through the next-statement, the
value of the control-variable is the first value not used; on all
other exits from a for-loop the control-variable retains its
current value.

85

AMERICAN NATIONAL STANDARD X3.113-1987

8.4 Decision Structures

8.4.1 General Description

An if-statement allows for conditional transfers, for the
conditional execution of a single imperative-statement, or for
the execution of one of two alternative imperative-statements.

An if-block allows for the conditional execution of a
sequence of lines or for the execution of one of several
alternative sequences of lines.

A select-block allows for the conditional execution of any
one of a number of alternative sequences of lines, based on the
value of an expression.

8.4.2 Syntax

1. if-statement =

2. if-clause =
3 . if-block =

4. if-then-line =

5 . then-block =
6. elseif-block =
7. elseif-then-line =

8. else-block =
9. else-line =

10. end-if-line =
11. select-block =

select-line =
select-statement =
case-block =
case-line =
case-statement =
case-list =
case-item =
range =
case-else-block =
case-else-line =
end-select-line =

12.
13 .
14.
15 .
16.
17 .
18.
19 .
20.
21.
22 .

IF relational-expression
THEN if-clause (ELSE if-clause)?
imperative-statement / line-number
if-then-line then-block elseif-block*
else-block? end-if-line
line-number IF relational-expression
THEN tail
block*
elseif-then-line block*
line-number ELSEIF
relational-expression THEN tail
else-line block*
line-number ELSE tail
line-number END IF tail
select-line remark-line* case-block
case-block* case-else-block?
end-select-line
line-number select-statement tail
SELECT CASE expression
case-line block*
line-number case-statement tail
CASE case-list
case-item (comma case-item)*
constant / range
(constant TO / IS relation) constant
case-else-line block*
line-number CASE ELSE tail
line-number END SELECT tail

86

AMERICAN NATIONAL STANDARD X3.113-1987

The constants appearing in case-statements in a select-block
shall be the same type (i.e., either numeric or string) as the
expression in the select-statement. The ranges and constants
specified in case-lists in a select-block shall not overlap.

No line-number in a control-transfer outside an if-block,
then-block, elseif-block, else-block, select-block, case-block,
or case-else-block shall refer to a line inside that if-block,
then-block, elseif-block, else-block, select-block, case-block,
or case-else-block, respectively, other than to the if-then-line
of that if-block or the select-line of that select-block.

A line-number in a control-transfer inside an elseif-block,
else-block, case-block, or case-else-block shall not refer to the
associated elseif-then-line, else-line, case-line, or case-else-
line .

8.4.3 Examples

1. IF X => Y2 THEN GOSUB 900 ELSE GOSUB 2000
IF X$ = "NO" OR X$ = "STOP" THEN LET A = 1
IF A = B THEN 100
IF A$ = B$ THEN 200 ELSE 300

3. 10 IF X = INT(X) THEN
20 PRINT X; "IS AN INTEGER"
30 ELSE
40 PRINT X; "IS NOT AN INTEGER"
50 END IF

100 IF A = 0 THEN
110 PRINT "ONE ROOT"
120 ELSEIF DISC < 0 THEN
130 PRINT "COMPLEX ROOTS
140 ELSE
150 PRINT "REAL ROOTS"
160 END IF

10 SELECT CASE A$(1 : 1)
20 CASE "A" TO "Z", "a" TO "z"
30 PRINT A$; " starts with a letter"
40 CASE "0" TO "9"
50 PRINT A$; " starts with a digit"
60 CASE ELSE
70 PRINT A$; " doesn't start with a letter
80 END SELECT

87

AMERICAN NATIONAL STANDARD X3.113-1987

10 SELECT CASE X

20 CASE IS < 0

30 PRINT X; "is negative"

40 CASE IS > 0

50 PRINT X; "is positive"

60 CASE ELSE

70 PRINT X; "is zero"

80 END SELECT

8.4.4 Semantics

If the value of the relational-expression in an if-statement

is true and an imperative-statement follows the keyword THEN,

then this imperative-statement shall be executed; if a

line-number follows the keyword THEN, then execution of the

program shall be continued at the line with that line-number. If

the value of the relational-expression is false and an

imperative-statement follows the keyword ELSE, then this

imperative-statement shall be executed; if a line-number follows

the keyword ELSE, then execution of the program shall be

continued at the line with that line-number; if no ELSE is

present, then execution shall be continued in sequence, i.e.,

with the line following that containing the if-statement.

If-blocks shall be executed as follows. If a then-block,

elseif-block, or else-block does not contain a block, the effect

is as if it did contain a block consisting of a remark-line. If

the value of the relational-expression in the if-then-line is

true, then execution shall continue at the first line of the

corresponding then-block. If false, then the relational-

expressions of each corresponding eIseif-then-line, if any, shall

be evaluated in order. As soon as a true relational-expression

is found, execution shall continue at the first line of the

blocks of that elseif-block. If no true relational-expression is

found in the elseif-then-lines, then, if an else-block is

present, execution shall continue at the first line of the block

of that else-block. If there is no else-block, execution shall

continue at the line following the end-if-line. When execution

reaches the end of a then-block, an elseif-block, or an else-

block, it shall continue at the line following the corresponding

end-if-line.

The expression in a select-statement in a select-block shall

be evaluated and its value compared with the case-items in the

case statements until a match is found. A match shall occur when

(1) the value of the expression equals that of a constant

appearing as a case-item, (2) the value is greater than or equal

to that of the first constant appearing in a range containing the

88

AMERICAN NATIONAL STANDARD X3.113-1907

word TO, but less than or equal to the second, or (3) the value
satisfies the relationship indicated by the relation appearing
before the constant in a range. If and when a match is found,
the rest of the case-block headed by the case-statement in which
the match was found shall be executed. If no case-item is
matched, then the case-else-block, if it is present, shall be
executed. When execution reaches the end of a case-block or
case-else-block, it shall continue at the line following the end-
select-line .

Nesting of blocks is permitted subject to the same nesting
constraints as for-loops (i.e., no overlapping blocks).

8.4.5 Exceptions

A select-block without a case-else-block is executed and no
case-block is selected (10004, fatal).

8.4.6 Remarks

None .

89

AMERICAN NATIONAL STANDARD X3.113-1987

9. Program Segmentation

BASIC provides four mechanisms for the segmentation of programs.
The first provides for user-defined functions, whose values may
be used in numeric- and string-expressions. The second enables
subprograms to be defined, which communicate via parameters and
which can be invoked via a call-statement. The third enables
separate programs to be executed sequentially without user
intervention. The fourth, described in 13.5, enables the
definition of graphical pictures.

Functions and subprograms (which we refer to collectively as
"routines") are of two types: internal and external. This
distinction also applies to picture definitions as specified in
13.5. External routines are independent program-units lexically
following the main-program. Internal routines are contained
within a program-unit (the main-program, an external routine, or
a parallel-section) and are considered to be part of that
program-unit. An internal routine cannot contain another
internal routine.

In general, an external routine does not share anything
(including, but not limited to, variables, DATA statements,
internal routines, OPTIONS, and DEBUG status) with other program-
units. Information is exchanged between external routines and
other program-units by means of parameters and, in the case of
external functions, returned values. In general, an internal
routine shares everything with its surrounding program-unit, with
the exception of its parameters. There are no local variables
for internal routines. See Appendix B for more detail on scope
rules.

Within a program-unit, a routine shall always be defined or
declared in a line lexically preceding its first invocation in
that program-unit. It is not an error for a routine to be
defined or declared without being invoked. An external routine
may be invoked throughout the program; an internal routine may be
invoked only from within its containing program-unit.

No control-transfer within an internal or external routine
may refer to a line-number outside that routine, nor may a
control-transfer outside a routine refer to a line-number within
it.

90

AMERICAN NATIONAL STANDARD X3.113-1987

9.1 User-Defined Functions

9.1.1 General Description

In addition to the implementation-supplied functions
provided for the convenience of the programmer (cf. 5.4, 6.4 and
elsewhere), BASIC allows the programmer to define new functions
within a program-unit or program.

9.1.2 Syntax

1. function-def

2. internal-function-def

3. internal-def-line
4. def-statement

5. numeric-def-statement

6. numeric-defined-function
7. string-def-statement

8. string-defined-function
9. function-parm-list

10. function-parameter
11. formal-array

12. internal-function-line

13. end-function-line
14. external-function-def

15. external-function-line

internal-function-def /
external-function-def
internal-def-line /
internal-function-line
block* end-function-line
line-number def-statement tail
numeric-def-statement /
string-def-statement
DEF numeric-defined-function
function-parm-list? equals-sign
numeric-expression
numeric-identifier
DEF string-defined-function
length-max? function-parm-list?
equals-sign string-expression
string-identifier
left-parenthesis
function-parameter
(comma function-parameter)*
right-parenthesis
simple-variable / formal-array
array-name left-parenthesis
comma* right-parenthesis
line-number FUNCTION
(numeric-defined-function /
(string-defined-function
length-max?))
function-parm-list? tail
line-number END FUNCTION tail
external-function-line
unit-block* end-function-line
line-number EXTERNAL FUNCTION
(numeric-defined-function /
(string-defined-function
length-max?))
function-parm-list? tail

91

AMERICAN NATIONAL STANDARD X3.113-1987

16. numeric-functxon-let-statement = LET numeric-defined-function
equals-sign numeric-expression

17. string-function-let-statement =' LET string-defined-function

18. exit-function-statement =

19. type-declaration >

20. def-type —

21. internal-function-type —

22. external-function-type
23 . function-list ~

24. defined-function >

equals-sign string-expression
EXIT FUNCTION
def-type /
internal-function-type /
external-function-type
DEF function-list
FUNCTION function-list
EXTERNAL FUNCTION function-list
defined-function
(comma defined-function)*
numeric-defined-function /
string-defined-function

No line-number in a control-transfer outside an internal-
function-def shall refer to a line in an internal-function-def
other than to an internal-function-line, nor shall a line-number
in a control-transfer inside an internal-function-def refer
either to a line outside that internal-function-def or to the
associated internal-function-line.

A line-number in a control-transfer inside an external-
function-def shall not refer to the associated external-function¬
line .

If a defined-function is defined by an external-function-
def, it shall not be defined more than once in the program. If a
defined-function is defined by an internal-function-def, it shall
not be defined more than once in the containing program-unit.

Within a program-unit, no more than one function (internal
or external) of a given name shall be declared or defined.

If a defined-function is defined by an external-function-
def , then a declare-statement with external-function-type
containing that defined-function shall occur in a lower-numbered
line than the first reference to that defined-function in the
same program-unit.

If a defined-function is defined by an internal-function-def
other than an internal-def-line, then either the internal-
function-def, or a declare-statement with internal-function-type
naming that defined-function, shall occur in a lower-numbered
line than the first reference to that defined-function in the
same program-unit.

92

AMERICAN NATIONAL STANDARD X3.113-1987

If a defined-function is defined by an internal-def-line,
then either the internal-def-line, or a declare-statement with
def-type naming that defined-function, shall occur in a lower-
numbered line than the first reference to that defined-function
in the same program-unit.

Self-recursive functions need not declare themselves; that
is, if a function-def contains a reference to itself, that
reference does not require a type-declaration containing the
defined-function in a lower-numbered line.

An exit-function statement shall occur only within a
function-def.

Within each function-def (other than an internal-def-line)
shall occur at least one numeric- or string-function-let-
statement with defined-function the same as the defined-function
in the internal- or external-function-line of the function-def.

The number and type of function-arguments in a numeric-
function-ref or string-function-ref shall agree with the number
and type of function-parameters in the corresponding function-
def. That is,

(1) The number of function-arguments shall be the same as
the number of function-parameters.

(2) The function-arguments in the function-arg-list shall
be associated with the corresponding function-parameters in the
function-parm-list (i.e., the first with the first, the second
with the second, and so on), and the types shall correspond as
follows:

Parameter

simple-numeric-variable
simple-string-variable
formal-array (numeric)
formal-array (string)

Argument

numeric-expression
string-expression
actual-array (numeric)
actual-array (string)

The number of dimensions of an actual-array shall be one
more than the number of commas in the corresponding formal-array.
A formal-array shall have no more than three dimensions (two
commas).

Whenever a numeric argument is passed to a corresponding
numeric parameter in a different program-unit, the ARITHMETIC
options in effect for the two program-units shall agree.

93

AMERICAN NATIONAL STANDARD X3.113-1987

The ARITHMETIC option of a external-function-def of numeric
type shall agree with that of the invoking program-unit.

A given function-parameter shall occur only once in a
function-parm-list. Function-parameters shall not be explicitly
declared or dimensioned within the internal- or external-
function-def.

A defined-function appearing in a def-type or internal-
function-type shall be defined elsewhere in the same program-unit
by an internal-def-line or internal-function-def (other than an
internal-def-line), respectively.

A defined-function appearing in an external-function-type
shall be defined elsewhere in the program by an external-
fun ction-def .

9.1.3 Examples

5 .

7 .

14.

21.

DEF E = 2.7182818
DEF AVERAGE(X,Y) = (X+Y)/2
DEF FNA$(S$,T$) = S$ & T$
DEF Right$(A$, n) = A$(Len(A$)-n+l
100 EXTERNAL FUNCTION ANSWER(A$)
120 SELECT CASE UCASE$(A$)
130 CASE "YES"
140 LET ANSWER=1
150 CASE "NO"
160 LET ANSWER=2
170 CASE ELSE
180 LET ANSWER=3
190 END SELECT
200 END FUNCTION
FUNCTION AVERAGE, REVERSE$

Len(A$))

9.1.4 Semantics

A function-def specifies the means of evaluating a function
based on the values of the parameters appearing in the
function-parm-list and possibly other variables or constants.

9.1.4.1 Function Parameters. When a defined-function is
referenced (i.e., when an expression involving the function is
evaluated), then the arguments in the function reference, if any,
shall be evaluated from left to right and their values shall be
assigned to the parameters in the function-parm-list for the
function-def (i.e., arguments shall be passed by value to the
parameters of the function). The number of dimensions in a

94

AMERICAN NATIONAL STANDARD X3.113-1987

formal-array is one more than the number of commas in the

formal-array. Upon invocation of a function-def, a formal-array

has the same bounds as the corresponding actual-array. A

simple-string-variable or string-array that is a function-

parameter shall have the implementation-defined default as its

maximum length.

9.1.4.2 Function Evaluation. If a function is defined in

a def-statement, then the expression in that statement shall be

evaluated and its value assigned as the value of the function.

If a function is defined in an internal- or external-function-

def, then the lines following the internal- or external-function-

line shall be executed in sequential order until one of the

following occurs:

(1) Some other action is dictated by execution of a line

(2) A fatal exception occurs

(3) A chain- or stop-statement is executed

(4) An exit-function-statement is executed

(5) An end-function-line is reached

The value of the defined-function shall be set by execution

of one or more numeric-function-let-statements or string-

function-let-statements. Upon exit from the function-def, the

value shall be that most recently assigned to the defined-

function in that invocation. If, upon exit, no such value has

been assigned, then the result shall be consistent with the

implementation-defined policies for uninitialized variables. A

length-max following a string-defined-function establishes the

maximum length of the string value to be returned by that

function-def. If no length-max is specified, then the maximum

length shall be the same as for a string-variable without a

length-max.

An exit-function-statement, when executed, shall terminate

the execution of the function-def in which it is immediately

contained. An end-function-line marks the textual end of a

function-block, and also shall terminate execution of the

function-block. Execution of a stop-statement in a function-

block shall terminate execution of the entire program.

A function-def may refer, directly or indirectly, to the

function being defined (i.e., recursive function invocations are

permitted).

Lines in a function-def shall not be executed unless the

function it defines is referenced. If the execution of a program

reaches an internal-def-line, it shall proceed to the next line

95

AMERICAN NATIONAL STANDARD X3.113-1987

without further effect. If execution reaches an internal-
function-line, it shall proceed to the line following the
associated end-function-line without,further effect.

9.1.4.3 Scopes of Variables, Arrays, Channel-Numbers, and
Data. A function-parameter appearing in the function-parm-list
of a function-def shall be local to each invocation of that
function-def (i.e., it shall name a variable or array distinct
from any variable or array with the same name outside the
function-def).

The treatment of variables and arrays that are not named as
function-parameters in a function-def shall depend upon whether
the function-def is internal or external. If the function-def is
external, then such variables and arrays shall be local to each
invocation of that program-unit (i.e., they shall be distinct
from objects with the same names outside that function-def or
within other invocations of that function-def),* in addition, they
shall be initialized or not initialized in a manner consistent
with the implementation-defined policies for the main-program or
parallel-section each time the function-def is invoked. If the
function-def is internal, then those variables and arrays shall
be global to the containing program-unit and shall retain their
assigned values each time the function-def is invoked; if these
values are changed during the course of executing the internal-
function-def, the changes remain in effect when execution is
returned to the surrounding program-unit.

With one exception, the scope of channel-numbers (cf. 9.2)
is always the program-unit. Nonzero channel-numbers within a
function-def shall be local to each invocation of that function-
def if it is external, and shall be global to the containing
program-unit in which it occurs if it is internal. Channel zero
shall be global to the entire program. Files shall be assigned
to nonzero channels within a program-unit by means of an open-
statement before use. Files assigned to channels local to a
function-def shall be closed upon exit from that function-def.

The scope of internal data is always the program-unit.
Thus, data within an external-function-def shall be local to each
invocation of that program-unit. Hence read-statements and
restore-statements within such a function-def shall refer only to
data in data-statements within that function-def and not to data
in other program-units. Upon invocation of such a function-def,
the pointer for the data within that function-def shall be reset
to the beginning of the data (cf. 10.1). Data within an
internal-function-def shall be part of the data sequence for the
containing program-unit, and read-statements and restore-

96

AMERICAN NATIONAL STANDARD X3.113-1987

statements within such a function-def shall refer to the entire

sequence of data in that program-unit.

9.1.5 Exceptions

A string-function-let-statement attempts to assign a value

whose length exceeds the maximum for the string-defined-function

(1106, fatal).

9.1.6 Remarks

Incompatible COLLATE options are allowed between an invoking

and invoked program-unit (even if they communicate via string

parameters) because COLLATE does not dictate the internal

representation of strings, but only their order in string

comparisons and the values of the CHR$ and ORD functions.

It. is not an error for a function to be defined by an

internal-function-def or to appear in a declare-statement, but

not to be referred to in that program-unit.

It is not an error for an internal-function-def to appear

before a declare-statement with def-type or internal-function-

type containing the name of that internal function.

An internal-function-type or def-type may be omitted if the

corresponding definition appears before the first reference to

that function. An external-function-type is always required when

an external-function is referenced in a program-unit other than

its own.

The requirement that both internal and external functions be

declared or defined before they are used allows several program-

units within a program each to contain an internal function with

the same name as an external function. This facilitates the use

of function libraries in which the programmer may not know the

names of all the external-function-defs in the library.

97

AMERICAN NATIONAL STANDARD X3.113-1987

9.2 Subprograms

9.2.1 General Description

Subprograms provide a mechanism for the logical segmentation

of programs, allowing parameters to be passed between program

segments. Subprograms, like defined-functions, may be internal

or external to a program-unit.

9.2.2 Syntax

1. subprogram-def

2. internal-sub-def

3. internal-sub-line

4. sub-statement

5. subprogram-name

6. procedure-parm-list

7. procedure-parameter >

8. channel-number =

9. end-sub-line =

10. end-sub-statement =

11. exit-sub-statement =

12. external-sub-def =

13. external-sub-line =

14. call-statement =

15. procedure-argument-list =

16. procedure-argument —

17 . type-declaration >

18. interna1-sub-type =

19. external-sub-type =

20. sub-list =

internal-sub-def /

external-sub-def

internal-sub-line block*

end-sub-line

line-number sub-statement tail

SUB subprogram-name

procedure-parm-list?

routine-identifier

left-parenthesis

procedure-parameter

(comma procedure-parameter)*

right-parenthesis

simple-variable / formal-array /

channel-number

number-sign integer

line-number end-sub-statement tail

END SUB

EXIT SUB

external-sub-line unit-block*

end-sub-line

line-number EXTERNAL

sub-statement tail

CALL subprogram-name

procedure-argument-list?

left-parenthesis

procedure-argument

(comma procedure-argument)*

right-parenthesis

expression / actual-array /

channel-expression

internal-sub-type /

external-sub-type

SUB sub-list

EXTERNAL SUB sub-list

subprogram-name (comma

subprogram-name)*

98

AMERICAN NATIONAL STANDARD X3.113-1987

No line-number in a control-transfer outside an internal-

sub-def shall refer to a line in an internal-sub-def other than

to an internal-sub-line, nor shall a line-number in a control-

transfer inside an internal-sub-def refer either to a line

outside that internal-sub-def or to the associated internal-sub¬

line .

A line-number in a control-transfer inside an external-sub-

def shall not refer to the associated external-sub-line.

If a subprogram-name is defined by an external-sub-def, it

shall not be defined more than once in the program. If a

subprogram-name is defined by an internal-sub-def, it shall not

be defined more than once in the containing program-unit.

Within a program-unit, no more than one subprogram (internal

or external) of a given name shall be declared or defined.

If a subprogram-name is defined by an external-sub-def, then

a declare-statement with external-sub-type containing that

subprogram-name shall occur in a lower-numbered line than the

first reference to that subprogram-name in a call-statement in

the same program-unit.

If a subprogram-name is defined by an internal-sub-def, then

either the internal-sub-def, or a declare-statement with

internal-sub-type containing that subprogram-name, shall occur in

a lower-numbered line than the first reference to that

subprogram-name in the same program-unit.

Self-recursive subprograms need not declare themselves; that

is, if a subprogram-def contains a reference to itself in a call-

statement, that reference does not require a type-declaration

containing that subprogram-name in a lower-numbered line.

An exit-sub-statement shall occur only within a subprogram-

def.

The number and type of procedure-arguments in a call-

statement shall agree with the number and type of procedure-

parameters in the corresponding subprogram-def. That is,

(1) The number of procedure-arguments shall be the same as

the number of procedure-parameters.

(2) The procedure-arguments in the procedure-argument-list

shall be associated with the corresponding procedure-parameters

in the procedure-parm-list (i.e., the first with the first, the

99

AMERICAN NATIONAL STANDARD X3.113-1987

second with the second, and so on), and the types shall

correspond as follows:

Parameter

simple-numeric-variable

simple-string-variable

formal-array (numeric)

formal-array (string)

channel-number

An actual-array shall have

the corresponding formal-array,

formal-array is one more than t

array.

Argument

numeric-expression

string-expression

actual-array (numeric)

actual-array (string)

channel-expression

the same number of dimensions as

The number of dimensions in a

e number of commas in the formal-

Whenever a numeric argument is passed to a corresponding

numeric parameter in a different program-unit, the ARITHMETIC

options in effect for the two program-units shall agree.

A given procedure-parameter shall occur only once in a

procedure-parm-list. Procedure-parameters shall not be

explicitly declared or dimensioned within the internal- or

external-sub-def.

The channel-number #0 shall not be used as a procedure-

parameter .

A subprogram-name appearing in an internal-sub-type shall be

defined elsewhere in the same program-unit by an internal-sub-

def.

A subprogram-name appearing in an external-sub-type shall be

defined elsewhere in the program by an external-sub-def.

9.2.3 Examples

2. 100 SUB exchange(a,b)

110 LET t = a

120 LET a = b

130 LET b = t

140 END SUB

4. SUB CALC(X,Y,Z$)

SUB SORT(A(),B(,),A$,#3)

13. 2000 EXTERNAL SUB OPEN (#1, fname$, result)

14. CALL CALC (3*A+2, 7715, "NO")

CALL SORT (Zvect, Ymat, (L$), #N)

100

AMERICAN NATIONAL STANDARD X3.113-1987

9.2.4 Semantics

When a call-statement is executed, control shall be

transferred to the subprogram named in the call-statement.

Execution of the subprogram shall begin at the line following the

sub-line and shall continue in sequential order until one of the

following occurs:

(1) Some other action is dictated by execution of a line

(2) A fatal exception occurs

(3) A chain-statement is executed

(4) A stop- or exit-sub-statement is executed

(5) An end-sub-line is reached

The end-sub-line serves both to mark the textual end of a

subprogram and, when executed, to terminate execution of the

subprogram. The exit-sub-statement, when executed, shall

terminate the execution of the innermost subprogram in which it

is contained. When execution of a subprogram terminates,

execution shall continue at the line following the call-statement

that initiated execution of the subprogram.

Execution of a stop-statement in a subprogram shall

terminate execution of the entire program.

A subprogram may call itself, either directly or indirectly

through another procedure (i.e., recursive subprogram invocations

are permitted).

Lines in a subprogram-def shall not be executed unless the

subprogram it defines is referenced through a call-statement. If

execution reaches an internal-sub-line, it shall proceed to the

line following the associated end-sub-line without further

effect.

9.2.4.1 Subprogram Parameters. When a call-statement is

executed, its procedure-arguments shall be identified, from left

to right, with the corresponding procedure-parameters in the

sub-statement for the subprogram.

Procedure-arguments that are numeric-variables or string-

variables without substring-qualifiers shall be passed by

reference (i.e., any reference to the corresponding procedure-

parameter within the subprogram shall result in a reference to

the procedure-argument, and any assignment to the procedure-

parameter shall result in an assignment to the corresponding

procedure-argument).

101

AMERICAN NATIONAL STANDARD X3.113-1987

If a procedure-argument is an array element, its subscripts

shall be evaluated once at each entry to the subprogram.

A procedure-argument that is an expression, but not a

numeric-variable or a string-variable without a substring-

qualifier, shall be evaluated once at each entry to the

subprogram and the value so obtained shall be assigned to a

location local to the subprogram. This local value shall be used

in any reference to the corresponding procedure-parameter, and

this local location shall be used as the destination of any

assignment to the procedure-parameter. Any necessary evaluation

of procedure-arguments shall take place from left to right.

References within a subprogram to procedure-parameters that

are formal-arrays shall result in references to the corresponding

arrays in the procedure-argument-list; assignments to or

redimensioning of such arrays shall result in assignments to or

redimensioning of the corresponding arrays in the procedure-

argument-list. Upon entry to the subprogram, a formal-array as a

procedure-parameter has the same bounds as the corresponding

procedure-argument.

For a procedure-parameter that is a simple-string-variable

or string-array, the associated maximum length shall be the

implementation-defined default, in the case of passing by value;

when passing by reference, the maximum length shall be that of

the corresponding procedure-argument.

If both an array and one of its elements are named as

procedure-arguments in a call-statement and the array is

redimensioned during execution of the subprogram, then any

subsequent reference within the subprogram to the procedure-

parameter associated with the array-element shall produce

implementation-defined results.

A procedure-argument that is a channel-expression shall be

evaluated once on entry to the subprogram and the resulting

channel shall be used whenever the value of the corresponding

procedure-parameter is referenced in the subprogram. The

attributes of the file (cf. 11.1.4) assigned to this channel

shall be passed unchanged to the subprogram, and changes to

attributes and contents of the file within the subprogram shall

be immediately effective, regardless of which of the channel-

numbers is used in the subsequent reference, and shall remain in

effect upon exit from the subprogram.

A file need not be assigned to a channel designated by a

procedure-argument when a call-statement is executed. If an

102

AMERICAN NATIONAL STANDARD X3.113-1987

open-statement within a subprogram assigns a file to that

channel, then that assignment shall remain in effect upon exit

from the subprogram.

9.2.4.2 Scopes of Variables, Arrays, Channel-Numbers, and

Data. A procedure-parameter appearing in the procedure-parm-list

of a subprogram-def that has been passed by value shall be local

to each invocation of the subprogram-def (i.e., it shall name a

variable or array distinct from any variable or array with the

same name outside the subprogram-def).

For a procedure-parameter that has been passed by reference,

its name shall be local to each invocation of the subprogram-def,

but that name refers to the same object as the corresponding

procedure-argument (see 9.2.4.1).

The treatment of variables and arrays that are not named as

parameters in a subprogram-def shall depend upon whether the

subprogram-def is internal or external. If the subprogram-def is

external, then such variables and arrays shall be local to each

invocation of that program-unit; that is, they shall be distinct

from objects with the same names outside that subprogram-def or

within other invocations of that subprogram-def; in addition,

they shall be initialized or not initialized in a manner

consistent with the implementation-defined policies for the main-

program or parallel-section each time the subprogram-def is

invoiced. If the subprogram-def is internal, then those variables

and arrays shall be global to the containing program-unit and

shall retain their assigned values each time the subprogram-def

is invoked; if these values are changed during the course of

executing the subprogram-def, the changes remain in effect when

execution is returned to the surrounding program-unit.

With one exception, the scope of channel-numbers that are

not procedure-parameters is always the program-unit. Nonzero

channel-numbers within a subprogram-def shall be local to each

invocation of that subprogram-def if it is external, and shall be

global to the program-unit in which it occurs if it is internal.

Channel zero shall be global to the entire program. Files shall

be assigned to nonzero channels within a program-unit by means of

an open-statement before use. Files assigned to channels local

to a subprogram-def shall be closed upon exit from that

subprogram-def.

The scope of internal data is always the program-unit.

Thus, data within an external-sub-def shall be local to each

invocation of that program-unit. Hence read-statements and

restore-statements within such a subprogram-def shall refer only

103

AMERICAN NATIONAL STANDARD X3.113-1987

to data in data-statements within that subprogram-def and not to

data in other program-units. Upon invocation of such a

subprogram-def, the pointer for the data within that subprogram-

def shall be reset to the beginning of the data (cf. 10.1). Data

within an internal-sub-def shall be part of the data sequence for

that program-unit, and read-statements and restore-statements

within such a subprogram-def shall refer to the entire sequence

of data in that program-unit.

9.2.5 Exceptions

None.

9.2.6 Remarks

Implementations may extend the language by making the use of

an internal-sub-type optional, even when the internal-sub-defs

occur after the call-statements referring to them.

An alias is said to exist for an object whenever two or more

distinct names exist for that object within the same scope. When

parameters are passed by reference, aliases may be created in

certain circumstances. Parameter passing by value does not

create aliases, since distinct objects are created for each

parameter.

Any call-statement creates aliases whenever:

(1) Channel-expressions that round to the same integer

value are passed to different formal channel-numbers

(2) The same actual-array is passed to different formal-

arrays

(3) The same simple variable or array element is passed to

different formal simple-variables

(4) An array is passed to a formal-array and an element of

that array is passed to a formal simple-variable

(5) A channel-expression is passed to an internal

subprogram

(6) An argument that is not a channel-expression is passed

by reference to an internal subprogram

In the first four cases, the alias arises because two or

more formal parameters name the same object, or parts of the same

104

AMERICAN NATIONAL STANDARD X3.113-1987

object. In the latter two cases, the alias arises because an
object is "visible" to an internal subprogram, both as a
parameter and as an object global to the entire program-unit.

When the state of an object referred to by an aliased
procedure-parameter is changed, that change shall be immediately
effective in every subsequent reference to the object, regardless
of which of the object's names is used in the reference. Events
that potentially affect the state of the object referred to by a
procedure-parameter include assignment, input/output operations,
and array redimensioning.

Thus , the s program:

100 DECLARE INTERNAL SUB S
110 LET A = 0
120 CALL , S(A,A)
130 SUB S (B , C)
140 LET A = 1
150 LET B = 2
160 LET C = 3
170 IF A <> B OR B <> C OR A <> C THEN
180 PRINT "This shouldn1 't happen."

190 END IF
200 END SUB
210 END

would never print the error message in a conforming implemen¬
tation .

Remarks about the following topics in 9.1.6 apply
analogously to subprograms:

(1) Program-units with different COLLATE options

(2) Functions that are defined or declared, but not
referenced

(3) Functions that are defined before they are declared

(4) The requirement that external, but not internal,
functions always be declared (rather than defined)

(5) Internal functions with the same name in different
program-units

105

AMERICAN NATIONAL STANDARD X3.113-1987

9.3 Chaining

9.3.1 General Description

The chain-statement allows separate programs to be executed
serially without programmer intervention. Such a facility is
useful for segmenting large programs.

9.3.2 Syntax

1. chain-statement = CHAIN program-designator (WITH
function-arg-list)?

2. program-designator = string-expression

The association of the function-arguments in the function-
arg-list in the chain-statement with the function-parameters in
the function-parm-list in the program-name-line shall follow the
same rules set down for defined-functions (see 9.1).

9.3.3 Examples

1. CHAIN "PR0G2"
CHAIN A$ WITH (X,FILENAME$)

9.3.4 Semantics

A chain-statement shall terminate execution of the current
program, close all files, and initiate execution of the program
designated by the program-designator. The way in which a program
is associated with its program-designator is implementation-
defined .

If the program being chained to contains a program-name-
line, then the arguments of the chain-statement are evaluated and
assigned to the corresponding parameters in the program-name-line
(i.e., parameters are passed by value). The bounds of a formal-
array shall therefore be adjusted to equal those of the
corresponding actual-array, in accordance with the rules for
passing array parameters to functions (cf. 9.1).

It is implementation-defined whether upper-case- and lower-
case-letters are treated as equivalent in a program-designator.

The initial values of variables in a chained-to program are
implementation-defined.

106

AMERICAN NATIONAL STANDARD X3.113-1987

9.3.5 Exceptions

The program identified by the program-designator is not
available (10005, fatal).

The number and type of arguments in a chain-statement do not
agree with the number and type of the corresponding parameters in
the program-name-line of the program being chained to, or a
program-name-line with a function-parm-list is not present (4301,
fatal).

An actual-array does not have the same number of dimensions
as the corresponding formal-array (4302, fatal).

Numeric parameters are passed between programs with a chain-
statement and the ARITHMETIC options of the program-units
disagree (4303, fatal).

9.3.6 Remarks

In a typical implementation, a program-designator will be
the name of a file containing that program. The program chained
to need not be a BASIC program.

If exception 4301, 4302, or 4303 occurs, it may be reported
by the chained-from program, the chained-to program, or some
intermediate system program.

107

AMERICAN NATIONAL STANDARD X3.113-1987

10. Input and Output

Input and output facilities are provided for the interaction of a
BASIC program with collections of data. Data may be obtained by
a program from statements within that program, from a standard
source external to that program, or from a named source external
to that program (cf. 11.4). Output data may be directed to a
standard destination external to that program or to a named
destination external to that program (cf. 11.3 and 11.5).

10.1 Internal Data

10.1.1 General Description

The read-statement provides for the assignment of values to
variables from a sequence of data created from one or more
data-statements. The restore-statement allows data in a program
to be reread.

10.1.2 Syntax

> READ (missing-recovery colon)?
variable-list

= variable (comma variable)*
= IF MISSING THEN io-recovery-action
= exit-do-statement /

exit-for-statement / line-number
= RESTORE line-number?
= DATA data-list
= datum (comma datum)*
= constant / unquoted-string
= plain-string-character /

piain-string-character
unquoted-string-character*
plain-string-character

An io-recovery-action containing an exit-for-statement shall
occur only within a for-body. An io-recovery-action containing
an exit-do-statement shall occur only within a do-body.

If a line-number occurs in a restore-statement, the line-
number shall refer to a line containing a data-statement.

10.1.3 Examples

1. READ X, Y,Z
READ IF MISSING THEN 1350: X(l), A$

1. read-statement

2. variable-list
3. missing-recovery
4. io-recovery-action

5. restore-statement
6. data-statement
7. data-list
8. datum
9. unquoted-string

108

AMERICAN NATIONAL STANDARD X3.113-1987

5. RESTORE
RESTORE 1000

6. DATA 3.14159, PI, 5E-30, ","
9. COMMAS CANNOT OCCUR IN UNQUOTED STRINGS.

10.1.4 Semantics

Data from the totality of data-statements in each
program-unit shall behave as if collected into a single data
sequence. The order in which data appear textually in the
totality of all data-statements determines the order of the data
in the data sequence.

If the execution of a program reaches a line containing a
data-statement, then it shall proceed to the next line with no
further effect.

Execution of a read-statement shall cause variables in the
variable-list to be assigned values, in order, from the sequence
of data in the program-unit containing the read-statement. A
conceptual pointer is associated with this data sequence. At the
initiation of execution of the program-unit, this conceptual
pointer points to the first datum in the data sequence. Each
time a read-statement is executed, each variable in the variable-
list in sequence is assigned the value of the datum indicated by
the pointer and the pointer advanced to point beyond that datum.

If an attempt is made to read data beyond the end of the
data sequence, an exception shall occur unless a missing-recovery
is present in the read-statement. In that case, the specified
io-recovery-action shall be taken. If the io-recovery-action is
an exit-do- or exit-for-statement, that statement shall have its
normal effect (cf. 8.3). If the io-recovery-action is a line-
number, then execution shall continue at the line having that
line-number.

The type of a datum in the data sequence shall correspond to
the type of the variable to which it is to be assigned(i.e.,
numeric-variables require numeric-constants as data and string-
variables require string-constants or unquoted-strings as data).
An unquoted-string that is also a numeric-constant may be
assigned to either a string-variable or a numeric-variable by a
read-statement.

If the evaluation of a numeric datum causes an underflow,
then its value shall be replaced by zero.

109

AMERICAN NATIONAL STANDARD X3.113-1987

Subscripts and substring-qualifiers in the variable-list
shall be evaluated after values have been assigned to the
variables preceding them (i.e., to the left of them) in the
variable-list.

Execution of a restore-statement resets the pointer for the
data sequence in the program-unit containing the restore-
statement to the beginning of the sequence, so that the next
read-statement executed shall read data from the beginning of the
sequence. If a line-number is present, then the pointer for the
data sequence in the program-unit containing the restore-
statement is set to the first datum in the data-statement with
the given line-number, so that the next read-statement executed
shall read data from the beginning of the designated data-
statement .

10.1.5 Exceptions

The variable-list in a read-statement requires more data
than are present in the remainder of the data-list and a missing-
recovery has not been specified (8001, fatal).

An attempt is made to assign a value to a numeric-variable
from a datum that is not a numeric-constant (8101, fatal).

The evaluation of a numeric datum causes an overflow (1006,
fatal).

The assignment of a datum to a string-variable results in a
string overflow (1053, fatal).

10.1.6 Remarks

Implementations may choose to treat underflows as exceptions
(1506, nonfatal: supply zero and continue) to permit interception
by exception handlers.

110

AMERICAN NATIONAL STANDARD X3.113-1987

10.2 Input

10.2.1 General Description

Input-statements provide for user interaction with a program

by allowing variables to be assigned values supplied from a

source external to the program. The input-statement enables the

entry of mixed string and numeric data, with data items being

separated by commas.

A prompt for input may be specified to replace the usual

prompt supplied by the implementation.

The line-input-statement enables an entire line of input,

including embedded spaces and commas, to be assigned as the value

of a string-variable.

1.

2.
3 .

4.

5 .

6.
7 .

8.
9.

10.
11.

10.2.2 Syntax

input-statement >

input-modifier-list =

input-modifier =

prompt-specifier =

timeout-expression =

numeric-time-expression

time-inquiry =

line-input-statement >

input-prompt =

input-reply =

line-input-reply =

INPUT input-modifier-list?

variable-list

input-modifier

(comma input-modifier)* colon

prompt-specifier /

timeout-expression /

time-inquiry

PROMPT string-expression

TIMEOUT numeric-time-expression

; numeric-expression

ELAPSED numeric-variable

LINE INPUT input-modifier-list?

string-variable-list

[implementation-defined]

data-list comma? end-of-line

character* end-of-line

At most one prompt-specifier, one timeout-expression, and

one time-inquiry shall occur in an input-modifier-list. These

may occur in any sequence.

10.2.3 Examples

1. INPUT X

INPUT X, A$, Y(2)

INPUT PROMPT "What is your name? ": N$

INPUT TIMEOUT 3*N, ELAPSED T, PROMPT Pstring$: N$

8. LINE INPUT A$

LINE INPUT PROMPT "": A$, B$

111

AMERICAN NATIONAL STANDARD X3.113-1987

10. 2, SMITH, -3

25, 0, -10.2

11. He said, "Don't".

10.2.4 Semantics

Execution of an input-statement shall cause execution of the

program to be suspended until a valid input-reply, as specified

below, has been supplied. An input-statement shall cause

variables in the variable-list to be assigned, in order, values

from the input-reply.

In interactive mode, the user of the program shall be

informed of the need to supply data by the output of an input-

prompt .

10.2.4.1 Input-Modifier-List. If a prompt-specifier is

present in the input-statement, then the implementation-defined

input-prompt shall not be output; instead, the value of the

string-expression in the prompt-specifier shall be output (unless

the input-reply is terminated by a comma — see below). In batch

mode, the input-reply shall be requested from the external source

by an implementation-defined means.

If a timeout-expression is present in an input-modifier-

list, then the numeric-time-expression contained therein shall be

evaluated to obtain a (possibly fractional) number S of seconds.

If no valid input-reply or line-input-reply has been supplied

within S seconds, then an exception shall occur. A time-inquiry

returns the (possibly fractional) number of seconds elapsed

between the issuance of the input-prompt and the reception of the

end-of-line of the last input-reply for this input-statement.

This value is assigned to the numeric-variable in the time-

inquiry. If no clock is provided by an implementation, then a

timeout-expression shall have no effect. If a clock is provided,

a time-inquiry result shall always be positive. If no clock is

provided, a time-inquiry result shall be -1. The values (minimum

and maximum) and resolution of both timeout expressions and time-

inquiries is implementation-defined.

10.2.4.2 Assignment of Values. The assignment of a value

from the input-reply to the corresponding variable shall take

place as soon as an item of data in the input-reply has been

validated with respect to the type of the datum and the allowable

range of values for that datum.

Subscripts and substring-qualifiers in a variable-list or

string-variable-list shall be evaluated after values have been

112

AMERICAN NATIONAL STANDARD X3.113-1987

assigned to the variables preceding them (i.e., to the left of

them) in the variable-list or string-variable-list.

The type of each datum in the input-reply shall correspond

to the type of the variable to which it is to be assigned (i.e.,

numeric-constants shall be supplied as input for numeric-

variables, and either string-constants or unquoted-strings shall

be supplied as input for string-variables). An unquoted-string

that is also a numeric-constant may be assigned to either a

string-variable or a numeric-variable by an input-statement.

If the evaluation of a numeric datum causes an underflow,

then its value shall be replaced by zero.

If an input-reply supplied in response to a request for

input does not end with a comma, then the number of data in all

the input-replies submitted shall equal the number of variables

requiring values.

If the last character other than a space before the end-of-

line in an input-reply is a comma, then this shall be taken to

signify that further data are to be supplied. As many values as

are contained in that input-reply shall be assigned to variables

in the variable-list. The input-prompt (but not the string-

expression of the prompt-specifier, if there is one) shall then

be reissued, and execution of the program shall remain suspended

until another valid input-reply has been supplied, from which

further data shall be obtained.

When a line-input-statement is executed, a line-input-reply

shall be requested for each string-variable in the string-

variable-list in the same fashion as an input-reply is requested.

That is, the value of the first line-input-reply shall be

assigned to the first variable in the variable-list. If there

are further variables in the variable-list, the input-prompt (but

not the string-expression of the prompt-specifier, if there is

one) shall then be reissued, and execution of the program shall

remain suspended until a second valid line-input-reply has been

supplied and assigned to the second variable in the variable-

list. This process continues until a valid line-input-reply has

been supplied for each variable in the variable-list. The

characters of each line-input-reply, including any leading and

trailing spaces, shall be concatenated to form a single string,

which shall become the value of the corresponding string-

variable, except that the end-of-line, which terminates a line-

input-reply, shall not be included. Quotation marks within a

line-input-reply are treated as actual characters. Thus, two

adjacent quotation-marks are taken as two characters, not as one.

113

AMERICAN NATIONAL STANDARD X3.113-1987

10.2.5 Exceptions

The line supplied in response to a request for an input-
reply is not a syntactically correct input-reply (8102, nonfatal:
request that a new input-reply be supplied).

A datum supplied as input for a numeric-variable is not a
numeric-constant (8103, nonfatal: request that the current input-
reply be resupplied).

There are insufficient data in an input-reply not containing
a final comma (8002, nonfatal: request that the current input-
reply be resupplied).

There are too many data in an input-reply or there are just
enough data and the input-reply ends with a comma (8003,
nonfatal: request that the current input-reply be resupplied).

The evaluation of a numeric datum causes an overflow (1007,
nonfatal: request that the current input-reply be resupplied).

The assignment of a datum or a line-input-reply to a string-
variable results in a string overflow (1054, nonfatal: request
that the current input-reply or line-input-reply be resupplied).

The value of a numeric-time-expression is less than zero
(8402, fatal).

A valid input-reply or line-input-reply has not been
supplied within the number of seconds specified by a timeout-
expression in an input-modifier-list (8401, fatal).

10.2.6 Remarks

This standard requires that users in the interactive mode
always be given the option of resupplying erroneous input-
replies; in batch mode this may be treated as a fatal exception.
This standard does not require an implementation to provide
facilities for correcting erroneous input-replies, though such
facilities may be provided.

It is recommended that the default input-prompt consist of a
question-mark followed by a single space.

This standard does not require an implementation to output
(i.e., echo) an input-reply or line-input-reply.

114

AMERICAN NATIONAL STANDARD X3.113-1987

Implementations may choose to treat underflows as exceptions
(1507, nonfatal: supply zero and continue) to permit interception
by exception handlers.

If an input datum is an unquoted-string, leading and
trailing spaces are ignored (cf. 4.1). If it is a quoted-string,
then all spaces between the quotation-marks are significant (cf.
6.1).

115

AMERICAN NATIONAL STANDARD X3.113-1987

10.3 Output

10.3.1 General Description

The print-statement is designed for generation of tabular
output in a consistent format. The set-statement with MARGIN can
be used to specify the width of output-lines. The set-statement
with ZONEWIDTH can be used to specify the width of print zones
within a print-line. The ask-statement is used to inquire about
the current MARGIN and ZONEWIDTH.

Generalizations of the print-statement are described in
10.4, 10.5, and 11.3.

10.3.2 Syntax

1. print-statement
2. print-list

3. print-item
4. tab-call

5. print-separator
6. set-statement
7. set-object
8. ask-statement
9. ask-io-list

10. ask-io-item

> PRINT print-list
= (print-item? print-separator)*

print-item?
= expression / tab-call
= TAB left-parenthesis index

right-parenthesis
= comma / semicolon
= SET set-object
> (MARGIN / ZONEWIDTH) index
> ASK ask-io-list
= ask-io-item (comma ask-io-item)*
= (MARGIN / ZONEWIDTH) numeric-variable

A given ask-io-item shall appear at most once in an ask-
statement .

10.3.3 Examples

1.

6.

PRINT X
PRINT X, Y
PRINT X, Y, Z,
PRINT ,,,X
PRINT
PRINT "X EQUALS", 10
PRINT X; (Y+Z)/2
PRINT TAB(10); A$; "IS DONE.
SET MARGIN 120
SET ZONEWIDTH 20

116

AMERICAN NATIONAL STANDARD X3.113-1987

10.3.4 Semantics

The execution of a print-statement shall generate a string

of characters and end-of-lines for transmission to an external

device. This string of characters shall be determined by the

successive evaluation of each print-item and print-separator in

the print-list.

If an expression in a print-list invokes a function that

causes a print-statement to be executed, and that print-statement

transmits characters to the same device as the original print-

statement, then the effect is implementation-defined.

10.3.4.1 Printing Numeric Values. Numeric-expressions

shall be evaluated to produce a string of characters consisting

of a leading space if the number is positive, or a leading

minus-sign if the number is negative, followed by the decimal

representation of the absolute value of the number and a trailing

space. The possible decimal representations of a number are the

same as those described for numeric-constants in 5.1 and shall be

used as follows:

(1) Each implementation shall define two quantities: a

significance-width d, to control the number of significant

decimal digits printed in numeric representations, and an

exrad-width e, to control the number of digits printed in the

exrad component of a numeric representation. The value of d

shall be at least 6 and the value of e shall be at least 2.

(2) Each expression whose value is exactly an integer and

that can be represented with d or fewer decimal digits shall be

output using the implicit point unsealed representation.

(3) All other values shall be output using either

explicit-point unsealed representation or explicit-point scaled

representation. Values that can be represented with d or fewer

digits in the unsealed representation no less accurately than

they can in the scaled representation shall be output using the

unsealed representation. For example, if d = 6, then 10~(-6) is

output as .000001 and 10~(-7) is output as l.E-7.

(4) Values represented in the explicit-point unsealed

representation shall be output with up to d significant decimal

digits and a period; trailing zeros in the fractional part may be

omitted. A number with a magnitude less than 1 shall be

represented with no digits to the left of the period. This form

requires up to d+3 characters counting the sign, the period, and

the trailing space.

117

AMERICAN NATIONAL STANDARD X3.113-1987

(5) Values represented in the explicit-point scaled

representation shall be output in the format

significand E sign integer

where the value x of the significand is in the range 1 <_ x < 10

and is to be represented with exactly d digits of precision, and

where the exrad component has one to e digits. Trailing zeros

may be omitted in the fractional part of the significand and

leading zeros may be omitted from the exrad. A period shall be

printed as part of the significand. This form requires up to

d+e+5 characters counting the two signs, the period, the "E", and

a trailing space.

10.3.4.2 Printing String Values. String-expressions shall

be evaluated to generate the corresponding string of characters.

10.3.4.3 Print Separators and Tabs. The evaluation of the

semicolon separator shall generate the null string (i.e., a

string of zero length).

The evaluation of a tab-call or a comma separator depends

upon the string of characters already generated by the current or

previous print-statements. The "current line" is the (possibly

empty) string of characters generated since the beginning of

execution or since the last end-of-line was generated.

The "columnar position" of the current line is the print

position that will be occupied by the next character output to

that line. Print positions shall be numbered consecutively from

the left, starting with position one. Each time a character in

positions 2/0 through 7/14 of the standard character set is

generated, the columnar position shall be increased by one. Each

time an end-of-line is generated, the columnar position shall be

reset to one. The effect of other characters on the columnar

position is implementation-defined.

The "margin" is the maximum columnar position in which a

character may appear. Prior to execution of a set-statement with

MARGIN, the margin shall be implementation-defined, but shall not

be less than the default zone width. A margin of MAXNUM shall

indicate that the columnar position may be arbitrarily large.

Each print-line is divided into a fixed number of print

zones in which the number of zones and the length of each zone is

implementation-defined. All print zones, except possibly the

last one on a line, which may be shorter, shall have the same

width. The default width of a zone shall be at least d+e+6 print

118

AMERICAN NATIONAL STANDARD X3.113-1987

positions. The zone width may be changed by the execution of a

set-statement with ZONEWIDTH. ZONEWIDTH may be set to any value

greater than zero, but not greater than the current margin.

The purpose of the tab-call is to set the columnar position

of the current line to the specified value prior to printing the

next print-item. More precisely, the argument of the tab-call

shall be evaluated and rounded to the nearest integer n. If n is

less than one, an exception shall occur. If n is greater than

the margin m, then n shall be reduced by an integral multiple of

m so that it is in the range 1 <_ n <_ m (i.e., n shall be set

equal to MOD(n-l,m) + 1).

If the columnar position of the current line is less than or

equal to n, then spaces shall be generated, if necessary, to set

the columnar position to n; if the columnar position of the

current line is greater than n, then an end-of-line shall be

generated followed by n-1 spaces to set the columnar position of

the new current line to n.

The evaluation of the comma print-separator depends upon the

columnar position. If this position is neither in the last print

zone on a line nor beyond the margin, then one or more spaces

shall be generated to set the columnar position to the beginning

of the next print zone on the line. If the initial columnar

position is in the last print zone on a line, then an end-of-line

shall be generated. Finally, if the initial columnar position is

beyond the margin (as it would be if evaluation of the last

print-item exactly filled the line), then an end-of-line shall be

generated.

10.3.4.4 Overlength Output Lines. Whenever the columnar

position is greater than one and the generation of the next

print-item would cause a character to appear beyond the margin,

then an end-of-line shall be generated prior to the characters

generated by that print-item.

During the generation of a print-item, whenever that

generation would cause a character to appear beyond the margin,

an end-of-line shall be generated prior to that character,

resetting the columnar position to one.

10.3.4.5 End of Print-List. When evaluation of a

print-list is completed, if that print-list did not end with a

print-separator, then a final end-of-line shall be generated;

otherwise, no such final end-of-line shall be generated.

119

AMERICAN NATIONAL STANDARD X3.113-1987

A completely empty print-list shall generate an end-of-line,

thereby completing the current line of output. If this line

contained no characters, then a blank line shall result.

10.3.4.6 Setting the Margin. Execution of a set-statement

with a MARGIN shall cause its index to be evaluated and to become

the new margin. The change in the margin shall take effect

immediately, even if a line of output is partially filled. The

set-statement with a MARGIN affects only unformatted output.

10.3.4.7 Setting the Zone Width. Execution of a

set-statement with a ZONEWIDTH shall cause its index to be

evaluated and to become the new zone width. The change in the

zone width shall take effect immediately, even if a line of

output is partially filled. The set-statement with a ZONEWIDTH

affects only unformatted output.

10.3.4.8 Ask-Statement. Execution of an ask-statement

shall cause the variables in the ask-io-list to be assigned

values corresponding to the current margin, if MARGIN is present,

or current zonewidth, if ZONEWIDTH is present. If the columnar

position may be arbitrarily large, then the value MAXNUM shall be

returned to the numeric-variable in the ask-statement with

MARGIN.

10.3.5 Exceptions

The value of the index in a tab-call is less than one (4005,

nonfatal: supply one and continue).

The value of the index in a set-statement with a MARGIN is

less than the current zonewidth (4006, fatal).

The value of the index in a set-statement with a ZONEWIDTH

is less than one or greater than the current margin (4007,

fatal) .

10.3.6 Remarks

The character string generated by printing the value of a

numeric-expression contains a single trailing space. If the

generation of that space would cause the columnar position to

exceed the margin by more than one, then implementations may

choose not to generate that space, thereby allowing the number to

be printed in the final print zone on a line.

120

AMERICAN NATIONAL STANDARD X3.113-1987

Implementations may choose to use a lowercase "e" in

printing numerical values using the explicit-point scaled

representation.

The print-separator following a tab-call is significant in

the same manner that it is significant following an expression.

121

AMERICAN NATIONAL STANDARD X3.113-1987

10.4 Formatted Output

10.4.1 General Description

A print-statement may control the format of output by

specifying an image to which that output must conform. The image

is specified either within the print-statement or in a separate

image-line.

10.4.2 Syntax

1.
2 .
3 .

4.

5 .

6 .
7.

8.

9.

10.
11.

12 .
13 .

14.

15 .

print-statement >

formatted-print-list =

image =

output-list =

image-line =

format-string =

literal-string =

literal-item =

format-item

justifier =

floating-characters =

i-format-item

digit-place

f-format-item

e-format-item

PRINT formatted-print-list

USING image (colon output-list)?

line-number / string-expression

expression (comma expression)*

semicolon?

line-number IMAGE colon

format-string end-of-line

literal-string

(format-item literal-string)*

literal-item*

letter / digit /

apostrophe / colon / equals-sign /

exclamation-point /

left-parenthesis / question-mark /

right-parenthesis / semicolon /

slant / space / underline

(justifier? floating-characters

(i-format-item / f-format-item /

e-format-item)) / justifier

greater-than-sign / less-than-sign

(plus-sign* / minus-sign*)

dollar-sign? /

dollar-sign* (plus-sign /

minus-sign)?

digit-place digit-place* (comma

digit-place digit-place*)*

asterisk / number-sign / percent-sign

period number-sign number-sign* /

i-format-item period number-sign*

(i-format-item / f-format-item)

circumflex-accent circumflex-accent

circumflex-accent circumflex-accent*

An image that is a line-number shall refer to an image-line

in the same program-unit. Any leading spaces following the colon

in an image-line are part of the format-string.

122

AMERICAN NATIONAL STANDARD X3.113-1987

All digit-places in an i-format-item shall be the same
character (i.e., all shall be number-signs, all shall be percent
signs, or all shall be asterisks).

10.4.3 Examples

10 LET sum = 20
20 PRINT USING "The answer is ###.#": sum

produces "The answer is 20.0".

30 PRINT
40 IMAGE

USING 40: 342, 42.021
:RATE OF LOSS #### EQUALS ####.## POUNDS

produces "RATE OF LOSS 342 EQUALS 42.02 POUNDS".

10 LET A$ = "<##### ####.#### ####.####

20 PRINT USING A$: 1, 1, 1

produces " 1 1.0000 1000.0000E-03".

60 PRINT
70 IMAGE

USING 70: "ONE", "TWO", "THREE"
: Z<####>#### ########Z

produces "ZONE TWO THREE Z".

80 LET A$ = "Pay $**.## on ### %% 19%%
90 PRINT USING A$: 1, "May", 2, 83

produces "Pay $*1.00 on May 02 1983".

10 PRINT USING "<%%.## >-$##.## $$$+***": 3.1, -1234.567, 2

produces "003.10 -$1234.57 $+**2".

10 PRINT USING "<$$$$.## $$$$.###.": -.02, -.02

produces " $-.02 $- . 200E-001".

10 PRINT USING "$***,***.##": 1234.7777

produces "$**1,234.78".

10.4.4 Semantics

A print-statement with a formatted-print-list identifies a
format-string to be used to control the output generated by the
evaluation of the output-list. If the image is specified via a

123

AMERICAN NATIONAL STANDARD X3.113-1987

line-number, then the format-string is contained in the image¬

line with the indicated line-number; otherwise, it is the value

of the string-expression.

10.4.4.1 Format-String Analysis♦ The selected format¬

string shall be analyzed as a number of format-items separated by

possibly zero-length literal-strings. Format-items shall be

found within the format-string by scanning the latter from left

to right. A search shall be made for the first character that is

the start of a syntactically correct format-item, and the longest

such format-item starting at that character identified. The scan

for format-items shall continue in this way up to the end of the

format-string, the search for the start of each new format-item

beginning at the character immediately beyond the previously

identified format-item. Corresponding to each format-item shall

be an output field whose length equals the number of characters

in the format-item (including the justifier, floating-characters,

digit-places, commas, period, number-signs, and circumflex-

accents). Characters that are not part of any format-item shall

be literal-items.

Format-strings that are defined in image-lines shall be

interpreted as ending with the last character in the line which

is not a space or end-of-line.

10.4.4.2 Literal-Strings and Output Fields. A sequence of

values to be output shall be generated by evaluating each

expression in the output-list in sequence. As each value is

generated, the literal-string preceding the next format-item in

the format-string shall first be copied unchanged into the string

of characters being generated. Then a number of characters equal

to the length of the output field determined by that format-item

shall be generated according to 10.4.4.3, if the expression is

numeric, or according to 10.4.4.4, if the expression is a string.

10.4.4.3 Formatted Numeric Output. Numeric values shall

be rounded and represented in a manner corresponding to the

format-item used. If a justifier is present in the format-item,

it shall be replaced by the character immediately to its right.

If, however, the character to its right is a period, or if there

is no character to its right, then the justifier shall be

replaced by a number-sign.

First, a representation for the magnitude of the value shall

be generated.

124

AMERICAN NATIONAL STANDARD X3.113-1987

For an i-format-item, the value shall be rounded to the
nearest integer and represented using implicit point unsealed
notation.

For an f-format-item, the value shall be represented using
explicit point unsealed notation, rounding the representation or
extending it on the right with zeros in accordance with the
number of number-signs following the period in the format-item.

For both i-format-items and f-format-items, leading zeros to
the left of the implicit or explicit decimal point shall not be
generated, unless this results in no digits being generated. In
that case, the character "0" shall be generated immediately to
the left of the explicit or implicit decimal point. After this,
if there remain unfilled digit-places, then leading zeros shall
be generated in the integer or to the left of the period when a
percent-sign is used as a digit-place, leading asterisks when an
asterisk is used as a digit-place, and leading spaces when a
number-sign is used as a digit-place, such that the number of
characters to the left of the implicit or explicit decimal point
is equal to the number of digit-places in the format-item.

For an e-format-item, the value shall be represented using
explicit or implicit point scaled notation, corresponding to the
use of an f-format-item or i-format-item, respectively, within
the e-format-item. The significand for nonzero values shall be
scaled by powers of ten such that the leftmost digit-place or
number-sign position is occupied by a nonzero digit. In all
other respects, the significand shall be generated according to
the above rules for i-format-items and f-format-items. The
number of circumflex-accents in an e-format-item shall determine
the number of characters in the exrad. The first of these
characters shall be the letter E, the next a mandatory sign, and
the remaining characters the representation of the magnitude of
the exrad, with leading zeros being generated so that the number
of characters in the exrad equals the number of circumflex-
accents in the format-item. If the exponent is zero, the
mandatory sign is positive; the exponent of zero is zero.

Second, commas shall be inserted in this numeric represen¬
tation wherever a comma occurs in the format-item, provided at
least one digit has been generated to the left of the point of
insertion; if no digit has been generated to the left of this
point, then an asterisk shall be inserted if the digit-place
immediately to the left is an asterisk, and a space inserted if
the digit-place immediately to the left is a number-sign.

125

AMERICAN NATIONAL STANDARD X3.113-1987

Third, leading characters composed of sign, dollar-sign, and
space shall be generated as follows:

Floating-characters Leading Characters Generated

First* Last Non-negative Negative

— $ " $ " "-$ "

$ - "$ "

- none II II II_ ll

+ $ " + $" "

$ + "$ + "
+ none II II

$ none "$ "

none none ll II II II

* may be several occurrences

Finally, the representation of the numeric value so
generated shall be extended by spaces on the left so that its
length equals that of the format-item. This has the effect of
right-justifying a numeric-representation in an output field.

10.4.4.4 Formatted String Output. A string value may be
output using any type of format-item. The string shall be
extended by spaces so that its length equals that of the
format-item. These spaces shall be added on the left (for
right-justification) if the format-item begins with a greater-
than-sign, on the right (for left-justification) if it begins
with a less-than-sign, and equally on either side (for centering)
otherwise; if the number of spaces required in the last case is
odd, the extra space shall be added on the right.

10.4.4.5 Formatted Output Completion. If the number of
values to be output exceeds the number of format-items in the
format-string, an end-of-line shall be generated each time the
end of the format-string is reached and the format-string reused
for the remaining expressions. If format-items remain in the
format-string after all values have been output, then the next
literal-string, if any, shall be output. Generation of
characters is always terminated beginning at the first unused
format-item.

Finally, an end-of-line shall be generated after all other
character generation is completed, unless the output-list ends
with a semicolon, in which case no such end-of-line shall be
generated.

126

AMERICAN NATIONAL STANDARD X3.113-1987

The current margin shall not affect the output; in

particular, no end-of-line shall be generated upon formatted

output just because the margin is exceeded.

If the execution of a program reaches an image-line, it

shall proceed to the next line with no further effect.

10.4.5 Exceptions

An invalid format-string is specified in a formatted-print-

list (8201, fatal).

A formatted-print-list contains an output-list, but there is

no format-item in the format-string (8202, fatal).

An output string, whether generated from a string-expression

or a numeric-expression, is longer than its corresponding format-

item (8203, nonfatal: fill the output field with asterisks,

report the unformatted representation of the value on the next

line, and continue printing on the following line in a position

identical to the position that would have resulted if no

exception had occurred).

The exrad for numeric output exceeds the space allocated by

circumflex-accents in a format-item (8204, nonfatal: fill the

output field with asterisks, report the unformatted represen¬

tation of the value, and continue).

10.4.6 Remarks

Since format-strings may be evaluated dynamically, errors in

them (even if occurring in an image-line and therefore statically

determined) may be treated as exceptions.

Implementations may choose to use a lowercase "e" in

printing numerical values using the explicit-point scaled

representation.

The integer part of a number generated with an i-format-item

or f-format-item may validly contain more digits than there are

digit-places in the format-item, as long as the floating-

characters provide sufficient room.

Negative numeric values always generate a minus-sign. The

corresponding format-item must provide room for this minus-sign

with floating-characters, since digit-places are completely

filled by digits, or by leading spaces, zeros, or asterisks. In

particular, a format-item with no floating-characters, or with

127

AMERICAN NATIONAL STANDARD X3.113-1987

only a single dollar-sign as a floating-character, will
exception 8203 if an attempt is made to fill that field
negative value.

cause
with a

128

AMERICAN NATIONAL STANDARD X3.113-1987

10.5 Array Input and Output

10.5.1 General Description

Statements are provided that enable entire arrays to be
input or output. These statements generalize the input and
output statements that manipulate single values (cf. 10.1 to
10.4).

10.5.2 Syntax

1. array-read-statement

2. redim-array-list

3. redim-array
4. array-input-statement

5. variable-length-vector

6. array-line-input-statement

7. redim-string-array-list

8. redim-string-array
9. array-print-statement

10. array-print-list

11. array-output-list

> MAT READ (missing-recovery
colon)? redim-array-list

= redim-array
(comma redim-array)*

= array-name redim?
> MAT INPUT input-modifier-list?

(redim-array-list /
variable-length-vector)

= array-name left-parenthesis
question-mark right-parenthesis

> MAT LINE INPUT
input-modifier-list?
redim-string-array-list

= redim-string-array
(comma redim-string-array)*

= string-array redim?
> MAT PRINT (array-print-list /

(USING image colon
array-output-list))

= array-name (print-separator
array-name)* print-separator?

= array-name (comma array-name)*
semicolon?

A redim and the array in its redim-array shall have the same
number of dimensions.

A variable-length-vector shall be one-dimensional.

10.5.3 Examples

1. MAT READ A
MAT READ A(M,N), B

4. MAT INPUT A$(3,4)
MAT INPUT X(?)
MAT INPUT PROMPT "Enter data:": X(?)

129

AMERICAN NATIONAL STANDARD X3.113-1987

8. MAT LINE INPUT A$
9. MAT PRINT A; B, C;

10.5.4 Semantics

10.5.4.1 The Array-Read-Statement. Execution of an array-
read-statement shall cause arrays in the redim-array-list to be
assigned, in order, values from the data sequence created by
data-statements in the program-unit containing that statement.
Values shall be assigned to all elements in each array in "row
major order" (i.e., the last subscript varying most rapidly, then
the next to last subscript, if any, and so on) with each
successive value being obtained from the datum in the data
sequence indicated by the pointer for the sequence and the
pointer being advanced beyond that datum.

The type of each datum in the data sequence shall correspond
to the type of the array-element to which it is to be assigned
(cf. 10.1).

If a redim is present then dynamic redimensioning shall take
place before values are assigned to the redimensioned array. The
redimensioning shall be done according to the rules for bounds in
array-declarations. The values of the indices shall be used as
the new lower and upper bounds for the array. If an exception
occurs when attempting to redimension an array, it shall retain
its old dimensions. Redims in the redim-array-list shall be
evaluated after values have been assigned to the arrays preceding
them (i.e., to the left of them) in the redim-array-list.

The handling of insufficient data with or without a missing-
recovery shall work as described in 10.1.

If the evaluation of a numeric datum causes an underflow,
then its value shall be replaced by zero.

10.5.4.2 The Array-Input-Statement. Execution of an
array-input-statement shall cause execution of the program to be
suspended until a valid input-reply, as specified below, has been
supplied. An array-input-statement shall cause arrays in the
redim-array-list to be assigned, in order, values from the
input-reply. Values shall be assigned to all elements in each
array in row major order.

In the interactive mode, the user of the program shall be
informed of the need to supply data by the output of an input-
prompt. The prompt is identical to that of the input-prompt of
the input-statement.

130

AMERICAN NATIONAL STANDARD X3.113-1987

The input-modifier-list, if present, shall work as described

in 10.2.

The type of each datum in the input-reply shall correspond
to the type of the array-element to which it is to be assigned.

If a redim is present then dynamic redimensioning shall take
place as described above for the array-read-statement before
values are assigned to the redimensioned array. Redims in the
redim-array-list shall be evaluated after values have been
assigned to the redim-arrays preceding them (i.e., to the left of
them) in the redim-array-list.

If the recovery procedure for an input exception causes
input data to be resupplied to an array that was redimensioned
after the original assignment of data to it, but before the
exception occurred, the effect is implementation-defined.

Data in response to a request for array input need not be
supplied in a single input-reply. If the array-list has not been
completely supplied with data and the input-reply contains a
final comma, then the input-prompt shall be issued and a further
input-reply shall be requested to obtain more data.

If the evaluation of a numeric datum causes an underflow,
then its value shall be replaced by zero.

10.5.4.3 Input of Variable-Length Vectors. If a
variable-length-vector occurs in an array-input-statement, then
as many data as are present in the input-reply (or sequence of
input-replies up to and including the first that does not end
with a comma) shall be supplied as input for that vector.
Assignment of data shall begin with the current lower bound for
the vector. After assignment, the vector shall be redimensioned
dynamically by setting the upper bound for its subscript equal to
the subscript of the element receiving the last datum. The
number of data values assigned to the variable-length-vector
shall not exceed the original size for that vector as specified
in its array-declaration.

The type of each datum in the input-reply shall correspond
to the type of the array.

10.5.4.4 The Array-Line-Input-Statement. When an
array-line-input-statement is executed, a line-input-reply shall
be requested for each element of each string-array in the
string-array-list in the same fashion that an input reply is
requested and shall assign the entire contents of successive

131

AMERICAN NATIONAL STANDARD X3.113-1987

line-input-replies (excluding their end-of-lines) in row major
order to elements of the string-arrays in the string-array-list.
The number of line-input-replies requested shall equal the number
of elements requiring values.

In the interactive mode, the user of the program shall be
informed of the need to supply data by the output of an input-
prompt .

The input-modifier-list, if present, shall work as described
in 10.2.

If a redim is present, then dynamic redimensioning shall
take place as described above for the array-read-statement before
values are assigned to the redimensioned array. Redims in the
redim-string-array-list shall be evaluated after values have been
assigned to the redim-string-arrays preceding them (i.e., to the
left of them) in the redim-string-array-list.

10.5.4.5 The Array-Print-Statement. Execution of an
array-print-statement shall cause the values of all elements in
all arrays in the array-print-list to be printed. An end-of-line
shall be generated prior to any characters generated by an
array-print-statement if the current line of output is nonempty.

For an array-print-statement with an array-print-list, the
characters generated for transmission to an external device by
the printing of a two-dimensional array are almost precisely
those that would be generated if the elements in that array had
been listed, row by row, in the print-list of a print-statement,
separated by the separator which follows the array-name in the
array-print-list (or separated by a comma if no separator follows
the array name). The only additional characters generated shall
be an end-of-line each time a row of the array has been printed
(if such an end-of-line has not already been generated). A
three-dimensional array shall be printed like a series of two-
dimensional arrays, one for each value of the first subscript,
with an extra end-of-line generated between each value of the
first subscript. When a one-dimensional array is printed, it
shall be treated like a row-vector, and printed as if it were a 1
x N array.

Finally, an extra end-of-line shall be generated between the
output for successive arrays in an array-print-list.

For an array-print-statement with an array-output-list, the
characters generated for transmission to an external device are
exactly those that would be generated if the elements of each

132

AMERICAN NATIONAL STANDARD X3.113-1987

array had been listed array-by-array, in row major order, in the
output-list of a print-statement, using the same image as that in
the array-print-statement. No additional end-of-lines shall be
generated. As with a print-statement using an image, if there is
no trailing semicolon in the array-output-list, a final end-of-
line shall be generated after all other output from the array-
print-statement. If there is such a semicolon, then this final
end-of-line shall not be generated.

10.5.5 Exceptions

The redim-array-list in an array-read-statement requires
more data than are present in the remainder of the data sequence
and no missing-recovery has been specified (8001, fatal).

An attempt is made to assign a value to an element of a
numeric-array from a datum in the data sequence that is not a
numeric-constant (8101, fatal).

The assignment of a datum during execution of an array-read-
statement results in a string overflow (1053, fatal).

The evaluation of a numeric datum in a data-list causes an
overflow (1006, fatal).

The line supplied in response to a request for array input
is not a syntactically correct input-reply (8102, nonfatal:
request that a new input-reply be supplied).

A datum supplied as input for a numeric-array is not a
numeric-constant (8103, nonfatal: request that the current input-
reply be resupplied).

There are insufficient data in an input-reply not containing
a final comma (8002, nonfatal: request that the current input-
reply be resupplied).

There are too many data in an input-reply or there are just
enough data and the input-reply ends with a comma (8003,
nonfatal: request that the current input-reply be resupplied).

The evaluation of a numeric datum in an input-reply causes
an overflow (1007, nonfatal: request that the current input-reply
be resupplied).

The assignment of a string datum during execution of an
array-input-statement or an array-line-input-statement causes a

133

AMERICAN NATIONAL STANDARD X3.113-1987

string overflow (1054, nonfatal: request that the current input-

reply or line-input-reply be resupplied).

The total number of elements required for a redimensioned

array exceeds the number of elements reserved by the array's

original dimensions (5001, fatal).

The first index in a redim-bounds is greater than the second

index (6005, fatal).

A redim-bounds consists of a single index that is less than

the default lower bound in effect (6005, fatal).

A valid input-reply or line-input-reply has not been

supplied within the number of seconds specified by a timeout-

expression in an input-modifier-list (8401, fatal).

The value of a numeric-expression used as a time-expression

is less than zero (8402, fatal).

An invalid format-string is specified in an array-print-

statement (8201, fatal).

An array-print-statement contains an array-output-list, but

there is no format-item in the format-string (8202, fatal).

10.5.6 Remarks

This standard does not require an implementation to output

(i.e., echo) the input-reply or line-input-reply.

This standard does not require an implementation to provide

facilities for correcting erroneous input-replies, though such

facilities may be provided.

Implementations may choose to treat underflows as exceptions

(1507, nonfatal: supply zero and continue) to permit interception

by exception handlers.

134

AMERICAN NATIONAL STANDARD X3.113-1987

11. Files

Files are organized collections of data external to BASIC
programs. They provide the user with a means of saving data
developed during execution of a program and then retrieving and
modifying that data during subsequent executions of BASIC
programs. The process by which external data is transferred to
or from a program is called input or output, respectively. An
implementation-defined means shall be provided for the creation,
preservation, and retrieval of files. Input and output
operations to these files shall perform as specified in this
section.

This section describes the logical appearance of files and
devices to a BASIC program. In some cases, these attributes may
reflect physical characteristics, but in general this standard
makes no presumptions concerning the physical representation or
organization of files or devices.

There are four kinds of file-organization: sequential,
stream, relative, and keyed. Sequential and keyed files are
sequences of records. A relative file is a sequence of record
areas, each of which may or may not contain a record. A stream
file is a sequence of values.

There are three kinds of record-type: display, internal, and
native. A display record is a sequence of characters. An
internal record is a sequence of typed values. A native record
is a sequence of fields, as described by a program-specified
template. Display records provide for the exchange of data
between systems employing different internal representations for
numeric and string values, and also manipulate data in human-
readable form. Internal records provide for efficient
manipulation of data within a single system. Native records
provide for the exchange of data among different language
processors within a single system.

There are three modules provided for file capabilities,
based on which combinations of file-organization and record-type
are supported. The core module contains sequential display
files, sequential internal files, and stream internal files. The
enhanced internal module contains relative internal and keyed
internal files. The enhanced native module contains sequential
native, relative native, and keyed native files. All other
combinations of file-organization and record-type are implemen¬
tation-defined. The distinction between modules is also
reflected in the arrangement of the productions for the syntax.
Within each subsection, the syntax rules for the core module are

135

AMERICAN NATIONAL STANDARD X3.113-1987

presented first, followed by the additional syntax productions

that pertain to the enhanced files modules. Some of the enhanced

productions apply only to the enhanced-native module? these are

preceded by an "N".

The meaning of certain terms used throughout this section is

as follows. A "file element" is an entity, a sequence of which

constitutes a file. Thus, for keyed and sequential files, a file

element is a record; for relative files, it is a record-area? for

stream files, it is a value. Associated with each file during

execution is a "file pointer," which either uniquely identifies a

particular file element upon completion of any statement or

points to the end of file. If the pointer is at the beginning of

the file, then it identifies the first file element, if any. If

a file is an empty sequence, then the beginning and end of file

are the same, and the pointer identifies this location. Whenever

reference is made to the "next" file element, it is understood

that if none such exists, the end of file is substituted. For

sequential, stream, and keyed files, the "end of file" is the

location immediately following the last file element. For

relative files, the "end of file" immediately follows the last

existing record, and thus identifies an empty record-area.

There are five statements that operate on the file as a

whole and are thus called "file operations": OPEN, CLOSE, ERASE,

SET, and ASK. There are seven statements that apply to

individual file elements and are known as "record operations":

INPUT, PRINT, READ, WRITE, REWRITE, DELETE, and SET with pointer-

control, including the variations using MAT and LINE. References

to "INPUT operations," "WRITE operations," and so forth should be

understood to include any of the statements using the keyword in

question, e.g., "WRITE operations" includes WRITE and MAT WRITE.

The seven record operations can affect (1) data within a file,

(2) variables within the program, and (3) the file pointer.

PRINT, WRITE, REWRITE, and DELETE affect file data and the

pointer. READ and INPUT affect program variables and the

pointer. SET with pointer-items obviously affects only the

pointer.

Not all input and output is to or from a file, as defined

above. An implementation may allow file processing statements to

apply as well to devices, such as a terminal, a line printer, or

a communications line.

When the term "file" is used throughout Section 11, it

should generally be understood to mean any source or destination

of external data (i.e., either a true file or a device). In

certain contexts in which it is necessary to distinguish between

136

AMERICAN NATIONAL STANDARD X3.113-1987

the two, the terms "true file" and "device" will be used for
emphasis.

Devices differ from files in the following ways:

(1) It is implementation-defined whether data written to
any given device is stored there and may later be retrieved by
input operations (see 11.1).

(2) It is implementation-defined whether a given device is
erasable (see 11.1).

(3) RELATIVE and KEYED file-organizations are not allowed
for devices (see 11.1).

(4) A device need not support all access-modes (see 11.1).

(5) A device need not support the minimum record-size of
132 (see 11.1). However, the implementation shall document the
minimum record-size for each device supported.

(6) It is implementation-defined whether a given device has
record-setter capability (see 11.2).

(7) It is implementation-defined what conditions cause the
data-found condition to be set true or false for a given device
(see 11.2) .

(8) For interactive terminal devices only, the semantics of
the input-control-items prompt-specifier, timeout-expression, and
time-inquiry shall be supported. The implementation shall define
which devices, if any, are interactive terminal devices. The
effect of these input-control-items on other devices and on true
files is implementation-defined (see 11.4).

(9) It is implementation-defined whether the following
conditions are treated either as fatal exceptions, as defined in
Section 11, or as nonfatal exceptions, as defined in Section 10
(in which case the recovery procedure is applied), when these
conditions occur within INPUT operations on a device (see 11.4).

Section 11 Section 10 Condition
EXTYPE EXTYPE

8105
8101

8102
8103

Syntax error in input-reply
Datum for numeric-variable not

8012 8002
a numeric-constant

Too few data in input-reply

137

AMERICAN NATIONAL STANDARD X3.113-1987

8013
1008
1105

8003 Too many data in input-reply
1007 Numeric overflow on input
1054 String overflow on input

Tables 2 through 4 provide an overview of the various file
facilities. For the full specification, see 11.1 through 11.5.

Table 2 illustrates which combinations of record operations
and record-setters are legal under a given file-organization;
thus, the organization is defined by the capabilities for record
manipulation it allows. Combinations of operations and
record-setters that do not appear in the table (e.g., INPUT with
KEY) are syntax errors.

Table 2. File-Organization vs. Operations and Record-Setters

File Organization

Operation SEQUENTIAL STREAM RELATIVE KEYED
record-setter

INPUT
absent OK ID 2 ID 2 ID 2
NEXT OK ID 2 ID 2 ID 2
BEGIN OK ID 2 ID 2 ID 2
END OK 4 ID 2 ID 2 ID 2
SAME OK ID 2 ID 2 ID 2

PRINT
absent OK ID 2 ID 2 ID 2
NEXT OK ID 2 ID 2 ID 2
BEGIN OK ID 2 ID 2 ID 2
END OK ID 2 ID 2 ID 2
SAME OK ID 2 ID 2 ID 2

READ
absent OK OK OK OK
NEXT OK OK OK OK
BEGIN OK OK OK OK
END OK 4 OK 4 OK 4 OK 4
SAME OK OK OK OK
RECORD EX 1 EX 1 OK EX 1
KEY EX 1 EX 1 EX 1 OK

138

AMERICAN NATIONAL STANDARD X3.113-1987

WRITE
absent OK OK OK EX 3
NEXT OK OK OK EX 3
BEGIN OK OK OK EX 3
END OK OK OK EX 3
SAME OK OK OK EX 3
RECORD EX 1 EX 1 OK EX 1,3
KEY (exact) EX 1 EX 1 EX 1 OK

REWRITE and DELETE
absent ID 5 ID 5 OK OK
NEXT ID 5 ID 5 OK OK
BEGIN ID 5 ID 5 OK OK
END ID 5 ID 5 OK 4 OK 4
SAME ID 5 ID 5 OK OK
RECORD ID 5 ID 5 OK EX 1
KEY ID 5 ID 5 EX 1 OK

SET with pointer-items
absent OK OK OK OK
NEXT OK OK OK OK
BEGIN OK OK OK OK
END OK OK OK OK
SAME OK OK OK OK
RECORD EX 1 EX 1 OK EX 1
KEY EX 1 EX 1 EX 1 OK

LEGEND: OK = Semantics defined by standard; EX = Exception; ID =
implementation-defined.

NOTES:

(1) RECORD is valid only with RELATIVE files and KEY with
KEYED files.

(2) INPUT and PRINT are defined only for record-type
DISPLAY, and DISPLAY is defined only for SEQUENTIAL.

(3) WRITE to a KEYED file shall specify an exact key
search.

(4) END implies that data-found will be false.

(5) REWRITE and DELETE are implementation-defined for
organizations other than RELATIVE and KEYED.

file-

139

AMERICAN NATIONAL STANDARD X3.113-1987

Table 3 illustrates which control features are allowed
syntactically with the various operations.

Table 3. Record Operations vs. Controls

Controls

INPUT
PRINT

record-setter | io-recovery |

core- | any
setter | setter

A
A

missing
— — — — — —+

I not I
I missing |
----+

READ i A ! A
WRITE |
-+-

A 1
—+—

REWRITE 1 A 1 A
DELETE 1 A 1 A
SET ** A 1 A

interpretation

image Itemplate

A

A
A

A

LEGEND: A = allowed; core-setter = NEXT / BEGIN / END /
SAME; ** = with pointer-items.

Table 4 illustrates which combinations of file-organization
and record-type are defined by the standard, and if so at which
level.

Table 4. File-Organization vs. Record-type

Record-type

Organization | DISPLAY I INTERNAL ! NATIVE
-+-+- — --+- —---

SEQUENTIAL I core i core I enhanced-native
STREAM j | core I
RELATIVE | | enhanced-internal | enhanced-native
KEYED | | enhanced-internal | enhanced-native

140

AMERICAN NATIONAL STANDARD X3.113-1987

11.1 File Operations

11.1.1 General Description

There are four statements that affect a file as an entity.
The open-statement makes a file accessible to the program,
establishing the connection between the file and the program.
Since the format for identifying files may vary with the
operating system, it is assumed only that with each file is
associated a string of characters, called its name, which
identifies the file to the operating system. A file is
identified within a program by the number of a channel through
which it is accessed. The close-statement terminates the
accessibility effected by the open-statement. The erase-
statement deletes all or part of the data within a true file, but
may have no effect on a device. The ask-statement is used to
inquire about the current status of the file.

11.1.2 Syntax

Core productions:

1.

2.
3.
4.
5.
6.
7.

8.

9.

10.
11.
12.
13 .
14.
15.

16.
17 .
18.
19 .

open-statement

channel-setter
channel-expression
file-name
file-attribute-list
file-attribute
core-file-attribute

access-mode

= OPEN channel-setter NAME file-name
file-attribute-list

= channel-expression colon
= number-sign index
= string-expression
= (comma file-attribute)*
> core-file-attribute
= access-mode / file-organization /

record-type / record-size
= ACCESS (INPUT / OUTPUT / OUTIN /

string-expression)
file-organization ORGANIZATION

file-organization-value
core-file-org-value =
record-type =

record-type-value >
core-record-type-value
record-size =

close-statement =
erase-statement =
ask-statement >
ask-item-list =

(file-organization-value /
string-expression)

> core-file-org-value
SEQUENTIAL / STREAM
RECTYPE (record-type-value /
string-expression)
core-record-type-value
= DISPLAY / INTERNAL
RECSIZE (VARIABLE /
string-expression) (LENGTH index)?
CLOSE channel-expression
ERASE REST? channel-expression
ASK channel-setter ask-item-list
ask-item (comma ask-item)*

141

AMERICAN NATIONAL STANDARD X3.113-1987

20. ask-item = ask-attribute-name variable

variable*

21. ask-attribute-name > core-attribute-name

22. core-attribute-name = ACCESS / DATUM / ERASABLE /

FILETYPE / MARGIN / NAME /

ORGANIZATION / POINTER / RECSIZE /

RECTYPE / SETTER / ZONEWIDTH

Enhanced Files productions:

23. file-organization-value > enhanced-file-org-value

24. enhanced-file-org-value = RELATIVE / KEYED

N25. record-type-value > enhanced-record-type-value

N26. enhanced-record-type-value = NATIVE

27. file-attribute > enhanced-file-attribute

28. enhanced-file-attribute = collate-sequence

29. collate-sequence = COLLATE (STANDARD / NATIVE /

string-expression)

30. ask-attribute-name > enhanced-attribute-name

31. enhanced-attribute-name = RECORD / KEY / COLLATE

A given file-attribute shall appear at most once in a file-

attribute-list .

A given ask-attribute-name shall appear at most once in an

ask-item-list.

The number and types of variables in an ask-item shall agree

with Table 5 in 11.1.4.9.

11.1.3 Examples

1. OPEN #3: NAME "myfile"

OPEN #N: NAME A$, ACCESS OUTIN, ORGANIZATION KEYED,

RECTYPE INTERNAL, RECSIZE VARIABLE LENGTH N

OPEN #N+1: NAME "MY" & F$, ORGANIZATION ORG$

16. CLOSE #N

17. ERASE #3

ERASE REST #4

18. ASK #3: ACCESS AC$, DATUM DT$, NAME NM$, ORGANIZATION ORG$,

POINTER P$, RECSIZE RS$ NUMCHARS, RECTYPE RT$

ASK #N: KEY K$

11.1.4 Semantics.

Files are accessed through channels to which they may be

assigned during execution of a program-unit. A channel is a

logical path through which external data may be transferred to or

142

AMERICAN NATIONAL STANDARD X3.113-1987

from a BASIC program. Within a program-unit, a channel is
identified by a channel number local to that program-unit. The
channel number is an integer from 0 up to and including some
implementation-defined maximum. This maximum shall be at least
99. A file, identified by its file-name, is open if it is
currently assigned to a channel and closed otherwise. A channel
is active if it currently has some file assigned to it and
inactive otherwise. At the initiation of execution of a program,
all channels except channel zero shall be inactive. Channel zero
shall always be active. Execution of the open-, close-, or
erase-statement (see below) for channel zero shall cause a
nonfatal exception.

Input and output from and to channel zero shall have the
same source and destination as input-statements and print-
statements that do not contain channel-expressions. Channel zero
shall behave as a device with the file-attributes sequential,
display, and outin, and without record-setter or erase
capability.

11.1.4.1 Open-Statement. The open-statement makes the
file identified by the file-name accessible to the program
through the channel number specified in the channel-expression.
It is implementation-defined whether file names differing only in
the case of the letters (upper or lower) denote the same file or
different files. Following a successful open-statement, the
associated channel shall be active and the file open. An attempt
to open a file on a channel that is already active causes an
exception. The effect of attempting to open a file that is
already open is implementation-defined. The number of channels
other than channel zero that may be active simultaneously shall
be at least one for implementations conforming to the core, and
at least two for implementations conforming to the enhanced file
module.

After a successful open, a true file shall be accessible in
accordance with the associated file-attributes, whether
explicitly specified or in effect by default. This accessibility
consists of the ability to perform certain operations and
manipulate the file pointer in certain ways. See Section 11 for
an overview of which statements are allowed under which
attributes. If an attempt is made to OPEN a file that cannot be
made accessible with the requested attributes (i.e., if not all
the associated operations can be successfully executed for this
file), then an exception results.

For a device, a successful open guarantees that, with two
exceptions, all the file processing statements will have the same

143

AMERICAN NATIONAL STANDARD X3.113-1987

effect as for a true file. In particular, on output, the same

data will be generated, and on input, values and characters will

be interpreted and assigned to variables in the same way. A

device, however, might not support the semantics associated with

the record-setter (cf. 11.2) or the erase-statement (cf.

11.1.4.8). The ask-statement may be used to determine whether a

particular device supports these capabilities.

If a file is opened successfully with a given file-

organization, record-type, and record-size, then closed, and then

opened at a later time with a different value for one of these

file-attributes, then it is implementation-defined whether the

file is thus accessible. Also, for files with record-type

INTERNAL or NATIVE, if a different ARITHMETIC option is in effect

for the two executions, it is implementation-defined whether the

file is thus accessible. Conversely, if a true file is re-opened

at a later time with the same values for the file-attributes

mentioned and the same collate-sequence, and, for files with

record-type INTERNAL and NATIVE, the same ARITHMETIC option is in

effect, and the user has employed the implementation-defined

means to preserve the file unchanged in the interim, then the

file shall be accessible and the contents of the file faithfully

preserved. Devices are not required to preserve data. In the

foregoing, "same ARITHMETIC option" refers to DECIMAL or NATIVE

or FIXED (cf. 15.1), not to the default specification in the

FIXED option. If a KEYED file is reopened with a different

collate-sequence, an exception results.

If a file with record-type INTERNAL or NATIVE opened in one

program-unit is accessed by another program-unit with a different

ARITHMETIC option, the results are implementation-defined.

Implementations must provide true files for which all

access-modes are available. Implementations may also support

true files for which some access-modes are not available. A

device need not support all access-modes.

Implementations conforming only to the core module shall

accept and process three combinations of file-organization-value

and record-type-value, namely, sequential and display, sequential

and internal, and stream and internal. The effect of any other

combination is implementation-defined.

Implementations conforming to the enhanced-internal module

shall accept and process, in addition to those of the core

module, relative and internal, and keyed and internal.

144

AMERICAN NATIONAL STANDARD X3.113-1987

Implementations conforming to the enhanced-native module
shall accept and process, in addition to those of the core
module, sequential and native, relative and native, and keyed and
native.

When a string-expression is used as an attribute value, its
value must be one of the associated keywords for that attribute.
Upper- and lower-case-letters shall be treated as equivalent
within such string values. Implementations may define additional
file attribute values.

11.1.4.2 Access-Mode. An access-mode specifies the
direction in which data may be transferred from and to a file,
either by one of the keywords INPUT, OUTPUT, or OUTIN, or by a
string-expression whose value is one of these keywords.

If the access-mode is INPUT, then it shall be possible to
read data from the file, but not to change the file. In
particular, READ, SET with pointer-items, and INPUT statements
(including variations with MAT and LINE) are allowed, but not
PRINT, WRITE, REWRITE,or DELETE.

If the access-mode is OUTPUT, then it shall be possible to
add new data to the file, but not to change existing data in it,
nor to retrieve data from it. In particular, PRINT , SET with
pointer-items, and WRITE are allowed, but not READ, REWRITE,
DELETE, or INPUT.

If the access-mode is OUTIN, then all record operations
(including REWRITE and DELETE) are allowed for the file.

The erase-statement shall be allowed only for a file with an
access-mode of OUTIN.

If no access-mode is specified explicitly in the file-
attribute-list, then the access-mode shall be OUTIN if the file
can be both read and written, INPUT if it can only be read, and
OUTPUT if it can only be written. Channel zero shall behave as
if opened with OUTIN.

For a file opened with access-mode OUTPUT, the pointer shall
be set to the end of file following the OPEN; otherwise, it shall
be set to the beginning of file.

11.1.4.3 File-Organization. The file-organization
specifies the logical relationship between file elements, and the
means by which the file pointer can be manipulated to identify
the elements. The organization is specified with one of the

145

AMERICAN NATIONAL STANDARD X3.113-1987

keywords SEQUENTIAL, STREAM, RELATIVE, or KEYED, or with a
string-expression whose value is one of these keywords. Devices
are accessed as either SEQUENTIAL or STREAM. RELATIVE and KEYED
are allowed only for true files.

A sequential file is a sequence of records. The order of
the records is established by the order in which they were
written. Records can be added only to the end of the file. The
only means for identifying records with the file pointer is
relative to the current position of the pointer, and the two
special locations BEGIN (which identifies the first record in the
sequence, if any), and END, immediately following the last record
(the only location where it is possible to add records). A
single record operation may affect several DISPLAY records, but
only one INTERNAL or NATIVE record.

A stream file is much like a sequential file, except that it
is a sequence of individual values, rather than of records. The
order of values is established by the order in which they were
written. Values can be added only to the end of the file. The
only means for identifying values is relative to the current
pointer position, or BEGIN and END (specifying, respectively, the
first value, if any, in the sequence, and the location
immediately following the last value). One record operation may
typically read or write a contiguous series of values within a
stream file.

A relative file is a sequence of record-areas, each of which
may or may not contain a record. The record-areas are numbered
sequentially beginning with 1. Thus the order of the record-
areas and the records within them is established by the
identifying integer associated with each. The file pointer may
be manipulated with the use of this record number as well as by
those means provided for sequential files. For relative files,
the beginning of file is the first record-area, regardless of
whether it contains a record. The end of file immediately
follows the last existing record. Thus if the highest existing
record number is 44, end of file refers to record-area 45. If
there are no records in the file, end of file refers to record-
area number 1. Records within a relative file may not only be
read and written, but also changed (with REWRITE) and deleted
(with DELETE). Moreover, records may be added, not only at the
end of file, but also at any empty record-area, including those
past the end of file. A record operation processes at most one
record.

A keyed file is a sequence of records, each of which is
identified by a string called a key. The logical sequence of

146

AMERICAN NATIONAL STANDARD X3.113-1987

records is established by the collating order of their keys (cf.

11.1.4.6). The file pointer may be manipulated with respect to

the keys, as well as by the means provided for sequential files.

As with sequential files, beginning of file refers to the first

existing record in the sequence (if any), and end of file refers

to the location immediately following the last record. Records

may be added anywhere within the sequence. An exact key,

however, must always be specified for record creation, and no

duplicate keys are allowed. Records may also be read, changed,

or deleted. A record operation processes at most one record.

If no file-organization is explicitly specified in the open-

statement, then the organization shall be determined from

available system information about the file. If such information

is insufficient, the system shall attempt to open the file as

SEQUENTIAL. Channel zero shall behave as if opened with

SEQUENTIAL.

11.1.4.4 Record-Types. A record-type specifies the

logical representation of data within a record or as an

individual file element. The record-type affects how data is

interpreted and transformed when being transferred between a

program and a file. A record-type is specified with one of the

keywords DISPLAY, INTERNAL, or NATIVE, or with a string-

expression whose value is one of these keywords.

The display type specifies that a record is a sequence of

characters. On output, the characters are processed in

accordance with the semantics of the PRINT statement, and on

input with those of the INPUT statement (cf. Section 10). READ

and WRITE are also allowed for display records; they follow the

semantic rules for INPUT and PRINT, respectively.

The internal type specifies that a record is a sequence of

typed values (or that each file element is a value), in the same

sense that a program variable contains a value. The essential

aspect of internal format is that (for a true file) values are

preserved and retrievable. Thus, if a numeric or string value is

written from a program variable, and later read into another

variable, the two variables must be strictly equal (assuming the

original variable to be unchanged). Since INPUT and PRINT

statements are essentially character-oriented, they cause an

exception when used on a file opened as internal.

The native type specifies that a record is a sequence of

fields, as described by a program-specified TEMPLATE. This

TEMPLATE, in conjunction with the list of operands of the

associated record operation, specifies the size, type, number,

147

AMERICAN NATIONAL STANDARD X3.113-1987

and order of fields within the record. This allows data in a

file to be put in a form suitable for exchange with other

language processors that have similar record specification

capabilities. Values are preserved subject to certain

restrictions regarding the size of the fields in the record. As

with the internal type, INPUT and PRINT cause an exception when

used on a file opened as native.

If no record-type is explicitly specified on the OPEN, the

record-type is determined from available system information about

the file. If such information is insufficient, then the file

shall be opened as DISPLAY. Channel zero behaves as if opened

with DISPLAY.

11.1.4.5 Record-Size. A record-size specifies the maximum

length of records in a file. It is specified explicitly with the

keyword LENGTH.

Unless an enhancement to this standard provides for fixed-

length records, all files shall be composed of variable-length

records (i.e., of records whose lengths are independent of each

other). The length of a record of type DISPLAY shall be the

number of characters in that record. The length of records of

other types (INTERNAL and NATIVE) shall be implementation-

defined. An attempt to perform a record operation for a record

whose length exceeds the maximum set (either explicitly or by

default) in the OPEN operation shall cause an exception. A

specified LENGTH index shall be greater than zero.

If no record-size is explicitly specified in the open-

statement, then the record-size is determined from available

system information about the file. If such information is

insufficient, then the file shall be opened as VARIABLE. If the

index is omitted, then the maximum length of records shall be

implementation-defined. Channel zero shall behave as if opened

with VARIABLE and the length index omitted.

Implementations must support record-sizes of at least 132

for true files.

11.1.4.6 Collate-Sequence. The collate-sequence

specifies, for a KEYED file, the collating sequence of the record

keys. A collate-sequence is specified with one of the keywords

STANDARD or NATIVE, or with a string-expression whose value is

one of these keywords. Collate-sequence has meaning only for a

KEYED file. For other file-organizations, it has no effect.

148

AMERICAN NATIONAL STANDARD X3.113-1987

The collate-sequence of a file governs all record operations
and the file operation ERASE for that file. Thus, the logical
appearance of the file, when operated on by READ, WRITE, REWRITE,
DELETE, SET with pointer-control, ERASE, and ASK shall be in
accordance with the specified collate-sequence (cf. 11.1.4.3 and
11.2). The collate-sequences STANDARD and NATIVE imply exactly
the same ordering as in the option-statement (cf. 6.6). Thus, if
the collate-sequence associated with a file and a program-unit
agree, it follows that an earlier key in the file will always
compare as less than a later key. When the sequences disagree,
this relationship may not hold. Nonetheless, it shall be
possible for a program-unit with a different collate-sequence to
access a KEYED file; the collate-sequence affects only the
logical order of the records, not their contents. Implemen¬
tations with KEYED files must support both collate-sequences.

If no collate-sequence is specified in the open-statement,
then the collate-sequence shall be determined from available
system information about the file. If such information is
insufficient, the system shall attempt to open the file with the
same collate-sequence as that in effect for the program-unit
containing the open-statement. Since channel zero has file-
organization SEQUENTIAL (not KEYED), it has no associated
collate-sequence.

11.1.4.7 Close-Statement. Execution of a close-statement
shall close the file assigned to the specified channel, causing
the channel to become inactive. If no file is assigned to the
channel, no action occurs. Upon exit from an external-sub-def,
external-function-def, or external-picture-def, or on termination
of a parallel-section, any files opened by such a procedure whose
channels are not formal parameters shall be closed. Upon program
termination, any files still open shall be closed.

11.1.4.8 Erase-Statement. For a true file, execution of
an erase-statement shall delete all or part of the data within
the file assigned to the specified channel. The file-attributes
associated with the file are not changed. If the REST option is
omitted, then all file elements are deleted (or records deleted
from record-areas, for RELATIVE files), the file becomes empty,
and the file pointer points to the end of file (which is the same
as the beginning of file).

If the REST option is specified, then ail file elements at
or beyond the current location of the file pointer are deleted.
All file elements preceding it are left unchanged. The file
pointer is then set to end of file.

149

AMERICAN NATIONAL STANDARD X3.113-1987

The erase-statement may not be effective for a device. The
ask-statement can be used to determine if a device supports this
capability.

An erase-statement executed for channel zero shall cause an
exception, but no other effect shall occur.

An erase-statement is allowed only for a file opened with
access-mode OUTIN. For other access-modes, there is no effect on
the file and an exception results.

11.1.4.9 Ask-Statement. Execution of an ask-statement
shall cause the variables in the ask-item-list to be assigned
values corresponding to the attributes of the file currently
assigned to the specified channel, as indicated in Table 5. If
the channel is inactive, then all such string-variables shall be
assigned the null string, and all such numeric variables shall be
assigned 0. In Table 5, A$ represents a string-variable and N
represents a numeric-variable.

Table 5. Values for Ask-Statement

Ask-item Values

ACCESS A$ The access-mode of the file (i.e., "INPUT",
"OUTPUT", or "OUTIN").

COLLATE A$

DATUM A$

ERASABLE A$

The collate-sequence associated with a KEYED
file (i.e., "standard" or "NATIVE"). For file-
organizations other than KEYED, the null string
is assigned.

The type of the next datum in the file
following the current pointer position (i.e.,
"NUMERIC", "STRING", "NONE" (if no data
follow), or "UNKNOWN" (if it is impossible to
determine the type or whether more data
follow)). DATUM is well-defined only for
STREAM INTERNAL files. For other file
organizations, it is implementation-defined.

"YES" or "NO" depending on whether or not this
file is erasable, i.e., if the ERASE statement
can delete file elements.

150

AMERICAN NATIONAL STANDARD X3.113-1987

FILETYPE A$ "FILE" or "DEVICE" depending on whether this is
a true file capable of preserving data, or is a
device.

KEY A$ The key associated with the record identified
by the file pointer in a keyed file. If the
pointer is at the end of file or if this is
is not a keyed file, the null string is
assigned.

MARGIN N The current margin for a display file (MAXNUM
if the record may be of arbitrary length).
If the file is not DISPLAY, zero is assigned.

NAME A$ The name of the file assigned to the channel.

ORGANIZATION A$ The file-organization of the file (i.e..
"SEQUENTIAL," "STREAM," "RELATIVE," or
"KEYED").

POINTER A$ The current pointer position for the file
(i.e., "BEGIN," "MIDDLE," or "END," where
MIDDLE shall mean neither BEGIN nor END, and
END shall be the pointer position for an empty
file, or a position beyond the end, in the case
of a RELATIVE file). UNKNOWN may be returned
in the case of devices for which an
implementation cannot determine which of the
above values is correct.

RECORD N The number of the record-area identified by
the file pointer. For non-RELATIVE files, zero
is assigned.

RECSIZE A$ N The record-size of the file (e.g., "VARIABLE")
and the maximum length for its records (MAXNUM
if there is no effective limit on record-
length, as with, e.g., a communication line).

RECTYPE A$ The record-type for the file (i.e., "DISPLAY,"
"INTERNAL," or "NATIVE").

SETTER A$ "YES" or "NO" depending on whether or not this
file has record-setter capability.

ZONEWIDTH N For DISPLAY files, the current zonewidth.
For non-DISPLAY files, zero is returned.

151

AMERICAN NATIONAL STANDARD X3.113-1987

Table 6 shows the effect of executing an ask-statement for
channel zero.

Table 6. Ask-Statement with Channel Zero

Ask-Attribute Value

ACCESS
COLLATE
DATUM
ERASABLE
FILETYPE
KEY
MARGIN
NAME
ORGANIZATION
POINTER
RECORD
RECSIZE
RECTYPE
SETTER
ZONEWIDTH

OUT IN
null
UNKNOWN
NO
DEVICE
null
current margin
implementation-defined
SEQUENTIAL
UNKNOWN
0
VARIABLE MAXNUM
DISPLAY
NO
current zonewidth

11.1.5 Exceptions

The value of a channel-expression is not between 0 and the
implementation-defined maximum (7001, fatal).

Channel zero is specified in an open-statement, a close-
statement, or an erase-statement (7002, nonfatal: do nothing and
continue).

A nonzero channel specified in an open-statement is already
active (7003, fatal).

A string-expression used to specify a file-attribute does
not have a recognizable value (7100, fatal).

Access to a file in an open-statement is not possible in
accordance with the specified or default file-attributes (71xx,
fatal: the values and meanings for xx are implementation-
defined) .

A KEYED file is re-opened with a different collate-sequence
from that of an earlier open (7050, fatal).

152

AMERICAN NATIONAL STANDARD X3.113-1987

A LENGTH index is not greater than zero (7051, fatal).

A device is opened as RELATIVE or KEYED (7052, fatal).

A nonzero channel specified in an erase-statement is

inactive (7004, fatal).

An erase-statement is used on a file that has not been

opened as OUTIN (7301, fatal).

An erase-statement is used on a device without erase
capability that has been opened with OUTIN (7311, nonfatal: do
nothing and continue).

11.1.6 Remarks

It is recommended that implementations recognize as file¬
names at least those strings of characters consisting of an
upper-case-letter followed by at most three more upper-case-
letters or digits. It is also recommended that information
required by the operating system for the purpose of protecting
the security of files be considered part of the file-name.

It is recommended that implementations use the file-name to
distinguish between the opening of a true file, and opening of
non-file devices, such as a communications line or a line
printer.

It is recommended that the number of channels that may be
active simultaneously be at least four in addition to channel
zero.

It is recommended that the default maximum length of records
in a file be infinite (i.e., that records be allowed to be of any
length).

It is also recommended that record-size for INTERNAL and
NATIVE have a meaning comparable to that for DISPLAY (i.e., that
it specifies the maximum number of characters or bytes within the
record).

Additional values may be returned by an ASK statement if an
implementation supports access-modes, file-organizations, record-
types, record-sizes, and collate-sequences in addition to those
specified in this standard.

If implementations return a status code following various
file operations, it is recommended that this be made accessible

153

AMERICAN NATIONAL STANDARD X3.113-1987

through an additional ASK attribute to be called IOSTAT which
returns a single string value, e.g., "ASK IOSTAT S$" returns a
value in S$ reflecting the status of the file following the last
attempted operation.

The maximum length of a key is implementation-defined.

154

AMERICAN NATIONAL STANDARD X3.113-1987

11.2 File Pointer Manipulation

11.2.1 General Description

The pointer for an open file can be altered in certain ways,
without also performing any data transfer. The rules for pointer
manipulation with the set-statement with pointer-items also apply
when used in conjunction with other record operations.

11.2.2 Syntax

Core productions:

1. set-object
2. pointer-items

3. pointer-control
4. record-setter
5. core-record-setter
6. io-recovery

7. not-missing-recovery

Enhanced Files productions:

8. pointer-control >
9. record-setter >

10. enhanced-record-setter

11. exact-search
12. inexact-search

11.2.3 Examples

1. SET #N: POINTER BEGIN
SET #3: RECORD N+l, IF MISSING THEN 1200
SET #4: KEY "Jones", IF THERE THEN EXIT DO

11.2.4 Semantics

Execution of a set-statement with pointer-items shall set
the pointer for the file assigned to the specified channel.
After the pointer has been set, an optional io-recovery may take
effect. The semantics associated with the record-setter and when
the io-recovery takes effect are uniform for all the record
operations (cf. 11.3, 11.4, and 11.5). If any of the exceptions
listed in 11.2.5 occurs, the file pointer remains unchanged from

enhanced-record-setter
enhanced-record-setter
= RECORD index /
KEY (exact-search / inexact-search)
string-expression
equals-sign?
greater-than-sign / not-less

> channel-setter pointer-items
- (pointer-control / io-recovery /

pointer-control comma io-recovery)
> POINTER core-record-setter
> core-record-setter
= BEGIN / END / NEXT / SAME
= missing-recovery /

not-missing-recovery
= IF THERE THEN io-recovery-action

155

AMERICAN NATIONAL STANDARD X3.113-1987

its state before the SET with pointer-control. A device may not
be able to achieve the effect of a record-setter. The ask-
statement may be used to determine whether a device has record-
setter capability.

11.2.4.1 Record-Setters. An absent record-setter leaves
the file pointer unchanged from its previous state. The io-
recovery (see 11.2.4.2), if present, still has its usual effect.

A record-setter of NEXT indicates that the pointer is to be
set to the next existing record (for non-STREAM files) or value
(for STREAM files) at or beyond the current location. In the
case of a RELATIVE file, NEXT shall therefore cause the pointer
to skip over any empty record areas to the next existing record.
If the pointer is already at or beyond the end of the file, or is
pointing to an existing record, NEXT shall leave the pointer
unchanged. This capability allows RELATIVE files to be processed
as if they were SEQUENTIAL. In the case of STREAM and KEYED
files, the pointer is always pointing to an existing file element
or end of file and so is left unchanged. For a SEQUENTIAL file,
the only case in which NEXT would have some effect is if there
were a partial record pending (cf. 11.3). In this case, an
end-of-record shall be generated and the pointer left at end of
f ile.

A record-setter of BEGIN causes the pointer to be set to the
beginning of file (i.e., to the first file element). If the file
is empty, this location is also the end of file.

A record-setter of END causes the pointer to be set to end
of file, defined as immediately beyond the last file element (if
any) in the case of SEQUENTIAL, STREAM, and KEYED files, and as
immediately beyond the last existing record in the case of a
RELATIVE file (or at record-area number 1, if no records exist).

A record-setter of SAME allows the user to access the same
file-element(s) that have most recently been processed since the
OPEN for that channel. Its use is valid only if the most
recently executed record operation that accessed the channel
meets these conditions: (1) it was not a delete-statement, and
(2) no exception occurred during its execution at least until
after the file pointer had been set. If these conditions are not
met, no pointer manipulation takes place and an exception
results. If they are met and the most recent operation was a
READ, INPUT, SET with pointer-items, or REWRITE, then the file
pointer is reset to the same file element it was just set to by
the record-setter of that operation. If this operation had no
record-setter, then SAME resets the pointer to the same location

156

AMERICAN NATIONAL STANDARD X3.113-1987

it had at the beginning of that operation. If the most recent
operation was a WRITE or PRINT, then SAME sets the pointer to the
first file element created by that operation.

A record-setter with RECORD is valid only for use with
RELATIVE files. If an attempt is made to use this record-setter
on a file not opened as RELATIVE, the pointer is left unchanged
and an exception results. The index is evaluated by rounding to
an integer, and the pointer set to the corresponding record-area,
whether or not it contains a record. If the index evaluates to
an integer less than one, the pointer is left unchanged and an
exception is generated.

A record-setter with KEY is valid only for use with a KEYED
file. If an attempt is made to use this record-setter on a file
not opened as KEYED, the pointer is left unchanged and an
exception results. For an exact-search the pointer is set to the
record whose key equals that of the string-expression; if none
such exists, the pointer is set to the first record whose key is
greater than the string-expression. If there is no such record,
the pointer is set to end of file. For an inexact-search with
not-less, the pointer is set exactly as for an exact-search,
except for the setting of the data-found condition (see
11.2.4.2). For an inexact-search with greater-than-sign, the
pointer is set to the first record whose key is strictly greater
than the string-expression; if none exists, it is set to end of
file.

11.2.4.2 Io-Recovery. At the completion of pointer
manipulation there shall be set a condition called data-found,
which is either true or false. If data-found is true, and if a
not-missing-recovery has been specified, then the io-recovery-
action takes effect. If the data-found condition is false and a
missing-recovery has been specified, then the io-recovery-action
also takes effect. Except for these two cases, the io-recovery-
action, if any, is ignored. The data-found condition is false
if:

(1) An exact-search has been specified, but no record was
found whose key was equal to the string-expression

(2) After the pointer is set, it points to end of file
(3) After the pointer is set, it points to an empty

record-area
(4) For a device, there is an implementation-defined

condition signifying that no data is available for input
Otherwise, the data-found condition is true.

157

AMERICAN NATIONAL STANDARD X3.113-1987

If the io-recovery-action is an exit-do- or exit-for-

statement, the statement shall have its normal effect (cf. 8.3).

If the io-recovery-action is a line-number, then execution shall

continue at the specified line.

11.2.5 Exceptions

A set-statement with pointer-items is executed for an

inactive channel (7004, fatal).

A record-setter is used with channel zero (7002, nonfatal:

do nothing and continue).

A record-setter is used on a device without record-setter

capability (7205, nonfatal: do nothing and continue).

The record-setter SAME is used, and the most recently

executed operation for the channel was a delete-statement (7204,

fatal).

The record-setter SAME is used, and the most recently

executed operation for the channel caused an exception before

pointer manipulation took place (7204, fatal).

The record-setter SAME is used, and no record operation has

been executed on that channel since the OPEN (7204, fatal).

The record-setter RECORD is used on a file opened with a

file-organization other than RELATIVE (7202, fatal).

The record-setter KEY is used on a file opened with a file-

organization other than KEYED (7203, fatal).

The index of a RECORD record-setter evaluates to an integer

less than one (7206, fatal).

A record-setter specifies an exact-search for the null

string (7207, fatal).

11.2.6 Remarks

For devices, data-found could be set false by such

conditions as no more cards in a card reader, control-Z sent from

a terminal (which signifies end of file for some systems), or

that the device is for output only (e.g., a line printer).

158

AMERICAN NATIONAL STANDARD X3.113-1987

Given a RELATIVE file, with three existing records, numbers

2, 5, and 6 :

1 2 3 4 5 6 7

- RECORD -- - RECORD RECORD -

I
pointer

if READ RECORD 2 has just taken place, then the following record-

setters will have the described effect:

record-setter resulting pointer position

in front of record number

BEGIN 1

END 7

SAME 2

NEXT 5

absent 3

RECORD n n

159

AMERICAN NATIONAL STANDARD X3.113-1987

11.3 File Data Creation

11.3.1 General Description

Statements are provided to allow the user to send data

developed within the program to an external destination. In the

case of true files, such data can be retrieved and modified by

later programs. The facilities generalize the output capabil¬

ities presented in Section 10 to files. New facilities are also

defined to allow output to the various record-types. The set-

objects MARGIN or ZONEWIDTH are not part of a data creation

statement, but are included in this section because of their

interaction with display records.

11.3.2 Syntax

Core productions:

1.

2.

3 .

4.

5 .

6 .
7.

8.
9 .

10.
11 .

print-statement

array-print-statement

print-control

print-control-item

set-object

write-statement

array-write-statement

write-control

write-control-item

expression-list

array-list

> PRINT channel-expression

print-control

(colon (print-list / output-list))?

> MAT PRINT channel-expression

print-control colon

(array-print-list /

array-output-list)

= (comma print-control-item)*

= core-record-setter /

not-missing-recovery / USING image

> channel-setter (MARGIN / ZONEWIDTH)

index

= WRITE channel-expression

write-control colon expression-list

- MAT WRITE channel-expression

write-control colon array-list

= (comma write-control-item)*

> record-setter /

not-missing-recovery

= expression (comma expression)*

= array-name (comma array-name)*

Enhanced Files productions:

N12. write-control-item

N13. template-identifier

N14. declarative-statement

N15. template-statement

> template-identifier

= WITH (line-number /

string-expression)

> template-statement

= TEMPLATE colon

template-element-list

160

AMERICAN NATIONAL STANDARD X3.113-1987

N16. template-element-list

N17. template-element

N18. fixed-field-count

N19. variable-field-count

N20. field-specifier

N21. numeric-specifier

N22. numeric-field-size

N23. fixed-point-size

N24. integer-size

N25. fraction-size

N26. string-specifier

N27. string-field-size

= template-element

(comma template-element)*

= fixed-field-count

(field-specifier /

left-parenthesis

template-element-list

right-parenthesis) /

variable-field-count

fieId-specifier

= SKIP? (integer OF)?

= question-mark OF

= numeric-specifier /

string-specifier

= NUMERIC asterisk

numeric-field-size

= fixed-point-size / E

= integer-size period? /

integer-size? period fraction-size

— integer

= integer

= STRING asterisk string-field-size

- integer

Within a print-statement or array-print-statement, an image

shall not be used with a print-list (i.e., only an output-list

shall be used when an image is present as a print-control).

The line-number of a template-identifier shall refer to a

template-statement in the same program-unit.

The integer in a fixed-field-count shall be greater than

zero.

In a fixed-point-size, the integer-size or fraction-size

shall be greater than zero.

String-field-size shall be greater than zero.

The record-setter in a write-control shall not specify an

inexact-search.

A given print-control-item shall appear at most once in

print-control.

A given write-control-item shall appear at most once in

write-control.

161

AMERICAN NATIONAL STANDARD X3.113-1987

11.3.3 Examples

1. PRINT #3: A, B , C
PRINT #3, END, USING 123: A$, B+C;

2. MAT PRINT #N, SAME, IF THERE THEN EXIT FOR: A$; B$, C
5. #3: MARGIN N+l
6. WRITE #3, RECORD 47, IF THERE THEN 666: A+B, C$ & D$

WRITE #X+Y WITH TEMPLATE3$: X, Y, Z + W
7. MAT WRITE #3, KEY "Whoever", IF THERE THEN 666,

WITH 111: A, B$
N15. TEMPLATE: STRING*5, 2 OF NUMERIC*3.4

TEMPLATE: ? OF NUMERIC*5.2, ? OF STRING*5
N16. 5 OF STRING*22, 3 OF NUMERIC*E, ? OF NUMERIC*.6

11.3.4 Semantics

All data creation statements follow a general pattern. In
all cases, the function of a data creation statement is to add
one or more new file elements to a file. Previously existing
file elements are not affected. Details on aspects peculiar to
each of the various forms are presented in 11.3.4.1 -- 11.3.4.12
under the headings of each statement type.

First, the channel to which the data will be sent is
determined from the channel-expression. The file-attributes are
checked against the intended operation. All data creation
statements require an access-mode of OUTPUT or OUTIN. If the
channel is active and the file-attributes are compatible with the
data creation statement, then the next phase begins. Otherwise,
an exception results and the file, the file pointer, and all
program variables remain unchanged.

The second phase of processing involves setting the file
pointer, based on the record-setter (or its absence). This is
done exactly as described in 11.2.4.1. The data-found condition
is now set, as described in 11.2.4.2. If data-found is true and
a not-missing-recovery is present, then the io-recovery-action is
taken. If data-found is true and a not-missing-recovery is
absent, then an exception results. In either case, no further
change is made to the pointer position or the file.

If data-found is false, then the third phase begins, the
actual output of data at the location indicated by the pointer.
The operands are evaluated in succession from left to right until
enough data to fill a file-element has been generated. Only then
is the file-element actually added to the file and the pointer
advanced immediately beyond the file-element just created. In
particular, this means that an exception during data transfer

162

AMERICAN NATIONAL STANDARD X3.113-1987

will never result in a partial file-element being added to the
file. However, if a statement can create several file-elements,
those that have already been created before the exception occurs
continue to exist in the file. Following the completion of data
transfer, the file pointer is always left pointing at the next
file-element (or end of file if none such exists) beyond the last
one created. If an exception prevented the creation of any file
elements, the pointer is left as it was set in the second phase.

11.3.4.1 Print-Statement. The transfer of data with the
print-statement works just as described in 10.3 and 10.4, except
that the sequence of characters generated constitutes a record of
a DISPLAY file, rather than current line, and end-of-record is
generated in place of end-of-line. Note that it is possible to
create records containing zero characters. End of record is the
implementation-defined means whereby it is indicated that the
storage of a file-element in a file is completed (i.e., no change
or addition to this record is possible with a data creation
statement). Except for the special case discussed in the next
paragraph, no data is actually added to the file until a valid
end-of-record has been generated (i.e., partial records are not
added to the file). The effective margin for the file, which is
used to control when end-of-record is generated, is taken from
the value of RECSIZE established when the file was opened, or
from a set-statement with MARGIN for this channel executed since
the open (cf. 11.3.4.3).

In one special case, a partial record is added to a file.
If the print-list or output-list contains a trailing print-
separator, then upon successful completion of the statement, a
partial record has been created at the end of file, with the
pointer left at end of file (i.e., just beyond the partial
record). Note that if there is an exception before completion of
the statement, then the partial record is not added to the file,
as would also be true of a complete record. If and only if the
next operation for the channel is a print-statement with an
absent record-setter, then the sequence of characters it
generates is appended to the end of the partial record, in
accordance with the usual rules regarding the margin. If the
next operation for that channel is anything other than such a
print-statement, then before any other processing takes place, an
end-of-record is added to complete the partial record, and the
pointer left at end of file.

11.3.4.2 Array-Print-Statement. The transfer of data with
the array-print-statement works just as described in 10.5, except
that the sequence of characters generated constitutes a record of
a DISPLAY file, rather than the current line, and end-of-record

163

AMERICAN NATIONAL STANDARD X3.113-1987

is generated in place of end-of-line. Note that by the rules of

10.5, a partial record is never created by the array-print-

statement with an array-print-list, but may be created with an

array-output-list containing a trailing semicolon. Since an

array-print-statement always starts a new line, it may not be

used to complete a partial record. The effective margin shall be

controlled as described in 11.3.4.1 and 11.3.4.3.

11.3.4.3 Setting the Margin. Associated with each open

DISPLAY file is a margin, the maximum number of characters that a

record can contain. The margin is used by the print- and

array-print-statement to determine when an end-of-record should

be generated. Upon open, the effective margin is the LENGTH

index in RECSIZE, or the implementation-defined length, which

shall be not less than the default zone width, if LENGTH is not

specified explicitly. The set-statement with a MARGIN changes

the margin for the active channel to the specified index. If a

partial record exists in the file affected by the margin, the new

margin is used when subsequently attempting to complete the

partial record. A margin of MAXNUM indicates that a record may

be arbitrarily large. The margin index shall evaluate to greater

than zero. The effect of a set-statement with MARGIN ends when

the file is closed.

The maximum margin supported is implementation-defined.

11.3.4.4 Setting the Zone Width. Associated with each

open DISPLAY file is a zone width, which controls the effect of

PRINT as described in 10.3. Upon open, the zone width for a file

is set to the implementation-defined default value, which shall

be at least d+e+6. The set-statement with ZONEWIDTH changes the

zone width for the active channel to the specified index.

All zones are the same width, except possibly the last,

which may be shorter. If a partial record exists in the file

affected by the set-statement with ZONEWIDTH, the new zone width

is used when subsequently attempting to complete the partial

record. In a set-statement with ZONEWIDTH, the index shall

evaluate to greater than zero. The effect of the set-statement

with ZONEWIDTH ends when the file is closed.

The maximum zone width is implementation-defined.

11.3.4.5 Display Record-Type. DISPLAY records are

sequences of characters; the characters generated by the PRINT

operations are as described in Section 10. The accuracy of

numeric values is limited only by the implementation-defined

164

AMERICAN NATIONAL STANDARD X3.113-1987

significance-width or length of the format-item, and by the

ARITHMETIC option in effect.

11.3.4.6 Channel Zero. PRINT to channel zero works in

accordance with the semantics for a device without record-setter

or erase capability. The destination of the output data is the

same as if the channel-expression had been omitted. Also, if

there is an exception for which a different recovery procedure is

specified in Section 10 than in Section 11, the procedure of

Section 10 shall be used. A set-statement with MARGIN or

ZONEWIDTH specifying channel zero has the same effect as if the

channel-setter were omitted.

11.3.4.7 Write Operation. The write- and array-write-

statements are used to create records of any type. Successive

expression values are arranged in corresponding sequences of

values or fields or characters, and written out to the file.

Partial records are never created.

11.3.4.8 File Organization. For STREAM files, one

statement may create several file-elements, specifically one

file-element is created for each expression or array-element

evaluated. If an exception occurs during internal evaluation,

previously created values remain in the file, the pointer is left

at end of file, and any remaining values are ignored.

For non-STREAM, non-DISPLAY, files, the values or fields

generated by the expressions or arrays form one record. Thus, if

an exception occurs before the statement is completed, no record

is added to the file, and the file pointer is left unchanged from

phase two.

Since records in a KEYED file are identified by their keys,

it is necessary when creating a new record that an explicit key

be associated with it; thus when attempting to write to a KEYED

file, an exact-search shall always be specified in the record-

setter. If data-found is false, then a new record is inserted

into the file, with a key equal to the string-expression of the

exact-search.

11.3.4.9 Display Record-Type. A WRITE operation on a

display record generates exactly the same sequence of records and

characters as would a PRINT operation with the same expression-

list or array-list. Note, however, that not all PRINT facilities

are available for WRITE, which is record-oriented rather than

line-oriented.

165

AMERICAN NATIONAL STANDARD X3.113-1987

For DISPLAY files, one statement may create several file-

elements in the case of margin overflow. If a fatal exception

occurs during generation of an element, any elements previously

created by that statement remain in the file, the pointer is left

at the end of the file, and any remaining expressions are

ignored.

11.3.4.10 Internal Record-Type. An internal record (and a

STREAM file) is a sequence of values. There are two types of

values, numeric and string. The sequence of values and their

types are determined by the sequence and types of the expressions

and array-elements from which the values are generated. When a

value stored in a file is later retrieved, the effect is as if

the expression or array-element with which it was created were

assigned to the input variable with a let-statement. The length

and content of string values are preserved. Numeric values are

also preserved consistent with the usual limitations on precision

associated with the prevailing ARITHMETIC option.

11.3.4.11 Native Record-Type. The TEMPLATE describes the

location, size, and type of fields within a record. When writing

to a native file, a TEMPLATE shall always be used. It shall not

be used with any other record-type. A TEMPLATE shall be

associated with a particular data creation statement by means of

the template-identifier. The template-identifier specifies

either the template-statement to be used or a string-expression

whose value shall be a syntactically correct template-element-

list. The string-expression is evaluated before the expression-

list or array-list of the write- or array-write-statement.

Several statements may use the same template-statement.

When generating data for a native record, each expression

within the expression-list is associated with a numeric- or

string-specifier within a TEMPLATE; the specifier is then used to

transform the value of the expression into a field within a

record. The association takes place from left to right within

the expression-list and the template-element-list, each

expression using the next available field-specifier. If the type

of the expression (numeric or string) disagrees with the type of

the specifier, an exception results. The number of expressions

shall not be greater than the number of specifiers. Extra

specifiers beyond the last expression are ignored. The contents

of the field are determined by the value of the expression and

the size characteristics of the specifier.

For string values, the string-field-size is the number of

characters in the field. The string value is left-justified

within the field. If the value's length exceeds that of the

166

AMERICAN NATIONAL STANDARD X3.113-1987

field, an exception results. If shorter, the field is padded on

the right with spaces.

Numeric fields are used to retain numeric values (both

magnitude and sign). The sign is always stored in the field, but

the numeric-field-size explicitly describes only the storage of

the number's magnitude. For a numeric-field-size of E, the value

is retained with the implementation-defined number of significant

digits for the prevailing ARITHMETIC option. For a fixed-point-

size, the integer-size describes the number of available digit

places to the left of the decimal point, and the fraction-size,

to the right of the decimal point. An omitted integer-size or

fraction-size is treated as equivalent to zero. The numeric

value is stored in accordance with these sizes. If the value

contains significant digits to the right of the available field

positions, the value is rounded when stored. This may result in

a field with a value of zero. If the value contains significant

digits to the left of the available field positions, an exception

results.

The fixed-field-count in a template-statement indicates

shipping and/or repetition for individual specifiers or a series

of specifiers. The integer of the fixed-field-count indicates

the number of repetitions and the keyword SKIP indicates that the

affected specifiers shall generate skipped fields. A field-count

applies to the entity (either a field-specifier or a parenthe¬

sized template-element-list) in the same template-element. For

an integer field-count (indicating repetition) the effect is just

as if the entity governed by the field-count had been written out

explicitly the equivalent number of times. When SKIP is used

within a field-count, it indicates that the specifiers governed

by it are not associated with values from the expression-list or

array-list. Rather, as the record is being generated, fields

within the record are assigned the value zero if numeric and

spaces if string, corresponding to the usual size and type of the

field-specifier in question. If a field-specifier is governed by

several SKIPS (from various levels above it) the effect is just

as if it were governed by only one.

For example, given the following expression-lists and

templates-element-lists,

A, B,C and NUMERIC*4, NUMERIC*5, NUMERIC*6

D,E and NUMERIC*4, SKIP NUMERIC*5, NUMERIC*6

A and D will occupy equivalent field locations, as will C and E.

The second field in the second record will be the same size as

occupied by B in the first record, with a value of zero.

167

AMERICAN NATIONAL STANDARD X3.113-1987

As further illustrations of the preceding description,

equivalent pairs of template-element-lists are shown below:

(1) STRING*4, STRING*4, STRING*4

(2) 3 OF STRING*4

(1) STRING*5, STRING*4, NUMERIC*2, NUMERIC*2, NUMERIC*2,

STRING*4, NUMERIC*2, NUMERIC*2, NUMERIC*2

(2) STRING*5, 2 OF (STRING*4, 3 OF NUMERIC*2)

(1) SKIP NUMERIC*3, SKIP NUMERIC*3, NUMERIC*4, SKIP STRING*5,

SKIP STRING*6

(2) SKIP 2 OF NUMERIC*3, NUMERIC*4, SKIP (STRING*5,

SKIP STRING*6)

Note that in (2) of the last example, the SKIP immediately

in front of STRING*6 is superfluous. A variable-field-count is

used only in conjunction with arrays (see 11.3.4.12).

If execution reaches a template-statement, it proceeds to

the next line with no further effect.

11.3.4.12 Array-Write-Statement. An array-write-statement

for the INTERNAL and NATIVE record-types behaves just like the

write-statement would if the arrays were written out explicitly

as array-elements in row major order (the last subscript varying

most rapidly). Thus, for example, if "DIM A(3), B(2,2)" and

OPTION BASE 1 are in effect, the following two statements are

equivalent:

MAT WRITE #3: A, B

WRITE #3: A(1),A(2),A(3), B(1,1),B(1,2),B(2,1),B(2,2)

When writing to a NATIVE record, arrays in an array-list can

use the variable-field-count. If a fixed-field-count is used,

then the number and type of the specifiers shall match the

array-elements as with WRITE. When the first element of an array

is to be associated with a field-specifier, and if a template-

element has just been completed (or if this is the first array in

the list), and if the next template-element has a variable-field-

count, then the field-specifier is used for all the elements of

the array. When evaluation of the array is complete, the next

array, if any, uses the next template-element, which may or may

not also have a variable-field-count. An array shall use either

a template-element with a variable-field-count or template-

elements with fixed-field-counts, but not both.

168

AMERICAN NATIONAL STANDARD X3.113-1987

11.3.5 Exceptions

The value of the index in a set-statement with MARGIN is

less than the current zonewidth for that file (4006, fatal).

The value of the index in a set-statement with a ZONEWIDTH

is less than one, or greater than the current margin for that

file (4007, fatal).

A set-statement with a MARGIN or ZONEWIDTH specifies an

inactive channel (7004, fatal).

A set-statement with a MARGIN or ZONEWIDTH specifies a file

not opened as DISPLAY (7312, fatal).

A set-statement with a MARGIN or ZONEWIDTH specifies a file

opened as INPUT (7313, fatal).

The following exceptions for data creation statements are

grouped according to the phase of processing during which they

are detected. Phase 1 exceptions imply no change to the file or

file pointer. Phase 2 exceptions imply no change to the file.

Phase 3 exceptions imply that some file-elements may have been

created.

11.3.5.1 Phase 1 Exceptions

A data creation statement attempts to access an inactive

channel (7004, fatal).

A print- or array-print-statement attempts to access a file

opened as INTERNAL or NATIVE (7317, fatal).

The record-setter cannot be processed correctly, as

described in 11.2.5 (7002 and 7202-7207, use the procedures of

11.2.5).

A data creation statement attempts to access a file opened

as INPUT (7302, fatal).

A write- or array-write-statement attempts to access a KEYED

file, but does not specify an exact-search in its record-setter

(7314, fatal).

The string-expression of a template-identifier is not a

syntactically correct template-element-list (8251, fatal).

169

AMERICAN NATIONAL STANDARD X3.113-1987

A template-identifier is used on a file opened as DISPLAY or

INTERNAL (7315, fatal).

A write- or array-write-statement does not have a template-

identifier when attempting to access a file opened as NATIVE

(7316, fatal).

11.3.5.2 Phase 2 Exception

For a data creation statement, the condition data-found is

true, and a not-missing-recovery has not been specified (7308,

fatal).

11.3.5.3 Phase 3_ Exceptions

An attempt is made to create a record larger than the value

of RECSIZE (8301, fatal).

An expression or array-element does not agree in type

(numeric or string) with its associated TEMPLATE field-specifier

(8252, fatal).

A template-element with a variable-field-count does not

coincide with the first element of an array (8253, fatal).

There are not enough field-specifiers in a template-

statement for all the expressions or array-elements (8254,

fatal) .

A numeric value has significant digits to the left of the

available digit places in the field of a template (8255, fatal).

A string value is longer than the length of its field in the

template (8256, fatal).

11.3.6 Remarks

Implementations may provide syntactic enhancements to

template-element-list, e.g., to allow for additional data types.

The exception for incorrect syntax then applies to the enhanced

definition of template-element-list.

The variable-field-count is especially useful when writing

an array whose size may change in the program, since the use of

the fixed-field-count implies knowing the exact size in advance.

170

AMERICAN NATIONAL STANDARD X3.113-1987

11.4 File Data Retrieval

11.4.1 General Description

Statements are provided to allow the program to retrieve

data from a file to which it has previously been written or from

a device. The facilities generalize the input capabilities

presented in Section 10 to files. New facilities are also

defined to allow input from the various record-types.

11.4.2 Syntax

Core productions:

1. input-statement >

2. array-input-statement >

3. line-input-statement

4. array

5. input

6. input

9. read-

10. read-

INPUT channel-expression

input-control colon variable-list

(comma SKIP REST)?

MAT INPUT channel-expression

input-control colon

(redim-array-list /

variable-length-vector)

LINE INPUT channel-expression

input-control colon

string-variable-list

-line-input-statement > MAT LINE INPUT

channel-expression input-control

colon redim-string-array-list

= (comma input-control-item)*

= core-record-setter /

missing-recovery /

prompt-specifier /

timeout-expression / time-inquiry

> READ channel-expression

read-control colon variable-list

(comma SKIP REST)?

> MAT READ channel-expression

read-control colon

redim-array-list

= (comma read-control-item)*

> record-setter / missing-recovery

-control

-control-item

7. read-statement

8. array-read-statement

control

control-item

Enhanced Files productions:

Nil. read-control-item > template-identifier

The line-number of a template-identifier shall refer to a

template-statement in the same program-unit.

171

AMERICAN NATIONAL STANDARD X3.113-1987

A given input-control-item shall appear at most once in

input-control.

A given read-control-item shall appear at most once in read-

control .

A variable-length-vector shall be declared as one¬

dimensional .

11.4.3 Examples

1. INPUT #3: A,B,C,A$

2. MAT INPUT #W, BEGIN, IF MISSING THEN EXIT DO: A,B$

3. LINE INPUT #Q, NEXT: A$, B$, C$

4. MAT LINE INPUT #4, IF MISSING THEN 1234: A$, B$(N), C$(8)

7. READ #3, SAME, WITH 333: W$, SKIP REST

8. MAT READ #N, RECORD W+2, IF MISSING THEN 111,

WITH 222: N, W(Q)

11.4.4 Semantics

All data retrieval statements follow a general pattern.

Details on the aspects peculiar to each of the various forms are

presented in 11.4.4.1-11.4.4.12 under the headings for each

statement type.

First, the channel from which data will be retrieved is

determined from the channel-expression. Then, the file-

attributes are checked against the intended operation. All data

retrieval statements require an access-mode of INPUT or OUTIN.

If the channel is active and the file-attributes are compatible

with the data retrieval statement, then the next phase begins.

Otherwise, an exception results and the pointer and all program

variables remain unchanged.

The second phase of processing involves setting the file

pointer, based on the record-setter if present. In the absence

of a record-setter the file pointer does not change. This is

done exactly as described in 11.2. The data-found condition is

now set, again as described in 11.2. If data-found is false and

a missing-recovery is present, then the io-recovery-action is

taken, otherwise an exception results. In either case, no

further change is made to the pointer position.

If data-found is true, then the third phase begins, the

actual input of data from the element indicated by the pointer.

Data is transferred from the file element(s) to each of the

operands (variables or arrays), from left to right, with

172

AMERICAN NATIONAL STANDARD X3.113-1987

successive data or values or fields from the file being assigned

to successive variables or arrays. Note in particular that

evaluation of subscripts, substring-qualifiers, and redims is

delayed until after assignment of data to previous operands, but

occurs before assignment of data to the operand to which they

apply. Note also that assignment of a string value to a string

variable with a substring-qualifier takes place in accordance

with the usual semantics of string assignment described in 6.5.

If an exception occurs during data transfer, variables and

array-elements for which a legal assignment has been made retain

their new values, but all subsequent variables and array-elements

retain their original values. Following a successful data

retrieval operation, the pointer is advanced to the next file

element, that is, the next record, record-area, or value in the

file.

One data retrieval operation usually affects only one file

element. The three cases in which several file elements may be

processed are: (1) LINE or MAT LINE INPUT, (2) READing from a

STREAM file, and (3) INPUT or READ from a DISPLAY file with

records with trailing commas (indicating continuation of data).

The SKIP REST option is allowed only for non-STREAM files.

It causes the remainder of the record from which the last datum

or value or field was taken to be ignored. If a TEMPLATE is

being used, it also causes any remaining specifiers to be

ignored. It is still mandatory that the record contain enough

data to satisfy the variables or arrays in the list.

During this third phase of processing, a number of exception

conditions may arise. Each such exception is associated with a

particular file element. In all cases, the pointer is advanced

to the file element immediately following the one with which the

exception is associated. Table 7 summarizes these exceptions and

the file-element to which they apply.

Table 7. Association of File-Element with Exception

Exception Associated file-element

File-element larger than The oversize file-element

RECSIZE

173

AMERICAN NATIONAL STANDARD X3.113-1987

Invalid redim, subscript,
substring-qualifier,
redim too large.

Bad TEMPLATE: wrong type,
field-count of "?" on
other than first element
of an array, too few
specifiers

Bad data: wrong type,
syntax, overflow

Insufficient data in
file-element

Insufficient data in file

The file-element from which
data would have been taken

The file-element from which
data would have been taken

File-element containing the
bad data

The file-element with
insufficient data

End of file (i.e., no
associated file-element)

Excess data in file-element The file-element with excess
data

11.4.4.1 Input-Statement. The effect of a prompt-
specifier, timeout-expression, and time-inquiry is as described
in 10.2. These input-control-items apply only to interactive
terminal devices. For other devices and true files, their effect
is implementation-defined. The transfer of data with the
input-statement also works just as described in 10.2, except that
records are treated like input-replies, and end-of-record is
treated like end-of-line. Each datum (as defined in 10.1) is
assigned in order to a variable in the variable-list. All the
INPUT operations (as opposed to the READ operations) are valid
only for a file opened as DISPLAY. For any other record-type, an
exception results. The input-statement may process several
records if the last non-blank character in a record is a comma.
If, following a record with a trailing comma, end of file is
encountered before all variables have been assigned values, then
the remaining variables shall retain their old values, the file
pointer shall be positioned to the end of the file, and an
exception shall result.

When any of the INPUT statements is executed for a device
and a phase 3 exception occurs, implementations may use the
recovery procedures specified for true files in this section, or,
if an equivalent exception is specified in Section 10, that
recovery procedure may be used instead. This is to allow input

174

AMERICAN NATIONAL STANDARD X3.113-1987

from several interactive devices to use the nonfatal recovery-
procedures .

11.4.4.2 Array-Input-Statement. The array-input-statement
behaves just like the input-statement would if the arrays were
written out explicitly as array-elements in row major order (the
last subscript varying most rapidly). The only additional
capability is that of allowing a redim to change the dimensions
of the array in accordance with the redim rules for the
array-input-statement without a channel-expression (cf. 10.5).
Thus, for example, if "DIM A(3)" and OPTION BASE 1 are in effect,
the following two statements are equivalent:

MAT INPUT #N: A
INPUT #N: A(1), A(2), A(3)

The following two statements are also equivalent:

MAT INPUT #N: A$(2,2), C(2)
INPUT #N: A$(1,1), A$(1,2), A$(2,1), A$(2,2), C(l), C(2)

However, the effect of

MAT INPUT #N: A(l), B(A(1))

depends on the first datum encountered, since it controls the
effective size of array B. Nonetheless, it behaves exactly as
would an input-statement for which the appropriate number of
array-elements for B had been coded. If an array is encountered
whose redim yields a size less than 1 in any dimension, then it,
and all subsequent arrays, shall retain their old values, and an
exception shall result.

11.4.4.3 Variable-Length-Vectors. The transfer of data
and consequent redimensioning of the array of a variable-length-
vector takes place just as described in 10.5.

11.4.4.4 Line-Input-Statement♦ The line-input-statement
behaves exactly as described in 10.2, except that records are
treated like input-replies, and end-of-record like end-of-line.
The content of each successive record is assigned as the value of
successive string-variables, including any leading or trailing
spaces. A record may contain a null string, and it shall be
assigned in the normal way. If end of file is encountered before
all variables have been assigned values, then the remaining
variables shall retain their old values, the file pointer shall
be positioned to end of file, and an exception shall result.

175

AMERICAN NATIONAL STANDARD X3.113-1987

11.4.4.5 Array-Line-Input-Statement. The array-line-
input-statement behaves just as would a line-input statement for
which the array-elements had been coded out explicitly, instead
of as arrays. See semantics in 11.4.4.2 for array-input-
statements. Note that here too, the size of a later array may
depend on the value assigned to an earlier array, e.g.:

MAT LINE INPUT #N: A$(1), B$(VAL(A$(1)))

If the first record contained the string " 12 ", then twelve
subsequent records would be read into the array B$. If an array
is encountered whose redim yields a size less than 1 in either
dimension, then it, and all subsequent arrays, shall retain their
old values, and an exception shall result.

11.4.4.6 Input-Statements for Channel Zero. Input from
channel zero works in accordance with the semantics for non-file
devices. For those exceptions for which a different recovery
procedure is specified in Section 10 than in Section 11, the
procedure of Section 10 shall be used.

11.4.4.7 Read-Operation. The read-statement and
array-read-statement are used to retrieve data from files with
records of any type. Successive data or values or fields are
assigned to successive variables or arrays in the operand list.
READ may access several file elements for SEQUENTIAL or STREAM
files, but only one for RELATIVE or KEYED files.

11.4.4.8 File Organizations. For non-STREAM files, the
variables receive values from the sequence of data or values or
fields within a record. There must be just enough data within
the record (or records in the case of DISPLAY records with
trailing commas) to satisfy the variable-list (except for SKIP
REST, see previous text in 11.4.4). For STREAM files, the
variables receive their values directly from the sequence that
constitutes the file, beginning with the file-element indicated
by the pointer, and so file-element boundaries are insignificant.
If end of file is encountered before all variables have been
assigned values, then the remaining variables shall retain their
old values, the file pointer shall be positioned to end of file,
and an exception shall result.

11.4.4.9 Display Record-Type. Records in DISPLAY files
are sequences of characters. The retrieval of string data shall
take place as described in 10.2. Note that retrieving data from
a record created with PRINT does not necessarily preserve the
same value, since, for instance, leading and trailing spaces are
not saved in unquoted strings on input. For numeric data, the

176

AMERICAN NATIONAL STANDARD X3.113-1987

accuracy shall be consistent with the usual semantics for
assignment of a numeric-constant to a numeric-variable (i.e., at
least six significant digits for OPTION ARITHMETIC NATIVE and at
least ten digits for OPTION ARITHMETIC DECIMAL). For a
numeric-constant with no more significant digits than the
implementation-defined precision, the exact value is assigned
with OPTION ARITHMETIC DECIMAL.

A READ operation on a DISPLAY record assigns values exactly
as would an INPUT operation with the same variable-list or redim-
array-list. Note, however, that not all the INPUT facilities are
available for READ, which is record-oriented.

11.4.4.10 Internal Record-Type. An internal record (and a
stream file) is a sequence of values. There are two types of
value, numeric and string. For INTERNAL file elements, the
values shall be retrieved with a variable of the same type as
that of the value, otherwise an exception shall result. Thus,
the contents of an INTERNAL file element are self-typed. The
sequence of values and their types are determined by the record
operation that created or modified the file-element(s). When a
value is retrieved, the effect is as if the expression with which
it was created were assigned to the input variable with a
let-statement. The length and content of string values shall be
preserved. Numeric values shall also be preserved, consistent
with the usual limitations on precision and type associated with
the prevailing ARITHMETIC option.

11.4.4.11 Native Record-Type. The TEMPLATE describes the
location and type of fields within the record. When reading from
a native record, a TEMPLATE shall always be used. It shall not
be used with any other record-type. A TEMPLATE is associated
with a particular data retrieval statement by means of the
template-identifier in the statement, which specifies the
template-statement to be used, or a string-expression whose value
must be a syntactically correct template-element-list. The
string-expression is evaluated before any input takes place and
before any redims, substring qualifiers, or subscripts are
evaluated. Several statements may use the same template-
statement .

When retrieving data from a native record, each variable
within the variable-list is associated with a field-specifier
within a template; the specifier is then used to return data from
a field within a record. This association takes place from left
to right, within the variable-list and template-element-list,
each variable using the next available field-specifier. A
variable is associated with a specifier after a value has been

177

AMERICAN NATIONAL STANDARD X3.113-1987

assigned to the previous variable, and any subscripts, substring-
qualifiers, or redims for this variable have been evaluated. If
the type of the variable (numeric or string) disagrees with the
type of the specifier, an exception results. The number of
specifiers shall not be less than the number of variables. Extra
specifiers beyond the variables are ignored. The contents of the
next field in the record is interpreted according to the
specifier, and the resulting value placed in the variable.

When retrieving data, the specifiers of all fields within a
record shall be compatible with the specifiers with which they
were created, otherwise the results are implementation-defined.
In order to be compatible, the creating and retrieving specifiers
for a field shall be both of type STRING, with equal string-
field-sizes, or both NUMERIC with a numeric-field-size of E, or
both NUMERIC with equal integer-sizes and fraction-sizes. An
omitted integer-size or fraction-size is treated as equivalent to
zero.

When the TEMPLATE specifiers are compatible with the record,
then the values are retrieved in accordance with the field sizes.
For strings, a value is assigned with length equal to the string-
field-size, and contents as originally stored in the record,
including any spaces used for padding. For numbers, a value is
assigned whose accuracy is limited only by the numeric-field-size
and ARITHMETIC option. For numbers stored with a field size of
E, or with a fixed-point-size and with no more significant digits
than the implementation-defined precision, the exact value is
retained under OPTION ARITHMETIC DECIMAL. Otherwise, the numbers
are rounded according to the OPTION in effect and stored in the
variable. The storing of values in the fields of native records
and the effect of field-counts are described in 11.3.4. The only
difference upon retrieval is that SKIP specifiers do not generate
fields of zero or spaces, but cause the affected fields simply to
be skipped over. As before, such specifiers are not associated
with variables.

11.4.4.12 Array-Read-Statement. In general, an
array-read-statement behaves just like the read-statement would
if the arrays were written out explicitly as array-elements. As
with INPUT, there is delayed evaluation of redims, and for this
reason, when reading from a native record, a variable-field-count
is provided. If a fixed-field-count is used, then the number and
types of the specifiers shall match the array-elements, as with
READ. When the first element of an array is to be associated
with the next specifier, however, and if a template-element has
just been completed (or if this is the first array in the list),
and the next template-element is a variable-field-count, then the

178

AMERICAN NATIONAL STANDARD X3.113-1987

associated specifier is used for all the elements of the array.
When the array has been filled, the next array, if any, uses the
next template-element, which may or may not also have a
variable-field-count. An array shall use either a template-
element with a variable-field-count or template-elements with
fixed-field-counts, but not both.

11.4.5 Exceptions

The exceptions are grouped according to the phase of
processing during which they are detected. Phase 1 exceptions
imply no change to the file pointer or variables. Phase 2
exceptions imply no change to the variables. Phase 3 exceptions
imply that some variables may have received values from the file.

11.4.5.1 Phase _1 Exceptions

A data retrieval attempts to access an inactive channel
(7004, fatal).

An input-, array-input-, line-input-, or array-line-input-
statement attempts to access a file opened as INTERNAL or NATIVE
(7318, fatal).

The record-setter cannot be processed correctly, as
described in 11.2.5 (7002 and 7202-7207, use the procedures of
11.2.5).

A data retrieval statement attempts to access a file opened
as OUTPUT (7303, fatal).

The string-expression of a template-identifier is not a
syntactically correct template-element-list (8251, fatal).

A template-identifier is used on a file opened as DISPLAY or
INTERNAL (7315, fatal).

A read- or array-read-statement does not have a template-
identifier when attempting to access a file opened as NATIVE
(7316, fatal).

The SKIP REST option is used on a file opened as STREAM
(7321, fatal).

179

AMERICAN NATIONAL STANDARD X3.113-1987

11.4.5.2 Phase 2 Exception

For a data retrieval statement, the condition data-found is
false and a missing-recovery has not' been specified (7305,
fatal) .

11.4.5.3 Phase 3^ Exceptions

An attempt is made to access a record larger than the value
of RECSIZE (8302, fatal).

The first index in a redim-bounds is greater than the second
(6005 , fatal).

A single index used in redim bounds is less than the default
lower bound in effect for the program unit (6005, fatal).

The total number of elements required for a redimensioned
array exceeds the number of elements reserved by the array's
original dimensions (5001, fatal).

A variable or array-element does not agree in type (numeric
or string) with its associated TEMPLATE specifier (8252, fatal).

A variable-field-count in a template-element does not
coincide with the first element of an array (8253, fatal).

There are not enough TEMPLATE specifiers for all the
variables or array-elements (8254, fatal).

A data retrieval statement, other than a line-input-
statement or an array-line-input-statement, attempts to access a
DISPLAY record that is not a syntactically legal input-reply
(8105, fatal).

The datum of a DISPLAY record to be assigned to a numeric
variable is not a numeric-constant (8101, fatal).

A value in an INTERNAL record does not agree in type
(numeric or string) with the variable to which it is to be
assigned (8120, fatal).

A value, datum, or field in a file causes numeric overflow
upon assignment to the variable (1008, fatal).

A value, datum, or field in a file causes string overflow
upon assignment to a variable (1105, fatal).

180

AMERICAN NATIONAL STANDARD X3.113-1987

There are not enough data, values, or fields within a record
of a non-STREAM file for the operands of a data retrieval
statement and the record is not DISPLAY with a trailing comma
(8012, fatal).

End of file is encountered while seeking further data for
the operands of a data retrieval statement (8011, fatal).

There are too many data in a record for the operands of a
data retrieval statement and SKIP REST is not specified (8013,
fatal) .

There is just enough data in a DISPLAY record with a
trailing comma to satisfy a request for input, and SKIP REST is
not specified (8013, fatal).

11.4.6 Remarks

Implementations may choose to treat underflows as exceptions
(1508, nonfatal: supply zero and continue) to permit interception
by exception handlers.

181

AMERICAN NATIONAL STANDARD X3.113-1987

11.5 File Data Modification

11.5.1 General Description

Statements are provided to allow the user to modify data

previously stored in a file. Such data can either be changed or

deleted. The modifications are always done at the record level.

11.5.2 Syntax

Core productions:

None.

Enhanced Files productions:

1. imperative-statement >

2. rewrite-statement =

3. array-rewrite-statement =

4. rewrite-control =

5. rewrite-control-item >

6. delete-statement =

7. delete-control =

8. delete-control-item =

N9. rewrite-control-item >

rewrite-statement /

array-rewrite-statement /

delete-statement

REWRITE channel-expression

rewrite-control colon

expression-list

MAT REWRITE channel-expression

rewrite-control colon

array-list

(comma rewrite-control-item)*

missing-recovery / record-setter

DELETE channel-expression

delete-control

(comma delete-control-item)*

missing-recovery / record-setter

template-identifier

The line-number of a template-identifier shall refer to a

template-statement in the same program-unit.

A given rewrite-control-item shall appear at most once in

rewrite-control.

A given delete-control-item shall appear at most once in

delete-control.

11.5.3 Examples

2. REWRITE #N, KEY = B$, IF MISSING THEN 666: A,B,C$

3. MAT REWRITE #3, RECORD N-l, WITH 111: X,Y,Z

6. DELETE #3, KEY "JONES"

182

AMERICAN NATIONAL STANDARD X3.113-1987

11.5.4 Semantics

The data modification statements are modeled closely on
certain aspects of data retrieval statements and data creation
statements. Like the data retrieval statements, they operate on
existing records. Like the data creation statements, they can
alter the state of a file. The data modification statements are
specified only for file-organizations RELATIVE and KEYED. For
other file-organizations, their effect is implementation-defined.
The data modification statements may be used only with access¬
mode OUTIN. Except for access-mode, the first and second phase
of processing (i.e., checking of file attributes and setting the
file pointer) for these statements is exactly like that for the
data retrieval statements (cf. 11.4.4), because they operate on
existing records. The third phase of processing, undertaken only
if the operation is legal, the file pointer successfully set, and
data-found is true, is described in 11.5.4.1 through 11.5.4.3
under the individual headings.

11.5.4.1 Rewrite-Statement. The rewrite-statement
generates exactly one record, and that record is identical to the
one that would be generated by a write-statement with the same
expression-list or array-list and template-identifier, if any
(cf. 11.3.4), with one exception: for a NATIVE record, fields
governed by SKIP are not filled with zero or spaces, but rather
the previous contents of the fields are left unchanged. This
effect of SKIP occurs only if the TEMPLATE used by the REWRITE is
compatible with TEMPLATE last used to alter the record (cf.
11.4.4.11 for the definition of "compatible"). The result of
using an incompatible TEMPLATE containing SKIP is implementation-
defined. The use of an incompatible TEMPLATE without SKIP is
defined as in 11.3.4.11 since the entire record is replaced.

If no exceptions occur during the generation of data to be
used for modification of existing data, then the record pointed
to by the file pointer is replaced by the record just generated,
and the file pointer advanced to the next file-element. This
implies that the identifying record-number in a RELATIVE file, or
identifying key in a KEYED file is not changed. If there is an
exception, the pointer is left as it was set in the second phase
(cf. 11.3.4 and 11.4.4) and the data in the file is unchanged.

11.5.4.2 Array-Rewrite-Statement. An array-rewrite-
statement behaves just like the rewrite-statement would if the
array-elements were written out explicitly. The rules for
matching arrays and specifiers in a TEMPLATE are exactly the same
as for the array-write-statement (cf. 11.3.4.12).

183

AMERICAN NATIONAL STANDARD X3.113-1987

11.5.4.3 Delete-Statement. The delete-statement causes
the record indicated by the file pointer to be deleted, and the
file pointer advanced to the next file-element. This implies
that for a RELATIVE file, the affected record-area no longer
contains a record, and for a KEYED file, the affected record is
eliminated from the sequence of records constituting the file.

11.5.5 Exceptions

The following exceptions are grouped according to the phase
of processing during which they are detected. Phase 1 exceptions
imply no change to the file or file pointer. Phase 2 exceptions
imply no change to the file. Phase 3 exceptions also imply no
change to the file.

11.5.5.1 Phase 1 Exceptions

A data modification statement attempts to access an inactive
channel (7004, fatal).

A data modification statement attempts to access channel
zero (7320, fatal).

The record-setter cannot be processed correctly, as
described in 11.2.5 (7002 and 7202-7207, use the procedures of
11.2.5).

A data modification statement attempts to access a file
opened as INPUT or as OUTPUT (7322, fatal).

The string-expression of a template-identifier is not a
syntactically correct template-element-list (8251, fatal).

A template-identifier is used on a file opened as INTERNAL
or DISPLAY (7315, fatal).

A rewrite- or array-rewrite-statement does not have a
template-identifier when attempting to access a file opened as
NATIVE (7316, fatal).

11.5.5.2 Phase 2 Exception

For a data modification statement, the condition data-found
is false, and a missing-recovery has not been specified (7305,
fatal).

184

AMERICAN NATIONAL STANDARD X3.113-1987

11.5.5.3 Phase _3 Exceptions

An attempt is made to rewrite a record larger than the value
of RECSIZE (8301, fatal).

An expression or array-element does not agree in type
(numeric or string) with its associated TEMPLATE specifier (8252,
fatal) .

A template-element with a variable-field-count does not
coincide with the first element of an array (8253, fatal).

There are not enough TEMPLATE specifiers for all the
expressions or array-elements (8254, fatal).

A numeric value has significant digits to the left of the
available digit places in the field of a template (8255, fatal).

A string value is longer than the length of its field in the
template (8256, fatal).

11.5.6 Remarks

Note that DELETE and REWRITE will affect the record
indicated by the file pointer, even if the pointer is set with
NEXT or left as is from a previous operation (i.e., if the
record-setter is absent).

185

AMERICAN NATIONAL STANDARD X3.113-1987

12. Exception Handling and Debugging

12.1 Exception Handling

12.1.1 General Description

Exception handling facilities provide a means of regaining
control of a program after an exception has occurred.

12.1.2 Syntax

1. protection-block

2. when-use-block

3. when-line

4. when-block
5. use-line
6. exception-handler
7. end-when-line
8. when-use-name-block

9. when-use-name-line

10. handler-name
11. handler-return-statement
12. exit-handler-statement
13. cause-statement
14. exception-type
15. detached-handler

16. handler-line

17. end-handler-line

18. numeric-supplied-function
19. string-supplied-function

- when-use-block /
when-use-name-block

= when-line when-block
use-line exception-handler
end-when-line

= line-number WHEN EXCEPTION IN
tail

= block*
= line-number USE tail
= block*
= line-number END WHEN tail
= when-use-name-line

when-block end-when-line
= line-number WHEN EXCEPTION USE

handler-name tail
= routine-identifier
= RETRY / CONTINUE
= EXIT HANDLER
= CAUSE EXCEPTION exception-type
= index
= handler-line exception-handler

end-handler-line
= line-number HANDLER

handler-name tail
= line-number END HANDLER

tail
> EXLINE / EXTYPE
> EXTEXT dollar-sign

Handler-return-statements and exit-handler-statements shall
occur only within exception-handlers. The no-argument numeric-
supplied-f unctions EXLINE and EXTYPE shall be invoked only within
exception-handlers. EXTEXT$ takes a single numeric argument,
which is an index.

No line-number in a control-transfer outside a protection-
block shall refer to a line in that protection-block other than

186

AMERICAN NATIONAL STANDARD X3.113-1987

its when-line or when-use-name-line. No line-number in a
control-transfer inside an exception-handler shall refer to a
line outside that exception-handler other than its own end-
handler-line or end-when-line, nor shall a line-number in a
control-transfer outside an exception-handler refer to a line
inside that exception-handler or to its end-handler-line or end-
when-line.

A detached-handler referred to in a when-use-name-line
within an internal-proc-def shall be defined in the same
internal-proc-def. A detached-handler referred to in a when-use-
name-line that is not within an internal-proc-def shall be
defined in the same program-unit but not within an internal-proc-
def. No two handler-lines in the same program unit shall have
the same handler-name. A detached-handler shall not appear
within a protection-block.

A protection-block shall not appear within an exception-
handler .

12.1.3 Examples

1. Example 1: Handling errors in input-replies by allowing the
input-reply to be resupplied after issuing a suitable
message

100 WHEN EXCEPTION IN
110 PRINT "Enter your age and weight"
120 INPUT a, w
130 IF a > 10 THEN
140 PRINT "What is your height"
150 INPUT h
160 END IF
170 USE
180 PRINT "Please enter numbers only"
190 RETRY
200 END WHEN

Example 2: Dynamic file opening

100 HANDLER file trouble
110 LET file ok? = "false"
120 IF EXTYPE = 7107 THEN
130 LET message? ~ " doesn't exist"
140 ELSEIF EXTYPE = 7102 THEN
150 LET message? - " is the wrong type"
160 ELSE
170 LET message? = " couldn't be used"

187

AMERICAN NATIONAL STANDARD X3.113-1987

180 END IF
190 PRINT "file "y filename?; message?; " try again"
200 END HANDLER

500 DO
510 INPUT filename?
520 LET file ok? = "true"
530 WHEN EXCEPTION USE file trouble
540 OPEN #n: NAME filename? ! other parameters omitted
550 END WHEN
560 LOOP UNTIL file_ok? = "true"

Example 3: Nested handlers

100 WHEN EXCEPTION IN
110 DO
120 READ #1, IF MISSING THEN EXIT DO: A
130 LET I = 1+1 1 I initialized outside loop
140 WHEN EXCEPTION IN
150 LET B(I) = 1000*A*A
160 USE
170 I Assume it is numeric overflow
180 LET B(I) = MAXNUM
190 CONTINUE
200 END WHEN
210 LOOP
220 USE
230 IF EXTYPE = 8101 THEN i non-numeric data
240 RETRY 1 get next data item
250 ELSE I give up
260 PRINT "Unable to process file"
270 STOP
280 END IF
290 END WHEN

13 . CAUSE EXCEPTION I

12.1.4 Semantics

When an exception occurs during the execution of a
program-unit, the action taken shall depend upon whether or not
the exception occurs within a when-block. If the exception
occurs outside a when-block, then the default exception handling
procedures specified in this standard shall be applied (cf. 2.4).
If the exception occurs within a when-block, then the default
exception handling procedures, which require that an exception be
reported, shall not be applied; instead, control shall be

188

AMERICAN NATIONAL STANDARD X3.113-1987

transferred to the exception-handler associated with the

inner-most protection-block within which the exception occurred.

When the protection-block is a when-use-block, the

associated exception-handler is that which follows the use-line

of the protection-block. When the protection-block is a when-

use-name-block, the associated exception-handler is the detached-

handler named in the when-use-name-line of the protection-block.

In all respects, a detached-handler behaves semantically as

though it were an exception-handler in the when-use-block of the

when-block with the exception.

Within an exception-handler, the type of the exception that

caused that handler to be executed shall be obtainable as the

value of the parameterless function EXTYPE. The values of EXTYPE

for all exceptions defined in this standard are specified in

Table 9, along with the description of each exception in this

standard. The line-number of the line whose execution caused the

exception shall be obtainable as the value of the parameterless

function EXLINE.

There are four means of exiting from an exception-handler.

(1) Execution of the handler-return-statement CONTINUE

shall cause control to be transferred to the statement lexically

following that which caused the exception. If the exception

occurred in a line that begins or is part of a structure (such as

a do-line, loop-line, for-line, if-then-line, elseif-then-line,

select-line, or case-line), then control shall be transferred to

the statement lexically following the entire structure of which

the line is a part.

(2) Execution of the handler-return-statement RETRY shall

cause control to be transferred to the statement or line that

caused the exception, causing the statement or line to be

re-executed; if that statement was performing data retrieval,

then the previous input-reply or line-input-reply shall be

discarded and a new one requested.

(3) If control reaches an end-when-line that terminates an

exception-handler or reaches an end-handler-line, then control

shall be transferred to the line following the end-when-line of

the protection-block within which the exception occurred with no

further effect.

(4) Execution of an exit-handler-statement shall cause the

exception to be propagated to the lexical environment surrounding

the innermost protection-block containing the exception (also

189

AMERICAN NATIONAL STANDARD X3.113-1987

note the effect of calls and function invocations described later

in this subsection). That is, the effect on handling the

exception is as if the exception-handler did not exist (except

for the effect of any statements already executed in the

handler), and the rules for handling the original exception

depend upon whether or not the exception occurs within some outer

when-block.

If execution reaches a use-line in a when-use-block, or an

end-when-line in a when-use-name-block, then control shall be

transferred to the line following the protection-block of which

the use-line or end-when-line is a part. If execution reaches an

end-handler-line of a detached-handler, control shall continue at

the line following the end-when-line of the when-use-name-block

causing the exception. If execution reaches a handler-line of a

detached-handler other than by the occurrence of an exception,

control shall then continue at the line immediately following the

end-handler-line.

A separate GOSUB stack is associated with each exception-

handler (cf. 8.2) so RETURN never attempts to transfer control

into or out of an exception handler.

Execution of a cause-statement shall result in the

occurrence of a fatal exception and the setting of EXTYPE to the

rounded value of the exception-type.

If an exception is caused by a statement lexically within an

exception-handler, then this new exception shall be handled by

the default exception-handling procedures.

If a fatal exception occurs in a procedure-part or internal-

proc-def and either:

(1) The line causing the fatal exception is not contained

in a when-block and therefore no exception-handler is entered, or

(2) An exception-handler is entered, an exit-handler-

statement is executed with the handler, and there is no lexically

surrounding when-block to intercept the exception,

then the fatal exception shall be propagated back to the line

that invoked the procedure-part or internal-proc-def. This

propagation shall continue to occur until either:

(1) A user-defined exception-handler resolves the exception

by execution of a handler-return-statement or by causing control

190

AMERICAN NATIONAL STANDARD X3.113-1987

to pass to an end-handler-line or to an end-when-line that

terminates the exception-handler, or

(2) The main-program or a parallel-section is reached, in

which case the default exception-handling procedures are applied.

If an exception-handler is invoked as a result of this

process, then the value returned by the EXTYPE function shall be

100000 plus the value that would have been returned by EXTYPE in

the procedure-part or internal-proc-def in which the exception

originally occurred. The value of EXLINE shall be the line-

number of the most recent line to which the exception was

propagated (i.e., the line lexically within the when-block

associated with the exception-handler, not the line of the

original exception).

The default exception-handling procedures shall always

report the EXTYPE and EXLINE of the original exception.

The value of EXTYPE for exceptions defined by local

enhancements to this standard shall be negative. When negative

values of EXTYPE are propagated, the value shall be -100000 plus

the value that would have been returned by EXTYPE for the

original exception.

Values of EXTYPE from 1 to 999 will not be used by future

enhancements to this standard, nor shall they be used by local

enhancements to this standard.

The value of EXTEXT$ shall be the text part of the error

message provided by the system for the exception number obtained

by rounding its argument to an integer. If its argument is not

the exception number of a standard system exception, the value of

EXTEXT$ shall be the null string.

If the main-program is reached and no exception-handler is

invoked there as a result of the original exception, then the

exception shall be handled by the default exception handling

procedures specified in this standard.

12.1.5 Exception

A cause-statement is executed (exception-type, fatal).

12.1.6 Remarks

Users should note that there are two kinds of exception

propagation specified in this . First, there is "lexical"

191

AMERICAN NATIONAL STANDARD X3.113-1987

propagation, outward to surrounding protection-blocks within a

program-unit or internal-proc-def. If this process propagates

the exception outside.of any such protection-block, "invocation"

propagation takes effect, passing the exception back to invoking

statements.

The function EXLINE should be used with caution, as the use

of editing facilities that renumber lines in a program (cf.

16.2) may invalidate computations involving EXLINE. For example,

the program fragment

1000 SELECT CASE INT(EXLINE/100)

1010 CASE 1, 2

• • •

1100 CASE 3 TO 7

would probably behave differently if lines 100 through 800 were

renumbered.

When a fatal exception is propagated back to invoking

statements and the default exception-handling procedure is

applied as a result, only the original exception's EXTYPE and

EXLINE must be reported. Implementations may, however, also

report the line-numbers of the lines through which the exception

was propagated, or any other information deemed useful.

It is not possible to pass a nonfatal exception back to a

calling routine since it will be handled either by an exception-

handler in the called routine or by the system handler. An

exception handler may, however, cause a fatal exception with a

cause-statement.

The cause-statement is not intended actually to simulate any

given exception, but rather to raise a fatal exception with a

specified value of EXTYPE. In particular, if the specified

EXTYPE is the same as for some nonfatal exception, implemen¬

tations need not apply the recovery procedure as though that

nonfatal exception had actually occurred. It is presumed that a

program will normally contain an exception-handler to receive and

process the exception.

All positive values of EXTYPE are reserved for future

versions of this standard. Exceptions defined by local

enhancements to this standard should be identified by negative

values for EXTYPE, following the categories established in Table

9. The value returned by EXTYPE for an exception defined in a

local enhancement and occurring in a procedure-part or internal-

192

AMERICAN NATIONAL STANDARD X3.113-1987

proc-def should be -100000 plus the negative value identifying

that exception. For example, if an implementation chose an

EXTYPE value of -4029 for an invalid argument in a new built-in

function, and if that exception occurred in a subprogram, but was

not handled there, then the value of EXTYPE in an exception-

handler in a calling program should be -104029.

It is recommended that implementations use the "zero-th"

value in a class of EXTYPE values to represent "other exceptions

of this type." For example, an EXTYPE value of 1000 might

represent all overflows not defined in this standard.

Values of EXTYPE from 1 to 999 may only occur from cause-

statements in application programs. These values should be

encouraged for use, since they will not be assigned standard

meanings in future enhancements to this standard.

CONTINUE should be used with caution. For instance, if an

exception occurs within a def-statement, on-gosub-statement, on-

goto-statement, or if-statement, CONTINUE will transfer control

to the lexically following line. Such action may not be

equivalent to resumption of normal flow of control.

The following example illustrates the effect of CONTINUE

with control structures:

100 WHEN EXCEPTION IN

120 INPUT PROMPT "Enter your age and weight a, w

130 DO WHILE a > 1

140 IF a < 9999999999 THEN

150 INPUT PROMPT "What is your height h

160 PRINT "Check the following:"

170 PRINT "Age:"; a, "Weight:"; w, "Height:"; h

200 INPUT PROMPT "Enter your age ": a

210 END IF

220 PRINT "Lexically following IF"

230 LOOP

240 PRINT "Lexically following DO WHILE"

For exception in line: CONTINUE transfers control to line:

120 130

130 240

140 220

150 160

193

AMERICAN NATIONAL STANDARD X3.113-1987

The precise format of the values of the EXTEXT$ function is

implementation-defined. In particular, implementations may

choose to omit, or to mark in a special way, those fields in an

error message that are specific to a particular instance of an

exception, such as the line number at which the exception

occurred or the value of an out-of-range subscript.

194

AMERICAN NATIONAL STANDARD X3.113-1987

12.2 Debugging

12.2.1 General Description

Debugging facilities are provided by language statements in

order to allow test points to be built into a program. These

statements allow the user to set break points, to trace the

action of the program, and to turn the debugging system on and

off within each program-unit.

12.2.2 Syntax

1.

2.

debug-statement

break-statement

= DEBUG

= BREAK

(ON / OFF)

3 . trace-statement = TRACE

TRACE

ON (TO

OFF

channel-expression)? /

12.2.3 Examples

3. TRACE ON

TRACE ON TO #3

12.2.4 Semantics

Each program-unit shall have a debugging status, which is

either active or inactive at any given time. The debugging

status of a program-unit shall persist between invocations of

that program-unit (with the exception of the main program).

Changes in the debugging status of one program-unit shall not

affect the debugging status of any other program-unit. At the

beginning of execution of the program, debugging shall be

inactive for all program-units.

Execution of the debug-statement DEBUG ON shall cause

debugging to become active for the program-unit in which that

debug-statement occurs. Debugging shall remain active for the

remainder of that invocation of that program-unit, and for each

subsequent invocation of that program-unit, until the debug-

statement DEBUG OFF is executed in that program-unit. Execution

of the debug-statement DEBUG OFF shall cause debugging to become

inactive for the remainder of that invocation of that program-

unit, and for each subsequent invocation of that program-unit,

until the debug-statement DEBUG ON is executed in that program-

unit .

The execution of a break-statement when debugging is active

shall cause an exception. The standard recovery procedure from

this exception shall be to report the line-number of the break-

195

AMERICAN NATIONAL STANDARD X3.113-1987

statement and to signify to the user that interaction with the

debugging system is possible. The actions allowed by the

debugging system, including the method for continuing execution

or terminating execution of the program, are implementation-

defined. If the execution of a program reaches a line containing

a break-statement, and debugging is inactive, then it shall

proceed to the next line with no other effect.

The execution of a trace-statement when debugging is active

shall turn tracing on (if ON is specified) or off (if OFF is

specified) in the program-unit containing the trace-statement.

Prior to the execution of any trace-statement upon each separate

entry to a program-unit, tracing shall be off. If the execution

of a program reaches a line containing a trace-statement, and

debugging is inactive, then it shall proceed to the next line

with no other effect.

The execution of a trace-statement shall not affect the

debugging status, nor shall the execution of a debug-statement

affect the tracing status (ON or OFF).

Whenever tracing is on and debugging is active in a program-

unit, the following actions shall occur each time a line of the

specified type is executed:

(1) For any line that interrupts the sequential order of

execution of lines in a program, both the line-number of that

line and the line-number of the next line to be executed shall be

reported

(2) For any line that assigns a value to a variable or to

an element of an array, both the line-number of that line and any

values assigned by execution of that line shall be reported.

Whenever tracing has been turned on via a trace-statement

with a channel-expression, trace reports shall be directed to the

(display format) file assigned to the specified channel. If no

channel-expression has been specified, the trace report shall be

directed to the device associated with channel zero.

The contents of the trace report are implementation-defined,

but shall include at least the name of the variable traced, as

that name lexically appears in the statement causing the trace

report, and its value; if the variable is an array element, the

value(s) of its subscripts shall also be included.

196

AMERICAN NATIONAL STANDARD X3.113-1987

12.2.5 Exceptions

A break-statement is executed when debugging is active

(10007, nonfatal: the recovery procedure is to report the line-

number of the statement and to permit interaction with the

debugging system).

An attempt is made to direct a trace report to an inactive

channel (7401, fatal).

An attempt is made to direct a trace report to a file that

is not display format opened with access OUTPUT or OUTIN (7402,

fatal).

12.2.6 Remarks

Since an array-assignment assigns a value to each element of

an array, tracing an array-assignment causes reporting of all new

array element values.

The form of all trace reports is implementation-defined.

Implementations may provide debugging facilities through

commands in addition to statements. It is recommended that such

commands use the same keywords as the statements.

197

AMERICAN NATIONAL STANDARD X3.113-1987

13. Graphics

The facilities provided in 13.1 through 13.4 are a subset of

those provided by level Ob of the Graphical Kernel System (GKS)

as defined in ANSI X3.124-1985 and ISO 7942-1985. The values of

the EXTYPE function for exceptions defined in GKS are 11000 plus

the value of the GKS error number. Suggested syntax for

implementations wishing to extend graphics to full level Ob of

GKS is given in Appendix F. Extensions to the American National

Standard and the International Standard for GKS are provided in

13.5.
In GKS terms, any Basic program that includes statements

from Section 13 of this standard has implied calls to the

functions OPEN GKS, OPEN WORKSTATION(#0,"Maindev", 1), and

ACTIVATE WORKSTATION #0 before any graphics statements are

executed, and calls to the functions DEACTIVATE WORKSTATION #0,

CLOSE WORKSTATION #0, and CLOSE GKS as the program terminates.

13.1 Coordinate Systems

13.1.1 General Description

The coordinates used to produce graphic output may be chosen

to suit the application. The range of this system of "problem

coordinates" (world coordinates) is established by a SET WINDOW

statement. This range is mapped into a rectangular portion of an

abstract viewing surface, which can be specified by a SET

VIEWPORT statement. It is possible to specify what part of this

abstract viewing surface will be presented to the user on the

display surface by a SET DEVICE WINDOW statement. This

rectangle, in turn, may be located on the display surface by a

SET DEVICE VIEWPORT statement.

No output will be produced outside the device viewport. It

is possible to guarantee that all graphic output that lies

outside the viewport will be eliminated by enabling clipping.

Ask-statements are provided to determine the current values

for the parameters established by execution of one of the set-

statements or by default.

198

AMERICAN NATIONAL STANDARD X3.113-1987

> WINDOW boundaries /
VIEWPORT boundaries /
DEVICE WINDOW boundaries /
DEVICE VIEWPORT boundaries /
CLIP string-expression

- boundary comma boundary comma
boundary comma boundary

= numeric-expression
> ASK ask-object status-clause?
— STATUS numeric-variable
> WINDOW boundary-variables /

VIEWPORT boundary-variables /
DEVICE WINDOW boundary-variables /
DEVICE VIEWPORT boundary-variables /
DEVICE SIZE numeric-variable comma
numeric-variable comma
string-variable /
CLIP string-variable

7. boundary-variables - numeric-variable comma
numeric-variable comma
numeric-variable comma
numeric-variable

13.1.3 Examples

1. WINDOW 0, PI*2, -1, 1
Viewport .5*width, width, .5*height, height
DEVICE WINDOW 0, .8, 0, 1
DEVICE VIEWPORT .3, .5, .1, 1
CLIP "Off"

4. ASK WINDOW XI, X2, Y1, Y2
ASK VIEWPORT L, R, B, T
ASK DEVICE WINDOW XMIN, XMAX, YMIN, YMAX
ASK DEVICE VIEWPORT LEFT, RIGHT, BOTTOM, TOP
Ask device size Width, Height, Units?
ASK CLIP CL I P__S T AT E $

13.1.4 Semantics

Graphic output is specified in problem coordinates. A
normalization transformation defines the mapping from the problem
coordinate system onto the normalized device coordinate (NDC)
space, which can be regarded as an abstract viewing surface.

13.1.2 Syntax

1. set-object

2. boundaries

3. boundary
4. ask-statement
5. status-clause
6. ask-object

199

AMERICAN NATIONAL STANDARD X3.113-1987

The normalization transformation is specified by defining

the limits of a rectangular area, called a window, in problem

coordinates. The window is mapped linearly onto a specified

rectangular area, called a viewport, in NDC space.

Execution of a set-statement with the keyword WINDOW shall

establish the boundaries of the window. The parameters represent

the problem coordinates of the left, right, bottom, and top

edges, in that order, of the window rectangle. At the start of

program execution the window values are (0,1,0,1).

Execution of a set-statement with the keyword VIEWPORT shall

establish the viewport boundaries. The parameters represent the

normalized device coordinates of the left, right, bottom, and top

edges, in that order, of the viewport rectangle. Viewport

coordinates shall not be less than zero nor more than one. The

value of the left coordinate shall be less than the right, and

the bottom less than the top. At the start of program execution,

the viewport values are (0,1,0,1).

The viewport may also be used to define a clipping

rectangle. Execution of a set-statement with the keyword CLIP

shall enable or disable clipping to the viewport boundary (cf.

13.3) depending on whether the value of the string-expression is

"ON" or "OFF". The letters in the value of the string-expression

may be any combination of uppercase and lowercase. At the start

of program execution, clipping shall be enabled.

A device transformation is used to map a rectangle in NDC

space called a device window uniformly onto a rectangle on a

physical surface called a device viewport. This transformation

shall perform equal scaling with a positive scale for both axes.

To ensure equal scaling, the device transformation maps the

device window onto the largest rectangle that can fit within the

device viewport such that the aspect ratio of the device window

is preserved and the lower-left corner of the device window is

mapped onto the lower-left corner of the device viewport.

Execution of a set-statement with the keywords DEVICE WINDOW

shall establish the boundaries of the device window. The

parameters represent the normalized device coordinates of the

left, right, bottom, and top edges, in that order, of the device

window rectangle. These coordinates shall not be less than zero

nor greater than one. The value of the left coordinate shall be

less than the right, and the bottom less than the top. At the

start of program execution, the device window values are

(0,1,0,1). To ensure that no output outside the device window is

displayed, clipping takes place at the device window boundaries.

200

AMERICAN NATIONAL STANDARD X3.113-1987

This clipping may not be disabled. Execution of a set-statement

with the keywords DEVICE WINDOW shall cause the display surface

to be cleared if it is not already clear.

Execution of a set-statement with the keywords DEVICE

VIEWPORT shall establish the boundaries of the device viewport.

The parameters represent the coordinates of the left, right,

bottom, and top edges, in that order of the device viewport

rectangle. Units for the device viewport shall be meters on a

device capable of producing a precisely scaled image and

appropriate device dependent coordinates otherwise. The left and

bottom edges of a display surface are represented by the

coordinate value zero. At the start of program execution, the

device viewport is the entire screen. Execution of a set-

statement with the keywords DEVICE VIEWPORT shall cause the

display surface to be cleared if it is not already clear.

Figure 1 illustrates the relationship between the the

window, the viewport, the device window, and the device viewport;

clipping is assumed "ON".

Figure 1. Relationships of Windows and Viewports

DEVICE VIEWPORT

i

1

PROBLEM COORDINATES NDC SPACE DC SPACE

If a status-clause is included in an ask-statement, a status

associated with the execution of the ask-statement shall be

returned in the numeric-variable. If the statement returned

meaningful values for the ask-object, a value of zero shall be

returned in the status-clause. If the ask-statement could not

return meaningful values for the ask-object, a nonzero value

shall be returned in the status-clause that is defined with the

semantics of the particular ask-object. If an ask-statement with

a particular ask-object is always expected to return meaningful

values, the semantics for that ask-object do not specify

alternate status values and zero shall always be returned.

201

AMERICAN NATIONAL STANDARD X3.113-1987

Execution of an ask-statement with one of the keywords

WINDOW, VIEWPORT, DEVICE WINDOW, or DEVICE VIEWPORT shall provide

the current values for the specified rectangle. Values for the

left, right, bottom, and top sides, respectively, shall be

assigned to the boundary-variables equal to the values last

established by a set-statement, or, if no appropriate set-

statement has been executed, equal to the default value.

Execution of an ask-statement with the keywords DEVICE SIZE

shall assign to the first numeric variable the size in the

horizontal direction and shall assign to the second numeric

variable the size in the vertical direction of the available

display surface. The string-variable shall be assigned the value

"METERS" if the sizes are in meters or the value "OTHER" if the

units of measure are device coordinates or other units. The

values "METERS" and "OTHER" shall consist of upper-case-letters.

Execution of an ask-statement with the keyword CLIP shall

assign the value "ON" to the string-variable if clipping is

enabled and the value "OFF" if it is disabled. The values

returned shall be all upper-case-letters.

13.1.5 Exceptions

The boundaries in a set-statement specify a rectangle of

zero width or height (11051, nonfatal: continue with current

values).

The boundaries in a set-statement with the keywords

VIEWPORT, DEVICE WINDOW, or DEVICE VIEWPORT specify a rectangle

of negative width or height (11051, nonfatal: continue with

current values).

A boundary of the viewport is not in the range [0,1] (11052,

nonfatal: continue with current values).

A boundary of the device window is not in the range [0,1]

(11053, nonfatal: continue with current values).

A boundary of the device viewport is not in the display

space (11054, nonfatal: continue with current values).

The value of the string-expression in a set-statement with

the keyword CLIP is neither "ON" nor "OFF" after conversion to

upper-case (4101, nonfatal: continue with current value).

202

AMERICAN NATIONAL STANDARD X3.113-1987

13.1.6 Remarks

The manner in which a particular graphic display device is
selected by a program is implementation-defined.

The meaning of a window with the left edge greater than the
right or the bottom edge greater than the top is implementation-
defined. If possible, implementations should provide approp¬
riately inverted images. The effect of all graphic input and
output is defined in terms of the abstract problem space, in
which lower values are to the left and down, and higher values to
the right and up. When this problem space is mapped to NDC, it
may be inverted as indicated by the order of the WINDOW
boundaries. This relaxes the GKS rule that states that reversal
window coordinates causes an error.

SET WINDOW, SET VIEWPORT, SET DEVICE WINDOW, and SET DEVICE
VIEWPORT correspond to the GKS functions SET WINDOW, SET
VIEWPORT, SET WORKSTATION WINDOW, and SET WORKSTATION VIEWPORT,
respectively. The GKS transformation number is one in these
statements. The GKS workstation number is #0 in these
statements.

SET CLIP corresponds to the GKS function SET CLIPPING
INDICATOR.

ASK WINDOW and ASK VIEWPORT correspond to the GKS function
INQUIRE NORMALIZATION TRANSFORMATION for normalization
transformation one.

ASK CLIP corresponds to the GKS function INQUIRE CLIPPING
INDICATOR.

ASK DEVICE WINDOW and ASK DEVICE VIEWPORT correspond to the
current workstation window and current workstation viewport
parameters, respctively, of the GKS function INQUIRE WORKSTATION
TRANSFORMATION with a workstation identifier of one.

ASK DEVICE VIEWPORT before any SET DEVICE VIEWPORT may be
used to find the device coordinates of the full available device
surface.

ASK DEVICE SIZE corresponds to the device coordinate units
and maximum display surface size in device coordinate units
parameters of the GKS function INQUIRE MAXIMUM DISPLAY SURFACE
SIZE.

203

AMERICAN NATIONAL STANDARD X3.113-1987

Many of the ask-objects defined in Appendix F have cases

where no meaningful values can be returned. In these cases, the

value returned in a status-clause shall be 11000 plus the error

indicator parameter value specified by GI<S (ANSI X3.124-1985 and

ISO 7942-1985).

204

AMERICAN NATIONAL STANDARD X3.113-1987

13.2 Attributes and Screen Control

13.2.1 General Description

A graphic display device may possess several styles of lines
or points, each with a particular width or texture. A particular
style may be selected for graphic output. A graphic device also
may be able to draw lines or fill areas, or do both, in a variety
of colors. Particular colors may be selected for line drawing
and screen background.

The current style and color of the geometric object may be
determined by ask-statements. The number of colors and the
number of line or point styles available may also be determined
by ask-statements.

A graphic display device may possess several varieties of
text, each with a particular height or orientation. A
combination may be selected for text output.

The clear-statement clears the entire screen, returning it
to its background color. For hard-copy devices, the clear-
statement causes the paper to advance, the pen to move aside, or
similar action.

13.2.2 Syntax

1. imperative-statement
2. clear-statement
3. set-object

4. primitive-2
5. primitive-1
6. rgb-list

7. ask-object

> clear-statement
= CLEAR
> primitive-1 STYLE index /

primitive-2 COLOR index /
TEXT text-facet numeric-expression /
TEXT JUSTIFY string-expression
comma string-expression /
COLOR MIX left-parenthesis index
right-parenthesis rgb-list

= primitive-1 / TEXT / AREA
= POINT / LINE
= numeric-expression comma

numeric-expression comma
numeric-expression

> primitive-1 STYLE numeric-variable /
primitive-2 COLOR numeric-variable /
TEXT text-facet numeric-variable /
TEXT JUSTIFY string-variable comma
string-variable /
MAX primitive-1 STYLE
numeric-variable /

205

AMERICAN NATIONAL STANDARD X3.113-1987

8. mix-list

9. text-facet

13.2.3 Examples

3. LINE STYLE 2
TEXT COLOR 5
AREA COLOR RED
TEXT HEIGHT (N+3)/42
Text justify "Center", "Half"
color mix (4) .5, R*.5, .3

7. Point style P_style
Max color color_max
Max point style PtStyles

13.2.4 Semantics

Execution of a clear-statement shall clear the graphic
display if not already clear. For soft-copy devices, it shall
erase the screen. For hard-copy devices, it shall advance the
medium or allow the device operator to change it.

Execution of a set-statement with the keywords LINE STYLE or
POINT STYLE shall cause the index to be evaluated by rounding to
obtain an integer N and shall establish the style for subsequent
lines or points to be the Nth one of the set of available line or
point styles. The number of line styles available is implemen¬
tation-defined, but shall be at least four. A line style of one
shall correspond to a drawing of solid lines, a line style of two
to dashed lines, a line style of three to dotted lines, and a
line style of four to dashed-dotted lines. All other values for
line style are implementation-defined. At the initiation of
program execution, the line style shall be one.

Point styles produce centered symbols. The number of point
styles is implementation-defined, but shall be at least five. A
point style of one shall correspond to a dot (.), a point style
of two to a plus sign (+), a point style of three to an asterisk
(*), a point style of four to a circle (o), and a point style of
five to an x (x). All other values for point-style are
implementation-defined. At the start of program execution, the
point style shall be three.

MAX COLOR numeric-variable /
COLOR MIX left-parenthesis index
right-parenthesis mix-list

= numeric-variable comma
numeric-variable comma
numeric-variable

= HEIGHT / ANGLE

206

AMERICAN NATIONAL STANDARD X3.113-1987

Execution of an ask-statement with the keywords LINE STYLE
or POINT STYLE shall assign the number of the actual current line
style or point style to the numeric-variable.

Execution of an ask-statement with the keywords MAX LINE
STYLE or MAX POINT STYLE shall assign to the numeric-variable the
largest value of LINE STYLE or POINT STYLE, respectively,
available.

All values for style shall be valid from one to the number
returned by ASK MAX POINT STYLE or ASK MAX LINE STYLE.

Execution of a set-statement with one of the keyword pairs
POINT COLOR, LINE COLOR, TEXT COLOR, or AREA COLOR shall cause
the index to be evaluated by rounding to obtain an integer N and
shall establish the color index of subsequent points, lines,
text, or filled areas to be the Nth one of the set of colors, if
possible with the current graphics device. This color is called
a foreground color. At the initiation of execution, the color
associated with each index is implementation-defined, and the
foreground color indices shall all have the value one.

Execution of an ask-statement with one of the keyword pairs
POINT COLOR, LINE COLOR, TEXT COLOR, or AREA COLOR shall assign
to the numeric-variable the current value of the color index for
points, lines, text or filled areas, as appropriate.

Execution of a set-statement with the keywords COLOR MIX
shall cause the index to be rounded to obtain an integer and
shall establish the color associated with the index. The three
following numeric-expressions shall establish the intensities of
the colors red, green, and blue, respectively, associated with
the specified color index. The values for red, green, and blue
shall be greater than or equal to zero and less than or equal to
one.

The color index zero shall represent the background color on
devices for which that is meaningful. It is implementation-
defined whether the effect of SET COLOR MIX changes already-
displayed colors or only subsequently-displayed colors.

Execution of an ask-statement with the keywords COLOR MIX
shall cause the index to be rounded to obtain an integer. The
numeric-variables shall be assigned the intensities of red,
green, and blue, in that order, associated with the specified
color index. The values returned shall be those set by the last
set-statement executed with the keywords COLOR MIX and the same
index. If it was not possible to precisely set the color mix.

207

AMERICAN NATIONAL STANDARD X3.113-1987

the values returned shall be those actually in force. The values
of the color mix at the start of program execution shall be
implementation-defined. When an ask-statement with the keywords
COLOR MIX and a status-clause is executed, the value returned in
the status-clause shall be 11086 if the color index is less than
zero or greater than the maximum available color index, or shall
be 11087 if no color mix has been established for the index. In
these cases, values of zero shall be returned for red, green, and
blue.

Execution of an ask-statement with the keywords MAX COLOR
shall assign to the numeric-variable the largest distinct value
available as an index for SET COLOR MIX, SET POINT COLOR, SET
LINE COLOR, SET TEXT COLOR, or SET AREA COLOR. All values for
color index from zero to this value should be valid.

13.2.4.1 Text Attributes. Execution of a set-statement
with the keywords TEXT HEIGHT sets the approximate height, in
problem coordinates, of characters printed by subsequent
graphic-text-statements. After current viewing transformations
map the desired size of a character to device coordinates, the
largest hardware character size that does not exceed the desired
height is selected. If all available sizes exceed the desired
height, the smallest hardware character set, if any, shall be
used. If no hardware character set exists, software-generated
characters that obey the above rules shall be used. The default
value of text height is 0.01. Text height is the height of
upper-case-letters.

Execution of an ask-statement with the keywords TEXT HEIGHT
shall assign to the numeric-variable the current value of text
height. If the actual text height is different from that set in
the most recent set-statement with the keywords TEXT HEIGHT, the
actual text height shall be returned.

A set-statement with the keywords TEXT ANGLE shall establish
the angle in problem coordinates at which subsequent text shall
be displayed. For a TEXT ANGLE of zero, the label is drawn on
the screen with the normal horizontal orientation, the first
character being the leftmost. For a nonzero TEXT ANGLE, the
label is rotated from this orientation by the amount designated
(degrees or radians, according to the prevailing ANGLE option) in
a counterclockwise direction, using the JUSTIFY point as the
pivot. Implementations shall display strings of characters
horizontally for angles that are integer multiples of 180
degrees, and vertically for angles that are odd multiples of 90
degrees. Text for angles that are odd multiples of 45 degrees
shall be neither horizontal nor vertical, but some intermediate

208

AMERICAN NATIONAL STANDARD X3.113-1987

diagonal direction. The availability of additional orientations
shall be implementation-defined. The orientation of individual
characters in a label shall be implementation-defined. At the
start of execution, the text angle shall be 0.

Execution of an ask-statement with the keywords TEXT ANGLE
shall assign to the numeric-variable the current value of text
angle. If the actual text angle is different from that set in
the most recent set statement with the keywords TEXT ANGLE, the
actual text angle shall be returned.

Execution of a set-statement with the keywords TEXT JUSTIFY
shall evaluate the string-expressions to establish the position
of a rectangle surrounding subsequent text output, relative to
the text position, which is specified by initial-point. The
valid values of the first string are "LEFT," "CENTER," or "RIGHT"
and specify the horizontal component of text justification. The
valid values of the second string are "TOP," "CAP," "HALF,"
"BASE," or "BOTTOM" and establish the vertical component of text
justification. The above values may be any mixture of
upper-case- and lower-case-letters. A horizontal component of
"LEFT" shall correspond to the left side of the text rectangle
passing through the text position. A value of "CENTER" shall
correspond to the text position lying midway between the left and
right sides of the text extent rectangle. A value of "RIGHT"
shall correspond to the right side of the text rectangle passing
through the text position. The vertical component corresponds to
one of the font specific lines in the definition of a character
in the accompanying figure. A value of "TOP" causes the top of
the text extent rectangle to pass through the text position. A
value of "CAP" causes the text position to lie on the capline of
the whole string. A value of "HALF" causes the text position to
lie on the halfline of the the whole string. A value of "BASE"
causes the text position to lie on the baseline of the whole
string. A value of "BOTTOM" causes the bottom of the text extent
rectangle to pass through the text position. At the start of
program execution, the values for text justification shall be
"LEFT" and "BASE."

Figure 2 illustrates the text attributes associated with
"JUSTIFY."

209

AMERICAN NATIONAL STANDARD X3.113-1987

Figure 2. Text Attributes Associated with JUSTIFY

tv

Execution of an ask-statement with the keywords TEXT JUSTIFY
shall assign the current values of the horizontal and vertical
components of text justification to the first and second string-
variables, respectively. The values returned shall be all upper-
case-letters .

13.2.5 Exceptions

A color index in a set-statement with the keywords COLOR
MIX, POINT COLOR, LINE COLOR, TEXT COLOR, or AREA COLOR is less
than zero or greater than the maximum color index for the
implementation (11085, nonfatal: use the implementation default).

The value of the numeric-expression in a set-statement with
the keywords LINE STYLE is less than or equal to zero or greater
than the maximum style available (11062, nonfatal: use the value
one) .

The value of the numeric-expression in a set-statement with
the keywords POINT STYLE is less than or equal to zero or greater
than the maximum style available (11056, nonfatal: use the value
three).

210

AMERICAN NATIONAL STANDARD X3.113-1987

The value of the numeric-expression in a set-statement with

the keywords TEXT HEIGHT is less than or equal to zero (11073,

nonfatal: use the current value).

The value of one of the string-expressions in a set-

statement with the keywords TEXT JUSTIFY is not one of those

listed in the semantics above (4102, nonfatal: use the current

values).

The value of a numeric-expression used to set a color

proportion in a set-statement with the keywords COLOR MIX is less

than zero or greater than one (11088, nonfatal: use the current

values).

13.2.6 Remarks

It is recommended that implementations make the value

returned by ASK MAX COLOR the same as the number of colors (not

counting background color) available for simultaneous display,

not the total number of different colors available on the device.

An implementation may predefine the color mix associated

with any or all color index values.

If possible, the width of characters, in problem coordi¬

nates, should be kept in constant proportion to their height, as

determined by TEXT HEIGHT.

On a monochrome device, it is recommended that the intensity

be set to .30*RED + .59*GREEN + .11*BLUE.

The CLEAR statement corresponds to the GKS function CLEAR

WORKSTATION (#0,CONDITIONALLY). SET LINE STYLE and SET POINT

STYLE corresponds to the GKS functions SET LINETYPE and SET

MARKER TYPE, respectively. SET LINE COLOR, SET POINT COLOR, SET

TEXT COLOR, and SET AREA COLOR correspond to the GKS functions

SET POLYLINE COLOUR INDEX, SET POLYMARKER COLOUR INDEX, SET TEXT

COLOUR INDEX, and SET FILL AREA COLOUR INDEX, respectively. SET

TEXT HEIGHT corresponds to the GKS function SET CHARACTER HEIGHT.

SET TEXT ANGLE X may be translated to the GKS function SET

CHARACTER UP VECTOR (Cos(X+Pl/2),Sin(X+Pl/2)). SET JUSTIFY

corresponds to the GKS function SET TEXT ALIGNMENT. SET COLOR

MIX corresponds to the GKS function SET COLOR REPRESENTATION.

The following ask-objects correspond to various parameters

of the GKS function INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES:

LINE STYLE is linetype, POINT STYLE is marker type, LINE COLOR is

polyline colour index, POINT COLOR is polymarker colour index.

211

AMERICAN NATIONAL STANDARD X3.113-1987

TEXT COLOR is text colour index, and AREA COLOR is fill area

colour index.

The following ask-objects may be derived from various

parameters of the GKS function INQUIRE CURRENT PRIMITIVE

ATTRIBUTE VALUE: TEXT HEIGHT is character height, TEXT ANGLE is

computed as ANGLE(DX,DY)-PI/2 where DX and DY are from character

up value. TEXT JUSTIFY is text alignment.

ASK COLOR MIX corresponds to the index and color parameters

of the GKS function INQUIRE COLOUR REPRESENTATION with

workstation zero and REALIZED returned values. ASK MAX LINE

STYLE corresponds to the number of available line types parameter

of the GKS function INQUIRE POLYLINE FACILITIES. ASK MAX POINT

STYLE corresponds to the number of available marker types

parameter of the GKS function INQUIRE POLYMARKER FACILITIES. ASK

MAX COLOR returns a value that is one less than the value from

the "number of color table entries" parameter of the GKS function

INQUIRE LIST OF COLOR INDICES for GKS implementations in which

the parameter indicates the total number of colors available for

simultaneous display.

212

AMERICAN NATIONAL STANDARD X3.113-1987

13.3 Graphic Output

13.3.1 General Description

The statements described in this section are used to

generate various kinds of graphic output. The user may cause

points, line segments, or filled-in areas to be drawn on the

screen. There is a facility for including text within the

drawing. Finally, there is a facility for generating an array of

colored cells. The effect of the graphic output statements

depends on the current values of the various set-objects

described in 13.1 and 13.2. Additional graphic output capability

is provided in 13.5.

13.3.2 Syntax

1. imperative-statement

2. graphic-output-statement

3. geometric-statement

4. graphic-verb

5. geometric-object

6. point-list

7. coordinate-pair

8. array-geometric-statement

9. size-select

10. array-point-list

11. graphic-text-statement

12. initial-point

13. array-cells-statement

14. point-pair

graphic-output-statement

geometric-statement /

array-geometric-statement /

graphic-text-statement /

array-cells-statement

graphic-verb geometric-object

colon point-list

GRAPH

POINTS / LINES / AREA

coordinate-pair (semicolon

coordinat e-pair)*

numeric-expression comma

numeric-expression

MAT graphic-verb

geometric-object (comma

size-select)? colon

array-point-list

LIMIT index

numeric-array (comma

numeric-array)?

graphic-verb TEXT initial-point

(comma USING image colon

expression-list /

colon string-expression)

comma AT coordinate-pair

MAT graphic-verb CELLS comma IN

point-pair colon numeric-array

coordinate-pair semicolon

coordinate-pair

213

AMERICAN NATIONAL STANDARD X3.113-1987

When an array-point-list has two numeric-arrays, they both

shall be one-dimensional; when it has only one, the array shall

be two-dimensional.

A geometric-statement with LINES as the geometric-object

shall contain at least two coordinate-pairs in its point-list; a

geometric-statement with AREA as the geometric-object shall

contain at least three coordinate-pairs in its point-list.

The numeric-array in the array-cells-statement shall be two

dimensional.

13.3.3 Examples

3. GRAPH LINES: 3,4; 5,6; 66.66,77.77

8. MAT GRAPH POINTS: XY_PTS

MAT GRAPH AREA, LIMIT 7: X,Y

11. GRAPH TEXT, AT XP,YP: "here is the label: " & TEXT$

GRAPH TEXT, AT 0,Y_VALUE, USING "##.## " : Y_VALUE

13. MAT GRAPH CELLS, IN p_l_x, P_l_y; p_2_x, p_2_y: color_array

13.3.4 Semantics

13.3.4.1 The Graphic-Output-Statement. Graphic-output-

statements are the means by which the user generates all graphic

output. The geometric-statement and array-geometric-statement

are used to draw a series of marked points, a contiguous set of

line segments, or a filled polygon area. The graphic-text-

statement produces alphanumeric labels. The array-cells-

statement generates a set of colored rectangular cells within an

encompassing boundary rectangle.

The output generated by print-statements, input-statements,

and trace-statements shall not affect the output generated by

graphic-output-statements.

13.3.4.2 The Geometric-Statement and Array-Geometric-

Statement . The geometric-statement and array-geometric-statement

both make use of a sequence of points specified in problem

coordinates. For the geometric-statement, that sequence is

determined by the coordinate-pairs in the point-list, the first

coordinate-pair designating the first point and so on through the

end of the point-list. For the array-geometric-statement, the

sequence is determined by the size-select and array-point-list,

as follows. If a size-select is present, the index shall be

evaluated by rounding to an integer to obtain the number of

points. If no size-select is present, then the number of points

is the length of the vectors, or the number of elements in the

214

AMERICAN NATIONAL STANDARD X3.113-1987

first dimension of the array, depending on which is used in the

array-point-list. If the array-point-list consists of two

vectors, then the x-coordinates of the points shall be taken from

the first vector end the y-coordinates from the second vector.

If the array-point-list consists of an matrix of size two in the

second dimension, then the x-coordinates shall be taken from the

array column with the lower subscript, and the y-coordinates from

the column with the higher subscript. The sequence of points

shall always be taken in order beginning with the first row of

the array, or first elements of the vectors. The sequence shall

be terminated by the end of the matrix or vectors if no

size-select is specified, or when the number of points specified

in the size-select has been reached.

If the geometric-object is POINTS, then a point marker of

the style and color indicated by the current value of POINT STYLE

and POINT COLOR shall be drawn at each point in the sequence. If

the geometric-object is LINES, then a line segment shall be drawn

connecting each successive pair of points in the sequence, the

first to the second, the second to the third, and so on. Thus,

the number of line segments shall be one fewer than the number of

points in the sequence. The style and color of the segments are

determined by the current value of LINE STYLE and LINE COLOR. If

the geometric-object is AREA, then a filled polygon is drawn

whose edges consist of the sequence of line segments as described

above for LINES. If the first and last points in the sequence

are not coincident, then the line segment joining them completes

the outline. The color of the interior and edge is determined by

the current value of AREA COLOR. The interior of the polygon is

defined as the set of all points (pixels) such that any line

segment beginning at that point and extended indefinitely in any

direction will cross the polygon boundary an odd number of times.

The fill pattern shall be solid on devices where this is

possible.

The effect of an array-point-list containing an numeric-

array whose size in the second dimension is greater than two is

implementation-defined.

13.3.4.3 The Graphic-Text-Statement. The graphic-text-

statement draws a label consisting of the string of characters

generated by its string-expression, or by its image and

expression-list. The characters generated in the latter case

shall be as described in 10.4. The characters used for labels

shall have an implementation-defined size, style, and orien¬

tation. The effect of clipping on characters that lie partly in

and partly out of the viewport on the screen is implementation-

defined .

215

AMERICAN NATIONAL STANDARD X3.113-1987

The manner in which a label is displayed shall by governed

by the current value of TEXT HEIGHT, TEXT JUSTIFY, and TEXT

ANGLE.

13.3.4.4 The Array-Cells-Statement. The array-cells-

statement is used to fill a rectangular area. The diagonally

opposite corners of this rectangle are given in problem

coordinates by the two points in the point-pair. The numeric-

array's current size determines the number of cells in each

direction, the first dimension corresponding to the horizontal,

the second dimension to the vertical. Each cell shall be of

equal size, with a width of ABS(first x-coordinate - second

x-coordinate) / size of first dimension, and a height of

ABS(first y-coordinate - second y-coordinate) / size of second

dimension. Each cell shall be filled with the color whose index

is the rounded value of the corresponding element of the numeric-

array. The cell located at the first point specified corresponds

to the array element with the lowest subscripts in both

dimensions. The cell located at the second point corresponds to

the array element with the highest subscript in both dimensions.

Thus, for example, if the numeric-array A has values:

A (1,1) = 5, A (2,1) = 6, A(3,1) = 7,

A (1,2) = 7, A(2,2) = 8, A(3,2) = 9,

and the points are (1,1) and (6,2), then the resulting rectangle

will be:

x (6,2)

! 7 |

5 I 6 | 7 |

(1,1) x

where the index designates the color of the cell.

If the output device is not capable of producing pixel-

oriented output, it shall simulate cell output. The minimal

simulation required is to draw the transformed boundaries of the

cell rectangle.

13.3.5 Exceptions

The number of items in two vectors in an array-point-list

are not the same and no size-select has been specified (6401,

fatal).

216

AMERICAN NATIONAL STANDARD X3.113-1987

Only one numeric-array has been specified in an array-point-

list and the size of its second dimension is less than 2 (6401,

fatal).

The value of the index of a size-select is less than 1 or

greater than the number of points available in the array-point-

list (6402, fatal).

A graphic-output-statement with LINES as the geometric-

object specifies fewer than two points (11100, fatal).

A graphic-output-statement with AREA as the geometric-object

specifies fewer than three points (11100, fatal).

A color index specified by the numeric-array in an array-

cells-statement is not available (11085, nonfatal: use the

implementation-defined default).

13.3.6 Remarks

The graphic-text-statement is designed to give easy access

to a device's hardware-generated character set. For example, the

character orientation and direction of rotated text is not

defined.

Text is described with respect to problem coordinates and

may become distorted when the aspect ratio of the window and

viewport differ.

If a device is unable to fill a polygon, it is recommended

that the outline of the polygon be drawn and the interior be

hashed or shaded in a manner corresponding to the current color

number.

It is recommended that the result of filling an area

consisting solely of colinear points be a line segment through

those points, that filling or drawing a line through a set of

coincident points result in a dot being drawn, and that a zero

width or zero height rectangular area for cell array output

result in a line of cells affected.

GRAPH POINTS and MAT GRAPH POINTS correspond to the GKS

function POLYMARKER. GRAPH LINES and MAT GRAPH LINES correspond

to the GKS function POLYLINE. GRAPH AREA and MAT GRAPH AREA

correspond to the GKS function FILL AREA. GRAPH TEXT is an

extension of the GKS function TEXT in that it allows formatting

of text with USING. MAT GRAPH CELLS corresponds to the GKS

function CELL ARRAY.

217

AMERICAN NATIONAL STANDARD X3.113-1987

No exception is mandated for a two-dimensional numeric-array

in an array-point-list when the size of its second dimension is

greater than 2. This is to allow future extensions of this

standard to specify three-dimensional graphical output.

Implementations may choose to give exception 6401 in this case if

they support only those graphics capabilities defined in this

standard.

The GKS function UPDATE WORKSTATION #0: "SUPPRESS" is

implicitly called whenever output is directed to the non-graphics

device associated with channel zero by print-statements, input-

statements, nonfatal exceptions, or trace-statements.

218

AMERICAN NATIONAL STANDARD X3.113-1987

13.4 Graphic Input

13.4.1 General Description

Input may be supplied to a program from one or more devices

associated with a graphics work station. A point or an array of

points may be obtained from such devices as cross-hairs on a

display or a mouse. An integer value may be entered through a

choice of buttons or menu items. A continuous value may be

entered from a dial or similar device. Several of each type of

input device may be attached to the workstation.

It is also possible to determine the number of picture

elements (pixels) in a given rectangle of a raster display. The

color of these pixels may be determined.

1.
2.
3.

4.

5.

6 .
7 .

8.

9.

10.
11.

12.

13.4.2 Syntax

imperative-statement >

graphic-input-statement >

locate-statement =

array-locate-statement =

point-select =

coordinate-variables =

value-select =

array-locate-object

redim-numeric-array =

numeric-variable-vector =

numeric-variable-matrix =

range-select

graphic-input-statement

locate-statement /

array-locate-statement

LOCATE (point-select colon

coordinate-variables /

value-select colon

numeric-variable)

MAT LOCATE point-select colon

array-locate-object

POINT device-select? initial-point?

numeric-variable comma

numeric-variable

CHOICE device-select?

start-value? /

VALUE device-select? range-select?

start-value?

redim-numeric-array (comma

redim-numeric-array)? /

numeric-variable-vector comma

numeric-variable-vector /

numeric-variable-matrix

numeric-array redim?

: numeric-array left-parenthesis

question-mark right-parenthesis

: numeric-array left-parenthesis

question-mark comma

right-parenthesis

comma RANGE numeric-expression TO

numeric-expression

219

AMERICAN NATIONAL STANDARD X3.113-1987

13. device-select

14. start-value

15. ask-object

16. point-location

17. device-type

= left-parenthesis index

right-parenthesis

= comma AT numeric-expression

> MAX device-type DEVICE

numeric-variable /

PIXEL SIZE left-parenthesis

point-pair right-parenthesis

numeric-variable comma

numeric-variable /

PIXEL ARRAY point-location

numeric-array (comma

string-variable)? /

PIXEL VALUE point-location

numeric-variable

= left-parenthesis coordinate-pair

right-parenthesis

= POINT / MULTIPOINT / CHOICE /

VALUE

When a single redim-numeric-array is used as an array-

locate-object it shall be two-dimensional. When a pair of redim-

numer ic-arrays is used, as an array-locate-object they shall both

be one-dimensional.

The numeric-array in an ask-object with the keywords PIXEL

ARRAY shall be two-dimensional.

A numeric-array used in a numeric-variable-vector shall be

one-dimensional. A numeric-array used in a numeric-variable-

matrix shall be two-dimensional.

13.4.3 Examples

3. LOCATE POINT : X_IN, Y_IN

LOCATE POINT, AT 4.7,5.2: wide, long

LOCATE VALUE(3), range -7 TO 7: Amps

Locate choice: button

4. MAT LOCATE POINT: XVALS(?), YVALS(?)

Mat locate point(indev), at 0,0: Points(2,10)

MAT LOCATE POINT: SKETCH(?,)

mat locate point: times, temps

15. MAX CHOICE DEVICE Last_button_set

MAX MULTIPOINT DEVICE NSTROKES

PIXEL SIZE(.5,2.5;0,0) xvals, yvals

Pixel array (.5,2.5) Pix_vals

pixel value(timel,weight) curpoint

220

AMERICAN NATIONAL STANDARD X3.113-1987

i Find the colors of pixels in unit square at (0,0)

Option Base 1

Dim Pix(30,30) 1 expected maximum of 30x30 pixels

Ask pixel size(0,0; 1,1) one, two

If one*two <= 900 AND one > 0 and two > 0 then

Mat pix = zer(one,two) 1 redim to right size

Ask pixel array(0,l) pix

End if

13.4.4 Semantics

Locate-statements and array-locate-statements are similar to

input-statements and array-input-statements. Instead of

supplying values in terms of characters, the operator supplies

input by positioning a cursor to a point or points, pressing a

button, rotating a dial, or similar operation. Users are

notified of a need for graphic input by an implementation-defined

means. If a workstation does not have at least one device for

any device-type then device number one of that type shall be

simulated through a keyboard or other appropriate means.

If an initial-point is specified in a graphic-input-

statement, an indicator (e.g., cursor or tracking cross) shall be

positioned at that point in problem coordinates, before the user

supplies input to a graphic-input-statement. If no initial-point

is specified, the position of any indicators is implementation-

defined .

Execution of a locate-statement with the keyword POINT shall

assign the problem coordinates of a single point to the

coordinate-variables with the x-coordinate going to the first

variable and the y-coordinate going to the second-variable. The

position returned is always within the current window (i.e., the

problem coordinates established by the most recently executed SET

WINDOW or the default coordinates, if no SET WINDOW has been

executed). If an attempt is made to supply values for a point

outside the current window, device window, or device viewport,

the effect is implementation-defined (see 13.4.6).

Execution of an array-locate-statement shall assign the

problem coordinates of one or more points to the array-locate-

object. Whenever the array-locate-object consists of two one¬

dimensional arrays, the value of the the horizontal coordinate is

always assigned to elements of the first array, and the value of

the vertical coordinate to the second. When the array-locate-

object is a two-dimensional array, the horizontal coordinate is

assigned to the lower numbered column and the vertical coordinate

to the higher numbered column. Dynamic redimensioning of redim-

221

AMERICAN NATIONAL STANDARD X3.113-1987

numeric-arrays shall be done prior to input in accordance with

the rules for dynamic redimensioning during array input in

10.5.4. If the locate-object is a pair of one-dimensional

arrays, they shall both be of the same length after any

redimensioning. The number of points input is exactly the size

of the vectors. If the locate-object is a single redim-numeric-

array, its second dimension shall be of size 2 after any

redimensioning. The number of points input is the size of the

first dimension. If the array-locate-object is a numeric-

variable-matrix or a pair of numeric-variable-vectors, a variable

number of points are input. Points are input until the operator

signals by a device-dependent means that all have been sent.

Assignment to a pair of vectors begins at the current lower bound

for each vector. When all points have been assigned, the

numeric-variable-vectors shall be redimensioned dynamically by

setting each upper bound to the subscript of the element

receiving the last point. Assignment to a numeric-variable-

matrix proceeds in a similar manner, begining with the current

lower bound of the second subscript and assigning the x-coor-

dinates to the first column and the y-coordinates to the second.

When all points have been assigned, the first dimension is

redimensioned by setting the upper bound of the first subscript

to the subscript of the element receiving the last point and the

upper bound of the second subscript to one more than the current

lower bound of the second subscript. If an attempt is made to

supply values for a point outside the current window, device

window, or device viewport, the effect is implementation-defined

(see 13.4.6).

Execution of a locate-statement with the keyword CHOICE

shall assign a positive integer value to the numeric-variable.

The value assigned shall correspond to the response from a choice

device. The maximum value shall correspond to the number of

operator's choices available. If the device allows the operator

to signify that no choice was made and the operator does so, a

value of zero shall be returned. The meaning of a start-value is

device-dependent and may not be possible for all devices. When

possible, the input device shall position an indicator at the

value designated in the start-value.

Execution of a locate-statement with the keyword VALUE shall

assign a real value to the numeric-variable. The value assigned

shall be the scaled measure of a valuator device when the

operator indicates it is set. Scaling is done such that the

lowest physical value from the device maps to the value of the

first numeric-expression in the range-select and the highest

physical value from the device maps to the value of the second

numeric-expression in the range-select. Intermediate values are

222

AMERICAN NATIONAL STANDARD X3.113-1987

scaled proportionately. If no range-select is present, the range

from the most recently executed locate-statement with the keyword

VALUE and the same device shall be used. If no such values have

been set, the default range shall be [0,1]. The meaning of a

start-value is device-dependent and may not be possible on some

devices. Where possible, the input device shall position an

indicator at the value designated in the start-value.

If a device-select is specified in a locate-statement or

array-locate-statement, the index shall be rounded to an integer

N and shall be used to select the Nth device of the appropriate

class attached to the workstation. If no device-select is

present, a value of one shall be used. Each class of graphic

input device (POINT, MULTIPOINT, VALUE, CHOICE) has its own set

of device-select values, starting with one for the first device

of that class. An exception shall occur if a selected device

does not exist.

Execution of an ask-statement with the keywords MAX POINT

DEVICE shall return the number of devices available for use in a

locate-statement with the keyword POINT.

Execution of an ask-statement with the keywords MAX

MULTIPOINT DEVICE shall return the number of devices available

for use in an array-locate-statement.

Execution of an ask-statement with the keywords MAX CHOICE

DEVICE shall return the number of devices available for use in a

locate-statement with the keyword CHOICE.

Execution of an ask-statement with the keywords MAX VALUE

DEVICE shall return the number of devices available for use in a

locate-statement with the keyword VALUE.

A point-pair specifies, in problem coordinates, diagonally

opposite corners of a rectangle, in any order. Execution of an

ask-statement with the keywords PIXEL SIZE shall assign to the

numeric-variables the number of pixels in the horizontal and

vertical directions, in that order, of pixels whose positions lie

within the rectangle. If the number of pixels cannot be

determined (e.g., a non-raster device), zeroes shall be assigned

to the numeric-variables. A value of zero shall always be

returned for a status-clause associated with PIXEL SIZE.

Execution of an ask-statement with the keywords PIXEL ARRAY

shall assign to the numeric-array the color indices of the

rectangle of pixels whose upper-left corner is given in problem

coordinates by the point-location. The number of of pixels in

223

AMERICAN NATIONAL STANDARD X3.113-1987

the horizontal direction in the rectangle is the number of
elements in the first dimension of the numeric-array. The number
of pixels in the vertical direction in the rectangle is the
number of elements in the second dimension of the numeric-array.
If the color index of a pixel cannot be determined, a value of -1
is returned for that cell. A value of -1 is appropriate for
points outside the display surface or for all points of a non¬
raster device. If a string-variable is present, a value of
"PRESENT" in upper-case-letters shall be assigned if any
undeterminable points are present, otherwise a value of "ABSENT"
shall be returned.

Execution of an ask-statement with the keywords PIXEL VALUE
shall assign to the numeric-variable the color index of the pixel
located at the problem coordinates specified in point-location.
If the index cannot be determined, a value of -1 shall be
assigned.

When an ask-statement with the keywords PIXEL ARRAY or PIXEL
VALUE contains a status-clause, a value of 11040 shall be
returned in the numeric-variable of the status-clause if no pixel
readback capability is present.

13.4.5 Exceptions

The number of elements required for a redimensioned array
exceeds the number of elements reserved by the array's original
dimensions (5001, fatal).

The length of two vectors in an array-locate-object are not
equal and they are not numeric-variable-vectors (6401, fatal)

The graphic input device specified through a device-select
is not present on the workstation (11140, fatal).

Only one numeric-array has been specified in an array-
locate-ob ject and the size of its second dimension is less than 2
(6401, fatal).

A start-value in a locate-statement with the keyword CHOICE
is less than zero or greater than the maximum choice number for
the device (11152, fatal).

A start-value in a locate-statement with the keyword VALUE
is outside the range currently defined for the device (11152,
fatal) .

224

AMERICAN NATIONAL STANDARD X3.113-1987

An initial-point is outside the device viewport after the

normalization and device transformations are applied (11152,

fatal) .

13.4.6 Remarks

The meaning of an numeric-array used as an array-locate-

object whose second dimension is of size greater than two is

implementation-defined.

It is recommended that implementations report an attempt to

perform graphic input with POINT outside the current window,

device window, or device viewport as an exception (8106,

nonfatal: request that graphic input be re-supplied) to permit

interception by exception-handlers.

LOCATE POINT corresponds to a subset of the GKS function

REQUEST LOCATOR. An initial-point specified with LOCATE POINT

corresponds to a subset of the GKS function INITIALISE LOCATOR.

MAT LOCATE POINT corresponds to a subset of the GKS function

REQUEST STROKE. An initial-point specified with MAT LOCATE POINT

corresponds to a subset of the GKS function INITIALISE STROKE.

When transforming a point from DC-space to problem coordinates,

GKS transform number 1 is the default.

LOCATE VALUE corresponds to a subset of the GKS function

REQUEST VALUATOR. The start-value and range-select specified

with LOCATE VALUE corresponds to a subset of the GKS function

INITIALISE VALUATOR.

LOCATE CHOICE corresponds to a subset of the GKS function

REQUEST CHOICE. A statt-value specified with LOCATE CHOICE

corresponds to the GKS function INITIALISE CHOICE.

The GKS functions SET LOCATOR MODE, SET STROKE MODE, SET

VALUATOR MODE, and SET CHOICE MODE are implicitly set to

"REQUEST."

ASK MAX POINT DEVICE, ASK MAX MULTIPOINT DEVICE, ASK MAX

CHOICE DEVICE, and ASK MAX VALUE DEVICE correspond to the

locator, stroke, choice, and valuator parameters of the GKS

function INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES.

ASK PIXEL SIZE, ASK PIXEL ARRAY, and ASK PIXEL VALUE

correspond to the GKS functions INQUIRE PIXEL ARRAY DIMENSIONS,

INQUIRE PIXEL ARRAY, and INQUIRE PIXEL, respectively.

225

AMERICAN NATIONAL STANDARD X3.113-1987

13.5 Graphic Pictures and Moving Point Output

13.5.1 General Description

This subsection provides graphics capabilities that are not

defined in the GKS standard.

Graphic procedures for drawing pictures can be defined in a

manner similar to that for subprograms. Such picture-defs can be

invoked and, in addition, a modeling transformation (such as

scaling, shifting, or rotating) can be applied to graphic input

and output within such procedures.

A capability for drawing lines connecting points specified

in more than one statement is also provided. It is also possible

to apply the inverse of this modeling transform upon input.

13.5.2 Syntax

1. imperative-statement > draw-statement /

exit-picture-statement /

transform-assignment

2. draw-statement = DRAW picture-invocation (WITH

transform)?

3 . picture-invocation — picture-name

procedure-argument-list?

4. picture-name - routine-identifier

5 . transform — transform-term (asterisk

transform-term)*

6. transform-term transform-function

function-arg-list /

numeric-array / current-transform

7 . transform-function — ROTATE / SHEAR / SHIFT / SCALE

8. exit-picture-statement = EXIT PICTURE

9 . transform-assignment = MAT numeric-array equals-sign

transform

10. graphic-verb > PLOT

11. geometric-statement > PLOT LINES / (PLOT LINES colon

point-list semicolon)

12 . picture-def = internal-picture-def /

external-picture-def

13 . procedure > externa1-picture-def

14. internal-proc-def > internal-picture-def

15 . interna1-picture-def = interna1-picture-line

block* end-picture-line

16. internal-picture-line = line-number picture-statement tail

17. picture-statement = PICTURE picture-name

procedure-parm-list?

226

AMERICAN NATIONAL STANDARD X3.113-1987

18.

19.

20.
21 .
22 .
23 .

24.

25.

26.

27.

28.

end-picture-line

externa1-picture-def

externa1-picture-line

type-declaration

interna1-picture-type

picture-name-list

externa1-picture-type

line

= line-number END PICTURE tail

= external-picture-line

unit-block* end-picture-line

= line-number EXTERNAL

picture-statement tail

> internal-picture-type /

externa1-picture-type

= PICTURE picture-name-list

= picture-name (comma picture-name)*

= EXTERNAL PICTURE picture-name-list

> end-picture-line /

external-picture-line /

interna1-picture-line

current-transform = TRANSFORM

graphic-input-statement > GET point-select colon

coordinate-variables /

MAT GET point-select colon

array-locate-object

numeric-array-value > TRANSFORM

No line-number in a control-transfer outside an internal-

picture-def shall refer to a line in an internal-picture-def

other than an internal-picture-line, nor shall a line-number in a

control-transfer inside an internal-picture-def refer either to a

line outside that internal-picture-def or to the associated

internal-picture-line.

A line-number in a control-transfer inside an external-

picture-def shall not refer to the associated external-picture-

line .

If a picture-name is defined by an external-picture-def, it

shall not be defined more than once in the program. If a

picture-name is defined by an internal-picture-def, it shall not

be defined more than once in the containing program-unit.

Within a program-unit, no more than one picture (internal or

external) of a given name shall be declared or defined.

If a picture-name is defined by an external-picture-def,

then a declare-statement with external-picture-type containing

that picture-name shall occur in a lower-numbered line than the

first reference to that picture-name in a draw-statement in the

same program-unit.

If a picture-name is defined by an internal-picture-def,

then either the internal-picture-def or a declare-statement with

internal-picture-type containing that picture-name shall occur in

227

AMERICAN NATIONAL STANDARD X3.113-1987

a lower-numbered line than the first reference to that
picture-name in a draw-statement in the same program-unit.

Self-recursive pictures need not declare themselves; that
is, if a picture-def contains a reference to itself in a draw-
statement, that reference does not require a type-declaration
containing that picture-name in a lower-numbered line.

An exit-picture statement shall occur only within a picture-
def.

The number and type of procedure-arguments in a draw-
statement shall agree with the number and type of procedure-
parameters in the corresponding picture-def. These rules are the
same as for subprograms (see 9.2).

An actual-array shall have the same number of dimensions as
the corresponding formal-array. The number of dimensions in a
formal-array is one more than the number of commas in the formal-
array .

Whenever a numeric argument is passed to a corresponding
numeric parameter in a different program-unit, the ARITHMETIC
options in effect for the two program-units shall agree.

A given procedure-parameter shall occur only once in a
procedure-parm-list. Procedure-parameters shall not be
explicitly declared or dimensioned within the internal- or
external-picture-def.

The channel-number #0 shall not be used as a procedure-
parameter .

A picture-name appearing in an internal-picture-type shall
be defined elsewhere in the same program-unit by an internal-
picture-def.

A picture-name appearing in an external-picture-type shall
be defined elsewhere in the program by an external-picture-def.

All numeric-arrays in a transform or transform-assignment
shall be two-dimensional.

The number and type of the arguments
shall agree with the specifications given

for transform-functions
below in the semantics.

228

AMERICAN NATIONAL STANDARD X3.113-1987

13.5.3 Examples

2. DRAW CIRCLE
DRAW CIRCLE WITH SHIFT(2,0) * SCALE(.4)
DRAW HOUSE ("SPLIT-LEVEL", 80000) WITH SHEAR(.1)

8. EXIT PICTURE

9. MAT SPIN_SHRINK = ROTATE(180)*SCALE(.1)
MAT Where_am_I = Transform

11. Plot lines: x,sin(x);

19. 100 EXTERNAL PICTURE CIRCLE
150 LET P = 2*3.14159265 / 50
200 FOR I = 0 TO 50
250 LET IP = I*P
300 PLOT LINES: COS(IP),SIN(IP);
400 NEXT I
500 END PICTURE

13.5.4 Semantics

Execution of a draw-statement shall cause the picture-def
with the same picture-name to be executed. Pictures are invoked
in a manner analogous to that for subprograms. The actual
parameters are passed according to the same rules and both may be
invoked recursively. Scope rules for the routine-identifier and
variables within picture-defs are also the same as for sub¬
programs and depend on whether the picture-def is internal or
external. The rules for channel numbers in subprograms apply to
picture-defs as well. There are two important differences,
however. First, set-statements that redefine coordinate systems
(i.e., those with the keywords WINDOW, VIEWPORT, DEVICE WINDOW,
or DEVICE VIEWPORT) or that affect clipping (i.e., those with the
keyword CLIP) shall not be executed during the execution of a
picture-def. And second, all graphic output generated in a
graphic-output-statement whose graphic-verb is PLOT shall be the
same as that generated when the graphic-verb is GRAPH with points
transformed as follows by the transformations specified in the
picture-invocation for the picture-def. When such a statement is
executed and no picture-def is in effect, then the graphic output
is the same as described in 13.3. Graphic output generated by
graphic-output-statements with the graphic-verb GRAPH is
unaffected by the transformations that may be in effect for a
picture.

229

AMERICAN NATIONAL STANDARD X3.113-1987

For the purpose of effecting transformations, the problem
coordinates (x,y) of a point in two dimensions shall be
represented by the "homogeneous" coordinates (cx,cy,0,c), where c
is any nonzero number. Coordinates shall be transformed by post-
multiplying this row vector by a 4x4 matrix, which is the value
of the transform in the draw-statement, to obtain a new vector of
homogeneous coordinates. Particular transformations may be
effected through the use of transform-functions, which have one
or two numeric-expressions as arguments and which produce 4x4
matrices as their values. The effects and values of these
transform-functions, as well as the number of arguments required
by each, shall be as follows.

Function Transformations

SHIFT(A,B)

SCALE(A,B)

SCALE(A)

Translates (x,y) to (x+A,y+B).
Returns: 1 0 0 0

0 1 0 0
0 0 1 0
A B 0 1

Scales (x,y) to (Ax,By)
Returns: A 0 0 0

0 B 0 0
0 0 1 0
0 0 0 1

Scales (x,y) to (Ax,Ay)
Returns: A 0 0 0

0 A 0 0
0 0 A 0
0 0 0 1

ROTATE(A)

SHEAR(A)

Rotates (x,y) A degrees or
counterclockwise about the
problem
Returns: cos(A) sin(A) 0

-sin(A) cos(A) 0
0 0 1
0 0 0

radians
origin of

0
0
0

the

Shears vertical lines in the
lean by A degrees or radians
(x,y) to (x+y*tan(A),y).
Returns: 1 00

tan(A) 1 0
0 0 1
0 0 0

(x,y)-plane
by mapping

0
0
0
1

to

230

AMERICAN NATIONAL STANDARD X3.113-1987

The ROTATE and SHEAR functions work with arguments in

degrees or radians according to the setting for OPTION ANGLE for

the program unit (cf. 5.6).

The parameterless current-transform function TRANSFORM shall

return the current accumulated transform as a 4x4 matrix. In a

program-unit that has not been called directly or indirectly

through a draw-statement, TRANSFORM shall return the identity

matrix.

Numeric-arrays used as transform-terms shall be 4x4

matrices. The transformation effected by such a transform is

thereby that obtained by performing, from left to right, the

transformations associated with each of the transform-terms.

A picture-def may invoke other procedures; it may also

invoke itself, either directly or indirectly through another

procedure.

If, in the course of executing one picture-def, a second

picture-def is invoked with a transform, then two (or possibly

more) transforms shall be applied to the points generated by that

second picture-def: first the transform specified in the draw-

statement invoking the second picture-def, and then any

transforms being applied to the first picture-def.

The end-picture-line serves both to mark the textual end of

a picture-def and, when executed, to terminate execution of the

picture-def. The exit-picture-statement, when executed, shall

terminate execution of the picture-def. When execution of the

picture-def terminates, execution shall continue at the line

following the draw-statement that initiated execution of the

picture-def.

Execution of a stop-statement in a picture-def shall

terminate execution of the entire program.

When a transform-assignment is executed, the 4x4 matrix that

is the value of the transform shall be assigned to the

numeric-array to the left of the equals-sign, dynamically

redimensioning that numeric-array if necessary in accordance with

the rules for redimensioning stated in 7.2.

13.5.4.1 Transformed Input. Execution of a graphic-input-

statement with the keywords GET POINT or MAT GET POINT differs

from that of a graphic-input-statement with the keywords LOCATE

POINT or MAT LOCATE POINT in only one respect. Points input when

GET is used are transformed through the inverse of the current-

231

AMERICAN NATIONAL STANDARD X3.113-1987

transform in addition to the normalization and device transfor¬
mations. If the current-transform cannot be inverted (i.e., if
it is a singular matrix), the effect of a GET statement is
implementation-defined.

13.5.4.2 Moving Point Output. Execution of a geometric-
statement with the keywords PLOT LINES differs from that of a
geometric-statement with the keywords GRAPH LINES in three ways.
First, points are potentially transformed through picture
invocation as described above. Second, there is no exception for
fewer than two points in a point-list. Third, the actual lines
drawn may depend on the previously executed geometric-statement
with the keywords PLOT LINES. The points in point-lists are
determined in the same manner as described in 13.3. Output may
be described in terms of movement of a beam on a screen. In
reality, the beam and screen may be a pen and a sheet of paper on
a plotter or some other combination of physical devices. The
beam is either on or off. If it is moved when it is on, it draws
a line on the screen connecting two points. If the beam is moved
when it is turned off, there is no effect on the screen.
Execution of a geometric-statement with the keywords PLOT LINES
causes the beam to move from its current position to each of the
points in the point-list (if any) and, at the end of each move,
the beam is turned on. At the end of the execution of such
statements, the beam shall remain on if and only if the list of
points ends with a semicolon. The beam shall be turned off and
its position shall be undefined in the following cases: (1)
following execution of a geometric-statement with the keywords
PLOT LINES that did not have a point-list or whose point-list did
not end with a semicolon, (2) before executing any graphic-output
statement not containing the keywords PLOT LINES, (3) at the
start of program execution, (4) before executing any graphic-
input-statement, (5) before executing any statement that affects
the NDC space transformation (i.e., set-statements with the
keywords WINDOW, VIEWPORT, DEVICE WINDOW, or DEVICE VIEWPORT),
(6) upon invocation of or exit from picture-defs.

Thus, for example, the following picture-def will cause an
approximation of a circle to be drawn, assuming reasonable
scaling.

110 External picture circle
120 Let P = 2*PI/100
130 For I = 0 to 100
140 Plot lines cos(I*P), sin(l*P);
150 Next I
160 End picture

232

AMERICAN NATIONAL STANDARD X3.113-1987

13.5.5 Exceptions

A set-statement that redefines coordinates or affects

clipping is executed during execution of a picture-def (11004,

fatal) .

A transform used in a draw-statement is not a 4x4 matrix

(6201, fatal).

The original dimensions of the numeric-array being assigned

a value in a transform-assignment do not permit that numeric-

array to be redimensioned to a 4x4 matrix (5002, fatal).

13.5.6 Remarks

Transforms are represented as 4x4 matrices to permit

extensions to three dimensions.

All exceptions defined in 13.3.5 apply to graphic-output

statements defined in this subsection, except for the exception

caused by fewer than 2 points in a plot-list with a graphic-

object LINES.

All exceptions defined in 13.4.5 apply to graphic-input-

statements defined in this subsection.

The only effect of a PLOT LINES statement with no point-list

or semicolon is to turn the beam off.

Remarks about the following topics in 9.1.6 apply

analogously to pictures:

(1) Program-units with different COLLATE options.

(2) Functions that are defined or declared, but not

referenced.

(3) Functions that are defined before they are declared.

(4) The requirement that external, but not internal,

functions always be declared (rather than defined).

(5) Internal functions with the same name in different

program-units.

Remarks on aliases in 9.2.6 also apply to picture-defs.

233

AMERICAN NATIONAL STANDARD X3.113-1987

14. Real-Time

The real-time module of this standard is intended for use in

applications involving control, automation, and monitoring. It

enables a program to be divided into a number of concurrent

single-thread activities which cooperate to achieve the overall

objective of the application.

Facilities are provided to schedule execution of concurrent

activities so that they may respond to both internally and

externally generated events. Communication between concurrent

activities is possible either through the use of shared data or

by the transmission of messages.

A process object is a part of the external environment of a

real-time-program. Typical process objects are measurement or

control points in a plant interface. Communication between a

concurrent activity and a process object is accomplished by input

and output operations accessing the process object through a

process port.

14.1 Real-Time Programs

14.1.1 General Description

A real-time-program is composed of real-time declarations

(cf. 14.2) that describe a process environment, one or more

parallel-sections, and some number of procedures that may be

invoked by these parallel-sections. Each parallel-section is

named and is delimited by the keywords PARACT (PARallel ACTivity)

and END PARACT. Parallel-sections constitute separate

program-units and serve to define concurrent activities.

Execution of a parallel-section is enabled by a scheduling-

statement (cf. 14.3) and starts at the first line of the

parallel-section.

14.1.2 Syntax

1. program > program-name-line?

real-time-program

2 . real-time-program real-time-declarations

parallel-section parallel-section

procedure-part*

3 . program-unit > parallel-section

4 . parallel-section = remark-line* paract-line

block* end-paract-line

234

AMERICAN NATIONAL STANDARD X3.113-1987

5. line > paract-line / end-paract-line

6. paract-line = line-number paract-statement tail

7. paract-statement — PARACT routine-identifier

(URGENCY urgency)?

8. urgency = integer

9. end-paract-line = line-number end-paract-statement

tail

10. end-paract-statement = END PARACT

11. statement > real-time-statement

12 . real-time-statement = parstop-statement /

scheduling-statement /

process-io-statement /

data-io-statement /

message-io-statement /

exit-seize-statement

13. parstop-statement = PARSTOP

14. block > real-time-block

15. real-time-block = select-port-block / seize-block

A given routine-identifier shall not occur in more than one

paract-statement in a real-time-program.

All program-units in a real-time-prograrn shall use the same

arithmetic option.

Real-time-statements and real-time-blocks shall occur only

in parallel-sections.

14.1.3 Examples

4. 320 PARACT Rigl

330 WAIT TIME 17*60*60

340 PRINT "Time to go home"

350 END PARACT

14.1.4 Semantics

Execution of a parallel-section in a real-time-program shall

constitute a concurrent activity. At any point in the execution

of a real-time-program, a concurrent activity may be in one of

the following states:

(1) In progress, that is, in the initial state of the

concurrent activity defined by the lexically first parallel-

section, or in the state of a concurrent activity following

execution of a start-statement naming that activity

235

AMERICAN NATIONAL STANDARD X3.113-1987

(2) Stopped, that is, not yet in progress, or formerly in

progress but subsequently terminated by execution of a

parstop-statement, an end-paract-statement, or a statement

generating a fatal exception that is not inhibited by the action

of an exception-handler

(3) Waiting, that is, formerly in progress but suspended by

execution of a wait-statement or message-io-statement, until the

occurrence of a specified event, the passing of a specified

length of time, the arrival of a specified time of day, or the

exchange of messages.

Several concurrent activities may be in progress at any

given time. Initially, the only concurrent activity in progress

shall be that defined by the lexically first parallel-section in

the real-time-program; other concurrent activities shall be

placed in progress only by the execution of start-statements (cf.

14.3). If there is a parameter-list on the program-name-line

with a real-time-program, its parameters are in the scope of the

lexically first parallel-section.

The urgency of a parallel-section shall indicate to the

scheduler the relative importance of the concurrent activity. A

lower value shall indicate a greater importance. The precise

interpretation of the urgency shall be implementation-defined.

Each time a parallel-section is placed in progress by a

start-statement, the values of all variables shall be implemen¬

tation-defined according to the usual policy for variable

initialization.

Lines in a parallel-section shall be executed in sequential

order, starting at the first line of the parallel-section, until:

(1) Some other action is dictated by the execution of a line

(2) An exception occurs

(3) A stop-statement, chain-statement, parstop-statement, or

an end-paract-statement is executed

Execution of a parstop-statement or of an end-paract-

statement shall close all files local to the parallel-section,

and terminate execution of the concurrent activity in which it

occurs, causing that activity to stop until placed in progress

again by another execution of a start-statement. Execution of a

stop-statement or a chain-statement shall terminate execution of

the entire real-time-program. The occurrence of a fatal

exception that is not handled by an exception-handler shall stop

the concurrent activity in which it occurs. If an implementation

236

AMERICAN NATIONAL STANDARD X3.113-1987

is such that an exception can occur when execution reaches a

real-time declaration, then that exception shall terminate

execution of the entire real-time program.

Each parallel-section is a distinct entity in that

identifiers used to name variables, arrays, internal functions,

and exception handlers shall be local to the parallel-section,

(i.e., they shall name different objects in different parallel-

sections). Identifiers used to name supplied functions,

parallel-sections, procedures defined as program-units, process-

ports, process-port-arrays, events, structures, message ports,

and data ports shall be global to the entire real-time-program

(i.e., they shall name the same object wherever they occur).

14.1.5 Exceptions

None.

14.1.6 Remarks

Execution of a concurrent activity may be interrupted at

implementation-defined times in order to execute other concurrent

activities that are in progress.

Possible interpretations of the urgency of a parallel-

section might be the priority of that section or a deadline for

execution of the parallel-section.

237

AMERICAN NATIONAL STANDARD X3.113-1987

14.2 Real-Time Declarations

14.2.1 General Description

Concurrent activities communicate with the external

environment through process ports. Process port declarations

define the names of these ports and the attributes of process-

objects in a real-time system attached to these ports. process-

objects may be either active or passive. Passive process-objects

are typically measurement and control points in a plant

interface, such as temperature sensors or stepping motor

controllers (cf. 14.4). Active process-objects, or process-

events, are typically sources of program interrupts, such as

timers and alarms (cf. 14.3).

Data ports provide a means of accessing data whose scope is

wider than an individual concurrent activity. A data port

declaration defines the name of a data port and the structure of

the data accessible through it (cf. 14.5).

Message ports provide a means of transferring data between

two concurrent activities; the data transferred does not exist

outside the two activities. A message port declaration defines

the name of a message-port and the structure of the data

transferred through it. A message is sent when the same message-

port-name is used in two concurrent activities: in a send-

statement in one and a receive-statement in the other (cf.

14.6).

Data structure declarations provide a means of specifying

the structure of data transferred through process, data, and

message ports. They enable a language processor to check the

validity of statements sending and receiving data through a port,

and they specify indivisible units of shared data.

14.2.2 Syntax

1. real-time-declarations =

2. line >

3. rt-declare-line =

4. rt-declare-statement -

(remark-line / rt-declare-line /

process-array-dec)*

rt-declare-line /

process-declare-line /

process-element-line /

end-process-line

line-number rt-declare-statement

tail

DECLARE (data-structure-dec /

process-port-dec /

data-port-dec /

238

AMERICAN NATIONAL STANDARD X3.113-1987

5. data-structure-dec

6. structure-name

7. repeat-count

8. type

9. process-port-dec

10. process-clause

11. io-qualifier

12. process-port-name

13. process-array-dec

14. process-declare-line

15. process-declare-statement

16. process-port-array

17. process-element-line

18. process-element-statement

19. end-process-line

20. event-clause

21. event-name

22. access-information

23. data-port-dec

24. data-port-name

25. message-port-dec

26. message-port-name

27. identifier

28. real-time-identifier

message-port-dec)

- STRUCTURE structure-name colon

repeat-count? type

(comma repeat-count? type)*

= letter identifier-character*

- integer OF

= (NUMERIC fixed-point-type? /

STRING) bounds?

= PROCESS

(process-clause / event-clause)

access-information?

- io-qualifier process-port-name

OB1 structure-name

- INPUT / OUTPUT / OUTIN

= letter identifier-character*

- process-declare-line

process-element-line*

end-process-line

= line-number

process-declare-statement tail

- DECLARE PROCESS io-qualifier

process-port-array bounds

OF structure-name

= letter identifier-character*

- line-number

process-element-statement tail

- process-port-array

left-parenthesis signed-integer

(comma signed-integer)?

right-parenthesis colon

access-information

- line-number END PROCESS tail

- EVENT event-name

= letter identifier-character*

= string-constant

= SHARED data-port-name

bounds? OF structure-name

= letter identifier-character*

- MESSAGE message-port-name

OF structure-name

- letter identifier-character*

> real-time-identifier

= structure-name / event-name /

process-port-name /

process-port-array /

data-port-name /

message-port-name

239

AMERICAN NATIONAL STANDARD X3.113-1987

Any structure-name appearing in a process-clause, process-

declare-statement, data-port-dec, or message-port-dec shall be

defined in a data-structure-dec in a lower-numbered line.

A given real-time-identifier may name a structure, an event,

a process-port, a process-port-array, a data-port, or a message-

port but not more than one of these.

The value of the integer in a repeat-count shall be greater

than zero.

Within a process-array-dec, there shall be exactly one

process-element-statement for each element of the array, as

determined by the bounds in the process-declare-statement.

Process elements shall be described in ascending row major order.

The name and dimensionality of the process-port-array in the

process-declare-statement and its process-element-statements

shall match.

14.2.3 Examples

5. STRUCTURE OPR: STRING, 2 OF NUMERIC, NUMERIC(10)

STRUCTURE A1: 2 OF NUMERIC

STRUCTURE B1: NUMERIC

9. PROCESS INPUT WEIGHT OF A1 "ADCCHAN 3"

PROCESS OUTIN PANEL OF OPR "Q, 177640"

PROCESS INPUT A "BCD 4"

PROCESS OUTPUT Z1 OF B1

PROCESS EVENT FULL "INT 36"

13. 100 DECLARE PROCESS INPUT xyz(2, -1 TO 1) OF A1

110 xyz(1, -1) "wb slot 10

120 xyz(1, 0) "wb slot 11

130 xyz(1, 1) "wb slot 12

140 xyz(2, -1) "wb slot 20

150 xyz(2, 0) "wb slot 21

160 xyz(2, 1) "wb slot 22

170 END PROCESS

23. SHARED FLIGHT(10) OF OPR

SHARED D OF B1

25. MESSAGE LINK OF OPR

14.2.4 Semantics

The scope of structure-names, process-port-names, process-

port-arrays, data-port-names, message-port-names, and event-names

shall be all the parallel-sections in a real-time program.

240

AMERICAN NATIONAL STANDARD X3.113-1987

A data-structure-dec shall declare the name of a data

structure for use in process-port-decs, process-array-decs, data-

port-decs, and message-port-decs. A data structure is an

abstract structure (i.e., one without any storage allocated to

it) consisting of an ordered list of types that may be either

numeric or string, scalar or array. A repeat-count shall specify

the number of occurrences of the type that follows it. An

omitted repeat-count implies one occurrence of the type.

A process-port-dec shall define the name of a process port

and the attributes of a process-object in a real-time system

attached to that port. Each process-array-dec shall declare an

array of process-ports. The dimensionality and maximum and

minimum values for subscripts of the array shall be determined by

the bounds in the usual way (see 7.1). A process-element-

statement shall declare the access-information peculiar to each

element of the array.

The presence of a process-clause shall indicate that the

process-object attached to that process-port is passive.

Processes declared in process-array-decs are always passive. The

io-qualifier shall indicate the permitted directions of data

transfer through the port: INPUT shall indicate that the process-

object provides input only, OUTPUT that it accepts output only,

and OUTIN that it supports both input and output.

When a structure-name is specified in a process-clause or

process-array-dec, then the named structure is associated with

that process-port, or with each element of the process-port-

array. In the absence of a structure-name, the default data

structure shall be a single numeric.

The presence of an event-clause in a process-port-dec shall

declare the named process-object to be active (i.e., to be a

process-event). When connected, a process-event shall be capable

of generating events that return concurrent activities waiting

for them to the state of being in progress (cf. 14.3).

Access-information for a process-port specifies a particular

process-object attached to that port and the format of its data.

Access information for an active process-object typically

specifies the source of a hardware interrupt signaling the

occurrence of an event associated with that object together with

information about how to control the interrupt. The interpre¬

tation of the access-information or its absence shall be

implementation-defined.

241

AMERICAN NATIONAL STANDARD X3.113-1987

A data-port-dec shall define the name of a data-port and the

structure of the data accessible through it. If bounds are

specified in a data-port-dec, then they shall define an array of

instances of the given structure. The array so defined shall be

either one-, two-, or three-dimensional according to whether one,

two, or three bounds-ranges are specified in the bounds. If no

bounds appear, a single instance of the given structure shall be

defined. Shared data shall be accessible by all concurrent

activities (cf. 14.5).

A message-port-dec shall define the name of a message port

and the structure of the data transferred through it.

14.2.5 Exception

The attributes of a process object do not match its

declaration (12201, fatal).

14.2.6 Remarks

process-port-arrays can only be arrays of passive process-

objects (i.e., arrays of process-events are not permitted).

The format information in the access-information for a

process-port may allow the implementation to perform automatic

data transformation, such as scaling or conversion between a

character-coded external representation of a number in a process-

object and a floating-point internal representation. An

implementation may also allow names of routines in the access-

information so that special devices can be handled by standard

mechanisms invoked automatically each time a process-port is

accessed. These routines could, for example, handle access via a

multiplexer with a long switching time or handle special Gray

code devices.

Fixed-point-type is defined in the optional fixed decimal

module (cf. Section 16), and may not be available if that module

is not implemented.

242

AMERICAN NATIONAL STANDARD X3.113-1987

14.3 Scheduling

14.3.1 General Description

The scheduling requirements for concurrent activities are

specified by execution of start-statements and wait-statements.

A start-statement places a concurrent activity in progress. The

actual execution of concurrent activities that are in progress is

scheduled by the implementation according to the urgency of these

activities. A wait-statement can be used to suspend execution of

a concurrent activity for a specified period of time, until a

given time, or until a specified event occurs. Events may be

generated externally by connected process objects or internally

by execution of signal-statements.

Connect-statements and disconnect-statements referring to

events are used to enable and disable specific event signals from

the external hardware.

14.3.2 Syntax

1. scheduling-statement

2. start-statement

3 . wait-statement.

4. wait-time

5. time-expression

6. string-time-expression

7. wait-interval

8. wait-event

9. signal-statement

10. connect-statement

11. event-list

12. disconnect-statement

start-statement / wait-statement /

signal-statement /

connect-statement /

disconnect-statement

START routine-identifier

WAIT (wait-time / wait-interval /

wait-event)

TIME time-expression

numeric-time-expression /

string-time-expression

string-expression

DELAY numeric-time-expression

EVENT event-name

timeout-expression?

SIGNAL event-name

CONNECT EVENT event-list

event-name (comma event-name)*

DISCONNECT EVENT event-list

An event-name that does not occur in a process-port-dec

shall not occur in a connect-statement or a disconnect-statement.

An event-name that occurs

occur in a signal-statement.

A routine-identifier that

also occur in some paract-line

in a process-port-dec shall not

occurs in a start-statement shall

in the program. An event-name

243

AMERICAN NATIONAL STANDARD X3.113-1987

that occurs in a wait-statement shall occur in a signal-statement

or shall be declared as an event in a process-port-dec.

14.3.3 Examples

2. START FILL

3. WAIT DELAY 1.5*60*60

WAIT TIME "09:15:00"

WAIT EVENT READY TIMEOUT 4

WAIT TIME A?

9. SIGNAL READY

10. CONNECT EVENT FULL

12. DISCONNECT EVENT FULL, TOOFUL

14.3.4 Semantics

Execution of a start-statement shall place in progress the

concurrent activity defined by the named parallel-section.

Execution of a wait-statement shall cause the concurrent activity

in which it occurs to be suspended for a specified period of

time, until a specified time, or until a specified event occurs.

The value of a numeric-time-expression shall be interpreted

as specifying a number of seconds. If the value of the

expression is not an integer, then the accuracy of the time

expression is dependent on the resolution of the timer. The

value of a string-time-expression shall conform to the format,

range of values, and interpretation of the TIME? function (cf.

6.4).

If a wait-statement specifies a wait-interval, then the

concurrent activity shall be suspended for the specified length

of time, being placed in progress again v/hen that time has

elapsed. If a wait-statement specifies a wait-time with a

numeric-time-expression, then the concurrent activity shall be

suspended until the specified number of seconds have elapsed

since the previous midnight, at which time it shall be placed in

progress again. If the number of seconds since the previous

midnight has already elapsed, then the concurrent activity shall

wait until that time the following day. If a wait-statement

specifies a wait-time with a string-time-expression, then the

concurrent activity shall be suspended until the specified time

of day, at which time it shall be placed in progress again. If

the specified time of day has already passed, then the concurrent

activity shall wait until that time the following day.

If a wait-statement specifies a wait-event, then the

concurrent activity shall be suspended until that event occurs.

244

AMERICAN NATIONAL STANDARD X3.113-1987

at which time it shall be placed in progress again (cf. 14.2 and

14.4). If a timeout expression is specified in a wait-event,

then an exception shall occur if the specified event has not

occurred within the specified length of time.

Execution of a signal-statement shall cause the specified

event to occur. Following execution of a signal-statement, the

concurrent activity continues to be in progress.

Execution of a connect-statement shall cause the specified

events to be connected. A connected process object can cause

events to occur.

Execution of a disconnect-statement shall cause the

specified events to be not connected, and shall cause any

previous occurrence of that event not acted upon by a wait-

statement to have not occurred. A process object that is not

connected shall not cause events to occur.

An event that has occurred shall place in progress again a

concurrent activity waiting for the event. If no concurrent

activity is waiting for the event, then the first concurrent

activity subsequently to execute a wait-statement naming that

event shall remain in progress. In either case, the event shall

then be deemed to have not occurred.

If more than one concurrent activity is waiting for the same

event, then which one of those activities shall be placed in

progress upon occurrence of that event shall be implementation-

defined. Only one concurrent activity shall be placed in

progress upon each occurrence of an event.

If a new event is caused by a signal-statement before a

previous occurrence of the same event has been acted upon by a

wait-statement, then that signal-statement shall cause an

exception. The events shall then be deemed to have not occurred.

If a new event is generated by a connected process-object

before a previous event generated by that object has been acted

upon by a wait-statement, then the next wait-statement to be

executed that names that event shall cause an exception. The

events shall then be deemed to have not occurred.

At the initiation of execution of a real-time-program, all

events shall have not occurred, and all process-events shall be

not connected.

245

AMERICAN NATIONAL STANDARD X3.113-1987

14.3.5 Exceptions

A start-statement is executed that specifies a concurrent

activity that is not stopped (12001, fatal).

A signal-statement is executed that specifies an event that

has already occurred, but that has not yet caused a waiting

concurrent activity to be placed in progress again (12002,

fatal) .

The value of a numeric-expression used as a time-expression

exceeds 86400, the number of seconds in a day, or is less than

zero (12004, fatal).

The value of a string-expression used as a time-expression

does not conform to the format of the TIME? function (12005,

fatal) .

The event specified in a wait-statement does not occur

within the period of time specified in a timeout-clause (12101,

fatal) .

A wait-statement is issued for an event generated by a

connected process object that has occurred more than once since

the last such event was consumed by a wait-statement (12003,

fatal) .

A connect-statement is executed that specifies an event that

is already connected (12006, fatal).

A disconnect-statement is executed that specifies an event

that is already disconnected (12007, fatal).

14.3.6 Remarks

When the system clock requires adjustment, such as for

seasonal time changes or to correct for errors, problems can

arise with wait-statements specifying wait-times. In particular,

if the clock is moved back, any activities that were released

from a wait-time during the previous occurrence of that time

should not be put in progress again until the following day.

Similarly, if the clock is advanced, activities waiting for a

time that is "passed over" should be put in progress as if that

time had occurred.

246

AMERICAN NATIONAL STANDARD X3.113-1987

14.4 Process Input and Output

14.4.1 General Description

In-statements and out-statements are used to move data over

communication paths between passive process-objects and a

real-time-program. An in-statement permits external values to be

transferred to program variables, and an out-statement permits

the transfer of values to external process-objects.

14.4.2 Syntax

1. process-io-statement

2. in-statement

3. in-structure

4. in-structure-element

5. out-statement

6. out-structure

7. out-structure-element

= in-statement / out-statement

= IN FROM (process-port-name /

process-port-array subscript-part)

TO in-structure timeout-expression?

= in-structure-element

(comma in-structure-element)*

= variable / array-name

= OUT TO (process-port-name /

process-port-array subscript-part)

FROM out-structure

timeout-expression?

= out-structure-element

(comma out-structure-element)*

= expression / array-name

Any process-port-name or process-port-array occurring in an

in-statement or out-statement shall be declared in a process-

port-dec, or process-array-dec.

The number of subscripts in a subscript-part in an in¬

statement or an out-statement shall equal the number of bounds-

ranges in the bounds of the corresponding process-array-dec.

The number and type of elements within an in-structure or

out-structure shall conform element by element, with the data-

structure-dec for the structure specified in the declaration for

the corresponding process port. That is,

(1) The number of in-structure- or out-structure-elements

shall be the same as the number (counting repeats) of types in

the corresponding data-structure-dec

(2) The in-structure- or out-structure-elements in the in-

or out-structure shall be associated with the corresponding types

in the data-structure-dec (i.e., the first with the first, the

247

AMERICAN NATIONAL STANDARD X3.113-1987

second with the second, and so on), and the types shall

correspond as follows:

data-structure-

dec type

in-structure-

element

out-structure-

element

NUMERIC

STRING

simple-numeric-variable

simple-string-variable

numeric-expression

string-expression

numeric-array

string-array

NUMERIC (bounds) numeric-array

STRING (bounds) string-array

The dimensionality of arrays specified as in-structure- or out-

structure-elements shall match that of the corresponding data-

structure-dec type. If a data-structure-dec type contains a

fixed-point-type, then the corresponding in-structure- or out-

structure-elements shall have that same type (cf. 15.1).

A process-port-name or process-port-array declared as OUTPUT

shall not appear in an in-statement, nor shall one declared as

INPUT appear in an out-statement.

14.4.3 Examples

2. IN FROM WEIGHT TO X, Y

IN FROM PANEL TO A$, B, C, Fvect

IN FROM RIG1(NEXT) TO ALPHA TIMEOUT 2.5

5. OUT TO Z1 FROM B*C+X

OUT TO PANEL FROM A$&B$, JIM, FRED, Cvect

14.4.4 Semantics

Execution of an in-statement shall cause values to be

obtained from the specified process-port and to be assigned to

the corresponding variables and arrays in the in-structure. The

order of assignment to variables and evaluation of subscripts and

substring-qualifiers is the same as in the input-statement.

If a numeric value causes an underflow, then its value shall

be replaced by zero.

Execution of an in-statement shall be regarded as complete

only when all values have been assigned to the variables and

arrays in the in-structure or when a fatal exception occurs, such

as one caused by incorrect data or a hardware failure, or the

number of seconds specified by the timeout-expression has

expired.

248

AMERICAN NATIONAL STANDARD X3.113-1987

Execution of an out-statement shall cause the expressions in

the out-structure to be evaluated and their values, together with

the values of all elements in the specified formal-arrays, to be

transmitted to the specified process-port.

Execution of an out-statement shall be regarded as complete

only when all values from the out-structure have been accepted by

the process environment or when a fatal exception occurs, such as

one caused by incorrect data or a hardware failure, or the number

of seconds specified by the timeout-expression has expired.

The occurrence of an array in an in-structure or an out-

structure shall cause the contents of the entire array with that

name to be input or output, in row major order.

14.4.5 Exceptions

The assignment of a value to a numeric-variable or numeric-

array in an in-structure causes a numeric overflow (1201, fatal).

The assignment of a value to a string-variable or string-

array in an in-structure causes a string overflow (1203, fatal).

The current sizes of the dimensions of an array used in an

in-structure or an out-structure do not conform to the data-

structure-dec for the structure specified in the declaration for

the indicated process port (6301, fatal).

Execution of an in-statement or an out-statement has not

been completed before the timeout given by the timeout-expression

has expired (12102, fatal).

A subscript for a process port is not within the range

specified by the process-array-dec (2001, fatal).

14.4.6 Remarks

Implementation-defined exception conditions may exist.

These are mainly concerned with the characteristics of particular

process-objects.

249

AMERICAN NATIONAL STANDARD X3.113-1987

14.5 Shared Data

14.5.1 General Description

Get-statements and put-statements are used to transmit data

between concurrent activities and collections of shared data.

The data are transmitted through data ports.

14.5.2 Syntax

1. data-io-statement = put-statement / get-statement

2. put-statement = PUT TO data-port-name

subscript-part? FROM out-structure

timeout-expression?

3. get-statement = GET FROM data-port-name

subscript-part? TO in-structure

timeout-expression?

Any data-port-name occurring in a put-statement or get-

statement shall be declared in a data-port-dec. A subscript-part

shall follow the data-port-name if and only if a bounds occurs in

the data-port-dec for that data-port-name; in that case, the

number of subscripts in the subscript-part shall equal the number

of dimensions specified by the bounds.

The number and types of elements within an in-structure or

out-structure shall conform to the data-structure-dec for the

structure named in the data-port-dec for that data-port-name, as

specified in 14.4.

14.5.3 Examples

2. PUT TO FLIGHT(N+l) FROM 1$, N, 2, P

3. GET FROM D TO E

14.5.4 Semantics

Execution of a put-statement shall cause the expressions in

the out-structure to be evaluated and their values, together with

the values of all elements in the specified arrays, to be

transmitted to the appropriate collection of the shared data.

Execution of a get-statement shall cause the variables and

arrays in the in-structure to be assigned values from the

appropriate collection of shared data. Subscripts and substring-

qualifiers in an in-structure shall be evaluated after values

have been assigned to the variables and arrays preceding them

(i.e., to the left of them) in the in-structure.

250

AMERICAN NATIONAL STANDARD X3.113-1987

If a get-statement references a data element that has not

been initialized, the result is implementation-defined.

Execution of a put-statement or a get-statement shall be

regarded as complete when all values have been transmitted, or

when a fatal exception has occurred. No other concurrent

activity shall access the specified collection of shared data

until execution of a get-statement or put-statement is complete.

Data-io-statements interact with seize-blocks (cf. 14.8) as

follows. If the data-io-statement is not contained in a

seize-block, it behaves as if it were contained within a seize-

block consisting of (1) a seize-line with a single seize-item,

namely, the data-port-name of the data-io-statement and with the

timeout-expression (if any) of the data-io-statement, (2) the

line with the data-io-statement, but without the timeout-

expression (if any), and (3) an end-seize-line. If the data-io-

statement is contained in an explicit seize-block, no additional

constraints are imposed.

14.5.5 Exceptions

The assignment of a value to a numeric-variable or numeric-

array in an in-structure causes a numeric overflow (1202, fatal).

The assignment of a

array in an in-structure

value to

causes a

a string-variable or string¬

string overflow (1204, fatal).

The current sizes of the dimensions of an array used in an

in-structure or an out-structure do not conform to the data-

structure-dec for the structure specified in the declaration for

the indicated data port (6301, fatal).

A subscript for a data-port is not within the range

specified by the data-port-dec (2001, fatal).

14.5.6 Remarks

None.

251

AMERICAN NATIONAL STANDARD X3.113-1987

14.6 Message Passing

14.6.1 General Description

Send-statements and receive-statements are used to transmit

data between concurrent activities. The data are conveyed over

message paths that connect a message output port in a send-

statement in one concurrent activity to a message input port in a

receive-statement in another.

A message path is established at run time implicitly by the

use of the same message-port-name in two concurrent activities,

in a send-statement in one and in a receive-statement in the

other.

14.6.2 Syntax

1. message-io-statement = send-statement / receive-statement

2 . send-statement SEND TO message-port-name

FROM out-structure

timeout-expression?

3 . receive-statement = RECEIVE FROM message-port-name TO

in-structure timeout-expression?

4. select-port-block select-port-line remark-line*

case-port-block case-port-block*

case-timeout-block? end-select-line

5. select-port-line = line-number select-port-statement

tail

6. select-port-statement = SELECT ON PORT

7. case-port-block = case-port-line block*

8. case-port-line = line-number case-port-statement

tail

9. case-port-statement CASE (SEND / RECEIVE) MESSAGE

message-port-name /

CASE EVENT event-name

10. case-timeout-block = case-timeout-line block*

11 . case-timeout-line line-number case-timeout-statement

tail

12. case-timeout-statement

Any message-port-name

= CASE TIMEOUT

numeric-time-expression

occurring in a send-statement.

receive-statement, or select-port-block shall be declared in a

message-port-dec.

The number and types of elements in the out-structure of a

send-statement and in the in-structure of a receive-statement

shall conform to the data-structure-dec for the structure named

252

AMERICAN NATIONAL STANDARD X3.113-1987

in the message-port-dec for that message-port-name, as specified

in 14.4.

A parallel-section shall not contain both a send-statement

and a receive-statement specifying the same message-port-name.

A case-port-block whose case-port-line specifies SEND

MESSAGE shall contain a send-statement for the corresponding

message-port-name. A case-port-block whose case-port-line

specifies RECEIVE MESSAGE shall contain a receive-statement for

the corresponding message-port-name.

A given message-port-name or event-name shall not occur more

than once in the case-port-statements of a given select-port-

block .

No line number in a control-transfer outside a select-port-

block, case-port-block, or case-timeout-block shall refer to a

line inside that select-port-block, case-port-block, or case-

timeout-block, respectively, other than to the first line of a

select-port-block.

An event-name occuring in a case-port-statement shall be

declared in a process-port-dec.

14.6.3 Examples

2. SEND TO LINK FROM "FIRST", X/2, 17.35,

3. RECEIVE FROM LINK TO A$, P(l), P(2), I

4. 100 SELECT ON PORT

110 CASE EVENT E

120 PRINT "E occurred at

130 START E_processor

140 CASE SEND MESSAGE X

RESULTS

TIMEOUT 30

time$

150

160 CASE SEND MESSAGE Y

170

180 CASE RECEIVE MESSAGE Z

190

200

SEND TO X FROM a, b, <

SEND TO Y FROM d$, e$

PRINT "Someone just sent me a

RECEIVE FROM Z TO f, g$

Z"

210 CASE TIMEOUT 600

220
230 END

PRINT

SELECT

"Ten-minute timeout."

253

AMERICAN NATIONAL STANDARD X3.113-1987

14.6.4 Semantics

A message port in one concurrent activity shall be connected

to a message port in another concurrent activity by the execution

of a send-statement or a receive-statement in the one concurrent

activity using the given message-port-name and the subsequent

execution in the other concurrent activity of a receive-statement

or a send-statement using the same message-port-name.

Execution of a send-statement or a receive-statement shall

not be complete until the specified message port has been

connected as a result of executing a corresponding receive-

statement or send-statement in another concurrent activity, or an

exception occurs. Until complete, a process is waiting as

described in 14.1.

When such a connection has been made, the expressions in the

out-structure in the send-statement shall be evaluated, and their

values, together with the values of all arrays in the out-

structure, shall be assigned to the corresponding variables and

arrays in the in-structure in the corresponding receive-

statement .

Subscripts and substring-qualifiers in an in-structure shall

be evaluated after values have been assigned to the variables and

arrays preceding them (i.e., to the left of them) in the in¬

structure. Subsequent to this assignment, the message-ports of

the two communicating activities are disconnected and the

processes return to the state of being in progress.

If a timeout is specified in a send-statement or a receive-

statement, then an exception shall occur if no connection is made

within the specified length of time.

If a send-statement times out, then its message is no longer

available for a receive-statement.

If a send-statement is executed and more than one other

concurrent-activity is waiting to receive a message through a

message port with the same name, then which one of those

activities receives the message shall be implementation-defined.

Only one of the activities receives the message; the others

continue to wait.

If a receive-statement is executed and more than one other

concurrent-activity is waiting to send a message through a

message port with the same name, then which one of those

activities sends the message shall be implementation-defined.

254

AMERICAN NATIONAL STANDARD X3.113-1987

Only one of the activities sends the message; the others continue

to wait.

Execution of a select-port-block shall cause the concurrent

activity to be suspended until either (1) a message-io-statement

is executed, or has been executed but not connected, that names a

message-port-name in one of the case-port-statements and for

which the direction of message transmission is opposite to that

specified by the case-port-statement (i.e., a send-statement is

needed to activate CASE RECEIVE MESSAGE and a receive-statement

to activate CASE SEND MESSAGE), (2) a signal-statement is

executed, or has been executed but not caused a concurrent

activity to be put in progress, that names an event-name in one

of the case-port-statements, (3) the name of one of the event-

names in one of the case-port-statements corresponds to an event

that occurs or that has occurred but not caused a concurrent

activity to be put in progress, or (4) the number of seconds

specified in the case-timeout-statement has elapsed.

If the wait on the select-port-block is released as a result

of a message-io-statement, then the case-port-block with the

corresponding message-port-name and appropriate transmission

direction is executed. The message, if any, associated with the

above message-io-statement shall only be transferred when the

corresponding message-io-statement is executed in the case-port-

block .

If the wait on the select-port-block is released as a result

of an event occurring, then the case-port-block with the

corresponding event-name is executed. The execution of the case-

port-block shall cause the event to have not occurred.

If more than one case-port-block may be executed, then which

one of them shall be executed shall be implementation-defined.

If there is a case-timeout-block present and no execution

has taken place before the number of seconds specified in the

case-timeout-statement has elapsed since the select-port-block

was entered, then the rest of the case-timeout-block shall be

executed.

If control reaches the end of a case-port-block or case-

timeout-block, then control shall be transferred to the line

following the corresponding end-select-line.

255

AMERICAN NATIONAL STANDARD X3.113-1987

14.6.5 Exceptions

The assignment of a value to a numeric variable or a numeric

array in an in-structure causes a numeric overflow (1202, fatal).

The assignment of a value to a string variable or a string

array in an in-structure causes a string overflow (1204, fatal).

The current sizes of the dimensions of an array used in an

in-structure in a receive-statement or an out-structure in a

send-statement do not conform to the data-structure-dec for the

structure specified in the declaration for the indicated message

port (6301, fatal).

Execution of a send-statement or receive-statement has not

been completed before the time specified in a timeout has expired

(12103, fatal).

14.6.6 Remarks

It is essential that the underlying system shall select

case-port-blocks in such a way as to ensure the activity on a

given message port or of a specific event does not inhibit

response to other message ports or events.

256

AMERICAN NATIONAL STANDARD X3.113-1987

14.7 Bit Patterns and Operations

14.7.1 General Description

Bit patterns are a common means of coding information in

process control systems. Within a program, they are represented

by strings of characters. Operations on bit patterns may be

performed by the string operations of concatenation and substring

extraction.

Functions are provided for conversion between strings and

numeric values.

14.7.2 Syntax

1. string-supplied-function > BSTR dollar-sign

2. numeric-supplied-function > BVAL

14.7.3 Examples

None.

14.7.4 Semantics

The values of the supplied functions, as well as the number

and types of their arguments, shall be as described below. B$

represents a string expression, R and V represent indices, and R

shall take on only the values 2, 8, or 16.

Function

BVAL(B$, R)

BSTR$(V, R)

Value

The non-negative integer whose string

representation is given by the string B$. R is

the radix of the string representation of

the value, e.g.:

BVAL("101", 2) = 5

BVAL("2F", 16) =47

The string representation of the value of V,

using radix R. Unless a fatal exception

occurs, BSTR$ shall always return at least one

character. In particular, the value of BSTR$

when V is zero is "0", but otherwise no leading

zeros are returned, e.g.:

BSTR$(3.14, 2) = "11"

BSTR$(15, 8) = "17"

257

AMERICAN NATIONAL STANDARD X3.113-1987

The permissible characters that may appear in the string B$

depends on the value of R. If R is 2, the valid set consists of

the digits 0 and 1. If R is 8, the valid set consists of the

digits 0 to 7. If R is 16 the valid set consists of the digits 0

to 9 and the upper-case-letters A to F.

14.7.5 Exceptions

The value of the string argument of BVAL is not a valid

representation of a number in radix R (4201, fatal).

The numeric interpretation of the value of the string

argument of BVAL cannot be exactly represented within the limits

of the precision of numeric variables (4202, fatal).

The numeric interpretation of the value of the string

argument of BVAL exceeds the largest number representable (1003,

fatal).

The rounded value of the first argument of BSTR$ is negative

(4203, fatal).

The rounded value of the second argument of BVAL or BSTR$ is

not 2, 8, or 16 (4204, fatal).

14.7.6 Remarks

Typical uses for bit patterns are the manipulation of status

registers, or of data from process-objects in which individual

bits represent specific objects such as switches or indicators.

258

AMERICAN NATIONAL STANDARD X3.113-1987

14.8 Resource Management

14.8.1 General Description

In concurrent activity systems it is sometimes necessary for
the application program to have some control over the allocation
of serially reusable resources. An example is a program with
more than one concurrent activity that accesses the console to
print a message containing several lines. To ensure that
coherent messages are printed, an activity shall be able to seize
the console for its exclusive use until all the lines of a
message have been printed. The seize operation includes an
optional timeout so that an activity can be programmed so as to
not wait indefinitely for resources to become available.

14.8.2 Syntax

1. seize-block =
2. seize-line =
3. seize-statement =

4. seize-list =
5. seize-item =

6. end-seize-line =
7. exit-seize-statement =
8. line >

The same seize-item shall
seize-list.

seize-line block* end-seize-line
line-number seize-statement tail
SEIZE seize-list
timeout-expression?
seize-item (comma seize-item)*
SHARED data-port-name /
[implementation-defined]
line-number END SEIZE tail
EXIT SEIZE
seize-line / end-seize-line

not appear more than once in a

No line-number in a control-transfer outside a seize-block
shall refer to a line inside that seize-block.

No line-number in a control-transfer inside a seize-block
shall refer to a line outside that seize-block.

Seize-blocks shall not be nested. A seize-block shall not
contain a seize-line other than at the first line of that seize-
block. A seize-block shall not contain an end-seize-line other
than at the last line of that seize-block.

An exit-seize-statement shall occur only within a seize-
block .

In a seize-block, no reference shall be made to a defined-
function or procedure defined outside that seize-block.

259

AMERICAN NATIONAL STANDARD X3.113-1987

If a data-io-statement appears in a seize-block, then the
data-port-name of the data-io-statement shall appear as a seize-
item in the seize-list of the seize-block.

A data-io-statement appearing in a seize-block shall not
contain a timeout-expression.

A seize-block shall not contain a gosub- or on-gosub-
statement.

14.8.3 Examples

3. SEIZE SHARED DPORT TIMEOUT 10

14.8.4 Semantics

A seize-statement is either successful in seizing all the
resources in the list, in which case the seize-statement is
deemed to have been successfully completed and control passes to
the line following that seize-statement, or it fails because one
or more of the resources is not available, in which case no
resources are seized for exclusive use by the activity containing
the seize-block. If the seize-statement fails, then the activity
is put into the waiting state until all the resources requested
become available to it. It then seizes them all simultaneously
and control passes to the line following that seize-statement.
The timeout-expression is optional; if present, an exception
occurs if the seize-statement has not been completed within the
time specified.

In a seize-list, the occurrence of a data-port-name
following the keyword SHARED refers to that of shared data.
Other implementation-defined resource names are permitted in a
seize-list.

Execution of an end-seize-line releases all the resources
seized for exclusive use by the activity.

Execution of an exit-seize-statement shall cause control to
pass to the end-seize-line of the seize-block containing the
exit-seize-statement.

If the release of a resource simultaneously enables the
seize-lists of several seize-statements waiting for the resource,
it is implementation-defined which of the seize-statements
succeeds in seizing the resource.

260

AMERICAN NATIONAL STANDARD X3.113-1987

If a fatal exception occurs within a seize-block and is not

handled within that seize-block, then control passes to an

exception-handler outside the seize-block, or the concurrent

activity is stopped in accordance with the rules of 12.1 and

14.1. In either case, the resources of the seize-block are

released. If an exception-handler outside the seize-block (but

in the same invocation of the same program-unit) issues a RETRY,

then control shall return to the seize-line of the seize-block

and the seize-statement shall wait again for the resources in its

seize-list. If the handler issues a CONTINUE, then control shall

be transferred to the line lexically following the end-seize-

line.

14.8.5 Exception

Execution of a seize-statement has not resulted in

successful completion within the number of seconds of its

timeout-expression (12102, fatal).

14.8.6 Remarks

The syntax requirement that seize-blocks shall not be

nested, and the semantic requirement that either all resources

are seized or none are seized, prevents deadlock.

261

AMERICAN NATIONAL STANDARD X3.113-1987

15. Fixed Decimal Numbers

The fixed decimal numbers module of this standard specifies an

option in which the values of all numeric variables behave

logically as fixed-point decimal numbers with program-defined

precisions. Use of this option also implies that numeric-

constants and numeric-expressions generally are represented as

fixed-point decimal numbers.

The main intent of this data type is to provide an interface

with non-Basic processors, and as a result, the precision and

accuracy requirements for numeric-expressions are not specified.

15.1 Fixed Decimal Precision

15.1.1 General Description

An option is provided that allows definition of all numeric

variables in a program-unit as having fixed-point decimal numbers

as values. The specification of this option defines a default

precision for the values of variables. In addition, other

precision attributes can be specified for individual variables.

15.1.2 Syntax

> ARITHMETIC FIXED fixed-point-type

= asterisk fixed-point-size

> NUMERIC fixed-point-type?

fixed-declaration

(comma fixed-declaration)*

= simple-numeric-variable

fixed-point-type? /

numeric-array-declaration

fixed-point-type?

An option-statement with an ARITHMETIC FIXED option, if

present at all, shall occur in a lower-numbered line than any

numeric-expression, numeric-variable, or any declare-statement

with NUMERIC in the same program-unit.

A fixed-declaration, if present at all, shall occur in a

lower-numbered line than any reference to the variable or array

declared therein.

1. option

2. fixed-point-type

3. numeric-type

4. fixed-declaration

A fixed-point-size may appear in a declare-statement only if

the ARITHMETIC FIXED option has been specified for the program-

unit .

262

AMERICAN NATIONAL STANDARD X3.113-1987

Variables and arrays shall not be described more than once,

in either a declare-statement, a dimension-statement, or as a

function- or procedure-parameter.

Fixed-point-size is defined within the optional enhanced

native files module; it shall also be available within the

optional fixed-decimal module.

15.1.3 Examples

1. ARITHMETIC FIXED*8.2

3. NUMERIC*5.2 A, B, C*5.5, D (1 TO 8)*6.6

NUMERIC E (1 TO 10, 1961 TO 1981)

15.1.4 Semantics

If the ARITHMETIC FIXED option is specified, then the values

of numeric constants, variables, and expressions shall behave

logically as fixed-point decimal numbers. In the case of

variables, this means that the set of values they are capable of

assuming are exactly those values that can be expressed with

integer-size decimal digits to the left of the decimal point and

fraction-size digits to the right, together with the sign. The

sign is not counted in the size of the representation. Each

implementation shall define a maximum precision, P, that controls

the number of decimal digits available for the representation of

numeric values. This precision shall not be less than 18.

The semantics for numeric-constants shall be as specified in

5.1, except as follows. Each numeric-constant has a precision

attribute defined by the number of significant decimal digits.

The first significant digit is either the first nonzero digit, or

the digit immediately to the right of the decimal point,

whichever is farther left. The last significant digit is the

last explicitly written or the digit immediately to the left of

the decimal point, whichever is farther right. In the special

case of zero, there is at least one significant digit, namely

immediately to the left of the decimal point. A numeric-constant

written in scaled notation is interpreted as if expressed in the

equivalent unsealed notation. For example:

Constant as Written

12.34

12.300

12.300E-4

12.300E7

00.OOE-3

0.0E3

Significant Digits

12.34

12.300

.0012300

123000000.

.00000
0.

263

AMERICAN NATIONAL STANDARD X3.113-1987

If the number of significant digits exceeds P, the implementation

shall round the value to no fewer than P digits. If the number

of significant digits to the left of the decimal point exceeds P,

an overflow exception shall result.

Each simple-numeric-variable and numeric-array has a

precision attribute defined in terms of the number of digits

maintained in the integer part and the fraction part, namely

integer-size and fraction-size. The representation of variables

and arrays is governed by (in descending order of precedence):

(1) the fixed-point-size specified in the fixed-declaration of

the variable or array, (2) the fixed-point-size following DECLARE

NUMERIC in a declare-statement containing a fixed-declaration for

the variable or array, or (3) the default fixed-point-size

specified in the ARITHMETIC FIXED option. The precision

attribute of a numeric-array applies to each of its elements.

The significant digits for a numeric-variable are the same as if

the variable were written out with its full precision as a

numeric-constant.

The semantics of numeric-expressions and numeric-supplied-

functions are as specified in 5.3 and 5.4, except as follows: the

precision attribute of the result obtained by evaluating a

numeric-supplied-function or numeric-expression is implemen¬

tation-defined. The accuracy of such evaluation is also

implementation-defined.

Assignment of a numeric value to a numeric-variable, whether

done by internal assignment (such as with LET), or from an

external source (such as with INPUT), proceeds as follows. The

integer part and fraction part of the value are moved to the

integer part and fraction part of the variable, aligned on the

decimal point. If any nonzero digits are truncated on the left

of the integer part, an overflow exception results. If any

digits are truncated on the right of the fraction part, the

resulting value in the variable is rounded to the precision of

the variable. If necessary, the value is extended with zeros on

the left of the integer part or the right of the fraction part so

as to fill all the digit places of the receiving variable.

The semantics for input and output are as specified in

Section 10, except as follows: When a numeric-expression is used

as a print-item in a print-statement, its value is always printed

in unsealed representation, either implicit point or explicit

point. The digits printed are exactly the significant digits, as

defined above. Note that for numeric-expressions other than

variables and constants, significant digits are implementation-

defined. Implicit point representation shall be used when there

264

AMERICAN NATIONAL STANDARD X3.113-1987

are no significant digits to the right of the decimal point;

otherwise, explicit point representation shall be used.

The semantics for files are as specified in Section 11, with

the following additions. For DISPLAY records, the rules given

above for input, output, and assignment are used. For INTERNAL

records, the values are self-typed, and so input and output takes

place as defined above. Thus, the result of WRITE A and READ B,

where they access the same value in the file, is the same as LET

B = A. Note that it is implementation-defined whether an

INTERNAL file accessed with one ARITHMETIC option is accessible

with another. The ARITHMETIC FIXED option with different default

precisions is not considered to be a different option for the

purposes of accessibility. For NATIVE records, assignment of

values to and from fields of fixed-point-size takes place in

accordance with the usual rules for fixed-point assignment. When

a value is moved to a field with a size of E (indicating

floating-point), at least the first P significant digits shall be

retained exactly. When a value obtained from such a field is

assigned to a variable, the field shall be treated as a scaled

numeric-constant, as described above. Again, note that it is

implementation-defined whether a NATIVE file accessed with one

ARITHMETIC option is accessible with another. The ask-attribute

DATUM returns the type of the next datum in a file. For numeric

data in STREAM INTERNAL files written with the FIXED option, the

type returned by the ask-attribute DATUM shall be:

"NUMERIC*!!.ff", where ii is the two-digit number for integer-

size and ff the two-digit number for fraction-size.

15.1.5 Exceptions

The number of significant digits in the integer part of a

numeric-constant exceeds P (1001, fatal).

In an option-statement or a declare-statement, the sum of

integer-size and fraction-size in a fixed-point-size exceeds P

(1010, fatal).

Upon assignment of a numeric value to a variable, the number

of significant digits in the integer part exceeds the variable's

integer-size (1011, fatal).

15.1.6 Remarks

It is recommended that the accuracy of transcendental

functions such as LOG, COSH, ATN, SIN, and EXP be no less than

that specified for OPTION ARITHMETIC DECIMAL. It is recommended

that for non-transcendental functions, such as ABS, INT, and MAX,

265

AMERICAN NATIONAL STANDARD X3.113-1987

and for the operations +, *, /, and ~, that an intermediate

result be maintained as floating-point decimal with P+2

significant digits. This would imply that whenever all the

intermediate results of a numeric-expression are exact within P+2

decimal digits and the final result is exact within P decimal

digits, then the final result value is exactly correct.

266

AMERICAN NATIONAL STANDARD X3.113-1987

15.2 Fixed Decimal Program Segmentation

15.2.1 General Description

When the fixed decimal option is specified for a program-

unit, it applies to all numeric entities in the scope of that

unit, including parameters, formal parameters, and (in the case

of an external-function-def) the result of function evaluation.

15.2.2 Syntax

1. function-parameter >

2. procedure-parameter >

3. numeric-fixed-parameter -

4. fixed-formal-array -

5. internal-function-line >

6. external-function-line >

7. numeric-def-statement >

8. defined-function >

9. fixed-defined-function

numeric-fixed-parameter

numeric-fixed-parameter

simple-numeric-variable

fixed-point-type /

fixed-formal-array

formal-array fixed-point-type

line-number FUNCTION

fixed-defined-function

function-parm-list? tail

line-number EXTERNAL FUNCTION

f ixed-defined-function

function-parm-list? tail

DEF fixed-defined-function

function-parm-list? equals-sign

numeric-expression

fixed-defined-function

numeric-defined-function

fixed-point-type

A numeric-variable or actual-array appearing in a call-

statement shall have the same integer-size and fraction-size as

the corresponding procedure-parameter. For all other numeric

function- or procedure-arguments and their corresponding

function- or procedure-parameters, it is necessary only that the

ARITHMETIC options of their respective program-units agree (i.e.,

that both be DECIMAL or NATIVE or FIXED).

An option-statement with an ARITHMETIC FIXED option shall

occur in a lower-numbered line within the program-unit than any

internal-function-def that declares a numeric-defined-function or

specifies numeric parameters.

A fixed-point-type may appear in an internal-function-line

or numeric-def-statement only if the ARITHMETIC FIXED option has

been specified for the program-unit.

267

AMERICAN NATIONAL STANDARD X3.113-1987

A numeric-fixed-parameter may be used only if the ARITHMETIC

FIXED option has been specified for the program-unit.

When a fixed-defined-function is declared in a function-

type, the fixed-point-sizes specified either explicitly or by

default in the declaration and the corresponding definition shall

agree.

15.2.3 Examples

3. A()*8.2

B(,)*4.4
5. 123 FUNCTION SUMVECT0R*5.2 (V()*5.2)

6. 234 EXTERNAL FUNCTION ANSWER*1 (A$)

7. DEF AVERAGE*10.3 (X*10.3, Y*10.3) = (X+Y)/2

15.2.4 Semantics

When the ARITHMETIC FIXED option is specified for a program-

unit, the values of numeric procedure-parameters, numeric

function-parameters, and numeric-defined-functions shall be

represented and manipulated as fixed-point decimal numbers. If

the fixed-point-size of one of these is not explicitly specified

in the appropriate procedure- or function-parameter, internal-

def-line or internal- or external-function-line, then it is

assumed to be the default specified in the ARITHMETIC FIXED

option. The fixed-point-size of a formal-array applies to each

of its elements.

The evaluation and assignment of the arguments in a function

reference to the parameters of the function-def shall proceed as

described in 9.1, with the following addition: in the case in

which the fixed-point-size of an argument differs from that of

the corresponding parameter, the assignment rules given in 15.1.4

shall apply.

The association of the procedure-arguments in a call-

statement with the procedure-parameters in the corresponding sub¬

statement shall proceed as described in 9.2, with the following

addition: in the case where the fixed-point-size of an procedure-

argument that is a numeric-expression, but not a numeric-

variable, differs from that of the corresponding procedure-

parameter, the assignment rules given in 15.1.4 shall apply.

268

AMERICAN NATIONAL STANDARD X3.113-1987

15.2.5 Exceptions

In a numeric-fixed-parameter or fixed-defined-function, the

sum of the integer-size and fraction-size in a fixed-point-size

exceeds P (1010, fatal).

Upon assignment of a numeric value to a numeric-fixed-

parameter or fixed-defined-function, the number of significant

digits in the integer part exceeds the integer-size of the

numeric-fixed-parameter or fixed-defined-function (1011, fatal).

15.2.6 Remarks

None.

AMERICAN NATIONAL STANDARD X3.113-1987

16. Editing

The editing module of this standard provides facilities that aid
in the construction and modification of programs. The editing
module is specifically designed to create a BASIC environment,
where a BASIC user may RENUMBER a BASIC program, may LIST it, and
may subset it through DELETE and EXTRACT commands. This module
is only available during the preparation of a BASIC program. The
transition from editing to executing that program is implemen¬
tation-defined .

16.1 Unsorted Programs

16.1.1 General Description

Editing facilities enable the lines of a program to be
entered in an arbitrary order.

16.1.2 Syntax

1. unsorted-program
2. program-line

16.1.3 Examples

1. 20 PRINT TWO + TWO
30 END
20 PRINT 2+2
15 PRINT "2+2 EQUALS"

2 . 10 SUB SORT (A(), & !
& N) 1

16.1.4 Semantics

The program-lines in an unsorted-program shall be sorted
into ascending line-number sequence. In the case of duplicate
line-numbers, only the textually last program-line with a given
line-number shall be retained.

16.1.5 Exceptions

None.

16.1.6 Remarks

A program-line is a logical line (see 3.2).

List to be sorted
Length of list

= program-line*
= line-number

(character / line-continuation)*
end-of-line

270

AMERICAN NATIONAL STANDARD X3.113-1987

16.2 Editing Commands

16.2.1 General Description

Editing commands allow the programmer to manipulate the

texts of programs by listing, deleting, or renumbering selected

portions of the program.

16.2.2 Syntax

1. edit-command delete-command / extract-command /

list-command / renumber-command

2 . delete-command = DELETE segment-list

3. segment-list — segment-specifier

(comma segment-specifier)*

4. segment-specifier - segment-item (TO segment-item)?

5. segment-item = line-number / FIRST / LAST

6 . extract-command — EXTRACT segment-list

7. list-command LIST segment-list?

8. renumber-command ~ RENUMBER segment-specifier?

renumber-parameters?

9. renumber-parameters = AT initial-number (STEP step-size)? /

STEP step-size (AT initial-number)?

10. initial-number — line-number

11. step-size — integer

Line-numbers in a segment-list shall occur in increasing

order. If the keyword FIRST appears, it shall precede all line

numbers in a segment-list. If the keyword LAST appears, it shall

follow all line numbers in a segment-list.

16.2.3 Examples

2. DELETE 10

6. EXTRACT 100 TO 200, 300, 500 TO LAST

7. LIST

LIST 500 TO 999

8. RENUMBER

RENUMBER AT 1000

RENUMBER AT 1000 STEP 5

RENUMBER 100 TO 200 STEP 5 AT 100

16.2.4 Semantics

A segment-specifier specifies a collection of

in a program: if the segment-specifier is a single

then the collection shall consist of the indicated

line number does not exist, then the collection is

logical lines

segment-item,

line (if the

empty); if the

271

AMERICAN NATIONAL STANDARD X3.113-1987

segment-specifier contains two segment-items, then the collection
shall consist of all lines whose line-numbers are at least as
large as the first, but not larger than the second. A
segment-list specifies the collection of lines consisting of all
those specified by any segment-specifier in the segment-list.
The segment-item FIRST is synonymous with the lowest numbered
line in the program and LAST with the highest numbered line in
the program.

The delete-command shall cause the specified collection of
lines to be deleted from a program.

The extract-command shall cause all lines other than those
in the specified collection to be deleted from the program.

The list-command shall cause the text of the specified
collection of lines to be displayed; if the segment-list is
omitted, the text of the entire program shall be displayed.

The renumber-command shall cause new line-numbers to be
assigned to all lines in the specified collection (or in the
entire program if the segment-specifier is omitted). The new
line-number of the first line in the collection shall be the
initial-number (100 if no initial-number is specified); line-
numbers for succeeding lines in the collection shall be generated
using the specified step-size (or 10 if no step-size is
specified). All references throughout the entire program to
line-numbers contained in the collection being renumbered shall
be changed to conform to the new line-numbers.

The renumber-command shall not be executed, and the text of
the program shall be left unchanged, if;

(1) The renumber-parameters are chosen so that renumbered
lines would overlay or surround lines not being renumbered

(2) Renumbering would cause a change in the sequence order
of lines

(3) Renumbering would resolve an unresolved line-number
reference in a control-transfer, formatted-print-list, or
template-identifier

(4) Renumbering would create a line-number higher than the
host implementation could accept

The implementation shall then inform the user of the reason for
the failure.

272

AMERICAN NATIONAL STANDARD X3.113-1987

16.2.5 Exceptions

None .

16.2.6 Remarks

Implementations may issue a warning if a nonexistent

line-number is referenced by the segment-specifier for a deletion

or extraction.

The commands specified in this standard operate on logical

lines only. Implementation-supplied enhancements may provide the

capability to edit individual physical lines within a logical

line.

It is recommended that the display of the program produced

by the list-command show the leading zeros of line-numbers as

entered by the user, to facilitate alignment of source code.

273

AMERICAN NATIONAL STANDARD X3.113-1987

Table 8. Standard BASIC Character Set

Ordinal ORD
Position Code Graphic Mnemonic Name

0. 0/0 NUL Null
1. 0/1 SOH Start of heading
2 . 0/2 STX Start of text
3 . 0/3 ETX End of text
4. 0/4 EOT End of transmission
5. 0/5 ENQ Enquiry
6. 0/6 ACK Acknowledge
7 . 0/7 BEL Bell
8. 0/8 BS Backspace
9. 0/9 HT Horizontal tab
10. 0/10 LF Line feed
11. 0/11 VT Vertical tab
12 . 0/12 FF Form feed

13 . 0/13 CR Carriage return

14. 0/14 SO Shift out
15 . 0/15 SI Shift in
16. 1/0 DLE Data link escape
17. 1/1 DC1 Device control 1
18. 1/2 DC 2 Device control 2
19. 1/3 DC 3 Device control 3
20. 1/4 DC4 Device control 4
21. 1/5 NAK Negative acknowledge
22 . 1/6 SYN Synchronous idle
23. 1/7 ETB End of trans. block
24. 1/8 CAN Cancel
25 . 1/9 EM End of medium
26. 1/10 SUB Substitute
27. 1/11 ESC Escape
28. 1/12 FS File separator
29. 1/13 GS Group separator
30. 1/14 RS Record separator
31. 1/15 US Unit separator
32 . 2/0 SP Space
33. 2/1 1 Exclamation point
34. 2/2 II Quotation mark
35 . 2/3 # Number sign
36. 2/4 $ Dollar sign
37 . 2/5 o. •© Percent sign
38. 2/6 & Ampersand
39. 2/7 1 Apostrophe
40. 2/8 (Left parenthesis
41. 2/9) Right parenthesis

274

AMERICAN NATIONAL STANDARD X3.113-1987

Ordinal
Position Code Graphic

ORD
Mnemonic Name

42 . 2/10 * Asterisk
43 . 2/11 + Plus sign
44. 2/12 t Comma
45 . 2/13 - Minus sign
46. 2/14 • Period
47. 2/15 / Slant
48. 3/0 0 Digit Zero
49. 3/1 1 Digit One
50. 3/2 2 Digit Two
51. 3/3 3 Digit Three
52 . 3/4 4 Digit Four
53 . 3/5 5 Digit Five
54. 3/6 6 Digit Six
55. 3/7 7 Digit Seven
56. 3/8 8 Digit Eight
57. 3/9 9 Digit Nine
58. 3/10 : Colon
59. 3/11 / Semicolon
60. 3/12 < Less than sign
61. 3/13 = Equals sign
62 . 3/14 > Greater than sign
63 . 3/15 ? Question mark
64. 4/0 @ Commercial at
65 . 4/1 A Capital letter A
66 . 4/2 B Capital letter B
67. 4/3 C Capital letter C
68. 4/4 D Capital letter D
69. 4/5 E Capital letter E
70. 4/6 F Capital letter F
71. 4/7 G Capital letter G
72 . 4/8 H Capital letter H
73. 4/9 I Capital letter I
74. 4/10 J Capital letter J
75 . 4/11 K Capital letter K
76. 4/12 L Capital letter L
77. 4/13 M Capital letter M
78. 4/14 N Capital letter N
79. 4/15 0 Capital letter O
80. 5/0 P Capital letter P
81. 5/1 Q Capital letter Q
82 . 5/2 R Capital letter R
83 . 5/3 S Capital letter S
84. 5/4 T Capital letter T
85 . 5/5 U Capital letter U
86. 5/6 V Capital letter V

275

AMERICAN NATIONAL STANDARD X3.113-1987

Ordinal ORD
Position Code Graphic Mnemonic Name

87. 5/7 W Capital letter W
88. 5/8 X Capital letter X
89. 5/9 Y Capital letter Y
90. 5/10 Z Capital letter Z
91. 5/11 C Left bracket
92. 5/12 \ Reverse slant
93 . 5/13] Right bracket
94. 5/14

A

Circumflex accent
95 . 5/15 UND Underline
96. 6/0 GRA Grave accent
97. 6/1 a LCA Small letter a
98. 6/2 b LCB Small letter b
99. 6/3 c LCC Small letter c
100. 6/4 d LCD Small letter d
101 . 6/5 e LCE Small letter e
102. 6/6 f LCF Small letter f
103 . 6/7 g LCG Small letter g
104. 6/8 h LCH Small letter h
105. 6/9 i LCI Small letter i
106. 6/10 j LCJ Small letter j
107. 6/11 k LCK Small letter k
108. 6/12 1 LCL Small letter 1
109 . 6/13 m LCM Small letter m
110. 6/14 n LCN Small letter n
Ill. 6/15 o LCO Small letter o
112. 7/0 P LCP Small letter p
113 . 7/1 q LCQ Small letter q
114. 7/2 r LCR Small letter r
115 . 7/3 s LCS Small letter s
116. 7/4 t LCT Small letter t
117 . 7/5 u LCU Small letter u
118. 7/6 V LCV Small letter v
119. 7/7 w LCW Small letter w
120. 7/8 X LCX Small letter x
121 . 7/9 y LCY Small letter y
122. 7/10 z LCZ Small letter z
123. 7/11 { LBR Left brace
124. 7/12 1 VLN Vertical line
125. 7/13 } RBR Right brace
126. 7/14 TIL Tilde
127 . 7/15 DEL Delete

Additional other’ -characters may occur in ordinal positions
greater than 127 in the standard character set. The number of
additional other-characters is implementation-defined.

276

AMERICAN NATIONAL STANDARD X3.113-1987

Table 9. Exception Codes

This table specifies the values of the EXTYPE function
corresponding to the exceptions specified in this standard.
Nonfatal exceptions are designated by an exclamation-point (i).
The numbers in parentheses following each exception refer to the
subsections in which that exception is specified.

Overflow Errors (1000)

1001
1002
1003

1004
1005
1006

! 1007

1008
1009
1010
1011

Overflow in
Overflow in
Overflow in
(5.4,14.7)
Overflow in
Overflow in
Overflow in
Overflow in

evaluating
evaluating
evaluating

numeric-constant (5.1, 15.1)
numeric-expression (5.3)
numeric-supplied-function

evaluating VAL (6.4)
evaluating numeric-array-expression (7.2)
numeric datum for (MAT) READ (10.1, 10.5)
numeric datum for (MAT) INPUT from terminal

(10.2, 10.5)
Overflow in numeric data for file input (11.4)
Overflow during evaluation of DET or DOT (7.2)
Too many digits declared for fixed decimal (15.1, 15.2)
Overflow in fixed decimal assignment (15.1, 15.2)

1051 Overflow in evaluating string-expression (6.3)
1052 Overflow in evaluating string-array-expression (7.3)
1053 Overflow in string datum for (MAT) READ (10.1, 10.5)

I 1054 Overflow in string datum for (MAT) (LINE) INPUT
(10.2, 10.5)

1105 Overflow in string datum for file input (11.4)
1106 Overflow in string assignment (6.5, 9.1, 7.3)
1201 Overflow in numeric value for process input (14.4)
1202 Overflow in numeric value from shared data or message

(14.5, 14.6)
1203 Overflow in string value for process input (14.4)
1204 Overflow in string value from shared data or message

(14.5, 14.6)

Underflow Errors (1500)

The following exceptions are recommended in the Remarks
Sections, and are not mandated.

i 1501 Numeric constant underflow (5.1)
1 1502 Numeric expression underflow (5.3)

277

AMERICAN NATIONAL STANDARD X3.113-1987

1 1503 Function value underflow (5.4)
1 1504 VAL underflow (6.4)
i 1505 Array expression underflow (7.2)
! 1506 Numeric DATA underflow (10.1)
i 1507 Numeric input underflow (10.2, 10.5)
I 1508 File numeric input underflow (11.4)

Subscript Errors (2000)

2001 Subscript out of bounds (5.2, 6.2, 14.4, 14.5)

Mathematical Errors (3000)

3001 Division by zero (5.3)
3002 Negative number raised to nonintegral power (5.3)
3003 Zero raised to negative power (5.3)
3004 Logarithm of zero or negative number (5.4)
3005 Square root of negative number (5.4)
3006 Zero divisor specified for MOD or REMAINDER (5.4)
3007 Argument of ACOS or ASIN not in range -1 < x < 1 (5.4)
3008 Attempt to evaluate ANGLE(0,0) (5.4)
3009 Attempt to invert a singular matrix, or loss of all

significance in such attempt (7.2)

Uninitialized Errors (3100)

The following exceptions are recommended in the Remarks
Sections, and are not mandated.

! 3101 Uninitialized numeric-variable (5.2)
i 3102 Uninitialized string-variable (6.2)

Parameter Errors (4000)

4001 Argument of VAL not a numeric-constant (6.4)
4002 Argument of CHR$ out of range (6.4)
4003 Argument of ORD not a valid character or mnemonic (6.4)
4004 Index of SIZE out of range (7.1)

! 4005 Index in TAB less than one (10.3)
4006 Margin setting less than current zonewidth (10.3, 11.3)
4007 Index of ZONEWIDTH out of range (10.3, 11.3)
4008 Index of LBOUND out of range (7.1)
4009 Index of UBOUND out of range (7.1)
4010 Second argument of REPEAT$ < 0 (6.4)

278

AMERICAN NATIONAL STANDARD X3.113-1987

! 4101 Set-statement CLIP neither "ON" nor "OFF" (13.1)
1 4102 Set-statement TEXT JUSTIFY illegal value (13.2)

4201 First argument of BVAL has illegal character (14.7)
4202 Value of BVAL not in precision limits (14.7)
4203 First argument of BSTR$ negative (14.7)
4204 Second argument of BVAL or BSTR$ is not 2, 8, or 16

(14.7)

4301 Parameter type or count mismatch between chain-
statement and corresponding program-name-line (9.3)

4302 Mismatched dimensions between chain array parameter
and corresponding formal-array (9.3)

4303 Numeric parameters passed in chain having different
ARITHMETIC options (9.3)

Storage

5001

5002

Exhausted Errors (5000)

Size of redimensioned array too large (7.2, 7.3, 10.5,
11.4, 13.4)
Size of transform too large for receiving array (13.5)

Matrix Errors (6000)

6001 Mismatched sizes in numeric-array-expression (7.2)
6002 Argument of DET not a square matrix (7.2)
6003 Argument of INV not a square matrix (7.2)
6004 Arguments to IDN do not specify square matrix (7.2)
6005 First index greater than second in redim, or index less

than lower bound (7.2, 7.3, 10.5, 11.4)

6101 Mismatched sizes in string-array-expression (7.3)
6201 Numeric array used as transform-term not 4x4 (13.5)
6301 Mismatched sizes for array in real-time structure

(14.4, 14.5, 14.6)
6401 Inconsistent dimensions for an array in an

array-point-list or array-locate-object (13.3, 13.4)
6402 Size-select index out of range (13.3)

File Use Errors (7000)

7001 Channel number not in range 0 _< c <_ max (11.1)
i 7002 Channel zero in OPEN, CLOSE, ERASE7 or with

record-setter (11.1, 11.2)
7003 Nonzero channel in OPEN already active (11.1)

279

AMERICAN NATIONAL STANDARD X3.113-1987

7004 Inactive channel in file statement other than OPEN
or ASK (11.1, 11.2, 11.3, 11.4, 11.5)

7050 Keyed file OPEN with wrong collate sequence (11.1)
7051 LENGTH not greater than zero on OPEN (11.1)
7052 Device opened as RELATIVE or KEYED file (11.1)

7100 Unrecognizable file attribute in OPEN (11.1)
71xx implementation-defined failures to provide access to

file in accordance with file attribute (11.1)

7202 Record-setter with RECORD for nonrelative file (11.2)
7203 Record-setter with KEY for nonkeyed file (11.2)
7204 Record-setter SAME following DELETE, OPEN, or exception

(11.2)
! 7205 Record-setter used on device without that capability

(11.2)
7206 Record-setter RECORD less than one (11.2)
7207 Record-setter with exact search for null KEY value (11.2)

7301 Attempt to ERASE file not opened as OUTIN (11.1)
7302 Output not possible to INPUT file (11.3)
7303 Input not possible from OUTPUT file (11.4)
7305 Attempt to delete, rewrite, or input nonexistent record

(11.4, 11.5)
7308 Attempt to write existing record (11.3)

! 7311 Attempt to erase a device without erase capability (11.1)
7312 Zonewidth or margin set for non-display file (11.3)
7313 Zonewidth or margin set for INPUT file (11.3)
7314 (MAT) WRITE to keyed file without exact search (11.3)
7315 Template used with DISPLAY or INTERNAL file

(11.3, 11.4, 11.5)
7316 Accessing data in a NATIVE file without template

(11.3, 11.4, 11.5)
7317 (MAT) PRINT to INTERNAL or NATIVE file (11.3)
7318 (MAT) (LINE) INPUT from INTERNAL or NATIVE file (11.4)
7320 (MAT) REWRITE or DELETE on channel zero (11.5)
7321 SKIP REST on stream file (11.4)
7322 Attempt to REWRITE or DELETE to non-OUTIN file (11.5)

7401 Attempt to trace to inactive channel (12.2)
7402 Attempt to trace to non-display-format or INPUT file

(12.2)

Input-Output Errors (8000)

8001 (MAT) READ beyond end of data (10.1, 10.5)
i 8002 Too few data in input-reply (10.2, 10.5)
1 8003 Too many data in input-reply (10.2, 10.5)

280

AMERICAN NATIONAL STANDARD X3.113-1987

8011 End-of-file encountered on input (11.4)
8012 Too few data in record (11.4)
8013 Too many data in record (11.4)

8101 Nonnumeric datum for (MAT) READ or INPUT of number
from DISPLAY record (10.1, 10.5, 11.4)

i 8102 Syntactically incorrect input-reply from terminal
(10.2, 10.5)

i 8103 Nonnumeric datum for (MAT) INPUT of number
(10.2, 10.5)

8105 Syntactically incorrect input reply from file (11.4)
8120 Type mismatch on INTERNAL input (11.4)

8201 Invalid format-string (10.4, 10.5)
8202 No format-item in format-string for output list

(10.4, 10.5)
1 8203 Format-item too short for output string (10.4)
! 8204 Exrad overflow (10.4)

8251 Syntactically incorrect template (11.3, 11.4, 11.5)
8252 Type doesn't agree with template (11.3, 11.4, 11.5)
8253 Variable-field-count doesn't start an array

(11.3, 11.4, 11.5)
8254 Not enough template specifiers (11.3, 11.4, 11.5)
8255 Numeric value too large for template (11.3, 11.5)
8256 String value too large for template (11.3, 11.5)

8301 Record length exceeded on output to file (11.3, 11.5)
8302 Input from a record longer than RECSIZE (11.4)

8401 Timeout on (MAT) (LINE) INPUT (10.2, 10.5)
8402 Illegal numeric value specified for time-expression

(10.2, 10.5)

The following exception is recommended in the Remarks
Section, and is not mandated.

1 8106 Graphic input outside current window, device window, or
device viewport (13.4)

Device Errors (9000)

9xxx implementation-defined device failures

281

AMERICAN NATIONAL STANDARD X3.113-1987

Control Errors (10000)

10001 Index out of range, no ELSE in on-goto or on-gosub (8.2)

10002 Return without corresponding gosub or on-gosub (8.2)

10004 No case-block selected and no CASE ELSE (8.4)

10005 Attempt to chain to unavailable program (9.3)

i 10007 Break statement executed when debugging active (12.2)

Graphical Errors (11000)

11004 Attempt to change coordinates or clipping during

picture-def (13.5)

I 11051 Set-statement boundaries with zero width or height

(13.1)

1 11052 Viewport not in range (13.1)

I 11053 Device window not in range (13.1)

! 11054 Device viewport not in display space (13.1)

1 11056 Set-statement point style out of range (13.2)

! 11062 Set-statement line style out of range (13.2)

! 11073 Set-statement text height less than or equal to zero

(13.2)

I 11085 Set-statement or array-cells color index out of range

(13.2, 13.3)

I 11088 Set-statement color mix parameter not in range (13.2)

11100 Graphic-output with LINES and fewer than two points, or

with AREA and fewer than three points (13.3)

11140 Graphic input device not available (13.4)

11152 Start-value in locate-statement with CHOICE or VALUE out

of range (13.4)

Real-Time Errors (12000)

12001 Attempt to start activity which is not stopped (14.3)

12002 Attempt to signal event which occurred, but has not yet

restarted a waiting activity (14.3)

12003 Wait-statement is executed for an event which has

occurred more than once (14.3)

12004 Illegal numeric value specified for time-expression

(14.3)

12005 Illegal string value specified for time-expression

(14.3)

12006 Attempt to connect a connected event (14.3)

12007 Attempt to disconnent a disconnected event (14.3)

282

AMERICAN NATIONAL STANDARD X3.113-1987

12101 Timeout of wait-statement (14.3)

12102 Timeout of process-io- or seize-statement (14.4, 14.8)

12103 Timeout of send or receive statement (14.6)

12201 Incorrect process attributes (14.2)

When an exception occurs in a program-unit and is not

handled by an exception-handler in that program-unit, the

exception which results at the line which invoked the program-

unit shall be identified by the value 100000 plus the value

specified above for the exception.

283

Appendixes.

These Appendixes are not part of American National Standard

X3.113-1987, but are included for information only.

Appendix A.

Organization of the Standard

This standard is organized into a number of sections, each of

which covers a group of related features of BASIC. Each section

is divided further into subsections that treat particular

features of BASIC. The sub-subsections of each subsection are

used as follows.

A1 Subsubsection 1. General Description

This subsection briefly describes the features of BASIC to be

treated.

A2 Subsubsection 2. Syntax

The exact syntax of features of the language is described in a

modified context-free grammar or Backus-Naur Form. The details

of this method of syntax specification are described in 3.1.

In order to keep the syntax reasonably simple the syntax

specification will allow some constructions that, strictly

speaking, are not legal according to this standard; e.g., it will

allow the generation of the statement

LET X = A(1) + A(1,2)

in which the array A occurs with differing numbers of subscripts.

Rather than ruling such constructions out by a more complicated

formal syntax, this standard instead rules them out by placing

restrictions on that syntax.

The primary goal of the syntax is to define the notion of a

program and its constituent parts. In addition the syntax

defines several other items that are not needed for the

definition of a program. These include the input-prompt, which

is output to request input; the input-reply and line-input-reply,

which are strings supplied in response to a request for input;

and edit-commands, which may be applied to modify programs.

284

A3 Subsubsection 3. Examples

A short list of valid examples that can be generated by the

productions in Subsection 2 is given. The numbering of the

examples corresponds to the numbering of the productions, and

will not be consecutive if examples are not given for all rules.

A4 Subsubsection 4. Semantics

The semantic rules in this standard assign a meaning to the

constructions generated according to the syntax.

A5 Subsubsection 5. Exceptions

This subsection contains a list of those exception conditions

which a standard-conforming implementation must recognize.

Exception numbers (values of the EXTYPE function) are also given.

A6 Subsubsection 6. Remarks

This subsection contains remarks that point out certain features

of this standard as well as remarks which make recommendations

concerning the implementation of a BASIC language processor in an

operating environment.

285

Appendix B.

Scope Rules

The scope of an entity is that part of the program where its name

is recognized as referring to that object (as opposed to not

being recognized at all, or recognized as referring to some other

object). In general, an entity is known by only one name, and so

the scope of recognition of its name is also the scope in which

the object itself can be accessed. In the special case of

parameter passing by reference, the same object is known by two

different names, and so the object itself may be accessed outside

the scope of its name.

In all cases, the indicated scope is the scope of the name

of the object in question.

Object Scope

1. non-parameter variable

2. non-parameter array

3. program-unit parameter

4. internal-proc-def parameter

5. internal-proc-def

6. program-unit

7. DATA

8. channel-number (non-zero)

9. channel zero

10. IMAGE, TEMPLATE

11. GOSUB stack

12. OPTIONS

13. filenames

14. RND sequence

15. ports (data, message,

or process)

16. STRUCTURE

17. Graphic and PRINT

set-objects

18. Line-number

19. DEBUG and TRACE state

program-unit

program-unit

program-unit (se note)

internal-proc-def (see note)

program-unit

program

program-unit

program-unit

program

program-unit

smaller of program-unit,

internal-proc-def,

when-block,

or exception-handler

program-unit

program

program

program

program

program

program-unit

program-unit

NOTE: Even though the name is known only to the program-unit or

or internal-proc-def, when a parameter is passed by reference,

the object denoted is common to both the invoked and invoking

unit.

286

Appendix C.

Implementation-Defined Features

A number of the features defined in this Standard have been left

for definition by the implementer. However, this will not affect

portability, provided that the limits recommended in the various

sections are respected. The way these features are implemented

shall be defined in the user or system manual of the specific

implementation.

The following is a list of implementation-defined features.

Subsection 2.3

(1) Interpretation of syntactically illegal constructs

(2) Format of error messages

Subsection 2.4

(1) Format of exception messages

(2) Hardware dependent exceptions

(3) Order of exception detection in a line

Subsection 3.2

(1) Certain semantic rules for native data

Subsection 4.1

(1) Other-character

(2) Coding for the native collating sequence

Subsection 4.2

(1) End-of-line

(2) Maximum physical line length

(3) Effect of parameter list in program-name-line of program

not initiated by a chain-statement

(4) Relationship of program-designator and program-name

Subsection 4.4

(1) Restrictions on identifiers for procedures compiled

independently from the main program

Subsection 5.1

(1) Precision and range of numeric-constants

287

APPENDIX

Subsection 5.2

(1) Initial value of numeric variables

Subsection 5.3

(1) Order of evaluation of numeric-expressions

Subsection 5.4

(1) Accuracy of evaluation of numeric functions

(2) Value of MAXNUM and EPS

(3) Pseudorandom number sequence

(4) Availability of calendar and clock

(5) Time zone for DATE and TIME

Subsection 5.6

(1) Precision and range of

(2) Precision and range of

(3) Precision and range of

(4) Accuracy of evaluation

numeric values

floating decimal arithmetic

native arithmetic

of numeric expressions

Subsection 6.2

(1) Maximum length of undeclared string-variables

(2) Initial value of string-variables

Subsection 6.4

(1) Values of CHR$ for the native character set

(2) Values of ORD for the native character set

(3) Availability of calendar and clock

(4) Time-zone for DATE$ and TIME$

Subsection 6.6

(1) Collating sequence under OPTION COLLATE NATIVE

(2) Maximum length of declared string-variables without

length-max

Subsection 7.1

(1) Maximum lengths of strings in string-arrays with

length-max

288

APPENDIX

Subsection 7.2

(1) Value of the inverse of a singular matrix

Subsection 9.1

(1) Maximum length of string parameters without length-max

(2) Value of a defined function when no value has been

specified

(3) Initial values of local variables in external functions

Subsection 9.2

(1) Maximum length of string parameters without length-max

(2) Effect of redimensioning an array parameter when an

element of that array is also a parameter

(3) Initial values of variables which are not formal

parameters to a procedure

Subsection 9.3

(1) Interpretation of the program-designator in a chain-

statement

(2) Interpretation of upper- and lower-case-letters in a

program-designator

(3) Initial values of variables in a chained-to program

Subsection 10.2

(1) Input-prompt

(2) Means of requesting input in batch mode

(3) Values (minimum and maximum) and resolution of timeout-

expression and time-inquiry

Subsection 10.3

(1) Effect of invoking a function which causes printing while

printing

(2) Significance width for printing numeric representations

(3) Exrad width for printing numeric representations

(4) Effect of nonprinting characters on columnar position

(5) Default margin

(6) Default zonewidth

(7) Treatment of trailing space at end of print line

(8) Use of upper- or lower-case "E" in exrad

289

APPENDIX

Subsection 10.5

(1) Treatment of re-supply of input to a re-dimensioned array

Section 11

(1) Effect of certain combinations of file organization and

type

Subsection 11.1

(1) Maximum channel number

(2) Whether a file name with different case letters (lower or

upper) denotes the same file or different files

(3) Effect of attempting to open an already open file

(4) Number of channels which can be active simultaneously

(5) Attempting to open a file with attributes different from

those under which it was created

(6) Attempting to reopen a file under a different ARITHMETIC

option

(7) Two program-units attempting to open a file under

different attributes or options

(8) Means of insuring preservation of file contents between

runs

(9) Effect of certain combinations of file organization and

type

(10) Length of records in INTERNAL and NATIVE files

(11) Maximum length of records when not specified or available

(12) Value of DATUM for a non-stream file

(13) Value of ask-attribute NAME for channel zero

(14) Meaning of exception codes 7101-7199

(15) Maximum length of keys for KEYED file

Subsection 11.2

(1) Method of signifying that data is not available for input

on a non-file device channel

Subsection 11.3

(1) Means of indicating end-of-record

(2) Default margin and zonewidth

(3) Maximum margin and zonewidth supported

(4) Accuracy of printed numeric values produced by PRINT for

DISPLAY files

290

APPENDIX

Subsection 11.4

(1) Number of significant digits for value received from a

numeric-field in a NATIVE file

(2) Effect of input-control-items on files and nonterminal

devices

(3) Precision of numeric-constants received from DISPLAY files

(4) Precision of numeric-values that can be retrieved without

loss of precision from a NATIVE file

(5) Retrieving a record from a NATIVE file having contents

which are incompatible with the TEMPLATE

(6) Use of fatal or nonfatal exception procedure on illegal

input-reply

Subsection 11.5

(1) Effect of data modification statements on files that are

not RELATIVE or KEYED

(2) Use of SKIP in incompatible template for REWRITE

Subsection 12.1

(1) Value of EXTYPE for locally defined exceptions

(2) Format of EXTEXT$ value

Subsection 12.2

(1) Actions allowed by debugging system

(2) Form of trace reports

Subsection 13.1

(1) Manner of selecting a particular graphic display device

(2) Effect of "inverted" windows

Subsection 13.2

(1) Number of line styles available for graphics

(2) Effect of line styles other than 1, 2, 3, or 4

(3) Number of point styles available for graphics

(4) Effect of point styles other than 1, 2, 3, 4, or 5

(5) The number of color values available

(6) The color associated with each color value

(7) Effect of SET COLOR MIX on portion already drawn

(8) Default values of COLOR MIX

(9) Availability of general text orientation

(10) Orientation of text in labels

291

APPENDIX

Subsection 13.3

(1) Effect of plotting or filling from an array whose second

dimension is greater than two

(2) Character size, style, and orientation for graphic labels

(3) Effect of partial clipping on characters

Subsection 13.4

(1) Means for notifying users of the need for graphic input

(2) Effect of attempt to supply graphic input outside current

window, device window, or device viewport

(3) Effect of executing GET when current-transform is singular

(4) Default locations of indicators

(5) Effect of array-locate-object array having second

subscript with more than two values

Subsection 14.1

(1) Scheduling of parallel-sections

(2) Interpretation of the urgency of parallel-sections

(3) Where execution of a parallel-section can be interrupted

(4) Initial values of variables in parallel-sections

Subsection 14.2

(1) Interpretation of the access-information for a process-

object

Subsection 14.3

(1) Which of several activities waiting for an event is

restarted

(2) Accuracy of timer

Subsection 14.4

(1) Exception conditions for process-objects

Subsection 14.5

(1) Getting an uninitialized data section

Subsection 14.6

(1) Which of several receive-statements receive a message

(2) Which of several send-statements send a message

292

APPENDIX

Subsection 14.8

(1) Seize-item names

Subsection 15.1

(1) The maximum precision available for fixed decimal

arithmetic

(2) The precision of fixed decimal expression and function

evaluation

(3) The accuracy of fixed decimal expression and function

evaluation

(4) Definition of "significant digits"

(5) The accessibility of an INTERNAL format file to programs

having different ARITHMETIC options

(6) The accessibility of a NATIVE format file to programs

having different ARITHMETIC options

Section 16

(1) The method of transition from editing to execution

Table 8

(1) The number of additional other-characters

It should be noted that implementation-defined features may

cause the same program to produce different results on different

implementations, for these and possibly other reasons:

(1) The logical flow of a program may be affected by the

algorithm used for the pseudorandom number sequence

(2) The logical flow of a program may be affected by the

value of machine infinitesimal, the value of MAXNUM, the

precision for numeric values, or any combination of these three

(3) The initial value of variables may affect the logical

flow of a program which contains logical errors

(4) The order of evaluation of numeric-expressions may

affect the logical flow of a program

293

Appendix D.

Index of Syntactic Objects

This Appendix indexes all occurrences of terminal symbols and

metanames in the syntax. Each reference has the form cc.s-pp,

where cc.s indicates the section and subsection in which the

metaname occurs and pp indicates the number of the production.

(All production rules occur in subsubsection 2 in each sub¬

section; the subsubsection number is therefore omitted from the

reference.) An asterisk following a reference indicates that the

metaname is defined in that production.

Example: 4.1-07 refers to section 4, subsection 4.1, subsub¬

section 4.1.2 (the syntax subsubsection), production rule 7.

0 4.1-07 7.1-09

1 4.1-07 7.1-09

2 4.1-07

3 4.1-07

4 4.1-07

5 4.1-07

6 4.1-07

7 4.1-07

8 4.1-07

9 4.1-07

A 4.1-09

ABS 5.4-01

ACCESS 11.1-08 11.1-22

ACOS 5.4-01

AND 8.1-03

ANGLE 5.4-01 5.6-03

AREA 13.2-04 13.3-05

ARITHMETIC 5.6-03 15.1-01

ARRAY 13.4-15

ASIN 5.4-01
ASK 10.3-08 11.1-18

294

16.2-09 AT 13.

ATN 5.

B 4.

BASE 7.

BEGIN 11.

BREAK 12.

BSTR 14.

BVAL 14.

C 4.

CALL 9.

CASE 8.

14.

CAUSE 12.

CEIL 5.

CELLS 13.

CHAIN 9.

CHOICE 13.

CHR 6.

CLEAR 13.

CLIP 13.

CLOSE 11.

COLLATE 6.

COLOR 13.

CON 7.

CONNECT 14.

CONTINUE 12.

COS 5 .

COSH 5.

COT 5 .

CSC 5.

D 4.

DATA 10.

DATE 5 .

DATUM 11.

DEBUG 12.

DECIMAL 5.

DECLARE 5.

DEF 9.

DEG 5 .

DEGREES 5 .

DELAY 14.

DELETE 11.

DET 7.

DEVICE 13.

DIM 7.

-12 13.4-14

-01

-09

-09

-05

-02
-01
-02

-09

-14

-13 8.4-16 8.4-21 14.6-09

-12
-13

-01
-13

-01
-07 13.4-17

-01
-02
-01 13.1-06

-16

-01 11.1-29 11.1-31

-03 13.2-07

-06

-10
-11
-01
-01
-01
-01

-09

-06

-01 6.4-01

-22
-01
-03

-04 14.2-04 14.2-15

-05 9.1-07 9.1-20 15.2-07

-01
-03

-07

-06 16.2-02

-10
-01 13.1-06 13.4-15

-01

3
4

1
1
2
2

7

7

1

2
4

6
1

4

3

3

4

4

2
1
1
6
2
2
3

1
4

4

4

4

1

1

4

1
2
6
6
1
4

6
3

5

2
1
1

295

APPENDIX

DISCONNECT 14.3-12

DISPLAY 11.1-14

DO 8.3-04 8.3-07

DOT 7.2-10

DRAW 13.5-02

E 4.1-09 5.1-08 11.3-N22

ELAPSED 10.2-07

ELSE 8.2-03

8.4-21

8.2-06 8.4-01 8.4-09

ELSEIF 8.4-07

END 4.2-18 8.4-10 8.4-22 9.1-13

9.2-10 11.2-05 12.1-07 12.1-17

13.5-18 14.1-10 14.2-19 14.8-06

EPS 5.4-01

ERASABLE 11.1-22

ERASE 11.1-17

EVENT 14.2-20

14.6-09

14.3-08 14.3-10 14.3-12

EXCEPTION 12.1-03 12.1-09 12.1-13

EXIT 8.3-07 8.3-18 9.1-18 9.2-11

12.1-12 13.5-08 14.8-07

EXLINE 12.1-18

EXP 5.4-01

EXTERNAL 9.1-15 9.1-22 9.2-13 9.2-19

13.5-20 13.5-24 15.2-06

EXTEXT 12.1-19

EXTRACT 16.2-06

EXTYPE 12.1-18

F 4.1-09

FILETYPE 11.1-22

FIRST 16.2-05

FIXED 15.1-01

FOR 8.3-12 8.3-18

FP 5.4-01

FROM 14.4-02 14.4-05 14.5-02 14.5-03

14.6-02 14.6-03

FUNCTION 9.1-12 9.1-13 9.1-15 9.1-18

9.1-21 9.1-22 15.2-05 15.2-06

G 4.1-09

GET 13.5-27 14.5-03

GO 8.2-02 8.2-03 8.2-04 8.2-06

GOSUB 8.2-04 8.2-06

GOTO 8.2-02 8.2-03

GRAPH 13.3-04

296

APPENDIX

H 4.1-09

HANDLER 12.1-12 12.1-16 12.1-17

HEIGHT 13.2-09

I 4.1-09

IDN 7.2-06

IF 8.4-01

11.2-07

8.4-04 8.4-10 10.1-03

IMAGE 10.4-05

IN 12.1-03 13.3-13 14.4-02

INPUT 10.2-01 10.2-08 10.5-04 10.5-06

11.1-08 11.4-01 11.4-02 11.4-03

11.4-04 14.2-11

INT 5.4-01

INTERNAL 11.1-14

INV 7.2-09

IP 5.4-01

IS 8.4-19

J 4.1-09

JUSTIFY 13.2-03 13.2-07

K 4.1-09

KEY 11.1-31 11.2-10

KEYED 11.1-24

L 4.1-09

LAST 16.2-05

LBOUND 7.1-12

LCASE 6.4-01

LEN 6.4-02

LENGTH 11.1-15

LET 5.5-02 6.5-02 9.1-16 9.1-17

LIMIT 13.3-09

LINE 10.2-08

13.2-05

10.5-06 11.4-03 11.4-04

LINES 13.3-05 13.5-11

LIST 16.2-07

LOCATE 13.4-03 13.4-04

LOG 5.4-01

LOGIO 5.4-01

LOG2 5.4-01

LOOP 8.3-09

LTRIM 6.4-01

297

APPENDIX

M 4.1-09
MARGIN 10.3-07 10.3-10 11.1-22 11.3-05
MAT 7.2-02 7.3-02 10.5-01 10.5-04

10.5-06 10.5-09 11.3-02 11.3-07
11.4-02 11.4-04 11.4-08 11.5-03
13.3-08
13.5-27

13.3-13 13.4-04 13.5-09

MAX 5.4-01 13.2-07 13.4-15
MAXLEN 6.4-03
MAXNUM 5.4-01
MAXSIZE 7.1-12
MESSAGE 14.2-25 14.6-09
MIN 5.4-01
MISSING 10.1-03
MIX 13.2-03 13.2-07
MOD 5.4-01
MULTIPOINT 13.4-17

N 4.1-09
NAME 11.1-01 11.1-22
NATIVE 5.6-03 6.6-01 11.1-29 11.1-N26
NEXT 8.3-20 11.2-05
NOT 8.1-04
NUL 7.3-05
NUMERIC 5.6-06 11.3-N21 14.2-08 15.1-03

0 4.1-09
OF 11.3-N18 11.3-N19 14.2-07 14.2-10

14.2-15 14.2-23 14.2-25
OFF 12.2-01 12.2-03
ON 8.2-03

14.6-06
8.2-06 12.2-01 12.2-03

OPEN 11.1-01
OPTION 5.6-01
OR 8.1-02
ORD 6.4-02
ORGANIZATION 11.1-09 11.1-22
OUT 14.4-05
OUTIN 11.1-08 14.2-11
OUTPUT 11.1-08 14.2-11

P 4.1-09
PARACT 14.1-07 14.1-10
PARSTOP 14.1-13
PI 5.4-01
PICTURE 13.5- 08

13.5- 24
13.5-17 13.5-18 13.5-22

PIXEL 13.4-15

298

APPENDIX

PLOT 13.5-
POINT 13.2-
POINTER 11.1-
POINTS 13.3-
PORT 14.6-
POS 6.4-
PRINT 10.3-

11.3-
PROCESS 14.2-
PROGRAM 4.2-
PROMPT 10.2-
PUT 14.5-

Q 4.1-

R 4.1-
RAD 5.4-
RADIANS 5.6-
RANDOMIZE 5.4-
RANGE 13.4-
READ 10.1-
RECEIVE 14.6-
RECORD 11.1-
RECSIZE 11.1-
RECTYPE 11.1-
RELATIVE 11.1-
REM 4.3-
REMAINDER 5.4-
RENUMBER 16.2-
REPEAT 6.4-
REST 11.1-
RESTORE 10.1-
RETRY 12.1-
RETURN 8.2-
REWRITE 11.5-
RND 5.4-
ROTATE 13.5-
ROUND 5.4-
RTRIM 6.4-

S 4.1-
SAME 11.2-
SCALE 13.5-
SEC 5.4-
SEIZE 14.8-
SELECT 8.4-
SEND 14.6-
SEQUENTIAL 11.1-

13.5-11
13.4-05 13.4-17
11.2-03

10.4-01 10.5-09 11.3-01

14.2-15 14.2-19

10.5- 01 11.4-07 11.4-08
14.6- 09
11.2-10
11.1-22
11.1-22

11.4-01 11.4-07

11.5-03

14.8-06 14.8-07
8.4-22 14.6-06

14.6-09

10
05
22
05
06
02
01
02
09
02
04
02

09

09
01
03
02
12
01
03
31
15
12
24
01
01
08
01
17
05
11
05
02
01
07
01
01

09
05
07
01
03
13
02
11

299

APPENDIX

SET 10.3-06
SETTER 11.1-22
SGN 5.4-01
SHARED 14.2-23 14.8-05
SHEAR 13.5-07
SHIFT 13.5-07
SIGNAL 14.3-09
SIN 5.4-01
SINH 5.4-01
SIZE 7.1-12 13.1-06 13.4-15
SKIP 11.3-N18 11.4-01 11.4-07
SQR 5.4-01
STANDARD 6.6-01 11.1-29
START 14.3-02
STATUS 13.1-05
STEP 8.3-12 16.2-09
STOP 4.2-13
STR 6.4-01
STREAM 11.1-11
STRING 6.6-03 11.3-N26 14.2-08
STRUCTURE 14.2-05
STYLE 13.2-03 13.2-07
SUB 8.2-04 8.2-06 9.2-04 9.2-10

9.2-11 9.2-18 9.2-19

T 4.1-09
TAB 10.3-04
TAN 5.4-01
TANH 5.4-01
TEMPLATE 11.3-N15
TEXT 13.2-03 13.2-04 13.2-07 13.3-11
THEN 8.4-01 8.4-04 8.4-07 10.1-03

11.2-07
THERE 11.2-07
TIME 5.4-01 6.4-01 14.3-04
TIMEOUT 10.2-05 14.6-12
TO 7.1-06 7.2-08 8.2-02 8.2-03

8.3-12 8.4-19 12.2-03 13.4-12
14.4-02 14.4-05 14.5-02 14.5-03
14.6-02 14.6-03 16.2-04

TRACE 12.2-03
TRANSFORM 13.5-26 13.5-28
TRN 7.2-09
TRUNCATE 5.4-01

U 4.1-09
UBOUND 7.1-12
UCASE 6.4-01

300

APPENDIX

UNTIL 8.3-
URGENCY 14.1-
USE 12.1-
USING 6.4-

13.3-

V 4.1-
VAL 6.4-
VALUE 13.4-
VARIABLE 11.1-
VIEWPORT 13.1-

W 4.1-
WAIT 14.3-
WHEN 12.1-
WHILE 8.3-
WINDOW 13.1-
WITH 9.3-
WRITE 11.3-

X l »—1 •

Y 4.1-

Z 4.1-
ZER 7.2-
ZONEWIDTH 10.3-

a 4.1-
access-information 14.2-
access-mode 11.1-
actual-array 5.3-

9.2-
ampersand 4.1-
apostrophe 4.1-
array-assignment 4.2-
array-cells-statement 13.3-
array-declaration 7.1-
array-geometric-statement 13.3-
array-input-statement 4.2-
array-line-input-statement 4.2-
array-list 11.3-
array-locate-object 13.4-
array-locate-statement 13.4-
array-name 5.2-

10.5-
11.3-

array-output-list 10.5-

12.1-09
10.4-02 10.5-09 11.3-04

13.4-15 13.4-17

13.1-06

12.1- 07 12.1-09

13.1- 06
11.3- N13 13.5-02
11.3- 07

10.3-10 11.1-22 11.3-05

14.2-18 14.2-22*
11.1-08*
5.3-10* 7.1-13 7.1-14

4.2-24 6.3-06
10.4-08
7.2-01* 7.3-01*

13.3- 13*
7.1-03*

13.3- 08*
10.5-04* 11.4-02*
10.5-06* 11.4-04*
11.3-11* 11.5-03
13.4-08* 13.5-27
13.4-04*
5.3-10 6.2-08* 9.1-11

10.5-05 10.5-10 10.5-11
14.4-04 14.4-07
10.5-11* 11.3-02

05
07
05
01
11

09
02
07
15
01

09
03
03
05
01
01
06

09

09

09
06
07

10
09
07
09
16
03
03
12
02
02
02
12
12
07
04
02
10
03
11
09

301

APPENDIX

array-point-list 13.3-
array-print-list 10.5-
array-print-statement 4.2-
array-read-statement 4.2-
array-rewrite-statement 11.5-
array-write-statement 4.2-
ask-attribute-name 11.1-
ask-io-item 10.3-
ask-io-list 10.3-
ask-item 11.1-
ask-item-list 11.1-
ask-object 13.1-
ask-statement 4.2-
asterisk 4.1-

7.2-
13.5-

b 4.1-
block 4.2-

8.4-
8.4-

12.1-
14.6-

bound-argument 7.1-
boundaries 13.1-
boundary 13.1-
boundary-variables 13.1-
bounds 7.1-

14.2-
bounds-range 7.1-
break-statement 4.2-

c 4.1-
call-statement 4.2-
case-block 8.4-
case-else-block 8.4-
case-else-line 4.2-
case-item 8.4-
case-line 4.2-
case-list 8.4-
case-port-block 14.6-
case-port-line 14.6-
case-port-statement 14.6-
case-statement 8.4-
case-timeout-block 14.6-
case-timeout-line 14.6-
case-timeout-statement 14.6-
cause-statement 4.2-

13.3-10*
10.5-10* 11.3-02
10.5-09* 11.3-02*
10.5- 01*
11.5- 03*
11.3-07*

11.4-08*

11.1-21*
10.3- 10*
10.3- 09*
11.1-20*
11.1-19*

11.1-30*

13.1-06* 13.2-07* 13.4-15*
10.3-08* 11.1-18* 13.1-04*
5.3-11 6.6-04 7.2-04

10.4-13
15.1-02

11.3-N21 11.3-N26

4.2-07* 8.3-06 8.3-17
8.4-06 8.4-08 8.4-14
9.1-02 9.2-02 12.1-04

13.5-15 14.1-04 14.1-14*
14.6-10
7.1-14*

13.1- 02*
13.1- 03*
13.1- 07*

14.8-01

7.1- 05*
14.2- 23
7.1- 06*

12.2- 02*

9.2- 14*
8.4- 14*
8.4- 20*

7.1-08 14.2-08

8.4- 20
8.4- 18*

8.4-21*

8.4- 14
8.4- 17*

14.6- 07*
14.6- 08*
14.6- 09*
8.4- 16*

14.6- 10*
14.6- 11*
14.6- 12*
12.1-13*

8.4-15*

08
09
12
12
01
12
20
09
08
19
18
04
12
03
05
05

10
05
05
20
06
07
12
01
02
06
04
15
05
12

10
12
11

11

22
17
22
16
04
07
08
15
04
10
11

12

302

APPENDIX

chain-statement 4.2-12 9.3-01*
channel-expression 9.2-16 11.1-02 11.1-03* 11.1-16

11.1-17 11.3-01 11.3-02 11.3-06
11.3-07 11.4-01 11.4-02 11.4-03
11.4-04 11.4-07 11.4-08 11.5-02
11.5-03 11.5-06 12.2-03

channel-number 9.2-07 9.2-08*
channel-setter 11.1-01

11.3-05
11.1-02* 11.1-18 11.2-01

character 4.1-01* 4.3-02 10.2-11 16.1-02
circumflex-accent 4.1-03 5.3-04 10.4-15
clear-statement 13.2-01 13.2-02*
close-statement 4.2-12 11.1-16*
collate-sequence 11.1-28 11.1-29*
colon 4.1-03 6.2-06 10.1-01 10.2-02

10.4-02 10.4-05 10.4-08 10.5-01
10.5-09 11.1-02 11.3-01 11.3-02
11.3-06 11.3-07 11.3-N15 11.4-01
11.4-02 11.4-03 11.4-04 11.4-07
11.4-08 11.5-02 11.5-03 13.3-03
13.3-08 13.3-11 13.3-13 13.4-03
13.4-04
14.2-18

13.5-11 13.5-27 14.2-05

comma 4.1-03 5.2-06 5.3-08 5.5-03
5.6-02 5.6-06 6.5-03 6.6-03
7.1-02 7.1-05 7.1-14 7.2-07
7.2-10 8.2-03 8.2-06 8.4-17
9.1-09 9.1-11 9.1-23 9.2-06
9.2-15 9.2-20 10.1-02 10.1-07

10.2-02 10.2-10 10.3-05 10.3-09
10.4-04 10.4-12 10.5-02 10.5-07
10.5-11 11.1-05 11.1-19 11.2-02
11.3-03 11.3-08 11.3-10 11.3-11
11.3-N16 11.4-01 11.4-05 11.4-07
11.4-09 11.5-04 11.5-07 13.1-02
13.1-06 13.1-07 13.2-03 13.2-06
13.2-07 13.2-08 13.3-07 13.3-08
13.3-10 13.3-11 13.3-12 13.3-13
13.4-06 13.4-08 13.4-11 13.4-12
13.4-14 13.4-15 13.5-23 14.2-05
14.2-18 14.3-11 14.4-03 14.4-06
14.8-04 15.1-03 16.2-03

comparison 8.1-05 8.1-06*
concatenation 6.3-02 6.3-06* 7.3-03 7.3-05
conditional-statement 4.2-10 4.2-14*
conjunction 8.1-02 8.1-03*
connect-statement 14.3-01 14.3-10*

303

APPENDIX

constant

control-transfer
control-variable
coordinate-pair

coordinate-variables
core-attribute-name
core-file-attribute
core-file-org-value
core-record-setter

core-record-type-value
current-trans form

d
data-io-statement
data-list
data-port-dec
data-port-name

data-statement
data-structure-dec
datum
debug-statement
declarative-statement
declare-statement
def-statement
def-type
defined-function
delete-command
delete-control
delete-control-item
delete-statement
detached-handler
device-select
device-type
digit

digit-place
dimension-list
dimension-statement
disconnect-statement
disjunction
do-body
do-line
do-loop
do-statement

5.1-01* 6.1-01* 8.4-18
10.1-08
8.2-01*
8.3-12 8.3-13* 8.3-20

13.3-06 13.3-07* 13.3-12
13.4-16
13.4-03 13.4-06* 13.5-27
11.1-21 11.1-22*
11.1-06 11.1-07*
11.1-10 11.1-11*
11.2-03 11.2-04 11.2-05*
11.4-06
11.1-13 11.1-14*
13.5-06 13.5-26*

4.1-10
14.1-12 14.5-01*
10.1-06 10.1-07* 10.2-10
14.2-04 14.2-23*
14.2-23 14.2-24* 14.2-28
14.5-03 14.8-05
4.2-11 10.1-06*

14.2-04 14.2-05*
10.1-07 10.1-08*
4.2-12 12.2-01*
4.2-10 4.2-11* 11.3-N14
4.2-11 5.6-04*
9.1-03 9.1-04*
9.1-19 9.1-20*
9.1-23 9.1-24* 15.2-08*

16.2-01 16.2-02*
11.5-06 11.5-07*
11.5-07 11.5-08*
11.5-01 11.5-06*
4.2-06 12.1-15*

13.4-05 13.4-07 13.4-13*
13.4-15 13.4-17*
4.1-06 4.1-07* 4.2-09
5.1-06 10.4-08

10.4-12 10.4-13*
7.1-01 7.1-02*
4.2-11 7.1-01*

14.3-01 14.3-12*
8.1-01 8.1-02*
8.3-02 8.3-06*
4.2-22 8.3-02 8.3-03*
8.3-01 8.3-02*
8.3-03 8.3-04*

8.4-19

13.3-14

11.3-04

14.5-02

4.4-03

304

APPENDIX

dollar-sign 4.1-03 4.4-04 6.4-01 7.3-05
10.4-11 12.1-19 14.7-01

double-quote 4.1-02 4.1-04*
draw-statement 13.5-01 13.5-02*

e 4.1-10
e-format-item 10.4-09 10.4-15*
edit-command 16.2-01*
else-block 8.4-03 8.4-08*
else-line 4.2-22 8.4-08 8.4-09*
elseif-block 8.4-03 8.4-06*
elseif-then-line 4.2-22 8.4-06 8.4-07*
end-function-line 4.2-22 9.1-02 9.1-13* 9.1-14
end-handler-line 4.2-22 12.1-15 12.1-17*
end-if-line 4.2-22 8.4-03 8.4-10*
end-line 4.2-04 4.2-17* 4.2-22
end-of-line 4.2-15 4.2-16* 4.2-21 10.2-10

10.2-11 10.4-05 16.1-02
end-paract-line 14.1-04 14.1-05 14.1-09*
end-paract-statement 14.1-09 14.1-10*
end-picture-line 13.5-15 13.5-18* 13.5-19 13.5-25
end-process-line 14.2-02 14.2-13 14.2-19*
end-seize-line 14.8-01 14.8-06* 14.8-08
end-select-line 4.2-22 8.4-11 8.4-22* 14.6-04
end-statement 4.2-17 4.2-18*
end-sub-line 4.2-22 9.2-02 9.2-09* 9.2-12
end-sub-statement 9.2-09 9.2-10*
end-when-line 4.2-22 12.1-02 12.1-07* 12.1-08
enhanced-attribute-name 11.1-30 11.1-31*
enhanced-file-attribute 11.1-27 11.1-28*
enhanced-file-org-value 11.1-23 11.1-24*
enhanced-record-setter 11.2-08 11.2-09 11.2-10*
enhanced-record-type-value 11.1-N25 11.1-N26*
equality-relation 8.1-07 8.1-08*
equals-sign 4.1-03 5.5-02 6.5-02 7.2-02

7.3-02 8.1-08 8.1-10 8.1-11
8.3-12 9.1-05 9.1-07 9.1-16
9.1-17 10.4-08 11.2-11 13.5-09

15.2-07
erase-statement 4.2-12 11.1-17*
event-clause 14.2-09 14.2-20*
event-list 14.3-10 14.3-11* 14.3-12
event-name 14.2-20 14.2-21* 14.2-28 14.3-08

14.3-09 14.3-11 14.6-09
exact-search 11.2-10 11.2-11*
exception-handler 12.1-02 12.1-06* 12.1-15
exception-type 12.1-13 12.1-14*
exclamation-point 4.1-03 4.3-04 10.4-08

305

APPENDIX

exit-condition 8.3-04 8.3-05* 8.3-09
exit-do-statement 4.2-12 8.3-07* 10.1-04
exit-for-statement 4.2-12 8.3-18* 10.1-04
exit-function-statement 4.2-12 9.1-18*
exit-handler-statement 4.2-12 12.1-12*
exit-picture-statement 13.5-01 13.5-08*
exit-seize-statement 14.1-12 14.8-07*
exit-sub-statement 4.2-12 9.2-11*
expression 5.3-01* 5.3-09 6.3-01* 8.4-13

9.2-16 10.3-03 10.4-04 11.3-10
14.4-07

expression-list 11.3-06 11.3-10* 11.5-02 13.3-11
exrad 5.1-04 5.1-08*
external-function-def 4.2-20 9.1-01 9.1-14*
external-function-line 4.2-22 9.1-14 9.1-15* 15.2-06*
external-function-type 9.1-19 9.1-22*
externa1-picture-def 13.5-12 13.5-13 13.5-19*
external-picture-line 13.5-19 13.5-20* 13.5-25
externa1-picture-type 13.5-21 13.5-24*
external-sub-def 4.2-20 9.2-01 9.2-12*
external-sub-line 4.2-22 9.2-12 9.2-13*
external-sub-type 9.2-17 9.2-19*
extract-command 16.2-01 16.2-06*

f 4.1-10
f-format-item 10.4-09 10.4-14* 10.4-15
factor 5.3-03 5.3-04*
fieId-specifier 11.3-N17 11.3-N20*
file-attribute 11.1-05 11.1-06* 11.1-27*
file-attribute-list 11.1-01 11.1-05*
file-name 11.1-01 11.1-04*
file-organization 11.1-07 11.1-09*
file-organization-value 11.1-09 11.1-10* 11.1-23*
fixed-declaration 15.1-03 15.1-04*
fixed-defined-function 15.2-05 15.2-06 15.2-07 15.2-08

15.2-09*
fixed-fieId-count 11.3-N17 11.3-N18*
fixed-formal-array 15.2-03 15.2-04*
fixed-point-size 11.3-N22 11.3-N23* 15.1-02
fixed-point-type 14.2-08 15.1-01 15.1-02* 15.1-03

15.1-04 15.2-03 15.2-04 15.2-09
floating-characters 10.4-09 10.4-11*
for-body 8.3-10 8.3-17*
for-line 4.2-22 8.3-10 8.3-11*
for-loop 8.3-01 8.3-10*
for-statement 8.3-11 8.3-12*
formal-array 9.1-10 9.1-11* 9.2-07 15.2-04
format-item 10.4-06 10.4-09*

306

APPENDIX

format-string 10.4-05 10.4-06*
formatted-print-list 10.4-01 10.4-02*
fraction 5.1-05 5.1-07*
fraction-size 11.3-N23 11.3-N25*
function-arg-list 5.3-06 5.3-08* 6.3-04 9.3-01

13.5-06
function-argument 5.3-08 5.3-09*
function-def 9.1-01*
function-list 9.1-20 9.1-21 9.1-22 9.1-23*
function-parameter 9.1-09 9.1-10* 15.2-01*
function-parm-list 4.2-02 9.1-05 9.1-07 9.1-09*

9.1-12 9.1-15 15.2-05 15.2-06
15.2-07

g 4.1-10
geometric-object 13.3-03 13.3-05* 13.3-08
geometric-statement 13.3-02 13.3-03* 13.5-11*
get-statement 14.5-01 14.5-03*
gosub-statement 4.2-12 8.2-01 8.2-04*
goto-statement 4.2-12 8.2-01 8.2-02*
graphic-input-statement 13.4-01 13.4-02* 13.5-27*
graphic-output-statement 13.3-01 13.3-02*
graphic-text-statement 13.3-02 13.3-11*
graphic-verb 13.3-03 13.3-04* 13.3-08 13.3-11

13.3-13 13.5-10*
greater-than-sign 4.1-03 8.1-07 8.1-09 8.1-10

10.4-10 11.2-12

h 4.1-10
handler-line 4.2-22 12.1-15 12.1-16*
handler-name 12.1-09 12.1-10* 12.1-16
handler-return-statement 4.2-12 12.1-11*

i 4.1-10
i-format-item 10.4-09 10.4-12* 10.4-14 10.4-15
identifier 4.4-01* 14.2-27*
identifier-character 4.4-02 4.4-03* 4.4-04 4.4-05

14.2-06 14.2-12 14.2-16 14.2-21
14.2-24 14.2-26

if-block 4.2-07 8.4-03*
if-clause 8.4-01 8.4-02*
if-statement 4.2-14 8.2-01 8.4-01*
if-then-line 4.2-22 8.4-03 8.4-04*
image 10.4-02 10.4-03* 10.5-09 11.3-04

13.3-11
image-line 4.2-07 4.2-22 10.4-05*

307

APPENDIX

imperative-statement 4.2-10 4.2-12* 8.2-03 8.2-06
8.4-02 11.5-01* 13.2-01* 13.3-01*

13.4-01* 13.5-01*
implementation-defined 4.1-11 4.2-16 10.2-09 14.8-05
in-statement 14.4-01 14.4-02*
in-structure 14.4-02 14.4-03* 14.5-03 14.6-03
in-structure-element 14.4-03 14.4-04*
increment 8.3-12 8.3-16*
index 5.2-07 5.2-08* 6.2-06 7.1-14

7.2-08 8.2-03 8.2-06 10.3-04
10.3-07 11.1-03 11.1-15 11.2-10
11.3-05 12.1-14 13.2-03 13.2-07
13.3-09 13.4-13

inexact-search 11.2-10 11.2-12*
initial-number 16.2-09 16.2-10*
initial-point 13.3-11 13.3-12* 13.4-05
initial-value 8.3-12 8.3-14*
input-control 11.4-01 11.4-02 11.4-03 11.4-04

11.4-05*
input-control-item 11.4-05 11.4-06*
input-modifier 10.2-02 10.2-03*
input-modifier-list 10.2-01 10.2-02* 10.2-08 10.5-04

10.5-06
input-prompt 10.2-09*
input-reply 10.2-10*
input-statement 4.2-12 10.2-01* 11.4-01*
integer 5.1-05 5.1-06* 5.1-07 5.1-08

6.6-04 7.1-07 9.2-08 11.3-N18
11.3-N24 11.3-N25 11.3-N27 14.1-08
14.2-07 16.2-11

integer-size 11.3-N23 11.3-N24*
internal-def-line 4.2-22 9.1-02 9.1-03*
interna1-function-def 4.2-06 9.1-01 9.1-02*
internal-function-line 4.2-22 9.1-02 9.1-12* 15.2-05*
internal-function-type 9.1-19 9.1-21*
interna1-picture-def 13.5-12 13.5-14 13.5-15*
interna1-picture-line 13.5-15 13.5-16* 13.5-25
interna1-picture-type 13.5-21 13.5-22*
interna1-proc-def 4.2-05 4.2-06* 13.5-14*
internal-sub-def 4.2-06 9.2-01 9.2-02*
internal-sub-line 4.2-22 9.2-02 9.2-03*
internal-sub-type 9.2-17 9.2-18*
io-qualifier 14.2-10 14.2-11* 14.2-15
io-recovery 8.2-01 11.2-02 11.2-06*
io-recovery-action 10.1-03 10.1-04* 11.2-07

j 4.1-10
justifier 10.4-09 10.4-10*

308

APPENDIX

k 4.1-10

1 4.1-10
left-parenthesis 4.1-03 5.2-06 5.3-05 5.3-08

6.2-06 6.3-03 6.4-03 7.1-05
7.1-13 7.1-14 7.2-07 7.2-09
7.2-10 8.1-05 9.1-09 9.1-11
9.2-06 9.2-15 10.3-04 10.4-08

10.5-05 11.3-N17 13.2-03 13.2-07
13.4-10 13.4-11 13.4-13 13.4-15
13.4-16 14.2-18

length-max 6.6-03 6.6-04* 6.6-06 7.1-10
9.1-07 9.1-12 9.1-15

less-than-sign 4.1-03
10.4-10

8.1-07 8.1-09 8.1-11

let-statement 4.2-12 5.5-01* 6.5-01*
letter 4.1-06 4.1-08* 4.4-02 4.4-03

4.4-04 4.4-05 10.4-08 14.2-06
14.2- 12
14.2- 26

14.2-16 14.2-21 14.2-24

limit 8.3-12 8.3-15*
line 4.2-22*

14.8-08*
13.5-25* 14.1-05* 14.2-02*

line-continuation 4.2-24* 16.1-02
line-input-reply 10.2-11*
line-input-statement 4.2-12 10.2-08* 11.4-03*
line-number 4.2-02 4.2-08 4.2-09* 4.2-17

4.2-21 8.2-02 8.2-03 8.2-04
8.2-06 8.3-03 8.3-08 8.3-11
8.3-19 8.4-02 8.4-04 8.4-07
8.4-09 8.4-10 8.4-12 8.4-15
8.4-21 8.4-22 9.1-03 9.1-12
9.1-13 9.1-15 9.2-03 9.2-09
9.2-13 10.1-04 10.1-05 10.4-03

10.4-05 11.3-N13 12.1-03 12.1-05
12.1-07 12.1-09 12.1-16 12.1-17
13.5-16 13.5-18 13.5-20 14.1-06
14.1-09 14.2-03 14.2-14 14.2-17
14.2-19 14.6-05 14.6-08 14.6-11
14.8-02 14.8-06 15.2-05 15.2-06
16.1-02 16.2-05 16.2-10

list-command 16.2-01 16.2-07*
literal-item 10.4-07 10.4-08*
literal-string 10.4-06 10.4-07*
locate-statement 13.4-02 13.4-03*
loop 4.2-07 8.3-01*
loop-line 4.2-22 8.3-06 8.3-08*

309

APPENDIX

loop-statement 8.3-08 8.3-09*
lower-case-letter 4.1-08 4.1-10*

m 4.1-10
main-program 4.2-01 4.2-04* 4.2-23
maxsize-argument 7.1-12 7.1-13*
me ssage-io-statement 14.1-12 14.6-01*
message-port-dec 14.2-04 14.2-25*
message-port-name 14.2-25 14.2-26* 14.2-28 14.6-02

14.6-03 14.6-09
minus-sign 4.1-06 5.1-03 10.4-11
missing-recovery 10.1-01 10.1-03* 10.5-01 11.2-06

11.4-06 11.4-10 11.5-05 11.5-08
mix-list 13.2-07 13.2-08*
multiplier 5.3-03 5.3-11*

n 4.1-10
next-line 4.2-22 8.3-17 8.3-19*
next-statement 8.3-19 8.3-20*
non-quote-character 4.1-01 4.1-02 4.1-03*
not-equals 8.1-08 8.1-09*
not-greater 8.1-07 8.1-11*
not-less 8.1-07 8.1-10* 11.2-12
not-missing-recovery 11.2-06 11.2-07* 11.3-04 11.3-09
null-statement 4.2-11 4.2-21 4.3-03*
number-sign 4.1-03 9.2-08 10.4-13 10.4-14

11.1-03
numeric-array 5.2-04 5.2-05* 5.2-10 7.1-04

7.2-02 7.2-03 7.2-09 7.2-10
13.3-10 13.3-13 13.4-09 13.4-10
13.4-11 13.4-15 13.5-06 13.5-09

numeric-array-assignment 7.2-01 7.2-02*
numeric-array-declaration 7.1-03 7.1-04* 7.1-11 15.1-04
numeric-array-element 5.2-02 5.2-04*
numeric-array-expression 7.2-02 7.2-03*
numeric-array-function-ref 7.2-03 7.2-09*
numeric-array-operator 7.2-03 7.2-04*
numeric-array-value 7.2-03 7.2-06* 13.5-28*
numeric-constant 5.1-01 5.1-02*
numeric-declaration 5.6-06 5.6-07* 7.1-11*
numeric-def-statement 9.1-04 9.1-05* 15.2-07*
numeric-defined-function 5.3-07 9.1-05 9.1-06* 9.1-12

9.1-15 9.1-16 9.1-24 15.2-09
numeric-expression 5.2-08 5.3-01 5.3-02* 5.3-05

5.5-02 8.1-06 8.3-14 8.3-15
8.3-16 9.1-05 9.1-16 10.2-06

13.1-03 13.2-03 13.2-06 13.3-07
13.4-12 13.4-14 15.2-07

310

APPENDIX

numeric-field-size 11.3-N21 11.3-N22*
numeric-fixed-parameter 15.2-01 15.2-02 15.2-03*
numeric-function 5.3-06 5.3-07*
numeric-function-let-statement 4.2-12 9.1-16*
numeric-function-ref 5.3-05

7.2-10*
5.3-06* 6.4-03* 7.1-12*

numeric-identifier 4.4-01
9.1-06

4.4-02* 5.2-03 5.2-05

numeric-let-statement 5.5-01 5.5-02*
numeric-rep 5.1-02 5.1-04* 5.3-05
numeric-specifier 11.3-N20 11.3-N21*
numeric-supplied-function 5.3-07

14.7-02*
5.4-01* 6.4-02* 12.1-18*

numeric-time-expression 10.2-05
14.6-12

10.2-06* 14.3-05 14.3-07

numeric-type 5.6-05 5.6-06* 15.1-03*
numeric-variable 5.2-01 5.2-02* 5.3-05 5.5-03

10.2-07 10.3-10 13.1-05 13.1-06
13.1-07 13.2-07 13.2-08 13.4-03
13.4-06 13.4-15

numeric-variable-list 5.5-02 5.5-03*
numeric-variable-matrix 13.4-08 13.4-11*
numeric-variable-vector 13.4-08 13.4-10*

o 4.1-10
on-gosub-statement 4.2-14 8.2-01 8.2-06*
on-goto-statement 4.2-14 8.2-01 8.2-03*
open-statement 4.2-12 11.1-01*
option 5.6-02

15.1-01*
5.6-03* 6.6-01* 7.1-09*

option-list 5.6-01 5.6-02*
option-statement 4.2-11 5.6-01*
other-character 4.1-11*
out-statement 14.4-01 14.4-05*
out-structure 14.4-05 14.4-06* 14.5-02 14.6-02
out-structure-element 14.4-06 14.4-07*
output-list 10.4-02 10.4-04* 11.3-01

P 4.1-10
paract-line 14.1-04 14.1-05 14.1-06*
paract-statement 14.1-06 14.1-07*
parallel-section 14.1-02 14.1-03 14.1-04*
parstop-statement 14.1-12 14.1-13*
percent-sign 4.1-03 10.4-13
period 4.1-06

11.3-N23
5.1-05 5.1-07 10.4-14

picture-def 13.5-12*
picture-invocation 13.5-02 13.5-03*

311

APPENDIX

picture-name 13.5-03 13.5-04* 13.5-17 13.5-23
picture-name-list 13.5-22 13.5-23* 13.5-24
picture-statement 13.5-16 13.5-17* 13.5-20
plain-string-character 4.1-05 4.1-06* 10.1-09
plus-sign 4.1-06 5.1-03 10.4-11
point-list 13.3-03 13.3-06* 13.5-11
point-location 13.4-15 13.4-16*
point-pair 13.3-13 13.3-14* 13.4-15
point-select 13.4-03 13.4-04 13.4-05* 13.5-27
pointer-control 11.2-02 11.2-03* 11.2-08*
pointer-items 11.2-01 11.2-02*
primary 5.3-04 5.3-05* 7.2-05
primitive-1 13.2-03 13.2-04 13.2-05* 13.2-07
primitive-2 13.2-03 13.2-04* 13.2-07
print-control 11.3-01 11.3-02 11.3-03*
print-control-item 11.3-03 11.3-04*
print-item 10.3-02 10.3-03*
print-list 10.3-01 10.3-02* 11.3-01
print-separator 10.3-02 10.3-05* 10.5-10
print-statement 4.2-12 10.3-01* 10.4-01* 11.3-01
procedure 4.2-19 4.2-20* 4.2-23 13.5-13
procedure-argument 9.2-15 9.2-16*
procedure-argument-list 9.2-14 9.2-15* 13.5-03
procedure-parameter 9.2-06 9.2-07* 15.2-02*
procedure-parm-list 9.2-04 9.2-06* 13.5-17
procedure-part 4.2-01 4.2-19* 14.1-02
process-array-dec 14.2-01 14.2-13*
process-clause 14.2-09 14.2-10*
process-declare-line 14.2-02 14.2-13 14.2-14*
process-declare-statement 14.2-14 14.2-15*
process-element-line 14.2-02 14.2-13 14.2-17*
process-element-statement 14.2-17 14.2-18*
process-io-statement 14.1-12 14.4-01*
process-port-array 14.2-15 14.2-16* 14.2-18 14.2-28

14.4-02 14.4-05
process-port-dec 14.2-04 14.2-09*
process-port-name 14.2-10 14.2-12* 14.2-28 14.4-02

14.4-05
program 4.2-01* 14.1-01*
program-designator 9.3-01 9.3-02*
program-line 16.1-01 16.1-02*
program-name 4.2-02 4.2-03*
program-name-line 4.2-01 4.2-02* 4.2-22 14.1-01
program-unit 4.2-23* 14.1-03*
prompt-specifier 10.2-03 10.2-04* 11.4-06
protection-block 4.2-07 12.1-01*
put-statement 14.5-01 14.5-02*

312

APPENDIX

q 4.1-10
question-mark 4.1-03 10.4-08 10.5-05 11.3-N19

13.4-10 13.4-11
quotation-mark 4.1-01 4.1-04 6.1-03
quoted-string 6.1-02 6.1-03*
quoted-string-character 4.1-02* 6.1-03

r 4.1-10
randomize-statement 4.2-12 5.4-02*
range 8.4-18 8.4-19*
range-select 13 .4-07 13.4-12*
read-control 11.4-07 11.4-08 11.4-09*
read-control-item 11.4-09 11.4-10* 11.4-N11*
read-statement 4.2-12 10.1-01* 11.4-07*
real-time-block 14.1-14 14.1-15*
real-time-declarations 14.1-02 14.2-01*
real-time-identifier 14.2-27 14.2-28*
real-time-program 14.1-01 14.1-02*
real-time-statement 14.1-11 14.1-12*
receive-statement 14.6-01 14.6-03*
record-setter 11.2-04* 11.2-09* 11.3-09 11.4-10

11.5-05 11.5-08
record-size 11.1-07 11.1-15*
record-type 11.1-07 11.1-12*
record-type-value 11.1-12 11.1-13* 11.1-N25 *
redim 7.2-06 7.2-07* 7.3-05 10.5-03

10.5-08 13.4-09
redim-array 10.5-02 10.5-03*
redim-array-list 10.5-01 10.5-02* 10.5-04 11.4-02

11.4-08
redim-bounds 7.2-07 7.2-08*
redim-numeric-array 13.4-08 13.4-09*
redim-string-array 10.5-07 10.5-08*
redim-string-array-list 10.5-06 10.5-07* 11.4-04
relation 8.1-06 8.1-07* 8.4-19
relational-expression 8.1-01* 8.1-05 8.3-05 8.4-01

8.4-04 8.4-07
relational-primary 8.1-04 8.1-05*
relational-term 8.1-03 8.1-04*
remark-line 4.2-19 4.2-21* 4.2-22 8.4-11

14.1-04 14.2-01 14.6-04
remark-statement 4.2-11 4.2-21 4.3-01*
remark-string 4.3-01 4.3-02* 4.3-04
renumber-command 16.2-01 16.2-08*
renumber-parameters 16.2-08 16.2-09*
repeat-count 14.2-05 14.2-07*
restore-statement 4.2-12 10.1-05*
return-statement 4.2-12 8.2-05*

313

APPENDIX

rewrite-control 11.5-02 11.5-03 11.5-04*
rewrite-control-item 11.5-04 11.5-05* 11.5-N9*
rewrite-statement 11.5-01 11.5-02*
rgb-list 13.2-03 13.2-06*
right-parenthesis 4.1-03 5.2-06 5.3-05 5.3-08

6.2-06 6.3-03 6.4-03 7.1-05
7.1-13 7.1-14 7.2-07 7.2-09
7.2-10 8.1-05 9.1-09 9.1-11
9.2-06 9.2-15 10.3-04 10.4-08

10.5-05 11.3-N17 13.2-03 13.2-07
13.4-10 13.4-11 13.4-13 13.4-15
13.4-16 14.2-18

routine-identifier 4.2-03 4.4-01 4.4-05* 9.2-05
12.1-10 13.5-04 14.1-07 14.3-02

rt-declare-line 14.2-01 14.2-02 14.2-03*
rt-declare-statement 14.2-03 14.2-04*

s 4.1-10
scalar-multiplier 7.2-03 7.2-05* 7.2-06
scheduling-statement 14.1-12 14.3-01*
segment-item 16.2-04 16.2-05*
segment-list 16.2-02 16.2-03* 16.2-06 16.2-07
segment-specifier 16.2-03 16.2-04* 16.2-08
seize-block 14.1-15 14.8-01*
seize-item 14.8-04 14.8-05*
seize-line 14.8-01 14.8-02* 14.8-08
seize-list 14.8-03 14.8-04*
seize-statement 14.8-02 14.8-03*
select-block 4.2-07 8.4-11*
select-line 4.2-22 8.4-11 8.4-12*
select-port-block 14.1-15 14.6-04*
select-port-line 14.6-04 14.6-05*
select-port-statement 14.6-05 14.6-06*
select-statement 8.4-12 8.4-13*
semicolon 4.1-03 10.3-05 10.4-04 10.4-08

10.5-11 13.3-06 13.3-14 13.5-11
send-statement 14.6-01 14.6-02*
set-object 10.3-06 10.3-07* 11.2-01* 11.3-05*

13.1-01* 13.2-03*
set-statement 4.2-12 10.3-06*
sign 5.1-02 5.1-03* 5.1-08 5.3-02

7.1-07 7.2-04
signal-statement 14.3-01 14.3-09*
signed-integer 7.1-06 7.1-07* 14.2-18
significand 5.1-04 5.1-05*
simple-numeric-variable 5.2-02 5.2-03* 5.2-09 5.6-07

8.3-13 15.1-04 15.2-03
simple-string-declaration 6.6-05 6.6 —06 *

314

APPENDIX

simple-string-variable 6.2-02 6.2-03* 6.2-07 6.4-03
6.6—06

simple-variable 5.2-09* 6.2-07* 9.1-10 9.2-07
size-select 13.3-08 13.3-09*
slant 4.1-03 5.3-11 10.4-08
space 4.1-05 4.2-24 10.4-08
start-statement 14.3-01 14.3-02*
start-value 13.4-07 13.4-14*
statement 4.2-08 4.2-10* 14.1-11*
statement-line 4.2-07 4.2-08* 4.2-22
status-clause 13.1-04 13.1-05*
step-size 16.2-09 16.2-11*
stop-statement 4.2-12 4.2-13*
string-array 6.2-04 6.2-05* 6.2-08 6.4-03

7.1-08 7.3-02 7.3-04 10.5-08
string-array-assignment 7.3-01 7.3-02*
string-array-declaration 7.1-03 7.1-08* 7.1-10
string-array-element 6.2-02 6.2-04*
string-array-expression 7.3-02 7.3-03*
string-array-primary 7.3-03 7.3-04*
string-array-value 7.3-03 7.3-05*
string-constant 6.1-01 6.1-02* 6.3-03 14.2-22
string-declaration 6.6-03 6.6-05* 7.1-10*
string-def-statement 9.1-04 9.1-07*
string-defined-function 6.3-05 9.1-07 9.1-08* 9.1-12

9.1-15 9.1-17 9.1-24
string-expression 6.3-01 6.3-02* 6.3-03 6.5-02

8.1-06 9.1-07 9.1-17 9.3-02
10.2-04 10.4-03 11.1-04 11.1-08
11.1-09 11.1-12 11.1-15 11.1-29
11.2-10 11.3-N13 13.1-01 13.2-03
13.3-11 14.3-06

string-field-size 11.3-N26 11.3-N27*
string-function 6.3-04 6.3-05*
string-function-let-statement 4.2-12 9.1-17*
string-function-ref 6.3-03 6.3-04*
string-identifier 4.4-01 4.4-04* 6.2-03 6.2-05

9.1-08
string-let-statement 6.5-01 6.5-02*
string-primary 6.3-02 6.3-03* 7.3-03 7.3-05
string-specifier 11.3-N20 11.3-N26*
string-supplied-function 6.3-05 6.4-01* 12.1-19* 14.7-01*
string-time-expression 14.3-05 14.3-06*
string-type 6.6-02 6.6-03*
string-variable 6.2-01 6.2-02* 6.3-03 6.5-03

13.1-06 13.2-07 13.4-15
string-variable-list 6.5-02 6.5-03* 10.2-08 11 .4-03

315

APPENDIX

structure-name 14.2-05 14.2-06* 14.2-10 14.2-15
14.2-23 14.2-25 14.2-28

sub-list 9.2-18 9.2-19 9.2-20*
sub-statement 9.2-03 9.2-04* 9.2-13
subprogram-def 9.2-01*
subprogram-name 9.2-04 9.2-05* 9.2-14 9.2-20
subscript 5.2-06 5.2-07*
subscript-part 5.2-04 5.2-06* 6.2-04 14.4-02

14.4-05 14.5-02 14.5-03
substring-qualifier 6.2-02 6.2-06* 7.3-02 7.3-04

t 4.1-10
tab-call 10.3-03 10.3-04*
tail 4.2-02 4.2-08 4.2-15* 4.2-17

4.2-24 8.3-03 8.3-08 8.3-11
8.3-19 8.4-04 8.4-07 8.4-09
8.4-10 8.4-12 8.4-15 8.4-21
8.4-22 9.1-03 9.1-12 9.1-13
9.1-15 9.2-03 9.2-09 9.2-13

12.1-03 12.1-05 12.1-07 12.1-09
12.1-16 12.1-17 13.5-16 13.5-18
13.5-20 14.1-06 14.1-09 14.2-03
14.2-14 14.2-17 14.2-19 14.6-05
14.6-08 14.6-11 14.8-02 14.8-06
15.2-05 15.2-06

tai1-comment 4.2-15 4.3-03 4.3-04*
template-element 11.3-N16 11.3-N17*
template-element-list 11.3-N15 11.3-N16* 11.3-N17
template-identifier 11.3-N12 11.3-N13* 11.4-N11 11.5-N9
template-statement 11.3-N14 11.3-N15*
term 5.3-02 5.3-03*
text-facet 13.2-03 13.2-07 13.2-09*
then-block 8.4-03 8.4-05*
time-expression 14.3-04 14.3-05*
time-inquiry 10.2-03 10.2-07* 11.4-06
timeout-expression 10.2-03 10.2-05* 11.4-06 14.3-08

14.4-02 14.4-05 14.5-02 14.5-03
14.6-02 14.6-03 14.8-03

trace-statement 4.2-12 12.2-03*
trans form 13.5-02 13.5-05* 13.5-09
transform-assignment 13.5-01 13.5-09*
transform-function 13.5-06 13.5-07*
transform-term 13.5-05 13.5-06*
type 14.2-05 14.2-08*
type-declaration 5.6-04 5.6-05* 6.6-02* 9.1-19

9.2-17* 13.5-21*

316

APPENDIX

u
underline
unit-block

unquoted-string
unquoted-string-character
unsorted-program
upper-case-letter
urgency
use-line

v
value-select
variable

variable-fieId-count
variable-length-vector
variable-list

w
wait-event
wait-interval
wait-statement
wait-time
when-block
when-line
when-use-block
when-use-name-block
when-use-name-line
write-control
write-control-item
write-statement

4.1-10
4.1-03 4.4-03 10.4-08
4.2-04 4.2-05* 9.1-14

13.5-19
10.1-08 10.1-09*
4.1-03 4.1-05* 10.1-09

16.1-01*
4.1-08 4.1-09*

14.1-07 14.1-08*
4.2-22 12.1-02 12.1-05*

4.1-10
13.4-03 13.4-07*
5.2-01* 6.2-01* 10.1-02

14.4-04
11.3-N17 11.3-N19*
10.5-04 10.5-05* 11.4-02
10.1-01 10.1-02* 10.2-01
11.4-07

4.1-10
14.3-03 14.3-08*
14.3-03 14.3-07*
14.3-01 14.3-03*
14.3-03 14.3-04*
12.1-02 12.1-04* 12.1-08
4.2-22 12.1-02 12.1-03*

12.1-01 12.1-02*
12.1-01 12.1-08*
4.2-22 12.1-08 12.1-09*

11.3-06 11.3-07 11.3-08*
11.3-08 11.3-09* 11.3-N12*
4.2-12 11.3-06*

9.2-12

11.1-20

11.4-01

x 4.1-10

y 4.1-10

z 4.1-10

317

Appendix E.
Combined List of Production Rules

access-information
access-mode

actual-array
array-assignment

array-celIs-statement

array-declaration

array-geometric-statement

array-input-statement

array-line-input-statement

array-list
array-locate-object

array-locate-statement

array-name

array-output-list
array-point-list

array-print-list

array-print-statement

= string-constant
= ACCESS (INPUT / OUTPUT / OUTIN /

string-expression)
= array-name
= numeric-array-assignment /

string-array-assignment
= MAT graphic-verb CELLS comma IN

point-pair colon numeric-array
= numeric-array-declaration /

string-array-declaration
= MAT graphic-verb

geometric-object (comma
size-select)? colon
array-point-list

= MAT INPUT input-modifier-list?
(redim-array-1ist /
variable-length-vector) /
MAT INPUT channel-expression
input-control colon
(redim-array-list /
variable-length-vector)

= MAT LINE INPUT
input-modifier-list ?
redim-string-array-list /
MAT LINE INPUT channel-expression
input-control colon
redim-string-array-list

= array-name (comma array-name)*
- redim-numeric-array (comma

redim-numeric-array)? /
numeric-variable-vector comma
numeric-variable-vector /
numeric-variable-matrix

= MAT LOCATE point-select colon
array-1ocate-object

= numeric-array /
string-array

= array-name (comma array-name)*
= numeric-array (comma

numeric-array)?
= array-name (print-separator

array-name)* print-separator?
= MAT PRINT (array-print-list /

(USING image colon
array-output-list)) /

318

array-read-statement

MAT PRINT channel-expression
print-control colon
(array-print-list /
array-output-1ist)

= MAT READ (missing-recovery colon)?
redim-array-list /
MAT READ channel-expression
read-control colon redim-array-list

array-rewrite-statement = MAT REWRITE channel-expression
rewrite-control colon

array-write-statement
array-list

= MAT WRITE channel-expression

ask-attribute-name
write-control colon array-list

= core-attribute-name /
enhanced-attribute-name

ask-io-item = (MARGIN / ZONEWIDTH)
numeric-variable

ask-io-list
ask-item

= ask-io-item (comma ask-io-item)*
= ask-attribute-name variable

variable*
ask-item-list
ask-object

= ask-item (comma ask-item)*
= WINDOW boundary-variables /

VIEWPORT boundary-variables /
DEVICE WINDOW boundary-variables /
DEVICE VIEWPORT
boundary-variables /
DEVICE SIZE numeric-variable comma
numeric-variable comma
string-variable /
CLIP string-variable /
primitive-1 STYLE
numeric-variable /
primitive-2 COLOR
numeric-variable /
TEXT text-facet numeric-variable /
TEXT JUSTIFY string-variable comma
string-variable /
MAX primitive-1 STYLE
numeric-variable /
MAX COLOR numeric-variable /
COLOR MIX left-parenthesis index
right-parenthesis mix-list /
MAX device-type DEVICE
numeric-variable /
PIXEL SIZE left-parenthesis
point-pair right-parenthesis
numeric-variable comma
numeric-variable /

319

APPENDIX

ask-statement

block

bound-argument

boundaries

boundary
boundary-variables

bounds

bounds-range

break-statement
call-statement

case-block
case-else-block
case-else-line
case-item
case-line
case-list
case-port-block
case-port-line

case-port-statement

case-statement
case-timeout-block
case-timeout-line

case-timeout-statement

cause-statement

PIXEL ARRAY point-location
numeric-array (comma
string-variable)? /
PIXEL'VALUE point-location
numeric-variable

= ASK ask-io-list /
ASK channel-setter ask-item-list /
ASK ask-object status-clause?

= statement-line / loop /
if-block / select-block /
image-line / protection-block /
real-time-block

= left-parenthesis actual-array
(comma index)? right-parenthesis

= boundary comma boundary comma
boundary comma boundary

= numeric-expression
= numeric-variable comma

numeric-variable comma
numeric-variable comma
numeric-variable

= left-parenthesis bounds-range
(comma bounds-range)*
right-parenthesis

= signed-integer TO
signed-integer / signed-integer

= BREAK
= CALL subprogram-name

procedure-argument-list?
= case-line block*
= case-else-line block*
= line-number CASE ELSE tail
= constant / range
= line-number case-statement tail
= case-item (comma case-item)*
= case-port-line block*
= line-number case-port-statement

tail
= CASE (SEND / RECEIVE) MESSAGE

message-port-name /
CASE EVENT event-name

= CASE case-list
= case-timeout-line block*
= line-number case-timeout-statement

tail
= CASE TIMEOUT

numeric-time-expression
= CAUSE EXCEPTION exception-type

320

APPENDIX

chain-statement

channel-expression
channel-number
channel-setter
character

clear-statement
close-statement
collate-sequence

comparison

concatenation
conditional-statement

conjunction

connect-statement
constant

control-transfer

control-variable
coordinate-pair

coordinate-variables

core-attribute-name

core-file-attribute

core-file-org-value
core-record-setter
core-record-type-value
current-trans form
data-io-statement
data-list
data-port-dec

data-port-name

= CHAIN program-designator (WITH
function-arg-list)?

= number-sign index
= number-sign integer
= channel-expression colon
= quotation-mark /

non-quote-character
= CLEAR
= CLOSE channel-expression
= COLLATE (STANDARD / NATIVE /

string-expression)
= numeric-expression relation

numeric-expression /
string-expression relation
string-expression

= ampersand
= if-statement /

on-gosub-statement /
on-goto-statement

= relational-term
(AND relational-term)*

= CONNECT EVENT event-list
= numeric-constant /

string-constant
= gosub-statement / goto-statement /

if-statement / io-recovery /
on-gosub-statement /
on-goto-statement

= simple-numeric-variable
= numeric-expression comma

numeric-expression
= numeric-variable comma

numeric-variable
= ACCESS / DATUM / ERASABLE /

FILETYPE / MARGIN / NAME /
ORGANIZATION / POINTER / RECSIZE /
RECTYPE / SETTER / ZONEWIDTH

= access-mode / file-organization /
record-type / record-size

= SEQUENTIAL / STREAM
= BEGIN / END / NEXT / SAME
= DISPLAY / INTERNAL
= TRANSFORM
= put-statement / get-statement
= datum (comma datum)*
= SHARED data-port-name

bounds? OF structure-name
= letter identifier-character*

321

APPENDIX

data-statement
data-structure-dec

datum
debug-statement
declarative-statement

declare-statement
def-statement

def-type
defined-function

delete-command
delete-control
delete-control-item
delete-statement

detached-handler

device-select

device-type

digit
digit-place

dimension-list

dimension-statement
disconnect-statement
disjunction
do-body
do-line
do-loop
do-statement
double-quote
draw-statement

e-format-item

= DATA data-list
= STRUCTURE structure-name colon

repeat-count? type
(comma repeat-count? type)*

= constant / unquoted-string
= DEBUG (ON / OFF)
= data-statement /

declare-statement /
dimension-statement /
null-statement /
option-statement /
remark-statement /
template-statement

= DECLARE type-declaration
= numeric-def-statement /

string-def-statement
= DEF function-list
= numeric-defined-function /

string-defined-function /
fixed-defined-function

= DELETE segment-list
= (comma delete-control-item)*
= missing-recovery / record-setter
= DELETE channel-expression

delete-control
= handler-line exception-handler

end-handler-line
= left-parenthesis index

right-parenthesis
= POINT / MULTIPOINT / CHOICE /

VALUE
= 0/1/2/3/4/5/6/7/8/9
= asterisk / number-sign /

percent-sign
= array-declaration

(comma array-declaration)*
= DIM dimension-list
= DISCONNECT EVENT event-list
= conjunction (OR conjunction)*
= block* loop-line
= line-number do-statement tail
= do-line do-body
= DO exit-condition?
= quotation-mark quotation-mark
= DRAW picture-invocation (WITH

transform)?
- (i-format-item / f-format-item)

circumflex-accent circumflex-accent

322

APPENDIX

edit-command

else-block

else-line

elseif-block

elseif-then-line

end-function-line

end-handler-line

end-if-line

end-line

end-of-line

end-paract-line

end-paract-statement

end-picture-line

end-process-line

end-seize-line

end-select-line

end-statement

end-sub-line

end-sub-statement

end-when-line

enhanced-attribute-name

enhanced-file-attribute

enhanced-file-org-value

enhanced-record-setter

enhanced-record-type-value

equality-relation

erase-statement

event-clause

event-list

event-name

exact-search

exception-handler

exception-type

exit-condition

exit-do-statement

exit-for-statement

exit-function-statement

exit-handler-statement

exit-picture-statement

circumflex-accent

circumflex-accent*

delete-command / extract-command

list-command / renumber-command

else-line block*

line-number ELSE tail

elseif-then-line block*

line-number ELSEIF

relational-expression THEN tail

line-number END FUNCTION tail

line-number END HANDLER

tail

line-number END IF tail

line-number end-statement tail

[implementation-defined]

line-number end-paract-statement

tail

END PARACT

line-number

line-number

line-number

line-number

END PICTURE tail

END PROCESS tail

END SEIZE tail

END SELECT tail

/

END

line-number end-sub-statement tail

END SUB

line-number END WHEN tail

RECORD / KEY / COLLATE

collate-sequence

RELATIVE / KEYED

RECORD index /

KEY (exact-search / inexact-search)

string-expression

NATIVE

equals-sign / not-equals

ERASE REST? channel-expression

EVENT event-name

event-name (comma event-name)*

letter identifier-character*

equals-sign?

block*

index

(WHILE / UNTIL)

relational-expression

EXIT DO

EXIT FOR

EXIT FUNCTION

EXIT HANDLER

EXIT PICTURE

323

APPENDIX

exit-seize-statement

exit-sub-statement

expression

expression-list

exrad

externa1-function-def

external-function-line

externa1-function-type

external-picture-def

externa1-picture-line

externa1-picture-type

external-sub-def

external-sub-line

external-sub-type

extract-command

f-format-item

factor

fieId-specifier

file-attribute

file-attribute-list

file-name

file-organization

file-organization-value

fixed-declaration

fixed-defined-function

= EXIT SEIZE

= EXIT SUB

= numeric-expression /

string-expression

= expression (comma expression)*

= E sign? integer

= external-function-line

unit-block* end-function-line

= line-number EXTERNAL FUNCTION

(numeric-defined-function /

(string-defined-function

length-max?))

function-parm-list? tail /

line-number EXTERNAL FUNCTION

fixed-defined-function

function-parm-list? tail

= EXTERNAL FUNCTION function-list

= external-picture-line

unit-block* end-picture-line

= line-number EXTERNAL

picture-statement tail

= EXTERNAL PICTURE picture-name-list

= external-sub-line unit-block*

end-sub-line

= line-number EXTERNAL

sub-statement tail

= EXTERNAL SUB sub-list

= EXTRACT segment-list

= period number-sign number-sign* /

i-format-item period number-sign*

= primary (circumflex-accent

primary)*

= numeric-specifier /

string-specifier

= core-file-attribute /

enhanced-file-attribute

= (comma file-attribute)*

= string-expression

= ORGANIZATION

(file-organization-value /

string-expression)

= core-file-org-value /

enhanced-file-org-value

= simple-numeric-variable

fixed-point-type? /

numeric-array-declaration

fixed-point-type?

= numeric-defined-function

324

APPENDIX

fixed-field-count = SKIP? (integer OF)?

fixed-formal-array = formal-array fixed-point-type

fixed-point-size = integer-size period? /

integer-size? period fraction-size

fixed-point-type

floating-characters

= asterisk fixed-point-size

= (plus-sign* / minus-sign*)

dollar-sign? /

dollar-sign* (plus-sign /

minus-sign)?

for-body

for-line

for-loop

for-statement

= block* next-line

= line-number for-statement tail

= for-line for-body

= FOR control-variable equals-sign

initial-value TO limit

(STEP increment)?

formal-array = array-name left-parenthesis

format-item

comma* right-parenthesis

= (justifier? floating-characters

(i-format-item / f-format-item /

e-format-item)) / justifier

format-string = literal-string

(format-item literal-string)*

formatted-print-list

fraction

fraction-size

function-arg-list

= USING image (colon output-list)?

= period integer

= integer

= left-parenthesis function-argument

(comma function-argument)*

function-argument

function-def

right-parenthesis

= expression / actual-array

= internal-function-def /

external-function-def

function-list = defined-function

function-parameter

(comma defined-function)*

= simple-variable / formal-array /

function-parm-list

numeric-fixed-parameter

= left-parenthesis function-parameter

(comma function-parameter)*

geometric-object

geometric-statement

right-parenthesis

= POINTS / LINES / AREA

= graphic-verb geometric-object

colon point-list /

PLOT LINES / (PLOT LINES colon

point-list semicolon)

get-statement — GET FROM data-port-name

subscript-part? TO in-structure

gosub-statement

timeout-expression?

= (GOSUB / GO SUB) line-number

goto-statement = (GOTO / GO TO) line-number

325

APPENDIX

graphic-input-statement

graphic-output-statement

graphic-text-statement

graphic-verb

handler-line

handler-name

handler-return-statement

i-format-item

identifier

identifier-character

if-block

if-clause

if-statement

if-then-line

image

image-line

imperative-statement

= locate-statement /

array-locate-statement /

GET point-select colon

coordinate-variables /

MAT GET point-select colon

array-locate-object

= geometric-statement /

array-geometric-statement /

graphic-text-statement /

array-celIs-statement

= graphic-verb TEXT initial-point

(comma USING image colon

expression-list /

colon string-expression)

= GRAPH /

PLOT

= line-number HANDLER

handler-name tail

= routine-identifier

= RETRY / CONTINUE

= digit-place digit-place* (comma

digit-place digit-place*)*

= numeric-identifier /

string-identifier /

routine-identifier /

real-time-identifier

= letter / digit / underline

= if-then-line then-block

elseif-block* else-block?

end-if-line

= imperative-statement / line-number

= IF relational-expression

THEN if~clause (ELSE if-clause)?

= line-number IF

relational-expression THEN tail

= line-number / string-expression

= line-number IMAGE colon

format-string end-of-line

= array-assignment /

array-input-statement /

array-line-input-statement /

array-print-statement /

array-read-statement /

array-write-statement /

ask-statement /

break-statement / call-statement /

cause-statement / chain-statement /

close-statement / debug-statement /

326

APPENDIX

in-statement

in-structure

in-structure-element

increment

index

inexact-search

initial-number

initial-point

initial-value

input-control

input-control-item

input-modifier

erase-statement /

exit-do-statement /

exit-for-statement /

exit-function-statement /

exit-handler-statement /

exit-sub-statement /

gosub-statement / goto-statement /

handler-return-statement /

input-statement / let-statement /

line-input-statement /

numeric-function-let-statement /

open-statement / print-statement /

randomize-statement /

read-statement /

restore-statement /

return-statement / set-statement /

stop-statement /

string-function-let-statement /

trace-statement / write-statement /

rewrite-statement /

array-rewrite-statement /

delete-statement /

clear-statement /

graphic-output-statement /

graphic-input-statement /

draw-statement /

exit-picture-statement /

trans form-assignment

= IN FROM (process-port-name /

process-port-array subscript-part)

TO in-structure timeout-expression?

= in-structure-element

(comma in-structure-element)*

= variable / array-name

= numeric-expression

= numeric-expression

= greater-than-sign / not-less

= line-number

= comma AT coordinate-pair

= numeric-expression

= (comma input-control-item)*

= core-record-setter /

missing-recovery /

prompt-specifier /

timeout-expression / time-inquiry

= prompt-specifier /

timeout-expression /

time-inquiry

327

APPENDIX

input-modifier-list

input-prompt
input-reply
input-statement

integer
integer-size
internal-def-line
interna1-function-def

internal-function-line

interna1-function-type
internal-picture-def

internal-picture-line
interna1-picture-type
interna1-proc-def

internal-sub-def

internal-sub-line
internal-sub-type
io-qualifier
io-recovery

io-recovery-action

justifier
length-max
let-statement

letter

limit

= input-modifier
(comma input-modifier)* colon

= [implementation-defined]
= data-list comma? end-of-line
= INPUT input-modifier-list?

variable-list / INPUT
channel-expression input-control
colon variable-list
(comma SKIP REST)?

= digit digit*
= integer
= line-number def-statement tail
= internal-def-1ine /

interna1-function-line
block* end-function-line

= line-number FUNCTION
(numeric-defined-function /
(string-defined-function
length-max?))
function-parm-list? tail /
line-number FUNCTION
fixed-defined-function
function-parm-list? tail

= FUNCTION function-list
= internal-picture-line

block* end-picture-line
= line-number picture-statement tail
= PICTURE picture-name-list
= internal-function-def /

internal-sub-def /
detached-handler /
internal-picture-def

= internal-sub-line block*
end-sub-line

= line-number sub-statement tail
= SUB sub-list
= INPUT / OUTPUT / OUTIN
= missing-recovery /

not-missing-recovery
= exit-do-statement /

exit-for-statement / line-number
= greater-than-sign / less-than-sign
= asterisk integer
= numeric-let-statement /

string-let-statement
= upper-case-letter /

lower-case-letter
= numeric-expression

328

APPENDIX

line = case-line / case-else-line /
do-line / else-line /
elseif-then-line /
end-function-line /
end-handler-line /
end-if-line / end-line /
end-select-line / end-sub-line /
end-when-line /
external-function-line /
external-sub-line /
for-line / handler-line /
internal-def-line /
internal-function-line /
internal-sub-line /
if-then-line / image-line /
loop-line / next-line /
program-name-line / remark-line /
select-line / statement-line /
use-line /
when-line / when-use-name-line /
end-picture-line /
external-picture-line /
internal-picture-line /
paract-line / end-paract-line /
rt-dedare-line /
process-declare-line /
process-element-line /
end-process-line /
seize-line / end-seize-line

line-continuation
line-input-reply
line-input-statement

= ampersand space* tail ampersand
= character* end-of-line
= LINE INPUT input-modifier-list?

string-variable-list /
LINE INPUT channel-expression
input-control colon
string-variable-list

line-number
list-command
literal-item

- digit digit*
= LIST segment-list?
= letter / digit /

apostrophe / colon / equals-sign /
exclamation-point /
left-parenthesis / question-mark /
right-parenthesis / semicolon /
slant / space / underline

literal-string
locate-statement

= literal-item*
= LOCATE (point-select colon

coordinate-variables /
value-select colon

329

APPENDIX

loop
loop-line
loop-statement
lower-case-letter

main-program
maxsize-argument

message-io-statement
message-port-dec

message-port-name
missing-recovery
mix-list

multiplier
next-line
next-statement
non-quote-character

not-equals

not-greater

not-less

not-missing-recovery
nul1-statement
numeric-array
numeric-array-assignment

numeric-array-declaration
numeric-array-element
numeric-array-expression

numeric-variable)
= do-loop / for-loop
= line-number loop-statement tail
= LOOP exit-condition?
= a/b/c/d/e/f/g/h/i/j/k/l/m/

n/o/p/q/r/s/t/u/v/w/x/y/z
= unit-block* end-line
= left-parenthesis actual-array

right-parenthesis
= send-statement / receive-statement
= MESSAGE message-port-name

OF structure-name
= letter identifier-character*
= IF MISSING THEN io-recovery-action
= numeric-variable comma

numeric-variable comma
numeric-variable

= asterisk / slant
= line-number next-statement tail
= NEXT control-variable
= ampersand / apostrophe /

asterisk / circumflex-accent /
colon / comma / dollar-sign /
equals-sign /
exclamation-point /
greater-than-sign /
left-parenthesis /
less-than-sign / number-sign /
percent-sign / question-mark /
right-parenthesis / semicolon /
slant / underline /
unquoted-string-character

= less-than-sign greater-than-sign /
greater-than-sign less-than-sign

= less-than-sign equals-sign /
equals-sign less-than-sign

= greater-than-sign equals-sign /
equals-sign greater-than-sign

= IF THERE THEN io-recovery-action
= tail-comment
- numeric-identifier
= MAT numeric-array equals-sign

numeric-array-expression
= numeric-array bounds
= numeric-array subscript-part
= (numeric-array

numeric-array-operator)?
numeric-array /

330

APPENDIX

numeric-array-function-ref

numeric-array-operator
numeric-array-value

numeric-constant
numeric-declaration

numeric-def-statement

numeric-defined-function
numeric-expression
numeric-field-size
numeric-fixed-parameter

numeric-function

numeric-function-let-statement

numeric-function-ref

numeric-identifier

scalar-multiplier
numeric-array /
numeric-array-value /
numeric-array-function-ref

= (TRN / INV) left-parenthesis
numeric-array
right-parenthesis

= sign / asterisk
= scalar-multiplier?

(CON / IDN / ZER) redim? /
TRANSFORM

-- sign? numeric-rep
— simple-numeric-variable /

numeric-array-declaration
= DEF numeric-defined-function

function-parm-list? equals-sign
numeric-expression /
DEF fixed-defined-function
function-parm-list? equals-sign
numeric-expression
numeric-identifier
sign? term (sign term)*
fixed-point-size / E
simple-numeric-variable
fixed-point-type /
fixed-formal-array
numeric-defined-function /
numeric-supplied-function

LET numeric-defined-function
equals-sign numeric-expression
numeric-function
function-arg-1ist? /
MAXLEN left-parenthesis
(simple-string-variable /
string-array) right-parenthesis /
MAXSIZE maxsize-argument /
SIZE bound-argument /
LBOUND bound-argument /
UBOUND bound-argument /
DET (left-parenthesis
numeric-array
right-parenthesis) /
DOT left-parenthesis
numeric-array comma
numeric-array
right-parenthesis
letter identifier-character*

331

APPENDIX

numeric-let-statement

numeric-rep
numeric-specifier
numeric-supplied-function

numeric-time-expression
numeric-type

numeric-variable

numeric-variable-list

numeric-variable-matrix

numeric-variable-vector

on-gosub-statement

on-goto-statement

open-statement

option

option-list
option-statement
other-character
out-statement

= LET numeric-variable-list
equals-sign numeric-expression

= significand exrad?
= NUMERIC asterisk numeric-field-size
= ABS / ACOS / ANGLE / ASIN /

ATN / CEIL / COS / COSH / COT /
CSC / DATE / DEG / EPS / EXP /
FP / MAXNUM / INT / IP / LOG /
LOGIO / L0G2 / MAX / MIN / MOD /
PI / RAD / REMAINDER / RND /
ROUND / SEC / SGN / SIN / SINH /
SQR / TAN / TANK / TIME /
TRUNCATE / LEN / ORD / POS /
VAL / EXLINE / EXTYPE / BVAL

= numeric-expression
= NUMERIC numeric-declaration

(comma numeric-declaration)* /
NUMERIC fixed-point-type?
fixed-declaration
(comma fixed-declaration)*

= simple-numeric-variable /
numeric-array-element

= numeric-variable
(comma numeric-variable)*

= numeric-array left-parenthesis
question-mark comma
right-parenthesis

= numeric-array left-parenthesis
question-mark right-parenthesis

= ON index (GOSUB / GO SUB)
line-number (comma line-number)*
(ELSE imperative-statement)?

= ON index (GOTO / GO TO)
line-number (comma line-number)*
(ELSE imperative-statement)?

= OPEN channel-setter NAME file-name
file-attribute-list

= ARITHMETIC (DECIMAL / NATIVE) /
ANGLE (DEGREES / RADIANS) /
COLLATE (NATIVE / STANDARD) /
BASE (0 / 1) /
ARITHMETIC FIXED fixed-point-type

= option (comma option)*
= OPTION option-list
= [implementation-defined]
= OUT TO (process-port-name /

process-port-array subscript-part)
FROM out-structure

332

APPENDIX

out-structure —

timeout-expression?
out-structure-element

out-structure-element -—

(comma out-structure-element)*
expression / array-name

output-list = expression (comma expression)*

paract-line —
semicolon?
line-number paract-statement tail

paract-statement = PARACT routine-identifier

parallel-section =
(URGENCY urgency)?
remark-line* paract-line

parstop-statement
block* end-paract-line
PARSTOP

picture-def = internal-picture-def /

picture-invocation
external-picture-def
picture-name

picture-name
procedure-argument-list?
routine-identifier

picture-name-list - picture-name (comma picture-name)*
picture-statement = PICTURE picture-name

plain-string-character
procedure-parm-list?
digit / letter / period /

point-list —

plus-sign / minus-sign
coordinate-pair (semicolon

point-location —-

coordinate-pair)*
left-parenthesis coordinate-pair

point-pair —

right-parenthesis
coordinate-pair semicolon

point-select
coordinate-pair
POINT device-select? initial-point?

pointer-control = POINTER core-record-setter /

pointer-items
enhanced-record-setter
(pointer-control / io-recovery /

primary =
pointer-control comma io-recovery)
numeric-rep / numeric-variable /
numeric-function-ref /
left-parenthesis numeric-expression
right-parenthesis

primitive-1 = POINT / LINE
primitive-2 = primitive-1 / TEXT / AREA
print-control = (comma print-control-item)*
print-control-item core-record-setter /

not-missing-recovery / USING image
print-item = expression / tab-call
print-list = (print-item? print-separator)*

print-item?
print-separator = comma / semicolon
print-statement = PRINT print-list /

PRINT formatted-print-list /

333

APPENDIX

procedure

procedure-argument

procedure-argument-list

procedure-parameter

procedure-parm-list

procedure-part
process-array-dec

process-clause

process-declare-line

process-declare-statement

process-element-line

process-element-statement

process-io-statement
process-port-array
process-port-dec

process-port-name
program

program-designator

PRINT channel-expression
print-control (colon
(print-list / output-list))?

= external-function-def /
external-sub-def /
external-picture-def

= expression / actual-array /
channel-expression

= left-parenthesis
procedure-argument
(comma procedure-argument)*
right-parenthesis

= simple-variable / formal-array /
channel-number /
numeric-fixed-parameter

= left-parenthesis
procedure-parameter
(comma procedure-parameter)*
right-parenthesis

= remark-line* procedure
= process-declare-line

process-element-line*
end-process-line

= io-qualifier process-port-name
OF structure-name

= line-number
process-declare-statement tail

= DECLARE PROCESS io-qualifier
process-port-array bounds
OF structure-name

= line-number
process-element-statement tail

= process-port-array
left-parenthesis signed-integer
(comma signed-integer)?
right-parenthesis colon
access-information

= in-statement / out-statement
= letter identifier-character*
= PROCESS

(process-clause / event-clause)
access-information?

= letter identifier-character*
= program-name-line? main-program

procedure-part* /
program-name-line?
real-time-program

= string-expression

334

APPENDIX

program-line

program-name
program-name-line

program-unit

prompt-specifier
protection-block

put-statement

quoted-string

quoted-string-character

randomize-statement
range

range-select

read-control
read-control-item

read-statement

real-time-block
real-time-declarations

real-time-identifier

real-time-program

real-time-statement

= line-number
(character / line-continuation)*
end-of-line

= routine-identifier
= line-number PROGRAM program-name

function-parm-list? tail
= main-program / procedure /

parallel-section
= PROMPT string-expression
= when-use-block /

when-use-name-block
= PUT TO data-port-name

subscript-part?
FROM out-structure
timeout-expression?

= quotation-mark
quoted-string-character*
quotation-mark

= double-quote /
non-quote-character

= RANDOMIZE
= (constant TO / IS relation)

constant
= comma RANGE numeric-expression TO

numeric-expression
= (comma read-control-item)*
= record-setter / missing-recovery /

template-identifier
= READ (missing-recovery colon)?

variable-list / READ
channel-expression read-control
colon variable-list
(comma SKIP REST)?

= select-port-block / seize-block
= (remark-line / rt-declare-line /

process-array-dec)*
= structure-name / event-name /

process-port-name /
process-port-array /
data-port-name / message-port-name

= real-time-declarations
parallel-section parallel-section*
procedure-part*

= parstop-statement /
scheduling-statement /
process-io-statement /
data-io-statement /
message-io-statement /

335

APPENDIX

receive-statement

record-setter

record-size

record-type

record-type-value

redim

redim-array

redim-array-1ist

redim-bounds

redim-numeric-array

redim-string-array

redim-string-array-1ist

relation

relational-expression

relational-primary

relational-term

remark-line

remark-statement

remark-string

renumber-command

renumber-parameters

repeat-count

restore-statement

return-statement

rewrite-control

rewrite-control-item

rewrite-statement

exit-seize-statement

= RECEIVE FROM message-port-name

TO in-structure

timeout-expression?

core-record-setter /

enhanced-record-setter

= RECSIZE (VARIABLE /

string-expression) (LENGTH index)?

= RECTYPE (record-type-value /

string-expression)

= core-record-type-value /

enhanced-record-type-value

= left-parenthesis redim-bounds

(comma redim-bounds)*

right-parenthesis

= array-name redim?

= redim-array

(comma redim-array)*

= (index TO)? index

= numeric-array redim?

= string-array redim?

= redim-string-array

(comma redim-string-array)*

= equality-relation /

greater-than-sign /

less-than-sign /

not-greater / not-less

= disjunction

= comparison / left-parenthesis

relational-expression

right-parenthesis

= NOT? relational-primary

= line-number (null-statement /

remark-statement) end-of-line

= REM remark-string

= character*

= RENUMBER segment-specifier?

renumber-parameters?

= AT initial-number

(STEP step-size)? / STEP step-size

(AT initial-number)?

= integer OF

= RESTORE line-number?

= RETURN

= (comma rewrite-control-item)*

= missing-recovery / record-setter /

tempiate-identifier

= REWRITE channel-expression

336

APPENDIX

rgb-list

routine-identifier

rt-declare-line

rt-declare-statement

scalar-multiplier

scheduling-statement

segment-item

segment-list

segment-specifier

seize-block

seize-item

seize-line

seize-list

seize-statement

select-block

select-line

select-port-block

select-port-line

select-port-statement

select-statement

send-statement

set-object

rewrite-control colon

expression-list

= numeric-expression comma

numeric-expression comma

numeric-expression

= letter identifier-character*

= line-number rt-declare-statement

tail

= DECLARE (data-structure-dec /

process-port-dec /

data-port-dec / message-port-dec)

= primary asterisk

= start-statement / wait-statement /

signal-statement /

connect-statement /

disconnect-statement

= line-number / FIRST / LAST

= segment-specifier

(comma segment-specifier)*

= segment-item (TO segment-item)?

= seize-line block* end-seize-line

= SHARED data-port-name /

[implementation-defined]

= line-number seize-statement tail

= seize-item (comma seize-item)*

= SEIZE seize-list

timeout-expression?

= select-line remark-line* case-block

case-block* case-else-block?

end-select-line

= line-number select-statement tail

= select-port-line remark-line*

case-port-block case-port-block*

case-timeout-block? end-select-line

= line-number select-port-statement

tail

= SELECT ON PORT

= SELECT CASE expression

= SEND TO message-port-name

FROM out-structure

timeout-expression?

= (MARGIN / ZONEWIDTH) index /

channel-setter pointer-items /

channel-setter

(MARGIN / ZONEWIDTH) index /

WINDOW boundaries /

VIEWPORT boundaries /

DEVICE WINDOW boundaries /

337

APPENDIX

set-statement

sign

signal-statement

signed-integer

significand

simple-numeric-variable

simple-string-declaration

simple-string-variable

simple-variable

size-select

start-statement

start-value

statement

statement-line

status-clause

step-size

stop-statement

string-array

string-array-assignment

string-array-declaration

string-array-element

string-array-expression

DEVICE VIEWPORT boundaries /

CLIP string-expression /

primitive-1 STYLE index /

primitive-2 COLOR index /

TEXT text-facet

numeric-expression /

TEXT JUSTIFY string-expression

comma string-expression /

COLOR MIX left-parenthesis index

right-parenthesis rgb-list

= SET set-object

= plus-sign / minus-sign

= SIGNAL event-name

= sign? integer

= integer period? / integer? fraction

= numeric-identifier

= simple-string-variable length-max?

= string-identifier

= simple-numeric-variable /

simple-string-variable

= LIMIT index

= START routine-identifier

= comma AT numeric-expression

= declarative-statement /

imperative-statement /

conditional-statement /

real-time-statement

= line-number statement tail

= STATUS numeric-variable

= integer

= STOP

= string-identifier

= MAT string-array

substring-qualifier?

equals-sign

string-array-expression

= string-array bounds

= string-array subscript-part

= string-array-primary

(concatenation

string-array-primary)? /

string-primary

concatenation

string-array-primary /

string-array-primary

concatenation

string-primary /

string-array-value

338

APPENDIX

string-array-primary

string-array-value

string-constant

string-declaration

string-def-statement

string-defined-function

string-expression

string-field-size

string-function

string-function-1et-statement=

string-function-ref =

string-identifier =

string-let-statement

string-primary

string-specifier

string-supplied-function

string-time-expression

string-type

string-variable

string-variable-list

structure-name

sub-list

sub-statement

string-array

substring-qualifier?

(string-primary

concatenation)?

quoted-string

simple-string-declaration /

string-array-declaration

length-max?

DEF string-defined-function

length-max? function-parm-list?

equals-sign string-expression

string-identifier

string-primary

(concatenation string-primary)*

integer

string-defined-function /

string-supplied-function

LET string-defined-function

equals-sign string-expression

string-function function-arg-list?

letter identifier-character*

dollar-sign

LET string-variable-list

equals-sign string-expression

string-constant /

string-variable /

string-function-ref /

left-parenthesis string-expression

right-parenthesis

STRING asterisk string-field-size

(CHR / DATE / LCASE / LTRIM /

REPEAT / RTRIM / STR / TIME /

UCASE / USING) dollar-sign /

EXTEXT dollar-sign /

BSTR dollar-sign

string-expression

STRING length-max?

string-declaration

(comma string-declaration)*

(simple-string-variable /

string-array-element)

substring-qualifier?

string-variable

(comma string-variable)*

letter identifier-character*

subprogram-name (comma

subprogram-name)*

SUB subprogram-name

339

APPENDIX

subprogram-def

subprogram-name

subscript

subscript-part

substring-qualifier

tab-call

tail

tail-comment

tempiate-element

template-element-list

template-identifier

tempiate-statement

term

text-facet

then-block

time-expression

time-inquiry

timeout-expression

trace-statement

transform

transform-assignment

transform-function

transform-term

type

type-declaration

procedure-parm-list?

= internal-sub-def /

external-sub-def

= routine-identifier

= index

= left-parenthesis subscript

(comma subscript)*

right-parenthesis

= left-parenthesis index colon

index right-parenthesis

= TAB left-parenthesis index

right-parenthesis

= tail-comment? end-of-line

= exclamation-point remark-string

= fixed-field-count

(field-specifier /

left-parenthesis

tempiate-element-list

right-parenthesis) /

variable-field-count

fieId-specifier

= template-element

(comma template-element)*

= WITH (line-number /

string-expression)

= TEMPLATE colon

tempiate-element-list

= factor (multiplier factor)*

= HEIGHT / ANGLE

= block*

= numeric-time-expression /

string-time-expression

= ELAPSED numeric-variable

= TIMEOUT numeric-time-expression

= TRACE ON (TO channel-expression)? /

TRACE OFF

= transform-term (asterisk

transform-term)*

= MAT numeric-array equals-sign

transform

= ROTATE / SHEAR / SHIFT / SCALE

= transform-function

function-arg-list /

numeric-array / current-transform

= (NUMERIC fixed-point-type? /

STRING) bounds?

= numeric-type / string-type /

def-type /

340

APPENDIX

unit-block

unquoted-string

unquoted-string-character

unsorted-program

upper-case-letter

urgency

use-line

value-select

variable

variable-field-count

variable-length-vector

variable-list

wait-event

wait-interval

wait-statement

wait-time

when-block

when-line

when-use-block

when-use-name-block

when-use-name-line

write-control

write-control-item

write-statement

internal-function-type /

external-function-type /

internal-sub-type /

external-sub-type /

internal-picture-type /

external-picture-type

= internal-proc-def / block

= plain-string-character /

plain-string-character

unquoted-string-character*

plain-string-character

= space / plain-string-character

= program-line*

= a/b/c/d/e/f/g/h/i/j/k/l/m/

n/o/p/q/r/s/t/u/v/w/x/y/z

= integer

= line-number USE tail

= CHOICE device-select?

start-value? /

VALUE device-select? range-select?

start-value?

= numeric-variable /

string-variable

= question-mark OF

= array-name left-parenthesis

question-mark right-parenthesis

= variable (comma variable)*

= EVENT event-name

timeout-expression?

= DELAY numeric-time-expression

= WAIT (wait-time / wait-interval /

wait-event)

= TIME time-expression

= block*

= line-number WHEN EXCEPTION IN tail

= when-line when-block

use-line exception-handler

end-when-line

= when-use-name-line

when-block end-when-line

= line-number WHEN EXCEPTION USE

handler-name tail

= (comma write-control-item)*

= record-setter /

not-missing-recovery /

template-identifier

= WRITE channel-expression

write-control colon expression-list

341

Appendix F.

Binding of GKS Level Ob to BASIC

FI. Introduction♦ This Appendix provides the syntax

description of the language binding the Graphical Kernel System

(GKS) level Ob to Basic. The semantics are described in ANSI

X3.124-1985 or ISO 7942-1985 Graphics Kernel System. Parts of

the syntax (and semantics) are also described in Section 13 of

this standard; such places are noted following the GKS function.

The matching of the parameters to those in ANSI X3.124-1985 or

ISO 7942-1985 is in an obvious manner. This Appendix provides

one possible method for those requiring more graphics facilities

than those provided by Section 13. This Appendix should be read

in conjunction with ANSI X3.124-1985 or ISO 7942-1985.

F2. GKS Control Functions

OPEN GKS

gks-statement > GRAPHICS START

CLOSE GKS

gks-statement > GRAPHICS STOP

OPEN WORKSTATION

wkstn

wkstn-id

wkstn-type-set

gks-statement > GRAPHICS OPEN wkstn NAME file-name comma

wkstn-type-set

= wkstn-id colon

= number-sign index

= TYPE index

CLOSE WORKSTATION

gks-statement > GRAPHICS CLOSE wkstn-id

ACTIVATE WORKSTATION

gks-statement > GRAPHICS ACTIVATE wkstn-id

DEACTIVATE WORKSTATION

gks-statement > GRAPHICS DEACTIVATE wkstn-id

342

CLEAR WORKSTATION (See Section 13)

gks-statement > CLEAR (wkstn string-expression)?

After the letters of string-expression have been converted to

upper case it must have either the value "CONDITIONALLY" or

"ALWAYS". If the optional parameters are not present, #0 and

"ALWAYS" are used.

EMERGENCY CLOSE GKS

gks-statement > GRAPHICS ABORT

UPDATE WORKSTATION

gks-statement > GRAPHICS UPDATE wkstn? string-expression

After the letters of string-expression have been converted to

upper case it must have either the value "PERFORM" or "SUPPRESS".

ESCAPE

gks-statement > GRAPHICS ESCAPE expression-list

F3. Output Functions

POLYLINE (See Section 13)

gks-statement > GRAPH LINES colon point-list /

MAT GRAPH LINES (comma size-select)?

colon array-point-list

POLYMARKER (See Section 13)

gks-statement > GRAPH POINTS colon point-list /

MAT GRAPH POINTS (comma size-select)?

colon array-point-list

TEXT (See Section 13)

gks-statement > GRAPH TEXT initial-point (comma USING image

colon expression-list / colon

string-expression)

343

APPENDIX

FILL AREA (See Section 13)

gks-statement > GRAPH AREA colon point-list / MAT GRAPH AREA

(comma size-select)? colon array-point-list

CELL ARRAY (See Section 13)

gks-statement > MAT GRAPH CELLS comma IN point-pair colon

numeric-array

GENERALIZED DRAWING PRIMITIVE

gks-statement > GRAPH GDP index colon point-list FROM

data-record / MAT GRAPH GDP index

(comma size-select)? colon array-point-list

FROM data-record

data-record = numeric-array comma string-array

Index is the GDP identifier. Data-record is the GDP record.

F4. Output Attributes

SET POLYLINE INDEX

gks-statement > SET LINE INDEX index

SET LINETYPE (See Section 13)

gks-statement > SET LINE STYLE index

SET LINE WIDTH SCALE FACTOR

gks-statement > SET LINE SIZE numeric-expression

SET POLYLINE COLOUR INDEX (See Section 13)

gks-statement > SET LINE COLOR index

SET POLYMARKER INDEX

gks-statement > SET POINT INDEX index

SET MARKER TYPE (See Section 13)

gks-statement > SET POINT STYLE index

344

APPENDIX

SET MARKER SIZE SCALE FACTOR

gks-statement > SET POINT SIZE numeric-expression

SET POLYMARKER COLOUR INDEX (See Section 13)

gks-statement > SET POINT COLOR index

SET TEXT INDEX

gks-statement > SET TEXT INDEX index

SET TEXT FONT AND PRECISION

gks-statement > SET FONT index WITH string-expression

Numeric-expression is the font number. After the letters of

string-expression have been converted to upper case it must have

one of the values "STRING", "CHAR", or "STROKE".

SET TEXT COLOUR INDEX (See Section 13)

gks-statement > SET TEXT COLOR index

SET CHARACTER EXPANSION FACTOR

gks-statement > SET TEXT EXPAND numeric-expression

SET CHARACTER SPACING

gks-statement > SET TEXT SPACE numeric-expression

SET CHARACTER HEIGHT (See Section 13)

gks-statement > SET TEXT HEIGHT numeric-expression

SET CHARACTER UP VECTOR (See Section 13)

gks-statement > SET TEXT ANGLE numeric-expression

SET TEXT PATH

gks-statement > SET TEXT PATH string-expression

String-expression must be one of "RIGHT", "LEFT", "UP", or "DOWN

after the letters of string-expression have been converted to

upper case.

345

APPENDIX

SET TEXT ALIGNMENT (See Section 13)

gks-statement > SET TEXT JUSTIFY string-expression comma

string expression

SET FILL AREA INDEX

gks-statement > SET AREA INDEX index

SET FILL AREA INTERIOR STYLE

gks-statement > SET AREA STYLE string-expression

String-expression must be one of "HOLLOW", "SOLID", "PATTERN",

or "HATCH" after its letters have been converted to upper case.

SET FILL AREA STYLE INDEX

gks-statement > SET AREA STYLE INDEX index

SET FILL AREA COLOUR INDEX (See Section 13)

gks-statement > SET AREA COLOR index

SET PATTERN SIZE

gks-statement > SET PATTERN SIZE numeric-expression comma

numeric expression

SET PATTERN REFERENCE POINT

gks-statement > SET PATTERN REF coordinate-pair

SET ASPECT SOURCE FLAGS

gks-statement > SET FLAGS flag-type string-expression

flag-type = LINE STYLE / LINE SIZE / LINE COLOR /

POINT STYLE / POINT SIZE / POINT COLOR /

TEXT FONT / TEXT EXPAND / TEXT SPACE /

TEXT COLOR / AREA STYLE /

AREA STYLE INDEX / AREA COLOR

String-expression must be one of "BUNDLED" or "INDIVIDUAL" when

the letters of string-expression have been converted to upper

case .

346

APPENDIX

SET COLOUR REPRESENTATION (See Section 13)

gks-statement > SET COLOR MIX wkstn? table-index rgb-list

table-index = left-parenthesis index right-parenthesis

F5. Transformation Functions

SET WINDOW (See Section 13)

gks-statement > SET WINDOW tran-number? boundaries

tran-number = TRANSFORMATION index

If tran-number is not specified, 1 is assumed.

SET VIEWPORT (See Section 13)

gks-statement > SET VIEWPORT tran-number? boundaries

If tran-number is not specified, 1 is assumed.

SELECT NORMALISATION TRANSFORMATION

gks-statement > SET tran-number

SET CLIPPING INDICATOR (See Section 13)

gks-statement > SET CLIP string-expression

SET WORKSTATION WINDOW (See Section 13)

gks-statement > SET DEVICE WINDOW wkstn? boundaries

SET WORKSTATION VIEWPORT (See Section 13)

gks-statement > SET DEVICE VIEWPORT wkstn? boundaries

F6. Metafile Functions

WRITE ITEM TO GKSM

gks-statement > GRAPHICS WRITE wkstn-id TYPE index colon

expression-list

347

APPENDIX

GET ITEM TYPE FROM GKSM

gks-statement > GRAPHICS READ TYPE wkstn numeric-variable

Numeric-variable is the item type.

READ ITEM FROM GKSM

gks-statement > GRAPHICS READ ITEM wkstn string-array

INTERPRET ITEM

gks-statement > GRAPHICS DO ITEM string-array-expression

F7. Enquiry Functions

The error indicator (of GKS) is returned by a status-clause on an
ask-statement.

INQUIRE CLIPPING INDICATOR (See Section 13)

gks-statement > ASK CLIP string-variable

INQUIRE COLOUR FACILITIES (See Section 13)

gks-statement

wkstn-type-select

wkstn-type

> ASK MAX COLOR wkstn-type-select?
numeric-variable (comma string-variable
comma numeric-variable)?

= left-parenthesis wkstn-type
right-parenthesis

= index

String-variable is set to either "MONOCHROME" or "COLOR".

INQUIRE COLOUR REPRESENTATION (See Section 13)

gks-statement > ASK COLOR MIX wkstn? table-index mix-list

INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES (See Section 13)

gks-statement > ASK attribute-namel numeric-variable /
ASK AREA STYLE string-variable /
ASK TEXT FONT numeric-variable comma
string-variable

attribute-namel = LINE STYLE / LINE SIZE / LINE COLOR/
POINT STYLE / POINT SIZE / POINT COLOR /
TEXT EXPAND / TEXT SPACE / TEXT COLOR /
AREA STYLE INDEX / AREA COLOR

348

APPENDIX

INQUIRE CURRENT NORMALISATION TRANSFORMATION NUMBER

gks-statement > ASK TRANSFORMATION numeric-variable

INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES (See Section 13)

gks-statement > ASK attribute-name2 numeric-variable /
ASK TEXT JUSTIFY string-variable
comma string-variable /
ASK TEXT PATH string-variable /
ASK attribute-name3 numeric-variable
comma numeric-variable

attribute-name2 = LINE INDEX / POINT INDEX / TEXT INDEX /
TEXT HEIGHT / TEXT ANGLE / AREA INDEX

attribute-name3 = PATTERN SIZE / PATTERN REF

INQUIRE FILL AREA FACILITIES

gks-statement > ASK AREA TYPES wkstn-type-select?
numeric-variable comma
string-variable-vector comma
numeric-variable comma
numeric-variable-vector comma
numeric-variable

INQUIRE GENERALIZED DRAWING PRIMITIVE

gks-statement > ASK GDP left-parenthesis wkstn-type comma
index right-parenthesis string-array

INQUIRE LEVEL OF GKS

gks-statement > ASK GRAPHICS LEVEL string-variable

String variable is set to one of "ma", "mb", "me", "Oa", "Ob",
"Oc", "la", "lb", "lc", "2a", "2b", "2c".

INQUIRE LIST OF AVAILABLE GDP

gks-statement > ASK GDP LIST wkstn-type-select
numeric-variable-vector

INQUIRE LIST OF AVAILABLE WORKSTAION TYPES

gks-statement > ASK DEVICE LIST string-variable-vector

349

APPENDIX

INQUIRE LIST OF COLOUR INDICES

gks-statement > ASK COLOR LIST wkstn?
numeric-variable-vector

INQUIRE LIST OF NORMALISATION TRANSFORMATION NUMBERS

gks-statement > ASK TRANSFORMATION LIST
numeric-variable-vector

INQUIRE MAXIMUM DISPLAY SURFACE SIZE (See Section 13)

gks-statement > ASK DEVICE SIZE wkstn-type-select?
numeric-variable comma numeric-variable
comma string-variable

INQUIRE MAXIMUM NORMALISATION TRANSFORMATION NUMBER

gks-statement > ASK MAX TRANSFORMATION numeric-variable

INQUIRE NORMALISATION TRANSFORMATION (See Section 13)

gks-statement > ASK (WINDOW / VIEWPORT) tran-number?
boundary-variables

INQUIRE OPERATING STATE VALUE

gks-statement > ASK GRAPHICS STATE string-variable

INQUIRE PATTERN FACILITIES

gks-statement > ASK PATTERN TYPES wkstn-type-select?
numeric-variable

INQUIRE PIXEL (See Section 13)

gks-statement > ASK PIXEL VALUE wkstn? point-location
numeric-variable

INQUIRE PIXEL ARRAY (See Section 13)

gks-statement > ASK PIXEL ARRAY wkstn? point-location
numeric-array (comma string-variable)?

350

APPENDIX

INQUIRE PIXEL ARRAY DIMENSIONS (See Section 13)

gks-statement > ASK PIXEL SIZE wkstn? left-parenthesis
point-pair right-parenthesis
numeric-variable comma numeric-variable

INQUIRE POLYLINE FACILITIES

gks-statement > ASK LINE TYPES wkstn-type-select?
numeric-variable-vector
comma numeric-variable comma
numeric-variable
comma numeric-variable comma
numeric-variable comma
numeric-variable

INQUIRE POLYMARKER FACILITIES

gks-statement > ASK POINT TYPES wkstn-type-select?
numeric-variable-vector
comma numeric-variable comma
numeric-variable
comma numeric-variable comma
numeric-variable comma
numeric-variable

INQUIRE PREDEFINED COLOUR REPRESENTATION

gks-statement > ASK PREDEFINED COLOR MIX type-index?
mix-list

type-index = left-parenthesis wkstn-type comma index
right-parenthesis

INQUIRE PREDEFINED FILL AREA REPRESENTATION

gks-statement > ASK PREDEFINED AREA TYPES type-index?
string-variable comma
numeric-variable comma numeric-variable

INQUIRE PREDEFINED PATTERN REPRESENTATION

gks-statement > ASK PREDEFINED PATTERN type-index?
numeric-variable-matrix

351

APPENDIX

INQUIRE PREDEFINED POLYLINE REPRESENTATION

gks-statement > ASK PREDEFINED LINE TYPES type-index?
numeric-variable comma numeric-variable
comma numeric-variable

INQUIRE PREDEFINED POLYMARKER REPRESENTATION

gks-statement > ASK PREDEFINED POINT TYPES type-index?
numeric-variable comma numeric-variable
comma numeric-variable

INQUIRE PREDEFINED TEXT REPRESENTATION

gks-statement > ASK PREDEFINED TEXT type-index?
numeric-variable comma string-variable
comma numeric-variable comma
numeric-variable comma numeric-variable

INQUIRE SET OF OPEN WORKSTATIONS

gks-statement > ASK DEVICE OPEN LIST
numeric-variable-vector

INQUIRE TEXT EXTENT

gks-statement > ASK TEXT SIZE wkstn? left-parenthesis
coordinate-pair comma string-expression
right-parenthesis point-location
comma numeric-variable-matrix

INQUIRE TEXT FACILITIES

gks-statement > ASK TEXT TYPES wkstn-type-select
numeric-variable-vector comma
string-variable-vector /
ASK TEXT HEIGHT RANGE range /
ASK TEXT EXPAND RANGE range

string-variable-vector = string-array left-parenthesis
question-mark right-parenthesis

range = numeric-variable comma numeric-variable
comma numeric-variable

INQUIRE WORKSTATION CATEGORY

gks-statement > ASK DEVICE CATEGORY wkstn-type-select?
string-variable

352

APPENDIX

INQUIRE WORKSTATION CLASSIFICATION

gks-statement > ASK DEVICE CLASS wkstn-type-select?
string-variable

INQUIRE WORKSTATION CONNECTION AND TYPE

gks-statement > ASK DEVICE CONNECTION wkstn?
string-variable comma numeric-variable

INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

gks-statement > ASK DEVICE UPDATE wkstn? string-variable
comma string-variable comma string-variable
comma string-variable

INQUIRE WORKSTATION STATE

gks-statement > ASK DEVICE STATE wkstn? string-variable

INQUIRE WORKSTATION TRANSFORMATION (See Section 13)

gks-statement > ASK DEVICE (WINDOW / VIEWPORT) wkstn?
boundary-variables

F8. Initializing Input Functions

INITIALISE CHOICE (See also Section 13)

gks-statement > SET CHOICE wkstn? device-select AT
numeric-expression PROMPT TYPE
numeric-expression
ECHO AREA boundaries RECORD data-record

INITIALISE LOCATOR (See also Section 13)

gks-statement > SET POINT wkstn? device-select AT
coordinate-pair TRAN numeric-expression
PROMPT TYPE numeric-expression
ECHO AREA boundaries RECORD data-record

INITIALISE STRING

gks-statement > SET STRING wkstn? device-select AT
string-expression
PROMPT TYPE numeric-expression
ECHO AREA boundaries RECORD data-record

353

APPENDIX

INITIALISE STROKE (See also Section 13)

gks-statement > SET MULTIPOINT wkstn? device-select AT
array-point-list TRAN numeric-expression
PROMPT TYPE numeric-expression
ECHO AREA boundaries RECORD data-record

INITIALISE VALUATOR (See also Section 13)

gks-statement > SET VALUE wkstn? device-select AT
numeric-expression
PROMPT TYPE numeric-expression
ECHO AREA boundaries RECORD data-record

F9. Enquiry Input Functions

INQUIRE CHOICE DEVICE STATE

> ASK CHOICE STATE wkstn? device-select
choice-state (comma choice-state)*

= basic-device-state /
INITIAL numeric-variable

tate = MODE string-variable /
ECHO STATE string-variable /
PROMPT TYPE numeric-variable /
ECHO AREA numeric-variable comma
numeric-variable comma numeric-variable
comma numeric-variable /
RECORD data-record

INQUIRE DEFAULT CHOICE DEVICE DATA

gks-statement > ASK CHOICE DEFAULTS wkstn-device-select
choice-default (comma choice-default)*

wkstn-device-select = left-parenthesis wkstn-type comma
device right-parenthesis

device = index
choice-default = basic-default / INITIAL numeric-variable
basic-default = PROMPT TYPE numeric-variable-array /

ECHO AREA numeric-variable comma
numeric-variable comma numeric-variable
comma numeric-variable /
RECORD data-record

gks-statement

choice-state

basic-device-s

354

APPENDIX

INQUIRE DEFAULT LOCATOR DEVICE DATA

gks-statement

point-default

> ASK POINT DEFAULTS wkstn-device-select
point-default (comma point-default)*

= basic-default / INITIAL
coordinate-variables

INQUIRE DEFAULT STRING DEVICE DATA

gks-statement > ASK STRING DEFAULTS wkstn-device-select
string-default (comma string-default)*

string-default = basic-default / INITIAL string-variable

INQUIRE DEFAULT STROKE DEVICE DATA

gks-statement > ASK MULTIPOINT DEFAULTS wkstn-device-select
basic-default (comma basic-default)*

INQUIRE DEFAULT VALUATOR DEVICE DATA

gks-statement

value-default

INQUIRE LOCATOR DEVICE STATE

gks-statement

point-state

> ASK VALUE DEFAULTS wkstn-device-select
value-default (comma value-default)*

= basic-default / INITIAL numeric-variable

> ASK POINT STATE wkstn? device-select
point-state (comma point-state)*

= basic-device-state /
INITIAL coordinate-variables

INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES (See Sec. 13)

gks-statement > ASK MAX CHOICE DEVICE wkstn-type-select?
numeric-variable /
ASK MAX STRING DEVICE wkstn-type-select?
numeric-variable /
ASK MAX POINT DEVICE wkstn-type-select?
numeric-variable /
ASK MAX MULTIPOINT DEVICE wkstn-type-select?
numeric-variable /
ASK MAX VALUE DEVICE wkstn-type-select?
numeric-variable

355

APPENDIX

INQUIRE STRING DEVICE STATE

gks-statement > ASK STRING STATE wkstn? device-select

string-state
string-state (comma string-state)*

= basic-device-state /
INITIAL string-variable

INQUIRE STROKE DEVICE STATE

gks-statement > ASK MULTIPOINT STATE wkstn? device-select
multi-state (comma multi-state)*

multi-state = basic-device-state /
INITIAL numeric-variable-vector comma
numeric-variable-vector

INQUIRE VALUATOR DEVICE STATE

gks-statement > ASK VALUE STATE wkstn? device-select
value-state (comma value-state)*

value-state = basic-device-state /
INITIAL numeric-variable

F10. Request Mode Input Functions

REQUEST CHOICE (See Section 13)

gks-statement > LOCATE CHOICE wkstn? device-select?
start-value? colon numeric-variable

REQUEST LOCATOR (See Section 13)

gks-statement > LOCATE POINT wkstn? device-select?
initial-point? colon coordinate-variables
(TRAN numeric-variable)?

REQUEST STRING

gks-statement > LOCATE STRING wkstn? device-select?
colon string-variable

REQUEST STROKE (See Section 13)

gks-statement > MAT LOCATE POINT wkstn? device-select?
initial-point? colon array-locate-object
(TRAN numeric-variable)?

356

APPENDIX

REQUEST VALUATOR (See Section 13)

gks-statement > LOCATE VALUE wkstn? device-select?
range-select? start-value? colon
numeric-variable

Fll. Set Mode Input Functions

SET CHOICE MODE

gks-statement

SET LOCATOR MODE

gks-statement

SET STRING MODE

gks-statement

SET STROKE MODE

gks-statement

SET VALUATOR MODE

gks-statement

> SET CHOICE MODE wkstn? device-select
string-expression comma string-expression

> SET POINT MODE wkstn? device-select
string-expression comma string-expression

> SET TEXT MODE wkstn? device-select
string-expression comma string-expression

> SET MULTIPOINT MODE wkstn? device-select
string-expression comma string-expression

> SET VALUE MODE wkstn? device-select
string-expression comma string-expression

357

Appendix G.
Differences between Minimal BASIC and BASIC

The differences between Minimal BASIC and core BASIC may be
classified as either syntactic incompatibilities or semantic
(run-time) differences.

G1 Syntactic Differences. With the following exception,
the core module forms an upward compatible syntactic extension of
American National Standard Minimal BASIC, ANSI X3.60-1978.

(1) All arrays in a standard conforming program must be
dimensioned before use.

Programs written in Minimal BASIC may therefore produce
errors when run on an implementation that conforms to the core.
Such programs may be modified to run correctly as follows:

(1) Identify all arrays which are implicitly dimensioned.
(2) Insert a dimension-statement covering each such array

with upper bound equal to 10. Each such dimension-statement must
follow an option-base-statement, if any, and precede any
reference to the arrays contained in the dimension-statement.

For example, if a vector A is used in a Minimal BASIC program but
is not dimensioned there, inserting

DIM A(10)

will cause the program to run correctly with respect to the
vector A. Since array-names in Minimal BASIC are limited to
single letters, there can be no more than 26 such changes needed.

G2 Semantic Differences. In addition, the core module
differs from Minimal BASIC in several other ways that may be
classified as "run-time." As a result, a Minimal BASIC program
run under a BASIC implementation might produce slightly different
results.

(1) The default lower bound for arrays is 1, not 0 as in
Minimal Basic.

Programs in Minimal Basic can be made to run correctly if
the following statement is introduced prior to any DIM statement:

OPTION BASE 0

358

(2) The core module specifies that arithmetic be carried
out using a floating-point decimal representation, with at least
ten decimal digits of precision, whereas Minimal BASIC is more
permissive in allowing arithmetic to be carried out using other
representations (e.g., floating-point binary), with at least six
decimal digits of precision (cf. 5.6). The only effect should be
that the program gives more precise results, which should not
cause problems for the user. An option is provided that permits
NATIVE arithmetic, which might be defined as in Minimal BASIC for
a given implementation.

(3) The default maximum length for strings must be at least
132, not 18 as in Minimal BASIC. The only difference is that a
program might not get a string-overflow exception, which it would
have gotten in Minimal BASIC. The old behavior can be restored
by declaring the maximum length of the strings to be the old
maximum.

(4) It is not necessary to prevalidate an entire input-
reply before assignment of values to variables takes place,
whereas this was required in Minimal BASIC. Thus, an input-reply
of "2,4,x" in response to INPUT I, A(l), J could change the value
of A(2), whereas this is not allowed in Minimal BASIC.

(5) Certain exceptions — overflow, division by zero, and
raising to a negative power — are fatal exceptions in BASIC and
nonfatal in Minimal BASIC. However, since ANSI X3.60-1978
specifies that nonfatal exceptions can be treated as fatal under
certain circumstances, a Minimal BASIC program should not rely on
these exceptions being nonfatal.

359

Appendix H.
Language Elements under Consideration for Future Removal

The gosub-statement, on-gosub-statement, and the return-statement
are under consideration for future removal. It is recommended
that as users write new programs, or maintain existing programs,
they refrain from using these statements, in order to improve
compatibility with future versions of this standard.

The GOSUB facility is being considered for removal because
it encourages poor programming practice by allowing the construc¬
tion of subroutines with several entry points. Furthermore,
these "subroutines" are not delineated by any distinctive syntax;
any line of a program may be the beginning of such a subroutine.
Users are encouraged to avail themselves of the subprogram
facilities (see 9.2) described in this standard when they need
subroutines.

Furthermore, the GOSUB facility interacts in a complex way
with other aspects of the language (e.g., internal-proc-defs,
exception-handlers), thus making it more difficult to understand
source code, to implement conforming language processors, and to
describe the language correctly. Thus, programmers, implemen¬
tors, teachers, and writers are all impeded in their work with
BASIC.

360

X3.115-1984 Unformatted 80 Megabyte Trident Pack for Use
at 370 tpi and 6000 bpi (General, Physical, and Magnetic Charac¬
teristics)
X3.116-1986 Recorded Magnetic Tape Cartridge, 4-Track, Serial
0.250 Inch (6.30 mm) 6400 bpi (252 bpmm), Inverted Modified
Frequency Modulation Encoded
X3.117-1984 Printable/lmage Areas for Text and Facsimile Com¬
munication Equipment
X3.118-1984 Financial Services — Personal Identification Number
- PIN Pad
X3.119-1984 Contact Start/Stop Storage Disk, 158361 Flux Trans¬
itions per Track, 8.268 Inch (210 mm) Outer Diameter and 3.937
inch (100 mm) Inner Diameter
X3.120-1984 Contact Start/Stop Storage Disk
X3.121-1984 Two-Sided, Unformatted, 8-Inch (200-mm), 48-tpi,
Double-Density, Flexible Disk Cartridge for 13 262 ftpr Two-Headed
Application
X3.122-1986 Computer Graphics Metafile for the Storage and
Transfer of Picture Description Information
X3.124-1985 Graphical Kernel System (GKS) Functional
Description
X3.124.1-1985 Graphical Kernel System (GKS) FORTRAN
Binding
X3.125-1985 Two-Sided, Double-Density, Unformatted 5.25-inch
(1 30-mm), 48-tpi (1,9-tpmm). Flexible Disk Cartridge for 7958
bpr Use
X3.126-1986 One-or Two-Sided Double-Density Unformatted
5.25-inch (130-mm), 96 Tracks per Inch, Flexible Disk Cartridge
X3.127-1987 Unrecorded Magnetic Tape Cartridge for Information
Interchange
X3.128-1986 Contact Start-Stop Storage Disk — 83 000 Flux
Transitions per Track, 130-mm (5.118-in) Outer Diameter and
40-mm (1.575-in) Inner Diameter
X3.129-1986 Intelligent Peripheral Interface, Physical Level
X3.130-1986 Intelligent Peripheral Interface, Logical Device
Specific Command Sets for Magnetic Disk Drive
X3.131-1986 Small Computer Systems Interface
X3.132-1987 Intelligent Peripheral Interface — Logical Device
Generic Command Set for Optical and Magnetic Disks

X3.133-1986 Database Language —NDL
X3.135-1986 Database Language — SQL
X3.136-1986 Serial Recorded Magnetic Tape Cartridge for
Information Interchange, Four and Nine Track
X3.139-1987 Fiber Distributed Data Interface (FDDI) Token Ring
Media Access Control (MAC)
X3.140-1986 Open Systems Interconnection — Connection
Oriented Transport Layer Protocol Specification
X3.141-1987 Data Communication Systems and Services — Mea¬
surement Methods for User-Oriented Performance Evaluation
X3.146-1987 Device Level Interface for Streaming Cartridge
and Cassette Tape Drives
X3.147-1987 Intelligent Peripheral Interface — Logical Device
Generic Command Set for Magnetic Tapes
X3.153-1987 Open Systems Interconnection — Basic Connection
Oriented Session Protocol Specification
X3.156-1987 Nominal 8-Inch Rigid Disk Removable Cartridge
X3.157-1987 Recorded Magnetic Tape for Information Interchange,
3200 CPI
X3.158-1987 Serial Recorded Magnetic Tape Cassette for Informa¬
tion Interchange, 0.150 Inch (3.81 mm), 8000 bpi (315 bpmm).
Group Code Recording.
XII.1-1977 Programming Language MUMPS
IEEE 416-1978 Abbreviated Test Language for All Systems
(ATLAS)
IEEE 716-1982 Standard C/ATLAS Language
IEEE 717-1982 Standard C/ATLAS Syntax
IEEE 770X3.97-1983 Programming Language PASCAL
IEEE 771-1980 Guide to the Use of ATLAS
ISO 8211-1986 Specifications for a Data Descriptive File for
Information Interchange
MIL-STD-1815A-1983 Reference Manual for the Ada Programming
Language
NBS-ICST 1-1986 Fingerprint Identification — Data Format for
Information Interchange

X3/TRI-82 Dictionary for Information Processing Systems
(Technical Report)

American National Standards for Information Processing
X3.1-1987 Synchronous Signaling Rates for Data Transmission

X3.2-1970 Print Specifications for Magnetic Ink Character

Recognition

X3.4-1986 Coded Character Sets — 7-Bit ASCII

X3.5-1970 Flowchart Symbols and Their Usage

X3.6-1965 Perforated Tape Code

X3.9-1978 Programming Language FORTRAN

X3.11-1969 General Purpose Paper Cards

X3.14-1983 Recorded Magnetic Tape (200 CPI, NRZI)

X3.15-1976 Bit Sequencing of the American National Standard

Code for Information Interchange in Serial-by-Bit Data Transmission

X3.16-1976 Character Structure and Character Parity Sense for

Serial-by-Bit Data Communication in the American National Stan¬

dard Code for Information Interchange

X3.17-1981 Character Set for Optical Character Recognition

(OCR-A)

X3.18-1974 One-Inch Perforated Paper Tape

X3.19-1974 Eleven-Sixteenths-Inch Perforated Paper Tape

X3.20-1967 Take-Up Reels for One-Inch Perforated Tape

X3.21-1967 Rectangular Holes in Twelve-Row Punched Cards

X3.22-1983 Recorded Magnetic Tape (800 CPI, NRZI)

X3.23-1985 Programming Language COBOL

<3.25-1976 Character Structure and Character Parity Sense for

’arallel-by-Bit Data Communication in the American National

itandard Code for Information Interchange

(3.26-1980 Hollerith Punched Card Code

(3.27-1987 Magnetic Tape Labels and File Structure

(3.28-1976 Procedures for the Use of the Communication Control

lharacters of American National Standard Code for Information

nterchange in Specified Data Communication Links

i3.29-1971 Specifications for Properties of Unpunched Oiled

aper Perforator Tape

3.30- 1986 Representation for Calendar Date and Ordinal Date

3.31- 1973 Structure for the Identification of the Counties of the

nited States

3.32- 1973 Graphic Representation of the Control Characters of

merican National Standard Code for Information Interchange

3.34-1972 Interchange Rolls of Perforated Tape

3.37- 1987 Programming Language APT

3.38- 1972 Identification of States of the United States

ncluding the District of Columbia)

3.39- 1986 Recorded Magnetic Tape (1600 CPI, PE)

3.40- 1983 Unrecorded Magnetic Tape (9-Track 800 CPI, NRZI;

600 CPI, PE; and 6250 CPI, GCR)

(3.41-1974 Code Extension Techniques for Use with the 7-Bit

;oded Character Set of American National Standard Code for Infor-

nation Interchange

<3.42-1975 Representation of Numeric Values in Character Strings

<3.43-1986 Representations of Local Time of Day

X3.44-1974 Determination of the Performance of Data Communi¬

cation Systems

X3.45-1982 Character Set for Handprinting

X3.46-1974 Unrecorded Magnetic Six-Disk Pack (General, Physical,

and Magnetic Characteristics)

X3.47-1977 Structure for the Identification of Named Populated

Places and Related Entities of the States of the United States for

Information Interchange

X3.48-1986 Magnetic Tape Cassettes (3.81-mm [0.150-Inch]

Tape at 32 bpmm [800 bpi] , PE)

X3.49-1975 Character Set for Optical Character Recognition (OCR-B)

X3.50-1986 Representations for U.S. Customary, SI, and Other

Units to Be Used in Systems with Limited Character Sets

X3.51-1986 Representations of Universal Time, Local Time Differ¬

entials, and United States Time Zone References

X3.52-1976 Unrecorded Single-Disk Cartridge (Front Loading,

2200 BPI) (General, Physical, and Magnetic Requirements)

X3.53-1976 Programming Language PL/1

X3.54-1986 Recorded Magnetic Tape (6250 CPI, Group Coded

Recording)

X3.55-1982 Unrecorded Magnetic Tape Cartridge, 0.250 Inch

(6.30 mm), 1600 bpi (63 bpmm). Phase encoded

X3.56-1986 Recorded Magnetic Tape Cartridge, 4 Track, 0.250

Inch (6.30 mm), 1600 bpi (63 bpmm). Phase Encoded

X3.57-1977 Structure for Formatting Message Headings Using the

American National Standard Code for Information Interchange for

Data Communication Systems Control

X3.58-1977 Unrecorded Eleven-Disk Pack (General, Physical, and

Magnetic Requirements)

X3.60-1978 Programming Language Minimal BASIC

X3.61-1986 Representation of Geographic Point Locations

X3.62-1987 Paper Used in Optical Character Recognition (OCR)

Systems

X3.63-1981 Unrecorded Twelve-Disk Pack (100 Megabytes) (Gen¬

eral, Physical, and Magnetic Requirements)

X3.64-1979 Additional Controls for Use with American National

Standard Code for Information Interchange

X3.66-1979 Advanced Data Communication Control Procedures

(ADCCP)

X3.72-1981 Parallel Recorded Magnetic Tape Cartridge, 4 Track,

0.250 Inch (6.30 mm), 1600 bpi (63 bpmm). Phase Encoded

X3.73-1980 Single-Sided Unformatted Flexible Disk Cartridge

(for 6631-BPR Use)

X3.74-1987 Programming Language PL/I, General-Purpose Subset

X3.76-1981 Unformatted Single-Disk Cartridge (Top Loading

200 tpi 4400 bpi) (General, Physical, and Magnetic Requirements)

X3.77-1980 Representation of Pocket Select Characters

X3.78-1981 Representation of Vertical Carriage Positioning Char¬

acters in Information Interchange

X3.79-1981 Determination of Performance of Data Communica¬

tions Systems That Use Bit-Oriented Communication Procedures

X3.80-1981 Interfaces between Flexible Disk Cartridge Drives

and Their Host Controllers

X3.82-1980 One-Sided Single-Density Unformatted 5.25-Inch

Flexible Disk Cartridge (for 3979-BPR Use)

X3.83-1980 ANSI Sponsorship Procedures for ISO Registration

According to ISO 2375

X3.84-1981 Unformatted Twelve-Disk Pack (200 MegabytesHGen-

eral. Physical, and Magnetic Requirements

X3.85-1981 1/2-Inch Magnetic Tape Interchange Using a Self

Loading Cartridge

X3.86-1980 Optical Character Recognition (OCR) Inks

X3.88-1981 Computer Program Abstracts

X3.89-1981 Unrecorded Single-Disk, Double-Density Cartridge

(Front Loading, 2200 bpi, 200 tpi) (General, Physical, and Mag¬

netic Requirements)

X3.91M-1987 Storage Module Interfaces

X3.92-1981 Data Encryption Algorithm

X3.93M-1981 OCR Character Positioning

X3.94-1985 Programming Language PANCM

X3.95-1982 Microprocessors — Hexadecimal Input/Output, Using

5-Bit and 7-Bit Teleprinters

X3.96-1983 Continuous Business Forms (Single-Part)

X3.98-1983 Text Information Interchange in Page Image Format

(PIF)

X3.99-1983 Print Quality Guideline for Optical Character Recogni¬

tion (OCR)

X3.100-1983 Interface Between Data Terminal Equipment and

Data Circuit-Terminating Equipment for Packet Mode Operation

with Packet Switched Data Communications Network

X3.101-1984 Interfaces Between Rigid Disk Drive(s) and Host(s)

X3.102-1983 Data Communication Systems and Services — User-

Oriented Performance Parameters

X3.103-1983 Unrecorded Magnetic Tape Minicassette for Informa¬

tion Interchange, Coplanar 3.81 mm (0.150 in)

X3.104-1983 Recorded Magnetic Tape Minicassette for Informa¬

tion Interchange, Coplanar 3.81 mm (0.150 in). Phase Encoded

X3.105-1983 Data Link Encryption

X3.106-1983 Modes of Operation for the Data Encryption Algorithm

X3.110-1983 Videotex/Teletext Presentation Level Protocol Syntax

X3.111-1986 Optical Character Recognition (OCR) Matrix Charac¬

ter Sets for OCR-M

X3.112-1984 14-in (356-mm) Diameter Low-Surface-Friction

Magnetic Storage Disk

X3.113-1987 Programming Language FULL BASIC

X3.114-1984 Alphanumeric Machines; Coded Character Sets for

Keyboard Arrangements in ANSI X4.23-1982 and X4.22-1983

(Continued on reverse)

October 1987

