
FEDERAL INFORMATION
PROCESSING STANDARDS PUBLICATION

1977 February 1

Category: Software
Subcategory: Programming Language

FEDERAL STANDARD COBOL
POCKET GUIDE

FOREWORD

The Federal Information Processing Stan¬
dards Publication Series of the National Bureau
of Standards is the official publication relat¬
ing to standards adopted and promulgated under
the provisions of Public Law 89-306 (Brooks
Bill) and under Part 6 of Title 15, Code of
Federal Regulations. These legislative and exe¬
cutive mandates have given the Secretary of Com¬
merce important responsibilities for improving

the utilization and management of computers and
automatic data processing systems in the Federal
Government. To carry out the Secretary's
responsibilities, the National Bureau of Stan¬
dards, through its Institute for Computer Sci¬
ences and Technology, provides leadership,
technical guidance, and coordination of govern¬
ment efforts in the development of guidelines
and standards in these areas.

The establishment of COBOL as a Federal
Standard (FIPS PUB 21) is an effort to assist
the Federal Government ADP user in stating data
processing aoolications in such a way that
Drograms and data can be develooed and m
tained with a minimum of time and effort,
further assist in the programming task.
Task Group 9 made a recommendation to the Na¬
tional Bureau of Standards that a companion FIPS
PUB be published that could be used as a con¬
densed programmer's reference guide of the stan¬
dard language. Accordingly, the National Bureau
of Standards is pleased to have the opportunity
to make this reference material available for
use by Federal agencies.

R. M. DAVIS, Director
Institute for

Computer Sciences
and Technology

ABSTRACT

This document contains a composite language
skeleton of Federal Standard COBOL. It is in¬
tended to disolav complete and syntactically
correct formats for the High Level of the stan¬
dard. In addition, the document contains other
selected prompts for the COBOL programmer to as¬
sist in expediting the orogramming task.

Key Words: COBOL; COBOL orogramming aids;
Federal Standard COBOL; programming aids; oro¬
gramming languages.

Federal Information
Processing Standards Publication 47

1977 February 1

Announcing The

Federal Standard COBOL
Pocket Guide

Federal Information Processing Standards Publi¬
cations are issued by the National Bureau of
Standards pursuant to the Federal Prooerty and
Administrative Services Act of 1949, as amended.
Public Law 89-306 (79 Stat. 1127), Executive
Order 11717 (38 FP 12315, dated May 11, 1973),
and Part 6 of Title 15 Code of Federal Regula¬
tions (CFR).

NAME OF PUBLICATION. Federal Standard COBOL
Pocket Guide.

CATEGORY. Software, Programming Language.

EXPLANATION. The purpose of this publication is
to provide a handy prompt for COBOL programmers.
jChe document contains a complete language skele¬
ton for the high level of Federal Standard
*OBOL. Although not a part of Federal Standard
COBOL, the Report Writer facility has been in¬
cluded for those having access to the American
National Standard COBOL Report Writer facility.

APPROVING AUTHORITY. Department of Commerce,
National Bureau of Standards (Institute for Com¬
puter Sciences and Technology).

MAINTENANCE AGENCY. Department of Commerce, Na¬
tional Bureau of Standards (Institute for Com¬
muter Sciences and Technology).

CROSS INDEX. FIPS PUB 21-1, COBOL.

WHERE TO OBTAIN COPIES OF THIS PUBLICATION.
Cooies of this publication are for sale by the
National Technical Information Service, U.S.
Department of Commerce, Springfield, Virginia
22161. When ordering, refer to Federal Informa¬
tion Processing Standards Publication 47 (NBS-
FIPS-PUB-47), title, and Accession Number. When
microfiche is desired, this should be specified.
Payment may be made by check, money order, or
deposit account.

x

ACKNOWLEDGMENT

COBOL is an industry language and is not
the property of any company or grouo of com¬
panies, or of any organization or group of or¬
ganizations .

No warranty, expressed or implied, is made
by any contributor or by the CODASYL Programming
Language Committee as to the accuracy and func¬
tioning of the programming system and language.
Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection
therewith.

The authors and copyright holders of the
copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand
Corporation), Programming for the
UNIVAC I and II, Data Automation
Systems copyrighted 1958, 1959, by
Soerry Rand Corporation; IBM Commer¬
cial Translator Form No. F-28-8013,
copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copvriqhted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this ma®
terial in whole or in cart, in the COBOL specif¬
ications. Such authorization extends to the
reproduction and use of COBOL specifications in
programming manuals or similar publications.

This pocket guide was initially prepared by
the Defense Communications Agency, Command and
Control Technical Center. The Institute for
Computer Sciences and Technology wishes to thank
the Defense Communications Agency and, in par¬
ticular, James J. Pottmyer, for the preparation
of the material presented herein.

ii

COBOL
POCKET GUIDE

NOTATIONS FOR SYNTAX DIAGRAM USAGE. 1
DEFINITIONS . 2
FIGURATIVE CONSTANTS. 5
PICTURE CHARACTER-STRING . 6
SPECIAL REGISTERS. 8
IDENTIFIER FORMAT . 9
COPY STATEMENT FORMAT .9
CONDITION FORMAT .10
ARITHMETIC EXPRESSION .11
IDENTIFICATION DIVISION.12
ENVIRONMENT DIVISION .13
DATA DIVISION .15
PROCEDURE DIVISION .18
RESERVED WORDS .25
SYSTEM NAMES .28
ASCII CHARACTER SET.30
fc)BOL CHARACTER SET .32

iii

NOTATIONS FOR SYNTAX DIAGRAM USAGE

• WORDS—Underlined uppercase words are required when the function of which

they are a part is used, e.g., PICTURE

Uppercase words which are not underlined are optional when the function of

which they are a part is used, e.g., CURRENCY SIGN |S

Lowercase words in a syntax diagram are generic terms used to represent

COBOL words, literals, PICTURE character-strings, comment-entries, or com¬

plete syntactical entries that must be supplied. Where a generic term appears

more than once in a format, a number or letter appendage to the term serves to

identify it for explanation or discussion in American National Standard

X3.23-1974. See Definition topic for a list of these lowercase words.

• BRACKETS []—Used to show words or phrases which are optional entries,

e.g., [VALUE IS literal]

• BRACES { } —Used to show a mutually exclusive choice of contents, e.g.,

[PICTURE I
I PIC f

• ELLIPSES Used to represent the position in a syntax diagram at which

repetition may occur at the user’s option. They occur immediately following a

right bracket or right brace and indicate that everything between that bracket

or brace and its paired left bracket or left brace may be repeated.

• COMMA , and SEMICOLON ; —These symbols may appear where shown in a

format and are interchangeable. Their inclusion is optional as desired by the

programmer for readability

® PERIOD . —When one is shown in a syntax diagram, it is required.

• SPECIAL CHARACTERS + -/ ***> = < —Where one appears in a syntax

diagram (although not underlined), it is required.

DEFINITIONS

alphabet-name—A user-defined word, in the SPECIAL-NAMES paragraph of the

ENVIRONMENT DIVISION, that assigns a name to a specific character set and/or

collating sequence.

arithmetic-expression—An arithmetic-expression can be an identifier of a numeric

elementary item, a numeric literal, such identifiers and literals separated by

arithmetic operators, two arithmetic-expressions separated by an arithmetic operator,

or an arithmetic-expression enclosed in parentheses. See topic on Arithmetic

Expressions.

cd-name—A user-defined word that names a Message Control System interface area

described in a communication-description-entry within the COMMUNICATION

SECTION of the DATA DIVISION.

character-string—A sequence of contiguous characters which form a COBOL word, a

literal, a PICTURE character-string, or a comment-entry.

comment-entry-An entry in the IDENTIFICATION DIVISION that may be any

combination of characters from the computer character set.

communication-description-entry—An entry in the COMMUNICATION SECTION

of the DATA DIVISION that describes the interface between the Message Control

System (MCS) and the COBOL program. See syntax diagrams in Data Division

topic.

computer-name—A system-name that identifies the computer upon which the

program is to be compiled or run.

condition—A status of a program at execution time for which a truth value can be

determined. It is a conditional expression consisting of either a simple condition

(optionally parenthesized) or a combined condition consisting of the syntactically

correct combination of simple conditions logical operators, and parentheses, for

which a truth value can be determined. See syntax diagrams in Condition Format

topic.

condition-name—A user-defined word assigned to a specific value, set of values, or

range of values, within the complete set of values that a conditional variable may

possess; or the user-defined word assigned to a status of an implementor-defined

switch or device.

data-description-entry—An entry in the DATA DIVISION that is composed of a

level-number followed by a data-name, if required, and then followed by a set of

data clauses, as required. See syntax diagrams in Data Division topic.

data-name—A user-defined word that names a data item described in a data-

description-entry in the DATA DIVISION. When used in the general formats,

data-name represents a word which can neither be suscripted, indexed, nor

qualified unless specifically permitted by the rules for that format, i.e., there are

some restrictions on using the syntax diagram for an identifier.

declarative-sentence—A compiler-directing sentence consisting of a single USE

statement terminated by the separator period. See syntax diagrams in Procedure

Division topic.

file-control-entry —An entry in the FILE-CONTROL paragraph of the

ENVIRONMENT DIVISION by which a data file is declared. See syntax diagrams in

Environment Division topic.

file-name—A user-defined word that names a file described in a file description entry

or sort-merge file description entry within the FILE SECTION of the DATA

DIVISION.

identifier-A data-name, followed as required by the syntactically correct combina¬

tion of qualifiers, subscripts, and indices necessary to make unique reference to a

data item. See syntax diagrams in Identifier Format topic.

2

imperative-statement-A statement that begins with an imperative verb and specifies

an unconditional action to be taken. An imperative statement may consist of a

sequence of imperative statements. An imperative verb is any except for IF, ENTER,

USE, COPY, or which contain the optional phrases SIZE ERROR, INVALID KEY,

ON OVERFLOW, NO DATA, AT END, or END-OF-PAGE.

implementor-name-A system-name that refers to a particular feature available on

that implementor’s computing system.

index-name—A user-defined word that names a computer storage position or register

associated with a specific table, the contents of which identify a particular element in

the table.

integer-A numeric literal without a decimal point which must neither be signed nor

zero unless explicitly allowed by the rules of that format.

language-name-A system-name that specifies a particular programming language.

level-number—A user-defined word which indicates the position of a data item in the

hierarchical structure of a logical record or which indicates special properties of a

data-description-entry. A level-number is expressed as a one or two digit number,

level-numbers in the range 1 through 49 indicate the position of a data item in the

hierarchical structure of a logical record, level-numbers in the range 1 through 9 may

be written either as a single digit or as a zero followed by a significant digit,

level-numbers 66, 77, and 88 identify special properties of a data-description-entry.

library-name—A user-defined word that names a COBOL library that is to be used by

the compiler for a given source program compilation.

literal—A character-string whose value is implied by the ordered set of characters

comprising the string or by specification of a reserved word which references a

figurative constant. Every literal is one of two types, non-numeric or numeric. Rules

for particular format sometime constrain the type or length of a literal.

mnemonic-name—A user-defined word that is associated in the ENVIRONMENT

DIVISION with a specified implementor-name.

|wragraph-name—A user-defined word that identifies and begins a paragraph in the

PROCEDURE DIVISION. A paragraph-name need not contain any alphabetic

characters.

procedure-name—A user-defined word which is used to name a paragraph or section

in the PROCEDURE DIVISION. It consists of a paragraph-name (which may be

qualified), or a section-name.

program-name—A user-defined word that identifies a COBOL source program.

pseudo-text—A sequence of character-strings and/or separators bounded by, but not

including, pseudo-text delimiters (two contiguous characters ==).

record-description-entry—The total set of data-description-entries associated with a

particular record. The first data-description-entry in the set must have a level-number

of 1.

record-name—A user-defined word that names a record described in a record-

description-entry in the DATA DIVISION.

relation-condition—The proposition, for which a truth can be determined, that the

value of an arithmetic-expression or data item has a specific relationship to the value

of another arithmetic-expression or data item. See syntax diagrams in Condition

Format topic.

relational-operator—The permissible operators are:

IS [NOT] GREATER THAN

IS [NOT! >

IS [NOT] LESS THAN

IS [NOT] <

IS [NOT] EQUAL TO

IS [NOT] =

3

report-group-description-entry—In the REPORT SECTION of DATA DIVISION, an

01 level-number entry and its subordinate entries. See syntax diagrams.

report-name—A user-defined word that names a report described in a report-

description-entry within the REPORT SECTION of the DATA DIVISION.

routine-name—A user-defined word that identifies a procedure written in a language

other than COBOL.

section-name—A user-defined word which names a section in the PROCEDURE

DIVISION. A section-name need not contain any alphabetic characters.

segment-number—A user-defined word which classifies sections in the PROCEDURE

DIVISION for purposes of segmentation, segment numbers may be expressed either

as a one- or two-digit number.

sentence—A sequence of one or more statements, the last of which is terminated by

period (.) followed by a space.

simple-condition-Any single condition chosen from the set;

Relation-Condition

Class Condition

Condition-Name Condition

Switch-Status Condition

Sign Condition

or a simple-condition enclosed in parentheses. See syntax diagrams in Condition

Format topic.

statement—A syntactically valid combination of words and symbols written in the

PROCEDURE DIVISION beginning with a verb.

subscript-An integer or a numeric data item (with no digits to the right of the

assumed decimal point) whose value identifies a particular element in a table.

text-name—A user-defined word which identifies a particular sequence of character-

strings within a COBOL library.

word—A character-string of 1 to 30 characters which forms a user-defined word,

system-name, or a reserved word.

77-level-description-entry—A data-description-entry that describes a non-contiguous

data item with the level-number 77. See syntax diagrams for data-description-entry in

Data Division topic.

4

FIGURATIVE CONSTANTS

A figurative constant is a value referenced by the following reserved words. A figura¬

tive constant may be used wherever literal appears in a syntax diagram, subject to

contraints in particular formats or the type (numeric or non-numeric).

ZERO, ZEROS, ZEROES—Represents numeric value “0”, or one or more of the

character “0”, depending on the context in which used. When a literal must be of

numeric type, these are the only figurative constants which can be used.

SPACE, SPACES—Represents one or more of the character space from the

computer’s character set.

HIGH-VALUE, HIGH-VALUES—Represents one or more of the character which

has the highest ordinal position in the program collating sequence. For the

STANDARD-1 collating sequence, this is the DEL character, ASCII 7/15.

LOW-VALUE, LOW-VALUES—Represents one or more of the character which has

the lowest ordinal position in the program collating sequence. For the

STANDARD-1 collating sequence, this is the NUL character, ASCII 0/0.

QUOTE, QUOTES—Represents one or more of the character ("). This figurative

constant cannot be used in place of a quotation mark in a source program to

bound a non-numeric literal, i.e., QUOTE ABC QUOTE cannot be used for

"ABC".

ALL literal—Represents one or more of the string of characters comprising the literal.

The literal must be either a nonnumeric literal or any other figurative constant.

Cannot be used with the DISPLAY, INSPECT or STOP statements.

Notes: 1. The singular and plural forms of the figurative constants are equal and

may be used interchangeably.

2. Figurative constants may not be bounded by quotation marks.

3. When a figurative constant is not associated with another data item,

it is assumed to be one character long, otherwise it assumes the

length of the data item with which it is associated.

PICTURE CHARACTER STRING

A PICTURE character-string contains 1 to 30 characters describing the characteristics

and editing requirements of an elementary data item. An unsigned integer which is

enclosed in parentheses following the symbols AX9PZ*B/0, + -orthe currency

symbol indicates the number of consecutive occurrences of the symbol, e.g., X(5) is

equivalent to XXXXX. (Note that S V . CR and DB may appear only once.) The

rules for forming PICTURE character-strings for the different categories of data are:

SYMBOL REPRESENTS
MAY

APPEAR RESTRICTIONS NOTES
WITH

ALPHABETIC

A Alphabetic character A B At least one A must
be present

B Space character insertion A B

NUMERIC

9 Numeric character 9 P V S At least one 9 must
be present

1

P Assumed decimal scaling
position

9 P V S Either first or last
except for S and V

1, 2, 3

V Location of assumed
decimal point within
item

9 P S Only one V allowed 2,3

S Presence of operational
sign

9 P V Must be leftmost;
only one S allowed

4

ALPHANUMERIC

X Any allowable character X A 9 Either at least one
A in the computer character X must be present
9 set or else both A and

9 must be present

Notes:

1. The total number of digit positions in a numeric or numeric edited item must be between 1

and 18. The symbols 9 P Z * and the second and following occurrences of + - $ count as digit

positions.
2. The symbol V used in conjunction with P is redundant and is not required-e.g., VPP99 is

equivalent to PP99, and 99PV is equivalent to 99P.

3. The symbols P and V do not count in the size of an item in standard data format.

4. The symbol S is counted in the size of an item in standard data format only if

SIGN . . . SEPARATE has been specified.

5. A numeric edited item must contain either at least one 9 Z * or else at least two + -$. A

numeric edited item cannot consist entirely of 9 P V symbols (which would be numeric

category).

6. If all digits are represented by Z or floating + - $ and the data has the value zero, the entire

data item will be spaces. If all digits are represented by * and the data has the value zero, the data

item will be all asterisks except for the actual decimal point. Otherwise, replacement will occur

left of either the decimal point or the first non-zero digit represented by an insertion symbol,

whichever is farther to the left.

7. Any ,80/ insertion characters embedded in Z or * zero suppression symbols will be

replaced by space or asterisks, respectively, if tire digit position to the left has a leading zero

suppressed by inserting space or asterisk.

8. The second floating character from the left represents the leftmost limit of numeric data

that can be stored. A single floating character is inserted immediately to the left of the first

non-zero digit (or the decimal point) in a position represented by floating + -$or by , B 0 /; and

any other positions back to the first floating + - $ are replaced with spaces.

9. If the CURRENCY SIGN clause is specified (SPECIAL-NAMES paragraph), the character

specified as the currency symbol is used instead of $ in the PICTURE character-string. It may be

any character in the computer character set except 01 23456789ABCDLPRSVXZ* +

- , . ; () " / = or space.

10. If the DECIMAL-POINT IS COMMA clause is stated (SPECIAL-NAMES paragraph), the

rules for period (.) and comma (,) are exchanged.

6

SYMBOL REPRESENTS
MAY

APPEAR RESTRICTIONS NOTES
WITH

ALPHANUMERIC EDITED

X
A
9

Any allowable character
in the computer character
set

X A 9 B
0/

At least one X or
else at least one A
must be present

B Space character insertion X A 9 B At least one B 0 or

0

/

Zero (0) character insertion

Slash (/) character
insertion

0 / / must be present;
cannot consist entirely
of A and B (which
would be alphabetic
category)

NUMERIC EDITED

9 Numeric character any other
except A X

May not precede Z
* $ or floating + - ;
may not appear if
Z * or floating $ +
- occurs to right of
decimal point
position

1, 5

Z Numeric character;
replace leading zeros
with spaces

9ZP.V
CR DB ,
BO/ and
single $ +

May not follow 9 ;
if it occurs right of
decimal point posi¬
tion, all digits must
be represented by
P or itself

1,5,6,
7

* Numeric character; replace
leading zeros with asterisk
(*) characters

9 * P . V
CR DB , B
0 / and
single $ + -

floating
$

Numeric character;
insert currency symbol
left of first non-zero
digit.

9$ P . V
CR DB,B 0
/ and single
+ -

May not follow 9 ;
if it occurs right of
decimal point posi¬
tion, all digits must
be represented by
P or $

1,5,6,
8,9

floating
+

t
Numeric character;
to left of first non¬
zero character insert
minus (-) if negative,
else insert plus (+)

9 + P . V
, B 0 / and
single $

May not follow 9 ;
if it occurs right of
decimal point posi¬
tion, all digits must
be represented by
P or itself

1,5,6,
8

floating Numeric character;
to left of first non¬
zero character insert
minus (-) if negative,
else insert space

9 - P . V
, B 0 / and
single $

P Assumed decimal scaling
position

9 Z * + -
SPV.B
0/

Must either precede
or follow all digit
positions represented
by 9 Z * or floating
+ -$

1, 2, 3

single
$

Inserx currency symbol 9Z* + -
P CR DB
. V , B 0 /

Leftmost except for
single + -

9

single
+

Insert minus (-) if negative;
else insert plus (+)

9 Z *$ P.
V , B 0 /

Either leftmost or
rightmost

single Insert minus (-) if negative;
else insert space character

CR Insert two characters “CR”
if negative; else insert two
spaces

9 Z * $ P
. V , B 0/

Rightmost

DB Insert two characters “DB”
if negative; else insert two
spaces

Actual decimal point 9 Z * $ +
-CR DB ,
B0/

May not be rightmost;
only one . allowed

10

V Location of assumed decimal
point within item

9 Z * $ +
- P CR DB
, B 0 /

Only one V allowed 2, 3

' Comma (,) character insertion any other
except A X

May not be rightmost 7, 8, 10

B Space character insertion any other
except A X

7,8

0 Zero (0) character insertion

/ Slash (/) character insertion

7

SPECIAL REGISTERS

Special registers are compiler generated storage areas into which automatically stored

information is produced in conjunction with the use of certain COBOL features.

DEBUG-ITEM—Provides information about the condition that caused the execu¬

tion of a debugging section with the following items implicitly described:

e DEBUG-LINE—Implementor-defined means of identification of particular

source statement.

• DEBUG-NAME—Contains first 30 characters of the name (file-name,

identifier, procedure-name or cd-name) that caused the debugging section to

be executed.

« DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3-If the referenced data item

is subscripted, the occurrence number of each level is entered in these items

respectively as necessary.

® DEBUG-CONTENTS—Contains information concerning where the debug is

taking place, e.g., “START PROGRAM,” “SORT OUTPUT,” the entire

contents of a record which is read, etc.

The implicit description of DEBUG-ITEM is:

01 DEBUG-ITEM

02 DEBUG-LINE PICTURE IS X(6).

02 FILLER PICTURE IS X VALUE SPACE.

02 DF. BUG-NAME PICTURE IS X(30).

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING

SEPARATE CHARACTER.

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING

SEPARATE CHARACTER.

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING

SEPARATE CHARACTER.

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-CONTENTS PICTURE IS X(n).

LINAGE-COUNTER—Register(s) generated by the presence of a LINAGE clause in

an FD entry. It points to the line at which the device is positioned within the

current page body. It may be referenced (qualified by file-name if more than one

used) but not modified by PROCEDURE DIVISION statements. It can represent a

range of 1 through the value in data-name-5 or integer-5 in the FD syntax

diagram.

LINE-COUNTER—Register(s) generated for each RD entry. It is used to determine

the vertical positioning of the report. The Report Writer Control Section maintains

the value of this register(s) which may be accessed but not modified by

PROCEDURE DIVISION statements. It can represent a range of 0 through

999999 and has an implicit description of PICTURE 9(6).

PAGE-COUNTER—Register(s) generated for each RD entry, that is used by the

program to number the pages of a report. The Report Writer Control Section

maintains the value of this register(s) but it may be altered by a PROCEDURE

DIVISION statement. It can represent a range of 1 through 999999 and has an

implicit description of PICTURE 9(6).

IDENTIFIER FORMAT

FORMAT 1

data-name-’i
LN »

, subscript-31]!]

data-name-i i [(subscript-1 ; SUbSCi :pl-2

FORMAT2

data-name-1 [iBB data-name-2j... j|j
l

j ini

l lit.

(index-narrie-1 [|±| literal-2] 1

ndex-name-2 [literal-4] j | f index-name-S i t £;

eral-3

literal-1

r

/H literal-5
:

COPY STATEMENT FORMAT

C-OPY text-name j library-namej

REPLACING

((==pseudo-text-1=~
) /identifier-1

V)
literal-1

word-1

BY

!== pseudo-text-2-"-:

identifier-2

literal-2
word-2

9

225-116 0 - 77 -3

CONDITION FORMAT

RELATION CONDITION

identifier-1

!S [NOT] GREATER THAN

IS [NOT] LESS THAN

j literal-1 IS (NOT1 EQUAL TO

] arithmetic-expression-1 IS [NOT] >

index-name-1 IS [NOT] <

IS [NOJ] =

I identifier-2

j literal-2

j arithmetic-expression-2

/ index-name-2

CLASS CONDITION

.. ... ,c fM_T, (numeric I
identifier IS (NOJ) ^ALPHABETIC jf

SIGN CONDITION

arithmetic-expression is [NOT]

! POSITIVE)
NEGATIVE }
ZERO l

CONDITION-NAME CONDITION

condition-name

SWITCH-STATUS CONDITION

condition-name

NEGATED SIMPLE CONDITION

NOT simple-condition

COMBINED CONDITION

condition

ABBREVIATED COMBINED RELATION CONDITION

relation-condition [NOJ] [relational-operator] object

Note:

When parentheses are not used or when parenthesized conditions are at the same

level of inclusiveness, the following order of evaluation is observed:

1. Values are established for any arithmetic expression.

2. Truth values for simple conditions are established.

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established with all combinations of

AND evaluated first followed by OR.

5. Truth values for negated combined conditions are established. (A negated com

bined condition is NOT followed by a combined condition in parentheses.)

10

>
ARITHMETIC EXPRESSIONS

ARITHMETIC OPERATORS

BINARY

/
**

MEANING
Addition

Subtraction

Multiplication

Division

Exponentiation

UNARY
Effect of multiplication by numeric literal +1

Effect of multiplication by numeric literal -1

FORMATION RULES

1) Arithmetic expressions may only begin with the symbols (+ - or a variable (iden¬

tifier or literal) and may only end with) or a variable. There must be a one-to-

one correspondence between left and right parenthesis, with each left parenthesis

to the left of its right parenthesis.

2) Parentheses may be used to specify the order in which elements of the expression

are to be evaluated or they may be used to eliminate the ambiguities in logic.

3) Expressions within parentheses are evaluated first; and within nested parentheses,

evaluation proceeds from the least inclusive set to the most inclusive set. When

parentheses are not used the order of execution of consecutive operations of the

same hierarchical level is from left to right with the following hierarchical order im¬

plied:

— Unary + -

— Exponentiation**

— Multiplication and division * /

— Addition and subtraction + -

4) Allowable combinations of operators, variables, and parentheses in arithmetic ex¬

pressions are:

1st

2nd

3rd

4th

► FIRST
SYMBOL

SECOND SYMBOL

VARIABLE BINARY UNARY ()

VARIABLE NO YES NO NO YES

BINARY YES NO YES YES NO

UNARY YES NO NO YES NO

(YES NO YES YES NO

) NO YES NO NO YES

11

IDENTIFICATION DIVISION

IDENTIFICATION DIVISION

rRQGRAM-fD program-name*.

!AUTHOR, (comment-entry] ..]

1 ; -\‘ ST A Li. AT }QN, [comment-entry]]

[DA 'C .vH ,TTS N (comment-entry • • i

(Dr-. CC-V^iED [comment-entry] j

[SECURITY, [comment-entry] ...]

ENVIRONMENT DIVISION

GENERAL FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER, computer-name [WITH DEBUGGING MODE)

OBJECT COMPUTER, computer-name

(WORDS)
. MEMORY SIZE integer 1 CHARACTERS >

I MODULES \ }

(, PROGRAM COLLATING SEQUENCE IS alphabet-name

[, SEGMENT-LIMIT IS segment-number)

SPECIAL-NAMES. [, implementor-name

IS mnemonic-name [, ON STATUS IS condition-name-1

(. OFF STATUS IS condition-name-21 J

JS.mnemonic-name [. OFF STATUS IS condition-name-2

[. ON STATUS IS condition-name-111

ON STATUS condition-name-1 [, OFF STATUS IS condition-name

OFF STATUS IS condition-name-2 [, ON STATUS IS condition-name-1

e-2] j

, alphabet-name IS

f STANDARD-1
NATIVE

[implementor-name L (THROUGH) ... , -
(THRU (" '2
ALSO literal-3 (, ALSO I.

(THROUGH [)THR(

(THRU

ALSO

ieral-4] ..J
literal-6

literal-7 [. ALSO literal-8)] I.
[, CURRENCY SIGN IS literal-9]

[, DECIMAL-POINT IS COMMA]]

INPUT-OUTPUT SECTION.

FILE CONTROL.

j file-control-entry l...

I-O-CONTROL

;RERUN ON (file-name-1
limplementor-name!

; SAME

| Vend of, |B# |loFfi
< \integer-1 RECORDS *

X
nt

]

file-name-2|

EVERY/ 1 integer-. _
| integer-2 CLOCK-UNITS
vcondition-name

P
RECORD

AREA FOR file-name-3 1, fiie-name-4
SORT-MERGE I

; MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-3]

, file-name-6 [POSITION inteqer-4] I] .

13

file-control-entry

FORMAT 1:

SELECT [OPTIONAL] file-name

ASSIGN TO implementor-name-1 [, implementor-name-2] ...

RESERVE integer-1

; ORGANIZATION IS SEQUENTIAL]

; ACCESS MODE IS SEQUENTIAL]

; FILE STATUS IS data-name-1] .

FORMAT 2:

SELECT file-name

ASSIGN TO implementor-name-1 [, implementor-name-2] ...

AREA
AREAS

RESERVE integer-1

; ORGANIZATION IS RELATIVE

(SEQUENTIAL [, RELATIVE KEY IS data-name-1]

; ACCESS MODE is/ („ * -i

nS?r]AW£(- RELATiVE KEY IS data-name-1

; FILE STATUS IS data-name-2] .

FORMAT 3:

SELECT file-name

ASSIGN TO implementor-name-1 [, implementor-name-2] ...

[; RESERVE integer-1 [£^s]]

; ORGANIZATION IS INDEXED

(sequential
; ACCESS MODE ISf RANDOM

| DYNAMIC

; RECORD KEY IS data-name-1

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ...

[. FILE STATUS IS data-name-3] .

FORMAT 4:

SELECT file-name ASSIGN TO implementor-name-1 [, implementor-name-2)

DATA DIVISION

GENERAL FORMAT

DATA DIVISION.

[FILE SECTION.

[FD file-name

BLOCK CONTAINS [integer-1 TO] integer-2 {chaRACTERS[]

[; RECORD CONTAINS [integer-3 IQ] integer-4 CHARACTERS]

,,ncl (RECORD IS » (STANDARD)
. LMBtu)records are) |OMITTED j

[; VALUE OF implementor-name-1 { LteraM™6

[, implementor-name-2 IS ^tera7-^°& ^|1 I

[; DATA | ncCOn5s ARcj data_name'3 1 , data-name-4] ...]

f ; LINAGE IS Jdata-name B J lines f. WITH FOOTING AT jdata-name-6

r , LINES AT TOP ^data-na^e‘7 (.] f LINES AT BOTTOM }da,3-na™-8}"] |
L' - (integer-7 [J L' - I integer-8 t J'

[; CODE-SET IS alphabet-name)

r (REPORT IS I . , T
I.TREPORTS ARE! ^port-name-l (, report-name-2] ...J.

[record-description-entry] ...] ...

[SD fil e-name

[; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

jj DAJA HfcggDS are! data'narr’e-1 [- data-name-2] ...1 .

| record-description-entry M]

[WORKING-STORAGE SECTION.

I 177-level-description-entry| I 1
I (record-description-entry |

^^^IKAGE SECTION.

^^^^7-level-description-entry I l
record-description-entry) " ^

[communication SECTION.

[communication-description-entry

[record-description-entry] ...] ...]

[REPORT SECTION.

[RD report-name

[; CODE literal-1]

|~ [CONTROL IS | jdata-name-1 [, dat@-name-2] ...
['(CONTROLS ARE INAL [, data-name-1 [, data-name-2] -.0
[;PAGE [tf!5j™ARE] integer-1 [■ HEADING integer-2]

(, FIRST DETAIL integer-3] [, LAST DETAIL integer-4]

[, FOOTING integer-5]] .

jreport-group-description-entry j ...] ...]

15

data-descripti on-entry

FORMAT h

level-number (data-name-1
(filler

[; REDEFINES data-name-2]

; | p|qTUR^ [ls character-string

; fUSAGE IS)

COMPUTATIONAL V
COMP I
DISPLAY ?
INDEX J

|~: [SIGN IS! iTHAILirfci (SEPARATE CHARACTER)]

r toe) integer-1 TO inteqer-2 TIMES DEPENDING ON data
L' 0CC^~g (integer-2 TIMES

[lDSESCEBGiKEY (S data-name-4 [, data-name-5)

[INDEXED BY index-name-1 [, index-name-2) ...]J

[(SYNCHRONIZED! j~LEFT -|
■ (SYNC > LRIGHTJ

[; BLANK WHEN ZERO]

[; VALUE IS literal) .

-name-3

FORMA T 2:

66 data-name-1; RENAMES data-name-2
THROUGH
THRU

data-r.ame- 3

FORMAT 3:

88 condition-name;
i VALUE IS
VALUES ARE!

ROl
THRU

1 fj THROUGH)
It THRU ‘]

, literal-3 [{™RUGHt Hteral-4

communications-description-entry

FORMAT 1:

CD cd-name; FOR f INITIAL] INPUT

[(; SYMBOLIC QUEUE IS data-name-1]

(; SYMBOLIC SUB-GUEUE-1 IS data-name-2)

[; SYMBOLIC SUB-QUEUE-2 IS data-name-3)

[; SYMBOLIC SUB-QUEUE-3 IS data-name-4]

[; MESSAGE DATE IS data-name-5)

1 ; MESSAGE TIME IS data-name-6)

[; SYMBOLIC SOURCE IS data-name-7]

[; TEXT LENGTH IS data-name-81

[; END KEY IS data-name-91

[; STATUS KEY IS data-name-10]

(; MESSAGE COUNT IS data-name-11] I

[data-name-1, data-name-2.data-name-11]

FORMAT 2:

CD cd-name; FOR OUTPUT

[; DESTINATION COUNT IS data-name-11

[; TEXT LENGTH IS data-name-2)

[; STATUS KEY IS data-name-3]

[; DESTINATION TABLE OCCURS integer-2 TIMES

[; INDEXED BY index-name-1 [, index-name-2] ...]]

[; ERROR KEY IS data-name-4]

[; SYMBOLIC DESTINATION IS data-name-5] .

16

I
report-group-description-entry

FORMA T /.

01 idata-name-1]

, ,me mi ,c (integer-1 [ON NEXT PAGE]
UNi NUMBER IS integer-2-

jinteger-3 t
, NEXT GROUP IS < PLUS integer-4)

I NEXT PAGE)

IREPORT HEADING t
(RH $

t PAGE HEADING 1

(PH 1

(CONTROL HEADING!
}CH 1

(DETAIL)
IDE \

(CONTROL FOOTINGl
1CF »

(PAGE FOOTING j.

TYPE IS

IRE

; [USAGE IS) DISPLAY]

(REPORT FOOTINGl

FORMA T 2:

level-number [data-name-1]

LINE NUMBER IS
[integer-1 [ON NEXT PAGE]
IPLUS integer-2

[USAGE IS] DISPLAY]

FORMAT 3:

level-number [data-name-1]

[; BLANK WHEN ZERO]

(; GROUP INDICATE]

(JUSTIFIED 1
' ! JUST

1 |rightJ

; UNE NUMBER IS j Jg^— —
[; COLUMN NUMBER IS integer-3]

; jgjCTURE | |S character.string

; SOURCE IS identifier-1

; VALUE IS literal

| ; SUM identifier-2 [, identifier-3] ...

[UPON data-name-2 [, data-name-3] ...][...

[reset oNjsrr*^]

' ; [USAGE IS] DISPLAY] .

»]

j data-name-2
(FINAL

j data-name-3
I FiNAL

'I

0

17

PROCEDURE DIVISION

GENERAL FORMAT

FORMAT 1:

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] ...] .

[declaratives.

jsection-name SECTION [segment-number] declarative-sentence

[paragraph-name, [sentence] ...] ... J...

END DECLARATIVES.]

•jsection-name SECTION [segment-number] .

[paragraph-name, [sentence] ...] ... J...

FORMA T 2:

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] ...] .

jparagraph-name. [sentence]

declarative-sentence

FORMAT 7;

! file-name-1 [, file-name-2] ...

_ nwrl f_ OUTPUT

EXTEND

FORMAT 2:

USE AFTER STANDARD { [PROCEDURE 0|\|

file-name-1 [, file-name-2] ...
INPUT
OUTPUT
1-0

FORMAT 3:

USE BEFORE REPORTING identifier.

FORMA T 4:

USE FOR DEBUGGING ON

cd-name-1
[ALL REFERENCES OF]
file-name-1
procedu re-name-1
ALL PROCEDURES

identifier-1

Icd-name-2 \
[ALL REFERENCES OF] identifier-2
file-name-2
procedure-name-2
ALL PROCEDURES

18

VERBS

FORMAT 1:

ACCEPT identifier [FROM mnemonic-name]

FORMA T 2: Spate)
day V
TIME J

FORMAT 3:

ACCEPT cd-name MESSAGE COUNT

FORMAT 1:

ADD|iSS!r'(tSSST*] — idantitier-m [ROUNDED]

[, identifier-n [ROUNDED]] ... [; ON SIZE ERROR imperative-statement]

FORMAT 2:

Ann (identifier-1) (identifier-2) r, identifier-3"|
- f literal-1 f ' (literal-2) L, literal-3 J'

GIVING identifier-m [ROUNDED] [, identifier-n [ROUNDED]]

[; ON SIZE ERROR imperative-statement]

FORMAT 3:

ADD | §§ppESP—--N-- [identifier-1 TO identifier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4] ...

CALL ||j|g^|^er'} [USING data-name-1 [, data-name-2] ...]

[; ON OVERFLOW imperative-statement]

•: CANCEL
I identifier-1
I literal-1 K:

FORMAT 1:

identifier-2 T
literal-2 J

CLOSE file-name-1

(REEL) f WITH NO REWIND-fl
(UNIT I L FOR REMOVAL J

WITH .

r-I REEL) f WITH NO REWIND1 ~]
1 UNIT 1 LFOR REMOVAL J

, file-name-2

WITH (NO REWIND)
Lmm {lock (J

FORMA T 2:

CLOSE file-name-1 [WITH LOCK] [. file-name-2 [WITH LOCK]] ...

COMPUTE identlfler-1 (ROUNDED] [, identifier-2 [ROUNDED]] ...

= arithmetic-expression [; ON SIZE ERROR imperative-statement]

DELETE file-name RECORD [; INVALID KEY imperative-statement]

picj«ni r IINPUT [TERMINAL]) , (identifier-1)
DISABLE {output -} cd-name WITH KEY J ,jteraM \

mcDi a v (identifier-1) f, identifier-2"] r. __
DISPLAY J |itera|-1 f L. literal-2 J -■ [UPON mnemonic-name]

19

FORMA T 1:

DIVIDE I literal-^ 11 'NTO identifier-2 [ROUNDED]

[. identifier-3 1 ROUNDEDj] ... [ON SIZE ERROR imperative-statement]

FORMA T 2:

DIVIDE -| |Sr'11 INTO | GIVING Identifier-3 [ROUNDEi

[, identifier-4 [POUNDEDj]...{; ON SIZE ERROR imperative-statement)

FORMAT 3:

DIVIDE | }- BY GIVING identifier-3 [ROUNDED)

[, identifier-4 [ROUNDED)] ... [, ON SIZE ERROR imperative-statement]

FORMAT h:

D!V1DE|;“-1[INTO | ifterd!^6'2 f GIVING identifier-3 [ROUNDED 1

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement)

FORMA 7 5:

DIVIDE {i°tcfjner'1f SI I iftc?a!^ ^] GlV!NG identifier-3 [ROUNDED)

REMAINDER identifier-4 [: ON SIZE ERROR imperative-statement]

--- (INPUT [TERMINAL)! , , ,„-w (identifier-1(
I OUTPUT - 1 cd-nameWITH KEY ||jteraM]

ENTER language-name [routine-name!

EXIT [PROGRAM)

GENERATE |d3t3‘name (
-(report-name)

FORMA T 1 •

GO TO [procedure-name-1]

FORMA T 2:

GO TO procedure-name-1 [, procedure-name-2] ..., procedure-name-n

DEPENDING ON identifier

If condition; I statement-1)
NEXT SENTENCE)

j. ELSE statement-2 i
! ,ELSE NEXT SENTENCE

INITIATE report-name-1 [, report-name-2]

FORMAT I:

INSPECT identifier-1 TALLYING

(((ALL i j identifier-31 (
identifier-2 FOR < < (LEADING 1) literal-1 j >

/ (.CHARACTERS

FORMAT 2:

INSPECT identifier-1 REPLACING

CHARACTERS BY (identifier-6)
l literal-4)

jllfOREj ,N[T|AL)«”«•

[)

[ALL
LEADING

! FIRST

BEFORE)
AFTER (

H« dentifier-5
literal-3 } iY

(identifier-6)
(literal-4)

INITIAL
! identifier-
(literal-5 70} f

i

20

FORMAT-3:

INSPECT identifier-1 TALLYING

& { (JALL i (identified IS
] identifier-2 FOR < J (LEADINGS

1 CHARACTERS
1 literal-1 >/

{after1! initial ,identi,ier'4 (literal-2

REPLACING

CHARACTERS BY I'dentifier-6^ fjBfEggij. INITIAL]|den,!f
-(literal-4) 11 AFTER ! (Iiteral-

fier-

(ALL
<? LEADING
* FIRST

f identifier-:
(literal-3

(identifier-6(
BY ^

f (BEFOREI
L < AFTER) INITIAL

(identifie
(literal-5

literal-4

r7(]})
MERGE file-name-1 ON | G[KEY ciata'name‘1 i , data-name-2!

ON {DESCENDHNGI KEY data-name-3 (, data-name-4] ...J ...
[COLLATING SEQUENCE IS alohabet-name]

USING file-name-2, file-name-3 [, file-name-4] ...

OUTPUT PROCEDURE IS section-name-1

GIVING file-name-5

(THROUGH)
(THRLi-j- sectiori-nsme-2

FORMAT 1:

MOVE | |dg^gd'er TO identifier-2 (, identified] ...

FORMAT 2:

(CORRESPONDING) , .,. „
MOVE (corr-r identifier ! TO identifier-2

FORMAT 1:

►
JLTIPLY (!d®"*!f!1er'1} BY identifier-2 [ROUNDED]

literal-1 I —

. identified [ROUNDED] . ; ON SIZE ERROR imperative-statement]

FORMA T 2:

MULTIPLY] BY j litera'i-Z^"2} G|V||NG identifier-3 [ROUNDED]

[, identifier-4 [ROUNDED]] ... [; ON SIZE ERROR imperative-statement]

FORMATU

INPUT file-name-! [^HE^EgEW|ND]

_ rREVERSED 1
fl ame-2 |_W|TH REWINdJ

OPEN /OUTPUT file-name-3 (WITH NO REWIND]

[, file-name-4 [WITH NO REWIND]] ..

FO file-name-5 [, file-name-6] ...

' EXTEND file-name-7 [, file-name-8] ...

FORMAT 2:

OPEN
(INPUT file-name-1 [, file-name-2] ... \
^OUTPUT file-name-3 [, file-name-4] ...V...
\NO. file-name-5 [, file-name-6]

21

FORMAT ?.■

PERFORM procedure-name-1 £ j
THROUGH|
THRU)

procedure-name-2j

FORMAT 2:

PERFORM procedure-name-1 procedure-name-2j | jntcgcl'T ^ j TIMES

FORMAT 3:

PERFORM procedure-name-1 ^|jhRU^^^[procedure-name-2^ UNTI L condition-1

FORMAT 4:

PERFORM procedure-name-1 procedure-name-2 J

,. , ... n . (identifier-3 }
VARYING { jdentifier-2 from < index-name-2 >
- 1 mdex-name-11 - > literal-1 f

RY (identifier-4)
— (literal-3 (

UNTI L condition-1

f AFTER }lde,ntlf' - (index-n

BY

er-5
name-3

dentifier-7

FROM
(identifier-6 (

s index-name-4 >
v literal-3 /

literal-4 ’(UNTI L condition-2

(identifier-8
[AFTER -i. ,
L- I index-name-5

identifier-10

(identifier-9 (
FROM -t index-name-6 >

(. literal-5 /

BY
I literal-6

UNTIL condition-3

FORMAT 1:

READ file-name RECORD [INTO identifier] [; AT END imperative-statement]

FORMAT 2:

READ file-name [NEXT] RECORD [INTO identifier]

[; AT END imperative-statement]

FORMAT 3:

READ file-name RECORD [INTO identifier] [; INVALID KEY imperative-statement]

FORMAT 4:

READ file-name RECORD [INTO identifier]

[; KEY IS data-name]

[; INVALID KEY imperative-statement]

RECEIVE cd-name |C[XIY1CNTf ^TO identifier-1 [; NO DATA imperative-statement]

RELEASE record-name [FROM identifier]

RETURN file-name RECORD [INTO identifier] ; AT END imperative-statement

FORMAT 1:

REWRITE record-name [FROM identifier]

FORMAT 2:

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

22

FORMAT 1:

SEARCH identifier-1 VARYING ["vARYING ^deintlfier'2 .[1[; AT END
1 - (index-name-1(J -

imperative-statement-1]

; WHEN condition-1
(imperative-statement-2)
(NEXT SENTENCE (

../..CM o (imperative-statement-3
; WHEN condition-2 |NEXT SENTENCE

FORMAT 2:

SEARCH ALL identifier-1 [; AT END imperative-statement-1

(, . (IS EQUAL TO
i I ; WHEN data-name-1 IIS :

identifier-3
literal-1
arithmetic-expression- M

f condition-name-1 {„ {IS EQUAL TCI
data-name-2 j,g-- \

condition-name-2

imperative-statement-21
NEXT SENTENCE (

\ identifier-4)
S literal-2 \
/ arithmetic-expression-21

FORMAT 1:

SEND cd-name FR0IV1 identifier-1

FORMAT 2:

SEND cd-name [FROM identifier-1]

WITH identifier-2 '
WITH ESI. I
WITH EMI |
WITH EGI

(BEFORE)
(AFTER (ADVANCING

, (j identifier-3) ("LINE “|[
luinteger f LLINESj)

(mnemonic-name)
(PAGE)

FORMAT 1:

SET
) identifier-1
lindex-name-1

identifier-2]
index-name-2]

j identifier-3 1
< index-name-3 >

) (integer-1 J

^AL4TZ-

^^H=T index-na
WFr ■ j ci (UP BY) (identifier-4)
5ET index-name-4 [. ,ndex-name-5] ...\ gy \ |integer- 1

SORT file-name-1 ON (ASCENDING
IDESCENDiNG)

(ASCENDING

KEY data-name-1 [, data-name-2] ...

[°N | SistEI\|'bl^g 1 KEY data-name-3 [, data-name-4] ...] ...

[COLLATING SEQUENCE IS alphabet-name]

^(THROUGH)
INPUT PROCEDURE IS section-name-1

USING file-name-2 [, file-name-3]

(THRU
section-name-2

OUTPUT PROCEDURE IS section-name-3 | |^p°UGHj. section-name-4|

GIVING file-name-4

START file-name

IS EQUAL TO
IS =

KEY IS GREATER THAN
IS 5
IS NOT LESS THAN
IS NOT <!

data-name

; INVALID KEY imperative-statement]

^lop

STRING
(literal-1 T'ic L, li , literal-2

{ identifier-3
... DELIMITED BY -{literal-3

\SIZE

pdentifter-4^ |", identifier-5"| DE LIMITED BY ^ literal-6
(literal-4 t L, literal-5 J - (SIZE

INTO identifier-7 [WITH POINTER identifier-8]

[; ON OVERFLOW imperative-statement]

}

1

23

FORMAT 1:

SUBTRACT {]fteral-ier1l ['literal-^2] " FR0IVI identifier-m fROUNDED]

[, identifier-n fROUNDED]] ... [; ON SIZE ERROR imperative-statement]

FORMAT 2:

SUBTRACT | identifier-’)
literal-1 (

identifier-21
literal-2 -I "

FROM
(identifier-m
(literal-m

GIVING identifier-n [ROUNDED] [, identifier-o [ROUNDED]] ...

[; ON SIZE ERROR imperative-statement]

FORMA T 3:

SUBTRACT IcORR5'5^^"" f identifier-1 FROM identifier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

SUPPRESS PRINTING

TERMINATE report-name-1 (, report-name-2] ...

UNSTRING identifier-1

DELIMITED BY [ALL] £ OR [ALL]

INTO identifier-4 [, DELIMITER IN identifier-5] [, COUNT IN identifier-6]

[, identifier-7 [, DELIMITER IN identifier-8] [, COUNT IN identifier-9]] ...

[WITH POINTER identifier-10] [TALLYING IN identifier-11)

[; ON OVERFLOW imperative-statement]

FORMAT 1:

WRITE record-name [FROM identifier-1]

BEFORE)
AFTER f ADVANCING

jidentifier-2) lineI
(integer) LINESl

{mnemonic-namei
(PAGE f .

< END-OF-PAGE
1 EOP

imperative-statement

FORMA T 2:

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

24

RESERVED WORDS

Reserved words are the following and may be used in COBOL programs as

specified in the syntax diagrams.

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL
ALPHABETIC
ALSO
ALTER
ALTERNATE
AND
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR

BEFORE
BLANK
BLOCK
BOTTOM
BY

CALL
CANCEL

til
CHARACTER
CHARACTERS
CLOCK-UNITS
CLOSE
COBOL
CODE
CODE-SET
COLLATING
COLUMN
COMMA
COMMUNICATION
COMP
COMPUTATIONAL
COMPUTE
CONFIGURATION
CONTAINS
CONTROL
CONTROLS
COPY
CORR
CORRESPONDING
COUNT
CURRENCY

DATA
DATE
DATE-COMPILED
DATE WRITTEN
DAY

DE
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DESTINATION
DETAIL
DISABLE
DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC

EGI
ELSE
EMI
ENABLE
END
END-OF-PAGE
ENTER
ENVIRONMENT
EOP
EQUAL
ERROR
ESI
EVERY
EXCEPTION
EXIT
EXTEND

FD
FILE
FILE-CONTROL
FILLER
FINAL
FIRST
FOOTING
FOR
FROM

GENERATE
GIVING
GO
GREATER
GROUP

25

HEADING
HIGH-VALUE
HIGH-VALUES

I-Q

I-O-CONTROL
IDENTIFICATION
IF
IN
INDEX
INDEXED
INDICATE
INITIAL
INITIATE
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTERCHANGE
INTO
INVALID
IS

JUST
JUSTIFIED

KEY

LABEL
LAST
LEADING
LEFT
LENGTH
LESS
LIMIT
LIMITS
LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES

MEMORY
MERGE
MESSAGE
MODE
MODULES
MOVE
MULTIPLE
MULTIPLY

NATIVE
NEGATIVE
NEXT
NO
NOT
NUMBER
NUMERIC

OBJECT-COMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN
OPTIONAL
OR
ORGANIZATION

OUTPUT
OVERFLOW

PAGE
PAGE-COUNTER
PERFORM
PF
PH
PIC
PICTURE
PLUS
POINTER
POSITION
POSITIVE
PRINTING
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID

QUEUE
QUOTE
QUOTES

RANDOM
RD
READ
RECEIVE
RECORD
RECORDS
REDEFINES
REEL
REFERENCES
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES
REPLACING
REPORT
REPORTING
REPORTS
RERUN
RESERVE
RESET
RETURN
REVERSED
REWIND
REWRITE
RF
RH
RIGHT
ROUNDED
RUN

26

SAME
SD
SEARCH
SECPON
SECURITY
SEGMENT
SEGMENT- LIMrr
SELECT
SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET
SIGN
SIZE
SORT
SORT-MERGE
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STANDARD-1
START
STATUS
STOP
STRING
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUBTRACT
SUM

^HPRESS

W
SYNC
SYNCHRONIZED

TABLE
TALLYING
TAPE
TERMINAL
TERMINATE
TEXT

THAN
THROUGH
THRU
TIME
TIMES
TO
TOP
TRAILING
TYPE

UNIT
UNSTRING
UNTIL
UP
UPON
USAGE
USE
USING

VALUE
VALUES
VARYING

WHEN
WITH
WITHIN
WORDS
WORKING-STORAGE
WRITE

ZERO
ZEROES
ZEROS

/
>
<

27

SYSTEM NAMES

For a specific implementation of COBOL, the implementor is expected to define

certain system names for his compiler in accordance with American National

Standard X3.23-1974. Such a system name is shown in the syntax diagrams as a

language-name, a computer-name, or an implementor-name.

Make notes here on specific implementations:

language-name

computer-name

implementor-name

The words which can be used for implementor-name depend upon the entry in

which the implementor-name is used.

□ The SPECIAL-NAMES paragraph of the CONFIGURATION SECTION of the

ENVIRONMENT DIVISION

with mnemonic-names and/or condition-names

with alphabet-names

□ In the file-control-entry of the FILE-CONTROL paragraph of the INPUT-

OUTPUT SECTION in the ENVIRONMENT DIVISION in a SELECT clause

□ The RERUN clause in the l-O-CONTROL paragraph of the INPUT-OUTPUT

SECTION in the ENVIRONMENT DIVISION

□ The VALUE OF clause in the FD entry within the FILE SECTION of the

DATA DIVISION

29

ASCII CHARACTER SET

The STANDARD-1 alphabet consists of the following characters of the American

Standard Code for Information Interchange, ASCII:

ASCII Octal
'haracter Value

NUL 000

SOH 001

STX 002

ETX 003

EOT 004

ENQ 005

ACK 006

BEL 007

BS 010

HT 011

LF 012

VT 013

FF 014

CR 015

SO 016

SI 017

DLE 020

DC1 021

DC 2 022

DC 3 023

DC4 024

NAK 025

SYN 026

ETB 027

CAN 030

EM 031

SUB 032

ESC 033

FS 034

GS 035

RS 036

US 037

SP 040
1 041
44 042

043

$ 044

% 045

& 046
9 047

(050

) 051
* 052
+ 053

, 054

- 055

056

/ 057

0 060

1 061
2 062

3 063

4 064

5 065

6 066

7 067

8 070

9 071

072

073

< 074

Meaning

Null or time fill character

Start of heading

Start of text

End of text

End of transmission

Enquiry (who are you)

Acknowledge

Bell

Backspace

Horizontal tabulation

Line feed (new line)

Vertical tabulation

Form feed

Carriage return

Shift out

Shift in

Data link escape

Device control 1

Device control 2

Device control 3

Device control 4

Negative acknowledgement

Synchronous idle

End of transmission blocks

Cancel

End of medium

Substitute

Escape

File separator

Group separator

Record separator

Unit separator

Space

Exclamation point

Quotation mark

Number sign

Currency symbol

Percent

Ampersand

Apostrophe or acute accent

Opening parenthesis

Closing parenthesis

Asterisk

Plus

Comma

Hyphen or minus

Period or decimal point

Slant

Colon

Semicolon

Less than

30

*■ J

ASCII
Character

>
?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

Z

[
\

]
/\

b
c

d

e

f

g
h

i

j
k

1

m

n

o

P

q
r

s

t

u

V

w

X

y
z

{

I
}

DEL

Meaning

Equal

Greater than

Question mark

Commercial at

Opening bracket

Reverse slant

Closing bracket

Circumflex

Underline

Grave accent

Opening brace

Vertical line

Closing brace

Tilde

Delete

Octal
Value

075

076

077

100
101

102

103

104

105

106

107

110

111

112

113

114

115

116

117

120

121
122
123

124

125

126

127

130

131

132

133

134

135

136

137

140

141

142

143

144

145

146

147

150

151

152

153

154

155

156

157

160

161

162

163

164

165

166

167

170

171

172

173

174

175

176

177

31

COBOL CHARACTER SET

The COBOL character set consists of the 51 characters listed below.

Character Meaning

0,1,..., 9

A.B,. .. ,Z

+

*

/

$

(
)
>
<

digit

letter

space (blank)

plus sign

minus sign (hyphen)

asterisk

stroke (virgule, slash)

equal sign

default currency sign

comma (optional decimal point)

semicolon

period (decimal point)

quotation marks

left parenthesis

right parenthesis

greater than symbol

less than symbol

32

U. S. GOVERNMENT PRINTING OFFICE : 1977 O - 225-116

u

3D

£
H
m

□

3
£
H
H
m

3D

o cn cn 5* -n U KJ “ ■n -> 00 ©
O 3 m n
> r- ® T3 ©'

- O 3

CD ® - fit
C Q- JO “ cn ’ ° H

W

<•£ ®
CD
cn

^ Q)

a> a

- 33
o H

3 1

« 3 at s
“ H

So
© T1

1 «

I. i
§i
US m
« O
2 m

©
0

Cn
U
m
o
>

I

* O

5
CO
CO

3
>
-(
m

O
O
2

NJ

c
cn

m >
zz
HO

O Tl
-n m

