
6
8
6
I-o

£
Z

 £X
 IS

N
V

 

ANSI X3.23a-1989 

ADOPTED FOR USE BY 

THE FEDERAL GOVERNMENT 

LtL‘{? 
PUB 21-3 

SEE NOTICE ON INSIOE 

for Information Systems - 

Programming Language - 
Intrinsic Function Module for COBOL 

fyAmerican National Standards Institute 
1430 Broadway 

New York , New York 

10018 



This standard has been adopted for Federal Government use. 

Details concernings its use within the Federal Government are contained in Federal 
Information Processing Standards Publication 21-3, COBOL. For a complete list of the 
publications available in the Federal Information Processing Standards Series, write to the 
Standards Processing Coordinator (ADP), National Institute of Standards and Technology, 
Gaithersburg, MD 20899. 



ANSI ® 
X3.23a-1989 

Supplement to 

ANSI X3.23-1985 

American National Standard 
for Information Systems - 

Programming Language - 
Intrinsic Function Module for COBOL 

Secretariat 

Computer and Business Equipment Manufacturers Association 

Approved September 13, 1989 

American National Standards Institute, Inc 

ACKNOWLEDGMENT 

Any organization interested in reproducing the COBOL standard and specifications in whole or in part, using ideas from this 
document as the basis for an instruction manual or for any other purpose, is free to do so. However, all such organizations are 
requested to reproduce the following acknowledgment paragraphs in their entirety as part of the preface to any such publication 
(any organization using a short passage from this document, such as in a book review, is requested to mention "COBOL" in 
acknowledgment of the source, but need not quote the acknowledgment): 

COBOL is an industry language and is not the property of any company or group of companies, or of any organization 
or group of organizations. 

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL Committee as to the 
accuracy and functioning of the programming system and language. Moreover, no responsibility is assumed by any 
contributor, or by the committee, in connection therewith. 

The authors and copyright holders of the copyrighted materials used herein 

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAC (R) I and H, Data Automa¬ 
tion Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commerical Translater Form No. F 28- 
8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell 

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such authoriza¬ 
tion extends to the reproduction and use of COBOL specifications in programming manuals or similar publications. 



American 
National 
Standard 

Approval of an American National Standard requires verification by ANSI that the re¬ 

quirements for due process, consensus, and other criteria for approval have been met by 

the standards developer. 

Consensus is established when, in the judgment of the ANSI Board of Standards Review, 

substantial agreement has been reached by directly and materially affected interests. Sub¬ 

stantial agreement means much more than a simple majority, but not necessarily unanim¬ 

ity. Consensus requires that all views and objections be considered, and that a concerted 

effort be made toward their resolution. 

The use of American National Standards is completely voluntary; their existence does not 

in any respect preclude anyone, whether he has approved the standards or not, from man¬ 

ufacturing, marketing, purchasing, or using products, processes, or procedures not con¬ 

forming to the standards. 

The American National Standards Institute does not develop standards and will in no cir¬ 

cumstances give an interpretation of any American National Standard. Moreover, no per¬ 

son shall have the right or authority to issue an interpretation of an American National 

Standard in the name of the American National Standards Institute. Requests for inter¬ 

pretations should be addressed to the secretariat or sponsor whose name appears on the 

title page of this standard. 

CAUTION NOTICE: This American National Standard may be revised or withdrawn at 

any time. The procedures of the American National Standards Institute require that 

action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers 

of American National Standards may receive current information on all standards by 

calling or writing the American National Standards Institute. 

Published by 

American National Standards Institute 
1430 Broadway, New York, New York 10018 

Copyright © 1990 by American National Standards Institute, Inc 

All rights reserved. 

No part of this publication may be reproduced in any form, 
in an electronic retrieval system or otherwise, without 
the prior written permission of the publisher. 

Printed in the United States of America 

APS15C590/32 



Foreword (This Foreword is not part of American National Standard X3.23a-1989.) 

This supplement, the first to the document entitled "American National Standard for 

Information Systems - Programming Language - COBOL, ANSI X3.23-1985, ISO 

1989-1985," presents a new COBOL module, the Intrinsic Function module. This 

module provides the capability of referencing a data item whose value is derived auto¬ 

matically during the execution of a program. 

In June 1985, Technical Committee X3J4 on COBOL of Accredited Standards Com¬ 

mittee X3 began the task of preparing supplements that will add upwardly mobile, 

compatible COBOL language extensions. The extensions that X3J4 considered were 

taken from proposals that appeared in CODASYL COBOL Journal of Development, 

1984. 

In January 1987, X3J4 approved the content and format for the first supplement and 

recommended to X3 that the proposed draft be published for public review and com¬ 

ment by the data-processing community of software producers and users. During two 

public review and comment periods, X3J4 reviewed and responded to all the com¬ 

ments. 

In October 1988, X3J4 approved the final version of the proposed supplement and 

forwarded it to X3 for processing. X3 approved the proposed supplement and submit¬ 

ted it to the American National Standards Institute. This supplement was designated 

ANSI X3.23a-1989 and was approved by ANSI on September 13, 1989. 

Suggestions for improvement of this standard will be welcome. They should be sent to 

the Computer and Business Equipment Manufacturers Association, 311 First Street, 

NW, Suite 500, Washington, DC 20001. 

This standard was processed and approved for submittal to ANSI by the Accredited 

Standards Committee on Information Processing Systems, X3. Committee approval of 

the standard does not necessarily imply that all committee members voted for its ap¬ 

proval. At the lime it approved this standard, the X3 Committee had the following 

members: 

Richard Gibson, Chair 

Donald Loughry, Vice-Chair 

(Vacant), Administrative Secretary 

Organization Represented 

Allen-Bradley Company. 
American Library Association. 
American Nuclear Society.. 
AMP, Inc . 

Apple. 

Association of the Institute for 
Certification of Computer Professionals. 
AT&T. 

Boeing Company. 
Compaq Computer Corporation. 
Control Data Corporation. 
Cooperating Users of Burroughs Equipment 

Dataproducts Corporation. 
Digital Equipment Computer Users Society . 
Digital Equipment Corporation. 

Name of Representative 

Ronald H. Reimer 
Paul Peters 
Geraldine C. Main 
Edward Kelly 
Ronald Lloyd (Alt) 

Karen Higginbottom 
Michael J. Lawler (Alt) 

Thomas M. Kurihara 
Thomas F. Frost 
Paul D. Bartoli (Alt) 
Paul W. Mercer 
James Barnes 
Ernest Fogle 
Thomas Easterday 
Donald Miller (Alt) 
Charles D. Card 
James Ebright 
Gary S. Robinson 
Delbert L. Shoemaker (Alt) 



Organization Represented 

Eastman Kodak. 

Electronic Data Systems Corporation. 

GUIDE International. 

Hewlett-Packard. 
Honeywell Bull. 
IBM Corporation. 

IEEE Computer Society. 

Lawrence Berkeley Laboratory. 

MAP/TOP. 
Moore Business Forms. 
National Communications System. 

National Institute of Standards and Technology 

NCR Corporation. 

OMNICOM . 

Prime Computer, Inc. 

Recognition Technology Users Association. 
SHARE Inc. 

3M Company. 
Unisys. 

U.S. Department of Defense. 

U.S. General Services Administration. 

US WEST. 

VIM. 

Wang Corporation. 

Wintergreen Information Services. 
Xerox Corporation. 

Name of Representative 

Gary Haines 
James D. Converse (Alt) 
Jerrold S. Foley 
Frank Kirshenbaum 
Jeffrey Roberts (Alt) 
Donald C. Loughry 
David M. Taylor 
Mary Anne Gray 
Robert H. Follett (Alt) 
Tom Hannon 
Bob Pritchard (Alt) 
David F. Stevens 
Robert L. Fink (Alt) 
Mike Kaminski 

. Delmer H. Oddy 
Dermis Bodson 
Donald Wilson (Alt) 

.Robert E. Rountree 
Mike Hogan (Alt) 

.Tom Kern 
A. R. Daniels (Alt) 
Harold C. Folts 
Cheryl Slobodian (Alt) 

.Tom Connerty 
Phil Cieply (Alt) 

. Herbert F. Schantz 

.Thomas B. Steel 
Gary Ainsworth (Alt) 

.Paul D. Jahnke 
Marvin W. Bass 
Steven Oksala (Alt) 

.William C. Rinehuls 
Thomas H. Kurihara (Alt) 
.Dale O. Christensen 
Larry L. Jackson (Alt) 

.Gary Dempsey 
Sue Capraro (Alt) 

.Chris Tanner 
John Ulrich (Alt) 

.J. J. Cinecoe 
Sarah Wagner (Alt) 

.John L. Wheeler 

.Roy Pierce 



Technical Committee X3J4 on COBOL, which developed this addendum, had the 

following members: 

D.A. Schricker, Chair P. Blacklock P. L'Allier 

B. D. Sinclair, Vice Chair W. Blatt L. K. Madison 
D. Bowman D. D. Marriott 

P. A. Beard, Secretary J. R. Brieschke J. R. Peters 
V. Eckels A. O. Reimann 
C. P. Ellis J. A. Rodriguez 
A. Fryer A. Satumelli 
J. Garfunkel L. Skidmore 
B. Gaarder S. Spears 
P. Graham S. Spence 
A. Hewitt W. Stover 
K. Howard M. V. Vickers 
A. Jackson A. Wallace 
J. Kailey K. Watts 
R. Kisselburgh 
S. D. Klute 

L. V. Willis 

Others who contributed to the work on the addendum were as follows: 

M. Adams 
M. Blanchette 
P. Brown 
M. Daleo 
B. J. Edwards 
P. B. Hall 
J. M. Hart 

C.Johnson 
L. Keating 
J. A. Moran 
B. M. Strauss 
J. M. Triance 
J. P. Wessler 



( 

< 

i 



TABLE OF CONTENTS 

ADDENDUM 1: CHANGES TO STANDARD COBOL . A-l 

SECTION A: INTRINSIC FUNCTION MODULE 

Chapter 1: Introduction to the Intrinsic Function Module 

1.1 Purpose of Intrinsic Function Module. A-27 
1.2 Language Concepts. A-27 

Chapter 2: General Description 

2.1 Function Definition and Returned Value. A-27 
2.2 Arguments. A-28 
2.3 Types of Functions. A-29 
2.4 Definitions of Functions. A-29 
2.5 The ACOS Function. A-33 
2.6 The ANNUITY Function. A-34 
2.7 The ASIN Function. A-35 
2.8 The ATAN Function. A-36 
2.9 The CHAR Function. A-37 
2.10 The COS Function. A-38 
2.11 The CURRENT-DATE Function. A-39 
2.12 The DATE-OF-INTEGER Function. A-41 
2.13 The DAY-OF-INTEGER Function. A-42 
2.14 The FACTORIAL Function. A-43 
2.15 The INTEGER Function. A-44 
2.16 The INTEGER-OF-DATE Function. A-45 
2.17 The INTEGER-OF-DAY Function. A-46 
2.18 The INTEGER-PART Function. A-47 
2.19 The LENGTH Function. A-48 
2.20 The LOG Function. A-49 
2.21 The LOG 10 Function. A-50 
2.22 The LOWER-CASE Function. A-51 
2.23 The MAX Function. A-52 
2.24 The MEAN Function. A-53 
2.25 The MEDIAN Function. A-54 
2.26 The MIDRANGE Function. A-55 
2.27 The MIN Function. A-56 
2.28 The MOD Function. A-57 
2.29 The NUMVAL Function. A-58 
2.30 The NUMVAL-C Function. A-59 
2.31 The ORD Function. A-60 
2.32 The ORD-MAX Function. A-61 
2.33 The ORD-MIN Function. A-62 
2.34 The PRESENT-VALUE Function. A-63 
2.35 The RANDOM Function. A-64 
2.36 The RANGE Function. A-65 
2.37 The REM Function. A-66 
2.38 The REVERSE Function. A-67 

l 



2.39 The SIN Function. A-68 
2.40 The SORT Function.   A-69 
2.41 The STANDARD-DEVIATION Function. A-70 
2.42 The SUM Function. A-71 
2.43 The TAN Function. A-72 
2.44 The UPPER-CASE Function. A-73 
2.45 The VARIANCE Function. A-74 
2.46 The WHEN-COMPILED Function. A-75 



American National Standard 
for Information Systems - 

Programming Language - 
Intrinsic Function Module for COBOL 

ADDENDUM Is CHANGES TO STANDARD COBOL 

The following are the changes to be applied to the document entitled "American National 

Standard for Information Systems - Programming Language - COBOL, ANSI X3.23-1985, 

ISO 1989-1985", in order to include the language elements of the Intrinsic Function module and to 

correct typographical errors (indicated by the symbols (T) in the page number column). The changes 

add totally upward compatible language extensions to Standard COBOL except for the addition of the 

reserved word FUNCTION. 

Page No. _Change to ANSI X3J3-1985 and ISO 1989-1985_ 

ii Add the following after the entry for section II, paragraph 7: 

8. Intrinsic Function Facility. 11-36 

iii Change the entry for section VI, paragraph 1.3 to read: 

1.3 Restrictions on Overall Language. VI-1 

xi Add the following after the entry for 3.4: 

3.5 American National Standard COBOL 1985, Addendum 1.XVII-13 

xi Add the following after the entry for 4.3: 

4.4 ISO Standard 1989-1985 for COBOL, Addendum 1.XVII-15 

1-1 Paragraph 1.2, first paragraph, second sentence, change to read: "The standard defines 

12 functional processing modules: Nucleus, Sequential I-O, Relative I-O, Indexed I-O, 

Inter-Program Communication, Sort-Merge, Source Text Manipulation, Report Writer, 

Communication, Debug, Segmentation, and Intrinsic Function." 

1-1 Paragraph 1.2, first paragraph, last sentence, change to read: "Three of the modules 

contain only level 1 elements." 

1-3 Paragraph 1.2, add the following paragraph after the last paragraph: 

The Intrinsic Function module provides the capability to reference a data item 

whose value is derived automatically at the time of reference during the execution of 

the object program. The Intrinsic Function module contains only level 1 elements. 

A-l 



...into nineteen 

Page No. _Change to ANSI X323-1985 and ISO 1989-1985 

1-3 Paragraph 1.3, first paragraph, first sentence, change to read: 

sections." 

1-3 

1-3 

1-4 

1-4 

1-5 

Paragraph 1.3, third paragraph, first sentence, change to read: "Sections VI through 

XVI and section A contain specifications for the twelve functional...". 

Paragraph 1.3, fourth paragraph, change to read: "Sections II through XVI and section 

A comprise the detailed...". 

Paragraph 1.4, fourth paragraph, first sentence, change to read: "...representation of 

the 12 functional processing modules...". 

Paragraph 1.4, fifth paragraph, add to the list: 

ITR Intrinsic Function 

Change diagram to include the Intrinsic Function module as shown on the next page of 

this addendum. 

A-2 



# 

# 

<*> c 
*35 o © 

ll n tfc 
"■ 

c 

n n 
s 
c 

o © 
o o <u U UJ 

£ C/5 C/5 
c/5 2 N 
w 3! c^ 

£ ■§ 
Q C/5 

00 
n o 

n 
© 

si I 
-O 
£ 

aa 
u 
G 

CO 
u 
G 

4 a" N -1 

Ss 
O Z i 

a n n O © 

c s s 
3 0 O 
E 0 (J 
E 

a 

t h 
© 

i| 

•-H 

.. c 
E o n f 1 
H a O o J 

3 C C/5 C/5 g 
Q « 
# S 

fS 

& u © © J 
S H H nJ 

at oe ■_) 
r c/5 c/5 y. 

3 

e 
£ 2 

0 
n r 1 n *-« 

jC c 
£, 3 k! k! £ 

C/5 u E 
W ^ 2 E 

gf ■S3 
G -O 
o £ 
s 
* 5 
a -o 
Si 

■8 
20 

*3 ™ 

n o n 
© J 

S | 
a! 

N " 

S ~ 
C» n 1 O © J 

e
la

t 

1
-0

 

J 
S 

J 
s g 

at K B Z 
N 

3 n n 

S9 O’ y o 
u U 

f 
C/3 c/5 C/5 

c/5 N *■* 

i n 

<J j y 
3 
z z 

N 

I-OI — ZHUSaSwa~-<HH 5-z-Soj 

UOaO J iaD ■ m y h w 

A-3 



Pace No. Change to ANSI X323-1985 and ISO 1989-1985 

1-6 Paragraph 1.5, second sentence, change "consists of 11 modules, seven of which are 

required and four of which are optional." to "consists of 12 modules, seven of which 

are required and five of which are optional. (It is the intention of X3J4 to require 

the Intrinsic Function module in the next complete revision of Standard COBOL.)" 

1-6 Paragraph 1.5.1, first paragraph, last sentence, change to read: "The five optional 

modules (Report Writer, Communication, Debug, Segmentation, and Intrinsic Function) 

are not...". 

1-8 Paragraph 1.5.2.5.3, change to read: 

1.52.5 J Reserved Words 

An implementation of Standard COBOL must recognize as reserved words all of the 

COBOL reserved words occurring in the specification of the seven required modules and 

the four optional modules of Report Writer, Communication, Debug, and Segmentation. 

An implementation of Standard COBOL need not recognize any new reserved words 

introduced by the optional Intrinsic Function module until that module is included in 

the implementation. (See page IV-45, COBOL Reserved Words.) 

1-10 Paragraph 2.1, last paragraph, add the following to the list: 

• Page 1-39: Summary of elements in the Intrinsic Function module 

1-12 Change the entry for "Reference modification" to "Reference-modifier". 

1-12 (T) Under "Reference Format", change "Asterisk (8) comment line" to "Asterisk (*) 

comment line". 

1-39 After the Segmentation module list, add the Intrinsic Function module list shown on 

the next page of this addendum. 

A-4 



SUMMARY OF ELEMENTS IN THE INTRINSIC FUNCTION MODULE 

ELEMENT_LEVEL 1 

LANGUAGE CONCEPTS 

Character-Strings 

COBOL words 

Function-name. X 

Uniqueness of Reference 

Function-Identifier. X 

PROCEDURE DIVISION 

ACOS function. X 

ANNUITY function. X 

ASIN function. X 

ATAN function. X 

CHAR function. X 

COS function. X 

CURRENT-DATE function. X 

DATE-OF-INTEGER function. X 

DAY-OF-INTEGER function. X 

FACTORIAL function. X 

INTEGER function. X 

INTEGER-OF-DATE function. X 

INTEGER-OF-DAY function. X 

INTEGER-PART function. X 

LENGTH function. X 

LOG function. X 

LOG 10 function. X 

LOWER-CASE function. X 

MAX function. X 

MEAN function. X 

MEDIAN function. X 

MIDRANGE function. X 

MIN function. X 

MOD function. X 

NUMVAL function. X 

NUMVAL-C function. X 

ORD function. X 

ORD-MAX function. X 

ORD-MIN function. X 

PRESENT-VALUE function. X 

RANDOM function. X 

RANGE function. X 

REM function. X 

REVERSE function. X 

SIN function. X 

SORT function. X 

STANDARD-DEVIATION function. X 

SUM function. X 

TAN function. X 

UPPER-CASE function. X 

VARIANCE function. X 

WHEN-COMPILED function. X 

A-5 



Page No. 

1-40 

1-41 (T) 

1-42 

1-42 

1-42 

1-45 (T) 

1-51 (T) 

1-54 

Change to ANSI X3J3-1985 and ISO 1989-1985 

Paragraph 3.1, second paragraph, add the following to the list: 

ITR Intrinsic Function 

Under "Character Set", change entry in MODULE column for "Characters used in 

punctuation =" from "1 STM" to "2 STM". 

Add the following before the entry for "Literals"; align the word "Function-names" one 

position to the right of the word "Literals": 

Function-names  ... 1 ITR 

Change the entry for "Reference modification" to "Reference-modifier". 

Add the following before the entry for "Reference-modifier"; align the word 

"Function-identifier" with the word "Reference-modifier": 

Function-identifier. 1 ITR 

Under "OBJECT-COMPUTER paragraph", change entry in MODULE column for 

"SEGMENT-LIMIT clause" from "1 SEG Z" to "2 SEG Z". 

In the line following "Level-number clause", change "may be 1 or 1 digits" to "may be 

1 or 2 digits". 

Add the following before the entry for "ACCEPT statement": 

Intrinsic functions 

ACOS function. 1 ITR 

ANNUITY function. 1 ITR 

ASIN function. 1 ITR 

ATAN function. 1 ITR 

CHAR function. 1 ITR 

COS function. 1 ITR 

CURRENT-DATE function. 1 ITR 

DATE-OF-INTEGER function. 1 ITR 

DAY-OF-INTEGER function. 1 ITR 

FACTORIAL function. 1 ITR 

INTEGER function. 1 ITR 

INTEGER-OF-DATE function. 1 ITR 

INTEGER-OF-DAY function. 1 ITR 

INTEGER-PART function. 1 ITR 

LENGTH function. 1 ITR 

LOG function. 1 ITR 

LOG 10 function. 1 ITR 

LOWER-CASE function. 1 ITR 

MAX function. 1 ITR 

MEAN function. 1 ITR 

MEDIAN function. 1 ITR 

MIDRANGE function. 1 ITR 

MIN function. 1 ITR 

MOD function. 1 ITR 

A-6 



Pace No. Chanee to ANSI X323-1985 and ISO 1989-1985 

NUMVAL function. 1ITR 

NUMVAL-C function. 1 ITR 

ORD function. 1 ITR 

ORD-MAX function. 1 ITR 

ORD-MIN function. 1 ITR 

PRESENT-VALUE function. 1 ITR 

RANDOM function. 1 ITR 

RANGE function.. 1 ITR 

REM function. 1 ITR 

REVERSE function. 1 ITR 

SIN function. 1 ITR 

SORT function .. 1 ITR 

STANDARD-DEVIATION function. 1 ITR 

SUM function .. 1 ITR 

TAN function. 1 ITR 

UPPER-CASE function. 1 ITR 

VARIANCE function. 1 ITR 

WHEN-COMPILED function. 1 ITR 

Statements 

1-54 

thru 

1-63 

Indent all lines following the newly inserted "Statements" entry beginning with 

"ACCEPT statement" and ending with "END-WRITE phrase". 

11-23 (T) Paragraph 6.4.1.1, entitled "Names of Programs", second paragraph, first line, change 

"compiled program" to "compiled programs". 

11-25 (T) Paragraph 6.4.2.2, entitled "Value of Parameters", second paragraph, penultimate line, 

change "may be used by a called program to return to the" to "may be used by a 

called program to return a result to the". 

11-35 Add the following on page 11-36 after paragraph 7.6: 

8. INTRINSIC FUNCTION FACILITY 

Data processing problems frequently require the use of values which are not directly 

accessible in the data storage associated with the object program. These data values 

must be derived through performing some operations on other data. A function 

represents a temporary data item whose value is derived automatically at the time of 

reference during the execution of the object program. 

The value returned by a function is considered to be a data value. A mechanism is 

provided at object time to assign a data value to a function when it is referenced. In 

order to determine the value of a function, the evaluation mechanism may require 

access to data values provided by the referencing program. These data values are 

provided by specifying parameters, known as arguments, when referencing the function. 

Specific functions may place constraints on these arguments such as range, data types, 

or size, etc. If, at the time a function is referenced, the arguments specified for that 

reference do not have values that comply with the specified constraints, the returned 

value for the function is undefined. 

A-7 



Page No. 

III-l 

thru 

m-26 

III-l 

thru 

HI-26 

Change to ANSI X3J3-1985 and ISO 1989-1985 

Insert the following terms into the glossary at the appropriate position in the 

alphabetic sequence: 

Alphanumeric Function. A function whose value is composed of a string of one or 

more characters from the computer’s character set. 

Argument. An identifier, a literal, or an arithmetic expression that specifies a 

value to be used in the evaluation of a function. 

Function. A temporary data item whose value is determined by invoking a 

mechanism provided by the implementor at the time the function is referenced during 

the execution of a statement. 

Function-Identifier. A syntactically correct combination of character-strings and 

separators that references a function. The data item represented by a function is 

uniquely identified by a function-name with its arguments, if any. A 

function-identifier may include a reference-modifier. A function-identifier that 

references an alphanumeric function may be specified anywhere in the general formats 

that an identifier may be specified, subject to certain restrictions. A 

function-identifier that references an integer or numeric function may be referenced 

anywhere in the general formats that an arithmetic expression may be specified. (See 

page IV-22, Function-Identifier.) 

Function-Name. A word that names a mechanism provided by the implementor to 

determine the value of a function. 

Integer Function. A function whose category is numeric and whose definition 

provides that all digits to the right of the decimal point are zero in the returned value 

for any possible evaluation of the function. 

Numeric Function. A function whose class and category are numeric but which for 

some possible evaluation does not satisfy the requirements of an integer function. 

Replace the definitions as follows: 

Data Item. A unit of data (excluding literals) defined by a COBOL program or by 

the rules for function evaluation. 

Identifier. A syntactically correct combination of character-strings and separators 

that names a data item. When referencing a data item which is not a function, an 

identifier consists of a data-name, together with its qualifiers, subscripts, and 

reference-modifier, as required for uniqueness of reference. When referencing a data 

item which is a function, a function-identifier is used. The rules for ‘identifier’ 

associated with general formats may, however, specifically prohibit reference to 

functions, qualification, subscripting, or reference modification. 

Integer. (1) A numeric literal that does not include any digit positions to the 

right of the decimal point. 

(2) A numeric data item defined in the Data Division that does not include any 

digit positions to the right of the decimal point. 

A-8 



Page No. Change to ANSI X323-1985 and ISO 1989-1985 

III- 19 

IV- 2 (T) 

IV-4 (T) 

IV-4 

IV-5 

(3) A numeric function whose definition provides that all digits to the right of 

the decimal point are zero in the returned value for any possible evaluation of the 

function. 

Where the term ‘integer’ appears in the general formats, integer must be a 

numeric literal which is an integer, and it must be neither signed nor zero unless 

explicitly allowed by the rules for that format. 

Key Word. A reserved word or function-name whose presence is required when the 

format in which the word appears is used in a source program. 

Subscript. An occurrence number represented by either an integer, a uata-name 

optionally followed by an integer with the operator + or -, or an index-name optionally 

followed by an integer with the operator + or -, that identifies a particular element in 

a table. A subscript may be the word ALL when the subscripted identifier is used as a 

function argument. (See page A-28, Arguments.) 

Word. A character-string of not more than 30 characters which forms a 

user-defined word, a system-name, a reserved word, or a function-name. (See page 

IV-5, COBOL Words.) 

Replace the definition for Reference Modifier with the following: 

Reference-Modifier. A syntactically correct combination of character-strings and 

separators that defines a unique data item. It includes a delimiting left parenthesis 

separator, the leftmost character position, a colon separator, optionally a length, and a 

delimiting right parenthesis separator. (See page IV-22, Reference-Modifier.) 

Paragraph 2.1.5 entitled "Ellipses", second paragraph, first line, change "In the general 

format," to "In the general formats,". 

Paragraph 4.1, entitled "Character Set", third paragraph, first line, change "fewer than 

51 characters, double" to "fewer than 52 characters (all characters of the COBOL 

character set except the lowercase letters), double". 

Paragraph 4.2.1, rule (4), change second sentence to read: "Parentheses may appear 

only in balanced pairs of left and right parentheses delimiting subscripts, a list of 

function arguments, reference modifiers, arithmetic expressions, or conditions." 

Paragraph 4.2.2.1, replace with the following: 

A COBOL word is a character-string of not more than 30 characters which forms a 

user-defined word, a system-name, a reserved word, or a function-name. Each 

character of a COBOL word is selected from the set of letters, digits, and the hyphen. 

The hyphen may not appear as the first or last character. Each lowercase letter is 

considered to be equivalent to its corresponding uppercase letter. Within a source 

program, reserved words and user-defined words form disjoint sets; reserved words and 

system-names form disjoint sets; reserved words and function-names form disjoint sets; 

function-names, system-names, and user-defined words form intersecting sets. The 

same COBOL word may be used as a function-name, as a system-name, and as a user- 

defined word within a source program; and the class of a specific occurrence of the 

COBOL word is determined by the context of the clause or phrase in which it occurs. 

A-9 



Page No. 

IV-9 

IV-15 

IV-16 

IV-16 

IV-18 

Change to ANSI X323-1985 and ISO 1989-1985 

Add the following before paragraph 42.2.2: 

422.1.4 Function-Names 

A function-name is a word that is one of a specified list of words which may be 

used in COBOL source programs. The same word, in a different context, may appear 

in a program as a user-defined word or a system-name. (See page A-29, Definitions of 

Functions.) 

Paragraph 4.3.3, delete the last sentence and add the following new paragraphs: 

Every data item which is a function is an elementary item, and belongs to one of 

the categories alphanumeric or numeric, and to the corresponding class; the category of 

each function is determined by the definition of the function. This definition is made 

in these specifications. (See page A-27, Intrinsic Function Module.) 

The following table depicts the relationship of the class and categories of data 

items. 

Paragraph 4.3.4, second paragraph, replace first sentence with the following: "When a 

computer provides more than one means of representing data, the standard data format 

must be used for data items other than integer and numeric functions, if not otherwise 

specified by the data description." 

Paragraph 4.3.4, add the following new paragraph preceding the last paragraph: 

An alphanumeric function is always represented in the standard data format. The 

size of an alphanumeric function in standard data format characters is determined by 

the definition of the function. The implementor specifies the representation of integer 

and numeric functions, and this representation need not be the standard data format. 

Integer and numeric functions may be used only in arithmetic expressions. An integer 

or numeric function represents the value resulting from the evaluation of the function 

without the restriction on composite of operands and/or receiving data items. Each 

implementor will indicate the techniques used in evaluating integer and numeric 

functions. 

Paragraph 4.3.8, add the following new paragraph preceding the last paragraph: 

When the resource named is a function, the function definition may require the user 

to specify in the reference to the function a value or set of values for one or more 

parameters which determine the value of the function for that particular reference. 

This is accomplished through the specification of arguments as described in the 

following paragraphs. 

A-10 



Page No. Change to ANSI X323-1985 and ISO 1989-1985 

IV-21 Paragraph 43.8.2.2, replace the general format with the following: 

'ALL 

condition-name-1 

data-name-1 

integer-1 

(• data-name-2 

index-name-1 

integer-2 

integer-3 

. . . ) 

IV-21 Paragraph 4.3.8.23, add new syntax rule 7 as follows: 

(7) The subscript ALL may be used only when the subscripted identifier is used as 

a function argument and may not be used when condition-name-1 is specified. (See 

page A-28, Arguments.) 

IV-22 Renumber paragraphs 4.3.83 thru 43.8.5 to 43.8.4 thru 43.8.6, respectively. 

thru 

IV-24 

IV-22 Add the following as new paragraph 4.3.83: 

43.83 Function-Identifier 

43.83.1 Purpose of a Function-Identifier 

A function-identifier is a syntactically correct combination of character-strings and 

separators that uniquely references the data item resulting from the evaluation of a 

function. 

43.83.2 General Format 

FUNCTION function-name-1 [({argument-1} ... )] [reference-modifier] 

43.833 Syntax Rules 

(1) Argument-1 must be an identifier, a literal, or an arithmetic expression. 

Specific rules governing the number, class, and category of argument-1 are given in 

the definition of each function. (See page A-27, Intrinsic Function Module.) 

(2) A reference-modifier may be specified only for functions of the category 

alphanumeric. 

(3) A function-identifier which references an alphanumeric function may be 

specified anywhere in the general formats that an identifier is permitted and where 

the rules associated with the general formats do not specifically prohibit reference to 

functions, except as follows: 

A-ll 



Page No. Change to ANSI X323-1985 and ISO 1989-1985 

IV-22 

IV-22 

IV-22 

IV-22 

IV-23 

IV-23 

a. As a receiving operand of any statement. 

b. Where the rules associated with the general formats require the data item 

being referenced to have particular characteristics (such as class and category, usage, 

size, sign, and permissible values) and the evaluation of the function according to its 

definition and the particular arguments specified would not have these characteristics. 

(4) A function-identifier which references an integer or numeric function may be 

used only in an arithmetic expression. 

43.83.4 General Rules 

(1) The class and other characteristics of the function being referenced are 

determined by the function definition. (See page A-27, Intrinsic Functions.) 

(2) At the time reference is made to a function, its arguments are evaluated 

individually in the order specified in the list of arguments, from left to right. An 

argument being evaluated may itself be a function-identifier or may be an expression 

containing function-identifiers. There is no restriction preventing the function 

referenced in evaluating an argument from being the same function as that for which 

the argument is specified. 

New paragraph 43.8.4, change the title to "Reference-Modifier". 

New paragraph 43.8.4.2, replace the general format with the following: 

data-name-l 

FUNCTION function-name-1 [({argument-1} )] 

(leftmost-character-position:[length]) 

NOTE: Data-name-l and FUNCTION function-name-1 (argument-1) are shown in the above format to 

provide context and are not part of the reference-modifier. 

New paragraph 4.3.8.43, add the following as new syntax rule 5: 

(5) The function referenced by function-name-1 and its arguments, if any, must be 

an alphanumeric function. 

New paragraph 43.8.4.4, change the first sentence of general rule 1 to read: "Each 

character of a data item referenced by data-name-l or by function-name-1 and its 

arguments, if any, is assigned an ordinal number incrementing by one from the leftmost 

position to the rightmost position." 

New paragraph 43.8.4.4, general rule 3a, add the following new last sentence: "If an 

ALL subscript is specified for an operand, the reference-modifier is applied to each of 

the implicitly specified elements of the table." 

New paragraph 43.8.4.4, general rule 3, add the following as new rule c: 

c. If reference modification is specified in a function reference, the reference 

modification is evaluated immediately after evaluation of the function. 

A-12 



Page No. 

IV-23 

IV-23 

IV-23 

IV-23 

IV-45 

Change to ANSI X333-1985 and ISO 1989-1985 

New paragraph 43.8.4.4, general rule 4, change the first sentence to read: "Reference 

modification creates a unique data item that is a subset of the data item referenced by 

data-name-1 or by function-name-1 and its arguments, if any." 

New paragraph 43.8.4.4, general rule 4, paragraphs a and b, replace four occurrences 

of "the data item referenced by data-name-1" by "the data item referenced by 

data-name-1 or function-name-1 and its arguments, if any". 

New paragraph 43.8.4.4, general rule 5, second sentence, replace the word "It" by 

"When a function is referenced, the unique data item has the class and category of 

alphanumeric. When data-name-1 is specified, the unique data item". 

New paragraph 43.8.5, change to read: 

43.8.5 Identifier 

43.83.1 Function 

An identifier is a syntactically correct sequence of character-strings and separators 

used to reference data uniquely. 

When a data item other than a function is being referenced, identifier is a term 

used to reflect that a data-name, if not unique in a program, must be followed by a 

syntactically correct combination of qualifiers, subscripts, or reference modifiers 

necessary for uniqueness of reference. (See page X-4, Scope of Names.) 

43333 General Format 

Format 1: 

function-identifier-l 

Format 2: 

IN IN 
data-name-1 

OF 

data-name-2 

OF 

cd-name-l 

file-name-1 

report-name-1 

[({subscript} ... )] [reference-modifier] 

43.833 Syntax Rules 

(1) The words IN and OF are equivalent. 

Paragraph 8, insert the following before the list of reserved words: 

The following is a list of COBOL reserved words for the seven required modules and 

the four optional modules of Report Writer, Communication, Debug, and Segmentation. 

A-13 



Page No. 

IV-46 

V-3 (T) 

V-7 (T) 

V-15 (T) 

V-15 (T) 

V-16 (T) 

V-16 (T) 

V-27 (T) 

V-28 (T) 

V-38 

V-38 

V-38 

Change to ANSI X3234985 and ISO 1989-1985 

Paragraph 8, insert the following after the list of reserved words: 

The following is a list of COBOL reserved words for the optioned Intrinsic Function 

module. 

FUNCTION 

SYMBOLIC CHARACTERS clause, delete outermost set of braces. 

ORGANIZATION clause, delete second occurrence of a right bracket after the word 

SEQUENTIAL. 

Insert a terminal period following the last bracket in format 1. 

Delete the commas between data-name-1 through data-name-11, inclusively, in format 1. 

Insert a terminal period following the last bracket in format 3. 

Delete the commas between data-name-1 through data-name-6, inclusively, in format 3. 

PERFORM format, AFTER phrase, change "literal-3" immediately after the reserved 

word AFTER to "index-name-3". 

Insert "[END-REWRITE]" at the end of the first REWRITE statement. 

Change the format for subscripting to read: 

'all 

condition-name-1 

data-name-1 

integer-1 
V 1 

data-name-2 • integer-2 

V = 

index-name-1 
_ 

■ integer-3 

. . . ) 

Add the following after the format for subscripting: 

FUNCTION-IDENTIFIER: 

FUNCTION function-name-1 [({argument-1} ... )] [reference-modifier] 

Change the format for reference modification to read: 

data-name-1 

FUNCTION function-name-1 [({argument-1} )] 

(leftmost-character-position:[length]) 

A-14 



Page No. Change to ANSI X323-1985 and ISO 1989-1985 

V-38 

V-38 

Change the format for identifier to read: 

Format 1: 

function-identifier-l 

Format 2: 

data-name-l r data-name-2 

cd-name-1 

file-name-1 

report-name-1 

[({subscript} ... )J [reference-modifier] 

Insert after page V-38 the contents of pages A-16 and A-17 which contain the general 
format for functions. 

A-15 



Intrinsic Function Formats 

GENERAL FORMAT FOR INTRINSIC FUNCTIONS 

FUNCTION ACOS (argument-1) 

FUNCTION ANNUITY (argument-1 argument-2) 

FUNCTION ASIN (argument-1) 

FUNCTION ATAN (argument-1) 

FUNCTION CHAR (argument-1) 

FUNCTION COS (argument-1) 

FUNCTION CURRENT-DATE 

FUNCTION DATE-OF-INTEGER (argument-1) 

FUNCTION DAY-OF-INTEGER (argument-1) 

FUNCTION FACTORIAL (argument-1) 

FUNCTION INTEGER (argument-1) 

FUNCTION INTEGER-OF-DATE (argument-1) 

FUNCTION INTEGER-OF-DAY (argument-1) 

FUNCTION INTEGER-PART (argument-1) 

FUNCTION LENGTH (argument-1) 

FUNCTION LOG (argument-1) 

FUNCTION LOG10 (argument-1) 

FUNCTION LOWER-CASE (argument-1) 

FUNCTION MAX ({argument-1} ... ) 

FUNCTION MEAN ({argument-1} ... ) 

FUNCTION MEDIAN ({argument-1} ... ) 

FUNCTION MIDRANGE ({argument-1} ... ) 

FUNCTION MIN ({argument-1} ... ) 

FUNCTION MOD (argument-1 argurnent-2) 

FUNCTION NUMVAL (argument-1) 

FUNCTION NUMVAL-C (argument-1 [argument-2]) 

A-16 



Intrinsic Function Formats 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

FUNCTION 

GENERAL FORMAT FOR INTRINSIC FUNCTIONS 

ORD (argument-1) 

ORD-MAX ({argument-1} ... ) 

ORD-MIN ({argument-1} ... ) 

PRESENT-VALUE (argument-1 {argument-2} . ..) 

RANDOM [(argument-1)] 

RANGE ({argument-1} ... ) 

REM (argument-1 argument-2) 

REVERSE (argument-1) 

SIN (argument-1) 

SORT (argument-1) 

STANDARD-DEVIATION ({argument-1} ... ) 

SUM ({argument-1} ... ) 

TAN (argument-1) 

UPPER-CASE (argument-1) 

VARIANCE ({argument-1} ... ) 

WHEN-COMPILED 

A-17 



Pace No. Change to ANSI X323-1985 and ISO 1989-1985 

VI-1 Paragraph 1.3, change title to read: "RESTRICTIONS ON OVERALL LANGUAGE". 

VI-2 Renumber paragraphs 1.3.5 and 1.3.6 to 1.3.6 and 1.3.7, respectively; and add new 

paragraph 1.3.5 without boxing as follows: 

1.3.5 Function-Identifier 

The availability of function-identifiers is dependent on whether the Intrinsic 

Function module is supported by the implementation. 

VI-13 (T) Paragraph 4.5.2, SYMBOLIC CHARACTERS clause, delete outermost set of braces. 

VI-20 (T) Paragraph 5.3.2 of the OCCURS clause, delete the box around the first occurrence of 

"IINDEXED BY findex-name-ll ...1". 

VI-31 (T) Paragraph 5.9.4 of the PICTURE clause, general rule 8, second line, change "explain" 

to "explained". 

VI-50 (T) Paragraph 5.15.6 of the VALUE clause, general rule 6, second line, change "or in a 

entry" to "or in an entry". 

VI-57 Paragraph 6.3.1.2, replace the first paragraph after the general format beginning with 

"The usage of the operand..." by "Identifier-1 must reference a data item whose usage 

is explicitly or implicitly DISPLAY. If identifier-1 is a function-identifier, it must 

reference an alphanumeric function.”. 

VI-62 Paragraph 6.3.4, penultimate paragraph: 

a. Insert "(2)" at the beginning of the paragraph and indent 3 spaces. 

b. Change the first sentence in part to read: "Values are established for arithmetic 

expressions and functions if and when...". 

VI-70 Paragraph 6.4.7, change in part to read: "...PICTURE clause or function definition, 

then the result...". 

VI-96 Paragraph 6.18.4, general rule 4, change in part to read: "If any identifier is 

subscripted or is a function-identifier, the subscript or function-identifier is 

evaluated...". 

VI-103 Paragraph 6.19.4, general rule 2, second paragraph, change the first sentence to read: 

"If identifier-1 is reference modified, subscripted, or is a function-identifier, the 

reference modifier, subscript, or function-identifier is evaluated only once, immediately 

before data is moved to the first of the receiving operands." 

VI-104 (T) Paragraph 6.19.4 of the MOVE statement, general rule 3, fourth line, change 

"alphabetic, numeric edited," to "alphabetic, alphanumeric, numeric edited,". 

VI-105 (T) Paragraph 6.19.4 of the MOVE statement, general rule 4c, change indentation to align 

with general rule 4b. 

A-18 



Pane No. Change to ANSI X323-1985 and ISO 1989-1985 

VII-6 (T) Paragraph 2.1, in the Input-Output Section of the Sequential 1-0 module, delete the 

box around the general format: 

[I-O-CONTROL. rinput-output-control-entry]] 

VII-48 Paragraph 4.5.3, change syntax rule 1 to read: 

(1) If identifier-1 is a function-identifier, it must reference an alphanumeric 

function. When identifier-1 is not a function-identifier, record-name-1 and identifier-1 

must not reference the same storage area. 

VII-52 Paragraph 4.7.3, change syntax rule 1 to read: 

(1) If identifier-1 is a function-identifier, it must reference an alphanumeric 

function. When identifier-1 is not a function-identifier, record-name-1 and identifier-1 

must not reference the same storage area. 

VIII-30 Paragraph 4.6.3, change syntax rule 1 to read: 

(1) If identifier-1 is a function-identifier, it must reference an alphanumeric 

function. When idcntifier-1 is not a function-identifier, record-name-1 and identifier-1 

must not reference the same storage area. 

VIII-30 (T) Paragraph 4.6.3, change syntax rule 4 in part to read: "...mode for which. 

VIII-37 Paragraph 4.9.3, change syntax rule 1 to read: 

(1) If identifier-1 is a function-identifier, it must reference an alphanumeric 

function. When identifier-1 is not a function-identifief, record-name-1 and identifier-1 

must not reference the same storage area. 

IX-3 (T) Paragraph 1.3.4, entitled "1-0 Status", second occurrence of a paragraph numbered (1), 

subparagraphs c and d, change indentation to align with subparagraph b. 

IX-4 (T) Paragraph 1.3.4, entitled "1-0 Status", second occurrence of a paragraph numbered (3), 

subparagraph b, first line, box "or rewrite". 

IX-6 (T) Paragraph 1.3.5, entitled "The Invalid Key Condition", second occurrence of a paragraph 

numbered 2, first line, change "If not exception" to "If no exception". 

IX-7 (T) Paragraph 1.3.7, first paragraph, last line, change "an" to "and". 

IX-33 Paragraph 4.6.3, change syntax rule 1 to read: 

(1) If identifier-1 is a function-identifier, it must reference an alphanumeric 

function. When identifier-1 is not a function-identifier, record-name-1 and identifier-1 

must not reference the same storage area. 

IX-33 (T) Paragraph 4.6.3 of the REWRITE statement in the Indexed 1-0 module, syntax rule 3, 

change to read: "The INVALID KEY phrase must be specified in the REWRITE 

statement for indexed files for which an appropriate USE AFTER STANDARD 

EXCEPTION procedure is not specified." 

A-19 



Pace No. Change to ANSI X3J3-1985 and ISO 1989-1985 

IX-41 Paragraph 4.9.3, change syntax rule 1 to read: 

(1) If identifier-1 is a function-identifier, it must reference an alphanumeric 

function. When identifier-1 is not a function-identifier, record-name-1 and identifier-1 

must not reference the same storage area. 

X-l (T) Paragraph 1.1, Function for Inter-Program Communication module, fifth line, change 

"data value available" to "data values available". 

X-2 (T) Paragraph 1.3.4, entitled "External Objects and Internal Objects", second paragraph, last 

sentence, change "representative" to "representation". 

X-5 (T) Paragraph 1.3.8, entitled "Scope of Names”, second paragraph on page X-5, second line, 

box the word "either". In the same paragraph, third and fourth lines, box "which 

contains a Configuration Section or in any program contained within that program". 

X-6 (T) Paragraph 1.3.8.1, entitled "Conventions for Program-Names", rule 3, box "except 

programs it directly or indirectly contains". 

X-10 (T) Paragraph 2.4.2, entitled "Programs in the Initial State", box numbered paragraphs 3 

and 4. 

X-19 (T) Paragraph 4.3.1, Function for data description entry in the Inter-Program 

Communication module, first paragraph, last line, box "or global names". 

X-19 (T) Paragraph 4.3.1, Function for data description entry in the Inter-Program 

Communication module, second paragraph, second line, box "or external". 

X-27 Paragraph 5.2.3, add new syntax rule 4 as follows: 

(4) Identifier-2 must not be a function-identifier. 

X-29 (T) Paragraph 5.2.4 of the CALL statement, general rule 10, change two occurrences of 

"data-names" to "parameters"; also change two occurrences of "data-name" to 

"parameter". 

XI-8 (T) Paragraph 4.1.3 of the MERGE statement, syntax rule 3, fifth line, change "in the file" 

to "in the files". 

XI-13 Paragraph 4.2.3, change syntax rule 3 to read: 

(3) If identifier-1 is a function-identifier, it must reference an alphanumeric 

function. When identifier-1 is not a function-identifier, record-name-1 and identifier-1 

must not reference the same storage area. 

XII-4 (T) Paragraph 2.4 of the COPY statement, general rule 7, fifth and sixth lines, change two 

occurrences of "pseudo-text-delimiter" to "pseudo-text delimiter". 

XII-4 (T) Paragraph 2.4 of the COPY statement, general rule 9, third paragraph, fourth line, 

change "When a text word" to "When a text word specified in the BY phrase is 

introduced, it appears on a debugging line if the first library text word being replaced 

is specified on a debugging line. Except". 

A-20 



Pace No. Chance to ANSI X3.23-1985 and ISO 1989-1985 

XIII-7 (T) Paragraph 3.2.2 of the file description entry in the Report Writer module, VALUE OF 

clause, delete the fourth period in the ellipsis. 

XIV-3 (T) Paragraph 2.2.2 of the communication description entry, delete the commas between 

data-name-1 through data-name-11, inclusively, in format 1. 

XIV-4 (T) Paragraph 2.2.2 of the communication description entry, delete the commas between 

data-name-1 through data-name-6, inclusively, in format 3. 

XIV-19 (T) Paragraph 3.2.4 of the DISABLE statement, general rule 4, third line, change 

"SOURCE)" to "SOURCE))". 

XIV-26 Paragraph 3.6.3, add new syntax rule 6 as follows: 

(6) If idcntifier-1 is a function-identifier, it must reference an alphanumeric 

function. 

XV-5 (T) Paragraph 3.2.3 of the USE FOR DEBUGGING statement, syntax rule 10, last line, 

delete "or indexing". 

XVII-8 (T) Paragraph 2.11, entitled "CODASYL COBOL JOURNAL OF DEVELOPMENT 1981", item 

12, change "PROGRAM" to "PERFORM". 

XVII-13 Add the following after paragraph 3.4: 

3.5 AMERICAN NATIONAL STANDARD COBOL 1985, ADDENDUM 1 

The X3J4 COBOL Technical Committee of the Accredited Standards Committee X3 

was charged with the responsibility to develop addenda to American National Standard 

COBOL X3.23-1985 as a means of adding upward compatible language extensions. In 

June 1985, X3J4 began the task of preparing the first addendum. Language extensions 

considered for inclusion in Addendum 1 were taken from the CODASYL COBOL Journal 

of Development 1984. 

In January 1987 X3J4 approved the content and format for the first draft proposed 

Addendum 1 to American National Standard COBOL X3.23-1985 and recommended to X3 

that it be published for public review and comment. X3J4 held two public review and 

comment periods in which comments were received from the data processing community 

on the content of the draft proposed Addendum 1 to American National Standard 

COBOL X3.23-1985. X3J4 reviewed and responded to all comments received during 

these two public review periods. 

In October 1988 X3J4 approved the final version of the draft proposed Addendum 1 

to American National Standard COBOL X3.23-1985 and forwarded the document to the 

X3 committee for processing. The X3 committee then voted in favor of the 

acceptability of the draft proposed Addendum 1 to American National Standard COBOL 

X3.23-1985. This X3 vote also forwarded the proposed Addendum 1 for American 

National Standard COBOL X3.23-1985 to the American National Standards Institute for 

final approval. 

Addendum 1 to American National Standard COBOL X3.23-1985 proposed by X3 was 

approved by the American National Standards Institute on September 13, 1989 as an 

A-21 



Page No. Change to ANSI X3.234985 and ISO 1989-1985 

XVII-15 

XVII-17 

XVII-18 

XVII-19 

XVII-19 

XVII-19 (T) 

addendum to American National Standard COBOL X3.23-1985. The specifications of this 

approved Addendum 1 are published in the American National Standards Institute 

document X3.23A-1989. 

Add the following after paragraph 4.3: 

4.4 ISO STANDARD 19894985 FOR COBOL, ADDENDUM 1 

At its meeting in Vienna, Austria, in February 1984, ISO Technical Committee 97, 

Subcommittee 22, Working Group 4 on COBOL resolved to propose addenda for upward 

compatible language extensions to ISO Standard 1989-1985 for COBOL. The purpose of 

proposing addenda of upward compatible language extensions instead of embarking 

immediately on a revision to Standard COBOL was to provide the language 

enhancements in a more timely manner, e.g., in a two to five year time frame rather 

than a five to ten year, or longer, time frame. At this same meeting ISO/TC97/SC22 

Working Group 4 recommended that the United States be requested to provide draft 

documents for the addenda. The recommendations of ISO/TC97/SC22 Working Group 4 

were approved and the work of developing the addenda was assigned to X3J4. 

During X3J4’s work on Addendum 1 for Standard COBOL, close and continuous 

liaison was maintained with the international community through ISO/IEC JTC1/SC22 

Working Group 4. The draft document was presented for review and comment to 

ISO/IEC JTC1/SC22 in March 1987 as a draft proposed Addendum 1 to ISO Standard 

1989-1985 for COBOL. ISO/IEC JTC1/SC22 unanimously approved a resolution to send 

the proposed Addendum 1 to ISO Standard 1989-1985 for COBOL to the Central 

Secretariat for registration as a draft international standard (DIS). The DIS 

Addendum 1 to ISO Standard 1989-1985 for COBOL was circulated to all the ISO 

member bodies for inquiry. Addendum 1 to ISO Standard 1989-1985 for COBOL was 

accepted by the ISO Council. 

Add the following before the entry for "User-defined words"; align the word 

"Function-names" with the word "User-defined": 

Function-names, system-names, and user-defined words form 

intersecting sets. N 1ITR 

Add the following before the entry for "Literals"; align the word "Function-names" one 

position to the right of the word "Literals": 

Function-names. N 1 ITR 

Change the entry for "Reference modification" to "Reference-modifier". 

Add the following before the entry for "Reference-modifier"; align the word 

"Function-identifier" with the word "Reference-modifier": 

Function-identifier.N 1 ITR 

Under "Reference Format", change entry in 3RD STD column for "Continuation of 

COBOL word, numeric literal" from "1 NUC" to "2 NUC". 

A-22 



Page No. Change to ANSI X3.23-1985 and ISO 1989-1985 

XVII-31 Add the following before the entry for "ACCEPT statement": 

Intrinsic functions. N 1ITR 

ACOS function. N 1 ITR 

ANNUITY function.N 1 ITR 

ASIN function. N 1 ITR 

ATAN function. N 1 ITR 

CHAR function. N 1 ITR 

COS function. N 1 ITR 

CURRENT-DATE function. N 1 ITR 

DATE-OF-INTEGER function. N 1 ITR 

DAY-OF-INTEGER function. N 1 ITR 

FACTORIAL function. N 1 ITR 

INTEGER function. N 1 ITR 

INTEGER-OF-DATE function. N 1 ITR 

INTEGER-OF-DAY function. N 1 ITR 

INTEGER-PART function. N 1 ITR 

LENGTH function. N 1 ITR 

LOG function. N 1 ITR 

LOG 10 function. N 1 ITR 

LOWER-CASE function. N 1 ITR 

MAX function. N 1 ITR 

MEAN function. N 1 ITR 

MEDIAN function. N 1 ITR 

MIDRANGE function. N 1 ITR 

MIN function. N 1 ITR 

MOD function. N 1 ITR 

NUMVAL function. N 1 ITR 

NUMVAL-C function. N 1 ITR 

ORD function. N 1 ITR 

ORD-MAX function. N 1 ITR 

ORD-MIN function. N 1 ITR 

PRESENT-VALUE function. N 1 ITR 

RANDOM function. N 1 ITR 

RANGE function. N 1 ITR 

REM function. N 1 ITR 

REVERSE function. N 1 ITR 

SIN function. N 1 ITR 

SORT function. N 1 ITR 

STANDARD-DEVIATION function.N 1 ITR 

SUM function.N 1 ITR 

TAN function.N 1 ITR 

UPPER-CASE function.N 1 ITR 

VARIANCE function.N 1 ITR 

WHEN-COMPILED function. N 1 ITR 

XVII-50 Add the following after item 107: 

(108) Intrinsic Function Module (1 ITR). The Intrinsic Function module provides the 

capability to reference a data item whose value is derived automatically at the time of 

reference during the execution of the object program. 

A-23 



Page No. Change to ANSI X323-1985 and ISO 1989-1985 

XVII-64 (T) 

XVII-70 (T) 

XVII-71 

XVII-93 

XVII-98 

XVI-9 

XVIII-1 

thru 

XV1II-13 

Substantive change 26, entitled "PERFORM statement", prior to the last paragraph on 

the page, delete: "Under second Standard COBOL, PARA3 will be executed 8 times as 

shown above. Under third Standard COBOL, PARA3 will be executed 6 times as shown 

above." 

Substantive change 37, entitled "File position indicator", first paragraph, second line, 

change "access made" to "access mode". 

Add the word FUNCTION to the list of reserved words in item 39. 

Add the following after item 80: 

(81) Integer and Numeric Functions. The implementor specifies the representation 

of integer and numeric functions, and this representation need not be the standard 

data format. (See 4.3.4, second occurrence of page number IV-16, on page A-10.) 

(82) Types of Functions. The characteristics of the returned value are defined by 

the implementor. (See 2.3, paragraphs 2 and 3, on page A-29.) 

(83) CHAR function. If the current program collating sequence was not specified by 

the ALPHABET clause, the implementor determines the value. (See 2.9.4, rule 2, on 

page A-37.) 

(84) RANDOM function. If the first reference to this function in the run unit does 

not specify argument-1, the seed value is defined by the implementor. (See 2.35.3, rule 

3, on page A-64.) 

Add the following after item 28: 

(29) Intrinsic functions. If, at the time a function is referenced, the arguments 

specified for that reference do not have values that comply with the specified 

constraints, the returned value for the function is undefined. (See 1.2.2, on page 

A-27.) 

Insert after section XVI pages A-27 through A-76 containing the Intrinsic Function 

module. 

Add the following entries to the Index in their appropriate alphabetical sequence: 

ACOS function, A-33 

Alphanumeric function, A-8, A-10, A-29 

ALL subscript, A-9, A-11, A-28 

ANNUITY function, A-34 

Arccosine function, A-33 

Arcsine function, A-35 

Arctangent function, A-36 

Argument, A-8, A-ll, A-28 

ASIN function, A-35 

AT AN function, A-36 

CHAR function, A-37 

Character function, A-37 

COS function A-38 

A-24 



Page No. Change to ANSI X3J3-1985 and ISO 1989-1985 

Cosine function, A-38 

CURRENT-DATE function, A-39 

DATE-OF-INTEGER function, A-41 

DAY-OF-INTEGER function, A-42 

FACTORIAL function, A-43 

Function, A-8 

Function-identifier, A-8, A-11, A-27 

Function-name, A-8, A-10, A-27 

Function summary, A-30 

INTEGER function, A-44 

Integer function, A-8, A-10, A-29 

INTEGER-OF-DATE function, A-45 

INTEGER-OF-DAY function, A-46 

INTEGER-PART function, A-47 

Intrinsic function concepts, A-7 

Intrinsic function module, A-27 

Element summary, A-5 

LENGTH function, A-48 

LOG function, A-49 

LOG 10 function, A-50 

Logarithm base e, A-49 

Logarithm base 10, A-50 

LOWER-CASE function, A-51 

MAX function, A-52 

Maximum function, A-52 

MEAN function, A-53 

MEDIAN function, A-54 

MIDRANGE function, A-55 

MIN function, A-56 

Minimum function, A-56 

MOD function, A-57 

Natural logarithm, A-49 

Numeric function, A-8, A-10, A-29 

NUMVAL function, A-58 

NUMVAL-C function, A-59 

ORD function, A-60 

Ordinal function, A-60 

ORD-MAX function, A-61 

ORD-MIN function, A-62 

PRESENT-VALUE function, A-63 

RANDOM function, A-64 

RANGE function, A-65 

Reference modifier, A-9, A-12 

REM function, A-66 

REVERSE function, A-67 

SIN function, A-68 

SORT function, A-69 

STANDARD-DEVIATION function, A-70 

Subscripted identifier, A-11 

SUM function, A-71 

TAN function, A-72 

Tangent function, A-72 

A-25 



Page No. Change to ANSI X323-1985 and ISO 1989-1985 

UPPER-CASE function, A-73 

VARIANCE function, A-74 

WHEN-COMPILED function, A-75 

A-26 



Intrinsic Function - Introduction 

SECTION A: INTRINSIC FUNCTION MODULE 

1. INTRODUCTION TO THE INTRINSIC FUNCTION MODULE 

1.1 PURPOSE OF INTRINSIC FUNCTION MODULE 

The Intrinsic Function module provides the capability to reference a data item whose value is 

derived automatically at the time of reference during the execution of the object program. 

12 LANGUAGE CONCEPTS 

1.2.1 Function-Name 

In the Intrinsic Function module, a function is a temporary data item whose value is determined 

by invoking a mechanism provided by the implementor at the time the function is referenced during 

the execution of a statement. A function-name names a mechanism provided by the implementor to 

determine the value of a function. A function-name is a COBOL word that is one of a specified list 

of COBOL words which may be used in COBOL source programs. (See page A-29, Definitions of 

Functions.) 

122 Value Returned by a Function 

The value returned by a function is considered to be a data value. A mechanism is provided at 

object time to assign a data value to a function when it is referenced. In order to determine the 

function’s value, the evaluation mechanism may require access to data values provided by the 

referencing program. These data values are provided by specifying parameters, known as arguments, 

when referencing the function. Specific functions may place constraints on these arguments, such as 

range, etc. If, at the time a function is referenced, the arguments specified for that reference do 

not have values that comply with the specified constraints, the returned value for the function is 

undefined. 

12J Function-Identifier 

A function-identifier is used by the programmer to reference a function within the Procedure 

Division of a COBOL source program. (See page IV-22, Function-Identifier.) 

2. GENERAL DESCRIPTION 

2.1 FUNCTION DEFINITION AND RETURNED VALUE 

The definition of a function identifies: 

(1) For alphanumeric functions, the size of the returned value. 

(2) For numeric and integer functions, the sign of the returned value and whether the function 

is integer. 

(3) For some other cases, the value returned. 

A-27 



Intrinsic Function - Arguments 

2.1.1 Date Conversion Function 

The Gregorian calendar is used in the date conversion functions. The starting date of Monday, 

January 1, 1601, was chosen to establish a simple relationship between the Standard Date and 

DAY-OF-WEEK; i.e., integer date 1 was a Monday, DAY-QF-WEEK 1. 

22 ARGUMENTS 

Arguments specify values used in the evaluation of a function. Arguments are specified in the 

function-identifier. These arguments can be specified as identifiers, as arithmetic expressions, or as 

literals. The definition of a function specifies the number of arguments required, which can be 

zero, one, or more. For some functions, the number of arguments which can be specified may be 

variable. The order in which arguments are specified in a function-identifier determines the 

interpretation given to each value in arriving at the function value. 

Arguments may be required to have a certain class or a subset of a certain class. The types of 

argument are: 

(1) Numeric. An arithmetic expression must be specified. The value of the arithmetic 

expression, including operational sign, is used in determining the value of the function. 

(2) Alphabetic. An elementary data item of the class alphabetic or a nonnumeric literal 

containing only alphabetic characters must be specified. The size associated with the argument can 

be used in determining the value of the function. 

(3) Alphanumeric. A data item of the class alphabetic or alphanumeric or a nonnumeric literal 

must be specified. The size associated with the argument can be used in determining the value of 

the function. 

(4) Integer. An arithmetic expression which will always result in an integer value must be 

specified. The value of the arithmetic expression, including operational sign, is used in determining 

the value of the function. 

The rules for a function may place constraints on the permissible values for arguments in order 

to permit meaningful determination of the function’s value. If, at the time a function is referenced, 

the arguments specified for that reference do not have values within the permissible range, the 

returned value for the function is undefined. 

When the definition of a function permits an argument to be repeated a variable number of 

times, a table may be referenced by specifying the data-name and any qualifiers that identify the 

table, followed immediately by subscripting where one or more of the subscripts is the word ALL. 

When ALL is specified as a subscript, the effect is as if each table element associated with that 

subscript position were specified. The order of the implicit specification of each occurrence is from 

left to right, with the first (or leftmost) specification being the identifier with each subscript 

specified by the word ALL replaced by one, the next specification being the same identifier with the 

rightmost subscript specified by the word ALL incremented by one. This process continues with the 

rightmost ALL subscript being incremented by one for each implicit specification until the rightmost 

ALL subscript has been incremented through its range of values. If there are any additional ALL 

subscripts, the ALL subscript immediately to the left of the rightmost ALL subscript is incremented 

by one, the rightmost ALL subscript is reset to one and the process of varying the rightmost ALL 

subscript is repeated. The ALL subscript to the left of the rightmost ALL subscript is incremented 

by one through its range of values. For each additional ALL subscript, this process is repeated in 

turn until the leftmost ALL subscript has been incremented by one through its range of values. If 

A-28 



Intrinsic Function - Types of Functions 

the ALL subscript is associated with an OCCURS DEPENDING ON clause, the range of values is 

determined by the object of the OCCURS DEPENDING ON clause. The evaluation of an ALL 

subscript must result in at least one argument, otherwise the returned value is undefined. 

23 TYPES OF FUNCTIONS 

Data item functions are elementary data items and return alphanumeric, numeric, or integer 

values. Data item functions are treated as elementary data items and can not be receiving operands. 

Types of data item functions are: 

(1) Alphanumeric functions. These are of the class and category alphanumeric. The number of 

character positions in this data item is specified in the function definition. Alphanumeric functions 

have an implicit usage of DISPLAY. 

(2) Numeric functions. These are of the class and category numeric. A numeric function is 

always considered to have an operational sign. Those characteristics of the returned value not 

otherwise specified for a given function are defined by the implementor. 

A numeric function may be used only in an arithmetic expression. 

A numeric function may not be referenced where an integer operand is required, even 

though a particular reference may yield an integer value. 

(3) Integer functions. These are of the class and category numeric. An integer function is 

always considered to have an operational sign. Those characteristics of the returned value not 

otherwise specified for a given function are defined by the implementor. 

An integer function may be used only in an arithmetic expression. 

An integer function can be referenced where an integer operand is required and where a 

signed operand is allowed. 

2.4 DEFINITIONS OF FUNCTIONS 

Table 1 on pages A-30 through A-32 summarizes the functions that are available. 

The Arguments column defines the type and number of arguments as follows: 

A means alphabetic 

I means integer 

N means numeric 

X means alphanumeric 

The Type column defines the type of the function as follows: 

I means integer 

N means numeric 

X means alphanumeric 

A-29 



Intrinsic Function - Function Summary 

FUNCTION-NAME ARGUMENTS TYPE VALUE RETURNED 

ACOS N1 N Arccosine of Nl 

ANNUITY Nl, 12 N Ratio of annuity paid for 12 periods at 
interest of Nl to initial investment of one 

ASIN N1 N Arcsine of Nl 

ATAN Nl N Arctangent of Nl 

CHAR 11 X Character in position 11 of program 
collating sequence 

COS Nl N Cosine of Nl 

CURRENT-DATE None X Current date and time and difference from 
Greenwich Mean Time 

DATE-OF-INTEGER 11 I Standard date equivalent (YYYYMMDD) 
of integer date 

DAY-QF-INTEGER 11 I Julian date equivalent (YYYYDDD) of 
integer date 

FACTORIAL 11 I Factorial of 11 

INTEGER Nl I The greatest integer not greater than Nl 

INTEGER-OF-DATE 11 I Integer date equivalent of standard date 
(YYYYMMDD) 

INTEGER-OF-DAY 11 I Integer date equivalent of Julian date 
(YYYYDDD) 

INTEGER-PART Nl I Integer part of Nl 

LENGTH A1 or 
Nl or 
XI 

I Length of argument 

LOG Nl N Natural logarithm of Nl 

LOG 10 Nl N Logarithm to base 10 of Nl 

LOWER-CASE A1 or XI X All letters in the argument are set to 

lowercase 

Table 1: Table of Functions 

A-30 



Intrinsic Function - Function Summary 

FUNCTION-NAME ARGUMENTS TYPE VALUE RETURNED 

MAX A1 ... or Depends Value of maximum argument 
11 ... or upon 
N1 ... or 
XI ... 

arguments* 

MEAN N1 ... N Arithmetic mean of arguments 

MEDIAN N1 ... N Median of arguments 

MIDRANGE N1 ... N Mean of minimum and maximum 
arguments 

MIN A1 ... or Depends Value of minimum argument 

11 ... or upon 
N1 ... or 
XI ... 

arguments* 

MOD 11, 12 I 11 modulo 12 

NUMVAL XI N Numeric value of simple numeric string 

NUMVAL-C XI, X2 N Numeric value of numeric string with 
optional commas and currency sign 

ORD A1 or XI I Ordinal position of the argument in 
collating sequence 

ORD-MAX A1 ... or 
N1 ... or 
XI ... 

I Ordinal position of maximum argument 

ORD-MIN A1 ... or 
N1 ... or 
XI ... or 

I Ordinal position of minimum argument 

PRESENT-VALUE N1 N Present value of a series of future 
N2 ... period-end amounts, N2, at a discount rate 

of Nl 

RANDOM 11 N Random number 

RANGE 11 ... or Depends Value of maximum argument minus value 
N1 ... upon 

argument 
of minimum argument 

REM Nl, N2 N Remainder of N1/N2 

*A function that has only alphabetic arguments is type alphanumeric. 

Table 1: Table of Functions (Continued) 

A-31 



Intrinsic Function - Function Summary 

FUNCTION-NAME ARGUMENTS TYPE VALUE RETURNED 

REVERSE A1 or XI X Reverse order of the characters of the 
argument 

SIN N1 N Sine of N1 

SORT N1 N Square root of N1 

STANDARD- 
DEVIATION 

N1 ... N Standard deviation of arguments 

SUM 11 ... or 
N1 ... 

Depends 
upon 

arguments 

Sum of arguments 

TAN N1 N Tangent of N1 

UPPER-CASE A1 or XI X All letters in the argument are set to 
uppercase 

VARIANCE N1 ... N Variance of argument 

WHEN-COMPILED None X Date and time program was compiled 

Table 1: Table of Functions (Continued) 

A-32 



Intrinsic Function - ACOS 

2.5 THE ACOS FUNCTION 

2.5.1 Description 

The ACOS function returns a numeric value in radians that approximates the arccosine of 

argument-1. The type of this function is numeric. 

2.5.2 General Format 

FUNCTION ACOS (argument-1) 

2.5.3 Arguments 

(1) Argument-1 must be class numeric. 

(2) The value of argument-1 must be greater than or equal to -1 and less than or equal to +1. 

2.5.4 Returned Values 

(1) The returned value is the approximation of the arccosine of argument-1 and is greater than 

or equal to zero and less than or equal to pi. 

A-33 



Intrinsic Function - ANNUITY 

2.6 THE ANNUITY FUNCTION 

2.6.1 Description 

The ANNUITY function (annuity immediate) returns a numeric value that approximates the ratio 

of an annuity paid at the end of each period for the number of periods specified by argument-2 to 

an initial investment of one. Interest is earned at the rate specified by argument-1 and is applied 

at the end of the period, before the payment. The type of this function is numeric. 

2.6.2 General Format 

FUNCTION ANNUITY (argument-1 argument-2) 

2.63 Arguments 

(1) Argument-1 must be class numeric. 

(2) The value of argument-1 must be greater than or equal to zero. 

(3) Argument-2 must be a positive integer. 

2.6.4 Returned Values 

(1) When the value of argument-1 is zero, the value of the function is the approximation of: 

1 / argument-2 

(2) When the value of argument-1 is not zero, the value of the function is the approximation 

of: 

argument-1 / (1 - (1 + argument-1) ** (- argument-2)) 

A-34 



Intrinsic Function - ASIN 

2.7 THE ASIN FUNCTION 

2.7.1 Description 

The ASIN function returns a numeric value in radians that approximates the arcsine of 

argument-1. The type of this function is numeric. 

2.72 General Format 

FUNCTION ASIN (argument-1) 

2.7.3 Arguments 

(1) Argument-1 must be class numeric. 

(2) The value of argument-1 must be greater than or equal to -1 and less than or equal to +1. 

2.7.4 Returned Values 

(1) The returned value is the approximation of the arcsine of argument-1 and is greater than 

or equal to -pi/2 and less than or equal to + pi/2. 

A-35 



Intrinsic Function - ATAN 

2M THE ATAN FUNCTION 

2.8.1 Description 

The ATAN function returns a numeric value in radians that approximates the arctangent of 

argument-1. The type of this function is numeric. 

2.8.2 General Format 

FUNCTION ATAN (argument-1) 

2.83 Arguments 

(1) Argument-1 must be class numeric. 

2.8.4 Returned Values 

(1) The returned value is the approximation of the arctangent of argument-1 and is greater 

than -pi/2 and less than +pi/2. 

A-36 



Intrinsic Function - CHAR 

2.9 THE CHAR FUNCTION 

2.9.1 Description 

The CHAR function returns a one-character alphanumeric value that is a character in the 

program collating sequence having the ordinal position equal to the value of argument-1. The type 

of this function is alphanumeric. 

2.9.2 General Format 

FUNCTION CHAR (argument-1) 

2.93 Arguments 

(1) Argument-1 must be an integer. 

(2) The value of argument-1 must be greater than zero and less than or equal to the number of 

positions in the collating sequence. 

2.9.4 Returned Values 

(1) If more than one character has the same position in the program collating sequence, the 

character returned as the function value is that of the first literal specified for that character 

position in the ALPHABET clause. 

(2) If the current program collating sequence was not specified by an ALPHABET clause, the 

implementor determines the value. 

A-37 



Intrinsic Function - COS 

2.10 THE COS FUNCTION 

2.10.1 Description 

The COS function returns a numeric value that approximates the cosine of an angle or arc, 

expressed in radians, that is specified by argument-1. The type of this function is numeric. 

2.10.2 General Format 

FUNCTION COS (argument-1) 

2.103 Arguments 

(1) Argument-1 must be class numeric. 

2.10.4 Returned Values 

(1) The returned value is the approximation of the cosine of argument-1 and is greater than or 

equal to -1 and less than or equal to +1. 

A-38 



Intrinsic Function - CURRENT-DATE 

2.11 THE CURRENT-DATE FUNCTION 

2.11.1 Description 

The CURRENT-DATE function returns a 21-character alphanumeric value that represents the 

calendar date, time of day, and local time differential factor provided by the system on which the 

function is evaluated. The type of this function is alphanumeric. 

2.11.2 General Format 

FUNCTION CURRENT-DATE 

2.113 Returned Values 

(1) The character positions returned, numbered from left to right, are: 

Character 

Positions 

I- 4 

5-6 

7-8 

9-10 

II- 12 

13-14 

Contents 

Four numeric digits of the year in the Gregorian calendar. 

Two numeric digits of the month of the year, in the range 01 through 12. 

Two numeric digits of the day of the month, in the range 01 through 31. 

Two numeric digits of the hours past midnight, in the range 00 through 23. 

Two numeric digits of the minutes past the hour, in the range 00 through 

59. 

Two numeric digits of the seconds past the minute, in the range 00 through 

59. 

15-16 Two numeric digits of the hundredths of a second past the second, in the 

range 00 through 99. The value 00 is returned if the system on which the 

function is evaluated does not have the facility to provide the fractional 

part of a second. 

17 Either the character the character * + ’, or the character ‘O’. The 

character is returned if the local time indicated in the previous character 

positions is behind Greenwich Mean Time. The character ' + ’ is returned if 

the local time indicated is the same as or ahead of Greenwich Mean Time. 

The character ‘0’ is returned if the system on which this function is 

evaluated does not have the facility to provide the local time differential 

factor. 

18-19 If character position 17 is two numeric digits are returned in the range 

00 through 12 indicating the number of hours that the reported time is 

behind Greenwich Mean Time. If character position 17 is * + ’, two numeric 

digits are returned in the range 00 through 13 indicating the number of 

hours that the reported time is ahead of Greenwich Mean Time. If 

character position 17 is ‘O’, the value 00 is returned. 

A-39 



Intrinsic Function - CURRENT-DATE 

Character 
Positions Contents 

20-21 Two numeric digits are returned in the range 00 through 59 indicating the 
number of additional minutes that the reported time is ahead of or behind 
Greenwich Mean Time, depending on whether character position 17 is * + ’ or 

respectively. If character position 17 is ‘O’, the value 00 is returned. 

(2) If the system does not have the facility to provide fractional parts of a second, the value 
00 is returned in character positions 15 and 16. 

(3) If the system does not have the facility to provide the local time differential factor, the 
value 00000 is returned in character positions 17 through 21. 

A-40 



Intrinsic Function - DATE-OF-INTEGER 

2.12 THE DATE-OF-INTEGER FUNCTION 

2.12.1 Description 

The DATE-OF-INTEGER function converts a date in the Gregorian calendar from integer date 

form to standard date form (YYYYMMDD). The type of this function is integer. 

2.122 General Format 

FUNCTION DATE-OF-INTEGER (argument-1) 

2.123 Arguments 

(1) Argument-1 is a positive integer that represents a number of days succeeding December 31, 

1600, in the Gregorian calendar. 

2.12.4 Returned Values 

(1) The returned value represents the ISO Standard date equivalent of the integer specified in 

argument-1. 

(2) The returned value is in the form (YYYYMMDD) where YYYY represents a year in the 

Gregorian calendar; MM represents the month of that year; and DD represents the day of that 

month. 

A-41 



Intrinsic Function - DAY-OF-INTEGER 

2.13 THE DAY-OF-INTEGER FUNCTION 

2.13.1 Description 

The DAY-OF-INTEGER function converts a date in the Gregorian calendar from integer date 

form to Julian date form (YYYYDDD). The type of this function is integer. 

2.132 General Format 

FUNCTION DAY-OF-INTEGER (argument-1) 

2.133 Arguments 

(1) Argument-1 is a positive integer that represents a number of days succeeding December 31, 

1600, in the Gregorian calendar. 

2.13.4 Returned Values 

(1) The returned value represents the Julian equivalent of the integer specified in argument-1. 

(2) The returned value is an integer of the form (YYYYDDD) where YYYY represents a year in 

the Gregorian calendar and DDD represents the day of that year. 

A-42 



Intrinsic Function - FACTORIAL 

2.14 THE FACTORIAL FUNCTION 

2.14.1 Description 

The FACTORIAL function returns an integer that is the factorial of argument-1. The type of 

this function is integer. 

2.14.2 General Format 

FUNCTION FACTORIAL (argument-1) 

2.143 Arguments 

(1) Argument-1 must be an integer greater than or equal to zero. 

2.14.4 Returned Values 

(1) If the value of argument-1 is zero, the value 1 is returned. 

(2) If the value of argument-1 is positive, its factorial is returned. 

A-43 



Intrinsic Function - INTEGER 

2.15 THE INTEGER FUNCTION 

2.15.1 Description 

The INTEGER function returns the greatest integer value that is less than or equal to the 

argument. The type of this function is integer. 

2.15.2 General Format 

FUNCTION INTEGER (argument-1) 

2.153 Arguments 

(1) Argument-1 must be class numeric. 

2.15.4 Returned Values 

(1) The returned value is the greatest integer less than or equal to the value of argument-1. 

For example, if the value of argument-1 is -1.5, -2 is returned. If the value of argument-1 is +1.5, 

+1 is returned. 

A-44 



Intrinsic Function - INTEGER-OF-DATE 

2.16 THE INTEGER-OF-DATE FUNCTION 

2.16.1 Description 

The INTEGER-OF-DATE function converts a date in the Gregorian calendar from standard date 

form (YYYYMMDD) to integer date form. The type of this function is integer. 

2.16.2 General Format 

FUNCTION INTEGER-OF-DATE (argument-1) 

2.16.3 Arguments 

(1) Argument-1 must be an integer of the form YYYYMMDD, whose value is obtained from the 

calculation (YYYY * 10,000) + (MM * 100) + DD. 

a. YYYY represents the year in the Gregorian calendar. It must be an integer greater 

than 1600. 

b. MM represents a month and must be a positive integer less than 13. 

c. DD represents a day and must be a positive integer less than 32 provided that it is 

valid for the specified month and year combination. 

2.16.4 Returned Values 

(1) The returned value is an integer that is the number of days the date represented by 

argument-1 succeeds December 31, 1600, in the Gregorian calendar. 

A-45 



Intrinsic Function - INTEGER-OF-DAY 

2.17 THE INTEGER-OF-DAY FUNCTION 

2.17.1 Description 

The INTEGER-OF-DAY function converts a date in the Gregorian calendar from Julian date form 

(YYYYDDD) to integer date form. The type of this function is integer. 

2.17-2 General Format 

FUNCTION INTEGER-OF-DAY (argument-1) 

2.17.3 Arguments 

(1) Argument-1 must be an integer of the form YYYYDDD, whose value is obtained from the 

calculation (YYYY * 1000) + DDD. 

a. YYYY represents the year in the Gregorian calendar. It must be an integer greater 

than 1600. 

b. DDD represents the day of the year. It must be a positive integer less than 367 

provided that it is valid for the year specified. 

2.17.4 Returned Values 

(1) The returned value is an integer that is the number of days the date represented by 

argument-1 succeeds December 31, 1600, in the Gregorian calendar. 

A-46 



Intrinsic Function - INTEGER-PART 

2.18 THE INTEGER-PART FUNCTION 

2.18.1 Description 

The INTEGER-PART function returns an integer that is the integer portion of argument-1. The 

type of this function is integer. 

2.18.2 General Format 

FUNCTION INTEGER-PART (argument-1) 

2.183 Arguments 

(1) Argument-1 must be class numeric. 

2.18.4 Returned Values 

(1) If the value of argument-1 is zero, the returned value is zero. 

(2) If the value of argument-1 is positive, the returned value is the greatest integer less than 

or equal to the value of argument-1. For example, if the value of argument-1 is +1.5, +1 is 

returned. 

(3) If the value of argument-1 is negative, the returned value is the least integer greater than 

or equal to the value of argument-1. For example, if the value of argument-1 is -1.5, -1 is 

returned. 

A-47 



Intrinsic Function - LENGTH 

2.19 THE LENGTH FUNCTION 

2.19.1 Description 

The LENGTH function returns an integer equal to the length of the argument in character 

positions. The type of this function is integer. 

2.19.2 General Format 

FUNCTION LENGTH (argument-1) 

2.193 Arguments 

(1) Argument-1 may be a nonnumeric literal or a data item of any class or category. 

(2) If argument-1 or any data item subordinate to argument-1 is described with the DEPENDING 

phrase of the OCCURS clause, the contents of the data item referenced by the data-name specified 

in the DEPENDING phrase are used at the time the LENGTH function is evaluated. 

2.19.4 Returned Values 

(1) If argument-1 is a nonnumeric literal or an elementary data item or argument-1 is a group 

data item that does not contain a variable occurrence data item, the value returned is an integer 

equal to the length of argument-1 in character positions. 

(2) If argument-1 is a group data item containing a variable occurrence data item, the returned 

value is an integer determined by evaluation of the data item specified in the DEPENDING phrase of 

the OCCURS clause for that variable occurrence data item. This evaluation is accomplished 

according to the rules in the OCCURS clause dealing with the data item as a sending data item. 

(See page VI-26, The OCCURS Clause; and page VI-46, The USAGE Clause.) 

(3) The returned value includes implicit FILLER characters, if any. 

A-48 



Intrinsic Function - LOG 

220 THE LOG FUNCTION 

2.20.1 Description 

The LOG function returns a numeric value that approximates the logarithm to the base e 

(natural log) of argument-1. The type of this function is numeric. 

2202 General Format 

FUNCTION LOG (argument-1) 

2203 Arguments 

(1) Argument-1 must be class numeric. 

(2) The value of argument-1 must be greater than zero. 

220.4 Returned Values 

(1) The returned value is the approximation of the logarithm to the base e of argument-1. 

A-49 



Intrinsic Function - LOG 10 

221 THE LOGIO FUNCTION 

221.1 Description 

The LOGIO function returns a numeric value that approximates the logarithm to the base 10 of 

argument-1. The type of this function is numeric. 

2212 General Format 

FUNCTION LOGIO (argument-1) 

2213 Arguments 

(1) Argument-1 must be class numeric. 

(2) The value of argument-1 must be greater than zero. 

221.4 Returned Values 

(1) The returned value is the approximation of the logarithm to the base 10 of argument-1. 

A-50 



Intrinsic Function - LOWER-CASE 

222 THE LOWER-CASE FUNCTION 

2.22.1 Description 

The LOWER-CASE function returns a character string that is the same length as argument-1 

with each upppercase letter replaced by the corresponding lowercase letter. The type of this 

function is alphanumeric. 

2222 General Format 

FUNCTION LOWER-CASE <argument-1) 

2223 Arguments 

(1) Argument-1 must be class alphabetic or alphanumeric and must be at least one character in 

length. 

2.22.4 Returned Values 

(1) The same character string as argument-1 is returned, except that each uppercase letter 

replaced by the corresponding lowercase letter. 

(2) The character string returned has the same length as argument-1. 

(3) If the computer character set does not include lowercase letters, no changes take place in 

the character string. 

A-51 



Intrinsic Function - MAX 

223 THE MAX FUNCTION 

223.1 Description 

The MAX function returns the content of the argument-1 that contains the maximum value. The 

type of this function depends upon the argument types as follows: 

Function Type Argument Type 

Alphabetic 

Alphanumeric 

All arguments integer 

Numeric (some arguments may be integer) 

Alphanumeric 

Alphanumeric 

Integer 

Numeric 

2.232 General Format 

FUNCTION MAX ({argument-1} ... ) 

2233 Arguments 

(1) If more than one argument-1 is specified, all arguments must be of the same class. 

223.4 Returned Values 

(1) The returned value is the content of the argument-1 having the greatest value. The 

comparisons used to determine the greatest value are made according to the rules for simple 

conditions. (See page VI-54, Simple Conditions.) 

(2) If more than one argument-1 has the same greatest value, the content of the argument-1 

returned is the leftmost argument-1 having that value. 

(3) If the type of the function is alphanumeric, the size of the returned value is the same as 

the size of the selected argument-1. 

A-52 



Intrinsic Function - MEAN 

224 THE MEAN FUNCTION 

224.1 Description 

The MEAN function returns a numeric value that is the arithmetic mean (average) of its 

arguments. The type of this function is numeric. 

2242 General Format 

FUNCTION MEAN ({argument-1} ... ) 

2243 Arguments 

(1) Argument-1 must be class numeric. 

224.4 Returned Values 

(1) The returned value is the arithmetic mean of the argument-1 series. 

(2) The returned value is defined as the sum of the argument-1 series divided by the number of 

occurrences referenced by argument-1. 

A-53 



Intrinsic Function - MEDIAN 

225 THE MEDIAN FUNCTION 

2.25.1 Description 

The MEDIAN function returns the content of the argument whose value is the middle value in 

the list formed by arranging the arguments in sorted order. The type of this function is numeric. 

2.25.2 General Format 

FUNCTION MEDIAN ({argument-1} ... ) 

2253 Arguments 

(1) Argument-1 must be class numeric. 

225.4 Returned Values 

(1) The returned value is the content of the argument-1 having the middle value in the list 

formed by arranging all the argument-1 values in sorted order. 

(2) If the number of occurrences referenced by argument-1 is odd, the returned value is such 

that at least half of the occurrences referenced by argument-1 are greater than or equal to the 

returned value and at least half are less than or equal. If the number of occurrences referenced by 

argument-1 is even, the returned value is the arithmetic mean of the values referenced by the two 

middle occurrences. 

(3) The comparisons used to arrange the argument-1 values in sorted order are made according 

to the rules for simple conditions. (See page VI-54, Simple Conditions.) 

A-54 



Intrinsic Function - MIDRANGE 

226 THE MIDRANGE FUNCTION 

226.1 Description 

The MIDRANGE (middle range) function returns a numeric value that is the arithmetic mean 

(average) of the values of the minimum argument and the maximum argument. The type of this 

function is numeric. 

2262 General Format 

FUNCTION MIDRANGE ({argument-1} ... ) 

2263 Arguments 

(1) Argument-1 must be class numeric. 

226.4 Returned Values 

(1) The returned value is the arithmetic mean of the greatest argument-1 value and the least 

argument-1 value. The comparisons used to determine the greatest and least values are made 

according to the rules for simple conditions. (See page VI-54, Simple Conditions.) 

A-55 



Intrinsic Function - MIN 

221 THE MIN FUNCTION 

221.1 Description 

The MIN function returns the content of the argument-1 that contains the minimum value. The 

type of this function depends upon the argument types as follows: 

Function Type Argument Type 

Alphabetic 

Alphanumeric 

All arguments integer 

Numeric (some arguments may be integer) 

Alphanumeric 

Alphanumeric 

Integer 

Numeric 

2212 General Format 

FUNCTION MIN ({argument-1} ... ) 

2213 Arguments 

(1) If more than one argument-1 is specified, all arguments must be of the same class. 

227.4 Returned Values 

(1) The returned value is the content of the argument-1 having the least value. The 

comparisons used to determine the least value are made according to the rules for simple conditions. 

(See page VI-54, Simple Conditions.) 

(2) If more than one argument-1 has the same least value, the content of the argument-1 

returned is the leftmost argument-1 having that value. 

(3) If the type of the function is alphanumeric, the size of the returned value is the same as 

the size of the selected argument-1. 

A-56 



Intrinsic Function - MOD 

228 THE MOD FUNCTION 

2.28.1 Description 

The MOD function returns an integer value that is argument-1 modulo argument-2. The type of 
this function is integer. 

2282 General Format 

FUNCTION MOD (argument-1 argument-2) 

2.283 Arguments 

(1) Argument-1 and argument-2 must be integers. 

(2) The value of argument-2 must not be zero. 

238.4 Returned Values 

(1) The returned value is argument-1 modulo argument-2. The returned value is defined as: 

argument-1 - (argument-2 * FUNCTION INTEGER (argument-1 / argument-2)) 

(2) The following illustrates the expected results for some values of argument-1 and 

argument-2. 

Argument-1 Areument-2 Return 

11 5 1 

-11 5 4 

11 -5 -4 

-11 -5 -1 

A-57 



Intrinsic Function - NUMVAL 

229 THE NUMVAL FUNCTION 

229.1 Description 

The NUMVAL function returns the numeric value represented by the character string specified 

by argument-1. Leading and trailing spaces are ignored. The type of this function is numeric. 

2292 General Format 

FUNCTION NUMVAL (argument-1) 

2293 Arguments 

(1) Argument-1 must be a nonnumeric literal or alphanumeric data item whose content has one 

of the following two formats: 

V digit [ . [digit]]' 

[space] 
- 

[space] • 

.. digit 

or 

[space] 

digit ( . [digit]] 

.. digit 

[space] 

CR 

DB 

[space] 

where space is a string of zero or more spaces and digit is a string of one to 18 digits. 

(2) The total number of digits in argument-1 must not exceed 18. 

(3) If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, a 

comma must be used in argument-1 rather than a decimal point. 

229.4 Returned Values 

(1) The returned value is the numeric value represented by argument-1. 

(2) The number of digits returned is 18. 

A-58 



Intrinsic Function - NUMVAL-C 

230 THE NUMVAL-C FUNCTION 

230.1 Description 

The NUMVAL-C function returns the numeric value represented by the character string specified 

by argument-1. Any optional currency sign specified by argument-2 and any optional commas 

preceding the decimal point are ignored. The type of this function is numeric. 

2303 General Format 

FUNCTION NUMVAL-C (argument-1 [argument-2]) 

2303 Arguments 

(1) Argument-1 must be a nonnumeric literal or alphanumeric data item whose content has one 

of the following two formats: 

V digit [, digit] ... [. [digit]]' 

[space] [space] [cs] [space] ■ 
_. digit 

or 

[space] [cs] [space] 

digit [, digit] ... [. [digit]] 

. digit 

[space] 

CR 

DB 

[space] 

where space is a string of zero or more spaces, cs is the string of one or more characters specified 

by argument-2 and digit is a string of one or more digits. 

(2) If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, 

the functions of the comma and decimal point in argument-1 are reversed. 

(3) The total number of digits in argument-1 must not exceed 18. 

(4) Argument-2, if specified, must be a nonnumeric literal or alphanumeric data item. 

(5) If argument-2 is not specified, the character used for cs is the currency symbol specified 

for the program. 

230.4 Returned Values 

(1) The returned value is the numeric value represented by argument-1. 

(2) The number of digits returned is 18. 

A-59 



Intrinsic Function - ORD 

231 THE ORD FUNCTION 

231 1 Description 

The ORD function returns an integer value that is the ordinal position of argument-1 in the 

collating sequence for the program. The lowest ordinal position is 1. The type of this function is 

integer. 

2313 General Format 

FUNCTION ORD (argument-1) 

2313 Arguments 

(1) Argument-1 must be one character in length and must be class alphabetic or alphanumeric. 

231.4 Returned Values 

(1) The returned value is the ordinal position of argument-1 in the collating sequence for the 

program. 

A-60 



Intrinsic Function - QRD-MAX 

232 THE ORD-MAX FUNCTION 

232.1 Description 

The ORD-MAX function returns a value that is the ordinal number of the argument-1 that 

contains the maximum value. The type of this function is integer. 

2323 General Format 

FUNCTION ORD-MAX ({argument-1} ... ) 

2323 Arguments 

(1) If more than one argument-1 is specified, all arguments must be of the same class. 

232.4 Returned Values 

(1) The returned value is the ordinal number that corresponds to the position of the 

argument-1 having the greatest value in the argument-1 series. 

(2) The comparisons used to determine the greatest valued argument are made according to the 

rules for simple conditions. (See page VI-54, Simple Conditions.) 

(3) If more than one argument-1 has the same greatest value, the number returned corresponds 

to the position of the leftmost argument-1 having that value. 

A-61 



Intrinsic Function - ORD-MIN 

233 THE ORD-MIN FUNCTION 

233.1 Description 

The ORD-MIN function returns a value that is the ordinal number of the argument that contains 

the minimum value. The type of this function is integer. 

2333 General Format 

FUNCTION ORD-MIN ({argument-1} ... ) 

2333 Arguments 

(1) If more than one argument-1 is specified, all arguments must be of the same class. 

233.4 Returned Values 

(1) The returned value is the ordinal number that corresponds to the position of the 

argument-1 having the least value in the argument-1 series. 

(2) The comparisons used to determine the least valued argument-1 are made according to the 

rules for simple conditions. (See page VI-54, Simple Conditions.) 

(3) If more than one argument-1 has the same least value, the number returned corresponds to 

the position of the leftmost argument-1 having that value. 

A-62 



Intrinsic Function - PRESENT-VALUE 

234 THE PRESENT-VALUE FUNCTION 

234.1 Description 

The PRESENT-VALUE function returns a value that approximates the present value of a series 

of future period-end amounts specified by argument-2 at a discount rate specified by argument-1. 

The type of this function is numeric. 

2343 General Format 

FUNCTION PRESENT-VALUE (argument-1 {argument-2} ... ) 

2343 Arguments 

(1) Argument-1 and argument-2 must be of the class numeric. 

(2) The value of argument-1 must be greater than -1. 

234.4 Returned Values 

(1) The returned value is an approximation of the summation of a series of calculations with 

each term in the following form: 

argument-2 / (1 + argument-1) ** n 

There is one term for each occurrence of argument-2. The exponent, n, is incremented from one 

by one for each term in the series. 

A-63 



Intrinsic Function - RANDOM 

235 THE RANDOM FUNCTION 

235.1 Description 

The RANDOM function returns a numeric value that is a pseudo-random number from a 

rectangular distribution. The type of this function is numeric. 

2353 General Format 

FUNCTION RANDOM [(argument-1)] 

2353 Arguments 

(1) If argument-1 is specified, it must be zero or a positive integer. It is used as the seed 

value to generate a sequence of pseudo-random numbers. 

(2) If a subsequent reference specifies argument-1, a new sequence of pseudo-random numbers 

is started. 

(3) If the first reference to this function in the run unit does not specify argument-1, the seed 

value is defined by the implementor. 

(4) In each case, subsequent references without specifying argument-1 return the next number 

in the current sequence. 

235.4 Returned Values 

(1) The returned value is greater than or equal to zero and less than one. 

(2) For a given seed value on a given implementation, the sequence of pseudo-random numbers 

will always be the same. 

(3) The implementor will specify the subset of the domain of argument-1 values that will yield 

distinct sequences of pseudo-random numbers. This subset must include the values from 0 through 

at least 32767. 

A-64 



Intrinsic Function - RANGE 

236 THE RANGE FUNCTION 

236.1 Description 

The RANGE function returns a value that is equal to the value of the maximum argument minus 
the value of the minimum argument. The type of this function depends upon the argument types as 
follows: 

Function Type Argument Type 

All arguments integer 
Numeric (some arguments may be integer) 

Integer 
Numeric 

2363 General Format 

FUNCTION RANGE ({argument-1} ... ) 

2363 Arguments 

(1) Argument-1 must be class numeric. 

236.4 Returned Values 

(1) The returned value is equal to the greatest value of argument-1 minus the least value of 
argument-1. The comparisons used to determine the greatest and least values are made according to 
the rules for simple conditions. (See page VI-54, Simple Conditions.) 

A-65 



Intrinsic Function - REM 

237 THE REM FUNCTION 

237.1 Description 

The REM function returns a numeric value that is the remainder of argument-1 divided by 

argument-2. The type of this function is numeric. 

2373 General Format 

FUNCTION REM (argument-1 argument-2) 

2373 Arguments 

(1) Argument-1 and argument-2 must be class numeric. 

(2) The value of argument-2 must not be zero. 

237.4 Returned Values 

(1) The returned value is the remainder of argument-1 / argument-2. It is defined as the 

expression: 

argument-1 - (argument-2 * FUNCTION INTEGER-PART (argument-1 / argument-2)) 

A-66 



Intrinsic Function - REVERSE 

238 THE REVERSE FUNCTION 

238.1 Description 

The REVERSE function returns a character string of exactly the same length as argument-1 and 

whose characters are exactly the same as those of argument-1, except that they are in reverse 

order. The type of this function is alphanumeric. 

2383 General Format 

FUNCTION REVERSE (argument-1) 

2383 Arguments 

(1) Argument-1 must be class alphabetic or alphanumeric and must be at least one character in 

length. 

238.4 Returned Values 

(1) If argument-1 is a character string of length n, the returned value is a character string of 

length n such that for 1 _< j <_ n, the character in position j of the returned value is the character 

from position n-j + 1 of argument-1. 

A-67 



Intrinsic Function - SIN 

239 THE SIN FUNCTION 

239.1 Description 

The SIN function returns a numeric value that approximates the sine of an angle or arc, 
expressed in radians, that is specified by argument-1. The type of this function is numeric. 

2393 General Format 

FUNCTION SIN (argument-1) 

2393 Arguments 

(1) Argument-1 must be class numeric. 

239.4 Returned Values 

(1) The returned value is the approximation of the sine of argument-1 and is greater than or 
equal to -1 and less than or equal to +1. 

A-68 



Intrinsic Function - SQRT 

2.40 THE SQRT FUNCTION 

2.40.1 Description 

The SQRT function returns a numeric value that approximates the square root of argument-1. 

The type of this function is numeric. 

2.40.2 General Format 

FUNCTION SQRT (argument-1) 

2.403 Arguments 

(1) Argument-1 must be class numeric. 

(2) The value of argument-1 must be zero or positive. 

2.40.4 Returned Values 

(1) The returned value is the absolute value of the approximation of the square root of 

argument-1. 

A-69 



Intrinsic Function - STANDARD-DEVIATION 

2.41 THE STANDARD-DEVIATION FUNCTION 

2.41.1 Description 

The STANDARD-DEVIATION function returns a numeric value that approximates the standard 

deviation of its arguments. The type of this function is numeric. 

2.412 General Format 

FUNCTION STANDARD-DEVIATION ({argument-1} ... ) 

2.413 Arguments 

(1) Argument-1 must be class numeric. 

2.41.4 Returned Values 

(1) The returned value is the approximation of the standard deviation of the argument-1 series. 

(2) The returned value is calculated as follows: 

a. The difference between each argument-1 value and the arithmetic mean of the 

argument-1 series is calculated and squared. 

b. The values obtained are then added together. This quantity is divided by the number 

of values in the argument-1 series. 

c. The square root of the quotient obtained is then calculated. The returned value is the 

absolute value of this square root. 

(3) If the argument-1 series consists of only one value, or if the argument-1 series consists of 

all variable occurrence data items and the toted number of occurrences for all of them is one, the 

returned value is zero. 

A-70 



Intrinsic Function - SUM 

2.42 THE SUM FUNCTION 

2.42.1 Description 

The SUM function returns a value that is the sum of the arguments. The type of this function 

depends upon the argument types as follows: 

Argument Type Function Type 

All arguments integer 

Numeric (some arguments may be integer) 

Integer 

Numeric 

2.422 General Format 

FUNCTION SUM ({argument-1} ... ) 

2.423 Arguments 

(1) Argument-1 must be class numeric. 

2.42.4 Returned Values 

(1) The returned value is the sum of the arguments. 

(2) If the argument-1 series are all integers, the value returned is an integer. 

(3) If the argument-1 series are not all integers, a numeric value is returned. 

A-71 



Intrinsic Function - TAN 

2.43 THE TAN FUNCTION 

2.43.1 Description 

The TAN function returns a numeric value that approximates the tangent of an angle or arc, 

expressed in radians, that is specified by argument-1. The type of this function is numeric. 

2.432 General Format 

FUNCTION TAN (argument-1) 

2.433 Arguments 

(1) Argument-1 must be class numeric. 

2.43.4 Returned Values 

(1) The returned value is the approximation of the tangent of argument-1. 

A-72 



Intrinsic Function - UPPER-CASE 

2.44 THE UPPER CASE FUNCTION 

2.44.1 Description 

The UPPER-CASE function returns a character string that is the same length as argument-1 

with each lowercase letter replaced by the corresponding uppercase letter. The type of this 

function is alphanumeric. 

2.44.2 General Format 

FUNCTION UPPER-CASE (argument-1) 

2.443 Arguments 

(1) Argument-1 must be class alphabetic or alphanumeric and must be at least one character in 

length. 

2.44.4 Returned Values 

(1) The same character string as argument-1 is returned, except that each lowercase letter is 

replaced by the corresponding uppercase letter. 

(2) The character string returned has the same length as argument-1. 

A-73 



Intrinsic Function - VARIANCE 

2.45 THE VARIANCE FUNCTION 

2.45.1 Description 

The VARIANCE function returns a numeric value that approximates the variance of its 

arguments. The type of this function is numeric. 

2.45.2 General Format 

FUNCTION VARIANCE ({argument-1} ... ) 

2.453 Arguments 

(1) Argument-1 must be class numeric. 

2.45.4 Returned Values 

(1) The returned value is the approximation of the variance of the argument-1 series. 

(2) The returned value is defined as the square of the standard deviation of the argument-1 

series. (See page A-70, STANDARD-DEVIATION Returned Values, rule 2.) 

(3) If the argument-1 series consists of only one value, or if the argument-1 series consists of 

all variable occurrence data items and the total number of occurrences for all of them is one, the 

returned value is zero. 

A-74 



Intrinsic Function - WHEN-COMPILED 

2.46 THE WHEN-COMPILED FUNCTION 

2.46.1 Description 

The WHEN-COMPILED function returns the date and time the program was compiled as provided 

by the system on which the program was compiled. The type of this function is alphanumeric. 

2.46.2 Genera! Format 

FUNCTION WHEN-COMPILED 

2.463 Returned Values 

(1) The character positions returned, numbered from left to right, are: 

Positions Contents 

1-4 Four numeric digits of the year in the Gregorian calendar. 

5-6 Two numeric digits of the month of the year, in the range 01 through 12. 

7-8 Two numeric digits of the day of the month, in the range 01 through 31. 

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23. 

11-12 Two numeric digits of the minutes past the hour, in the range 00 through 

59. 

13-14 Two numeric digits of the seconds past the minute, in the range 00 through 

59. 

15-16 Two numeric digits of the hundredths of a second past the second, in the 

range 00 through 99. The value 00 is returned if the system on which the 

program was compiled did not have the facility to provide the fractional 

part of a second. 

17 Either the character the character * + ’, or the character ‘O’. The 

character is returned if the local time of compilation, reported in the 

previous character positions, is behind Greenwich Mean Time. The character 

* + ’ is returned if the reported time is the same as or ahead of Greenwich 

Mean Time. The character ‘0’ is returned if the system on which the 

program was compiled did not have the facility to provide the local time 

differential factor. 

18-19 If character position 17 is two numeric digits are returned in the range 

00 through 12 indicating the number of hours that the reported time is 

behind Greenwich Mean Time. If character position 17 is * + ’, two numeric 

digits are returned in the range 00 through 13 indicating the number of 

hours that the reported time is ahead of Greenwich Mean Time. If 

character position 17 is ‘O’, the value 00 is returned. 

A-75 



Intrinsic Function - WHEN-COMPILED 

Character 

Positions Contents 

20-21 Two numeric digits are returned in the range 00 through 59 indicating the 

number of additional minutes that the reported time is ahead of or behind 

Greenwich Mean Time, depending on whether character position 17 is * + ’ or 

respectively. If character position 17 is ‘O’, the value 00 is returned. 

(2) The returned value is the date and time of compilation of the source program that contains 

this function. If the program is a contained program, the returned value is the compilation date 

and time associated with the separately compiled program in which it is contained. 

(3) The returned value must denote the same time as the compilation date and time if provided 

in the listing of the source program and in the generated object code for the source program, 

although their representations and precisions may differ. 

A-76 



» 




