
A
N

S
I

X
3

.2
3

-1
9

8
5

,
IS

O
 1

9
8
9
-1

9
8
5

American National Standard
Adopted for Use by

the Federal Government

FIPS PUB 21-2

See Notice on Inside

Front Cover

for information systems -

programming language -
COBOL

This standard has been adopted as ISO International Standard 1989-1985. ISO (the International Organization for

Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of devel¬

oping International Standards is carried out through ISO technical committees. Every member body interested in a

subject for which a technical committee has been set up has the right to be represented on that committee. Interna¬

tional organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval

before their acceptance as International Standards by the ISO Council.

International Standard ISO 1989 was established by Technical Committee ISO/TC 97, Information Processing

Systems.

This International Standard cancels and replaces ISO 1989-1978, of which it constitutes a technical revision.

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in Federal Infor¬

mation Processing Standards Publication 21-2, COBOL. For a complete list of the publi¬

cations available in the Federal Information Processing Standards Series, write to the

Standards Processing Coordinator (ADP), Institute for Computer Sciences and Technol¬

ogy, National Bureau of Standards, Gaithersburg, MD 20899.

ANSI®

X3.23-1985
Revision of

ANSI X3.23-1974

American National Standard
for Information Systems -

Programming Language -
COBOL

Secretariat

Computer and Business Equipment Manufacturers Association

Approved September 10, 1985

American National Standards Institute, Inc

ACKNOWLEDGMENT

Any organization interested in reproducing the COBOL standard and specifications in whole or in part, using ideas from this docu¬
ment as the basis for an instruction manual or for any other purpose, is free to do so. However, all such organizations are requested
to reproduce the following acknowledgment paragraphs in their entirety as part of the preface to any such publication (any organiza¬
tion using a short passage from this document, such as in a book review, is requested to mention “COBOL” in acknowledgment of
the source, but need not quote the acknowledgment):

COBOL is an industry language and is not the property of any company or group of companies, or of any organization or
group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL Committee as to the accuracy
and functioning of the programming system and language. Moreover, no responsibility is assumed by any contributor, or by
the committee, in connection therewith.

The authors and copyright holders of the copyrighted materials used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNTVAC (R) I and II, Data Automation
Systems copyrighted 1958,1959, by Sperry Rand Corporation; IBM Commercial Translater Form No. F 28-8013, copy¬
righted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such authorization ex¬
tends to the reproduction and use of COBOL specifications in programming manuals or similar publications.

American
National
Standard

Approval of an American National Standard requires verification by ANSI that the re¬

quirements for due process, consensus, and other criteria for approval have been met by

the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,

substantial agreement has been reached by directly and materially affected interests. Sub¬

stantial agreement means much more than a simple majority, but not necessarily unanim¬

ity. Consensus requires that all views and objections be considered, and that a concerted

effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not

in any respect preclude anyone, whether he has approved the standards or not, from man¬

ufacturing, marketing, purchasing, or using products, processes, or procedures not con¬

forming to the standards.

The American National Standards Institute does not develop standards and will in no cir¬

cumstances give an interpretation of any American National Standard. Moreover, no per¬

son shall have the right or authority to issue an interpretation of an American National

Standard in the name of the American National Standards Institute. Requests for inter¬

pretations should be addressed to the secretariat or sponsor whose name appears on the

title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at

any time. The procedures of the American National Standards Institute require that

action be taken to reaffirm, revise, or withdraw this standard no later than five years from

the date of approval. Purchasers of American National Standards may receive current infor¬

mation on all standards by calling or writing the American National Standards Institute.

Published by

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright © 1985 by American National Standards Institute, Inc

All rights reserved.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise, without
the prior written permission of the publisher.

Printed in the United States of America

PC10M1 185/40

Foreword
I

♦

t

(This Foreword is not part of American National Standard X3.23-1985.)

This standard is a revision of American National Standard for Programming Language

COBOL. ANSI X3.23-1974. The language specifications contained in this standard were

drawn from both ANSI X3.23-1974 and the CODASYL COBOL Journal of Development.

Like its predecessors, this document provides specifications for both the form and interpre¬

tation of programs expressed in COBOL. It is intended to provide a high degree of machine

independence in such programs in order to permit their use on a variety of automatic data

processing systems.

Technical Committee X3J4 on COBOL was responsible for the preparation of a revision

of ANSI X3.23-1974. In performing this task. Technical Committee X3J4 held three pub¬

lic review and comment periods in which comments on the draft proposed revision were

received from the data processing community. Technical Committee X3J4 reviewed and

responded to all comments received during these public review periods. In April 1985,

Technical Committee X3J4 approved the final version of the draft proposed COBOL stan¬

dard.

Accredited Standards Committee on Information Processing Systems, X3, approved the

draft proposed COBOL standard for submittal to ANSI as the revised American National

Standard for the programming language COBOL in August 1985. The draft proposed

COBOL standard was approved as an American National Standard by the American Na¬

tional Standards Institute on September 10. 1985.

This standard was processed and approved for submittal to ANSI by the Accredited Stan¬

dards Committee on Information Processing Systems, X3. Committee approval of this

standard does not necessarily imply that all committee members voted for its approval.

At the time it approved this standard, the X3 Committee had the following members:

Edward Lohse. Chair

Catherine A. Kachurik, Administrative Secretary

Organization Represented Name of Representative

American Library Association.
American Nuclear Society.

AMP Incorporated.

Association of American Railroads.
Association for Computing Machinery

Association of the Institute for Certification
of Computer Professionals.

AT&T Corporation.

AT&T Information Systems.

Burroughs Corporation.

Control Data Corporation.

Cooperating Users of Burroughs Equipment

Data General Corporation.

Data Processing Management Association .
Digital Equipment Computer Users Society
Digital Equipment Corporation.

General Electric Company.

Paul Peters
Geraldine C. Main
D. R. Vondy (Alt)
Patrick E. Lannan
Edward Kelly (Alt)
R. A. Petrash
Kenneth Magel
Jon A. Meads (Alt)

Thomas M. Kurihara
Ardyn E. Dubnow (Alt)
Henry L. Marchese
Richard Gibson (Alt)
Herbert V. Bertine
Paul D. Bartoli (Alt)
Stuart H. Garland (Alt)
Ira R. Purchis
Stanley Fenner (Alt)
Charles E. Cooper
Keith Lucke (Alt)
Thomas Easterday
Donald Miller (Alt)
John Pilat
Lyman Chapin (Alt)
Christian G. Meyer
William Hancock
Gary S. Robinson
Delbert L. Shoemaker (Alt)
William R. Kruesi

Organization Represented Name of Representative

General Services Administration.

GUIDE International.

Harris Corporation.

Hewlett-Packard.
Honeywell Information Systems.

IBM Corporation.

IEEE Computer Society.

Lawrence Berkeley Laboratory.

Moore Business Forms.
National Bureau of Standards.

National Communications System.

NCR Corporation.

Perkin-Elmer Corporation.

Prime Computer, Inc.

Recognition Technology Users Association

SHARE, Inc.

Sperry Corporation.

Texas Instruments, Inc.

3M Company.

Travelers Insurance Companies, Inc.
U.S. Department of Defense.

VIM.

Wang Laboratories, Inc.

Xerox Corporation.

William C. Rinehuls
Larry L. Jackson (Alt)
Frank Kishenbaum
Thomas F. O’Leary, Jr (Alt)
Sam Mathan
Rajiv Sinha (Alt)
Donald C. Loughry
Thomas J. McNamara
David M. Taylor (Alt)
Mary Anne Gray
Robert H. Follett (Alt)
Sava I. Sherr
David Gelperin (Alt)
Thomas A. Varetoni (Alt)
David F. Stevens
John S. Colonias (Alt)
Delmer H. Oddy
Robert E. Rountree
James H. Burrows (Alt)
Marshall L. Cain
George W. White (Alt)
Thomas W. Kern
A. R. Daniels (Alt)
Christopher Beling
Russ Lombardo (Alt)
Andrew F. Burlingame
Jacqueline Barbour (Alt)
Herbert F. Schantz
G. W. Wetzel (Alt)
Thomas B. Steel
Daniel Schuster (Alt)
Marvin W. Bass
Jeanne G. Smith (Alt)
Presley Smith
Richard F. Trow, Jr (Alt)
J. Wade Van Valkenburg
Ray Smith (Alt)
Joseph T. Brophy
Fred Virtue
Belkis Leong-Hong (Alt)
Chris Tanner
Madeleine Sparks (Alt)
Marsha Hayek
Joseph St. Amand (Alt)
John L. Wheeler
Arthur R. Machell (Alt)

Technical Committee X3J4 on COBOL, which developed this standard, had the following

members:

D. R. Warren, Chair G. F. Archer C. A. Johnson

L.V. Willis. Past Chair G. N. Baird L. A. Johnson
J. R. Brieschke S. D. Klute

J. T. Panttaja, Past Chair J. M. Buttler P. L’Allier
J. Couperus, Past Chair D. Caraway J. A. Machemehl

L. Skidmore. Vice-Chair J. H. Ciminski M. J. Maddison
J. S. Cousins L. K. Madison

P. A. Beard, Secretary D. Curry B. Mathias
M. V. Vickers, J. W. Curtis R. McKenzie

International Representative M. D. Dent
J. J. Edwards

B. Miller
R. L. Miller

B. L. Gaarder B. R. Nelson
M. P. Gerbauckas J. R. Peters
J. Garfunkel A. 0. Reimann
G. Gloss J. A. Rodriguez
H. Gordon M. E. Sanders
W. Haccou D. A. Schricker
P. B. Hall F. D. Shea
R. B. Hally J. A. Twentier
K. Howard B. J. Verastegui
A.Jackson A. E. Vermilion

Others who contributed to the work on the revision were as follows:

R. M. Barton
B. Cagle
M. Candela
D. W. Christensen
M. M. Cook
D. M. Dougherty
A. L. Forsyth
A. N. Gordon
G. K. Haas
N. W. Hubacker
C. S. Hansen
D. Last
M. J. Lee
B. W. McCormick
O. Newmann

S. Ng
W. R. Osborne
P. Olshansky
B. M. Reynolds
M. J. Smith
K. Spence
G. Stephens
W. P. Storey
R. A. Surtees
R. H. Thompson
P. A. Trapp
J. M. Walker
J. F. Walton
D. Whalen
E. G. Williams

Preface This document provides the definition of the programming language features that make

up American National Standard X3.23-1985.

Within this document, the following terms are used:

• “First Standard COBOL” refers to American National Standard X3.23-1968.

• “Second Standard COBOL” refers to American National Standard X3.23-1974, which

superseded American National Standard X3.23-1968.

• “Third Standard COBOL” or “Standard COBOL” refers to American National Standard

X3.23-1985, which supersedes American National Standard X3.23-1974.

Contents

SECTION I: INTRODUCTORY INFORMATION

Chapter 1: Introduction to the Standard

1.1 Scope and Purpose . 1-1

1.2 Structure of Language Specifications . 1-1

1.3 Organization of Document . 1-3

1.4 How to Use the Standard . 1-3

1.5 Definition of an Implementation of Standard COBOL . 1-6

1.6 Definition of a Conforming Source Program . 1-9

1.7 Relationship of a Conforming Program to a Conforming

Implementation . 1-9

Chapter 2: Summary of Elements by Module

2.1 General Description . 1-10

2.2 Summary of Elements in the Nucleus Module . I—11

2.3 Summary of Elements in the Sequential 1-0 Module . 1-19

2.4 Summary of Elements in the Relative 1-0 Module . 1-22

2.5 Summary of Elements in the Indexed 1-0 Module . 1-25

2.6 Summary of Elements in the Inter-Program Communication Module .. 1-28

2.7 Summary of Elements in the Sort-Merge Module . 1-30

2.8 Summary of Elements in the Source Text Manipulation Module . 1-32

2.9 Summary of Elements in the Report Writer Module . 1-33

2.10 Summary of Elements in the Communication Module . 1-36

2.11 Summary of Elements in the Debug Module . 1-38

2.12 Summary of Elements in the Segmentation Module . 1-39

Chapter 3: Summary of Elements by COBOL Division

3.1 General Description . 1-40

3.2 Summary of Elements in Language Concepts . 1-41

3.3 Summary of Elements in Identification Division . 1-44

3.4 Summary of Elements in Environment Division . 1-45

3.5 Summary of Elements in Data Division . 1-48

3.6 Summary of Elements in Procedure Division . 1-53

I

i

SECTION II: CONCEPTS

1. Introduction . II-l

2. Files ... II-l

3. Report Writer . II-8

4. Table Handling . 11-12

5. Shared Memory Area . 11-17

6. Program and Run Unit Organization and Communication . 11-18

7. Communication Facility . 11-28

SECTION III: GLOSSARY

1. Introduction . III-l

2. Definitions . III-l

SECTION IV: OVERALL LANGUAGE CONSIDERATION

Chapter 1: Introduction . IV-1

Chapter 2: Notation Used in Formats . IV-1

Chapter 3: Rules . IV-3

Chapter 4: Language Concepts

4.1 Character Set . IV-4

4.2 Language Structure . IV-4

4.3 Concept of Computer Independent Data Description . IV-13

4.4 Explicit and Implicit Specifications . IV-25

4.5 External Switch . IV-28

Chapter 5: A COBOL Source Program

5.1 Introduction . IV-29

5.2 Organization . IV-29

5.3 Structure . IV-29

Chapter 6: Divisions

6.1 Identification Division . IV-30

6.2 Environment Division . IV-31

6.3 Data Division . IV-33

6.4 Procedure Division . IV-35

Chapter 7: Reference Format . IV-41

Chapter 8: COBOL Reserved Words . IV-45

SECTION V: COMPOSITE LANGUAGE SKELETON . V-l

SECTION VI: NUCLEUS MODULE

Chapter 1: Introduction to the Nucleus Module

1 .1 Func t ion . VI -1

1.2 Level Characteristics . VI-1

1.3 Level Restrictions on Overall Language . VI-1

Chapter 2: A COBOL Source Program

2.1 General Description . VI-3

2.2 Organization . VI-3

2.3 Structure . VI-3

2.4 End Program Header . VI-5

Chapter 3: Identification Division in the Nucleus Module

3.1 General Description . VI-6

3.2 Organization . VI-6

3.3 The PROGRAM-ID Paragraph . VI-7

3.4 The DATE-COMPILED Paragraph . VI-8

Chapter 4: Environment Division in the Nucleus Module

4.1 General Description . VI-9

4.2 Configuration Section . VI-9

4.3 The SOURCE-COMPUTER Paragraph . VI-10

4.4 The OBJECT-COMPUTER Paragraph . VI-11

4.5 The SPECIAL-NAMES Paragraph . VI-13

Chapter 5: Data Division in the Nucleus Module

5.1 General Description . VI-18

5.2 Working-Storage Section . VI-18

5.3 The Data Description Entry . VI-20

5.4 The BLANK WHEN ZERO Clause . VI-22

5.5 The Data-Name or FILLER Clause . VI-23

5.6 The JUSTIFIED Clause . VI-24

5.7 Level-Number . VI-25

5.8 The OCCURS Clause . VI-26

5.9 The PICTURE Clause . VI-29
5.10 The REDEFINES Clause . VI-38

5.11 The RENAMES Clause . VI-40

5.12 The SIGN Clause . VI-42

5.13 The SYNCHRONIZED Clause . VI-44

5.14 The USAGE Clause . VI-46

5.15 The VALUE Clause . VI-48

Chapter 4: Procedure Division in the Relative 1-0 Module

4.1 General Description . VIII-16

4.2 The CLOSE Statement . VIII-17

4.3 The DELETE Statement . VIII-19

4.4 The OPEN Statement . VIXI-21

4.5 The READ Statement . VXII-26

4.6 The REWRITE Statement . VIII-30

4.7 The START Statement . VIII-33

4.8 The USE Statement . VIII-35

4.9 The WRITE Statement . VIII-37

SECTION IX: INDEXED 1-0 MODULE

Chapter 1 : Introduction to the Indexed 1-0 Module

1.1 Function ... IX-1

1.2 Level Characteristics IX-1

1.3 Language Concepts IX-1

Chapter 2: Environment Division in the Indexed 1-0 Module

2.1 Input-Output Section IX-8

2.2 The FILE-CONTROL Paragraph ... IX-8

2.3 The File Control Entry . IX-8

2.4 The ACCESS MODE Clause . IX-10

2.5 The ALTERNATE RECORD KEY Clause . IX-ll

2.6 The ORGANIZATION IS INDEXED Clause .. IX-13

2.7 The RECORD KEY Clause . IX-14

2.8 The I-O-CONTROL Paragraph IX-15

Chapter 3: Data Division in the Indexed 1-0 Module

3.1 File Section IX-16

3.2 The File Description Entry ... IX-16

Chapter 4: Procedure Division in the Indexed 1-0 Module

4.1 General Description ... IX-18

4.2 The CLOSE Statement IX-1 9

4.3 The DELETE Statement . IX-21

4.4 The OPEN Statement . IX-23

4.5 The READ Statement . IX-28

4.6 The REWRITE Statement . IX-33

4.7 The START Statement . IX-36

4.8 The USE Statement . IX-39

4.9 The WRITE Statement . IX-41

vi

SECTION X: INTER-PROGRAM COMMUNICATION MODULE

Chapter 1: Introduction to the Inter-Program Communication Module

1.1 Function . X-l

1.2 Level Characteristics . X-l

1.3 Language Concepts . X-l

Chapter 2: Nested Source Programs

2.1 General Description . X-8

2.2 Organization . X-8

2.3 Structure . X-8

2.4 Initial State of a Program . X-10

2.5 End Program Header . X-ll

Chapter 3: Identification Division in the Inter-Program

Communication Module

3.1 The PROGRAM-ID Paragraph and Nested Source Programs . X-12

Chapter 4: Data Division in the Inter-Program Communication Module

4.1 Linkage Section . X-13

4.2 The File Description Entry in the Inter-Program

Communication Module . X-15

4.3 The Data Description Entry in the Inter-Program

Communication Module . X-19

4.4 The Report Description Entry in the Inter-Program

Communication Module . X-22

4.5 The EXTERNAL Clause . X-23

4.6 The GLOBAL Clause . X-24

Chapter 5: Procedure Division in the Inter-Program Communication Module

5.1 The Procedure Division Header . X-25

5.2 The CALL Statement . X-27

5.3 The CANCEL Statement . X-31

5.4 The EXIT PROGRAM Statement . X-33

5.5 The USE Statement . X-34

5.6 The USE BEFORE REPORTING Statement . X-35

SECTION XI: SORT-MERGE MODULE

Chapter 1: Introduction to the Sort-Merge Module

1.1 Function . XI-1

1.2 Language Concepts . XI-1

Chapter 2: Environment Division in the Sort-Merge Module

2.1 Input-Output Section . XI-2

2.2 The FILE-CONTROL Paragraph . XI-2

2.3 The File Control Entry . XI-2

2.4 The I-O-CONTROL Paragraph . XI-3

2.5 The SAME RECORD/SORT/SORT-MERGE AREA Clause .. XI-4

Chapter 3: Data Division in the Sort-Merge Module

3.1 File Section . XI-6

3.2 The Sort-Merge File Description Entry . XI-7

Chapter 4: Procedure Division in the Sort-Merge Module

4.1 The MERGE Statement . XI-8

4.2 The RELEASE Statement . XI-13

4.3 The RETURN Statement . XI-14

4.4 The SORT Statement . XI-16

SECTION XII: SOURCE TEXT MANIPULATION MODULE

Chapter 1: Introduction to the Source Text Manipulation Module

1.1 Function . XII-1

1.2 Level Characteristics . XII-1

Chapter 2: The COPY Statement . XII-2

Chapter 3: The REPLACE Statement . XII-6

SECTION XIII: REPORT WRITER MODULE

Chapter 1: Introduction to the Report Writer Module

1.1 Function . XIII-1

1.2 Language Concepts . XIII-1

Chapter 2: Environment Division in the Report Writer Module

2.1 Input-Output Section . XIII-3

2.2 The FILE-CONTROL Paragraph . XIII-3

2.3 The File Control Entry . XIII-3

2.4 The I-O-CONTROL Paragraph XIII-5

Chapter 3: Data Division in the Report Writer Module

3.1 File Section. XIII-6

3.2 The File Description Entry. XIII-7

3.3 The REPORT Clause. XIII-9

3.4 Report Section. XIII-10

3.5 The Report Description Entry... XIII-11

3.6 The CODE Clause. XIII-14

viii

Chapter 3: Data Division in the Report Writer Module (Continued)

3.7 The CONTROL Clause. XIII-15

3.8 The PAGE Clause . XIII-17

3.9 The Report Group Description Entry . XIII-20

3.10 Presentation Rules _ables . XIII-24

3.11 The COLUMN NUMBER Clause . XI11-42

3.12 The Data-Name Clause . XIII-43

3.13 The GROUP INDICATE Clause . XI11-44

3.14 Level-Number . XIII-45

3.15 The LINE NUMBER Clause . XIII-46

3.16 The NEXT GROUP Clause . XIII-48

3.17 The SIGN Clause . XIII-49

3.18 The SOURCE Clause . XIII-51

3.19 The SUM Clause . XIII-52

3.20 The TYPE Clause . XIII-55

3.21 The USAGE Clause . XIII-60

3.22 The VALUE Clause . XIII-61

Chapter 4: Procedure Division in the Report Writer Module

4.1 General Description . XIII-62

4.2 The CLOSE Statement . XIII-63

4.3 The GENERATE Statement . XIII-66

4.4 The INITIATE Statement . XIII-69

4.5 The OPEN Statement . XIII-70

4.6 The SUPPRESS Statement . XIII-74

4.7 The TERMINATE Statement . XIII-75

4.8 The USE AFTER EXCEPTION/ERROR PROCEDURE Statement . XIII-76

4.9 The USE BEFORE REPORTING Statement . XIII-78

SECTION XIV: COMMUNICATION MODULE

Chapter 1: Introduction to the Communication Module

1.1 Function . XIV-1

1.2 Level Characteristics . XIV-1

Chapter 2: Data Division in the Communication Module

2.1 Communication Section . XIV-2

2.2 The Communication Description Entry . XIV-3

Chapter 3: Procedure Division in the Communication Module

3.1 The ACCEPT MESSAGE COUNT Statement . XIV-17

3.2 The DISABLE Statement . XIV-18

3.3 The ENABLE Statement . XIV-20

3.4 The PURGE Statement . XIV-22

3.5 The RECEIVE Statement . XIV-23

3.6 The SEND Statement . XIV-26

IX

SECTION XV: DEBUG MODULE

Chapter 1: Introduction to the Debug Module

1.1 Function . XV-1

1.2 Level Characteristics .. XV-1

1.3 Language Concepts .. XV-1

Chapter 2: Environment Division in the Debug Module

2.1 The WITH DEBUGGING MODE Clause ... XV-3

Chapter 3: Procedure Division in the Debug Module

3.1 General Description ... XV-4

3.2 The USE FOR DEBUGGING Statement ... XV-5

SECTION XVI: SEGMENTATION MODULE

Chapter 1: Introduction to the Segmentation Module

1.1 Function . XVI-1

1.2 Level Characteristics .. XVI-1

1.3 Scope . XVI-1

1.4 Organization . XVI-1

1.5 Segmentation Classification . XVI-2

1.6 Segmentation Control . XVI-3

Chapter 2: Environment Division in the Segmentation Module

2.1 Configuration Section XVI-4

2.2 The OBJECT-COMPUTER Paragraph .. XVI-4

2.3 The SEGMENT-LIMIT Clause . XVI-5

Chapter 3: Procedure Division in the Segmentation Module

3.1 General Description . XVI-6

3.2 Segment-Numbers . XVI-7

3.3 Restrictions on Program Flow . XVI-8

x

SECTION XVII: APPENDICES

APPENDIX A: THE HISTORY OF COBOL

Chapter 1: The Development of COBOL

1.1 Organization of COBOL Effort . XVII-1

1.2 The COBOL Maintenance Committee . XVII-1

1.3 The COBOL Committee . XVII-2

1.4 The Programming Language Committee . XVII-2

1.5 The CODASYL COBOL Committee . XVII-2

Chapter 2: The Evolution of CODASYL COBOL

2.1 COBOL-60 . XVI1-3

2.2 COBOL-61 . XVI1-3

2.3 COBOL-61 Extended . XVII-3

2.4 COBOL, Edition 1965 . XVII-3

2.5 CODASYL COBOL Journal of Development 1968 . XVII-4

2.6 CODASYL COBOL Journal of Development 1969 . XVII-4

2.7 CODASYL COBOL Journal of Development 1970 . XVII-5

2.8 CODASYL COBOL Journal of Development 1973 . XVII-5

2.9 CODASYL COBOL Journal of Development 1976 . XVII-6

2.10 CODASYL COBOL Journal of Development 1978 . XVII-7

2.11 CODASYL COBOL Journal of Development 1981 . XVII-8

2.12 CODASYL COBOL Journal of Development 1984 . XVII-9

Chapter 3: The Standardization of COBOL

3.1 Initial Standardization Effort . XVII-11

3.2 USA Standard COBOL 1968 . XVII-11

3.3 American National Standard COBOL 1974 . XVII-12

3.4 American National Standard COBOL 1985 . XVII-12

Chapter 4: International Standardization of COBOL

4.1 ISO Recommendation R-1989-1972 for COBOL . XVII-14

4.2 ISO Standard 1989-1978 for COBOL . XVII-14

4.3 ISO Standard 1989-1985 for COBOL . XVII-15

APPENDIX B: DIFFERENCES BETWEEN SECOND AND THIRD STANDARD COBOL

Chapter 1: Summary of Differences Between Second and Third

Standard COBOL . XVII-16

1.1 Summary of Differences in Language Concepts . XVII-17

1.2 Summary of Differences in Identification Division . XVII-20

1.3 Summary of Differences in Environment Division . XVII-21

1.4 Summary of Differences in Data Division . XVII-25

1.5 Summary of Differences in Procedure Division . XVII-30

1.6 Additional Summary of Differences . XVII-41

xi

Chapter 2: Substantive Changes

2.1 Substantive Changes Not Affecting Existing Programs . XVII-42

2.2 Substantive Changes Potentially Affecting Existing Programs XVII-51

APPENDIX C: LANGUAGE ELEMENT LISTS

Chapter 1 : Obsolete Language Element List . XVII-81

Chapter 2: Implementor-Defined Language Element List . XVII-87

Chapter 3: Hardware Dependent Language Element List . XVII-94

Chapter 4: Undefined Language Element List . XVII-96

INDEX . XVIII-1

xi i

American National Standard
for Information Systems -

Programming Language -
COBOL

SECTION I: INTRODUCTORY INFORMATION

1. INTRODUCTION TO THE STANDARD

1.1 SCOPE AND PURPOSE

The scope of this standard is to specify both the form and interpretation of

programs expressed in COBOL. Its purpose is to promote a high degree of machine

independence in such programs in order to permit their use on a variety of

automatic data processing systems.

1.2 STRUCTURE OF LANGUAGE SPECIFICATIONS

The organization of COBOL specifications in this standard is based on a

functional processing module concept. The standard defines 11 functional

processing modules: Nucleus, Sequential 1-0, Relative 1-0, Indexed 1-0,

Inter-Program Communication, Sort-Merge, Source Text Manipulation, Report

Writer, Communication, Debug, and Segmentation. Nine of the modules have the

elements within the module divided into level 1 elements and level 2 elements.

Level 1 elements of a module are a subset of level 2 elements of the same

module. Two of the modules contain only level 1 elements.

The Nucleus module contains the language elements for internal processing of

data within the basic structure of the four divisions of a program. The Nucleus

also contains the language elements for the definition and access of tables.

The elements of the Nucleus are divided into two levels. Nucleus level 1

supplies elements that perform basic internal operations, i.e., the more

elementary options of the various clauses and verbs. Nucleus level 2 provides

elements for more extensive and sophisticated internal processing capabilities.

The Sequential 1-0 module contains the language elements for the definition

and access of sequentially organized files. The elements of the Sequential 1-0

module are divided into two levels. Sequential 1-0 level 1 provides elements

for the basic facilities of definition and access of sequential files.

Sequential 1-0 level 2 provides elements for the complete facilities of

definition and access of sequential files.

1-1

Introduction

The Relative 1-0 module contains the language elements for the definition and

access of mass storage files in which records are identified by relative record

numbers. The elements of the Relative 1-0 module are divided into two levels.

Relative 1-0 level 1 provides elements for the basic facilities of definition

and access of relative files. Relative 1-0 level 2 provides elements for more

complete facilities, including the capability of accessing the file both

randomly and sequentially in the same COBOL program.

The Indexed 1-0 module contains the language elements for the definition and

access of mass storage files in which records are identified by the value of a

key and accessed through an index. The elements of the Indexed 1-0 module are

divided into two levels. Indexed 1-0 level 1 provides elements for the basic

facilities of definition and access of indexed files. Indexed 1-0 level 2

provides elements for more complete facilities, including alternate keys and the

capability of accessing the file both randomly and sequentially in the same

COBOL program.

The Inter-Program Communication module contains the language elements which

enable a program to communicate with one or more other programs. The elements

of the Inter-Program Communication module are divided into two levels.

Inter-Program Communication level 1 provides elements for the transfer of

control to another program known at compile time; it also provides for the

access of certain common data items by both programs. Inter-Program

Communication level 2 provides elements for the transfer of control to another

program not identified at compile time; it also provides for the nesting of

programs within other programs.

The Sort-Merge module contains the language elements for the ordering of one

or more files. The Sort-Merge module also contains the language elements for

the combining of two or more identically ordered files. Optionally, a user may

apply some special processing to each of the individual records by input or

output procedures. The Sort-Merge module contains only level 1 elements.

The Source Text Manipulation module contains the language elements for the

insertion and replacement of source program text as part of the compilation of

the source program. The elements of the Source Text Manipulation module are

divided into two levels. Source Text Manipulation level 1 provides the facility

for copying text from a single library into the source program. Source Text

Manipulation level 2 provides the additional capability of replacing library

text during the copying process, specifying more than one COBOL library at

compile time, and replacing source program text.

The Report Writer module contains the language elements for the

semi-automatic production of printed reports. The Report Writer module contains

only level 1 elements.

The Communication module contains the language elements to access, process,

and create messages or portions thereof, and to communicate through a message

control system with communication devices. The elements of the Communication

module are divided into two levels. Communication level 1 provides elements for

the basic facilities to send or receive complete messages. Communication level

2 provides elements for a more sophisticated facility including the capability

to send or receive segments of a message.

1-2

Introduction

The Debug module provides a means by which the user can specify his debugging

algorithm — the conditions under which data or procedure items are monitored

during execution of the program. The elements or the Debug module are divided

into two levels. Debug module level 1 provides a basic debugging capability,

including the ability to specify selective or full paragraph monitoring. Debug

module level 2 provides the full COBOL debugging capability.

The Segmentation module provides for the overlaying at object time of

Procedure Division sections. The elements of the Segmentation module are

divided into two levels. Segmentation level 1 provides for section

segment-numbers and fixed segment limits. Segmentation level 2 adds the

capability for varying the segment limit.

1.3 ORGANIZATION OF DOCUMENT

This document is divided into eighteen sections. Section I is composed of

the introduction, a summary of elements by module, and a summary of elements by

COBOL division. Section II presents concepts pertaining to the use and

organization of features within the COBOL language. Section III is composed of

a glossary defining terms in accordance with their meaning in COBOL.

Section IV contains a presentation of overall language considerations.

Section V contains a composite language skeleton.

Sections VI through XVI contain specifications for the eleven functional

processing modules. Within these sections, specifications unique to level 2 of

the modules are enclosed in boxes.

Sections II through XVI comprise the detailed specifications of Standard

COBOL.

Section XVII contains the appendices to the document. Section XVIII contains

the index for the document.

1.4 HOW TO USE THE STANDARD

It is envisioned that the standard will be examined from several

viewpoints. In addition to the table of contents and the index, the

elements by module and the summary of elements by COBOL division

intended to serve as a key to the standard.

Determination of the content of any level within a module is made from the

summary of elements beginning on page 1-10. This list contains a detailed

breakdown of each element of Standard COBOL within a given module. For example,

to ascertain the content of level 1 of the Sequential 1-0 module, reference is

made to that module within the summary of elements by module (see page 1-19).

There will be found a list of COBOL elements including overall language

considerations, Environment Division entries, Data Division entries, and

Procedure Division verbs that pertain to the Sequential 1-0 module.

Determination of the modules and levels within modules in which a specific

language feature appears is made from the summary of elements by COBOL division

beginning on page 1-40. This list shows in detail all elements of Standard

different

summary of

are also

1-3

Introduction

COBOL and their occurrences within the various modules. Those elements which

are not completely contained within one level of a module are shown in

sufficient detail to specify the location of each subelement. For example, the

READ statement appears in level 1 of the Sequential 1-0 module, the Relative 1-0

module, and the Indexed 1-0 module. Because certain phrases of the READ

statement appear only in level 2 of these modules, the subelements of the READ

statement are listed separately (see page 1-59).

The schematic diagram on page 1-5 is a graphic representation of the 11

functional processing modules forming the content of Standard COBOL. This

schematic diagram shows the hierarchy of levels within each functional

processing module. Within the schematic diagram a shorthand notation (such as

2 INX 0,2) indicates the hierarchical position of any level within the

functional processing module as well as the number of levels into which the

elements of the module have been divided. This shorthand notation is composed

of, from left to right, a one-digit number indicating the level's position in

the hierarchy, a three-character module abbreviation, and a two-digit number

indicating the minimum and maximum levels of the module to which the level

belongs. The number zero indicates a null level for the lowest level within a

module. For example, 2 INX 0,2 indicates that this level is the second non-null

level (level 2) of the Indexed 1-0 module which contains a null level and two

non-null levels (level 1 and level 2). 2 NUC 1,2 indicates that this level is

the second non-null level of the Nucleus module which contains two non-null

levels (level 1 and level 2).

The three-character module abbreviations are as follows:

NUC Nucleus

SEQ Sequential 1-0

REL Relative 1-0

INX Indexed 1-0

IPC Inter-Program Communication

SRT Sort-Merge

STM Source Text Manipulation

RPW Report Writer

COM Communication

DEB Debug

SEG Segmentation

1-4

Introduction

o CM CM

CO o' o'

2 a CJ
03 LU LU
E C/5 00

03 CM r—
CO

CM CM

00
CD o' o'

LLI 03
C/5 -Q OQ CD
-2 0) LU LU

ZD
CD

2
00 o a o

o c CM <—

“a r—
_J 03 o CM CNJ
<
2

"5
2"

CO
o

o' o'

O 03
CC 2

1-
Q-
o

o E
E

o
C_3

O
CJ

— o
CJ>

r—

r - c
O «
a. •— g
03 ^

CC ^
a.
cc

4- —
x o CN CM
03 '2

1— co
O c _

03 2 3
W_2. H I- z
2 2
O CO

00 00

C/5 2 CM

t“
23

o' c _
03

H 3

CC cc z
2 CO 00

OO r—

E 5
co • — CM CM CM
~ co
o “ c— C—

£ § o CJ CJ

00 £ |
CL Q. Q_

LU
U
33

on

03
C/3

= J CM

a -2

o
2

00

2

CM CM

§
"2
03 o' c

a x o 03 , X X "5

cc
03 “2 —

2_ z z z
ID cr CM T—
a 03

LU CC

cc ' CM CM

5 O C _
™ ° _l 3

LU LU z
cr CC cc

CM

CM CM CM
CO *
'2 c— r—

5 ° a a o
2 — LU LU LU
a- 00 00 00

00 CM

CM CM CM
C/3 *— r- <“
03 O CJ CJ
03
2 D D
2 Z z Z

CM *“

MB!H aieipaiu jaju | ujniuiu|i/\)

siasansioaoo

1-5

Implementation Definition

1.5 DEFINITION OF AN IMPLEMENTATION OF STANDARD COBOL

This document provides a definition of the language features that comprise

Standard COBOL. Standard COBOL consists of 11 modules, seven of which are

required and four of which are optional. Paragraph 1.5* and its subparagraphs

identify the criteria which must be met in order for a valid claim to be made

that an implementation conforms to Standard COBOL.

1.5.1 Definition of Subsets

The three subsets of Standard COBOL are: the high subset, the intermediate

subset, and the minimum subset. Each subset is composed of a level of the seven

required modules: Nucleus, Sequential 1-0, Relative I-0, Indexed 1-0,

Inter-Program Communication, Sort-Merge, and Source Text Manipulation. In terms

of the schematic diagram on page 1-5, a subset of Standard COBOL is represented

by one of the three horizontal rows within the required module columns. The

four optional modules (Report Writer, Communication, Debug, and Segmentation)

are not required in the three subsets of Standard COBOL.

The high subset of Standard COBOL is composed of all language elements of the

highest level of all required modules, that is:

• Level 2 elements from Nucleus, Sequential 1-0, Relative 1-0, Indexed 1-0,

Inter-Program Communication, and Source Text Manipulation

• Level 1 elements from Sort-Merge

The intermediate subset of Standard COBOL is composed of all language

elements of level 1 of all required modules, that is:

• Level 1 elements from Nucleus, Sequential 1-0, Relative 1-0, Indexed 1-0,

Inter-Program Communication, Sort-Merge, and Source Text Manipulation

The minimum subset of Standard COBOL is composed of all language elements of

level 1 of the Nucleus, Sequential 1-0, and Inter-Program Communication modules.

1.5.2 Definition of a Conforming Implementation

A conforming implementation of Standard COBOL must fully support any of the

three subsets defined in paragraph 1.5.1 above and may include none, all, or any

combination of the levels of the optional modules.

A conforming implementation of a given subset of Standard COBOL must fully

support all the language elements of that subset except as qualified in

paragraph 1.5.2.5 on page 1-8.

A conforming implementation of a given level of an optional module of

Standard COBOL must fully support all the language elements of that level of the

optional module except as qualified in paragraph 1.5.2.5 on page 1-8.

Furthermore, any implementation must also meet the requirements of paragraphs

1.5.2.1 through 1.5.2.4.

1-6

Implementation Definition

1.5.2.1 Substitute or Additional Language Elements

An implementation must not require the inclusion of substitute or additional

language elements in the source program in order to accomplish a function

identical to that of a Standard COBOL language element. Additionally,

throughout the Standard COBOL specification there are certain language elements

whose syntax or function is specified to be, in part, implementor defined (see

page XVII-87, Implementor-Defined Language Element List). While the implementor

specifies the constraints on that portion of each element's syntax or rules that

is indicated in Standard COBOL to be implementor defined, such constraints must

not include any requirements for the inclusion in the source program of

substitute or additional language elements.

1.5.2.2 Acceptance of Standard Language Elements

An implementation must accept the syntax and provide the function for all

Standard COBOL language elements as specified in a given level of a module which

is claimed as being included in the implementation, except those language

elements dependent on specific hardware components which are specifically

exempted by paragraph 1.5.2.5.1 on page 1-8. When an implementation supports

the syntax of Standard COBOL language elements from a given level of a module

other than that for which support is claimed, that implementation must provide

the function specified in Standard COBOL for that syntax or identify those

language elements as nonstandard extensions (see paragraph 1.5.2.5.2 on page

1-8).

1.5.2.3 Obsolete Language Elements

Obsolete language elements are identified as language elements in Standard

COBOL which will be deleted from the next revision of Standard COBOL (see page

XVII-81, Obsolete Language Element List). Obsolete language elements have been

neither enhanced nor modified during the preparation of Standard COBOL. The

interaction between obsolete language elements and other language elements is

undefined unless otherwise specified in Standard COBOL. Language elements to be

deleted from Standard COBOL will first be identified as obsolete language

elements prior to being deleted.

A conforming implementation of Standard COBOL is required to support obsolete

language elements of the subset and levels of optional modules for which support

is claimed. Documentation associated with an implementation must identify all

obsolete language elements in the implementation.

A conforming implementation of Standard COBOL must provide a warning

mechanism, which optionally may be invoked by the user at compile time to

indicate, if appropriate, that a program contains obsolete language elements

(see page XVII-81) .

1.5.2.4 Externally Provided Functions

If any function is provided outside the source program that accomplishes a

function specified by a Standard COBOL language element contained in a given

level of a module which is claimed as being included in an implementation, then

the implementation must not require the specification of the external function

in place of, or in addition to, that Standard COBOL language element.

1-7

Implementation Definition

An implementation may require specifications outside the source program to

interface with the operating environment to support functions specified in a

source program.

1.5.2.5 Qualifications

The following qualifications apply to an implementation of the Standard COBOL

specifications:

1.5.2.5.1 Hardware Dependent Language Elements

There are certain language elements which pertain to specific types of

hardware components (see page XVII-94, Hardware Dependent Language Element

List). In order for an implementation to meet the requirements for this

Standard COBOL, the implementor must specify the hardware components that the

implementation supports. Furthermore, when support is claimed for a specific

hardware component, all language elements that pertain to that component must be

implemented if the module in which they appear is included in the

implementation. Language elements that pertain to specific hardware components

for which support is not claimed need not be implemented. The absence of such

elements from an implementation of Standard COBOL must be specified.

1.5.2.5.2 Extension Language Elements

An implementation that includes language elements in addition to the subset

and levels of optional modules for which support is claimed meets the

requirements of Standard COBOL. This is true even though it may imply the

extension of the list of reserved words by the implementor, and thereby may

prevent proper translation of some programs that meet the requirements of

Standard COBOL.

Documentation associated with an implementation must identify any standard

extensions (language elements not defined in the supported subset or supported

levels of optional modules but defined elsewhere in Standard COBOL) or

nonstandard extensions (language elements or functions not defined in Standard

COBOL) that are included in the implementation.

A conforming implementation of Standard COBOL must provide a warning

mechanism, which optionally may be invoked by the user at compile time to

indicate, if appropriate, that a program contains nonstandard extensions that

are included in the implementation.

1.5.2.5.3 Reserved Words

An implementation of Standard COBOL must recognize as reserved words all of

the COBOL reserved words occurring in the specification of the seven required

modules and the four optional modules. (See page IV-45, COBOL Reserved Words.)

1.5.2.5.4 Character Substitution

The definition of the COBOL character set on page III-3 presents the complete

COBOL character set for Standard COBOL. When an implementation does not provide

for a graphic representation for all the COBOL character set, substitute

graphics may be specified by the implementor to replace the characters not

represented.

1-8

Conforming Source Program

1.5.2.5.5 The ENTER Statement

An implementation of Standard COBOL may include the ENTER statement or not,

at the option of the implementor.

1.6 DEFINITION OF A CONFORMING SOURCE PROGRAM

A conforming source program is one which does not violate the explicitly

stated provisions and specifications of Standard COBOL. In order for a source

program to conform to Standard COBOL, it must not include any language elements

not specified in this standard. The execution of a program, the source text of

which conforms to Standard COBOL, is predictable only to the extent defined in

this standard. The results of violating the formats or rules of Standard COBOL

are undefined unless otherwise specified in this standard.

In order for a source program to conform to a specified subset of Standard

COBOL, it must include only language elements of that subset.

There are, in Standard COBOL, situations in which the results of executing a

statement are undefined or unpredictable (see page XVII-96, Undefined Language

Element List). A COBOL source program which allows this to happen may

nevertheless be a conforming program, although the resultant execution is not

defined by Standard COBOL.

1.7 RELATIONSHIP OF A CONFORMING PROGRAM TO A CONFORMING IMPLEMENTATION

The translation of a conforming source program by a conforming implementation

and the subsequent execution of the resultant object program is defined only to

the extent specified in Standard COBOL. However, the preceding statement does

not imply that the program will be translated or executed successfully;

translation and execution depends on other factors, such as the use of

implementor-defined language elements, the logical correctness of the program,

and the data upon which the program operates.

In general, Standard COBOL specifies no upper limit on such things as the

number of statements in a program and the number of operands permitted in

certain statements. It is recognized that these limits will vary from one

implementation of Standard COBOL to another and may prevent the successful

translation of some programs that meet the requirements of Standard COBOL.

1-9

Element Summary by Module

2. SUMMARY OF ELEMENTS BY MODULE

2.1 GENERAL DESCRIPTION

This chapter contains a summary of all elements in Standard COBOL organized

according to the functional processing modules.

The column titled "LEVEL 1" specifies the level 1 elements of the module.

The column titled "LEVEL 2" specifies the level 2 elements of the module.

The letter X in a column indicates the presence of the specified element

within the specified level of the module. The letter N in a column indicates

the absence of the specified element from the specified level of the module.

The letter Z in a column indicates the presence of the specified element within

the specified level of the module; however this element is an obsolete element

in Standard COBOL because it is to be deleted from the next revision of Standard

COBOL.

The following is a list of the summary of elements by module shown on pages

I—11 through 1-39.

• Pages I—11

« Pages 1-19

• Pages 1-22

• Pages 1-25

• Pages 1-28

• Pages 1-30

• Page 1-32:

m Pages 1-33

® Pages 1-36

• Page 1-38:

• Page 1-39:

through

through

through

through

and 1-29

and 1-31

Summary

through

and 1-37

Summary

Summary

1-18: Summary of elements in the Nucleus module

1-21 : Summary of elements in the Sequential 1-0 module

1-24: Summary of elements in the Relative 1-0 module

1-27: Summary of elements in the Indexed 1-0 module

Summary of elements in the Inter-Program

Communication module

: Summary of elements in the Sort-Merge module

of elements in the Source Text Manipulation module

1-35: Summary of elements in the Report Writer module

: Summary of elements in the Communication module

of elements in the Debug module

of elements in the Segmentation module

1-10

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT LEVEL 1

TANGUAGE CONCEPTS

Character Set

Characters used in words 0-9 A-Z - (hyphen) . X

Characters used in punctuation "()•,; space . X

Characters used in punctuation : (colon) . N

Characters used in editing B + - . , Z * $ 0 CR DB / X

Characters used in arithmetic operations +-*/** N

Characters used in relation conditions =><>=<= X

Characters used in subscripting + - X

Single character substitution allowed . X

Double character substitution allowed . Z

Separators

"().,; space . X

: (colon) . N

Character-Strings

COBOL words

Maximum of 30 characters . X

User-defined words

Alphabet-name . X

Class-name . X

Condition-name . N

Data-name . X

Index-name . X

Level-number . X

Mnemonic-name . X

Paragraph-name . X

Program-name . X

Routine-name . Z

Section-name . X

Symbolic-character . N

System-names

Computer-name . X

Implementor-name . X

Language-name . Z

Reserved words

Required words . X

Key words . X

Special character words

Arithmetic operators + - * / ** N

Arithmetic operators used in subscripting + - X

Relation characters = > < >= <= X

Optional words . X

LEVEL 2

X

X

X

X

X

X

X

X

Z

X

X

X

X

X

X

X

X

X

X

X

X

z
X

X

X

X

z

X

X

X

X

X

X

1-11

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT LEVEL 1

Character-Strings (Continued)

Special purpose words

Figurative constants

ZERO, SPACE, HIGH-VALUE, LOW-VALUE, QUOTE . X

ALL option . N

ZEROS, ZEROES, SPACES, HIGH-VALUES, LOW-VALUES, QUOTES ... X

ALL option . N

Symbolic-character . N

ALL option . N

ALL literal . N

Literals

Numeric literals: 1 through 18 digits . X

Nonnumeric literals: 1 through 160 characters . X

PICTURE character-string . X

Comment-entries . Z

Uniqueness of Reference

Qualification

No qualification permitted; names must be unique if
referenced .. X

50 qualifiers . N

Subscripting

3 levels of subscripts . X

7 levels of subscripts . N

Subscripting with a literal . X

Subscripting with a data-name . X

Subscripting with an index-name . X

Relative subscripting . X

Reference modification . N

Reference Format

Sequence number . X

Continuation of lines

Continuation of nonnumeric literal . X

Continuation of COBOL word, numeric literal,

PICTURE character-string . N

Blank lines . X

Comment lines

Asterisk (8) comment line . X

Slant (/) comment line . X

Debugging line with D in indicator area . X

Source Program Structure

Identification Division required . X

Environment Division optional . X

Data Division optional . X

Procedure Division optional . X

End program header . N

1-12

LEVEL 2

X

X

X

X

X

X

X

X

X

X

z

N

X

N

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT_LEVEL 1 LEVEL 2

IDENTIFICATION DIVISION

PROGRAM-ID paragraph . X

Program-name . X

AUTHOR paragraph . Z

INSTALLATION paragraph . Z

DATE-WRITTEN paragraph . Z

DATE-COMPILED paragraph . N

SECURITY paragraph . Z

ENVIRONMENT DIVISION

Configuration Section . X

SOURCE-COMPUTER paragraph . X

Computer-name . X

WITH DEBUGGING MODE clause . X

OBJECT-COMPUTER paragraph . X

Computer-name . X

MEMORY SIZE clause . Z

PROGRAM COLLATING SEQUENCE clause . X

SPECIAL-NAMES paragraph . X

ALPHABET clause . X

STANDARD-1 option . X

STANDARD-2 option . X

NATIVE option . X

Implementor-name option . X

Literal option . N

CLASS clause . X

CURRENCY SIGN clause . X

DECIMAL-POINT clause . X

Implementor-name clause . X

IS mnemonic-name option . X

ON STATUS IS condition-name option . X

OFF STATUS IS condition-name option . X

SYMBOLIC CHARACTERS clause . N

DATA DIVISION

Working-Storage Section . X

Record description entry . X

77 level description entry . X

Data description entry . X

BLANK WHEN ZERO clause . X

Data-name clause . X

FILLER clause . X

JUSTIFIED clause . X

Level-number clause . X

01 through 49; level-number may be 1 or 2 digits . X

66 . N

77 . X X

88 . N X

1-13

X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

N
X

X
X

X
X

X

N

N

N

N

N

X

X

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT LEVEL 1

OCCURS clause . X

Integer TIMES . X

ASCENDING/DESCENDING KEY phrase . N

INDEXED BY phrase . X

Integer-1 TO integer-2 TIMES DEPENDING ON phrase . N

PICTURE clause . X

Character-string has a maximum of 30 characters . X

Data characters X 9 A . X

Operational symbols S V P . X

Nonfloating insertion characters B+-. , $ 0 C8 DB / X

Replacement or floating insertion characters $ + - Z * X

Currency sign substitution . X

Decimal point substitution ... X

REDEFINES clause . X

May not be nested . X

May be nested ... N

RENAMES clause . N

SIGN clause . X

SYNCHRONIZED clause . X

USAGE clause . X

BINARY . X

COMPUTATIONAL . X

DISPLAY . X

INDEX . X

PACKED-DECIMAL . X

VALUE clause . X

Literal . X

Literal series . N

Literal-1 THROUGH literal-2 . N

Literal range series . N

PROCEDURE DIVISION

Arithmetic expression . N

Binary arithmetic operators + - * / ** N

Unary arithmetic operators + - N

Conditional expressions . X

Simple condition . X

Relation condition . X

Relational operators . X

[NOT] GREATER THAN . X

[NOT] > . X

[NOT] LESS THAN . X

[NOT] < . X

[NOT] EQUAL TO . X

[NOT] = . X

GREATER THAN OR EQUAL TO . X

>= . X

LESS THAN OR EQUAL TO . X

<= . X

Comparison of numeric operands . X

LEVEL 2

X

X

X

X

X

X

X

X

X

X

X

X

X

X

N

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

1-14

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT_LEVEL 1 LEVEL 2

Conditional expressions (continued)

Simple condition (continued)

Comparison of nonnumeric operands . X

Comparison of index-names and/or index data items . X

Class condition . X

NUMERIC . X

ALPHABETIC . X

ALPHABETIC-LOWER . X

ALPHABETIC-UPPER . X

Class-name . X

Condition-name condition . N

Sign condition . N

Switch-status condition . X

Complex condition . N

Logical operators AND OR NOT . N

Negated condition . N

Combined condition . N

Parenthesized conditions . X

Abbreviated combined relation conditions . N

Arithmetic statements . X

Arithmetic operands limited to 18 digits . X

Composite of operands limited to 18 digits . X

ACCEPT statement . X

Identifier . X

Only one transfer of data . X

No restriction on number of transfers of data . N

FROM mnemonic-name phrase . N

FROM DATE/DAY/DAY-OF-WEEK/TIME phrase . N

ADD statement . X

Identifier/1iteral . X

Identifier/literal series . X

TO identifier . X

TO identifier series . X

TO identifier/1itera1 GIVING identifier . X

TO identifier/1iteral GIVING identifier series . X

ROUNDED phrase . X

ON SIZE ERROR phrase . X

NOT ON SIZE ERROR phrase . X

END-ADD phrase . X

CORRESPONDING phrase . N

ALTER statement . Z Z

Only one procedure-name . Z N

Procedure-name series . N Z

COMPUTE statement . N X

Arithmetic expression . N X

Identifier series . N X

ROUNDED phrase . N X

ON SIZE ERROR phrase . N X

NOT ON SIZE ERROR phrase . N X

END-COMPUTE phrase . N X

1-15

b^
A

k
/l

h—
>

b^
A

b^
A

b^
A

b^
A

b^
A

b^
A

b^
A

b^
A

b^
A

k
/

S
/

►v
*

b^
A

**
A

b^
A

b^
A

r-

’S

r'"
'*

r
S

■
'%

^

\r
N

k
'N

rN

k*
N

k
'N

r-
'N

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT LEVEL 1 LEVEL 2

CONTINUE statement . X X

DISPLAY statement . X X

Only one transfer of data . X N

No restriction on number of transfers of data . N X

Identifier/1iteral . X X

Identifier/literal series . X X

UPON mnemonic-name phrase . N X

WITH NO ADVANCING phrase . N X

DIVIDE statement . X X

BY identifier/1iteral . X X

INTO identifier . X X

INTO identifier series . X X

GIVING identifier . X X

GIVING identifier series . X X

ROUNDED phrase . X X

REMAINDER phrase . N X

ON SIZE ERROR phrase . X X

NOT ON SIZE ERROR phrase . X X

END-DIVIDE phrase . X X

ENTER statement . Z Z

EVALUATE statement . N X

Identifier/literal . N X

Arithmetic expression . N X

Conditional expression . N X

TRUE/FALSE . N X

ALSO phrase . N X

WHEN phrase . N X

ALSO phrase . N X

WHEN OTHER phrase . N X

END-EVALUATE phrase . N X

EXIT statement . X X

GO TO statement . X X

Procedure-name is required . X N

Procedure-name is optional . N Z

DEPENDING ON phrase . X X

IF statement . X X

Only imperative statements . X N

Imperative and/or conditional statements . N X

Nested IF statements . X X

THEN optional word . X X

NEXT SENTENCE phrase . X X

ELSE phrase . X X

END-IF phrase . X X

INITIALIZE statement . N X

Identifier series . N X

REPLACING phrase . N X

REPLACING series . N X

1-16

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT_LEVEL 1 LEVEL 2

INSPECT statement . X X

Only single character data item . X N

Multi-character data item . N X

TALLYING phrase . X X

BEFORE/AFTER phrase . X X

BEFORE/AFTER phrase series . N X

TALLYING phrase series . N X

REPLACING phrase . X X

BEFORE/AFTER phrase . X X

BEFORE/AFTER phrase series . N X

REPLACING phrase series . N X

TALLYING and REPLACING phrases . X X

CONVERTING phrase . N X

MOVE statement . X X

TO identifier . X X

TO identifier series . X X

De-editing of numeric edited items . N X

CORRESPONDING phrase . N X

MULTIPLY statement . X X

BY identifier . X X

BY identifier series . X X

GIVING identifier . X X

GIVING identifier series . X X

ROUNDED phrase . X X

ON SIZE ERROR phrase . X X

NOT ON SIZE ERROR phrase . X X

END-MULTIPLY phrase . X X

PERFORM statement . X X

Procedure-name is optional . X X

THROUGH procedure-name phrase . X X

Imperative-statement option . X X

END-PERFORM phrase . X X

TIMES phrase . X X

UNTIL phrase . X X

TEST BEFORE/AFTER phrase . N X

VARYING phrase . N X

TEST BEFORE/AFTER phrase . N X

AFTER phrase . N X

At least 6 AFTER phrases permitted . N X

SEARCH statement . N X

VARYING phrase . N X

AT END phrase . N X

WHEN phrase . N X

WHEN phrase series . N X

END-SEARCH phrase . N X
SEARCH ALL statement . N X

AT END phrase . N X

WHEN phrase . N X

END-SEARCH phrase . N X

1-17

Nucleus Element Summary

SUMMARY OF ELEMENTS IN THE NUCLEUS MODULE

ELEMENT LEVEL 1 LEVEL 2

SET statement . X X

Index-name/identifier TO . X X

Index-name UP BY/DOWN BY . X X

Mnemonic-name TO ON/OFF . X X

Condition-name TO TRUE . N X

STOP statement . X X

RUN . X X

Literal . Z Z

STRING statement . N X

DELIMITED BY series . N X

WITH POINTER phrase . N X

ON OVERFLOW phrase . N X

NOT ON OVERFLOW phrase . N X

END-STRING phrase . N X

SUBTRACT statement . X X

Identifier/literal . X X

Identifier/literal series . X X

FROM identifier . X X

FROM identifier series . X X

GIVING identifier . X X

GIVING identifier series . X X

ROUNDED phrase . X X

ON SIZE ERROR phrase . X X

NOT ON SIZE ERROR phrase . X X

END-SUBTRACT phrase . X X

CORRESPONDING phrase . N X

UNSTRING statement . N X

DELIMITED BY phrase . N X

DELIMITER IN phrase . N X

COUNT IN phrase . N X

WITH POINTER phrase . N X

TALLYING phrase . N X

ON OVERFLOW phrase . N X

NOT ON OVERFLOW phrase . N X

END-UNSTRING phrase . N X

1-18

Sequential 1-0 Element Summary

SUMMARY OF ELEMENTS IN THE SEQUENTIAL 1-0 MODULE

ELEMENT_LEVEL 1

LANGUAGE CONCEPTS

User-defined words

File-name . X

Record-name . X

Reserved words

Special register LINAGE-COUNTER . N

1-0 status . X

ENVIRONMENT DIVISION

Input-Output Section

FILE-CONTROL paragraph . X

File control entry . X

SELECT clause . X

OPTIONAL phrase . N

Input, I-O, and extend files only . N

ACCESS MODE IS SEQUENTIAL clause . X

ASSIGN clause . X

Implementor-name . X

Literal . X

FILE STATUS clause . X

ORGANIZATION IS SEQUENTIAL clause . X

PADDING CHARACTER clause . N

RECORD DELIMITER clause . N

RESERVE AREA clause . N

I-O-CONTROL paragraph . X

MULTIPLE FILE TAPE clause . N

RERUN clause . Z

SAME AREA clause .. X

SAME RECORD AREA clause . N

DATA DIVISION

File Section

File description entry . X

FD level indicator . X

BLOCK CONTAINS clause . X

Integer RECORDS/CHARACTERS . X

Integer-1 TO integer-2 RECORDS/CHARACTERS . N

CODE-SET clause . X

DATA RECORDS clause . Z

LABEL RECORDS clause . Z

LINAGE clause . N

FOOTING phrase . N

TOP phrase . N

BOTTOM phrase . N

RECORD clause . X

Integer-1 CHARACTERS . X

VARYING IN SIZE phrase . N

FROM integer-2 TO integer-3 CHARACTERS . N

DEPENDING ON phrase . N

Integer-4 TO integer-5 CHARACTERS . X

LEVEL 2

X

X

X

X

X

X

X

X

z
z
X

X

X

X

X

X

X

X

X

X

1-19

X
X

N
N

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

^

^

Sequential 1-0 Element Summary

SUMMARY OF ELEMENTS IN THE SEQUENTIAL 1-0 MODULE

ELEMENT LEVEL 1

File description entry (continued)

VALUE OF clause . Z

Implementor-name IS literal . Z

Implementor-name IS literal series . Z

Implementor-name IS data-name . N

Implementor-name IS data-name series . N

Record description entry . X

PROCEDURE DIVISION

Declarative procedures . X

DECLARATIVES . X

END DECLARATIVES . X

CLOSE statement . X

File-name . X

File-name series . X

REEL/UNIT phrase . X

FOR REMOVAL phrase . N

WITH NO REWIND/LOCK phrase . N

OPEN statement . X

File-name . X

File-name series . X

INPUT phrase . X

WITH NO REWIND phrase . N

REVERSED phrase . N

OUTPUT phrase . X

WITH NO REWIND phrase . N

1-0 phrase . X

EXTEND phrase . N

INPUT, OUTPUT, and 1-0 series . X

EXTEND series . N

READ statement . X

NEXT phrase . N

INTO phrase . X

AT END phrase . X

NOT AT END phrase . X

END-READ phrase . X

REWRITE statement . X

FROM phrase . X

END-REWRITE phrase . X

USE statement . X

EXCEPTION/ERROR PROCEDURE phrase . X

ON file-name . X

ON file-name series . N

ON INPUT . X

ON OUTPUT . X

ON 1-0 . X

ON EXTEND . N

LEVEL 2

Z

Z

Z

Z

Z

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

z
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

1-20

Sequential 1-0 Element Summary

SUMMARY OF ELEMENTS IN THE SEQUENTIAL 1-0 MODULE

ELEMENT_LEVEL 1 LEVEL 2

WRITE statement . X X

FROM phrase . X X

BEFORE/AFTER ADVANCING phrase . X

Integer LINE/LINES . X

Identifier LINE/LINES . X

Mnemonic-name . N

PAGE . X

AT END-OF-PAGE/EOP phrase . N

NOT AT END-OF-PAGE/EOP phrase . N

END-WRITE phrase . X

1-21

Kw
«<

K
,>

r
S

rN

rN

Relative 1-0 Element Summary

SUMMARY OF ELEMENTS IN THE RELATIVE 1-0 MODULE

ELEMENT_LEVEL 1

LANGUAGE CONCEPTS

User-defined words

File-name . X

Record-name . X

1-0 status . X

ENVIRONMENT DIVISION

Input-Output Section

FILE-CONTROL paragraph . X

File control entry . X

SELECT clause . X

OPTIONAL phrase . N

Input, 1-0, and extend files only . N

ACCESS MODE clause . X

SEQUENTIAL . X

RANDOM . X

DYNAMIC . N

RELATIVE KEY phrase . X

ASSIGN clause . X

Implementor-name . X

Literal . X

FILE STATUS clause . X

ORGANIZATION IS RELATIVE clause . X

RESERVE AREA clause . N

I-O-CONTROL paragraph . X

RERUN clause . Z

SAME AREA clause . X

SAME RECORD AREA clause . N

DATA DIVISION

File Section

File description entry . X

FD level indicator . X

BLOCK CONTAINS clause . X

Integer RECORDS/CHARACTERS . X

Integer-1 TO integer-2 RECORDS/CHARACTERS . N

DATA RECORDS clause . Z

LABEL RECORDS clause . Z

RECORD clause . X

Integer-1 CHARACTERS . X

VARYING IN SIZE phrase . N

FROM integer-2 TO integer-3 CHARACTERS . N

DEPENDING ON phrase . N

Integer-4 TO integer-5 CHARACTERS . X

VALUE OF clause . Z

Implementor-name IS literal . Z

Implementor-name IS literal series . Z

Implementor-name IS data-name . N

Implementor-name IS data-name series . N

Record description entry . X

LEVEL 2

X

X

X

X

X

X

X
X

X

X
X
X
X
X

X

X
X
X
X

X

z
X

X

X

X
X

X

X
z
z
X

X

X
X
X

X
z
z
z
z
z
X

1-22

Relative 1-0 Element Summary

SUMMARY OF ELEMENTS IN THE RELATIVE 1-0 MODULE

ELEMENT LEVEL 1 LEVEL 2

PROCEDURE DIVISION

Declarative procedures . X X

DECLARATIVES . X X

END DECLARATIVES . X X

CLOSE statement . X X

File-name . X X

File-name series . X X

WITH LOCK phrase . N X

DELETE statement . X X

INVALID KEY phrase . X X

NOT INVALID KEY phrase . X X

END-DELETE phrase . X X

OPEN statement . X X

File-name . X X

File-name series . X X

INPUT phrase . X X

OUTPUT phrase . X X

1-0 phrase . X X

EXTEND phrase . N X

INPUT, OUTPUT, and 1-0 series . X X

EXTEND series . N X

READ statement . X X

NEXT phrase . N X

INTO phrase . X X

AT END phrase . X X

NOT AT END phrase . X X

INVALID KEY phrase . X X

NOT INVALID KEY phrase . X X

END-READ phrase . X X

REWRITE statement . X X

FROM phrase . X X

INVALID KEY phrase . X X

NOT INVALID KEY phrase . X X

END-REWRITE phrase . X X

START statement . N X

KEY phrase . N X

EQUAL TO . N X

= N X

GREATER THAN . N X

> N X

NOT LESS THAN . N X

NOT < N X

GREATER THAN OR EQUAL TO . N X

>= N X

INVALID KEY phrase . N X

NOT INVALID KEY phrase . N X

END-START phrase . N X

1-23

Relative 1-0 Element Summary

SUMMARY OF ELEMENTS IN THE RELATIVE 1-0 MODULE

ELEMENT LEVEL 1 LEVEL 2

USE statement .

EXCEPTION/ERROR PROCEDURE phrase

ON file-name .

ON file-name series .

ON INPUT .

ON OUTPUT .

ON 1-0 .

ON EXTEND .

WRITE statement .

FROM phrase .

INVALID KEY phrase .

NOT INVALID KEY phrase .

END-WRITE phrase .

X

X

X

N

X

X

X

N

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

1-24

Indexed 1-0 Element Summary

SUMMARY OF ELEMENTS IN THE INDEXED 1-0 MODULE

ELEMENT_ _ LEVEL 1 LEVEL 2

LANGUAGE CONCEPTS

User-defined words

File-name . X X

Record-name . X

1-0 status . X

ENVIRONMENT DIVISION

Input-Output Section

FILE-CONTROL paragraph . X

File control entry . X

SELECT clause . X

OPTIONAL phrase . N

Input, I-O, and extend files only . N

ACCESS MODE clause . X

SEQUENTIAL . X

RANDOM . X

DYNAMIC . N

ALTERNATE RECORD KEY clause . N

WITH DUPLICATES phrase . N

ASSIGN clause . X

Implementor-name . X

Literal . X

FILE STATUS clause . X

ORGANIZATION IS INDEXED clause . X

RECORD KEY clause . X

RESERVE AREA clause . N

I-O-CONTROL paragraph . X

RERUN clause . Z

SAME AREA clause . X

SAME RECORD AREA clause . N

DATA DIVISION

File Section

File description entry . X

FD level indicator . X

BLOCK CONTAINS clause . X

Integer RECORDS/CHARACTERS . X

Integer-1 TO integer-2 RECORDS/CHARACTERS . N

DATA RECORDS clause . Z

LABEL RECORDS clause . Z

RECORD clause . X

Integer-1 CHARACTERS . X

VARYING IN SIZE phrase . N

FROM integer-2 TO integer-3 CHARACTERS . N

DEPENDING ON phrase . N

Integer-4 TO integer-5 CHARACTERS . X

1-25

S*
”4

h^
A

K
yA

fv
 1

fs
-1

K
yA

tv
”4

h^
A

iv

h^
A

t^
yA

t^
yt

K
yA

K
yA

*^
y*

S*
-"

1
h^

yA

N
^y

A
ts

^A

t^
yA

S
«*

S*
"4

V
1

S*
*4

rN

rN

y'
S

r
'S

k
'N

r'
S

L
N

I
l

r*
’S

v*
S

k
'S

k
'S

L
\J

k
'n

k
S

r'
N

Indexed 1-0 Element Summary

SUMMARY OF ELEMENTS IN THE INDEXED 1-0 MODULE

ELEMENT_LEVEL 1 LEVEL 2

File description entry (continued)

VALUE OF clause . Z Z

Implementor-name IS literal . Z Z

Implementor-name IS literal series . Z Z

Implementor-name IS data-name . N Z

Implementor-name IS data-name series . N Z

Record description entry . X X

PROCEDURE DIVISION

Declarative procedures . X X

DECLARATIVES . X X

END DECLARATIVES . X X

CLOSE statement . X X

File-name . X X

File-name series . X X

WITH LOCK phrase . N X

DELETE statement . X X

INVALID KEY phrase . X

NOT INVALID KEY phrase . X

END-DELETE phrase . X

OPEN statement . X

File-name . X

File-name series . X

INPUT phrase . X

OUTPUT phrase . X

I —0 phrase . X

EXTEND phrase . N

INPUT, OUTPUT, and 1-0 series . X

EXTEND series . N

READ statement . X

NEXT phrase . N

INTO phrase . X

AT END phrase . X

NOT AT END phrase . X

KEY phrase . N

INVALID KEY phrase . X

NOT INVALID KEY phrase . X

END-READ phrase . X

REWRITE statement . X

FROM phrase . X

INVALID KEY phrase . X

NOT INVALID KEY phrase . X

END-REWRITE phrase . X

1-26

S
^

4
N

*'
4

h
*

4
S

*
4

S
*

4
N

**
4

*s
»*

4
►'w

*
K

w
4

K
*4

K
.*

4
K

*4

K
/4

S
/

rN

K
'N

r^
N

<r
N

rN

k
'N

k’
N

rN

k
'N

v*
S

r'
N

r
S

r*
N

r^
N

rN

k
'N

r
v

r
S

Indexed 1-0 Element Summary

SUMMARY OF ELEMENTS IN THE INDEXED 1-0 MODULE

ELEMENT LEVEL 1 LEVEL 2

START statement . N X

KEY phrase . N X

EQUAL TO . N

= N

GREATER THAN . N

> N

NOT LESS THAN . N

NOT < N

GREATER THAN OR EQUAL TO . N

>= N

INVALID KEY phrase . N

NOT INVALID KEY phrase . N

END-START phrase . N

USE statement . X

EXCEPTION/ERROR PROCEDURE phrase . X

ON file-name . X

ON file-name series . N

ON INPUT . X

ON OUTPUT . X

ON 1-0 . X

ON EXTEND . N

WRITE statement . X

FROM phrase . X

INVALID KEY phrase . X

NOT INVALID KEY phrase . X

END-WRITE phrase . X X

1-27

*S
>

N
rf'4

S
*"4

<
S

k'
%

r'
N

k
'N

k
'N

k
'N

r-
'S

r*
S

k
S

k
"n

rN

k
'N

Inter-Program Communication Element Summary

SUMMARY OF ELEMENTS IN THE INTER-PROGRAM COMMUNICATION MODULE

ELEMENT LEVEL 1

LANGUAGE CONCEPTS

Source program structure

Nested source programs . N

IDENTIFICATION DIVISION

PROGRAM-ID paragraph

COMMON clause . N

INITIAL clause . N

DATA DIVISION

File Section

File description entry (FD level indicator)

EXTERNAL clause . N

GLOBAL clause . N

Data description entry (level-number 01)

GLOBAL clause . N

Working-Storage Section

Data description entry (level-number 01)

EXTERNAL clause . N

GLOBAL clause . N

Linkage Section . X

Record description entry . X

77 level description entry . X

Report Section

Report description entry (RD level indicator)

GLOBAL clause . N

PROCEDURE DIVISION

Procedure Division header

USING phrase . X

At least 5 operands permitted . X

No limit on number of operands permitted . N

CALL statement . X

Literal . X

Identifier . N

USING phrase . X

Identifier . X

At least 5 operands permitted . X

No limit on number of operands permitted . N

BY REFERENCE phrase . N

BY CONTENT phrase . N

ON OVERFLOW phrase . N

ON EXCEPTION phrase . N

NOT ON EXCEPTION phrase . N

END-CALL phrase . X

CANCEL statement . N

Literal . N

Identifier . N

EXIT PROGRAM statement . X

LEVEL 2

X

X

X

X

X

X

X

X

1-28

t^
A

t^
A

K
^A

f—
y

A
K

yi

t—
y

t^
A

K
^A

ts
^A

K

'N

k
'N

k*
N

k
'N

/N

^

r*
N

r-
'S

k
'S

Z
j

/
S

K
’S

k
S

k
'S

Inter-Program Communication Element Summary

SUMMARY OF ELEMENTS IN THE INTER-PROGRAM COMMUNICATION MODULE

ELEMENT LEVEL 1 LEVEL 2

USE statement

EXCEPTION/ERROR PROCEDURE phrase

GLOBAL phrase ..

USE BEFORE REPORTING statement

GLOBAL phrase ..

N X

N X

1-29

Sort-Merge Element Summary

SUMMARY OF ELEMENTS IN THE SORT-MERGE MODULE

ELEMENT _ LEVEL 1

LANGUAGE ELEMENTS

User-defined words

File-name . X

Record-name . X

ENVIRONMENT DIVISION

Input-Output Section

FILE-CONTROL paragraph . X

File control entry . X

SELECT clause . X

ASSIGN clause . X

Implementor-name ... X

Literal . X

I-O-CONTROL paragraph . X

SAME SORT/SORT-MERGE AREA clause . X

SAME RECORD AREA clause . X

DATA DIVISION

File Section

Sort-merge file description entry . X

SD level indicator . X

DATA RECORDS clause . Z

RECORD clause . X

Integer-1 CHARACTERS .. X

VARYING IN SIZE phrase .. X

FROM integer-2 TO integer-3 CHARACTERS . X

DEPENDING ON phrase . X

Integer-4 TO integer-5 CHARACTERS . X

Record description entry .. X

PROCEDURE DIVISION

MERGE statement . X

ASCENDING/DESCENDING KEY phrase . X

COLLATING SEQUENCE phrase . X

USING phrase . X

OUTPUT PROCEDURE phrase . X

Procedure-name . X

GIVING phrase . X

RELEASE statement . X

FROM phrase . X

RETURN statement . X

INTO phrase . X

AT END phrase . X

NOT AT END phrase . X

END-RETURN phrase . X

1-30

Sort-Merge Element Summary

SUMMARY OF ELEMENTS IN THE SORT-MERGE MODULE

ELEMENT _ LEVEL 1

SORT statement .. X

ASCENDING/DESCENDING KEY phrase . X

DUPLICATES phrase . X

COLLATING SEQUENCE phrase . X

INPUT PROCEDURE phrase . X

Procedure-name . X
USING phrase . X

OUTPUT PROCEDURE phrase . X

Procedure-name . X

GIVING phrase . X

1-31

Source Text Manipulation Element Summary

SUMMARY OF ELEMENTS IN THE SOURCE TEXT MANIPULATION MODULE

ELEMENT LEVEL 1

LANGUAGE CONCEPTS

Character set

Characters used in punctuation = N

User-defined words

Library-name . N

Text-name . X

ALL DIVISIONS

COPY statement . X

OF/IN library-name phrase . N

REPLACING phrase . N

Pseudo-text . N

Identifier . N

Literal .. • N

Word . N

REPLACE statement . N

Pseudo-text BY pseudo-text . N

OFF . N

LEVEL 2

X

X

X

X

X

X

X

X

X

X

X

X

X

1-32

Report Writer Element Summary

SUMMARY OF ELEMENTS IN THE REPORT WRITER MODULE

ELEMENT LEVEL 1

LANGUAGE CONCEPTS

User-defined words

File-name . X

Report-name . X

Reserved words

Special registers

LINE-COUNTER . X

PAGE-COUNTER . X

ENVIRONMENT DIVISION

Input-Output Section

FILE-CONTROL paragraph . X

File control entry . X

SELECT clause . X

OPTIONAL phrase . X

Extend files only . X

ACCESS MODE IS SEQUENTIAL clause . X

ASSIGN clause . X

Implementor-name . X

Literal . X

FILE STATUS clause . X

ORGANIZATION IS SEQUENTIAL clause . X

PADDING CHARACTER clause . X

RECORD DELIMITER clause . X

RESERVE AREA clause .. X

I-O-CONTROL paragraph . X

MULTIPLE FILE TAPE clause . Z

SAME AREA clause . X

DATA DIVISION

File Section

File description entry .. X

FD level indicator . X

BLOCK CONTAINS clause . X

Integer RECORDS/CHARACTERS . X

Integer-1 TO integer-2 RECORDS/CHARACTERS . X

CODE-SET clause .. X

LABEL RECORDS clause . Z

RECORD clause .. X

Integer-1 CHARACTERS .. X

Integer-4 TO integer-5 CHARACTERS . X

REPORT clause . X

VALUE OF clause . Z

Implementor-name IS literal . Z

Implementor-name IS literal series .. Z

Implementor-name IS data-name . Z

Implementor-name IS data-name series . Z

1-33

Report Writer Element Summary

SUMMARY OF ELEMENTS IN THE REPORT WRITER MODULE

ELEMENT_LEVEL 1

Report Section

Report description entry . X

RD level indicator . X

CODE clause . X

CONTROL clause . X

PAGE clause . X

Report group description entry . X

BLANK WHEN ZERO clause . X

COLUMN NUMBER clause . X

Data-name clause . X

GROUP INDICATE clause . X

JUSTIFIED clause . X

Level-number clause . X

01 through 49; one or two digit representation . X

LINE NUMBER clause . X

NEXT GROUP clause . X

PICTURE clause . X

SIGN clause . X

SOURCE clause . X

SUM clause . X

TYPE clause . X

USAGE clause . X

DISPLAY . X

VALUE clause . X

Literal . X

PROCEDURE DIVISION

Declarative procedures . X

DECLARATIVES . X

END DECLARATIVES . X

CLOSE statement . X

REEL/UNIT phrase . X

FOR REMOVAL phrase . X

WITH NO REWIND/LOCK phrase . X

GENERATE statement . X

Data-name . X

Report-name . X

INITIATE statement . X

OPEN statement . X

OUTPUT phrase .. X

WITH NO REWIND phrase . X

EXTEND phrase . X

SUPPRESS statement . X

TERMINATE statement . X

1-34

Report Writer Element Summary

SUMMARY OF ELEMENTS IN THE REPORT WRITER MODULE

ELEMENT_ _ LEVEL 1

USE statement . X

EXCEPTION/ERROR PROCEDURE phrase . X

ON file-name . X

ON file-name series . X

ON OUTPUT . X

ON EXTEND . X

BEFORE REPORTING phrase . X

1-35

Communication Element Summary

SUMMARY OF ELEMENTS IN THE COMMUNICATION MODULE

ELEMENT LEVEL 1

LANGUAGE CONCEPTS

User-defined words

Cd-name . X

DATA DIVISION

Communication Section

Communication description entry . X

CD level indicator . X

FOR INPUT clause . X

INITIAL phrase . N

END KEY clause . X

MESSAGE COUNT clause . X

MESSAGE DATE clause . X

MESSAGE TIME clause . X

SYMBOLIC QUEUE clause . X

SYMBOLIC SOURCE clause . X

SYMBOLIC SUB-QUEUE-1 clause . N

SYMBOLIC SUB-QUEUE-2 clause . N

SYMBOLIC SUB-QUEUE-3 clause . N

STATUS KEY clause . X

TEXT LENGTH clause . X

Data-name series . N

FOR OUTPUT clause . X

DESTINATION COUNT clause . X

Must be one . X

Must be one or greater . N

DESTINATION TABLE clause . N

INDEXED BY phrase . N

ERROR KEY clause . X

SYMBOLIC DESTINATION clause . X

STATUS KEY clause . X

TEXT LENGTH clause . X

FOR 1-0 clause . X

INITIAL phrase . N

END KEY clause . X

MESSAGE DATE clause . X

MESSAGE TIME clause . X

STATUS KEY clause . X

SYMBOLIC TERMINAL clause . X

TEXT LENGTH clause . X

Data-name series . N

Record description entry . X

LEVEL 2

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

N

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

1-36

Communication Element Summary

SUMMARY OF ELEMENTS IN THE COMMUNICATION MODULE

ELEMENT _ LEVEL 1 LEVEL 2

PROCEDURE DIVISION

ACCEPT MESSAGE COUNT statement . X X

DISABLE statement . N X

INPUT phrase . N X

TERMINAL phrase . N X

1-0 TERMINAL phrase . N X

OUTPUT phrase . N X

WITH KEY phrase . N Z

ENABLE statement . N X

INPUT phrase . N X

TERMINAL phrase . N X

1-0 TERMINAL phrase . N X

OUTPUT phrase . N X

WITH KEY phrase . N Z

PURGE statement . N X

RECEIVE statement . X X

MESSAGE phrase . X X

SEGMENT phrase . N X

INTO identifier . X X

NO DATA phrase . X X

WITH DATA phrase . X X

END-RECEIVE phrase . X X

SEND statement . X X

FROM identifier (portion of a message) . N X

FROM identifier (complete message) . X X

WITH identifier phrase . N X

WITH ESI phrase . N X

WITH EMI phrase . X X

WITH EG I phrase . X X

BEFORE/AFTER ADVANCING phrase . X X

Integer-1 LINE/LINES . X X

Identifier LINE/LINES . X X

Mnemonic-name . N X

PAGE . X X

REPLACING LINE . N X

1-37

Debug Element Summary

SUMMARY OF ELEMENTS IN THE DEBUG MODULE

ELEMENT LEVEL 1

LANGUAGE CONCEPTS

Reserved words

Special register DEBUG-ITEM . Z

ENVIRONMENT DIVISION

Configuration Section

SOURCE-COMPUTER paragraph

WITH DEBUGGING MODE clause . Z

PROCEDURE DIVISION

Declarative procedures . Z

DECLARATIVES . Z

END DECLARATIVES . Z

USE FOR DEBUGGING statement . Z

Procedure-name . Z

ALL PROCEDURES . Z

ALL REFERENCES OF identifier-1 . N

Cd-name . N

File-name . N

LEVEL 2

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

1-38

Segmentation Element Summary

SUMMARY OF ELEMENTS IN THE SEGMENTATION MODULE

ELEMENT LEVEL 1

LANGUAGE CONCEPTS

User-defined words

Segment-number . Z

ENVIRONMENT DIVISION

OBJECT-COMPUTER paragraph
SEGMENT-LIMIT clause . N

PROCEDURE DIVISION

Segment-numbers 0 through 49 for permanent segments . Z

Segment-numbers 50 through 99 for independent segments . Z

All sections with the same segment-number must

be together in the source program . Z

Sections with the same segment-number need not be

physically contiguous in the source program . N

LEVEL 2

Z

Z

Z

Z

N

Z

1-39

Element Summary by COBOL Division

3. SUMMARY OF ELEMENTS BY COBOL DIVISION

3.1 GENERAL DESCRIPTION

This chapter contains a summary of all elements in Standard COBOL organized

according to the COBOL divisions.

The column titled "MODULE" specifies the module and the level within that

module for an element of Standard COBOL. The module is specified by a

three-character module abbreviation as shown in the following table.

Abbreviat ion Meaning

NUC Nucleus

SEQ Sequential 1-0

REL Relative 1-0

INX Indexed 1-0

IPC Inter-Program Communication

SRT Sort-Merge

STM Source Text Manipulation

RPW Report Writer

COM Communication

DEB Debug

SEG Segmentation

The level of an element within the module is indicated by the number

preceding the three-character abbreviation of the module. For example, 2 NUC

indicates that the element is a level 2 element within the Nucleus and 1 INX

indicates that the element is a level 1 element within the Indexed 1-0 module.

The letter Z follows the three-character abbreviation of the module if the

element is an obsolete element in Standard COBOL that is to be deleted from the

next revision of Standard COBOL.

The following is a list of the summary of elements by COBOL division shown on

pages 1-41 through 1-63.

Pages 1-41 through 1-43 : Summary of elements in language concepts

Page 1-44: Summary of elements in Identification Division

Pages 1-45 through 1-47 : Summary of elements in Environment Division

Pages 1-48 through 1-52 : Summary of elements in Data Division

Pages 1-53 through 1-63 Summary of elements in Procedure Division

1-40

Language Concepts Element Summary

SUMMARY OF ELEMENTS IN LANGUAGE CONCEPTS

ELEMENT MODULE

LANGUAGE CONCEPTS

Character Set

Characters used in words 0-9 A-Z - (hyphen) . 1 NUC

Characters used in punctuation "().,; space . 1 NUC

Characters used in punctuation : (colon) . 2 NUC

Characters used in punctuation = 1 STM

Characters used in editing B + - . , Z * $ 0 CR DB / 1 NUC

Characters used in arithmetic operations +-*/** 2 NUC

Characters used in relation conditions = > < >= <= 1 NUC

Characters used in subscripting + - 1 NUC

Single character substitution allowed . 1 NUC

Double character substitution allowed . 1 NUC Z

Separators

"().,; space . 1 NUC

: (colon) . 2 NUC

Character-Strings

COBOL words

Maximum of 30 characters . 1 NUC

User-defined words

Alphabet-name . 1 NUC

Cd-name . 1 COM

Class-name . 1 NUC

Condition-name . 2 NUC

Data-name . 1 NUC

File-name . 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

Index-name . 1 NUC

Level-number . 1 NUC

Library-name . 2 STM

Mnemonic-name . 1 NUC

Paragraph-name . 1 NUC

Program-name . 1 NUC

Record-name . 1 SEQ

1 REL

1 INX

1 SRT

Report-name . 1 RPW

Routine-name . 1 NUC Z

Section-name . 1 NUC

Segment-number . 1 SEG Z

Symbolic-character . 2 NUC

Text-name . 1 STM

1-41

Language Concepts Element Summary

SUMMARY OF ELEMENTS IN LANGUAGE CONCEPTS

ELEMENT _MODULE

Character-Strings (Continued)

COBOL words (continued)

System-names

Computer-name .. 1 NUC

Implementor-name . 1 NUC

Language-name . 1 NUC Z

Reserved words

Required words . 1 NUC

Key words . 1 NUC

Special character words

Arithmetic operators + - * / ** . 2 NUC

Arithmetic operators used in subscripting + - 1 NUC

Relation characters = > < >= <= . 1 NUC

Optional words . 1 NUC

Special purpose words

Figurative constants

ZERO, SPACE, HIGH-VALUE, LOW-VALUE, QUOTE . 1 NUC

ALL option . 2 NUC

ZEROS, ZEROES, SPACES, HIGH-VALUES, LOW-VALUES, QUOTES . 1 NUC

ALL option . 2 NUC

Symbolic-character . 2 NUC

All option . 2 NUC

All literal . 2 NUC

Special registers

LINAGE-COUNTER . 2 SEQ

LINE-COUNTER . 1 RPW

PAGE-COUNTER . 1 RPW

DEBUG-ITEM . 1 DEB Z

Literals

Numeric literals: 1 through 18 digits . 1 NUC

Nonnumeric literals: 1 through 160 characters . 1 NUC

PICTURE character-strings . 1 NUC

Comment-entries . 1 NUC Z

Uniqueness of Reference

Qualification

No qualification permitted; names must be unique if referenced . 1 NUC

50 qualifiers . 2 NUC

Subscripting

3 levels of subscripts . 1 NUC

7 levels of subscripts . 2 NUC

Subscripting with a literal . 1 NUC

Subscripting with a data-name . 1 NUC

Subscripting with an index-name . 1 NUC

Relative subscripting . 1 NUC

Reference modification . 2 NUC

1-42

Language Concepts Element Summary

SUMMARY OF ELEMENTS IN LANGUAGE CONCEPTS

ELEMENT MODULE

Reference Format

Sequence number . 1 NUC

Continuation of lines

Continuation of nonnumeric literal . 1 NUC

Continuation of COBOL word, numeric literal,

PICTURE character-string . 2 NUC

Blank lines . 1 NUC

Comment lines

Asterisk (*) comment line . 1 NUC

Slant (/) comment line . 1 NUC

Debugging line with D in indicator area . 1 NUC

Source Program Structure

Identification Division required . 1 NUC

Environment Division optional . 1 NUC

Data Division optional . 1 NUC

Procedure Division optional . 1 NUC

End program header . 2 NUC

Nested source program . 2 IPC

1-43

Identification Division Element Summary

SUMMARY OF ELEMENTS IN IDENTIFICATION DIVISION

ELEMENT MODULE

IDENTIFICATION DIVISION

PROGRAM-ID paragraph . 1 NUC

Program-name . 1 NUC

COMMON clause . 2 IPC

INITIAL clause . 2 IPC

AUTHOR paragraph . 1 NUC Z

INSTALLATION paragraph . 1 NUC Z

DATE-WRITTEN paragraph . 1 NUC Z

DATE-COMPILED paragraph . 2 NUC Z

SECURITY paragraph . 1 NUC Z

Source Text Manipulation in Identification Division

COPY statement . 1 STM

OF/IN library-name . 2 STM

REPLACING phrase . 2 STM

Pseudo-text .. 2 STM

Identifier . 2 STM

Literal . 2 STM

Word . 2 STM

REPLACE statement . 2 STM

Pseudo-text BY pseudo-text . 2 STM

OFF . 2 STM

1-44

Environment Division Element Summary

SUMMARY OF ELEMENTS IN ENVIRONMENT DIVISION

ELEMENT MODULE

ENVIRONMENT DIVISION

Configuration Section . 1 NUC

SOURCE-COMPUTER paragraph . 1 NUC

Computer-name . 1 NUC

WITH DEBUGGING MODE clause . 1 NUC

1 DEB Z

OBJECT-COMPUTER paragraph . 1 NUC

Computer-name . 1 NUC

MEMORY SIZE clause . 1 NUC Z

PROGRAM COLLATING SEQUENCE clause . 1 NUC

SEGMENT-LIMIT clause . 1 SEG Z

SPECIAL-NAMES paragraph . 1 NUC

ALPHABET clause . 1 NUC

STANDARD-1 option .. 1 NUC

STANDARD-2 option . 1 NUC

NATIVE option . 1 NUC

Implementor-name option . 1 NUC

Literal option . 2 NUC

CLASS clause . 1 NUC

CURRENCY SIGN clause . 1 NUC

DECIMAL-POINT clause . 1 NUC

Implementor-name clause . 1 NUC

IS mnemonic-name option . 1 NUC

ON STATUS IS condition-name option . 1 NUC

OFF STATUS IS condition-name option . 1 NUC

SYMBOLIC CHARACTERS clause . 2 NUC

Input-Output Section . 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

FILE-CONTROL paragraph . 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

File control entry . 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

SELECT clause . 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

1-45

Environment Division Element Summary

SUMMARY OF ELEMENTS IN ENVIRONMENT DIVISION

ELEMENT___MODULE

SELECT clause (continued)

OPTIONAL phrase . 2 SEQ

2 REL

2 INX

1 RPW

Input, I-O, and extend files only . 2 SEQ

2 REL
2 INX

Extend files only . 1 RPW

ACCESS MODE clause

SEQUENTIAL . 1 SEQ

1 REL

1 INX

1 RPW

RANDOM . 1 REL

1 INX

DYNAMIC . 2 REL
2 INX

RELATIVE KEY phrase . 1 REL

ALTERNATE RECORD KEY clause . 2 INX

WITH DUPLICATES phrase . 2 INX

ASSIGN clause . 1 SEQ

1 REL
1 INX

1 SRT

1 RPW

Implementor-name . 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

Literal . 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

FILE STATUS clause . 1 SEQ
1 REL

1 INX

1 RPW

ORGANIZATION clause

SEQUENTIAL . 1 SEQ

1 RPW

RELATIVE . 1 REL

INDEXED . 1 INX

PADDING CHARACTER clause . 2 SEQ
1 RPW

RECORD DELIMITER clause . 2 SEQ
1 RPW

1-46

Environment Division Element Summary

SUMMARY OF ELEMENTS IN ENVIRONMENT DIVISION

ELEMENT_MODULE

File control entry (continued)

RECORD KEY clause ... 1 INX

RESERVE AREA clause . 2 SEQ

2 REL

2 INX

1 RPW

I-Q-CONTROL paragraph 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

MULTIPLE FILE TAPE clause .. 2 SEQ Z

1 RPW Z

RERUN clause ... 1 SEQ Z

1 REL Z

1 INX Z

SAME AREA clause ... 1 SEQ

1 REL

1 INX

1 RPW

SAME RECORD AREA clause ... 2 SEQ

2 REL

2 INX

1 SRT

SAME SORT/SORT-MERGE AREA clause ... 1 SRT

Source Text Manipulation in Environment Division

COPY statement 1 STM

OF/IN library-name 2 STM

REPLACING phrase 2 STM

Pseudo-text 2 STM

Identifier 2 STM

Literal 2 STM

Word 2 STM

REPLACE statement 2 STM

Pseudo-text BY pseudo-text 2 STM

OFF 2 STM

1-47

Data Division Element Summary

SUMMARY OF ELEMENTS IN DATA DIVISION

ELEMENT__ _ _ MODULE

DATA DIVISION

File Section . 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

File description entry . 1 SEQ

1 REL

1 INX

1 RPW

FD level indicator . 1 SEQ

1 REL

1 INX

1 RPW

BLOCK CONTAINS clause

Integer RECORDS/CHARACTERS . 1 SEQ

1 REL

1 INX

1 RPW

Integer-1 TO integer-2 RECORDS/CHARACTERS . 2 SEQ

2 REL

2 INX

1 RPW

CODE-SET clause . 1 SEQ
1 RPW

DATA RECORDS clause. 1 SEQ Z
1 REL Z

1 INX Z

EXTERNAL clause . 2 IPC

GLOBAL clause . 2 IPC

LABEL RECORDS clause . 1 SEQ Z
1 REL Z

1 INX Z

1 RPW Z

LINAGE clause . 2 SEQ

FOOTING phrase . 2 SEQ

TOP phrase . 2 SEQ

BOTTOM phrase . 2 SEQ

RECORD clause

Integer-1 CHARACTERS . 1 SEQ
1 REL

1 INX

1 RPW

VARYING IN SIZE phrase . 2 SEQ
2 REL

2 INX

Integer-4 TO integer-5 CHARACTERS . 1 SEQ
1 REL

1 INX

1 RPW

1-48

Data Division Element Summary

SUMMARY OF ELEMENTS IN DATA DIVISION

ELEMENT_MODULE

File description entry (continued)

REPORT clause . 1 RPW

VALUE OF clause

Implementor-name IS literal . 1 SEQ Z

1 REL Z

1 INX Z

1 RPW Z

Implementor-name IS literal series . 1 SEQ Z

1 REL Z

1 INX Z

1 RPW Z

Implementor-name IS data-name . 2 SEQ Z

2 REL Z

2 INX Z

1 RPW Z

Implementor-name IS data-name series . 2 SEQ Z

2 REL Z

2 INX Z

1 RPW Z

Sort-merge file description entry . 1 SRT

SD level indicator . 1 SRT

DATA RECORDS clause . 1 SRT Z

RECORD clause

Integer-1 CHARACTERS . 1 SRT

VARYING IN SIZE phrase . 1 SRT

Integer-4 TO integer-5 CHARACTERS . 1 SRT

Record description entry in File Section . 1 SEQ

1 REL

1 INX

1 SRT

Working-Storage Section . 1 NUC

Record description entry . 1 NUC

77 level description entry . 1 NUC

Linkage Section . 1 IPC

Record description entry . 1 IPC

77 level description entry . 1 IPC

1-49

Data Division Element Summary

SUMMARY OF ELEMENTS IN DATA DIVISION

ELEMENT _ MODULE

Communication Section . 1 COM

Communication description entry . 1 COM

CD level indicator . 1 COM

FOR INPUT clause . 1 COM

INITIAL phrase . 2 COM

END KEY clause . 1 COM
MESSAGE COUNT clause . 1 COM

MESSAGE DATE clause . 1 COM

MESSAGE TIME clause . 1 COM

SYMBOLIC QUEUE clause . 1 COM

SYMBOLIC SOURCE clause . 1 COM

SYMBOLIC SUB-QUEUE-1 clause . 2 COM

SYMBOLIC SUB-QUEUE-2 clause . 2 COM

SYMBOLIC SUB-QUEUE-3 clause . 2 COM

STATUS KEY clause . 1 COM

TEXT LENGTH clause . 1 COM

Data-name series . 2 COM

FOR OUTPUT clause . 1 COM

DESTINATION COUNT clause . 1 COM

Must be one . 1 COM

Must be one or greater . 2 COM

DESTINATION TABLE clause . 2 COM

INDEXED BY phrase . 2 COM

ERROR KEY clause . 1 COM

SYMBOLIC DESTINATION clause . 1 COM

STATUS KEY clause . 1 COM

TEXT LENGTH clause . 1 COM

FOR 1-0 clause . 1 COM

INITIAL phrase . 2 COM

END KEY clause . 1 COM

MESSAGE DATE clause . 1 COM

MESSAGE TIME clause . 1 COM

STATUS KEY clause . 1 COM

SYMBOLIC TERMINAL clause . 1 COM

TEXT LENGTH clause . 1 COM

Data-name series . 2 COM

Record description entry . 1 COM

Report Section . 1 RPW

Report description entry . 1 RPW

RD level indicator . 1 RPW

CODE clause . 1 RPW

CONTROL clause . 1 RPW

GLOBAL clause . 2 IPC

PAGE clause . 1 RPW

Report group description entry . 1 RPW

1-50

Data Division Element Summary

SUMMARY OF ELEMENTS IN DATA DIVISION

ELEMENT MODULE

The following clauses appear in record description entry,

data description entry, 77 level description entry, or

report group description entry:

BLANK WHEN ZERO clause . 1 NUC

1 RPW

COLUMN NUMBER clause . 1 RPW

Data-name clause . 1 NUC

1 RPW

EXTERNAL clause . 2 IPC

FILLER clause . 1 NUC

GLOBAL clause . 2 IPC

GROUP INDICATE clause . 1 RPW

JUSTIFIED clause . 1 NUC

1 RPW

Level-number clause . 1 NUC

01 through 49; level-number may be 1 or 1 digits . 1 NUC

1 RPW

66 . 2 NUC

77 . 1 NUC

88 . 2 NUC

LINE NUMBER clause . 1 RPW

NEXT GROUP clause . 1 RPW

OCCURS clause . 1 NUC

Integer TIMES . 1 NUC

ASCENDING/DESCENDING KEY phrase . 2 NUC

INDEXED BY clause . 1 NUC

Integer-1 TO integer-2 TIMES DEPENDING ON phrase . 2 NUC

PICTURE clause . 1 NUC

1 RPW

Character-string has a maximum of 30 characters . 1 NUC

1 RPW

Data characters X 9 A . 1 NUC

1 RPW
Operational symbols S V P . 1 NUC

1 RPW

Nonfloating insertion characters B + - . , $ 0 CR DB / . 1 NUC

1 RPW

Replacement or floating insertion characters $ + - Z * . 1 NUC

1 RPW

Currency sign substitution . 1 NUC

1 RPW
Decimal point substitution . 1 NUC

1 RPW

REDEFINES clause . 1 NUC

May not be nested . 1 NUC

May be nested . 2 NUC

RENAMES clause . 2 NUC

SIGN clause . 1 NUC

1 RPW

1-51

Data Division Element Summary

SUMMARY OF ELEMENTS IN DATA DIVISION

ELEMENT_MODULE

SOURCE clause . 1 RPW

SUM clause . 1 RPW

SYNCHRONIZED clause . 1 NUC

TYPE clause . 1 RPW

USAGE clause . 1 NUC

1 RPW

BINARY . 1 NUC

COMPUTATIONAL . 1 NUC

DISPLAY . 1 NUC

1 RPW

INDEX . 1 NUC

PACKED-DECIMAL . 1 NUC

VALUE clause . 1 NUC
1 RPW

Literal . 1 NUC

1 RPW

Literal series . 2 NUC

Literal-1 THROUGH literal-2 . 2 NUC

Literal range series . 2 NUC

Source Text Manipulation in Data Division

COPY statement . 1 STM

OF/IN library-name . 2 STM

REPLACING phrase . 2 STM

Pseudo-text . 2 STM

Identifier . 2 STM

Literal . 2 STM

Word . 2 STM

REPLACE statement . 2 STM

Pseudo-text BY pseudo-text . 2 STM

OFF . 2 STM

1-52

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT _ MODULE

PROCEDURE DIVISION

Procedure Division header .. 1 NUC

USING phrase . 1 IPC

At least 5 operands permitted . 1 IPC

No limit on number of operands permitted . 2 IPC

Declarative procedures . 1 SEQ

1 REL

1 INX

1 RPW

1 DEB Z

DECLARATIVES . 1 SEQ

1 REL

1 INX

1 RPW

1 DEB Z

END DECLARATIVES . 1 SEQ

1 REL

1 INX

1 RPW

1 DEB Z

Arithmetic expressions . 2 NUC

Binary arithmetic operators + - * / ** 2 NUC

Unary arithmetic operators + - 2 NUC

Conditional expressions . 1 NUC

Simple condition . 1 NUC

Relation condition . 1 NUC

Relational operators . 1 NUC

[NOT] GREATER THAN . 1 NUC

[NOT] > 1 NUC

[NOT] LESS THAN . 1 NUC

[NOT] < 1 NUC

[NOT] EQUAL TO . 1 NUC

[NOT] = 1 NUC

GREATER THAN OR EQUAL TO . 1 NUC

>= 1 NUC

LESS THAN OR EQUAL TO .. 1 NUC

<= 1 NUC

Comparison of numeric operands . 1 NUC

Comparison of nonnumeric operands . 1 NUC

Comparison of index-names and/or index data items . 1 NUC

Class condition . 1 NUC

NUMERIC . 1 NUC

ALPHABETIC . 1 NUC

ALPHABETIC-LOWER . 1 NUC

ALPHABETIC-UPPER . 1 NUC

Class-name . 1 NUC

Condition-name condition . 2 NUC

Sign condition . 2 NUC

Switch-status condition . 1 NUC

1-53

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT_MODULE

Conditional expression (continued)

Complex condition . 2 NUC

Logical operators AND OR NOT . 2 NUC

Negated condition . 2 NUC

Combined condition . 2 NUC

Parenthesized conditions . 1 NUC

Abbreviated combined relation conditions . 2 NUC

Arithmetic statements . 1 NUC

Arithmetic operands limited to 18 digits . 1 NUC

Composite of operands limited to 18 digits . 1 NUC

ACCEPT statement . 1 NUC

Identifier . 1 NUC

Only one transfer of data . 1 NUC

No restriction on number of transfers of data . 2 NUC

FROM mnemonic-name phrase . 2 NUC

FROM DATE/DAY/DAY-OF-WEEK/TIME phrase . 2 NUC

ACCEPT MESSAGE COUNT statement . 1 COM

ADD statement . 1 NUC

Identifier/1iteral . 1 NUC

Identifier/literal series . 1 NUC

TO identifier . 1 NUC

TO identifier series . 1 NUC

TO identifier/1iteral GIVING identifier . 1 NUC

TO identifier/1iteral GIVING identifier series . 1 NUC

ROUNDED phrase . 1 NUC

ON SIZE ERROR phrase . 1 NUC

NOT ON SIZE ERROR phrase . 1 NUC
END-ADD phrase . 1 NUC

CORRESPONDING phrase . 2 NUC

ALTER statement . 1 NUC Z
Only one procedure-name . 1 NUC Z

Procedure-name series . 2 NUC Z

CALL statement . 1 IPC

Literal . 1 IPC

Identifier . 2 IPC

USING phrase . 1 IPC

Identifier . 1 IPC

At least 5 operands permitted . 1 IPC

No limit on number of operands permitted . 2 IPC

BY REFERENCE phrase . 2 IPC

BY CONTENT phrase . 2 IPC

ON OVERFLOW phrase . 2 IPC

ON EXCEPTION phrase . 2 IPC

NOT ON EXCEPTION phrase . 2 IPC

END-CALL phrase . 1 IPC

CANCEL statement . 2 IPC

Literal . 2 IPC

Identifier . 2 IPC

1-54

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT_MODULE

CLOSE statement . 1 SEQ

1 REL

1 INX

1 RPW

File-name . 1 SEQ

1 REL

1 INX

1 RPW

File-name series . 1 SEQ

1 REL

1 INX

1 RPW

REEL/UNIT phrase . 1 SEQ

1 RPW

FOR REMOVAL phrase . 2 SEQ

1 RPW

WITH NO REWIND phrase . 2 SEQ

1 RPW

WITH LOCK phrase . 2 SEQ

2 REL

2 INX

1 RPW

COMPUTE statement . 2 NUC

Arithmetic expression . 2 NUC

Identifier series . 2 NUC

ROUNDED phrase . 2 NUC

ON SIZE ERROR phrase . 2 NUC

NOT ON SIZE ERROR phrase . 2 NUC

END-COMPUTE phrase . 2 NUC

CONTINUE statement . 1 NUC

DELETE statement . 1 REL

1 INX

INVALID KEY phrase ... 1 REL

1 INX

NOT INVALID KEY phrase . 1 REL

1 INX
END-DELETE phrase . 1 REL

1 INX

DISABLE statement . 2 COM

INPUT phrase . 2 COM

TERMINAL phrase . 2 COM

1-0 TERMINAL phrase . 2 COM

OUTPUT phrase . 2 COM

WITH KEY phrase . 2 COM Z

1-55

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT_ _ MODULE

DISPLAY statement . 1 NUC

Only one transfer of data . 1 NUC

No restriction on number of transfers of data . 2 NUC

Identifier/1iteral . 1 NUC

Identifier/1iteral series . 1 NUC

UPON mnemonic-name phrase . 2 NUC

WITH NO ADVANCING phrase . 2 NUC

DIVIDE statement . 1 NUC

BY identifier/1 iteral . 1 NUC

INTO identifier . 1 NUC

INTO identifier series . 1 NUC

GIVING identifier . 1 NUC

GIVING identifier series . 1 NUC

ROUNDED phrase . 1 NUC

REMAINDER phrase . 2 NUC

ON SIZE ERROR phrase . 1 NUC

NOT ON SIZE ERROR phrase . 1 NUC

END-DIVIDE phrase . 1 NUC

ENABLE statement . 2 COM

INPUT phrase . 2 COM

TERMINAL phrase . 2 COM

1-0 TERMINAL phrase . 2 COM

OUTPUT phrase . 2 COM

WITH KEY phrase . 2 COM Z

EVALUATE statement . 2 NUC

Identifier/1iteral . 2 NUC

Arithmetic expression . 2 NUC

Conditional expression . 2 NUC

TRUE/FALSE . 2 NUC

ALSO phrase . 2 NUC

WHEN phrase . 2 NUC

ALSO phrase . 2 NUC

WHEN OTHER phrase . 2 NUC

END-EVALUATE phrase . 2 NUC

EXIT statement . 1 NUC

EXIT PROGRAM statement . 1 IPC

GENERATE statement . 1 RPW

Data-name . 1 RPW

Report-name . 1 RPW

GO TO statement . 1 NUC

Procedure-name is required . 1 NUC

Procedure-name is optional . 2 NUC Z

DEPENDING ON phrase . 1 NUC

1-56

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT _ _ MODULE

IF statement . 1 NUC
Only imperative statements . 1 NUC
Imperative and/or conditional statements . 2 NUC
Nested IF statements . 1 NUC
THEN optional word . 1 NUC
NEXT SENTENCE phrase . 1 NUC
ELSE phrase . 1 NUC
END-IF phrase . 1 NUC

INITIALIZE statement . 2 NUC
Identifier series . 2 NUC
REPLACING phrase . 2 NUC
REPLACING series . 2 NUC

INITIATE statement . 1 RPW
INSPECT statement . 1 NUC
Only single character data item . 1 NUC
Multi-character data item . 2 NUC
TALLYING phrase . 1 NUC

BEFORE/AFTER phrase . 1 NUC
BEFORE/AFTER phrase series . 2 NUC

TALLYING phrase series . 2 NUC
REPLACING phrase . 1 NUC

BEFORE/AFTER phrase . 1 NUC
BEFORE/AFTER phrase series . 2 NUC

REPLACING phrase series . 2 NUC
TALLYING and REPLACING phrase . 1 NUC
CONVERTING phrase . 2 NUC

MERGE statement . 1 SRT
ASCENDING/DESCENDING KEY phrase . 1 SRT
COLLATING SEQUENCE phrase . 1 SRT
USING phrase . 1 SRT
OUTPUT PROCEDURE phrase . 1 SRT
Procedure-name . 1 SRT

GIVING phrase . 1 SRT
MOVE statement . 1 NUC

TO identifier . 1 NUC
TO identifier series . 1 NUC
CORRESPONDING phrase . 2 NUC
De-editing of numeric edited items . 2 NUC

MULTIPLY statement . 1 NUC
BY identifier . 1 NUC
BY identifier series . 1 NUC
GIVING identifier . 1 NUC
GIVING identifier series . 1 NUC
ROUNDED phrase . 1 NUC
ON SIZE ERROR phrase . 1 NUC
NOT ON SIZE ERROR phrase . 1 NUC
END-MULTIPLY phrase . 1 NUC

1-57

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT _ _MODULE

OPEN statement . 1 SEQ

1 REL

1 INX

1 RPW

File-name . 1 SEQ

1 REL

1 INX

1 RPW

File-name series . 1 SEQ
1 REL

1 INX

1 RPW

INPUT phrase . 1 SEQ

1 REL

1 INX

WITH NO REWIND . 2 SEQ

REVERSED phrase . 2 SEQ Z

OUTPUT phrase . 1 SEQ

1 REL

1 INX

1 RPW

WITH NO REWIND phrase . 2 SEQ
1 RPW

1-0 phrase . 1 SEQ
1 REL
1 INX

EXTEND phrase . 2 SEQ

2 REL

2 INX

1 RPW

INPUT, OUTPUT, and 1-0 series . 1 SEQ

1 REL

1 INX

EXTEND series . 2 SEQ

2 REL

2 INX

PERFORM statement . 1 NUC

Procedure-name is optional . 1 NUC

THROUGH procedure-name phrase . 1 NUC

Imperative-statement option . 1 NUC

END-PERFORM phrase . 1 NUC

TIMES phrase . 1 NUC

UNTIL phrase . 1 NUC

TEST BEFORE/AFTER phrase . 2 NUC

VARYING phrase . 2 NUC

TEST BEFORE/AFTER phrase . 2 NUC

AFTER phrase . 2 NUC

At least 6 AFTER phrases permitted . 2 NUC

PURGE statement . 2 COM

1-58

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT _ _MODULE

READ statement . 1 SEQ

1 REL

1 INX

NEXT phrase . 2 SEQ

2 REL

2 INX

INTO phrase . 1 SEQ

1 REL

1 INX

AT END phrase . 1 SEQ

1 REL

1 INX

NOT AT END phrase . 1 SEQ

1 REL

1 INX

KEY phrase . 2 INX

INVALID KEY phrase . 1 REL

1 INX

NOT INVALID KEY phrase . 1 REL

1 INX

END-READ phrase . 1 SEQ

1 REL

1 INX

RECEIVE statement . 1 COM

MESSAGE phrase . 1 COM

SEGMENT phrase . 2 COM

INTO phrase . 1 COM

NO DATA phrase . 1 COM

WITH DATA phrase . 1 COM

END-RECEIVE phrase . 1 COM

RELEASE statement . 1 SRT

FROM phrase . 1 SRT

RETURN statement . 1 SRT

INTO phrase . 1 SRT

AT END phrase . 1 SRT

NOT AT END phrase . 1 SRT

END-RETURN phrase . 1 SRT

REWRITE statement . 1 SEQ

1 REL

1 INX

FROM phrase . 1 SEQ

1 REL

1 INX

INVALID KEY phrase . 1 REL

1 INX
NOT INVALID KEY phrase . 1 REL

1 INX

END-REWRITE phrase . 1 SEQ

1 REL

1 INX

1-59

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT MODULE

SEARCH statement . 2 NUC

VARYING phrase . 2 NUC

AT END phrase . 2 NUC

WHEN phrase . 2 NUC

WHEN phrase series . 2 NUC

END-SEARCH phrase . 2 NUC

SEARCH ALL statement . 2 NUC

AT END phrase . 2 NUC

WHEN phrase . 2 NUC

END-SEARCH phrase . 2 NUC

SEND statement . 1 COM

FROM identifier phrase (portion of a message) . 2 COM

FROM identifier phrase (complete message) . 1 COM

WITH identifier phrase . 2 COM

WITH ESI phrase . 2 COM

WITH EMI phrase . 1 COM

WITH EGI phrase . 1 COM

BEFORE/AFTER ADVANCING phrase . 1 COM

Integer LINE/LINES . 1 COM

Identifier LINE/LINES . 1 COM

Mnemonic-name . 2 COM

PAGE . 1 COM

REPLACING LINE phrase . 2 COM

SET statement . 1 NUC

Index-name/identifier TO . 1 NUC

Index-name UP BY/DOWN BY . 1 NUC

Mnemonic-name TO ON/OFF . 1 NUC

Condition-name TO TRUE . 2 NUC

SORT statement . 1 SRT

ASCENDING/DESCENDING KEY phrase . 1 SRT

DUPLICATES phrase . 1 SRT

COLLATING SEQUENCE phrase . 1 SRT

INPUT PROCEDURE phrase . 1 SRT

Procedure-name . 1 SRT

USING phrase . 1 SRT

OUTPUT PROCEDURE phrase . 1 SRT

Procedure-name . 1 SRT

GIVING phrase . 1 SRT

1-60

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT_MODULE

START statement . 2 REL

2 INX

KEY phrase . 2 REL

2 INX

EQUAL TO . 2 REL

2 INX
= 2 REL

2 INX

GREATER THAN . 2 REL

2 INX

> 2 REL

2 INX

NOT LESS THAN . 2 REL

2 INX

NOT < 2 REL

2 INX

GREATER THAN OR EQUAL TO . 2 REL

2 INX

>= 2 REL

2 INX

INVALID KEY phrase . 2 REL

2 INX

NOT INVALID KEY phrase . 2 REL

2 INX

END-START phrase . 2 REL

2 INX

STOP statement . 1 NUC

RUN . 1 NUC

Literal . 1 NUC Z

STRING statement . 2 NUC

DELIMITED BY series . 2 NUC

WITH POINTER phrase . 2 NUC

ON OVERFLOW phrase . 2 NUC

NOT ON OVERFLOW phrase . 2 NUC

END-STRING phrase . 2 NUC

SUBTRACT statement . 1 NUC

Identifier/literal . 1 NUC

Identifier/1iteral series.. 1 NUC

FROM identifier . 1 NUC

FROM identifier series . 1 NUC

GIVING identifier . 1 NUC

GIVING identifier series . 1 NUC

ROUNDED phrase . 1 NUC

ON SIZE ERROR phrase . 1 NUC

NOT ON SIZE ERROR phrase . 1 NUC

END-SUBTRACT phrase . 1 NUC

CORRESPONDING phrase . 2 NUC

SUPPRESS statement . 1 RPW

TERMINATE statement . 1 RPW

1-61

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT_ _ MODULE

UNSTRING statement . 2 NUC

DELIMITED BY phrase . 2 NUC

DELIMITER IN phrase . 2 NUC

COUNT IN phrase . 2 NUC

WITH POINTER phrase . 2 NUC

TALLYING phrase . 2 NUC

ON OVERFLOW phrase . 2 NUC

NOT ON OVERFLOW phrase . 2 NUC

END-UNSTRING phrase . 2 NUC

USE statement . 1 SEQ

1 REL

1 INX

1 RPW

1 DEB Z

EXCEPTION/ERROR PROCEDURE phrase . 1 SEQ

1 REL

1 INX

1 RPW

GLOBAL phrase . 2 IPC

ON file-name . 1 SEQ

1 REL

1 INX

1 RPW

ON file-name series . 2 SEQ

2 REL

2 INX

1 RPW

ON INPUT . 1 SEQ
1 REL

1 INX

ON OUTPUT . 1 SEQ
1 REL

1 INX

1 RPW

ON 1-0 . 1 SEQ

1 REL

1 INX

ON EXTEND . 2 SEQ

2 REL

2 INX

1 RPW

BEFORE REPORTING phrase . 1 RPW

GLOBAL phrase . 2 IPC

FOR DEBUGGING phrase . 1 DEB Z

Procedure-name . 1 DEB Z

ALL PROCEDURES . 1 DEB Z

ALL REFERENCES OF identifier-1 . 2 DEB Z

Cd-name . 2 DEB Z

File-name . 2 DEB Z

1-62

Procedure Division Element Summary

SUMMARY OF ELEMENTS IN PROCEDURE DIVISION

ELEMENT_ MODULE

WRITE statement . 1 SEQ

1 REL

1 INX

FROM phrase . 1 SEQ

1 REL

1 INX

BEFORE/AFTER ADVANCING phrase . 1 SEQ

Integer LINE/LINES . 1 SEQ

Identifier LINE/LINES . 1 SEQ
Mnemonic-name . 2 SEQ

PAGE . 1 SEQ

AT END-OF-PAGE/EOP phrase . 2 SEQ

NOT AT END-OF-PAGE/EOP phrase . 2 SEQ

INVALID KEY phrase . 1 REL

1 INX

NOT INVALID KEY phrase . 1 REL

1 INX

END-WRITE phrase . 1 SEQ

1 REL

1 INX

Segmentation

Segment-numbers 0 through 49 for permanent segments . 1 SEG Z

Segment-numbers 50 through 99 for independent segments . 1 SEG Z

All sections with the same segment-number must be

together in the source program . 1 SEG Z

Sections with the same segment-number need not be

physically contiguous in the source program . 2 SEG Z

Source Text Manipulation in Procedure Division

COPY statement . 1 STM

OF/IN library-name phrase . 2 STM

REPLACING phrase . 2 STM

Pseudo-text . 2 STM

Identifier . 2 STM

Literal . 2 STM

Word . 2 STM

REPLACE statement . 2 STM

Pseudo-text BY pseudo-text . 2 STM

OFF . 2 STM

1-63

Concepts

SECTION II: CONCEPTS

1 . INTRODUCTION

to obtain a necessary

In this section each of

its inclusion in the

2. FILES

COBOL offers many features which allow the user

function without programming the function in detail,

these features is discussed, considering the reason for

language and the concept of its use and organization.

A file is a collection of records which may be placed into or retrieved from

a storage medium. The user not only chooses the file organization, but also

chooses the file processing method and sequence. Although the file organization

and processing method are restricted for sequential media, no such restrictions

exist for mass storage media.

When describing the capabilities of COBOL programs to manipulate files, the

following conventions are used. The term 'file-name' means the user-defined

word used in the COBOL source program to reference a file. The terms 'file

referenced by file-name' and 'file' mean the physical file regardless of the

file-name used in the COBOL program. The term 'file connector' means the entity

containing information concerning the file. All accesses to physical files

occur through file connectors. In various implementations the file connector is

referred to as a file information table, a file control block, etc.

2.1 FILE ATTRIBUTES

A file has several attributes which apply to the file at the time it is

created and cannot be changed throughout the lifetime of the file. The primary

attribute is the organization of the file, which describes its logical

structure. There are three organizations: sequential, relative, and indexed.

Other fixed attributes of the file provided by the COBOL program are prime

record key, alternate record keys, code set, the minimum and maximum logical

record size, the record type (fixed or variable), the collating sequence of the

keys for indexed files, the blocking factor, the padding character, and the

record delimiter.

2.1.1 Sequential Organization

Sequential files are organized so that each record, except the last, has a

unique successor record; each record, except the first, has a unique predecessor

record. The successor relationships are established by the order of execution

of WRITE statements when the file is created. Once established, successor

relationships do not change except in the case where records are added to the

end of a file.

II-l

Concepts Fi les

A sequentially organized mass storage file has the same logical structure as

a file on any sequential medium; however, a sequential mass storage file may be

updated in place. When this technique is used, new records cannot be added to

the file and each replaced record must be the same size as the original record.

2.1.2 Relative Organization

A file with relative organization is a mass storage file from which any

record may be stored or retrieved by providing the value of its relative record

number.

Conceptually, a file with relative organization comprises a serial string of

areas, each capable of holding a logical record. Each of these areas is

denominated by a relative record number. Each logical record in a relative file

is identified by the relative record number of its storage area. For example,

the tenth record is the one addressed by relative record number 10 and is in the

tenth record area, whether or not records have been written in any of the first

through the ninth record areas.

In order to achieve more efficient access to records in a relative file, the

number of character positions reserved on the medium to store a particular

logical record may be different from the number of character positions in the

description of that record in the program.

2.1.3 Indexed Organization

A file with indexed organization is a mass storage file from which any record

may be accessed by giving the value of a specified key in that record. For each

key data item defined for the records of a file, an index is maintained. Each

such index represents the set of values from the corresponding key data item in

each record. Each index, therefore, is a mechanism which can provide access to

any record in the file.

Each indexed file has a primary index which represents the prime record key

of each record in the file. Each record is inserted in the file, changed, or

deleted from the file based solely upon the value of its prime record key. The

prime record key of each record in the file must be unique, and it must not be

changed when updating a record. The prime record key is declared in the RECORD

KEY clause of the file control entry for the file.

Alternate record keys provide alternative means of retrieval for the records

of a file. Such keys are named in the ALTERNATE RECORD KEY clauses of the file

control entry. The value of a particular alternate record key in each record

need not be unique. When these values may not be unique, the DUPLICATES phrase

is specified in the ALTERNATE RECORD KEY clause.

2.1.4 Logical Records

A logical record is the unit of data which is retrieved from or stored

file. The number of records that may exist in a file is limited only

capacity of the storage media. There are two types of records: fixed

and variable length. When a file is created, it is declared to contain

fixed length or variable length records. In any case, the content of the

into a

by the
length

either

record

II-2

Concepts Files

area does not reflect any information the implementor may add to the record on

the physical storage medium (such as record length headers), nor does the length

of the record used by the COBOL programmer reflect these additions.

2.1.4.1 Fixed Length Records

Fixed length records must contain the same number of character positions for

all the records in the file. All input-output operations on the file can

process only this one record size. Fixed length records may be explicitly

selected by specifying format 1 of the RECORD clause in the file description

entry for the file regardless of the individual record descriptions.

2.1.4.2 Variable Length Records

Variable length records may contain differing numbers of character positions

among the records on the file. To define variable length records explicitly,

the VARYING phrase may be specified in the RECORD clause in the file description

entry or the sort-merge file description entry for the file. The length of a

record is affected by the data item referenced in the DEPENDING phrase of the

RECORD clause or the DEPENDING phrase of an OCCURS clause or by the length of

the record description entry for the file.

2.1.4.3 Implementor-Defined Record Types

Where no RECORD clause is specified in the file description entry for a file,

or where the RECORD clause specifies a range of character positions, it is

implementor defined whether fixed length or variable length records are

obtained.

2.2 FILE PROCESSING

A file can be processed by performing operations upon individual records or

upon the file as a unit. Unusual conditions that occur during processing are

communicated back to the program.

2.2.1 Record Operations

The ACCESS MODE clause of the file description entry specifies the manner in

which the object program operates upon records within a file. The access mode

may be sequential, random, or dynamic.

For files that are organized as relative or indexed, any of the three access

modes can be used to access the file regardless of the access mode used to

create the file. A file with sequential organization may only be accessed in

sequential mode.

The organization, format, and contents of an output report may be specified

using the report writer feature. (See page II-8, Report Writer.)

2.2.1.1 Sequential Access Mode

A file can be accessed sequentially irrespective of the file organization.

For sequential organization, the order of sequential access is the order in

which the records were originally written.

II-3

Concepts Files

For relative organization, the order of sequential access is ascending based

on the value of the relative record numbers. Only records which currently exist

in the file are made available. The START statement may be used to establish a

starting point for a series of subsequent sequential retrievals.

For indexed organization, the order of sequential access is ascending based

on the value of the key of reference according to the collating sequence

associated with the native character set. Any of the keys associated with the

file may be established as the key of reference during the processing of the

file. The order of retrieval from a set of records which have duplicate key of

reference values is the original order of arrival of those records into the set.
The START statement may be used to establish a starting point within an indexed

file for a series of subsequent sequential retrievals.

2.2.1.2 Random Access Mode

When a file is accessed in random mode, input-output statements are used to

access the records in a programmer-specified order. The random access mode may

only be used with relative or indexed file organizations.

For a file with relative organization, the programmer specifies the desired

record by placing its relative record number in a relative key data item. With

the indexed organization, the programmer specifies the desired record by placing

the value of one of its record keys in a record key or an alternate record key

data item.

2.2.1.3 Dynamic Access Mode

With dynamic access mode, the programmer may change at will from sequential

accessing to random accessing, using appropriate forms of input-output

statements. The dynamic access mode may only be used on files with relative or

indexed organizations.

2.2.1.4 Open Mode

The open mode of the file is related to the actions to be performed upon

records in the file. The open modes and purposes are: input, to retrieve

records; output, to place records into a file; extend, to append records to an

existing file; 1-0, to retrieve and update records. The open mode is specified

in the OPEN statement.

When the open mode is input, a file may be accessed by the READ statement.

The START statement may also be used for files organized as indexed or relative

which are in sequential or dynamic access modes.

When the open mode is output, the records are placed into the file by issuing

WRITE, GENERATE, or TERMINATE statements.

When the open mode is extend, new records are added to the logical end of a

file by issuing WRITE, GENERATE, or TERMINATE statements.

Only mass storage files may be referenced in the open 1-0 mode. The

additional capabilities of mass storage devices permit updating in place, thus

READ and REWRITE statements may always be used. A mass storage file may be

updated in the same manner as a file on a sequential medium, by transcribing the

II-4

Concepts Files

entire file into another file (perha

READ and WRITE statements. However

mass storage file in place. This ma

the REWRITE statement to return

medium only those records which have

the only operations allowed whil

files. However, for indexed or

additional functions may be appl

sequential or dynamic access mode to

DELETE statement may be used with

from a file; the WRITE statement may

insert a new record into the file.

ps in a separate area of mas

, it is sometimes more effic

ss storage file maintenance

to their previous location

changed. READ and REWRITE

e updating in place sequen

relative organized files,

ied: the START statement

alter the sequence of recor

any access mode to remove a

be used in random or dynami

s storage) using

ient to update a

technique uses

s on the storage

statements are

tially organized

the following

may be used in

d retrieval; the

record logically

c access mode to

2.2.1.5 Current Volume Pointer

The current volume pointer is

facilitate exact specification

file. The status of the current

READ, and WRITE statements.

a conceptual entity used in this document to

of the current physical volume of a sequential

volume pointer is affected by the CLOSE, OPEN,

2.2.1.6 File Position Indicator

The file position indicator is a conceptual entity used in this document to

facilitate exact specification of the next record to be accessed within a given

file during certain sequences of input-output operations. The setting of the

file position indicator is affected only by the OPEN, READ and START statements.

The concept of a file position indicator has no meaning for a file opened in the

output or extend mode.

2.2.1.7 Linage Concepts

The LINAGE clause may be used when specifying an output report. It

facilitates definition of a logical page, and the positioning within that

logical page of top and bottom margins and a footing area. Use of the LINAGE

clause implicitly defines an associated special register, the LINAGE-COUNTER,

which acts as a pointer to a line within the page body.

2.2.2 File Operations

Several COBOL statements operate upon files as entities or as collections of

records. These are the CLOSE, MERGE, OPEN, and SORT statements.

2.2.2.1 Sorting and Merging

2.2.2.1.1 Sorting

In many sort applications it is necessary to apply some special processing to

the contents of a sort file. The special processing may consist of addition,

deletion, creation, altering, editing, or other modification of the individual

records in the file. It may be necessary to apply the special processing before

or after the records are reordered by the sort, or special processing may be

required in both places. The COBOL sort feature allows the user to express

these procedures and to specify at which point, before or after the sort, they

are to be executed. A COBOL program may contain any number of sorts, and each

II-5

Concepts - Files

of them may have its own input and output procedures. The sort feature

automatically causes execution of these procedures at the specified point.

Within an input procedure, the RELEASE statement is used to create the sort

file. That is, at the completion of execution of the input procedure those

records that have been processed by use of the RELEASE statement (rather than

the WRITE statement) comprise the sort file, and this file is available only to

the SORT statement. Execution of the SORT statement arranges the entire set of

records in the sort file according to the keys specified in the SORT statement.

The sorted records are made available from the sort file by use of the RETURN

statement during execution of the output procedure.

The sort file has no label procedures which the programmer can control and

the rules for blocking and for allocation of internal storage are peculiar to

the SORT statement. The RELEASE and RETURN statements imply nothing with

respect to buffer areas, blocks, or reels. A sort file, then may be considered

as an internal file which is created (RELEASE statement) from the input file,

processed (SORT statement), and then made available (RETURN statement) to the

output file. The sort file itself is referred to and accessed only by the SORT

statement. A sort-merge file description can be considered to be a particular

type of file description. That is, a sort file, like any file, is a set of

records.

2.2.2.1.2 Merging

In some applications it is necessary to apply some special processing to the

contents of a merged file. The special processing may consist of addition,

deletion, altering, editing, or other modification of the individual records in

the file. The COBOL merge feature allows the user to express an output

procedure to be executed as the merged output is created. The merged records

are made available from the merge file by use of the RETURN statement in the

output procedure.

The merge file has no label procedures which the programmer can control and

the rules for blocking and for allocation of internal storage are peculiar to

the MERGE statement. The RETURN statement implies nothing with respect to

buffer areas, blocks, or reels.

A merge file, then, may be considered as an internal file which is created

from input files by combining them (MERGE statement) as the file is made

available (RETURN statement) to the output file. The merge file itself is

referred to and accessed only by the MERGE statement. A sort-merge file

description can be considered to be a particular type of file description. That

is, a merge file, like any file, is a set of records.

2.2.3 Exception Handling

During the execution of any input or output operation, unusual conditions may

arise which preclude normal completion of the operation. There are three

methods by which these conditions are communicated to the object program; status

keys, exception declaratives, and optional phrases associated with the

imperative statement.

II-6

Concepts Files

2.2.3.1 1-0 Status

1-0 status is a conceptual entity used in this document to facilitate exact

specification of the status of the execution of an input-output operation. The

setting of 1-0 status is affected only by the CLOSE, DELETE, OPEN, READ,

REWRITE, START, and WRITE statements. The 1-0 status value for a given file is

made available to the program via the data-name specified in the FILE STATUS

clause of the file control entry for that file. The 1-0 status value is placed

into this data item during the execution of the input-output statement and prior

to the execution of any imperative statement associated with that input-output

statement or prior to the execution of any exception declarative.

2.2.3.2 Exception Declaratives

A USE AFTER EXCEPTION procedure, when one is specified for the file, is

executed whenever an input or output condition arises which results in an

unsuccessful input-output operation. However, the exception declarative is not

executed if the condition is invalid key and the INVALID KEY phrase is

specified, or if the condition is at end and the AT END phrase is specified.

2.2.3.3 Optional Phrases

The INVALID KEY phrases may be associated with the DELETE, READ, REWRITE,

START, or WRITE statements. Some of the conditions that give rise to an invalid

key condition are when a requested key does not exist in the file (DELETE, READ,

or START statements), when a key is already in a file and duplicates are not

allowed (WRITE statement), and when a key does not exist in the file or when it

was not the last key read (REWRITE statement). If the invalid key condition

occurs during the execution of a statement for which the INVALID KEY phrase has

been specified, the statement identified by that INVALID KEY phrase is executed.

The AT END phrase may be associated with a READ statement. The at end

condition occurs in a sequentially accessed file when no next logical record

exists in the file, when the number of significant digits in the relative record

number is larger than the size of the relative key data item, when an optional

file is not present, or when a READ statement is attempted and the at end

condition already exists. If the at end condition occurs during the execution

of a statement for which the AT END phrase has been specified, the statement

identified by that AT END phrase is executed.

II-7

Concepts - Report Writer

3. REPORT WRITER

The report writer is a special purpose feature which places its emphasis on

the organization, format, and contents of an output report. Although a report

can be produced using the standard COBOL language, the report writer language

features provide a more concise facility for report structuring and report

production. Much of the Procedure Division programming which would normally be

supplied by the programmer is instead provided automatically by the report

writer control system (RWCS). Thus the programmer is relieved of writing

procedures for moving data, constructing print lines, counting lines on a page,

numbering pages, producing heading and footing lines, recognizing the end of

logical data subdivisions, updating sum counters, etc. All these operations are

accomplished by the report writer control system as a consequence of source

language statements that appear primarily in the Report Section of the Data

Division of the source program.

3.1 REPORT SECTION

The Report Section of a COBOL Data Division contains one or more report

description entries (RD entries), each of which forms the complete description

of a report .

The report named in the report description entry is not assigned directly to

an output file. Instead, it is associated with a file-name in the File Section

and that file-name is associated with a file when an OPEN statement specifying

the file-name is executed. More than one report may be associated with the same

file-name and the CODE clause is used to differentiate among the reports. For

an external file connector referenced by a file-name, separately compiled

programs may specify different reports for the same file-name. The file

description entry of a file-name to which a report is assigned may not contain

record description entries which describe data records. This file description

entry must specify the name of a report description entry for each report

associated with that file-name in this program.

The report description entry contains a set of clauses that names the report

and supplies specific information about the format of the printed page and the

organization of the subdivisions of the report. An identification code may be

given in the report description entry so that each report may be identified

separately in an intermediate output file.

Following each report description entry are one or more 01 level-number

entries, each followed by a hierarchical structure similar to COBOL record

descriptions. Each 01 level-number entry and its subordinate entries describes

a report group. Each report group consists of zero, one, or more print lines

that are regarded as a unit. A report group that is to be printed is printed

entirely on one logical page; it is never split across pages.

3.2 REPORT STRUCTURE

When structuring a report, major consideration must be given to vertical and

horizontal spacing requirements, manipulation of data, and the physical and

logical subdivisions of a report.

II-8

Concepts - Report Writer

3.2.1 Vertical Spacing

The report writer feature allows the user to describe report groups

containing multiple lines. The vertical positioning of the lines on a page is

specified by the LINE NUMBER clause that is associated with each line. The NEXT

GROUP clause indicates how many lines to space after presenting the last line of

the group. The first LINE NUMBER clause of the next group indicates additional

spacing information to be used in positioning of that group.

3.2.2 Horizontal Spacing

The report writer allows the user to position the fields of data on a report

line by means of the COLUMN NUMBER clause. The report writer control system

supplies space fill between all defined fields.

3.2.3 Data Manipulation

When the report writer feature is used, data movement to a report group is

directed by Report Section clauses rather than Procedure Division statements.

The Report Section clauses which effect the manipulation of data are the SOURCE,

SUM, and VALUE clauses.

The SOURCE clause specifies the sending data item of an implicit MOVE

statement. The receiving printable item is defined by the description of the

report group item in which the SOURCE clause appears.

The SUM clause automatically causes the establishment of a sum counter. The

object of the SUM clause names the data item(s) which are added to the sum

counter when a GENERATE statement is executed. The move of the sum counter

contents to the receiving printable item, defined by the description of the

report group item in which the SUM clause appears, is accomplished automatically

when that report group is presented.

The VALUE clause defines a literal that appears in the printable item of a

report group each time that report group is to be presented.

In summary, a data item in a report group is presented only if it has a

COLUMN NUMBER clause specifying where it is to be presented. The value that is

placed in a printable item is determined by the SOURCE, SUM, or VALUE clause

stated in the report group description. Under no circumstances may a report

group printable item receive a value directly via a Procedure Division

statement.

3.2.4 Report Subdivisions

The physical and logical organization of a report interact to determine what

is presented on a page.

3.2.4.1 Physical Subdivision of a Report

The PAGE clause specifies the length of the page, the size of the heading and

footing areas, and the size of the area in which the detail lines will appear.

The report writer control system uses the LINE NUMBER and NEXT GROUP clauses to

position these report groups, and when necessary, to advance to a new page with

automatic production of PAGE HEADING and PAGE FOOTING report groups.

II-9

Concepts - Report Writer

3.2.4.2 Logical Subdivisions of a Report

Detail report groups may be structured into a nested set of control groups.

Each control group may begin with a control heading report group and end with a

control footing report group.

When nested control groups are defined, the recognition of a change in value

of a control data item in a control hierarchy is called a control break and the

heading and footing lines associated with the control data-name are called

control heading and control footing report groups.

During the execution of a GENERATE statement, the report writer control

system uses the control hierarchy to check automatically for control breaks. If

a control break has occurred, all controls that are minor to it are considered

to have changed, even though they may not in fact have changed. The occurrence

of a control break causes the following sequence of events to take place:

(1) All control footing report groups are presented up to and including the

one at the level at which the control break occurred.

(2) All control heading report groups are presented from the control break

level down to the most minor control.

(3) The detail report group named in the GENERATE statement is presented.

3.3 PROCEDURE DIVISION REPORT WRITER STATEMENTS

The report writer statements that appear in the Procedure Division are:

INITIATE, GENERATE, TERMINATE, SUPPRESS, and USE BEFORE REPORTING.

The INITIATE statement causes the report writer control system to perform

automatically a number of initialization functions. A report must be initiated

before any detail processing may take place.

The GENERATE statement which specifies a data-name causes the named DETAIL

report group to be formatted and written to the output device. In addition, it

triggers the report writer control system to perform the many implicit actions

described in the preceding section.

The GENERATE statement which specifies a report-name provides a means of

summary reporting. A report produced by this type of statement has all detail

print lines suppressed automatically and consists of only the summary totals

accumulated during the processing of the DETAIL report group. The report writer

control system processing for a GENERATE report-name statement is identical to

that which occurs for a GENERATE data-name statement, except that the former

results in the suppression of detail print lines.

The TERMINATE statement causes the report writer control system to perform

all of the automatic functions associated with the termination of a report. The

TERMINATE statement must be executed before the file containing the report is

closed.

The SUPPRESS statement provides the object time facility to suppress the

printing of an entire report group.

11-10

Concepts - Report Writer

The BEFORE REPORTING phrase of the USE statement provides a mechanism whereby

Procedure Division statements may be executed at specific instances within the

automatic procedures performed by the report writer control system. The

statements in the USE BEFORE REPORTING procedure may alter the contents of the

data items that are referenced by SOURCE clauses. Thus control is possible over

the contents of data items referenced within report groups that are produced

automatically.

11-11

Concepts - Table Handling

4. TABLE HANDLING

Tables of data are common components of business data processing problems.

Although the repeating items that make up a table could be otherwise described

by a series of separate data description entries all having the same

level-number and all subordinate to the same group item, there are two reasons

why this approach is not satisfactory. First, from a documentation standpoint,

the underlying homogeneity of the items would not be readily apparent; and

second, the problem of making available an individual element of such a table

would be severe when there is a decision as to which element is to be made

available at object time.

Tables of data items are defined in COBOL by including the OCCURS clause in

their data description entries. This clause specifies that the item is to be

repeated as many times as stated. The item is considered to be a table element

and its name and description apply to each repetition or occurrence. Since each

occurrence of a table element does not have assigned to it a unique data-name,

reference to a desired occurrence may be made only by specifying the data-name

of the table element together with the occurrence number of the desired table

element. The occurrence number is known as a subscript.

The number of occurrences of a table element may be specified to be fixed or

variable.

4.1 TABLE DEFINITION

To define a one-dimensional table, the programmer uses an OCCURS clause as

part of the data description of the table element, but the OCCURS clause must

not appear in the description of group items which contain the table element.

Example 1 shows a one-dimensional table defined by the item TABLE-ELEMENT.

Example 1:

01 TABLE-1 .

02 TABLE-ELEMENT OCCURS 20 TIMES.

03 DOG ...

03 FOX .. .

In example 2, TABLE-ELEMENT defines a one-dimensional table, but DOG does not

since there is an OCCURS clause in the description of the group item

(TABLE-ELEMENT) which contains DOG.

Example 2:

02 TABLE-1.

03 TABLE-ELEMENT OCCURS 20 TIMES.

04 DOG OCCURS 5 TIMES.

05 EASY ...

05 FOX ...

In both examples, the complete set of occurrences of TABLE-ELEMENT has been

assigned the name TABLE-1. However, it is not necessary to give a group name to

the table unless it is desired to refer to the complete table as a group item.

11-12

Concepts - Table Handling

None of the three one-dimensional tables which appear in the following two

examples has a group name.

Example 3:

01 ABLE.

02 BAKER ...

02 CHARLIE OCCURS 20 TIMES ...

02 DOG . . .

Example 4:

01 ABLE.

02 BAKER OCCURS 20 TIMES ...

02 CHARLIE ...

02 DOG OCCURS 5 TIMES ...

Defining a one-dimensional table within each occurrence of an element of

another one-dimensional table gives rise to a two-dimensional table. To define

a two-dimensional table, then, an OCCURS clause must appear in the data

description of the element of the table, and in the description of only one

group item which contains that table element. Thus, in example 5, DOG

element of a two-dimensional table; it occurs 5 times within each element

item BAKER which itself occurs 20 times. BAKER is an element

one-dimensional table.

Example 5:

02 BAKER OCCURS 20 TIMES ...

03 CHARLIE ...

03 DOG OCCURS 5 TIMES ...

In the general case, to define an n-dimensional table, the OCCURS

should appear in the data description of the element of the table and

descriptions of (n - 1) group items which contain the element.

4.2 INITIAL VALUES OF TABLES

In the Working-Storage Section, initial values of elements within tables are

specified in one of the following ways:

(1) The table may be described as a series of separate data description

entries all subordinate to the same group item, each of which specifies the

value of an element, or part of an element, of the table. In defining the

record and its elements, any data description clause (USAGE, PICTURE, etc.) may

be used to complete the definition, where required. The hierarchical structure

of the table is then shown by use of the REDEFINES entry and its associated

subordinate entries. The subordinate entries, following the REDEFINES entry,

which are repeated due to OCCURS clauses, must not contain VALUE clauses.

(2) All the dimensions of a table may be initialized by associating the

VALUE clause with the description of the entry defining the entire table. The

lower level entries will show the hierarchical structure of the table; lower

level entries must not contain VALUE clauses.

is an

of the

of a

clause

in the

11-13

Concepts - Table Handling

(3) The value of selected table elements may be specified using VALUE

clauses.

4.3 REFERENCES TO TABLE ITEMS

Whenever the user references a table element or a condition-name associated

with a table element, the reference must indicate which occurrence of the

element is intended, except in a USE FOR DEBUGGING statement and SEARCH

statement. For access to a one-dimensional table the occurrence number of the

desired element provides complete information. For tables of more than one

dimension, an occurrence number must be supplied for each dimension of the

table. In example 5, then, a reference to the fourth BAKER or the fourth

CHARLIE would be complete, whereas a reference to the fourth DOG would not. To

reference DOG, which is an element of a two-dimensional table, the user must

reference, for example, the fourth DOG in the fifth BAKER.

4.4 SUBSCRIPTING

Occurrence numbers are specified by appending one or more subscripts to the

data-name.

The subscript can be represented either by an integer, a data-name which

references an integer numeric elementary item, or an index-name associated with

the table. A data-name or index-name may be followed by either the operator f

or the operator - and an integer, which is used as an increment or decrement,

respectively. It is permissible to mix integers, data-names, and index-names.

The subscripts, enclosed in parentheses, are written immediately following

any qualification for the name of the table element. The number of subscripts

in such a reference must equal the number of dimensions in the table whose

element is being referenced. That is, there must be a subscript for each OCCURS

clause in the hierarchy containing the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of

successively less inclusive dimensions of the data organization. If a

multi-dimensional table is thought of as a series of nested tables and the most

inclusive or outermost table in the nest is considered to be the major table

with the innermost or least inclusive table being the minor table, the

subscripts are written from left to right in the order major, intermediate, and

minor.

A reference to an item must not be subscripted if the item is not a table

element or an item or condition-name within a table element.

The lowest permissible occurrence number is 1. The highest permissible

occurrence number in any particular case is the maximum number of occurrences of

the item as specified in the OCCURS clause.

4.4.1 Subscripting Using Integers or Data-Names

When an integer

to reference items

of the same size,

subscript with one

or data-name is used to represent a subscript , it may be used

within different tables. These tables need not have elements

The same integer or data-name may appear as the only

item and as one of two or more subscripts with another item.

11-14

Concepts Table Handling

4.4.2 Subscripting Using Index-Names

In order to facilitate such operations as table searching and manipulating

specific items, a technique called indexing is available. To use this

technique, the programmer assigns one or more index-names to an item whose data

description entry contains an OCCURS clause. An index associated with an

index-name acts as a subscript, and its value corresponds to an occurrence

number for the item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated

with its table, is an optional part of the OCCURS clause. There is no separate
entry to describe the index associated with index-name since its definition is

completely hardware oriented. At object time the contents of the index

correspond to an occurrence number for that specific dimension of the table with

which the index is associated; however, the manner of correspondence is

determined by the implementor. The initial value of an index at object time is

undefined, and the index must be initialized before use. The initial value of

an index is assigned with the PERFORM statement with the VARYING phrase, the

SEARCH statement with the ALL phrase, or the SET statement.

The use of an integer or data-name as a subscript referencing a table element

or an item within a table element does not cause the alteration of any index

associated with that table.

An index-name can be used to reference

associated via the INDEXED BY phrase.

only the table to which it is

Data that is arranged in the form of a table is often searched. The SEARCH

statement provides facilities for producing serial and nonserial (for example,

binary) searches. It is used to search a table for a table element that

satisfies a specific condition and to adjust the value of the associated index

to indicate that table element.

Relative indexing is an additional option for making references to a table

element or to an item within a table element. When the name of a table element

is followed by a subscript of the form (index-name + or - integer), the

occurrence number required to complete the reference is the same as if

index-name were set up or down by integer via the SET statement before the

reference. The use of relative indexing does not cause the object program to

alter the value of the index.

The value of an index can be made accessible to an object program by storing

the value in an index data item. Index data items are described in the program

by a data description entry containing a USAGE IS INDEX clause. The index value

is moved to the index data item by the execution of a SET statement.

11-15

Concepts - Table Handling

4.4.3 Subscripting Example

Assuming the following data definition:

02 XCOUNTER ...

02 BAKER OCCURS 20 TIMES INDEXED BY BAKER-INDEX ...

03 CHARLIE ...

03 DOG OCCURS 5 TIMES ...

04 EASY

88 MAX VALUE IS ...

04 FOX . . .

05 GEORGE OCCURS 10 TIMES ...

06 HARRY ...

06 JIM ...

references to BAKER and CHARLIE require only one subscript, references to DOG,

EASY, MAX, and FOX require two, and references to GEORGE, HARRY, and JIM require

three.

To illustrate the requirement of order from major- to minor,

means the HARRY in the seventh GEORGE, in the second DOG,

BAKER.

HARRY (18, 2, 7)

in the eighteenth

Mixing integers ,

HARRY (BAKER-INDEX, 4,

data-names,

XCOUNTER +5).

and index-names is illustrated by

11-16

Concepts - Shared Memory Area

5 . SHARED MEMORY AREA

This feature is basically oriented toward saving memory space in the object

program as it allows more than one file to share the same file area and

input-output areas.

When the RECORD option of the SAME clause is used, only the record area is

shared and the input-output areas for each file remain independent. In this

case any number of the files sharing the same record area may be active at one

time. This factor can give rise to an increase in the speed of the object

program.

To illustrate this point, consider file maintenance. If the programmer

assigns the same record area to both the old and new files, he not only saves

memory in the object program, but because this technique eliminates a move of

each record from the input to the output area, significant time savings result.

An additional benefit of this technique is that the programmer need not define

the record in detail as a part of both the old and new files. Rather, he

defines the record completely in one case and simply includes the level 01 entry

in the other. Because these record areas are in fact the same area, one set of

names suffices for all processing requirements without requiring qualification.

When the SAME clause is used without the RECORD option not only the file

areas but the input-output areas as well are shared.

As a result , only one of the fil es

to be active at one time. Th i s

applicat ion in which a series of fi les

object program I n these case s , the

memory s pace .

sharing the same set of areas

form of the clause is des

is used during different ph

SAME clause allows the progr

is permitted

igned for the

ases of the

ammer to save

11-17

Concepts - Program Communication

6. PROGRAM AND RUN UNIT ORGANIZATION AND COMMUNICATION

Complete data processing problems are frequently solved by developing a set

of separately compilable but logically coordinated programs which at some time

prior to execution may be compiled and assembled into a complete problem

solution. The organization of COBOL programs and run units supports this

approach of dividing large problem solutions into small, more manageable,

portions which may be programmed and validated independently.

6.1 PROGRAM AND RUN UNIT ORGANIZATION

There are two levels of computer programs in a COBOL environment. These are

the source level and the object level.

At the source level, the most inclusive unit of a computer program is a

source program. A source program may contain other source programs. A source

program is a syntactically correct set of COBOL statements as specified in this

document and consists of an Identification Division followed optionally by an

Environment Division and/or a Data Division and/or a Procedure Division. A

source program which itself is not contained within another source program can

be converted by a compiler into an object program that either alone, or together

with other object programs, is capable of being executed. In general, a source

program which is contained within another program cannot itself be converted by

a compiler into an object program, since the specifications in this document

explicitly permit a contained source program to reference data in a containing

source program.

The Procedure Division of a source program is organized into a sequence of

procedures of two types. Declarative procedures, normally termed declaratives,

are procedures which will be executed only when special conditions occur during

the execution of a program. Nondeclarative procedures are procedures which will

be executed according to the normal flow of control within a program.

Declaratives may contain nondeclarative procedures but these will be executed

only during the execution of the declarative which contains them.

Nondeclarative procedures may contain other nondeclarative procedures but must

not contain a declarative. Neither declaratives nor nondeclarative procedures

can contain programs. In other words, in COBOL the terms 'procedure' and

'program' are not synonyms.

At the object level the most inclusive unit of organization of computer

programs is the run unit. A run unit is a complete problem solution consisting

of an object program or of several inter-communicating object programs. A run

unit is an independent entity that can be executed without communicating with,

or being coordinated with, any other run unit except that it may process data

files and messages or set and test switches that were written or will be read by

other run units.

When a program is called, parameters upon which it is to operate may be

passed to it by the program which calls it. As any separately compiled program

may be the first program executed in a run unit, the first executed program of a

run unit may receive parameters.

11-18

Concepts - Program Communication

A run unit may also contain object code and data storage areas derived from

the compilation of programs written in languages other than COBOL; in this case

the requirements for the relationship between the COBOL and the non-COBOL

programs are defined by the implementor.

6.2 ACCESSING DATA AND FILES

Some data items have associated with them a storage concept determining where

data item values and other attributes of data items are represented with respect

to the programs of a run unit. Likewise, file connectors have associated with

them a storage concept determining where information concerning the positioning

and status of a file and other attributes of file processing are represented

with respect to the programs of a run unit.

6.2.1 Names

A data-name names

names are classified

a data item. A file-name names a

as either global or local .

file connector. These

A global name may be used to refer to the object with which it is associated

either from within the program in which the global name is declared or from

within any other program which is contained in the program which declares the

global name.

A local name, however, may be used only to refer to the object with which it

is associated from within the program in which the local name is declared. Some

names are always global; other names are always local; and some other names are

either local or global depending upon specifications in the program in which the

names are declared.

A record-name is global if the GLOBAL clause is specified in the record

description entry by which the record-name is declared, or, in the case of

record description entries in the File Section, if the GLOBAL clause is

specified in the file description entry for the file-name associated with the

record description entry. A data-name is global if the GLOBAL clause is

specified either in the data description entry by which the data-name is

declared or in another entry to which that data description entry is

subordinate. A condition-name declared in a data description entry is global if

that entry is subordinate to another entry in which the GLOBAL clause is

specified. However, specific rules sometimes prohibit specification of the

GLOBAL clause for certain data description, file description, or record

description entries.

A file-name is global if the GLOBAL clause is specified in the file

description entry for that file-name.

If a data-name, a file-name, or a condition-name declared in a data

description entry is not global, the name is local.

Global names are transitive across programs contained within other programs.

6.2.2 Objects

Accessible data items usually require that certain representations of data be

stored. File connectors usually require that certain information concerning

Concepts - Program Communication

files be stored. The storage associated with a data item or a file connector

may be external or internal to the program in which the object is declared.

5.2.2.1 Object Types

6.2.2.1.1 Working Storage Records

Working storage records are allocations of sufficient storage to satisfy the

record description entries in that section. Each record description entry in a

program declares a different object. Renaming and redefining do not declare new

objects; they provide alternate groupings or descriptions for objects which have

already been declared.

6.2.2.1.2 File Connectors

File connectors

are used as the

file-name and its

are storage areas which cont

linkage between a file-name

associated record area.

ain

and

information about a file and

a physical file and between a

6.2.2.1.3 Record Areas for Files

No particular record description entry in the File Section is considered to

declare the storage area for the record. Rather, the storage area is the

maximum required to satisfy associated record description entries. These

entries may describe fixed or variable length records. In this presentation,

record description entries are said to be associated in two cases. First, when

record description entries are subordinate to the same file description entry,

they are always associated. Second, when record description entries are

subordinate to different file description entries and these file description

entries are referenced in the same SAME RECORD AREA clause, they are associated.

All associated record description entries are redefinitions of the same storage

area.

6.2.2.1.4 Other Objects

Examples of other objects declared in COBOL programs are: communication

description entries, report description entries, and control information

associated with the Communication, Linkage, and Report Sections.

6.2.2.2 Object Attributes

A data item or file connector is external if the storage associated with that

object is associated with the run unit rather than with any particular program

within the run unit. An external object may be referenced by any program which

describes the object. References to an external object from different programs

using separate descriptions of the object are always to the same object.

An object is internal if the storage associated with

associated only with the program which describes the object.

that object is

External and internal objects may have either global or local names.

11-20

Concepts - Program Communication

6.2.2.2.1 Working Storage Records

A data record described in the Working-Storage Section is given the external

attribute by the presence of the EXTERNAL clause in its data description entry.

Any data item described by a data description entry subordinate to an entry

describing an external record also attains the external attribute. If a record

or data item does not have the external attribute, it is part of the internal

data of the program in which it is described.

6.2.2.2.2 File Connectors

A file connector is given the external attribute by the presence of the

EXTERNAL clause in the associated file description entry. If the file connector

does not have the external attribute, it is internal to the program in which the

associated file-name is described.

6.2.2.2.3 Record Areas for Files

not contain the EXTERNAL clause or a sort-mei

as any data items described subordinate to th<

records, are always internal to the prograi

EXTERNAL clause is included in the file descr

the data items attain the external attribute.

descri pt ion en try wh ich does

e desc ripti on entry, as well

descri ption en tries for such

ibing the f i le -name. I: E the

entry, the dat a records and

6.2.2.2.4 Other Objects

Data records, subordinate data items, and various associated control

information described in the Linkage, Communication, and Report Sections of a

program are always considered to be internal to the program describing that

data. Special considerations apply to data described in the Linkage Section

whereby an association is made between the data records described and other data

items accessible to other programs. (See page 11-24, Passing Parameters to

Programs.)

6.2.3 Name Resolution

Certain conventions apply when programs contained within other programs

assign the same names to data items, conditions, and file connectors. Consider

the situation when program A contains program B which itself contains program C;

further, programs A and B, but not program C, contain Data Division entries for

a condition-name, data-name, or a file-name named DUPLICATE-NAME.

(1) If either DUPLICATE-NAME

though identically named obje

external object, only one object

(2) Program A's reference to

declares. Program B's reference

it dec lares .

(3) If DUPLICATE-NAME is a 1

cannot refer to that name.

references an internal object, two different

cts exist. If both DUPLICATE-NAMEs reference an

exists .

DUPLICATE-NAME is always to the object which it

to DUPLICATE-NAME is always to the object which

ocal name in both programs A and B, program C

11-21

Concepts - Program Communication

(4) If DUPLICATE-NAME in program B is a global name, program C may access

the object referenced by the name in program B, regardless of whether or not

DUPLICATE-NAME is a global name in program A.

(5) If DUPLICATE-NAME in program A is a global name but in program B it is a

local name, program C's reference to DUPLICATE-NAME is to the object referenced

by the name declared in program A.

6.3 PROGRAM CLASSES

All programs which form part of a run unit may possess none, one, or more of

the following attributes: common and initial.

6.3.1 Common Programs

A common program is one which, despite being directly contained within

another program, may be called by any program directly or indirectly contained

in that other program. The common attribute is attained by specifying the

COMMON phrase in a program's Identification Division. The COMMON phrase

facilitates the writing of subprograms which are to be used by all the programs

contained within a program.

6.3.2 Initial Programs

An initial program is one whose program state is initialized when the program

is called. Thus, whenever an initial program is called, its program state is

the same as when the program was first called in that run unit. During the

process of initializing an initial program, that program's internal data is

initialized; thus an item of the program's internal data whose description

contains a VALUE clause is initialized to that defined value, but an item whose

description does not contain a VALUE clause is initialized to an undefined

value. Files with internal file connectors associated with the program are not

in the open mode. The control mechanisms for all PERFORM statements contained

in the program are set to their initial states. The initial attribute is

attained by specifying the INITIAL phrase in the program's Identification

Division.

6.4 INTER-PROGRAM COMMUNICATION

When the complete solution to a data processing problem is subdivided into

more than one program, the constituent programs must be able to communicate with

each other. This communication may take four forms: the transfer of control,

the passing of parameters, the reference to common data, and the reference to

common files. These four inter-program communication forms are provided both

when the communicating programs are separately compiled and when one of the

communicating programs is contained within the other program. The precise

mechanisms provided in the last two cases differ from those in the first two

cases; for example, a program contained within another program may reference any

data-name or file-name possessing a global name in the containing program. (See

page 11-19, Names.)

11-22

Concepts - Program Communication

6.4.1 Transfer of Control

The CALL statement provides the means whereby control may be transferred from

one program to another program within a run unit. A called program may itself

contain CALL statements.

When control is transferred to a called program, execution proceeds from

statement to statement beginning with the first nondeclarative statement. If

control reaches a STOP RUN statement, this signals the logical end of the run

unit. If control reaches an EXIT PROGRAM statement, this signals the logical

end of the called program only, and control then reverts to the next executable

statement following the CALL statement in the calling program. Thus the EXIT

PROGRAM statement terminates only the execution of the program in which it

occurs, while the STOP RUN statement terminates the execution of a run unit.

The CALL statement may be used to call a program which is not written in

COBOL, but the return mechanism and inter-program data communication are not

specified in this document. A COBOL program may also be called from a program

which is not written in COBOL, but the calling mechanism and inter-program data

communication are not specified in this document. In both the above cases, only

those parts of the parameter passing mechanism which apply to the COBOL program

are specified in this document.

6.4.1.1 Names of Programs

In order to call a program, a CALL statement identifies the program's name.

The names assigned to programs which directly or indirectly are contained within

another program must be unique.

The names assigned to each of the separately compiled program which

constitute a run unit must also be unique.

6.4.1.2 Scope of the CALL Statement

In the following, the calling program may or may not possess any of the

program attributes, it may either be separately compiled or not, and it may

either be contained within programs or contain other programs:

(1) Any calling program may call any separately compiled program in the run

unit.

(2) A calling program may call any program which is directly contained

within the calling program.

(3) Any calling program may call any program possessing the common attribute

which is directly contained within a program which itself directly or indirectly

contains the calling program, unless the calling program is itself contained

within the program possessing the common attribute.

(4) A calling program may call a program which neither possesses the common

attribute nor is separately compiled if, and only if, that program is directly

contained within the calling program.

11-23

Concepts - Program Communication

6.4.1.3 Scope of Names of Programs

Certain conventions apply when, within a separately compiled program, a name

identical to that specified for another separately compiled program in the run

unit is specified for a contained program.

Consider the situation when program A contains program B and program

DUPLICATE-NAME, program B contains program BB, and program DUPLICATE-NAME

contains program DD.

The name DUPLICATE-NAME has also been specified for a separately compiled

program.

(1) If program A, but not any of the programs it contains, calls program

DUPLICATE-NAME, the program activated is the one contained within program A.

(2) If either program B or program BB calls program DUPLICATE-NAME then:

a. If the program DUPLICATE-NAME contained within program A possesses

the common attribute, it is called.

b. If the program DUPLICATE-NAME contained within program A does not

possess the common attribute, the separately compiled program is called.

(3) If either program DD or program DUPLICATE-NAME contained within program

A calls program DUPLICATE-NAME, the program called is the separately compiled

program.

(4) If any other separately compiled program in the run unit o^ any other

program contained within such a program calls the program DUPLICATE-NAME, the

program called is the separately compiled program named DUPLICATE-NAME.

6.4.2 Passing Parameters to Programs

A program calls another program in order to have the called program perform,

on behalf of the calling program, some defined part of the solution of a data

processing problem. In many cases it is necessary for the calling program to

define to the called program the precise part of the problem solution to be

executed by making certain data values, which the called program requires,

available to the called program. One method for ensuring the availability of

these data values is by passing parameters to a program, as is described in this

paragraph. Another method is to share the data. (See page 11-25, Sharing

Data.) The data values passed as parameters also may identify some data to be

shared; hence the two methods are not mutually independent.

6.4.2.1 Identifying Parameters

Data passed as a parameter by a program calling another program must be

accessible to the calling program and the data item receiving the data must be

declared in the Data Division of the called program. In the called program the

parameters required are identified by listing references to the names assigned,

in that program's data description entries, to the parameters in that program's

Procedure Division header. In the calling program the values of the parameters

to be passed by the calling program are identified by listing references in the

CALL statement used to call the called program. These lists establish, on a

11-24

Concepts - Program Communication

positional basis at object time, the correspondence between the values as they

are known to each program; that is, the first parameter on one list corresponds

to the first parameter on the other, the second to the second, etc. Thus a

program, which may be called by another program, may include:

PROGRAM-ID. EXAMPLE.

PROCEDURE DIVISION USING NUM, PCODE, COST,

and may be called by executing:

CALL "EXAMPLE" USING NBR, PTYPE, PRICE.

thereby establishing the following correspondence:

Called program (EXAMPLE) Calling program

NUM

PCODE

COST

NBR

PTYPE

PRICE

Only the positions of the data-names are significant, not the names

themselves.

6.4.2.2 Values of Parameters

The calling program controls the methods by which a called program evaluates

the values of the parameters passed to it and by which the called program

returns results as modified parameter values.

The individual parameters referenced in the CALL statement's USING phrase may

be passed either by reference or by content. A called program is allowed to

access and modify the value of the data item referenced in the calling program's

CALL statement as a parameter passed by reference. This permission to access

and modify a data item in the calling program is denied to the called program if

the data item is specified in the CALL statement as a parameter passed by

content. The value of the parameter is evaluated when the CALL statement is

executed and is presented to the called program. This value may be changed by

the called program during the course of its execution, but the value of the

corresponding data item in the calling program is not modified. Thus a

parameter passed by reference may be used by a called program to return to the

calling program whereas a parameter passed by content cannot be so used.

The parameters referenced in a called program's Procedure Division header

must be described in the Linkage Section of that program's Data Division.

6.4.3 Sharing Data

Two programs in a run unit may reference common data in the following

circumstances:

(1) The data content of an external data record may be referenced from any

program provided that program has described that data record. (See page 11-19,

Objects.)

11-25

Concepts - Program Communication

(2) If a program is contained within another program, both programs may

refer to data possessing the global attribute either in the containing program

or in any program which directly or indirectly contains the containing program.

(See page 11-19, Names.)

(3) The mechanism whereby a parameter value is passed by reference from a

calling program to a called program establishes a common data item; the called

program, which may use a different identifier, may refer to a data item in the

calling program.

6.4.4 Sharing Files

Two programs in a run unit may reference common file connectors in the

following circumstances:

(1) An external file connector may be referenced from any program which

describes that file connector. (See page 11-19, Objects.)

(2) If a program is contained within another program, both programs may

refer to a common file connector by referring to an associated global file-name

either in the containing program or in any program which directly or indirectly

contains the containing program. (See page 11-19, Names.)

6.5 INTRA-PROGRAM COMMUNICATION

The procedures which constitute the Procedure Division of a program

communicate with one another by transferring control or by referring to common

data.

6.5.1 Transfer of Control

There are four methods of transferring control within a program:

(1) A GO TO statement.

(2) A PERFORM statement.

(3) An input procedure associated with a SORT statement, or an output

procedure associated with either a SORT or a MERGE statement.

(4) A declarative procedure which is activated whenever certain conditions,

including errors and exceptions, occur.

An input-output procedure can be considered as

which is executed in conjunction with a SORT or

reason, the restrictions on the PERFORM statement

procedures .

an implicit PERFORM statement

MERGE statement; and, for this

apply equally to input-output

Stricter restrictions, than those for the PERFORM statement, apply to

declarative procedures.

6.5.2 Shared Data

All the data declared in a program's Data Division may be referenced by

statements in the procedures, input-output procedures, and declaratives which

11-26

Concepts - Program Communication

constitute that program. Under certain conditions a program may reference data

items whose declarations are not included in its Data Division. (See page

11-19, Accessing Data and Files.)

6.6 SEGMENTATION

The segmentation facility permits the user to subdivide physically the

Procedure Division of a COBOL object program. All source paragraphs which

contain the same segment-number in their section headers will be considered at

object time to be one segment. Since segment-numbers can range from 00 through

99, it is possible to subdivide any object program into a maximum of 100

segments.

Program segments may be of three types: fixed permanent, fixed overlayable,

and independent as determined by the programmer's assignment of segment-numbers.

Fixed segments are always in computer storage during the execution of the

entire program, i.e., they cannot be overlayed except when the system is

executing another program, in which case fixed segments may be 'rolled out'

temporarily.

Fixed overlayable segments may be overlayed during program execution, but any

such overlaying is transparent to the user, i.e., they are logically identical

to fixed segments, but physically different from them.

Independent segments may be overlayed, but such overlaying will result in the

initialization of that segment. Therefore, independent segments are logically

different from fixed permanent/fixed overlayable segments, and physically

different from fixed segments.

11-27

Concepts - Communication Facility

7. COMMUNICATION FACILITY

The communication facility provides the ability to access, process, and

create messages or portions thereof. It provides the ability to communicate

through a message control system with local and remote communication devices.

7.1 THE MESSAGE CONTROL SYSTEM

The implementation of the communication facility requires that a message

control system (MCS) be present in the COBOL object program's operating

environment.

The message control system (MCS) is the logical interface to the operating

system under which the COBOL object program operates. The primary functions of

the message control system are the following:

(1) To act as an interface between the COBOL object program and the network

of communication devices, in much the same manner as an operating system acts as

an interface between the COBOL object program and such devices as card readers,

printers, magnetic tape, and mass storage devices.

(2) To perform line discipline, including such tasks as dial-up, polling,

and synchronization.

(3) To perform device-dependent tasks, such as character translation and

insertion of control characters, so that the COBOL user can create

device-independent programs.

The first function, that of interfacing the COBOL object program with the

communication devices, is the most obvious to the COBOL user. In fact, the

COBOL user may be totally unaware that the other two functions exist. Messages

from communication devices are placed in input queues by the message control

system while awaiting disposition by the COBOL object program. Output messages

from the COBOL object program are placed in output queues by the message control

system while awaiting transmission to communication devices. The structures,

formats, and symbolic names of the queues are defined by the user to the message

control system at some time prior to the execution of the COBOL object program.

Symbolic names for message sources and destinations are also defined at that

time. The COBOL user must specify in his COBOL program symbolic names which are

known to the message control system.

During execution of a COBOL object program, the message control system

performs all necessary actions to update the various queues as required.

7.2 THE COBOL OBJECT PROGRAM

The COBOL object program interfaces with the message control system when it

is necessary to send data, receive data, or to interrogate the status of the

various queues which are created and maintained by the message control system.

In addition, the COBOL object program may direct the message control system to

establish or break the logical connection between the communication device and a

specified portion of the message control system queue structure. The method of

handling the physical connection is a function of the message control system.

11-28

Concepts - Communication Facility

7.3 RELATIONSHIP OF THE COBOL PROGRAM TO THE MESSAGE CONTROL SYSTEM AND

COMMUNICATION DEVICES

The interfaces which exist in a COBOL communication environment are

established by the use of a communication description entry (CD entry) in the

Communication Section of the Data Division. There are two such interfaces:

(1) The interface between the COBOL object program and the message control

system, and;

(2) The interface between the message control system and the communication

devices.

The COBOL source program uses three statements to control the interface with

the message control system:

(1) The RECEIVE statement, which causes data in a queue to be passed to the

COBOL object program,

(2) The SEND statement, which causes data associated with the COBOL object

program to be passed to one or more queues, and;

(3) The ACCEPT MESSAGE COUNT statement, which causes the message control

system to indicate to the COBOL object program the number of complete messages

in the specified queue structure.

The COBOL source ,program uses two statements to control the interface between

the message control system and the communication devices:

(1) The ENABLE statement, which establishes logical connection between the

message control system and one or more given communication devices, and;

(2) The DISABLE statement, which breaks a logical connection between the

message control system and one or more given communication devices.

These relationships are shown in figure 1, COBOL Communication Environment,

on page 11-30 and explained on page 11-33, Enabling and Disabling Queues.

11-29

Concepts - Communication Facility

COBOL Program Message Control System
(MCS)

Communication

Devices

Figure 1: COBOL Communication Environment

11-30

Concepts - Communication Facility

7.3.1 Invoking the COBOL Object Program

There are two methods of invoking a COBOL communication object program:

scheduled initiation and message control system (MCS) invocation. Regardless of

the method of invocation, the only operating difference between the two methods

is that MCS invocation causes certain areas in the referenced communication

description entry (CD entry) to be filled.

7.3.1.1 Scheduled Initiation of the COBOL Object Program

A COBOL object program using the communication facility may be scheduled for

execution through the normal means available in the program's operating

environment, such as job control language. In that case, the COBOL program can

use three methods to determine what messages, if any, are available in the input

queues:

(1) The ACCEPT MESSAGE COUNT statement,

(2) The RECEIVE statement with a NO DATA phrase, and

(3) The RECEIVE statement without a NO DATA phrase (in which case a program

wait is implied if no data is available).

7.3.1.2 Invocation of the COBOL Object Program by the MCS

It is sometimes desirable to schedule a COBOL object communication program

only when there is work available for it to do. Such scheduling occurs if the

message control system (MCS) determines what COBOL object program is required to

process the available message and subsequently causes that program to be

scheduled for execution. Each object program scheduled by the MCS establishes a

run unit. Prior to the execution of the COBOL object program, the message

control system places the symbolic queue and sub-queue names in the associated

data items of the communication description entry that specifies the FOR INITIAL

INPUT clause, or the message control system places the symbolic terminal name in

the associated data item of the communication description entry that specifies

the FOR INITIAL 1-0 clause.

A subsequent RECEIVE statement directed to that communication description

entry will result in the available message being passed to the COBOL object

program.

7.3.1.3 Determining the Method of Scheduling

A COBOL source program can be written so that its object program can operate

with either of the above two modes of scheduling. In order to determine which

method was used to load the COBOL object program, the following is one technique

that may be used:

(1) One communication description entry (CD entry) must contain a FOR

INITIAL INPUT clause or a FOR INITIAL 1-0 clause.

(2) When the program contains a CD with the FOR INITIAL INPUT clause, the

Procedure Division may contain statements to test the initial value of the

symbolic queue name in that communication description entry. If it is space

filled, job control statements were used to schedule the COBOL object program.

11-31

Concepts - Communication Facility

If not space filled, the message control system has invoked the COBOL object

program and initialized the data item with the symbolic name of the queue

containing the message to be processed.

(3) When the program contains a CD with the FOR INITIAL 1-0 clause, the

Procedure Division may contain statements to test the initial value of the

symbolic terminal name in that CD. If it is space filled, job control

statements were used to schedule the COBOL object program. If not space filled,

the MCS has invoked the COBOL object program and initialized the data item with

the symbolic name of the communication terminal that is the source of the

message to be processed.

7.4 THE CONCEPT OF MESSAGES AND MESSAGE SEGMENTS

A message consists of some arbitrary amount of information, usually character

data, whose beginning and end are defined or implied. As such, messages

comprise the fundamental but not necessarily the most elementary unit of data to

be processed in a COBOL communication environment.

Messages may be logically subdivided into smaller units of data called

message segments which are delimited within a message by means of end of segment

indicators (ESI). A message consisting of one or more segments is delimited

from the next message by means of an end of message indicator (EMI). In a

similar manner, a group of several messages may be logically separated from

succeeding messages by means of an end of group indicator (EGI). When a message

or message segment is received by the COBOL program, a communication description

interface area is updated by the message control system to indicate which, if

any, delimiter was associated with the text transferred during the execution of

that RECEIVE statement. On output the delimiter, if any, to be associated with

the text released to the message control system during execution of a SEND

statement is specified or referenced in the SEND statement. Thus the presence

of these logical indicators is recognized and specified both by the message

control system and by the COBOL object program; however, no indicators are

included in the message text processed by COBOL programs.

A precedence relationship exists between the indicators EGI, EMI, and ESI.

EGI is the most inclusive indicator and ESI is the least inclusive indicator.

The existence of an indicator associated with message text implies the

association of all less inclusive indicators with that text. For example, the

existence of the EGI implies the existence of EMI and ESI.

7.5 THE CONCEPT OF QUEUES

The following discussion applies only when the COBOL communication

environment is established using a communication description entry without the

FOR 1-0 clause.

Queues consist of one or more messages from or to one or more communication

devices, and as such, form the data buffers between the COBOL object program and

the message control system. Input queues are logically separate from output

queues.

The message control system logically places in queues or removes from queues

only complete messages. Portions of messages are not logically placed in queues

until the entire message is available to the message control system. That is,

11-32

Concepts - Communication Facility

the message control system will not pass a message segment to a COBOL object

program unless all segments of that message are in the input queue; even though

the COBOL source program uses the SEGMENT phrase of the RECEIVE statement. For

output messages, the message control system will not transmit any segment of a

message until all its segments are in the output queue. Interrogation of the

queue depth, or number of messages that exist in a given queue, reflects only

the number of complete messages that exist in the queue.

The process by which messages are placed into a queue is called enqueueing.

The process by which messages are removed from a queue is called dequeueing.

7.5.1 Independent Enqueueing and Dequeueing

It is possible that a message may be received by the message control system

from a communication device prior to the execution of the COBOL object program.

As a result, the message control system enqueues the message in the proper input

queue (provided that input queue is enabled) until the COBOL object program

requests dequeueing with the RECEIVE statement. It is also possible that a

COBOL object program will cause the enqueueing of messages in an output queue

which are not transmitted to a communication device until after the COBOL object

program has terminated. Two common reasons for this occurrence are:

(1) When the output queue is disabled.

(2) When the COBOL object program creates output messages at a speed faster

than the destination can receive them.

7.5.2 Enabling and Disabling Queues

Usually, the message control system will enable and disable queues based on

time of day, message activity, or other factors unrelated to the COBOL program.

However, the COBOL program has the ability to enable and disable queues itself

through use of the ENABLE and DISABLE statements.

7.5.3 Enqueueing and Dequeueing Methods

In systems that allow the user to specify certain MCS functions, it may be

necessary that the user specify to the message control system, prior to

execution of programs which reference these facilities, the selection algorithm

and other designated MCS functions to be used by the message control system in

placing messages in the various queues. A typical selection algorithm, for

example, would specify that all messages from a given source be placed in a

given input queue, or that all messages to be sent to a given destination be

placed in a given output queue.

Dequeueing is often done on a first in, first out basis. Thus messages

dequeued from either an input or output queue are those messages which have been

in the queue for the longest period of time. However, the message control

system can, upon prior specification by the user, dequeue on some other basis,

e.g., priority queueing can be employed.

7.5.4 Queue Hierarchy

In order to control more explicitly the messages being enqueued and dequeued,

it is possible to define in the message control system a hierarchy of input

11-33

Concepts - Communication Facility

queues, i.e., queues comprising queues. In COBOL, four levels of queues are

available to the user. In order of decreasing significance, the queue levels

are named queue, sub-queue-1, sub-queue-2, and sub-queue-3. The full queue

structure is depicted in figure 2, Hierarchy of Queues, where queues and

sub-queues have been named with the letters A through 0. Messages have been

named with a letter according to their source (X, Y, or Z) and with a sequential

number .

QUEUE

SUB-QUEUE (1)

SUB-QUEUE (2)

SUB-QUEUE (3)

MESSAGE

B

D E

1 J K

Zl X3 XI Z6

X2 X4 Y3 Z7

X5 Y5 Y6

Z5

C

F G

M N 0

Y7 Y1 X6 Z2

Y8 Y2 Z3

Z4

Y4

Figure 2: Hierarchy of Queues

Let us

fo1 lowing

assume that the message

queueing algorithm:

control system is operating under the

(1) Messages are placed in queues

specified data field in each message.

according to the contents of some

(2) With the RECEIVE statement, if the user does not specify a given

sub-queue level, the message control system will choose the sub-queue from that

level in the alphabetical order, e.g., if sub-queue-1 is not specified by the

user, the message control system will dequeue from sub-queue-1 B.

The following examples illustrate the effect of the above algorithms (see

figure 2, Hierarchy of Queues):

(1) The program executes a RECEIVE statement, specifying via the

communication description entry:

Queue A

Message control system returns: Message Zl

11-34

Concepts - Communication Facility

(2) The program executes a RECEIVE statement, specifying via the

communication description entry:

Queue A

Sub-queue-1 C

Message control system returns: Message Y7

(3) The program executes a RECEIVE statement, specifying via the

communication description entry:

Queue A

Sub-queue-1 B

Sub-queue-2 E

Message control system returns: Message XI

(4) The program executes a RECEIVE statement, specifying via the

communication description entry:

Queue A

Sub-queue-1 C

Sub-queue-2 G

Sub-queue-3 N

Message control system returns: Message X6

If the COBOL programmer wishes to access the next message in a queue,

regardless of which sub-queue that message may be in, he specifies the queue

name only. The message control system, when supplying the message, will return

to the COBOL object program, any applicable sub-queue names via the data items

in the associated communication description entry. If, however, he desires the

next message in a given sub-queue, he must specify both the queue name and any

applicable sub-queue names.

For output, the COBOL user specifies only the destination(s) of the message,

and the message control system places the message in the proper queue structure.

There is no one-to-one relationship between a communication device and a

source/destination. A source or destination may consist of one or more physical

devices. The device or devices which comprise a source/destination are defined

to the message control system.

7.6 THE CONCEPT OF TRANSACTION COMMUNICATION

In

applica

object

process

to spec

clause.

termina

FOR I-

termina

claus e,

contrast with the previously described

tions require a direct dialogue between a

program. In this case, it is unnecess

ing since they are to be processed immediat

ify this kind of processing by using the CD

A CD that specifies the FOR 1-0 clause

1; however, a run unit may contain more than

0 clause and these CD's can communicate

1. When the INITIAL phrase is used in a CD

the program may be scheduled by the MCS.

queueing mechanism, some

communication device and the

ary to queue messages for

ely. It is possible in COBOL

that specifies the FOR 1-0

can communicate- with only one

one CD that specifies the

with the same or a different

that specifies the FOR 1-0

11-35

Glossary

SECTION III: GLOSSARY

1 . INTRODUCTION

The terms in this section are defined in accordance with their meaning in

COBOL, and may not have the same meaning for other languages.

These definitions are also intended as either reference or introductory

material to be reviewed prior to reading the detailed language specifications

that follow. For this reason, these definitions are, in most instances, brief

and do not include detailed syntactical rules. Complete specifications for

elements defined in this section can be located in Sections IV through XVI of

this document.

2. DEFINITIONS

Abbreviated Combined Relation Condition. The combined condition that results

from the explicit omission of a common subject or a common subject and common

relational operator in a consecutive sequence of relation conditions.

Access Mode. The manner in which records are to be operated upon within a

file.

Actual Decimal Point,

characters period (.)

item.

Alphabet-Name. A user-defined word, in the SPECIAL-NAMES paragraph of the

Environment Division, that assigns a name to a specific character set and/or

collating sequence. (See page VI-13, The SPECIAL-NAMES Paragraph.)

Alphabetic Character. A letter or a space character.

Alphanumeric Character. Any character in the computer's character set.

Alternate Record Key. A key, other than the prime record key, whose contents

identify a record within an indexed file.

Arithmetic Expression. An identifier of a numeric elementary item, a numeric

literal, such identifiers and literals separated by arithmetic operators, two

arithmetic expressions separated by an arithmetic operator, or an arithmetic

expression enclosed in parentheses.

Arithmetic Operation. The process caused by the execution of an arithmetic

statement, or the evaluation of an arithmetic expression, that results in a

mathematically correct solution to the arguments presented.

The physical representation, using the decimal point

or comma (,), of the decimal point position in a data

III-l

Glossary

Arithmetic Operator. A single character or fixed two-character combination

which belongs to the following set:

Character Meaning

+ addition

subtraction

* multiplication

/ division

** exponentiation

Arithmetic Statement. A statement that causes an arithmetic operation to be

executed. The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and

SUBTRACT statements.

Ascending Key. A key upon the values of which data is ordered starting with

the lowest value of key up to the highest value of key in accordance with the

rules for comparing data items.

Assumed Decimal Point. A decimal point position which does

existence of an actual character in a data item. The assumed

logical meaning with no physical representation.

At End Condition. A condition caused:

(1) During the execution of a READ statement for a sequentially accessed

file, when no next logical record exists in the file, or when the number of

significant digits in the relative record number is larger than the size of the

relative key data item, or when an optional input file is not present.

(2) During the execution of a RETURN statement, when no next logical

record exists for the associated sort or merge file.

(3) During the execution of a SEARCH statement, when the search operation

terminates without satisfying the condition specified in any of the associated

WHEN phrases.

Block. A physical unit of data that is normally composed of one or more

logical records. For mass storage files, a block may contain a portion of a

logical record. The size of a block has no direct relationship to the size of

the file within which the block is contained or to the size of the logical

record(s) that are either contained within the block or that overlap the block.

(See page IV-13, Conceptual Characteristics of a File.) The term is synonymous

with physical record.

Body Group. Generic name for a report group of TYPE DETAIL, CONTROL HEADING,

or CONTROL FOOTING.

Bottom Margin. An empty area which follows the page body.

Called Program. A program which is the object of a CALL statement combined

at object time with the calling program to produce a run unit.

Calling Program. A program which executes a CALL to another program.

not involve the

decimal point has

III-2

Glossary

Cd-Name. A user-defined word that names an MCS interface area described in a

communication description entry within the Communication Section of the Data

Division.

Character. The basic indivisible unit of the language.

Character Position. A character position is the amount of physical

required to store a single standard data format character whose

DISPLAY. Further characteristics of the physical storage are defined

implementor.

storage

usage is

by the

Character-String. A sequence of contiguous characters which form a COBOL

word, a literal, a PICTURE character-string, or a comment-entry. (See page

IV-5, Character-Strings.)

Class Condition. The proposition, for which a truth value can be determined,

that the content of an item is wholly alphabetic or is wholly numeric or

consists exclusively of those characters listed in the definition of a

class-name.

Class-Name. A user-defined word defined in the SPECIAL-NAMES paragraph of

the Environment Division that assigns a name to the proposition for which a

truth value can be defined, that the content of a data item consists exclusively

of those characters listed in the definition of the class-name.

Clause. A clause is an ordered set of consecutive COBOL character-strings

whose purpose is to specify an attribute of an entry.

COBOL Character Set. The complete COBOL character set consists of the

characters listed below.

Character

0, 1, ... , 9

A, B, ... , Z

a, b, ... , z

/

$

(
)
>

<

Meaning

digit

uppercase letter

lowercase letter

space

plus sign

minus sign (hyphen)

asterisk

slant (solidus)

equal sign

currency sign (represented as ft in the

International Reference Version of

International Standard ISO 646-1973)

comma (decimal point)

semicolon

period (decimal point, full stop)

quotation mark

left parenthesis

right parenthesis

greater than symbol

less than symbol

colon

III-3

Glossary

NOTE 1: In the cases where an implementation does not provide all

of the COBOL character set to be graphically represented,

substitute graphics may be specified by the implementor to

replace the characters not represented. The COBOL

character set graphics are a subset of American National

Standard X3.4-1977, Code for Information Interchange.

With the exception of '$', they are also a subset of the

graphics defined for the International Reference Version

of International Standard ISO 646-1973, 7-Bit Coded

Character Set for Information Processing Interchange.

NOTE 2: When the computer character set includes lowercase

letters, they may be used in character-strings. Except

when used in nonnumeric literals and some PICTURE symbols,

each lowercase letter is equivalent to the corresponding

uppercase letter.

COBOL Word. A character-string of not more than 30 characters which forms a

user-defined word, a system-name, or a reserved word. (See page IV-5, COBOL

Words .)

Collating Sequence. The sequence in which the characters that are acceptable

to a computer are ordered for purposes of sorting, merging, comparing, and for

processing indexed files sequentially.

Column. A character position within a print line. The columns are numbered

from 1, by 1, starting at the leftmost character position of the print line and

extending to the rightmost position of the print line.

Combined Condition. A condition that is the result of connecting two or more

conditions with the 'AND' or the 'OR' logical operator.

Comment-Entry. An entry in the Identification Division that may be any

combination of characters from the computer's character set.

Comment Line. A source program line represented by an asterisk (*) in the

indicator area of the line and any characters from the computer's character set

in area A and area B of that line. The comment line serves only for

documentation in a program. A special form of comment line represented by a

slant (/) in the indicator area of the line and any characters from the

computer's character set in area A and area B of that line causes page ejection

prior to printing the comment.

Common Program. A program which, despite being directly contained within

another program, may be called from any program directly or indirectly contained

in that other program.

Communication Description Entry. An entry in the Communication Section of

the Data Division that is composed of the level indicator CD, followed by a

cd-name, and then followed by a set of clauses as required. It describes the

interface between the message control system (MCS) and the COBOL program.

Communication Device. A mechanism (hardware or hardware/software) capable of

sending data to a queue and/or receiving data from a queue. This mechanism may

be a computer or a peripheral device. One or more programs containing

111-4

Glossary

communication description entries and residing within the same computer define

one or more of these mechanisms.

Communication Section. The section of the Data Division that describes the

interface areas between the message control system (MCS) and the program,

composed of one or more communication description areas.

Compile Time. The time at which a COBOL source program is translated, by a

COBOL compiler, to a COBOL object program.

Compiler Directing Statement. A statement, beginning with a compiler

directing verb, that causes the compiler to take a specific action during

compilation. The compiler directing statements are the COPY, ENTER, REPLACE,

and USE statements.

Complex Condition. A condition in which one or more logical operators act

upon one or more conditions. (See page III-14, Negated Simple Condition; page

III-4, Combined Condition; and page III-14, Negated Combined Condition.)

Computer-Name. A system-name that identifies the computer upon which the

program is to be compiled or run.

Condition. A status of a program at execution time for which a truth value

can be determined. Where the term 'condition' (condition-1, condition-2, ...)

appears in these language specifications in or in reference to 'condition'

(condition-1, condition-2, ...) of a general format, it is a conditional

expression consisting of either a simple condition optionally parenthesized, or

a combined condition consisting of the syntactically correct combination of

simple conditions, logical operators, and parentheses, for which a truth value

can be determined.

Condition-Name. A user-defined word that assigns a name to a subset of

values that a conditional variable may assume; or a user-defined word assigned

to a status of an implementor-defined switch or device. When 'condition-name'

is used in the general formats, it represents a unique data item reference

consisting of a syntactically correct combination of a condition-name, together

with qualifiers and subscripts, as required for uniqueness of reference.

Condition-Name Condition. The proposition, for which a truth value can be

determined, that the value of a conditional variable is a member of the set of

values attributed to a condition-name associated with the conditional variable.

Conditional Expression. A simple condition or a complex condition specified

in an EVALUATE, IF, PERFORM, or SEARCH statement. (See page III-23, Simple

Condition, and page III-5, Complex Condition.)

Conditional Phrase. A conditional phrase specifies the action to be taken

upon determination of the truth value of a condition resulting from the

execution of a conditional statement.

Conditional Statement. A conditional statement specifies that the truth

value of a condition is to be determined and that the subsequent action of the

object program is dependent on this truth value. The conditional statements are
listed on page IV-37.

III-5

Glossary

Conditional Variable. A data item one or more values of which has a

condition-name assigned to it.

Configuration Section. A section of the Environment Division that describes

overall specifications of source and object programs.

Contiguous Items . Items that are described by consecutive entries in the

Data Division, and that bear a definite hierarchical relationship to each other.

Control Break. A change in the value of a data item that is referenced in

the CONTROL clause. More generally, a change in the value of a data item that

is used to control the hierarchical structure of a report.

Control Break Level. The relative position within a control hierarchy at

which the most major control break occurred.

Control Data Item. A data item, a change in whose content may produce a

control break.

Control Data-Name. A data-name that appears in a CONTROL clause and refers

to a control data item.

Control Footing. A report group that is presented at the end of the control

group of which it is a member.

Control Group. A set of body groups that is presented for a given value of a

control data item or of FINAL. Each control group may begin with a control

heading, end with a control footing, and contain detail report groups.

Control Heading. A report group that is presented at the beginning of the

control group of which it is a member.

Control Hierarchy. A designated sequence of report subdivisions defined by

the positional order of FINAL and the data-names within a CONTROL clause.

Counter. A data item used for storing numbers or number representations in a

manner that permits these numbers to be increased or decreased by the value of

another number, or to be changed or reset to zero or to an arbitrary positive or

negative value.

Currency Sign. The character of the COBOL character set.

Currency Symbol. The character defined by the CURRENCY SIGN clause in the

SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in a COBOL

source program, the currency symbol is identical to the currency sign.

Current Record. In file processing, the record which is available in the

record area associated with a file.

Current Volume Pointer. A conceptual entity that points to the current

volume of a sequential file.

Data Clause. A clause, appearing in a data description entry in the Data

Division of a COBOL program, that provides information describing a particular

attribute of a data item.

II1-6

Glossary

Data Description Entry. An entry, in the Data Division of a COBOL program,

that is composed of a level-number followed by a data-name, if required, and

then followed by a set of data clauses, as required.

Data Item. A unit of data (excluding literals) defined by the COBOL program.

Data-Name. A user-defined word that names a data item described in a data

description entry. When used in the general formats, 'data-name1 represents a

word which must not be reference-modified, subscripted, or qualified unless

specifically permitted by the rules of the format.

Debugging Line. A debugging line is any line with a ’D' in the indicator

area of the line.

Debugging Section. A debugging section is a section that contains a USE FOR

DEBUGGING statement.

Declarative Sentence. A compiler directing sentence consisting of a single

USE statement terminated by the separator period.

Declaratives. A set of one or more special purpose sections, written at the

beginning of the Procedure Division, the first of which is preceded by the key

word DECLARATIVES and the last of which is followed by the key words END

DECLARATIVES. A declarative is composed of a section header, followed by a USE

compiler directing sentence, followed by a set of zero, one, or more associated

paragraphs.

De-Edit. The logical removal of all editing characters from a numeric edited

data item in order to determine that item's unedited numeric value.

Delimited Scope Statement. Any statement which includes its explicit scope

terminator. (See page IV-27, Explicit and Implicit Scope Terminators.)

Delimiter. A character or a sequence of contiguous characters that identify

the end of a string of characters and separates that string of characters from

the following string of characters. A delimiter is not part of the string of

characters that it delimits.

Descending Kev. A key upon the values of which data is ordered starting with

the highest value of key down to the lowest value of key, in accordance with the

rules for comparing data items.

Destination. The symbolic identification of the receiver of a transmission

from a queue.

Digit Position. A digit position is the amount of physical storage required

to store a single digit. This amount may vary depending on the usage specified

in the data description entry that defines the data item. If the data

description entry specifies that usage is DISPLAY, then a digit position is

synonymous with a character position. Further characteristics of the physical

storage are defined by the implementor.

II1-7

Glossary

Division. A collection of zero, one, or more sections or paragraphs, called

the division body, that are formed and combined in accordance with a specific

set of rules. Each division consists of the division header and the related

division body. There are four divisions in a COBOL program: Identification,

Environment, Data, and Procedure.

Division Header. A combination of words, followed by a separator period,

that indicates the beginning of a division. The division headers in a COBOL

program are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION [USING <data-name-1> ...].

Dynamic Access. An access mode in which specific logical records can be

obtained from or placed into a mass storage file in a nonsequential manner and

obtained from a file in a sequential manner during the scope of the same OPEN

statement. (See page III—19, Random Access, and page III-22, Sequential

Access .)

Editing Character. A single character or a fixed two-character combination

belonging to the following set:

Character

B

0

CR

DB

Z
k

$

3

/

Meaning

space

zero

plus

minus

credit

debit

zero suppress

check protect

currency sign

comma (decimal point)

period (decimal point)

slant (solidus)

Elementary Item. A data item that is described as not being further

logically subdivided.

End of Procedure Division. The physical position of a COBOL source program

after which no further procedures appear.

End Program Header. A combination of words, followed by a separator period,

that indicates the end of a COBOL source program. The end program header is:

END PROGRAM program-name.

Entry. Any descriptive set of consecutive clauses terminated by a separator

period and written in the Identification Division, Environment Division, or Data

Division of a COBOL program.

Environment Clause. A clause that appears as part of an Environment Division

entry.

III-8

Glossary

Execution Time. The time at which an object program is executed. The term

is synonymous with object time.

Explicit Scope Terminator. A reserved word which terminates the scope of a

particular Procedure Division statement.

Expression. An arithmetic or conditional expression.

Extend Mode. The state of a file after execution of an OPEN statement, with

the EXTEND phrase specified, for that file and before the execution of a CLOSE

statement without the REEL or UNIT phrase for that file.

External Data. The data described in a program as external data items and

external file connectors.

External Data Item. A data item which is described as part of an external

record in one or more programs of a run unit and which itself may be referenced

from any program in which it is described.

External Data Record. A logical record which is described in one or more

programs of a run unit and whose constituent data items may be referenced from

any program in which they are described.

External File Connector. A file connector which is accessible to one or more

object programs in the run unit.

External Switch

implementor, which

A hardware or software device

is used to indicate that one of

defined and named by the

two alternate states exists.

Figurative Constant. A compiler generated value referenced through the use

of certain reserved words. (See page IV-10, Figurative Constant Values.)

File. A collection of logical records.

File Attribute Conflict Condition. An unsuccessful attempt has been made to

execute an input-output operation on a file and the file attributes, as

specified for that file in the program, do not match the fixed attributes for

that file.

File Clause. A clause that appears as part of any of the following Data

Division entries: file description entry (FD entry) and sort-merge file

description entry (SD entry.)

File Connector. A storage area which contains information about a file and

is used as the linkage between a file-name and a physical file and between a

file-name and its associated record area.

FILE-CONTROL. The name of an Environment Division paragraph in which the

data files for a given source program are declared.

File Control Entry. A SELECT clause and all its subordinate clauses which

declare the relevant physical attributes of a file.

III-9

Glossary

File Description Entry. An entry in the File Section of the Data Division

that is composed of the level indicator FD, followed by a file-name, and then

followed by a set of file clauses as required.

File-Name. A user-defined word that names a file connector described in a

file description entry or a sort-merge file description entry within the File

Section of the Data Division.

File Organization. The permanent logical file structure established at the

time that a file is created.

File Position Indicator. A conceptual entity that contains the value of the

current key within the key of reference for an indexed file, or the record

number of the current record for a sequential file, or the relative record

number of the current record for a relative file, or indicates that no next

logical record exists, or that the number of significant digits in the relative

record number is larger than the size of the relative key data item, or that an

optional input file is not present, or that the at end condition already exists,

or that no valid next record has been established.

File Section. The section of the Data Division that contains file

description entries and sort-merge file description entries together with their

associated record descriptions.

Fixed File Attributes. Information about a file which is established when a

file is created and cannot subsequently be changed during the existence of the

file. These attributes include the organization of the file (sequential,

relative, or indexed), the prime record key, the alternate record keys, the code

set, the minimum and maximum record size, the record type (fixed or variable),

the collating sequence of the keys for indexed files, the blocking factor, the

padding character, and the record delimiter.

Fixed Length Record. A record associated with a file whose file description

or sort-merge description entry requires that all records contain the same

number of character positions.

Footing Area. The position of the page body adjacent to the bottom margin.

Format . A specific arrangement of a set of data.

Global Name. A name which is declared in only one program but which may be

referenced from that program and from any program contained within that program.

Condition-names, data-names, file-names, record-names, report-names, and some

special registers may be global names. (See page X-6, Conventions for

Condition-Names, Data-Names, File-Names, Record-Names, and Report-Names; page

X-18, general rule 1 concerning LINAGE-COUNTER; and page X-22, general rule 1

concerning LINE-COUNTER and PAGE-COUNTER.)

Group Item. A data item that is composed of subordinate data items.

High Order End. The leftmost character of a string of characters.

I-O-CONTROL. The name of an Environment Division paragraph in which object

program requirements for rerun points, sharing of same areas by several data

files, and multiple file storage on a single input-output device are specified.

III-10

Glossary

I-Q-CONTROL Entry. An entry in the I-O-CONTROL paragraph of the Environment

Division which contains clauses which provide information required for the

transmission and handling of data on named files during the execution of a

program.

1-0 Mode. The state of a file after execution of an OPEN statement, with the

I—0 phrase specified, for that file and before the execution of a CLOSE

statement without the REEL or UNIT phrase for that file.

1-0 Status . A conceptual entity which contains the two-character value

indicating the resulting status of an input-output operation. This value is

made available to the program through the use of the FILE STATUS clause in the

file control entry for the file.

Identifier. A syntactically correct combination of a data-name, with its

qualifiers, subscripts, and reference modifiers, as required for uniqueness of

reference, that names a data item. The rules for 'identifier' associated with

the general formats may, however, specifically prohibit qualification,

subscripting, or reference modification.

Imperative Statement. A statement that either begins with an imperative verb

and specifies an unconditional action to be taken or is a conditional statement

that is delimited by its explicit scope terminator (delimited scope statement).

An imperative statement may consist of a sequence of imperative statements.

Implementor-Name. A system-name that refers to a particular feature

available on that implementor's computing system.

Implicit Scope Terminator. A separator period which terminates the scope of

any preceding unterminated statement, or a phrase of a statement which by its

occurrence indicates the end of the scope of any statement contained within the

preceding phrase.

Index. A computer storage area or register, the content of which represents

the identification of a particular element in a table.

Index Data Item. A data item in which the values associated with an

index-name can be stored in a form specified by the implementor.

Index-Name. A user-defined word that names an index associated with a

specific table .

Indexed File. A file with indexed organization.

Indexed Organization. The permanent logical file structure in which each

record is identified by the value of one or more keys within that record.

Initial Program. A program that is placed into an initial state every time

the program is called in a run unit.

Initial State. The state of a program when it is first called in a run unit.

(See page X-10, Initial State of a Program.)

Input File. A file that is opened in the input mode.

III-ll

Glossary

Input Mode. The state of a file after execution of an OPEN statement, with

the INPUT phrase specified, for that file and before the execution of a CLOSE

statement without the REEL or UNIT phrase for that file.

Input-Output File. A file that is opened in the 1-0 mode.

Input-Output Section. The section of the Environment Division that names the

files and the external media required by an object program and which provides

information required for transmission and handling of data during execution of

the object program.

Input-Output Statement. A statement that causes files to be processed by

performing operations upon individual records or upon the file as a unit. The

input-output statements are: ACCEPT (with the identifier phrase), CLOSE,

DELETE, DISABLE, DISPLAY, ENABLE, OPEN, PURGE, READ, RECEIVE, REWRITE, SEND, SET

(with the TO ON or TO OFF phrase), START, and WRITE.

Input Procedure. A set of statements, to which control is given during the

execution of a SORT statement, for the purpose of controlling the release of

specified records to be sorted.

Integer. A numeric literal or a numeric data item that does not include any

digit position to the right of the assumed decimal point. When the term

'integer' appears in general formats, integer must not be a numeric data item,

and must not be signed, nor zero unless explicitly allowed by the rules of that

format.

Internal Data. The data described in a program excluding all external data

items and external file connectors. Items described in the Linkage Section of a

program are treated as internal data.

Internal Data Item. A data item which is described in one program in a run

unit. An internal data item may have a global name.

Internal File Connector. A file connector which is accessible to only one

object program in the run unit.

Intra-Record Data Structure. The entire collection of groups and elementary

data items from a logical record which is defined by a contiguous subset of the

data description entries which describe that record. These data description

entries include all entries whose level-number is greater than the level-number

of the first data description entry describing the intra-record data structure.

Invalid Key Condition. A condition, at object time, caused when a specific

value of the key associated with an indexed or relative file is determined to be

invalid .

Key. A data item which identifies the location of a record, or a set of data

items which serve to identify the ordering of data.

Key of Reference. The key, either prime or alternate, currently being used

to access records within an indexed file.

Key Word. A reserved word whose presence is required when the format in

which the word appears is used in a source program.

III-12

Glossary

Language-Name. A system-name that specifies a particular programming

language.

Letter. A character belonging to one of the following two sets:

(1) uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S,

T, U, V, W, X, Y, Z; (2) lowercase letters: a, b, c, d, e, f, g, h, i, j, k,

1, m, n, o, p, q, r, s, t, u, v, w, x, y, z.

Level Indicator. Two alphabetic characters that identify a specific type of

file or a position in a hierarchy. The level indicators in the Data Division

are: CD, FD, RD, and SD.

Level-Number. A user-defined word, expressed as a one or two digit number,

which indicates the hierarchical position of a data item or the special

properties of a data description entry. Level-numbers in the range 1 through 49

indicate the position of a data item in the hierarchical structure of a logical

record. Leve1-numbers in the range 1 through 9 may be written either as a

single digit or as a zero followed by a significant digit. Leve1-numbers 66,

77, and 88 identify special properties of a data description entry.

Library-Name. A user-defined word that names a COBOL library that is to be

used by the compiler for a given source program compilation.

Library Text . A sequence of text words, comment lines, the separator space,

or the separator pseudo-text delimiter in a COBOL library.

LINAGE-COUNTER. A special register whose value points to the current

position within the page body.

Line. A division of a page representing one row of horizontal character

positions. Each character position of a report line is aligned vertically

beneath the corresponding character position of the report line above it.

Report lines are numbered from 1, by 1, starting at the top of the page. The

term is synonymous with report line.

Line Number. An integer that denotes the vertical position of a report line

on a page .

Linkage Section. The section in the Data Division of the called program that

describes data items available from the calling program. These data items may

be referred to by both the calling and the called program.

Literal . A character-string whose value is implied by the ordered set of

characters comprising the string.

Logical Operator. One of the reserved words AND, OR, or NOT. In the

formation of a condition, either AND, or OR, or both, can be used as logical

connectives. NOT can be used for logical negation.

Logical Page. A conceptual entity consisting of the top margin, the page

body, and the bottom margin.

Logical Record. The most inclusive data item. The level-number for a record

is 01. A record may be either an elementary item or a group item. The term is

synonymous with record.

III-13

Glossary

Low Order End. The rightmost character of a string of characters.

Mass Storage. A storage medium in which data may be organized and maintained

in both a sequential and nonsequential manner.

Mass Storage Control System (MSCS). An input-output control system that

directs, or controls, the processing of mass storage files.

Mass Storage File. A collection of records that is assigned to a mass

storage medium.

MCS. Message control system; a communication control system that supports

the processing of messages.

Merge File. A collection of records to be merged by a MERGE statement. The

merge file is created and can be used only by the merge function.

Message. Data associated with an end of message indicator or an end of group

indicator. (See page III-14, Message Indicators.)

Message Control System (MCS). A communication control system that supports

the processing of messages.

Message Count. The count of the number of complete messages that exist in

the designated queue of messages.

Message Indicators. EGI (end of group indicator), EMI (end of message

indicator), and ESI (end of segment indicator) are conceptual indications that

serve to notify the message control system that a specific condition exists (end

of group, end of message, or end of segment). Within the hierarchy of EGI, EMI,

and ESI, an EGI is conceptually equivalent to an ESI, EMI, and EGI. An EMI is

conceptually equivalent to an ESI and EMI. Thus, a segment may be terminated by

an ESI, EMI, or EGI. A message may be terminated by an EMI or EGI.

Message Segment. Data that forms a logical subdivision of a message,

normally associated with an end of segment indicator. (See page III-14, Message

Indicators.)

Mnemonic-Name. A user-defined word that is associated in the Environment

Division with a specific implementor-name.

MSCS. Mass storage control system; an input-output control system that

directs, or controls, the processing of mass storage files.

Native Character Set. The implementor-defined character set associated with

the computer specified in the OBJECT-COMPUTER paragraph.

Native Collating Sequence. The implementor-defined collating sequence

associated with the computer specified in the OBJECT-COMPUTER paragraph.

Negated Combined Condition. The 'NOT' logical operator immediately followed

by a parenthesized combined condition.

Negated Simple Condition. The 'NOT' logical operator immediately followed by

a simple condition.

III-14

Glossary

Next Executable Sentence. The next sentence to which control will be

transferred after execution of the current statement is complete. (See page

IV-25, Explicit and Implicit Transfers of Control.)

Next Executable Statement. The next statement to which control will be

transferred after execution of the current statement is complete. (See page

IV-25, Explicit and Implicit Transfers of Control.)

Next Record. The record which logically follows the current record of a

file.

Noncontiguous Item. Elementary data items, in the Working-Storage and

Linkage Sections, which bear no hierarchic relationship to other data items.

Nonnumeric Item. A data item whose description permits its content to be

composed of any combination of characters taken from the computer's character

set. Certain categories of nonnumeric items may be formed from more restricted

character sets.

Nonnumeric Literal. A literal bounded by quotation marks. The string of

characters may include any character in the computer's character set.

Numeric Character. A character that belongs to the following set of digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Numeric Item. A data item whose description restricts its content to a value

represented by characters chosen from the digits 'O' through '9'; if signed, the

item may also contain a '+', or other representation of an operational

sign. (See VI-42, The SIGN Clause.)

Numeric Literal. A literal composed of one or more numeric characters that

may contain either a decimal point, or an algebraic sign, or both. The decimal

point must not be the rightmost character. The algebraic sign, if present, must

be the leftmost character.

OBJECT-COMPUTER. The name of an Environment Division paragraph in which the

computer environment, within which the object program is executed, is described.

Object Computer Entry. An entry in the OBJECT-COMPUTER paragraph of the

Environment Division which contains clauses which describe the computer

environment in which the -object program is to be executed.

Object of Entry. A set of operands and reserved words, within a Data

Division entry of a COBOL program, that immediately follows the subject of the

entry.

Object Program. A set or group of executable machine language instructions

and other material designed to interact with data to provide problem solutions.

In this context, an object program is generally the machine language result of

the operation of a COBOL compiler on a source program. Where there is no danger

of ambiguity, the word 'program' alone may be used in place of the phrase

'object program'.

Object Time. The time at which an object program is executed. The term is

synonymous with execution time.

III-15

Glossary

Obsolete Element. A COBOL language element in Standard COBOL that is to be

deleted from the next revision of Standard COBOL.

Open Mode. The state of a file after execution of an OPEN statement for that

file and before the execution of a CLOSE statement without the REEL or UNIT

phrase for that file. The particular open mode is specified in the OPEN

statement as either INPUT, OUTPUT, 1-0, or EXTEND.

Operand. Whereas the general definition of operand is 'that component which

is operated upon', for the purposes of this document, any lowercase word (or

words) that appears in a statement or entry format may be considered to be an

operand and, as such, is an implied reference to the data indicated by the

operand .

Operational Sign. An algebraic sign, associated with a numeric data item or

a numeric literal, to indicate whether its value is positive or negative.

Optional File. A file which is declared as being not necessarily present

each time the object program is executed. The object program causes an

interrogation for the presence or absence of the file.

Optional Word. A reserved word that is included in a specific format only to

improve the readability of the language and whose presence is optional to the

user when the format in which the word appears is used in a source program.

Output File. A file that is opened in either the output mode or extend mode.

Output Mode. The state of a file after execution of an OPEN statement, with

the OUTPUT or EXTEND phrase specified, for that file and before the execution of

a CLOSE statement without the REEL or UNIT phrase for that file.

Output Procedure. A set of statements to which control is given during

execution of a SORT statement after the sort function is completed, or during

execution of a MERGE statement after the merge function reaches a point at which

it can select the next record in merged order when requested.

Padding Character. An alphanumeric character used to fill the unused

character positions in a physical record.

Page. A vertical division of a report representing a physical separation of

report data, the separation being based on internal reporting requirements

and/or external characteristics of the reporting medium.

Page Body. That part of the logical page in which lines can be written

and/or spaced. (See page VII-27, The LINAGE Clause.)

Page Footing. A report group that is presented at the end of a report page

as determined by the report writer control system.

Page Heading. A report group that is presented at the beginning of a report

page as determined by the report writer control system.

II1-16

Glossary

Paragraph. In the Procedure Division, a paragraph-name followed by a

separator period and by zero, one, or more sentences. In the Identification and

Environment Divisions, a paragraph header followed by zero, one, or more

entries.

Paragraph Header. A reserved word, followed by the separator period, that

indicates the beginning of a paragraph in the Identification and Environment

Divisions. The permissible paragraph headers in the Identification Division

are:

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

The permissible paragraph headers in the Environment Division are:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

I-O-CONTROL.

Paragraph-Name. A user-defined word that identifies and begins a paragraph

in the Procedure Division.

Phrase. A phrase is an ordered set of one or more consecutive COBOL

character-strings that form a portion of a COBOL procedural statement or of a

COBOL clause.

Physical Page. A device dependent concept defined by the implementor.

Physical Record. The term is synonymous with block.

Prime Record Key. A key whose contents uniquely identify a record within an

indexed file.

Printable Group. A report group that contains at least one print line.

Printable Item. A data item, the extent and contents of which are specified

by an elementary report entry. This elementary report entry contains a COLUMN

NUMBER clause, a PICTURE clause, and a SOURCE, SUM, or VALUE clause.

Procedure. A paragraph or group of logically successive paragraphs, or a

section or group of logically successive sections, within the Procedure

Division.

Procedure Branching Statement. A statement that causes the explicit transfer

of control to a statement other than the next executable statement in the

sequence in which the statements are written in the source program. The

procedure branching statements are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO,

MERGE (with the OUTPUT PROCEDURE phrase), PERFORM and SORT (with the INPUT

PROCEDURE or OUTPUT PROCEDURE phrase).

II1-17

Glossary

Procedure-Name. A user-defined word which is used to name a paragraph or

section in the Procedure Division. It consists of a paragraph-name (which may

be qualified), or a section-name.

Program Identification Entry. An entry in the PROGRAM-ID paragraph of the

Identification Division which contains clauses that specify the program-name and

assign selected program attributes to the program.

Program-Name. In the Identification Division and the end program header, a

user-defined word that identifies a COBOL source program.

Pseudo-Text. A sequence of text words, comment lines, or the separator space

in a source program or COBOL library bounded by, but not including, pseudo-text

delimiters.

Pseudo-Text Delimiter.

delimit pseudo-text.

Punctuation Character.

Character

II

(
)

Qualified Data-Name. An

by one or more sets of

data-name qualifier.

Two contiguous equal sign (=) characters used to

A character that belongs to the following set:

Meaning

comma

semicolon

colon

period (full stop)

quotation mark

left parenthesis

right parenthesis

space

equal sign

identifier that is composed of a data-name followed

either of the connectives OF and IN followed by a

Qualifier. (1) A data-name or a name associated with a level indicator

which is used in a reference either together with another data-name which is the

name of an item that is subordinate to the qualifier or together with a

condition-name.

(2) A section-name which is used in a reference together with a

paragraph-name specified in that section.

(3) A library-name which is used in a reference together with a text-name

associated with that library.

(See page IV-18, Qualification.)

Queue. A logical collection of messages awaiting transmission or processing.

Queue Name . A symbolic name that indicates to the message control system the

logical path by which a message or a portion of a completed message may be

accessible in a queue.

II1-18

Glossary

Random Access. An access mode

data item identifies the logical

placed into a relative or indexed

in which the program-specified value of a key

record that is obtained from, deleted from, or

file.

Record .

A record

synonymous

The most inclusive data item. The level-number for a record

may be either an elementary item or a group item. The

with logical record.

is 01 .

term is

Record Area. A storage area allocated for the purpose of processing the

record described in a record description entry in the File Section of the Data

Division. In the File Section, the current number of character positions in the

record area is determined by the explicit or implicit RECORD clause.

Record Description. The total set of data description entries associated

with a particular record. The term is synonymous with record description entry.

Record Description Entry. The total set of data description entries

associated with a particular record. The term is synonymous with record

descript ion .

Record Key. A key whose contents identify a record within an indexed file.

Within an indexed file, a record key is either the prime record key or an

alternate record key.

Record-Name. A user-defined word that names a

description entry in the Data Division of a COBOL

record described in

program.

a record

Record Number. The ordinal number of a record in the file whose organization

is sequential.

Ree1. A discrete portion of a storage medium, the dimensions of which are

determined by each implementor, that contains part of a file, all of a file, or

any number of files. The term is synonymous with unit and volume.

Reference Format. A format that provides a standard method for describing

COBOL source programs.

Reference Modifier. The leftmost-character-position and length used to

establish and reference a data item. (See page IV-22, Reference Modification.)

Relation. The term is synonymous with relational operator.

Relation Character. A character that belongs to the following set:

Character

>

<

Meaning

greater than

less than

equal to

Relation Condition. The

determined, that the value

literal, or index-name has a

arithmetic expression, data

III-20, Relational Operator.)

proposition, for which a

of an arithmetic expression

specific relationship to

item, nonnumeric literal, or

truth value can be

, data item, nonnumeric

the value of another

index-name. (See page

111—19

Glossary

Relational Operator. A reserved word, a relation character, a group of

consecutive reserved words, or a group of consecutive reserved words and

relation characters used in the construction of a relation condition. The

permissible operators and their meanings are:

Relational Operator

IS [NOT] GREATER THAN

IS [NOT] >

IS [NOT] LESS THAN

IS [NOT] <

IS [NOT] EQUAL TO

IS [NOT] =

IS GREATER THAN OR EQUAL

IS >=

IS LESS THAN OR EQUAL TO

IS <=

Relat ive File. A file with

Meaning

Greater than or not greater than

Less than or not less than

Equal to or not equal to

Greater than or equal to

Less than or equal to

ve organization.

Relative Key. A key whose contents identify a logical record in a relative

file.

Relative Organization. The permanent logical file structure in which each

record is uniquely identified by an integer value greater than zero, which

specifies the record's logical ordinal position in the file.

Relative Record Number. The ordinal number of a record in a file whose

organization is relative. This number is treated as a numeric literal which is

an integer.

Report Clause. A clause, in the Report Section of the Data Division, that

appears in a report description entry or a report group description entry.

Report Description Entry. An entry in the Report Section of the Data

Division that is composed of the level indicator RD, followed by the

report-name, followed by a set of report clauses as required.

Report File. An output file whose file description entry contains a REPORT

clause. The contents of a report file consist of records that are written under

control of the report writer control system.

Report Footing. A report group that is presented only at the end of a

report .

Report Group. In the Report Section of the Data Division, an 01 level-number

entry and its subordinate entries.

Report Group Description Entry. An entry in the Report Section of the Data

Division that is composed of the level-number 01, an optional data-name, a TYPE

clause, and an optional set of report clauses.

II1-20

Glossary

Report Heading. A report group that is presented only at the beginning of a

report.

Report Line. A division of a page representing one row of horizontal

character positions. Each character position of a report line is aligned

vertically beneath the corresponding character position of the report line above

it. Report lines are numbered from 1, by 1, starting at the top of the page.

Report-Name. A user-defined word that names a report described in a report

description entry within the Report Section of the Data Division.

Report Section. The section of the Data Division that contains zero, one, or

more report description entries and their associated report group description

entries .

Report Writer Control System (RWCS). An object time control system, provided

by the implementor, that accomplishes the construction of reports.

Report Writer Logical Record. A record that consists of the report writer

print line and associated control information necessary for its selection and

vertical positioning.

Reserved Word. A COBOL word specified in the list of words which may be used

in a COBOL source program, but which must not appear in the program as

user-defined words or system-names.

Res ource. A facility or service, controlled by the operating system, that

can be used by an executing program.

Resultant Identifier. A user-defined data item that is to contain the result

of an arithmetic operation.

Routine-Name. A user-defined word that identifies a procedure written in a

language other than COBOL.

Run Unit♦ One or more object programs which interact with one another and

which function, at object time, as an entity to provide problem solutions.

RWCS. Report writer control system; an object time control system, provided

by the implementor, that accomplishes the construction of reports.

Section. A set of zero, one, or more paragraphs or entries, called a section

body, the first of which is preceded by a section header. Each section consists

of the section header and the related section body.

II1-21

Glossary

Section Header. A combination of words followed by a separator period that

indicates the beginning of a section in the Environment, Data, and Procedure

Division. In the Environment and Data Divisions, a section header is composed

of reserved words followed by a separator period. The permissible section

headers in the Environment Division are:

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

The permissible section headers in the Data Division are:

FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

COMMUNICATION SECTION.

REPORT SECTION.

In the Procedure Division, a section header is composed of a section-name,

followed by the reserved word SECTION, followed by a segment-number (optional),

followed by a separator period.

Section-Name. A user-defined word which names a section in the Procedure

Division .

Segment-Number♦ A user-defined word which classifies sections in the

Procedure Division for purposes of segmentation. Segment-numbers may contain

only the characters '0','11, ... , '9'. A segment-number may be expressed

either as a one or two digit number.

Sentence. A sequence of one or more statements, the last of which is

terminated by a separator period.

Separately Compiled Program. A program which, together with its contained

programs, is compiled separately from all other programs.

Separator. A character or two contiguous characters used to delimit

character-strings. (See page IV-4, Separators.)

Sequential Access. An access mode in which logical records are obtained from

or placed into a file in a consecutive predecessor-to-successor logical record

sequence determined by the order of records in the file.

Sequential File. A file with sequential organization.

Sequential Organization. The permanent logical file structure in which a

record is identified by a predecessor-successor relationship established when

the record is placed into the file

Sign Condition. The proposition, for which a truth value can be determined,

that the algebraic value of a data item or an arithmetic expression is either

less than, greater than, or equal to zero.

II1-22

Glossary

Simple Condition. Any single condition chosen from the set:

relation condition

class condition

condition-name condition

switch-status condition

sign condition

(simple-condition)

Sort File. A collection of records to be sorted by a SORT statement. The

sort file is created and can be used by the sort function only.

Sort-Merge File Description Entry. An entry in the File Section of the Data

Division that is composed of the level indicator SD, followed by a file-name,

and then followed by a set of file clauses as required.

Source. The symbolic identification of the originator of a transmission to a

queue .

SOURCE-COMPUTER. The name of an Environment Division paragraph in which the

computer environment, within which the source program is compiled, is described.

Source Computer Entry. An entry in the SOURCE-COMPUTER paragraph of the

Environment Division which contains clauses which describe the computer

environment in which the source program is to be compiled.

Source Item. An identifier designated by a SOURCE clause that provides the

value of a printable item.

Source Program. Although it is recognized that a source program may be

represented by other forms and symbols, in this document it always refers to a

syntactically correct set of COBOL statements. A COBOL source program commences

with the Identification Division; a COPY statement; or a REPLACE statement. A

COBOL source program is terminated by the end program header, if specified, or

by the absence of additional source program lines.

Special Character. A character that belongs to the following set:

Character

+

/

$

(
)
>
<

Meaning

plus sign

minus sign

asterisk

slant (solidus)

equal sign

currency sign

comma (decimal point)

semicolon

period (decimal point, full stop)

quotation mark

left parenthesis

right parenthesis

greater than symbol

less than symbol

colon

III-23

Glossary

Special Character Word. A reserved word which is an arithmetic operator or a

relation character.

SPECIAL-NAMES. The name of an Environment Division paragraph in which

implementor-names are related to user-specified mnemonic-names.

Special Names Entry. An entry in the SPECIAL-NAMES paragraph of the

Environment Division which provides means for specifying the currency sign;

choosing the decimal point; specifying symbolic characters; relating

implementor-names to user-specified mnemonic-names; relating alphabet-names to

character sets or collating sequences; and relating class-names to sets of

characters .

Special Registers. Certain compiler generated storage areas whose primary

use is to store information produced in conjunction with the use of specific

COBOL features.

Standard Data Format. The concept used in describing data in a COBOL Data

Division under which the characteristics or properties of the data are expressed

in a form oriented to the appearance of the data on a printed page of infinite

length and breadth, rather than a form oriented to the manner in which the data

is stored internally in the computer or on a particular medium.

Statement. A syntactically valid combination of words, literals, and

separators, beginning with a verb, written in a COBOL source program.

Sub-Queue. A logical hierarchical division of a queue.

Subject of Entry. An operand or reserved word that appears immediately

following the level indicator or the level-number in a Data Division entry.

Subprogram. A program which is the object of a CALL statement combined at

object time with the calling program to produce a run unit. The term is

synonymous with called program.

Subscript. An occurrence number represented by either an integer, a

data-name optionally followed by an integer with the operator + or -, or an

index-name optionally followed by an integer with the operator + or -, which

identifies a particular element in a table.

Subscripted Data-Name. An identifier that is composed of a data-name

followed by one or more subscripts enclosed in parentheses.

Sum Counter. A signed numeric data item established by a SUM clause in the

Report Section of the Data Division. The sum counter is used by the Report

Writer Control System to contain the result of designated summing operations

that take place during production of a report.

Switch-Status Condition. The proposition, for which a truth value can be

determined, that an implementor-defined switch, capable of being set to an 'on'

or 'off' status, has been set to a specific status.

Symbolic-Character. A user-defined word that specifies a user-defined

figurative constant.

III-24

Glossary

System-Name. A COBOL word which is used to communicate with the operating

environment.

Table. A set of logically consecutive items of data that are defined in the

Data Division of a COBOL program by means of the OCCURS clause.

Table Element. A data item that belongs to the set of repeated items

comprising a table.

Terminal. The originator of a transmission to a queue, or the receiver of a

transmission from a queue.

Text-Name. A user-defined word which identifies library text.

Text Word. A character or a sequence of contiguous characters between

margin A and margin R in a COBOL library, source program, or in pseudo-text

which is :

(1) A separator, except for: space; a pseudo-text delimiter; and the

opening and closing delimiters for nonnumeric literals. The right parenthesis

and left parenthesis characters, regardless of context within the library,

source program, or pseudo-text, are always considered text words.

(2) A literal including, in the case of nonnumeric literals, the opening

quotation mark and the closing quotation mark which bound the literal.

(3) Any other sequence of contiguous COBOL characters except comment

lines and the word 'COPY', bounded by separators, which is neither a separator

nor a 1iteral .

Top Margin. An empty area which precedes the page body.

Truth Value. The representation of the result of the evaluation of a

condition in terms of one of two values: true, false.

Unary Operator. A plus (+) or a minus (-) sign, which precedes a variable or

a left parenthesis in an arithmetic expression and which has the effect of

multiplying the expression by +1 or -1 respectively.

Unit. A discrete portion of a storage medium, the dimensions of which are

determined by each implementor, that contains part of a file, all of a file, or

any number of files. The term is synonymous with reel and volume.

Unsuccessful Execution. The attempted execution of a statement that does not

result in the execution of all the operations specified by that statement. The

unsuccessful execution of a statement does not affect any data referenced by

that statement, but may affect status indicators.

User-Defined Word. A COBOL word that must be supplied by the user to satisfy

the format of a clause or statement.

Variable. A data item whose value may be changed by execution of the object

program. A variable used in an arithmetic-expression must be a numeric
elementary item.

II1-25

Glossary

Variable Length Record. A record associated with a file whose file

description or sort-merge description entry permits records to contain a varying

number of character positions.

Variable Occurrence Data Item. A variable occurrence data item is a table

element which is repeated a variable number of times. Such an item must contain

an OCCURS DEPENDING ON clause in its data description entry, or be

to such an item.

subordinate

Verb. A word that expresses an action to be taken by a COBOL compiler or

object program.

Volume. A discrete portion of a storage medium, the dimensions of which are

determined by each implementor, that contains part of a file, all of a file, or

any number of files. The term is synonymous with reel and unit.

Word. A character-string of not more than 30 characters which forms a

user-defined word, a system-name, or a reserved word. (See page IV-5, COBOL

Words .)

Working-Storage Section. The section of the Data Division that describes

working storage data items, composed either of noncontiguous items or working

storage records or of both.

77-Leve1-Description-Entry. A data description entry that describes a

noncontiguous data item with the level-number 77.

II1-26

Notation

SECTION IV: OVERALL LANGUAGE CONSIDERATION

1 . INTRODUCTION

The language considerations and rules specified in this section, apply to the

highest level of Standard COBOL. When a particular level of a module does not

allow all of these language concepts, the restrictions will be pointed out in

the section describing that language element. Throughout this document,

specifications unique to the high level are enclosed in boxes. It should also

be noted that restrictions contained in one module might possibly affect other

modules. For example, qualification is not allowed in level 1 of the Nucleus;

therefore, any module which is combined with level 1 of the Nucleus would have

the same restriction. The flowcharts in this document illustrate the logic of

the statement under which they are contained and are not meant to dictate

implementat ion.

2. NOTATION USED IN FORMATS

2.1 DEFINITION OF A GENERAL FORMAT

A general format is the specific arrangement of the elements of a clause or a

statement. A clause or a statement consists of elements as defined below.

Throughout this document a format is shown adjacent to information defining the

clause or statement. When more than one specific arrangement is permitted, the

general format is separated into numbered formats. Clauses must be written in

the sequence given in the general formats. (Clauses that are optional must

appear in the sequence shown if they are used.) In certain cases, stated

explicitly in the rules associated with a given format, the clauses may appear

in sequences other than that shown. Applications, requirements, or restrictions

are shown as rules.

2.1.1 Elements

Elements which make up a clause or a statement consist of uppercase words,

lowercase words, level-numbers, brackets, braces, connectives, and special

characters.

2.1.2 Words

All underlined uppercase words are called key words and are required when the

functions of which they are a part are used. Uppercase words which are not

underlined are optional to the user and need not be written in the source

program. Uppercase words, whether underlined or not, must be spelled correctly.

Lowercase words, in a general format, are generic terms used to

COBOL words, literals, PICTURE character-strings, comment-entries, or

syntactical entry that must be supplied by the user. Where generic

represent

a complete

terms are

IV-1

Notation

repeated in a general format, a number or letter appended to the term serves to

identify that term for explanation or discussion.

2.1.3 Level-Numbers

When specific leve1-numbers appear in data description entry formats, those

specific level-numbers are required when such entries are used in a COBOL

program. In this document, the form 01, 02, ... , 09 is used to indicate

leve1-numbers 1 through 9.

2.1.4 Brackets, Braces, and Choice Indicators

When brackets, [] , enclose a portion of a general format, one of the

options contained within the brackets may be explicitly specified or that

portion of the general format may be omitted.

When braces, { } , enclose a portion of a general format, one of the options

contained within the braces must be either explicitly specified or implicitly

selected. If one of the options contains only reserved words which are not key

words, that option is the default option and is implicitly selected unless one

of the options is explicitly specified.

When choice indicators, {| I), enclose a portion of a general format, one or

more of the unique options contained within the choice indicators must be

specified, but a single option may be specified only once.

Options are indicated in a general format or a portion of a general format by

vertically stacking alternative possibilities, by a series of brackets, braces,

or choice indicators or by a combination of both. An option is selected by

specifying one of the possibilities from a stack of alternative possibilities or

by specifying a unique combination of possibilities from a series of brackets,

braces, or choice indicators.

2.1.5 Ellipsis

In text, other than general formats, the ellipsis (...) shows omission of a

word or words when such omission does not impair comprehension. This is the

conventional meaning of the ellipsis, and the use becomes apparent in context.

In the general format, the ellipsis (...) represents the position at which

the user elects repetition of a portion of a format. The portion of the format

that may be repeated is determined as follows:

Given ... (the ellipsis) in a format, scanning right to left, determine the]

(right bracket) or) (right brace) delimiter immediately to the left of the ...

(ellipsis); continue scanning right to left and determine the logically matching

[(left bracket) or { (left brace) delimiter; the ... (ellipsis) applies to the

portion of the format between the determined pair of delimiters.

2.1.6 Format Punctuation

The separators comma and semicolon may be used anywhere the separator space

is used in the formats (see page IV-4, Separators). In the source program,

these separators are interchangeable.

IV-2

Rules

The separat or period, when used in the formats , has the status of a required

word .

2.1.7 Use of Special Character Words in Formats

The special character words '+', 1 __ 1 f \ 1
3 X 3

1 / 1 1 _ 1

X 3 3 ’>=', '< =', when

appear ing in formats, although not underlined, are required when such port ions

of the formats are used .

3. RULES

3.1 SYNTAX RULES

Syntax rules are those rules that define or clarify the order in which words

or elements are arranged to form larger elements such as phrases, clauses, or

statements. Syntax rules may also either impose restrictions on individual

words or elements or relax restrictions implied by words or elements.

These rules are used

i.e., the order of

amplifications of what

to define or clarify how the statement must be

the elements of the statement and the restr

each element may represent.

wr

icti

itten ,

ons or

3.2 GENERAL RULES

A general rule is a

relationship of meanings of

or clarify the semantics of

execution or compilation.

rule

an e

the

that defines

lement or set of

statement and tne

or clarifies

elements. It

effect that

the meaning or

is used to define

it has on either

IV-3

Language Concepts

4. LANGUAGE CONCEPTS

4.1 CHARACTER SET

The most basic and indivisible unit of the language is the character. The

set of characters used to form COBOL character-strings and separators includes

the letters of the alphabet, digits, and special characters. The character set

consists of the characters as defined under COBOL Character Set in the glossary

on page III-3. In the case of nonnumeric literals, comment-entries, and comment

lines, the character set is expanded to include the computer's entire character

set. The characters allowable in each type of character-string and as

separators are defined in paragraph 4.2 below.

Certain of the charac

graphically represented

character sets . In thes

replace the character(s)

When a character set

must be substituted

substitution is an obsol

deleted from the next re

ters comprising the COBOL character set may not be

in definitions of national and international standard

e instances, a substitute graphic may be specified to

not represented.

contains fewer than 51 characters, double characters

for the single characters. This double character

ete feature in Standard COBOL because it is to be

vision of Standard COBOL.

4.2 LANGUAGE STRUCTURE

The individual characters of

character-strings and separators,

separator or with a character-st

concatenated with a separator,

separators forms the text of a sourc

the language are concatenated to form

A separator may be concatenated with another

ring. A character-string may only be

The concatenation of character-strings and

e program.

4.2.1 Separators

A separator is a character or two contiguous characters formed according to

the following rules:

(1) The punctuation character space is a separator. Anywhere a space is

used as a separator or as part of a separator, more than one space may be used.

All spaces immediately following the separators comma, semicolon, or period are

considered part of that separator and are not considered to be the separator

space.

(2) Except when the comma is used in a PICTURE character-string, the

punctuation characters comma and semicolon, immediately followed by a space, are

separators that may be used anywhere the separator space is used. They may be

used to improve program readabi 1 ity

(3) The punctuation charac ter period, when followed by a ! spa ce is a

separat or . It must be used on ly to indicat e the end of a sent ence, or as shown

in formats .

(4) The punctuation charact ers i right and left parentheses are se par ators .

Parentheses may appear only in balanced pairs > of left and right pa ren theses

de1imit ing subscripts, re fere nee modi fie rs , arithmetic expres 3 s i ons , or

conditions.

IV-4

Character-Strings

(5) The punctuation character quotation mark is a separator. An opening

quotation mark must be immediately preceded by a space or left parenthesis; a

closing quotation mark, when paired with an opening quotation mark, must be

immediately followed by one of the separators space, comma, semicolon, period,

or right parenthesis.

(6) Pseudo-text delimiters are separators. An opening pseudo-text delimiter

must be immediately preceded by a space; a closing pseudo-text delimiter must be

immediately followed by one of the separators space, comma, semicolon, or

period.

Pseudo-text delimiters may appear only in balanced pairs delimiting

pseudo-text.

(7) The punctuation character colon is a separator and is required when

shown in the general formats.

(8) The separator space may optionally immediately precede all separators

except:

a. As specified by reference format rules (see page IV-41, Reference

Format.)

b. The separator closing quotation mark. In this case, a preceding

space is considered as part of the nonnumeric literal and not as a separator.

c. The opening pseudo-text delimiter, where the preceding space is

required.

(9) The separator space may optionally immediately follow any separator

except the opening quotation mark. In this case, a following space is

considered as part of the nonnumeric literal and not as a separator.

Any punctuation character which appears as part of the specification of a

PICTURE character-string or numeric literal is not considered as a punctuation

character, but rather as a symbol used in the specification of that PICTURE

character-string or numeric literal. PICTURE character-strings are delimited

only by the separators space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the

characters which comprise the contents of nonnumeric literals, comment-entries,

or comment lines.

4.2.2 Character-Strings

A character-string is a character or a sequence of contiguous characters

which forms a COBOL word, a literal, a PICTURE character-string, or a

comment-entry. A character-string is delimited by separators.

4.2.2.1 COBOL Words

A COBOL word is a character-string of not more than 30 characters which forms

a user-defined word, a system-name, or a reserved word. Each character of a

COBOL word is selected from the set of letters, digits, and the hyphen. The

hyphen may not appear as the first or last character. Each lowercase letter is

IV-5

User-Defined Words

considered to be equivalent to its corresponding uppercase letter. Within a

source program, reserved words and user-defined words form disjoint sets;

reserved words and system-names form disjoint sets; system-names and

user-defined words form intersecting sets . The same COBOL word may be used as a

system-name and as a user-defined word within a source program; and the class of

a specific occurrence of this COBOL word is determined by the context of the

clause or phrase in which it occurs .

4.2.2.1.1 User-Defined Words

A user-defined word is

satisfy the format of a

word is selected from the

'9', and except that

a COBOL word that must be supplied by the user to

clause or statement. Each character of a user-defined

set of characters 'A', 1B1, 'C1, ... , 'Z', 'O', ... ,

the may not appear as the first or last character.

The types of user-defined words are:

1 . alphabet-name

2. cd-name

3. class-name

4. condition-name

5 . dat a-name

6. file-name

7. index-name

8. level-number

9. library-name

10. mnemonic-name

11. paragraph-name

12. program-name

13. record-name

14. re port-name

15. routine-name

16. section-name

17. se gme n t-numbe r

18. symbolic-character

19. text-name

Within a given source program, but excluding any contained program, the

user-defined words are grouped into the following disjoint sets:

1. alphabet-names

2. cd-names

3. class-names

4. condition-names, data-names, and record-names

5. file-names

6. index-names

7. library-names

8. mnemonic-names

9. paragraph-names

10. program-names

11. report-names

12. routine-names

13. section-names

14. symbo1ic-characters

15. text-names

IV-6

User-Defined Words

All user-defined words, except segment-numbers and level-numbers, can belong

to one and only one of these disjoint sets. Further, all user-defined words

within a given disjoint set must be unique, except as specified in the rules for

uniqueness of reference (see page IV-17, Uniqueness of Reference).

With the exception of section-names, paragraph-names, segment-numbers, and

level-numbers, all user-defined words must contain at least one alphabetic

character. Segment-numbers and level-numbers need not be unique; a given

specification of a segment-number or level-number may be identical to any other

segment-number or level-number.

4.2.2.1.1.1 Condition-Name

A condition-name is a name which is assigned to a specific value, set of

values, or range of values, within a complete set of values that a data item may

assume. The data item itself is called a conditional variable.

Condition-names may be defined in the Data Division or in the SPECIAL-NAMES

paragraph within the Environment Division where a condition-name must be

assigned to the on status or off status, or both, of implementor-defined

switches.

A condition-name is used in conditions as

condition; this relation condition posits

variable is equal to one of the set of values

assigned. A condition-name is also used in a

associated value is to be moved to the condit

an abbreviation

that the ass

to which that

SET statement,

ional variable.

for the relation

ociated conditional

condition-name is

indicating that the

4.2.2.1.1.2 Mnemonic-Name

A mnemonic-name assigns a user-defined word to an implementor-name. These

associations are established in the SPECIAL-NAMES paragraph of the Environment

Division (see VI-13, The SPECIAL-NAMES Paragraph).

4.2.2.1.1.3 Paragraph-Name

A paragraph-name is a word which names a paragraph in the Procedure Division.

Paragraph-names are equivalent if, and only if, they are composed of the same

sequence of the same number of digits and/or characters.

4.2.2.1.1.4 Section-Name

A section-name is a word which names a section in the Procedure Division.

Section-names are equivalent if, and only if, they are composed of the same

sequence of the same number of digits and/or characters.

4.2.2.1.1.5 Other User-Defined Names

All other types of user-defined words are defined in the

on page 111 — 1 .

glossary beginning

IV-7

Sys tem-Names

4.2.2.1.2 System-Names

A system-name is a COBOL word which is used to communicate with the operating

environment. Rules for the formation of a system-name are defined by the

implementor, except that each character used in the formation of a system-name

must be selected from the set of characters 'A', 'B', 'C', ... , 'Z', 'O', ... ,

'9', and '-', except that the '-' may not appear as the first or last character.

There are three types of system-names:

1 . computer-name

2. implementor-name

3. language-name

Within a given implementation these three types

sets; a given system-name may belong to one

system-names listed above are individually defined

page II1-1.

4.2.2.1.3 Reserved Words

A reserved word is a COBOL word that is one of a specified list of words

which may be used in COBOL source programs, but which must not appear in the

programs as user-defined words or system-names . Reserved words can only be used

as specified in the general formats. (See page IV-45, COBOL Reserved Words.)

Reserved words satisfy the following conditions:

(1) Reserved words do not begin with the characters 'O', ... , '9', 'X',

'Y', or 'Z' except for the reserved words ZERO, ZEROES, and ZEROS.

(2) Reserved words do not contain only one alphabetic character.

(3) Reserved words do not start with 1 or 2 characters followed by '-'

except for the reserved words 1-0, I-O-CONTROL, and reserved words which begin

with 'B-' or 1DB-'.

(4) Reserved words do not contain two or more contiguous hyphens.

There are three types of reserved words:

1 . required words

2. optional words

3. special purpose words

4.2.2.1.3.1 Required Words

A required word is a word whose presence is required when the format in which

the word appears is used in a source program.

Required words are of two types:

(1) Key words. Within each format, such words are uppercase and underlined.

of system-names form disjoint

and only one of them. The

in the glossary beginning on

IV-8

Literals

arithmetic operators and (2) Special character words. These are the

relation characters.

4.2.2.1.3.2 Optional Words

Within each format, uppercase words that are not underlined are called

optional words and may be specified at the user's option with no effect on the

semantics of the format.

4.2.2.1.3.3 Special Purpose Words

There are two types of special purpose words:

1. special registers

2. figurative constants

4.2.2.1.3.3.1 Special Registers

Certain reserved words are used to name and reference special

Special registers are certain compiler-generated storage areas whose

is to store information produced in conjunction with the use of spe

features. Unless specified otherwise in these specifications,

register of each type is allocated for each program. In the general

this specification, a special register may be used, unless otherwise

wherever data-name or identifier is specified provided that the spec

is the same category as the data-name or identifier. If qual

allowed special registers may be qualified as necessary to provide

(See page IV-18, Qualification.)

There are four special registers:

1. DEBUG-ITEM (see page XV-1)

2. LINAGE-COUNTER (see page VII-5)

3. LINE-COUNTER (see page XIII-1)

4. PAGE-COUNTER (see page XIII-1)

4.2.2.1.3.3.2 Figurative Constants

Certain reserved words are used to name and reference specific constant

values. These reserved words are specified on page IV-10, Figurative Constant

Values.

registers .

primary use

cific COBOL

one special

formats of

restricted,

ial register

ification is

uniqueness.

4.2.2.2 Literals

A literal is a character-string whose value is implied by an ordered set of

characters of which the literal is composed or by specification of a reserved

word which references a figurative constant. Every literal belongs to one of

two types: nonnumeric or numeric.

4.2.2.2.1 Nonnumeric Literals

A nonnumeric literal is a character-string delimited at the beginning and at

the end by the separator quotation mark. The implementor must allow for

nonnumeric literals of 1 through 160 characters in length. The length of a

nonnumeric literal applies to its representation in the object program.

IV-9

Numeric Literals

4.2.2.2.1.1 General Format

"{character-1) ... "

4.2.2.2.1.2 Syntax Rules

(1) Character-1 may be any character in the computer character set.

(2) If character-1 is to represent the quotation mark, two contiguous

quotation mark characters must be used to represent a single occurrence of that

character.

4.2.2.2.1.3 General Rules

(1) The value of a nonnumeric literal in the object program is the value

represented by character-1.

(2) The separator quotation mark that delimits the nonnumeric literal is not

part of the value of the nonnumeric literal .

(3) All nonnumeric literals are of category alphanumeric.

4.2.2.2.2 Numeric Literals

A numeric literal is a character-string whose characters are selected from

the digits 'O' through '9', the plus sign, the minus sign, and the decimal

point. The implementor must allow for numeric literals of 1 through 18 digits

in length. The rules for the formation of numeric literals are as follows:

(1) A literal must contain at least one digit.

(2) A literal must not contain more than one sign character. If a sign is

used, it must appear as the leftmost character of the literal. If the literal

is unsigned, the literal is nonnegative.

(3) A literal must not contain more than one decimal point. The decimal

point is treated as an assumed decimal point, and may appear anywhere within the

literal except as the rightmost character. If the literal contains no decimal

point, the literal is an integer.

If a literal conforms to the rules for the formation of numeric

literals, but is enclosed in quotation marks, it is a nonnumeric literal and it

is treated as such by the compiler.

(4) The value of a numeric literal is the algebraic quantity represented by

the characters in the numeric literal. Every numeric literal is category

numeric. (See page VI-29, The PICTURE Clause.) The size of a numeric literal

in standard data format characters is equal to the number of digits in the

string of characters as specified by the user.

4.2.2.2.3 Figurative Constant Values

Figurative constant values are generated by the compiler and referenced

through the use of the reserved words given below. These words must not be

IV-10

Figurative Constants

bounded by quotation marks when used as figurative constants. The singular and

plural forms of figurative constants are equivalent and may be used

interchangeably.

The figurative constant value and the reserved words used to reference them

are as follows:

(1) [ALL] ZERO, [ALL] ZEROS, [ALL] ZEROES Represents

'O', or one or more of the character 'O' from the computer's

the numeric value

character set.

(2) [ALL] SPACE, [ALL] SPACES Represents one or more of the character

space from the computer's character set.

(3) [ALL] HIGH-VALUE, [ALL] HIGH-VALUES Except in the SPECIAL-NAMES

paragraph, represents one or more of the character that has the highest ordinal

position in the program collating sequence.

(4) [ALL] LOW-VALUE, [ALL] LOW-VALUES Except in the SPECIAL-NAMES

paragraph, represents one or more of the character that has the lowest ordinal

position in the program collating sequence.

(5) [ALL] QUOTE, [ALL] QUOTES Represents one or more of the character

' " The word QUOTE or QUOTES cannot be used in place of a quotation mark in

a source program to bound a nonnumeric literal. Thus QUOTE ABD QUOTE is

incorrect as a way of stating the nonnumeric literal "ABD".

(6) ALL literal Represents all or part of the string generated by

successive concatenations of the characters comprising the literal. The literal

must be a nonnumeric literal. The literal must not be a figurative constant.

(7) [ALL] symbolic-character Represents one or more of the character

specified as the value of this symbolic-character in the SYMBOLIC CHARACTERS

clause of the SPECIAL-NAMES paragraph. (See page VI-13, The SPECIAL-NAMES

Paragraph.)

When a figurative constant represents a string of one or more characters, the

length of the string is determined by the compiler from context according to the

following rules:

(1) When a figurative constant is specified in a VALUE clause, or when a

figurative constant is associated with another data item (e.g., when the

figurative constant is moved to or compared with another data item), the string

of characters specified by the figurative constant is repeated character by

character on the right until the size of the resultant string is greater than or

equal to the number of character positions in the associated data item. This

resultant string is then truncated from the right until it is equal to the

number of character positions in the associated data item. This is done prior

to and independent of the application of any JUSTIFIED clause that may be

associated with the data item.

(2) When a figurative constant, other than ALL literal, is not associated

with another data item as when the figurative constant appears in a DISPLAY,

STOP, STRING, or UNSTRING statement, the length of the string is one character.

IV-11

PICTURE Character-Strings

(3) When the figurative constant ALL literal is not associated with another

data item, the length of the string is the length of the literal.

A figurative constant may be used whenever 'literal' appears in a format with

the following exceptions:

(1) If the literal is restricted to a numeric literal, the only figurative

constant permitted is ZERO (ZEROS, ZEROES).

(2) Associating the figurative constant ALL literal where the length of the

literal is greater than one with a data item that is numeric or numeric edited

is an obsolete feature in Standard COBOL. This obsolete feature is to be

deleted from the next revision of Standard COBOL.

(3) When a figurative constant other than ALL literal is used, the word ALL

is redundant and is used for readability only.

Except in the SPECIAL-NAMES paragraph, when the figurative constants

HIGH-VALUES(S) or LOW-VALUE(S) are used in the source program, the actual

characters associated with each figurative constant depend upon the program

collating sequence specified. (See page VI-11, The OBJECT-COMPUTER Paragraph,

and page VI-13, The SPECIAL-NAMES Paragraph.)

Each reserved word which is used to reference a figurative constant value is

a distinct character-string with the exception of the constructs using the word

ALL, such as ALL literal, ALL SPACES, etc., which are composed of two distinct

character-strings.

4.2.2.3 PICTURE Character-Strings

A PICTURE character-string consists of certain symbols which are composed of

the currency symbol and certain combinations of characters in the COBOL

character set. An explanation of the PICTURE character-string and the rules

that govern its use are given under the appropriate paragraph. (See page VI-29,

The PICTURE Clause.)

Any punctuation character which appears as part of the specification of a

PICTURE character-string is not considered as a punctuation character, but

rather as a symbol used in the specification of that PICTURE character-string.

4.2.2.4 Comment-Entries

A comment-entry is an entry in the Identification Division that may be any

combination of characters from the computer's character set. Comment-entry is

an obsolete element in Standard COBOL because it is to be deleted from the next

revision of Standard COBOL.

IV-12

Logical Record Concept

4.3 CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION

To make data as computer-independent as possible, the characteristics or

properties of the data are described in relation to a standard data format

rather than an equipment-oriented format. This standard data format is oriented

to general data processing applications and uses the decimal system to represent

numbers (regardless of the radix used by the computer) and all characters of the

COBOL character set to describe nonnumeric data items .

4.3.1 Logical Record Concept

In order to separate the logical characteristics of data from the physical

characteristics of the data storage media, separate clauses or phrases are used.

The following paragraphs discuss the characteristics of files.

4.3.1.1 Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the input

or output media and include such features as:

(1) The grouping of logical records within the physical limitations of the

file medium.

(2) The means by which the file can be identified.

4.3.1.2 Conceptual Characteristics of a File

The conceptual characteristics of a file are the explicit definition of each

logical entity within the file itself. In a COBOL program, the input or output

statements refer to one logical record.

It is important to distinguish between a physical record and a logical

record. A COBOL logical record is a group of related information, uniquely

identifiable, and treated as a unit.

A physical record is a physical unit of information whose size and recording

mode is convenient to a particular computer for the storage of data on an input

or output device. The size of a physical record is hardware dependent and bears

no direct relationship to the size of the file of information contained on a

device.

A logical record may be contained within a s

logical records may be contained within a s

record may require more than one physical unit

source language methods available for descr

records and physical units. When a permi

established, control of the accessibility of

physical unit must be provided by the interacti

implementor's hardware and/or software system,

records means to logical records, unless

specifically used.

ingle physical unit; or several

ingle physical unit; or a logical

to contain it. There are several

ibing the relationship of logical

ssible relationship has been

logical records as related to the

on of the object program on the

In this document, references to

the term 'physical record' is

The concept of a logical record is

over into the definition of working

intc logical records and defined by a

not restricted to file data but is carried

storage. Thus, working storage is grouped

series of record description entries .

IV-13

Concept of Levels

When a logical record is transferred to or from a physical unit, any

translation required by the presence of a CODE-SET clause is accomplished.

Padding characters are added or deleted as necessary. None of the clauses used

to describe the data in the logical record have any effect on this transfer.

4.3.1.3 Record Concepts

The record description consists of a set of data description entries which

describe the characteristics of a particular record. Each data description

entry consists of a level-number followed by a data-name, if required, followed

by a series of independent clauses, as required.

4.3.2 Concept of Levels

A level concept is inherent in the structure of a logical record. This

concept arises from the need to specify subdivision of a record for the purpose

of data reference. Once a subdivision has been specified, it may be further

subdivided to permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further

subdivided, are called elementary items; consequently, a record is said to

consist of a sequence of elementary items, or the record itself may be an

elementary item.

In order to refer to a set of elementary items, the elementary items are

combined into groups. Each group consists of a named sequence of one or more

elementary items. Groups, in turn, may be combined into groups of two or more

groups, etc. Thus, an elementary item may belong to more than one group.

4.3.2.1 Level-Numbers

A system of level-numbers shows the organization of elementary items and

group items. Since records are the most inclusive data items, level-numbers for

records start at 01. Less inclusive data items are assigned higher (not

necessarily successive) level-numbers not greater in value than 49. There are

special level-numbers, 66, 77, and 88, which are exceptions to this rule (see

below). Separate entries are written in the source program for each

level-number used.

A group includes all group and elementary items following it until a

level-number less than or equal to the level-number of that group is

encountered. All items which are immediately subordinate to a given group item

must be described using identical level-numbers greater than the level-number

used to describe that group item.

Three types of entries exist for which there is no true concept of level.

These are:

(1)

clause

Entries that specify elementary items or groups introduced by a RENAMES

(2)

items.

Entries that specify noncontiguous working storage and linkage data

(3) Entries that specify condition-names.

IV-14

Concept of Classes of Data

Entries describing items by means of RENAMES clauses for the purpose of

re-grouping data items have been assigned the special level-number 66.

Entries that specify noncontiguous data items, which are not subdivisions of

other items, and are not themselves subdivided, have been assigned the special

level-number 77.

Entries that specify condition-names, to be associated with particular values

of a conditional variable, have been assigned the special level-number 88.

4.3.3 Concept of Classes of Data

There are five categories of data items. (See page VI-29, The PICTURE

Clause.) These are grouped into three classes: alphabetic, numeric, and

alphanumeric. For alphabetic and numeric, the classes and categories are

synonymous. The alphanumeric class includes the categories of alphanumeric

edited, numeric edited, and alphanumeric (without editing). Every elementary

item belongs to one of the classes and further to one of the categories. The

class of a group item is treated at object time as alphanumeric regardless of

the class of elementary items subordinate to that group item. The following

table depicts the relationship of the class and categories of data items.

LEVEL OF ITEM CLASS CATEGORY

E lementary

Alphabetic Alphabe tic

Numeric Numeric

Alphanumeric

Numeric edited

Alphanumeric edited

Alphanumeric

Nonelementary

(Group)

Alphanumeric

Alphabetic

N ume ric

Numeric edited

Alphanumeric edited

Alphanumeric

IV-15

Character Representation and Radix

4.3.4 Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or decimal

form depending on the equipment. In addition there are several ways of

expressing decimal. Since these representations are actually combinations of

bits, they are commonly called binary-coded decimal forms. The selection of

radix is generally dependent upon the arithmetic capability of the computer. If

more than one arithmetic radix is provided, the selection is dependent upon the

specification of the USAGE clause. The binary-coded decimal form is also used

to represent characters and symbols that are alphanumeric items. The selection

of the proper binary-coded alphanumeric or binary-coded decimal form is

dependent upon the capability of the computer and its external media.

When a computer provides more than one means of representing data, the

standard data format must be used if not otherwise specified by the data

description. If both the external medium and the computer are capable of

handling more than one form of data representation, or if there is no external

medium associated with the data, the selection is dependent on factors included

in USAGE, PICTURE, etc., clauses. Each implementor provides a complete

explanation of the possible forms on the computer for which COBOL is

implemented. The method used in selecting the proper data form is also provided

to allow the programmer to anticipate and/or control the selection.

The size of an elementary data item or a group item is the number of

characters in standard data format of the item. Synchronization and usage may

cause a difference between this size and that required for internal

representation.

4.3.5 Algebraic Signs

associated with

into two categories: operational signs , which are

numeric data items and signed numeric literals to

properties; and editing

fy the sign of the item.

signs, which appear (e.g.) on

ts the programmer to state explicitly the location of

This clause is optional ; if it is not used , operational

signs will be represented as defined by the implementor.

Editing signs are inserted into a data item through the use of the sign

control symbols of the PICTURE clause.

4.3.6 Standard Alignment Rules

The standard rules for positioning data within an elementary item depend on

the category of the receiving item. These rules are:

(1) If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving

digit positions with zero fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data

item is treated as if it has an assumed decimal point immediately following its

rightmost digit and is aligned as in paragraph la.

IV-16

Item Alignment

(2) If the receiving data item is a numeric edited data item, the data moved

to the edited data item is aligned by decimal point with zero fill or truncation

at either end as required within the receiving character positions of the data

item, except where editing requirements cause replacement of the leading zeros.

(3) If the receiving data item is alphanumeric (other than a numeric edited

data item), alphanumeric edited, or alphabetic, the sending data is moved to the

receiving character positions and aligned at the leftmost character position in

the data item with space fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard

rules are modified. (See page VI-24, The JUSTIFIED Clause.)

4.3.7 Item Alignment for Increased Object-Code Efficiency

Some computer memories are organized in such a way that there are natural

addressing boundaries in the computer memory (e.g., word boundaries, half-word

boundaries, byte boundaries). The way in which data is stored is determined by

the object program, and need not respect these natural boundaries.

However, certain uses of data (e.g., in arithmetic operations or in

subscripting) may be facilitated if the data is stored so as to be aligned on

these natural boundaries. Specifically, additional machine operations in the

object program may be required for the accessing and storage of data if portions

of two or more data items appear between adjacent natural boundaries, or if

certain natural boundaries bifurcate a single data item.

Data items which are aligned on these natural boundaries in such a way as to

avoid such additional machine operations are defined to be synchronized.

Synchronization can be accomplished in two ways:

(1) By use of the SYNCHRONIZED clause.

(2) By recognizing the appropriate natural boundaries and organizing the

data suitably without the use of the SYNCHRONIZED clause.

Each implementor who provides for special types of alignment will specify the

precise interpretations which are to be made. The use of such items within a

group may affect the results of statements in which the group is used as an

operand. Each implementor who provides for these special types of alignment

will describe the effect of the implicit FILLER and the semantics of any

statement referencing these groups.

4.3.8 Uniqueness of Reference

Every user-defined name in a COBOL program is assigned, by the user, to name

a resource which is to be used in solving a data processing problem. (See page

IV-6, User-Defined Words.) In order to use a resource, a statement in a COBOL

program must contain a reference which uniquely identifies that resource. In

order to ensure uniqueness of reference, a user-defined name may be qualified,

subscripted, or reference modified as described in the following paragraphs.

When the same name has been assigned in separate programs to two or more

occurrences of a resource of a given type, and when qualification by itself does

IV-17

Qualification

not allow the reference in one of those programs to differentiate between the

two identically named resources, then certain conventions which limit the scope

of names apply. These conventions ensure that the resource identified is that

described in the program containing the reference. (See page X-4, Scope of

Names .)

Unless otherwise specified by the rules for a statement, any subscripting and

reference modification are evaluated only once as the first operation of the

execution of that statement.

4.3.8.1 Qualification

Every user-defined name explicitly referenced in a COBOL source program must

be uniquely referenced because either:

(1) No other name has the identical spelling and hyphenation.

(2) It is unique within the context of a REDEFINES clause. (See page VI-38,

The REDEFINES Clause.)

(3) The name exists within a hierarchy of names such that reference to the

name can be made unique by mentioning one or more of the higher level names in

the hierarchy.

These higher level names are called qualifiers and this process that

specifies uniqueness is called qualification. Identical user-defined names may

appear in a source program; however, uniqueness must then be established through

qualification for each user-defined name explicitly referenced, except in the

case of redefinition. All available qualifiers need not be specified so long as

uniqueness is established. Reserved words naming the special registers require

qualification to provide uniqueness of reference whenever a source program would

result in more than one occurrence of any of these special registers. A

paragraph-name or section-name appearing in a program may not be referenced from

any other program.

(4) A program is contained within a program or contains another program.

(See page X-4, Scope of Names.)

Regardless of the above, the same data-name must not be

an external record and as the name of any other external

any program contained within or containing the program

external data record. The same data-name must not be

item possessing the global attribute and as the name of

described in the program which describes that global data

used as the name of

data item described in

which describes that

used as the name of an

any other data item

item.

IV-18

Qualification

The general formats for qualification are:

Format 1:

Jdata-name-1

^condition-name-1

data-name-2 j
ilN'l I f ile-name-l)

j OF j 1cd-name-1 j

{
file-name-

cd-name-1

Format 2:

paragraph-name-1 section-name-1

Format 3:

text-name-1 © 1ib rary-name-1

Format 4:

LINAGE-COUNTER file-name-2

Format 5:

f page-counter'I (IN'!
t LINE-COUNTER ({ot} report-name-1

Format 6

data-name-3

r > data-name-4

report-name-2

report-name-2

IV-19

Qualif ication

The rules for qualification are as follows:

(1) For each nonunique user-defined name that is explicitly referenced,

uniqueness must be established through a sequence of qualifiers which precludes

any ambiguity of reference.

(2) A name can be qualified even

there is more than one combination

any such set can be used.

(3) IN and OF are logically equivalent.

(4) In format 1, each qualifier must be the name associated with a level

indicator, the name of a group item to which the item being qualified is

subordinate, or the name of the conditional variable with which the

condition-name being qualified is associated. Qualifiers are specified in the

order of successively more inclusive levels in the hierarchy.

(5) In format 1, data-name-1 or data-name-2 may be a record-name.

(6) If explicitly referenced, a paragraph-name must not be duplicated within

a section. When a paragraph-name is qualified by a section-name, the word

SECTION must not appear. A paragraph-name need not be qualified when referred

to from within the same section. A paragraph-name or section-name appearing in

a program may not be referenced from any other program.

(7) If more than one COBOL library is available to the compiler during

compilation, text-name must be qualified each time it is referenced.

(8) LINAGE-COUNTER must be qualified each time it is referenced if more than

one file description entry containing a LINAGE clause has been specified in the

source program.

(9) LINE-COUNTER must be qualified each time it is referenced in the

Procedure Division if more than one report description entry is specified in the

source program. In the Report Section, an unqualified reference to LINE-COUNTER

is qualified implicitly by the name of the report in whose report description

entry the reference is made. Whenever the LINE-COUNTER of a different report is

referenced, LINE-COUNTER must be qualified explicitly by the report-name

associated with the different report.

(10) PAGE-COUNTER must be qualified each time it is referenced in the

Procedure Division if more than one report description entry is specified in the

source program. In the Report Section, an unqualified reference to the

PAGE-COUNTER is qualified implicitly by the name of the report in whose report

description entry the reference is made. Whenever the PAGE-COUNTER of a

different report is referenced, PAGE-COUNTER must be qualified explicitly by the

report-name associated with the different report.

though it does not need qualification; if

of qualifiers that ensures uniqueness, then

IV-20

Subscripting

4.3.8.2 Subscripting

4.3.8.2.1 Function

Subscripts are used when reference is made to an individual element within a

table of like elements that have not been assigned individual data-names. (See

page VI-26, The OCCURS Clause.)

4.3.8.2.2 General Format

condition-name-

data-name-1

i integer-1 \

data-name-2 [{±} integer-2] v ...)

index-name-1 [{±} integer-3] |

4.3.8.2.3 Syntax Rules

(1) The data description entry containing data-name-1 or the data-name

associated with condition-name-1 must contain an OCCURS clause or must be

subordinate to a data description entry which contains an OCCURS clause.

(2) Except as defined in syntax rule 4, when a reference is made to a table

element, the number of subscripts must equal the number of OCCURS clauses in the

description of the table element being referenced. When more than one subscript

is required, the subscripts are written in the order of successively less

inclusive dimensions of the table.

(3) Index-name-1 must correspond to a data description entry in the

hierarchy of the table being referenced which contains an INDEXED BY phrase

specifying that index-name.

(4) Each table element reference must be subscripted except when such

reference appears:

a. In a USE FOR DEBUGGING statement.

b. As the subject of a SEARCH statement.

c. In a REDEFINES clause.

d. In the KEY IS phrase of an OCCURS clause.

(5) Data-name-2 may be qualified and must be a numeric elementary item

representing an integer.

(6) Integer-1 may be signed and, if signed, it must be positive.

4.3.8.2.4 General Rules

(1) The value of the subscript must be a positive integer. The lowest

possible occurrence number represented by a subscript is 1. The first element

of any given dimension of a table is referenced by an occurrence number of 1.

Each successive element within that dimension of the table is referenced by

occurrence numbers of 2, 3, The highest permissible occurrence number for

IV-21

Reference Modification

any given dimension of the table is the maximum number of occurrences of the

item as specified in the associated OCCURS clause.

(2) The value of the index referenced by index-name-1 corresponds to the

occurrence number of an element in the associated table. This correspondence is

defined by the implementor.

(3) The value of the index referenced by index-name-1 must be initialized

before it is used as a subscript. An index may be given an initial value by

either a PERFORM statement with the VARYING phrase, a SEARCH statement with the

ALL phrase, or a SET statement. An index may be modified only by the PERFORM,
SEARCH, and SET statements.

•

(4) If integer-2 or integer-3 is specified, the value of the subscript is

determined by incrementing by the value of integer-2 or integer-3 (when the

operator + is used) or by decrementing by the value of integer-2 or integer-3

(when the operator - is used) either the occurrence number represented by the

value of the index referenced by index-name-1 or the value of the data item

referenced by data-name-2.

4.3.8.3 Reference Modification

4.3.8.3.1 Function

Reference modification defines a data item by specifying a leftmost character

and length for the data item.

4.3.8.3.2 General Format

data-name-1 (leftmost-character-position: [length])

4.3.8.3.3 Syntax Rules

(1) Data-name-1 must reference a data item whose usage is DISPLAY.

(2) Leftmost-character-position and length must be arithmetic expressions.

(3) Unless otherwise specified, reference modification is allowed anywhere

an identifier referencing a data item of the class alphanumeric is permitted.

(4) Data-name-1 may be qualified or subscripted.

4.3.8.3.4 General Rules

(1) Each character of a data item referenced by data-name-1 is assigned an

ordinal number incrementing by one from the leftmost position to the rightmost

position. The leftmost position is assigned the ordinal number one. If the

data description entry for data-name-1 contains a SIGN IS SEPARATE clause, the

sign position is assigned an ordinal number within that data item.

(2) If the data item referenced by data-name-1 is described as numeric,

numeric edited, alphabetic, or alphanumeric edited, it is operated upon for

purposes of reference modification as if it were redefined as an alphanumeric

data item of the same size as the data item referenced by data-name-1.

IV-22

Identifier

(3) Reference modification for an operand is evaluated as follows:

a. If subscripting is specified for the operand, the reference

modification is evaluated immediately after evaluation of the subscripts.

b. If the subscripting is not specified for the operand, the reference

modification is evaluated at the time subscripting would be evaluated if

subscripts had been specified.

(4) Reference modification creates a unique data item which is a subset of

the data item referenced by data-name-1. This unique data item is defined as

fo1 lows:

a. The evaluation of leftmost-character-position specifies the ordinal

position of the leftmost character of the unique data item in relation to the

leftmost character of the data item referenced by data-name-1. Evaluation of

leftmost-character-position must result in a positive nonzero integer less than

or equal to the number of characters in the data item referenced by data-name-1.

b. The evaluation of length specifies the size of the data item to be

used in the operation. The evaluation of length must result in a positive

nonzero integer. The sum of leftmost-character-position and length minus the

value one must be less than or equal to the number of characters in the data

item referenced by data-name-1. If length is not specified, the unique data

item extends from and includes the character identified by

leftmost-character-position up to and including the rightmost character of the

data item referenced by data-name-1.

(5) The unique data item is considered an elementary data item without the

JUSTIFIED clause. It has the same class and category as that defined for the

data item referenced by data-name-1 except that the categories numeric, numeric

edited, and alphanumeric edited are considered class and category alphanumeric.

4.3.8.4 Identifier

An identifier is a term used to reflect a data-name that, if not unique in a

program, must be followed by a syntactically correct combination of qualifiers,

subscripts, or reference modifiers necessary for uniqueness of reference. (See

page X-4, Scope of Names.)

The general format for identifier is:

f _ \ “ cd-name-1

data-name-1 < ~ > data-name-2
IQFI

— _
• • • Si- file-name-1

1 report-name-1

[({subscript} ...)] [(leftmost-character-position: [length])]

IV-23

Condition-Name

4.3.8.5 Condition-Name

conventions by themselves ensure uniqueness of reference

of Names.)

If qualification is used to make a condition-name

conditional variable may be used as the first qualifi

used, the hierarchy of names associated with the condi

must be used to make the condition-name unique.

any of its condition-names also requires the same combination of subscripting.

The format and restrictions on the combined use of qualification and

subscripting of condition-names is exactly that of 'identifier' except that

data-name-1 is replaced by condition-name-1.

In the general format of the chapters that follow, 'condition-name' refers to

a condition-name qualified or subscripted, as necessary.

iq ue or be made unique

en the scope of names

• (See page X-4, Scope

un ique , the asso ciated

er . If qualificat ion is

ti onal variable itself

cr ipting ;, reference to

IV-24

Explicit and Implicit Specifications

4.4 EXPLICIT AND IMPLICIT SPECIFICATIONS

There are four types of explicit and implicit specifications that occur in

COBOL source programs:

(1) Explicit and implicit Procedure Division references

(2) Explicit and implicit transfers of control

(3) Explicit and implicit attributes

(4) Explicit and implicit scope terminators

4.4.1 Explicit and Implicit Procedure Division References

A COBOL source program can reference data items either explicitly or

implicitly in Procedure Division statements. An explicit reference occurs when

the name of the referenced item is written in a Procedure Division statement or

when the name of the referenced item is copied into the Procedure Division by

the processing of a COPY statement. An implicit reference occurs when the item

is referenced by a Procedure Division statement without the name of the

referenced item being written in the source statement. An implicit reference

also occurs, during the execution of a PERFORM statement, when the index or data

item referenced by the index-name or identifier specified in the VARYING, AFTER,

or UNTIL phrase is initialized, modified, or evaluated by the control mechanism

associated with that PERFORM statement. Such an implicit reference occurs if

and only if the data item contributes to the execution of the statement.

4.4.2 Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from statement to

statement in the sequence in which they were written in the source program

unless an explicit transfer of control overrides this sequence or there is no

next executable statement to which control can be passed. The transfer of

control from statement to statement occurs without the writing of an explicit

Procedure Division statement, and, therefore, is an implicit transfer of

control.

COBOL provides both explicit and implicit means of altering the implicit

control transfer mechanism.

In addition to the implicit transfer of control between consecutive

statements, implicit transfer of control also occurs when the normal flow is

altered without the execution of a procedure branching statement. COBOL

provides the following types of implicit control flow alterations which override

the statement-to-statement transfers of control:

(1) If a paragraph is being executed under control of another COBOL

statement (for example, PERFORM, USE, SORT, and MERGE) and the paragraph is the

last paragraph in the range of the controlling statement, then an implied

transfer of control occurs from the last statement in the paragraph to the

control mechanism of the last executed controlling statement. Further, if a

paragraph is being executed under the control of a PERFORM statement which

causes iterative execution, and that paragraph is the first paragraph in the

range of that PERFORM statement, an implicit transfer of control occurs between

IV-25

Explicit and Implicit Specifications

the control mechanism associated with that PERFORM statement and the first

statement in that paragraph for each iterative execution of the paragraph.

(2) When a SORT or MERGE statement is executed, an implicit transfer of

control occurs to any associated input or output procedures.

(3) When any COBOL statement is executed which results in the execution of a

declarative section, an implicit transfer of control to the declarative section

occurs. Note that another implicit transfer of control occurs after execution

of the declarative section, as described in paragraph 1 above.

An explicit transfer of control consists of an alteration of the implicit

control transfer mechanism by the execution of a procedure branching or

conditional statement. An explicit transfer of control can be caused only by

the execution of a procedure branching or conditional statement. The execution

of the procedure branching statement ALTER does not in itself constitute an

explicit transfer of control, but affects the explicit transfer of control that

occurs when the associated GO TO statement is executed. The procedure branching

statement EXIT PROGRAM causes an explicit transfer of control only when the

statement is executed in a called program.

In this document, the term 'next executable statement' is used to refer to

the next COBOL statement to which control is transferred according to the rules

above and the rules associated with each language element.

There is

Division or

no next executable

following:

statement when the program contains no Procedure

(1) The last statement in a declarative section when the paragraph in which

it appears is not being executed under the control of some other COBOL

statement.

(2) The last statement in a declarative section when the statement is in the

range of an active PERFORM statement executed in a different section and this

last statement of the declarative section is not also the last statement of the

procedure that is the exit of the active PERFORM statement.

(3) The last statement in a program when the paragraph in which it appears

is not being executed under the control of some other COBOL statement in that

program.

(4) A STOP RUN statement or EXIT PROGRAM statement that transfers control

outside the COBOL program.

(5) The end program header.

When there is no next executable statement and control is not transferred

outside the COBOL program, the program flow of control is undefined unless the

program execution is in the nondeclarative procedures portion of a program under

control of a CALL statement, in which case an implicit EXIT PROGRAM statement is

executed.

IV-26

Scope Terminators

4.4.3 Explicit and Implicit Attributes

Attributes may be implicitly or explicitly specified. Any attribute which

has been explicitly specified is called an explicit attribute. If an attribute

has not been specified explicitly, then the attribute takes on the default

specification. Such an attribute is known as an implicit attribute.

For example, the usage of a data item need not be specified, in which case a

data item's usage is DISPLAY.

4.4.4 Explicit and Implicit Scope Terminators

Scope terminators serve to delimit the scope of certain Procedure Division

statements. (See page IV-39, Delimited Scope Statements.) Scope terminators

are of two types: explicit and implicit.

The explicit scope terminators are the following:

END-ADD

END-CALL

END-COMPUTE

END-DELETE

END-DIVIDE

END-EVALUATE

END-IF

END-MULTIPLY

END-PERFORM

END-READ

END-RECEIVE

END-RETURN

END-REWRITE

END-SEARCH

END-START

END-STRING

END-SUBTRACT

END-UNSTRING

END-WRITE

The implicit scope terminators are the following:

(1) At the end of any sentence, the

scope of all previous statements not yet

(2) Within any statement containing

the containing statement following the

of any unterminated contained statement.

WHEN, NOT AT END, etc.

separator period which terminates the

terminated.

another statement, the next phrase of

contained statement terminates the scope

Examples of such phrases are ELSE,

IV-27

External Switch

4.5 EXTERNAL SWITCH

the associated external switch.

The status of an external switch may be in

condition-names associated with that switch,

condition-name with an external switch and the associat

mnemonic-name with the implementor-name that names

established in the SPECIAL-NAMES paragraph of the Envi

page VI-13, The SPECIAL-NAMES Paragraph.)

of an external switch

defined and named by the

alternat e states exists.

and the off status of

terrogate d by testing

The as sociation of a

ion of a user-specified

an ext ernal switch is

ronment Division . (See

, etc .) o f each external

used to modify the status

external switch is the

rnal swit ch refers to one

and only one such switch, the status of

program functioning within that run unit

which is available to each object

The status of certain switches may be

page VI-127, The SET Statement.)

altered by the SET statement. (See

IV-28

Programs

5. A COBOL SOURCE PROGRAM

5.1 INTRODUCTION

A COBOL source program is a syntactically correct set of COBOL statements.

5.2 ORGANIZATION

With the exception of COPY and REPLACE statements and the end program header,

the statements, entries, paragraphs, and sections of a COBOL source program are

grouped into four divisions which are sequenced in the following order:

1. The Identification Division

2. The Environment Division

3. The Data Division

4. The Procedure Division

The end of a COBOL source program is indicated by either the end program

header, if specified, or by the absence of additional source program lines.

5.3 STRUCTURE

The following gives the general format and order of presentation of the

entries and statements which constitute a COBOL source program.

5.3.1 General Format

identification-division

[environment-division]

[data-division]

[procedure-division]

[end-program-header]

i

IV-29

Identification Division

6. DIVISIONS

6.1 IDENTIFICATION DIVISION

6.1.1 General Description

The Identification Division identifies the program. In addition, the user

may include the date the program is written, the date the compilation of the

source program is accomplished and such other information as desired under the

paragraphs in the general format shown below.

6.1.2 Organization

Paragraph headers identify the type of information contained in the

paragraph. The name of the program must be given in the first paragraph, which

is the PROGRAM-ID paragraph. The other paragraphs are optional and may be

included in this division at the user's choice, in order of presentation shown

by the format below.

6.1.3 Structure

The following is the general format of the paragraphs in the Identification

Division and it defines the order of presentation in the source program.

6.1.3.1 General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-identification-entry

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...]

[DATE-COMPILED. [comment-entry] ...]

[SECURITY. [comment-entry] ...]

IV-30

Environment Division

6.2 ENVIRONMENT DIVISION

6.2.1 General Description

The Environment Division specifies a standard method of expressing those

aspects of a data processing problem that are dependent upon the physical

characteristics of a specific computer. This division allows specification of

the configuration of the compiling computer and the object computer. In

addition, information relative to input-output control, special hardware

characteristics, and control techniques can be given.

6.2.2 Organization

Two sections make up the Environment Division: the Configuration Section and

the Input-Output Section.

The Configuration Section deals with the characteristics of the source

computer and the object computer. This section is divided into three

paragraphs: the SOURCE-COMPUTER paragraph, which describes the computer

configuration on which the source program is compiled; the OBJECT-COMPUTER

paragraph, which describes the computer configuration on which the object

program produced by the compiler is to be run; and the SPECIAL-NAMES paragraph,

which provides a means for specifying the currency sign, choosing the decimal

point, specifying symbolic-characters, relating implementor-names to

user-specified mnemonic-names, relating alphabet-names to character sets or

collating sequences, and relating class-names to sets of characters.

The Input-Output Section deals with the information needed to control

transmission and handling of data between external media and the object program.

This section is divided into two paragraphs: the FILE-CONTROL paragraph which

names and associates the files with external media; and the I-O-CONTROL

paragraph which defines special control techniques to be used in the object

program.

6.2.3 Structure

The following is the general format of the sections and paragraphs in the

Environment Division, and defines the order of presentation in the source

program.

IV-31

Environment Division

6.2.3.1 General Format

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. [source-computer-entry]]

[OBJECT-COMPUTER. [object-computer-entry]]

[SPECIAL-NAMES. [special-names-entry]]]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry} ...

[I-O-CONTROL. [input-output-control-entry]]]

IV-32

Data Division

6.3 DATA DIVISION

6.3.1 Overall Approach

The

input,

Data Division describes the data that the object program is to accept

to manipulate, to create, or to produce as output.

as

6.3.2 Physical and Logical Aspects of Data Description

6.3.2.1 Data Division Organization

The Data Division is subdivided into sections. These are the File,

Working-Storage, Linkage, Communication, and Report Sections.

The File Section defines the structure of data files. Each file is defined

by a file description entry and one or more record description entries, or by a

file description entry and one or more report description entries. Record

description entries are written immediately following the file description

entry. When the file description entry specifies a file to be used as a report

writer output file, no record description entries are permitted for that file.

Report description entries appear in a separate section of the Data Division,

the Report Section.

The Working-Storage Section describes records and subordinate data items

which are not part of external data files but are developed and processed

internally. It also describes data items whose values are assigned in the

source program and do not change during the execution of the object program.

The Linkage Section appears in the called program and de

th at are to be ref e rred to by the calling program and the

St ruct ure is the same as the Working -Storage Sec stion.

The Commun icat ion Sec t ion des scribes the data item in the

wi 11 serve as the in ter face between the mess sage control

pr ogram.

The Report Sec t ion de scribes the content and format of re

ge nera ted .

scribes data items

called program. Its

source program that

system (MCS) and the

ports that are to be

IV-33

Data Division

6.3.2.2 Data Division Structure

The following gives the general format of the sections in the Data Division,

and defines the order of their presentation in the source program.

6.3.2.2.1 General Format

DATA DIVISION.

[FILE SECTION.

file-description-entry {record-description-entry} ...

sort-merge-file-description-entry {record-description-entry} ...

report-file-description-entry
-

[WORKING-STORAGE SECTION.

77-level-description-entry

record-description-entry
• • •

rLINKAGE SECTION.

77-level-description-entry

record-description-entry

rCOMMUNICATION SECTION.

[communication-description-entry [record-description-entry] ...] ...]

rREPORT SECTION.

[report-description-entry {report-group-description-entry} ...] ...]

♦

♦

IV-34

Procedure Division

6.4 PROCEDURE DIVISION

6.4.1 General Description

The Procedure Division may contain declarative and nondeclarative procedures.

6.4.1.1 Declaratives

Declarative sections must be grouped at the beginning of the Procedure

Division preceded by the key word DECLARATIVES and followed by the key words END

DECLARATIVES. (See pages VII-50, VIII-35, IX-39, XIII-76, XIII-78, and XV-5 for

the USE statement.)

6.4.1.2 Procedures

A procedure is composed of a paragraph, or a group of successive paragraphs,

or a section, or a group of successive sections within the Procedure Division.

If one paragraph is in a section, all paragraphs must be in sections. A

procedure-name is a word used to refer to a paragraph or section in the source

program in which it occurs. It consists of a paragraph-name (which may be

qualified) or a section-name.

A section consists of a section header followed by zero, one, or more

successive paragraphs. A section ends immediately before the next section or at

the end of the Procedure Division or, in the declaratives portion of the

Procedure Division, at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space and

by zero, one, or more successive sentences. A paragraph ends immediately before

the next paragraph-name or section-name or at the end of the Procedure Division

or, in the declaratives portion of the Procedure Division, at the key words END

DECLARATIVES. A sentence consists of one or more statements and is terminated

by the separator period.

A statement is a syntactically valid combination of words, literals, and

separators beginning with a COBOL verb.

The term 'identifier' is defined as the word or words necessary to make

unique reference to a data item.

6.4.1.3 Execution

Execution begins with the first statement of

excluding declaratives. Statements are then executed

are presented for compilation, except where the rules

the Procedure Division,

in the order in which they

indicate some other order.

IV-35

Procedure Division

6.4.1.4 Procedure Division Structure

6.4.1.4.1 Procedure Division Header

The Procedure Division is identified by, and must begin with, the

header:

PROCEDURE DIVISION [USING {data-name-1} ...].

6.4.1.4.2 Procedure Division Body

The body of the Procedure Division must conform to one of the

formats:

Format 1:

[DECLARATIVES.

{section-name SECTION [segment-number].

USE statement.

[paragraph-name.

[sentence] ...] ... } ...

END DECLARATIVES.]

{section-name SECTION [segment-number].

[paragraph-name.

[sentence] ...] ... } ...

Format 2:

{paragraph-name.

[sentence] ... } ...

fo1 lowing

fo 1 lowing

IV-36

Statements and Sentences

6.4.2 Statements and Sentences

There are four types of statements: imperative statements, conditional

statements, compiler directing statements, and delimited scope statements.

There are three types of sentences: imperative sentences, conditional

sentences, and compiler directing sentences.

6.4.2.1 Conditional Statements and Sentences

6.4.2.1.1 Definition of Conditional Statement

A conditional statement specifies that the truth value of a condition is to

be determined and that the subsequent action of the object program is dependent

on this truth value.

A conditional statement is one of the following:

(1) An EVALUATE, IF, SEARCH, or RETURN statement.

(2) A READ statement that specifies the AT END, NOT AT END, INVALID KEY, or

NOT INVALID KEY phrase.

(3) A WRITE statement that specifies the INVALID KEY, NOT INVALID KEY,

END-OF-PAGE, or NOT END-OF-PAGE phrase.

(4) A DELETE, REWRITE, or START statement that specifies the INVALID KEY or

NOT INVALID KEY phrase.

(5) An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that

specifies the ON SIZE ERROR or NOT ON SIZE ERROR phrase.

(6) A RECEIVE statement that specifies a NO DATA or WITH DATA phrase.

(7) A STRING or UNSTRING statement that specifies the ON OVERFLOW or NOT ON

OVERFLOW phrase.

(8) A CALL statement that specifies the ON OVERFLOW, ON EXCEPTION, or NOT ON

EXCEPTION phrase.

6.4.2.1.1.1 Definition of Conditional Phrase

A conditional phrase specifies the action to be taken upon determination of

the truth value of a condition resulting from the execution of a conditional

statement.

A conditional phrase is one of the following:

(1) AT END or NOT AT END phrase when specified within a READ statement.

(2) INVALID KEY or NOT INVALID KEY phrase when specified within a DELETE,

READ, REWRITE, START, or WRITE statement.

(3) END-OF-PAGE or NOT END-OF-PAGE phrase when specified within a WRITE

statement.

IV-37

Statements and Sentences

(4) SIZE ERROR or NOT ON SIZE ERROR phrase when specified within an ADD,

COMPUTE, DIVIDE, MULTIPLY, or SUBTRACT statement.

(5) NO DATA or WITH DATA phrase when specified within a RECEIVE statement.

(6) ON OVERFLOW or NOT ON OVERFLOW phrase when specified within a STRING or

UNSTRING statement.

(7) ON OVERFLOW, ON EXCEPTION, or NOT ON EXCEPTION phrase when specified

within a CALL statement.

6.4.2.1.2 Definition of Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by an

imperative statement, terminated by the separator period.

6.4.2.2 Compiler Directing Statements and Compiler Directing Sentences

6.4.2.2.1 Definition of Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb and its

operands. The compiler directing verbs are COPY, REPLACE, and USE (see page

XII-2, The COPY Statement; page XII-6, The REPLACE Statement; and the USE

Statement on pages VII-50, VIII-35, IX-39, XIII-76, XIII-78, and XV-5). A
compiler directing statement causes the compiler to take a specific action

during compilation.

6.4.2.2.2 Definition of Compiler Directing Sentence

A compiler directing sentence is a single compiler directing statement

terminated by the separator period.

IV-38

Statements and Sentences

6.4.2.3 Imperative Statements and Imperative Sentences

6.4.2.3.1 Definition of Imperative Statement

An imperative statement begins with an imperative verb and specifies an

unconditional action to be taken by the object program or is a conditional

statement that is delimited by its explicit scope terminator (delimited scope

statement). An imperative statement may consist of a sequence of imperative

statements, each possibly separated from the next by a separator. The

imperative verbs are:

ACCEPT GENERATE RELEASE

ADD1 GO TO REWRITE2

ALTER INITIALIZE SEND

CALL7 INITIATE SET

CANCEL INSPECT SORT

CLOSE

COMPUTE1

MERGE START2

MOVE STOP

CONTINUE MULTIPLY1 STRING3

DELETE2 OPEN SUBTRACT1

DISABLE PERFORM SUPPRESS

DISPLAY

DIVIDE1

PURGE TERMINATE

READ5 UNSTRING3

ENABLE

EXIT

RECEIVE4 WRITE6

■’'Without the optional ON SIZE ERROR and NOT ON SIZE ERROR phrases

2Without the optional INVALID KEY and NOT INVALID KEY phrases

^Without the optional ON OVERFLOW and NOT ON OVERFLOW phrases

^Without the optional NO DATA and WITH DATA phrases

5Without the optional AT END, NOT AT END, INVALID KEY, and NOT

INVALID KEY phrases

6Without the optional INVALID KEY, NOT INVALID KEY, END-OF-PAGE,

and NOT END-OF-PAGE phrases

7Without the optional ON OVERFLOW, ON EXCEPTION, and NOT ON

EXCEPTION phrases

Whenever 'imperative-statement' appears in the general format of statements,

'imperative-statement' refers to that sequence of consecutive imperative

statements that must be ended by a period or by any phrase associated with a

statement containing that 'imperative-statement'.

6.4.2.3.2 Definition of Imperative Sentence

An imperative sentence is an imperative statement terminated by the separator

period .

6.4.2.4 Delimited Scope Statements

A delimited scope statement is any statement which includes its explicit

scope terminator. (See page IV-27, Explicit and Implicit Scope Terminators.)

IV-39

Scope of Statements

6.4.3 Scope of Statements

Scope terminators delimit the scope of certain Procedure Division statements.

Statements which include their explicit scope terminators are termed delimited

scope statements. (See page IV-27, Explicit and Implicit Scope Terminators, and

page IV-39, Delimited Scope Statements.) The scope of statements which are

contained within statements (nested) may also be implicitly terminated.

When statements are nested within other statements, a separator period which

terminates the sentence also implicitly terminates all nested statements.

Whenever any statement is contained within another statement, the next phrase

of the containing statement following the contained statement terminates the

scope of any unterminated contained statement.

When a delimited scope statement is nested within another delimited scope

statement with the same verb, each explicit scope terminator terminates the

statement begun by the most recently preceding, and as yet unterminated,

occurrence of that verb.

When statements are nested within other statements which allow optional

conditional phrases, any optional conditional phrase encountered is considered

to be the next phrase of the nearest preceding unterminated statement with which

that phrase is permitted to be associated according to the general format and

the syntax rules for that statement, but with which no such phrase has already

been associated. An unterminated statement is one which has not been previously

terminated either explicitly or implicitly. (See page IV-27, Explicit and

Implicit Scope Terminators.)

IV-40

Reference Format

7. REFERENCE FORMAT

7.1 GENERAL DESCRIPTION

The reference format, which provides a standard method of describing COBOL

source programs and COBOL library text, is described in terms of character

positions in a line on an input-output medium. The meaning of lines and

character positions is defined by the implementor. Within these definitions,

each compiler accepts source programs written in reference format and produces

an output listing of the source program in reference format.

The rules for spacing given in the discussion of the reference format take

precedence over all other rules for spacing.

The divisions of a COBOL source program must be ordered as follows: the

Identification Division, then the Environment Division, then the Data Division,

then the Procedure Division. Each division must be written according to the

rules for the reference format.

7.2 REFERENCE FORMAT REPRESENTATION

The reference format for a line is represented as follows:

Margin

L

1

Margin Margin

C A

Margin
B

Margin
R

7 8 10 11 12 13

Sequence Number Area Area A Area B

Indicator Area

Margin

line .

Margin

Margin

Margin

Margin

line .

The sequence number occupies six character positions (1-6), and is between

margin L and margin C.

The indicator area is the 7th character position of a line.

Area A occupies character positions 8, 9, 10, and 11, and is between margin A

and margin B.

Area B occupies a finite number of character positions specified by the

L is immediately to the left of the leftmost character position of a

C is between the 6th and 7th character positions of a line.

A is between the 7th and 8th character positions of a line.

B is between the 11th and 12th character positions of a line.

R is immediately to the right of the rightmost character position of a

IV-41

Reference Format

implementor; it begins immediately to the right of margin B and terminates

immediately to the left of margin R.

7.2.1 Sequence Numbers

The sequence number area may be used to label a source program line. The

content of the sequence number area is defined by the user and may consist of

any character in the computer's character set. There is no requirement that the

content of the sequence number area appears in any particular sequence or be

unique.

7.2.2 Continuation of Lines

Any sentence, entry, phrase, or clause may be continued by starting

subsequent line(s) in area B. These subsequent lines are called the

continuation line(s). The line being continued is called the continued line.

Any word, literal, or PICTURE character-string may be broken in such a way that

part of it appears on a continuation line.

A hyphen in the indicator area of a line indicates that the first nonblank

character in area B of the current line is the successor of the last nonblank

character of the preceding line, excluding intervening comment lines or blank

lines, without any intervening space. However, if the continued line contains a

nonnumeric literal without closing quotation mark, the first nonblank character

in area B of the continuation line must be a quotation mark, and the

continuation starts with the character immediately after that quotation mark.

All spaces at the end of the continued line are considered part of the literal.

Area A of a continuation line must be blank.

If there is no hyphen in the indicator area of a line, it is assumed that the

first nonblank character in the line is preceded by a space.

Both characters composing the separator '==1 must be on the same line.

7.2.3 Blank Lines

A blank line is one that is blank from margin C to margin R, inclusive. A

blank line can appear anywhere in the source program. (See paragraph 7.2.2

above.)

7.2.4 Comment Lines

A comment line is any line with an asterisk or slant in the indicator area of

the line. A comment line can appear as any line in a source program after the

Identification Division header and as any line in library text of a COBOL

library. Any combination of the characters from the computer's character set

may be included in area A and area B of that line. The asterisk or slant and

the characters in area A and area B will be produced on the listing but serve as

documentation only and will not be checked syntactically. The slant in the

indicator area causes page ejection prior to printing the comment line in the

listing of the source program; an asterisk in the indicator area causes printing

of the line at the next available line position in the listing.

IV-42

Reference Format

7.2.5 Pseudo-Text

The character-strings and separators comprising pseudo-text may start in

either area A or area B. If, however, there is a hyphen in the indicator area

of a line which follows the opening pseudo-text delimiter, area A of the line

must be blank; and the normal rules for continuation of lines apply to the

formation of text words. (See page IV-42, Continuation of Lines.)

7.3 DIVISION, SECTION, PARAGRAPH FORMATS

7.3.1 Division Header

The division header must start in area A.

7.3.2 Section Header

The section header must start in area A.

A section consists of zero, one, or more paragraphs in the Environment

Division or Procedure Division or zero, one, or more entries in the Data

Division.

7.3.3 Paragraph Header, Paragraph-Name, and Paragraph

A paragraph consists of a paragraph-name followed by the separator period and

by zero, one, or more sentences, or a paragraph header followed by one or more

entries.

The paragraph header or paragraph-name starts in area A of any line following

the first line of a division or a section.

The first sentence or entry in a paragraph begins either on the same line as

the paragraph header or paragraph-name or in area B of the next nonblank line

that is not a comment line. Successive sentences or entries either begin in

area B of the same line as the preceding sentence or entry or in area B of the

next nonblank line that is not a comment line.

When the sentences or entries of a paragraph require more than one line, they

may be continued on a subsequent line or lines. (See page IV-42, Continuation

of Lines.)

7.4 DATA DIVISION ENTRIES

Each Data Division entry begins with a level indicator or a leve1-number,

followed by a space, followed by the name of the subject of entry, if specified,

followed by a sequence of independent clauses describing the item. The last

clause is always terminated by a separator period.

There are two types of such entries: those which begin with a level

indicator and those which begin with a leve1-number.

In the Data Division, a level indicator is any of the following: FD, SD, CD,

RD.

IV-43

Reference Format

In those entries that begin with a level indicator, the level indicator

begins in area A, followed by at least one space, and then followed with the

name of the subject of entry and appropriate descriptive information.

Those entries that begin with level-numbers are called data description

entries .

A level-number has a value taken from the set of values 01, 02, ... , 49, 66,

77, 88. Level-numbers in the range 01, 02, ... , 09 may be written either as a

single digit or as a zero followed by a significant digit. At least one space

must separate a level-number from the word following the level-number.

In those data description entries that begin with a level-number 01 or 77,

the level-number begins in area A, followed by at least one space, and then

followed with its associated record-name or item-name, if specified, and

appropriate descriptive information.

Data description entries may be indented. Any indentation is with respect to

margin A. Each new data description entry may begin any number of positions to

the right of margin A, except data description entries that begin with

level-number 01 or 77 must begin in area A. The extent of indentation is

determined only by the width of the physical medium. The entries on the output

listing need be indented only if the input is indented. Indentation does not

affect the magnitude of a level-number.

7.5 DECLARATIVES

The key word DECLARATIVES and the pair of key words END DECLARATIVES that

precede and follow, respectively, the declaratives portion of the Procedure

Division must each appear on a line by itself. Each must begin in area A and be

followed by the separator period.

7.6 END PROGRAM HEADER

The end program header must start in area A.

IV-44

COBOL Reserved Words

8. COBOL RESERVED WORDS

ACCEPT CONFIGURATION END-DELETE I-O-CONTROL

ACCESS CONTAINS END-DIVIDE IDENTIFICATION

ADD CONTENT END-EVALUATE IF

ADVANCING CONTINUE END-IF IN

AFTER CONTROL END-MULTIPLY INDEX

ALL CONTROLS END-OF-PAGE INDEXED

ALPHABET CONVERTING END-PERFORM INDICATE

ALPHABETIC COPY END-READ INITIAL

ALPHABETIC-LOWER CORR END-RE CEIVE INITIALIZE

ALPHABETIC-UPPER CORRESPONDING END-RETURN INITIATE

ALPHANUMERIC COUNT END-REWRITE INPUT

ALPHANUMERIC-EDITED CURRENCY END-SEARCH INPUT-OUTPUT

ALSO END-START INSPECT

ALTER DATA END-STRING INSTALLATION

ALTERNATE DATE END-SUBTRACT INTO

AND DATE-COMPILED END-UNSTRING INVALID

ANY DATE-WRITTEN END-WRITE IS

ARE DAY ENTER

AREA DAY-OF-WEEK ENVIRONMENT JUST

AREAS DE EOP JUSTIFIED

ASCENDING DEBUG-CONTENTS EQUAL

ASSIGN DEBUG-ITEM ERROR KEY

AT DEBUG-LINE ESI

AUTHOR DEBUG-NAME EVALUATE LABEL

DEBUG-SUB-1 EVERY LAST

BEFORE DEBUG-SUB-2 EXCEPTION LEADING

BINARY DEBUG-SUB-3 EXIT LEFT

BLANK DEBUGGING EXTEND LENGTH

BLOCK DECIMAL-POINT EXTERNAL LESS

BOTTOM DECLARATIVES LIMIT

BY DELETE FALSE LIMITS

DELIMITED FD LINAGE

CALL DELIMITER FILE LINAGE-COUNTER

CANCEL DEPENDING FILE-CONTROL LINE

CD DESCENDING FILLER LINE-COUNTER

CF DESTINATION FINAL LINES

CH DETAIL FIRST LINKAGE

CHARACTER DISABLE FOOTING LOCK

CHARACTERS DISPLAY FOR LOW-VALUE

CLASS DIVIDE FROM LOW-VALUES

CLOCK-UNITS DIVISION

CLOSE DOWN GENERATE MEMORY

COBOL DUPLICATES GIVING MERGE

CODE DYNAMIC GLOBAL MESSAGE

CODE-SET GO MODE

COLLATING EG I GREATER MODULES

COLUMN ELSE GROUP MOVE

COMMA EMI MULTIPLE

COMMON ENABLE HEADING MULTIPLY

COMMUNICATION END HIGH-VALUE

COMP END-ADD HIGH-VALUES NATIVE

COMPUTATIONAL END-CALL NEGATIVE

COMPUTE END-COMPUTE

o
 i i—i NEXT

IV-45

COBOL Reserved Words

NO QUOTE

NOT QUOTES

NUMBER

NUMERIC RANDOM

NUMERIC-EDITED RD

OBJECT-COMPUTER

READ

RECEIVE

OCCURS RECORD

OF RECORDS

OFF REDEFINES

OMITTED REEL

ON REFERENCE

OPEN REFERENCES

OPTIONAL RELATIVE

OR RELEASE

ORDER REMAINDER

ORGANIZATION REMOVAL

OTHER RENAMES

OUTPUT REPLACE

OVERFLOW REPLACING

PACKED-DECIMAL

REPORT

REPORTING

PADDING REPORTS

PAGE RERUN

PAGE-COUNTER RESERVE

PERFORM RESET

PF RETURN

PH REVERSED

PIC REWIND

PICTURE REWRITE

PLUS RF

POINTER RH

POSITION RIGHT

POSITIVE ROUNDED

PRINTING RUN

PROCEDURE

PROCEDURES SAME

PROCEED SD

PROGRAM SEARCH

PROGRAM-ID SECTION

PURGE SECURITY

QUEUE

SEGMENT

SEGMENT-LIMIT

SELECT THRU

SEND TIME

SENTENCE TIMES

SEPARATE TO

SEQUENCE TOP

SEQUENTIAL TRAILING

SET TRUE

SIGN TYPE

SIZE

SORT UNIT

SORT-MERGE UNSTRING

SOURCE UNTIL

SOURCE-COMPUTER UP

SPACE UPON

SPACES USAGE

SPECIAL-NAMES USE

STANDARD USING

STANDARD-1

STANDARD-2 VALUE

START VALUES

STATUS VARYING

STOP

STRING WHEN

SUB-QUEUE-1 WITH

SUB-QUEUE-2 WORDS

SUB-QUEUE-3 WORKING-STORAGE

SUBTRACT WRITE

SUM

SUPPRESS ZERO

SYMBOLIC ZEROES

SYNC ZEROS

SYNCHRONIZED
+

TABLE -

TALLYING k

TAPE /

TERMINAL kk

TERMINATE >

TEST <

TEXT =

THAN >=

THEN <=

THROUGH

IV-46

Composite Language Skeleton

SECTION V: COMPOSITE LANGUAGE SKELETON

1. GENERAL DESCRIPTION

This section contains the composite language skeleton of Standard COBOL. It

is intended to display complete and syntactically correct formats.

The leftmost margin on pages V-2 through V-4 and pages V-8 through V-19 is

equivalent to margin A in a COBOL source program. The first indentation after

the leftmost margin is equivalent to margin B in a COBOL source program. (See

page IV-41 for a description of margin A and margin B.)

On pages V-20 through V-33 the leftmost margin indicates the beginning of the

format for a new COBOL verb. The first indentation after the leftmost margin

indicates continuation of the format of the COBOL verb. The appearance of the

italic letter S, R, I, or W to the left of the format for the verbs CLOSE, OPEN,

READ, and WRITE indicates the Sequential 1-0 module, Relative 1-0 module,

Indexed 1-0 module, or Report Writer module in which that general format is

used .

The following is a summary of the formats shown on pages V-2 through V-40:

• Page V-2: General format for Identification Division

• Pages V-3 and V-4: General format for Environment Division

• Pages V-5 through V-7: General formats for file control entry

• Page V-8: General format for Data Division

• Pages V-9 through V-12: General formats for file description entry

• Pages V-13 and V-14: General formats for data description entry

• Pages V-15 and V-16: General formats for communication description entry

• Pages V-17 and V-18: General formats for report description entry

and report group description entry

• Page V-19: General format for Procedure Division

• Pages V-20 through V-33: General formats for COBOL verbs

• Page V-34: General format for COPY and REPLACE statements

• Pages V-35 and V-36: General format for conditions

Page V-37: General format for qualification

Page V-38: Miscellaneous formats

Page V-39: General format for nested source programs

Page V-40: General format for a sequence of source programs

V-l

Identification Division

GENERAL FORMAT FOR IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.

PROGRAM-ID.
COMMON

program-name
[IS { INITIAL

> PROGRAM

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...]

[DATE-COMPILED. [comment-entry] ...]

r SECURITY. [comment-entry] ...]

Environment Division

GENERAL FORMAT FOR ENVIRONMENT DIVISION

rENVIRONMENT DIVISION,

rCONFIGURATION SECTION.

[SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE!.11

[OBJECT-COMPUTER. [computer-name

(WORDS j
MEMORY SIZE integer-1 < CHARACTERS >

(modules)

[PROGRAM COLLATING SEQUENCE IS alphabet-name-1]

[SEGMENT-LIMIT IS segment-number].]]

[SPECIAL-NAMES. [[implementor-name-1

IS mnemonic-name-1 [ON STATUS IS condition-name-1 [OFF STATUS IS condition-name-2]]x

(iS mnemonic-name-2 [OFF STATUS IS condition-name-2 [ON STATUS IS condition-name-1]]|

iON STATUS IS condition-name-1 [OFF STATUS IS condition-name-2]

OFF STATUS IS condition-name-2 [ON STATUS IS condition-name-1]

[ALPHABET alphabet-name-1 IS

STANDARD-1

STANDARD-2

NATIVE

implementor-name-2

^literal-1

/through) .. . 0
I THRU / litera

(ALSO literal-3} .. .

SYMBOLIC CHARACTERS {symbolic-character-1} ... ”/ARE/” ^nte§er--*-^ • • • j-
[IN alphabet-name-2]

CLASS class-name-1 IS /literal-4
"('THROUGH/

1 THRU (
literal-5 ;...]

l

rCURRENCY SIGN IS literal-6]

rDECIMAL-POINT IS COMMA].11]

V~3

Environment Division

GENERAL FORMAT FOR ENVIRONMENT DIVISION

rINPUT-OUTPUT SECTION.

FILE-CONTROL.

{file-control-entry}

rI-O-CONTROL.

RERUN ON
(file-name-1
(_ imp 1 emen t o r -n ame 4

j [END OF] {gg} |

EVERY < I integer-1 RECORDS)
OF file-name-2

integer-2 CLOCK-UNITS
, condition-name-1

SAME
RECORD
SORT AREA FOR file-name-3 {file-name-4} ...
SORT-MERGE

[MULTIPLE FILE TAPE CONTAINS {file-name-5 [POSITION integer-3]} ...]]

V-4

Environment Division - File Control Entry

GENERAL FORMAT FOR FILE CONTROL ENTRY

SEQUENTIAL FILE:

SELECT [OPTIONAL] file-name-1

ASSIGN TO
jimplementor-name-1

(literal-1 } -

RESERVE integer-1
[area 11

[areas!

[[ORGANIZATION IS] SEQUENTIAL]

PADDING CHARACTER IS

RECORD DELIMITER IS

} (data-name-1

\literal-2

(STANDARD-1

\imp1emen to r-name O'
[ACCESS MODE IS SEQUENTIAL]

[FILE STATUS IS data-name-2].

RELATIVE FILE:

SELECT [OPTIONAL] file-name-1

ASSIGN TO /i“Plementor-name-l
- (literal-1

[reserve integer-1 [^ J]

[ORGANIZATION IS] RELATIVE

(sequential [RELATIVE KEY IS data-name-1]1

ACCESS MODE IS
\ (RANDOM)

/ 1 DYNAMIC f
RELATIVE KEY IS data-name-1 (

'FILE STATUS IS
\ v

data-name-2].
/J

V-5

Environment Division - File Control Entry

GENERAL FORMAT FOR FILE CONTROL ENTRY

INDEXED FILE;

SELECT fOPTIONAL] file-name-1

ASSIGN TO /i">Pl«”entor-name-l
- (literal-1

[reserve integer-1 J]
[ORGANIZATION IS] INDEXED

ACCESS MODE IS <

(SEQUENTIAL f

RANDOM \
1 DYNAMIC |

RECORD KEY IS data-name-1

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES 11

[FILE STATUS IS data-name-3].

SORT OR MERGE FILE:

SELECT file-name-1 ASSIGN TO /]-mPlementor-name-l| _
- - (literal-1 J

V-6

Environment Division - File Control Entry

GENERAL FORMAT FOR FILE CONTROL ENTRY

REPORT FILE:

SELECT rOPTIONAL] file-name-1

ASSIGN TO
jimplementor-name-1
\literal-l

[reserve integer-1 j^s

[[ORGANIZATION IS] SEQUENTIAL!1

j^PADDING CHARACTER IS {piteral-2_1}

[record DELIMITER IS {STANDARD-1 l
- - (implementor-name-2j

[ACCESS MODE IS SEQUENTIAL]

[FILE STATUS IS data-name-2].

V-7

Data Division

GENERAL FORMAT FOR DATA DIVISION

[DATA DIVISION.

[FILE SECTION.

file-description-entry {record-description-entry} ...
sort-merge-file-description-entry {record-description-entry}
report-file-description-entry

rWORKING-STORAGE SECTION.

[7 7-level-description-entry
record-description-entry

[LINKAGE SECTION.

77-level-description-entry
record-descript ion-entry

rCOMMUNICATION SECTION.

[coramunication-description-entry [record-description-entry] .

[REPORT SECTION.

[report-description-entry {report-group-description-entry} ..

V-8

Data Division - File Description Entry

GENERAL FORMAT FOR FILE DESCRIPTION ENTRY

SEQUENTIAL FILE;

FD file-name-1

[IS EXTERNAL]

[IS GLOBAL]

BLOCK CONTAINS [integer-1 TO] integer-2
(RECORDS (
(CHARACTERS)

RECORD

CONTAINS integer-3 CHARACTERS

•iS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

(RECORD IS) (STANDARPi
I RECORDS ARE) I OMITTED {

VALUE OF Iimplementor-name-1 IS

(RECORD IS

I data-name-2
(literal-1

DATA
|RECORDS ARE

{data-name-3} ..

(data-name—4 ,
LINAGE IS {. n > LINES
- (mteger-8

WITH FOOTING AT
jdata-name-5
(integer-9

J data-name-6
(integer-10

LINES AT TOP

[CODE-SET IS alphabet-name-1]•

LINES AT BOTTOM
/data-name-7
(integer-11 }

V-9

Data Division - File Description Entry

GENERAL FORMAT FOR FILE DESCRIPTION ENTRY

RELATIVE FILE:

FD file-name-1

[IS EXTERNAL1

[IS GLOBAL]

BLOCK CONTAINS [integer-1 TO] integer-2
(RECORDS)
(CHARACTERS]

RECORD

CONTAINS integer-3 CHARACTERS

IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

LABEL
(RECORD IS] (standard]
(RECORDS ARE! 1 OMITTED 1

VALUE OF / implementor-name-1 IS

-
(RECORD IS 1

{data-name-I DATA
1 RECORDS ARE f

V-10

Data Division - File Description Entry

GENERAL FORMAT FOR FILE DESCRIPTION ENTRY

INDEXED FILE:

FD file-name-1

[IS EXTERNAL1

[IS GLOBAL 1

BLOCK CONTAINS [integer-1 TO] integer-2 CHARACTERS}

CONTAINS integer-3 CHARACTERS

IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS;

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

(RECORD IS) (STANDARD)
- —— 1 RECORDS ARE) (OMITTED)

VALUE OF |implementor-name-1 IS |iiteral-l ^

" A (RECORD IS \ ,,
^ 1 RECORDS AREf ^ata^ame-3} ..

RECORD

V-ll

Data Division - File Description Entry

GENERAL FORMAT FOR FILE DESCRIPTION ENTRY

SORT-MERGE FILE:

SD file-name-1

RECORD

CONTAINS integer-1 CHARACTERS

IS VARYING IN SIZE [[FROM integer-2] [TO integer-3] CHARACTERS]’

[DEPENDING ON data-name-1]

CONTAINS integer-4 TO integer-5 CHARACTERS

La„a /RECORD IS \
[records ARE (Wata-name-2} ...J

REPORT FILE:

FD file-name-1

[IS EXTERNAL]

[IS GLOBAL]

[CRFCORDS I
BLOCK CONTAINS [integer-1 TO] integer-2 4 CHARACTERS j

RECORD
/CONTAINS integer-3 CHARACTERS
(CONTAINS integer-4 TO integer-5 CHARACTERS }'

LABEL
/RECORD

IS l
/ STANDARD)"

)RECORDS are/ 1 OMITTED (

|~VALUE OF jimplementor-name-1 IS ^iiteral-1 | • jj

[CODE-SET IS alphabet-name-1]

(REPORT IS)
< ~ ~ i report-name-1}
(REPORTS ARE/ v

V-12

Data Division - Data Description Entry

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

FORMAT 1;

level-number
data-name-1
FILLER

[REDEFINES data-name-2]

[IS EXTERNAL 1

[IS GLOBAL 1

IS character-string
PICTURE(

PIC J

f BINARY V
1 COMPUTATIONAL 1

[USAGE IS1 <;
) COMP (
\DISPLAY /
'INDEX 1

PACKED-DECIMAL /

[SIGN is; (LEADING I
separate character,]

(TRAILINGj

OCCURS integer-2 TIMES

'(ASCENDING \ T_ , _
{DESCENDING / KEYIS ^ta-name-3} ...

[INDEXED BY {index-name-1} ...]

OCCURS integer-1 TO. integer-2 TIMES DEPENDING ON data-name-4

(ASCENDING (
(DESCENDING f

KEY IS {data-name-3} .

rINDEXED BY {index-name-1} ...]

j SYNCHRONIZED) [~LEFT "1
(SYNC ([RIGHT j

jsg™(H
[BLANK WHEN ZERO]

[VALUE IS literal-1].

V-13

Data Division - Data Description Entry

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

FORMAT 2:

66 data-name-1 RENAMES data-name-2
THROUGH)
THRU J

data-name-3

FORMAT 3:

88 condition-name-1
(VALUE IS
)VALUES ARE

literal-1
/THROUGH
| THRU

literal-2

V-14

Data Division - Communication Description Entry

GENERAL FORMAT FOR COMMUNICATION DESCRIPTION ENTRY

FORMAT 1:

CD cd-name-1

FOR rINITIAL 1 INPUT

[[SYMBOLIC QUEUE IS data-name-1]

[SYMBOLIC SUB-QUEUE-1 IS data-name-2]

[SYMBOLIC SUB-QUEUE-2 IS data-name-3]

[SYMBOLIC SUB-QUEUE-3 IS data-name-4]

[MESSAGE DATE IS data-name-5]

[MESSAGE TIME IS data-name-6]

[SYMBOLIC SOURCE IS data-name-7]

[TEXT LENGTH IS data-name-8]

[END KEY IS data-name-9]

[STATUS KEY IS data-name-10]

[MESSAGE COUNT IS data-name-11]]

[data-name-1, data-name-2, data-name-3,

data-name-4, data-name-5, data-name-6,

data-name-7, data-name-8, data-name-9,

data-name-10, data-name-11]

V-15

Data Division - Communication Description Entry

GENERAL FORMAT FOR COMMUNICATION DESCRIPTION ENTRY

FORMAT 2:

CD cd-name-1 FOR OUTPUT

[DESTINATION COUNT IS data-name-1]

[TEXT LENGTH IS data-name-2]

[STATUS KEY IS data-name-3]

[DESTINATION TABLE OCCURS integer-1 TIMES

[INDEXED BY (index-name-1} ...]]

[ERROR KEY IS data-name-4]

[SYMBOLIC DESTINATION IS data-name-5].

FORMAT 3:

CD cd-name-1

FOR [INITIAL 1 1-0

[[MESSAGE DATE IS data-name-1]

[MESSAGE TIME IS data-name-2]

[SYMBOLIC TERMINAL IS data-name-3]

[TEXT LENGTH IS data-name-4]

[END KEY IS data-name-5]

[STATUS KEY IS data-name-6]]

[data-name-1, data-name-2, data-name-3,

data-name-4, data-name-5, data-name-

V-16

Data Division - Report Description Entry

GENERAL FORMAT FOR REPORT DESCRIPTION ENTRY

RD report-name-1

[IS GLOBAL 1

rCODE literal-1’

(CONTROL IS) ((data- -name-1} . . .)
) CONTROLS ARe(1 FINAL [data-name-1] ... [
r r r _

PAGE
LIMIT IS

LIMITS ARE
integer-1

LINE

LINES
[HEADING integer-2]

[FIRST DETAIL integer-3] [LAST DETAIL integer-4;

[FOOTING integer-5]

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY

FORMAT 1;

01 [data-name-1]

LINE NUMBER IS (integer-1 [ON NEXT PAGE]\

I PLUS integer-2 r

TYPE IS

(PAGE FOOTING)

v— /

/REPORT FOOTING (

l— f

(integer-3

NEXT GROUP IS >, PLUS integer—4

I NEXT PAGE

(REPORT HEADING)

IBB)
(PAGE HEADING)

m)
(CONTROL HEADING i (data-name-2

)CH ()FINAL

(DETAIL)

m)
(CONTROL FOOTING) (data-name-3

) OF / (FINAL

[[USAGE IS] DISPLAY].

V-l 7

Data Division - Report Group Description Entry

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY

FORMAT 2

level-number [data-name-1]

[■ 'line number is t0? — —
~~ -) PLUS Integer-2 J

[[USAGE IS] DISPLAY].

FORMAT 3:

level-number [data-name-1]

(PICTURE) ,
-r IS character-string

[[USAGE IS] DISPLAY]

|TRAILING f

I" (JUSTIFIED)

II JUST

[SIGN IS] > SEPARATE CHARACTER

7 RIGHT

[BLANK WHEN ZERO]

LINE NUMBER IS
(integer-1 [ON NEXT PAGE 11

)PLUS integer-2

[COLUMN NUMBER IS integer-3]

SOURCE IS identifier-1

VALUE IS literal-1

{SUM {identifier-2} ... [UPON {data-name-2} .

(data-name-3

•]>

RESET ON
I FINAL

[GROUP INDICATE].

V-18

Procedure Division

GENERAL FORMAT FOR PROCEDURE DIVISION

FORMAT 1:

fPROCEDURE DIVISION [USING (data-name-1} ...].

[DECLARATIVES.

(section-name SECTION [segment-number].

USE statement.

[paragraph-name.

[sentence] ...] ... } ...

END DECLARATIVES.1

(section-name SECTION [segment-number].

[paragraph-name.

[sentence] ...] ... } ...]

FORMAT 2:

[PROCEDURE DIVISION [USING (data-name-1) ...].

{paragraph-name.

[sentence] ... } ...]

V-l 9

Verb Formats (ACCEPT - CALL)

GENERAL FORMAT FOR COBOL VERBS

ACCEPT identifier-1 [FROM mnemonic-name-1]

ACCEPT identifier-2 FROM

/DATE

\ DAY

\DAY-OF-WEEK

TIME

ACCEPT cd-name-1 MESSAGE COUNT

ADD j^eral-ir 1} *" — {identifier-2 [ROUNDED 1} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

ADD
(identifier-l) (identifier-2

' (literal-1 j *’' (literal-2

GIVING (identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2

[END-ADD]

}

ADD /CMEESPONMNG| identifier-1 TO identifier-2 [ROUNDED]
ILURR j

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

ALTER {procedure-name-1 TO [PROCEED TO] procedure-name-2}

CALL
(identifier-1 <
\literal-1

| USING |
[BY REFERENCE] (identifier-2

BY CONTENT {identifier-2} ..

[ON OVERFLOW imperative-statement-1]

[END-CALL]

V-20

Verb Formats (CALL - DISABLE)

GENERAL FORMAT FOR COBOL VERBS

I
(identifier-! (fTTrT1T_ ([BY REFERENCE 1 {identifier-2} ...

{literal-1] [>BY CONTENT {identifier-2} ...

[ON EXCEPTION imperative-statement-1]

[NOT ON EXCEPTION imperative-statement-2]

[END-CALL]

CANCEL
(identifier-1

|literal-1 } -

SW CLOSE /file-name-1
{unit} [for remqval1

WITH

RI CLOSE {file-name-1 [WITH LOCK]} ...

^ COMPUTE {identifier-1 [ROUNDED]} ... = arithmetic-expression-1

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-COMPUTE1

CONTINUE

DELETE file-name-1 RECORD

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

DISABLE '
[INPUT rTERMINAL](

1-0 TERMINAL \ cd-name-1 WITH KEY (identifier-l)

1 OUTPUT 1 (literal-1 J

V-21

Verb Formats (DISPLAY - DIVIDE)

GENERAL FORMAT FOR COBOL VERBS

DISPLAY /identifier-lt
- (literal-1)

[UPON mnemonic-name-1] [WITH NO ADVANCING!

DIVIDE |i?teral-ir J INT0 {identifier-2 [ROUNDED!} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE 1

DIVIDE
jidentifier-l)

(literal-1 j
INTO

(identifier-2

|literal-2

GIVING {identifier-3 [ROUNDED!} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2

[END-DIVIDE!

DIVIDE
/identifier-l) „ (identifier-2

\literal-l j \literal-2 }
GIVING {identifier-3 [ROUNDED!} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE!

DIVIDE A INT0 i^dentl^1!r 2 i GIVING identifier-3 [ROUNDED 1
(literal-1 j - (literal-2) --- -

REMAINDER identifier-4

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

V-22

Verb Formats (DIVIDE - EVALUATE)

GENERAL FORMAT FOR COBOL VERBS

DIVIDE by /identifier-2) GIVING identifier-3 [ROUNDED 1
- (literal-1 f — (literal-2 j - -

REMAINDER identifier-4

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

(INPUT [TERMINAL1)

cd-name-1 WITH KEY
(identif ier-l'i

ENABLE 21-0 TERMINAL >
(literal-1)

)OUTPUT) L \ / J

ENTER language-name-1 [routine-name-1].

identifier-1;

literal-1

EVALUATE (express ion-1]

TRUE

nFALSE

{{WHEN

ALSO

/ identifier-2'

lliteral-2

/ expression-2

j TRUE

(FALSE

(ANY

condition-1
TRUE (FALSE

i |identifier-3

[NOT] 2 2literal-3
((arithmetic-expression-1

[ALSO

jTHROUGH I

(THRU J

jidentifier-4

<literal-4
arithmetic-expression-

fANY

,condition-2
[true

FALSE

[NOT]
identifier-5

literal-5

arithmetic-expression-3 I

(THROUGH((identifier-6

foEjT~|)llteral~6
’arithmetic-expression-4)

imperative-statement-1}

[WHEN OTHER imperative-statement-2]

[END-EVALUATE]

V-23

Verb Formats (EXIT - INSPECT)

GENERAL FORMAT FOR COBOL VERBS

EXIT

EXIT PROGRAM

GENERATE
(data-name-1

(report-name-1

GO TO [procedure-name-1]

GO TO {procedure-name-1} ... DEPENDING ON identifier-1

/, , \ (ELSE {statement-2} ... [END-IF 1

IF condition-1 THEN] ^Xt'sEN^ENCE '"})|^§Z1fESI

INITIALIZE {identifier-1} ...

((ALPHABETIC \
\

REPLACING < <

)ALPHANUMERIC /

' NUMERIC \

ALPHANUMERIC-EDITED (

DATA BY.
(identifier-2 / 1

(literal-1 J ,

f

(1 NUMERIC-EDITED 1
/ /

INITIATE {report-name-1} ...

INSPECT identifier-1 TALLYING

/ (identifier-4 1 \

i

^ CHARACTERS < „ ^ J } INITIAL
(AFTER I (literal-2 /

...

\identifier-2 FOR
) /ALL / ^ /identifier-3(f/ BEFORE 1 initial /}dentifier-4(1

\ (iLEADING/ | (literal-1 I 1 AFTER | (literal-/)
j)

INSPECT identifier-1 REPLACING

(identifier-5)
CHARACTERS BY literal-3 J

I (ide

}LY {lit

(RFFORE((identifi < DbrUKt, i INITIAL)
IAFTER f (literal-

ier-4

2

lALL (1 (identifier-3

^leasing) {literal-i
(first (I 1

dentifier-5

eral-3

j BEFORE^ INITIAL
(AFTER /

}]-
/identifier-4

|literal-2

V-24

Verb Formats (INSPECT - MULTIPLY)

GENERAL FORMAT FOR COBOL VERBS

INSPECT identifier-1 TALLYING

Fidentifier-2 FOR

REPLACING

CHARACTERS
/BEFORE> INITIAL /identifier-41
1 AFTER | 11 (literal-2 j

ALL (| lidentifier-3(
iLEADING f] (literal-1 f

I BEFORE) (identifier-4 i
1 AFTER f ™ITIAL (literal-2 I

(CHARACTERS BY {“'"'T1;'-5} [{K™} INITIAL J^enti fier-4 >' _
1 - — (literal-3 I I (AFTER j |lxteral-2 (

’(BEFCR
1 AFTER

i ALL
‘leading
(first

| \\identifier-3
((|literal-1 (—

i jidentifier-51

f — /literal-3 f
initial <j;dent\fif-4i

lliteral-2 (

INSPECT identifier-1 CONVERTING /identlfier 6\ T0 7
- - (literal-4 j — (literal-5

(BEFORE / TTTT_T.T fidentif ier-4/

lIFEiT} INITIAL (literal-2 }_

MERGE file-name-1 | ON jp^NMNc} KEY ^ata-name-l} ...| ...

[COLLATING SEQUENCE IS alphabet-name-1]

USING file-name-2 {file-name-3} ...

\OUTPUT PROCEDURE IS nrocedure-name-1
"(THROUGH »

1 THRU f
procedure-name-2

1 GIVING {file-name-4} ...

MOVE l\ TQ {identifier-2} ...
(literal-1) —

(CORRESPONDING!
MOVE i CORR-I ldentlfler_l TO identxfier-2

MULTIPLY |^g£al-ir J — { identifyier-2 [ROUNDED] } ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

V-25

Verb Formats (MULTIPLY - PERFORM)

GENERAL FORMAT FOR COBOL VERBS

MULTIPLY
(ident ifier-l) (identifier-2)

al-1) (literal-2 j (literal-1 j (literal-

GIVING {identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

S OPEN

RI OPEN

INPUT -|f ile-name-1

OUTPUT {file-name-2

1-0 {file-name-3} ...

EXTEND {file-name-4}

(INPUT {file-name-1}

1 OUTPUT {file-name-2}

\ 1-0 {file-name-3} ..

/extend {file-name-4}

’REVERSED

WITH NO REWIND

WITH NO REWIND]}
]}

W OPEN
(OUTPUT {file-name-1 [WITH NO REWIND 1} ...

(EXTEND {file-name-2} ...

PERFORM |^procedure-name-l

[imperative-statement-1 END—PERFORM]

'(THROUGH) , 1
|THRU (Procedure-name_2

PERFORM |procedure-name-l

(identifier-1

'(THROUGH) .
| THRU- (Procedure-name"2

(integer-1
TIMES [imperative-statement-1 END-PERFORM]

PERFORM |procedure-name-l
"(THROUGH) , 01 "

(THRU J Procedure-name-2

WITH TEST
(BEFORE)

I AFTER (
UNTIL condition-1

[imperative-statement-1 END-PERFORM]

V-26

Verb Formats (PERFORM - READ)

GENERAL FORMAT FOR COBOL VERBS

PERFORM j^procedure-name-1

[with test {mp}_

‘(through)
1 THRU (Procedure-name-2

/., _.r- (identifier-3
VARYING Jldejntl ler 2l from)index-name-2

(index-name-l/ {literal-!

BY jidentifier-4

)literal-2
UNTIL condition-1

AFTER
/identifier-5)

FROM <

identifier-6)

index-name-4 >
(literal-3 j

literal-3 j
(identifier-7) TT,TTTT . »

BY 2-. - , V UNTIL condition-2
(literal-4 j

[imperative-statement-1 END-PERFORM1

]]

PURGE cd-name-1

SRI READ file-name-1 [NEXT] RECORD [INTO identifier-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READI

R READ file-name-1 RECORD [INTO identifier-1]

[INVALID KEY imperative-statement-3]

[NOT INVALID KEY imperative-statement-4]

[END-READI

V-27

Verb Formats (READ - REWRITE)

GENERAL FORMAT FOR COBOL VERBS

I READ file-name-1 RECORD [INTO identifier-1]

[KEY IS data-name-1]

[INVALID KEY imperative-statement-3]

[NOT INVALID KEY imperative-statement-4]

[END-READ]

RECEIVE cd-name-1
MESSAGE/

SEGMENT!
INTO identifier-1

[NO DATA imperative-statement-1]

[WITH DATA imperative-statement-2]

[END-RECEIVE]

RELEASE record-name-1 [FROM identifier-1]

RETURN file-name-1 RECORD [INTO identifier-1]

AT END imperative-statement-1

[NOT AT END imperative-statement-2]

[END-RETURN]

S REWRITE record-name-1 [FROM identifier-1]

RI REWRITE record-name-1 [FROM identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REWRITE]

V-28

Verb Formats (SEARCH - SET)

GENERAL FORMAT FOR COBOL VERBS

SEARCH identifier-1 ["VARYING /ldentifier-2 (
- I (md ex-name-1J

[AT END imperative-statement-1]

{T,TT„,T ,. . , (imperative-statement-2
WHEN condition-1 SENTENCE

fEND-SEARCH1

SEARCH ALL identifier-1 [AT END imperative-statement-1]

'}
i, jIS EQUAL TO:
Jdata-name-1 J -

WHEN
IS =

condition-name-1

(identifier-3

2 literal-1

(arithmetic-expression-1

AND

(data-name-2 /« BQBtt TOj

condition-name-2

(imperative-s tatement-2

(NEXT SENTENCE

[END-SEARCH]

(arithmetic-expression-2

SEND cd-name-1 FROM identifier-1

SEND cd-name-1 [FROM identifier-1]

/BEFORE >

(AFTER /
ADVANCING

[REPLACING LINE]

/WITH identifier-2

\WITH ESI

\ WITH EMI

(with EGI

fidentif ier-3\ LINE 1

[integer-1 J LINESJ

|(mnemonic-name-l(

(PAGE j

SET [1"deX:"ame"H ... TO
- (identif xer-lj -

(index-name-2

identifier-2

integer-1

V-29

Verb Formats (SET - STOP)

SET (index-name-3} .

GENERAL FORMAT FOR COBOL VERBS

(UP BY) (identifier-3)

1 DOWN BY f (integer-2 (

SET j{mnemonic-name-l} ... TO ^oFpj"| •••

SET {condition-name-1} ... TO TRUE

SORT file-name-1 <JON KEY {data-name-1} ...
)DESCENDING f

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alphabet-name-1]

INPUT PROCEDURE IS procedure-name-1

USING {file-name-2} ...

» OUTPUT PROCEDURE IS procedure-name-3

\ GIVING {file-name-3} ...

(THROUGH)

(THRU f procedure-name-2

(THROUGH)
|THRU (Procedure_name~

START file-name-1 KEY <(

f IS EQUAL TO

IS = IS GREATER THAN

IS > \
j IS NOT LESS THAN

1
)> data-name-1

IS NOT <

IS GREATER THAN OR EOUAL TO

IS >= J
[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-START]

STOP l
(literal-lj

V-30

Verb Formats (STRING - TERMINATE)

GENERAL FORMAT FOR COBOL VERBS

iidentifier-2

DELIMITED BY literal-2

I SIZE

INTO identifier-3

[WITH POINTER identifier-4]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-STRING]

STRING
-dentifier-1

.teral-1 !

SUBTRACT |i^eral-ir j FRQM (identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

SUBTRACT FROM /identlf
- (literal-1 j - (literal-2 j

GIVING (identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

SUBTRACT lp???ESPQNDINGl identifier-1 FROM identifier-2
f LURR)

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

[ROUNDED]

SUPPRESS PRINTING

TERMINATE {report-name-1} ...

V-31

Verb Formats (UNSTRING - USE)

GENERAL FORMAT FOR COBOL VERBS

UNSTRING identifier-1

^DELIMITED BY [ALL] [oSISW "•]

INTO (identifier-4 [DELIMITER IN identifier-5] [COUNT IN identifier-6]} .

[WITH POINTER identifier-7]

[TALLYING IN identifier-8]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-UNSTRING1

SRI USE [GLOBAL 1 AFTER STANDARD
EXCEPTION

ERROR

({file-name-1}

1 INPUT

PROCEDURE ON / OUTPUT

I i-o
\ EXTEND

W USE AFTER STANDARD
(EXCEPTION

1 ERROR
PROCEDURE ON

({file-name-1} ...

<OUTPUT

(EXTEND

USE [GLOBAL] BEFORE REPORTING identifier-1

USE FOR DEBUGGING ON

'cd-name-1

[ALL REFERENCES OF] identifier-1

file-name-1

I procedure-name-1

ALL PROCEDURES

V-32

Verb Formats (WRITE)

GENERAL FORMAT FOR COBOL VERBS

S WRITE record-name-1 [FROM identifier-1]

(BEFORE)

1 AFTER]
ADVANCING

(Jidentifier-2) LINE " y

* (integer-1 j LINES

\ ("mnemonic-name-1 t
[(PAGE J r)_

AT
("END-OF-PAGE) .

(EOP)
imperative-s tatement-1

NOT AT
I EOP

END-WRITE'

fEND-OF-PAGE) .

i imperative-statement-2

RI WRITE record-name-1 [FROM identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-WRITE]

COPY & REPLACE Statements

GENERAL FORMAT FOR COPY AND REPLACE STATEMENTS

COPY text-name-1

REPLACING

library-name-1

^==pseudo-text-l==1 1 1 f==pseudo-text-2==^

'identifier-1 (

> ^) lidentifier-2 \
\literal-1 | |literal-2 ^

fword-1 \ I ̂ word-2 '

REPLACE {==pseudo-text-l== BY ==pseudo-text-2==} ...

REPLACE OFF

V-34

Condition Formats

GENERAL FORMAT FOR CONDITIONS

RELATION CONDITION:

identifier-1

'literal-1

I arithmetic-expression-1j

index-name-1

IS [NOT] GREATER THAN

IS [NOT] >

IS [NOT] LESS THAN

IS [NOT] <

IS [NOT] EQUAL TO

IS [NOT] =

IS GREATER THAN OR EQUAL

IS >=

IS LESS THAN OR EQUAL TO

IS <=

/identifier-2

\literal-2

\ arithmetic-expression-2

(index-name-2

CLASS CONDITION:

NUMERIC

ALPHABETIC

identifier-1 IS [NOT] (ALPHABETIC-LOWER

ALPHABETIC-UPPER

class-name-1

CONDITION-NAME CONDITION:

condition-name-1

SWITCH-STATUS CONDITION:

condition-name-1

SIGN CONDITION:

i POSITIVEI

arithmetic-expression-1 IS [NOT] NEGATIVE

ZERO |

NEGATED CONDITION:

NOT condition-1

V-35

Condition Formats

GENERAL FORMAT FOR CONDITIONS

COMBINED CONDITION:

((AND})
condition-1 < ikl condition-2 \ * *

ABBREVIATED COMBINED RELATION CONDITION:

relation-condition [NOT] [relational-operator] object

V-36

Qualificat ion

FORMAT 2:

GENERAL FORMAT FOR QUALIFICATION

FORMAT 1:

(data-name-1

| condition-name

data-name-2

IN I (file-name-1

OF) (cd-name-1

(IN) (f ile-name-l)

"(OF | (cd-name-l j

paragraph-name-1 <J ~
I OF

section-name-1

FORMAT 3

(Si» text-name-1 < —> library-name-1

FORMAT 4:

LINAGE-COUNTER 1 V file-name-2

FORMAT 5:

(PAGE-COUNTER) /IN'
)LINE-COUNTER ({oF } rePort name 1

FORMAT 6:

data-name-3

data-name-4

report-name-2

(IN \ Ifel report-name-2

V-37

Miscellaneous Formats

MISCELLANEOUS FORMATS

SUBSCRIPTING:

(condition-name-1

|data-name-1 }
i integer-1

/ data-name-2 [{±} integer-2]

|index-name-1 [{±} integer-3]
...)

REFERENCE MODIFICATION:

data-name-1 (leftmost-character-position: [length])

IDENTIFIER: icd-name-1

file-name-1

report-name-1

[({subscript} ...)] [(leftmost-character-position: [length])]

data-name-1 {"} ~ > data-name-2 {1}

V-38

Nested Source Programs

GENERAL FORMAT FOR NESTED SOURCE PROGRAMS

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name-1 [IS INITIAL PROGRAM].

[ENVIRONMENT DIVISION. environment-division-content]

[DATA DIVISION. data-division-content]

[PROCEDURE DIVISION. procedure-division-content]

[[nested-source-program] ...

END PROGRAM program-name-1.]

GENERAL FORMAT FOR NESTED-SOURCE-PROGRAM

IDENTIFICATION DIVISION.

COMMON

INITIAL
PROGRAM-ID. program-name-2

[ENVIRONMENT DIVISION. environment-division-content]

[DATA DIVISION. data-division-content]

[PROCEDURE DIVISION. procedure-division-content]

[nested-source-program] ...

END PROGRAM program-name-2.

Sequence of Source Programs

GENERAL FORMAT FOR A SEQUENCE OF SOURCE PROGRAMS

(IDENTIFICATION DIVISION.

PROGRAM-ID. program-name-3 [IS INITIAL PROGRAM].

1 ENVIRONMENT DIVISION. environment-division-content]

[DATA DIVISION. data-division-content]

[PROCEDURE DIVISION. procedure-division-content]

[nested-source-program] ...

END PROGRAM program-name-3.} ...

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name-4 [IS INITIAL PROGRAM].

[ENVIRONMENT DIVISION. environment-division-content]

[DATA DIVISION. data-division-content]

[PROCEDURE DIVISION. procedure-division-content]

[[nested-source-program] ...

END PROGRAM program-name-4.]

V-40

Nucleus Introduc tion

SECTION VI: NUCLEUS MODULE

1. INTRODUCTION TO THE NUCLEUS MODULE

1.1 FUNCTION

The Nucleus module provides a language capability for the internal processing

of data within the structure of the four divisions of a program. The Nucleus

also provides a capability for defining tables of contiguous data items and

accessing an item relative to its position in a table. The Nucleus provides a

debugging capability consisting of a compile time switch and debugging lines.

1.2 LEVEL CHARACTERISTICS

Nucleus level 1 provides limited capabilities for the SPECIAL-NAMES paragraph

and the data description entry. Within the Procedure Division, the Nucleus

level 1 provides limited capabilities for the ACCEPT, ADD, ALTER, DISPLAY,

DIVIDE, IF, MOVE, MULTIPLY, PERFORM, and SUBTRACT statements and full

capabilities for the CONTINUE, ENTER, EXIT, GO TO, and STOP statements. Nucleus

level 1 does not provide full COBOL capabilities for qualification, data-name

formation, and figurative constants. Nucleus level 1 provides a capability for

accessing items in up to three-dimensional fixed length tables. Nucleus level 1

provides a debugging capability consisting of a compile time switch and

debugging lines.

Nucleus level 2 provides full capabilities for the SPECIAL-NAMES paragraph

and the data description entry. Within the Procedure Division, the Nucleus

level 2 provides full capabilities for the ACCEPT, ADD, ALTER, COMPUTE, DISPLAY,

DIVIDE, EVALUATE, IF, INITIALIZE, INSPECT, MOVE, MULTIPLY, PERFORM, SEARCH, SET,

STRING, SUBTRACT, and UNSTRING statements. Nucleus level 2 provides full

capabilities for qualification, data-name formation, and figurative constants.

Nucleus level 2 provides a capability for accessing items in up to

seven-dimensional tables.

1.3 LEVEL RESTRICTIONS ON OVERALL LANGUAGE

1.3.1 Character Set

The COBOL character colon (:) is not included in level 1. The COBOL

character colon (:) is permitted in level 2.

1.3.2 Name Characteristics

Qualification is not included in level 1. In level 1, all user-defined words

except level-numbers and segment-numbers must be unique if referenced. 50

qualifiers are permitted in level 2. In level 2, user-defined words need not be

unique.

VI-1

Nucleus Introduction

1.3.3 Figurative Constants

The figurative constants that may be used in level 1 are: ZERO, ZEROS,

ZEROES, SPACE, SPACES, HIGH-VALUE, HIGH-VALUES, LOW-VALUE, LOW-VALUES, QUOTE,

and QUOTES. |The figurative constants that may be used in level 2 are: ZERO,

ZEROS, ZEROES, SPACE, SPACES, HIGH-VALUE, HIGH-VALUES, LOW-VALUE, LOW-VALUES,

QUOTE, QUOTES, symbo1ic-character, ALL literal, ALL figurative constant, and ALL

symbolic-character.

1.3.4 Subscripts

One, two or three subscripts are permitted in level 1. J One through seven

subscripts are permitted in level 2.

1.3.5 Reference Modification

Reference modification is permitted in level 2 only.

1.3.6 Reference Format

In level 1 a word, numeric literal, or PICTURE character-string cannot be

broken in such a way that part of it appears in a continuation line, f In level 2

a word, numeric literal, or PICTURE character-string can be broken in such a way

that part of it appears on a continuation line.

VI-2

Nucleus - COBOL Source Program

2. A COBOL SOURCE PROGRAM

2.1 GENERAL DESCRIPTION

A COBOL source program is a syntactically correct set of COBOL statements.

2.2 ORGANIZATION

With the exception of COPY and REPLACE statements and the end program header, |

the statements, entries, paragraphs, and sections of a COBOL source program are

grouped into four divisions which are sequenced in the following order:

1. The Identification Division

2. The Environment Division

3. The Data Division

4. The Procedure Division

The end of a COBOL source

header, if specified, or by

program is

the absence

indicated by

of additional

either the end program]

source program lines.

2.3 STRUCTURE

The following gives the general format and order of presentation of the

entries and statements which constitute a COBOL source program.

2.3.1 General Format

identification-division

[environment-division]

[data-division]

[procedure-division]

[end-program-header]

2.3.2 Syntax Rules

(1) The generic terms identification-division,

data-division, procedure-division,

environment-divis ion,

and end-program-header represent a COBOL

a Identification Division, a COBOL Environment Division, a COBOL Data Division,

COBOL Procedure Division, and a COBOL end program header,] respectively.

2.3.3 General Rules

(1) The beginning of a division in a program is indicated by the appropriate

division header. The end of a division is indicated by one of the following:

a. The division header of a succeeding division in that program.

b. The end program header.

VI-3

Nucleus - COBOL Source Program

c. That physical position after which no more source program lines

occur.

(2) All separately compiled source programs in a sequence of programs must

be terminated by an end program header except for the last program in the

sequence.

VI-4

Nucleus - End Program Header

2.4 END PROGRAM HEADER

2.4.1 Function

The end program header indicates the end of the named COBOL source program.

2.4.2 General Format

END PROGRAM program-name.

2.4.3 Syntax Rules

(1) The program-name must conform to the rules for forming a user-defined

word.

(2) The program-name must be identical to a program-name declared in a

preceding PROGRAM-ID paragraph. (See page VI-7, The PROGRAM-ID Paragraph.)

2.4.4 General Rules

(1) The end program header indicates the end of the specified COBOL source

program.

(2) If the next source statement after the program terminated by the end

program header is a COBOL statement, it must be the Identification Division

header of a program to be compiled separately from that program terminated by

the end program header.

VI-5

Nucleus Identification Division

3. IDENTIFICATION DIVISION IN THE NUCLEUS MODULE

3.1 GENERAL DESCRIPTION

The Identification Division identifies the program. The Identification

Division is required in a COBOL source program. In addition, the user may

include the date the program is written and such other information as desired

under the paragraphs in the general format shown below.

3.2 ORGANIZATION

Paragraph headers identify the type of information contained in the

paragraph. The name of the program must be given in the first paragraph, which

is the PROGRAM-ID paragraph. The other paragraphs are optional and may be

included in this division at the user's choice, in order of presentation shown

by the general format below.

The AUTHOR paragraph, INSTALLATION paragraph, DATE-WRITTEN paragraph, DATE-

COMPILED paragraph, and SECURITY paragraph are obsolete elements in Standard

COBOL because they are to be deleted from the next revision of Standard COBOL.

3.2.1 Structure

The following is the general format of the paragraphs in the Identification

Division and it defines the order of presentation in the source program.

Paragraphs 3.3 and 3.4 on the following pages define the PROGRAM-ID paragraph

and the DATE-COMPILED paragraph. While the other paragraphs are not defined,

each general format is formed in the same manner.

3.2.1.1 General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ...]

[INSTALLATION♦ [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...]

[DATE-COMPILED. [comment-entry] ...]

[SECURITY. [comment-entry] ...]

3.2.1.2 Syntax Rules

(1) The comment-entry may be any combination of the characters from the

computer's character set. The continuation of the comment-entry by the use of

the hyphen in the indicator area is not permitted; however, the comment-entry

may be contained on one or more lines .

VI-6

Nucleus PROGRAM-ID

3.3 THE PROGRAM-ID PARAGRAPH

3.3.1 Function

The PROGRAM-ID paragraph specifies the name by which a program is identified.

3.3.2 General Format

PROGRAM-ID. program-name.

3.3.3 Syntax Rules

(1) The program-name must conform to the rules for formation of a user-

defined word.

3.3.4 General Rules

(1) The program-name identifies the source program, the object program, and

all listings pertaining to a particular program.

VI-7

Nucleus - DATE-COMPILED

3.4 THE DATE-COMPILED PARAGRAPH

3.4.1 Function

The DATE-COMPILED paragraph provides the compilation date in the

Identification Division source program listing. The DATE-COMPILED paragraph is

an obsolete element in Standard COBOL because it is to be deleted from the next

revision of Standard COBOL.

3.4.2 General Format

DATE-COMPILED. [comment-entry] ...

3.4.3 Syntax Rules

(1) The comment-entry may be any combination

computer's character set. The continuation of

the hyphen in the indicator area is not permitted

may be contained on one or more lines.

3.4.4 General Rules

(1) The paragraph-name DATE-COMPILED causes the current date to be inserted

during program compilation. If a DATE-COMPILED paragraph is present, it is

replaced during compilation with a paragraph of the form:

DATE-COMPILED. current date.

of the characters from the

the comment-entry by the use of

; however, the comment-entry

VI-8

Nucleus - Configuration Section

4. ENVIRONMENT DIVISION IN THE NUCLEUS MODULE

4.1 GENERAL DESCRIPTION

The Environment Division specifies a standard method of expressing those

aspects of a data processing problem that are dependent upon the physical

characteristics of a specific computer. The Environment Division is optional in

a COBOL source program.

4.2 CONFIGURATION SECTION

The Configuration Section is located in the Environment Division of a source

program. The Configuration Section deals with the characteristics of the source

computer and the object computer. This section also provides a means for

specifying the currency sign; choosing the decimal point;[specifying symbolic-|

characters; | relating implementor-names to user-specified mnemonic-names;

relating alphabet-names to character sets or collating sequences; and relating

class-names to sets of characters. The Configuration Section is optional in the

Environment Division of a COBOL source program.

The general format of the Configuration Section is shown below.

CONFIGURATION SECTION.

[SOURCE-COMPUTER. [source-computer-entry]]

fOBJECT-COMPUTER. [object-computer-entry]]

rSPECIAL-NAMES. [special-names entry]]

The Configuration Section must not be stated in a program which is contained

directly or indirectly within another program.

The entries explicitly or implicitly stated in the Configuration Section of a

program which contains other programs apply to each contained program.

VI-9

Nucleus SOURCE-COMPUTER

4.3 THE SOURCE-COMPUTER PARAGRAPH

4.3.1 Function

The SOURCE-COMPUTER paragraph provides a means of describing the computer

upon which the program is to be compiled.

4.3.2 General Format

SOURCE-COMPUTER. [computer-name fWITH DEBUGGING MODE 1.1

4.3.3 Syntax Rules

(1) Computer-name is a system-name.

4.3.4 General Rules

(1) All clauses of the SOURCE-COMPUTER paragraph apply to the program in

which they are explicitly or implicitly specified and to any program contained

within that program.

(2) When the SOURCE-COMPUTER paragraph is not specified and the program is

not contained within a program including a SOURCE-COMPUTER paragraph, the

computer on which the source program is being compiled is the source computer.

(3) When the SOURCE-COMPUTER paragraph is specified, but the source-

computer-entry is not specified, the computer upon which the source program is

being compiled is the source computer.

(4) If the WITH DEBUGGING MODE clause is specified in a program, all

debugging lines are compiled as specified in this presentation of the Nucleus

module. (See page VI-141, Debugging in the Nucleus Module.)

(5)

program

clause,

If the WITH DEBUGGING MODE clause is not specified in a program and the

is not contained within a program including a WITH DEBUGGING MODE

any debugging lines are compiled as if they were comment lines.

VI-10

Nucleus OBJECT-COMPUTER

4.4 THE OBJECT-COMPUTER PARAGRAPH

4.4.1 Function

The OBJECT-COMPUTER paragraph provides a means of describing the computer on

which the program is to be executed. The MEMORY SIZE clause is an obsolete

element in Standard COBOL because it is to be deleted from the next revision of

Standard COBOL.

4.4.2 General Format

OBJECT-COMPUTER. [computer-name

| WORDS

MEMORY SIZE integer-1 / CHARACTERS

f MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name—1].]

4.4.3 Syntax Rules

(1) Computer-name is a system-name.

4.4.4 General Rules

(1) The computer-name may provide a means for identifying equipment

configuration, in which case the computer-name and its implied configuration are

specified by each implementor. The configuration definition contains specific

information concerning the memory size.

The implementor defines what is to be done if the subset specified by

the user is less than the minimum configuration required for running the object

program.

(2) All clauses of the OBJECT-COMPUTER paragraph apply to the program in

which they are explicitly or implicitly specified and to any program contained

within that program.

(3) When the OBJECT-COMPUTER paragraph is not specified and the program is

not contained within a program including an OBJECT-COMPUTER paragraph, the

object computer is defined by the implementor.

(4) When the OBJECT-COMPUTER paragraph is specified, but the object-

computer -entry is not specified, the object computer is defined by the

implementor.

(5) If the PROGRAM COLLATING SEQUENCE clause is specified, the program

collating sequence is the collating sequence associated with alphabet-name-1

specified in that clause.

(6) If the PROGRAM COLLATING SEQUENCE clause is not specified, the program

collating sequence is the native collating sequence.

VI-11

Nucleus OBJECT-COMPUTER

(7) The program collating sequence established in the OBJECT-COMPUTER

paragraph is used to determine the truth value of any nonnumeric comparisons

that are:

a. Explicitly specified in relation conditions. (See page VI-54,

Relation Condition.)

b. Explicitly specified in condition-name conditions. (See page VI-58,

Condition-Name Condition (Conditional Variable).)

c. Implicitly specified by the presence of a CONTROL clause in a report

description entry. (See page XIII-15, The CONTROL Clause.)

(8) The program collating sequence established in the OBJECT-COMPUTER

paragraph is applied to any nonnumeric merge or sort keys unless the COLLATING

SEQUENCE phrase is specified in the respective SORT or MERGE statement. (See

page XI-8, The MERGE Statement, and page XI-16, The SORT Statement.)

VI-12

Nucleus SPECIAL-NAMES

4.5 THE SPECIAL-NAMES PARAGRAPH

4.5.1 Function

The SPECIAL-NAMES paragraph provides a means for specifying the currency-

sign; choosing the decimal point; [specifying symbolic-characters;] relating

implementor-names to user-specified mnemonic-names; relating alphabet-names to

character sets or collating sequences; and relating class-names to sets of

characters.

4.5.2 General Format

SPECIAL-NAMES. [[implementor-name-1

IS mnemonic-name-1 [ON STATUS IS condition-name-1 [OFF STATUS IS condition-name-2]]N

I IS mnemonic-name-2 [OFF STATUS IS condition-name-2 [ON STATUS IS condition-name-1]]|

iON STATUS IS condition-name-1 [OFF STATUS IS condition-name-2]

OFF STATUS IS condition-name-2 [ON STATUS IS condition-name-1]

[ALPHABET alphabet-name-1 IS

(STANDARD-1

STANDARD-2

NATIVE

implementor-name-2

literal-1

[throughI
literal-2

[THRU

{ALSO literal-3}

SYMBOLIC CHARACTERS symbolic-character-1} ... {integer-1} . .. j

[IN alphabet-name-2]

CLASS class-name-1 IS jliteral-4

[CURRENCY SIGN IS literal-6]

[DECIMAL-POINT IS COMMAl.1

('THROUGH ~)

[THRU }
literal-5

4.5.3 Syntax Rules

(1) If implementor-name-1 references an external switch, the associated

mnemonic-name may be specified only in the SET statement.

(2) If implementor-name-1 does not reference an external switch,

associated mnemonic-name may be specified only in the ACCEPT, DISPLAY, SEND

WRITE statements. A condition-name cannot be associated with such

implementor-name.

(3) If the literal phrase of the ALPHABET clause is specified, a given

character must not be specified more than once in that clause._

the

, or

an

VI-13

Nucleus SPECIAL-NAMES

(4) The literals specified in the literal phrase of the ALPHABET clause:

a. If numeric, must be unsigned integers and must have a value within

the range of one through the maximum number of characters in the native

character set.

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must

each be one character in length.

(5) Literal-1, literal-2, literal-3, literal-4, and literal-5 must not

specify a symbolic-character figurative constant.

(6) The words THRU and THROUGH are equivalent.

(7) The same symbolic-character-1 must appear only once in a SYMBOLIC

CHARACTERS clause.

(8) The relationship between each symbolic-character-1 and the corresponding

integer-1 is by position in the SYMBOLIC CHARACTERS clause. The first

symbolic-character-1 is paired with the first integer-1; the second symbolic-

character-1 is paired with the second integer-1; and so on.

(9) There must be a one-to-one correspondence between occurrences of

symbolic-characters-1 and occurrences of integer-1.

(10) The ordinal position specified by integer-1 must exist in the native

character set. If the IN phrase is specified, the ordinal position must exist

in the character set named by alphabet-name-2._

(11) The literals specified in the literal-4 phrase:

a. If numeric, must be unsigned integers and must have a value within

the range of one through the maximum number of characters in the native

character set .

b. If nonnumeric and associated with a THROUGH phrase, must each be one

character in length.

(12) Literal-6 must not be a figurative constant.

4.5.4 General Rules

(1) All clauses specified in the SPECIAL-NAMES paragraph for a program also

apply to programs contained within that program. The condition-names specified

in the containing program's SPECIAL-NAMES paragraph may be referenced from any

contained program.

(2) If implementor-name-1 references an external switch, the on status

and/or off status of that switch may be associated with condition-names. The

status of that switch may be interrogated by testing these condition-names (see

page VI-58, Switch-Status Condition).

(3) If implementor-name-1 references an external switch, the status of that

switch may be altered by execution of a format 3 SET statement which specifies

as its operand the mnemonic-name associated with that switch (see page VI-127,

VI-14

Nucleus SPECIAL-NAMES

The SET Statement). The implementor defines which external switches can be

referenced by the SET statement.

(4) The ALPHABET clause provides a means for relating a name to a specified

character code set and/or collating sequence. When alphabet-name-1 is

referenced in the PROGRAM COLLATING SEQUENCE clause (see page VI-11, The

OBJECT-COMPUTER Paragraph) or the COLLATING SEQUENCE phrase of a SORT or MERGE

statement (see page XI-8, The MERGE Statement, and page XI-16, The SORT

Statement), the ALPHABET clause specifies a collating sequence. When alphabet-

name-1 is referenced [in the SYMBOLIC CHARACTERS clause or| in a CODE-SET clause

in a file description entry (see page VII-24, The CODE-SET Clause), the ALPHABET

clause specifies a character code set.

a. If the STANDARD-1 phrase is specified, the character code set or

collating sequence identified is that defined in American National Standard

X3.4-1977, Code for Information Interchange. If the STANDARD-2 phrase is

specified, the character code set identified is the International Reference

Version of the ISO 7-bit code defined in International Standard 646, 7-Bit Coded

Character Set for Information Processing Interchange. Each character of the

standard character set is associated with its corresponding character of the

native character set. The implementor defines the correspondence between the

characters of the standard character set and the characters of the native

character set for which there is no correspondence otherwise specified.

b. If the NATIVE phrase is specified, the native character code set or

native collating sequence is used.

c. If the implementor-name-2 phrase is specified, the character code

set or collating sequence identified is that defined by the implementor. The

implementor also defines the correspondence between characters of the character

code set specified by implementor-name-2 and the characters of the native

character code set.

d. If the literal phrase is specified, the alphabet-name may not be

referenced in a CODE-SET clause (see page VII-24, The CODE-SET Clause). The

collating sequence identified is that defined according to the following rules:

1) The value of each literal specifies:

a) The ordinal number of a character within the native

character set, if the literal is numeric. This value must not exceed the value

which represents the number of characters in the native character set.

b) The actual character within the native character set, if the

literal is nonnumeric. If the value of the nonnumeric literal contains multiple

characters, each character in the literal, starting with the leftmost character,

is assigned successive ascending positions in the collating sequence being

specified.

2) The order in which the literals appear in the ALPHABET clause

specifies, in ascending sequence, the ordinal number of the character within the

collating sequence being specified. _

VI-15

Nucleus - SPECIAL-NAMES

3) Any characters within the native collating sequence, which are

not explicitly specified in the literal phrase, assume a position, in the

collating sequence being specified, greater than any of the explicitly specified

characters. The relative order within the set of these unspecified characters

is unchanged from the native collating sequence.

4) If the THROUGH phrase is specified, the set of contiguous

characters in the native character set beginning with the character specified by

the value of literal-1, and ending with the character specified by the value of

literal-2, is assigned a successive ascending position in the collating sequence

being specified. In addition, the set of contiguous characters specified by a

given THROUGH phrase may specify characters of the native character set in

either ascending or descending sequence.

5) If the ALSO phrase is specified, the characters of the native

character set specified by the value of literal-1 and literal-3 are assigned to

the same ordinal position in the collating sequence being specified or in the

character code set that is used to represent the data, and if alphabet-name-1 is

referenced in a SYMBOLIC CHARACTERS clause, only literal-1 is used to represent

the character in the native character set.

(5) The character that has the highest ord

collating sequence is associated with the figura

when this figurative constant is specified as a

paragraph. If more than one character has the

collating sequence, the last character spec

figurative constant HIGH-VALUE.

(6) The character that has the lowest ordinal

collating sequence is associated with the figurative

when this figurative constant is specified as a liter

paragraph. If more than one character has the lowe

collating sequence, the first character specified

figurative constant LOW-VALUE.

(7) When specified as literals in the SPECIAL-NAMES paragraph, the

figurative constants HIGH-VALUE and LOW-VALUE are associated with those

characters having the highest and lowest positions, respectively, in the native

collating sequence.

(8) If the IN phrase is not specified, symbolic-character-1 represents the

character whose ordinal position in the native character set is specified by

integer-1. If the IN phrase is specified, integer-1 specifies the ordinal

position of the character that is represented in the character set named by

alphabet-name-2.

(9) The internal representation of symbolic-character-1 is the internal

representation of the character that is represented in the native character set.

position in the program

constant LOW-VALUE, except

al in the SPECIAL-NAMES

st position in the program

is associated with the

inal position in the program

tive constant HIGH-VALUE, except

literal in the SPECIAL-NAMES

highest position in the program

ified is associated with the

(10) The CLASS clause provides a means for relating a name to the specified

set of characters listed in that clause. Class-name-1 can be referenced only in

a class condition. The characters specified by the values of the literals in

this clause define the exclusive set of characters of which this class-name-1

consists.

VI-16

Nucleus SPECIAL-NAMES

The value of each literal specifies:

a. The ordinal number of a character within the native character set,

if the literal is numeric. This value must not exceed the value which

represents the number of characters in the native character set.

b. The actual character within the native character set, if the literal

is nonnumeric. If the value of the nonnumeric literal contains multiple

characters, each character in the literal is included in the set of characters

identified by class-name-1.

If the THROUGH phra se i

native charac ter set beg inni

1 itera 1-4, and ending with the

are i ncluded in the se t of cha

the co ntiguous characte rs s pec i

charac ter s of the na t ive ch

sequen ce .

(11) Lit eral-6 wh ich appears

PICTURE c la use to re pre sent the

and is limi ted to a si ngle ch

compute r 1 s character se t exce Pt

a . digits 0 th rough 9;

b. alphabet ic charac te

D, P, R , s, V, X, Z; th e lowe rc

s specifi ed, the contiguous char acl :ers in the

ng with the char acter spec i f ied by the val ue of

character s pe c i f ie d by the value oJ : 1 iter al-5,

racters i dent i f ied by class- name-1 • In addi t ion,

fied by a given THROUGH phras e may sp ecify

aracter se t in either as cendin g or desce nding

in the CURRENCY SIGN

currency symbol. The

aracter. It may be

one of the following:

clause is

literal must

any charac

used in the

be nonnumeric

ter from the

rs consisting of the uppercase letters A, B, C,

ase letters a through z; or the space;

c. special characters " = /

If this

COBOL character

clause is not present,

set may be used as the

only the

currency

currency

symbol in

sign defined in

the PICTURE clause

the

(12) The clause DECIMAL-POINT IS COMMA means that

and period are exchanged in the character-string of

numeric literals.

the functions of comma

the PICTURE clause and in

VI-17

Nucleus - Working-Storage Section

5. DATA DIVISION IN THE NUCLEUS MODULE

5.1 GENERAL DESCRIPTION

The Data Division describes the data that is to be processed by the object

program. The Data Division is optional in a COBOL source program.

5.2 WORKING-STORAGE SECTION

The Working-Storage Section is located in the Data Division of a source

program. The Working-Storage Section describes records and subordinate data

items which are not part of data files.

The Working-Storage Section is composed of the section header, followed by

record description entries and/or data description entries for noncontiguous

data items.

The general format of the Working-Storage Section is shown below.

WORKING-STORAGE SECTION.

77-level-description-entry

record-description-entry

5.2.1 Noncontiguous Working Storage

Items and constants in working storage which bear no hierarchical

relationship to one another need not be grouped into records, provided they do

not need to be further subdivided. Instead, they are classified and defined as

noncontiguous elementary items. Each of these items is defined in a separate

data description entry which begins with the special level-number, 77.

The following data clauses are required in each data description entry:

1. level-number 77

2. data-name

3. the PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the

description of the item if necessary.

5.2.2 Working Storage Records

Data elements in working storage which bear a definite hierarchical

relationship to one another must be grouped into records according to the rules

for formation of record descriptions. Data elements in the Working-Storage

Section which bear no hierarchical relationship to any other data item may be

described as records which are single elementary items. All clauses which are

used in record descriptions in the File Section can be used in record

descriptions in the Working-Storage Section.

VI-18

Nucleus - Working-Storage Section

5.2.3 Record Description Structure

A record description consist

describe the characteristics

entry consists of a level-numbe

specified, followed by a ser

description may have a hierarch

within an entry may vary c

followed by subordinate entries

elements allowed in a recor

Concept of Levels, and on page

s of a set of data description entries which

of a particular record. Each data description

r followed by the data-name or FILLER clause, if

ies of independent clauses as required. A record

ical structure and therefore the clauses used

onsiderably, depending upon whether or not it is

. The structure of a record description and the

d description entry are explained on page IV-14,

VI-20, The Data Description Entry.

5.2.4 Initial Values

The initial value of any data item in the

index data item is specified by associating

The initial value of any index data item or

VALUE clause is undefined.

Working-Storage Section except an

the VALUE clause with the data item,

any data item not associated with a

VI-19

Nucleus - Data Description Entry

5.3 THE DATA DESCRIPTION ENTRY

5.3.1 Function

A data description entry specifies the characteristics of a particular item

of data.

5.3.2 General Format

Format 1:

level-number
data-name-1

FILLER

[REDEFINES data-name-2]

(picture) 1
\pic /

IS character-string

[USAGE IS]

/BINARY

\ COMPUTATIONAL

) COMP

\ DISPLAY

I INDEX

\ PACKED-DECIMAL

[[SIGN IS]
LEADING)

TRAILING|
[SEPARATE CHARACTER]]

OCCURS integer-2 TIMES

"(ASCENDING 1

(DESCENDING (
KEY IS {data-name-3} ... I-

[INDEXED BY {index-name-1} ...]

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-4

(ASCENDING)

(DESCENDING(
KEY IS {data-name-3} ...

[INDEXED BY {index-name-1} ...]

(synchronized! [left

(SYNC j I RIGHT

is™"} H
[BLANK WHEN ZERO]

[VALUE IS literal-1].

VI-20

Nucleus - Data Description Entry

Format 2:

66 data-name-1 RENAMES data-name-2
'(THROUGH i

{ THRU j data-name-3

Format 3:

88 condition-name-1
VALUE IS

VALUES
l)n

AREj ^
literal-1

(THROUGH

| THRU
literal-2

J f
5.3.3 Syntax Rules

(1) Level-number in format 1 may be any number from 01 through 49 or 77.

(2) In format 1, the data-name-1 or FILLER clause, if specified, must

immediately follow the level-number. The REDEFINES clause, if specified, must

immediately follow the data-name-1 or FILLER clause if either is specified;

otherwise, it must immediately follow the level-number. The remaining clauses

may be written in any order.

(3) The PICTURE clause must be specified for every elementary item except an

index data item and the subject of the RENAMES clause, in which case use of this

clause is prohibited.

(4) The words THRU and THROUGH are equivalent.

5.3.4 General Rules

(1) The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO must

not be specified except for an elementary data item.

(2) Format 3 is used for each condition-name. Each condition-name requires

a separate entry with level-number 88. Format 3 contains the name of the

condition and the value, values, or range of values associated with the

condition-name. The condition-name entries for a particular conditional

variable must immediately follow the entry describing the item with which the

condition-name is associated. A condition-name can be associated with any data

description entry which contains a level-number except the following:

a. Another condition-name.

b. A level 66 item.

c. A group containing items with descriptions including JUSTIFIED,

SYNCHRONIZED, or USAGE (other than USAGE IS DISPLAY).

d. An index data item.

(3) Multiple level 01 entries subordinate to any given level indicator other

than the level indicator RD for a report description entry, represent implicit

redefinitions of the same area.

VI-21

Nucleus BLANK WHEN ZERO

5.4 THE BLANK WHEN ZERO CLAUSE

5.4.1 Function

The BLANK WHEN ZERO clause permits the blanking of an item when its value is

zero .

5.4.2 General Format

BLANK WHEN ZERO

5.4.3 Syntax Rules

(1) The BLANK WHEN ZERO clause can be specified only for an elementary item

whose PICTURE is specified as numeric or numeric edited (see page VI-29, The

PICTURE Clause).

(2) The numeric or numeric edited data description entry to which the BLANK

WHEN ZERO clause applies must be described, either implicitly or explicitly, as

USAGE IS DISPLAY.

5.4.4 General Rules

(1) When the BLANK WHEN ZERO clause is used, the item will contain nothing

but spaces if the value of the item is zero.

(2) When the BLANK WHEN ZERO clause is used for an item whose PICTURE is

numeric, the category of the item is considered to be numeric edited.

VI-22

Nucleus Data-Name or FILLER

5.5 THE DATA-NAME OR FILLER CLAUSE

5.5.1 Function

A data-name specifies the name of the data item being described. The key

word FILLER may be used to specify a data item which is not referenced

explicitly.

5.5.2 General Format

data-name-1

FILLER

5.5.3 Syntax Rules

(1) In the File, Working-Storage, Communication, and Linkage Sections,

data-name-1 or the key word FILLER, if either is specified, must be the first

word following the level-number in each data description entry.

5.5.4 General Rules

(1) If this clause is omitted, the data item being described is treated as

though FILLER had been specified.

(2) The key word FILLER may be used to name a data item. Under no

circumstances can a FILLER item be referred to explicitly. ["However, the key

word FILLER may be used to name a conditional variable because such use does not

require explicit reference to the data item itself, but only to the value

contained therein.

VI-23

Nucleus - JUSTIFIED

5.6 THE JUSTIFIED CLAUSE

5.6.1 Function

The JUSTIFIED clause permits alternate positioning of data within a receiving

data item.

5.6.2 General Format

RIGHT

5.6.3 Syntax Rules

(1) The JUSTIFIED clause can be specified only at the elementary item level.

(2) JUST is an abbreviation for JUSTIFIED.

(3) The JUSTIFIED clause cannot be specified for any data item described as

numeric or for which editing is specified.

(4) The JUSTIFIED clause must not be specified for an index data item.

5.6.4 General Rules

(1) When the receiving data item is described with the JUSTIFIED clause and

the sending data item is larger than the receiving data item, the leftmost

characters are truncated. When the receiving data item is described with the

JUSTIFIED clause and it is larger than the sending data item, the data is

aligned at the rightmost character position in the data item with space fill for

the leftmost character positions.

(2) When the JUSTIFIED clause is omitted, the standard rules for aligning

data within an elementary item apply (see page IV-16, Standard Alignment Rules).

VI-24

Nucleus Leve1-Number

5.7 LEVEL-NUMBER

5.7.1 Function

The level-number indicates the position of a data item within the

hierarchical structure of a logical record. In addition, it is used to identify

entries for working storage items, linkage items, 1 condition-names, and the]

RENAMES clause.

5.7.2 General Format

level-number

5.7.3 Syntax Rules

(1) A level-number is required as the first element in each data description

entry .

(2) Data description entries subordinate to a CD, FD, or SD entry must have

level-numbers with the values 01 through, 49, 66, or 88

(3) Data description entries in the Working-Storage Section and Linkage

Section must have level-numbers 01 through 49 , j 66 , [77, [or 88■]

5.7.4 General Rules

(1) The level-number 01 identifies the first entry in each record

description.

(2) Special level-numbers have been assigned to certain entries where there

is no real concept of hierarchy:

a. Level-number 77 is assigned to identify noncontiguous working

storage data items, noncontiguous linkage data items, and can be used only as

described by format 1 of the data description entry. (See page VI-20, The Data

Description Entry.)

b. Level-number 66 is assigned to identify RENAMES entries and can be

used only as described by format 2 of the data description entry. (See page

VI-20, The Data Description Entry.)

c. Level-number 88 is assigned to entries which define condition-names

associated with a conditional variable and can be used only as described by

format 3 of the data description entry. (See page VI-20, The Data Description

Entry .)___

(3) Multiple

than the level

redefinitions of

level 01 entries subordinate to any given level indicator other

indicator RD for a report description entry, represent implicit

the same area.

VI-25

Nucleus - OCCURS

5.8 THE OCCURS CLAUSE

5.8.1 Function

The OCCURS clause eliminates the need for separate entries for repeated data

items and supplies information required for the application of subscripts.

5.8.2 General Format

Format 1:

OCCURS integer-2 TIMES

(ASCENDING 1

)DESCENDING]

rINDEXED BY

KEY IS {data-name-2} ...

{index-name-1} ...]

Format 2:

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

KEY IS {data-name-2} ...

[INDEXED BY {index-name-1} ...]

(ASCENDING)

[DESCENDING I

5.8.3 Syntax Rules

(1)
that :

The OCCURS clause must not be specified in data description entry

a. Has a level-number of 01, 66, 77, or 88, or

b. Has a variable occurrence data item subordinate to it.

(2) Dat a-name- 1 and data-name-2 may be qualified.

(3) The first specification of data-name-2 must be the name of either the

entry containing the OCCURS clause or an entry subordinate to the entry

containing the OCCURS clause. Subsequent specification of data-name -2 must be

subordinate to the entry containing the OCCURS clause.

(4) Dat a-name- 2 must be specified without the subscripting normally

required.

(5) Where both integer-1 and integer-2 are used, integer-1 must be greater

than or equal to zero and integer-2 must be greater than integer-1.

(6) Data-name- 1 must describe an integer.

VI-26

Nucleus OCCURS

(7) In format 2, the data item defined by data-name-1 must not occupy a

character position within the range of the first character position defined by

the data description entry containing the OCCURS clause and the last character

position defined by the record description entry containing that OCCURS clause.

(8) If the OCCURS clause is specified in a data description entry included

in a record description entry containing the EXTERNAL clause, data-name-1, if

specified, must reference a data item possessing the external attribute which is

described in the same Data Division.

(9) If the OCCURS clause is specified in a

subordinate to one containing the GLOBAL clause, data

be a global name and must reference a data item which

Data Division.

(10) A data description entry that contains format 2 of the OCCURS clause may

only be followed, within that record description, by data description entries

which are subordinate to it.

(11) The data item identified by data-name-2 must not contain an OCCURS

clause except when data-name-2 is the subject of the entry.

(12) There must not be any entry that contains an OCCURS clause between the

descriptions of the data items identified by the data-names in the KEY IS phrase

and the subject of the entry. _ _

data description entry

-name-1, if specified, must

is described in the same

(13) An INDEXED BY phrase is required if the subject of this entry, or an

entry subordinate to this entry, is to be referenced by indexing. The

index-name identified by this phrase is not defined elsewhere since its

allocation and format are dependent on the hardware and, not being data, cannot

be associated with any data hierarchy.

(14) Index-name-1 must be a unique word within the program.

5.8.4 General Rules

(1) Except for the OCCURS clause itself, all data description clauses

associated with an item whose description includes an OCCURS clause apply to

each occurrence of the item described.

(2) The number of occurrences of the subject entry is defined as follows:

a. In format 1, the value of integer-2 represents the exact number of

occurrences .

b. In format 2, the current value of the data item referenced by

data-name-1 represents the number of occurrences.

This format specifies that the subject of this entry has a variable

number of occurrences. The value of integer-2 represents the maximum number of

occurrences and the value of integer-1 represents the minimum number of

occurrences. This does not imply that the length of the subject of the entry is

variable, but that the number of occurrences is variable.

VI-27

Nucleus - OCCURS

At the time the subject of entry is referenced or any data item

subordinate or superordinate to the subject of entry is referenced, the value of

the data item referenced by data-name-1 must fall within the range integer-1

through integer-2. The contents of the data items whose occurrence numbers

exceed the value of the data item referenced by data-name-1 are undefined.

(3) When a group data item, having subordinate to it an entry that specifies

format 2 of the OCCURS clause, is referenced, the part of the table area used in

the operation is determined as follows:

a. If the data item referenced by data-name-1 is outside the group,

only that part of the table area that is specified by the value of the data item

referenced by data-name-1 at the start of the operation will be used.

b. If the data item referenced by data-name-1 is included in the same

group and the group data item is referenced as a sending item, only that part of

the table area that is specified by the value of the data item referenced by

data-name-1 at the start of the operation will be used in the operation. If the

group is a receiving item, the maximum length of the group will be used.

(4) When the KEY IS phrase is specified, the repeated data must be arranged

in ascending or descending order according to the values contained in

data-name-2. The ascending or descending order is determined according to the

rules for the comparison of operands. (See page VI-55, Comparison of Numeric

Operands, and page VI-55, Comparison of Nonnumeric Operands.) The data-names

are listed in their descending order of significance.

(5) If format 2 is specified in a record description entry and the

associated file description or sort-merge description entry contains the VARYING

phrase of the RECORD clause, the records are variable length. If the DEPENDING

ON phrase of the RECORD clause is not specified, the content of the data item

referenced by data-name-1 of the OCCURS clause must be set to the number of

occurrences to be written before the execution of any RELEASE, REWRITE, or WRITE

statement. ____

VI-28

Nucleus PICTURE

5.9 THE PICTURE CLAUSE

5.9.1 Function

The PICTURE clause describes the general characteristics and

requirements of an elementary item.

5.9.2 General Format

(picture)

editing

(PIC (
IS character-string

5.9.3 Syntax Rules

(1) A PICTURE clause can be specified only at the elementary item level.

(2) A character-string consists of certain allowable combinations of

characters in the COBOL character set used as symbols. The allowable

combinations determine the category of the elementary item.

(3) The lowercase letters corresponding to the uppercase letters

representing the PICTURE symbols A, B, P, S, V, X, Z, CR, and DB are equivalent

to their uppercase representations in a PICTURE character-string. All other

lowercase letters are not equivalent to their corresponding uppercase

representations.

(4) The maximum number of characters allowed in the character-string is 30.

(5) The PICTURE clause must be specified for every elementary item except an

index data item [or the subject of the RENAMES clause/] In these cases the use of

this clause is prohibited.

(6) PIC is an abbreviation for PICTURE.

(7) The asterisk when used as the zero suppression symbol and the clause

BLANK WHEN ZERO may not appear in the same entry.

5.9.4 General Rules

(1) There are five categories of data that can be described with a PICTURE

clause: alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric

edited.

(2) To define an item as alphabetic:

a. Its PICTURE character-string can contain only the symbol 'A'; and

b. Its content, when represented in standard data format, must be one

or more alphabetic characters.

VI-29

Nucleus PICTURE

(3) To define an item as numeric:

a. Its PICTURE character-string can contain only the symbols '9', 1P',

'S', and 'V'. The number of digit positions that can be described by the

PICTURE character-string must range from 1 to 18 inclusive; and

b. If unsigned, its content when represented in standard data format

must be one or more numeric characters; if signed, the item may also contain a

'+', '-', or other representation of an operational sign (see page VI-42, The

SIGN Clause).

(4) To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain combinations

of the symbols 'A', 'X', '9', and the item is treated as if the character-string

contained all 'X's. A PICTURE character-string which contains all 'A's or all

'9's does not define an alphanumeric item, and;

b. Its content when represented in standard data format must be one or

more characters in the computer's character set.

(5) To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain combinations

of the following symbols: 'A', 'X', '9', 1B', 'O', and '/'; and must contain at

least one 'A' or 'X' and must contain at least one 'B' or 'O' (zero) or '/'

(slant) .

b. Its content when represented in standard data format must be two or

more characters in the computer's character set.

(6) To define an item as numeric edited:

a. Its PICTURE character-string is restricted to certain combinations

of the symbols ' B' , '/', ' P' , 'V', ' Z' , 'O', '9', ',', '*', ' + ', 'CR\

'DB', and the currency symbol. The allowable combinations are determined from

the order of precedence of symbols and the editing rules; and

1) The number of digit positions that can be represented in the

PICTURE character-string must range from 1 to 18 inclusive; and

2) The character-string must contain at least one 'O', 'B', '/',

'Z', '*', '+', ',', '.', 'CR', 'DB', or the currency symbol.

b. The content of each of the character positions must be consistent

with the corresponding PICTURE symbol.

(7) The size of an elementary item, where size means the number of character

positions occupied by the elementary item in standard data format, is determined

by the number of allowable symbols that represent character positions. An

unsigned nonzero integer which is enclosed in parentheses following the symbols

'A', ',', 'X', '9', 'P', 'Z', '*', 'B', '/', 'O', '+', '-', or the currency

symbol indicates the number of consecutive occurrences of the symbol. Note that

the following symbols may appear only once in a given PICTURE: 'S', 'V', '.',

'CR', and 'DB'.

VI-30

Nucleus - PICTURE

(8) The functions of the symbols used to describe an elementary item are

explain as follows:

A Each 'A' in the character-string represents a character position

which can contain only an alphabetic character and is counted in the size of the

item.

B Each 'B' in the character-string represents a character position

into which the space character will be inserted and is counted in the size of

the item.

P Each 'P' in the character-string indicates an assumed decimal

scaling position and is used to specify the location of an assumed decimal point

when the point is not within the number that appears in the data item. The

scaling position character 'P' is not counted in the size of the data item.

Scaling position characters are counted in determining the maximum number of

digit positions (18) in numeric edited items or numeric items. The scaling

position character ' P1 can appear only as a continuous string of 'P's in the

leftmost or rightmost digit positions within a PICTURE character-string; since

the scaling position character 'P ’ implies an assumed decimal point (to the left

of 'P's if 'P's are leftmost PICTURE symbols and to the right if 'P's are

rightmost PICTURE symbols), the assumed decimal point symbol 'V' is redundant as

either the leftmost or rightmost character within such a PICTURE description.

The symbol 'P' and the insertion symbol '.' (period) cannot both occur in the

same PICTURE character-string.

In certain operations that reference a data item whose PICTURE

character-string contains the symbol 'P', the algebraic value of the data item

is used rather than the actual character representation of the data item. This

algebraic value assumes the decimal point in the prescribed location and zero in

place of the digit position specified by the symbol 'P'. The size of the value

is the number of digit positions represented by the PICTURE character-string.

These operations are any of the following:

a. Any operation requiring a numeric sending operand.

b. A MOVE statement where the sending operand is numeric and its

PICTURE character-string contains the symbol 'P' .

c. A MOVE statement where the sending operand is numeric edited and

its PICTURE character-string contains the symbol 'P' and the receiving operand

is numeric or numeric edited.

d. A comparison operation where both operands are numeric.

In all other ope rations the dig it posit i

ignore d and are not counted in the size

S The 'S' is used in a charact

neithe r the re presentatio n nor , nece

sign; it mus t be written as the le ftmos t

not c ounted in determini ng the size

charac ters) of the elementary i tem unles

wh ich spec i f ies the optional SEPARATE

SIGN C lause.)

ons specified with the symbol 'P' are

of the operand.

er-string to indicate the presence, but

ssarily, the position of an operational

character in the PICTURE. The 'S' is

(in terms of standard data format

s the entry is subject to a SIGN clause

CHARACTER phrase. (See page VI-42, The

VI-31

Nucleus - PICTURE

V The 'V' is used in a character-string to indicate the location of

the assumed decimal point and may only appear once in a character-string. The

'V' does not represent a character position and therefore is not counted in the

size of the elementary item. When the assumed decimal point is to the right of

the rightmost symbol in the string representing a digit position or scaling

position, the 'V' is redundant.

X Each 'X' in the character-string is used to represent a character

position which contains any allowable character from the computer's character

set and is counted in the size of the item.

Z Each * Z' in a character-string may only be used to represent the

leftmost leading numeric character positions which will be replaced by a space

character when the content of that character position is a leading zero. Each

' Z' is counted in the size of the item.

9 Each '9' in the character-string represents a digit position which

contains a numeric character and is counted in the size of the item.

a character

is counted in

0 Each 'O' (zero) in the character-string represents

position into which the character zero will be inserted. The 'O'

the size of the item.

/ Each '/' (slant) in the character-s

position into which the slant character will be i

the size of the item.

, Each ',' (comma) in the character-s

position into which the character ',' will be ins

is counted in the size of the item.

. When the symbol '.' (period) appears m the character-string it is

an editing symbol which represents the decimal point for alignment purposes and,

in addition, represents a character position into which the character '.' will

be inserted. The character '.' is counted in the size of the item. For a given

program the functions of the period and comma are exchanged if the clause

DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES paragraph. In this

exchange the rules for the period apply to the comma and the rules for the comma

apply to the period wherever they appear in a PICTURE clause.

+ - CR DB These symbols are used as editing sign control symbols.

When used, they represent the character position into which the editing sign

control symbol will be placed. The symbols are mutually exclusive in any one

ng represents a charac

r ted . The '/' is counted

ng represents a charac

ed. This character posit

the character-string it

char ac ter -s tring and each charac

the s i ze of the dat a item.

* Each i * i (aste risk)

nume r i c ch aract er positi on in

cont en t o f that pos i t ion i sale

the it em.

c s The currency symbo1

pos i ti on i nto which a cur rency

char ac ter -s tring is repres ented

er-string repres ents a lead

as terisk will be placed when

c h '*' is counted in the size

er-string represents a charac

placed. ' The curr ency symbol ii

urrency s ign or by the sin;

of

VI-32

Nucleus PICTURE

character specified in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph.

The currency symbol is counted in the size of the item.

5.9.5 Editing Rules

(1) There are two general methods of performing editing in the PICTURE

clause, either by insertion or by suppression and replacement. There are four

types of insertion editing available. They are:

(2)
upon

which

a. Simple insertion

b. Special insertion

c. Fixed insertion

d. Floating insertion

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is

the category to which the item belongs. The following table

type of editing may be performed upon a given category:

dependent

specifies

CATEGORY TYPE OF EDITING

Alphabetic None

Numeric None

Alphanumeric None

Alphanumeric edited Simple insertion 'O', 'B', and '/'

Numeric edited All, subject to rules in rule 3 below

(3) Floating insertion editing and editing by zero suppression and

replacement are mutually exclusive in a PICTURE clause. Only one type of

replacement may be used with zero suppression in a PICTURE clause.

(4) Simple insertion editing. The (comma), 'B' (space), '0' (zero),

and '/' (slant) are used as the insertion characters. The insertion characters

are counted in the size of the item and represent the position in the item into

which the character will be inserted. If the insertion character ',' (comma) is

the last symbol in the PICTURE character-string, the PICTURE clause must be the

last clause of the data description entry and must be immediately followed by

the separator period. This results in the combination of appearing in the

data description entry, or, if the DECIMAL POINT IS COMMA clause is used, in two

consecutive periods.

(5) Special insertion editing. The ' . ' (period) is used as the inser

charact er . In addition to being an insert :ion charact er it also repres ents

decima1 point for alignment purpose es . The insertion charac ter used for

actual decimal point is counted in the size of the item . The use of the ass

t ion

the

the
umed

VI-33

Nucleus PICTURE

decimal point, represented by the symbol

represented by the insertion character,

disallowed. If the insertion character

character-string, the PICTURE clause

description entry and must be immediate

This results in two consecutive periods

or in the combination of '

result of special insertion editing

in the item in the same position as

'V' and the actual decimal point,

PICTURE character-string is

symbol in the PICTURE

last clause of that data

the separator period,

data description entry,

is used. The

character

in the same

is the last

must be the

ly followed by

appearing in the

if the DECIMAL-POINT IS COMMA clause

is the appearance of the insertion

shown in the character-string.

(6) Fixed insertion editing. The currency symbol and the editing sign

control symbols '+', 'CR', 'DB1 are the insertion characters. Only one

currency symbol and only one of the editing sign control symbols can be used in

a given PICTURE character-string. When the symbols 'CR' or 'DB' are used they

represent two character positions in determining the size of the item and they

must represent the rightmost character positions that are counted in the size of

the item. If these character positions contain the symbols 'CR' or 1DB', the

uppercase letters are the insertion characters. The symbol '+' or when

used, must be either the leftmost or rightmost character position to be counted

in the size of the item. The currency symbol must be the leftmost character

position to be counted in the size of the item except that it can be preceded by

either a ’+' or a symbol. Fixed insertion editing results in the insertion

character occupying the same character position in the edited item as it

occupied in the PICTURE character-string. Editing sign control symbols produce

the following results depending upon the value of the data item:

EDITING SYMBOL IN

PICTURE CHARACTER-STRING

RESULT

DATA ITEM

POSITIVE OR ZERO

DATA ITEM

NEGATIVE

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

(7) Floating insertion editing. The currency symbol and editing sign

control symbols '+' and are the floating insertion characters and as such

are mutually exclusive in a given PICTURE character-string.

Floating in sertion editi ng is indie ated

using a string o f at least two of the f loa
string of floating insertion characters may cont

charac ters or have simple inser tion charac ters

string . These simple insertion characters are

When the floating insertion character i s the

floati ng insertion characters ma y have the fixed

'DB' immediately to the right of this strin g-

in a PICTURE characte

ting insertion charac

ain any of the simple

immediately to the ri

part of the floati

currency symbol, thi

insertion characters

r-s

ter

i

ght

ng
s s

tring by

s. This

nsertion

of this

string.

tring of

CR' and

The leftmost character of the floating insertion string represents the

leftmost limit of the floating symbols in the data item. The rightmost

character of the floating string represents the rightmost limit of the floating

symbols in the data item.

VI-34

Nucleus PICTURE

The second floating character

limit of the numeric data that can be

data may replace all the characters at

In a PICTURE character-string,

floating insertion editing. One way

numeric character positions cn the left

character. The other way is to represent

in the PICTURE character-string by the

from the left represents the leftmost

stored in the data item. Nonzero numeric

or to the right of this limit.

of representing

all of the leading

by the insertion

character positions

there are only two ways

is to represent any or

of the decimal point

all of the numeric

insertion character.

If the insertion character positions are only to the left of the decimal

point in the PICTURE character-string, the result is that a single floating

insertion character will be placed into the character position immediately

preceding either the decimal point or the first nonzero digit in the data

represented by the insertion symbol string, whichever is farther to the left in

the PICTURE character-string. The character positions preceding the insertion

character are replaced with spaces.

If all numeric character positions in the PICTURE character-string are

represented by the insertion character, at least one of the insertion characters

must be to the left of the decimal point.

When the floating insertion character is the editing control symbol '+'

or the character inserted depends upon the value of the data item:

EDITING SYMBOL IN

PICTURE CHARACTER-STRING

RESULT

DATA ITEM

POSITIVE OR ZERO

DATA ITEM

NEGATIVE

+ + —

- space -

If all numeric character positions in the PICTURE character-string are

represented by the insertion character, the result depends upon the value of the

data. If the value is zero the entire data item will contain spaces. If the

value is not zero, the result is the same as when the insertion character is

only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string

for the receiving data item must be the number of characters in the sending data

item, plus the number of nonfloating insertion characters being edited into the

receiving data item, plus one for the floating insertion character. If

truncation does occur, the value of the data that is used for editing is the

value after truncation. (See page IV-16, Standard Alignment Rules.)

(8) Zero suppression editing. The suppression of leading zeros in numeric

character positions is indicated by the use of the alphabetic character 'Z' or

the character (asterisk) as suppression symbols in a PICTURE

character-string. These symbols are mutually exclusive in a given PICTURE

character-string. Each suppression symbol is counted in determining the size of

the item. If 'Z1 is used the replacement character will be the space and if the

asterisk is used, the replacement character will be

VI-35

Nucleus PICTURE

Zero suppression and replacement is indicated in a PICTURE

character-string by using a string of one or more of the allowable symbols to

represent leading numeric character positions which are to be replaced when the

associated character position in the data contains a leading zero. Any of the

simple insertion characters embedded in the string of symbols or to the

immediate right of this string are part of the string.

In a PICTURE character-string, there are only

zero suppression. One way is to represent any or

character positions to the left of the decimal point

The other way is to represent all of the numeric

PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point,

any leading zero in the data which corresponds to a symbol in the string is

replaced by the replacement character. Suppression terminates at the first

nonzero digit in the data represented by the suppression symbol string or at the

decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string are

represented by suppression symbols and the value of the data is not zero the

result is the same as if the suppression characters were only to the left of the

decimal point. If the value is zero and the suppression symbol is 'Z', the

entire data item, including any editing characters, is spaces. If the value is

zero and the suppression symbol is the entire data item, including any

insertion editing symbols except the actual decimal point, will be '*'. In this

case, the actual decimal point will appear in the data item.

(9) The symbols ' + ', ' —1 , 'Z' , and the currency symbol, when used as

floating replacement characters, are mutually exclusive within a given

character-string.

5.9.6 Precedence Rules

The chart on page VI-37 shows the order of precedence when using characters

as symbols in a character-string. An 'X' at an intersection indicates that the

symbol(s) at the top of the column may precede (but not necessarily

immediately), in a given character-string, the symbol(s) at the left of the row.

Arguments appearing in braces { > indicate that the symbols are mutually

exclusive. The currency symbol is indicated by the symbol 'cs1.

At least one of the symbols 'A', 'X', 'Z', '9', or '*' or at least two

occurrences of one of the symbols '+', or 'cs' must be present in a PICTURE

character-string.

Nonfloating insertion symbols '+' and '-', floating insertion symbols 'Z',

'*', '+', '-', and 'cs', and other symbol 'P' appear twice in the PICTURE

character precedence chart on page VI-37. The leftmost column and uppermost row

for each symbol represents its use to the left of the decimal point position.

The second appearance of the symbol in the chart represents its use to the right

of the decimal point position.

two ways of representing

all of the leading numeric

by suppression symbols,

character positions in the

VI-36

Nucleus - PICTURE

\ First
\ Symbol

Second \
Symbol \

Non-floating
Insertion Symbols

Floating
Insertion Symbols

Other Symbols

B 0 / 5 ft ft & cs
ft ft ft ft

cs cs 9
A

X s V p p

N
on

-f
lo

at
in

g
In

se
rt

io
n
 S

y
m

b
o
ls

B X X X X X X X X X X X X X X X X X

0 X X X X X X X X X X X X X X X X X

/ X X X X X X X X X X X X X X X X X

> X X X X X X X X X X X X X X X X

X X X X X X X X X X

ft

ft
X X X X X X X X X X X X X X

IcrI
fDBJ

X X X X X X X X X X X X X X

cs X

F
lo

at
in

g
In

se
rt

io
n
 S

y
m

b
o
ls

ft
X X X X X X X

ft
X X X X X X X X X X X

ft
X X X X X X

ft
X X X X X X X X X X

cs X X X X X X

cs X X X X X X X X X X

O
th

er
 S

y
m

b
o

ls

9 X X X X X X X X X X X X X X X

A

X X X X X X

S

V X X X X X X X X X X X X

P X X X X X X X X X X X X

P X X X X X

VI-37

Nucleus - REDEFINES

5.10 THE REDEFINES CLAUSE

5.10.1 Function

The REDEFINES clause allows the same computer storage area to be described by

different data description entries.

5.10.2 General Format

level-number
data-name-1

FILLER
REDEFINES data-name-2

NOTE: Level-number, data-name-1, and FILLER are shown in the above

format to improve clarity. Level-number, data-name-1, and

FILLER are not part of the REDEFINES clause.

5.10.3 Syntax Rules

(1) The REDEFINES clause, when specified, must immediately follow the

subject of the entry.

(2) The level-numbers of data-name-2 and the subject of the entry must be

identical,Ibut must not be 66 or 88.

(3) This clause must not be used in level 01 entries in the File Section.

(4) This clause must not be used in level 01 entries in the Communication

Section.

(5) The data description entry for data-name-2 cannot contain an OCCURS

clause. However, data-name-2 may be subordinate to an item whose data

description entry contains an OCCURS clause. In this case, the reference to

data-name-2 in the REDEFINES clause may not be subscripted. Neither the

original definition nor the redefinition can include a variable occurrence data

item.

(6) If the data item referenced by data-name-2 is either declared to be an

external data record or is specified with a level-number other than 01, the

number of character positions it contains must be greater than or equal to the

number of character positions in the data item referenced by the subject of this

entry. If the data-name referenced by data-name-2 is specified with a

level-number of 01 and is not declared to be an external data record, there is

no such constraint.

(7) Data-name-2 must not be qualified even if it is not unique since no

ambiguity of reference exists in this case because of the required placement of

the REDEFINES clause within the source program._

(8) Multiple redefinitions of the same character positions are permitted.

Multiple redefinitions of the same character positions must all use the

data-name of the entry that originally defined the area.

(9) The entries giving the new description of the character positions must

not contain any VALUE clauses, except in condition-name entries.

VI-38

Nucleus REDEFINES

(10) No entry having a level-number numerically lower than the level-number

of data-name-2 and the subject of the entry may occur between the data

description entries of data-name-2 and the subject of the entry.

(11) The entries giving the new descriptions of the character positions must

follow the entries defining the area of data-name-2, without intervening entries

that define new character positions.

(12) In level 1, data-name-2 cannot be subordinate to an entry which contains

a REDEFINES clause. In level 2, data-name-2 may be subordinate to an entry

which contains a REDEFINES clause.

5.10.4 General Rules

(1) Storage allocation starts at data-name-2 and continues over a storage

area sufficient to contain the number of character positions in the data item

referenced by the data-name-1 or FILLER clause.

(2) When the same character position is defined by more than one data

description entry, the data-name associated with any of those data description

entries can be used to reference that character position.

VI-39

Nucleus RENAMES

5.11 THE RENAMES CLAUSE

5.11.1 Function

The RENAMES clause permits alternative, possibly overlapping, groupings of

elementary items.

5.11.2 General Format

66

NOTE: Level-number 66 and data-name-1 are shown in the above

format to improve clarity. Level-number and data-name-1

are not part of the RENAMES clause.

5.11.3 Syntax Rules

(1) Any number of RENAMES entries may be written for a logical record.

(2) All RENAMES entries referring to data items within a given logical

record must immediately follow the last data description entry of the associated

record description entry.

(3) Data-name-1 cannot be used as a qualifier, and can only be qualified by

the names of the associated level 01, FD, CD, or SD entries. Neither

data-name-2 nor data-name-3 may have an OCCURS clause in its data description

entry nor be subordinate to an item that has an OCCURS clause in its data

description entry.

(4) Data-name-2 and data-name-3 must be names of elementary items or groups

of elementary items in the same logical record, and cannot be the same

data-name. A 66 level entry cannot rename another 66 level entry nor can it

rename a 77, 88, or 01 level entry.

(5) Data-name-2 and data-name-3 may be qualified.

(6) None of the items within the range, including data-name-2 and

data-name-3, if specified, can be variable occurrence data items.

(7) The words THROUGH and THRU are equivalent.

(8) The beginning of the area described by data-name-3 must not be to the

left of the beginning of the area described by data-name-2. The end of the area

described by data-name-3 must be to the right of the end of the area described

by data-name-2. Data-name-3, therefore, cannot be subordinate to data-name-2.

VI-40

Nucleus - RENAMES

5.11.4 General Rules

(1) When data-name-3 is specified, data-name-1 is a group item which

includes all elementary items starting with data-name-2 (if data-name-2 is an

elementary item) or the first elementary item in data-name-2 (if data-name-2 is

a group item), and concluding with data-name-3 (if data-name-3 is an elementary

item) or the last elementary item in data-name-3 (if data-name-3 is a group

item).

(2) When data-name-3 is not specified, all of the data attributes of

data-name-2 become the data attributes for data-name-1.

VI-41

Nucleus SIGN

5.12 THE SIGN CLAUSE

5.12.1 Function

The SIGN clause specifies the position and the mode of representation of the

operational sign when it is necessary to describe these properties explicitly.

5.12.2 General Format

r SEPARATE CHARACTER] rSIGN IS]

5.12.3 Syntax Rules

(1) The SIGN clause may be specified only for a numeric data description

entry whose PICTURE contains the character 'S', or a group item containing at

least one such numeric data description entry.

(2) The numeric data description entries to which the SIGN clause applies

must be described, implicitly or explicitly, as USAGE IS DISPLAY.

(3) If the CODE-SET clause is specified in a file description entry, any

signed numeric data description entries associated with that file description

entry must be described with the SIGN IS SEPARATE clause.

5.12.4 General Rules

(1) The optional SIGN clause, if present, specifies the position and the

mode of representation of the operational sign for the numeric data description

entry to which it applies, or for each numeric data description entry

subordinate to the group to which it applies. The SIGN clause applies only to

numeric data description entries whose PICTURE contains the character 'S'; the

'S' indicates the presence of, but neither the representation nor, necessarily,

the position of the operational sign.

(2) If a SIGN clause is specified in a group item subordinate to a group

item for which a SIGN clause is specified, the SIGN clause specified in the

subordinate group item takes precedence for that subordinate group item.

(3) If a SIGN clause is specified in an elementary numeric data description

entry subordinate to a group item for which a SIGN clause is specified, the SIGN

clause specified in the subordinate elementary numeric data description entry

takes precedence for that elementary numeric data item.

(4) A numeric data description entry whose PICTURE contains the character

'S', but to which no optional SIGN clause applies, has an operational sign, but

neither the representation, nor, necessarily, the position of the operational

sign is specified by the character 'S'. In this (default) case, the implementor

will define the position and representation of the operational sign. General

rules 5 through 7 do not apply to such signed numeric data items.

VI-42

Nucleus SIGN

(5) If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the

leading (or, respectively, trailing) digit position of the elementary numeric

data item.

b. The letter 'S' in a PICTURE character-string is not counted in

determining the size of the item (in terms of standard data format characters).

c. The implementor defines what constitutes valid sign(s) for data

items.

(6) If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or,

respectively, trailing) character position of the elementary numeric data item;

this character position is not a digit position.

b. The letter 'S' in a PICTURE character-string is counted in

determining the size of the item (in terms of standard data format characters).

c. The operational signs for positive and negative

data format characters '+' and '-', respectively.

are the standard

(7) Every numeric data description entry whose PICTURE contains the

character 'S' is a signed numeric data description entry. If a SIGN clause

applies to such an entry and conversion is necessary for purposes of computation

or comparisons, conversion takes place automatically.

VI-43

Nucleus SYNCHRONIZED

5.13 THE SYNCHRONIZED CLAUSE

5.13.1 Function

The SYNCHRONIZED clause specifies the alignment of an elementary item on the

natural boundaries of the computer memory (see page IV-17, Item Alignment for

Increased Object-Code Efficiency).

5.13.2 General Format

(SYNCHRONIZED) [~LEFT "1

1 SYNC j [rIGHTJ

5.13.3 Syntax Rules

(1) This clause may only appear with an elementary item.

(2) SYNC is an abbreviation for SYNCHRONIZED.

5.13.4 General Rules

(1) This clause specifies that the subject data item is to be aligned in the

computer such that no other data item occupies any of the character positions

between the leftmost and rightmost natural boundaries delimiting this data item.

If the number of character positions required to store this data item is less

than the number of character positions between those natural boundaries, the

unused character positions (or portions thereof) must not be used for any other

data item. Such unused character positions, however, are included in:

a. The size of any group item(s) to which the elementary item belongs;

and

b. The number of character positions allocated when any such group item

is the object of a REDEFINES clause. The unused character positions are not

included in the character positions redefined when the elementary item is the

object of a REDEFINES clause.

(2) SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the

elementary item is to be positioned between natural boundaries in such a way as

to effect efficient utilization of the elementary data item. The specific

positioning is, however, determined by the implementor.

(3) SYNCHRONIZED LEFT specifies that the elementary item is to be positioned

such that it will begin at the left character position of the natural boundary

in which the elementary item is placed.

(4) SYNCHRONIZED RIGHT specifies that the elementary item is to be

positioned such that it will terminate on the right character position of the

natural boundary in which the elementary item is placed.

(5) Whenever a SYNCHRONIZED item is referenced in the source program, the

original size of the item, as shown in the PICTURE clause, the USAGE clause, and

the SIGN clause, is used in determining any action that depends on size, such as

justification, truncation, or overflow.

VI-44

Nucleus SYNCHRONIZED

(6) If the data description of an item contains an operational sign and any

form of the SYNCHRONIZED clause, the sign of the item appears in the sign

position explicitly or implicitly specified by the SIGN clause.

(7) When the SYNCHRONIZED clause is specified in a data description entry of

a data item that also contains an OCCURS clause, or in a data description entry

of a data item subordinate to a data description entry that contains an OCCURS

clause, then:

a. Each occurrence of the data item is SYNCHRONIZED.

b. Any implicit FILLER generated for other data items within that same

table are generated for each occurrence of those data items (see general rule

8b).

(8) This clause is hardware dependent and in addition to rules 1 through 7,

the implementor must specify how elementary items associated with this clause

are handled regarding:

a. The format on the external media of records or groups containing

elementary items whose data description contains the SYNCHRONIZED clause.

b. Any necessary generation of implicit FILLER, if the elementary item

immediately preceding an item containing the SYNCHRONIZED clause does not

terminate at an appropriate natural boundary. Such automatically generated

FILLER positions are included in:

1) The size of any group item to which the FILLER item belongs; and

2) The number of character positions allocated when the group item

of which the FILLER item is a part appears as the object of a REDEFINES clause.

(9) An implementor may, at his option, specify automatic alignment for any

internal data formats except, within a record, data items whose usage is

DISPLAY. However, the record itself may be synchronized.

(10) Any rules for synchronization of the records of a data file, as this

affects the synchronization of elementary items, will be specified by the

implementor.

VI-45

Nucleus USAGE

5.14 THE USAGE CLAUSE

5.14.1 Function

The USAGE clause specifies the format of a data item in the computer storage.

5.14.2 General Format ! BINARY

COMPUTATIONAL

COMP

INDEX

PACKED-DECIMAL

5.14.3 Syntax Rules

(1) The USAGE clause may be written in any data

level-number other than 66 or 88T1

description entry with a

(2) If the USAGE clause is written in the data description entry for a group

item, it may also be written in the data description entry for any subordinate

elementary item or group item, but the same usage must be specified in both

entries .

(3) An elementary data item whose declaration contains, or an elementary

data item subordinate to a group item whose declaration contains, a USAGE clause

specifying BINARY, COMPUTATIONAL, or PACKED-DECIMAL must be declared with a

PICTURE character-string that describes a numeric item, i.e., a PICTURE

character-string that contains only the symbols 'P1 , 'S', 'V', and '9'. (See

page VI-29, The PICTURE Clause.)

(4) COMP is an abbreviation for COMPUTATIONAL.

(5) An index data item can be referenced explicitly only in a SEARCH or SET

statement, a relation condition, the USING phrase of a Procedure Division

header, or the USING phrase of a CALL statement.

(6) The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SYNCHRONIZED, and VALUE clauses

must not be specified for data items whose usage is INDEX.

(7) An elementary data item described with a USAGE IS INDEX clause must not

be a conditional variable.

5.14.4 General Rules

(1) If

elementary

the USAGE clause

item in the group

is written at a group level, it applies to

(2) The USAGE clause specifies the manner in which a data item

represented in the storage of a computer. It does not affect the use of the

data item, although the specifications for some statements in the Procedure

Division may restrict the USAGE clause of the operands referred to. The USAGE

clause may affect the radix or type of character representation of the item.

VI-46

Nucleus USAGE

(3) The USAGE IS BINARY clause specifies that a radix of 2 is used to

represent a numeric item in the storage of the computer. Each implementor

specifies the precise effect of the USAGE IS BINARY clause upon the alignment

and representation of the data item in the storage of the computer, including

the representation of any algebraic sign. Sufficient computer storage must be

allocated by the implementor to contain the maximum range of values implied by

the associated decimal PICTURE character-string.

(4) The USAGE IS COMPUTATIONAL clause specifies that a radix and format

specified by the implementor is used to represent a numeric item in the storage

of the computer. Each implementor specifies the precise effect of the USAGE IS
COMPUTATIONAL clause upon the alignment and representation of the data item in

the storage of the computer, including the representation of any algebraic sign,

and upon the range of values that the data item can hold.

(5) The USAGE IS DISPLAY clause (whether specified explicitly or implicitly)

specifies that a standard data format is used to represent a data item in the

storage of the computer, and that the data item is aligned on a character

boundary.

(6) If the USAGE clause is not specified for an elementary item, or for any

group to which the item belongs, the usage is implicitly DISPLAY.

(7) The USAGE IS INDEX clause specifies that a data item is an index data

item and contains a value which must correspond to an occurrence number of a

table element. Each implementor specifies the precise effect of the USAGE IS

INDEX clause upon the alignment and representation of the data item in the

storage of the computer, including the actual value assigned for any given

occurrence number.

(8) When a MOVE statement or an input-output statement that references a

group item that contains an index data item is executed, no conversion of the

index data item takes place.

(9) The USAGE IS PACKED-DECIMAL clause specifies that a radix of 10 is used

to represent a numeric item in the storage of the computer. Furthermore, this

clause specifies that each digit position must occupy the minimum possible

configuration in computer storage. Each implementor specifies the precise

effect of the USAGE IS PACKED-DECIMAL clause upon the alignment and

representation of the data item in the storage of the computer, including the

representation of any algebraic sign. Sufficient computer storage must be

allocated by the implementor to contain the maximum range of values implied by

the associated decimal PICTURE character-string.

VI-47

Nucleus - VALUE

5.15 THE VALUE CLAUSE

5.15.1 Function

The VALUE clause defines the initial value of Communication Section and

Working-Storage Section data items, | and the values associated with]

condition-names.

5.15.2 General Format

Format 1:

VALUE IS literal-1

Format 2:

{VALUE IS) literal-2
(THROUGH)

literal-3 j...
VALUES AREj)THRU 1 l ;

5.15.3 Syntax Rules

(1) The words THROUGH and THRU are equivalent.

(2) A signed numeric literal must have associated with it a signed numeric

PICTURE character-string.

(3) All numeric literals in a VALUE clause of an item must have a value

which is within the range of values indicated by the PICTURE clause, and must

not have a value which would require truncation of nonzero digits. Nonnumeric

literals in a VALUE clause of an item must not exceed the size indicated by the

PICTURE clause.

(4) The VALUE clause must not be specified in any entry which is part of the

description or redefinition of an external data record. | The VALUE clause may be

specified for condition-name entries associated with such data description

entries .

5.15.4 General Rules

(1) The VALUE clause must not conflict with other clauses in the data

description of the item or in the data description within the hierarchy of the

item. The following rules apply:

a. If the category of the item is numeric, all literals in the VALUE

clause must be numeric. If the literal defines the value of a working storage

item, the literal is aligned in the data item according to the standard

alignment rules (see page IV-16, Standard Alignment Rules).

b. If the category of the item is alphabetic, alphanumeric,

alphanumeric edited, or numeric edited, all literals in the VALUE clause must be

nonnumeric literals. The literal is aligned in the data item as if the data

item had been described as alphanumeric (see page IV-16, Standard Alignment

Rules). Editing characters in the PICTURE clause are included in determining

VI-48

Nucleus - VALUE

the size of the data item but have no effect on initialization of

(see page VI-29, The PICTURE Clause). Therefore, the VALUE for an

must be specified in an edited form.

the data item

edited item

c. Initialization is not affected by any BLANK WHEN ZERO or

clause that may be specified.

JUSTIFIED

5.15.5 Condition-Name Rules

(1) In a condition-name entry, the VALUE clause is required. The VALUE

clause and the condition-name itself are the only two clauses permitted in the

entry. The characteristics of a condition-name are implicitly those of its

conditional variable.

(2) Format 2 can be used only in connection with condition-names (see page

IV-7, Condition-Name). Wherever the THRU phrase is used, literal-2 must be less

than literal-3.

5.15.6 Data Description Entries Other Than Condition-Names

(1) Rules governing che use of the VALUE clause differ with the respective

sections of the Data Division:

a.

the File

therefore ,

In level 1, the VALUE clause cannot be use

Section, the VALUE clause may be used only

the initial value of the data items in the

d in the File Section. In

in condition-name enrries;

File Section is undefined.

_b. In level 1, the VALUE clause cannot be used in the Linkage Section.

In the Linkage Section, the VALUE clause may be used only in condition-name

entries.

clause

c. 1 In the Working-Storage Section and Communication Section, the VALUE

must be used in condition-name entries. VALUE clauses in the

Working-Storage and Communication Sections of a program take effect only when

the program is placed into its initial state. If the VALUE clause is used in

the description of the data item, the data item is initialized to the defined

value. If the VALUE clause is not associated with a data item, the initial

value of that data item is undefined.

(2) The VALUE clause must not be stated in a data description entry that

contains a REDEFINES clause, or in an entry that is subordinate to an entry

containing a REDEFINES clause, j This rule does not apply to condition-name

entries.

(3) If the VALUE clause is used in an entry at the group level, the literal

must be a figurative constant or a nonnumeric literal, and the group area is

initialized without consideration for the individual elementary or group items

contained within this group. The VALUE clause cannot be stated at the

subordinate levels within this group.

(4) The

subordinate

(other than

VALUE clause must not be specified for a group

to it with descriptions including JUSTIFIED,

USAGE IS DISPLAY).

item containing items

SYNCHRONIZED or USAGE

VI-49

Nucleus - VALUE

(5) If a VALUE clause is specified in a data description entry of a data

item which is associated with a variable occurrence data item, the

initialization of the data item behaves as if the value of the data item

referenced by the DEPENDING ON phrase in the OCCURS clause specified for the

variable occurrence data item is set to the maximum number of occurrences as

specified by that OCCURS clause. A data item is associated with a variable

occurrence data item in any of the following cases:

a. It is a group data item which contains a variable occurrence data

item.

b. It is a variable occurrence data item.

c. It is a data item

item.

If a VALUE clause is

DEPENDING ON phrase, that

after the variable occurrence

OCCURS Clause.)

that is subordinate to a variable occurrence data

associ ated with the data item referenced by a

value is considered to be placed in the data item

data item is initial ized . (See page VI-26, The

(6) A format 1 VALUE c

contains an OCCURS clause

causes every occurrence of

value.

lause specified in a data descr

or in a entry that is subordinate

the associated data item to be ass

iption entry

to an OCCURS c

igned the spec

that

lause

i f ied

VI-50

Nucleus - Arithmetic Expressions

6. PROCEDURE DIVISION IN THE NUCLEUS MODULE

6.1 GENERAL DESCRIPTION

The Procedure Division contains procedures to be executed by the object

program (see page IV-35). The Procedure Division is optional in a COBOL source

program.

The general formats of the Procedure Division in the Nucleus are shown below.

Format 1:

PROCEDURE DIVISION,

(section-name SECTION.

[paragraph-name.

[sentence] ...] ... } . . .

Format 2:

PROCEDURE DIVISION.

{paragraph-name.

[sentence] ... } ...

6.2 ARITHMETIC EXPRESSIONS

6.2.1 Definition of an Arithmetic Expression

An arithmetic expression can be an identifier of a numeric elementary item, a

numeric literal, the figurative constant ZERO (ZEROS, ZEROES), such identifiers,

figurative constants, and literals separated by arithmetic operators, two

arithmetic expressions separated by an arithmetic operator, or an arithmetic

expression enclosed in parentheses. Any arithmetic expression may be preceded

by a unary operator. The permissible combinations of identifiers, numeric

literals, arithmetic operators, and parentheses are given in table 1,

Combination of Symbols in Arithmetic Expressions, on page VI-53.

Those identifiers and literals appearing in an arithmetic expression must

represent either numeric elementary items or numeric literals on which

arithmetic may be performed.

VI-51

Nucleus - Arithmetic Expressions

6.2.2 Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic operators

that may be used in arithmetic expressions. They are represented by specific

characters that must be preceded by a space and followed by a space.

Binary Arithmetic Operator

Unary Arithmetic Operator

Meaning

Addition

Subtrac tion

Multiplication

Division

Exponentiation

Meaning

The effect of multiplication

by the numeric literal +1

The effect of multiplication

by the numeric literal -1

6.2.3 Formation and Evaluation Rules

(1) Parentheses may be used in arithmetic expressions to specify the order

in which elements are to be evaluated. Expressions within parentheses are

evaluated first, and, within nested parentheses, evaluation proceeds from the

least inclusive set to the most inclusive set. When parentheses are not used,

or parenthesized expressions are at the same level

following hierarchical order of execution is implied:

of inclusiveness, the

1st - Unary plus and minus

2nd - Exponentiation

3rd - Multiplication and division

4th - Addition and subtraction

(2) Parentheses are used either to eliminate ambiguities

consecutive operations of the same hierarchical level appear, or to modify the

normal hierarchical sequence of execution in expressions where it

to have some deviation from the normal precedence,

execution is not specified by parentheses, the order of execution of consecutive

operations of the same hierarchical level is from left to right

es i n 1 ogic where

ar, or to modi fy the

re it is nec essary

When the seque nee of

ution of conse cutive

ght .

VI-52

Nucleus - Arithmetic Expressions

(3) The ways in which identifiers ,

combined in an arithmet :ic expression

a . The letter 1P1 1 indicates a

b. The character indicates

literals, operators, and parentheses may

are summarized in table 1, where:

permissible pair of symbols.

an invalid pair.

FIRST SYMBOL

SECOND SYMBOL

Identifier or

Literal

+ - * / ** Unary + or - ()

Identifier or Literal - P - - P

+ - * / ** P - P P -

Unary + or - P - - P -

(P - P P -

) - P - P

Table 1. Combination of Symbols in Arithmetic Expressions

(4) An arithmetic expression may only begin with the symbol '(', ' + ',

an identifier, or a literal and may only end with a ')', an identifier, or a

literal. There muse be a one-to-one correspondence between left and right

parentheses of an arithmetic expression such that each left parenthesis is to

the left of its corresponding right parenthesis. If the first operator in an

arithmetic expression is a unary operator, it must be immediately preceded by a

left parenthesis if that arithmetic expression immediately follows an identifier

or another arithmetic expression.

(5) The following rules apply to evaluation of exponentiation in an

arithmetic expression:

a. If the value of an expression to be raised to a power is zero, the

exponent must have a value greater than zero. Otherwise, the size error

condition exists. (See page VI-67, The ON SIZE ERROR Phrase.)

b. If the evaluation yields both a positive and a negative real number,

the value returned as the result is the positive number.

c. If no real number exists as the result of the evaluation, the size

error condition exists.

(6) Arithmetic expressions allow the user to combine arithmetic operations

without the restrictions on composite of operands and/or receiving data items.

Each implementor will indicate the techniques used in handling arithmetic

expressions.

VI-53

Nucleus - Conditional Expressions

6.3 CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested to enable the

object program to select between alternate paths of control depending upon the

truth value of the condition. A conditional expression has a truth value

represented by either true or false. Conditional expressions are specified in

the 1 EVALUATEIF, PERFORM, land SEARCHl statements . There are two categories of

conditions associated with conditional expressions: simple conditions I and|

Icomplex conditions.! Each may be enclosed within any number of paired

parentheses, in which case its category is not changed.

6.3.1 Simple Conditions

The simple conditions are the relation, class, condition-name, switch-status,

and sign conditions. A simple condition has a truth value of true or false.

The inclusion in parentheses of simple conditions does not change the simple

condition truth value.

6.3.1.1 Relation Condition

be

A relation condition causes a comparison of two operands, each of which may

the data item referenced by an identifier, a literal, the value resulting

A from an arithmetic expression, or an index-name. A relation condition has a

truth value of true if the relation exists between the operands. Comparison of

two numeric operands is permitted regardless of the formats specified in their

respective USAGE clauses. However, for all other comparisons, the operands must

have the same usage. If either of the operands is a group item, the nonnumeric

comparison rules apply.

The format for a relation condition is as follows:

identifier-1

literal-1

arithmetic-expression-ll

index-name-1

IS

IS

IS

IS

IS

IS

[NOT]

[NOT]

[NOT]

[NOT]

GREATER THAN

LESS THAN

[NOT] EQUAL TO

[NOT] =

IS GREATER THAN OR EQUAL TO

IS >=

IS LESS THAN OR EQUAL TO

\IS <=

identifier-2

literal-2

|arithmetic-expression-2||

index-name-2

The first operand (identifier-1, literal-1, arithmetic-expression-1, or

index-name-1) is called the subject of the condition; the second operand

(identifier-2, literal-2, |arithmetic-expression-2,| or index-name-2) is called

the object of the condition. The relation condition must contain at least one

reference to a variable.

The relational operators specify the type of comparison to be made in a

relation condition. A space must precede and follow each reserved word

comprising the relational operator. When used, NOT and the next key word or

relation character are one relational operator that defines the comparison to be

VI-54

Nucleus Relation Condition

executed for truth value. The following relational operators are equivalent:

IS NOT GREATER THAN is equivalent to IS LESS THAN OR EQUAL TO; IS NOT LESS THAN

is equivalent to IS GREATER THAN OR EQUAL TO.

Meaning Relational Operator

Greater than or not greater than IS [NOT] GREATER THAN

IS [NOT] >

Less than or not less than IS [NOT] LESS THAN

IS [NOT] <

Equal to or i not equal to IS TnotI EOUAL TO

IS [NOT] =

Greater than or equal to IS GREATER THAN OR EQUAL TO

IS >=

Less than or equal to IS LESS THAN OR EOUAL TO

IS <=

6.3.1.1.1 Comparison of Numeric Operands

For operands whose class is numeric, a comparison is made with respect to the

algebraic value of the operands. The length of the literal[or arithmetic"

expression|operands, in terms of the number of digits represented, is not

significant. Zero is considered a unique value regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which

their usage is described. Unsigned numeric operands are considered positive for

purposes of comparison.

6.3.1.1.2 Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a

comparison is made with respect to a specified collating sequence of characters.

(See page VI-11, The OBJECT-COMPUTER Paragraph.) If one of the operands is

specified as numeric, it must be an integer data item or an integer literal and:

(1) If the nonnumeric operand is an elementary data item or a nonnumeric

literal, the numeric operand is treated as though it were moved to an elementary

alphanumeric data item of the same size as the numeric data item (in terms of

standard data format characters), and the content of this alphanumeric data item

were then compared to the nonnumeric operand. (See page VI-103, The MOVE

Statement, and page VI-31, The PICTURE Character 'P'.)

(2) If the nonnumeric operand is a group item, the numeric operand is

treated as though it were moved to a group item of the same size as the numeric

data item (in terms of standard data format characters), and the content of this

group item were then compared to the nonnumeric operand. See page VI-103, The

MOVE Statement, and page VI-31, The PICTURE Character 'P' .)

(3) A noninteger numeric operand cannot be compared to a nonnumeric operand.

VI-55

Nucleus Class Condition

The size of an operand is the total number of standard data format characters

in the operand. Numeric and nonnumeric operands may be compared only when their

usage is the same.

There are two cases to consider: operands of equal size and operands of

unequal size.

(1) Operands of equal size. If the operands are of equal size, comparison

effectively proceeds by comparing characters in corresponding character

positions starting from the high order end and continuing until either a pair of

unequal characters is encountered or the low order end of the operand is

reached, whichever comes first. The operands are determined to be equal if all

pairs of corresponding characters are equal.

The first encountered pair of unequal characters is compared to

determine their relative position in the collating sequence. The operand that

contains the character that is positioned higher in the collating sequence is

considered to be the greater operand.

(2) Operands of unequal size. If the operands are of unequal size,

comparison proceeds as though the shorter operand were extended on the right by

sufficient spaces to make the operands of equal size.

6.3.1.1.3 Comparisons Involving Index-Names and/or Index Data Items

Relation tests may be made only between:

(1) Two index-names. The result is the same as if the corresponding

occurrence numbers were compared.

(2) An index-name and a data item (other than an index data item) or

literal. The occurrence number that corresponds to the value of the index-name

is compared to the data item or literal.

(3) An index data item and an index-name or another index data item. The

actual values are compared without conversion.

6.3.1.2 Class Condition

The class condition determines whether an operand is numeric, alphabetic,

alphabetic-lower, alphabetic-upper, or contains only the characters in the set

of characters specified by the CLASS clause as defined in the SPECIAL-NAMES

paragraph of the Environment Division. The class of an operand is determined as

fo1lows:

(1) An operand is numeric if it consists entirely of the characters 0, 1, 2,

3, ... , 9, with or without an operational sign.

(2) An operand is alphabetic if it consists entirely of the uppercase

letters A, B, C, ... , Z, space, or the lowercase letters a, b, c, ... , z,

space, or any combination of the uppercase and lowercase letters and spaces.

(3) An operand is alphabetic-lower if it consists entirely of the lowercase

letters a, b, c, ... , z, and space.

VI-56

Nucleus - Class Condition

(4) An ope

letters A, B,

(5) An ope

the character

paragraph.

rand

C, •

rand

s 1

is alphabetic-upper if it consists entirely of the uppercase

. , Z, and space.

is in conformance to class-name-1, if it consists entirely of

sted in the definition of class-name-1 in the SPECIAL-NAMES

The general format of the class condition is:

identifier-1 IS [NOT]

/NUMERIC

\ALPHABETIC

<ALPHABETIC-LOWER

I ALPHABETIC-UPPER

\class-name-1

The usage of the operand being tested must be described as DISPLAY.

When used, NOT and the next key word specify one class condition that defines

the class test to be executed for truth value; e.g., NOT NUMERIC is a truth test

for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description describes

the item as alphabetic or as a group item composed of elementary items whose

data description indicates the presence of operational sign(s). If the data

description of the item being tested does not indicate the presence of an

operational sign, the item being tested is determined to be numeric only if the

content is numeric and an operational sign is not present. If the data

description of the item does indicate the presence of an operational sign, the

item being tested is determined to be numeric only if the content is numeric and

a valid operational sign is present. Valid operational signs for data items

described with the SIGN IS SEPARATE clause are the standard data format

characters + and -; the implementor defines what constitutes valid sign(s) for

data items not described with the SIGN IS SEPARATE clause.

The ALPHABETIC test cannot be used with an item whose data descript

describes the item as numeric. The result of the test is true if the content

the data item referenced by identifier-1 consists entirely of alphabe

characters.

The ALPHABETIC-LOWER test cannot be used with an item whose dat

describes the item as numeric. The result of the test is true if

the data item referenced by identifier-1 consists entirely of

alphabetic characters a through z and space.

The ALPHABETIC-UPPER test cannot be used with an item whose data descript

describes the item as numeric. The result of the test is true if the content

the data item referenced by identifier-1 consists entirely of the upperc

alphabetic characters A through Z and space.

The class-name-1 test must not be used with an item whose data descript

describes the item as numeric.

a descript

the content

the lowerc

ion

of

tic

ion

of

ase

ion

of

ase

ion

VI-57

Nucleus - Condition-Name Condition

6.3.1.3 Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to determine

whether or not its value is equal to one of the values associated with

condition-name-1. The general format for the condition-name condition is as

fo1lows:

condition-name-1

If condition-name-1 is associated with a range or ranges of values, then the

conditional variable is tested to determine whether or not its value falls in

this range, including the end values.

The rules for comparing a conditional variable with a condition-name value

are the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to

condition-name-1 equals the value of its associated conditional variable.

6.3.1.4 Switch-Status Condition

A switch-status condition determines the on or off status of an

implementor-defined switch. The implementor-name and the on or off value

associated with the condition must be named in the SPECIAL-NAMES paragraph of

the Environment Division. The general format for the switch-status condition is

as follows:

condition-name-1

The result of the test is true if the switch is set to the specified position

corresponding to condition-name-1.

6.3.1.5 Sign Condition

The sign condition determines whether or not the algebraic value of an

arithmetic expression is less than, greater than, or equal to zero. The general

format for a sign condition is as follows:

arithmetic-expression-1 IS [NOT]

POSITIVE

NEGATIVE

ZERO

When used, NOT and the next key word specify one sign condition that defines

the algebraic test to be executed for truth value; e.g., NOT ZERO is a truth

test for a nonzero (positive or negative) value. An operand is positive, if its

value is greater than zero, negative if its value is less than zero, and zero if

its value is equal to zero. Arithmetic-expression-1 must contain at least one

reference to a variable.

VI-58

Nucleus - Complex Conditions

6.3.2 Complex Conditions

A complex condition is formed by combining simple conditions and/or complex

conditions with logical connectors (logical operators 'AND' and 'OR') or by

negating these conditions with logical negation (the logical operator 'NOT').

The truth value of a complex condition, whether parenthesized or not, is that

truth value which results from the interaction of the stated logical operators

on its constituent conditions.

The logical operators and their meanings are:

Logical Operator Meaning

AND Logical conjunction; the truth value is true if

both of the conjoined conditions are true; false if

one or both of the conjoined conditions is false.

OR Logical inclusive OR; the truth value is true if one

or both of the included conditions is true; false if

both included conditions are false.

NOT Logical negation or reversal of truth value; the

truth value is true if the condition is false; false

if the condition is true.

The logical operators must be preceded by a space and followed by a space.

6.3.2.1 Negated Conditions

A condition is negated by use of the logical operator 'NOT' which reverses

the truth value of the condition to which it is applied. Thus, the truth value

of a negated condition is true if and only if the truth value of the condition

being negated is false; the truth value of a negated condition is false if and

only if the truth value of the condition being negated is true. Including a

negated condition in parentheses does not change its truth value.

The general format for a negated condition is:

NOT condition-1

6.3.2.2 Combined Conditions

A combined condition results from connecting conditions with one of the

logical operators 'AND' or 'OR'. The general format of a combined condition is:

condition-1 condition-

VI-59

Nucleus - Abbreviated Combined Relation Conditions

6.3.2.3 Precedence of Logical Operators and the Use of Parentheses

In the absence of the relevant parentheses in a complex condition, the

precedence (i.e., binding power) of the logical operators determines the

conditions to which the specified logical operators apply and implies the

equivalent parentheses. The order of precedence is 'NOT', 'AND', 'OR'. Thus,

specifying 'condition-1 OR NOT condition-2 AND condition-3' implies and is

equivalent to specifying 'condition-1 OR ((NOT condition-2) AND condition-3)'.

Where parentheses are used in a complex condition, they determine the binding

of conditions to logical operators. Parentheses can, therefore, be used to

depart from the normal precedence of logical operators as specified above.

Thus, the example complex condition above can be given a different meaning by

specifying it as '(condition-1 OR (NOT condition-2)) AND condition-3'. (See

page VI-61, Order of Evaluation of Conditions.)

Table 1 indicates the ways in which conditions and logical operators may be

combined and parenthesized. There must be a one-to-one correspondence between

left and right parentheses such that each left parenthesis is to the left of its

corresponding right parenthesis.

Given the

following

element:

In a

conditional expression:
In a left-to-right sequence of elements:

Element, when not

first, may be
immediately
preceded by only:

Element, when not

last, may be
immediately
followed by only:

May element

be first?

May element

be last?

simple-condition Yes Yes OR, NOT, AND, (OR, AND,)

OR or AND No No simple-condition,) simple-condition, NOT, (

NOT Yes No OR, AND, (simple-condition, (

(Yes No OR, NOT, AND, (simple-condition, NOT, (

) No Yes simple-condition,) OR, AND,)

Table 1: Combinations of Condit

Thus , the element pair 'OR NOT' i

permissible; the pair ' NOT (' is

permissible.

ions, Logical Operators, and

s permissible while the pair

permissible while the pair

Parentheses

'NOT OR' is

NOT NOT' is

not

not

6.3.3 Abbreviated Combined Relation Conditions

When simple or negated

connectives in a consecut

contains a subject or subj

preceding relation condi

consecutive sequence, any

by:

simple relation conditions are combined with logical

ive sequence such that a succeeding relation condition

ect and relational operator that is common with the

tion, and no parentheses are used within such a

relation condition except the first may be abbreviated

(1) The omission of the subject of the relation condition, or

VI-60

Nucleus - Order of Evaluation of Conditions

(2) The omission of the subject and relational operator of the relation

condition.

The format for an abbreviated combined relation condition is:

relation-condition
I (and)

II SR. /
[NOT] [relational-operator] object

Within a sequence of relation conditions both of the above forms of

abbreviation may be used. The effect of using such abbreviations is as if the

last preceding stated subject were inserted in place of the omitted subject, and

the last stated relational operator were inserted in place of the omitted

relational operator. The result of such implied insertion must comply with the

rules of table 1 on page VI-60. This insertion of an omitted subject and/or

relational operator terminates once a complete simple condition is encountered

within a complex condition.

The interpretation applied to the use of the word NOT in an abbreviated

combined relation condition is as follows:

(1) If the word immediately following NOT is GREATER, >, LESS, <, EQUAL, =,

then the NOT participates as part of the relational operator; otherwise,

(2) The NOT is interpreted as a logical operator and, therefore, the implied

insertion of subject or relational operator results in a negated relation

condition.

Some examples of abbreviated combined and negated combined relation

conditions and expanded equivalents fol

Abbreviated Combined

Relation Condition

a > b AND NOT < c OR d

a NOT EQUAL b OR c

NOT a = b OR c

NOT (a GREATER b OR < c)

NOT (a NOT > b AND c AND NOT d)

ow.

Expanded Equivalent

((a > b) AND (a NOT < c)) OR (a NOT < d)

(a NOT EQUAL b) OR (a NOT EQUAL c)

(NOT (a = b)) OR (a = c)

NOT ((a GREATER b) OR (a < c))

NOT ((((a NOT > b) AND (a NOT > c))

AND (NOT (a NOT > d))))

6.3.4 Order of Evaluation of Conditions

Parentheses, both explicit and implicit, denote a level of inclusiveness

within a complex condition. Two or more conditions connected by only the

logical operator 'AND' or only the logical operator 'OR' at the same level of

inclusiveness establish a hierarchical level within a complex condition. Thus,

an entire complex condition may be considered to be a nested structure of

hierarchical levels with the entire complex condition itself being the most

VI-61

Nucleus Order of Evaluation of Conditions

inclusive hierarchical level. Within this context, the evaluation of the

conditions within an entire complex condition begins at the left of the entire

complex condition and proceeds according to the following rule recursively

applied where necessary:

(1) The constituent connected conditions within a hierarchical level are

evaluated in order from left to right, and evaluation of that hierarchical level

terminates as soon as a truth value for it is determined regardless of whether

all the constituent connected conditions within that hierarchical level have

been evaluated.

Values are established for arithmetic expressions if and when the conditions

containing them are evaluated. Similarly, negated conditions are evaluated if

and when it is necessary to evaluate the complex condition that they represent.

(See page VI-52, Formation and Evaluation Rules.)

Application of the above rules is shown in figures 1 through 4 located on the

following pages. These figures are not intended to dictate implementat ion._

VI-62

Nucleus Complex Conditions

truth value
is false

truth value
is true

Figure 1: Evaluation of the hierarchical level

condition-1 AND condition-2 AND ... condition-n

VI-63

Nucleus Complex Conditions

truth value
is false

truth value
is true

Figure 2: Evaluation of the hierarchical level

condition-1 OR condition-2 OR ... condition-n

VI-64

Nucleus Complex Conditions

truth value
is false

truth value
is true

Figure 3: Evaluation of condition-1 OR condition-2 AND condition-3

VI-65

Nucleus - Complex Conditions

truth value
is false

truth value
is true

Figure 4: Evaluation of

(condition-1 OR NOT condition-2) AND condition-3 AND condition-4

VI-66

Nucleus - Options and Rules for Statements

6.4 COMMON OPTIONS AND RULES FOR STATEMENTS

Paragraph 6.4 and its subordinate paragraphs provide a description of the

common options and conditions that pertain to or appear in several different

statements .

6.4.1 The ROUNDED Phrase

If, after decimal point alignment, the number of places in the fractions of

the result of an arithmetic operation is greater than the number of places

provided for the fraction of the resultant identifier, truncation is relative to

the size provided for the resultant identifier. When rounding is requested, the

absolute value of the resultant identifier is increased by one in the low-order

position whenever the most significant digit of the excess is greater than'or

equal to five.

When the low-order integer positions in a resultant identifier are

represented by the character P in the PICTURE for that resultant identifier,

rounding or truncation occurs relative to the rightmost integer position for

which storage is allocated.

6.4.2 The ON SIZE ERROR Phrase

The size error condition occurs under the following circumstances:

(1) Violation of the rules for evaluation of exponentiation always

terminates the arithmetic operation and always causes a size error condition.

(See page VI-52, Formation and Evaluation Rules.) __

(2) Division by zero always terminates the arithmetic operation and always

causes a size error condition.

(3) If, after radix point alignment, the absolute value of a result exceeds

the largest value that can be contained in the associated resultant identifier,

a size error condition exists. In the case where the USAGE IS BINARY clause is

specified for the resultant identifier, the largest value that can be contained

in the resultant identifier is the maximum value implied by the associated

decimal PICTURE character-string. If the ROUNDED phrase is specified, rounding

takes place before checking for size error.

If the ON SIZE ERROR phrase is specified and a size error condition exists

after the execution of the arithmetic operations specified by an arithmetic

statement, the values of the affected resultant identifiers remain unchanged

from the values they had before execution of the arithmetic statement. The

values of resultant identifiers for which no size error condition exists are the

same as they would have been if the size error condition had not resulted for

any of the resultant identifiers. After completion of the arithmetic

operations, control is transferred to the imperative-statement specified in the

ON SIZE ERROR phrase and execution continues according to the rules for each

statement specified in that imperative-statement. If a procedure branching or

conditional statement which causes explicit transfer of control is executed,

control is transferred in accordance with the rules for that statement;

otherwise, upon completion of the execution of the imperative-statement

specified in the ON SIZE ERROR phrase, control is transferred to the end of the

arithmetic statement and the NOT ON SIZE ERROR phrase, if specified, is ignored.

VI-67

Nucleus - Options and Rules for Statements

If the ON SIZE ERROR phrase is not specified and a size error condition

exists after the execution of the arithmetic operations specified by an

arithmetic statement, the values of the affected resultant identifiers are

undefined. The values of resultant identifiers for which no size error

condition exists are the same as they would have been if the size error

condition had not resulted for any of the resultant identifiers. After

completion of the arithmetic operations, control is transferred to the end of

the arithmetic statement and the NOT ON SIZE ERROR phrase, if specified, is
ignored.

If the size error condition does not exist after the execution of the

arithmetic operations specified by an arithmetic statement, the ON SIZE ERROR

phrase, if specified, is ignored and control is transferred to the end of the

arithmetic statement or to the imperative-statement specified in the NOT ON SIZE

ERROR phrase if it is specified. In the latter case, execution continues

according to the rules for each statement specified in that

imperative-statement. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of the imperative-statement specified in the NOT ON SIZE ERROR phrase,

control is transferred to the end of the arithmetic statement.

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT

statement with the CORRESPONDING phrase, if any of the individual operations

produces a size error condition, imperative-statement-1 in the ON SIZE ERROR

phrase is not executed until all of the individual additions or subtractions are

completed.

6.4.3 The CORRESPONDING Phrase

For the purpose of this discussion, Dl and D2 must each be identifiers that

refer to group items. A pair of data items, one from Dl and one from D2

correspond if the following conditions exist:

(1) A data item in Dl and a data item in D2 are not designated by the key

word FILLER and have the same data-name and the same qualifiers up to, but not

including, Dl and D2.

(2) At least one of the data items is an elementary data item and the

resulting move is legal according to the move rules in the case of a MOVE

statement with the CORRESPONDING phrase; and both of the data items are

elementary numeric data items in the case of the ADD statement with the

CORRESPONDING phrase or the SUBTRACT statement with the CORRESPONDING phrase.

(3) The description of Dl and D2 must not contain level-number 66, 77, or 88

or the USAGE IS INDEX clause.

(4) A data item that is subordinate to Dl or D2 and contains a REDEFINES,

RENAMES, OCCURS, or USAGE IS INDEX clause is ignored, as well as those data

items subordinate to the data item that contains the REDEFINES, OCCURS, or USAGE

IS INDEX clause. Neither Dl nor D2 may be referenced modified.

(5) The name of each data item which satisfies the above conditions must be

unique after application of the implied qualifiers.

VI-68

Nucleus - Options and Rules for Statements

6.4.4 The Arithmetic Statements

The arithmetic statements are the ADD, |COMPUTE,

SUBTRACT statements. They have several common features .

DIVIDE, MULTIPLY, and

(1) The data descriptions of the operands need not be the same; any

necessary conversion and decimal point alignment is supplied throughout the

calculation.

(2) The maximum size of each operand is 18 decimal digits. The composite of

operands, which is a hypothetical data item resulting from the superimposition

of specified operands in a statement aligned on their decimal points (see page

VI-73, The ADD Statement; page VI-80, The DIVIDE Statement; page VI-107, The

MULTIPLY Statement; and page VI-134, The SUBTRACT Statement), must not contain

more than 18 decimal digits .

6.4.5 Overlapping Operands

When a sending and a receiving item in any statement share a part or all of

their storage areas, yet are not defined by the same data description entry, the

result of the execution of such a statement is undefined. In addition, the

results are undefined for some statements in which sending and receiving items

are defined by the same data description entry. These-cases are addressed in

the general rules associated with those statements .

6.4.6 Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE,

results. Such statements

following way:

MULTIPLY, and SUBTRACT statements may have multiple

behave as though they had been written in the

(1) A statement whose execution accesses all data items that are part of the

initial evaluation of the statement, performs any necessary arithmetic or

combining of these data items and stores the result of this operation in a

temporary location. See the individual statements for the rules indicating

which items are part of the initial evaluation.

(2) A sequence of statements whose execution transfers or combines the value

in this temporary location with each single resulting data item. These

statements are considered to be written in the same left-to-right sequence that

the multiple results are specified.

VI-69

Nucleus - Options and Rules for Statements

The result of the statement

ADD a, b, c , TO c, d (c) , e

is equivalent to

ADD a, b, c GIVING temp

ADD temp TO c

ADD temp TO d (c)

ADD temp TO e

and the result of the statement

MULTIPLY a (i) BY i, a (i)

is equivalent to

MOVE a (i) TO temp

MULTIPLY temp BY i

MULTIPLY temp BY a (i)

in both cases, 'temp' is an intermediate result item provided by the

implementor.

6.4.7 Incompatible Data

Except for the class condition, when the content of a data item is referenced

in the Procedure Division and the content of that data item is not compatible

with the class specified for that data item by its PICTURE clause, then the

result of such a reference is undefined. (See page VI-56, Class Condition.)

VI-70

Nucleus ACCEPT

6.5 THE ACCEPT STATEMENT

6.5.1 Function

The ACCEPT statement causes low volume data to be made available to the

specified data item.

6.5.2 General Format

Format 1:

ACCEPT identifier-1 [FROM mnemonic-name-1]

Format 2:

ACCEPT identifier-2 FROM

(DATE

) DAY

\ DAY-OF-WEEKj

f TIME

6.5.3 Syntax Rules

(1) Mnemonic-name-1 in format 1 must also be specified in the SPECIAL-NAMES

paragraph of the Environment Division and must be associated with a hardware

device.

6.5.4 General Rules

FORMAT 1:

(1) The ACCEPT statement causes the transfer of

device. This data replaces the content of the

identifier-1. Any conversion of data required between

the data item referenced by identifier-1 is defined by

data from the hardware

data item referenced by

the hardware device and

the implementor.

(2) The implementor will define, for each hardware device,

data transfer.

the size of

(3) If a hardware device is capable of transferring data of the same size as

the receiving data item, the transferred data is stored in the receiving data

item.

(4) If a hardware device is not capable of transferring data of

size as the receiving data item, then:

the same

If the size of the receiving data item (or of the portion of the

receiving data item not yet currently occupied by transferred data)1 exceeds the

size of the transferred data, the transferred data is stored aligned to the left

in the receiving data item (or the portion of the receiving data item not yet

occupied), and additional data is requested. In level 1, only one transfer of

data is provided.

VI-71

Nucleus - ACCEPT

b. If the size of the transferred data exceeds the size of the

receiving data item|(or the portion of the receiving data item not yet occupied!

by transferred data), only the leftmost characters of the transferred data are

stored in the receiving data item (or in the portion remaining).! The remaining

characters of the transferred data which do not fit into the receiving data item

are ignored .

(5) |If the FROM option is not given, the device that the implementor

specifies as standard is used.

FORMAT 2:

(6) The ACCEPT statement causes the information requested to be transferred

to the data item specified by identifier-2 according to the rules for the MOVE

statement. (See page VI-103, The MOVE Statement.) DATE, DAY, DAY-OF-WEEK, and

TIME are conceptual data items and, therefore, are not described in the COBOL

program.

(7) DATE is composed of the data elements year of century, month of year,

and day of month. The sequence of the data element codes is from high order to

low order (left to right), year of century, month of year, and day of month.

Therefore, December 25, 1986, would be expressed as 861225. DATE, when accessed

by a COBOL program, behaves as if it had been described in a COBOL program as an

unsigned elementary numeric integer data item six digits in length.

(8) DAY is composed of the data elements year of century and day of year.

The sequence of the data element codes is from high order to low order (left to

right) year of century, day of year. Therefore, December 25, 1986, would be

expressed as 86359. DAY, when accessed by a COBOL program, behaves as if it had

been described in a COBOL program as an unsigned elementary numeric integer data

item five digits in length.

(9) TIME is composed of the data elements hours, minutes, seconds, and

hundredths of a second. TIME is based on elapsed time after midnight on a

24-hour clock basis - thus, 2:41 p. m. would be expressed as 14410000. TIME

when accessed by a COBOL program behaves as if it had been described in a COBOL

program as an unsigned elementary numeric integer data item eight digits in

length. The minimum value of TIME is 00000000; the maximum value of TIME is

23595999. If the system does not have the facility to provide fractional parts

of a second, the value zero is returned for those parts which cannot be

determined.

(10) DAY-OF-WEEK is composed of a single data element whose content

represents the day of the week. DAY-OF-WEEK, when accessed by a COBOL program,

behaves as if it had been described in a COBOL program as an unsigned elementary

numeric integer data item one digit in length. In DAY-OF-WEEK, the value 1

represents Monday, 2 represents Tuesday, ... ,7 represents Sunday.

VI-72

Nucleus - ADD

6.6 THE ADD STATEMENT

6.6.1 Function

The ADD statement causes two or more numeric operands to be summed and the

result to be stored.

6.6.2 General Format

Format 1:

ADD /ldentlfier-ll _ TQ (identifier-2 rROUNDED1} ...
(literal-1)

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

Format 2:

ADD /(dentifier-lj ... T0 /tder,tif ier-2)
(literal-1 j |literal-2 J

GIVING (identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

Format 3:

. (CORRESPONDING} n . . . r. ~ rT'
ADD <" > identifier-1 TO. identifier-2 [ROUNDED]

ICORR 1

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

6.6.3 Syntax Rules

(1) In formats 1 and 2, each identifier must refer to an elementary numeric

item, except that in format 2 each identifier following the word GIVING must

refer to either an elementary numeric item or an elementary numeric edited item.
In format 3, each identifier must refer to a group item.)

VI-73

Nucleus ADD

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits (see page

VI-69, The Arithmetic Statements).

a. In format 1 the composite of operands is determined by using all of

the operands in a given statement.

b. In format 2 the composite of operands is determined by using all of

the operands in a given statement excluding the data items that follow the word

GIVING.

c. In format 3 the composite of operands is determined separately for

each pair of corresponding data items.

(4) CORR is an abbreviation for CORRESPONDING.

6.6.4 General Rules

(1) If format 1 is used, the values of the operands preceding the word TO

are added together and the sum is stored in a temporary data item. The value in

this temporary data item is added to the value of the data item referenced by

identifier-2, storing the result into the data item referenced by identifier-2,

and repeating this process for each successive occurrence of identifier-2 in the

left-to-right order in which identifier-2 is specified.

(2) If format 2 is used, the values of the operands preceding the word

GIVING are added together, then the sum is stored as the new content of each

data item referenced by identifier-3.

(3) If format 3 is used, data items in identifier-1 are added to and stored

in corresponding data items in identifier-2. _

(4) The compiler insures that enough places are carried so as not to lose

any significant digits during execution.

(5) Additional rules and explanations relative to this statement are given

under the appropriate paragraphs. (See page IV-40, Scope of Statements; page

VI-67, The ROUNDED Phrase; page VI-67, The ON SIZE ERROR Phrase; page VI-69, The

Arithmetic Statements; page VI-69, Overlapping Operands; page VI-69, Multiple

Results in Arithmetic Statements; page VI-68, The CORRESPONDING Phrase.)

VI-74

Nucleus ALTER

6.7 THE ALTER STATEMENT

6.7.1 Function

The ALTER statement modifies a predetermined sequence of operations. The

ALTER statement is an obsolete element in Standard COBOL because it is to be

deleted from the next revision of Standard COBOL.

6.7.2 General Format

ALTER {procedure-name-1 TO [PROCEED TO] procedure-name-2}i... i

6.7.3 Syntax Rules

(1) Procedure-name-1 is the name of a paragraph that contains a single

sentence consisting of a GO TO statement without the DEPENDING phrase.

(2) Procedure-name-2 is the name of a paragraph or section in the Procedure

Division.

6.7.4 General Rules

(1) Execution of the ALTER statement modifies the GO TO statement in the

paragraph named procedure-name-1 so that subsequent executions of the modified

GO TO statement cause transfer of control to procedure-name-2. Modified GO TO

statements in independent segments may, under some circumstances, be returned to

their initial states (see page XVI-2, Independent Segments).

(2) A GO TO statement in a section whose segment-number is greater than or

equal to 50 must not be referred to by an ALTER statement in a section with a

different segment-number.

All other uses of the ALTER statement are valid and are performed even

if procedure-name-1 is in an overlayable fixed segment. (See page XVI-1,

Segmentation Module.)

VI-75

Nucleus COMPUTE

6.8 THE COMPUTE STATEMENT

6.8.1 Function

The COMPUTE statement assigns to one or more data items the value of an

arithmetic expression.

6.8.2 General Format

COMPUTE (identifier-1 [ROUNDED]} ... = arithmetic-expression-1

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-COMPUTE!

6.8.3 Syntax Rules

(1) Identifier-1 must reference either an elementary numeric item or an

elementary numeric edited item.

6.8.4 General Rules

(1) An arithmetic expression consisting of a single identifier or literal

provides a method of setting the value of the data item referenced by

identifier-1 equal to the literal or the value of the data item referenced by

the single identifier.

(2) If more than one identifier is specified for the result of the

operation, that is preceding =, the value of the arithmetic expression is

developed, and then this value is stored as the new value of each of the data

items referenced by identifier-1.

(3) The COMPUTE statement allows the user to combine arithmetic operations

without the restrictions on composite of operands and/or receiving data items

imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.

Thus, each implementor will indicate the techniques used in handling

arithmetic expressions.

(4) Additional rules and explanations relative to this statement are given

under the appropriate paragraphs. (See page IV-40, Scope of Statements; page

Vl-67 , The ROUNDED Phrase; page VI-67, The ON SIZE ERROR Phrase; page VI-69, The

Arithmetic Statements; page VI-69, Overlapping Operands; page VI-69, Multiple

Results in Arithmetic Statements.)

VI-76

Nucleus CONTINUE

6.9 THE CONTINUE STATEMENT

6.9.1 Function

The CONTINUE statement is a no operation statement. It indicates that no

executable statement is present.

6.9.2 General Format

CONTINUE

6.9.3 Syntax Rules

(1) The CONTINUE statement may be used anywhere a conditional statement or

an imperative-statement may be used.

6.9.4 General Rules

(1) The CONTINUE statement has no effect on the execution of the program.

VI-77

Nucleus - DISPLAY

6.10 THE DISPLAY STATEMENT

6.10.1 Function

The DISPLAY statement causes low volume data to be transferred to an

appropriate hardware device.

6.10.2 General Format

6.10.3 Syntax Rules

(1) Mnemonic-name-1 is associated with a hardware device in the

SPECIAL-NAMES paragraph in the Environment Division. _ _

[UP0N_mnemonic-name-1] [WITH NO ADVANCING! DISPLAY
/identifier-1

(literal-1

(2) If literal-1 is numeric, then it must be an unsigned integer.

6.10.4 General Rules

(1) The DISPLAY statement causes the content of each operand to be

transferred to the hardware device in the order listed. Any conversion of data

required between literal-1 or the data item referenced by identifier-1 and the

hardware device is defined by the implementor.

(2) The implementor will define, for each hardware device, the size of a

data transfer.

(3) If a figurative constant is specified as one of the operands, only a

single occurrence of the figurative constant is displayed.

(4) If the hardware device is capable of receiving data of the same size as

the data item being transferred, then the data item is transferred.

(5) If a hardware device is not capable of receiving data of the same size

as the data item being transferred, then one of the following applies:

a. If the size of the data item being transferred exceeds the size of

the data that the hardware device is capable of receiving in a single transfer,

the data beginning with the leftmost character is stored aligned to the left in

the receiving hardware device, [and the remaining data is then transferred^

according to general rules 4 and 5 until all the data has been transferred. | fn

level 1, only one transfer of data is provided.

b. If the size of the data item that the hardware device is capable of

receiving exceeds the size of the data being transferred, the transferred data

is stored aligned to the left in the receiving hardware device.

(6) When a DISPLAY statement contains more than one operand, the size of the

sending item is the sum of the sizes associated with the operands, and the

values of the operands are transferred in the sequence in which the operands are

encountered without modifying the positioning of the hardware device between the

successive operands.

VI-78

Nucleus DISPLAY

(7)

device

If the UPON phrase is not specified,

is used.

the implementor 1s standard display

(8) If the WITH NO ADVANCING phrase is specified, then the positioning of

the hardware device will not be reset to the next line or changed in any other

way following the display of the last operand. If the hardware device is

capable of positioning to a specific character position, it will remain

positioned at the character position immediately following the last character of

the last operand displayed. If the hardware device is not capable of

positioning to a specific character position, only the vertical position, if

applicable, is affected. This may cause overprinting if the hardware device

supports overprinting.

(9) If the WITH NO ADVANCING phrase is not specified, then after the last

operand has been transferred to the hardware device, the positioning of the

hardware device will be reset to the leftmost position of the next line of the

device.

(10) If vertical positioning is not applicable on the hardware device, the

operating system will ignore the vertical positioning specified or implied.

VI-79

Nucleus - DIVIDE

6.11 THE DIVIDE STATEMENT

6.11.1 Function

The DIVIDE statement divides one numeric data item into others and sets

values of data items equal to the quotientland remainder7~|

6.11.2 General Format

Format 1:

DIVIDE <jidentlf ier-li j^TO (identifier-2 [ROUNDED! } ...
(literal-1) ' ~

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

Format 2:

DIVIDE

GIVING {identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-

[END-DIVIDE]

identifier-l\ tmto (identifier-2

literal-1 J \literal-2)

2]

Format 3:

DIVIDE /identifier-1) By (identifier-21
\literal-l J (literal-2 j

GIVING (identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

the

VI-80

Nucleus DIVIDE

Format 4:

INTO identifier-2! GIVING identifier-3 [ROUNDED]
- (literal-2 J

REMAINDER identifier-4

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

DIVIDE
(identifier-1

I literal-1

[END-DIVIDE 1

Format 5:

DIVIDE
identifier-l)

literal-1 j
BY

(identifier-2

(literal-2
GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE1

6.11.3 Syntax Rules

(1) Each identifier must refer to an elementary numeric item, except that

any identifier associated with the GIVING lor REMAINDER] phrase must refer to

either an elementary numeric item or an elementary numeric edited item.

(2) Each literal must be a numeric literal.

(3) The- composite of operands, which is the hypothetical data item resulting

from the superimposit ion of all receiving data items (except the REMAINDER data

item) of a given statement aligned on their decimal points, must not contain

more than 18 digits.

6.11.4 General Rules

(1) When format 1 is used, literal-1 or the value of the data item

referenced by identifier-1 is stored in a temporary data item. The value in

this temporary data item is then divided into the value of the data item

referenced by identifier-2. The value of the dividend (the value of the data

item referenced by identifier-2) is replaced by this quotient; similarly, the

temporary data item is divided into each successive occurrence of identifier-2

in the left-to-right order in which identifier-2 is specified.

(2) When format 2 is used, literal-1 or the value of the data item

referenced by identifier-1 is divided into literal-2 or the value of the data

item referenced by identifier-2 and the result is stored in each data item

referenced by identifier-3.

VI-81

Nucleus - DIVIDE

(3) When format 3 is used, literal-1 or the value of the data item

referenced by identifier-1 is divided by literal-2 or the value of the data item

referenced by identifier-2 and the result is stored in each data item referenced

by identifier-3.

(4) When format 4 is used, literal-1 or the value of the data item

referenced by identifier-1 is divided into literal-2 or the value of the data

item referenced by identifier-2 and the result is stored in the data item

referenced by identifier-3. The remainder is then calculated and the result is

stored in the data item referenced by identifier-4. If identifier-4 is
subscripted, the subscript is evaluated immediately before the remainder is

stored in the data item referenced by identifier-4.

(5) When format 5 is used, literal-1 or the value of the data item

referenced by identifier-1 is divided by literal-2 or the value of the data item

referenced by identifier-2 and the division operation continues as specified for

format 4 above.

(6) Formats 4 and 5 are used when a remainder from the division operation is

desired, namely identifier-4. The remainder in COBOL is defined as the result

of subtracting the product of the quotient (identifier-3) and the divisor from

the dividend. If identifier-3 is defined as a numeric edited item, the quotient

used to calculate the remainder is an intermediate field which contains the

unedited quotient. If ROUNDED is specified, the quotient used to calculate the

remainder is an intermediate field which contains the quotient of the DIVIDE

statement, truncated rather than rounded. This intermediate field is defined as

a numeric field which contains the same number of digits, the same decimal point

location, and the same presence or absence of a sign as the quotient

(identifier-3).

(7) In formats 4 and 5, the accuracy of the REMAINDER data item

(identifier-4) is defined by the calculation described above. Appropriate

decimal alignment and truncation (not rounding) will be performed for the value

of the data item referenced by identifier-4, as needed.

(8) When the ON SIZE ERROR phrase is used in formats 4 and 5, the following

rules pertain:

a. If the size error occurs on the quotient, no remainder calculation

is meaningful. Thus, the contents of the data items referenced by both

identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs in the remainder, the content of the data

item referenced by identifier-4 remains unchanged. However, as with other

instances of multiple results of arithmetic statements, the user will have to do

his own analysis to recognize which situation has actually occurred._

(9) Additional rules and explanations relative to this statement are given

under the appropriate paragraphs. (See page IV-40, Scope of Statements; page

VI-67, The ROUNDED Phrase; page VI-67, The ON SIZE ERROR Phrase; page VI-69, The

Arithmetic Statements; page VI-69, Overlapping Operands; page VI-69, Multiple

Results in Arithmetic Statements. | See also general rules 6 through 8 for a

presentation of the ROUNDED phrase and the ON SIZE ERROR phrase as they pertain

to formats 4 and 5.)

VI-82

Nucleus ENTER

6.12 THE ENTER STATEMENT

6.12.1 Function

The ENTER statement provides a means of allowing the use of more than one

language in the same program. The ENTER statement is an obsolete element in

Standard COBOL because it is to be deleted from the next revision of Standard

COBOL.

6.12.2 General Format

ENTER language-name-1 [routine-name-1].

6.12.3 Syntax Rules

(1) Language-name-1 may refer to any programming language which the

implementor specifies may be entered through COBOL. Language-name-1 is

specified by the implementor.

(2) Routine-name-1 is a COBOL word and it may be referred to only in an

ENTER sentence.

(3) The sentence ENTER COBOL must follow the last other-language statement

in order to indicate to the compiler where a return to COBOL source language

takes place.

6.12.4 General Rules

(1) The other language statements are executed in the object program as if

they had been compiled into the object program following the ENTER statement.

(2) Implementors will specify, for their compilers, all details on

other language(s) are to be written.

how the

(3) If the

routine-name-1

be executed at

statements can

statements in the entered language cannot be written

is given to identify the portion of the other language

this point in the procedure sequence. If the other

be written in-line, routine-name-1 is not used.

in-line,

coding to

language

VI-83

Nucleus EVALUATE

6.13 THE EVALUATE STATEMENT

6.13.1 Function

The EVALUATE statement describes a multi-branch, multi-join structure. It

can cause multiple conditions to be evaluated. The subsequent action of the

object program depends on the results of these evaluations.

6.13.2 General Format

EVALUATE

{{WHEN

identifier-lj
literal-1

express ion-1'
TRUE

FALSE

ALSO

/ identifier-2'

1 literal-2

/expression-2
) TRUE

f FALSE

'ANY

condition-1
| TRUE

FALSE

[NOT]
identifier-3

literal-3

arithmetic-expression-1

[ALSO

(

(THROUGHI (identifier 4

(THRU (jllteral-4
arithmetic-expression-2

ANY

condition-2
TRUE

FALSE ! lidentifier-5
<literal-5

(arithmetic-expression-3 I

imperative-statement-1]

{THROUGH (
(THRU (

identifier-6

literal-6

arithmetic-expression-4

[WHEN OTHER imperative-statement-2]

[END-EVALUATE]

6.13.3 Syntax Rules

(1) The operands or the words TRUE and FALSE which appear before the first

WHEN phrase of the EVALUATE statement are referred to individually as selection

subjects and collectively, for all those specified, as the set of selection

subjects .

(2)
phrase

objects

the set

The operands or the words TRUE, FALSE, and ANY which appear in a WHEN

of an EVALUATE statement are referred to individually as selection

and collectively, for all those specified in a single WHEN phrase, as

of selection objects.

(3) The words THROUGH and THRU are equivalent.

(4)
The two

Two operands connected by a THROUGH phrase must be of the same

operands thus connected constitute a single selection object.

class .

VI-84

Nucleus EVALUATE

(5) The number of selection objects within each set of selection objects

must be equal to the number of selection subjects.

(6) Each selection object within a set of selection objects must correspond

to the selection subject having the same ordinal position within the set of

selection subjects according to the following rules:

a. Identifiers, literals, or arithmetic expressions appearing within a

selection object must be valid operands for comparison to the corresponding

operand in the set of selection subjects. (See page VI-54, Relation Condition.)

b. Condition-1, condition-2, or the words TRUE or FALSE appearing as a

selection object must correspond to a conditional expression or the words TRUE

or FALSE in the set of selection subjects.

c. The word ANY may correspond to a selection subject of any type.

6.13.4 General Rules

(1) The execution of the EVALUATE statement operates as if each selection

subject and selection object were evaluated and assigned a numeric or nonnumeric

value, a range of numeric or nonnumeric values, or a truth value. These values

are determined as follows:

a. Any selection subject specified by i dentifier-1, identifi er-2. and

any select ion object specified by identifier -3, identifier-5 , without either the

NOT or the THROUGH phrases, are as signed the val ue and class of the data i tem

referenced by the identifier.

b. Any selection subject specified by literal-1, literal-2, and any

selection object specified by 1 iteral-3, li te ral-5, without either the NOT or

the THROUGH phrases, are assigned the value and class of the specified liter al.

If literal-3, literal-5, is the figurative constant ZERO, it is assigned the

class of the corresponding selection subject.

c. Any selection subject in which expression-1, expression-2, is

specified as an arithmetic expression and any selection object, without either

the NOT or the THROUGH phrases, in which arithmetic-expression-1,

arithmetic-expression-3, is specified are assigned a numeric value according to

the rules for evaluating an arithmetic expression. (See page VI-51, Arithmetic

Expressions.)

d. Any selection subject in which expression-1, expression-2, is

specified as a conditional expression and any selection object in which

condition-1, condition-2, is specified are assigned a truth value according to

the rules for evaluating conditional expressions. (See page VI-54, Conditional

Expressions.)

e. Any selection subject or any selection object specified by the words

TRUE or FALSE is assigned a truth value. The truth value 'true' is assigned to

those items specified with the word TRUE, and the truth value 'false' is

assigned to those items specified with the word FALSE.

f. Any selection object specified

evaluated.

by the word ANY is not further

VI-85

Nucleus - EVALUATE

g. If the THROUGH phrase is specified for a selection object, without

the NOT phrase, the range of values includes all permissible values of the

selection subject that are greater than or equal to the first operand and less

than or equal to the second operand according to the rules for comparison. (See

page VI-54, Relation Condition.)

h.

assigned to

equal to the

assigned to

If the NOT phrase is speci

that item are all permi

value, or not included in

the item had the NOT phras

(2) The execution of the EVALUATE

assigned to the selection subjects

determine if any WHEN phrase satisfies

comparison proceeds as follows:

a. Each selection object with

first WHEN phrase is compared to the

position within the set of selection s

must be satisfied if the comparison is

fied for a selection object, the values

ssible values of the selection subject not

the range of values, that would have been

e not been specified.

statement then proceeds as if the values

and selection objects were compared to

the set of selection subjects. This

in the set of selection objects for the

selection subject having the same ordinal

ubjects. One of the following conditions

to be satisfied:

1
values, or a

if the value,

equal to the

comparison.

) If the items being compared are assigned

range of numeric or nonnumeric values, the

or one of the range of values, assigned to

value assigned to the selection subject acc

(See page VI-54, Relation Condition.)

numeric or

comparison is

the selection

ording to the

nonnumeric

satisfied

object is

rules for

comparison

2) If the items being compared are

is satisfied if the items are assigned

assigned truth values,

the identical truth value.

the

3) If the selection object being compared is specified by the word

ANY, the comparison is always satisfied regardless of the value of the selection

subject.

b. If the above comparison is satisfied for every selection object

within the set of selection objects being compared, the WHEN phrase containing

that set of selection objects is selected as the one satisfying the set of

selection subjects.

c. If the above comparison is not satisfied for one or

object within the set of selection objects being compared, that

objects does not satisfy the set of selection subjects.

d. This procedure is repeated for subsequent sets of selection objects,

in the order of their appearance in the source program, until either a WHEN

phrase satisfying the set of selection subjects is selected or until all sets of

selection objects are exhausted.

more selection

set of selection

(3) After the comparison operation is completed, execution of

statement proceeds as follows:

the EVALUATE

a. If a WHEN phrase is selected, execution continues with the first

imperative-statement-1 following the selected WHEN phrase.

VI-86

Nucleus EVALUATE

b. If no WHEN phrase is selected and a WHEN OTHER phrase is specified,

execution continues with imperative-statement-2.

c .

execution

or the end

WHEN OTHER

The scope of execution of the EVALUATE statement is terminated when

reaches the end of imperative-statement-1 of the selected WHEN phrase

of imperative-statement-2, Or when no WHEN phrase is selected and no

phrase is specified. (See page IV-40, Scope of Statements.)

VI-87

Nucleus EXIT

6.14 THE EXIT STATEMENT

6.14.1 Function

The EXIT statement provides a common end point for a series of procedures.

6.14.2 General Format

EXIT

6.14.3 Syntax Rules

(1) The EXIT statement must appear only in a sentence by itself and comprise

the only sentence in the paragraph.

6.14.4 General Rules

(1) An EXIT statement serves only to enable the user to assign a

procedure-name to a given point in a program. Such an EXIT statement has no

other effect on the compilation or execution of the program.

VI-88

Nucleus GO TO

6.15 THE GO TO STATEMENT

6.15.1 Function

The GO TO statement causes control to be transferred from one part of the

Procedure Division to another. The optionality of procedure-name-1 in format 1

of the GO TO statement is an obsolete element in Standard COBOL because it is to

be deleted from the next revision of Standard COBOL.

6.15.2 General Format

Format 1:

GO TO [T] procedure-name-1 Q]

Format 2:

GO TO (procedure-name-1} ... DEPENDING ON identifier-1

6.15.3 Syntax Rules

(1) Identifier-1 must reference a numeric elementary data item which is an

integer.

(2) When a paragraph is referenced by an ALTER statement, that paragraph can

consist only of a paragraph header followed by a format 1 GO TO statement.

(3) A format 1 GO TO statement, without procedure-name-1, can only appear in

a single statement paragraph.

(4) If a GO TO statement represented by format 1 appears in a consecutive

sequence of imperative statements within a sentence, it must appear as the last

statement in that sequence.

6.15.4 General Rules

(1) When a GO TO statement represented by format 1 is executed, control is

transferred to procedure-name-1.

(2) If procedure-name-1 is not specified in format 1, an ALTER statement,

referring to this GO TO statement, must be executed prior to the execution of

this GO TO statement . __

(3) When a GO TO statement represented by format 2 is executed, control is

transferred to procedure-name-1, etc., depending on the value of identifier-1

being 1, 2, ... , n. If the value of identifier-1 is anything other than the

positive or unsigned integers 1, 2, ... , n, then no transfer occurs and control

passes to the next statement in the normal sequence for execution.

VI-89

Nucleus - IF

6.16 THE IF STATEMENT

6.16.1 Function

The IF statement causes a condition (see page VI-54, Conditional Expressions)

to be evaluated. The subsequent action of the object program depends on whether

the value of the condition is true or false.

6.16.2 General Format

{ELSE {statement-2} ... [END-IF

ELSE NEXT SENTENCE

END-IF

IF condition-1 THEN
({statement-1} • • •)

\NEXT SENTENCE /

6.16.3 Syntax Rules

(1) Statement-1 and statement-2 represent either

a conditional statement optionally preceded by

an imperative statement

an imperative statement

or

further description of the rules governing statement-1 and statement-2 is

elsewhere. (See page IV-40, Scope of Statements.)

given

(2) The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes

the terminal period of the sentence.

(3) If the END-IF phrase is specified, the NEXT SENTENCE phrase must not be

specified.

6.16.4 General Rules

(1) The scope of the IF statement may be terminated by any of the following:

a. An END-IF phrase at the same level of nesting.

b. A separator period.

c. If nested, by an ELSE phrase associated with an IF statement at a

higher level of nesting._

(See page IV-40, Scope of Statements.)

(2) When an IF statement is executed, the following transfers of control

occur:

a. If the condition is true and statement-1 is specified, control is

transferred to the first statement of statement-1 and execution continues

according to the rules for each statement specified in statement-1. If a

procedure branching lor conditional statement is executed which causes an

explicit transfer of control, control is explicitly transferred in accordance

with the rules of that statement. Upon completion of the execution of

statement-1, the ELSE phrase, if specified, is ignored and control passes to the

end of the IF statement.

VI-90

Nucleus IF

b. If the condition is true and the NEXT SENTENCE phrase is specified

instead of statement-1, the ELSE phrase, if specified, is ignored and control

passes to the next executable sentence.

c. If the condition is false and statement-2 is specified, statement-1

or its surrogate NEXT SENTENCE is ignored, control is transferred to the first

statement of statement-2, and execution continues according to the rules for

each statement specified in statement-2. If a procedure branching |or[

[conditional statement] is executed which causes an explicit transfer of control,

control is explicitly transferred in accordance with the rules of that

statement. Upon completion of the execution of statement-2, control passes to

the end of the IF statement.

d.

statement-1

If the condition is false and the ELSE phrase is not specified,

is ignored and control passes to the end of the IF statement.

e. If the condition is false and the ELSE NEXT SENTENCE phrase is

specified, statement-1 is ignored and control passes to the next executable

sentence.

(3) Statement-1 and/or statement-2 may contain an IF statement. In this

case, the IF statement is said to be nested. More detailed rules on nesting are

given in the appropriate paragraph. (See page IV-40, Scope of Statements.)

IF statements within IF statements may be considered as paired IF, ELSE,

and END-IF combinations, proceeding from left to right. Thus, any ELSE or

END-IF encountered is considered to apply to the immediately preceding IF that

has not been already paired with an ELSE or END-IF.

VI-91

Nucleus - INITIALIZE

6.17 THE INITIALIZE STATEMENT

6.17.1 Function

The INITIALIZE statement provides the ability to set selected types of data

fields to predetermined values, e.g., numeric data to zeros or alphanumeric data

to spaces.

6.17.2 General Format

INITIALIZE {identifier-1} ...

I
ALPHABETIC

ALPHANUMERIC

NUMERIC

ALPHANUMERIC-EDITED

NUMERIC-EDITED

REPLACING

6.17.3 Syntax Rules

(1) Literal-1 and the data item referenced by identifier-2 represent the

sending area; the data item referenced by identifier-1 represents the receiving

area.

(2) Each category stated in the REPLACING phrase must be a permissible

category as a receiving operand in a MOVE statement where the corresponding data

item referenced by identifier-2 or literal-1 is used as the sending operand.

(See page VI-103, The MOVE Statement.)

(3) The same category cannot be repeated in a REPLACING phrase.

(4) The description of the data item referenced by identifier-1 or any items

subordinate to identifier-1 may not contain the DEPENDING phrase of the OCCURS

clause.

(5) An index data item may not appear as an operand of an INITIALIZE

statement.

(6) The data description entry for the data item referenced by identifier-1

must not contain a RENAMES clause.

6.17.4 General Rules

(1) The key word following the word REPLACING corresponds to a category of

data as defined elsewhere in this document. (See page IV-15, Concept of Classes

of Data.)

(2) Whether identifier-1 references an elementary item or a group item, all

operations are performed as if a series of MOVE statements had been written,

each of which has an elementary item as its receiving field, subject to the

following rules :____

VI-92

Nucleus INITIALIZE

If the REPLACING phrase is specified:

a. If identifier-1 references a group item, any elementary item within

the data item referenced by identifier-1 is initialized only if it belongs to

the category specified in the REPLACING phrase.

b. If identifier-1 references an elementary item, that item is

initialized

phrase.

only if it belongs to the category specified in the REPLACING

This initialization takes place as fo1 lows: The data item referenced by

identifier-2 or literal-1 acts as the sending operand in an implicit MOVE

statement to the identified item.

All such elementary receiving fields, including all occurrences of table

items within the group, are affected; the only exceptions are those fields

specified in general rules 3 and 4.

(3) Index data items and elementary FILLER data items are not affected by

the execution of an INITIALIZE statement.

(4) Any item that is subordinate to a receiving area identifier and which

contains the REDEFINES clause or any item that is subordinate to such an item is

excluded from this operation. However, a receiving area identifier may itself

have a REDEFINES clause or be subordinate to a data item with a REDEFINES

clause.

(5) When the statement is written without the REPLACING phrase, data items

of the categories alphabetic, alphanumeric, and alphanumeric edited are set to

spaces; data items of the categories numeric and numeric edited are set to

zeros. In this case, the operation is as if each affected data item is the

receiving area in an elementary MOVE statement with the indicated source literal

(i.e., spaces or zeros).

(6) In all cases, the content of the data item referenced by identifier-1 is

set to the indicated value in the order (left to right) of the appearance of

identifier-1 in the INITIALIZE statement. Within this sequence, where

identifier-1 references a group item, affected elementary items are initialized

in the sequence of their definition within the group.

(7) If identifier-1 occupies the same storage area as identifier-2, the

result of the execution of this statement is undefined, even if they are defined

by the same data description entry. (See page VI-69, Overlapping Operands.)

VI-93

Nucleus INSPECT

6.18 THE INSPECT STATEMENT

6.18.1 Function

The INSPECT statement provides the ability to tally or replace occurrences of

single characters or groups of characters)in a data item.

6.18.2 General Format

Format 1:

INSPECT identifier-1 TALLYING

CHARACTERS
/BEFORE) INITIAL (identifier-4
1 AFTER f iNiiiAL {nteral-2 }]

\identifier-2 FOR \ , , (,.A
- 1 j ALL] (Jidentifier-3i

({LEADING^ j {literal-1
7?™} INITIAL i identifier-4
{AFTER j {literal-2 j Q EB

Format 2:

INSPECT identifier-1 REPLACING

(identifier-5|
CHARACTERS BY

'IItSfitmoI j (identif
Cl ALL

LEADING

(is-) {>llteral

(literal-3

-ir’3}

} [{™] INITIAL

BY

AFTER !

(identifier-5)

(literal-3 J

identifier-4 I

literal-2 I

/BEFORE(

(AFTER !
INITIAL

(identifier-4

|literal-2 J nzzi

Format 3:

INSPECT identifier-1 TALLYING

(identifier-2 FOR

REPLACING

CHARACTERS BY

iCHARACTERS

) (ALL
{(LEADING

(identifier-51

/BEFORE) n (identifier-4|
1 AFTER j iNiiiAL (Hteral-2 j

identifier-3(
literal-1 (

(BEFORE) (identifier-4

ISm | ™mAL fliteral-2 ezd| Eaj
U tun'im]

(literal-3
(BEFORE] INITIAL (identifier-4)
I AFTER ! iNiiiAL (literal-2 |

)LEADING(j/identifier-3

I FIRST j \ lateral-1
| JY

(identifier-5|
(literal-3 (

(BEFORE]
(AFTER |

INITIAL
{ii

dentifier-4
teral-2 Lu_J| LtJ

VI-94

Nucleus INSPECT

Format

, . (identifier-6) (identifier-7)
INSPECT identifier-1 CONVERTING |llteral_4 | IQ {literal.5 j

(BEFORE) (identifier-4)

jlFTirj- ™ITIAL (literal-2 }_

6.18.3 Syntax Rules

ALL FORMATS:

(1) Identifier-1 must reference either a group item or any category of

elementary item described, implicitly or explicitly, as USAGE IS DISPLAY.

(2) Identifier-3, ... , identifier-n must reference an elementary item

described, implicitly or explicitly, as USAGE IS DISPLAY.

(3) Each literal must be a nonnumeric literal and must not be a figurative

constant that begins with the word ALL. If literal-1, literal-2, or literal-4

is a figurative constant, it refers to an implicit one character data item.

(4) No more than one BEFORE phrase and one AFTER phrase can be specified for

any one ALL, LEADING, CHARACTERS, FIRST, or CONVERTING phrase.

(5) In level 1, literal-1, literal-2, and literal-3, and the data items

referenced by identifier-3, identifier-4, and identifier-5 must be one character

in length. 1 Except as specifically noted In syntax and general rules, this

restriction on length does not apply to level 2._

FORMATS 1 AND 3:

(6) Identifier-2 must reference an elementary numeric data item.

FORMATS 2 AND 3:

(7) The size of literal-3 or the data item referenced by identifier-5 must

be equal to the size of literal-1 or the data item referenced by identifier-3.

When a figurative constant is used as literal-3, the size of the figurative

constant is equal to the size of literal-1 or the size of the data item

referenced by identifier-3.

(8) When the CHARACTERS phrase is used, literal-2, literal-3, or the size of

the data item referenced by identifier-4, identifier-5 must be one character in

length.

FORMAT 4:

(9) The size of literal-5 or the data item referenced by identifier-7 must

be equal to the size of literal-4 or the data item referenced by identifier-6.

When a figurative constant is used as literal-5, the size of the figurative

constant is equal to the size of literal-4 or the size of the data item

referenced by identifier-6.

VI-95

Nucleus INSPECT

(10) The same character must not appear more than once either in literal-4 or

in the data item referenced by identifier-6.___

6.18.4 General Rules

ALL FORMATS:

(1) Inspection (which includes the comparison cycle, the establishment of

boundaries for the BEFORE or AFTER phrase, and the mechanism for tallying and/or

replacing) begins at the leftmost character position of the data item referenced

by identifier-1, regardless of its class, and proceeds from left to right to the

rightmost character position as described in general rules 5 through 7.

(2) For use in the INSPECT statement, the content of the data item

referenced by identifier-1, identifier-3, identifier-4, identifier-5,

identifier-6, or identifier-7 will be treated as follows:

a. If any of identifier-1, identifier-3, identifier-4, identifier-5,

identifier-6, or identifier-7 reference an alphabetic or alphanumeric data item,

the INSPECT statement treats the contents of each such identifier as a

character-string.

b. If any of identifier-1, identifier-3, identifier-4, identifier-5,

identifier-6, or identifier-7 reference alphanumeric edited, numeric edited, or

unsigned numeric data items, the data item is inspected as though it had been

redefined as alphanumeric (see general rule 2a) and the INSPECT statement had

been written to reference the redefined data item.

c. If any of identifier-1, identifier-3, identifier-4, identifier-5,

identifier-6, or identifier-7 reference a signed numeric data item, the data

item is inspected as though it had been moved to an unsigned numeric data item

with length equal to the length of the signed item excluding any separate sign

position, and then the rules in general rule 2b had been applied. (See page

VI-103, The MOVE Statement.) If identifier-1 is a signed numeric item, the

original value of the sign is retained upon completion of the INSPECT statement.

(3) In general rules 5 through 17, all references to literal-1, literal-2,

literal-3, literal-4, or literal-5 apply equally to the content of the data item

referenced by identifier-3, identifier-4, identifier-5, identifier-6, or

identifier-7 respectively.

(4) Subscripting associated with any identifier is evaluated only once as

the first operation in the execution of the INSPECT statement.

FORMATS 1 AND 2:

(5) During inspection of the content of the data item referenced by

identifier-1, each properly matched occurrence of literal-1 is tallied

(format 1) or replaced by literal-3 (format 2).

(6) The comparison operation to determine the occurrence of literal-1 to be

tallied or to be replaced, occurs as follows:

VI-96

Nucleus INSPECT

a. The operands of the TALLYING or REPLACING phrase are considered in

the order they are specified in the INSPECT statement from left to right. The

first literal-1 is compared to an equal number of contiguous characters,

starting with the leftmost character position in the data item referenced by

identifier-1. Literal-1 matches that portion of the content of the data item

referenced by identifier-1 if they are equal, character for character and:

1) If neither LEADING nor FIRST is specified; or

2) If the LEADING adjective applies to literal-1 and literal-1 is a

leading occurrence as defined in general rules 10 and 13; or

3) If the FIRST adjective applies to literal-1 and literal-1 is the

first occurrence as defined in general rule 13.

b. If no match occurs in the comparison of the first literal-1, the

comparison is repeated with each successive literal-1, if any, until either a

match is found or there is no next successive literal-1. When there is no next

successive literal-1, the character position in the data item referenced by

identifier-1 immediately to the right of the leftmost character position

considered in the last comparison cycle is considered as the leftmost character

position, and the comparison cycle begins again with the first literal-1.

c. Whenever a match occurs, tallying or replacing takes place as

described in general rules 10 and 13. The character position in the data item

referenced by identifier-1 immediately to the right of the rightmost character

position that participated in the match is now considered to be the leftmost

character position of the data item referenced by identifier-1, and the

comparison cycle starts again with the first literal-1.

d. The comparison operation continues until the rightmost character

position of the data item referenced by identifier-1 has participated in a match

or has been considered as the leftmost character position. When this occurs,

inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one character

operand participates in the cycle described in paragraphs 6a through 6d above as

if it had been specified by literal-1, except that no comparison to the content

of the data item referenced by identifier-1 takes place. This implied character

is considered always to match the leftmost character of the content of the data

item referenced by identifier-1 participating in the current comparison cycle.

(7) The comparison operation defined in general rule 6 is restricted by the

BEFORE and AFTER phrase as follows:

a. If neither the BEFORE nor AFTER phrase is specified, literal-1 or

the implied operand of the CHARACTERS phrase participates in the comparison

operation as described in general rule 6. Literal-1 or the implied operand of

the CHARACTERS phrase is first eligible to participate in matching at the

leftmost character position of identifier-1.

b. If the BEFORE phrase is specified, the associated literal-1 or the

implied operand of the CHARACTERS phrase participates only in those comparison

cycles which involve that portion of the content of the data item referenced by

identifier-1 from its leftmost character position up to, but not including, the

VI-97

Nucleus INSPECT

first occurrence of literal-2 within the content of the data item referenced by

identifier-1. The position of this first occurrence is determined before the

first cycle of the comparison operation described in general rule 6 is begun.

If, on any comparison cycle, literal-1 or the implied operand of the CHARACTERS

phrase is not eligible to participate, it is considered not to match the content

of the data item referenced by identifier-1. If there is no occurrence of

literal-2 within the content of the data item referenced by identifier-1, its

associated literal-1 or the implied operand of the CHARACTERS phrase

participates in the comparison operation as though the BEFORE phrase had not

been specified.

c. If the AFTER phrase is specified, the associated literal-1 or the

implied operand of the CHARACTERS phrase participate only in those comparison

cycles which involve that portion of the content of the data item referenced by

identifier-1 from the character position immediately to the right of the

rightmost character position of the first occurrence of literal-2 within the

content of the data item referenced by. identifier-1 to the rightmost character

position of the data item referenced by identifier-1. This is the character

position at which literal-1 or the implied operand of the CHARACTERS phrase is

first eligible to participate in matching. The position of this first

occurrence is determined before the first cycle of the comparison operation

described in general rule 6 is begun. If, on any comparison cycle, literal-1 or

the implied operand of the CHARACTERS phrase is not eligible to participate, it

is considered not to match the content of the data item referenced by

identifier-1. If there is no occurrence of literal-2 within the content of the

data item referenced by identifier-1, its associated literal-1 or the implied

operand of the CHARACTERS phrase is never eligible to participate in the

comparison operation.

FORMAT 1:

(8) The required words ALL and LEADING are adjectives that apply to each

succeeding literal-1 until the next adjective appears.

(9) The content of the data item referenced by identifier-2 is not

initialized by the execution of the INSPECT statement.

(10) The rules for tallying are as follows:

a. If the ALL phrase is specified, the content of the data item

referenced by identifier-2 is incremented by one for each occurrence of

literal-1 matched within the content of the data item referenced by

identifier-1.

b. If the LEADING phrase is specified, the content of the data item

referenced by identifier-2 is incremented by one for the first and each

subsequent contiguous occurrence of literal-1 matched within the content of the

data item referenced by identifier-1, provided that the leftmost such occurrence

is at the point where comparison began in the first comparison cycle in which

literal-1 was eligible to participate.

c. If the CHARACTERS phrase is specified, the content of the data item

referenced by identifier-2 is incremented by one for each character matched, in

the sense of general rule 6e, within the content of the data item referenced by

identifier-1.

VI-98

Nucleus - INSPECT

(11) If identifier-1

area as identifier-2,

undefined, even if they

page VI-69, Overlapping

identifier-3, or identifier-4 occupies the same storage

the result of the execution of this statement is

are defined by the same data description entry. (See

Operands.)

FORMAT 2:

(12) The required words ALL, LEADING, and FIRST are adjectives that apply to

each succeeding BY phrase until the next adjective appears.

(13) The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched, in

the sense of general rule 6e, in the content of the data item referenced by

identifier-1 is replaced by literal-3.

b. When the adjective ALL is specified, each occurrence of literal-1

matched in the content of the data item referenced by identifier-1 is replaced

by literal-3.

c. When the adjective LEADING is specified, the first and each

successive contiguous occurrence of literal-1 matched in the content of the data

item referenced by identifier-1 is replaced by literal-3, provided that the

leftmost occurrence is at the point where comparison began in the first

comparison cycle in which literal-1 was eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of

literal-1 matched within the content of the data item referenced by identifier-1

is replaced by literal-3. This rule applies to each successive specification of

the FIRST phrase regardless of the value of literal-1.

(14) If identifier-3, identifier-4, or identifier-5 occupies the same storage

area as identifier-1, the result of the execution of this statement is

undefined, even if they are defined by the same data description entry. (See

page VI-69, Overlapping Operands.)

FORMAT 3:

(15) A format 3 INSPECT statement is interpreted and execut

successive INSPECT statements specifying the same identifier-

with one statement being a format 1 statement with TALLYING ph

those specified in the format 3 statement, and the other

format 2 statement with REPLACING phrases identical to those

format 3 statement. The general rules given for matching and

the format 1 statement and the general rules given for matchi

apply to the format 2 statement. Subscripting associated with

the format 2 statement is evaluated only once before executi

statement.

ed as though two

1 had been written

rases identical to

statement being a

specified in the

counting apply to

ng and replacing

any identifier in

ng the format 1

FORMAT 4:

(16) A format 4 INSPECT statement is interpreted and executed as though a

format 2 INSPECT statement specifying the same identifier-1 had been written

with a series of ALL phrases, one for each character of literal-4. The effect

is as if each of these ALL phrases referenced, as literal-1, a single character

VI-99

Nucleus INSPECT

of literal-4 and referenced, as literal-3, the corresponding single character of

literal-5. Correspondence between the characters of literal-4 and the

characters of literal-5 is by ordinal position within the data item.

(17) If identifier-4, identifier-6, or identifier-7 occupies the same storage

area as identifier-1, the result of the execution of this statement is

undefined, even if they are defined by the same data description entry. (See

page VI-69, Overlapping Operands.)

6.18.5 Examples

In each of the following examples of the INSPECT statement, COUNT-n is

assumed to be zero immediately prior to execution of the statement. The results

shown for each example, except the last, are the result of executing the two

successive INSPECT statements shown above them.

Example 1:

INSPECT ITEM TALLYING

COUNT-O FOR ALL "AB", ALL "D"

COUNT-1 FOR ALL "BC"

COUNT-2 FOR LEADING "EF"

COUNT-3 FOR LEADING "B"

COUNT-4 FOR CHARACTERS;

INSPECT ITEM REPLACING

ALL "AB" BY "XY", "D" BY "X"

ALL "BC" BY "VW"

LEADING "EF" BY "TU"

LEADING "B" BY "S"

FIRST "G" BY "R"

FIRST "G" BY "P"

CHARACTERS BY "Z"

Initial Value

of ITEM COUNT-O COUNT-1 COUNT-2 COUNT-3 COUNT-4

Final Value

of ITEM

EFABDBCGABEFGG 3 1 1 0 5 TUXYXVWRXYZZPZ

BABABC 2 0 0 1 1 SXYXYZ

BBBC 0 1 0 2 0 SSVW

VI-100

Nucleus INSPECT

Example 2:

INSPECT ITEM TALLYING

COUNT-O FOR CHARACTERS

COUNT-1 FOR ALL "A";

INSPECT ITEM REPLACING

CHARACTERS BY "Z"

ALL "A" BY "X"

Initial Value

of ITEM COUNT-O COUNT-1

Final Value

of ITEM

BBB 3 0 ZZZ

ABA 3 0 ZZZ

Example 3:

INSPECT ITEM TALLYING

COUNT-O FOR ALL "AB" BEFORE "BC"

COUNT-1 FOR LEADING "B" AFTER "D"

COUNT-2 FOR CHARACTERS AFTER "A" BEFORE "C";

INSPECT ITEM REPLACING

ALL "AB" BY "XY" BEFORE "BC"

LEADING "B" BY "W" AFTER "D"

FIRST "E" BY "V" AFTER "D"

CHARACTERS BY "Z" AFTER "A" BEFORE "C"

Initial Value

of Item COUNT-O COUNT-1 COUNT-2

Final Value

of ITEM

BBEABDABABBCABEE 3 0 2 BBEXYZXYXYZCABVE

ADDDDC 0 0 4 AZZZZC

ADDDDA 0 0 5 AZZZZZ

CDDDDC 0 0 0 CDDDDC

BDBBBDB 0 3
_

0 BDWWWDB

VI-101

Nucleus INSPECT

Example 4:

INSPECT ITEM TALLYING

COUNT-O FOR ALL "AB" AFTER "BA" BEFORE "BC";

INSPECT ITEM REPLACING

ALL "AB" BY "XY" AFTER "BA" BEFORE "BC"

Initial Value

of ITEM COUNT-O

Final Value

of ITEM

ABABABABC 1 ABABXYABC

Example 5:

INSPECT ITEM CONVERTING

"ABCD" TO "XYZX" AFTER QUOTE BEFORE .

The above INSPECT is equivalent to the following INSPECT

INSPECT ITEM REPLACING

ALL "A" BY "X" AFTER QUOTE BEFORE "#"

ALL "B" BY ii y" AFTER QUOTE BEFORE "#"

ALL "C" BY "Z" AFTER QUOTE BEFORE "#"

ALL "D" BY "X" AFTER QUOTE BEFORE "#"

Initial Value

of ITEM

Final Value

of ITEM

AC"AEBDFBCD#AB"D AC"XEYXFYZX#AB"D

VI-102

Nucleus MOVE

6.19 THE MOVE STATEMENT

6.19.1 Function

The MOVE statement transfers data, in accordance with the rules of editing,

to one or more data areas .

6.19.2 General Format

Format 1:

MOVE <
identifier-l)

^literal-1)
TO {identifier-2} ...

Format 2:

MOVE j
corresponding)

CORR f
identifier-1 TO identifier-2

6.19.3 Syntax Rules

(1) Literal-1 or the data item referenced by identifier-1 represents the

sending area. The data item referenced by identifier-2 represents the receiving

area.

(2) CORR is an abbreviation for CORRESPONDING.

(3) When the CORRESPONDING phrase is used, all identifiers must be group

items.

(4) An index data item must not appear as an operand of a MOVE statement.

6.19.4 General Rules

(1) If the CORRESPONDING phrase is used, selected items within identifier-1

are moved to selected items within identifier-2, according to the rules

specified under the appropriate paragraph. (See page VI-68, The CORRESPONDING

Phrase.) The results are the same as if the user had referred to each pair of

corresponding identifiers in separate MOVE statements.

(2) Literal-1 or the content of the data item referenced by identifier-1 is

moved to the data item referenced by each identifier-2 [in the order in which it

is specified. The rules referring to identifier-2 also apply to the other

receiving areas. Any length evaluation or subscripting associated with

identifier-2 is evaluated immediately before the data is moved to the respective

data item.

Any subscripting associated with identifier-1 is evaluated only once,

immediately before data is moved to the first of the receiving operands. The

length of the data item referenced by identifier-1 is evaluated only once,

immediately before the data is moved to the first of the receiving operands.

VI-103

Nucleus - MOVE

The evaluation of the length of identifier-1 or identifier-2 may be

affected by the DEPENDING ON

OCCURS Clause.)

phrase of the OCCURS clause. (See page VI -26, The

The result of the statement

MOVE a (b) TO b, c (b)

is equivalent to:

MOVE a (b) TO temp

MOVE temp TO b

MOVE temp to c (b)

where 'temp' is an intermediate result item provided by the implementor.

(3) Any move in which the receiving operand is an elementary item and the

sending operand is either a literal or an elementary item is an elementary move.

Every elementary item belongs to one of the following categories: numeric,

alphabetic, numeric edited, alphanumeric edited. (See page VI-29, The PICTURE

Clause.) Numeric literals belong to the category numeric and nonnumeric

literals belong to the category alphanumeric. The figurative constant ZERO

(ZEROS, ZEROES), when moved to a numeric or numeric edited item, belongs to the

category numeric. In all other cases, it belongs to the category alphanumeric.

The figurative constant SPACE (SPACES) belongs to the category alphabetic. All

other figurative constants belong to the category alphanumeric.

The following rules apply to an elementary move between these

categories:

a. The figurative constant SPACE, an alphanumeric edited data item, or

an alphabetic data item must not be moved to a numeric or numeric edited data

item.

b. A numeric literal, the figurative constant ZERO, a numeric data

item, or a numeric edited data item must not be moved to an alphabetic data

item.

c. A noninteger numeric literal or a noninteger numeric data item must

not be moved to an alphanumeric or alphanumeric edited data item.

d. In level 1 a numeric edited data item must not be moved to a numeric

or numeric edited data item.

e. All other elementary moves are legal and are performed according to

the rules given in general rule 4.

(4) Any necessary conversion of data from one form of internal

representation to another takes place during legal elementary moves, along with

any editing specified for,lor de-editing implied by,[the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving

item, alignment and any necessary space filling takes place as previously

defined. (See page IV-16, Standard Alignment Rules.) If the sending operand is

described as being signed numeric, the operational sign is not moved; if the

VI-104

Nucleus - MOVE

operational sign occupies a separate character position, that character is not

moved and the size of the sending operand is considered to be one less than its

actual size in terms of standard data format characters. (See page VI-42, The

SIGN Clause.) If the sending operand is numeric edited, no de-editing takes

place. If the usage of the sending operand is different from that of the

receiving operand, conversion of the sending operand to the internal

representation of the receiving operand takes place. If the sending operand is

numeric and contains the PICTURE symbol 1P', all digit positions specified with

this symbol are considered to have the value zero and are counted in the size of

the sending operand.

b. When a numeric or numeric edited item is the receiving item,

alignment by decimal point and any necessary zero filling takes place as

previously defined except where zeros are replaced because of editing

requirements. (See page IV-16, Standard Alignment Rules.) [When the sending

operand is numeric edited, de-editing is implied to establish the operand's

unedited numeric value, which may be signed; then the unedited numeric value is

moved to the receiving field.

1) When a signed numeric item is the receiving item, the sign of

the sending operand is placed in the receiving item. (See page VI-42, The SIGN

Clause.) Conversion of the representation of the sign takes place as necessary.

If the sending operand is unsigned, a positive sign is generated for the

receiving item.

2) When an unsigned numeric item is the receiving item, the

absolute value of the sending operand is moved and no operational sign is

generated for the receiving item.

3) When the sending operand is described as being alphanumeric,

data is moved as if the sending operand were described as an unsigned numeric

integer.

c. When a receiving field is described as alphabetic, justification

and any necessary space filling takes place as previously defined. (See page

IV-16, Standard Alignment Rules.)

(5) Any move that is not an elementary move is treated exactly as if it were

an alphanumeric to alphanumeric elementary move, except that there is no

conversion of data from one form of internal representation to another. In such

a move, the receiving area will be filled without consideration for the

individual elementary or group items contained within either the sending or

receiving area, | except as noted in the OCCURS clause. (See page VI-26, The

OCCURS Clause.)

VI-105

Nucleus - MOVE

(6) Data in the following table summarizes the legality of the various types

of MOVE statements. The general rule reference indicates the rule that

prohibits the move or that describes the behavior of a legal move.

CATEGORY OF

SENDING

OPERAND

CATEGORY OF RECEIVING DATA ITEM

ALPHABETIC ALPHANUMERIC EDITED

ALPHANUMERIC

NUMERIC INTEGER

NUMERIC NONINTEGER

NUMERIC EDITED

ALPHABETIC Yes/4c Yes/4a No/3a

ALPHANUMERIC Yes/4c Yes/4a Yes/4b

ALPHANUMERIC EDITED Yes/4c Yes/4a No/3a

NUMERIC

INTEGER No/3b Yes/4a Yes/4b

NONINTEGER No/3b No/3 c Yes/4b

NUMERIC EDITED No/3b Yes/4a Yes/4b

Table 1: Legality of Types of MOVE Statements

VI-106

Nucleus - MULTIPLY

6.20 THE MULTIPLY STATEMENT

6.20.1 Function

The MULTIPLY statement causes numeric data items to be multiplied and sets

the values of data items equal to the results.

6.20.2 General Format

Format 1:

MULTIPLY i,identi?1fr H BY {identifier-2 [ROUNDEDIT ...
- (literal-1 j —

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

Format 2:

GIVING {identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

6.20.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item, except that in

format 2 each identifier following the word GIVING must refer to either an

elementary numeric item or an elementary numeric edited item.

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is the hypothetical data item resulting

from the superimposit ion of all receiving data items of a given statement

aligned on their decimal points, must not contain more than 18 digits.

6.20.4 General Rules

(1) When format 1 is used, literal-1 or the value of the data item

referenced by identifier-1 is stored in a temporary data item. The value in

this temporary data item is then multiplied by the value of the data item

referenced by identifier-2. The value of the multiplier (the value of the data

item referenced by identifier-2) is replaced by this product; similarly, the

VI-107

Nucleus - MULTIPLY

temporary data item is multiplied by each successive occurrence of identifier-2

in the left-to-right order in which identifier-2 is specified.

(2) When format 2 is used, literal-1 or the value of the data item

referenced by identifier-1 is multiplied by literal-2 or the value of the data

item referenced by identifier-2 and the result is stored in the data items

referenced by each identifier-3.

(3) Additional rules and explanations relative to this statement are given

under the appropriate paragraphs. (See page IV-40, Scope of Statements; page

VI-67, The ROUNDED Phrase; page VI-67, The ON SIZE ERROR Phrase; page VI-69, The

Arithmetic Statements; page VI-69 Overlapping Operands; page VI-69, Multiple

Results in Arithmetic Statements.)

VI-108

Nucleus PERFORM

6.21 THE PERFORM STATEMENT

6.21.1 Function

The PERFORM statement is used to transfer control explicitly to one or more

procedures and to return control implicitly whenever execution of the specified

procedure is complete. The PERFORM statement is also used to control execution

of one or more imperative statements which are within the scope of that PERFORM

statement.

6.21.2 General Format

Format 1:

[imperative-statement-1 END-PERFORM1

PERFORM procedure-name-1
(THROUGH)

1 THRU j
procedure-name-2

Format 2:

PERFORM procedure-name-1
(THROUGH!

1 THRU j
procedure-name-2

{
identifier-1

integer-1
TIMES [imperative-statement-1 END-PERFORM]

Format 3:

PERFORM procedure-name-1
(through)

1 THRU 1
procedure-name-2

l-) J

WITH TEST
BEFORE)

AFTER /
UNTIL condition-1

[imperative-statement-1 END-PERFORM1

VI-109

Nucleus - PERFORM

Format 4:

PERFORM procedure-name-1
(THROUGH)

Ll THRU
procedure-name-2

WITH TEST
(BEFOREi

(AFTER j

VARYING
(identifier-

(index-name

! identifier-3

index-name-2

literal-1

BY
jidentifier-4

1literal-2 1
AFTER

jident

I index-

ifier-5\

-name-3j

UNTIL condition-1

{identifier-6

index-name-4

literal-3

BY
(identifier-

(literal-4
UNTIL condition-2

[imperative-statement-1 END-PERFORMl

6.21.3 Syntax Rules

(1) If procedure-name-1 is omitted, imperative-statement-1 and the

END-PERFORM phrase must be specified; if procedure-name-1 is specified,

imperative-statement-1 and the END-PERFORM phrase must not be specified.

(2) In format 4, if procedure-name-1 is omitted, the AFTER phrase must not

be specified.

(3) If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the

TEST BEFORE phrase is assumed.

(4) Each identifier represents a numeric elementary item described in the

Data Division. In format 2, identifier-1 must be described as a numeric

integer.

(5) Each literal represents a numeric literal.

(6) The words THROUGH and THRU are equivalent.

(7) If

a.

an integer

b.

integer.

an index-name is specified in the VARYING or AFTER phrase, then:

The identifier in the associated FROM and BY phrases must reference

data item.

The literal in the associated FROM phrase must be a positive

c. The literal in the associated BY phrase must be a nonzero integer.

VI-110

Nucleus PERFORM

(8) If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must

reference an integer data item.

b. The identifier in the associated BY phrase must reference an integer

data item.

c. The literal in the associated BY phrase must be an integer.

(9) Literal in the BY phrase must not be zero.

(10) Condition-1, condition-2, may be any conditional expression. (See

page VI-54, Conditional Expressions.)

(11) Where procedure-name-1 and procedure-name-2 are both specified and

either is the name of a procedure in the declaratives portion of the Procedure

Division, both must be procedure-names in the same declarative section.

(12) At least six AFTER phrases must be permitted in format 4 of the PERFORM

statement. _ _

6.21.4 General Rules

(1) The data items referenced by identifier-4 and identifier-7 must not have

a zero value.

(2) If an index-name is specified in the VARYING or AFTER phrase, and an

identifier is specified in the associated FROM phrase, the data item referenced

by the identifier must have a positive value.

(3) When procedure-name-1 is specified, the PERFORM statement is referred to

as an out-of-line PERFORM statement; when procedure-name-1 is omitted, the

PERFORM statement is referred to as an in-line PERFORM statement.

(4) The statements contained within the range of procedure-name-1 (through

procedure-name-2 if specified) for an out-of-line PERFORM statement or contained

within the PERFORM statement itself for an in-line PERFORM statement are

referred to as the specified set of statements.

(5) The END-PERFORM phrase delimits the scope of the in-line PERFORM

statement. (See page IV-40, Scope of Statements.)

(6) An in-line PERFORM statement functions according to the following

general rules for an otherwise identical out-of-line PERFORM statement, with the

exception that the statements contained within the in-line PERFORM statement are

executed in place of the statements contained within the range of

procedure-name-1 (through procedure-name-2 if specified). Unless specially

qualified by the word in-line or out-of-line, all the general rules which apply

to the out-of-line PERFORM statement also apply to the in-line PERFORM

statement.

(7) When the PERFORM statement is executed, control is transferred to the

first statement of the specified set of statements (except as indicated in

general rules 10b, 10c, and lOd). This transfer of control occurs only once for

VI-111

Nucleus PERFORM

each execution of a PERFORM statement. For those cases where a transfer of

control to the specified set of statements does take place, an implicit transfer

of control to the end of the PERFORM statement is established as follows:

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is not

specified, the return is after the last statement of procedure-name-1.

b. If procedure-name-1 is a section-name and procedure-name-2 is not

specified, the return is after the last statement of the last paragraph in

procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph-name, the

return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, the

return is after the last statement of the last paragraph in the section.

e. If an in-line PERFORM statement is specified, an execution of the

PERFORM statement is completed after the last statement contained within it has

been executed.

(8) There is no necessary relationship between procedure-name-1 and

procedure-name-2 except that a consecutive sequence of operations is to be

executed beginning at the procedure named procedure-name-1 and ending with the

execution of the procedure named procedure-name-2. In particular, GO TO and

PERFORM statements may occur between procedure-name-1 and the end of

procedure-name-2. If there are two or more logical paths to the return point,

then procedure-name-2 may be the name of a paragraph consisting of the EXIT

statement, to which all of these paths must lead.

(9) If control passes to the specified set of statements by means other than

a PERFORM statement, control will pass through the last statement of the set to

the next executable statement as if no PERFORM statement referenced the set.

(10) The PERFORM statements operate as follows:

a. Format 1 is the basic PERFORM statement. The specified set of

statements referenced by this type of PERFORM statement is executed once and

then control passes to the end of the PERFORM statement.

b. Format 2 is the PERFORM ... TIMES. The specified set of statements

is performed the number of times specified by integer-1 or by the initial value

of the data item referenced by identifier-1 for that execution. If at the time

of the execution of a PERFORM statement, the value of the data item referenced

by identifier-1 is equal to zero or is negative, control passes to the end of

the PERFORM statement. Following the execution of the specified set of

statements the specified number of times, control is transferred to the end of

the PERFORM statement.

During execution of the PERFORM statement, reference to identifier-1

cannot alter the number of times the specified set of statements is to be

executed from that which was indicated by the initial value of the data item

referenced by identifier-1.

VI-112

Nucleus PERFORM

c. Format 3 is the PERFORM ... UNTIL. The specified set

is performed until the condition specified by the UNTIL phrase

the condition is true, control is transferred to the end of

statement. If the condition is true when the PERFORM statement i

of statements

is true. When

the PERFORM

the TEST BEFORE phrase is specified or implied,! no transfer to pr

takes place, and control is passed to the end of the PERFORM stat

s entered, and

ocedure-name-1

ement. If the

the TEST TEST AFTER phrase is specified, the PERFORM statement functions as

BEFORE phrase were specified except that the condition is te

specified set of statements has been executed. Any subscripting

modification associated with the operands specified in condition-

each time the condition is tested.

if

sted after the

or reference

1 is evaluated

d. Format 4 is the PERFORM ... VARYING. This variation of the PERFORM

statement is used to augment the values referenced by one or more identifiers or

index-names in an orderly fashion during the execution of a PERFORM statement.

In the following discussion, every reference to identifier as the object of the

VARYING, AFTER, and FROM (current value) phrases also refers to index-names. If

index-name-1 or index-name-3 is specified, the value of the associated index at

the beginning of the PERFORM statement must be set to an occurrence number of an

element in the table. If index-name-2 or index-name-4 is specified, the value

of the data item referenced by identifier-2 or identifier-5 at the beginning of

the PERFORM statement must be equal to an occurrence number of an element in a

table associated with index-name-2 or index-name-4. Subsequent augmentation, as

described below, of index-name-1 or index-name-3 must not result in the

associated index being set to a value outside the range of the table associated

with index-name-1 or index-name-3; except that, at the completion of the PERFORM

statement, the index associated with index-name-1 may contain a value that is

outside the range of the associated table by one increment or decrement value.

If identifier-2 or identifier-5 is subscripted, the subscripts are evaluated

each time the content of the data item referenced by the identifier is set or

augmented. If identifier-3, identifier-4, identifier-6, or identifier-7 is

subscripted, the subscripts are evaluated each time the content of the data item

referenced by the identifier is used in a setting or augmenting operation. Any

subscripting or reference modification associated with the operands specified in

condition-1 or condition-2 is evaluated each time the condition is tested.

Representations of the actions of several types of format 4 PERFORM

statements are given in figures 1 through 4 on pages VI-114 through VI-119.

These are not intended to dictate implementation.

VI-113

Nucleus - PERFORM

1) If the TEST BEFORE phrase is specified or implied:

When the data item referenced by one identifier is varied, the
content of the data item referenced by identifier-2 is set to literal-1 or the
current value of the data item referenced by identifier-3 at the point of
initial execution of the PERFORM statement; then, if the condition of the UNTIL
phrase is false, the specified set of statements is executed once. The value of
the data item referenced by identifier-2 is augmented by the specified increment
or decrement value (literal-2 or the value of the data item referenced by
identifier-4) and condition-1 is evaluated again. The cycle continues until
this condition is true, at which point control is transferred to the end of the
PERFORM statement. If condition-1 is true at the beginning of execution of the
PERFORM statement, control is transferred to the end of the PERFORM statement.

Entrance

Exit

Figure 1: The VARYING option of a PERFORM statement with
the TEST BEFORE phrase having one condition

VI-114

Nucleus PERFORM

When the data items referenced by two identifiers are varied,

the content of the data item referenced by identifier-2 is set to literal-1 or

the current value of the data item referenced by i.dentifier-3 and then the

content of the data item referenced by identifier-5 is set to literal-3 or the

current value of the data item referenced by identifier-6. After the contents

of the data items referenced by the identifiers have been set, condition-1 is

evaluated; if true, control is transferred to the end of the PERFORM statement;

if false, condition-2 is evaluated. If condition-2 is false, the specified set

of statements is executed once, then the content of the data item referenced by

identifier-5 is augmented by literal-4 or the content of the data item

referenced by identifier-7 and condition-2 is evaluated again. This cycle of

evaluation and augmentation continues until this condition is true. When

condition-2 is true, the content of the data item referenced by identifier-2 is

augmented by literal-2 or the content of the data item referenced by

identifier-4, the content of the data item referenced by identifier-5 is set to

literal-3 or the current value of the data item referenced by identifier-6, and

condition-1 is reevaluated. The PERFORM statement is completed if condition-1

is true; if not, the cycle continues until condition-1 is true.

Entrance

Figure 2: The VARYING option of a PERFORM statement with

the TEST BEFORE phrase having two conditions

VI-115

Nucleus PERFORM

At the termination of the

referenced by identifier-5 contains litera

item referenced by identifier-6. The data

contains a value that exceeds the last

decrement value, unless condition-1 was true

entered, in which case, the data item

literal-1 or the current value of the data i

PERFORM statement, the data item

1-3 or the current value of the data

item referenced by identifier-2

used setting by one increment or

when the PERFORM statement was

referenced by identifier-2 contains

tem referenced by identifier-3.

VI-116

Nucleus PERFORM

2) If the TEST AFTER phrase is specified:

When the data item referenced by one identifier is varied, the

content of the data item referenced by identifier-2 is set to literal-1 or the

current value of the data item referenced by identifier-3 at the point of

execution of the PERFORM statement; then the specified set of statements is

executed once and condition-1 of the UNTIL phrase is tested. If the condition

is false, the value of the data item referenced by identifier-2 is augmented by

the specified increment or decrement value (literal-2 or the value of the data

item referenced by identifier-4) and the specified set of statements is

executed again. The cycle continues until condition-1 is tested and found to be

true, at which point control is transferred to the end of the PERFORM statement.

Entrance

Figure 3: The VARYING option of a PERFORM statement with

the TEST AFTER phrase having one condition

VI-117

Nucleus - PERFORM

When the data items referenced by two identifiers are varied,

the content of the data item referenced by identifier-2 is set to literal-1 or

the current value of the data item referenced by identifier-3, then the content

of the data item referenced by identifier-5 is set to literal-3 or the current

value of the data item referenced by identifier-6, and the specified set of

statements is then executed. Condition-2 is then evaluated; if false, the

content of the data item referenced by identifier-5 is augmented by literal-4 or

the content of the data item referenced by identifier-7 and the specified set of

statements is again executed. The cycle continues until condition-2 is again

evaluated and found to be true, at which time condition-1 is evaluated. If

false, the content of the data item referenced by identifier-2 is augmented by

literal-2 or the content of the data item referenced by identifier-4, the

content of the data item referenced by identifier-5 is set to literal-3 or the

current value of the data item referenced by identifier-6 and the specified set

of statements is again executed. This cycle continues until condition-1 is

again evaluated and found to be true, at which time control is transferred to

the end of the PERFORM statement.

After the completion of the PERFORM statement, each data item

varied by an AFTER or VARYING phrase contains the same value it contained at the

end of the most recent execution of the specified set of statements.

VI-118

Nucleus - PERFORM

Entrance

Figure 4: The VARYING option of a PERFORM statement with

the TEST AFTER phrase having two conditions

VI-119

Nucleus PERFORM

During the execution of the specified set of statements associated

with the PERFORM statement, any change to the VARYING variable (the data item

referenced by identifier-2 and index-name-1), the BY variable (the data item

referenced by identifier-4), the AFTER variable (the data item referenced by

identifier-5 and index-name-3), or the FROM variable (the data item referenced

by identifier-3 and index-name-2) will be taken into consideration and will

affect the operation of the PERFORM statement.

When the data items referenced by two identifiers are varied, the

data item referenced by identifier-5 goes through a complete cycle (FROM, BY,

UNTIL) each time the content of the data item referenced by identifier-2 is

varied. When the contents of three or more data items referenced by identifiers

are varied, the mechanism is the same as for two identifiers except that the

data item being varied by each AFTER phrase goes through a complete cycle each

time the data item being varied by the preceding AFTER phrase is augmented.

(11) The range of a PERFORM statement consists logically of all those

statements that are executed as a result of executing the PERFORM statement

through execution of the implicit transfer of control to the end of the PERFORM

statement. The range includes all statements that are executed as the result of

a transfer of control by CALL, EXIT, GO TO, and PERFORM statements in the range

of the PERFORM statement, as well as all statements in declarative procedures

that are executed as a result of the execution of statements in the range of the

PERFORM statement. The statements in the range of a PERFORM statement need not

appear consecutively in the source program.

(12) Statements executed as the result of a transfer of control caused by

executing an EXIT PROGRAM statement are not considered to be part of the range

of the PERFORM statement when:

a. That EXIT PROGRAM statement is specified in the same program in

which the PERFORM statement is specified, and

b. The EXIT PROGRAM statement is within the range of the PERFORM

statement.

(13) Procedure-name-1 and procedure-name-2 must not name sections or

paragraphs in any other program in the run unit, irrespective of whether or not

the other program contains or is contained within the program which includes the

PERFORM statement. Statements in other programs in the run unit may only be

obeyed as a result of executing a PERFORM statement, if the range of that

PERFORM statement includes CALL and EXIT PROGRAM statements. (See page X-4,

Scope of Names.)

(14) If the range of a PERFORM statement includes another PERFORM statement,

the sequence of procedures associated with the included PERFORM must itself

either be totally included in, or totally excluded from, the logical sequence

referred to by the first PERFORM. Thus, an active PERFORM statement, whose

execution point begins within the range of another active PERFORM statement,

must not allow control to pass to the exit of the other active PERFORM

statement; furthermore, two or more such active PERFORM statements may not have

a common exit. See the following illustrations for examples of legal PERFORM

constructs:

VI-120

Nucleus - PERFORM

x PERFORM a THRU m

a -

d PERFORM f THRU j

f -

j -

m -

x PERFORM a THRU m

a -

d PERFORM f THRU j

h

m -

f -

j -

x PERFORM a THRU m

a -

f -

m-

j —-

d PERFORM f THRU j

(15) A PERFORM statement that appears in a section that is not in an

independent segment can have within its range, in addition to any declarative

sections whose execution is caused within that range only one of the following:

a. Sections and/or paragraphs wholly contained in one or more

non-independent segments.

b. Sections and/or paragraphs wholly contained in a single independent

segment.

(16) A PERFORM statement that appears in an independent segment can have

within its range, in addition to any declarative sections whose execution is

caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more

non-independent segments.

b. Sections and/or paragraphs wholly contained in the same independent

segment as that PERFORM statement.

VI-121

Nucleus - SEARCH

6.22 THE SEARCH STATEMENT

6.22.1 Function

The SEARCH statement is used to search a table for a table element

satisfies the specified condition and to adjust the value of the assoc

index to indicate that table element.

6.22.2 General Format

Format 1:

SEARCH identifier-1 ["VARYING /ldentif ier-2)
I " " I index-name-1j

[AT END imperative-statement-1]

iv-n,™ ,. _. t (imperative-statement-2) j
WHEN condition-1 |NE^T SENTENCE JJ •••

T END-SEARCHl

Format 2:

SEARCH ALL identifier-1 [AT END imperative-statement-1]

(IS EQUAL TO) (identifier-3
data-name-1 _ > /literal-l

^ ' I ari t'hmpt’i n — i

condition-name-1

WHEN (arithmetic-expression-1

ldata-name-2

AND

IS EQUAL TO

• IS =

\ (identifier-4

> < literal-2
' I earn (arithmetic-expression-2

condition-name-2

(imperative-statement-2

(NEXT SENTENCE

[END-SEARCH]

}

that

iated

VI-122

Nucleus SEARCH

6.22.3 Syntax Rules

(1) In both formats 1 and 2, identifier-1 must not be subscripted or

reference modified, but its description must contain an OCCURS clause including

an INDEXED BY phrase. The description of identifier-1 in format 2 must also

contain the KEY IS phrase in its OCCURS clause.

(2) Identifier-2 must reference a data item described as USAGE IS INDEX or

as a numeric elementary data item without any positions to the right of the

assumed decimal point. Identifier-2 may not be subscripted by the first (or

only) index-name specified in the INDEXED BY phrase in the OCCURS clause

associated with identifier-1.

(3) In format 1, condition-1 may be any conditional expression. (See page

VI-54, Conditional Expressions.)

(4) In format 2, all referenced condition-names must be defined as having

only a single value. The data-name associated with a condition-name must appear

in the KEY IS phrase in the OCCURS clause referenced by identifier-1. Each

data-name-1, data-name-2 may be qualified. Each data-name-1, data-name-2 must

be subscripted by the first index-name associated with identifier-1 along with

other subscripts as required, and must be referenced in the KEY IS phrase in the

OCCURS clause referenced by identifier-1. Identifier-3, identifier-4, or

identifiers specified in arithmetic-expression-1, arithmetic-expression-2 must

not be referenced in the KEY IS phrase in the OCCURS clause referenced by

identifier-1 or be subscripted by the first index-name associated with

identifier-1.

In format 2, when a data-name in the KEY IS phrase in the OCCURS clause

referenced by identifier-1 is referenced, or when a condition-name associated

with a data-name in the KEY IS phrase in the OCCURS clause referenced by

identifier-1 is referenced, all preceding data-names in the KEY IS phrase in the

OCCURS clause referenced by identifier-1 or their associated condition-names

must also be referenced.

(5) If the END-SEARCH phrase is specified, the NEXT SENTENCE phrase must not

be specified.

6.22.4 General Rules

(1) The scope of a SEARCH statement may be terminated by any of the

fo1lowing:

a. An END-SEARCH phrase at the same level of nesting.

b. A separator period.

c. An ELSE or END-IF phrase associated with a previous IF statement.

(See page IV-40, Scope of Statements.)

(2) If format 1 of the SEARCH statement is used, a serial type of search

operation takes place, starting with the current index setting.

VI-123

Nucleus SEARCH

a. If, at the start of execution of the SEARCH statement, the

index-name associated with identifier-1 contains a value that corresponds to an

occurrence number that is greater than the highest permissible occurrence number

for identifier-1, the search is terminated immediately. The number of

occurrences of identifier-1, the last of which is the highest permissible, is

discussed in the OCCURS clause. (See VI-26, The OCCURS Clause.) Then, if the

AT END phrase is specified, imperative-statement-1 is executed; if the AT END

phrase is not specified, control passes to the end of the SEARCH statement.

b. If, at the start of execution of the SEARCH statement, the

index-name associated with identifier-1 contains a value that corresponds to an

occurrence number that is not greater than the highest permissible occurrence

number for identifier-1 (the number of occurrences of identifier-1, the last of

which is the highest permissible, is discussed in the OCCURS clause), the SEARCH

statement operates by evaluating the conditions in the order that they are

written, making use of the index settings, wherever specified, to determine the

occurrence of those items to be tested. If none of the conditions is satisfied,

the index-name for identifier-1 is incremented to obtain reference to the next

occurrence. The process is then repeated using the new index-name settings

unless the new value of the index-name settings for identifier-1 corresponds to

a table element outside the permissible range of occurrence values, in which

case the search terminates as indicated in 2a above. If one of the conditions

is satisfied upon its evaluation, the search terminates immediately, and control

passes to the imperative statement associated with that condition, if present,

or, if the NEXT SENTENCE phrase is associated with that condition, to the next

executable sentence; the index-name remains set at the occurrence which caused

the condition to be satisfied.

(3) In a format 2 SEARCH statement, the results of the SEARCH ALL operation

are predictable only when:

a. The data in the table is ordered in the same manner as described in

the KEY IS phrase of the OCCURS clause referenced by identifier-1, and

b. The contents of the key(s) referenced in the WHEN phrase are

sufficient to identify a unique table element.

(4) If format 2 of the SEARCH statement is used, a nonserial type of search

operation may take place; the initial setting of the index-name for identifier-1

is ignored and its setting is varied during the search operation in a manner

specified by the implementor, with the restriction that at no time is it set to

a value that exceeds the value which corresponds to the last element of the

table, or that is less than the value that corresponds to the first element of

the table. The length of the table is discussed in the OCCURS clause. (See

page VI-26, The OCCURS Clause.) If any of the conditions specified in the WHEN

phrase cannot be satisfied for any setting of the index within the permitted

range, control is passed to imperative-statement-1 of the AT END phrase, when

specified, or to the end of the SEARCH statement when this phrase is not

specified; in either case the final setting of the index is not predictable. If

all the conditions can be satisfied, the index indicates an occurrence that

allows the conditions to be satisfied, and control passes to

imperative-statement-2, if specified, or to the next executable sentence if the

NEXT SENTENCE phrase is specified.

VI-124

Nucleus - SEARCH

(5) After execution of imperative-statement-1 or imperative-statement-2,

that does not terminate with a GO TO statement, control passes to the end of the

SEARCH statement.

(6) In format 2, the index-name that is used for the search operation is the

first (or only) index-name specified in the INDEXED BY phrase in the OCCURS

clause associated with identifier-1. Any other index-names for identifier-1

remain unchanged.

(7) In format 1, if the VARYING phrase is not used, the index-name that is

used for the search operation is the first (or only) index-name specified in the

INDEXED BY phrase in the OCCURS clause associated with identifier-1. Any other

index-names for identifier-1 remain unchanged.

(8) In format 1, if the VARYING index-name-1 phrase is specified, and if

index-name-1 appears in the INDEXED BY phrase in the OCCURS clause referenced by

identifier-1, that index-name is used for this search. If this is not the case,

or if the VARYING identifier-2 phrase is specified, the first (or only)

index-name given in the INDEXED BY phrase in the OCCURS clause referenced by

identifier-1 is used for the search. In addition, the following operations will

occur:

a. If the VARYING index-name-1 phrase is used, and if index-name-1

appears in the INDEXED BY phrase in the OCCURS clause referenced by another

table entry, the occurrence number represented by index-name-1 is incremented by

the same amount as, and at the same time as, the occurrence number represented

by the index-name associated with identifier-1 is incremented.

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is

an index data item, then the data item referenced by identifier-2 is incremented

by the same amount as, and at the same time as, the index associated with

identifier-1 is incremented. If identifier-2 is not an index data item, the

data item referenced by identifier-2 is incremented by the value one at the same

time as the index referenced by the index-name associated with identifier-1 is

incremented.

(9) The END-SEARCH phrase delimits the scope of the SEARCH statement. (See

page IV-40, Scope of Statements.)

(10) A representation of the action of a format 1 SEARCH statement containing

two WHEN phrases is shown in figure 1 on the next page. This figure is not

intended to dictate implementation. ___

VI-125

Nucleus SEARCH

Entrance

► * *

Figure 1: Format 1 SEARCH statement having two WHEN phrases

* These operations are options included only when specified in the SEARCH

statement.

** Each of these control transfers is to the end of the SEARCH statement

unless the imperative-statement ends with a GO TO statement.

VI-126

Nucleus SET

6.23 THE SET STATEMENT

6.23.1 Function

(1) The SET statement establishes reference points for table handling

operations by setting indices associated with table elements.

(2) The SET statement is also used to alter the status of external switches.

(3) The SET statement is also used to alter the value of conditional

variables.

6.23.2 General Format

Format 1:

SET
(index-name-l\

(index-name-2 1

TO <identifier-2 ^
lidentifier-lj

*integer-l |

Format 2:

SET {index-name-3}
(UP BY (li

' \ DOWN BY_j \i

Jidentifier-3^

integer-2

Format 3:

SET J {mnemonic-name-1} .. . TO
{off}} •••

Format 4:

SET {condition-name-1} ... TO TRUE

6.23.3 Syntax Rules

(1) All references to index-name-1, identifier-1, and index-name-3 apply

equally to all recursions thereof.

(2) Identifier-1 and identifier-2 must each reference an index data item or

an elementary item described as an integer.

(3) Identifier-3 must reference an elementary numeric integer.

(4) Integer-1 and integer-2 may be signed. Integer-1 must be positive.

(5) Mnemonic-name-1 must be associated with an external switch, the status

of which can be altered. The implementor defines which external switches can be

referenced by the SET statement.

(6) Condition-name-1 must be associated with a conditional variable.

VI-127

Nucleus SET

6.23.4 General Rules

FORMATS 1 AND 2:

(1) Index-names are associated with a given table by being specified in the

INDEXED BY phrase of the OCCURS clause for that table.

(2) If index-name-1 is specified, the value of the index after the execution

of the SET statement must correspond to an occurrence number of an element in

the table associated with index-name-1. The value of the index associated with

an index-name after the execution of a PERFORM or SEARCH statement may be set to

an occurrence number that is outside the range of its associated table. (See

page VI-109, The PERFORM Statement, and page VI-122, The SEARCH Statement.)

If index-name-2 is specified, the value of the index before the

execution of the SET statement must correspond to an occurrence number of an

element in the table associated with index-name-1.

If index-name-3 is specified, the value of the index both before and

after the execution of the SET statement must correspond to an occurrence number

of an element in the table associated with index-name-3.

(3) In format 1, the following action occurs:

a. Index-name-1 is set to a value causing it to refer to the table

element that corresponds in occurrence number to the table element referenced by

index-name-2, identifier-2, or integer-1. If identifier-2 references an index

data item, or if index-name-2 is related to the same table as index-name-1, no

conversion takes place.

b. If identifier-1 references an index data item, it may be set equal

to either the content of index-name-2 or identifier-2 where identifier-2 also

references an index data item; no conversion takes place in either case.

c. If identifier-1 does not reference an index data item, it may be set

only to an occurrence number that corresponds to the value of index-name-2.

Neither identifier-2 nor integer-1 can be used in this case.

d. The process is repeated for each recurrence of index-name-1 or

identifier-1, if specified. Each time, the value of index-name-2 or the data

item referenced by identifier-2 is used as it was at the beginning of the

execution of the statement. Any subscripting associated with identifier-1 is

evaluated immediately before the value of the respective data item is changed.

(4) In format 2, the content of index-name-3 is incremented (UP BY) or

decremented (DOWN BY) by a value that corresponds to the number of occurrences

represented by the value of integer-2 or the data item referenced by

identifier-3; thereafter, the process is repeated for each recurrence of

index-name-3. For each repetition the value of the data item referenced by

identifier-3 is used as it was at the beginning of the execution of the

statement.

VI-128

Nucleus SET

(5) Data in the following table represents the validity of various operand

combinations in format 1 of the SET statement. The general rule reference

indicates the applicable general rule.

SENDING ITEM

RECEIVING ITEM

INTEGER DATA ITEM INDEX INDEX DATA ITEM

Integer literal No/3 c Valid/3a No/3b

Integer data item No/3c Valid/3a No/3b

Index Valid/3c Valid/3a Valid/3b*

Index data item No/3c Valid/3a* Valid/3b*

Table 1: Validity of Operand Combinations

in Format 1 SET Statements

* No conversion takes place

FORMAT 3:

(6) The status of each external switch associated with the specified

mnemonic-name-1 is modified such that the truth value resultant from evaluation

of a condition-name associated with that switch will reflect an on status if the

ON phrase is specified, or an off status if the OFF phrase is specified. (See

page VI-58, Switch-Status Condition.)

FORMAT 4:

(7) The literal in the VALUE clause associated with condition-name-1 is

placed in the conditional variable according to the rules of the VALUE clause

(see page VI-48, The VALUE Clause). If more than one literal is specified in

the VALUE clause, the conditional variable is set to the value of the first

literal that appears in the VALUE clause.

(8) If multiple condition-names are specified, the results are the same as

if a separate SET statement had been written for each condition-name-1 in the

same order as specified in the SET statement.

VI-129

Nucleus STOP

6.24 THE STOP STATEMENT

6.24.1 Function

The STOP statement causes a permanent or temporary suspension of the

execution of the run unit. The literal variation of the STOP statement is an

obsolete element in Standard COBOL because it is to be deleted from the next

revision of Standard COBOL.

6.24.2 General Format

SI2E {nLai-i}

6.24.3 Syntax Rules

(1) Literal-1 must not be a figurative constant that begins with the word

ALL.

(2) If a STOP RUN statement appears in a consecutive sequence of imperative

statements within a sentence, it must appear as the last statement in that

sequence.

(3) If literal-1 is numeric, then it must be an unsigned integer.

6.24.4 General Rules

(1) If the RUN phrase is specified, execution of the run unit ceases and

control is transferred to the operating system.

(2) During the execution of a STOP RUN statement, an implicit CLOSE

statement without any optional phrases is executed for each file that is in the

open mode in the run unit. Any USE procedures associated with any of these

files are not executed.

(3) If the run unit has been accessing messages, the STOP RUN statement

causes the message control system (MCS) to eliminate from the queue any message

partially received by that run unit. Any portion of a message transferred from

the run unit via a SEND statement, but not terminated by an EMI or EGI, is

purged from the system.

(4) If STOP literal-1 is specified, the execution of the run unit is

suspended and literal-1 is communicated to the operator. Continuation of the

execution of the run unit begins with the next executable statement when the

implementor-defined procedure governing run unit reinitiation is instituted.

VI-130

Nucleus STRING

6.25 THE STRING STATEMENT

6.25.1 Function

The STRING statement provides juxtaposition of the partial or complete

contents of one or more data items into a single data item.

6.25.2 General Format

STRING DELIMITED BY

INTO identifier-3

[WITH POINTER identifier-4]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-STRING!

6.25.3 Syntax Rules

(1) Literal-1 or literal-2 must not be a figurative constant that begins

with the word ALL.

(2) All literals must be described as nonnumeric literals, and all

identifiers, except identifier-4, must be described implicitly or explicitly as

USAGE IS DISPLAY.

(3) Identifier-3 must not be referenced modified.

(4) Identifier-3 must not represent an edited data item and must not be

described with the JUSTIFIED clause.

(5) Identifier-4 must be described as an elementary numeric integer data

item of sufficient size to contain a value equal to 1 plus the size of the data

item referenced by identifier-3. The symbol 'P' may not be used in the PICTURE

character-string of identifier-4.

(6) Where identifier-1 or identifier-2 is an elementary numeric data item,

it must be described as an integer without the symbol 'P' in its PICTURE

character-string.

6.25.4 General Rules

(1) Identifier-1 or literal-1 represents the sending item. Identifier-3

represents the receiving item.

(2) Literal-2 or the content of the data item referenced by identifier-2

indicates the character(s) delimiting the move. If the SIZE phrase is used, the

content of the complete data item defined by identifier-1 or literal-1 is moved.

VI-131

Nucleus STRING

When a figurative constant is used as the delimiter, it is a single character

nonnumeric literal.

(3) When a figurative constant is specified as literal-1 or literal-2, it

refers to an implicit one character data item whose usage is DISPLAY.

(4) When the STRING statement is executed, the transfer of data is governed

by the following rules:

a. Those characters from literal-1 or from the content of the data item

referenced by identifier-1 are transferred to the data item referenced by

identifier-3 in accordance with the rules for alphanumeric to alphanumeric

moves, except that no space filling will be provided. (See general rule 4a of

the MOVE statement on page VI-104.)

b. If the DELIMITED phrase is specified without the SIZE phrase, the

content of the data item referenced by identifier-1, or the value of literal-1,

is transferred to the receiving data item in the sequence specified in the

STRING statement beginning with the leftmost character and continuing from left

to right until the end of the sending data item is reached or the end of the

receiving data item is reached or until the character(s) specified by literal-2,

or by the content of the data item referenced by identifier-2, are encountered.

The character(s) specified by literal-2 or by the data item referenced by

identifier-2 are not transferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the

entire content of literal-1, or the content of the data item referenced by

identifier-1, is transferred, in the sequence specified in the STRING statement,

to the data item referenced by identifier-3 until all data has been transferred

or the end of the data item referenced by identifier-3 has been reached.

This behavior is repeated until all occurrences of literal-1 or data

items referenced by identifier-1 have been processed.

(5) If the POINTER phrase is specified, the data item referenced by

identifier-4 must be set to an initial value greater than zero prior to the

execution of the STRING statement.

(6) If the POINTER phrase is not specified, the following general rules

apply as if the user had specified identifier-4 referencing a data item with an

initial value of 1.

(7) When characters are transferred to the data item referenced by

identifier-3, the moves behave as though the characters were moved one at a time

from the source into the character positions of the data item referenced by

identifier-3 designated by the value of the data item referenced by identifier-4

(provided the value of the data item referenced by identifier-4 does not exceed

the length of the data item referenced by identifier-3), and then the data item

referenced by identifier-4 was increased by one prior to the move of the next

character or prior to the end of execution of the STRING statement. The value

of the data item referenced by identifier-4 is changed during execution of the

STRING statement only by the behavior specified above.

(8) At the end of execution of the STRING statement, only the portion of the

data item referenced by identifier-3 that was referenced during the execution of

VI-132

Nucleus STRING

the STRING statement is changed. All other portions of the data item referenced

by identifier-3 will contain data that was present before this execution of the

STRING statement.

(9) Before each move of a character to the data item referenced by

identifier-3, if the value associated with the data item referenced by

identifier-4 is either less than one or exceeds the number of character

positions in the data item referenced by identifier-3, no (further) data is

transferred to the data item referenced by identifier-3, and the NOT ON OVERFLOW

phrase, if specified, is ignored and control is transferred to the end of the

STRING statement or, if the ON OVERFLOW phrase is specified, to

imperative-statement-1. If control is transferred to imperative-statement-1,

execution continues according to the rules for each statement specified in

imperative-statement-1. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-1, control is transferred to the end of the

STRING statement.

(10) If, at the time of execution of a STRING statement with the NOT ON

OVERFLOW phrase, the conditions described in general rule 9 are not encountered,

after completion of the transfer of data according to the other general rules,

the ON OVERFLOW phrase, if specified, is ignored and control is transferred to

the end of the STRING statement or, if the NOT ON OVERFLOW phrase is specified,

to imperative-statement-2. If control is transferred to imperative-statement-2,

execution continues according to the rules for each statement specified in

imperative-statement-2. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-2, control is transferred to the end of the

STRING statement.

(11) The END-STRING phrase delimits the scope of the STRING statement. (See

page IV-40, Scope of Statements.)

(12) If identifier-1, or identifier-2, occupies the same storage area as

identifier-3, or identifier-4, or if identifier-3 and identifier-4 occupy the

same storage area, the result of the execution of this statement is undefined,

even if they are defined by the same data description entry. (See page VI-69,

Overlapping Operands.)_

VI-133

Nucleus SUBTRACT

6.26 THE SUBTRACT STATEMENT

6.26.1 Function

The SUBTRACT statement is used to subtract one, or the sum of two or

numeric data items from one or more items, and set the values of one

items equal to the results.

6.26.2 General Format

Fo rma t 1:

SUBTRACT ij'dentlf1fr_1> ... FROM (identifier-2 (ROUNDED]} ...
(literal-1) - -

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

Format 2:

SUBTRACT
iidentifier-1

|literal-1 ! ••

FROM
(identifier-2

(literal-2 }
GIVING (identifier-3 [ROUNDED]} ...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

Format 3:

SUBTRACT /^||ESPONDING| identifier-1 FROM identifier-2
(CORK)

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[ROUNDED]

[END-SUBTRACT]

more ,

or more

VI-134

Nucleus - SUBTRACT

6.26.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item except that:

a. In format 2, each identifier following the word GIVING must refer to

either an elementary numeric item or an elementary numeric edited item.

b. In format 3, each identifier must refer to a group item.

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits. (See

page VI-69, The Arithmetic Statements.)

a. In format 1 the composite of operands is determined by using all of

the operands in a given statement.

b. In format 2 the composite of operands is determined by using all of

the operands in a given statement excluding the data items that follow the word

GIVING.

c. In format 3 the composite of operands is determined separately for

each pair of corresponding data items.

(4) CORR is an abbreviation for CORRESPONDING.

6.26.4 General Rules

(1) When format 1 is used, the values of the operands preceding the word

FROM are added together and the sum is stored in a temporary data item. The

value in this temporary data item is subtracted from the value of the data item

referenced by identifier-2, storing the result into the data item referenced by

identifier-2, and repeating this process for each successive occurrence of

identifier-2 in the left-to-right order in which identifier-2 is specified.

(2) In format 2, all literals and the values of the data items referenced by

the identifiers preceding the word FROM are added together, the sum is

subtracted from literal-2 or the value of the data item referenced by

identifier-2 and the result of the subtraction is stored as the new content of

each data item referenced by identifier-3.

(3) If format 3 is used, data items in identifier-1 are subtracted from and

stored into corresponding data items in identifier-2.

(4) The compiler insures enough places are carried so as not to lose

significant digits during execution.

(5) Additional rules and explanations relative to this statement are given

under the appropriate paragraphs. (See page IV-40, Scope of Statements; page

VI-67, The ROUNDED Phrase; page VI-67, The ON SIZE ERROR Phrase; page VI-69, The

Arithmetic Statements; page VI-69, Overlapping Operands; page VI-69, Multiple

Results in Arithmetic Statements; page VI-68, The CORRESPONDING Phrase.)

VI-135

Nucleus - UNSTRING

6.27 THE UNSTRING STATEMENT

6.27.1 Function

The UNSTRING statement causes contiguous data in a sending field to be

separated and placed into multiple receiving fields.

6.27.2 General Format

UNSTRING identifier-1

INTO {identifier-4 [DELIMITER IN identifier-5] [COUNT IN identifier-6]}

[WITH POINTER identifier-7]

[TALLYING IN identifier-8]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-UNSTRING!

6.27.3 Syntax Rules

(1) Literal-1 and literal-2 must be nonnumeric literals and neither can be a

figurative constant that begins with the word ALL.

(2) Identifier-1, identifier-2, identifier-3, and identifier-5 must

reference data items described, implicitly or explicitly, as category

alphanumeric.

(3) Identifier-4 may be described as either the category alphabetic,

alphanumeric, or numeric (except that the symbol 'P' may not be used in the

PICTURE character-string), and must be described implicitly or explicitly, as

USAGE IS DISPLAY.

(4) Identifier-6 and identifier-8 must reference integer data items (except

that the symbol 'P' may not be used in the PICTURE character-string).

(5) Identifier-7 must be described as an elementary numeric integer data

item of sufficient size to contain a value equal to 1 plus the size of the data

item referenced by identifier-1. The symbol 'P' may not be used in the PICTURE

character-string of identifier-7.

(6) The DELIMITER IN phrase and the COUNT IN phrase may be specified only if

the DELIMITED BY phrase is specified.

(7) Identifier-1 must not be reference modified.

VI-136

Nucleus - UNSTRING

6.27.4 General Rules

(1) All references to identifier-2 and literal-1 apply equally to

identifier-3 and literal-2, respectively, and all recursions thereof.

(2) The data item referenced by identifier-1 represents the sending area.

(3) The data item referenced by identifier-4 represents the data receiving

area. The data item referenced by identifier-5 represents the receiving area

for delimiters.

(4) Literal-1 or the data item referenced by identifier-2 specifies a

delimiter.

(5) The data item referenced by identifier-6 represents the count of the

number of characters within the data item referenced by identifier-1 isolated by

the delimiters for the move to the data item referenced by identifier-4. This

value does not include a count of the delimiter character(s).

(6) The data item referenced by identifier-7 contains a value that indicates

a relative character position within the area referenced by identifier-1.

(7) The data item referenced by identifier-8 is a counter which is

incremented by 1 for each occurrence of the data item referenced by identifier-4

accessed during the UNSTRING operation.

(8) When a figurative constant is used as the delimiter, it stands for a

single character nonnumeric literal.

When the ALL phrase is specified, one occurrence or two or more

contiguous occurrences of literal-1 (figurative constant or not) or the content

of the data item referenced by identifier-2 are treated as if they were only one

occurrence, and one occurrence of literal-1 or the data item referenced by

identifier-2 is moved to the receiving data item according to the rules in

general rule 13d.

(9) When any examination encounters two contiguous delimiters, the current

receiving area is space filled if it is described as alphabetic or alphanumeric,

or zero filled if it is described as numeric.

(10) Literal-1 or the content of the data item referenced by identifier-2 can

contain any character in the computer's character set.

(11) Each literal-1 or the data item referenced by identifier-2 represents

one delimiter. When a delimiter contains two or more characters, all of the

characters must be present in contiguous positions of the sending item, and in

the order given, to be recognized as a delimiter.

(12) When two or more delimiters are specified in the DELIMITED BY phrase, an

OR condition exists between them. Each delimiter is compared to the sending

field. If a match occurs, the character(s) in the sending field is considered

to be a single delimiter. No character(s) in the sending field can be

considered a part of more than one delimiter.

VI-137

Nucleus - UNSTRING

Each delimiter is applied to the sending field in the sequence specified

in the UNSTRING statement.

(13) When the UNSTRING statement is initiated, the current receiving area is

the data item referenced by identifier-4. Data is transferred from the data

item referenced by identifier-1 to the data item referenced by identifier-4

according to the following rules:

a. If the POINTER phrase is specified, the string of characters

referenced by identifier-1 is examined beginning with the relative character

position indicated by the content of the data item referenced by identifier-7.

If the POINTER phrase is not specified, the string of characters is examined

beginning with the leftmost character position.

b. If the DELIMITED BY phrase is specified, the examination proceeds

left to right until either a delimiter specified by literal-1 or the value of

the data item referenced by identifier-2 is encountered. (See general rule 11.)

If the DELIMITED BY phrase is not specified, the number of characters examined

is equal to the size of the current receiving area. However, if the sign of the

receiving item is defined as occupying a separate character position, the number

of characters examined is one less than the size of the current receiving area.

If the end of the data item referenced by identifier-1 is

encountered before the delimiting condition is met, the examination terminates

with the last character examined.

c. The characters thus examined (excluding the delimiting character(s),

if any) are treated as an elementary alphanumeric data item, and are moved into

the current receiving area according to the rules for the MOVE statement. (See

page VI-103, The MOVE Statement.)

d. If the DELIMITER IN phrase is specified the delimiting character(s)

are treated as an elementary alphanumeric data item and are moved into the data

item referenced by identifier-5 according to the rules for the MOVE statement.

(See page VI-103, The MOVE Statement.) If the delimiting condition is the end

of the data item referenced by identifier-1, then the data item referenced by

identifier-5 is space filled.

e. If the COUNT IN phrase is specified, a value equal to the number of

characters thus examined (excluding the delimiter character(s), if any) is moved

into the area referenced by identifier-6 according to the rules for an

elementary move.

f. If the DELIMITED BY phrase is specified the string of characters is

further examined beginning with the first character to the right of the

delimiter. If the DELIMITED BY phrase is not specified the string of characters

is further examined beginning with the character to the right of the last

character transferred.

g. After data is transferred to the data item referenced by

identifier-4, the current receiving area is the data item referenced by the next

recurrence of identifier-4. The behavior described in paragraphs 13b through

13f is repeated until either all the characters are exhausted in the data item

referenced by identifier-1, or until there are no more receiving areas.

VI-138

Nucleus - UNSTRING

(14) The initialization of the contents of the data items associated with the

POINTER phrase or the TALLYING phrase is the responsibility of the user.

(15) The content of the data item referenced by identifier-7 will be

incremented by one for each character examined in the data item referenced by

identifier-1. When the execution of an UNSTRING statement with a POINTER phrase

is completed, the content of the data item referenced by identifier-7 will

contain a value equal to the initial value plus the number of characters

examined in the data item referenced by identifier-1.

(16) When the execution of an UNSTRING statement with a TALLYING phrase is

completed, the content of the data item referenced by identifier-8 contains a

value equal to its value at the beginning of the execution of the statement plus

a value equal to the number of identifier-4 receiving data items accessed during

execution of the statement.

(17) Either of the following situations causes an overflow condition:

a. An UNSTRING is initiated, and the value in the data item referenced

by identifier-7 is less than 1 or greater than the size of the data item

referenced by identifier-1.

b. If, during execution of an UNSTRING statement, all receiving areas

have been acted upon, and the data item referenced by identifier-1 contains

characters that have not been examined.

(18) When an overflow condition exists, the UNSTRING operation is terminated,

the NOT ON OVERFLOW phrase, if specified, is ignored and control is transferred

to the end of the UNSTRING statement or, if the ON OVERFLOW phrase is specified,

to imperative-statement-1. If control is transferred to imperative-statement-1,

execution continues according to the rules for each statement specified in

imperative-statement-1. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-1, control is transferred to the end of the

UNSTRING statement.

(19) The END-UNSTRING phrase delimits the scope of the UNSTRING statement.

(See page IV-40, Scope of Statements.)

(20) If, at the time of execution of an UNSTRING statement, the conditions

described in general rule 17 are not encountered, after completion of the

transfer of data according to the other general rules, the ON OVERFLOW phrase,

if specified, is ignored and control is transferred to the end of the UNSTRING

statement or, if the NOT ON OVERFLOW phrase is specified, to

imperative-statement-2. If control is transferred to imperative-statement-2,

execution continues according to the rules for each statement specified in

imperative-statement-2. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-2, control is transferred to the end of the

UNSTRING statement.

VI-139

Nucleus - UNSTRING

(21) If identifier-1, identifier-2, or identifier-3, occupies the same

storage area as identifier-4, identifier-5, identifier-6, identifier-7, or

ident i. f ier-8, or if identifier-4, identifier-5, or identifier-6, occupies the

same storage area as identifier-7 or identifier-8, or if identifier-7 and

identifier-8 occupy the same storage area, the result of the execution of this

statement is undefined, even if they are defined by the same data description

entry. (See page VI-69, Overlapping Operands.)

VI-140

Nucleus - Debugging

7. DEBUGGING IN THE NUCLEUS MODULE

7.1 GENERAL DESCRIPTION

Debugging within the Nucleus module provides the user with debugging lines

and a compile time switch for debugging lines.

7.2 COMPILE TIME SWITCH

The WITH DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER

paragraph (see page VI-10, The SOURCE-COMPUTER Paragraph). It serves as a

compile time switch over the debugging lines written in the separately compiled

program.

When the WITH DEBUGGING MODE clause is specified in a separately compiled

program, all debugging lines are compiled as specified in this presentation of

the Nucleus module. When the WITH DEBUGGING MODE clause is not specified, all

debugging lines are compiled as if they were comment lines.

The presence or absence of the WITH DEBUGGING MODE clause is logically

determined after all COPY and REPLACE statements are processed.

7.3 DEBUGGING LINES

A debugging line is any line with a 'D' in the indicator area of the line.

Any debugging line that consists solely of spaces from margin A to margin R is

considered the same as a blank line.

The content of a debugging line must be such that a syntactically correct

program is formed with or without the debugging lines being considered as

comment lines.

After all COPY and REPLACE statements have been processed, a debugging line

will be considered to have all the characteristics of a comment line, if the

WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph.

Successive debugging lines are allowed.

A debugging line is only permitted in the separately compiled program after

the OBJECT-COMPUTER paragraph.

VI-141

Sequential 1-0 - Introduction

SECTION VII: SEQUENTIAL 1-0 MODULE

1. INTRODUCTION TO THE SEQUENTIAL 1-0 MODULE

1.1 FUNCTION

The Sequential 1-0 module provides a capability to access records of a file

in established sequence. The sequence is established as a result of writing the

records to the file.

1.2 LEVEL CHARACTERISTICS

Sequential 1-0 level 1 provides limited capabilities for the file control

entry, the file description entry, and the entries in the I-O-CONTROL paragraph.

Within the Procedure Division, the Sequential 1-0 level 1 provides limited

capabilities for the CLOSE, OPEN, READ, USE, and WRITE statements; full

capabilities are provided for the REWRITE statement.

Sequential 1-0 level 2 provides full capabilities for the file control entry,

the file description entry, and the entries in the I-O-CONTROL paragraph.

Within the Procedure Division, the Sequential 1-0 level 2 provides full

capabilities for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements.

1.3 LANGUAGE CONCEPTS

1.3.1 Organization

Sequential files are organized so that each record, except the last, has a

unique successor record; each record, except the first, has a unique predecessor

record. The successor relationships are established by the order of execution

of WRITE statements when the file is created. Once established , successor

relationships do not change [except in the case where records are added to the]

|end of a file . 1

A sequentially organized mass storage file has the same logical structure as

a file on any sequential medium; however, a sequential mass storage file may be

updated in place. When this technique is used, new records cannot be added to

the file and each replaced record must be the same size as the original record.

1.3.2 Access Mode

For sequential organization, the order of sequential access is the order in

which the records were originally written.

VII-1

Sequential 1-0 - Introduction

1.3.3 Current Volume Pointer

The current volume pointer is a conceptual entity used in this document to

facilitate exact specification of the current physical volume of a sequential

file. The status of the current volume pointer is affected by the CLOSE, OPEN,

READ, and WRITE statements.

1.3.4 File Position Indicator

The file position indicator is a conceptual entity used in this document to

facilitate exact specification of the next record to be accessed within a given

file during certain sequences of input-output operations. The setting of the

file position indicator is affected only by the CLOSE, OPEN, and READ

statements. The concept of a file position indicator has no meaning for a file

opened in the output [or extend[mode.

1.3.5 1-0 Status

The 1-0 status is a two-character conceptual entity whose value is set to

indicate the status of an input-output operation during the execution of a

CLOSE, OPEN, READ, REWRITE, or WRITE statement and prior to the execution of any

imperative statement associated with that input-output statement or prior to the

execution of any applicable USE AFTER STANDARD EXCEPTION procedure. The value

of the 1-0 status is made available to the COBOL program through the use of the

FILE STATUS clause in the file control entry for the file.

The 1-0 status also determines whether an applicable USE AFTER STANDARD

EXCEPTION procedure will be executed. If any condition other than those

contained under the heading "Successful Completion" on page VII-3 results, such

a procedure may be executed depending on rules stated elsewhere. If one of the

conditions listed under the heading "Successful Completion" on page VII-3

results, no such procedure will be executed. (See page VII-50, The USE

Statement .)

Certain classes of 1-0 status values indicate critical error conditions.

These are: any that begin with the digit 3 or 4, and any that begin with the

digit 9 that the implementor defines as critical. If the value of the 1-0

status for an input-output operation indicates such an error condition, the

implementor determines what action is taken after the execution of any

applicable USE AFTER STANDARD EXCEPTION procedure, or if none applies, after

completion of the normal input-output control system error processing.

1-0 status expresses one of the following conditions upon completion of the

input-output operation:

(1) Successful Completion. The input-output statement was successfully

executed .

(2) At End. A sequential READ statement was unsuccessfully executed as a

result of an at end condition.

(3) Permanent Error. The input-output statement was unsuccessfully executed

as the result of an error that precluded further processing of the file. Any

specified exception procedures are executed. The permanent error condition

remains in effect for all subsequent input-output operations on the file unless

VII-2

Sequential 1-0 - Introduction

an implementor-defined technique is invoked to correct the permanent error

condition.

(4) Logic Error. The input-output statement was unsuccessfully executed as

a result of an improper sequence of input-output operations that were performed

on the file or as a result of violating a limit defined by the user.

(5) Implementor Defined. The input-output statement was unsuccessfully

executed as a result of a condition that is specified by the implementor.

The following is a list of the values placed in the 1-0 status for the

previously named conditions resulting from the execution of an input-output

operation on a sequential file. If more than one value applies, the implementor

determines which of the applicable values to place in the 1-0 status .

(1) Successful Completion

a. 1-0 Status = 00. The input-output statement is successfully

executed and no further information is available concerning the input-output

operation.

b. 1-0 Status =04. A READ statement is successfully executed but the

length of the record being processed does not conform to the fixed file

attributes for that file.

c. 1-0 Status =05. An OPEN statement is successfully executed but the

referenced optional file is not present at the time the OPEN statement is

executed. If the open mode is 1-0 or extend, the file has been created._

d. 1-0 Status = 07. The input-output statement is successfully

executed. However, for a CLOSE statement with the NO REWIND, REEL/UNIT, or FOR|

REMOVAL] phrase lor for an OPEN statement with the NO REWIND phrase, the

referenced file is on a non-ree1/unit medium.

(2) At End Condition With Unsuccessful Completion

a. 1-0 Status =10. A sequential READ statement is attempted and no

next logical record exists in the file because:

1) The end of the file has been reached, or

2) A sequential READ statement is attempted for the first time on

an optional input file that is not present._

(3) Permanent Error Condition With Unsuccessful Completion

a.

information

1-0 Status =

is available

30. A permanent error exists and

concerning the input-output operation.

no further

b . 1-0 Status

violation; an attempt

of a sequential file,

boundaries are defined

= 34. A permanent error ex

is made to write beyond the

The implementor specifies

sts because of a boundary

externally defined boundaries

the manner in which these

VII-3

Sequential 1-0 - Introduction

c . 1-0 Status

with the INPUT, I-O,

is not present.

= 35 . A permanent error exists because an OPEN

or EXTEND 1 phrase is attempted on a non-optiona1

statement

file that

d. 1-0 Status =37. A permanent error exists because

is attempted on a file and that file will not support the open

the OPEN statement. The possible violations are:

an OPEN statement

mode specified in

1) The] EXTEND or~| OUTPUT phrase is specified but the file will not

support write operations.

2) The 1-0 phrase is specified but the file will not support the

input and output operations that are permitted for a sequential file when opened

in the 1-0 mode.

3) The INPUT phrase is specified but the file will not support read

operations .

e. 1-0 Status =38. A permanent error exists because an OPEN statement

is attempted on a file previously closed with lock._

f. 1-0 Status = 39. The OPEN

conflict has been detected between the

specified for that file in the program.

statement is unsuccessful

fixed file attributes and the

because a

attributes

(4) Logic Error Condition With Unsuccessful Completion

a. 1-0 Status

open mode.

b. 1-0 Status

the open mode.

41 .

42.

An OPEN statement

A CLOSE statement

is attempted for a file

is attempted for a file

in the

not in

c. 1-0 Status = 43. For a mass storage fi

mode, the last input-output statement executed for

the execution of a REWRITE statement was not a

statement .

le in the sequential access

the associated file prior to

successfully executed READ

d. 1-0 Status =44. A boundary violation exists because:

1) An attempt is made to write or rewrite a record that is larger

than the largest or smaller than the smallest record allowed by the RECORD IS

VARYING clause of the associated file-name, or___

2) An attempt is made to rewrite a record to a sequential file and

the record is not the same size as the record being replaced.

e , . 1-0 Stat us = 46. A sequent

open in the input or 1-0 mode and

because:

1) The preceding READ stat<

an at end condi t ion, or

2) The preceding READ stat

VI1-4

Sequential 1-0 - Introduction

f.
a file not

1-0 Status

open in the

= 47. The execution of a READ statement is attempted

input or 1-0 mode.

on

g. 1-0 Status = 48. The execution of a WRITE statement is attempted on

a file not open in the output lor extendi mode.

h. 1-0 Status = 49. The execution of a REWRITE statement is attempted

on a file not open in the 1-0 mode.

(5) Implementor-Defined Condition With Unsuccessful Completion

a. 1-0 Status = 9x. An implementor-defined condition exists. This

condition must not duplicate any condition specified by the 1-0 status values 00

through 49. The value of x is defined by the implementor.

1.3.6 The At End Condition

The at end condition can occur as a result of the execution of a READ

statement. (See page VII-44. The READ Statement.)

1.3.7 The File Attribute Conflict Condition

The file attribute conflict condition can result from the execution of an

OPEN, REWRITE, or WRITE statement. When the file attribute conflict condition

occurs, execution of the input-output statement that recognized the condition is

unsuccessful and the file is not affected. (See page VII-39, The OPEN

Statement; page VII-48, The REWRITE Statement; and page VII-52, The WRITE

Statement.)

When the file attribute conflict condition is recognized, these actions take

place in the following order:

(1) A value is placed in the 1-0 status associated with the file-name to

indicate the file attribute conflict condition. (See page VII-2, 1-0 Status.)

(2) A USE AFTER EXCEPTION procedure, if any, associated with the file-name

is executed.

1.3.8 Special Register LINAGE-COUNTER

The reserved word LINAGE-COUNTER is a name for a line counter generated by

the presence of a LINAGE clause in a file description entry. (See page VII-27,

The LINAGE Clause.) The implicit description is that of an unsigned integer

whose size is equal to the size of integer-1 or the data item referenced by

data-name-1 in the LINAGE clause. LINAGE-COUNTER may be referenced only in

Procedure Division statements; however, only the input-output control system may

change the value of LINAGE-COUNTER._

VII-5

Sequential 1-0 - Input-Output Section

2. ENVIRONMENT DIVISION IN THE SEQUENTIAL 1-0 MODULE

2.1 INPUT-OUTPUT SECTION

The Input-Output Section is located in

program. The Input-Output Section deals

transmission and handling of data between

The Input-Output Section is optional

source program.

The general format of the Input-Output

the Environment Division of a source

with the information needed to control

external media and the object program,

in the Environment Division of a COBOL

Section is shown below.

INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry} ...

fI-O-CONTROL. [input-output-control-entry]]

VII-6

Sequential 1-0 - FILE-CONTROL

2.2 THE FILE-CONTROL PARAGRAPH

2.2.1 Function

The FILE-CONTROL paragraph allows specification of file-related information.

2.2.2 General Format

FILE-CONTROL. {file-control-entry} ...

2.3 THE FILE CONTROL ENTRY

2.3.1 Function

The file control entry declares the relevant physical attributes of a

sequential file.

2.3.2 General Format

SELECT | [OPTIONAL] | file-name-1

ASSIGN TO /implementor-name-1
- (literal-1

RESERVE integer-1

[[ORGANIZATION IS]

AREA
AREAS

SEQUENTIAL]

idata-name-1I
PADDING CHARACTER IS iliteral_2 f

(STANDARD-1 \
RECORD DELIMITER IS { --;-“ . . J - - (implementor-name-z)

[ACCESS MODE IS SEQUENTIAL!

[FILE STATUS IS data-name-2].

2.3.3 Syntax Rules

(1) The SELECT clause must be specified first in the file control entry.

The clauses which follow the SELECT clause may appear in any order.

(2) Each file-name in the Data Division must be specified only once in the

FILE-CONTROL paragraph. Each file-name specified in the SELECT clause must have

a file description entry in the Data Division of the same program.

(3) Literal-1 must be a nonnumeric literal and must not be a figurative

constant. The meaning and rules for the allowable content of implementor-name-1

and the value of literal-1 are defined by the implementor.

VII-7

Sequential 1-0 - FILE-CONTROL

2.3.4 General Rules

(1) If the file connector referenced by file-name-1 is an external file

connector (see page X-23, The EXTERNAL Clause), all file control entries in the

run unit which reference this file connector must have:

a. The same specification for the OPTIONAL phrase.

b. A consistent specification for implementor-name-1 or literal-1 in

the ASSIGN clause. The implementor will specify the consistency rules for

implementor-name-1 or literal-1.

c. A consistent specification for implementor-name-2 in the RECORD

DELIMITER clause. The implementor will specify the consistency rules for

implementor-name-2.

d. The same value for integer-1 in the RESERVE clause.

e. The same organization.

f. The same access mode.

g- The same specification for the PADDING CHARACTER clause.

(2) The OPTIONAL phrase applies only to files opened in the input, 1-0, or

extend mode . Its specification is required for files that are not necessar ily

present each time the object program is executed.

(3) The ASSIGN clause specifies the association of the file referenced by

file-name-1 to a storage medium referenced by implementor-name-1 or literal-1 •

(4) The ACCESS MODE clause, the FILE STATUS clause, the ORGANIZATION IS

SEQUENTIAL clause, | the PADDING CHARACTER clause, the RECORD DELIMITER clause,

land the RESERVE clause I are presented in alphabetical order on the following

pages .

VII-8

Sequential 1-0 - ACCESS MODE

2.4 THE ACCESS MODE CLAUSE

2.4.1 Function

The ACCESS MODE clause specifies the order in which records are to be

accessed in the file.

2.4.2 General Format

ACCESS MODE IS SEQUENTIAL

2.4.3 General Rules

(1) If the ACCESS MODE clause is not specified, sequential access is

assumed.

(2) Records in the file are accessed in the sequence dictated by the file

organization. For sequential files this sequence is specified by

predecessor-successor record relationships established by the execution of WRITE

statements when the file is created[or extended. |

(3) If the associated file connector is an external file connector, every

file control entry in the run unit which is associated with that file connector

must specify the same access mode.

VII-9

Sequential 1-0 - FILE STATUS

2.5 THE FILE STATUS CLAUSE

2.5.1 Function

The FILE STATUS clause specifies a data item which contains the status of an

input-output operation.

2.5.2 General Format

FILE STATUS IS data-name-1

2.5.3 Syntax Rules

(1) Data-name-1 may be qualified.

(2) Data-name-1 must be defined in the Data Division as a two-character data

item of the category alphanumeric and must not be defined in the File Section,

Report Section, or the Communication Section.

2.5.4 General Rules

(1) If the FILE STATUS clause is specified, the data item referenced by

data-name-1 is always updated to contain the value of the 1-0 status whenever

the 1-0 status is updated. This value indicates the status of execution of the

statement. (See page VII-2, 1-0 Status.)

(2) The data

execution of an

entry associated

item referenced by data-name-1 which is updated

input-output statement is the one specified in the

with that statement.

during the

file control

VII-10

Sequential 1-0 - ORGANIZATION IS SEQUENTIAL

2.6 THE ORGANIZATION IS SEQUENTIAL CLAUSE

2.6.1 Function

The ORGANIZATION IS SEQUENTIAL clause specifies sequential organization as

the logical structure of a file.

2.6.2 General Format

fORGANIZATION IS] SEQUENTIAL

2.6.3 General Rules

(1) The ORGANIZATION IS SEQUENTIAL clause specifies sequential organization

as the logical structure of a file. The file organization is established at the

time a file is created and cannot subsequently be changed.

(2) Sequential organization is a permanent logical file structure in which a

record is identified by a predecessor-successor relationship established when

the record is placed into the file.

(3) When the ORGANIZATION clause is not specified, sequential organization

is implied.

VII-11

Sequential 1-0 - PADDING CHARACTER

2.7 THE PADDING CHARACTER CLAUSE

2.7.1 Function

The PADDING CHARACTER clause specifies the character which is to be used for

block padding on sequential files.

2.7.2 General Format

PADDING CHARACTER IS /data-name-l|
- (literal-1 j

2.7.3 Syntax Rules

(1) Literal-1 must be a one-character nonnumeric literal.

(2) Data-name-1 may be qualified.

(3) Data-name-1 must be defined in the Data Division as a one-character data

item of the category alphanumeric and must not be defined in the Communication

Section, the File Section, or the Report Section.

2.7.4 General Rules

(1) The PADDING CHARACTER clause specifies the character which is to be used

for block padding on sequential files. During input operations, any portion of

a block which exists beyond the last logical record and consists entirely of

padding characters will be bypassed. During input operations, a logical record

which consists solely of padding characters will be ignored. During output

operations, any portion of a block which exists beyond the last logical record

will be filled entirely with padding characters.

(2) If the PADDING CHARACTER clause is not applicable to the device type to

which the file is assigned, the creation or recognition of padding characters

does not occur.

(3) Literal-1 or the value of the data item referenced by data-name-1, at

the time the OPEN statement which creates the file is executed, is used as the

value of the padding character. The padding character is a fixed file

at tribute.

(4) If the CODE-SET clause is specified for the file, conversion of the

padding character specified by literal-1 or the content of data-name-1 is

established for the file when the file is opened.

(5) If the PADDING CHARACTER clause is not specified, the value used for the

padding character will be defined by the implementor.

(6) If the associated file connector is an external file connector, all

PADDING CHARACTER clauses in the run unit which are associated with that file

connector must have the same specifications. If data-name-1 is specified, it

must reference an external data item.

VII-12

Sequential 1-0 - RECORD DELIMITER

2.8 THE RECORD DELIMITER CLAUSE

2.8.1 Function

The RECORD DELIMITER clause indicates the method of determining the length of

a variable length record on the external medium.

2.8.2 General Format

RECORD DELIMITER IS)
- - (implementor-name-1j

2.8.3 Syntax Rules

(1) The RECORD DELIMITER clause may be specified only for variable length

records.

(2) If the STANDARD-1 phrase is specified, the external medium must be a

magnetic tape file.

2.8.4 General Rules

(1) The RECORD DELIMITER clause is used to indicate the method of

determining the length of a variable length record on the external medium. Any

method used will not be reflected in the record area or the record size used

within the program.

(2) If the STANDARD-1 phrase is specified, the method used for determining

the length of a variable length record is that specified in American National

Standard X3.27-1978, Magnetic Tape Labels and File Structure for Information

Interchange, and International Standard 1001 1979, Magnetic Tape Labels and File

Structure for Information Interchange.

(3) If the implementor-name-1 phrase is specified, the method used for

determining the length of a variable length record is that associated with

implementor-name-1 by the implementor.

(4) If the RECORD DELIMITER clause is not specified, the method used for

determining the length of a variable length record is specified by the

implementor.

(5) At the time of a successful execution of an OPEN statement, the record

delimiter is the one specified in the RECORD DELIMITER clause in the file

control entry associated with the file-name specified in the OPEN statement.

(6) If the associated file connector is an external file connector, all

RECORD DELIMITER clauses in the run unit which are associated with that file

connector must have the same specifications.

VII-13

Sequential 1-0 - RESERVE

2.9 THE RESERVE CLAUSE

2.9.1 Function

The RESERVE clause allows the user to specify the number of input-output

areas allocated.

2.9.2 General Format

RESERVE integer-1

2.9.3 General Rules

(1) The RESERVE clause allows the user to specify the number of input-output

areas allocated. If the RESERVE clause is specified, the number of input-output

areas allocated is equal to the value of integer-1. If the RESERVE clause is

not specified, the number of input-output areas allocated is specified by the

implementor.

VII-14

Sequential 1-0 - I-O-CONTROL

2.10 THE I-O-CONTROL PARAGRAPH

2.10.1 Function

The I-O-CONTROL paragraph specifies the points at which rerun is to be

established, the memory area which is to be shared by different files ,| and the

location of files on a multiple file reel.] The RERUN clause and the MULTIPLE

FILE TAPE clause within the I-O-CONTROL paragraph are obsolete elements in

Standard COBOL because they are to be deleted from the next revision of Standard

COBOL.

2.10.2 General Format

I-O-CONTROL.

RERUN ON
(file-name-
(implemento

1 y
r-name-lj

| ^ {uNIT f > OF file-name-2
EVERY { jinteger-1 RECORDS

I integer-2 CLOCK-UNITS
,condition-name-1

rSAME [RECORD] AREA FOR file-name-3 {file-name-4} ...] ...

[MULTIPLE FILE TAPE CONTAINS {file-name-5 [POSITION integer-3]} ...

2.10.3 Syntax Rules

(1) The order of appearance of the clauses is immaterial.

2.10.4 General Rules

(1) 1 The MULTIPLE FILE TAPE clause,

presented in alphabetical order on the

the RERUN

fo1lowing

clause,

pages .

and the SAME clause are

VII-15

Sequential 1-0 - MULTIPLE FILE TAPE

2.11 THE MULTIPLE FILE TAPE CLAUSE

2.11.1 Function

The MULTIPLE FILE TAPE clause specifies the location of files on a multiple

file reel. The MULTIPLE FILE TAPE clause is an obsolete element in Standard

COBOL because it is to be deleted from the next revision of Standard COBOL.

2.11.2 General Format

MULTIPLE FILE TAPE CONTAINS {file-name-1 [POSITION integer-1]} ...

2.11.3 General Rules

(1) The MULTIPLE FILE TAPE clause is required when more than one file shares

the same physical reel of tape. Regardless of the number of files on a single

reel, only those files that are used in the object program need be specified.

If all file-names have been listed in consecutive order, the POSITION phrase

need not be given. If any file in the sequence is not listed, the position

relative to the beginning of the tape must be given. Not more than one file on

the same tape reel may be open at one time.

1

VII-16

Sequential 1-0 - RERUN

2.12 THE RERUN CLAUSE

The RERUN clause specifies the points at which rerun is to be established.

The RERUN clause is an obsolete element in Standard COBOL because it is to be

deleted from the next revision of Standard COBOL.

2.12.2 General Format

2.12.3 Syntax Rules

(1) File-name-1 must be a sequentially organized file.

(2) The END OF REEL/UNIT phrase may only be used if file-name-2 is a

sequentially organized file. The definition of UNIT is determined by each

implementor -

(3) When either the integer-1 RECORDS phrase or the integer-2 CLOCK-UNITS

phrase is specified, implementor-name-1 must be given in the RERUN clause.

(4) More than one RERUN clause may be specified for a given file-name-2

subject to the following restrictions:

a. When multiple integer-1 RECORDS phrases are specified, no two of

them may specify the same file-name-2.

b. When multiple END OF REEL or END OF UNIT phrases are specified, no

two of them may specify the same file-name-2.

(5) Only one RERUN clause containing the CLOCK-UNITS phrase may be

specified.

2.12.4 General Rules

(1) The RERUN clause specifies when and where the rerun information is

recorded. Rerun information is recorded in the following ways:

a. If file-name-1 is specified, the rerun information is written on

each reel or unit of an output file and the implementor specifies where, on the

reel or file, the rerun information is to be recorded.

b. If implementor-name is specified, the rerun information is written

as a separate file on a device specified by the implementor.

(2) There are seven forms of the RERUN clause, based on the several

conditions under which rerun points can be established. The implementor must

provide at least one of the specified forms of the RERUN clause.

VII-17

Sequential 1-0 RERUN

a. When either the END OF REEL or END OF UNIT phrase is used without

the ON phrase. In this case, the rerun information is written on file-name-2,

which must be an output file.

b. When either the END OF REEL or END OF UNIT phrase is used and

file-name-1 is specified in the ON phrase. In this case, the rerun information

is written on file-name-1, which must be an output file. In addition, normal

reel, or unit, closing functions for file-name-2 are performed. File-name-2 may

either be an input or an output file.

c . When either the END OF REEL or END OF UNIT phrase is used and

implementor-name is specified in the ON phrase. In this case, the rerun

information is written on a separate rerun unit defined by the implementor.

File-name-2 may be either an input or output file.

d. When the integer-1 RECORDS phrase is used. In this case, the rerun

information is written on the device specified by implementor-name-1, which must

be specified in the ON phrase, whenever integer-1 records of file-name-2 have

been processed. File-name-2 may be either an input or output file with any

organization or access.

e. When the integer-2 CLOCK-UNITS phrase is used. In this case the

rerun information is written on the device specified by implementor-name-1,

which must be specified in the ON phrase, whenever an interval of time,

calculated by an internal clock, has elapsed.

f. When the condition-name-1 phrase is used and implementor-name-1 is

specified in the ON phrase. In this case, the rerun information is written on

the device specified by implementor-name-1 whenever a switch assumes a

particular status as specified by condition-name-1. In this case, the

associated switch must be defined in the SPECIAL-NAMES paragraph of the

Configuration Section of the Environment Division. The implementor specifies

when the switch status is interrogated.

g. When the condition-name-1 phrase is used and file-name-1 is

specified in the ON phrase. In this case, the rerun information is written on

file-name-1, which must be an output file, whenever a switch assumed a

particular status as specified by condition-name-1. In this case, as in

paragraph f above, the associated switch must be defined in the SPECIAL-NAMES

paragraph of the Configuration Section of the Environment Division. The

implementor specifies when the switch status is interrogated.

VII-18

Sequential 1-0 - SAME

2.13 THE SAME CLAUSE

2.13.1 Function

The SAME clause specifies the memory area which is to be shared by different

files .

2.13.2 General Format

SAME [RECORD] AREA FOR file-name-1 {file-name-2} ...

2.13.3 Syntax Rules

(1) File-name-1 and file-name-2 must be specified in the FILE-CONTROL

paragraph of the same program.

(2) File-name-1 and file-name-2 may not reference an external file

connector.

(3) More than one SAME clause may be included in the program, subject to the

following restrictions:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA

clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME

RECORD AREA clause, all of the file-names in that SAME AREA clause must appear

in the SAME RECORD AREA clause. However, additional file-names not appearing in

that SAME AREA clause may also appear in that SAME RECORD AREA clause. The rule

that only one of the files mentioned in a SAME AREA clause can be open at any

given time takes precedence over the rule that all files mentioned in a SAME

RECORD AREA clause can be open at any given time.

(4) The files referenced in the SAME AREA for SAME RECORD AREA] clause need

not all have the same organization or access.

2.13.4 General Rules

(1) The SAME AREA clause specifies that two or more files referenced by

file-name-1, file-name-2 that do not represent sort or merge files are to use

the same memory area during processing. The area being shared includes all

storage areas assigned to the files referenced by file-name-1, file-name-2;

therefore, it is not valid to have more than one of these files in the open mode

at the same time. (See syntax rule 3c above.)

VII-19

Sequential 1-0 - SAME

(2) The SAME RECORD AREA clause specifies that two or more files referenced

by file-name-1, file-name-2 are to use the same memory area for processing of

the current logical record. All of these files may be in the open mode at the

same time. A logical record in the SAME RECORD AREA is considered as a logical

record of each file open in the output mode whose file-name appears in this SAME

RECORD AREA clause and of the most recently read file open in the input mode

whose file-name appears in this SAME RECORD AREA clause. This is equivalent to

an implicit redefinition of the area, i.e., records are aligned on the leftmost

character position.

VII-20

Sequential 1-0 - File Section

3. DATA DIVISION IN THE SEQUENTIAL 1-0 MODULE

3.1 FILE SECTION

The File Section is located in the Data Division of a source program. The

File Section defines the structure of data files. Each file is defined by a

file description entry and one or more record description entries. Record

description entries are written immediately following the file description

entry.

The general format of the File Section in the Sequential 1-0 module is shown

below.

FILE SECTION,

[file-description-entry

{record-description-entry} ...] ...

3.1.1 File Description Entry

In a COBOL program the file description entry (FD entry) represents the

highest level of organization in the File Section. The File Section header is

followed by a file description entry consisting of a level indicator (FD), a

file-name, and a series of independent clauses. The clauses of a file

description entry (FD entry) specify the size of the logical and physical

records, the presence or absence of label records, the value of

implementor-defined label items, the names of the records which comprise the

file, and finally the number of lines to be written on a logical printer page.

The entry itself is terminated by a period.

3.1.2 Record Description Structure

A record description consists of a set of data description entries which

describe the characteristics of a particular record. Each data description

entry consists of a level-number followed by the data-name or FILLER clause, if

specified, followed by a series of independent clauses as required. A record

description may have a hierarchical structure and therefore the clauses used

with an entry may vary considerably, depending upon whether or not it is

followed by subordinate entries. The structure of a record description and the

elements allowed in a record description entry are explained on page IV-14,

Concept of Levels, and on page VI-20, The Data Description Entry. The

availability of specific clauses in the data description entry is dependent on

the level of Nucleus module supported by the implementation.

3.1.3 Initial Values

The initial value of a data item in the File Section is undefined.

VII-21

Sequential 1-0 - File Description Entry

3.2 THE FILE DESCRIPTION ENTRY

3.2.1 Function

The file description entry furnishes information concerning the physical

structure, identification, and record-names pertaining to a sequential file.

3.2.2. General Format

FD file-name-1

BLOCK CONTAINS [integer-1 TO] integer-2
(RECORDS I
(characters/

CONTAINS integer-3 CHARACTERS

RECORD
IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

LABEL
(RECORD IS) (STANDARD

*) RECORDS ARE(1 OMITTED j

VALUE OF |implementor-name-1 IS f [1 . _. (RECORD IS) , . ., ;
2^) RECORDS ARE I Wata-name-3} . . .J

(|data-name-2l(I ?
[literal-1 jj j

[LINAGE IS idata naraa 4\ LINES fwiTH FOOTING AT ^data name 5
[integer-8 j I

LINES AT TOP /data-name-6
- [integer-10

[integer-9

(data-n;
[integer-11

LINES AT BOTTOM jdata nam<^ 7 jj j

[CODE-SET IS alphabet-name-1].

3.2.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description

entry and must precede file-name-1.

(2) The clauses which follow file-name-1 may appear in any order.

(3) One or more record description entries must follow the file description

entry.

3.2.4 General Rules

(1) A file description entry associates file-name-1 with a file connector.

(2) The BLOCK CONTAINS clause, the CODE-SET clause, the DATA RECORDS clause,

the LABEL RECORDS clause, the LINAGE clause, the RECORD clause, and the VALUE OF

clause are presented in alphabetical order on the following pages.

VII-22

Sequential 1-0 - BLOCK CONTAINS

3.3 THE BLOCK CONTAINS CLAUSE

3.3.1 Function

The BLOCK CONTAINS clause specifies the size of a physical record.

3.3.2 General Format

BLOCK CONTAINS [integer-1 T01 integer-2
fRECORDS

(CHARACTERS

3.3.3 General Rules

(1) This clause is required except when one or more of the following

conditions exist:

a. A physical record contains one and only one complete logical record.

b. The hardware device assigned to the file has one and only one

physical record size.

c. The number of records contained in a block is specified in the

operating environment.

(2) The size of a physical record may be stated in terms of records unless

one or more of the following situations exists, in which case the RECORDS phrase

must not be used:

a. In mass storage files, where logical records may extend across

physical records.

b. The physical record contains padding (area not contained in a

logical record).

c. Logical records are grouped in such a manner that an inaccurate

physical record size would be implied.

(3) If the CHARACTERS phrase is specified, the physical record size is

specified in terms of the number of character positions required to store the

physical record, regardless of the types of characters used to represent the

items within the physical record.

the

to

(4) If integer-1 is no

physical record.1 If

the minimum and maximum

t specified, _

integer-1 and

size of the

integer-2 represents the exac

integer-2 are both specified,

physical record, respectively.

t size of

they refer

(5) If the associated file connector is an external file connector, all

BLOCK CONTAINS clauses in the run unit which are associated with that file

connector must have the same value for integer-1 and integer-2.

VII-23

Sequential 1-0 - CODE-SET

3.4 THE CODE-SET CLAUSE

3.4.1 Function

The CODE-SET clause specifies the character code convention used to represent

data on the external media.

3.4.2 General Format

CODE-SET IS alphabet-name-1

3.4.3 Syntax Rules

(1) If the CODE-SET clause is specified for a file, all data in that file

must be described as USAGE IS DISPLAY and any signed numeric data must be

described with the SIGN IS SEPARATE clause.

(2) The alphabet-name clause referenced by the CODE-SET clause must not

specify the literal phrase.

3.4.4 General Rules

(1) If the CODE-SET clause is specified:

a. Upon successful execution of an OPEN statement, the character set

used to represent the data on the external media is the one referenced by

alphabet-name-1 in the file description entry associated with the file-name

specified in the OPEN statement. (See page VI-13, The SPECIAL-NAMES Paragraph.)

b. It specifies the algorithm for converting the character set on the

external media from/to the native character set during the execution of an input

or output operation.

(2) If the CODE-SET clause is not specified, the native character set is

assumed for data on the external media.

(3) If the associated file connector is an external file connector, all

CODE-SET clauses in the run unit which are associated with that file connector

must have the same character set.

VII-24

Sequential 1-0 - DATA RECORDS

3.5 THE DATA RECORDS CLAUSE

3.5.1 Function

The DATA RECORDS clause serves only as documentation for the names of data

records within their associated file. The DATA RECORDS clause is an obsolete

element in Standard COBOL because it is to be deleted from the next revision of

Standard COBOL.

3.5.2 General Format

nAT. /RECORD IS) rj
- 1 RECORDS AREj 'data name-1} ...

3.5.3 Syntax Rules

(1) Data-name-1 is the name of a data record and must have an 01

level-number record description, with the same name, associated with it.

3.5.4 General Rules

(1) The presence of more than one data-name indicates that the file contains

more than one type of data record. These records may be of differing sizes,

different formats, etc. The order in which they are listed is not significant.

(2) Conceptually, all data records within a file share the same area. This

is in no way altered by the presence of more than one type of data record within

the file.

VII-25

Sequential 1-0 - LABEL RECORDS

3.6 THE LABEL RECORDS CLAUSE

3.6.1 Function ^

The LABEL RECORDS clause specifies whether labels are present. The LABEL

RECORDS clause is an obsolete element in Standard COBOL because it is to be

deleted from the next revision of Standard COBOL.

3.6.2 General Format

(RECORD IS) (STANDARD i

——- 1 RECORDS AREj j OMITTED j

3.6.3 General Rules

(1) OMITTED specifies that no explicit labels exist for the file or the

device to which the file is assigned.

(2) STANDARD specifies that labels exist for the file or the device to which

the file is assigned and the labels conform to the implementor's label

specifications .

(3) If the LABEL RECORDS clause is not specified for a file, label records

for that file must conform to the implementor's label specifications.

(4) If the file connector associated with this file description entry is an

external file connector (see page X-23, The External Clause), all LABEL RECORDS I

clauses in the run unit which are associated with this file connector must have

the same specification.

VII-26

Sequential 1-0 - LINAGE

3.7 THE LINAGE CLAUSE

3.7.1 Function

The LINAGE clause provides a means for specifying the depth of a logical page

in terms of number of lines. It also provides for specifying the size of the

top and bottom margins on the logical page, and the line number, within the page

body, at which the footing area begins.

3.7.2 General Format

LINAGE IS (data-name-U LINES [wiTH FOOTING AT /data~nama-2\
(integer-! j I - [mteger-2 j

LINES AT TOP
Jdata-name-3

[integer-3

[
i] [LINES AT BOTTOM

jdata-name-4

[integer-4

3.7.3 Syntax Rules

(1) Data-name-1, data-name-2, data-name-3, data-name-4 must reference

elementary unsigned numeric integer data items.

(2) Data-name-1, data-name-2, data-name-3, data-name-4 may be qualified.

(3) Integer-2 must not be greater than integer-1.

(4) Integer-3, integer-4 may be zero.

3.7.4 General Rules

(1) The LINAGE clause provides a means for specifying the size of a logical

page in terms of number of lines. The logical page size is the sum of the

values referenced by each phrase except the FOOTING phrase. If the LINES AT TOP

or LINES AT BOTTOM phrases are not specified, the values of these items are

zero. If the FOOTING phrase is not specified, no end-of-page condition

independent of the page overflow condition exists.

There is not necessarily any relationship between the size of

logical page and the size of a physical page.

the

(2) Integer-1 or the value of the data item referenced by data-name-1

specifies the number of lines that can be written and/or spaced on the logical

page. The value must be greater than zero. That part of the logical page in

which these lines can be written and/or spaced is called the page body.

(3) Integer-2 or the value of the data item referenced by data-name-2

specifies the line number within the page body at which the footing area begins.

The value must be greater than zero and not greater than integer-1 or the value

of the data item referenced by data-name-1.

The footing area comprises the area of the page body between the line

represented by integer-2 or the value of the data item referenced by data-name-2

and the line represented by integer-1 or the value of the data item referenced

by data-name-1, inc lusive ._

VII-27

Sequential 1-0 - LINAGE

(4) Integer-3 or the value of the data item referenced by data-name-3

specifies the number of lines that comprise the top margin on the logical page.

The value may be zero.

(5) Integer-4 or the value of the data item referenced by data-name-4

specifies the number of lines that comprise the bottom margin on the logical

page. The value may be zero.

(6) Integer-1, integer-3, and integer-4, if specified, are used at the time

the file is opened by the execution of an OPEN statement with the OUTPUT phrase,

to specify the number of lines that comprise each of the indicated sections of a

logical page. Integer-2, if specified, is used at that time to define the

footing area. These values are used for all logical pages written for that file

during a given execution of the program.

(7) The values of the data items referenced by data-name-1, data-name-3, and

data-name-4, if specified, are used as follows:

a. The values of the data items, at the time an OPEN statement with the

OUTPUT phrase is executed for the file, are used to specify the number of lines

that are to comprise each of the indicated sections for the first logical page.

b. The values of the data items, at the time a WRITE statement with the

ADVANCING PAGE phrase is executed or a page overflow condition occurs are used

to specify the number of lines that are to comprise each of the indicated

sections for the next logical page. (See page VII-52, The WRITE Statement.)

(8) The value of the data item referenced by data-name-2, if specified, at

the time an OPEN statement with the OUTPUT phrase is executed for the file, is

used to define the footing area for the first logical page. At the time a WRITE

statement with the ADVANCING PAGE phrase is executed or a page overflow

condition occurs, it is used to define the footing area for the next logical

page.

(9) A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The

value in the LINAGE-COUNTER at any given time represents the line number at

which the device is positioned within the current page body. The rules

governing the LINAGE-COUNTER are as follows:

a. A separate LINAGE-COUNTER is supplied for each file described in the

File Section whose file description entry contains a LINAGE clause.

b. LINAGE-COUNTER may be referenced only in Procedure Division

statements; however only the input-output control system may change the value of

LINAGE-COUNTER. Since more than one LINAGE-COUNTER may exist in a program, the

user must qualify LINAGE-COUNTER by file-name when necessary.

c. LINAGE-COUNTER is automatically modified, according to the following

rules, during the execution of a WRITE statement to an associated file:

1) When the ADVANCING PAGE phrase of the WRITE statement is

specified, the LINAGE-COUNTER is automatically reset to one. During the

resetting of LINAGE-COUNTER to the value one, the value of LINAGE-COUNTER is

implicitly incremented to exceed the value specified by integer-1 or the data

item referenced by data-name-1.__

VII-28

Sequential 1-0 - LINAGE

2) When the ADVANCING identifier-2 or integer-1 phrase of the WRITE

statement is specified, the LINAGE-COUNTER is incremented by integer-1 or the

value of the data item referenced by identifier-2.

3) When the ADVANCING phrase of the WRITE statement is not

specified, the LINAGE-COUNTER is incremented by the value one. (See page

VII-52, The WRITE Statement.)

4) The value of LINAGE-COUNTER is automatically reset to one when

the device is repositioned to the first line that can be written on for each of

the succeeding logical pages. (See page VII-52, The WRITE Statement.)

d. The value of LINAGE-COUNTER is automatically set to one at the time

an OPEN statement with the OUTPUT phrase is executed for the associated file.

(10) Each logical page is contiguous to the next with no additional spacing

provided.

(11) If the file connector associated with this file description entry is an

external file connector, all file description entries in the run unit which are

associated with this file connector must have:

a. A LINAGE clause, if any file description entry has a LINAGE clause.

b. The same corresponding values for integer-1, integer-2, integer-3,

and integer-4, if specified.

c. The same corresponding external data items referenced by

data-name-1, data-name-2, data-name-3, and data-name-4.

VII-29

Sequential 1-0 - RECORD

3.8 THE RECORD CLAUSE

3.8.1 Function

The RECORD clause specifies the number of character positions in a fixed

length record, or specifies the range of character positions in a variable

length record. If the number of character positions does vary, the clause

specifies the minimum and maximum number of character positions.

3.8.2 General Format

Format 1:

RECORD CONTAINS integer-1 CHARACTERS

Format 2:

RECORD IS VARYING IN SIZE [[FROM integer-2] [TO integer-3] CHARACTERS]

rDEPENDING ON data-name-1]

Format 3:

RECORD CONTAINS integer-4 TO integer-5 CHARACTERS

3.8.3 Syntax Rules

FORMAT 1:

(1) No record description entry for the file may specify a number of

character positions greater than integer-1.

FORMAT 2:

(2) Record descriptions for the file must not describe records which contain

a lesser number of character positions than that specified by integer-2 nor

records which contain a greater number of character positions than that

specified by integer-3.

(3) Integer-3 must be greater than integer-2.

(4) Data-name-1 must describe an elementary unsigned integer in the

Working-Storage or Linkage Section.

3.8.4 General Rules

ALL FORMATS:

(1) If the RECORD clause is not specified, the size of each data record is

completely defined in the record description entry.

VII-30

Sequential 1-0 - RECORD

(2) If the associated file connector

description entries in the run unit

connector must specify the same values for

If the RECORD clause is not specified, all

with this file connector must be the same

FORMAT 1:

(3) Format 1 is used

the number of character

is an external file connector, all file

which are associated with that file

integer-1 [or integer-2 and integer-3T

record description entries associated

length .

Integer-1 specifies

in the file.

to specify fixed length records .

positions contained in each record

FORMAT 2:

2 is used to specify variable length records . Integer-2

minimum number of character positions to be contained in any

maximum number of character

(4) Format

specifies the

record of the file. Integer-3 specifies the

positions in any record of the file.

(5) The number of character positions associated with a record description

is determined by the sum of the number of character positions in all elementary

data items excluding redefinitions and renamings, plus any implicit FILLER due

to synchronization. If a table is specified:

a. The minimum number of table elements described in the record is used

in the summation above to determine the minimum number of character positions

associated with the record description.

b. The maximum number of table elements described in the record is used

in the summation above to determine the maximum number of character positions

associated with the record description.

(6) If integer-2 is not specified, the minimum number of character positions

to be contained in any record of the file is equal to the least number of

character positions described for a record in that file.

(7) If integer-3 is not specified, the maximum number of character positions

to be contained in any record of the file is equal to the greatest number of

character positions described for a record in that file.

(8) If data-name-1 is specified, the number of character positions in the

record must be placed into the data item referenced by data-name-1 before any

RELEASE, REWRITE, or WRITE statement is executed for the file.

(9) If data-name-1 is specified, the execution of a DELETE, RELEASE,

REWRITE, START, or WRITE statement or the unsuccessful execution of a READ or

RETURN statement does not alter the content of the data item referenced by

data-name-1.

(10) During the execution of a RELEASE, REWRITE, or WRITE statement, the

number of character positions in the record is determined by the following
conditions:

a. If data-name-1 is specified, by

referenced by data-name-1.
the content of the data item

VII-31

Sequential 1-0 - RECORD

b. If data-name-1 is not specified and the record does not contain a

variable occurrence data item, by the number of character positions in the

record.

c. If data-name-1 is not specified and the record does contain a

variable occurrence data item, by the sum of the fixed portion and that portion

of the table described by the number of occurrences at the time of execution of

the output statement.

(11) If data-name-1 is specified, after the successful execution of a READ or

RETURN statement for the file, the contents of the data item referenced by

data-name-1 will indicate the number of character positions in the record just

read.

(12) If the INTO phrase is specified in the READ or RETURN statement, the

number of character positions in the current record that participate as the

sending data items in the implicit MOVE statement is determined by the following

conditions:

a. If data-name-1 is specified, by the content of the data item

referenced by data-name-1.

b. If data-name-1 is not specified, by the value that would have been

moved into the data item referenced by data-name-1 had data-name-1 been

specified.

FORMAT 3:

(13) When format 3 of the RECORD clause is used, integer-4 and integer-5

refer to the minimum number of characters in the smallest size data record and

the maximum number of characters in the largest size data record, respectively.

However, in this case, the size of each data record is completely defined in the

record description entry.

(14) The size of each data record is specified in terms of the number of

character positions required to store the logical record, regardless of the

types of characters used to represent the items within the logical record. The

size of a record is determined by the sum of the number of characters in all

fixed length elementary items plus the sum of the maximum number of characters

in any variable length item subordinate to the record. This sum may be

different from the actual size of the record; see page IV-16, Selection of

Character Representation and Radix; page VI-44, The SYNCHRONIZED Clause; page

VI-46, The USAGE Clause.

VII-32

Sequential 1-0 - VALUE OF

3.9 THE VALUE OF CLAUSE

3.9.1 Function

The VALUE OF clause particularizes the description of an item in the label

records associated with a file. The VALUE OF clause is an obsolete element in

Standard COBOL because it is to be deleted from the next revision of Standard

COBOL.

3.9.2 General Format

VALUE OF /implementor-name-1 IS

3.9.3 Syntax Rules

(1) Data-name-1 should be qualified when necessary, but cannot

subscripted, nor can data-name-1 be an item described with the USAGE IS

clause.

be

INDEX

(2) Data-name-1 must be in the Working-Storage Section.

3.9.4 General Rules

(1) For an input file, the appropriate label routine checks to see if the

value of implementor-name-1 is equal to literal-l|or the content of the data

item referenced by data-name-1, whichever has been specified.

For an output file, at the appropriate time the value of

implementor-name-1 is made equal to literal-1 or the content of the data item

referenced by data-name-1, whichever has been specified.

(2) If the associated file connector is an external file connector, all

VALUE OF clauses in the run unit which are associated with that file connector

must be consistent. The implementor will specify the consistency rules.

data-name-1

literal-1

VII-33

Sequential 1-0 - Procedure Division

4. PROCEDURE DIVISION IN THE SEQUENTIAL I-Q MODULE

4.1 GENERAL DESCRIPTION

The Procedure Division contains declarative procedures when the USE statement

from the Sequential 1-0 module is present in a COBOL source program. Shown

below is the general format of the Procedure Division when the USE statement is

present.

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION.

USE statement.

[paragraph-name.

[sentence] ...] ... } ...

END DECLARATIVES,

{section-name SECTION.

[paragraph-name.

[sentence] ...] ... }

VII-34

Sequential 1-0 - CLOSE

4.2 THE CLOSE STATEMENT

4.2.1 Function

The CLOSE statement terminates the processing of reels/units and

1 optional rewind and/or lock or removal where applicable.!

files wi th

4.2.2 General Format

CLOSE 7 file-name-1

(REEL)
1 UNIT f

[FOR REMOVAL 1

WITH
jNO REWIND

[LOCK }

4.2.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the same

organization or access.

4.2.4 General Rules

Except where otherwise stated in the general rules below, the terms 'reel'

and 'unit' are synonymous and completely interchangeable in the CLOSE statement.

Treatment of sequential mass storage files is logically equivalent to the

treatment of a file on tape or analogous sequential media, j Treatment of a file

contained in a multiple file tape environment is logically equivalent to the

treatment of a sequential single-reel/unit file if the file is wholly contained

on one reel.

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) For the purpose of showing the effect of various types of CLOSE

statements as applied to various storage media, all files are divided into the

following categories:

a. Non-reel/unit. A file whose input or output medium is such that the

concepts of rewind and reels/units have no meaning.

b. Sequential single-reel/unit. A sequential file that is entirely

contained on one reel/unit.

c. Sequential multi-ree1/unit. A sequential file that is contained on

more than one reel/unit.

(3) The results of executing each type of CLOSE for each category of file

are summarized in table 1 on page VII-36.

VII-35

Sequential 1-0 - CLOSE

CLOSE

Statement

Format

File Category

Non-Reel/Unit

Sequential

Single-

Reel/Unit

Sequential

Multi-

Ree1/Unit

CLOSE C C,G A, C,G

CLOSE WITH LOCK C, E C,E,G A, C, E , G

CLOSE WITH NO REWIND C, H B, C A, B, C

CLOSE REEL/UNIT F F, G F, G

CLOSE REEL/UNIT F D,F,G D, F, G

FOR REMOVAL

Table 1. Relationship of Categories of Files and the Formats

of the CLOSE Statement

The definitions of the symbols in the table are given below. Where the

definition depends on whether the file is an input, output, or input-output

file, alternate definitions are given; otherwise, a definition applies to input,

output, and input-output files.

A. Effect on Previous Reels/Units

Input Files and Input-Output Files:

All reels/units in the file prior to the current reel/unit are

closed except those reels/units controlled by a prior CLOSE REEL/UNIT statement.

If the current reel/unit is not the last in the file, the reels/units in the

file following the current one are not processed.

Output Files:

All reels/units in the file prior to the current reel/unit are

closed except those reels/units controlled by a prior CLOSE REEL/UNIT statement.

B. No Rewind of Current Reel

The current reel/unit is left in its current position.

C. Close File

Input Files and Input-Output Files:

If the file is positioned at its end and label records are specified

for the file, the labels are processed according to the implementor's standard

label convention. The behavior of the CLOSE statement when label records are

specified but not present, or when label records are not specified but are

present, is undefined. Closing operations specified by the implementor are

executed. If the file is positioned at its end and label records are not

specified for the file, label processing does not take place but other closing

VII-36

Sequential 1-0 - CLOSE

operations specified by the implementor are executed. If the file is positioned

other than at its end, the closing operations specified by the implementor are

executed, but there is no ending label processing.

Output Files:

If label records are specified for the file, the labels are

processed according to the implementor's standard label convention. The

behavior of the CLOSE statement when label records are specified but not

present, or when label records are not specified but are present, is undefined.

Closing operations specified by the implementor are executed. If label records

are not specified for the file, label processing does not take place but other

closing operations specified by the implementor are executed.

D. Reel/Unit Removal

The current reel or unit is rewound, when applicable, and the reel

or unit is logically removed from the run unit; however, the reel or unit may be

accessed again, in its proper order of reels or units within the file, if a

CLOSE statement without the REEL or UNIT phrase is subsequently executed for

this file followed by the execution of an OPEN statement for the file.

E. File Lock

The file is locked and cannot be opened again during this execution

of this run unit.

F. Close Reel/Unit

Input Files and Input-Output Files:

The following operations take place:

1) If the current reel/unit is the last or only reel/unit for the

file or the reel is on a non-reel/unit medium, there is no reel/unit swap and

the current volume pointer remains unchanged.

2) If another reel/unit exists for the file, a reel/unit swap

occurs, the current volume pointer is updated to point to the next reel/unit

existing in the file, and the standard beginning reel/unit label procedure is

executed. If no data records exist for the current volume, another reel/unit

swap occurs.

Output Files (Reel/Unit. Media) :

The following operations take place:

1) The standard ending reel/unit label procedure is executed.

2) A reel/unit swap. The current volume pointer is updated to

point to the new reel/unit.

3) The standard beginning reel/unit label procedure is executed.

VII-37

Sequential 1-0 - CLOSE

4) The next executed WRITE statement that references that file

directs the next logical data record to the next reel/unit of the file.

Output Files (Non-Reel/Unit Media):

Execution of this statement is considered successful. The file

remains in the open mode, and no action takes place except as specified in

general rule 4.

G. Rewind

The current reel or analogous device is positioned at its physical

beginning.

H. Optional Phrases Ignored

The CLOSE statement is executed as if none of the optional phrases

is present.

(4) The execution of the CLOSE statement causes the value of the 1-0 status

associated with file-name-1 to be updated. (See page VII-2, 1-0 Status.)

(5) If an optional input file is not present, no end-of-file or reel/unit

processing is performed for the file and the file position indicator and the

current volume pointer are unchanged.

(6) Following the successful execution of a CLOSE statement without the REEL

or UNIT phrase, the record area associated with a file-name-1 is no longer

available. The unsuccessful execution of such a CLOSE statement leaves the

availability of the record area undefined.

(7) Following the successful execution of a CLOSE statement without the REEL

or UNIT phrase, the file is removed from the open mode, and the file is no

longer associated with the file connector.

(8) If more than one file-name-1 is specified in a CLOSE statement, the

result of executing this CLOSE statement is the same as if a separate CLOSE

statement had been written for each file-name-1 in the same order as specified

in the CLOSE statement.

VII-38

Sequential 1-0 - OPEN

4.3 THE OPEN STATEMENT

4.3.1 Function

The OPEN statement initiates the processing of files. The REVERSED phrase is

an obsolete element in Standard COBOL because it is to be deleted from the next

revision of Standard COBOL.

4.3.2 General Format

OPEN

INPUT ^file-name-1

OUTPUT {file-name-2

1-0 {file-name-3} ...

EXTEND {file-name-4} ...

REVERSED

WITH NO REWIND

WITH NO REWIND

4.3.3 Syntax Rules

(1) The REVERSED phrase can only be used with sequential files.

(2) The EXTEND phrase must not be specified for a multiple file reel.

(3) The EXTEND phrase must only be used for files for which the LINAGE

clause has not been specified.

(4) The files referenced in the OPEN statement need not all have the same

organization or access.

4.3.4 General Rules

(1) The successful execution of an OPEN statement determines the

availability of the file and results in the file being in an open mode. The

successful execution of an OPEN statement associates the file with the file-name

through the file connector.

A file is available if it is physically present and is recognized by the

input-output control system. Table 1 on page VII-40 shows the results of

opening available and unavailable files.

VII-39

Sequential 1-0 - OPEN

File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

INPUT (optional file) Normal open Normal open; the first read

causes the at end condition

1-0 Normal open Open is unsuccessful

1-0 (optional file) Normal open Open causes the file to be

created

OUTPUT Normal open; the

file contains no

records

Open causes the file to be

created

EXTEND Normal open Open is unsuccessful

EXTEND (optional file) Normal open Open causes the file to be

created

Table 1. Availability of a File

(2) The successful execution of an OPEN statement makes the associated

record area available to the program. If the file connector associated with

file-name is an external file connector, there is only one record area

associated with the file connector for the run unit.

(3) When a file is not in an open mode, no statement may be executed which

references the file, either explicitly or implicitly, except for a MERGE

statement with the USING or GIVING phrase, an OPEN statement, or a SORT

statement with the USING or GIVING phrase.

(4) An OPEN statement must be successfully executed prior to the execution

of any of the permissible input-output statements. In table 2, Permissible

Statements, 'X' at an intersection indicates that the specified statement may be

used with the open mode given at the top of the column.

Statement

Open Mode

Input Output 1-0 Extend

READ X X

WRITE X X

REWRITE X

Table 2: Permissible Statements

VI1-40

Sequential 1-0 - OPEN

(5) A file may be opened with the INPUT, OUTPUT, EXTEND,| and 1-0 phrases in

the same run unit. Following the initial execution of an OPEN statement for a

file, each subsequent OPEN statement execution for that same file must be

preceded by the execution of a CLOSE statement, without the REEL, UNIT,for LOCK]

phrase, for that file.

(6) Execution of the OPEN statement does not obtain

data record.

or release the first

(7) If label records are specified for the file, the beginning labels are

processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN

statement causes the labels to be checked in accordance with the implementor's

specified conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of the OPEN

statement causes the labels to be written in accordance with the implementor's

specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified but

not present, or when label records are not specified but are present, is

undefined.

(8) If during the execution of an OPEN statement a file attribute conflict

condition occurs, the execution of the OPEN statement is unsuccessful. (See

page VII-5, The File Attribute Conflict Condition.)

(9) The NO REWIND and REVERSED phrases must only be used with:

a. Sequential single reel/unit files. (See page VII-35, The CLOSE

Statement.)

b. Sequential files wholly contained within a single reel of tape

within a multiple file tape environment. (See page VII-16, The MULTIPLE FILE

TAPE Clause.)

(10) The NO REWIND and REVERSED phrases will be ignored if they do not apply

to the storage medium on which the file resides.

(11) If the storage medium for the file permits rewinding, the following

rules apply:

a. (When neither the REVERSED, the EXTEND, nor the NO REWIND phrase is

specified, execution of the OPEN statement causes the file to be positioned at

its beginning.

b. When the NO REWIND phrase is specified, execution of the OPEN

statement does not cause the file to be repositioned; the file must be already

positioned at its beginning prior to execution of the OPEN statement.

c. When the REVERSED phrase is specified, the file is positioned at its

end by execution of the OPEN statement.

VII-41

Sequential 1-0 - OPEN

(12) When the REVERSED phrase is specified, the subsequent READ statements

for the file make the data records of the file available in reversed order; that

is, starting with the last record.

(13) If a file opened with the INPUT phrase is an optional file which is not

present, the OPEN statement sets the file position indicator to indicate that an

optional input file is not present._

(14) When files are opened with the INPUT or 1-0 phrase, the file position

indicator is set to 1.

(15) When the EXTEND phrase is specified, the OPEN statement positions the

file immediately after the last logical record for that file. The last logical

record for a sequential file is the last record written in the file.

(16) When the EXTEND phrase is specified and the LABEL RECORDS clause

indicates label records are present, the execution of the OPEN statement

includes the following steps:

a. The beginning file labels are processed only in the case of a single

reel/unit file.

b. The beginning reel/unit labels on the last existing reel/unit are

processed as though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is

being opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file has been opened with the

OUTPUT phrase._

(17) The OPEN statement with the 1-0 phrase must reference a file that

supports the input and output operations that are permitted for a sequential

file when opened in the 1-0 mode. The execution of the OPEN statement with the

1-0 phrase places the referenced file in the open mode for both input and output

operations.

(18) When the 1-0 phrase is specified and the LABEL RECORDS clause indicates

label records are present, the execution of the OPEN statement includes the

following steps:

a. The labels are checked in accordance with the implementor's

specified conventions for input-output label checking.

b. The new labels are written in accordance with the implementor's

specified conventions for input-output label writing.

(19) Treatment of a file contained in a multiple file tape environment is

logically equivalent to the treatment of a sequential file contained in a single

file tape environment.

(20) Whenever a set of files resides on a multiple file reel, and one of this

set of files is referenced in an OPEN statement, the following rules apply:

a. Not more than one of the files may be in the open mode at one time.

VII-42

Sequential 1-0 - OPEN

b. There is no constraint on the order in which files may be opened in

the input mode.

c. When one of the files referenced by a file-name is the subject of an

OPEN statement with the OUTPUT phrase, all files on the associated multiple file

reel whose position numbers are less than the position number of that file must

already exist on the reel at the time the OPEN statement is executed. Further,

no file on that multiple file reel whose position number is greater than the

position number of that file can exist at that time on the reel.

d. Each of the files must be a sequential file.

(21) For an optional file that is unavailable, the successful execution of an

OPEN statement with an EXTEND or 1-0 phrase creates the file. This creation

takes place as if the following statements were executed in the order shown:

OPEN OUTPUT file-name.

CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in

the source program.

The successful execution of an OPEN statement with the OUTPUT phrase

creates the file. After the successful creation of a file, that file contains

no data records.

(22) Upon successful execution of the OPEN statement, the current volume

pointer is set:

a. To point to the first or only reel/unit for an available input or

1-0 file.

b. To point to the reel/unit containing the last logical record for an

extend file.

c. To point to the new reel/unit for an unavailable output, 1-0, | or

extend file.

(23) The execution of the OPEN statement causes the value of the 1-0 status

associated with file-name to be updated. (See page VII-2, 1-0 Status.)

(24) If more than one file-name is specified in

of executing this OPEN statement is the same as if

been written for each file-name in the same order

statement.

an OPEN statement, the result

a separate OPEN statement had

as specified in the OPEN

(25) The minimum and maximum record sizes for a

time the file is created and must not subsequently

file are established

be changed.

at the

VII-43

Sequential 1-0 - READ

4.4 THE READ STATEMENT

4.4.1 Function

The READ statement makes available the next logical record from a file.

4.4.2 General Format

READ file-name-1 |[NEXTl RECORD [INTO identifier-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ!

4.4.3 Syntax Rules

(1) The storage area associated with identifier-1 and the record area

associated with file-name-1 must not be the same storage area.

(2) The AT END phrase must be specified if no applicable USE AFTER STANDARD

EXCEPTION procedure is specified for file-name-1.

4.4.4 General Rules

(1) The file referenced by file-name-1 must be open in the input or 1-0 mode

at the time this statement is executed. (See page VII-39, The OPEN Statement.)

(2) The NEXT phrase is optional and has no effect on the execution of the

READ statement . _

(3) The execution of the READ statement causes the value of the 1-0 status

associated with file-name-1 to be updated. (See page VII-2, 1-0 Status.)

(4) The setting of the file position indicator at the start of the execution

of a READ statement is used in determining the record to be made available

according to the following rules. Comparisons for records in sequential files

relate to the record number.

a. If the file position indicator indicates that no valid next record

has been established, execution of the READ statement is unsuccessful.

b. If the file position indicator indicates that an optional input file

is not present, execution proceeds as specified in general rule_10._

c. If the file position indicator was established by a previous OPEN

statement, the first existing record in the file whose record number is greater

than or equal to the file position indicator is selected.

d. If the file position indicator was established by a previous READ

statement, the first existing record in the file whose record number is greater

than the file position indicator is selected.

VI1-44

Sequential 1-0 - READ

If a record is found which satisfies the above rules, it is made

available in the record area associated with file-name-1.

If no record is found which satisfies the above rules, the file position

indicator is set to indicate that no next logical record exists and execution

proceeds as specified in general rule 10.

If a record is made available, the file position indicator is set to the

record number of the record made available.

(5) Regardless of the method used to overlap access time with processing

time, the concept of the READ statement is unchanged; a record is available to

the object program prior to the execution of imperative-statement-2, if

specified, or prior to the execution of any statement following the READ

statement, if imperative-statement-2 is not specified.

(6) When the logical records of a file are described with more than one

record description, these records automatically share the same record area in

storage; this is equivalent to an implicit redefinition of the area. The

contents of any data items which lie beyond the range of the current data record

are undefined at the completion of the execution of the READ statement.

(7) The INTO phrase may be specified in a READ statement:

a. If only one record description is subordinate to the file

description entry, or

b. If all record-names associated with file-name-1 and the data item

referenced by identifier-1 describe a group item or an elementary alphanumeric

item.

(8) The result of the execution of a READ statement with the INTO phrase is

equivalent to the application of the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area

specified by identifier-1 according to the rules for the MOVE statement without

the CORRESPONDING phrase. The size of the current record is determined by rules

specified in the RECORD clause. | If the file description entry contains a RECORD

IS VARYING clause, the implied move is a group move. 1 The implied MOVE statement

does not occur if the execution of the READ statement was unsuccessful. Any

subscripting associated with identifier-1 is evaluated after the record has been

read and immediately before it is moved to the data item. The record is

available in both the record area and the data item referenced by identifier-1.

(9) If, during the execution of a READ statement, the end of reel/unit is

recognized or a reel/unit contains no logical records, and the logical end of

the file has not been reached, the following operations are executed:

VII-45

Sequential 1-0 - READ

a. The standard ending reel/unit label procedure.

b. A reel/unit swap. The current volume pointer is updated to point to

the next reel/unit existing for the file.

c. The standard beginning reel/unit label procedure.

(10) If the file position indicator indicates that no next logical record

exists, |or that an optional input file is not present,|the following occurs in

the order specified:

a. A value, derived from the setting of the file position indicator, is

placed into the 1-0 status associated with file-name-1 to indicate the at end

condition. (See page VII-2, 1-0 Status.)

b. If the AT END phrase is specified in the statement causing the

condition, control is transferred to imperative-statement-1 in the AT END

phrase. Any USE AFTER STANDARD EXCEPTION procedure associated with file-name-1

is not executed.

c. If the AT END phrase is not specified, a USE AFTER STANDARD

EXCEPTION procedure must be associated with this file-name-1, and that procedure

is executed. Return from that procedure is to the next executable statement

following the end of the READ statement.

When the at end condition occurs, execution of the READ statement is

unsuccessful.

(11) If an at end condition does not occur during the execution of a READ

statement, the AT END phrase is ignored, if specified, and the following actions

occur:

a. The file position indicator is set and the 1-0 status associated

with file-name-1 is updated.

b. If an exception condition which is not an at end condition exists,

control is transferred according to rules of the USE statement following the

execution of any USE AFTER EXCEPTION procedure applicable to file name-1. (See

page VII-50, The USE Statement.)

c. If no exception condition exists, the record is made available in

the record area and any implicit move resulting from the presence of an INTO

phrase is executed. Control is transferred to the end of the READ statement or

to imperative-statement-2, if specified. In the latter case, execution

continues according to the rules for each statement specified in

imperative-statement-2. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-2, control is transferred to the end of the

READ statement.

(12) Following the unsuccessful execution of a READ statement, the content of

the associated record area is undefined and the file position indicator is set

to indicate that no valid next record has been established.

VII-46

Sequential 1-0 - READ

(13) If the number of character positions in the record that is read is less

than the minimum size specified by the record description entries for

file-name-1, the portion of the record area which is to be right of the last

valid character read is undefined. If the number of character positions in the

record that is read is greater than the maximum size specified by the record

description entries for file-name-1, the record is truncated on the right to the

maximum size. In either of these cases, the READ statement is successful and an

1-0 status is set indicating a record length conflict has occurred. (See page

VII-2, 1-0 Status .)_

(14)

IV-40,

The END-READ phrase delimits

Scope of Statements.)

the scope of the READ statement. (See page

VII-47

Sequential 1-0 - REWRITE

4.5 THE REWRITE STATEMENT

4.5.1 Function

The REWRITE statement logically replaces a record existing in a mass storage

file.

4.5.2 General Format

REWRITE record-name-1 [FROM identifier-1] [END-REWRITE]

4.5.3 Syntax Rules

(1) Record-name-1 and identifier-1 must not refer to the same storage area.

(2) Record-name-1 is the name of a logical record in the File Section of the

Data Division and may be qualified.

4.5.4 General Rules

(1) The file referenced by the file-name associated with record-name-1 must

be a mass storage file and must be open in the 1-0 mode at the time of execution

of this statement. (See page VII-39, The OPEN Statement.)

(2) The last input-output statement executed for the associated file prior

to the execution of the REWRITE statement must have been a successfully executed

READ statement. The mass storage control system (MSCS) logically replaces the

record that was accessed by the READ statement.

of the REWRITE (3) The logical record released by a successful execution

statement is no longer available in the record area[unless the file-name

associated with record-name-1 is specified in a SAME RECORD AREA clause. The

logical record is also available to the program as a record of other files

referenced in the same SAME RECORD AREA clause as the associated output file, as

well as the file associated with record-name-1.

(4) The result of the execution of a REWRITE statement with the FROM phrase

is equivalent to the execution of the following statements in the order

specified:

a. The statement:

MOVE identifier-1 TO record-name-1

according to the rules specified for the MOVE statement.

b. The same REWRITE statement without the FROM phrase.

(5) After the execution of the REWRITE statement is complete, the

information in the area referenced by identifier-1 is available, even though the

information in the area referenced by record-name-1 is not available | except as|

[specified by the SAME RECORD AREA clause.!

VII-48

Sequential 1-0 - REWRITE

(6) The file position indicator is

REWRITE statement .

not affected by the execution of

(7) The execution of the REWRITE statement causes

status of the file-name associated with record-name-1

VII-2, 1-0 Status .)

(8) The execution of the REWRITE statement releases

operating system.

(9) The END-REWRITE phrase delimits the

(See page IV-41, Scope of Statements.)

the value of the 1-0

to be updated. (See page

a lo gical record to the

scope of the REWRITE statement .

(10) If the number of character positions specified in the record referenced

by record-name-1 is not equal to the number of character positions in the record

being replaced, the execution of the REWRITE statement is unsuccessful, the

updating operation does not take place, the content of the record area is

unaffected and the 1-0 status of the file associated with record-name-1 is set

to a value indicating the cause of the condition. (See page VII-2, 1-0 Status.)

VII-49

Sequential 1-0 - USE

4.6 THE USE STATEMENT

4.6.1 Function

The USE statement specifies procedures for input-output error handling that

are in addition to the standard procedures provided by the input-output control

system.

4.6.2 General Format

{file-name-1} v|
INPUT

OUTPUT

1-0
EXTEND]

USE AFTER STANDARD
jEXCEPTION)

(ERROR
PROCEDURE ON

4.6.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section header

in the declaratives portion of the Procedure Division and must appear in a

sentence by itself. The remainder of the section must consist of zero, one, or

more procedural paragraphs that define the procedures to be used.

(2) The USE statement is never executed; it merely defines the conditions

calling for the execution of the USE procedures.

(3) Appearance of file-name-1 in a USE statement must not cause the

simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may be used

interchangeably.

(5) The files implicitly or explicitly referenced in the USE statement need

not all have the same organization or access.

(6) The INPUT, OUTPUT, 1-0, [and EXTEND] phrases may each be specified only

once in the declaratives portion of a given Procedure Division.

4.6.4 General Rules

(1) Declarative procedures may be included in any COBOL source program

irrespective of whether the program contains or is contained within another

program. A declarative is invoked when any of the conditions described in the

USE statement which prefaces the declarative occurs while the program is being

executed. Only a declarative within the separately compiled program that

contains the statement which caused the qualifying condition is invoked when any

of the conditions described in the USE statement which prefaces the declarative

occurs while that separately compiled program is being executed. If no

qualifying declarative exists in the separately compiled program, no declarative

is executed.

(2) Within a declarative procedure, there must be no reference to any

nondeclarative procedures.

VII-50

Sequential 1-0 - USE

(3) Procedure-names associated with a USE statement may be referenced in a

different declarative section or in a nondeclarative procedure only with a

PERFORM statement .

(4) When file-name-1 is specified explicitly, no other USE statement applies

to file-name-1.

(5) The procedures associated with a USE statement are executed by the

input-output control system after completion of the standard input-output

exception routine upon the unsuccessful execution of an input-output operation

unless an AT END phrase takes precedence. The rules concerning when the

procedures are executed are as follows:

a. If file-name-1 is specified, the associated procedure is executed

when the condition described in the USE statement occurs.

b.

condition

mode or in

referenced

condition.

If INPUT is specified, the associated procedure is executed when the

described in the USE statement occurs for any file open in the input

the process of being opened in the input mode, except those files

by file-name-1 in another USE statement specifying the same

c. If OUTPUT is specified, the associated procedure is executed when

the condition described in the USE statement occurs for any file open in the

output mode or in the process of being opened in the output mode, except those

files referenced by file-name-1 in another USE statement specifying the same

condition.

d. If 1-0 is specified, the associated procedure is executed when the

condition described in the USE statement occurs for any file open in the 1-0

mode or in the process of being opened in the 1-0 mode, except those files

referenced by file-name-1 in another USE statement specifying the same

condition.

e. If EXTEND is specified, the associated procedure is executed when

the condition described in the USE statement occurs for any file open in the

extend mode or in the process of being opened in the extend mode, except those

files referenced by file-name-1 in another USE statement specifying the same

condition.

(6) After execution of the USE procedure, control is transferred to the

invoking routine in the input-output control system. If the 1-0 status value

does not indicate a critical input-output error, the input-output control system

returns control to the next executable statement following the input-output

statement whose execution caused the exception. If the 1-0 status value does

indicate a critical error, the implementor determines what action is taken. (See

page VII-2, 1-0 Status.)

(7) Within a USE procedure, there must not be the execution of any statement

that would cause the execution of a USE procedure that had previously been

invoked and had not yet returned control to the invoking routine.

VII-51

Sequential 1-0 - WRITE

4.7 THE WRITE STATEMENT

4.7.1 Function

The WRITE statement releases a logical record for an output file. It can

also be used for vertical positioning of lines within a logical page.

4.7.2 General Format

rEND-WRITE!

4.7.3 Syntax Rules

(1) Record-name-1 and identifier-1 must not refer to the same storage area.

(2) Record-name-1 is the name of a logical record in the File Section of the

Data Division and may be qualified.

(3) The ADVANCING mnemonic-name-1 phrase cannot be specified when writing a

record to a file which is associated with a file description entry containing a

LINAGE clause. _

(4) Identifier-2 must reference an integer data item.

(5) Integer-1 may be positive or zero, but must not be negative.

(6) When mnemonic-name-1 is specified, the name is associated with a

particular feature specified by the implementor. Mnemonic-name-1 is defined in

the SPECIAL-NAMES paragraph of the Environment Division.

(7) The phrases ADVANCING PAGE and END-OF-PAGE must not both be

specified in a single WRITE statement.

(8) If the END-OF-PAGE or the NOT END-OF-PAGE phrase is specified, the

LINAGE clause must be specified in the file description entry for the associated

file.

(9) The words END-OF-PAGE and EOP are equivalent._

VII-52

Sequential 1-0 - WRITE

4.7.4 General Rules

(1) The file referenced by the file-name associated

be open in the output 1 or extend 1 mode at the time

statement. (See page VII-39, The OPEN Statement.)

with record-name-1

of the execution of

mus t

this

(2) The logical record released by the successful execution of the WRITE

statement is no longer available in the record area unless the file-name

associated with record-name-1 is specified in a SAME RECORD AREA clause. The

logical record is also available to the program as a record of other files

referenced in the SAME RECORD AREA clause as the associated output file, as well

as the file associated with record-name-1.

(3) The result of the execution of a WRITE statement with the FROM phrase is

equivalent to the execution of the following statements in the order specified:

a. The statement:

according

b

MOVE identifier-1 TO

to the rules specified for

The same WRITE statement

record-name-1

the MOVE statement,

without the FROM phrase.

(4) After the execution of the WRITE statement is complete, the information

in the area referenced by identifier-1 is available, even though the information

in the area referenced by record-name-1 is not available except as specified by

the SAME RECORD AREA clause.

(5) The file position indicator is not affected by the execution of a WRITE

statement.

(6) The execution of the WRITE statement causes the value of the 1-0 status

of the file-name associated with record-name-1 to be updated. (See page VII-2,

1-0 Status .)

(7) The execution of the WRITE statement releases a logical record to

operating system.

the

(8) The number of character positions in the record referenced by

record-name-1 must not be larger than the largest or smaller than the smallest

number of character positions allowed by the RECORD IS VARYING clause associated

with the file-name associated with record-name-1. In either of these cases the

execution of the WRITE statement is unsuccessful, the WRITE operation does not

take place, the content of the record area is unaffected and the 1-0 status of

the file associated with record-name-1 is set to a value indicating the cause of

the condition. (See page VII-2, 1-0 Status.)

(9) If, during the execution of a WRITE statement with the NOT END-OF-PAGE

phrase, the end-of-page condition does not occur, control is transferred to

imperative-statement-2 at the appropriate time as follows:

a. If the execution of the WRITE statement is successful, after the

record is written and after updating the 1-0 status of the file-name associated

with record-name-1.

VII-53

Sequential 1-0 - WRITE

b. If the execution of the WRITE statement is unsuccessful, after

updating the 1-0 status of the file-name associated with record-name-1, and

after executing the procedure, if any, specified by a USE AFTER STANDARD

EXCEPTION PROCEDURE statement applicable to the file-name associated with

record-name-1 .

(10) The END-WRITE phrase delimits the scope of the WRITE statement. (See

page IV-40, Scope of Statements.)

(11) The successor

order of execution

relationship does not

relationship of a sequential file is established by the

of WRITE statements when the file is created. The

change except when records are added to the end of a file.

(12) When a sequential file is open in the extend mode, the execution of the

WRITE statement will add records to the end of the file as though the file were

open in the output mode. If there are records in the file, the first record

written after the execution of the OPEN statement with the EXTEND phrase is the

successor of the last record in the file.

(13) When an attempt is made to write beyond the externally defined

boundaries of a sequential file, an exception condition exists and the contents

of the record area are unaffected. The following actions take place:

a. The value of the 1-0 status of the file-name associated with

record-name-1 is set to a value indicating a boundary violation. (See page

VII-2, 1-0 Status .)

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or

implicitly specified for the file-name associated with record-name-1, that

declarative procedure will then be executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or

implicitly specified for the file-name associated with record-name-1, the result

is undefined.

(14) If the end of reel/unit is recognized and the externally defined

boundaries of the file have not been exceeded, the following operations are

executed:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap. The current volume pointer is updated to point to

the next reel/unit existing for the file.

c. The standard beginning reel/unit label procedure.

(15) Both the ADVANCING phrase[and the END-OF-PAGE phrase! allow control of

the vertical positioning of each line on a representation of a printed page. If

the ADVANCING phrase is not used, automatic advancing will be provided by the

implementor to act as if the user had specified AFTER ADVANCING 1 LINE. If the

ADVANCING phrase is used, advancing is provided as follows:

a. If integer-1 or the value of the data item referenced by

identifier-2 is positive, the representation of the printed page is advanced the

number of lines equal to that value.

VI1-54

Sequential 1-0 - WRITE

b . If the value of the data item referenced by identif ier-2 is

negati ve) the results are unde fined •

c . If integer-1 or the value of the data it em refere need by

ident i fi e r-2 is zero, no repos it ion ing of the representation of the pri nted page

is per fo rmed .

d . If mnemonic-name-1 is s pecifie d, the representat ion of the pri nted

page is advanced accor ding to the rules specified by the implementor for that

hardwa re device .

e. If the BEFORE phrase is used, the line is presented before the

representation of the printed page is advanced according to rules a, b, c, land d[

above .

f. If the AFTER phrase is used, the line is presented after the

representation of the printed page is advanced according to rules a, b, c, land d

above .

g. If PAGE is specified and the LINAGE clause is

associated file description entry, the record is presented

before or after (depending on the phrase used) the device is

next logical page. The repositioning is to the first line

on the next logical page as specified in the LINAGE clause.

specified in the

on the logical page

repositioned to the

that can be written

_h. If PAGE is specified!and the LINAGE clause is not specified in the

associated file description entry, the record is presented on the physical page

before or after (depending on the phrase used) the device is repositioned to the

next physical page. The repositioning to the next physical page is accomplished

in accordance with an implementor-defined technique. If physical page has no

meaning in conjunction with a specific device, advancing will be provided by the

implementor to act as if the user had specified BEFORE or AFTER (depending on

the phrase used) ADVANCING 1 LINE.

(16) If the logical end of the representation of the printed page is reached

during the execution of a WRITE statement with the END-OF-PAGE phrase,

imperative-statement-1 specified in the END-OF-PAGE phrase is executed. The

logical end is specified in the LINAGE clause associated with record-name-1.

(17) An end-of-page condition occurs when the execution of a given WRITE

statement with the END-OF-PAGE phrase causes printing or spacing within the

footing area of a page body. This occurs when the execution of such a WRITE

statement causes the LINAGE-COUNTER to equal or exceed the value specified by

integer-2 or the data item referenced by data-name-2 of the LINAGE clause if

specified. In this case, the WRITE statement is executed and then

imperative-statement-1 in the END-OF-PAGE phrase is executed.

An automatic page overflow condition occurs when the execution of a

given WRITE statement (with or without an END-OF-PAGE phrase) cannot be fully

accommodated within the current page body.

This occurs when a WRITE statement, if executed, would cause the

LINAGE-COUNTER to exceed the value specified by integer-1 or the data item

referenced by data-name-1 of the LINAGE clause. In this case, the record is

presented on the logical page before or after (depending on the phrase used) the

VII-55

Sequential 1-0 - WRITE

device is repositioned to the first line that can be written on the next logical

page as specified in the LINAGE clause. Imperative-statement-1 in the

END-OF-PAGE phrase, if specified, is executed after the record is written and

the device has been repositioned.

A page overflow condition occurs when the execution of a given WRITE

statement would cause LINAGE-COUNTER to simultaneously exceed the value of both

integer-2 or the data item referenced by data-name-2 of the LINAGE clause and

integer-1 or the data item referenced by data-name-1 of the LINAGE clause.

VII-56

Relative 1-0 - Introduction

SECTION VIII; RELATIVE 1-0 MODULE

1. INTRODUCTION TO THE RELATIVE 1-0 MODULE

1.1 FUNCTION

The Relative 1-0 module provides a capability to access records of a mass

storage file in either a random or sequential manner. Each record in a relative

file is uniquely identified by an integer value greater than zero which

specifies the record's logical ordinal position in the file.

1.2 LEVEL CHARACTERISTICS

Relative 1-0 level 1 provides limited capabilities for the file control

entry, the file description entry, and the entries in the 1-0 CONTROL paragraph.

Within the Procedure Division, the Relative 1-0 level 1 provides limited

capabilities for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements and

full capabilities for the DELETE statement.

Relative 1-0 level 2 provides full capabilities for the file control entry,

the file description entry, and the entries in the 1-0 CONTROL paragraph.

Within the Procedure Division, the Relative 1-0 level 2 provides full

capabilities for the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE

s tatements.

1.3 LANGUAGE CONCEPTS.

1.3.1 Organization

A file with relative organization is a mass storage file from which any

record may be stored or retrieved by providing the value of its relative record

number.

Conceptually, a file with relative organization comprises a serial string of

areas, each capable of holding a logical record. Each of these areas is

denominated by a relative record number. Each logical record in a relative file

is identified by the relative record number of its storage area. For example,

the tenth record is the one addressed by relative record number 10 and is in the

tenth record area, whether or not records have been written in any of the first

through the ninth record areas.

In order to achieve more efficient access to

number of character positions reserved on

logical record may be different from the number

description of that record in the program.

records in a relative file, the

the medium to store a particular

of character positions in the

VIII-1

Relative 1-0 - Introduction

1.3.2 Access Modes

For relative organization,

on the value of the relative

in the file are made available

starting point for a series of

the order of sequential access is

record number. Only records which

. The START statement may be used

subsequent sequential retrievals.

ascending based

currently exist

to establish a

When a file is accessed in random mode, input-output statements are used to

access the records in a programmer-specified order. For a file with relative

organization, the programmer specifies the desired record by placing its

relative record number in a relative key data item.

With dynamic access mode, the programmer may change at will from sequential

accessing to random accessing, using appropriate forms of input-output

statements. _

1.3.3 File Position Indicator

The file position indicator is a conceptual entity used in this document to

facilitate exact specification of the next record to be accessed within a given

file during certain sequences of input-output operations. The setting of the

file position indicator is affected only by the CLOSE, OPEN, READ, fand START]

statements. The concept of a file position indicator has no meaning for a file

opened in the output lor extendi mode.

1.3.4 1-0 Status

The 1-0 status is a two-character conceptual entity whose value is set to

indicate the status of an input-output operation during the execution of a

CLOSE, DELETE, OPEN, READ, REWRITE,[START,1 or WRITE statement and prior to the

execution of any imperative statement associated with that input-output

statement or prior to the execution of any applicable USE AFTER STANDARD

EXCEPTION procedure. The value of the 1-0 status is made available to the COBOL

program through the use of the FILE STATUS clause in the file control entry for

the file.

The 1-0 status also determines whether an applicable USE AFTER STANDARD

EXCEPTION procedure will be executed. If any condition other than those

contained under the heading "Successful Completion" on page VIII-3 results, such

a procedure may be executed depending on rules stated elsewhere. If one of the

conditions listed under the heading "Successful Completion" on page VIII-3

results, no such procedure will be executed. (See page VIII-35, The USE

Statement.)

Certain classes of 1-0 status values indicate critical error conditions.

These are: any that begin with the digit 3 or 4, and any that begin with the

digit 9 that the implementor defines as critical. If the value of the 1-0

status for an input-output operation indicates such an error condition, the

implementor determines what action is taken after the execution of any

applicable USE AFTER STANDARD EXCEPTION procedure, or if none applies, after

completion of the normal input-output control system error processing.

1-0 status expresses one of the following conditions upon completion of the

input-output operation:

VII1-2

Relative 1-0 - Introduction

(1) Successful Completion. The input-output statement was successfully

executed.

(2) At End. A sequential READ statement was unsuccessfully executed as a

result of an at end condition.

(3) Invalid Key. The input-output statement was unsuccessfully executed as

a result of an invalid key condition.

(4) Permanent Error. The input-output statement was unsuccessfully executed

as the result of an error that precluded further processing of the file. Any

specified exception procedures are executed. The permanent error condition

remains in effect for all subsequent input-output operations on the file unless

an implementor-defined technique is invoked to correct the permanent error

condition.

(5) Logic Error. The input-output statement was unsuccessfully executed as

a result of an improper sequence of input-output operations that were performed

on the file or as a result of violating a limit defined by the user.

(6) Implementor Defined. The input-output statement was unsuccessfully

executed as the result of a condition that is specified by the implementor.

The following is a list of the values placed in the 1-0 status for the

previously named conditions resulting from the execution of an input-output

operation on a relative file. If more than one value applies, the implementor

determines which of the applicable values to place in the 1-0 status.

(1) Successful Completion

a. 1-0 Status = 00. The input-output statement is successfully

executed and no further information is available concerning the input-output

operation.

b. 1-0 Status = 04. A READ statement is successfully executed but the

length of the record being processed does not conform to the fixed file

attributes for that file.

c. 1-0 Status =05. An OPEN statement is successfully executed but the

referenced optional file is not present at the time the OPEN statement is

executed. If the open mode is 1-0 or extend, the file has been created._

(2) At End Condition With Unsuccessful Completion.

a. 1-0 Status =10. A sequential READ statement is attempted and no

next logical record exists in the file because:

1) The end of the file has been reached; or

2) A sequential READ statement is attempted for the first time on

an optional input file that is not present.

b. 1-0 Status =14. A sequential READ statement is attempted for a

relative file and the number of significant digits in the relative record number

is larger than the size of the relative key data item described for the file.

VII1-3

Relative 1-0 - Introduction

(3) Invalid Key Condition With Unsuccessful Completion

a. 1-0 Status =22. An attempt is made to write a record that would

create a duplicate key in a relative file.

b. 1-0 Status = 23. This condition exists because:

1) An attempt is made to randomly access a record that does not

exist in the file; or

2) A START or random READ statement is attempted on an optional

input file that is not present.

c. 1-0 Status =24. An attempt is made to write beyond the externally

defined boundaries of a relative file. The implementor specifies the manner in

which these boundaries are defined. Or, a sequential WRITE statement is

attempted for a relative file and the number of significant digits in the

relative record number is larger than the size of the relative key data item

described for the file.

(4) Permanent Error Condition With Unsuccessful Completion

a. 1-0 Status =30. A permanent error exists and no further

information is available concerning the input-output operation.

b. 1-0 Status

with the INPUT, I-O,

is not present.

=35. A permanent

or EXTEND)phrase is

error exists

attempted on

because an OPEN statement

a non-optional1 file that

c. 1-0 Status =37. A permanent error exists because an OPEN statement

is attempted on a file and that file will not support the open mode specified in

the OPEN statement. The possible violations are:

1) The [EXTEND or] OUTPUT phrase is specified but the file will not

support write operations.

2) The 1-0 phrase is specified but the file will not support the

input and output operations that are permitted for a relative file when opened

in the 1-0 mode.

3) The INPUT phrase is specified but the file will not support read

operations.

d. 1-0 Status =38. A permanent error exists because an OPEN statement

is attempted on a file previously closed with lock.

e. 1-0 Status = 39. The OPEN statement is unsuccessful because a

conflict has been detected between the fixed file attributes and the attributes

specified for that file in the program.

(5) Logic Error Condition With Unsuccessful Completion

a. 1-0 Status =41. An OPEN statement is attempted for a file in the

open mode.

VIII-4

Relative 1-0 - Introduction

b. 1-0 Status = 42. A CLOSE statement is attempted for a file not in

the open mode.

c. 1-0 Status = 43. In the sequential access mode, the last

input-output statement executed for the file prior to the execution of a DELETE

or REWRITE statement was not a successfully executed READ statement.

d. 1-0 Status = 44. A boundary violation exists because:

1) An attempt is made to write or rewrite a record that is larger

than the largest or smaller than the smallest record allowed by the RECORD IS

VARYING clause of the associated file-name.

file and

2) In

the record

level 1 an attempt is made to rewrite a record to a

is not the same size as the record being replaced.

relative

e. 1-0 Status = 46. A sequential READ statement is attempted on a file

open in the input or 1-0 mode and no valid next record has been established

because:

1) The preceding START statement was unsuccessful, or

2) The preceding READ statement was unsuccessful but did not cause

an at end condition, or

3) The preceding READ statement caused an at end condition.

statement is f. I—0 Status = 47. The execution of a READ or START

attempted on a file not open in the input or 1-0 mode.

g. 1-0 Status = 48. The execution of a WRITE statement is attempted on

a file not open in the 1-0, output, lor extendi mode.

h. 1-0 Status = 49. The execution of a DELETE or REWRITE statement is

attempted on a file not open in the 1-0 mode.

(6) Implementor-Defined Condition With Unsuccessful Completion

a. 1-0 Status = 9x. An implementor-defined condition exists. This

condition must not duplicate any condition specified for the 1-0 status values

00 through 49. The value of x is defined by the implementor.

1.3.5 The Invalid Key Condition

The invalid key condition can occur as a result of the execution of a DELETE,

READ, REWRITE, START,~| or WRITE statement. When the invalid key condition

occurs, execution of the input-output statement which recognized the condition

is unsuccessful and the file is not affected. (See page VIII-19, The DELETE

Statement; page VIII-26, The READ Statement; page VIII-30, The REWRITE

Statement; page VIII-33, The START Statement; and page VIII-37, The WRITE

Statement.)

If the invalid key condition exists after the execution of the input-output

operation specified in an input-output statement, the following actions occur in

the order shown:

VII1-5

Relative 1-0 - Introduction

(1) The 1-0 status of the file connector associated with the statement is

set to a value indicating the invalid key condition. (See page VIII-2, 1-0

Status .)

(2) If the INVALID KEY phrase is specified in the input-output statement,

any USE AFTER EXCEPTION procedure associated with the file connector is not

executed and control is transferred to the imperative-statement specified in the

INVALID KEY phrase. Execution then continues according to the rules for each

statement specified in that imperative-statement. If a procedure branching or

conditional statement which causes explicit transfer of control is executed,

control is transferred in accordance with the rules for that statement;

otherwise, upon completion of the execution of the imperative-statement

specified in the INVALID KEY phrase, control is transferred to the end of the

input-output statement and the NOT INVALID KEY phrase, if specified, is ignored.

(3) If the INVALID KEY phrase is not specified in the input-output

statement, a USE AFTER EXCEPTION procedure must be associated with the file

connector and that procedure is executed and control is transferred according to

the rules of the USE statement. The NOT INVALID KEY phrase is ignored, if

specified. (See page VIII-35, The USE Statement.)

If the invalid key condition does not exist after the execution of the

input-output operation specified by an input-output statement, the INVALID KEY

phrase is ignored, if specified. The 1-0 status of the file connector

associated with the statement is updated and the following actions occur:

(1) If an exception condition which is not an invalid key condition exists,

control is transferred according to the rules of the USE statement following the

execution of any USE AFTER EXCEPTION procedure associated with the file

connector. (See page VIII-35, The USE Statement.)

(2) If no exception condition exists, control is transferred to the end of

the input-output statement or to the imperative-statement specified in the NOT

INVALID KEY phrase if it is specified. In the latter case, execution continues

according to the rules for each statement specified in that

imperative-statement. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of the imperative-statement in the NOT INVALID KEY phrase, control is

transferred to the end of the input-output statement.

1.3.6 The At End Condition

The at end condition can occur as a result of the execution of a READ

statement. (See page VIII-26, The READ Statement.)

1.3.7 The File Attribute Conflict Condition

The file attribute conflict condition can result from the execution of an

OPEN, REWRITE, or WRITE statement. When the file attribute conflict condition

occurs, execution of the input-output statement that recognized the condition is

unsuccessful and the file is not affected. (See page VIII-21, The OPEN

Statement; page VIII-30, The REWRITE Statement; and page VIII-37, The WRITE

Statement.)

VIII-6

Relative 1-0 - Introduction

When the file attribute conflict condition is recognized, these actions take

place in the following order:

(1) A value is placed in the 1-0 status associated with the file-name to

indicate the file attribute conflict condition. (See page VIII-2, 1-0 Status.)

(2) A USE AFTER EXCEPTION procedure, if any, associated with the file-name

is executed.

Relative 1-0 - File Control Entry

2. ENVIRONMENT DIVISION IN THE RELATIVE 1-0 MODULE

2.1 INPUT-OUTPUT SECTION

Information concerning the Input-Output Section is located on page VII-6.

2.2 THE FILE-CONTROL PARAGRAPH

Information concerning the FILE-CONTROL paragraph is located on page VII-7.

2.3 THE FILE CONTROL ENTRY

2.3.1 Function

The file control entry declares the relevant physical attributes of a

relative file.

2.3.2 General Format

SELECT [OPTIONAL] file-name-1

ASSIGN TO
implementor-name-1

literal-1

r

RESERVE inteeer-1
AREA

AREAS L,

[ORGANIZATION IS] RELATIVE

ACCESS MODE TS
(SEQUENTIAL

(RANDOM)

[RELATIVE KEY IS data-name.-l]

RELATIVE KEY IS data-name-1 |

i
n DYNAMIC f

y

[FILE STATUS IS data-name-2].

2.3.3 Syntax Rules

(1) The SELECT clause must be specified first in the file control entry.

The clauses which follow the SELECT clause may appear in any order.

(2) Each file-name in the Data Division must be specified only once in the

FILE-CONTROL paragraph. Each file-name specified in the SELECT clause must have

a file description entry in the Data Division of the same program.

(3) Literal-1 must be a nonnumeric literal and must not be a figurative

constant. The meaning and rules for the allowable content of implementor-name-1

and the value of literal-1 are defined by the implementor.

2.3.4 General Rules

(1) If the file connector referenced by file-name-1 is an external file

connector (see page X-23, The EXTERNAL Clause), all file control entries in the

run unit which reference this file connector must have:

VII1-8

Relative 1-0 - File Control Entry

a . The same specification for the OPTIONAL phrase.

b.

the ASSIGN

implementor-

A consistent specification for implementor-name-1 or literal-1

clause. The implementor will specify the consistency rules

name-1 or literal-1.

in

for

c . The same value for integer-1 in the RESERVE clause. n
d . The same organization.

e . The same access mode.

f. The same external data item for data-name-1 in the RELATIVE KEY

phrase.

(2) The native character set is assumed for data on the external media.

(3) The OPTIONAL phrase applies only to files opened in the input, 1-0, or

extend mode . Its specification is required for files that are not necessarily

present each time the object program is executed.

(4) The ASSIGN clause specifies the association of the file referenced by

f i le-name-1 to a storage medium referenced by implementor-name-1 or literal- 1 .

(5) The RESERVE clause for the Relative 1-0 module is the same as the

RESERVE clause for the Sequential 1-0 module. Thus the specifications for the

RESERVE clause are located on page VII-14.

(6) The FILE STATUS clause for the Relative 1-0 module is the same as the

FILE STATUS clause for the Sequential 1-0 module. Thus the specifications for

the FILE STATUS clause are located on page VII-10. The content of the data item

associated with the FILE STATUS clause of a relative file is presented in the

paragraph entitled 1-0 Status beginning on page VIII-2.

(7) The ACCESS MODE clause and the ORGANIZATION IS RELATIVE clause are

presented on the following pages.

VI11-9

Relative 1-0 - ACCESS MODE

2.4 THE ACCESS MODE CLAUSE

2.4.1 Function

The ACCESS MODE clause specifies the order in which records are to be

accessed in the file.

2.4.2 General Format

SEQUENTIAL [RELATIVE KEY IS data—name-1]
ACCESS MODE IS

RELATIVE KEY IS data-name-1

2.4.3 Syntax Rules

(1) Data-name-1 may be qualified.

(2) Data-name-1 must reference an unsigned integer data item whose

description does not contain the PICTURE symbol 'P' .

(3) Data-name-1 must not be defined in a record description entry associated

with that file-name.

(4) The ACCESS MODE IS RANDOM clause must not be specified for file-names

specified in the USING or GIVING phrase of a SORT or MERGE statement.

(3) If a relative file is referenced by a START statement, the RELATIVE KEY

phrase within the ACCESS MODE clause must be specified for that file.

2.4.4 General Rules

(1) If the ACCESS MODE clause is not specified, sequential access is

assumed.

(2) If the access mode is sequential, records in the file are accessed in

the sequence dictated by the file organization. For relative files this

sequence is the order of ascending relative record numbers of existing records

in the file.

(3) If the access mode is random, the value of the relative key data item

for relative files indicates the record to be accessed.

(4) If the access mode is dynamic, records in the file may be accessed

sequentially and/or randomly. _

(5) All records stored in a relative file are uniquely identified by

relative record numbers. The relative record number of a given record specifies

the record's logical ordinal position in the file. The first logical record has

a relative record number of 1, and subsequent logical records have relative

record numbers of 2, 3, 4,

(6) The data item specified by data-name-1 is used to communicate a relative

record number between the user and the mass storage control system (MSCS).

VIII-10

Relative 1-0 - ACCESS MODE

(7) The

input-output

MODE clause.

(8) If the associated file connector is an external file connector, every

file control entry in the run unit which is associated with that file connector

must specify the same access mode. In addition, data-name-1 must reference an

external data item and the RELATIVE KEY phrase in each associated file control

entry must reference that same external data item in each case.

relative key data item associated with the execution of an

statement is the data item referenced by data-name-1 in the ACCESS

VIII-11

Relative 1-0 - ORGANIZATION IS RELATIVE

2.5 THE ORGANIZATION IS RELATIVE CLAUSE

2.5.1 Function

The ORGANIZATION IS RELATIVE clause specifies relative organization as the

logical structure of a file.

2.5.2 General Format

[ORGANIZATION IS] RELATIVE

2.5.3 General Rules

(1) The ORGANIZATION IS RELATIVE clause specifies relative organization as

the logical structure of a file. The file organization is established at the

time a file is created and cannot subsequently be changed.

(2) Relative organization is a permanent logical file structure in which

each record is uniquely identified by an integer value greater than zero, which

specifies the record's logical ordinal position in the file.

VIII-12

Relative 1-0 - I-O-CONTROL

2.6 THE I-O-CONTROL PARAGRAPH

2.6.1 Function

The I-O-CONTROL paragraph specifies the points at which rerun

established and the memory area which is to be shared by different

RERUN clause within the I-O-CONTROL paragraph is an obsolete element

COBOL because it is to be deleted from the next revision of Standard

is to be

files . The

in Standard

COBOL.

2.6.2 General Format

I-O-CONTROL.

/file-name-1)
iinteger-1 RECORDS OF file-name-2)"

RERUN ON.
(implementor-name-1j

EVERY <integer-2

(condition-
CLOCK-UNITS V

-name-1 J

r SAME [RECORD] AREA FOR file-name-3 {file-name-4} .]

2.6.3 General Rules

(1) The RERUN clause for the Relative 1-0 module is a subset of the RERUN

clause for the Sequential 1-0 module. Thus the specifications for the RERUN

clause are located on page VII-17 .

(2) The SAME clause for the Relative 1-0 module is the same as the SAME

clause for the Sequential 1-0 module. Thus the specifications for the SAME

clause are located on page VII-19.

VII1-13

Relative 1-0 - File Description Entry

3. DATA DIVISION IN THE RELATIVE 1-0 MODULE

3.1 FILE SECTION

Information concerning the File Section is located on page VII-21.

3.2 THE FILE DESCRIPTION ENTRY

3.2.1 Function

The file description entry furnishes information concerning the physical

structure, identification, and record-names pertaining to a relative file.

3.2.2 General Format

FD file-name-1

BLOCK. CONTAINS [[integer-1 TO]| integer-2 |CHARACTERSj"

CONTAINS integer-3 CHARACTERS

RECORD
IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]

[DEPENDING ON data-name-1]

t
CONTAINS integer-6 TO integer-7 CHARACTERS

/RECORD IS i (STANDARD

- /RECORDS ARE/ /OMITTED j

jvALUE OF jimplementor-name-1 IS {^iteral-T^} } *"

{SsMeI {data-name-3} ...j .

3.2.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description

entry and must precede file-name-1.

(2) The clauses which follow file-name-1 may appear in any order.

(3) One or more record description entries must follow the file description

entry .

3.2.4 General Rules

(1) A file description entry associates file-name-1 with a file connector.

(2) The BLOCK CONTAINS clause for the Relative 1-0 module is the same as the

BLOCK CONTAINS clause for the Sequential 1-0 module. Thus the specifications

for the BLOCK CONTAINS clause are located on page VII-23.

VIII-14

Relative 1-0 - File Description Entry

(3) The DATA RECORDS clause for the Relative 1-0 modules is the same as the

DATA RECORDS clause for the Sequential 1-0 module. Thus the specifications for

the DATA RECORDS clause are located on page VI1-25. The DATA RECORDS clause is

an obsolete element in Standard COBOL because it is to be deleted from the next

revision of Standard COBOL.

(4) The LABEL RECORDS clause for the Relative 1-0 module is the same as the

LABEL RECORDS clause for the Sequential 1-0 module. Thus the specifications for

the LABEL RECORDS clause are located on page VII-26. The LABEL RECORDS clause

is an obsolete element in Standard COBOL because it is to be deleted from the

next revision of Standard COBOL.

(5) The RECORD clause for the Relative 1-0 module is the same as the RECORD

clause for the Sequential 1-0 module. Thus the specifications for the RECORD

clause are located on page VII-30.

(6) The VALUE OF clause for the Relative 1-0 module is the same as the VALUE

OF clause for the Sequential 1-0 module. Thus the specifications for the VALUE

OF clause are located on page VII-33. The VALUE OF clause is an obsolete

element in Standard COBOL because it is to be deleted from the next revision of

Standard COBOL.

VIII-15

Relative 1-0 - Procedure Division

4. PROCEDURE DIVISION IN THE RELATIVE 1-0 MODULE

4.1 GENERAL DESCRIPTION

The Procedure Division contains declarative procedures when the USE statement

from the Relative 1-0 module is present in a COBOL source program. Shown below

is the general format of the Procedure Division when the USE statement is

present .

PROCEDURE DIVISION.

DECLARATIVES.

(section-name SECTION.

USE statement,

[paragraph-name.

[sentence] ...] ... } .. .

END DECLARATIVES,

(section-name SECTION.

[paragraph-name.

[sentence] ...] ... } .. .

VII1-16

Relative 1-0 - CLOSE

4.2 THE CLOSE STATEMENT

4.2.1 Function

The CLOSE statement terminates the processing of files |with optional lock.

4.2.2 General Format

CLOSE {file-name-1 [WITH LOCKlI}

4.2.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the same

organization or access.

4.2.4 General Rules

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) Relative files are classified as belonging to the category of

non-sequential single/multi-reel/unit. The results of executing each type of

CLOSE for this category of file are summarized in the following table.

CLOSE

Statement

Format

File Category

Non-Sequential Single/Multi-Reel/Unit

CLOSE A

CLOSE WITH LOCK A, B

The definitions of the symbols in the table are given below. Where the

definition depends on whether the file is an input, output, or input-output

file, alternate definitions are given; otherwise, a definition applies to input,

output, and input-output files.

A. Close File

Input Files and Input-Output Files (Sequential Access Mode):

If the file is positioned at its end and label records are specified

for the file, the labels are processed according to the implementor's standard

label convention. The behavior of the CLOSE statement when label records are

specified but not present, or when label records are not specified but are

present, is undefined. Closing operations specified by the implementor are

executed. If the file is positioned at its end and label records are not

specified for the file, label processing does not take place but other closing

operations specified by the implementor are executed. If the file is positioned

other than at its end, the closing operations specified by the implementor are

executed, but there is no ending label processing.

VIII-17

Relative 1-0 - CLOSE

Input Files

Output Files

and Input-Output Files

(Random , iDvnami^TI or

(Random lor Dynamic 1 Acces

Sequential Access Mode)

s Mode);

If label records are specified for the file, the labels are

processed according to the implementor's standard label convention. The

behavior of the CLOSE statement when label records are specified but not

present, or when label records are not specified but are present, is undefined.

Closing operations specified by the implementor are executed. If label records

are not specified for the file, label processing does not take place but other

closing operations specified by the implementor are executed.

B. File Lock

The file is locked and cannot be opened again during this execution

of this run unit .

(3) The execution of the CLOSE statement causes the value of the 1-0 status

associated with file-name-1 to be updated. (See page VIII-2, 1-0 Status.)

(4) If an optional input file is not present, no end-of-file processing is

performed for the file and the file position indicator is unchanged._

(5) Following the successful execution of a CLOSE statement, the record area

associated with file-name-1 is no longer available. The unsuccessful execution

of such a CLOSE statement leaves the availability of the record area undefined.

(6) Following the successful execution of a CLOSE statement, the file is

removed from the open mode, and the file is no longer associated with the file

connector.

(7) If more than one file-name-1 is specified in a CLOSE statement, the

result of executing this CLOSE statement is the same as if a separate CLOSE

statement had been written for each file-name-1 in the same order as specified

in the CLOSE statement.

VIII-18

Relative 1-0 - DELETE

4.3 THE DELETE STATEMENT

4.3.1 Function

The DELETE statement logically removes a record from a mass storage file.

4.3.2 General Format

DELETE file-name-1 RECORD

rINVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

4.3.3 Syntax Rules

(1) The INVALID KEY and the NOT INVALID KEY phrases must not be specified

for a DELETE statement which references a file which is in sequential access

mode .

(2) The INVALID KEY phrase must be specified for a DELETE statement which

references a file which is not in sequential access mode and for which an

applicable USE AFTER STANDARD EXCEPTION procedure is not specified.

4.3.4 General Rules

(1) The file referenced by file-name-1 must be a mass storage file and must

be open in the 1-0 mode at the time of the execution of this statement. (See

page VIII-21, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output statement

executed for file-name-1 prior to the execution of the DELETE statement must

have been a successfully executed READ statement. The mass storage control

system (MSCS) logically removes from the file the record that was accessed by

that READ statement.

(3) For a relative file in random [or dynamic access mode, the mass storage

control system (MSCS) logically removes from the file that record identified by

the content of the relative key data item associated with file-name-1. If the

file does not contain the record specified by the key, the invalid key condition

exists. (See page VIII-5, The Invalid Key Condition.)

(4) After the successful execution of a DELETE statement, the identified

record has been logically removed from the file and can no longer be accessed.

(5) The execution of a DELETE statement does not affect the content of the

record area 1 or the content of the data item referenced by the data-name

specified in the DEPENDING ON phrase of the RECORD clause associated with

file-name-1

(6) The file position indicator is not affected by the execution of a DELETE

statement.

VIII-19

Relative 1-0 - DELETE

(7) The execution of the DELETE statement causes the value of the 1-0 status

associated with file-name-1 to be updated. (See page VIII-2, 1-0 Status.)

(8) Transfer of control following the successful or unsuccessful execution

of the

INVALID

VIII-5,

DELETE operation depends on the presence or absence of the optional

KEY and NOT INVALID KEY phrases in the DELETE statement. (See page

The Invalid Key Condition.)

(9) The END-DELETE phrase delimits the scope of the DELETE statement. (See

page IV-40, Scope of Statements.)

VIII-20

Relative 1-0 - OPEN

4.4 THE OPEN STATEMENT

4.4.1 Function

The OPEN statement initiates the processing of files.

4.4.2 General Format

OPEN

INPUT {file-name-1} ...

OUTPUT {file-name-2} ..

1-0 {file-name-3} ...

EXTEND {file-name-4} ..

4.4.3 Syntax Rules

(1) The EXTEND phrase must only be used for files in the sequential access

mode.

(2) The files referenced in the OPEN statement'need not all have the same

organization or access.

4.4.4 General Rules

(1) The successful execution of an OPEN statement determines the

availability of the file and results in the file being in an open mode. The

successful execution of an OPEN statement associates the file with the file-name

through the file connector.

A file is available if it is physically present and is recognized by the

input-output control system. Table 1 on page VIII-22 shows the results of

opening available and unavailable files.

VIII-21

Relative 1-0 - OPEN

File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

INPUT (optional file) Normal open Normal open; the first read

causes the at end condition

or the invalid key condition

1-0 Normal open Open is unsuccessful

1-0 (optional file) Normal open Open causes the file to be

created

OUTPUT Normal open; the

file contains no

records

Open causes the file to be

created

EXTEND Normal open Open is unsuccessful

EXTEND (optional file) Normal open Open causes the file to be

created

Table 1. Availability of a File

(2) The successful execution of an OPEN statement makes the associated

record area available to the program. If the file connector associated with

file-name is an external file connector, there is only one record area

associated with the file connector for the run unit.

(3) When a file is not in an open mode, no statement may be executed which

references the file, either explicitly or implicitly, except for a MERGE

statement with the USING or GIVING phrase, an OPEN statement, or a SORT

statement with the USING or GIVING phrase.

(4) An OPEN statement must be successfully executed prior to the execution

of any of the permissible input-output statements. In table 2 on page VIII-23,

Permissible Statements, 'X' at an intersection indicates that the specified

statement, used in the access mode given for that row, may be used with the open

mode given at the top of the column.

VII1-22

Relative 1-0 - OPEN

File Access

Mode

Statement

Open Mode

Input Output 1-0 Extend

Sequential READ X X

WRITE X X

REWRITE X

START X X

DELETE X

Random READ X X

WRITE X X

REWRITE X

START

DELETE X

Dynamic READ X X

WRITE X X

REWRITE X

START X X

DELETE X

Table 2: Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT, EXTEND, and 1-0 phrases in

the same run unit. Following the initial execution of an OPEN statement for a

file, each subsequent OPEN statement execution for that same file must be

preceded by the execution of a CLOSE statement, without the LOCK phrase, for

that file.

(6) Execution of the OPEN statement does not obtain or release

data record.

the first

(7) If label records are specified for the file, the beginning labels are

processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN

statement causes the labels to be checked in accordance with the implementor's

specified conventions for input label checking.

VII1-23

Relative 1-0 - OPEN

b. When the OUTPUT phrase is specified, the execution of the OPEN

statement causes the labels to be written in accordance with the implementor's

specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified but

not present, or when label records are not specified but are present, is

undefined .

(8) If during the execution of an OPEN statement a file attribute conflict

condition occurs, the execution of the OPEN statement is unsuccessful. (See

page VIII-6, The File Attribute Conflict Condition.)

(9) If a file opened with the INPUT phrase is an optional file which is not

present, the OPEN statement sets the file position indicator to indicate that an

optional input file is not present._

(10) When files are opened with the INPUT or 1-0 phrase, the file position

indicator is set to 1.

(11) When the EXTEND phrase is specified, the OPEN statement positions the

file immediately after the last logical record for that file. The last logical

record for a relative file is the currently existing record with the highest

relative record number.

(12) When the EXTEND phrase is specified and the LABEL RECORDS clause

indicates label records are present, the execution of the OPEN statement

includes the following steps.

a. The beginning file labels are processed only in the case of a single

reel/unit file.

b. The beginning reel/unit labels on the last existing reel/unit are

processed as though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is

being opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the

OUTPUT phrase ._

(13) The OPEN statement with the 1-0 phrase must reference a file that

supports the input and output operations that are permitted for a relative file

when opened in the 1-0 mode. The execution of the OPEN statement with the 1-0

phrase places the referenced file in the open mode for both input and output

operations .

(14) When the 1-0 phrase is specified and the LABEL RECORDS clause indicates

label records are present, the execution of the OPEN statement includes the

fo1 lowing steps.

a. The labels are checked in accordance with the implementor's specific

conventions for input-output label checking.

b. The new labels are written in accordance with the implementor's

specified conventions for input-output label writing.

VIII-24

Relative 1-0 - OPEN

(15)

OPEN

takes

For an

statement

place as

optional file that is unavailable

with an 1 EXTEND or 1-0 phrase

if the following statements were

, the successful

creates the file

executed in the

execution of an

. This creation

order shown:

OPEN OUTPUT file-name.

CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in

the source program.

The successful execution of an OPEN statement with the OUTPUT phrase

creates the file. After the successful creation of a file, that file contains

no data records .

(16) The execution of the OPEN statement causes the value of the 1-0 status

associated with file-name to be updated. (See page VIII-2, 1-0 Status.)

(17) If more than one file-name is specified in an OPEN statement, the

result of executing this OPEN statement is the same as if a separate OPEN

statement had been written for each file-name in the same order as specified in

the OPEN statement.

(18)

time the

The minimum and

file is created

maximum record sizes for a file are established

and must not subsequently be changed.

at the

VII1-25

Relative 1-0 - READ

4.5 THE READ STATEMENT

4.5.1 Function

For sequential access, the READ statement makes available the next logical

record from a file. For random access, the READ statement makes available a

specified record from a mass storage file.

4.5.2 General Format

Format 1:

READ file-name-1 [NEXT1 RECORD [INTO identifier-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

Format 2:

READ file-name-1 RECORD [INTO identifier-1]

rINVALID KEY imperative-statement-3]

[NOT INVALID KEY imperative-statement-4]

[END-READ]

4.5.3 Syntax Rules

(1) The storage area associated with identifier-1 and the record area

associated with file-name-1 must not be the same storage area.

(2) Format 1 must be used for all files in sequential access mode.

(3) The NEXT phrase must be specified for files in dynamic access mode when

records are to be retrieved sequentially.

(4) Format 2 is used for files in random access mode or for files in dynamic

access mode when records are to be retrieved randomly.

(5) The INVALID KEY phrase or the AT END phrase must be specified if no

applicable USE AFTER STANDARD EXCEPTION procedure is specified for file-name-1.

4.5.4 General Rules

(1) The file referenced by file-name-1 must be open in the input or 1-0 mode

at the time this statement is executed. (See page VIII-21, The OPEN Statement.)

(2) For files in sequential access mode, the NEXT phrase is optional and has

no effect on the execution of the READ statement.

VIII-26

Relative 1-0 READ

(3) The execution of the READ statement causes the value of the 1-0 status

associated with file-name-1 to be updated. (See page VIII-2, 1-0 Status.)

(4) The setting of the file position indicator at the start of the execution

of a format 1 READ statement is used in determining the record to be made

available according to the following rules. Comparisons for records in relative

files relate to the relative key number.

a. If the file position indicator indicates that no valid next record

has been established, execution of the READ statement is unsuccessful.

b. If the file position indicator indicates that an optional input file

is not present, execution proceeds as specified in general rule 10.

c. If the file position indicator was established by a previous OPEN or

START statement, the first existing record in the file whose relative record

number is greater than or equal to the file position indicator is selected.

d. If the file position indicator was established by a previous READ

statement, the first existing record in the file whose relative record number is

greater than the file position indicator is selected.

If a record is found which satisfies the above rules, it is made

available in the record area associated with file-name-1 unless the RELATIVE KEY

phrase is specified for file-name-1 and the number of significant digits in the

relative record number of the selected record is larger than the size of the

relative key data item, in which case, the file position indicator is set to

indicate this condition and execution proceeds as specified in general rule 10.

If no record is found which satisfies the above rules, the file position

indicator is set to indicate that no next logical record exists and execution

proceeds as specified in general rule 10.

If a record is made available, the file position indicator

relative record number of the record made available.

(5) Regardless of the method used*to overlap access time wi

time, the concept of the READ statement is unchanged; a record i

the object program prior to the execution of imperative-st

imperative-statement-4, if specified, or prior to the execution of

following the READ statement, if neither imperative-sta

imperative-statement-4 is specified.

(6) When the logical records of a file are described with more than one

record description, these records automatically share the same record area in

storage; this is equivalent to an implicit redefinition of the area. The

contents of any data items which lie beyond the range of the current data record

are undefined at the completion of the execution of the READ statement.

(7) The INTO phrase may be specified in a READ statement:

is set to the

th processing

s available to

atement-2 or

any statement

tement-2 nor

a. If only one

description entry, or

record description is subordinate to the file

VII1-27

Relative 1-0 READ

b. If all record-names associated with file-name-1 and the data item

referenced by identifier-1 describe a group item or an elementary alphanumeric

item.

(8) The result of the execution of a READ statement with the INTO phrase is

equivalent to the application of the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area

specified by identifier-1 according to the rules for the MOVE statement without

the CORRESPONDING phrase. The size of the current record is determined by rules

specified for the RECORD clause. If the file description entry contains a

RECORD IS VARYING clause, the implied move is a group move. The implied MOVE

statement does not occur if the execution of the READ statement was

unsuccessful. Any subscripting associated with identifier-1 is evaluated after

the record has been read and immediately before it is moved to the data item.

The record is available in both the record area and the data item referenced by

identifier-1.

(9) If, at the time of the execution of a format 2 READ statement, the file

position indicator indicates that an optional input file is not present, the

invalid key condition exists and execution of the READ statement is

unsuccessful. (See page VIII-5, The Invalid Key Condition.)

(10) For a format 1 READ statement, if the file position indicator

that no next logical record exists, or that the number of significant

the relative record number is larger than the size of the relative

item, or that an optional file is not present,] the following occurs in

specified:

indicates

digits in

key data

the order

a. A value, derived from the setting of the file position indicator, is

placed into the 1-0 status associated with file-name-1 to indicate the at end

condition. (See page VIII-2, 1-0 Status.)

b. If the AT END phrase is specified in the statement causing the

condition, control is transferred to imperative-statement-1 in the AT END

phrase. Any USE AFTER STANDARD EXCEPTION procedure associated with file-name-1

is not executed .

c. If the AT END phrase is not specified, a USE AFTER STANDARD

EXCEPTION procedure must be associated with file-name-1, and that procedure is

executed. Return from that procedure is to the next executable statement

following the end of the READ statement.

When the at end condition occurs, execution of the

unsuccessful.

READ statement is

(11) If neither an at end nor an invalid key condition occurs during the

execution of a READ statement, the AT END phrase or the INVALID KEY phrase is

ignored, if specified, and the following actions occur:

a. The file position indicator is set and the 1-0 status associated

with file-name-1 is updated.

VIII 28

Relative 1-0 - READ

b. If an exception condition which is not an at end or an invalid key

condition exists, control is transferred according to rules of the USE statement

following the execution of any USE AFTER EXCEPTION procedure applicable to

file-name-1. (See page VIII-35, The USE Statement.)

c. If no exception condition exists, the record is made available in

the record area and any implicit move resulting from the presence of an INTO

phrase is executed. Control is transferred to the end of the READ statement or

to imperative-statement-2, if specified. In the latter case, execution

continues according to the rules for each statement specified in

imperative-statement-2. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-2, control is transferred to the end of the

READ statement.

(12) Following the unsuccessful execution of a READ statement, the content of

the associated record area is undefined and the file position indicator is set

to indicate that no valid next record has been established.

(13) For a relative file for which dynamic access mode is specified, a

format 1 READ statement with the NEXT phrase specified causes the next logical

record to be retrieved from that file.

(14) For a relative file, if the RELATIVE KEY phrase is specified for

file-name-1, the execution of a format 1 READ statement moves the relative

record number of the record made available to the relative key data item

according to the rules for the MOVE statement. (See page VI-103, The MOVE

Statement.)

(15) For a relative file, execution of a format 2 READ statement sets the

file position indicator to the value contained in the data item referenced by

the RELATIVE KEY phrase for the file, and the record whose relative record

number equals the file position indicator is made available in the record area

associated with file-name-1. If the file does not contain such a record, the

invalid key condition exists and execution of the READ statement is

unsuccessful. (See page VIII-5, The Invalid Key Condition.)

(16) If the number of character positions in the record that is read is less

than the minimum size specified by the record description entries for

file-name-1, the portion of the record area which is to the right of the last

valid character read is undefined. If the number of character positions in the

record that is read is greater than the maximum size specified by the record

description entries for file-name-1, the record is truncated on the right to the

maximum size. In either of these cases, the READ statement is successful and an

1-0 status is set indicating a record length conflict has occurred. (See page

VII1-2, 1-0 Status.)_

(17) The END-READ phrase delimits the scope of the READ statement. (See page

IV-40, Scope of Statements.)

VIII-29

Relative 1-0 - REWRITE

4.6 THE REWRITE STATEMENT

4.6.1 Function

The REWRITE statement logically replaces a record existing in a mass storage

file.

4.6.2 General Format

REWRITE record-name-1 [FROM identifier-1]

fINVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REWRITE 1

4.6.3 Syntax Rules

(1) Record-name-1 and identifier-1 must not refer to the same storage area.

(2) Record-name-1 is the name of a logical record in the File Section of the

Data Division and may be qualified.

(3) The INVALID KEY and the NOT INVALID KEY phrases must not be specified

for a REWRITE statement which references a relative file in sequential access

mode .

(4) The INVALID KEY phrase must be specified in the

relati ve files in the random

REWRITE statement for

or dynamic] access mode, and for which an

appropriate USE AFTER STANDARD EXCEPTION procedure is not specified.

4.6.4 General Rules

(1) The file referenced by the file-name associated with record-name-1 must

be a mass storage file and must be open in the 1-0 mode at the time of execution

of this statement. (See page VIII-21, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output statement

executed for the associated file prior to the execution of the REWRITE statement

must have been a successfully executed READ statement. The mass storage control

system (MSCS) logically replaces the record that was accessed by the READ

statement.

(3) In level 1, the number of character positions in the record referenced

by record-name-1 must be equal to the number of character positions in the

record being replaced. In level 2, the number of character positions in the

record referenced by record-name-1 may or may not be equal to the number of

character positions in the record being replaced.

(4) The logical record released by a successful execution of the REWRITE

statement is no longer available in the record area[unless the file-name

associated with record-name-1 is specified in a SAME RECORD AREA clause. The

logical record is also available to the program as a record of other files

VII1-30

Relative 1-0 - REWRITE

referenced in the same SAME RECORD AREA clause as the associated output file, as

well as the file associated with record-name-1. _

(5) The result of the execution of a REWRITE statement with the FROM phrase

is equivalent to the execution of the following statements in the order

specified:

a. The statement:

MOVE identifier-1 TO record-name-1

according to the rules specified for the MOVE statement.

b. The same REWRITE statement without the FROM phrase.

(6) After the execution of the REWRITE statement is complete, the

information in the area referenced by identifier-1 is available, even though the

information in the area referenced by record-name-1 is not available | except as

specified by the SAME RECORD AREA clause.

(7) The file position indicator is not affected by the execution of a

REWRITE statement.

(8) The execution of the REWRITE statement causes the value of the 1-0

status of the file-name associated with record-name-1 to be updated. (See page

VIII-2, 1-0 Status.)

(9) The execution of the REWRITE statement releases a logical record to the

operating system.

(10) Transfer of control following the successful or unsuccessful execution

of the REWRITE operation depends on the presence or absence of the optional

INVALID KEY and NOT INVALID KEY phrases in the REWRITE statement. (See page

VIII-5, The Invalid Key Condition.)

(11) The END-REWRITE phrase delimits the scope of the REWRITE statement.

(See page IV-40, Scope of Statements.)

(12) The number of character positions in the record referenced by

record-name-1 must not be larger than the largest or smaller than the smallest

number of character positions allowed by the RECORD IS VARYING clause associated

with the file-name associated with record-name-1. In either of these cases the

execution of the REWRITE statement is unsuccessful, the updating operation does

not take place, the contents of the record area are unaffected and the 1-0

status of the file associated with record-name-1 is set to a value indicating

the cause of the condition. (See page VIII-2, 1-0 Status.)_

VIII-31

Relative 1-0 - REWRITE

(13) For a fil

storage control

content of the re

If the file do

condition exists,

of the REWRITE

place, the conten

file-name associ

of the condition.

e accessed in leitherl random |or dynamicl access mode, the mass

system (MSCS) logically replaces the record specified by the

lative key data of the file-name associated with record-name-1,

es not contain the record specified by the key, the invalid key

When the invalid key condition is recognized, the execution

statement is unsuccessful, the updating operation does not take

ts of the record area are unaffected and the 1-0 status of the

ated with record-name-1 is set to a value indicating the cause

(See page VIII-2, 1-0 Status.)

VII1-32

Relative 1-0 - START

4.7 THE START STATEMENT

4.7.1 Function

The START statement provides a basis for logical positioning within a

relative file, for subsequent sequential retrieval of records.

4.7.2 General Format

IS EQUAL TO

IS =

IS GREATER THAN

IS >

IS NOT LESS THAN

IS NOT <

IS GREATER THAN OR EQUAL TO

IS >=

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

fEND-START]

data-name-1 START file-name-1 KEY

4.7.3 Syntax Rules

(1) File-name-1 must be the name of a file with a sequential or dynamic

access .

(2) Data-name-1 may be qualified.

(3) The INVALID KEY phrase must be specified if no applicable USE AFTER

STANDARD EXCEPTION procedure is specified for file-name-1.

(4) Data-name-1, if specified, must be the data item specified in the

RELATIVE KEY phrase in the ACCESS MODE clause of the associated file control

entry.

4.7.4 General Rules

(1) The file referenced by file-name-1 must be open in the input or 1-0 mode

at the time that the START statement is executed. (See page VIII-21, The OPEN

Statement.)

(2) If the KEY phrase is not specified, the relational operator 'IS EQUAL

TO' is implied.

(3) The execution of the START statement does not alter either the content

of the record area or the content of the data item referenced by the data-name

specified in the DEPENDING ON phrase of the RECORD clause associated with

file-name-1.

VII1-33

Relative 1-0 - START

(4) The type of comparison specified by the relational operator in the KEY

phrase occurs between a key associated with a record in the file referenced by

file-name-1 and a data item as specified in general rule 10. Numeric comparison

rules apply. (See page VI-55, Comparison of Numeric Operands.)

a. The file position indicator is set to the relative record number of

the first logical record in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, the

invalid key condition exists and the execution of the START statement is

unsuccessful .

(5) The execution of the START statement causes the value of the 1-0 status

associated with file-name-1 to be updated. (See page VIII-2, 1-0 Status.)

(6) If, at the time of the execution of the START statement, the file

position indicator indicates that an optional input file is not present, the

invalid key condition exists and the execution of the START statement is

unsuccessful.

(7) Transfer of control following the successful or unsuccessful execution

of the START operation depends on the presence or absence of the optional

INVALID KEY and NOT INVALID KEY phrases in the START statement. (See page

VIII-5, The Invalid Key Condition.)

(8) Following the unsuccessful execution of a START statement, the file

position indicator is set to indicate that no valid next record has been

established.

(9) The END-START phrase delimits the scope of the START statement. (See

page IV-40, Scope of Statements.)

(10) The comparison described in general rule 4 uses the data item referenced

by the RELATIVE KEY phrase of the ACCESS MODE clause associated with

file-name-1.

Relative 1-0 - USE

4.8 THE USE STATEMENT

4.8.1 Function

The USE statement specifies procedures for input-output error handling that

are in addition to the standard procedures provided by the input-output control

system.

4.8.2 General Format

USE AFTER STANDARD
(EXCEPTION)
>ERROR j

PROCEDURE ON

{file-name-1} r. . .1

INPUT

OUTPUT

1-0

EXTEND

4.8.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section header

in the declaratives portion of the Procedure Division and must appear in a

sentence by itself. The remainder of the section must consist of zero, one, or

more procedural paragraphs that define the procedures to be used.

(2) The USE statement is never executed; it merely defines the conditions

calling for the execution of the USE procedures.

(3) Appearance of file-name-1 in a USE statement must not cause the

simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may be used

interchangeably.

(5) The files implicitly or explicitly referenced in the USE statement need

not all have the same organization or access.

(6)
once in

The INPUT, OUTPUT, 1-0, 1 and EXTEND

the declaratives portion of a given

phrases may each be

Procedure Division.

specified only

4.8.4 General Rules

(1) Declarative procedures may be included in any COBOL source program

irrespective of whether the program contains or is contained within another

program. A declarative is invoked when any of the conditions described in the

USE statement which prefaces the declarative occurs while the program is being

executed. Only a declarative within the separately compiled program that

contains the statement which caused the qualifying condition is invoked when any

of the conditions described in the USE statement which prefaces the declarative

occurs while that separately compiled program is being executed. If no

qualifying declarative exists in the separately compiled program, no declarative

is executed.

(2) Within a declarative procedure, there must be no reference to any

nondeclarative procedures.

VIII-35

Relative 1-0 - USE

(3) Procedure-names associated with a USE statement may be referenced in a

different declarative section or in a nondeclarative procedure only with a

PERFORM statement.

(4) When file-name-1 is specified explicitly, no other USE statement applies

to file-name-1.

(5) The procedures associated with a USE statement are executed by the

input-output control system after completion of the standard input-output

exception routine upon the unsuccessful execution of an input-output operation

unless an AT END or INVALID KEY phrase takes precedence. The rules concerning

when the procedures are executed are as follows:

a. If file-name-1 is specified, the associated procedure is executed

when the condition described in the USE statement occurs.

b. If INPUT is specified, the associated procedure is executed when the

condition described in the USE statement occurs for any file open in the input

mode or in the process of being opened in the input mode, except those files

referenced by file-name-1 in another USE statement specifying the same

condition.

c. If OUTPUT is specified, the associated procedure is executed when

the condition described in the USE statement occurs for any file open in the

output mode or in the process of being opened in the output mode, except those

files referenced by file-name-1 in another USE statement specifying the same

condition.

d. If 1-0 is specified, the associated procedure is executed when the

condition described in the USE statement occurs for any file open in the 1-0

mode or in the process of being opened in the 1-0 mode, except those files

referenced by file-name-1 in another USE statement specifying the same

condition.

e. If EXTEND is specified, the associated procedure is executed when

the condition described in the USE statement occurs for any file open in the

extend mode or in the process of being opened in the extend mode, except those

files referenced by file-name-1 in another USE statement specifying the same

condition.

(6) After execution of the USE procedure, control is transferred to the

invoking routine in the input-output control system. If the 1-0 status value

does not indicate a critical input-output error, the input-output control system

returns control to the next executable statement following the input-output

statement whose execution caused the exception. If the 1-0 status value does

indicate a critical error, the implementor determines what action is taken.

(See page VIII-2, 1-0 Status.)

(7) Within a USE procedure, there must not be the execution of any statement

that would cause the execution of a USE procedure that had previously been

invoked and had not yet returned control to the invoking routine.

VII1-36

Relative 1-0 - WRITE

4.9 THE WRITE STATEMENT

4.9.1 Function

The WRITE statement releases a logical record for an output or input-output

file.

4.9.2 GENERAL FORMAT

WRITE record-name-1 [FROM identifier-1]

rINVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-WRITE]

4.9.3 Syntax Rules

(1) Record-name-1 and identifier-1 must not refer to the same storage area.

(2) Record-name-1 is the name of a logical record in the File Section of the

Data Division and may be qualified.

(3) The INVALID KEY phrase must be specified if an applicable USE AFTER

STANDARD EXCEPTION procedure is not specified for the associated file-name.

4.9.4 General Rules

(1) The file referenced by the file-name associated with record-name-1 must

be open in the output, 1-0. l~or extendi mode at the time of the execution of this

statement. (See page VIII-21, The OPEN Statement.)

(2) The logical record released by the successful execution of the WRITE

statement is no longer available in the record area[unless the file-name

associated with record-name-1 is specified in a SAME RECORD AREA clause. The

logical record is also available to the program as a record of other files

referenced in the same SAME RECORD AREA clause as the associated output file, as

well as the file associated with record-name-1.

(3) The result of the execution of a WRITE statement with the FROM phrase is

equivalent to the execution of the following statements in the order specified:

a. The statement

MOVE identifier-1 TO record-name-1

according to the rules specified for the MOVE statement.

b. The same WRITE statement without the FROM phrase.

VIII-37

Relative 1-0 - WRITE

(4) After the execution of the WRITE statement is complete, the information

in the area referenced by identifier-1 is available, even though the information

in the area referenced by record-name-1 is not available [except as specified by~

the SAME RECORD AREA clause.

(5) The file position indicator is not affected by the execution of a WRITE

statement.

(6) The execution of the WRITE statement causes the value of the 1-0 status

of the file-name associated with record-name-1 to be updated. (See page VIII-2,

1-0 Status.)

(7) The execution of the WRITE statement releases a logical record to the

operating system.

(8) The number of character positions in the record referenced by

record-name-1 must not be larger than the largest or smaller than the smallest

number of character positions allowed by the RECORD IS VARYING clause associated

with the file-name associated with record-name-1. In either of these cases the

execution of the WRITE statement is unsuccessful, the WRITE operation does not

take place, the content of the record area is unaffected and the 1-0 status of

the file associated with record-name-1 is set to a value indicating the cause of

the condition. (See page VIII-2, 1-0 Status.) _

(9) If, during the execution of a WRITE statement with the

phrase, the invalid key condition does not occur, control

imperative-statement-2 at the appropriate time as follows:

NOT INVALID KEY

is transferred to

a. If the execution of the WRITE

record is written and after updating the

with record-name-1.

statement is successful, after the

1-0 status of the file-name associated

b. If the execution of the WRITE statement is unsuccessful for a reason

other than an invalid key condition, after updating the 1-0 status of the

file-name associated with record-name-1, and after executing the procedure, if

any, specified by a USE AFTER STANDARD EXCEPTION PROCEDURE statement applicable

to the file-name associated with record-name-1.

(10) The END-WRITE phrase delimits the scope of the WRITE statement. (See

page IV-40, Scope of Statements.)

(11) When a relative file is opened in the output mode, records may be placed

into the file by one of the following:

a. If the

record to be re

record has a relat

relative record

specified for the

number of the rec

the mass storage c

according to the

Statement.)

access mode is sequential, the WRITE statement causes a

leased to the mass storage control system (MSCS). The first

ive record number of one, and subsequent records released have

numbers of 2, 3, 4, If the RELATIVE KEY phrase is

file-name associated with record-name-1, the relative record

ord being released is moved into the relative key data item by

ontrol system (MSCS) during execution of the WRITE statement

rules for the MOVE statement. (See page VI-103, The MOVE

VIII-38

Relative 1-0 - WRITE

b. If the access mode is random or dynamic, prior to the execution of

the WRITE statement the value of the relative key data item must be initialized

by the program with the relative record number to be associated with the record

in the record area. That record is then released to the mass storage control

system (MSCS) by execution of the WRITE statement.

(12) When a relative file is open in the extend mode, records are inserted

into the file. The first record released to the mass storage control system

(MSCS) has a relative record number one greater than the highest relative record

number existing in the file. Subsequent records released to the mass storage

control system (MSCS) have consecutively higher relative record numbers. If the

RELATIVE KEY phrase is specified for the file-name associated with

record-name-1, the relative record number of the record being released is moved

into the relative key data item by the mass storage control system (MSCS) during

execution of the WRITE statement according to the rules for the MOVE statement.

(See page VI-103, The MOVE Statement.)

(13) When a relative file is opened in the 1-0 mode and the access mode is

random or dynamic,! records are to be inserted in the associated file. The value

of the relative key data item must be initialized by the program with the

relative record number to be associated with the record in the record area.

Execution of the WRITE statement then causes the content of the record area to

be released to the mass storage control system (MSCS).

(14) The invalid key condition exists under the following circumstances:

a. When the access mode is random or dynamic, and the relative key data

item specifies a record which already exists in the file, or

b. When an attempt is made to write beyond the externally defined

boundaries of the file, or

c. When the number of significant digits in the relative record number

is larger than the size of the relative key data item described for the file.

(15) When the invalid key condition

statement is unsuccessful, the content

1-0 status of the file-name associated

indicating the

according to the

Status , and page

is recognized, the execution of the WRITE

of the record area is unaffected, and the

with record-name-1 is set to a value

of the program proceeds

(See page VIII-2, 1-0

cause of the condition. Execution

rules for an invalid key condition.

VIII-5, The Invalid Key Condition.)

VIII-39

Indexed 1-0 - Introduction

SECTION IX: INDEXED 1-0 MODULE

1. INTRODUCTION TO THE INDEXED 1-0 MODULE

1.1 FUNCTION

The Indexed 1-0 module provides a capability to access records of a mass

storage file in either a random or sequential manner. Each record in an indexed

file is uniquely identified by the value of one or more keys within that record.

1.2 LEVEL CHARACTERISTICS

Indexed 1-0 level 1 provides limited capabilities for the file control entry,

the file description entry, and the entries in the I-O-CONTROL paragraph.

Within the Procedure Division, the Indexed 1-0 level 1 provides limited

capabilities for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements and

full capabilities for the DELETE statement.

Indexed 1-0 level 2 provides full capabilities for the file control entry,

the file description entry, and the entries in the I-O-CONTROL paragraph.

Within the Procedure Division, the Indexed 1-0 level 2 provides full

capabilities for the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE

statements.

1.3 LANGUAGE CONCEPTS

1.3.1 Organization

A file with indexed organization is a mass storage file from which any record

may be accessed by giving the value of a specified key in that record. For each

key data item defined for the records of a file, an index is maintained. Each

such index represents the set of values from the corresponding key data item in

each record. Each index, therefore, is a mechanism which can provide access to

any record in the file.

Each indexed file has a primary index which represents the prime record key

of each record in the file. Each record is inserted in the file, changed, or

deleted from the file based solely upon the value of its prime record key. The

prime record key of each record in the file must be unique, and it must not be

changed when updating a record. The prime record key is declared in the RECORD

KEY clause of the file control entry for the file.

Alternate record keys provide alternate means of retrieval for the records of

a file. Such keys are named in the ALTERNATE RECORD KEY clause of the file

control entry. The value of a particular alternate record key in each record

need not be unique. When these values may not be unique, the DUPLICATES phrase

is specified in the ALTERNATE RECORD KEY clause.__

IX-1

Indexed 1-0 - Introduction

1.3.2 Access Modes

For indexed organization, the order of sequential access is ascending based

on the value of the key of reference according to the collating sequence of the

file. Any of the keys associated with the file may be established as the key of

reference during the processing of a file. [The order of retrieval from a set of

records which have duplicate key of reference values is the original order of

arrival of those records into that set. The START statement may be used to

establish a starting point within an indexed file for a series of subsequent

sequential retrievals.

When a file is accessed in random mode, input-output statements are used to

access the records in a programmer-specified order. With the indexed

organization, the programmer specifies the desired record by placing the value

of one of its record keys in a record key or an alternate record key data item.

With dynamic access mode, the programmer may change at will from sequential

accessing to random accessing, using appropriate forms of input-output

statements.

1.3.3 File Position Indicator

The file position indicator is a conceptual entity used in this document to

facilitate exact specification of the next record to be accessed within a given

file during certain sequences of input-output operations. The setting of the

file position indicator is affected only by the CLOSE, OPEN, READ, land START

statements. The concept of a file position indicator has no meaning for a file

opened in the output or extend!mode.

1.3.4 1-0 Status

The 1-0 status is a two-character conceptual entity whose value is set to

indicate the status of an input-output operation during the execution of a

CLOSE, DELETE, OPEN, READ, REWRITE, [START, | or WRITE statement and prior to the

execution of any imperative statement associated with that input-output

statement or prior to the execution of any applicable USE AFTER STANDARD

EXCEPTION procedure. The value of the 1-0 status is made available to the COBOL

program through the use of the FILE STATUS clause in the file control entry for

the file.

The 1-0 status also determines whether an applicable USE AFTER STANDARD

EXCEPTION procedure will be executed. If any condition other than those

contained under the heading "Successful Completion" on page IX-3 results, such a

procedure may be executed depending on rules stated elsewhere. If one of the

conditions listed under the heading "Successful Completion" on page IX-3

results, no such procedure will be executed. (See page IX-39, The USE

Statement .)

Certain classes of 1-0 status values indicate critical error conditions.

These are: any that begin with the digit 3 or 4, and any that begin with the

digit 9 that the implementor defines as critical. If the value of the 1-0

status for an input-output operation indicates such an error condition, the

implementor determines what action is taken after the execution of any

applicable USE AFTER STANDARD EXCEPTION procedure, or if none applies, after

completion of the normal input-output control system error processing.

IX-2

Indexed 1-0 - Introduction

1-0 status expresses one of the following conditions upon completion of the

input-output operation:

(1) Successful Completion. The input-output statement was successfully

executed .

(2) At End. A sequential READ statement was unsuccessfully executed as a

result of an at end condition.

(3) Invalid Key. The input-output statement was unsuccessfully executed as

a result of an invalid key condition.

(4) Permanent Error. The input-output statement was unsuccessfully executed

as the result of an error that precluded further processing of the file. Any

specified exception procedures are executed. The permanent error condition

remains in effect for all subsequent input-output operations on the file unless

an implementor-defined technique is invoked to correct the permanent error

condition.

(5) Logic Error. The input-output statement was unsuccessfully executed as

a result of an improper sequence of input-output operations that were performed

on the file or as a result of violating a limit defined by the user.

(6) Implementor Defined. The input-output statement was unsuccessfully

executed as the result of a condition that is specified by the implementor.

The following is a list of the values placed in the 1-0 status for the

previously named conditions resulting from the execution of an input-output

operation on an indexed file. If more than one value applies, the implementor

determines which of the applicable values to place in the 1-0 status.

(1) Successful Completion

a. 1-0 Status = 00. The input-output statement is successfully

executed and no further information is available concerning the input-output

operation .

b. 1-0 Status = 02. The input-output statement is successfully

executed but a duplicate key is detected.

1) For a READ statement, the key value for the current key of

reference is equal to the value of the same key in the next record within the

current key of reference.

2) For a REWRITE or WRITE statement, the record just written

created a duplicate key value for at least one alternate record key for which

duplicates are al lowed.__ _ _ _ _

c. 1-0 Status =04. A READ statement is successfully executed but the

length of the record being processed does not conform to the fixed file

attributes for that file.

d. 1-0 Status =05. An OPEN statement is successfully executed but the

referenced optional file is not present at the time the OPEN statement is

executed. If the open mode is 1-0 or extend, the file has been created._

IX-3

Indexed 1-0 - Introduction

(2) At End Condition With Unsuccessful Completion

a. 1-0 Status = 10. A sequential READ statement is attempted and no

next logical record exists in the file because:

1) The end of the file has been reached; or

2) A sequential READ statement is attempted for the first time on

an optional input file that is not present.

(3) Invalid Key Condition With Unsuccessful Completion

a. 1-0 Status =21. A sequence error exists for a sequentially

accessed indexed file. The prime record key value has been changed by the

program between the successful execution of a READ statement and the execution

of the next REWRITE statement for that file, or the ascending sequence

requirements for successive record key values are violated. (See page IX-41,

The WRITE Statement.)

b. 1-0 Status =22. An attempt is made to write or rewrite a record

that would create a duplicate prime record key or a duplicate alternate record

key without the DUPLICATES phrase in an indexed file.

c. 1-0 Status = 23. This condition exists because:

1) An attempt is made to randomly access a record that does not

exist in the file, or

2) A START or random READ statement is attempted on an optional

input file that is not present.__

d. 1-0 Status =24. An attempt is made to write beyond the

externally-defined boundaries of an indexed file. The implementor specifies the

manner in which these boundaries are defined.

(4) Permanent Error Condition With Unsuccessful Completion

a. 1-0 Status = 30. A permanent error exists and no further

information is available concerning the input-output operation.

b. 1-0 Status

with the INPUT, 1-0,

is not present.

=35. A permanent error exists because an OPEN

lor EXTENDI phrase is attempted on a non-optional

statement

file that

c. 1-0 Status =37. A permanent error exists because an OPEN statement

is attempted on a file and that file will not support the open mode specified in

the OPEN statement. The possible violations are:

1) The|EXTEND or OUTPUT phrase is specified but the file will not

support write operations.

2) The 1-0 phrase is specified but the file will not support the

input and output operations that are permitted for an indexed file when opened

in the 1-0 mode.

IX-4

Indexed 1-0 - Introduction

3) The INPUT phrase is specified but the file will not support read

operations .

d. 1-0 Status =38. A permanent error exists because an OPEN statement

is attempted on a file previously closed with lock.

e. 1-0 Status = 39. The OPEN statement is unsuccessful because a

conflict has been detected between the fixed file attributes and the attributes

specified for that file in the program.

(5) Logic Error Condition With Unsuccessful Completion

a. 1-0 Status =41. An OPEN statement is attempted for a file in the

open mode.

b. 1-0 Status = 42. A CLOSE statement is attempted for a file not in

the open mode.

c. 1-0 Status = 43. In the sequential access mode, the last

input-output statement executed for the file prior to the execution of a DELETE

or REWRITE statement was not a successfully executed READ statement.

d. 1-0 Status = 44. A boundary violation exists because:

1) An attempt is made to write or rewrite a record that is larger

than the largest or smaller than the smallest record allowed for the RECORD IS

VARYING clause of the associated file-name.

file and

2) In

the record

level 1 an attempt is made to rewrite a record to an

is not the same size as the record being replaced.

indexed

e. 1-0 Status =46. A sequential READ

open in the input or 1-0 mode and no valid

because:

statement is attempted on a file

next record has been established

1) The preceding START statement was unsuccessful, or

2) The preceding READ statement was unsuccessful but did not cause

an at end condition, or

3) The preceding READ statement caused an

f. 1-0 Status = 47. The execution of a READ

attempted on a file not open in the input or 1-0 mode.

g. 1-0 Status = 48. The execution of a WRITE

a file not open in the 1-0, output . 1 or extendi mode.

h. 1-0 Status = 49. The execution of a DELETE or REWRITE statement is

attempted on a file not open in the 1-0 mode.

at end condition.

or START statement is

statement is attempted on

IX-5

Indexed 1-0 - Introduction

(6) Implementor-Defined Condition With Unsuccessful Completion

a. 1-0 Status = 9x. An implementor-defined condition exists. This

condition must not duplicate any condition specified for the 1-0 status values

00 through 49. The value of x is defined by the implementor.

1.3.5 The Invalid Key Condition

The invalid key condition can occur as a result of the execution of a DELETE,

READ, REWRITE, START, or WRITE statement. When the invalid key condition

occurs, execution of the input-output statement which recognized the condition

is unsuccessful and the file is not affected. (See page IX-21 , The DELETE

Statement; page IX-28, The READ Statement; page IX-33, The REWRITE Statement;

page IX-36 , The START Statement;! and page IX-41 , The WRITE Statement.)

If the invalid key condition exists after the execution of the input-output

operation specified in an input-output statement, the following actions occur in

the order shown:

(1) The 1-0 status of the file connector associated with the statement is

set to a value indicating the invalid key condition. (See page IX-2, 1-0

Status .)

(2) If the INVALID KEY phrase is specified in the input-output statement,

any USE AFTER EXCEPTION procedure associated with the file connector is not

executed and control is transferred to the imperative-statement specified in the

INVALID KEY phrase. Execution then continues according to the rules for each

statement specified in that imperative-statement. If a procedure branching or

conditional statement which causes explicit transfer of control is executed,

control is transferred in accordance with the rules for that statement;

otherwise, upon completion of the execution of the imperative-statement

specified in the INVALID KEY phrase, control is transferred to the end of the

input-output statement and the NOT INVALID KEY phrase, if specified, is ignored.

(3) If the INVALID KEY phrase is not specified in the input-output

statement, a USE AFTER EXCEPTION procedure must be associated with the file

connector and that procedure is executed and control is transferred according to

the rules of the USE statement. The NOT INVALID KEY phrase is ignored, if

specified. (See page IX-39, The USE Statement.)

If the invalid key condition does not exist after the execution of the

input-output operation specified by an input-output statement, the INVALID KEY

phrase is ignored, if specified. The 1-0 status of the file connector

associated with the statement is updated and the following actions occur:

(1) If an exception condition which is not an invalid key condition exists,

control is transferred according to the rules of the USE statement following the

execution of any USE AFTER EXCEPTION procedure associated with the file

connector. (See page IX-39, The USE Statement.)

(2) If not exception condition exists, control is transferred to the end of

the input-output statement or to the imperative-statement specified in the NOT

INVALID KEY phrase if it is specified. In the latter case, execution continues

according to the rules for each statement specified in that

imperative-statement. If a procedure branching or conditional statement which

IX-6

Indexed 1-0 - Introduction

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of the imperative-statement specified in the NOT INVALID KEY phrase,

control is transferred to the end of the input-output statement.

1.3.6 The At End Condition

The at end condition can occur as a result of the execution of a READ

statement. (See page IX-28, The READ Statement.)

1.3.7 The File Attribute Conflict Condition

The file attribute conflict condition can result from the execution of an

OPEN, REWRITE, or WRITE statement. When the file attribute conflict condition

occurs, execution of the input-output statement that recognized the condition is

unsuccessful and the file is not affected. (See page IX-23, The OPEN Statement;

page IX-33, The REWRITE Statement; an page IX-41, The WRITE Statement.)

When the file attribute conflict condition is recognized, these actions take

place in the following order:

(1) A value is placed in the 1-0 status associated with the file-name to

indicate the file attribute conflict condition. (See page IX-2, 1-0 Status.)

(2) A USE AFTER EXCEPTION procedure, if any, associated with the file-name

is executed.

IX-7

Indexed 1-0 - File Control Entry

2. ENVIRONMENT DIVISION IN THE INDEXED 1-0 MODULE

2.1 INPUT-OUTPUT SECTION

Information concerning the Input-Output Section is located on page VII-6.

2.2 THE FILE-CONTROL PARAGRAPH

Information concerning the FILE-CONTROL paragraph is located on page VII-7.

2.3 THE FILE CONTROL ENTRY

2.3.1 Function

The file control entry declares the relevant physical attributes of an

indexed file.

2.3.2 General Format

SELECT [OPTIONAL] file-name-1

ASSIGN TO
implementor-name-1

literal-1

RESERVE integer-1
AREA

AREAS
*-

[ORGANIZATION IS] INDEXED

I SEQUENTIAL

ACCESS MODE IS / RANDOM \
)\ DYNAMIC (

RECORD KEY IS data-name-1

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ...

[FILE STATUS IS data-name-3].

2.3.3 Syntax Rules

(1) The SELECT clause must be specified first in the file control entry.

The clauses which follow the SELECT clause may appear in any order.

(2) Each file-name in the Data Division must be specified only once in the

FILE-CONTROL paragraph. Each file-name specified in the SELECT clause must have

a file description entry in the Data Division of the same program.

(3) Literal-1 must be a nonnumeric literal and must not be a figurative

constant. The meaning and rules for the allowable content of implementor-name-1

and the value of literal-1 are defined by the implementor.

IX-8

Indexed 1-0 - File Control Entry

2.3.4 General Rules

(1) If the file connector referenced by file-name-1 is an external file

connector (see page X-23, The EXTERNAL Clause), all file control entries in the

run unit which reference this file connector must have:

a. The same specification for the OPTIONAL phrase.

b. A consistent specification for implementor-name-1 or literal-1 in

the ASSIGN clause. The implementor will specify the consistency rules for

implementor-name-1 or literal-1.

c. The same value for integer-1 in the RESERVE clause.

d. The same organization.

e. The same access mode.

f. The same data description entry for data-name-1 with the same

relative location within the associated record.

g. The same data description entry for data-name-2, the same relative

location within the associated record, the same number of alternate record keys,

and the same DUPLICATES phrase.

(2) The native character set is assumed for data on the external media.

(3) For an indexed file, the collating sequence associated with the native

character set is assumed. This is the sequence of values of a given key of

reference used to process the file sequentially.

(4) The OPTIONAL phrase applies only to files opened in the input, 1-0, or

extend mode. Its specification is required for files that are not necessarily

present each time the object program is executed.____

(5) The ASSIGN clause specifies the association of the file referenced by

file-name-1 to a storage medium referenced by implementor-name-1 or literal-1.

(6) The RESERVE clause for the Indexed 1-0 module is the same as the RESERVE

clause for the Sequential 1-0 module. Thus the specifications for the RESERVE

clause are located on page VII-14.

(7) The FILE STATUS clause for the Indexed 1-0 module is the same as the

FILE STATUS clause for the Sequential 1-0 module. Thus the specifications for

the FILE STATUS clause are located on page VII-10. The content of the data item

associated with the FILE STATUS clause of an indexed file is presented in the

paragraph entitled 1-0 Status beginning on page IX-2.

(8) The ACCESS MODE clause, 1 the ALTERNATE RECORD KEY clause,) the

ORGANIZATION IS INDEXED clause, and the RECORD KEY clause are presented on the

following pages.

IX-9

Indexed 1-0 - ACCESS MODE

2.4 THE ACCESS MODE CLAUSE

2.4.1 Function

The ACCESS MODE clause specifies the order in which records are to be

accessed in the file.

2.4.2 General Format

I SEQUENTIAL 1

ACCESS MODE IS) RANDOM

) [DYNAMIC 1 I

2.4.3 Syntax Rules

(1) The ACCESS MODE IS RANDOM clause must not be specified for file-names

specified in the USING or GIVING phrase of a SORT or MERGE statement.

2.4.4 General Rules

(1) If the ACCESS MODE clause is not specified, sequential access is

assumed.

(2) If the access

the sequence dictated

is ascending within a

of the file.

(3) If the access mode is random, the value of a record key data item for

indexed files indicates the record to be accessed.

mode is sequential, records in the file are accessed in

by the file organization. For indexed files this sequence

given key of reference according to the collating sequence

(4) If the access mode is dynamic, records in the file may be accessed

sequentially and/or randomly.

(5) If the associated file connector is an external file connector, every

file control entry in the run unit which is associated with that file connector

must specify the same access mode.

IX-10

Indexed 1-0 - ALTERNATE RECORD KEY

2.5 THE ALTERNATE RECORD KEY CLAUSE

2.5.1 Function

The ALTERNATE RECORD KEY clause specifies an alternate record key access path

to the records in an indexed file.

2.5.2 General Format

ALTERNATE RECORD KEY IS data-name-1 [WITH DUPLICATES 1

ined as a dat a item of the ca te gory alphanumeric

entry as sociat ed with the fi le -name to whi ch the

subordi nate .

ference a group item that contains a va r i able

ference an item whose leftmos t chara cter po s i t ion

racter position of the prime re cord key or of any

dated with thi s file.

tains variable length re cor ds , ea ch al t er nate

d with in the first x cha rac te r pos it ions of the

mum rec ord size specif ied fo r the file. (See

2.5.3 Syntax Rules

(1) Data-name-1 may be qualified.

(2) Data-name-1 must be

within a record descripti

(3) Data-name-1 mi

occurrence data item.

(4) Data-name-1 mi

(5) If the indexed file

record key must be conta

record, where x equals the m

page VII-30, The RECORD Clause.)

2.5.4 General Rules

(1) An ALTERNATE RECORD KEY clause specifies an alternate record key for the

file with which this clause is associated.

(2) The data description of data-name-1 as well as its relative location

within a record must be the same as that used when the file was created. The

number of alternate record keys for the file must also be the same as that used

when the file was created.

(3) The DUPLICATES phrase specifies that the value of the associated

alternate record key may be duplicated within any of the records in the file.

If the DUPLICATES phrase is not specified, the value of the associated alternate

record key must not be duplicated among any of the records in the file.

(4) If the file has more than one record description entry, data-name-1 need

only be described in one of these record description entries. The identical

character positions referenced by data-name-1 in any one record description

entry are implicitly referenced in keys for all other record description entries

of that file.

IX-11

Indexed 1-0 - ALTERNATE RECORD KEY

(5) If the associated file connector is an external file connector, every

file control entry in the run unit which is associated with that file connector

must specify the same data description entry for data-name-1, the same relative

location within the associated record, the same number of alternate record keys,

and the same DUPLICATES phrase.

IX-12

Indexed 1-0 - ORGANIZATION IS INDEXED

2.6 THE ORGANIZATION IS INDEXED CLAUSE

2.6.1 Function

The ORGANIZATION IS INDEXED clause specifies the indexed organization as the

logical structure of a file.

2.6.2 General Format

[ORGANIZATION IS] INDEXED.

2.6.3 General Rules

(1) The ORGANIZATION IS INDEXED clause specifies indexed organization as the

logical structure of a file. The file organization is established at the time a

file is created and cannot subsequently be changed.

(2) Indexed organization is a permanent logical file structure in which each

record is identified by the value of one or more keys within that record.

IX-13

Indexed 1-0 - RECORD KEY

2.7 THE RECORD KEY CLAUSE

2.7.1 Function

The RECORD KEY clause specifies the prime record key access path to the

records in an indexed file.

2.7.2 General Format

RECORD KEY IS data-name-1

2.7.3 Syntax Rules

(1) Data-name-1 may be qualified.

(2) Data-name-1 must reference a data item of the category alphanumeric

within a record description entry associated with the file-name to which the

RECORD KEY clause is subordinate.

(3) Data-name-1 must not reference a group item that contains a variable

occurrence data item.

(4) If the indexed file contains variable length records, the prime record

key must be contained within the first x character positions of the record,

where x equals the minimum record size specified for the file. (See page

VII-30, The RECORD Clause.)__

2.7.4 General Rules

(1) The RECORD KEY clause specifies the prime record key for the file with

which this clause is associated. The values of the prime record key must be

unique among records of the file.

(2) The data description of data-name-1 as well as its relative location

within a record must be the same as that used when the file was created.

(3) If the file has more than one record description entry, data-name-1 need

only be described in one of these record description entries. The identical

character positions referenced by data-name-1 in any one record description

entry are implicitly referenced as keys for all other record description entries

of that file.

(4) If the associated file connector is an external file connector, all file

description entries in the run unit which are associated with that file

connector must specify the same data description entry for data-name-1 with the

same relative location within the associated record.

IX-14

Indexed 1-0 I-O-CONTROL

2.8 THE I-O-CONTROL PARAGRAPH

2.8.1 Function

The I-O-CONTROL paragraph specifies the points at which rerun

established and the memory area which is to be shared by different

RERUN clause within the I-O-CONTROL paragraph is an obsolete element

COBOL because it is to be deleted from the next revision of Standard

is to be

files . The

in Standard

COBOL.

2.8.2 General Format

I-O-CONTROL.

jfile-name-1)
(integer-1 RECORDS OF file-name-21

RERUN Ql
\implementor-name-1j

EVERY <integer-2

(condition-
CLOCK-UNITS \

-name-1)

r SAME rRECORD] AREA FOR file-name-3 {file-name-4} .]

2.8.3 General Rules

(1) The RERUN clause for the Indexed

clause for the Sequential 1-0 module

clause are located on page VII-17.

(2)
clause

clause

1-0 module is a subset of the RERUN

Thus the specifications for the RERUN

1-0 module is the same as the SAME

Thus the specifications for the SAME

The SAME clause for the Indexed

for the Sequential 1-0 module

are located on page VII-19.

IX-15

Indexed 1-0 - File Description Entry

3. DATA DIVISION IN THE INDEXED 1-0 MODULE

3.1 FILE SECTION

Information concerning the File Section is located on page VII-21.

3.2 THE FILE DESCRIPTION ENTRY

3.2.1 Function

The file description entry furnishes information concerning the physical

structure, identification, and record-names pertaining to an indexed file.

3.2.2 General Format

FD file-name-1

j~BLOCK CONTAINS [integer-1 TO] integer-2
RECORDS)

CHARACTERS)

(CONTAINS integer-3 CHARACTERS y
RECORD 1 IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS] r

/

) [DEPENDING ON data-name-1] /

(CONTAINS integer-6 TO integer-7 CHARACTERS)

LABEL

VALUE

DATA

jRECORD IS \ j standard)

RECORDS AREf I OMITTED (

{, to /ldata-name-2|\ (
implementor-name-1 IS j j

(RECORD IS) r.
(records ARE] {data-name-3} ...j .

3.2.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description

entry and must precede file-name-1.

(2) The clauses which follow file-name-1 may appear in any order.

(3) One or more record description entries must follow the file description

entry .

3.2.4 General Rules

(1) A file description entry associates file-name-1 with a file connector.

(2) The BLOCK CONTAINS clause for the Indexed 1-0 module is the same as the

BLOCK CONTAINS clause for the Sequential 1-0 module. Thus the specifications

for the BLOCK CONTAINS clause are located on page VII-23.

IX-16

Indexed 1-0 - File Description Entry

(3) The DATA RECORDS clause of the Indexed 1-0 module is the same as the

DATA RECORDS clause for the Sequential 1-0 module. Thus the specifications for

the DATA RECORDS clause are located on page VII-25. The DATA RECORDS clause is

an obsolete element in Standard COBOL because it is to be deleted from the next

revision of Standard COBOL.

(4) The LABEL RECORDS clause for the Indexed 1-0 module is the same as the

LABEL RECORDS clause for the Sequential 1-0 module. Thus the specifications for

the LABEL RECORDS clause are located on page VII-26. The LABEL RECORDS clause

is an obsolete element in Standard COBOL because it is to be deleted from the

next revision of Standard COBOL.

(5) The RECORD clause for the Indexed 1-0 module is the same as the RECORD

clause for the Sequential 1-0 module. Thus the specifications for the RECORD

clause are located on page VII-30.

(6) The VALUE OF clause for the Indexed 1-0 module is the same as the VALUE

OF clause for the Sequential 1-0 module. Thus the specifications for the VALUE

OF clause are located on page VII-33. The VALUE OF clause is an obsolete

element in Standard COBOL because it is to be deleted from the next revision of

Standard COBOL.

IX-17

Indexed 1-0 - Procedure Division

4. PROCEDURE DIVISION IN THE INDEXED 1-0 MODULE

4.1 GENERAL DESCRIPTION

The Procedure Division contains declarative procedures when the USE statement

from the Indexed 1-0 module is present in a COBOL source program. Shown below

is the general format of the Procedure Division when the USE statement is

present.

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION.

USE statement,

[paragraph-name.

[sentence] ...] ... } ...

END DECLARATIVES,

{section-name SECTION.

[paragraph-name.

[sentence] ...] ... } . . .

IX-18

Indexed 1-0 - CLOSE

4.2 THE CLOSE STATEMENT

4.2.1 Function

The CLOSE statement terminates the processing of files with optional lock

4.2.2 General Format

CLOSE {file-name-1 [WITH LOCK] } ...

4.2.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the same

organization or access.

4.2.4 General Rules

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) Indexed files are classified as belonging to the category of

non-sequential single/multi-reel/unit. The results of executing each type of

CLOSE for this category of file are summarized in the following table.

CLOSE

Statement

Format

File Category

Non-Sequential Single/Multi-Reel/Uni t

CLOSE A

CLOSE WITH LOCK A, B

The definitions of the symbols in the table are given below. Where the

definition depends on whether the file is an input, output, or input-output

file, alternate definitions are given; otherwise, a definition applies to input,

output, and input-output files.

A. Close File

Input Files and Input-Output Files (Sequential Access Mode):

If the file is positioned at its end and label records are specified

for the file, the labels are processed according to the implementor's standard

label convention. The behavior of the CLOSE statement when label records are

specified but not present, or when label records are not specified but are

present, is undefined. Closing operations specified by the implementor are

executed. If the file is positioned at its end and label records are not

specified for the file, label processing does not take place but other closing

operations specified by the implementor are executed. If the file is positioned

other than at its end, the closing operations specified by the implementor are

executed, but there is no ending label processing.

IX-19

Indexed 1-0 - CLOSE

Input Files and Input-Output Files (Random for Dynamic! Access Mode);

Output Files (Random.I Dynamic,1 or Sequential Access Mode):

If label records are specified for the file, the labels are

processed according to the implementor's standard label convention. The

behavior of the CLOSE statement when label records are specified but not

present, or when label records are not specified but are present, is undefined.

Closing operations specified by the implementor are executed. If label records

are not specified for the file, label processing does not take place but other

closing operations specified by the implementor are executed.

B. File Lock

The file is locked and cannot be opened again during this execution

of this run unit.

(3) The execution of the CLOSE statement causes the value of the 1-0 status

associated with file-name-1 to be updated. (See page IX-2, 1-0 Status.)

(4) If an optional input file is not present, no end-of-file processing is

performed for the file and the file position indicator is unchanged._

(5) Following the successful execution of a CLOSE statement, the record area

associated with file-name-1 is no longer available. The unsuccessful execution

of such a CLOSE statement leaves the availability of the record area undefined.

(6) Following the successful execution of a CLOSE statement, the file is

removed from the open mode, and the file is no longer associated with the file

connector.

(7) If more than one file-name-1 is specified in a CLOSE statement, the

result of executing this CLOSE statement is the same as if a separate CLOSE

statement had been written for each file-name-1 in the same order as specified

in the CLOSE statement.

Indexed 1-0 - DELETE

4.3 THE DELETE STATEMENT

4.3.1 Function

The DELETE statement logically removes a record from a mass storage file.

4.3.2 General Format

DELETE file-name-1 RECORD

I-INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

4.3.3 Syntax Rules

(1) The INVALID KEY and the NOT INVALID KEY phrases must not be specified

for a DELETE statement which references a file which is in sequential access

mode .

(2) The INVALID KEY phrase must be specified for a DELETE statement which

references a file which is not in sequential access mode and for which an

applicable USE AFTER STANDARD EXCEPTION procedure is not specified.

4.3.4 General Rules

(1) The file referenced by file-name-1 must be a mass storage file and must

be open in the 1-0 mode at the time of the execution of this statement. (See

page IX-23, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output statement

executed for file-name-1 prior to the execution of the DELETE statement must

have been a successfully executed READ statement. The mass storage control

system (MSCS) logically removes from the file the record that was accessed by

that READ statement.

(3) For an indexed file in random or dynamic! access mode, the mass storage

control system (MSCS) logically removes from the file the record identified by

the content of the prime record key data item associated with file-name-1. If

the file does not contain the record specified by the key, the invalid key

condition exists. (See page IX-6, The Invalid Key Condition.)

(4) After the successful execution of a DELETE statement, the identified

record has been logically removed from the file and can no longer be accessed.

The execution of a DELETE statement does not affect the content

area

of the (5)_

record area or the content of the data item referenced by the data-name

specified in the DEPENDING ON phrase of the RECORD clause associated with

file-name-1.

(6) The file position indicator is not affected by the execution of a DELETE

statement.

IX-21

Indexed 1-0 - DELETE

(7) The execution of the DELETE statement causes the value of the 1-0 status

associated with file-name-1 to be updated. (See page IX-2, 1-0 Status.)

(8) Transfer of control following the successful or unsuccessful execution

of the DELETE operation depends on the presence or absence of the optional

INVALID KEY and NOT INVALID KEY phrases in the DELETE statement. (See page

IX-6, The Invalid Key Condition.)

(9) The END-DELETE phrase delimits the scope of the DELETE statement. (See

page IV-40, Scope of Statements.)

IX-22

Indexed 1-0 - OPEN

4.4 THE OPEN STATEMENT

4.4.1 Function

The OPEN statement initiates the processing of files

4.4.2 General Format

OPEN

INPUT {file-name-1} ...

OUTPUT {file-name-2} ..

1-0 {file-name-3} ...

I EXTEND {file-name-4} ... 1

4.4.3 Syntax Rules

(1) The EXTEND phrase must only be used for files in the sequential access

mode .

(2) The files referenced in the OPEN statement need not all have the same

organization or access.

4.4.4 General Rules

(1) The successful execution of an OPEN statement

availability of the file and results in the file being in

successful execution of an OPEN statement associates the file

through the file connector.

A file is available if it is physically present and is recognized by the

input-output control system. Table 1 on page IX-24 shows the results of opening

available and unavailable files.

determines the

an open mode. The

with the file-name

IX-23

Indexed 1-0 - OPEN

File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

INPUT (optional file) Normal open Normal open; the first read

causes the at end condition or

invalid key condition

1-0 Normal open Open is unsuccessful

1-0 (optional file) Normal open Open causes the file to be

created

OUTPUT Normal open; the

file contains no

records

Open causes the file to be

created

EXTEND Normal open Open is unsuccessful

EXTEND (optional file) Normal open Open causes the file to be

created

Table 1: Availability of a File

(2) The successful execution of an OPEN statement makes the associated

record area available to the program. If the file connector associated with

file-name is an external file connector, there is only one record area

associated with the file connector for the run unit.

(3) When a file is not in an open mode, no statement may be executed which

references the file, either explicitly or implicitly, except for a MERGE

statement with the USING or GIVING phrase, an OPEN statement, or a SORT

statement with the USING or GIVING phrase.

(4) An OPEN statement must be successfully executed prior to the execution

of any of the permissible input-output statements. In table 2 on page IX-25,

Permissible Statements, 'X' at an intersection indicates that the specified

statement, used in the access mode given for that row, may be used with the open

mode given at the top of the column.

IX-24

Indexed 1-0 - OPEN

File Access

Mode

Statement

Open Mode

Input Output 1-0 Extend

Sequential READ X X

WRITE X X

REWRITE X

START X X

DELETE X

Random READ X X

WRITE X X

REWRITE X

START

DELETE X

Dynamic READ X X

WRITE X X

REWRITE X

START X X

DELETE X

Table 2: Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT, | EXTEND/] and 1-0 phrases in

the same run unit. Following the initial execution of an OPEN statement for a

file, each subsequent OPEN statement execution for that same file must be

preceded by the execution of a CLOSE statement,|without the LOCK phrase, for

that file.

(6) Execution of the OPEN statement does not obtain or release the first

data record.

(7) If label records are specified for the file, the beginning labels are

processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN

statement causes the labels to be checked in accordance with the implementor's

specified conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution

statement causes the labels to be written in accordance with the

specified conventions for output label writing.

of the OPEN
implementor 1s

IX-25

Indexed 1-0 - OPEN

The behavior of the OPEN statement when label records are specified but

not present, or when label records are not specified but are present, is

undefined .

(8) If during the execution of an OPEN statement a file attribute conflict

condition occurs, the execution of the OPEN statement is unsuccessful. (See

page IX-7 , The File Attribute Conflict Condition.)

(9) If a file opened with the INPUT phrase is an optional file which is not

present, the OPEN statement sets the file position indicator to indicate that an

optional input file is not present.

(10) When files are opened with the INPUT or 1-0 phrase, the file position

indicator is set to the characters that have the lowest ordinal position in the

collating sequence associated with the file, and the prime record key is

established as the key of reference.

(11) When the EXTEND phrase is specified, the OPEN statement positions the

file immediately after the last logical record for that file. The last logical

record for an indexed file is the currently existing record with the highest

prime key value.

(12) When the EXTEND phrase is specified and the LABEL RECORDS clause

indicates label records are present, the execution of the OPEN statement

includes the following steps:

a. The beginning file labels are processed only in the case of a single

reel/unit file.

b. The beginning reel/unit labels on the last existing reel/unit are

processed as though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is

being opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the

OUTPUT phrase._

(13) The OPEN statement with the 1-0 phrase must reference a file that

supports the input and output operations that are permitted for an indexed file

when opened in the 1-0 mode. The execution of the OPEN statement with the 1-0

phrase places the referenced file in the open mode for both input and output

operations.

(14) When the 1-0 phrase is specified and the LABEL RECORDS clause indicates

label records are present, the execution of the OPEN statement includes the

following steps:

a. The labels are checked in accordance with the implementor's

specified conventions for input-output label checking.

b. The new labels are written in accordance with the implementor's

specified conventions for input-output label writing.

IX-26

Indexed 1-0 - OPEN

(15) For an optional file that is unavailable, the successful execution of an

OPEN statement with an 1 EXTEND or 11-0 phrase creates the file. This creation

takes place as if the following statements were executed in the order shown:

OPEN OUTPUT file-name.

CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in

the source program.

The successful execution of an OPEN statement with the OUTPUT phrase

creates the file. After the successful creation of a file, that file contains

no data records.

(16) The execution of the OPEN statement causes the value of the 1-0 status

associated with file-name to be updated. (See page IX-2, 1-0 Status.)

(17) If more than one file-name is specified in an OPEN statement, the

result of executing this OPEN statement is the same as if a separate OPEN

statement had been written for each file-name in the same order as specified in

the OPEN statement.

(18) The minimum and maximum record sizes for a file are established at the

time the file is created and must not subsequently be changed.

IX-27

Indexed 1-0 - READ

4.5 THE READ STATEMENT

4.5.1 Function

For sequential access, the READ statement makes available the next logical

record from a file. For random access, the READ statement makes available a

specified record from a mass storage file.

4.5.2 General Format

Format 1:

READ file-name-1 [NEXT] RECORD [INTO identifier-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

Format 2:

READ file-name-1 RECORD [INTO identifier-1]

[KEY IS data-name-1]

fINVALID KEY imperative-statement-3]

[NOT INVALID KEY imperative-statement-4]

rEND-READ]

4.5.3 Syntax Rules

(1) The storage area associated with identifier-1 and the

associated with file-name-1 must not be the same storage area.

record area

(2) Data-name-1 must be the name of a data item specified as

associated with file-name-1.

a record key

(3) Data-name-1 may be qualified.

(4) Format 1 must be used for all files in sequential access mode •

(5)

records

The NEXT phrase must be specified for files in dynamic access

are to be retrieved sequentially.

mode , when

(6) Format 2 is used for files in random access mode lor for files in dynamic

access model when records are to be retrieved randomly.

(7) The INVALID KEY phrase or the AT END phrase must be specified if no

applicable USE AFTER STANDARD EXCEPTION procedure is specified for file-name-1.

IX-28

Indexed 1-0 - READ

4.5.4 General Rules

(1) The file referenced by file-name-1 must be open in the input or 1-0 mode

at the time this statement is executed. (See page IX-23, The OPEN Statement.)

(2) For files in sequential access mode, the NEXT phrase is optional and has

no effect on the execution of the READ statement.

(3) The execution of the READ statement causes the value of the 1-0 status

associated with file-name-1 to be updated. (See page IX-2, 1-0 Status.)

(4) The setting of the file position indicator at the start of the execution

of a format 1 READ statement is used in determining the record to be made

available according to the following rules. Comparisons for records in indexed

files relate to the value of the current key of reference. For indexed files,

the comparisons are made according to the collating sequence of the file.

a. If the file position indicator indicates that no valid next record

has been established, execution of the READ statement is unsuccessful.

b. If the file position indicator indicates that an optional input file

is not present, execution proceeds as specified in general rule 10._

START

greater

c. If the file

statement, the

than or equal to

position indicator was established by a previous OPEN

first existing record in the file whose key value

the file position indicator is selected.

is

d. If the file position indicator was established by a previous READ

statement, and the current key of reference does not allow duplicates, the|first

existing record in the file whose key value is greater than the file position

indicator is selected.

e. If the file position indicator was established by a previous READ

statement, and the current key of reference does allow duplicates, the first

record in the file whose key value is either equal to the file position

indicator and whose logical position within the set of duplicates is immediately

after the record that was made available by that previous READ statement, or

whose key value is greater than the file position indicator, is selected.

If a record is found which satisfies the above rules, it is made

available in the record area associated with file-name-1.

If no record is found which satisfies the above rules, the

indicator is set to indicate that no next logical record exists

proceeds as specified in general rule 10.

If a record is made available, the file position indicator, is set to

the value of the current key of reference of the record made available.

(5) Regardless of the method used to overlap access time with processing

time, the concept of the READ statement is unchanged; a record is available to

the object program prior to the execution of imperative-statement-2 or

imperative-statement-4, if specified, or prior to the execution of any statement

following the READ statement, if neither imperative-statement-2 nor

imperative-statement-4 is specified.

file position

and execution

IX-29

Indexed 1-0 - READ

(6) When the logical records of a file are described with more than one

record description, these records automatically share the same record area in

storage, this is equivalent to an implicit redefinition of the area. The

contents of any data items which lie beyond the range of the current data record

are undefined at the completion of the execution of the READ statement.

(7) The INTO phrase may be specified in a READ statement:

a. If only one record description is subordinate to the file

description entry, or

b. If all record-names associated with file-name-1 and the data item

referenced by identifier-1 describe a group item or an elementary alphanumeric

item.

(8) The result of the execution of a READ statement with the INTO phrase is

equivalent to the application of the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area

specified by identifier-1 according to the rules for the MOVE statement without

the CORRESPONDING phrase. The size of the current record is determined by rules

specified for the RECORD clause. If the file description entry contains a

RECORD IS VARYING clause, the implied move is a group move. The implied MOVE

statement does not occur if the execution of the READ statement was

unsuccessful. Any subscripting associated with identifier-1 is evaluated after

the record has been read and immediately before it is moved to the data item.

The record is available in both the record area and the data item referenced by

identifier-1.

(9) If, at the time of the execution of a format 2 READ statement, the file

position indicator indicates that an optional input file is not present, the

invalid key condition exists and execution of the READ statement is

unsuccessful. (See page IX-6, The Invalid Key Condition.)__

(10) For a format l READ statement, if the file position indicator indicates

next logical record exists, | or that an optional input file is not]

the following occurs in the order specified:

a. A value, derived from the setting of the file position indicator, is

placed into the 1-0 status associated with file-name-1 to indicate the at end

condition. (See page IX-2, 1-0 Status.)

b. If the AT END phrase is specified in the statement causing the

condition, control is transferred to imperative-statement-1 in the AT END

phrase. Any USE AFTER STANDARD EXCEPTION procedure associated with file-name-1

is not executed .

c. If the AT END phrase is not specified, a USE AFTER STANDARD

EXCEPTION procedure must be associated with file-name-1, and that procedure is

executed. Return from that procedure is to the next executable statement

following the end of the READ statement.

that no

present,

IX-30

Indexed 1-0 - READ

When Che at end condition occurs, execution of the READ statement is

unsuccessful.

(11) If neither an at end nor an invalid key condition occurs during the

execution of a READ statement, the AT END phrase or the INVALID KEY phrase is

ignored, if specified, and the following actions occur:

a. The file position indicator is set and the 1-0 status associated

with file-name-1 is updated.

b. If an exception condition which is not an at end or an invalid key

condition exists, control is transferred according to rules of the USE statement

following the execution of any USE AFTER EXCEPTION procedure applicable to

file-name-1. (See page IX-39, The USE Statement.)

c. If no exception condition exists, the record is made available in

the record area and any implicit move resulting from the presence of an INTO

phrase is executed. Control is transferred to the end of the READ statement or

to imperative-statement-2, if specified. In the latter case, execution

continues according to the rules for each statement specified in

imperative-statement-2. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-2, control is transferred to the end of the

READ statement.

(12) Following the unsuccessful execution of a READ statement, the content of

the associated record area is undefined, the key of reference is undefined for

indexed files, and the file position indicator is set to indicate that no valid

next record has been established.

(13) For an indexed file for which dynamic access mode is specified, a

format 1 READ statement with the NEXT phrase specified causes the next logical

record to be retrieved from that file.

(14) For an indexed file being sequentially accessed, records having the same

duplicate value in an alternate record key which is the key of reference are

made available in the same order in which they are released by execution of

WRITE statements, or by execution of REWRITE statements which create such

duplicate values.

(15) For an indexed file, if the KEY phrase is specified in a format 2 READ

statement, data-name-1 is established as the key of reference for this

retrieval. If the dynamic access mode is specified, this key of reference is

also used for retrievals by any subsequent executions of format 1 READ

statements for the file until a different key of reference is established for

the file.

(16) For an indexed file, lif the KEY phrase is not specified in a format 2l

READ statement ,1 the prime record key is established as the key of reference for

this statement. Ilf the dynamic access mode Ts specified, this key of reference

is also used for retrievals by any subsequent execution of format 1 READ

statements for the file until a different key of reference is established for

the file.

IX-31

Indexed 1-0 - READ

(17) For an indexed file, execution of a format 2 READ statement sets the

file position indicator to the value in the key of reference. This value is

compared with the value contained in the corresponding data item of the stored

records in the file until the first record having an equal value is found. | In

the case of an alternate key with duplicate values, the first record found is

the first record of a sequence of duplicates which was released to the mass

storage control system (MSCS). [The record so found is made available in the

record area associated with file-name-1. If no record can be so identified, the

invalid key condition exists and execution of the READ statement is

unsuccessful. (See page IX-6, The Invalid Key Condition.)

(18) If the number of character positions in the record that is read is less

than the minimum size specified by the record description entries for

file-name-1, the portion of the record area which is to the right of the last

valid character read is undefined. If the number of character positions in the

record that is read is greater than the maximum size specified by the record

description entries for file-name-1, the record is truncated on the right to the

maximum size. In either of these cases, the READ statement is successful and an

1-0 status is set indicating a record length conflict has occurred. (See page

IX-2, 1-0 Status.)

(19) The END-READ phrase delimits the scope of the READ statement. (See page

IV-40, Scope of Statements.)

IX-32

Indexed 1-0 - REWRITE

4.6 THE REWRITE STATEMENT

4.6.1 Function

The REWRITE statement logically replaces a record existing in a mass storage

f i le.

4.6.2 General Format

REWRITE record-name-1 [FROM identifier-1]

rINVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REWRITE]

4.6.3 Syntax Rules

(1) Record-name-1 and identifier-1 must not refer to the same storage area.

(2) Record-name-1 is the name of a logical record in the File Section of the

Data Division and may be qualified.

(3) The INVALID KEY and the NOT INVALID KEY phrases must be specified if an

applicable USE AFTER STANDARD EXCEPTION procedure is not specified for the

associated file-name.

4.6.4 General Rules

(1) The file referenced by the file-name associated with record-name-1 must

be a mass storage file and must be open in the 1-0 mode at the time of execution

of this statement. (See page IX-23, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output statement

executed for the associated file prior to the execution of the REWRITE statement

must have been a successfully executed READ statement. The mass storage control

system (MSCS) logically replaces the record that was accessed by the READ

statement.

(3) In level 1, the number of character positions in the record referenced

by record-name-1 must be equal to the number of character positions in the

record being replaced. In level 2, the number of character positions in the

record referenced by record-name-1 may or may not be equal to the number of

character positions in the record being replaced.

(4) The logical record released by a successful execution of the REWRITE

statement is no longer available in the record area unless the file-name

associated with record-name-1 is specified in a SAME RECORD AREA clause. The

logical record is available to the program as a record of other files referenced

in the SAME RECORD AREA clause as the associated output file, as well as the

file associated with record-name-1.

IX-33

Indexed 1-0 - REWRITE

(5) The result of the execution of a REWRITE statement with the FROM phrase

is equivalent to the execution of the following statements in the order
specified:

a. The statement:

MOVE identifier-1 TO record-name-1

according to the rules specified for the MOVE statement.

b. The same REWRITE statement without the FROM phrase.

(6) After the execution of the REWRITE statement is complete, the

information in the area referenced by identifier-1 is available, even though the

information in the area referenced by record-name-1 is not available | except as

specified by the SAME RECORD AREA clause.

(7) The file position indicator is not affected by the execution of a

REWRITE statement.

(8) The execution of the REWRITE statement causes the value of the 1-0

status of the file-name associated with record-name-1 to be updated. (See page

IX-2, 1-0 Status .)

(9) The execution of the REWRITE statement releases a logical record to the

operating system.

(10) Transfer of control following the successful or unsuccessful execution

of the REWRITE operation depends on the presence or absence of the optional

INVALID KEY and NOT INVALID KEY phrases in the REWRITE statement. (See page

IX-6, The Invalid Key Condition.)

(11) The END-REWRITE phrase delimits the scope of the REWRITE statement.

(See page IV-40, Scope of Statements.)

(12) The number of character positions in the record referenced by

record-name-1 must not be larger than the largest or smaller than the smallest

number of character positions allowed by the RECORD IS VARYING clause associated

with the file-name associated with record-name-1. In either of these cases the

execution of the REWRITE statement is unsuccessful, the updating operation does

not take place, the content of the record area is unaffected and the 1-0 status

of the file associated with record-name-1 is set to a value indicating the cause

of the condition. (See page IX-2, 1-0 Status.)__

(13) For a file in the sequential access mode, the record to be replaced is

specified by the value of the prime record key. When the REWRITE statement is

executed the value of the prime record key of the record to be replaced must be

equal to the value of the prime record key of the last record read from this

file.

(14) For a file in the random |or dynamic access mode, the record to be

replaced is specified by the prime record key.

(15) Execution of the REWRITE statement for a record which has an alternate

record key occurs as fo1 lows :_

IX-34

Indexed 1-0 - REWRITE

a. When the value of a specific alternate record key is not changed,

the order of retrieval when that key is the key of reference remains unchanged.

b. When the value of a specific alternate record key is changed, the

subsequent order of retrieval of that record may be changed when that specific

alternate record key is the key of reference. When duplicate key values are

permitted, the record is logically positioned last within the set of duplicate

records containing the same alternate record key value as the alternate record

key value that was placed in the record.

(16) The invalid key condition exists under the following circumstances:

a. When the file is open in the sequential access mode, and the value

of the prime record key of the record to be replaced is not equal to the value

of the prime record key of the last record read from the file, or

b. When the file is open in the [dynamic or random access mode, and the

value of the prime record key of the record to be replaced is not equal to the

value of the prime record key of any record existing in the file, or

c. When the value of an alternate record key of the record to be

replaced, for which duplicates are not allowed, equals the value of the

corresponding data item of a record already existing in the file.

(17) When the invalid key condition is recognized, the execution of the

REWRITE statement is unsuccessful, the updating operation does not take place,

the content of the record area is unaffected and the 1-0 status of the file-name

associated with record-name-1 is set to a value indicating the cause of the

condition. (See page IX-2, 1-0 Status.)

IX-35

Indexed 1-0 - START

4.7 THE START STATEMENT

4.7.1 Function

The START statement provides a basis for logical positioning within an

indexed file, for subsequent sequential retrieval of records.

4.7.2 General Format

START file-name-1 KEY <|

IS EQUAL TO
IS =

1 IS GREATER THAN i
' IS > I

^ data-name-1
1 IS NOT LESS THAN
1 IS NOT <
IS GREATER THAN OR EQUAL TO
IS >=

v y _

rINVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-START]

4.7.3 Syntax Rules

(1) File-name-1 must be the name of a file with sequential or dynamic

access .

(2) Data-name-1 may be qualified.

(3) The INVALID KEY phrase must be specified if no applicable USE AFTER

STANDARD EXCEPTION procedure is specified for file-name-1.

(4) If the KEY phrase is specified, data-name-1 must reference either:

a. A data item specified as a record key associated with file-name-1

(see page IX-11, The ALTERNATE RECORD KEY Clause, and page IX-14, The RECORD KEY

Clause) , or

b. Any data item of category alphanumeric whose leftmost character

position within a record of the file corresponds to the leftmost character

position of a record key associated with file-name-1 and whose length is not

greater than the length of that record key.

4.7.4 General Rules

(1) The file referenced by file-name-1 must be open in the input or 1-0 mode

at the time that the START statement is executed. (See page IX-23, The OPEN

Statement.)

(2) If the KEY phrase is not specified, the relational operator 'IS EQUAL

TO 1 is implied.___

IX-36

Indexed 1-0 - START

(3) The execution of the START statement does not alter either the content

of the record area or the content of the data item referenced by the data-name

specified in the DEPENDING ON phrase of the RECORD clause associated with

file-name-1.

(4) The type of comparison specified by the relational operator in the KEY

phrase occurs between a key associated with a record in the file referenced by

file-name-1 and a data item as specified in general rules 11 and 12. The

comparison is made on the ascending key of reference according to the collating

sequence of the file. If the operands are of unequal size, comparison proceeds

as though the longer one was truncated on the right such that its length is

equal to that of the shorter. All other nonnumeric comparison rules apply.

(See page VI-55, Comparison of Nonnumeric Operands.)

a. The file position indicator is set to the value of the key of

reference in the first logical record whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, the

invalid key condition exists and the execution of the START statement is

unsuccessful.

(5) The execution of the START statement causes the value of the 1-0 status

associated with file-name-1 to be updated. (See page IX-2, 1-0 Status.)

(6) If, at the time of the execution of the START statement, the file

position indicator indicates that an optional input file is not present, the

invalid key condition exists and the execution of the START statement is

unsuccessful.

(7) Transfer of control following the successful or unsuccessful execution

of the START operation depends on the presence or absence of the optional

INVALID KEY and NOT INVALID KEY phrases in the START statement. (See page IX-6,

The Invalid Key Condition.)

(8) Following the unsuccessful execution of a START statement, the file

position indicator is set to indicate that no valid next record has been

established. Also, for indexed files, the key of reference is undefined.

(9) The END-START phrase delimits the scope of the START statement. (See

page IV-40, Scope of Statements.)

(10) A key of reference is established as follows:

a. If the KEY phrase is not specified, the prime record key specified

for file-name-1 becomes the key of reference.

b. If the KEY phrase is specified, and data-name-1 is specified as

record key for file-name-1, that record key becomes the key of reference.

c .

a record

corresponds

data-name-1

If the KEY phrase is spe

key for file-name- 1, the

to the leftmost char acte

, becomes the key of ref e

cified, and data-name-1

record key whose leftmos

r position of the data

rence .

is not specified as

t character position

item specified by

IX-37

Indexed 1-0 - START

This key of reference is used to establish the ordering of records for

the purpose of this START statement, see general rule 4; and, if the execution

of the START statement is successful, the key of reference is also used for

subsequent sequential READ statements. (See page IX-28, The READ Statement.)

(11) If the KEY phrase is specified, the comparison described in general rule

4 uses the data item referenced by data-name-1.

(12) If the KEY phrase is not specified, the comparison described in general

rule 4 uses the data item referenced in the RECORD KEY clause associated with

file-name-1.

IX-38

Indexed 1-0 - USE

4.8 THE USE STATEMENT

4.8.1 Function

The USE statement specifies procedures for input-output error handling that

are in addition to the standard procedures provided by the input-output control

system.

4.8.2 General Format

USE AFTER STANDARD
{exception)

1 ERROR f

{file-name-1} i. . . l

INPUT

PROCEDURE ON (OUTPUT

1-0

EXTEND

4.8.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section header

in the declaratives portion of the Procedure Division and must appear in a

sentence by itself. The remainder of the section must consist of zero, one, or

more procedural paragraphs that define the procedures to be used.

(2) The USE statement is never executed; it merely defines the conditions

calling for the execution of the USE procedures.

(3) Appearance of file-name-1 in a USE statement must not cause the

simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may be used

interchangeably.

(5) The files implicitly or explicitly referenced in the USE statement need

not all have the same organization or access.

(6) The INPUT, OUTPUT, 1-0, [and EXTENDI phrases may each be specified only

once in the declaratives portion of a given Procedure Division.

4.8.4 General Rules

(1) Declarative procedures may be included in any COBOL source program

irrespective of whether the program contains or is contained within another

program. A declarative is invoked when any of the conditions described in the

USE statement which prefaces the declarative occurs while the program is being

executed. Only a declarative within the separately compiled program that

contains the statement which caused the qualifying condition is invoked when any

of the conditions described in the USE statement which prefaces the declarative

occurs while that separately compiled program is being executed. If no

qualifying declarative exists in the separately compiled program, no declarative
is executed.

(2) Within a declarative procedure, there must be no reference to any

nondeclarative procedures.

IX-39

Indexed 1-0 - USE

(3) Procedure-names associated with a USE statement may be referenced in a

different declarative section or in a nondeclarative procedure only with a

PERFORM statement .

(4) When file-name-1 is specified explicitly, no other USE statement applies

to file-name-1.

(5) The procedures associated with a USE statement are executed by the

input-output control system after completion of the standard input-output

exception routine upon the unsuccessful execution of an input-output operation

unless an AT END or INVALID KEY phrase takes precedence. The rules concerning

when the procedures are executed are as follows:

a. If file-name-1 is specified, the associated procedure is executed

when the condition described in the USE statement occurs.

b. If INPUT is specified, the associated procedure is executed when the

condition described in the USE statement occurs for any file open in the input

mode or in the process of being opened in the input mode, except those files

referenced by file-name-1 in another USE statement specifying the same

condition.

c. If OUTPUT is specified, the associated procedure is executed when

the condition described in the USE statement occurs for any file open in the

output mode or in the process of being opened in the output mode, except those

files referenced by file-name-1 in another USE statement specifying the same

condition.

d. If 1-0 is specified, the associated procedure is executed when the

condition described in the USE statement occurs for any file open in the 1-0

mode or in the process of being opened in the 1-0 mode, except those files

referenced by file-name-1 in another USE statement specifying the same

condition.

e. If EXTEND is specified, the associated procedure is executed when

the condition described in the USE statement occurs for any file open in the

extend mode or in the process of being opened in the extend mode, except those

files referenced by file-name-1 in another USE statement specifying the same

condition .

(6) After execution of the USE procedure, control is transferred to the

invoking routine in the input-output control system. If the 1-0 status value

does not indicate a critical input-output error, the input-output control system

returns control to the next executable statement following the input-output

statement whose execution caused the exception. If the 1-0 status value does

indicate a critical error, the implementor determines what action is taken.

(See page IX-2, 1-0 Status.)

(7) Within a USE procedure, there must not be the execution of any statement

that would cause the execution of a USE procedure that had previously been

invoked and had not yet returned control to the invoking routine.

IX-40

Indexed 1-0 - WRITE

4.9 THE WRITE STATEMENT

4.9.1 Function

The WRITE statement releases a logical record for an output or input-output

file.

4.9.2 General Format

WRITE record-name-1 [FROM identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-WRITE]

4.9.3 Syntax Rules

(1) Record-name-1 and identifier-1 must not refer to the same storage area.

(2) Record-name-1 is the name of a logical record in the File Section of the

Data Division and may be qualified.

(3) The INVALID KEY phrase must be specified if an applicable USE AFTER

STANDARD EXCEPTION procedure is not specified for the associated file-name.

4.9.4 General Rules

(1) The file referenced by the file-name associated with record-name-1 must

be open in the output, 1-0, | or extend[mode at the time of the execution of this

statement. (See page IX-23, The OPEN Statement.)

(2) The logical record released by the successful execution of the WRITE

statement is no longer available in the record area unless the file-name

associated with record-name-1 is specified in a SAME RECORD AREA clause. The

logical record is also available to the program as a record of other files

referenced in the same SAME RECORD AREA clause as the associated output file, as

well as the file associated with record-name-1.

(3) The result of the execution of a WRITE statement with the FROM phrase is

equivalent to the execution of the following statements in the order specified:

a. The statement:

MOVE identifier-1 TO record-name-1

according to the rules specified for the MOVE statement.

b. The same WRITE statement without the FROM phrase.

(4) After the execution of the WRITE statement is complete, the information

in the area referenced by identifier-1 is available, even though the information

IX-41

Indexed 1-0 - WRITE

in the area referenced by record-name-1

I the SAME RECORD AREA clause.]

is not available except as specified by

(5) The file position indicator

statement.

(6) The execution of the WRITE

of the fi le-name associated with

I—0 Status.)

(7) The execution of the WRITE

operating system.

is not affected by the execution of a WRITE

statement causes the value of the 1-0 status

record-name-1 to be updated. (See page IX-2,

statement releases a logical record to the

(8) The number of character positions in the record referenced by

record-name-1 must not be larger than the largest or smaller than the smallest

number of character positions allowed by the RECORD IS VARYING clause associated

with the file-name associated with record-name-1. In either of these cases the

execution of the WRITE statement is unsuccessful, the WRITE operation does not

take place, the content of the record area is unaffected and the 1-0 status of

the file associated with record-name-1 is set to a value indicating the cause of

the condition. (See page IX-2, 1-0 Status.)

(9) If, during the

phrase, the invalid

imperative-statement-2

execution of a WRITE statement with the NOT INVALID KEY

key condition does not occur, control is transferred to

at the appropriate time as follows:

a. If the execution

record is written and after

with record-name-1.

of the WRITE statement is successful, after the

updating the 1-0 status of the file-name associated

b. If the execution of the WRITE statement is unsuccessful for a reason

other than an invalid key condition, after updating the 1-0 status of the

file-name associated with record-name-1, and after executing the procedure, if

any, specified by a USE AFTER STANDARD EXCEPTION PROCEDURE statement applicable

to the file-name associated with record-name-1.

(10) The END-WRITE phrase delimits the scope of the WRITE statement. (See

page IV-40, Scope of Statements.)

(11) Execution of a WRITE statement causes the content of the record area to

be released. The mass storage control system (MSCS) utilizes the contents of

the record keys in such a way that subsequent access of the record may be made

based upon any of these specified record keys.

(12) The value of the prime record key must be unique within the records in

the file.

(13) The data item specified as the prime record key must be set by the

program to the desired value prior to the execution of the WRITE statement.

(14) If the file is open in the sequential access mode, records must be

released to the mass storage control system (MSCS) in ascending order of prime

record key values according to the collating sequence of the file. | When the

file is open in the extend mode, the first record released to the MSCS must have

IX-42

Indexed 1-0 - WRITE

a prime record key whose value is greater than the highest prime record key

value existing in the file.

(15) If the file is open in the random|or dynamic| access mode, records may be

released to the mass storage control system (MSCS) in any program-specified

order .

(16) When the ALTERNATE RECORD KEY clause is specified in the file control

entry for an indexed file, the value of the alternate record key may be

nonunique only if the DUPLICATES phrase is specified for that data item. In

this case the mass storage control system (MSCS) provides storage of records

such that when records are accessed sequentially, the order of retrieval of

those records is the order in which they are released to the MSCS.

(17) The invalid key condition exists under the following circumstances:

a. When the file is open in

also is open in the output or extend

is not greater than the value of the

the sequential access mode, and

mode, and the value of the prime

prime record key of the previous

the file

record key

record, or

b. When the file is open in the output or 1-0 mode, and the value of

the prime record key equals the value of the prime record key of a record

already existing in the file, or

c. When the file is open in the output, extend, or 1-0 mode, and the

value of an alternate record key for which duplicates are not allowed equals the

value of the corresponding data item of a record already existing in the file,

or

d. When an attempt is made

boundaries of the file.

to write beyond the externally defined

(18) When the invalid key condition is recognized, the execution of the WRITE

statement is unsuccessful, the content of the record area is unaffected and the

1-0 status of the file-name associated with record-name-1 is set to a value

indicating the cause of the condition. Execution

according to the rules for an invalid key condition.

Status, and page IX-6, The Invalid Key Condition.)

of the program proceeds

(See page IX-2, 1-0

IX-43

Inter-Program Communication - Introduction

SECTION X: INTER-PROGRAM COMMUNICATION MODULE

1. INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE

1.1 FUNCTION

The Inter-Program Communication module provides a facility by which a program

can communicate with one or more programs. This communication is provided by:

(a) the ability to transfer control from one program to another within a run

unit and (b) the ability to pass parameters between programs to make certain

data value available to a called program. [The Inter-Program Communication

module also permits communication between two programs by the sharing of data

and the sharing of files.

1.2 LEVEL CHARACTERISTICS

Inter-Program Communication level 1 provides a capability to transfer control

to one or more programs whose names are known at compile time and for the

sharing of data among such programs.

Inter-Program Communication level 2 provides the capability to transfer

control to one or more programs whose names are not known at compile time as

well as the ability to determine the availability of object time memory for the

program to which control is being passed. Inter-Program Communication level 2

also provides external attributes, global names, and nesting of source programs.

1.3 LANGUAGE CONCEPTS

1.3.1 Nested Source Programs

A COBOL source program is a syntactical 1y

COBOL source program may contain other COBOL

programs may reference some of the resources

are contained.

correct set of

source programs

of the program

COBOL statements.

and these contained

within which they

When a program, program B, is contained in another program, program A, it may

be directly contained or indirectly contained. Program B is directly contained

in program A if there is no program contained in program A that also contains

program B. Program B is indirectly contained in program A if there exists a

program contained in program A that also contains program B.

1.3.2 File Connector

A file connector is a storage area which contains information about a file

and is used as the linkage between a file-name and a physical file and between a

file-name and its associated record area.

X-l

Inter-Program Communication - Introduction

1.3.3 Global Names and Local Names

A data-name names a data item. A file-name names a file connector. These

names are classified as either global or local.

A global name may be used to refer to the object with which it is associated

either from within the program in which the global name is declared or from

within any other program which is contained in the program which declares the

global name. _

A local name, however, may be used only to refer to the object with which it

is associated from within the program in which the local name is declared. | Some

names are always global; other names are always local; and some other names are

either local or global depending upon specifications in the program in which the

names are declared.

A record-name is global if the GLOBAL clause is specified in the record

description entry by which the record-name is declared or, in the case of record

description entries in the File Section, if the GLOBAL clause is specified in

the file description entry for the file-name associated with the record

description entry. A data-name is global if the GLOBAL clause is specified

either in the data description entry by which the data-name is declared or in

another entry to which that data description entry is subordinate. A

condition-name declared in a data description entry is global if that entry is

subordinate to another entry in which the GLOBAL clause is specified. However,

specific rules sometimes prohibit specification of the GLOBAL clause for certain

data description, file description, or record description entries.

A file-name is global if the GLOBAL

description entry for that file-name.

clause is specified in the file

If a data-name, a file-name, or a condition-name declared in a data

description entry is not global, the name is local.

Global names are transitive across programs contained within other programs.

1.3.4 External Objects and Internal Objects

Accessible data items usually require that certain representations of data be

stored. File connectors usually require that certain information concerning

files be stored. The storage associated with a data item or a file connector

may be [external or[internal to the program in which the object is declared.

A data item or file connector is external if the storage associated with that

object is associated with the run unit rather than with any particular program

within the run unit. An external object may be referenced by any program in the

run unit which describes the object. References to an external object from

different programs using separate descriptions of the object are always to the

same object. In a run unit, there is only one representative of an external

object .

An object is internal if the storage associated with that object is

associated only with the program which describes the object.

External and[internal objects may have [either global or local names.

X-2

Inter-Program Communication - Introduction

A data record described in the Working-Storage Section is given the external

attribute by the presence of the EXTERNAL clause in its data description entry.

Any data item described by a data description entry subordinate to an entry

describing an external record also attains the external attribute. If a record

or data item does not have the external attribute, it is part of the internal

data of the program in which it is described.

A file connector is given the external attribute by the presence of the

EXTERNAL clause in the associated file description entry. If the file connector

does not have the external attribute, it is internal to the program in which the

associated file-name is described.

The data records described subordinate to a file description entry which does

not contain the EXTERNAL clause or a sort-merge file description entry, as well

as any data items described subordinate to the data description entries for such

records, are always internal to the program describing the file-name. If the

EXTERNAL clause is included in the file description entry, the data records and

the data items attain the external attribute.

Data records, subordinate data items, and various associated control

information described in the Linkage, Communication, and Report Sections of a

program are always considered to be internal to the program describing that

data. Special considerations apply to data described in the Linkage Section

whereby an association is made between the data records described and other data

items accessible to other programs.

1.3.5 Common Programs and Initial Programs

All programs which form part of a run unit may possess none, one, or more

the following attributes: common and initial.

of

A common program is one which, despite being directly contained within

another program, may be called by any program directly or indirectly contained

in that other program. The common attribute is attained by specifying the

COMMON clause in a program's Identification Division. The COMMON clause

facilitates the writing of subprograms which are to be used by all the programs

contained within a program.

An initial program is one whose program state is initialized when the program

is called. Thus, whenever an initial program is called, its program state is

the same as when the program was first called in that run unit. During the

process of initializing an initial program, that program's internal data is

initialized; thus an item of the program's internal data whose description

contains a VALUE clause is initialized to that defined value, but an item whose

description does not contain a VALUE clause is initialized to an undefined

value. Files with internal file connectors associated with the program are not

in the open mode. The control mechanisms for all PERFORM statements contained

in the program are set to their initial states. The initial attribute is

attained by specifying the INITIAL clause in the program's Identification

Division.

X-3

Inter-Program Communication - Introduction

1.3.6 Sharing Data

Two programs in a run unit may reference common data in the following

circumstances:

(1) The data content of an external data record may be referenced from any

program provided that program has described that data record.

(2) If a program is contained within another program, both programs may

refer to data possessing the global attribute either in the containing program

or in any program which directly or indirectly contains the containing program.

(3) The mechanism whereby a parameter value is passed by reference from a

calling program to a called program establishes a common data item; the called

program, which may use a different identifier, may refer to a data item in the

calling program.

1.3.7 Sharing Files

Two programs in a run unit may

following circumstances:

reference common file connectors in the

(1) An external file connector

describes that file connector.

may be re ferenced from any program which

(2) If a program is contained within another program, both programs may

refer to a common file connector by referring to an associated global file-name

either in the containing program or in any program which directly or indirectly

contains the containing program.

1.3.8 Scope of Names

When programs are directly or indirectly contained within other programs,

each program may use identical user-defined words to name objects independent of

the use of these user-defined words by other programs. (See page IV-6,

User-Defined Words.) When identically named objects exist, a program's

reference to such a name, even when it is a different type of user-defined word,

is to the object which that program describes rather than to the object,

possessing the same name, described in another program.

The following types of user-defined words may be referenced only by

statements and entries in that program in which the user-defined word is

declared:

1 . cd-name

2. paragraph-name

3. section-name

The following types of user-defined words may be referenced by any COBOL

program, provided that the compiling system supports the associated library or

other system and the entities referenced are known to that system:

1. library-name

2. text-name

X-4

Inter-Program Communication - Introduction

when they are declared in a

by statements and entries in that

1. condition-name

2. data-name

3. record-name

The following types of user-defined words

Communication Section may be referenced only

program which contains that section:

The following types of names, when they are declared within a Configuration

Section, may be referenced only by statements and entries either in that program

which contains a Configuration Section or in any program contained within that

program:

1. alphabet-name

2. class-name

3. condition-name

4. mnemonic-name

5. symbolic-character

Specific conventions, for declarations and references, apply to the following

types of user-defined words when the conditions listed above do not apply:

1. condition-name

2. data-name

3. file-name

4. index-name

5. program-name

6. record-name

7. report-name

1.3.8.1 Conventions for Program-Names

The program-name of a program is declared in the PROGRAM-ID paragraph of the

program's Identification Division. A program-name may be referenced only by the

CALL statement, | the CANCEL statement, _and the end program header . The

program-names allocated to programs constituting a run unit are not necessarily

unique but, when two programs in a run unit are identically named, at least one

of those two programs must be directly or indirectly contained within another

separately compiled program which does not contain the other of those two

programs .

The following rules regulate the scope of a program-name.

(1) If the program-name is that of a program which does not possess the

common attribute and which is directly contained within another program, that

program-name may be referenced only by statements included in that containing

program.

(2) If the program-name is that of a program which does possess the common

attribute and which is directly contained within another program, that

program-name may be referenced only by statements included in that containing

program and any programs directly or indirectly contained within that containing

program, except that program possessing the common attribute and any programs

contained within it.

X-5

Inter-Program Communication - Introduction

(3) If the program-name is that of a program which is separately compiled,

that program-name may be referenced by statements included in any other program

in the run unit, except programs it directly or indirectly contains.

1.3.8.2 Conventions for Condition-Names, Data-Names, File-Names,

Record-Names, and Report-Names

When condition-names, data-names, file-names, record-names, and report-names

are declared in a source program, these names may be referenced only by that

program [except when one or more of the names is global and the program contains

other programs.

The requirements governing the uniqueness of the names allocated by a single

program to be condition-names, data-names, file-names, record-names, and

report-names are explained elsewhere in these specifications. (See page IV-6,

User-Defined Words.)

A program cannot reference any condition-name, data-name, file-name,

record-name, or report-name declared in any program it contains.

A global name may be referenced in the program in which it is declared or in

any programs which are directly or indirectly contained within that program.

When a program, program B, is directly contained within another program,

program A, both programs may define a condition-name, a data-name, a file-name,

a record-name, or a report-name using the same user-defined word. When such a

duplicated name is referenced in program B, the following rules are used to

determine the referenced object.

(1) The set of names to be used for determination of a referenced object

consists of all names which are defined in program B and all global names which

are defined in program A and in any programs which directly or indirectly

contain program A. Using this set of names, the normal rules for qualification

and any other rules for uniqueness of reference are applied until one or more

objects is identified.

(2) If only one object is identified, it is the referenced object.

(3) If more than one object is identified, no more than one of them can have

a name local to program B. If zero or one of the objects has a name local to

program B, the following rules apply:

a. If the name is declared in program B, the object in program B is the

referenced object.

b. Otherwise, if program A is contained within another program, the

referenced object is:

1) The object in program A if the name is declared in program A.

2) The object in the containing program if the name is not declared

in program A and is declared in the program containing program A. This rule is

applied to further containing programs until a single valid name has been found.

X-6

Inter-Program Communication - Introduction

1.3.8.3 Conventions for Index-Names

If a data item possessing either or both the external or global attributes

includes a table accessed with an index, that index also possesses

correspondingly either or both attributes. Therefore, the scope of an

index-name is identical to that of the data-name which names the table whose

index is named by that index-name and the scope of name rules for data-names

apply. Index-names cannot be qualified.

X-7

Inter-Program Communication - Nested Source Programs

2. NESTED SOURCE PROGRAMS

2.1 GENERAL DESCRIPTION

A COBOL source program is a syntactically correct set of COBOL statements. A

COBOL source program may contain other COBOL source programs and these contained

programs may reference some of the resources of the programs within which they

are contained.

2.2 ORGANIZATION

With the exception of COPY and REPLACE statements and the end program header,

the statements, entries, paragraphs, and sections of a COBOL source program are

grouped into four divisions which are sequenced in the following order:

1. The Identification Division

2. The Environment Division

3. The Data Division

4. The Procedure Division

The end of a COBOL source program is indicated by either the end program

header, if specified, or by the absence of additional source program lines.

2.3 STRUCTURE

The following gives the general format and order of presentation of the

entries and statements which constitute a COBOL source program. The generic

terms identification-division, environment-division, data-division,

procedure-division, source-program, and end-program-header represent a COBOL

Identification Division, a COBOL Environment Division, a COBOL Data Division, a

COBOL Procedure Division, a COBOL source program, and a COBOL end program

header, respectively.

2.3.1 General Format

identification-division

[environment-division]

[data-division]

[procedure-division]

[source-program] ...

[end-program-header]

X-8

Inter-Program Communication - Nested Source Programs

2.3.2 Syntax Rules

(1) End-program-header must be present if:

a. The COBOL source program contains one or more other COBOL source

programs; or

b. The COBOL source program is contained within another COBOL source

program.

2.3.3 General Rules

(1) The beginning

division header. The

of a division in a program is indicated by the appropriate

end of a division is indicated by one of the following:

a. The division header of a succeeding division in that program.

b. An Identification Division header which indicates the start of

another source program.

c. The end program header.

d. That physical position after which no more source program lines

occur.

(2) A COBOL source program which is directly or indirectly contained within

another program is considered in these specifications as a separate program that

may additionally reference certain resources defined in the containing program.

(3) The object code, resulting from compiling a source program contained

within another program, is considered in these specifications to be inseparable

from the object code resulting from compiling the containing program.

X-9

Inter-Program Communication - Initial State of a Program

2.4 INITIAL STATE OF A PROGRAM

The initial state of a program is the state of a program the first time it is

called in a run unit.

2.4.1 Characteristics of a Program

(1) The program's internal data contained in the Working-Storage Section and

the Communication Section are initialized. If a VALUE clause is used in the

description of the data item, the data item is initialized to the defined value.

If a VALUE clause is not associated with a data item, the initial value of the

data item is undefined.

(2) Files with internal file connectors associated with the program are not

in the open mode.

(3) The control mechanisms for all PERFORM statements contained in the

program are set to their initial states.

(4) A GO TO statement referred to by an ALTER statement contained in the

same program is set to its initial state.

2.4.2 Programs in the Initial State

A program is in the initial state:

(1) The first time the program is called in a run unit.

(2) The first time the program is called after the execution of a CANCEL

statement referencing the program or a CANCEL statement referencing a program

that directly or indirectly contains the program._

(3) Every time the program is called, if it possesses the initial attribute.

(4) The first time

statement referencing

directly or indirectly

the program is called after

a program that possesses the

contains the program.

the execution of a CALL

initial attribute, and that

X-10

Inter-Program Communication - End Program Header

2.5 END PROGRAM HEADER

2.5.1 Function

The end program header indicates the end of the named COBOL source program.

2.5.2 General Format

END PROGRAM program-name.

2.5.3 Syntax Rules

(1) The program-name must conform to the rules for forming a user-defined

word .

(2) The program-name must be identical to a program-name declared in a

preceding PROGRAM-ID paragraph. (See page X-12, The PROGRAM-ID Paragraph.)

(3) If a PROGRAM-ID paragraph decl aring a specific program-name is stated

between the PROGRAM-ID paragraph and the end program header declaring and

referencing, respectively, another program-name, the end program header

referencing the former program-name must precede that referencing the latter

program-name.

2.5.4 General Rules

(1) The end program header must be present in every program which either

contains or is contained within another program._

(2) The end program header indicates the end of the specified COBOL source

program.

(3) If the program terminated by the end program header is contained within

another program, the next statement must either be an Identification Division

header or another end program header which terminates the containing program.

(4) |If the program terminated by the end program header is

[within another program and [if the next source statement is a COBOL

must be the Identification Division header of a program to

separately from that program terminated by the end program header.

not contained

statement, it

be compiled

X-ll

Inter-Program Communication - Identification Division

3. IDENTIFICATION DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

3.1 THE PROGRAM-ID PARAGRAPH AND NESTED SOURCE PROGRAMS

3.1.1 Function

The PROGRAM-ID paragraph specifies the name by which a program is identified

and assigns selected program attributes to that program.

3.1.2 General Format

PROGRAM-ID. program-name

3.1.3 Syntax Rules

(1) The program-name must conform to the rules for formation of a

user-defined word.

(2) A program contained within another program must not be assigned the same

name as that of any other program contained within the separately compiled

program which contains this program.

(3) The optional COMMON clause may be used only if the program is contained

within another program.

3.1.4 General Rules

(1) The program-name identifies the source program, the object program, and

all listings pertaining to a particular program.

(2) The COMMON clause specifies that the program is common. A common

program is contained within another program but may be called from programs

other than that containing it. (See page X-4, Scope of Names.)

(3) The INITIAL clause specifies that the program is initial. When an

initial program is called, it and any programs contained within it are placed in

their initial state. (See page X-10, Initial State of a Program.)

[is j
COMMON

| PROGRAM

l
INITIAL

X-12

Inter-Program Communication - Linkage Section

4. DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

4.1 LINKAGE SECTION

The Linkage Section is located in the Data Division of a source program. The

Linkage Section appears in the called program and describes data items that are

to be referred to by the calling program and the called program.

The Linkage Section in a program is meaningful if and only if the object

program is to function under the control of a CALL statement, and the CALL

statement in the calling program contains a USING phrase.

The Linkage Section is used for describing data that is available through the

calling program but is to be referred to in both the calling and the called

program. The mechanism by which a correspondence is established between the

data items described in the Linkage Section of a called program and data items

described in the calling program is described elsewhere in these specifications.

(See page X-25, Procedure Division Header, and page X-27, The CALL Statement.)

In the case of index-names, no such correspondence is established and

index-names in the called and calling programs always refer to separate indices.

The structure of the Linkage Section is the same as that previously described

for the Working-Storage Section, beginning with a section header, followed by

noncontiguous data items and/or record description entries.

The general format of the Linkage Section is shown below.

LINKAGE SECTION.

77-level-description-entry

record-description-entry

If a data item in the Linkage Section is accessed in a program which is not a

called program, the effect is undefined.

4.1.1 Noncontiguous Linkage Storage

Items in the Linkage Section that bear no hierarchical relationship to one

another need not be grouped into records and are classified and defined as

noncontiguous elementary items. Each of these items is defined in a separate

data description entry which begins with the special level-number 77.

The following data clauses are required in each data description entry:

1. level-number 77

2. data-name

3. the PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the

description of the item if necessary.

X-13

Inter-Program Communication - Linkage Section

4.1.2 Linkage Records

Data elements in the Linkage Section which bear a definite hierarchical

relationship to one another must be grouped into records according to the rules

for formation of record descriptions. Data elements in the Linkage Section

which bear no hierarchical relationship to any other data item may be described

as records which are single elementary items.

4.1.3 Initial Values

The VALUE clause must not be specified in the Linkage Section except in

condition-name entries (level 88).

X-14

Inter-Program Communication - File Description Entry

4.2 THE FILE DESCRIPTION ENTRY IN THE INTER-PROGRAM COMMUNICATION MODULE

4.2.1 Function

Within the Inter-Program Communication module, the file description entry in

the File Section determines the internal or external attributes of a file

connector, of the associated data records, and of the associated data items.

The file description entry also determines whether a file-name is a local name

or a global name.

4.2.2 General Format

Format 1:

FD file-name-1

[IS EXTERNAL]

[IS GLOBAL 1

BLOCK CONTAINS [integer-1 TO] integer-2
{RECORDS)

(CHARACTERS/

RECORD

CONTAINS integer-3 CHARACTERS

IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]!

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

jRECORD IS 1 (STANDARD)

• ■ (RECORDS AREf (OMITTED f

TTATTT„ __ j (data-name-2
VALUE OF <implementor-name-1 IS |Hteral-l

DATA
(RECORD IS }
[records are] {data-name-3}

LINAGE IS
(data-name-4

(integer-8
LINES

LINES AT TOP fdata"nama“6
- (xnteger-10 }

WITH FOOTING AT

LINES AT BOTTOM

(data-name-5

(integer-9

Jdata-name-7

(integer-11

rCODE-SET IS alphabet-name-1].

X-15

Inter-Program Communication - File Description Entry

Format 2:

FD file-name-1

[IS EXTERNAL]

[IS GLOBAL1

BLOCK CONTAINS [integer-1 TO] integer-2
(RECORDS \

CHARACTERS)

RECORD

LABEL

S CONTAINS integer-3 CHARACTERS

IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]!

\ [DEPENDING ON data-name-1]

(contains integer-6 TO integer-7 CHARACTERS

(RECORD IS 'i (STANDARDV

1 RECORDS ARE) }OMITTED)

tt»t { . i , (data-name-2))
VALUE OF / implementor-name-1 IS < (/

DATA
(RECORD IS \ ,,

IRECORDS ARE) ata name •**

X-16

Inter-Program Communication - File Description Entry

Format 3:

FD file-name-1

[IS EXTERNAL]

[IS GLOBAL]

[block CONTAINS [integer-1 K>] integer-2 {™]fERS}

RECORD

CONTAINS integer-3 CHARACTERS

IS VARYING IN SIZE [[FROM integer-4] [TO•integer-5] CHARACTERS;

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

/RECORD IS / (STANDARD)

——- 1 RECORDS AREj 1 OMITTED J

VALUE n-tr I • i i to idata-name-2
OF /implementor-name-1 IS jiiteral-1

[CODE-SET IS alphabet-name-1]

r {report-name-1}
/REPORT IS \

1 REPORTS ARE

X-17

Inter-Program Communication - File Description Entry

4.2.3 Syntax Rules

(1) Format 1 is the file description entry for a sequential file. The

availability of specific clauses in this file description entry is dependent on

the level of Sequential 1-0 module supported by the implementation. (See page

VII-22 in the Sequential 1-0 module.)

(2)

file.

Format 2 is the file description entry for a relative file or an indexed

The availability of specific clauses in this file description entry is

dependent on the level of Relative 1-0 module or Indexed 1-0 module supported by

the implementation. (See page VIII-14 in the Relative 1-0 module and page IX-16

in the Indexed 1-0 module.)

(3) Format 3 is the file description entry for a report file. The

availability of the file description entry for a report file is dependent on

whether the Report Writer module is supported by the implementation. (See page

XIII-7 in the Report Writer module.)

4.2.4 General Rules

(1)

clause

item.

clause

If the file description entry for a sequential file contains the LINAGE

and the EXTERNAL clause, the LINAGE-COUNTER data item is an external data

If the file description entry for a sequential file contains the LINAGE

and the GLOBAL clause, the special register LINAGE-COUNTER is a global

name .

(2) The EXTERNAL clause is presented on page X-23. The GLOBAL clause is

presented on page X-24. All other clauses in the file description entry are

presented in the appropriate module within these specifications.

X-18

Inter-Program Communication - Data Description Entry

4.3 THE DATA DESCRIPTION ENTRY IN THE INTER-PROGRAM COMMUNICATION MODULE

4.3.1 Function

Within the Inter-Program Communication module, a level 01 data description

entry within the Working-Storage Section or File Section determines whether the

data record and its subordinate data items have local names or global names.

Within

entry in

attribute

the Inter-Program Communication module, a level 01 data

the Working-Storage Section determines the internal

of the data record and its subordinate data items.

description

or external

X-19

Inter-Program Communication - Data Description Entry

4.3.2 General Format

m data-name-1

u [filler

[REDEFINES data-name-2]

[IS EXTERNAL 1

[IS GLOBAL1

PICTURE/

PIC] IS character-string

[USAGE IS]

BINARY

COMPUTATIONAL

COMP

DISPLAY

INDEX

PACKED-DECIMAL

[SIGN IS]
(LEADING i

)TRAILING(

OCCURS integer-2 TIMES

'(ASCENDING)

[SEPARATE CHARACTER]J

KEY IS {data-name-3}
(DESCENDING f

[INDEXED BY {index-name-1} ...]

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-4

"(ASCENDING i

)DESCENDING (
KEY IS (data-name-3)

[INDEXED BY {index-name-1} ...]

/SYNCHRONIZED'! [left 1

1 SYNC j [RIGHTj

(justified/

(JUST j

[BLANK WHEN ZERO]

RIGHT]
[VALUE IS literal-1].

X-20

Inter-Program Communication - Data Description Entry

4.3.3 Syntax Rules

(1) The availability of specific clauses in the data description entry is

dependent on the level of the Nucleus module suppported by the implementation.

(See page VI-20 in the Nucleus module.)

(2) The EXTERNAL clause may be specified only in data description entries in

the Working-Storage Section whose level-number is 01.

(3) The EXTERNAL clause and the REDEFINES clause must not be specified in

the same data description entry.

(4) The GLOBAL clause may be specified only in data description entries

whose level-number is 01.

(5) Data-name-1 must be specified for any entry containing the GLOBAL or

EXTERNAL clause, or for record descriptions associated with a file description

entry which contains the EXTERNAL or GLOBAL clause.

4.3.4 General Rules

(1) The EXTERNAL clause is presented on page X-23.

presented on page X-24.

The GLOBAL clause is

All other clauses in the data description entry are

presented in the Nucleus module within these specifications.

X-21

Inter-Program Communication - Report Description Entry

4.4 THE REPORT DESCRIPTION ENTRY IN THE INTER-PROGRAM COMMUNICATION MODULE

4.4.1 Function

Within the Inter-Program Communication module, the report description entry

in the Report Section determines whether a report-name is a local name or a

global name.

4.4.2 General Format

RD report-name-1

[IS GLOBAL!

[CODE literal-1]

J (CONTROL IS [({data-name-1} ... \
{CONTROLS AREf [FINAL [data-name-1] ... f

PAGE
LIMIT IS

LIMITS ARE
integer-1

LINE

LINES
[HEADING integer-2]

[FIRST DETAIL integer-3] [LAST DETAIL integer-4]

[FOOTING integer-5]

4.4.3 Syntax Rules

(1) The availability of the report description entry is dependent on whether

the Report Writer module is supported by the implementation. (See page XIII-11

in the Report Writer module.)

4.4.4 General Rules

(1) If the report description entry contains the GLOBAL clause, the special

registers LINE-COUNTER and PAGE-COUNTER are global names._

(2) 1 The GLOBAL clause is presented on page X-24.1 All other clauses in the

report description entry are presented in the Report Writer module within these

specifications.

X-22

Inter-Program Communication - EXTERNAL

4.5 THE EXTERNAL CLAUSE

4.5.1 Function

The EXTERNAL clause specifies that a data item or a file connector is

external. The constitutent data items and group data items of an external data

record are available to every program in the run unit which describes that

record .

4.5.2 General Format

IS EXTERNAL

4.5.3 Syntax Rules

(1) The EXTERNAL clause may be specified only in file description entries

(see pages X-15 through X-18) or in record description entries in the

Working-Storage Section (see pages X-19 through X-21).

(2) In the same program, the data-name specified as the subject of the entry

whose level-number is 01 that includes the EXTERNAL clause must not be the same

data-name specified for any other data description entry which includes the

EXTERNAL clause.

(3) The VALUE clause must not be used in any data description entry which

includes, or is subordinate to, an entry which includes the EXTERNAL clause.

The VALUE clause may be specified for condition-name entries associated with

such data description entries.

4.5.4 General Rules

(1) The data contained in the record named by the data-name clause is

external and may be accessed and processed by any program in the run unit which

describes and, optionally, redefines it subject to the following general rules.

(2) Within a run unit, if two or more programs describe the same external

data record, each record-name of the associated record description entries must

be the same and the records must define the same number of standard data format

characters. However, a program which describes an external record may contain a

data description entry including the REDEFINES clause which redefines the

complete external record, and this complete redefinition need not occur

identically in other programs in the run unit. (See page VI-38, The REDEFINES

Clause.)

(3) Use of the EXTERNAL clause does not imply that the associated file-name

or data-name is a global name. (See page X-24, The GLOBAL Clause.)

(4) The file connector associated with this description entry is an external

file connector.

X-23

Inter-Program Communication - GLOBAL

4.6 THE GLOBAL CLAUSE

4.6.1 Function

The GLOBAL clause specifies that a data-name, a file-name, or a report-name

is a global name. A global name is available to every program contained within

the program which declares it.

4.6.2 General Format

IS GLOBAL

4.6.3 Syntax Rules

(1) The GLOBAL clause may be specified only in data description entries

whose level-number is 01 in the File Section or the Working-Storage Section,

file description entries, or report description entries.

(2) In the same Data Division, the data description entries for any two data

items for which the same data-name is specified must not include the GLOBAL

clause.

(3) If the SAME RECORD AREA clause is specified for several files, the

record description entries or the file description entries for these files must

not include the GLOBAL clause.

4.6.4 General Rules

(1) A data-name, file-name, or report-name described using a GLOBAL clause

is a global name. All data-names subordinate to a global name are global names.

All condition-names associated with a global name are global names.

(2) A statement in a program contained directly or indirectly within a

program which describes a global name may reference that name without describing

it again. (See page X-4, Scope of Names.)

(3) If the GLOBAL clause is used in a data description entry which contains

the REDEFINES clause, it is only the subject of that REDEFINES clause which

possesses the global attribute.

X-24

Inter-Program Communication - Procedure Division Header

5. PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

5.1 THE PROCEDURE DIVISION HEADER

The Procedure Division is identified by, and must begin with, the following

header:

PROCEDURE DIVISION [USING {data-name-1} ...].

The USING phrase is necessary only if the object program is to be invoked by

a CALL statement and that statement includes a USING phrase.

The USING phrase of the Procedure Division header identifies the names used

by the program for any parameters passed to it by a calling program. The

parameters passed to a called program are identified in the USING phrase of the

calling program's CALL statement. The correspondence between the two lists of

names is established on a positional basis.

Data-name-1 must be defined as a level 01 entry or a level 77 entry in the

Linkage Section. A particular user-defined word may not appear more than once

as data-name-1. The data description entry for data-name-1 must not contain a

REDEFINES clause. Data-name-1 may, however, be the object of a REDEFINES clause

elsewhere in the Linkage Section.

The following additional rules apply:

(1) If the reference to the corresponding data item in the CALL statement

declares the parameter to be passed by content, the value of the item is moved

when the CALL statement is executed and placed into a system-defined storage

item possessing the attributes declared in the Linkage Section for data-name-1.

The data description of each parameter in the BY CONTENT phrase of the CALL

statement must be the same, meaning no conversion or extension or truncation, as

the data description of the corresponding parameter in the USING phrase of the

Procedure Division header. (See page X-27, The CALL Statement.)

(2) If the reference to the corresponding data item in the CALL statement

declares the parameter to be passed by reference, the object program operates as

if the data item in the called program occupies the same storage area as the

data item in the calling program. The description of the data item in the

called program must describe the same number of character positions as described

by the description of the corresponding data item in the calling program.

(3) At all times in the called program, references to data-name-1 are

resolved in accordance with the description of the item given in the Linkage

Section of the called program.

(4) Data items defined in the Linkage Section of the called program may be

referenced within the Procedure Division of that program if, and only if, they

satisfy one of the following conditions:

a. They are operands of the USING phrase of the Procedure Division

header.

X-25

Inter-Program Communication - Procedure Division Header

b. They are subordinate to operands of the USING phrase of the

Procedure Division header.

c. They are defined with a REDEFINES or RENAMES clause, the object of

which satisfies the above conditions.

d. They are items subordinate to any item which satisfies the condition

in rule 4c.

e. They are condition-names or index-names associated with data items

that satisfy any of the above four conditions.

In level 1 at least five data-names must be permitted in the USING phrase of

the Procedure Division header and in the USING phrase of the CALL statement.

X-26

Inter-Program Communication - CALL

5.2 THE CALL STATEMENT

5.2.1 Function

The CALL statement causes control to be transferred from one object program

to another, within the run unit.

5.2.2 General Format

Format 1:

I lidentif ier-ll
CALL

I literal-1 } USING <
V

[BY REFERENCET] {identifier-2} ...|

BY CONTENT {identifier-2} ... I (

[ON OVERFLOW imperative-statement-1]

[END-CALL 1

Format 2:

CALL [Udentlfler-l]j USING |
[BY REFERENCE]! {identifier-2} • ••\]

lliteral-1 j BY CONTENT {identifier-2} ...

[ON EXCEPTION imperative-statement-1]

[NOT ON EXCEPTION imperative-statement-2]

[END-CALL]

5.2.3 Syntax Rules

(1) Literal-1 must be a nonnumeric literal.

(2) Identifier-1 must be defined as an alphanumeric data item such that its

value can be a program-name._

(3) Each of the operands in the USING phrase must have been defined as a

data item in the File Section, Working-Storage Section, Communication Section,

or Linkage Section, and must be a level 01 data item, a level 77 data item, or

an elementary data item.

5.2.4 General Rules

(1) Literal-1[or the content of the data item referenced by identifier-1 ls

the name of the called program. The program in which the CALL statement appears

is the calling program. If the program being called is a COBOL program,

literal-1 [or the content of the data item referenced by identifier-T] must

contain the program-name contained in the PROGRAM-ID paragraph of the called

program. If the program being called is not a COBOL program, the rules for

formation of the program-name are defined by the implementor.

(2) If, when a CALL statement is executed, the program specified by the CALL

statement is made available for execution, control is transferred to the called

X-27

Inter-Program Communication - CALL

program. After control is returned from the called program,]the ON OVERFLOW or

ON EXCEPTION phrase, if specified, is ignored and control is transferred to the

end of the CALL statement]or, if the NOT ON EXCEPTION phrase is specified, to

imperative-statement-2. If control is transferred to imperative-statement-2,

execution continues according to the rules for each statement specified in

imperative-statement-2. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-2, control is transferred to the end of the

CALL statement.

(3) If it is determined, when a CALL statement is executed, that the program

specified by the CALL statement cannot be made available for execution at that

time, one of the two actions listed below will occur. The object time resources

which must be checked in order to determine the availability of the called

program for execution are defined by the implementor.

a. If the ON OVERFLOW or ON EXCEPTION phrase is specified in the CALL

statement, control is transferred to imperative-statement-1. Execution then

continues according to the rules for each statement specified in

imperative-statement-1. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-1, control is transferred to the end of the

CALL statement and the NOT ON EXCEPTION phrase, if specified, is ignored._

b. If the ON OVERFLOW or ON EXCEPTION phrase is not specified in the

[CALL statement, the NOT ON EXCEPTION phrase, if specified, is ignored. | All

other effects of the CALL statement are defined by the implementor.

(4) Two or more programs in the run unit may have the same program-name, and

the reference in a CALL statement to such a program-name is resolved by using

the scope of names conventions for program-names. (See page X-5, Conventions

for Program-Names.)

For example, when only two programs in the run unit have the same name

as that specified in a CALL statment:

a. One of those two programs must also be contained directly or

indirectly either within the separately compiled program which includes that

CALL statement or within the separately compiled program which itself directly

or indirectly contains the program which includes that CALL statement, and

b. The other of those two programs must be a different separately
compiled program.

The mechanism used in this example is as follows:

a. If one of the two programs having the same name as that specified in

the CALL statement is directly contained within the program which includes that

CALL statement, that program is called.

b. If one of the two programs having the same name as that specified in

the CALL statement possesses the common attribute and is directly contained

within another program which directly or indirectly contains the program which

X-28

Inter-Program Communication - CALL

includes the CALL statement, that common program is called unless the calling

program is contained within that common program.

c. Otherwise, the separately compiled program is called.

(5) If [the called program [does not possess the initial attribute it, and

each program directly or indirectly contained within it, is in its initial state

the first time it is called within a run unit and the first time it is called

after a CANCEL to the called program.

_On all other entries into the called program, the state of the program

and each program directly or indirectly contained within it]remains unchanged

from its state when last exited.

(6) If the called program possesses the initial attribute, it and each

program directly or indirectly contained within it, is placed into its initial

state every time the called program is called within a run unit.

(7) Files associated with a called program's internal file connectors are

not in the open mode when the program is in an initial state. (See page X-10,

Initial State of a Program.)

On all other entries into the called program, the states and positioning

of all such files is the same as when the called program was last exited.

(8) The process of calling a program or exiting from a called program does

not alter the status or positioning of a file associated with any external file

connector.

(9) If the program being called is a COBOL program, the USING phrase is

included in the CALL statement only if there is a USING phrase in the Procedure

Division header of the called program, in which case the number of operands in

each USING phrase must be identical. If the program being called is other than

a COBOL program, the use of the USING phrase is defined by the implementor.

(10) The sequence of appearance of the data-names in the USING phrase of the

CALL statement and in the corresponding USING phrase in the called program's

Procedure Division header determines the correspondence between the data-names

used by the calling and called programs. This correspondence is positional and

not by name equivalence; the first data-name in one USING phrase corresponds to

the first data-name in the other, the second to the second, etc.

(11) The values of the parameters referenced in the USING phrase of the CALL

statement are made available to the called program at the time the CALL

statement is executed.

(12) Both

parameters

encountered.

prior to the

the BY CONTENT and BY REFERENCE phrases are transitive across the

which follow them until another BY CONTENT or BY REFERENCE phrase is

_1 If neither the BY CONTENT nor the BY REFERENCE phrase is specified

first parameter, the BY REFERENCE phrase is assumed.

(13) If the BY REFERENCE phrase is leither specified or 1 implied for

parameter, the object program operates as if the corresponding data item in the

called program occupies the same storage area as the data item in the calling

program. The description of the data item in the called program must describe

X-29

Inter-Program Communication - CALL

the same number of character positions as described by the description of the

corresponding data item in the calling program.

(14) If the BY CONTENT phrase is specified or implied for a parameter, the

called program cannot change the value of this parameter as referenced in the

CALL statement's USING phrase, though the called program may change the value of

the data item referenced by the coresponding data-name in the called program's

Procedure Division header. The data description of each parameter in the BY

CONTENT phrase of the CALL statement must be the same, meaning no conversion or

extension or truncation, as the data description of the corresponding parameter

in the USING phrase of the Procedure Division header. (See page X-25, The

Procedure Division Header.)

(15) Called programs may contain CALL statements. However, a called program

must not execute a CALL statement that directly or indirectly calls the calling

program. If a CALL statement is executed within the range of a declarative,

that CALL statement cannot directly or indirectly reference any called program

to which control has been transferred and which has not completed execution.

(16) The END-CALL phrase delimits the scope of the CALL statement. (See page

IV-40, Scope of Statements.)

X-30

Inter-Program Communication - CANCEL

5.3 THE CANCEL STATEMENT

5.3.1 Function

The CANCEL statement ensures that the next time the referenced program is

called it will be in its initial state.

5.3.2 General Format

. (identifier-1)

CMC— {literal-1 \ *"

5.3.3 Syntax Rules

(1) Literal-1 must be a nonnumeric literal.

(2) Identifier-1 must reference an alphanumeric data item.

5.3.4 General Rules

(1) Literal-1 or the content of the data item referenced by identifier-1

identifies the program to be cancelled.

(2) Subsequent to the execution of an explicit or implicit CANCEL statement,

the program referred to therein ceases to have any logical relationship to the

run unit in which the CANCEL statement appears . If the program referenced by a

successfully executed explicit or implicit CANCEL statement in a run unit is

subsequently called in that run unit, that program is in its initial state.

(See page X-10, Initial State of a Program.)

(3) A program named in a CANCEL statement in another program must be

callable by that other program. (See page X-4, Scope of Names, and page X-27,

The CALL Statement.)

(4) Whe n an explicit or implicit CANCEL statement is executed, all programsj

contained within the program referenced by the CANCEL statement are also

cancelled. The result is the same as if a valid CANCEL statement were executed

for each contained program in the reverse order in which the programs appear in

the separately compiled program.

(5) A program named in the CANCEL statement must not refer directly or

indirectly to any program that has been called and has not yet executed an EXIT

PROGRAM statement.

(6) A logical relationship to a cancelled program is established only by

execution of a subsequent CALL statement naming that program.

(7) A called program is cancelled either by being referred to as the operand

of a CANCEL statement, by the termination of the run unit of which the program

is a member, or by execution of an EXIT PROGRAM statement in a called program

that possesses the initial attribute.

(8) No action is taken when an explicit or implicit CANCEL statment is

executed naming a program that has not been called in this run unit or has been

X-31

Inter-Program Communication - CANCEL

called and is at present cancelled. Control is transferred to the next

executable statement following the explicit CANCEL statement.

(9) The contents of data items in external data records described by a

program are not changed when that program is cancelled.

(10) During execution of an explicit or implicit CANCEL statement, an

implicit CLOSE statement without any optional phrases is executed for each file

in the open mode that is associated with an internal file connector in the

program named in the explicit CANCEL statement. Any USE procedures associated

with any of these files are not executed. _

X-32

Inter-Program Communication - EXIT PROGRAM

5.4 THE EXIT PROGRAM STATEMENT

5.4.1 Function

The EXIT PROGRAM statement marks the logical end of a called program.

5.4.2 General Format

EXIT PROGRAM

5.4.3 Syntax Rules

(1) If an EXIT PROGRAM statement appears in a consecutive sequence of

imperative statements within a sentence, it must appear as the last statement in

that sequence.

(2) The EXIT PROGRAM statement must not appear in a declarative procedure in

which the GLOBAL phrase is specified.

5.4.4 General Rules

(1) If the EXIT PROGRAM statement is executed in a program which is not

under the control of a calling program, the EXIT PROGRAM statement causes

execution of the program to continue with the next executable statement.

(2) The execution of an EXIT PROGRAM statement in a called program which

does not possess the initial attribute causes execution to continue with the

next executable statement following the CALL statement in the calling program.

The program state of the calling program is not altered and is identical to that

which existed at the time it executed the CALL statement except that the

contents of data items and the contents of data files shared between the calling

and called program may have been changed. The program state of the called

program is not altered except that the ends of the ranges of all PERFORM

statements executed by that called program are considered to have been reached.

(3) Besides the actions specified in general rule 2, the execution of an

EXIT PROGRAM statement in a called program which possesses the initial attribute

is equivalent also to executing a CANCEL statement referencing that program.

(See page X-31, The CANCEL Statement.) _

X-33

Inter-Program Communication - USE

5.5 THE USE STATEMENT

5.5.1 Function

Within the Inter-Program Communication module, the USE statement determines

whether the associated declarative procedures are invoked during the execution

of any program contained within the program which includes the USE statement.

5.5.2 General Format

USE rGLOBAL 1 AFTER STANDARD
jEXCEPTION

i ERROR
PROCEDURE ON

{file-name-1}

INPUT

OUTPUT

1-0

EXTEND

5.5.3 Syntax Rules

(1) The availability of the multiple file-names and the EXTEND phrase is

dependent on the level of Sequential 1-0 module, Relative 1-0 module, or Indexed

I—0 module supported by the implementation. (See page VII-50 in the Sequential

1-0 module, page VIII-35 in the Relative 1-0 module, and page IX-39 in the

Indexed 1-0 module.)

5.5.4 General Rules

(1) Special precedence rules are followed when programs are contained within

other programs. In applying these rules, only the first qualifying declarative

will be selected for execution. The declarative which is selected for execution

must satisfy the rules for execution of that declarative. The order of

precedence for selecting a declarative is:

a. The declarative within the program that contains the statement which

caused the qualifying condition.

b. The declarative in which the GLOBAL phrase is specified and which is

within the program directly containing the program which was last examined for a

qualifying declarative.

c. Any declarative selected by applying rule lb to each more inclusive

containing program until rule lb is applied to the outermost program. If no

qualifying declarative is found, none is executed.

X-34

Inter-Program Communication - USE BEFORE REPORTING

5.6 THE USE BEFORE REPORTING STATEMENT

5.6.1 Function

Within the Inter-Program Communication module, the USE BEFORE REPORTING

statement determines whether the associated declarative procedures are invoked

during the execution of any program contained within the program which includes

the USE BEFORE REPORTING statement.

5.6.2 General Format

USE [GLOBAL] BEFORE REPORTING identifier-1

5.6.3 Syntax Rules

(1) The availability of the USE BEFORE REPORTING statement is dependent on

whether the Report Writer module is supported by the implementation. (See page

XIII-78 in the Report Writer module.)

5.6.4 General Rules

(1) Special precedence rules are followed when programs are contained within

other programs. In applying these rules, only the first qualifying declarative

will be selected for execution. The declarative which is selected for execution

must satisfy the rules for execution of that declarative. The order of

precedence for selecting a declarative is:

a. The declarative within the program that contains the statement which

caused the qualifying condition.

b. The declarative in which the GLOBAL phrase is specified and which is

within the program directly containing the program which was last examined for a

qualifying declarative.

c .

containing

qualifying

Any declarative selected by applying rule lb to each more inclusive

program until rule lb is applied to the outermost program. If no

declarative is found, none is executed.

X-35

(

Sort-Merge - Introduction

SECTION XI: SORT-MERGE MODULE

1. INTRODUCTION OF THE SORT-MERGE MODULE

1.1 FUNCTION

The Sort-Merge module provides the capability to order one or more files of

records, or to combine two or more identically ordered files of records,

according to a set of user-specified keys contained within each record.

Optionally, a user may apply some special processing to each of the individual

records by input or output procedures. This special processing may be applied

before and/or after the records are ordered by the SORT or after the records

have been combined by the MERGE.

1.2 LANGUAGE CONCEPTS

1.2.1 Sort File

A sort file is a collection of records to be sorted by a SORT statement.

The sort file has no label procedures which the programmer can control and the

rules for blocking and for allocation of internal storage are peculiar to the

SORT statement. The RELEASE and RETURN statements imply nothing with respect to

buffer areas, blocks, or reels. A sort file, then, may be considered as an

internal file which is created (RELEASE statement) from the input file,

processed (SORT statement), and then made available (RETURN statement) to the

output file.

A sort file is named by a file control entry and is described by a sort-merge

file description entry. A sort file is referred to by the RELEASE, RETURN, and

SORT statements.

1.2.2 Merge File

A merge file is a collection of records to be merged by a MERGE statement.

The merge file has no label procedures which the programmer can control and the

rules for blocking and for allocation of internal storage are peculiar to the

MERGE statement. The RETURN statement implies nothing with respect to buffer

areas, blocks, or reels. A merge file, then, may be considered as an internal

file which is created from input files by combining them (MERGE statement) as

the file is made available (RETURN statement) to the output file.

A merge file is named by a file control entry and is described by a

sort-merge file description entry. A merge file is referred to by the RETURN

and MERGE statements.

XI-1

Sort-Merge - File Control Entry

2. ENVIRONMENT DIVISION IN THE SORT-MERGE MODULE

2.1 INPUT-OUTPUT SECTION

Information concerning the Input-Output Section is located on page VII-6.

2.2 THE FILE-CONTROL PARAGRAPH

Information concerning the FILE-CONTROL paragraph is located on page VII-7.

2.3 THE FILE CONTROL ENTRY

2.3.1 Function

The file control entry declares the relevant physical attributes of a sort or

merge file.

2.3.2 General Format

SELECT file-name-1 ASSIGN TO L-Ple™entor-name-lt ___ .
- - (literal-1 J

2.3.3 Syntax Rules

(1) Each sort or merge file described in the Data Division must be specified

only once in the FILE-CONTROL paragraph. Each sort or merge file specified in

the SELECT clause must have a sort-merge file description entry in the Data

Division of the same program.

(2) Since file-name-1 represents a sort or merge file, only the ASSIGN

clause is permitted to follow file-name-1 in the FILE-CONTROL paragraph.

2.3.4 General Rules

(1) The ASSIGN clause specifies the association of the file referenced by

file-name-1 to a storage medium referenced by implementor-name-1 or literal-1.

XI-2

Sort-Merge - I-O-CONTROL

2.4 THE I-O-CONTROL PARAGRAPH

2.4.1 Function

The I-O-CONTROL paragraph specifies the memory area which is to be shared by

different files including sort or merge files.

2.4.2 General Format

I-O-CONTROL.

-
1 RECORD 1

SAME) SORT * AREA FOR file-name-1 {file-name-2}
/ SORT-MERGE\ _ _

2.4.3 Syntax Rules

(1) The availability of the RECORD option of the SAME clause is dependent on

the level of Sequential 1-0 module supported by the implementation.

2.4.4 General Rules

(1) The SAME RECORD/SORT/SORT-MERGE AREA clause for the Sort-Merge module is

presented on the next page.

XI-3

Sort-Merge - SAME RECORD/SORT/SORT-MERGE AREA

2.5 THE SAME RECORD/SORT/SORT-MERGE AREA CLAUSE

2.5.1 Function

The SAME RECORD/SORT/SORT-MERGE AREA clause specifies the memory area which

is to be shared by different files at least one of which is a sort or merge

f i le.

2.5.2 General Format

iRECORD)
SAME ’SORT 1 AREA FOR file-name-1 {file-name-2} ...

|SORT-MERGE j

2.5.3 Syntax Rules

(1) Each file-name specified in the SAME RECORD/SORT/SORT-MERGE AREA clause

must be specified in the FILE-CONTROL paragraph of the same program.

(2) File-name-1 and file-name-2 may not reference an external file

connector.

(3) SORT and SORT-MERGE are equivalent.

(4) A fil e-name that represents a sort or merge file must not appear in the

SAME clause unless the SORT, SORT-MERGE, or RECORD phrase is used.

(5) More than one SAME clause may be included in the program, subject to the

following restrictions:

a. A file-name must not appear in more than one SAME RECORD AREA

clause.

b. A file-name that represents a sort or merge file must not appear in

more than one SAME SORT AREA or SAME SORT-MERGE AREA clause.

c. If a file-name that does not represent a sort or merge file appears

in a SAME clause (see page VI1-19) and one or more SAME SORT AREA or SAME

SORT-MERGE AREA clauses, all of the files named in that SAME clause must be

named in that SAME SORT AREA or SAME SORT-MERGE AREA clause(s).

(6) The files referenced in the SAME RECORD/SORT/SORT-MERGE AREA clause need

not all have the same organization or access.

2.5.4 General Rules

(1) The SAME RECORD AREA clause specifies that two or more files referenced

by file-name-1, file-name-2 are to use the same memory area for processing of

the current logical record. All of these files may be in the open mode at the

same time. A logical record in the SAME RECORD AREA is considered as a logical

record of each file open in the output mode whose file-name appears in this SAME

RECORD AREA clause and of the most recently read file open in the input mode

whose file-name appears in this SAME RECORD AREA clause. This is equivalent to

XI-4

Sort-Merge - SAME RECORD/SORT/SORT-MERGE AREA

an implicit redefinition of the area, i.e., records are aligned on the leftmost

character position.

(2) If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least

one of the file-names must represent a sort or merge file. This clause

specifies that storage is shared as follows:

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a memory

area which will be made available for use in sorting or merging each sort or

merge file named. Thus any memory area allocated for the sorting or merging of

a sort or merge file is available for reuse in sorting or merging any of the

other sort or merge files.

b. In addition, storage areas assigned to files that do not represent

sort or merge files may be allocated as needed for sorting or merging the sort

or merge files named in the SAME SORT AREA or SAME SORT-MERGE AREA clause. The

extent of such allocation will be specified by the implementor.

c. Files other than sort or merge files do not share the same storage

area with each other. For these files to share the same storage area with each

other, the program must contain a SAME AREA or SAME RECORD AREA clause

specifying file-names associated with these files.

d. During the execution of a SORT or MERGE statement that refers to a

sort or merge file named in this clause, any non sort or merge files associated

with file-names named in this clause must not be in the open mode.

XI-5

Sort-Merge - File Section

3. DATA DIVISION IN THE SORT-MERGE MODULE

3.1 FILE SECTION

The File Section is located in the Data Division of a source program. The

File Section defines the structure of sort files and merge files. Each sort

file or merge file is defined by a sort-merge file description entry and one or

more record description entries. Record description entries are written

immediately following the sort-merge file description entry.

The general format of the File Section in the Sort-Merge module is shown

below.

FILE SECTION.

[sort-merge-file-description-entry

{record-description-entry} ...] ...

3.1.1 Sort-Merge File Description Entry

In a COBOL program, the sort-merge file description entry (SD entry)

represents the highest level of organization in the File Section. The File

Section header is followed by a sort-merge file description entry consisting of

a level indicator (SD), a file-name, and a series of independent clauses. The

clauses of a sort-merge file description entry (SD entry) specify the size and

the names of the data records associated with a sort file or a merge file.

There are no label procedures which the user can control, and the rules for

blocking and internal storage are peculiar to the SORT and MERGE statements.

The sort-merge file description entry is terminated by a period.

3.1.2 Record Description Structure

A record description consists of a set of data description entries which

describe the characteristics of a particular record. Each data description

entry consists of a level-number followed by the data-name or FILLER clause, if

specified, followed by a series of independent clauses as required. A record

description may have a hierarchical structure and therefore the clauses used

with an entry may vary considerably, depending upon whether or not it is

followed by subordinate entries. The structure of a record description and the

elements allowed in a record description entry are explained on page IV-14,

Concept of Levels, and on page VI-20, The Data Description Entry. The

availability of specific clauses in the data description entry is dependent on

the level of Nucleus module supported by the implementation.

3.1.3 Initial Values

The initial value of data items in the File Section is undefined.

XI-6

Sort-Merge - Sort-Merge File Description Entry

3.2 THE SORT-MERGE FILE DESCRIPTION ENTRY

3.2.1 Function

The sort-merge file description entry furnishes information concerning the

physical structure and record-names pertaining to a sort or merge file.

3.2.2 General Format

SD file-name-1

CONTAINS integer-1 CHARACTERS

iIS VARYING IN SIZE [[FROM integer-2] [TO integer-3] CHARACTERS]
RECORD /

rDEPENDING ON data-name-1]

CONTAINS integer-4 TO integer-5 CHARACTERS

(RECORD IS) r .
| RECORnS ARE f {data-name-2} ..

3.2.3 Syntax Rules

(1) The level indicator SD identifies the beginning of the sort-merge file

description entry and must precede file-name-1.

(2) The clauses which follow file-name-1 are optional, and their order of

appearance is immaterial .

(3) One or more record description entries must follow the sort-merge file

description entry; however, no input-output statements may be executed for this

sort or merge file.

(4) The availability of the VARYING phrase in the RECORD clause is dependent

on the level of Sequential 1-0 module supported by the implementation.

3.2.4 General Rules

(1) The DATA RECORDS clause for the Sort-Merge module is the same as the

DATA RECORDS clause for the Sequential 1-0 module. Thus the specifications for

the DATA RECORDS clause are located on page VII-25. The DATA RECORDS clause is

an obsolete element in Standard COBOL because it is to be deleted from the next

revision of Standard COBOL.

(2) The RECORD clause for the Sort-Merge module is the same as the RECORD

clause for the Sequential 1-0 module. Thus the specifications for the RECORD

clause are located on page VII-30.

XI-7

Sort-Merge - MERGE

4. PROCEDURE DIVISION IN THE SORT-MERGE MODULE

4.1 THE MERGE STATEMENT

4.1.1 Function

The MERGE statement combines two or more identically sequenced files on a set

of specified keys, and during the process makes records available, in merged

order, to an output procedure or to an output file.

4.1.2 General Format

MERGE, file-name-1 j ON m ^ta-name-l} ...

[COLLATING SEQUENCE IS alphabet-name-1]

USING file-name-2 {file-name-3} ...

^OUTPUT PROCEDURE IS procedure-name-1
THROUGHi

1 THRU (
procedure-name-2 f

/giving {file-name-4} ...

4.1.3 Syntax Rules

(1) A MERGE statement may appear anywhere in the Procedure Division except

in the declaratives portion.

(2) File-name-1 must be described in a sort-merge file description entry in

the Data Division.

(3) If the file referenced by file-name-1 contains variable length records,

the size of the records contained in the files referenced by file-name-2 and

file-name-3 must not be less than the smallest record nor greater than the

largest record described for file-name-1. If the file referenced by file-name-1

contains fixed length records, the size of the records contained in the file

referenced by fi.le-name-2 and file-name-3 must not be greater than the largest

record described for file-name-1.

(4) Data-name-1 is a key data-name. Key data-names are subject to the

fo1 lowing rules :

a. The data items identified by key data-names must be described in

records associated with file-name-1.

b. Key data-names may be qualified.

c. The data items identified by key data-names must not be group items

that contain variable occurrence data items.

XI-8

Sort-Merge - MERGE

d. If file-name-1 has more than one record description, the data items

identified by key data-names need be described in only one of the record

descriptions. The same character positions referenced by a key data-name in one

record description entry are taken as the key in all records of the file.

e. None of the data items identified by key data-names can be described

by an entry that either contains an OCCURS clause or is subordinate to an entry

that contains an OCCURS clause.

f. If the file referenced by file-name-1 contains

records, all the data items identified by key data-names

within the first x character positions of the record, where x

record size specified for the file referenced by file-name-1.

(5) File-name-2, file-name-3, and file-name-4 must be described in a file

description entry, not in a sort-merge description entry, in the Data Division.

(6) No two files specified in any one MERGE statement may reside on the same

multiple file reel.

(7) File-names must not be repeated within the MERGE statement.

(8) No pair of file-names in a MERGE statement may be specified in the same

SAME AREA, SAME SORT AREA, or SAME SORT-MERGE AREA clause. The only file-names

in a MERGE statement that can be specified in the same SAME RECORD AREA clause

are those associated with the GIVING phrase. (See page VII-19, The SAME Clause,

and page XI-4, The SAME RECORD/SORT/SORT-MERGE AREA Clause.)

(9) The words THRU and THROUGH are equivalent.

(10) If file-name-4 references an indexed file, the first specification of

data-name-1 must be associated with an ASCENDING phrase and the data item

referenced by that data-name-1 must occupy the same character positions in its

record as the data item associated with the prime record key for that file.

(11) If the GIVING phrase is specified and the file referenced by file-name-4

contains variable length records, the size of the records contained in the file

referenced by file-name-1 must not be less than the smallest record nor greater

than the largest record described for file-name-4. If the file referenced by

file-name-4 contains fixed length records, the size of the records contained in

the file referenced by file-name-1 must not be greater than the largest record

described for file-name-4.

4.1.4 General Rules

(1) The MERGE statement merges a

by file-name-2 and file-name-3.

(2) If the file referenced by

records, any record in the file

containing fewer character positions

the right beginning with the first

in the record when that record

file-name-1.

11 records contained on the files referenced

file-name-1 contains only fixed length

referenced by file-name-2 or file-name-3

than that fixed length is space filled on

character position after the last character

is released to the file referenced by

variable length

must be contained

equals the minimum

XI-9

Sort-Merge - MERGE

(3) The data-names following the word KEY are listed from left to right in

the MERGE statement in order of decreasing significance without regard to how

they are divided into KEY phrases. The leftmost data-name is the major key, the

next data-name is the next more significant key, etc.

a. When the ASCENDING phrase is specified, the merged sequence will be

from the lowest value of the contents of the data items identified by the key

data-names to the highest value, according to the rules for comparison of

operands in a relation condition.

b. When the DESCENDING phrase is specified, the merged sequence will be

from the highest value of the contents of the data items identified by the key

data-names to the lowest value, according to the rules for comparison of

operands in a relation condition.

(4) When, according to the rules for the comparison of operands in a

relation condition, the contents of all the key data items of one data record

are equal to the contents of the corresponding key data items of one or more

other data records, the order of return of these records:

a. Follows the order of the associated input files as specified in the

MERGE statement.

b. Is such that all records associated with one input file are returned

prior to the return of records from another input file.

(5) The collating sequence that applies to the comparison of the nonnumeric

key data items specified is determined at the beginning of the execution of the

MERGE statement in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE

phrase, if specified, in that MERGE statement.

b. Second, the collating sequence established as the program collating

sequence.

(6) The results of the merge operation are undefined unless the records in

the files referenced by file-name-2 and file-name-3 are ordered as described in

the ASCENDING or DESCENDING KEY phrases associated with the MERGE statement.

(7) All the records in the files referenced by file-name-2 and file-name-3

are transferred to the file referenced by file-name-1. At the start of

execution of the MERGE statement, the files referenced by file-name-2 and

file-name-3 must not be in the open mode. For each of the files referenced by

file-name-2 and file-name-3 the execution of the MERGE statement causes the

following actions to be taken:

a. The processing of the file is initiated. The initiation is

performed as if an OPEN statement with the INPUT phrase had been executed. If

an output procedure is specified, this initiation is performed before control

passes to the output procedure.

b. The logical records are obtained and released to the merge

operation. Each record is obtained as if a READ statement with the NEXT and the

AT END phrases had been executed.

XI-10

Sort-Merge - MERGE

c. The processing of the file is terminated. The termination is

performed as if a CLOSE statement without optional phrases had been executed.

If an output procedure is specified, this termination is not performed until

after control passes the last statement in the output procedure.

These implicit functions are performed such that any associated USE

AFTER EXCEPTION/ERROR procedures are executed.

(8) The output procedure may consist of any procedure needed to select,

modify, or copy the records that are made available one at a time by the RETURN

statement in merged order from the file referenced by file-name-1. The range

includes all statements that are executed as the result of a transfer of control

by CALL, EXIT, GO TO, and PERFORM statements in the range of the output

procedure, as well as all statements in declarative procedures that are executed

as a result of the execution of statements in the range of the output procedure.

The range of the output procedure must not cause the execution of any MERGE,

RELEASE, or SORT statement. (See page IV-25, Explicit and Implicit

Specifications.)

(9) If an output procedure is specified, control passes to it during

execution of the MERGE statement. The compiler inserts a return mechanism at

the end of the last statement in the output procedure. When control passes the

last statement in the output procedure, the return mechanism provides for

termination of the merge, and then passes control to the next executable

statement after the MERGE statement. Before entering the output procedure, the

merge procedure reaches a point at which it can select the next record in merged

order when requested. The RETURN statements in the output procedure are the

requests for the next record.

(10) During the execution of the output procedure, no statement may be

executed manipulating the file referenced by or accessing the record area

associated with, file-name-2 or file-name-3. During the execution of any USE

AFTER EXCEPTION procedure implicitly invoked while executing the MERGE

statement, no statement may be executed manipulating the file referenced by, or

accessing the record area associated with, file-name-2, file-name-3, or

file-name-4.

(11) If the GIVING phrase is specified, all the merged records are written on

the file referenced by file-name-4 as the implied output procedure for the MERGE

statement. At the start of execution of the MERGE statement, the file

referenced by file-name-4 must not be in the open mode. For each of the files

referenced by file-name-4, the execution of the MERGE statement causes the

following actions to be taken:

a. The processing of the file is initiated. The initiation is

performed as if an OPEN statement with the OUTPUT phrase had been executed.

b. The merged logical records are returned and written onto the file.

Each record is written as if a WRITE statement without any optional phrases had

been executed.

For a relative file, the relative key data item for the first record

returned contains the value '1'; for the second record returned, the value '2',

etc. After execution of the MERGE statement, the content of the relative key

data item indicates the last record returned to the file.

XI-11

Sort-Merge - MERGE

c. The processing of the file is terminated. The termination is

performed as if a CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE

AFTER EXCEPTION/ERROR procedures are executed; however, the execution of such a

USE procedure must not cause the execution of any statement manipulating the

file referenced by, or accessing the record area associated with, file-name-4.

On the first attempt to write beyond the externally defined boundaries of the

file, any USE AFTER STANDARD EXCEPTION/ERROR procedure specified for the file is

executed; if control is returned from that USE procedure or if no such USE

procedure is specified, the processing of the file is terminated as in paragraph

11c above.

(12) If the file referenced by file-name-4 contains only fixed length

records, any record in the file referenced by file-name-1 containing fewer

character positions than that fixed length is space filled on the right

beginning with the first character position after the last character in the

record when that record is returned to the file referenced by file-name-4.

(13) Segmentation, as defined in Section XVI, can be applied to programs

containing the MERGE statement. However, the following restrictions apply:

a. If the MERGE statement appears in a section that is not in an

independent segment, then any output procedure referenced by that MERGE

statement must appear:

1) Totally within non-independent segments, or

2) Wholly contained in a single independent segment.

b. If a MERGE statement appears in an independent segment, then any

output procedure referenced by that MERGE statement must be contained:

1) Totally within non-independent segments, or

2) Wholly within the same independent segment as that MERGE

statement.

XI-12

Sort-Merge - RELEASE

4.2 THE RELEASE STATEMENT

4.2.1 Function

The RELEASE statement transfers records to the initial phase of a

operat ion.

4.2.2 General Format

RELEASE record-name-1 [FROM identifier-1]

sort

4.2.3 Syntax Rules

(1) Record-name-1 must be the name of a logical record in a sort-merge file

description entry and it may be qualified.

(2) A RELEASE statement may be used only within the range of an input

procedure associated with a SORT statement for the file-name whose sort-merge

file description entry contains record-name-1.

(3) Record-name-1 and identifier-1 must not refer to the same storage area.

4.2.4 General Rules

(1) The execution of a RELEASE statement causes the record named by

record-name-1 to be released to the initial phase of a sort operation.

(2) The logical record released by the execution of the RELEASE statement is

no longer available in the record area unless the sort-merge file-name

associated with record-name-1 is specified in a SAME RECORD AREA clause. The

logical record is also available to the program as a record of other files

referenced in the same SAME RECORD AREA clause as the associated output file, as

well as the file associated with record-name-1.

(3) The result of the execution of a RELEASE statement with the FROM phrase

is equivalent to the execution of the following statements in the order

specified:

a. The statement:

MOVE identifier-1 TO record-name-1

according to the rules specified for the MOVE statement.

b. The same RELEASE statement without the

(4) After the execution of the RELEASE st

information in the area referenced by identifier-1

information in the area referenced by record-name-1

specified by the SAME RECORD AREA clause.

FROM phrase.

atement is complete, the

is avai. lable , even though the

is not avail able except as

XI-13

Sort-Merge - RETURN

4.3 THE RETURN STATEMENT

4.3.1 Function

The RETURN statement obtains either sorted records from the final phase of a

sort operation or merged records during a merge operation.

4.3.2 General Format

RETURN file-name-1 RECORD [INTO identifier-1]

AT END imperative-statement-1

[NOT AT END imperative-statement-2]

[END-RETURN]

4.3.3 Syntax Rules

(1) The storage area associated with identifier-1 and the record area

associated with file-name-1 must not be the same storage area.

(2) File-name-1 must be described by a sort-merge file description entry in

the Data Division.

(3) A RETURN statement may only be used within the range of an output

procedure associated with a SORT or MERGE statement for file-name-1.

4.3.4 General Rules

(1) When the logical records in a file are described with more than one

record description, these records automatically share the same storage area;

this is equivalent to an implicit redefinition of the area. The contents of any

data items which lie beyond the range of the current data record are undefined

at the completion of the execution of the RETURN statement.

(2) The execution of the RETURN statement causes the next existing record in

the file referenced by file-name-1, as determined by the keys listed in the SORT

or MERGE statement, to be made available in the record area associated with

fi.le-name-1. If no next logical record exists in the file referenced by

file-name-1, the at end condition exists and control is transferred to

imperative-statement-1 of the AT END phrase. Execution continues according to

the rules for each statement specified in imperative-statement-1. If a

procedure branching or conditional statement which causes explicit transfer of

control is executed, control is transferred according to the rules for that

statement; otherwise, upon completion of the execution of

imperative-statement-1, control is transferred to the end of the RETURN

statement and the NOT AT END phrase is ignored, if specified. When the at end

condition occurs, execution of the RETURN statement is unsuccessful and the

contents of the record area associated with file-name-1 are undefined. After

the execution of imperative-statement-1 in the AT END phrase, no RETURN

statement may be executed as part of the current output procedure.

XI-14

Sort-Merge - RETURN

(3) If an at end condition does not occur during the execution of a RETURN

statement, then after the record is made available and after executing any

implicit move resulting from the presence of an INTO phrase, control is

transferred to imperative-statement-2, if specified; otherwise, control is

transferred to the end of the RETURN statement.

(4) The END-RETURN phrase delimits the scope of the RETURN statement. (See

page IV-40, Scope of Statements.)

(5) The INTO phrase may be specified in a RETURN statement:

a. If only one record description is subordinate to the sort-merge file

description entry, or

b. If all record-names associated with file-name-1 and the data item

referenced by identifier-1 describe a group item or an elementary alphanumeric

item.

(6) The result of the execution of a RETURN statement with the INTO phrase

is equivalent to the application of the following rules in the order specified:

a. The execution of the same RETURN statement without the INTO phrase.

b. The current record is moved from the record area to the area

specified by identifier-1 according to the rules for the MOVE statement without

the CORRESPONDING phrase. The size of the current record is determined by rules

specified for the RECORD clause. If the file description entry contains a

RECORD IS VARYING clause, the implied move is a group move. The implied MOVE

statement does not occur if the execution of the RETURN statement was

unsuccessful. Any subscripting associated with identifier-1 is evaluated after

the record has been read and immediately before it is moved to the data item.

The record is available in both the record area and the data item referenced by

identifier-1.

XI-15

Sort-Merge - SORT

4.4 THE SORT STATEMENT

4.4.1 Function

The SORT statement creates a sort file by executing an input procedure or by

transferring records from another file, sorts the records in the sort file on a

set of specified keys; and, in the final phase of the sort operation, makes

available each record from the sort file, in sorted order, to an output

procedure or to an output file.

4.4.2 General Format

SORT file-name-1 jON {DESCENDING 1 KEY ^a-name-l} ...

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alphabet-name-1]

\INPUT PROCEDURE IS procedure-name-1

fUSING {file-name-2} ...

^OUTPUT PROCEDURE IS procedure-name-3

/GIVING, {file-name-3} ...

/THROUGH!

1 THRU |
procedure-name-

7 THROUGH 1

1 THRU 1
procedure-name-4 *

L v- /

J(

4.4.3 Syntax Rules

(1) A SORT statement may appear anywhere in the Procedure Division except in

the declarative portion.

(2) File-name-1 must be described in a sort-merge file description entry in

the Data Division.

(3) If the USING phrase is specified and the file referenced by file-name-1

contains variable length records, the size of the records contained in the file

referenced by file-name-2 must not be less than the smallest record nor larger

than the largest record described for file-name-1. If the file referenced by

file-name-1 contains fixed length records, the size of the records contained in

the file referenced by file-name-2 must not be larger than the largest record

described for the file referenced by file-name-1.

(4) Data-name-1 is a key data-name. Key data-names are subject to the

following rules:

a. The data items identified by key data-names must be described in

records associated with file-name-1.

b. Key data-names may be qualified.

c. The data items identified by key data-names must not be group items

that contain variable occurrence data items.

XI-16

Sort-Merge - SORT

d.

items ident

descript ions

data-name in

the file.

If file-name-1 has more than one record description, then

ified by key data-names need be described in only one of

. The same character positions which are referenced

one record description entry are taken as the key in all

the data

the record

by a key

records of

e. None of the data items identified by key data-names can be described

by an entry which either contains an OCCURS clause or is subordinate to an entry

which contains an OCCURS clause.

f. If the file referenced by file-name-1 contains variable length

records, all the data items identified by key data-names must be contained

within the first x character positions of the record, where x equals the minimum

record size specified for the file referenced by file-name-1.

(5) The words THRU and THROUGH are equivalent

(6) File-name-2 and file-name-3 must be described in a file description

entry, not in a sort-merge file description entry, in the Data Division.

(7) The files referenced by file-name-2 and file-name-3 may reside on the

same multiple file reel.

(8) If file-name-3 references an indexed file, the first specification of

data-name-1 must be associated with an ASCENDING phrase and the data item

referenced by that data-name-1 must occupy the same character positions in its

record as the data item associated with the prime record key for that file.

(9) No pair of file-name

same SAME SORT AREA or SAME

the GIVING phrase may not be

VII-19, The SAME Clause,

Clause .)

in the same SORT statei

SORT-MERGE AREA clause,

specified in the same

and page XI-4, The SAME

ent may be specified in the

File-names associated with

SAME clause. (See page

RECORD/SORT/SORT-MERGE AREA

(10) If the GIVING phrase is specified and the file referenced by file-name-3

contains variable length records, the size of the records contained in the file

referenced by file-name-1 must not be less than the smallest record nor larger

than the largest record described for file-name-3. If the file referenced by

file-name-3 contains fixed length records, the size of the records contained in

the file referenced by file-name-1 must not be larger than the largest record

described for the file referenced by file-name-3.

4.4.4 General Rules

(1) If the file referenced by

records, any record in the file

character positions than that fixed

beginning with the first character

record when that record is released to

file-name-1 contains only fixed length

referenced by file-name-2 containing fewer

length is space filled on the right

position after the last character in the

the file referenced by file-name-1.

(2) The data-names fol

the SORT statement in

they are divided into KEY

next data-name is the next

lowing the word KEY are listed from left to right

order of decreasing significance without regard to

phrases. The leftmost data-name is the major key,

most significant key, etc.

in

how

the

XI-17

Sort-Merge - SORT

a. When the ASCENDING phrase is specified, the sorted sequence will be

from the lowest value of the contents of the data items identified by the key

data-names to the highest value, according to the rules for comparison of

operands in a relation condition.

b. When the DESCENDING phrase is specified, the sorted sequence will be

from the highest value of the contents of the data items identified by the key

data-names to the lowest value, according to the rules for comparison of

operands in a relation condition.

(3) If the DUPLICATES phrase is specified and the contents of all the key

data items associated with one data record are equal to the contents of the

corresponding key data items associated with one or more other data records,

then the order of return of these records is:

a. The order of the associated input files as specified in the SORT

statement. Within a given input file the order is that in which the records are

accessed from that file.

b. The order in which these records are released by an input procedure,

when an input procedure is specified.

(4) If the DUPLICATES phrase is not specified and the contents of all the

key data items associated with one data record are equal to the contents of the

corresponding key data items associated with one or more other data records,

then the order of return of these records is undefined.

(5) The collating sequence that applies to the comparison of the nonnumeric

key data items specified is determined at the beginning of the execution of the

SORT statement in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE

phrase, if specified, in the SORT statement.

b. Second, the collating sequence established as the program collating

sequence.

(6) The execution of the SORT statement consists of three distinct phases as

follows:

a. Records are made available to the file referenced by file-name-1.

This is achieved either by the execution of RELEASE statements in the input

procedure or by the implicit execution of READ statements for file-name-2. When

this phase commences, the file referenced by file-name-2 must not be in the open

mode. When this phase terminates, the file referenced by file-name-2 is not in

the open mode.

b.

the files

phase.

The file referenced by file-name-1 is sequenced. No processing of

referenced by file-name-2 and file-name-3 takes place during this

c. The records of the file referenced by file-name-1 are made available

in sorted order. The sorted records are either written to the file referenced

by file-name-3 or, by the execution of a RETURN statement, are made available

for processing by the output procedure. When this phase commences, the file

XI-18

Sort-Merge - SORT

referenced by file-name-3 must not be in the open mode. When this phase

terminates, the file referenced by file-name-3 is not in the open mode.

(7) The input procedure may consist of any procedure needed to select,

modify, or copy the records that are made available one at a time by the RELEASE

statement to the file referenced by file-name-1. The range includes all

statements that are executed as the result of a transfer of control by CALL,

EXIT, GO TO, and PERFORM statements in the range of the input procedure, as well

as all statements in declarative procedures that are executed as a result of the

execution of statements in the range of the input procedure. The range of the

input procedure must not cause the execution of any MERGE, RETURN, or SORT

statement. (See page IV-25, Explicit and Implicit Specifications.)

(8) If an input procedure is specified, control is passed to the input

procedure before the file referenced by file-name-1 is sequenced by the SORT

statement. The compiler inserts a return mechanism at the end of the last

statement in the input procedure and when control passes the last statement in

the input procedure, the records that have been released to the file referenced

by file-name-1 are sorted.

(9) If the USING phrase is specified, all the records in the file(s)

referenced by file-name-2 are transferred to the file referenced by file-name-1.

For each of the files referenced by file-name-2 the execution of the SORT

statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is

performed as if an OPEN statement with the INPUT phrase had been executed.

b. The logical records are obtained and released to the sort operation.

Each record is obtained as if a READ statement with the NEXT and the AT END

phrases had been executed.

For a relative file, the content of the relative key data item is

undefined after the execution of the SORT statement if file-name-2 is not

referenced in the GIVING phrase.

c. The processing of the file is terminated. The termination is

performed as if a CLOSE statement without optional phrases had been executed.

This termination is performed before the file referenced by file-name-1 is

sequenced by the SORT statement.

These implicit functions are performed such that any associated USE

AFTER EXCEPTION/ERROR procedures are executed; however, the execution of such a

USE procedure must not cause the execution of any statement manipulating the

file referenced by, or accessing the record area associated with, file-name-2.

(10) The output procedure may consist of any procedure needed to select,

modify, or copy the records that are made available one at a time by the RETURN

statement in sorted order from the file referenced by file-name-1. The range

includes all statements that are executed as the result of a transfer of control

by CALL, EXIT, GO TO, and PERFORM statements in the range of the output

procedure, as well as all statements in declarative procedures that are executed

as a result of the execution of statements in the range of the output procedure.

The range of the output procedure must not cause the execution of any MERGE,

XI-19

Sort-Merge - SORT

RELEASE, or SORT statement. (See page IV-25, Explicit and Implicit

Specifications.)

(11) If an output procedure is specified, control passes to it after the file

referenced by file-name-1 has been sequenced by the SORT statement. The

compiler inserts a return mechanism at the end of the last statement in the

output procedure and when control passes the last statement in the output

procedure, the return mechanism provides for termination of the sort and then

passes control to the next executable statement after the SORT statement.

Before entering the output procedure, the sort procedure reaches a point at

which it can select the next record in sorted order when requested. The RETURN

statements in the output procedure are the requests for the next record.

(12) If the GIVING phrase is specified, all the sorted records are written on

the file referenced by file-name-3 as the implied output procedure for the SORT

statement. For each of the files referenced by file-name-3, the execution of

the SORT statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is

performed as if an OPEN statement with the OUTPUT phrase had been executed.

This initiation is performed after the execution of any input procedure.

b. The sorted logical records are returned and written onto the file.

The records are written as if a WRITE statement without any optional phrases had

been execution.

For a relative file, the relative key data item for the first record

returned contains the value '1'; for the second record returned, the value '2',

etc. After execution of the SORT statement, the content of the relative key

data item indicates the last record returned to the file.

c. The processing of the file is terminated. The termination is

performed as if a CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE

AFTER EXCEPTION/ERROR procedures are executed; however, the execution of such a

USE procedure must not cause the execution of any statement manipulating the

file referenced by, or accessing the record area associated with, file-name-3.

On the first attempt to write beyond the externally defined boundaries of the

file, any USE AFTER STANDARD EXCEPTION/ERROR procedure specified for the file is

executed; if control is returned from that USE procedure or if no such USE

procedure is specified, the processing of the file is terminated as in paragraph

12c above.

(13) If the file referenced by file-name-3 contains only fixed length

records, any record in the file referenced by file-name-1 containing fewer

character positions than that fixed length is space filled on the right

beginning with the first character position after the last character in the

record when that record is returned to the file referenced by file-name-3.

XI-20

Sort-Merge - SORT

(14) Segmentation as defined in Section XVI can be applied to programs

containing the SORT statement. However, the following restrictions apply:

a. If a SORT statement appears in a section that is not in an

independent segment, then any input procedures or output procedures referenced

by that SORT statement must appear:

1) Totally within non-independent segments, or

2) Wholly contained in a single independent segment.

b. If a SORT statement appears in an independent segment, then any

input procedures or output procedures referenced by that SORT statement must be

contained :

1) Totally within non-independent segments, or

2) Wholly within the same independent segment as that SORT

statement.

XI-21

Source Text Manipulation - Introduction

SECTION XII: SOURCE TEXT MANIPULATION MODULE

1. INTRODUCTION TO THE SOURCE TEXT MANIPULATION MODULE

1.1 FUNCTION

The Source Text Manipulation module contains the COPY statement and the

REPLACE statement. Each of these statements can function either independent of

the other or in conjunction with the other to provide an extensive capability to

insert |and replace]source program text as part of the compilation of the source

program.

COBOL libraries contain texts which are available to the compiler at compile

time. The effect of the interpretation of the COPY statement is to generate,

from a library text, text which is treated by the compiler as part of the source

program.

Similarly, COBOL source programs can be written in a programmer defined

notation which, at compile time, can be expanded into syntactically correct

phrases, clauses, and statements. [The effect of the interpretation of the

REPLACE statement is to substitute new text for text appearing in the source

program and have the substituted text treated by the compiler as part of the

source program.

1.2 LEVEL CHARACTERISTICS

Source Text Manipulation level 1 provides the facility for copying text from

a single library into the source program. Text is copied from the library

without change.

Source Text Manipulation level 2 provides the additional capability of

replacing all occurrences of a given literal, identifier, word, or group of

words in the library text, with alternate text, during the copying process.

Level 2 also provides for the availability of more than one COBOL library at

compile time and the substitution of new text for text appearing in the source

program. _

XII-1

Source Text Manipulation - COPY

2. THE COPY STATEMENT

2.1 Function

The COPY statement incorporates text into a COBOL source program.

2.2 General Format

(1) If more than one COBOL library is available during compilation,

text-name-1 must be qualified by library-name-1 identifying the COBOL library in

which the text associated with text-name-1 resides.

Within one COBOL library, each text-name must be unique.

(2) The COPY statement must be preceded by a space and terminated by the

separator period.

(3) Pseudo-text-1 must contain one or more text words.

(4) Pseudo-text-2 may contain zero, one, or more text words.

(5) Character-strings within pseudo-text-1 and pseudo-text-2

continued. (See page IV-43, Pseudo-Text.)

may be

(6) Word-1 or word-2 may be any single COBOL word except 'COPY'.

(7) A COPY statement may be specified in the source program anywhere a

character-string or a separator, other than the closing quotation mark, may

occur except that a COPY statement must not occur within a COPY statement.

(8) The implementor must allow a length from 1 through 322 characters for a

text word [within pseudo-text and] within library text.

(9) Pseudo-text-1 must not consist entirely of a separator comma or a

separator semicolon.__

(10) If the word COPY appears in a comment-entry or in the place where a

comment-entry may appear, it is considered part of the comment-entry.

XII-2

Source Text Manipulation - COPY

2.4 General Rules

(1) The compilation of a source program containing COPY statements is

logically equivalent to processing all COPY statements prior to the processing

of the resultant source program.

(2) The effect of processing a COPY statement is that the library text

associated with text-name-1 is copied into the source program, logically

replacing the entire COPY statement, beginning with the reserved word COPY and

ending with the punctuation character period, inclusive.

(3) [If the REPLACING phrase is not specified, the library text is copied

unchanged .

If the REPLACING phrase is specified the library text is copied and each

properly matched occurrence of pseudo-text-1, identifier-1, word-1, and

literal-1 in the library text is replaced by the corresponding pseudo-text-2,

identifier-2, word-2, or literal-2.

(4) For purposes of matching, identifier-1, word-1, and literal-1 are

treated as pseudo-text containing only identifier-1, word-1, or literal-1,

respectively.

(5) The comparison operation to determine text replacement occurs in the

following manner:

a. The leftmost library text word which is not a separator comma or a

separator semicolon is the first text word used for comparison. Any text word

or space preceding this text word is copied into the source program. Starting

with the first text word for comparison and first pseudo-text-1 , identifier-1,

word-1, or literal-1 that was specified in the REPLACING phrase, the entire

REPLACING phrase operand that precedes the reserved word BY is compared to an

equivalent number of contiguous library text words.

b. Pseudo-text-1, identifier-1, word-1, or literal-1 match the library

text if, and only if, the ordered sequence of text words that forms

pseudo-text-1, identifier-1, word-1, or literal-1 is equal, character for

character, to the ordered sequence of library text words. For purposes of

matching, each occurrence of a separator comma, semicolon, or space in

pseudo-text-1 or in the library text is considered to be a single space. Each

sequence of one or more space separators is considered to be a single space.

c. If no match occurs, the comparison is repeated with each next

successive pseudo-text-1, identifier-1, word-1, or literal-1, if any, in the

REPLACING phrase until either a match is found or there is no next successive

REPLACING operand.

d. When all the REPLACING phrase operands have been compared and no

match has occurred, the leftmost library text word is copied into the source

program. The next successive library text word is then considered as the

leftmost library text word, and the comparison cycle starts again with the first

pseudo-text-1, identifier-1, word-1, or literal-1 specified in the REPLACING

phrase ._____

XI1-3

Source Text Manipulation - COPY

e. Whenever a match occurs between pseudo-text-1, identifier-1, word-1,

or literal-1 and the library text, the corresponding pseudo-text-2,

identifier-2, word-2, or literal-2 is placed into the source program. The

library text word immediately following the rightmost text word that

participated in the match is then considered as the leftmost text word. The

comparison cycle starts again with the first pseudo-text-1, identifier-1,

word-1, or literal-1 specified in the REPLACING phrase.

f. The comparison operation continues until the rightmost text word in

the library text has either participated in a match or been considered as a

leftmost library text word and participated in a complete comparison cycle.

(6) Comment lines or blank lines occurring in the library text and in

pseudo-text-1 are ignored for purposes of matching; and the sequence of text

words in the library text, if any, and in pseudo-text-1 is determined by the

rules for reference format. (See page IV-41, Reference Format Representation.)

Comment lines or blank lines appearing in pseudo-text-2 are copied into the

resultant program unchanged whenever pseudo-text-2 is placed into the source

program as a result of text replacement. Comment lines or blank lines appearing

in library text are copied into the resultant source program unchanged |with the

following exception: a comment line or blank line in library text is not copied

if that comment line or blank line appears within the sequence of text words

that match pseudo-text-1 .

(7) Debugging lines are permitted within library text [and pseudo-text. Text

words within a debugging line participate in the matching rules as if the 'D1

did not appear in the indicator area. A debugging line is specified within

pseudo-text if the debugging line begins in the source program after

the opening pseudo-text-delimiter but before the matching closing

pseudo-text-delimiter .

(8) The syntactic correctness of the library text cannot be independently

determined. Except for COPY [and REPLACE|statements, the syntactic correctness

of the entire COBOL source program cannot be determined until all COPY [and

1 REPLACE!statements have been completely processed.

to

(9) Each text word copied from the library |but not replaced is copied so as

start in the same area of the line in the resultant program as it begins in

the line within the library. | However, if a text word copied from the library

begins in area A but follows another text word, which also begins in area A of

the same line, and if replacement of a preceding text word in the line by

replacement text of greater length occurs, the following text word begins in

area B if it cannot begin in area A. Each text word in pseudo-text-2 that is to

be placed into the resultant program begins in the same area of the resultant

program as it appears in pseudo-text-2. Each identifier-2, literal-2, and

word-2 that is to be placed into the resultant program begins in the same area

of the resultant program as the leftmost library text word that participated in

the match would appear if it had not been replaced.

Library text must conform to the rules for COBOL reference format.

If additional lines are introduced into the source program as a result

of a COPY statement, each text word introduced appears on a debugging line if

the COPY statement begins on a debugging line or if the text word being

introduced appears on a debugging line in library text . | When a text word

XII-4

Source Text Manipulation - COPY

in the preceding cases, only those text words that are specified on debugging

lines where the debugging line is within pseudo-text-2 appear on debugging lines

in the resultant program. If any literal specified as literal-2 or within

pseudo-text-2 or library text is of too great length to be accommodated on a

single line without continuation to another line in the resultant program and

the literal is not being placed on a debugging line, additional continuation

lines are introduced which contain the remainder of the literal. If replacement

requires that the continued literal be continued on a debugging line, the

program is in error.

(10) For purposes of compilation, text words after re

the source program according to the rules for refe

IV-41, Reference Format.) When copying text words of

source program, additional spaces may be introduced

where there already exists a space (including the assume

lines) .

(11) If additional lines are introduced into the sour

of the processing of COPY statements, the indicator are

contains the same character as the line on which the tex

unless that line contains a hyphen, in which case the in

space. In the case where a literal is continued onto an

is not a debugging line, a hyphen is placed in the indie

placement are

rence format.

pseudo-text-2

only between

d space betwe

placed in

(See page

into the

text words

en source

ce program as a result

a of the introduced line

t being replaced begins,

troduced line contains a

introduced line which

ator area.

XII-5

Source Text Manipulation - REPLACE

3. THE REPLACE STATEMENT

3.1 Function

The REPLACE statement is used to replace source program text.

3.2 General Format

Format 1:

REPLACE {==pseudo-text-l== BY_ ==pseudo-text-2==} ...

Format 2:

REPLACE OFF

3.3 Syntax Rules

(1) A REPLACE statement may occur anywhere in the source program where a

character-string may occur. It must be preceded by a separator period except

when it is the first statement in a separately compiled program.

(2) A REPLACE statement must be terminated by a separator period.

(3) Pseudo-text-1 must contain one or more text words.

(4) Pseudo-text-2 may contain zero, one, or more text words.

(5) Character-strings within pseudo-text-1 and pseudo-text-2 may be

continued. (See page IV-43, Pseudo-Text.)

(6) The implementor must allow a length from 1 through 322 characters for a

text word within pseudo-text.

(7) Pseudo-text-1 must not consist entirely of a separator comma or a

separator semicolon.

(8) If the word REPLACE appears in a comment-entry or in the place where a

comment-entry may appear, it is considered part of the comment-entry.

3.4 General Rules

(1) The format 1 REPLACE statement specifies the text of the source program

to be replaced by the corresponding text. Each matched occurrence of

pseudo-text-1 in the source program is replaced by the corresponding

pseudo-text-2.

(2) The format 2 REPLACE statement specifies that any text replacement

currently in effect is discontinued.

(3) A given occurrence of the REPLACE statement is in effect from the point

at which it is specified until the next occurrence of the statement or the end

of the separately compiled program, respectively._

XI1-6

Source Text Manipulation - REPLACE

(4) Any REPLACE statements contained in a source program are processed after

the processing of any COPY statements contained in a source program.

(5) The text produced as a result of the processing of a REPLACE statement

must not contain a REPLACE statement.

(6) The comparison operation to determine text replacement occurs in the

following manner:

a. Starting with the leftmost source program text word and the first

pseudo-text-1, pseudo-text-1 is compared to an equivalent number of contiguous

source program text words.

b. Pseudo-text-1 matches the source program text if, and only if, the

ordered sequence of text words that forms pseudo-text-1 is equal, character for

character, to the ordered sequence of source program text words. For purposes

of matching, each occurrence of a separator comma, semicolon, or space in

pseudo-text-1 or in the source program text is considered to be a single space.

Each sequence of one or more space separators is considered to be a single

space.

c. If no match occurs, the comparison is repeated with each next

successive occurrence of pseudo-text-1, until either a match is found or there

is no next successive occurrence of pseudo-text-1.

d. When all occurrences of pseudo-text-1 have been

match has occurred, the next successive source program

considered as the leftmost source program text word, and the

starts again with the first occurrence of pseudo-text-1.

compared and no

text word is then

comparison cycle

e. Whenever a match occurs between pseudo-text-1 and the source program

text, the corresponding pseudo-text-2 replaces the matched text in the source

program. The source program text word immediately following the rightmost text

word that participated in the match is then considered as the leftmost source

program text word. The comparison cycle starts again with the first occurrence

of pseudo-text-1.

f. The comparison operation continues until the rightmost text word in

the source program text which is within the scope of the REPLACE statement has

either participated in a match or been considered as a leftmost source program

text word and participated in a complete comparison cycle.

(7) Comment lines or blank lines occurring in the source program text and in

pseudo-text-1 are ignored for purposes of matching; and the sequence of text

words in the source program text and in pseudo-text-1 is determined by the rules

for reference format. (See page IV-41, Reference Format Representation.)

Comment lines or blank lines in pseudo-text-2 are placed into the resultant

program unchanged whenever pseudo-text-2 is placed into the source program as a
result of text replacement. A comment line or blank line in source program text

is not replaced if that comment line or blank line appears within the sequence

of text words that match pseudo-text-1.

(8) Debugging lines are permitted in pseudo-text. Text words within a

debugging line participate in the matching rules as if the 'D' did not appear in

the indicator area.

XII-7

Source Text Manipulation - REPLACE

(9) Except for COPY and REPLACE statements, the syntactic correctness of the

source program text cannot be determined until after all COPY and REPLACE

statements have been completely processed.

(10) Text words inserted into the source program as a result of processing a

REPLACE statement are placed in the source program according to the rules for

reference format. (See page IV-41, Reference Format.) When inserting text

words of pseudo-text-2 into the source program, additional spaces may be

introduced only between text words where there already exists a space (including

the assumed space between source lines).

(11) If additional lines are introduced into the source program as a result

of the processing of REPLACE statements, the indicator area of the introduced

lines contains the same character as the line on which the text being replaced

begins, unless that line contains a hyphen, in which case the introduced line

contains a space.

If any literal within pseudo-text-2 is of a length too great to be

accommodated on a single line without continuation to another line in the

resultant program and the literal is not being placed on a debugging line,

additional continuation lines are introduced which contain the remainder of the

literal. If replacement requires the continued literal to be continued on a

debugging line, the program is in error.

XII-8

Report Writer - Introduction

SECTION XIII: REPORT WRITER MODULE

1. INTRODUCTION TO THE REPORT WRITER MODULE

1.1 FUNCTION

The Report Writer module provides a facility for producing reports by

specifying the physical appearance of a report rather than requiring

specification of the detailed procedure necessary to produce that report.

A hierarchy of levels is used in defining the logical organization of a

report. Each report is divided into report groups, which in turn are divided

into sequences of items. Such a hierarchical structure permits explicit

reference to a report group with implicit reference to other levels in the

hierarchy. A report group contains one or more items to be presented on zero,

one, or more lines.

1.2 LANGUAGE CONCEPTS

1.2.1 Report File

A report file is an output file having sequential organization. A report

file has a file description entry containing a REPORT clause. The content of a

report file consists of records that are written under control of the report

writer control system (RWCS).

A report file is named by a file control entry and is described by a file

description entry containing a REPORT clause. A report file is referred to and

accessed by the OPEN, GENERATE, INITIATE, SUPPRESS, TERMINATE, USE AFTER

STANDARD EXCEPTION PROCEDURE, USE BEFORE REPORTING, and CLOSE statements.

1.2.2 Special Register PAGE-COUNTER

The reserved word PAGE-COUNTER is a name for a page counter that is generated

for each report description entry in the Report Section of the Data Division.

The implicit description is that of an unsigned integer that must be capable of

representing a range of values from 1 through 999999. The usage is defined by

the implementor. The value in PAGE-COUNTER is maintained by the report writer

control system (RWCS) and is used by the program to number the pages of a

report. PAGE-COUNTER may be referenced only in the SOURCE clause of the Report

Section and in Procedure Division statements. (See page XIII-12, PAGE-COUNTER

Rules .)

1.2.3 Special Register LINE-COUNTER

The reserved word LINE-COUNTER is a name for a line counter that is generated

for each report description entry in the Report Section of the Data Division.

The implicit description is that of an unsigned integer that must be capable of

XIII-1

Report Writer - Introduction

representing a range of values from 0 through 999999. The usage is defined by

the implementor. The value in LINE-COUNTER is maintained by the report writer

control system (RWCS), and is used to determine the vertical positioning of a

report. LINE-COUNTER may be referenced only in the SOURCE clause of the Report

Section and in Procedure Division statements; however, only the report writer

control system (RWCS) may change the value of LINE-COUNTER. (See page XIII-13,

LINE-COUNTER Rules.)

1.2.4 Subscripting

In the Report Section, neither a sum counter nor the special registers

LINE-COUNTER and PAGE-COUNTER can be used as a subscript.

XIII-2

Report Writer - File Control Entry

2. ENVIRONMENT DIVISION IN THE REPORT WRITER MODULE

2.1 INPUT-OUTPUT SECTION

Information concerning the Input-Output Section is located on page VII-6.

2.2 THE FILE-CONTROL PARAGRAPH

Information concerning the FILE-CONTROL paragraph is located on page VII-7.

2.3 THE FILE CONTROL ENTRY

2.3.1 Function

The file control entry declares the relevant physical attributes of a report

file.

2.3.2 General Format

SELECT r OPTIONAL1 file-name-1

Jimplementor-name-l)

(literal-1 j
ASSIGN TO

^RESERVE integer-1

r rORGANIZATION IS] SEQUENTIAL]

PADDING CHARACTER IS

[area

[areas

/data-name-1

(literal-2 }
RECORD DELIMITER IS

(STANDARD-1

(implementor-name
-4'

[ACCESS MODE IS SEQUENTIAL]

[FILE STATUS IS data-name-2].

2.3.3 Syntax Rules

(1) The SELECT clause must be specified first in the file control entry.

The clauses which follow the SELECT clause may appear in any order.

(2) Each report file described in the Data Division must be specified only

once in the FILE-CONTROL paragraph. Each report file specified in the SELECT

clause must have a file description entry containing a REPORT clause in the Data

Division of the same program.

(3) Literal-1 must be a nonnumeric literal and must not be a figurative

constant. The meaning and rules for the allowable content of implementor-name-1

and the value of literal-1 are defined by the implementor.

XII1-3

Report Writer - File Control Entry

(4) The availability of specific clauses in the file control entry for a

report file is dependent on the level of Sequential 1-0 module supported by the

implementation. (See page VII-7 in the Sequential 1-0 module.)

2.3.4 General Rules

(1) If the file connector referenced by file-name-1 is an external file

connector (see page X-23, The EXTERNAL Clause), all file control entries in the

run unit which reference this file connector must have:

a. The same specification for the OPTIONAL phrase.

b. A consistent specification for implementor-name-1 or literal-1 in

the ASSIGN clause. The implementor will specify the consistency rules for

implementor-name-1 or literal-1.

c. A consistent specification for implementor-name-2 in the RECORD

DELIMITER clause. The implementor will specify the consistency rules for

implementor-name-2.

d. The same value of integer-1 in the RESERVE clause.

e. The same organization.

f. The same access mode.

g. The same specification for the PADDING CHARACTER clause.

(2)
mode .

present

The OPTIONAL phrase applies only to a report file opened in the extend

Its specification is required for a report file that is not necessarily

each time the object program is executed.

(3) The ASSIGN clause specifies the association of the report file

referenced by file-name-1 to a storage medium reference by implementor-name-1 or

literal-1.

(4) A report file has sequential organization. Thus all clauses within the

file control entry for a report file shown in the general format on page XIII-3

are present within the Sequential 1-0 module beginning on page VII-7.

XIII-4

Report Writer - I-O-CONTROL

2.4 THE I-O-CONTROL PARAGRAPH

2.4.1 Function

The I-O-CONTROL paragraph specifies the memory area which is to be shared by

different files and the location of files on a multiple file reel.

2.4.2 General Format

I-O-CONTROL.

{TSAME AREA FOR file-name-1 {file-name-2} ...] ...

{MULTIPLE FILE TAPE CONTAINS {file-name-3 {POSITION integer-1]} ...]]

2.4.3 Syntax Rules

(1) The order of appearance of the clauses is immaterial.

(2) A file-name that represents a report file can appear in a MULTIPLE FILE

TAPE clause or in a SAME clause for which the RECORD phrase is not specified.

(3) The availability of specific clauses in the I-O-CONTROL paragraph for a

report file is dependent on the level of Sequential 1-0 module supported by the

implementation. (See page VII-15 in the Sequential 1-0 module.)

2.4.4 General Rules

(1) The MULTIPLE FILE TAPE clause is presented on page VII-16 in the

Sequential 1-0 module.

(2) The SAME clause is presented on page VII-19 in the Sequential 1-0

module.

XII1-5

Report Writer - File Section

3. DATA DIVISION IN THE REPORT WRITER MODULE

3.1 FILE SECTION

The File Section is located in the Data Division of a source program. The

File Section defines the structure of report files. Each report file is defined

by a file description entry having a REPORT clause. A file description entry

for a report file is not followed by record description entries.

The general format of the File Section in the Report Writer module is shown

below.

FILE SECTION.

[report-file-description-entry] ...

In a COBOL program, the file description entry (FD entry) represents the

highest level of organization in the File Section. The File Section header is

followed by a file description entry consisting of a level indicator (FD), a

file-name, and a series of independent clauses. For a report file, the file

description entry must contain the REPORT clause specifying the names of the

reports to be written onto the report file. No record description entries may

follow the file description entry for a report file.

XIII-6

Report Writer - File Description Entry

3.2 THE FILE DESCRIPTION ENTRY

3.2.1 Function

The file description entry furnishes information concerning the physical

structure, identification, and report-names pertaining to a report file.

3.2.2 General Format

FD file-name-1

|bLOCK CONTAINS [integer-1 TO] integer-2
(RECORDS i

I RECORD

LABEL

I CONTAINS integer-3 CHARACTERS

(CONTAINS integer-4 TO integer-5 CHARACTERS

(CHARACTERS)

}'
(RECORD IS) (STANDARD!"

) RECORDS ARE) (OMITTED f

Rvalue OF |implementor-name-1 IS

[CODE-SET IS alphabet-name-1]

{report-name-1} ...

(data-name-ll I

(literal-1 j j * ' '

(REPORT IS)
1 REPORTS AREf

3.2.3 Syntax Rules

(1) The level indicator FD identifies the beginning of the file description

entry for a report file and must precede the file-name of the report file.

(2) The clauses which follow file-name-1 may appear in any order.

(3) File-name-1 may only reference a sequential file.

(4) No record description entries may follow the file description entry for

a report file.

(5) The subject of a file description entry that specifies a REPORT clause

may be referenced in the Procedure Division only by the USE statement, the CLOSE

statement, or the OPEN statement with the OUTPUT or EXTEND phrase.

(6) The availability of specific clauses in this file description entry is

dependent on the level of Sequential 1-0 module supported by the implementation.

(See page VII-22 in the Sequential 1-0 module.)

3.2.4 General Rules

(1) A file description entry associates file-name-1 with a file connector.

(2) The report writer logical record structure of the file associated with

XIII-7

Report Writer - File Description Entry

file-name-1 is defined by the implementor.

(3) With the exception of the REPORT clause, all clauses within the file

description entry for a report file shown on page XIII-7 are presented within

the Sequential 1-0 module beginning on page VII-22.

(4) The REPORT clause is presented on page XIII-9.

Report Writer - REPORT

3.3 THE REPORT CLAUSE

3.3.1 Function

The REPORT clause specifies the names of reports that comprise a report file.

3.3.2 General Format

{report-name-1} ...

3.3.3 Syntax Rules

(1) Each report-name specified in a REPORT clause must be the subject of a

report description entry in the Report Section of the same program. The order

of appearance of the report-names is not significant.

(2) A report-name must appear in only one REPORT clause.

(3) The subject of a file description entry that specifies a REPORT clause

may be referenced in the Procedure Division only by the USE statement, the CLOSE

statement, or the OPEN statement with the OUTPUT or EXTEND phrase.

3.3.4 General Rules

(1) The presence of more than one report-name in a REPORT clause indicates

that the file contains more than one report.

(2) After execution of an INITIATE statement and before the execution of a

TERMINATE statement for the same report file, the report file is under the

control of the report writer control system (RWCS). While a report file is

under the control of the RWCS, no input-output statement may be executed which

references that report file.

(3) If the associated file connector is an external file connector, every

file description entry in the run unit which is associated with that file

connector must describe it as a report file.

XII1-9

Report Writer - Report Section

3.4 REPORT SECTION

The Report Section is located in the Data Division of a source program. The

Report Section describes the reports to be written onto report files. The

description of each report must begin with a report description entry (RD entry)

and be followed by one or more report group description entries.

The general format of the Report Section is shown below.

REPORT SECTION.

[report-description-entry

{report-group-description-entry} ...] ...

3.4.1 Report Description Entry

In addition to naming the report, the report description entry (RD entry)

defines the format of each page of the report by specifying the vertical

boundaries of the region within which each type of report group may be printed.

The report description entry also specifies the control data items. When the

report is produced, changes in the values of the control data items causes the

detail information of the report to be processed in groups called control

groups .

Each report named in the REPORT clause of a file description entry in the

File Section must be the subject of a report description entry in the Report

Section. Furthermore each report in the Report Section must be named in one and

only one file description entry.

3.4.2 Report Group Description Entry

The report groups that will comprise the report are described following the

report description entry. The description of each report group begins with a

report group description entry; that is an entry that has a 01 level-number and

a TYPE clause. Subordinate to the report group description entry, there may

appear group and elementary entries that further describe the characteristics of

the report group.

XIII-10

Report Writer - Report Description Entry

3.5 THE REPORT DESCRIPTION ENTRY

3.5.1 Function

The report description entry names a report, specifies any identifying

characters to be prefixed to each print line in the report, and describes the

physical structure and organization of that report.

3.5.2 General Format

RD report-name-1

[CODE literal-1]

" (CONTROL IS) ({data- -name-1} ... i

1 CONTROLS AREf 1 FINAL [data-name-1] ...j

[lIMITS ARe] mteger-1 [LI^ES] [HEADING integer-2]

[FIRST DETAIL integer-3] [LAST DETAIL integer-4]

[FOOTING integer-5]] .

3.5.3 Syntax Rules

(1) Report-name-1 must appear in one and only one REPORT clause.

(2) The order of appearance of the clauses following report-name-1 is

immaterial.

(3) Report-name-1 is the highest permissible qualifier that may be specified

for LINE-COUNTER, PAGE-COUNTER, and all data-names defined within the Report

Section .

3.5.4 General Rules

(1) The CODE clause, the CONTROL clause, and the PAGE clause are presented

in alphabetical order beginning on page XIII-14.

XIII-11

Report Writer - PAGE-COUNTER Rules

3.5.5 PAGE-COUNTER Rules

(1) PAGE-COUNTER is the reserved word used to reference a special register

that is automatically created for each report specified in the Report Section.

(See page IV-9, Special Registers, and page XIII-1, Special Register

PAGE-COUNTER.)

(2) In the Report Section, a reference to PAGE-COUNTER can only appear in a

SOURCE clause. In the Procedure Division, PAGE-COUNTER may be used in any

context in which a data item with an integer value can appear.

(3) If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER must be

qualified by a report-name whenever it is referenced in the Procedure Division.

In the Report Section an unqualified reference to PAGE-COUNTER is

qualified implicitly by the name of the report in whose report description entry

the reference is made. Whenever the PAGE-COUNTER of a different report is

referenced, PAGE-COUNTER must be explicitly qualified by the report-name

associated with the different report.

(4) Execution of the INITIATE statement causes the report writer control

system to set the PAGE-COUNTER of the referenced report to one.

(5) PAGE-COUNTER is automatically incremented by one each time the report

writer control system executes a page advance.

(6) PAGE-COUNTER may be altered by Procedure Division statements.

XII1-12

Report Writer - LINE-COUNTER Rules

3.5.6 LINE-COUNTER Rules

(1) LINE-COUNTER is the reserved word used to reference a special register

that is automatically created for each report specified in the Report Section.

(See page IV-9, Special Registers, and page XIII-1, Special Register

LINE-COUNTER.)

(2) In the Report Section a reference to LINE-COUNTER can only appear in a

SOURCE clause. In the Procedure Division, LINE-COUNTER may be used in any

context in which a data item with an integral value may appear. However, only

the report writer control system can change the content of LINE-COUNTER.

(3) If more than one LINE-COUNTER exists in a program, LINE-COUNTER must be

qualified by a report-name whenever it is referenced in the Procedure Division.

In the Report Section an unqualified reference to LINE-COUNTER is

qualified implicitly by the name of the report in whose report description entry

the reference is made. Whenever the LINE-COUNTER of a different report is

referenced, LINE-COUNTER must be explicitly qualified by the report-name

associated with the different report.

(4) Execution of an INITIATE statement causes the report writer control

system to set the LINE-COUNTER of the referenced report to zero. The report

writer control system also automatically resets LINE-COUNTER to zero each time

it executes a page advance.

(5) The value of LINE-COUNTER is not affected by the processing of

nonprintable report groups nor by the processing of a printable report group

whose printing is suppressed by means of the SUPPRESS statement.

(6) At the time each print line is presented, the value of LINE-COUNTER

represents the line number on which the print line is presented. The value of

LINE-COUNTER after the presentation of a report group is governed by the

presentation rules for the report group. (See page XIII-24, Presentation Rules

Tables.)

XIII-13

Report Writer - CODE

3.6 THE CODE CLAUSE

3.6.1 Function

The CODE clause specifies a two-character literal that identifies each print

line as belonging to a specific report.

3.6.2 General Format

CODE literal-1

3.6.3 Syntax Rules

(1) Literal-1 must be a two-character nonnumeric literal.

(2) If the CODE clause is specified for any report in a file, it must be

specified for all reports in that file.

3.6.4 General Rules

(1) When the CODE clause is specified, literal-1 is automatically placed in

the first two character positions of each report writer logical record.

(2) The positions occupied by literal-1 are not included in the description

of the print line, but are included in the logical record size.

XIII-14

Report Writer - CONTROL

3.7 THE CONTROL CLAUSE

3.7.1 Function

The CONTROL clause establishes the levels of the control hierarchy for the

report.

3.7.2 General Format

CONTROL IS 1 ((data-name-1} ...

CONTROLS AREj)FINAL [data-name-1] ...

3.7.3 Syntax Rules

(1) Data-name-1 must not be defined in the Report Section. Data-name-1 may

be qualified.

(2) Each recurrence of data-name-1 must identify a different data item.

(3) Data-name-1 must not have subordinate to it a variable occurrence data

item.

3.7.4 General Rules

(1) Data-name-1 and the word FINAL specify the levels of the control

hierarchy. FINAL, if specified, is the highest control, data-name-1 is the

major control, the next recurrence of data-name-1 is an intermediate control,

etc. The last recurrence of data-name-1 is the minor control.

(2) The execution of the chronologically first GENERATE statement for a

given report causes the report writer control system (RWCS) to save the values

of all control data items associated with that report. On subsequent executions

of all GENERATE statements for that report, control data items are tested by the

RWCS for a change of value. A change of value in any control data item causes a

control break to occur. This control break is associated with the highest level

for which a change of value is noted. (See page XIII-66, The GENERATE

Statement.)

(3) The report writer control system (RWCS) tests for a control break by

comparing the content of each control data item with the prior content of each

control data item that was saved when the previous GENERATE statement for the

same report was executed. The RWCS applies the inequality relation test as

fo1lows:

a. If the control data item is a numeric data item, the relation test

is for the comparison of two numeric operands .

b. If the control data item is an index data item, the relation test is

for the comparison of two index data items.

c. If the control data item is a data item other than as described in

3a and 3b above, the relation test is for the comparison of two nonnumeric
operands.

XIII-15

Report Writer - CONTROL

The inequality relation test is further explained in the appropriate

paragraph. (See page VI-54, Relation Condition.)

(4) FINAL is used when the most inclusive control group in the report is not

associated with a control data-name.

XIII-16

Report Writer - PAGE

3.8 THE PAGE CLAUSE

3.8.1 Function

The PAGE clause defines the length of a page and the vertical subdivisions

within which report groups are presented.

3.8.2 General Format

PAGE
[limit IS

[LIMITS ARE]* integer-1
LINE

lines]
[HEADING integer-2;

[FIRST DETAIL integer-3] [LAST DETAIL integer-4]

[FOOTING integer-5]

3.8.3 Syntax Rules

(1) The HEADING, FIRST DETAIL, LAST DETAIL, and FOOTING phrases may be

written in any order .

(2) Integer-1 mus t not exceed three significant digits in length.

(3) Integer-2 mus t be greater than or equal to one .

(4) Integer-3 mus t be greater than or equal to integer-2.

(5) Integer-4 must be greater than or equal to integer-3.

(6) Integer-5 mus t be greater than or equal to integer-4.

(7) Integer-1 mus t be greater than or equal to integer-5.

(8)

which

The following

each type of

rules indicate the vertical subdivision of the

report group may appear when the PAGE clause is

(See page XIII-19, Page Regions.)

page in

specified.

a. A report heading report group that is to be presented on a page by

itself, if defined, must be defined such that it can be presented in the

vertical subdivision of the page that extends from the line number specified by

integer-2 to the line number specified by integer-1, inclusive.

A report heading report group that is not to be presented on a page

by itself, if defined, must be defined such that it can be presented in the

vertical subdivision of the page that extends from the line number specified by

integer-2 to the line number specified by integer-3 minus 1, inclusive.

b. A page heading report group, if defined, must be defined such that

it can be presented in the vertical subdivision of the page that extends from

the line number specified by integer-2 to the line number specified by integer-3

minus 1, inclusive.

c. A control heading or detail report group, if defined, must be

defined such that it can be presented in the vertical subdivision of the page

XIII-17

Report Writer - PAGE

that extends from the line number specified by integer-3 to the line number

specified by integer-4, inclusive.

d. A control footing report group, if defined, must be defined such

that it can be presented in the vertical subdivision of the page that extends

from the line number specified by integer-3 to the line number specified by

integer-5, inclusive.

e. A page footing report group, if defined, must be defined such that

it can be presented in the vertical subdivision of the page that extends from

the line number specified by integer-5 plus 1 to the line number specified by
integer-1, inclusive.

f. A report footing report group that is to be presented on a page by

itself, if defined, must be defined such that it can be presented in the

vertical subdivision of the page that extends from the line number specified by

integer-2 to the line number specified by integer-1, inclusive.

A report footing report group that is not to be presented on a page

by itself, if defined, must be defined such that it can be presented in the

vertical subdivision of the page that extends from the line number specified by

integer-5 plus 1 to the line number specified by integer-1, inclusive.

(9) All report groups must be described such that they can be presented on

one page. The report writer control system (RWCS) never splits a multi-line

report group across page boundaries.

3.8.4 General Rules

(1) The vertical format of a report page is established using the integer

values specified in the PAGE clause.

a. Integer-1 defines the size of a report page by specifying the number

of lines available on each page.

b. HEADING integer-2 defines the first line number on which a report

heading or page heading report group may be presented.

c. FIRST DETAIL integer-3 defines the first line number on which a body

group may be presented. Report heading (without NEXT GROUP NEXT PAGE) and page

heading report groups may not be presented on or beyond the line number

specified by integer-3.

d. LAST DETAIL i.nteger-4 defines the last line number on which a

control heading or detail report group may be presented.

e. FOOTING integer-5 defines the last line number on which a control

footing report group may be presented. Report footing (without LINE integer-1

NEXT PAGE) and page footing report groups must follow the line number specified

by integer-5.

XIII-18

Report Writer - PAGE

(2) If the PAGE clause is specified the following implicit values are

assumed for any omitted phrases:

a. If the HEADING phrase is omitted, a value of one is assumed for

integer-2.

b. If the FIRST DETAIL phrase is omitted, a value equal to integer-2 is

given to integer-3.

c. If the

value of integer-1

LAST DETAIL and the FOOTING phrases are

is given to both integer-4 and integer-5.

both omitted, the

d. If the

omitted, the value

FOOTING phrase is specified and the

of integer-5 is given to integer-4.

LAST DETAIL phrase is

e. If the

omitted, the value

LAST DETAIL phrase is specified and

of integer-4 is given to integer-5.

the FOOTING phrase is

(3) If the PAGE clause is omitted, the report consists of a single page of

indefinite length.

(4) The presentation rules for each type of report group are specified in

the appropriate paragraph. (See page XIII-24, Presentation Rules Tables.)

3.8.5 Page Regions

Table 1 below describes the page regions established by the PAGE clause.

Report Groups That May be

Presented in the Region

First Line Number

of the Region

Last Line Number

of the Region

Report heading described with

NEXT GROUP NEXT PAGE

Report footing described with

LINE integer-1 NEXT PAGE

integer-2 integer-1

Report heading not described

with NEXT GROUP NEXT PAGE

Page heading

integer-2 integer-3 minus 1

Control heading

Detai1

integer-3 integer-4

Control footing integer-3 integer-5

Page footing

Report footing not described

with LINE integer-1 NEXT PAGE

integer-5 plus 1 integer-1

Table 1: Page Regions

XIII-19

Report Writer - Report Group Description Entry

3.9 THE REPORT GROUP DESCRIPTION ENTRY

3.9.1 Function

The report group description entry specifies the characteristics of a

group and of the individual items within a report group.

3.9.2 General Format

Format 1:

01 [data-name-1]

LINE NUMBER IS
(integer-1 [ON NEXT PAGE])'

)PLUS lnteger-2 j

! integer-3

PLUS integer-4

NEXT PAGE

(REPORT HEADING)

TYPE IS <

(PAGE HEADING)

m]
(CONTROL HEADING) (data-name-2

|CH J (FINAL

(DETAIL)

m)
(CONTROL FOOTING) (data-name-3

)CF

(PAGE FOOTING)

l— J
(REPORT FOOTING |

j (FINAL

(RF

f TUSAGE IS 1 DISPLAY1.

Format 2:

level-number [data-name-1]

LINE NUMBER IS {1 PAGE]
- |PLUS integer-2

[[USAGE IS] DISPLAY]

report

XIII-20

Report Writer - Report Group Description Entry

Format 3:

level-number [data-name-1]

IS character-string
('picture'!

\pic I

[[USAGE IS] DISPLAY]

[SIGN IS] SEPARATE CHARACTER
- (TRAILING] -

{„_»} RIGHT

[BLANK WHEN ZERO]

(integer-1 [ON NEXT PAGE])
LINE NUMBER IS f (PLUS integer-2

rCOLUMN NUMBER IS integer-3]

SOURCE IS identifier-1

VALUE IS literal-1

{SUM {identifier-2} ... [UPON {data-name-2}

(data-name-3 i

.]} ..

RESET ON
(final

[GROUP INDICATE].

3.9.3 Syntax Rules

(1) The report group description entry can appear only in the Report

Section.

(2) Except for the data-name clause, which when present must immediately

follow the level-number, the clauses may be written in any sequence.

(3) In format 2 the level-number may be any integer from 02 to 48 inclusive.

In format 3 the level-number may be any integer from 02 to 49 inclusive.

(4) A description of a report group may consist of one, two, or three

hierarchic levels:

The first entry that describes a report group must be a format 1

entry.

b. Both format 2 and format 3 entries may be immediately subordinate to

a format 1 entry.

XIII-21

Report Writer - Report Group Description Entry

c. At least one format 3 entry must be immediately subordinate to a

format 2 entry.

d. Format 3 entries must define elementary data items.

(5) In a format 1 entry, data-name-1 is required only when:

a. A detail report group is referenced by a GENERATE statement.

b. A detail report group is referenced by the UPON phrase of a SUM

clause .

c. A report group is referenced in a USE BEFORE REPORTING sentence.

d. The name of a control footing report group is used to qualify a

reference to a sum counter.

If specified, data-name-1 may be referenced only by a GENERATE

statement, the UPON phrase of a SUM clause, a USE BEFORE REPORTING sentence, or

as a sum counter qualifier.

(6) A format 2 entry must contain at least one optional clause.

(7) In a format 2 entry, data-name-1 is optional. If present it may be used

only to qualify a sum counter reference.

(8) In the Report Section, the USAGE clause is used only to declare the

usage of printable items.

a. If the USAGE clause appears in a format 3 entry, that entry must

define a printable item.

b. If the USAGE clause appears in a format 1 or format 2 entry, at

least one subordinate entry must define a printable item.

(9) An entry that contains a LINE NUMBER clause must not have a subordinate

entry that also contains a LINE NUMBER clause.

(10) In format 3:

a. A GROUP INDICATE clause may appear only in a type detail report

group.

b. A SUM clause may appear only in a type control footing report group.

c .

clause must

An entry that contains a COLUMN NUMBER clause but no LINE NUMBER

be subordinate to an entry that contains a LINE NUMBER clause.

d.

Data-name-1

Data-name-1 is optional but may be specified in any

may be referenced only if the entry defines a sum counter.

entry.

e. An entry that contains a VALUE clause must also have a COLUMN NUMBER

clause.

XI11-22

Report Writer - Report Group Description Entry

(11) Table 1 below shows all permissible clause combinations for a format 3

entry. The table is read from left to right along the selected row.

An 'M' indicates that the presence of the clause is mandatory.

A * P * indicates that the presence of the clause is permitted, but not

required.

A blank indicates that the clause is not permitted.

PIC COLUMN SOURCE SUM VALUE JUST

BLANK

WHEN

ZERO

GROUP

INDICATE

USAGE SIGN LINE

M M P P

M M M P P P P

M P M P P P P P

M P M P P P P P

M M M P P P P P

Table 1: Permissible Clause Combinations in Format 3 Entries

3.9.4 General Rules

(1) Format 1 is the report group entry. The report group is defined by the

contents of this entry and all of its subordinate entries.

(2) The BLANK WHEN ZERO clause, the JUSTIFIED clause, and the PICTURE clause

for the Report Writer module are the same as the BLANK WHEN ZERO clause, the

JUSTIFIED clause, and the PICTURE clause in the Nucleus module. Thus the

specifications for these clauses are located on pages VI-22, VI-24, and VI-29,

respectively. The other clauses of the report group description entry are

presented in alphabetical order beginning on page XIII-42.

XII1-23

Report Writer - Presentation Rules Tables

3.10 PRESENTATION RULES TABLES

3.10.1 Description

The tables and rules on the following pages specify:

(1) The permissible combinations of LINE NUMBER and NEXT GROUP clauses for

each type of report group.

(2) The requirements that are placed on the use of these clauses, and

(3) The interpretation that the report writer control system (RWCS) gives to

these clauses.

3.10.2 Organization

There is an individual presentation rules table for each of the following

types of report groups: report heading, page heading, page footing, report

footing. In addition, detail report groups, control heading report groups, and

control footing report groups are treated jointly in the body group presentation

rules table. (See page XIII-32, The Body Group Presentation Rules.)

Columns 1 and 2 of a presentation rules table list all of the permissible

combinations of LINE NUMBER and NEXT GROUP clauses for the designated report

group type. Consequently, for the purpose of identifying the set of

presentation rules that apply to a particular combination of LINE NUMBER and

NEXT GROUP clauses, a presentation rules table is read from left to right, along

the selected row.

The applicable rules columns of a presentation rules table are partitioned

into two parts. The first part specifies the rules that apply if the report

description contains a PAGE clause, and the second part specifies the rules that

apply if the PAGE clause is omitted. The purpose of the rules named in the

applicable rules columns is discussed below:

(1) Upper limit rules and lower limit rules:

These rules specify the vertical subdivisions of the page within which

the specified report group may be represented.

In the absence of a PAGE clause the printed report is not considered to

be partitioned into vertical subdivisions. Consequently, within the tables no

upper limit rule or lower limit rule is specified for a report description in

which the PAGE clause is omitted.

(2) Fit test rules:

The fit test rules are applicable only to body groups, and hence fit

test rules are specified only within the body group presentation rules table.

At object time the report writer control system (RWCS) applies the fit test

rules to determine whether the designated body group can be presented on the

page to which the report is currently positioned.

However, even for body groups there are no fit test rules when the PAGE

clause is omitted from the report description entry.

XI11-24

Report Writer - Presentation Rules Tables

(3) First print line position rules:

The first print line position rules specify where on the report medium

the report writer control system (RWCS) shall present the first print line of

the given report group.

The presentation rules tables do not specify where on the report medium

the report writer control system (RWCS) shall present the second and subsequent

print lines (if any) of a report group. Certain general rules determine where

the second and subsequent print lines of a report group shall be presented.

Refer to the LINE NUMBER clause general rules for this information. (See page

XI11-46, The LINE NUMBER Clause.)

(4) Next group rules:

The next group rules relate to the proper use of the NEXT GROUP clause.

(5) Final LINE-COUNTER setting rules:

The terminal values that the report writer control system (RWCS) places

in LINE-COUNTER after presenting report groups are specified by the final

LINE-COUNTER setting rules.

3.10.3 LINE NUMBER Clause Notation

Column 1 of the presentation rules table uses a shorthand notation to

describe the sequence of LINE NUMBER clauses that may appear in the description

of a report group. The meaning of the abbreviations used in column 1 is as

fo1lows:

(1) The letter 'A' represents one or more absolute LINE NUMBER clauses, none

of which has the NEXT PAGE phrase, that appear in consecutive order within the

sequence of LINE NUMBER clauses in the report group description entry.

(2) The letter 'R1 represents one or more relative LINE NUMBER clauses that

appear in consecutive order within the sequence of LINE NUMBER clauses in the

report group description entry.

(3) The letters 1NP1 represent one or more absolute LINE NUMBER clauses that

appear in consecutive order within the sequence of LINE NUMBER clauses in the

report group description entry with the phrase NEXT PAGE appearing in the first

and only in the first LINE NUMBER clause.

When two abbreviations appear together, they refer to a sequence of LINE

NUMBER clauses that consists of the two specified consecutive sequences. For

example 'A R' refers to a report group description entry within which the 'A'

sequence (defined in rule 1 above) is immediately followed by the 'R' sequence

(defined in rule 2 above.)

XI11-25

Report Writer - Presentation Rules Tables

3.10.4 LINE NUMBER Clause Sequence Substitutions

Where 'A R' is shown to be a permissible sequence in the presentation rules

table, 'A' is also permissible and the same presentation rules are applicable.

Where 1NP R' is shown to be a permissible sequence in the presentation rules

table, 'NP1 is also permissible and the same presentation rules are applicable.

3.10.5 Saved Next Group Integer Description

Saved next group integer is a data item that is addressable only by the

report writer control system (RWCS). When an absolute NEXT GROUP clause

specifies a vertical positioning value which cannot be accommodated on the

current page, the RWCS stores that value in saved next group integer. After

page advance processing, the RWCS positions the next body group using the value

stored in saved next group integer.

XII1-26

Report Writer - Report Heading Group Presentation Rules

3.10.6 Report Heading Group Presentation Rules

Table 1 on page XIII-28 points to the appropriate presentation rules for all

permissible combinations of LINE NUMBER and NEXT GROUP clauses in a report

heading report group. The report heading group presentation rules are as

fo1lows:

(1) Upper limit rule:

The first line number on which the report heading report group can be

presented is the line number specified by the HEADING phrase of the PAGE clause.

(2) Lower limit rules:

a. The last line number on which the report heading report group can be

presented is the line number that is obtained by subtracting 1 from the value of

integer-3 of the FIRST DETAIL phrase of the PAGE clause.

b. The last line number on which the report heading report group can be

presented is the line number specified by integer-1 of the PAGE clause.

(3) First print line position rules:

a. The first print line of the report heading report group is presented

on the line number specified by the integer of its LINE NUMBER clause.

b. The first print line of the report heading report group is presented

on the line number obtained by adding the integer of the first LINE NUMBER

clause and the value obtained by subtracting 1 from the value of integer-2 of

the HEADING phrase of the PAGE clause.

c. The report heading report group is not presented.

d. The first print line of the

on the line number obtained by adding

case, zero) to the integer of the first

report heading report group is presented

the content of its LINE-COUNTER (in this

LINE NUMBER clause.

(4) Next group- rules:

a. The NEXT GROUP integer must be greater than the line number on which

the final print line of the report heading report group is presented. In

addition, the NEXT GROUP integer must be less than the line number specified by

the value of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the

final print line of the report heading report group is presented must be less

than the value of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

c. NEXT GROUP NEXT PAGE signifies that the report heading report group

is to be presented entirely by itself on the first page of the report. The

report writer control system (RWCS) processes no other report group while

positioned to the first page of the report.

XI11-27

Report Writer - Report Heading Group Presentation Rules

Table 1: Report Heading Group Presentation Rules Table

+ + + + t t
pi pc d d d d d d

cu H d o o o o o o

CA 1—1 1 H *H •H •H •H •H •H •H
cu 3 til w z; 4J 4-> 4-1 4-J 4-> 4-1 40 4-» Td

ctf Jd ^ 1=0 44 cd d cd cd cd L/O cd LO LO

rH "d •H M O CU d d d d d d
o cu h k1 u W •H •H •H •H •H •H

4-> 40 40 4= -Q pc 40

W 4-1 £ £ 6 £ £ 6
C 1 .r-1 o o o o o o

<3 £ a o u u u o
CP o d

o i—1 \—1 r-H 1—i i—1 1—1
CU CO •H cd d cd cd cd cd
r~! *J 44 4-1 00 00 00 00 00 "0 00 od o

J-J 01 fl 0) 'H cu cu cu cu cu CO cu co CO

M -H d in 1—1 I-1 1—1 1—1 1—1 1—1

44 •HP1 -H O 1—1 rH 1—1 1—1 1—1 1—1

M pu Pu i-J Pu H H M M l—l H

J4'

pi oo
w c

tf) i—1 1 EH *H
od cu <u tS W Z 44 cd -Q CJ GJ cd 40 a

d is to 4-) LO LT) ln LO L/O L/O LO LO LO

d •H H O <U
Pi Pu i-4 CJ co

0) id
0)

4= •rH
Cu

o •H 4-4 3
•H o X O cd ra o cd JO o

cu CU H <3- <T <T <1*
Cu CU IS O
CU
C

CO
•H

d
cu o
if) •H
p 44 -U 4-4
Gj CO d CU -H cd cd d cd X X 4= 40 o

Pi -H d CO CO cn co CO CO CO CO CO CO

cj •H H *H O
pc-i CH H P-i

w
o
<3
Pu

P4 4-4
a) CU -H

4d 3 £ cd cd PC cd cd cd X cd
4-) O *H CN CN CN CN CN CN CN CN

M-4
M

U
p

p
e
r

L
i
m

i
t

t—1 i—i r—1 i—H i l t—/ t—i i—1

Pu
d> w w
o cu CU (U o cu cu o
Pi co 4-) > <3 4-> > <3
o d d •H Pu d •H Pu

cti rH 4-) i—1 4-1

H i—1 o cd H o cd H

X O CO rH X CO 1—1 XI
w pc CU W pc cu W

s <3 pi IS <3 Pi IS

mh Pi
o W -K

PP CO
CU S cu
O p CO
d is d
cu cd
d W X

pi pi Pi pi

<3 <3 <3 <3 Pi Pi pi ci
cr is a
CU 1-4

CO h4

CA CU CO
cu •H 4= d

4= 4-1 cd
4-1 0) i—i

CO 4-1 CJ
4-1 p O
O cd Pu

\—i CU to
d o CJ o
o d Pi

•H "O cu O
4-1 cu if)
0-4 £ 40 H

•H cd cd X
U C w
O <u IS
(fi cu 4=
a) • 4—1 Td

od 4-» X d
Pi if) cd

cd 4-1 4-4 CU
cd d 44 Pi

u & cu cd H
o 4-1 CJ PP

lh d •H S
CO o "d d5

r. cu •H d IS
0 4-1 4-4 *H
o cd CU w

•H o •H d IS
4-1 •H Pi £ H
cd ra O d i-d •
4-1 a CO rH cu
o •H CU o 44 CO

13 od CJ O d
CN cd

a> cu co d i—i
co £ d CU o o
3 £ o 1—1 •H
cd P Pi d 44 pi

i—i r—1 00 Pi cd H
o • o d PP

t—i a 4-1 CU •H x
pi Pi 1—1 40 5
w d p4 O 40 £ Z
PP £ o CU cd o
S d CU a CJ w
►ID i—1 t—1 Pi •H s
IS o i—1 d M

o d CU CU <u kP
w 6 -d CU >
S d d 4-4 cd •H cu
1—1 "H i—1 00 4=
X o £ d H

. 'd CJ o cd cu
- cu p4 4d r.

LO if) d 4-1 d 44 ud
cn d •H •H <r

i 4J Pi i
M CO X d X o H
m d u CU Pi 44 1—1
M O 4-1 in 44 M
X -H c 4= d CU X

4-1 a) cd cu i—1
cu cd d a)
00 *H X -X p4 00
CO > cd r-H d cd
pu CU cd i—1 cd nd cu

p4 rH cd i—i cu
CU 40 i-O 4-4 40 £ a)
CU X) o cd cu

cn d 4-4 <3 d cn

*JC -x +
-2< -:c

XIII-28

+
+

S
e
e

p
a
g
e

X

I
I
I
-
4
8
,

T
h

e

N
E

X
T

G
R

O
U

P

C
la

u
s
e
.

Report Writer - Report Heading Group Presentation Rules

(5) Final LINE-COUNTER setting rules:

a. After the report heading report group is presented, the report

writer control system (RWCS) places the NEXT GROUP integer into LINE-COUNTER as

the final LINE-COUNTER setting.

b. After the report heading report group is presented, the report

writer control system (RWCS) places the sum of the NEXT GROUP integer and the

line number on which the final print line of the report heading report group was

presented into LINE-COUNTER as the final LINE-COUNTER setting.

c. After the report heading report group is presented, the report

writer control system (RWCS) places zero into LINE-COUNTER as the final

LINE-COUNTER setting.

d. After the report heading report group is presented, the final

LINE-COUNTER setting is the line number on which the final print line of the

report heading report group was presented.

e. LINE-COUNTER is unaffected by the processing of a nonprintable

report group.

XIII-29

Report Writer - Page Heading Group Presentation Rules

3.10.7 Page Heading Group Presentation Rules

Table 2 shown below points to the appropriate presentation rules for all

permissible combinations of LINE NUMBER and NEXT GROUP clauses in a page heading

report group.

Applicable Rules ***

If the PAGE clause is specified ****

Sequence of

LINE NUMBER

clauses*

NEXT GROUP

clause

Upper

Limit

Lower

Limit

First Print

Line Position

Next

Group

Final

LINE-COUNTER

Setting

A R 1 2 3a 4a

R 1 2 3b 4a

3c 4b

Table 2: Page Heading Group Presentation Rules Table

* See page XIII-25, LINE NUMBER Clause Notation, for a description

of the abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named

clause is totally absent from the report group description entry.

*** A blank entry in an applicable rules column indicates the absence

of the named rule for the given combination of LINE NUMBER and

NEXT GROUP clauses.

**** if the PAGE clause is omitted from the report description entry,

then a page heading report group may not be defined. (See page

XIII-55, The TYPE Clause.)

The page heading group presentation rules are as follows:

(1) Upper limit rule:

If a report heading report group has been presented on the page on which

the page heading report group is to be presented, then the first line number on

which the page heading report group can be presented is one greater than the

final LINE-COUNTER setting established by the report heading.

Otherwise the first line number on which the page heading report group

can be presented is the line number specified by the HEADING phrase of the PAGE

clause.

XIII-30

Report Writer - Page Heading Group Presentation Rules

(2) Lower limit rule:

The last line number on which the page heading report group can be

presented is the line number that is obtained by subtracting one from the value

of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

(3) First print line position rules:

a. The first print line of the page heading report group is presented

on the line number specified by the integer of its LINE NUMBER clause.

b. If a report heading report group has been presented on the page on

which the page heading report group is to be presented, then the sum of the

final LINE-COUNTER setting established by the report heading report group and

the integer of the first LINE NUMBER clause of the page heading report group

defines the line number on which the first print line of the page heading report

group is presented.

Otherwise the sum of the integer of the first LINE NUMBER clause of

the page heading report group and the value obtained by subtracting one from the

value of integer-2 of the HEADING phrase of the PAGE clause defines the line

number on which the first print line of the page heading report group is

presented.

c. The page heading report group is not presented.

(4) Final LINE-COUNTER setting rules:

a. The final LINE-COUNTER setting is the line number on which the final

print line of the page heading report group was presented.

b. LINE-COUNTER is unaffected by the processing of a nonprintable

report group.

XIII-31

Report Writer - Body Group Presentation Rules

3.10.8 Body Group Presentation Rules

Table 3 on page XIII-33 points to the appropriate presentation rules for all

permissible combinations of LINE NUMBER and NEXT GROUP clauses in control

heading, detail, and control footing report groups. The body group presentation

rules are as follows:

(1) Upper limit rule:

The first line number on which a body group can be presented is the line

number specified by the FIRST DETAIL phrase of the PAGE clause.

(2) Lower limit rules:

The last line number on which a control heading report group or detail

report group can be presented is the line number specified by the LAST DETAIL

phrase of the PAGE clause.

The last line number on which a control footing report group can be

presented is the line number specified by the FOOTING phrase of the PAGE clause.

(3) Fit test rules:

a. If the value in LINE-COUNTER is less than the integer of the first

absolute LINE NUMBER clause, then the body group shall be presented on the page

to which the report is currently positioned.

Otherwise the report writer control system (RWCS) executes page

advance processing. After the page heading report group (if defined) has been

processed, the RWCS determines whether the saved next group integer location was

set when the final body group was presented on the preceding page. (See final

LINE-COUNTER setting rule 6a on page XIII-35.) If saved next group integer was

not so set, the body group shall be presented on the page to which the report is

currently positioned. If saved next group integer was so set, the RWCS moves

the saved next group integer into LINE-COUNTER, resets saved next group integer

to zero, and reapplies fit test rule 3a.

b. If a body group has been presented on the page to which the report

is currently positioned, the RWCS computes a trial sum in a work location. The

trial sum is computed by adding the content of LINE-COUNTER to the integers of

all LINE NUMBER clauses of the report group. If the trial sum is not greater

than the body group's lower limit integer, then the report group is presented on

the current page. If the trial sum exceeds the body group's lower limit

integer, then the RWCS executes page advance processing. After the page heading

report group (if defined) has been processed, the RWCS reapplies fit test rule

3b.

If no body group has yet been presented on the page to which the

report is currently positioned, the RWCS determines whether the saved next group

integer location was set when the final body group was presented on the

preceding page. (See final LINE-COUNTER setting rule 6a on page XIII-35.)

If saved next group integer was not so set, the body group shall be

presented on the page to which the report is currently positioned.

XIII-32

Report Writer Body Group Presentation Rules

Table 3: Body Group Presentation Rules

+ + + +

-H
-

+
+

 + + + +
Pi 00 3 3 3 3 3 c 3 3 3 3

3 w c O O O O O o O O O O
co H 1 E—* *H •H •H •H •H •H •H •H •H •H •H

X cd W 2 3 4-J 4-> 4-J 4-J 4-J 44 44 X3 44 44 44 44 3
x c 2 D u cd cd cd cd cd v£> cd LO cd X X X MD

!—1 * •H l—1 O CD 3 3 3 3 3 3 3 3 3 3
3 ID (H 3 U CO •H •H •H •H •H •H •H •H •H •H

0) X X 32 32 3 32 32 32 32 32
Cd 3
O 3

B B B B B B 6 B B B

<d *h
P^ B 3

u u CD u o u O U CJ u

o O rH *H H H rH H H H rH H
CD •H cd cd cd cd cd cd X X X X
2 CO 4-J 4-J 44 00 oo OO oo oo XJ oo X) 00 00 oo 00 CJ
4-) *H C/D C CD 2 CD CD CD CD 3 3 3 3 3 3 ht

3 •H C CO rH rH H H rH H rH H rH H
4-1 •H 3 2 O i—1 rH r—1 <—1 t—1 H H H rH H
M Pl CD 3 CD M H H H M M H H M H

-K Pi oo
Cd C

-V rH 1 H 2
cd Cd 2 X cd 3D CJ U cd 32 a X3 X 32 U X3 3

CO c 2 D D lO 4P 4P vD MD MP lD VsD vO MP vO MD MP

CD •H M o 3
1-1 fc 3 O CO
3

Pi

CD
r—1 a
2 3 3
X X O LO LO) LO

o CD 3
•H 2 o
rH •

CD X)
CD Cl)
< •H

<4-4 3
•H O
X •H

CD 4-J 4-J 4-J
a CO 3 <D *H cd cd cd cd 32 32 32 32 X X X X a
C/D 3 •H C CO <■ ht <r <r <f <r

•H 3 2 O

e
is

Ph 3 3 3

C/D
4-J

cd 4-J C/D cd cd cd cd 32 32 32 32 CJ a a u
rH •H CD CO CO CO CO CO CO CO CO CO CO CO CO
CJ Ph E-1

w
O
<c
P-. X 4-J

CD *H
CD s e 04 CM On] CM CN 04 CM 04 04 04 04 04

X O 2
44 2 2

<4-4
M

U
p

p
e
r

L
im

it

- r*H i—H - i—(i-4 - r—1 - - - i—4

Ph
3) w Cd 2
O CD CD x o (D 3 O 3 3 O
Pi CO 4-J > c 4-J > < 44 > <
O 3 3 •H P-. 3 •X PL X •H PL

cd rH 4J r—1 4-J H 44
H H o cd H o cd H o X H
X a C/D rH X C/D H X OD H X
w 3 CD Cd 32 3 Cd 32 3 Cd
2 <d Pd 2 < Pd 2 < Pi 2

•)<
-:c

44
o Cd *

P2 CO
CD S CD Pi pc; P^
o 2D (0 pi Pi Pi Ql
3 2 3 PL Pu Ph PL
CD cd <C < < < Pi Pi P^ P^ 2 2 2 2
3 W iH
cr 2 3
<D w

C/1 31

C/D 3 CO
(D •H 32 3

jp 3 3
44 CD i—1

C/D L3 3
M4 X O
O X 2

H 3 2
x CJ CJ O
o 3 Pi

•H XD 3 O
44 CD CO
CL B 32 H

•H X 3 X
X X Cd
a 3 2
OD (D 32
CD rX * 3 T3

X3 44 On 3
U co 3

X 44 4-J 3
X 3 3 Pi

X JP 3 3 Cd
O 44 CJ P2

<44 3 •H *2
CO O "3 2
CD •H 3 2

x 44 -3 •H
O X PD Cd

•H 'J ■H 3 2
44 •H 3 B i—i
X X> 3 3 2 •
44 X CO rH 3

o •H 3 o 2 CO X
:z; "O CJ O 3 CO

04 3 X
CD PD CO 3 i—1 X
C/D X 3 CD O O rH

X B O rH ■3 u
X X 3 3 3 Pi

rH t—1 00 3 3 2 2
O ■ o 3 2 2

■—i 3 3 3 ■H 2 o
X 3 rH 2 2 Pi
Cd X 3 O 32 B 2 o
P2 £ O CL 3 o

X 3 3 3 Ed H
rH r—1 3 •H 2 X

2 o rH 3 M 2
CJ 3 3 a 3 2 2

2 B 32 X- >
2 x 3 3 X •H 3 3
M •H rH 00 2 2
2 o s X H H

XJ CJ o X CD
rt CD 3 rX f' r'

LO OD X ML X 44 MD oo
04 X •H •H <r <r

1 3 X i i
H OD X 3 Po O H 2
M X X 3 X <4—1 H M
H O 44 CO 44 H 1—1

X •H X 32 X CD X X
44 <D 3 CD H

0) X X (D 3
PO •H Hi On Hi X 00 00
X > X rH X X 3
cl (D X H X TD CL a

X H X H <D
CD JP JP 44 JP B X 3
0) ,X o X X 3

C/D X < 44 <2 X C/1 CO

* j' + t
-A +

XIII-33

Report Writer - Body Group Presentation Rules

If saved next group integer was so set, the report writer control

system (RWCS) moves the saved next group integer into LINE-COUNTER, resets saved

next group integer to zero, and computes a trial sum in a work location.

The trial sum is computed by adding the content of LINE-COUNTER to

the integer one and the integers of all but the first LINE NUMBER clause of the

body group. If the trial sum is not greater than the body group's lower limit

integer, then the body group is presented on the current page. If the trial sum

exceeds the body group's lower limit integer, then the RWCS executes page

advance processing. After the page heading report group (if defined) has been

processed, the RWCS presents the body group on that page.

c. If a body group has been presented on the page to which the report

is currently positioned, the report writer control system (RWCS) executes page

advance processing. After the page heading report group (if defined) has been

processed, the RWCS reapplies fit test rule 3c.

If no body group has yet been presented on the page to which the

report is currently positioned, the RWCS determines whether the saved next group

integer location was set when the final body group was presented on the

preceding page. (See final LINE-COUNTER setting rule 6a on page XIII-35.) If

saved next group integer was not so set, the body group shall be presented on

the page to which the report is currently positioned. If saved next group

integer was so set, the RWCS moves the saved next group integer into

LINE-COUNTER and resets saved next group integer to zero. If then the value in

LINE-COUNTER is less than the integer of the first absolute LINE NUMBER clause,

the body group shall be presented on the page to which the report is currently

positioned. Otherwise the RWCS executes page advance processing. After the

page heading report group (if defined) has been processed, the RWCS presents the

body group on that page.

(4) First print line position rules:

a. The first print line of the body group is presented on the line

number specified by the integer of its LINE NUMBER clause.

b. If the value in LINE-COUNTER is equal to or greater than the line

number specified by the FIRST DETAIL phrase of the PAGE clause, and if no body

group has previously been presented on the page to which the report is currently

positioned, then the first print line of the current body group is presented on

the line immediately following the line indicated by the value contained in

LINE-COUNTER.

If the value in LINE-COUNTER is equal to or greater than the line

number specified by the FIRST DETAIL phrase of the PAGE clause, and if a body

group has previously been presented on the page to which the report is currently

positioned, then the first print line of the current page group is presented on

the line that is obtained by adding the content of LINE-COUNTER and the integer

of the first LINE NUMBER clause of the current body group.

If the value in LINE-COUNTER is less than the line number specified

by the FIRST DETAIL phrase of the PAGE clause, then the first printer line of

the body group is presented on the line specified by the FIRST DETAIL phrase.

c. The body group is not presented.

XIII-34

Report Writer - Body Group Presentation Rules

d. The sum of the content of LINE-COUNTER and the integer of the first

LINE NUMBER clause defines the line number on which the first print line is
presented.

(5) Next group rule:

The integer of the absolute NEXT GROUP clause must specify a line number

that is not less than that specified in the FIRST DETAIL phrase of the PAGE

clause, and that is not greater than that specified in the FOOTING phrase of the

PAGE clause.

(6) Final LINE-COUNTER setting rules:

a. If the body group that has just been presented is a control footing

report group and if the control footing report group is not associated with the

highest level at which the report writer control system (RWCS) detected a

control break, then the final LINE-COUNTER setting is the line number on which

the final print line of the control footing report group was presented.

For all other cases the RWCS makes a comparison of the line number

on which the final print line of the body group was presented and the integer of

the NEXT GROUP clause. If the former is less than the latter, then the RWCS

places the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER

setting. If the former is equal to or greater than the latter, then the RWCS

places the line number specified by the FOOTING phrase of the PAGE clause into

LINE-COUNTER as the final LINE-COUNTER setting; in addition the RWCS places the

NEXT GROUP integer into the saved next group integer location.

b. If the body group that has just been presented is a control footing

report group, and if the control footing report group is not associated with the

highest level at which the report writer control system (RWCS) detected a

control break, then the final LINE-COUNTER setting is the line number on which

the final print line of the control footing report group was presented.

For all other cases the RWCS computes a trial sum in a work

location. The trial sum is computed by adding the integer of the NEXT GROUP

clause to the line number on which the final print line of the body group was

presented. If the sum is less than the line number specified by the FOOTING

phrase of the PAGE clause, then the RWCS places that sum into LINE-COUNTER as

the final LINE-COUNTER setting. If the sum is equal to or greater than the line

number specified by the FOOTING phrase of the PAGE clause, then the RWCS places

the line number specified by the FOOTING phrase of the PAGE clause into

LINE-COUNTER as the final LINE-COUNTER setting.

c. If the body group that has just been presented is a control footing

report group, and if the control footing report group is not associated with the

highest level at which the report writer control system (RWCS) detected a

control break, then the final LINE-COUNTER setting is the line number on which

the final print line of the control footing report group was presented.

For all other cases the RWCS places the line number specified by the

FOOTING phrase of the PAGE clause into LINE-COUNTER as the final LINE-COUNTER

setting.

XIII-35

Report Writer - Body Group Presentation Rules

d. The final LINE-COUNTER setting is the line number on which the final

print line of the body group was presented.

e. LINE-COUNTER is unaffected by the processing of a nonprintable body

group.

f. If the body group that has just been presented is a control footing

report group, and if the control footing report group is not associated with the

highest level at which the report writer control system (RWCS) detected a

control break, then the final LINE-COUNTER setting is the line number on which

the final print line of the control footing report group was presented.

For all other cases the RWCS places the sum of the line number on

which the final print line was presented and the NEXT GROUP integer into

LINE-COUNTER as the final LINE-COUNTER setting.

XIII-36

Report Writer - Page Footing Presentation Rules

3.10.9 Page Footing Presentation Rules

Table 4 shown below points to the appropriate presentation rules for all

permissible combinations of LINE NUMBER and NEXT GROUP clauses in a page footing

report group.

**
Applicable Rules ***

If the PAGE clause is specified ****

Sequence of

LINE NUMBER

clauses*

NEXT GROUP

clause

Upper

Limit

Lower

Limit

First Print

Line Position

Next

Group

Final

LINE-COUNTER

Setting

A R Absolute 1 2 3a 4a 5a

A R Relative 1 2 3a 4b 5b

A R 1 2 3a 5c

3b 5d

Table 4: Page Footing Presentation Rules Table

* See page XIII-25, LINE NUMBER Clause Notation, for a description

of the abbreviations used in column 1.

** A blank entry in column 1 or column 2 indicates that the named

clause is totally absent from the report group description entry.

*** A blank entry in an applicable rules column indicates the absence

of the named rule for the given combination of LINE NUMBER and

NEXT GROUP clauses.

**** If the PAGE clause is omitted from the report description entry,

then a page footing report group may not be defined. (See page

XIII-55, The TYPE Clause.)

The page footing presentation rules are as follows:

(1) Upper limit rule:

The first line number on which the page footing report group can be

presented is the line number obtained by adding one to the value of integer-5 of

the FOOTING phrase of the PAGE clause.

(2) Lower limit rule:

The last line number on which the page footing report group can be

presented is the line number specified by integer-1 of the PAGE clause.

XIII-37

Report Writer - Page Footing Presentation Rules

(3) First print line position rules:

a. The first print line of the page footing report group is presented

on the line specified by the integer of its LINE NUMBER clause.

b. The page footing report group is not presented.

(4) Next group rules:

a. The NEXT GROUP integer must be greater than the line number on which

the final print line of the page footing report group is presented. In

addition, the NEXT GROUP integer must not be greater than the line number

specified by integer-1 of the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the

final print line of the page footing report group is presented must not be

greater than the line number specified by integer-1 of the PAGE clause.

(5) Final LINE-COUNTER setting rules:

a. After the page footing report group is presented, the report writer

control system (RWCS) places the NEXT GROUP integer into LINE-COUNTER as the

final LINE-COUNTER setting.

b. After the page footing report group is presented, the RWCS places

the sum of the NEXT GROUP integer and the line number on which the final print

line of the page footing report group was presented into LINE-COUNTER as the

final LINE-COUNTER setting.

c. After the page footing report group is presented, the final

LINE-COUNTER setting is the line number on which the final print line of the

page footing report group was presented.

d. LINE-COUNTER is unaffected by the processing of a nonprintable

report group.

XIII-38

Report Writer - Report Footing Presentation Rules

3.10.10 Report Footing Presentation Rules

Table 5 on page XIII-40 points to the appropriate presentation rules for all

permissible combinations of LINE NUMBER and NEXT GROUP clause in a report

footing report group. The report footing presentation rules are as follows:

(1) Upper limit rules:

a. If a page footing report group has been presented on the page to

which the report is currently positioned, then the first line number on which

the report footing report group can be presented is one greater than the final

LINE-COUNTER setting established by the page footing report group.

Otherwise the first line number on which the report footing report

group can be presented is the last line number obtained by adding one and the

value of integer-5 of the PAGE clause.

b. The first line number on which the report footing report group can

be presented, is the line number specified by the HEADING phrase of the PAGE

clause.

(2) Lower limit rule:

The last line number on which the report footing report group can be

presented is the line number specified by integer-1 of the PAGE clause.

(3) First print line position rules:

a. The first print line of the report footing report group is presented

on the line specified by the integer of its LINE NUMBER clause.

b. If a page footing report group has been presented on the page to

which the report is currently positioned, then the sum of the final LINE-COUNTER

setting established by the page footing report group and the integer of the

first LINE NUMBER clause of the report footing report group defines the line

number on which the first print line of the report footing report group is

presented. Otherwise the sum of the integer of the first LINE NUMBER clause of

the report footing report group, and the line number specified by the value of

integer-5 of the FOOTING phrase of the PAGE clause defines the line number on

which the first print line of the report footing report group is presented.

c. The NEXT PAGE phrase in the first absolute LINE NUMBER clause

directs that the report footing report group is presented on a page on which no

other report group has been presented. The first print line of the report

footing report group is presented on the line number specified by the integer of

its LINE NUMBER clause.

d. The sum of the content of LINE-COUNTER and the integer of the first

LINE NUMBER clause defines the line number on which the first print line is
presented.

e. The report footing report group is not presented.

XIII-39

Report Writer Report Footing Presentation Rules

Table 5: Report Footing Presentation Rules

Pi bO
+ +

d d
a) W c o o
cn i—1 1 E—i *i—1 •H •H
^ • cfl W p 4-1 4-» cd 4-J 43
cfl d d IS d> 4-4 cd cd

i—1 CL) •H M O CD d d
CJ 4-1 h ,4 O W •H •H

4-) 43 jp
H *H E E
CJ E o o
<3 O
Pm d

cj cj

CD o l—1 i—1
d) *H •H cd cd

43 4-14-1 4-1 bO "d b0 D
•U CD d CD *H D CO D CO

d *h d cd rH 1-1
4-4 •H H *H O rH rH
M P-H hJ P-H H H

Pi bO
H d

i—1 1 E—1 *!—1
Cfl cfl W p 4J cd cO cd 43
d d IS CD 4-1

1—1 •H M o CD
d C 4 O M

cd •

D 0)
1—1 •H
43 4-4 CM

c •H 4-4 3
o Cl X O

•H D D d
rH PM IS CJ
pm ca
PM
C Cfl

•H
a

CD o
CA •H
3 4-14-1 4-1
d CD d D *H cd 43 o D

\—1 44 *H d CD CO CO CO CO
o •H H *H O

^ Ph h! Ah
w
o
<£
PM

H 4-J
CD D -H

43 s s CNl CN CN
4-) O *H

hJ hJ
4-1
H

H 4-J
d) *H
a 6 cd cd 43
44 -H

P3 i-J
«—i i—i 1—1

PM
P
O D
Pi cd
o d

cd
EH rH
X! o
w
IS

* 4H Pi
O W 4C

P3 CD
DSD
o d in Pi
d is d
D CO

Pi
Cd

d w i—i
cfl S o
D H

<3 pi is

co i-4

CD D CD
D ■H 43 d

43 4-1 cfl
4-1 D i—i

CD 4M CJ
4-4 d O
O cfl Pm

rH D P3
d CJ a O
o d Pi

•H d D CJ
4-1 D CD
PM 6 43 H

•H cfl Cfl X
d d W
CJ D IS
CD D jd
D 43 • 4-1 d
d 4-1 kN d

d CD cfl
cfl 4-1 4-4 D

cfl d 4-J cd
d 44 D cfl w
O 4-4 CJ pp

4M d •H S
CD o d P3

- D •H d S
d 4-1 4-1 •H
o cfl PM w

•H CJ •H d s
4-4 •H d E H
cO d CJ d dl •
4-1 d CD i—i D
O •H D o Cd CD
is rd CJ O d

CN cfl
D PM CD d i—i
CD d d D o CJ
d £ o i—1 •H
cfl d d d 4-4 cd

i—i i—i bO d Cfl Cd
CJ • o d P3

r—1 a 4-1 D •H s
Pi d T-1 43 pH
Cd C d O 43 E S
PQ E o Cd cfl o
X d D CJ o W
P3 rH n—1 d •H Is
IS O i—1 d H

o d D PM D hJ
Cd E 43 PM >
is d d 4-1 Cfl •H D
HH *H r—1 bO 43

o E d H
d a O cfl D

•v D d 43
LD CD d 4M d 4-1 vO
CN d *H •H ■sf

1 4-4 d 1
M CD x d X o H
i—1 d d D d CH M
M o 4-1 CD 4-1 M
X -H d -a d D X

4-4 D cfl D i—1
D cfl d D
bfi -H 44 X 44 d bO
cfl > d <—I d cfl
C4 D cfl i—l cfl d PM

d i—1 cfl 1—1 D
D 43 43 4-1 43 E D
D 43 o cfl D

Cd Cfl <3 4-1 <3 d CO

+
-!<

XII1-40

Report Writer - Report Footing Presentation Rules

(4) Final LINE-COUNTER setting rules:

a. The final LINE-COUNTER setting is the line number on wh

print line of the report footing report group is presented.

b. LINE-COUNTER is unaffected by the processing of a

report group.

ch the final

nonprintable

XIII-41

Report Writer - COLUMN NUMBER

3.11 THE COLUMN NUMBER CLAUSE

3.11.1 Function

The COLUMN NUMBER clause identifies a printable item and specifies the

position of the item on a print line.

3.11.2 General Format

COLUMN NUMBER IS integer-1

3.11.3 Syntax Rules

(1) The COLUMN NUMBER clause can be specified only at the elementary level

within a report group. The COLUMN NUMBER clause, if present, must appear in or

be subordinate to an entry that contains a LINE NUMBER clause.

(2) Within a given print line, the printable items must be defined in

ascending column number order such that each printable item defined occupies a

unique sequence of contiguous character positions.

3.11.4 General Rules

(1) The COLUMN NUMBER clause indicates that the object of a SOURCE clause or

the object of a VALUE clause or the sum counter defined by a SUM clause is to be

presented on the print line. The absence of a COLUMN NUMBER clause indicates

that the entry is not to be presented on a print line.

(2) Integer-1 specifies the column number of the leftmost character position

of the printable item.

(3) The report writer control system (RWCS) supplies space characters for

all positions of a print line that are not occupied by printable items.

(4) The leftmost position of the print line is considered to be column

number 1.

XIII-42

Report Writer - Data-Name

3.12 THE DATA-NAME CLAUSE

3.12.1 Function

A data-name specifies the name of the data item being described.

3.12.2 General Format

data-name-1

3.12.3 Syntax Rules

(1) In the Report Section data-name-1 need not appear in a data description

entry.

3.12.4 General Rules

(1) In the Report Section, data-name-1 must be given in the following cases:

a. When data-name-1 represents a report group to be referred to by a

GENERATE or a USE statement in the Procedure Division.

b. When reference is to be made to the sum counter in the Procedure

Division or Report Section.

c. When a detail report group is referenced in the UPON phrase of the

SUM clause.

d. When data-name-1 is required to provide sum counter qualification.

XIII-43

Report Writer - GROUP INDICATE

3.13 THE GROUP INDICATE CLAUSE

3.13.1 Function

The GROUP INDICATE clause specifies that the associated printable item is

presented only on the first occurrence of its report group after a control break

or page advance.

3.13.2 General Format

GROUP INDICATE

3.13.3 Syntax Rules

(1) The GROUP INDICATE clause must only be specified in a detail report

group entry that defines a printable item.

3.13.4 General Rules

(1) If a GROUP INDICATE clause is specified, it causes the SOURCE or VALUE

clause to be ignored and spaces supplied, except:

a. On the first presentation of the detail report group in the report,

or

b. On the first presentation of the detail report group after every

page advance, or

c. On the first presentation of the detail report group after every

control break.

(2) If the report description entry specifies neither a PAGE clause nor a

CONTROL clause, then a GROUP INDICATE printable item is presented the first time

its detail is presented after the INITIATE statement is executed. Thereafter

spaces are supplied for indicated items with SOURCE or VALUE clauses.

XII1-44

Report Writer - Level-Number

3.14 LEVEL-NUMBER

3.14.1 Function

The level-number indicates the position of a data item withi

hierarchical structure of a report group.

3.14.2 General Format

level-number

3.14.3 Syntax Rules

(1) A level-number is required as the first element in each data desc:

entry.

(2) Data description entries subordinate to an RD entry must

level-numbers 01 through 49 only.

3.14.4 General Rules

(1) The level-number 01 identifies the first entry in a report group.

(2) Multiple level 01 entries subordinate to a report description

having the level indicator RD do not represent implicit redefinitions

same area.

the

iption

have

entry

of the

XIII-45

Report Writer - LINE NUMBER

3.15 THE LINE NUMBER CLAUSE

3.15.1 Function

The LINE NUMBER clause specifies vertical positioning information for its

report group.

3.15.2 General Format

LINE NUMBER IS ^°N PAGE] |
-)PLUS integer-2 (

3.15.3 Syntax Rules

(1) Integer-1 and integer-2 must not exceed three significant digits in

length.

Neither integer-1 nor integer-2 may be specified in such a way as to

cause any line of a report group to be presented outside the vertical

subdivision of the page designated for that report group type, as defined by the

PAGE clause. (See page XIII-17, The PAGE Clause.)

Integer-2 may be zero.

(2) Within a given report group description entry, an entry that contains a

LINE NUMBER clause must not contain a subordinate entry that also contains a

LINE NUMBER clause.

(3) Within a given report group description entry, all absolute LINE NUMBER

clauses must precede all relative LINE NUMBER clauses.

(4) Within a given report group description entry, successive absolute LINE

NUMBER clauses must specify integers that are in ascending order. The integers

need not be consecutive.

(5) If the PAGE clause is omitted from a given report description entry,

only relative LINE NUMBER clauses may be specified in any report group

description entry within that report.

(6) Within a given report group description entry a NEXT PAGE phrase may

appear only once and, if present, must be in the first LINE NUMBER clause in

that report group description entry.

(7) A LINE NUMBER clause with the NEXT PAGE phrase may appear only in the

description of body groups and in a report footing report group.

(8) Every entry that defines a printable item (see page XIII-42, The COLUMN

NUMBER Clause) must either contain a LINE NUMBER clause, or be subordinate to an

entry that contains a LINE NUMBER clause.

(9) The first LINE NUMBER clause specified within a PAGE FOOTING report

group must be an absolute LINE NUMBER clause.

XII1-46

Report Writer - LINE NUMBER

3.15.4 General Rules

(1) A LINE NUMBER clause must be specified to establish each print line of a

report group.

(2) The report writer control system (RWCS) effects the vertical positioning

specified by a LINE NUMBER clause, before presenting the print line established

by that LINE NUMBER clause.

(3) Integer-1 specifies an absolute line number. An absolute line number

specifies the line number on which the print line is presented.

(4) Integer-2 specifies a relative line number. If a relative LINE NUMBER

clause is not the first LINE NUMBER clause in the report group description

entry, then the line number on which its print line is presented is determined

by calculating the sum of the line number on which the previous print line of

the report group was presented and integer-2 of the relative LINE NUMBER clause.

If integer-2 is zero, the line will be printed on the same line as the previous

print line.

If a relative LINE NUMBER clause is the first LINE NUMBER clause in the

report group description entry, then the line number on which its print line is

presented is determined by specified rules. (See page XIII-24, Presentation

Rules Tables .)

(5) The NEXT PAGE phrase specifies that

beginning on the indicated line number

Presentation Rules Tables.)

the report group

on a new page.

is to be presented

(See page XIII-24,

XI11-47

Report Writer - NEXT GROUP

3.16 THE NEXT GROUP CLAUSE

3.16.1 Function

The NEXT GROUP clause specifies information for vertical positioning of a

page following the presentation of the last line of a report group.

3.16.2 General Format

1 integer-1

NEXT GROUP IS / PLUS integer-2

(NEXT PAGE

3.16.3 Syntax Rules

(1) A report group entry must not contain a NEXT GROUP clause unless the

description of that report group contains at least one LINE NUMBER clause.

(2) Integer-1 and integer-2 must not exceed three significant digits in

length.

(3) If the PAGE clause is omitted from the report description entry only a

relative NEXT GROUP clause may be specified in any report group description

entry within that report.

(4) The NEXT PAGE phrase of the NEXT GROUP clause must not be specified in a

page footing report group.

(5) The NEXT GROUP clause must not be specified in a report footing report

group or in a page heading report group.

3.16.4 General Rules

(1) Any positioning of the page specified by the NEXT GROUP clause takes

place after the presentation of the report group in which the clause appears.

(See page XIII-24, Presentation Rules Tables.)

(2) The report writer control system uses the vertical positioning

information supplied by the NEXT GROUP clause along with information from the

TYPE and PAGE clauses, and the value in LINE-COUNTER, to determine a new value

for LINE-COUNTER. (See page XIII-24, Presentation Rules Tables.)

(3) The NEXT GROUP clause is ignored by the report writer control system

when it is specified on a control footing report group that is at a level other

than the highest level at which a control break is detected.

(4) The NEXT GROUP clause of a body group refers to the next body group to

be presented, and therefore can affect the location at which the next body group

is presented. The NEXT GROUP clause of a report heading report group can affect

the location at which the page heading report group is presented. The NEXT

GROUP clause of a page footing report group can affect the location at which the

report footing report group is presented. (See page XIII-24, Presentation Rules

Tables .)

XII1-48

Report Writer - SIGN

3.17 THE SIGN CLAUSE

3.17.1 Function

The SIGN clause specifies the position and the mode of representation of the

operational sign when it is necessary to describe these properties explicitly.

3.17.2 General Format

[SIGN IS] TRAILING f" SEPARATE CHARACTER

3.17.3 Syntax Rules

(1) The SIGN clause may be specified only for a numeric data description

entry whose PICTURE contains the character 'S'.

(2) The numeric data description entries to which the SIGN clause applies

must be described, implicitly or explicitly, as USAGE IS DISPLAY.

(3) When the SIGN clause is included in a report group description entry,

the SEPARATE CHARACTER phrase must be specified.

3.17.4 General Rules

(1) The optional SIGN clause, if present, specifies the position and the

mode of representation of the operational sign for the numeric data description

entry to which it applies. The SIGN clause applies only to numeric data

description entries whose PICTURE contains the character 'S'; the 'S' indicates

the presence of, but neither the representation nor, necessarily, the position

of the operational sign.

(2) A numeric data description entry whose PICTURE contains the character

'S', but to which no optional SIGN clause applies, has an operational sign, but

neither the representation nor, necessarily, the position of the operational

sign is specified by the character 'S'. In this (default) case, the implementor

will define the position and representation of the operational sign. General

rule 3 does not apply to such signed numeric data items .

(3) Since a SIGN clause in a report group description entry must specify the

SEPARATE CHARACTER phrase, then:

a. The operational sign will be presumed to be the leading (or,

respectively, trailing) character position of the elementary numeric data item;

this character position is not a digit position.

b. The letter 'S' in a PICTURE character-string is counted in

determining the size of the item (in terms of standard data format characters.)

c. The operational signs for positive and negative are the standard

data format characters '+' and respectively.

XIII-49

Report Writer - SIGN

(4) Every

character 'S'

applies to such

or comparisons,

numeric data description entry whose

is a signed numeric data description

an entry and conversion is necessary for

conversion takes place automatically.

PICTURE contains the

entry. If a SIGN clause

purposes of computation

XIII-50

Report Writer - SOURCE

3.18 THE SOURCE CLAUSE

3.18.1 Function

The SOURCE clause identifies the sending data item that is moved to an

associated printable item defined within a report group description entry.

3.18.2 General Format

SOURCE IS identifier-1

3.18.3 Syntax Rules

(1) Identifier-1 may be defined in any section of the Data Division. If

identifier-1 is a Report Section item it must be a:

a. PAGE-COUNTER, or

b. LINE-COUNTER, or

c. Sum counter that is part of the report within which the SOURCE

clause appears.

(2) Identifier-1 specifies the sending data item of the implicit MOVE

statement that the report writer control system executes to move the content of

the data item referenced by identifier-1 to the printable item. Identifier-1

must be defined such that it conforms to the rules for sending items in the MOVE

statements. (See page VI-103, The MOVE Statement.)

3.18.4 General Rules

(1) The report

group just prior

Clause .) It is at

SOURCE clauses are

writer control system formats the print lines of a report

to presenting the report group. (See page XIII-55, The TYPE

this time that the implicit MOVE statements specified by

executed by the report writer control system.

XIII-51

Report Writer - SUM

3.19 THE SUM CLAUSE

3.19.1 Function

The SUM clause establishes a sum counter and names the data items to be

summed.

3.19.2 General Format

{SUM {identifier-1} ... [UPON {data-name-1} ...]} ...

IrESET ON /data-name-2
-- |FINAL

3.19.3 Syntax Rules

(1) The data item that is the subject of the report group description entry

in which the SUM clause appears must not be defined as alphabetic. Identifier-1

must reference a numeric data item. If identifier-1 is defined in the Report

Section, identifier-1 must reference a sum counter.

If the UPON phrase is omitted, any identifiers in the associated SUM

clause which are themselves sum counters must be defined either in the same

report group that contains this SUM clause or in a report group which is at a

lower level in the control hierarchy of this report.

If the UPON phrase is specified, any identifiers in the associated SUM

clause must not be sum counters.

(2) Data-name-1 must be the name of a detail report group described in the

same report as the control footing report group in which the SUM clause appears.

Data-name-1 may be qualified by a report-name.

(3) A SUM clause can appear only in the description of a control footing

report group.

(4) Data-name-2 must be one of the data-names specified in the CONTROL

clause for this report. Data-name-2 must not be a lower level control than the

associated control for the report group in which the RESET phrase appears.

FINAL, if specified in the RESET phrase, must also appear in the CONTROL

clause for this report.

(5) The highest permissible qualifier of a sum counter is the report-name.

3.19.4 General Rules

(1) The SUM clause establishes a sum counter. The sum counter is a

compiler-generated numeric data item with an operational sign. The size and

decimal point location of the sum counter depend on the category of the data

item specified by the report group description entry in which the SUM clause is

specified. They are determined as follows:

XIII-52

Report Writer - SUM

a. If the associated data item is numeric, the size and decimal point

location of the sum counter are the same as those of that data item.

b. If the associated data item is numeric edited, the size of the sum

counter is the number of digit positions of that data item and the decimal point
location is the same as that of the associated data item.

c. If the associated data item is alphanumeric or alphanumeric edited,

the size of the sum counter is the size of that data item, excluding any editing

characters, or 18 characters, whichever is smaller, and the sum counter is an

integer.

(2) At object time, the report writer control system adds into the sum

counter the value in each data item referenced by identifier-1. This addition

is consistent with the rules for arithmetic statements. (See page VI-69, The

Arithmetic Statements; and page VI-69, Overlapping Operands.)

(3) Only one sum counter exists for an elementary report entry regardless of

the number of SUM clauses specified in the elementary report entry.

(4) If the elementary report entry for a printable item contains a SUM

clause, the sum counter serves as a source data item. The report writer control

system moves the data contained in the sum counter, according to the rules of

the MOVE statement, to the printable item for presentation.

(5) If a data-name appears as the subject of an elementary report entry that

contains a SUM clause, the data-name is the name of the sum counter; the

data-name is not the name of the printable item that the entry may also define.

(6) It is permissible for Procedure Division statements to alter the

contents of sum counters .

(7) Addition of the values of the data items referenced by identifiers into

sum counters is performed by the report writer control system during the

execution of GENERATE and TERMINATE statements. There are three categories of

sum counter incrementing called subtotalling, cross footing, and rolling forward.

Subtotalling is accomplished only during execution of GENERATE statements and

after any control break processing but before processing of the detail report

group. (See page XIII-66, The GENERATE Statement.) Crossfooting and rolling

forward are accomplished during the processing of control footing report groups.

(See page XIII-55, The TYPE Clause.)

(8) The UPON phrase provides the capability to accomplish selective

subtotalling for the detail report groups named in the phrase.

(9) The report writer control system adds each individual addend into the

sum counter at a time that depends upon the characteristics of the addend.

a. When the addend is a sum counter defined in the same control footing

report group, then the accumulation of that addend into the sum counter is

termed cross footing.

Crossfooting occurs when a control break takes place and at the time

the control footing report group is processed.

XI11-53

Report Writer - SUM

Crossfooting is performed according to the sequence in which sum

counters are defined within the control footing report group. That is, all

crossfooting into the first sum counter defined in the control footing report

group is completed, and then all crossfooting into the second sum counter

defined in the control footing report group is completed. This procedure is

repeated until all crossfooting operations are completed.

When one of the addends is the sum counter defined by the data

description entry in which that SUM clause appears, the initial value of that

sum counter at the time of summation is used in the summing operation.

b. When the addend is a sum counter defined in a lower level control

footing report group, then the accumulation of that addend into the sum counter

is termed rolling forward. A sum counter in a lower level control footing

report group is rolled forward when a control break occurs and at the time that

the lower level control footing report group is processed.

c. When the addend is not a sum counter the accumulation into a sum

counter of such an addend is called subtotalling. If the SUM clause contains

the UPON phrase, the addends are subtotalled when a GENERATE statement for the

designated detail report group is executed. If the SUM clause does not contain

the UPON phrase, the addends which are not sum counters are subtotalled when any

GENERATE data-name statement is executed for the report in which the SUM clause

appears.

(10) If two or more of the identifiers specify the same addend, then the

addend is added into the sum counter as many times as the addend is referenced

in the SUM clause. It is permissible for two or more of the data-names to

specify the same detail report group. When a GENERATE data-name statement for

such a detail report group is given, the incrementing occurs repeatedly, as many

times as data-name appears in the UPON phrase.

(11) The subtotalling that occurs when a GENERATE report-name statement is

executed is discussed in the appropriate paragraph. (See page XIII-66, The

GENERATE Statement.)

(12) In the absence of an explicit RESET phrase, the report writer control

system will set a sum counter to zero at the time that the report writer control

system is processing the control footing report group within which the sum

counter is defined. If an explicit RESET phrase is specified, then the report

writer control system will set the sum counter to zero at the time that the

report writer control system is processing the designated level of the control

hierarchy. (See page XIII-55, The TYPE Clause.)

Sum counters are initially set to zero by the report writer control

system during the execution of the INITIATE statement for the report containing

the sum counter.

XIII-54

Report Writer - TYPE

3.20 THE TYPE CLAUSE

3.20.1 Function

The TYPE clause specifies the particular type of report group that is

described by this entry and indicates the time at which the report group is to

be processed by the report writer control system.

3.20.2 General Format

TYPE IS

r (REPORT HEADING)
<
[RH /

f PAGE HEADING)

i PH f
(CONTROL HEADING) fdata-name-ll

1 CH
/ < FINAL f

< (DETAIL)

(DE j

(CONTROL FOOTING) idata-name-2)

[CF / i FINAL I

J fPAGE FOOTING)

1 PF f
1 fREPORT FOOTING)

i
V

[RF) >

3.20.3 Syntax Rules

(1) RH is an abbreviation

PH is an abbreviation

CH is an abbreviation

DE is an abbreviation

CF is an abbreviation

PF is an abbreviation

RF is an abbreviation

for REPORT HEADING,

for PAGE HEADING,

for CONTROL HEADING

for DETAIL,

for CONTROL FOOTING

for PAGE FOOTING,

for REPORT FOOTING.

(2) Report groups specified by REPORT HEADING, PAGE HEADING, CONTROL HEADING

FINAL, CONTROL FOOTING FINAL, PAGE FOOTING, and REPORT FOOTING may each appear

no more than once in the description of a report.

(3) Page heading and page footing report groups may be specified only if a

PAGE clause is specified in the corresponding report description entry.

(4) Data-name-1, data-name-2, and FINAL, if present, must be specified in

the CONTROL clause of the corresponding report description entry. At most, one

control heading report group and one control footing report group can be

specified for each data-name or FINAL in the CONTROL clause of the report

description entry. However, neither a control heading report group nor a

control footing report group is required for a data-name or FINAL specified in

the CONTROL clause of the report description entry.

XIII-55

Report Writer - TYPE

(5) In control footing, page heading, page footing, and report footing

report groups, SOURCE clauses and associated USE statements must not reference

any of the following:

a. Group data items containing a control data item.

b. Data items subordinate to a control data item.

c. A redefinition or renaming of any part of a control data item.

In page heading and page footing report groups, SOURCE clauses and USE

statements must not reference control data-names.

(6) When a GENERATE report-name statement is specified in the Procedure

Division, the corresponding report description entry must include no more than

one detail report group. If no GENERATE data-name statements are specified for

such a report, a detail report group is not required.

(7) The description of a report must include at least one body group.

3.20.4 General Rules

(1) Detail report groups are processed by the report writer control system

as a direct result of GENERATE statements. If a report group is other than TYPE

DETAIL, its processing is an automatic report writer control system function.

(2) The REPORT HEADING phrase specifies a report group that is processed by

the report writer control system only once, per report, as the first report

group of that report. The report heading report group is processed during the

execution of the chronologically first GENERATE statement for that report.

(3) The PAGE HEADING phrase specifies a report group that is processed by

the report writer control system as the first report group on each page of that

report except under the following conditions:

a. A page heading report group is not processed on a page that is to

contain only a report heading report group or only a report footing report

group.

b. A page heading report group is processed as the second report group

on a page when it is preceded by a report heading report group that: is not to be

presented on a page by itself.

(See page XIII-24, Presentation Rules Tables.)

(4) The CONTROL HEADING phrase specifies a report group that is processed by

the report writer control system at the beginning of a control group for a

designated control data-name or, in the case of FINAL, is processed during the

execution of the chronologically first GENERATE statement for that report.

During the execution of any GENERATE statement at which the report writer

control system detects a control break, any control heading report groups

associated with the highest control level of the break and lower levels are

processed.

XIII-56

Report Writer - TYPE

(5) The DETAIL phrase specifies a report group that is processed by the

report writer control system when a corresponding GENERATE statement is

executed.

(6) The CONTROL FOOTING phrase specifies a report group that is processed by

the report writer control system at the end of a control group for a designated

control data-name.

In the case of FINAL, the control footing report group is processed only

once per report as the last body group of that report. During the execution of

any GENERATE statement in which the report writer control system detects a

control break, any control footing report group associated with the highest

level of the control break or more minor levels is presented. All control

footing report groups are presented during the execution of the TERMINATE

statement if there has been at least one GENERATE statement executed for the

report. (See page XIII-75, The TERMINATE Statement.)

(7) The PAGE FOOTING phrase specifies a report group that is processed by

the report writer control system as the last report group on each page except

under the following conditions:

a. A page footing report group is not processed on a page that is to

contain only a report heading report group or only a report footing report

group.

b. A page footing report group is processed as the second to last

report group on a page when it is followed by a report footing report group that

is not to be processed on a page by itself.

(See page XIII-24, Presentation Rules Tables.)

(8) The REPORT FOOTING phrase specifies a report group that is processed by

the report writer control system only once per report and as the last report

group of that report. The report footing report group is processed during the

execution of a corresponding TERMINATE statement, if there has been at least one

GENERATE statement executed for that report. (See page XIII-75, The TERMINATE

Statement.)

(9) The sequence of steps that the report writer control system executes

when it processes a report heading, page heading, control heading, page footing,

or report footing report group is described below.

a. If there is a USE BEFORE REPORTING procedure that references the

data-name of the report group, the USE procedure is executed.

b. If a SUPPRESS statement has been executed or if the report group is

not printable, there is no further processing to be done for the report group.

c. If a SUPPRESS statement has not been executed and the report group

is printable, the report writer control system formats the print lines and

presents the report group according to the presentation rules for that type of

report group. (See page XIII-24, Presentation Rules Tables.)

XI11-57

Report Writer - TYPE

(10)
when it

The sequence of steps that the report writer control system

processes a control footing report group is described below:

executes

The GENERATE rules specify that when a control break occurs, the report

writer control system produces the control footing report groups beginning at

the minor level, and proceeding upwards, through the level at which the highest

control break was sensed. In this regard, it should be noted that even though

no control footing report group has been defined for a given control data-name,

the report writer control system will still have to execute the step described

in paragraph lOf below if a RESET phrase within the report description specifies

that control data-name.

a. Sum counters are crossfooted, i.e., all sum counters defined in this

report group that are operands of SUM clauses in the same report group are added

to their sum counters. (See page XIII-52, The SUM Clause.)

b. Sum counters are rolled forward, i.e., all sum counters defined in

the report group that are operands of SUM clauses in higher level control

footing report groups are added to the higher level sum counters. (See page

XIII-52, The SUM Clause.)

c. If there is a USE BEFORE REPORTING procedure that references the

data-name of the report group the USE procedure is executed.

d. If a SUPPRESS statement has been executed or if the report group is

not printable, the report writer control system next executes the step described

in paragraph lOf below.

e. If a SUPPRESS statement has not been executed and the report group

is printable, the report writer control system formats the print lines and

presents the report group according to the presentation rules for control

footing report groups.

f. Then the report writer control system resets those sum counters that

are to be reset when the report writer control system processes this level in

the control hierarchy. (See page XIII-52, The SUM Clause.)

(11) The detail report group processing that the report writer

executes in response to a GENERATE data-name statement is

paragraphs 11a through lie on the next page.

control system

described in

When the description of a report includes

group, the detail-related processing that the

executes in response to a GENERATE report-name

paragraphs 11a through lie on the next page,

though a GENERATE data-name statement were being exe

exactly

report wr

statement

These ste

cuted.

one

iter

is

ps ar

detail report

control system

described in

e performed as

When the description of a report includes

detai1-related processing that the report wri

response to a GENERATE report-name statement is

This step is performed as though the description

one detail report group, and a GENERATE data-name

no detail report groups, the

ter control system executes in

described in paragraph 11a.

of the report included exactly

statement were being executed.

XI11-58

Report Writer - TYPE

a. The report writer control system performs any subtotalling that has

been designated for the detail report group. (See page XIII-52, The SUM

Clause .)

b. If there is a USE BEFORE REPORTING procedure that refers to the

data-name of the report group, the USE procedure is executed.

c. If a SUPPRESS statement has been executed or if the report group is

not printable there is no further processing done for the report group.

d. If the detail report group is being processed as a consequence of a

GENERATE report-name statement, there is no further processing done for the

report group.

e. If neither 11c nor lid above applies,

system formats the print lines and presents the

presentation rules for detail report groups. (See

Rules Tables.)

(12) When the report writer control system is processing a control heading,

control footing, or detail report group, as described in general rules 9, 10,

and 11, the report writer control system may have to interrupt the processing of

that body group after determining that the body group is to be presented, and

execute a page advance (and process page footing and page heading report groups)

before actually presenting the body group.

(13) During control break processing, the values of control data items that

the report writer control system used to detect a given control break are

referred to as prior values.

a. During control break processing of

any references to control data items in

associated with that control footing report

values.

b. When a TERMINATE statement is executed, the report writer control

system makes the prior control data item values available to SOURCE clause or

USE procedure references in control footing and report footing report groups as

though a control break had been detected in the highest control data-name.

c. All other data item references within report groups and their USE

procedures access the current values that are contained within the data items at

the time the report group is processed.

a control footing report group,

a USE procedure or SOURCE clause

group are supplied with prior

the report writer control

report group according to the

page XIII-24, Presentation

XIII-59

Report Writer - USAGE

3.21 THE USAGE CLAUSE

3.21.1 Function

The USAGE clause specifies the format of a data item in the computer storage.

3.21.2 General Format

rUSAGE IS] DISPLAY

3.21.3 Syntax Rules

(1) The USAGE clause may be written in any data description entry.

(2) If the USAGE clause is written in the data description entry for a group

item, it may also be written in the data description entry for a subordinate

elementary item or group item.

(3) The USAGE clause for a report group item can specify only USAGE IS

DISPLAY.

3.21.4 General Rules

(1) If the USAGE clause is written at a group level, it applies to each

elementary item in the group.

(2) The USAGE clause specifies the manner in which a data item is

represented in the storage of a computer. It does not affect the use of the

data item, although the specifications for some statements in the Procedure

Division may restrict the USAGE clause of the operands referred to. The USAGE

clause may affect the radix or type of character representation of the item.

(3) The USAGE IS DISPLAY clause indicates that the format of the data is a

standard data format.

(4) If the USAGE clause is not specified for an elementary item, or for any

group to which the item belongs, the usage is implicitly DISPLAY.

XI11-60

Report Writer - VALUE

3.22 THE VALUE CLAUSE

3.22.1 Function

The VALUE clause defines the value of Report Section printable items.

3.22.2 General Format

VALUE IS literal-1

3.22.3 Syntax Rules

(1) A signed numeric literal must have associated with it a signed numeric

PICTURE character-string.

(2) A numeric literal in a VALUE clause of an item must have a value which

is within the range of values indicated by the PICTURE clause, and must not have

a value which would require truncation of nonzero digits. A nonnumeric literal

in a VALUE clause of an item must not exceed the size indicated by the PICTURE

clause.

3.22.4 General Rules

(1) The VALUE clause must not conflict with other clauses in the data

description of the item or in the data description within the hierarchy of the

item. The following rules apply:

a. If the category of the item is numeric, literal-1 in the VALUE

clause must be numeric.

b. If the category of the item is alphabetic, alphanumeric,

alphanumeric edited, or numeric edited, literal-1 in the VALUE clause must be a

nonnumeric literal. The literal is aligned in the data item as if the data item

had been described as alphanumeric (see page IV-16, Standard Alignment Rules).

Editing characters in the PICTURE clause are included in determining the size of

the data item but have no effect on initialization of the data item (see page

VI-29, The PICTURE Clause). Therefore, the value for an edited item must be

specified in an edited form.

c. Initialization is not affected by any BLANK WHEN ZERO or JUSTIFIED

clause that may be specified.

(2) In the Report Section, if the elementary report entry containing the

VALUE clause does not contain a GROUP INDICATE clause, then the printable item

will assume the specified value each time its report group is printed. However,

when the GROUP INDICATE clause is also present, the specified value will be

presented only when certain object time conditions exist (see page XIII-44, The

GROUP INDICATE Clause).

XIII-61

Report Writer - Procedure Division

4. PROCEDURE DIVISION IN THE REPORT WRITER MODULE

4.1 GENERAL DESCRIPTION

The Procedure Division contains declarative procedures when the USE BEFORE

REPORTING statement from the Report Writer module is present in a COBOL source

program. Shown below is the general format of the Procedure Division when the

USE BEFORE REPORTING statement and/or USE AFTER STANDARD EXCEPTION PROCEDURE are

present .

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION.

USE
AFTER STANDARD EXCEPTION PROCEDURE \
BEFORE REPORTING / statement

[paragraph-name.

[sentence] ...] ... } ...

END DECLARATIVES.

{section-name SECTION.

[paragraph-name.

[sentence] ...] ... } .. .

XI11-62

Report Writer - CLOSE

4.2 THE CLOSE STATEMENT

4.2.1 Function

The CLOSE statement terminates the processing of reel/units and files with

optional rewind and/or lock or removal where applicable.

4.2.2 General Format

CLOSE < file-name-1

{unit} [for removal]

WITH
Tno rewind')

(LOCK j

4.2.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the same

organization or access.

(2) The availability of the phrases within the CLOSE statement is dependent

on the level of Sequential 1-0 module supported by the implementation. (See

page VII-35 in the Sequential 1-0 module.)

4.2.4 General Rules

Except where otherwise stated in the general rules below, the terms 'reel'

and 'unit' are synonymous and completely interchangeable in the CLOSE statement.

Treatment of sequential mass storage files is logically equivalent to the

treatment of a file on tape or analogous sequential media. Treatment of a file

contained in a multiple file tape environment is logically equivalent to the

treatment of a sequential single-reel/unit file if the file is wholly contained

on one reel.

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) For the purpose of showing the effect of various types of CLOSE

statements as applied to various storage media, all report files are divided

into the following categories:

a. Non-reel/unit. A file whose output medium is such that the concepts

of rewind and reels/units have no meaning.

b. Sequential single-reel/unit. A sequential file that is entirely

contained on one reel/unit.

c. Sequential multi-reel/unit. A sequential file that is contained on

more than one reel/unit.

(3) The results of executing each type of CLOSE for each category of file

are summarized in table 1 on page XIII-64.

XIII-63

Report Writer - CLOSE

CLOSE

Statement

Format

File Category

Non-Reel/Unit

Sequential

Single-

Reel/ Uni t

Sequential

Multi-

Reel/Unit

CLOSE C C, G A, C, G

CLOSE WITH LOCK C, E C , E , G A,C,E , G

CLOSE WITH NO REWIND C, H B, C A, B, C

CLOSE REEL/UNIT F F, G F,G

CLOSE REEL/UNIT F D,F,G D , F , G

FOR REMOVAL

Table 1: Relationship of Categories of Files and the Formats

of the CLOSE Statements

The definitions of the symbols in the table are given below.

A. Effect on Previous Reels/Units for an Output Report File:

All reels/units in the report file prior to the current reel/unit

are closed except those reels/units controlled by a prior CLOSE REEL/UNIT

statement.

B. No Rewind of Current Reel

The current reel/unit is left in its current position.

C. Close Output Report File:

If label records are specified for the report file, the labels are

processed according to the implementor's standard label convention. The

behavior of the CLOSE statement when label records are specified but not

present, or when label records are not specified but are present, is undefined.

Closing operations specified by the implementor are executed. If label records

are not specified for the report file, label processing does not take place but

other closing operations specified by the implementor are executed.

D. Reel/Unit Removal

The current reel or unit is rewound, when applicable, and the reel

or unit is logically removed from the run unit; however, the reel or unit may be

accessed again, in its proper order of reels or units within the report file, if

a CLOSE statement without the REEL or UNIT phrase is subsequently executed for

this report file followed by the execution of an OPEN statement for the report

file.

XIII-64

Report Writer - CLOSE

E. File Lock

The report file is locked and cannot be opened again during this

execution of this run unit.

F. Close Reel/Unit

Output Report File (Reel/Unit Media):

The following operations take place:

1) The standard ending reel/unit label procedure is executed.

2) A reel/unit swap. The current volume pointer is updated to

point to the new reel/unit.

3) The standard beginning reel/unit label procedure is executed.

4) The next executed write operation that references that file

directs the next logical data record to the next reel/unit of the file.

Output Report File (Non-Reel/Unit Media):

Execution of this statement is considered successful. The file

remains in the open mode, and no action takes place except as specified in

general rule 4.

G. Rewind

The current reel or analogous device is positioned at its physical

beginning.

H. Optional Phrases Ignored

The CLOSE statement is executed as if none of the optional phrases

is present.

(4) The execution of the CLOSE statement causes the value of the 1-0 status

associated with file-name-1 to be updated. (See page VII-2, 1-0 Status.)

(5) All reports associated with a report file that have been initiated must

be ended with the execution of a TERMINATE statement before a CLOSE statement is

executed for that report file.

(6) Following the successful execution of a CLOSE statement without the REEL

or UNIT phrase, the report file is removed from the open mode, and the report

file is no longer associated with the file connector.

(7) If more than one file-name-1 is specified in a CLOSE statement, the

result of executing this CLOSE statement is the same as if a separate CLOSE

statement had been written for each file-name-1 in the same order as specified

in the CLOSE statement.

XI11-65

Report Writer - GENERATE

4.3 THE GENERATE STATEMENT

4.3.1 Function

The GENERATE statement directs the report writer control system to produce a

report in accordance with the report description specified in the Report Section

of the Data Division.

4.3.2 General Format

GENERATE
data-name-1

report-name-1
>

4.3.3 Syntax Rules

(1) Data-name-1 must name a type detail report group and may be qualified by

a report-name.

(2) Report-name-1 may be used only if the referenced report description

contains :

a. A CONTROL clause, and

b. Not more than one detail report group, and

c. At least one body group.

4.3.4 General Rules

(1) In response to a GENERATE report-name-1 statement, the report writer

control system performs summary processing. If all of the GENERATE statements

that are executed for a report are of the form GENERATE report-name-1, then the

report that is produced is called a summary report. A summary report is one in

which no detail report group is presented.

(2) In response to a GENERATE data-name-1 statement, the report writer

control system performs detail processing that includes certain processing that

is specific for the detail report group designated by the GENERATE statement.

Normally, the execution of a GENERATE data-name-1 statement causes the report

writer control system to present the designated detail report group.

(3) During the execution of the chronologically first GENERATE statement for

a given report, the report writer control system saves the values within the

control data items. During the execution of the second and subsequent GENERATE

statements for the same report, and until a control break is detected, the

report writer control system utilizes this set of control values to determine

whether a control break has occurred. When a control break occurs, the report

writer control system saves the new set of control values, which it thereafter

uses to sense for a control break until another control break occurs.

(4) During report presentation, an automatic function of the report writer

control system is to process page heading and page footing report groups, if

defined, when the report writer control system must advance the report to a new

XIII-66

Report Writer - GENERATE

page for the purpose of presenting a body group. (See page XIII-24,

Presentation Rules Tables.)

(5) When the chronologically first GENERATE statement for a given report is

executed, the report writer control system processes, in order, the report

groups that are named below, provided that such report groups are defined within

the report description. The report writer control system also processes page

heading and page footing report groups as described in general rule 4. The

actions taken by the report writer control system when it processes each type of

report group are explained under the appropriate paragraph. (See page XIII-55,

The TYPE Clause.)

a. The report heading report group is processed.

b. The page heading report group is processed.

c. ALL control heading report groups are processed from major to minor.

d. If a GENERATE data-name-1 statement is being executed, the

processing for the designated detail report group is performed. If a GENERATE

report-name-1 statement is being executed, certain of the steps that are

involved in the processing of a detail report group are performed. (See page

XIII-55, The TYPE Clause.)

(6) When a GENERATE statement other than the chronologically first is

executed for a given report, the report writer control system performs the steps

enumerated below, as applicable. The report writer control system also

processes page heading and page footing report groups as described in general

rule 4. The actions taken by the report writer control system when it processes

each type of report group are explained under the appropriate paragraph. (See

page XIII-55, The TYPE Clause.)

a. Sense for control break. The rules for determining the equality of

control data items are the same as those specified for relation conditions. If

a control break has occurred then:

1) Enable the control footing USE procedures and control footing

SOURCE clauses to access the control data item values that the report writer

control system used to detect a given control break. (See page XIII-55, The

TYPE Clause.)

2) Process the control footing report groups in the order minor to

major. Only control footing report groups that are not more major than the

highest level at which a control break occurred are processed.

3) Process the control heading report groups in the order major to

minor. Only the control heading report groups that are not more major than the

highest level at which a control break occurred are processed.

b. If a GENERATE data-name-1 statement is being executed, the

processing for the designated detail report group is performed. If a GENERATE

report-name-1 statement is being executed, certain of the steps that are

involved in the processing of a detail report group are performed. (See page

XIII-55, The TYPE Clause.)

XII1-67

Report Writer - GENERATE

(7)
INITIATE v/y GENERATE statements for a report can be executed only after an

statement for the report has been executed and before a TERMINATE statement for
the report has been executed.

«

Report Writer - INITIATE

4.4 THE INITIATE STATEMENT

4.4.1 Function

The INITIATE statement causes the report writer control system to begin the

processing of a report.

4.4.2 General Format

INITIATE {report-name-1} ...

4.4.3 Syntax Rules

(1)

Report

Report-name-1 must be defined by a report description entry in the

Section of the Data Division.

4.4.4 General Rules

(1) The INITIATE statement performs the following initialization functions

for each named report

a. All sum counters are set to zero.

b. LINE-COUNTER is set to zero.

c. PAGE-COUNTER is set to one.

(2)

report

phrase

of the

The INITIATE statement does not place the file associated with the

in the open mode; therefore, an OPEN statement with either the OUTPUT

or the EXTEND phrase for the file must be executed prior to the execution

INITIATE statement.

(3)

unless

A subsequent INITIATE statement for report-name-1 must not be executed

an intervening TERMINATE statement has been executed for report-name-1.

(4)

result

If more than one report-name is specified in an INITIATE statement, the

of executing this INITIATE statement is the same as if a separate

INITIATE statement had been written for each report-name in the same order as

specified in the INITIATE statement.

XIII-69

Report Writer - OPEN

4.5 THE OPEN STATEMENT

4.5.1 Function

The OPEN statement initiates the processing of report files.

4.5.2 General Format

opEN (OUTPUT {file-name-1 [WITH NO REWIND]} ...
-)EXTEND {file-name-21 ...

4.5.3 Syntax Rules

(1) The OPEN statement for a report file must contain only the OUTPUT phrase

or the EXTEND phrase.

(2) The availability of the phrases within the OPEN statement is dependent

on the level of the Sequential 1-0 module supported by the implementation. (See

page VII-39 in the Sequential 1-0 module.)

4.5.4 General Rules

(1) The successful execution of an OPEN statement determines the

availability of the file and results in the file being in an open mode. The

successful execution of an OPEN statement associates the file with the file-name

through the file connector.

A file is available if it is physically present and is recognized by the

input-output control system. Table 1 shows the results of opening available and

unavailable files.

File is Available File is Unavailable

OUTPUT Normal open; the

file contains no

records

Open causes the file to be

created

EXTEND Normal open Open is unsuccessful

EXTEND (optional file) Normal open Open causes the file to be

created

Table 1. Availability of a File

(2) When a file is not in an open mode, no statement may be executed which

references the file, either explicitly or implicitly, except for an OPEN

statement.

(3) The OPEN statement for a report file must be executed prior to the

execution of an INITIATE statement for any reports contained in the file.

(4) A report file may be opened with the OUTPUT and EXTEND phrases in the

same run unit. Following the initial execution of an OPEN statement for a

XII1-70

Report Writer - OPEN

report file, each subsequent OPEN statement execution for that same report file

must be preceded by the execution of a CLOSE statement, without the REEL, UNIT,

or LOCK phrase, for that file.

(5) If label records are specified for the file, the beginning labels are

processed as follows:

a. When the OUTPUT phrase is specified, the execution

statement causes the labels to be written in accordance with the

specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified but

not present, or when label records are not specified but are present, is

undefined.

(6) If during the execution of an OPEN statement a file attribute conflict

condition occurs, the execution of the OPEN statement is unsuccessful. (See

page VII-5, The File Attribute Conflict Condition.)

(7) The NO REWIND phrase must only be used with:

a. Sequential single reel/unit files. (See page XIII-63, The CLOSE

Statement.)

of the OPEN

implementor's

b. Sequential files wholly contained within a single reel of tape

within a multiple file tape environment. (See page VII-16, The MULTIPLE FILE

TAPE Clause.)

(8) The NO REWIND phrase will be ignored if it does not apply to the storage

medium on which the file resides.

(9) If the storage medium for the file permits rewinding, the following

rules apply:

a. When neither the EXTEND nor the NO REWIND phrase is specified,

execution of the OPEN statement causes the file to be positioned at its

beginning.

b. When the NO REWIND phrase is specified, execution of the OPEN

statement does not cause the file to be repositioned; the file must be already

positioned at its beginning prior to execution of the OPEN statement.

(10) When the EXTEND phrase is specified, the OPEN statement positions the

file immediately after the last logical record for that file. The last logical

record for a sequential file is the last record written in the file.

(11) When the EXTEND phrase is specified and the LABEL RECORDS clause

indicates label records are present, the execution of the OPEN statement

includes the following steps:

a. The beginning file labels are processed only in the case of a single

reel/unit file.

b. The beginning reel/unit labels on the last existing reel/unit are

processed as though the file was being opened with the INPUT phrase.

XIII-71

Report Writer - OPEN

c. The existing ending file labels are processed as though the file is

being opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the

OUTPUT phrase.

(12) Treatment of a file contained in a multiple file tape environment is

logically equivalent to the treatment of a sequential file contained in a single

file tape environment.

(13) Whenever a set of files resides on a multiple file reel, and one of this

set of files is referenced in an OPEN statement, the following rules apply:

a. Not more than one of the files may be in the open mode at one time.

b. When one of the files referenced by a file-name is the subject of an

OPEN statement with the OUTPUT phrase, all files on the associated multiple file

reel whose position numbers are less than the position number of that file must

already exist on the reel at the time the OPEN statement is executed. Further,

no file on that multiple file reel whose position number is greater than the

position number of that file can exist at that time on the reel.

c. Each of the files must be a sequential file.

(14) For an optional file that is unavailable, the successful execution of an

OPEN statement with an EXTEND phrase creates the file. This creation takes

place as if the following statements were executed in the order shown:

OPEN OUTPUT file-name.

CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in

the source program.

The successful execution of an OPEN statement with the OUTPUT phrase

creates the file. After the successful creation of a file, that file contains

no data records .

(15) Upon successful execution of the OPEN statement, the current volume

pointer is set:

a. To point to the reel/unit containing the last logical record for an

extend file.

b. To point to the new reel/unit for an unavailable output or extend

file.

(16) The execution of the OPEN statement causes the value of the 1-0 status

associated with file-name to be updated. (See page VII-2, 1-0 Status.)

(17) If more than one file-name is specified in an OPEN statement, the result

of executing this OPEN statement is the same as if a separate OPEN statement had

been written for each file-name in the same order as specified in the OPEN

statement.

XI11-72

Report Writer -

(18) The minimum and maximum record sizes for a file are established at

time the file is created and must not subsequently be changed.

XIII-73

OPEN

the

Report Writer - SUPPRESS

4.6 THE SUPPRESS STATEMENT

4.6.1 Function

The SUPPRESS statement causes the report writer control system to inhibit the

presentation of a report group.

4.6.2 General Format

SUPPRESS PRINTING

4.6.3 Syntax Rules

(1) The SUPPRESS statement may only appear in a USE BEFORE REPORTING

procedure.

4.6.4 General Rules

(1) The SUPPRESS statement inhibits presentation only for the report group

named in the USE procedure within which the SUPPRESS statement appears.

(2) The SUPPRESS statement must be executed each time the presentation of

the report group is to be inhibited.

(3) When the SUPPRESS statement is executed, the report writer control

system is instructed to inhibit the processing of the following report group

functions:

a.

b.

c.

d.

The presentation of the print lines of the report group.

The processing of all LINE clauses in the report group.

The processing of the NEXT GROUP clause in the report group.

The adjustment of LINE-COUNTER.

XIII-74

Report Writer - TERMINATE

4.7 THE TERMINATE STATEMENT

4.7.1 Function

The TERMINATE statement causes the report writer control system to complete

the processing of the specified reports.

4.7.2 General Format

TERMINATE {report-name-1} ...

4.7.3 Syntax Rules

(1) Report-name-1 must be defined by a report description entry in the

Report Section of the Data Division.

4.7.4 General Rules

(1) The TERMINATE statement causes the report writer control system to

produce all the control footing report groups beginning with the minor control

footing report group. Then the report footing report group is produced. The

report writer control system makes the prior set of control data item values

available to the control footing and report footing SOURCE clauses and USE

procedures, as though a control break has been sensed in the most major control

data-name.

(2) If no GENERATE statements have been executed for a report

interval between the execution of an INITIATE statement and

statement, for that report, the TERMINATE statement does not cause

writer control system to produce any report groups or perform any of

processing.

(3) During report presentation, an automatic function of the report writer

control system is to process page heading and page footing report groups, if

defined, when the report writer control system must advance the report to a new

page for the purpose of presenting a body group. (See page XIII-24,

Presentation Rules Tables.)

(4) The TERMINATE statement cannot be executed for a report unless the

TERMINATE statement was chronologically preceded by an INITIATE statement for

that report and for which no TERMINATE statement has yet been executed.

(5) If more than one report-name is specified in a TERMINATE statement, the

result of executing this TERMINATE statement is the same as if a separate

TERMINATE statement had been written for each report-name in the same order as

specified in the TERMINATE statement.

(6) The TERMINATE statement does not close the file with which the report is

associated; a CLOSE statement for the file must be executed. Every report that

is in an initiated condition must be terminated before a CLOSE statement is

executed for the associated file.

during the

a TERMINATE

the report

the related

XIII-75

Report Writer - USE AFTER STANDARD EXCEPTION PROCEDURE

4.8 THE USE AFTER STANDARD EXCEPTION PROCEDURE STATEMENT

4.8.1 Function

The USE AFTER STANDARD EXCEPTION PROCEDURE statement specifies procedures for

input-output error handling that are in addition to the standard procedures

provided by the input-output control system.

4.8.2 General Format

USE AFTER STANDARD PROCEDURE ON

4.8.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section header

in the declaratives portion of the Procedure Division and must appear in a

sentence by itself. The remainder of the section must consist of zero, one, or

more procedural paragraphs that define the procedures to be used.

(2) The USE statement is never executed; it merely defines the conditions

calling for the execution of the USE procedures.

(3) Appearance of file-name-1 in a USE statement must not cause the

simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may be used

interchangeably.

(5) The files implicitly or explicitly referenced in the USE statement need

not all have the same organization or access.

(6) The OUTPUT and EXTEND phrases may each be specified only once in the

declaratives portion of a given Procedure Division.

4.8.4 General Rules

(1) Declarative procedures may be included in any COBOL source program

irrespective of whether the program contains or is contained within another

program. A declarative is invoked when any of the conditions described in the

USE statement which prefaces the declarative occurs while the program is being

executed. Only a declarative within the separately compiled program that

contains the statement which caused the qualifying condition is invoked when any

of the conditions described in the USE statement which prefaces the declarative

occurs while that separately compiled program is being executed. If no

qualifying declarative exists in the separately compiled program, no declarative

is executed.

(2) Within a declarative procedure, there must be no reference to any

nondeclarative procedures.

XII1-76

Report Writer - USE AFTER STANDARD EXCEPTION PROCEDURE

(3) Procedure-names associated with a USE statement may be referenced in a

different declarative section or in a nondeclarative procedure only with a

PERFORM statement.

(4) When file-name-1 is specified explicitly, no other USE statement applies

to file-name-1.

(5) The procedures associated with a USE statement are executed by the

input-output control system after completion of the standard input-output

exception routine upon the unsuccessful execution of an input-output operation

unless an AT END phrase takes precedence. The rules concerning when the

procedures are executed are as follows:

a. If file-name-1 is specified, the associated procedure is executed

when the condition described in the USE statement occurs.

b. If OUTPUT is specified, the associated procedure is executed when

the condition described in the USE statement occurs for any file open in the

output mode or in the process of being opened in the output mode, except those

files referenced by file-name-1 in another USE statement specifying the same

condition.

c. If EXTEND is specified, the associated procedure is executed when

the condition described in the USE statement occurs for any file open in the

extend mode or in the process of being opened in the extend mode, except those

files referenced by file-name-1 in another USE statement specifying the same

condition.

(6) After execution of the USE procedure, control is transferred to the

invoking routine in the input-output control system. If the 1-0 status value

does not indicate a critical input-output error, the input-output control system

returns control to the next executable statement following the input-output

statement whose execution caused the exception. If the 1-0 status value does

indicate a critical error, the implementor determines what action is taken.

(See page VII-2, 1-0 Status.)

(7) Within a USE procedure, there must not be the execution of any statement

that would cause the execution of a USE procedure that had previously been

invoked and had not yet returned control to the invoking routine.

XIII-77

Report Writer - USE BEFORE REPORTING

4.9 THE USE BEFORE REPORTING STATEMENT

4.9.1 Function

The USE BEFORE REPORTING statement specifies Procedure Division statements

that are executed just before a report group named in the Report Section of the

Data Division is presented.

4.9.2 General Format

USE BEFORE REPORTING identifier-1

4.9.3 Syntax Rules

(1) A USE BEFORE REPORTING statement, when present, must immediately follow

a section header in the declaratives portion of the Procedure Division and must

appear in a sentence by itself. The remainder of the section must consist of

zero, one, or more procedural paragraphs that define the procedures to be used.

(2) Identi.fier-1 must reference a report group. Identifier-1 must not

appear in more than one USE BEFORE REPORTING statement.

(3) The GENERATE, INITIATE, or TERMINATE statements must not appear in a

paragraph within a USE BEFORE REPORTING procedure. A PERFORM statement in a USE

BEFORE REPORTING procedure must not have GENERATE, INITIATE, or TERMINATE

statements in its range.

(4) A USE BEFORE REPORTING procedure must not alter the value of any control

data item.

(5) The USE BEFORE REPORTING statement itself is never executed; it merely

defines the conditions calling for the execution of the USE procedures.

4.9.4 General Rules

(1) Declarative procedures may be included in any COBOL source program

irrespective of whether the program contains or is contained within another

program. A declarative is invoked just before the named report group is

produced during the execution of the program. The report group is named by

identifier-1 in the USE BEFORE REPORTING statement which prefaces the

declaratives .

(2) Within a declarative procedure, there must be no reference to any

nondeclarative procedures.

(3) Procedure-names associated with a USE BEFORE REPORTING statement may be

referenced in a different declarative section or in a nondeclarative procedure

only with a PERFORM statement.

(4) In the USE BEFORE REPORTING statement, the designated procedures are

executed by the report writer control system (RWCS) just before the named report

group is produced. (See page XIII-55, The TYPE Clause.)

XI11-78

Report Writer - USE BEFORE REPORTING

(5) Within a USE pr

that would cause the
invoked and had not yet

ocedure, there mus

execution of a

returned control

t not be the execution of any statement

USE procedure that had previously been

to the invoking routine.

XIII-79

■

Communication - Introduction

SECTION XIV: COMMUNICATION MODULE

1. INTRODUCTION TO THE COMMUNICATION MODULE

1.1 FUNCTION

The Communication module provides the ability to access, process, and create

messages or portions thereof. It provides the ability to communicate through a

message control system (MCS) with communication devices.

1.2 LEVEL CHARACTERISTICS

Communication level 1 provides limited capabilities for the communication

description entry. Within the Procedure Division, Communication level 1

provides limited capabilities for the RECEIVE and SEND statements and full

capabilities for the ACCEPT MESSAGE COUNT statement.

Communication level 2 provides full capabilities for the communication

description entry. Within the Procedure Division, Communication level 2

provides full capabilities for the ACCEPT MESSAGE COUNT, DISABLE, ENABLE, PURGE,

RECEIVE, and SEND statements._ _ _

XIV-1

Communication - Communication Section

2. DATA DIVISION IN THE COMMUNICATION MODULE

2.1 COMMUNICATION SECTION

The Communication Section is located in the

program. The Communication Section describes

program that will serve as the interface between

(MCS) and the program. This MCS interface area
description entry. The communication description

one, or more record description entries.

Data Division of a source

the data item in the source

the message control system

is defined by a communication
entry is followed by none,

The general format of the Communication Section is shown below:

COMMUNICATION SECTION.

[communication-description-entry

[record-description-entry] ...] ...

2.1.1 Communication Description Entry

In a COBOL program the communication description entry (CD entry) represents

the highest level of organization in the Communication Section. The

Communication Section header is followed by a communication description entry

consisting of a level indicator (CD), a cd-name, and a series of independent

clauses. The entry itself is terminated by a period.

For an input communication description entry the clauses specify the queue,

sub-queues, message date, message time, symbolic source, text length, end key,

status key, and message count. For an output communication description entry

the clauses specify the destination count, text length, status key, error keys,

and symbolic destinations. For an input-output communication description entry

the clauses specify the message date, message time, symbolic terminal, text
length, end key, and status key.

2.1.2 Record Description Structure

The record area associated with a communication description entry may be

implicitly redefined by user-specified record description entries written

immediately following the communication description entry.

A record description consists of a set of data description entries which

describe the characteristics of a particular record. Each data description

entry consists of a level-number followed by the data-name or FILLER clause, if

specified, followed by a series of independent clauses as required. A record

description may have a hierarchical structure and therefore the clauses used

with an entry may vary considerably, depending upon whether or not it is

followed by subordinate entries. The structure of a record description and the

elements allowed in a record description entry are explained on page IV-14,

Concept of Levels, and on page VI-20, The Data Description Entry. The

availability of specific clauses in the data description entry is dependent on

the level of Nucleus module supported by the implementation.

XIV-2

Communication - CD Entry

2.2 THE COMMUNICATION DESCRIPTION ENTRY

2.2.1 Function

The communication description entry specifies the interface area between

message control system (MCS) and a COBOL program.

2.2.2 General Format

Format 1:

CD cd-name-1

FOR rINITIAL! INPUT

[[SYMBOLIC QUEUE IS data-name-1]

[SYMBOLIC SUB-OUEUE-1 IS data-name-2]

[SYMBOLIC SUB-QUEUE-2 IS data-name-3]

[SYMBOLIC SUB-QUEUE-3 IS data-name-4]

[MESSAGE DATE IS data-name-5]

[MESSAGE TIME IS data-name-6]

[SYMBOLIC SOURCE IS data-name-7]

[TEXT LENGTH IS data-name-8]

[END KEY IS data-name-9]

[STATUS KEY IS data-name-10]

[MESSAGE COUNT IS data-name-11]]

[data-name-1, data-name-2, data-name-3,

data-name-4, data-name-5, data-name-6,

data-name-7, data-name-8, data-name-9,

data-name-10, data-name-11]

the

XIV-3

Communication - CD Entry

Format 2:

CD cd-name-1 FOR OUTPUT

[DESTINATION COUNT IS data-name-1]

[TEXT LENGTH IS data-name-2]

rSTATUS KEY IS data-name-3]

[DESTINATION TABLE OCCURS integer-1 TIMES

[INDEXED BY {index-name-1} ...]]

[ERROR KEY IS data-name-4]

[SYMBOLIC DESTINATION IS data-name-5].

Format 3:

CD cd-name-1

FOR [INITIAL1 1-0

[[MESSAGE DATE IS data-name-1]

[MESSAGE TIME IS data-name-2]

[SYMBOLIC TERMINAL IS data-name-3]

[TEXT LENGTH IS data-name-4]

[END KEY IS data-name-5]

[STATUS KEY IS data-name-6]]

[data-name-1, data-name-2, data-name-3,

_data-name-4, data-name-5, data-name-6]

2.2.3 Syntax Rules

ALL FORMATS:

(1) A CD entry must appear only in the Communication Section.

FORMATS 1 AND 3:

(2) Within a single program, the INITIAL clause may be specified in only one

CD entry. The INITIAL clause must not be used in a program that specifies the

USING phrase of the Procedure Division header. (See page X-25, The Procedure

Division Header.) _

XIV-4

Communication - CD Entry

(3) [Except for the INITIAL clause,! the optional clauses may be written in

any order.

(4) If neither option for specifying the interface area is used, a level 01

data description entry must follow the CD entry. Either option may be followed

by a level 01 data description entry.

FORMAT 1:

(5) Record description entries following an input CD entry implicitly

redefine the record area established by the input CD entry and must describe a

record of exactly 87 standard data format characters. Multiple redefinitions of

this record are permitted; however, only the first redefinition may contain

VALUE clauses. The message control system (MCS) always references the record

according to the data description defined in general rule 2. (See page VI-48,

The VALUE Clause.)

(6) Data-name-1, data-name-2, data-name-3, data-name-4, data-name-5,

data-name-6, data-name-7, data-name-8, data-name-9, data-name-10, and

data-name-11 must be unique within the CD entry. Within this series any

data-name may be replaced by the reserved word FILLER.

FORMAT 2:

(7) The optional clauses may be written in any order.

(8) If none of the optional clauses of the CD entry is specified, a level 01

data description entry must follow the CD entry.

(9) Record description entries subordinate to an output CD entry implicitly

redefine the record area established by the output CD entry. Multiple

redefinitions of this record are permitted; however, only the first redefinition
may contain VALUE clauses . The MCS always references the record according to

the data description defined in general rule 16. (See page VI-48, The VALUE

Clause.)

(10) Data-name-1, data-name-2, data-name-3, data-name-4, and data-name-5 must

be unique within a CD entry.

(11) If the DESTINATION TABLE OCCURS clause is not specified, one error key

and one symbolic destination area are assumed. In this case,

not permitted when referencing these data items .

subscripting is

(12) If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and

data-name-5 may be referenced only by subscripting.

(13) In level 1, the value of the data item referenced by data-name-1 must be

1. |In level 2, there is no restriction on the value of the data item referenced

by data- -name-1.

FORMAT 3:

(14) Record description entries following an input-output CD entry implicitly

redefine the record area established by the input-output CD entry and must

describe a record of exactly 33 standard data format characters. Multiple

XIV-5

Communication - CD Entry

redefinitions of this record are permitted; however, only the first redefinition

may contain VALUE clauses. The MCS always references the record according to

the data description defined in general rule 24. (See page VI-48, The VALUE

Clause.)

(15) Data-name-1, data-name-2, data-name-3, data-name-4, data-name-5, and

data-name-6 must be unique within the CD entry. Within this series, any

data-name may be replaced by the reserved word FILLER.

2.2.4 General Rules

FORMAT 1:

(1) The input CD information constitutes the communication between the

message control system (MCS) and the program about the message being handled.

This information does not come from the terminal as part of the message.

(2) For each input CD entry, a record area of 87 contiguous character

positions is allocated. This record area is defined to the MCS as follows:

a. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an

elementary alphanumeric data item of 12 characters occupying positions 1 through

12 in the record.

b. The SYMBOLIC SUB-QUEUE-1 clause defines data-name-2 as the name of

an elementary alphanumeric data item of 12 characters occupying positions 13

through 24 in the record.

c . The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the name of

an elementary alphanumeric data item of 12 characters occupying posit ions 25

through 36 in the record.

d. The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the name of

an elementary alphanumeric data item of 12 characters occupying positions 37

through 48 in the record.

e. The MESSAGE DATE clause defines data-name-5 as the name of a data

item whose implicit description is that of an integer of 6 digits, without an

operational sign, occupying character positions 49 through 54 in the record.

f.
item whose

operational

The MESSAGE TIME clause defines data-name-6 as the name of a data

implicit description is that of an integer of 8 digits, without an

sign, occupying character positions 55 through 62 in the record.

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of an

elementary alphanumeric data item of 12 characters occupying positions 63

through 74 in the record.

h. The TEXT LENGTH clause defines data-name-8 as the name of an

elementary data item whose implicit description is that of an integer of 4

digits, without an operational sign, occupying character positions 75 through 78

in the record.

i. The END KEY clause defines data-name-9 as the name of an elementary

alphanumeric data item of 1 character occupying position 79 in the record.

XIV-6

Communication - CD Entry

j. The STATUS KEY clause defines data-name-10 as the name of an

elementary alphanumeric data item of 2 characters occupying positions 80 and 81

in the record.

k. The MESSAGE COUNT clause defines data-name-11 as the name of an

elementary data item whose implicit description is that of an integer of 6

digits, without an operational sign, occupying character positions 82 through 87

in the record.

The second option may be used to replace the above clauses by a series

of data-names which, taken in order, correspond to the data-names defined by

these clauses.

Use of either option results in a record whose implicit description is

equivalent to the following:

IMPLICIT DESCRIPTION COMMENT

01 data -name-0.

02 data-name-1 PICTURE X(12). SYMBOLIC QUEUE

02 data-name-2 PICTURE X(12). SYMBOLIC SUB-QUEUE-1

02 data-name-3 PICTURE X(12). SYMBOLIC SUB-QUEUE-2

02 data-name-4 PICTURE X(12) . SYMBOLIC SUB-QUEUE-3

02 data-name-5 PICTURE 9(6). MESSAGE DATE

02 data-name-6 PICTURE 9(8). MESSAGE TIME

02 data-name-7 PICTURE X(12). SYMBOLIC SOURCE

02 data-name-8 PICTURE 9(4). TEXT LENGTH

02 data-name-9 PICTURE X. END KEY

02 data-name 10 PICTURE XX. STATUS KEY

02 data-name-11 PICTURE 9(6). MESSAGE COUNT

NOTE: In the above, the information under 'COMMENT' is for

clarification and is not part of the data description,

(3) The contents of the data items referenced by data-name-2,

and data-name-4, when not being used must contain spaces.

data-name-3,

(4) The data items referenced by data-name-1, |data-name-2, data-name-3, and

data-name-4 contain symbolic names designating queues, | sub-queues, ... ,

respectively. These symbolic names must follow the rules for the formation of

system-names, and must have been previously defined to the message control

system (MCS).

(5) A RECEIVE statement causes the serial return of the next message or

portion of a message from the queue as specified by the entries in the CD.

At the time of execution of a RECEIVE statement, the input CD area must

contain, in the content of data-name-1, the name of a symbolic queue. The data

items specified by data-name-2, data-name-3, and data-name-4 may contain

symbolic sub-queue names or|spaces. When a given level of the queue structure

is specified all higher levels must also be specified. If less than all the

levels of the queue hierarchy are specified, the MCS determines the next message

or portion of a message to be accessed within the queue and/or sub-queue

specified in the input CD.

XIV-7

Communication - CD Entry

After the execution of a RECEIVE statement, the contents of the data

items referenced by data-name-1 through data-name-4 will contain the symbolic

names of all the levels of the queue structure.

(6) Whenever a program is scheduled by the message control system (MCS) to

process a message, that program establishes a run unit and the symbolic names of

the queue structure that demanded this activity will be placed in the data items

referenced by data-name-1 through data-name-4 of the CD associated with the

INITIAL clause as applicable. In all other cases, the contents of the data

items referenced by data-name-1 through data-name-4 of the CD associated with

the INITIAL clause are initialized to spaces.

The symbolic names are inserted or the initialization to spaces is

completed prior to the execution of the first Procedure Division statement.

The execution of a subsequent RECEIVE statement naming the same contents

of the data items referenced by data-name-1 through data-name-4 will return the

actual message that caused the program to be scheduled. Only at that time will

the remainder of the CD be updated.

(7) If the MCS attempts to schedule a program lacking an INITIAL clause, the

results are undefined.

(8) During the execution of a RECEIVE statement, the MCS provides, in the

data item referenced by data-name-5, the date on which it recognized that the

message was complete in the form 'YYMMDD' (year, month, day). The content of

the data item referenced by data-name-5 is not updated by the MCS other than as

part of the execution of a RECEIVE statement.

(9) During the execution of a RECEIVE statement, the MCS provides, in the

data item referenced by data-name-6, the time at which it recognized that the

message was complete in the form 'HHMMSSTT' (hours, minutes, seconds, hundredths

of a second). The content of the data item referenced by data-name-6 is not

updated by the MCS other than as part of the execution of a RECEIVE statement.

(10) During the execution of a RECEIVE statement, the MCS provides, in the

data item referenced by data-name-7, the symbolic name of the communication

terminal that is the source of the message being transferred. This symbolic

name must follow the rules for the formation of system-names. However, if the

symbolic name of the communication terminal is not known to the MCS, the content

of the data item referenced by data-name-7 will contain spaces.

(11) The MCS indicates via the content of the data item referenced by

data-name-8 the number of character positions filled as a result of the

execution of the RECEIVE statement. (See page XIV-23, The RECEIVE Statement.)

(12) The content of the data item referenced by data-name-9 is set only by

the MCS as part of the execution of a RECEIVE statement according to the

following rules:

a. When the RECEIVE MESSAGE phrase is specified, then:

1) If an end of group has been detected, the content of the data

item referenced by data-name-9 is set to 3;

XIV-8

Communication - CD Entry

2) If an end of message has been detected, the content of the data

item referenced by data-name-9 is set to 2;

3) If less than a message is transferred, the content of the data

item referenced by data-name-9 is set to 0.

b. When the RECEIVE SEGMENT phrase is specified, then:

1) If an end of group has been detected, the content of the data

item referenced by data-name-9 is set to 3;

2) If an end of message has been detected, the content of the data

item referenced by data-name-9 is set to 2;

3) If an end of segment has been detected, the content of the data

item referenced by data-name-9 is set to 1;

4) If less than a message segment is transferred, the content of

the data item referenced by data-name-9 is set to 0.

c. When more than one of the above conditions is satisfied

simultaneously, the rule first satisfied in the order listed determines the

content of the data item referenced by data-name-9.

(13) The content of the data item referenced by data-name-10 indicates the

status condition of the previously executed RECEIVE, ACCEPT MESSAGE COUNT,

ENABLE INPUT, or DISABLE INPUT]statement.

The actual association between the content of the data item referenced

by data-name-10 and the status condition itself is defined in table 1 on page

XIV-15.

(14) The content of the data item referenced by data-name-11 indicates the

number of messages that exist in a queue,|sub-queue-1, ...|. The MCS updates

the content of the data item referenced by data-name-11 only as part of the

execution of an ACCEPT MESSAGE COUNT statement.

FORMAT 2:

(15) The nature of the output CD information is such that it is not sent to

the terminal, but constitutes the communication between the program and the MCS

about the message being handled.

(16) In level 1 record area of 23 contiguous character positions is

allocated for each output CD. In level 2 a record area of contiguous character

positions is allocated for each output CD according to the following formula:

(10 plus (13 times integer-1)). The implicit description of this record area

is :

a.

data item

operational

The DESTINATION COUNT clause defines data-name-1 as the name of

whose implicit description is that of an integer, without

sign, occupying character positions 1 through 4 in the record.

a

an

b.

elementary

The TEXT LENGTH clause defines data-name-2 as the name of an

data item whose implicit description is that of an integer of 4

XIV-9

Communication - CD Entry

digits, without an operational sign, occupying character positions 5 through 8

in the record.

I!

c. The STATUS KEY clause defines data-name-3 to be an elementary

alphanumeric data item of 2 characters occupying positions 9 and 10 in the
record .

_d. Character positions 11 through 23 [and every set of 13 characters

thereafter!will form table items of the following description:

1) The ERROR KEY clause defines data-name-4 as the name of an

elementary alphanumeric data item of 1 character.

2) The SYMBOLIC DESTINATION clause defines data-name-5 as the name

of an elementary alphanumeric data item of 12 characters.

Use of the above clauses results in a record whose implicit description

is equivalent to the following:

IMPLICIT DESCRIPTION COMMENT

01 data-name-0.

02 data-name-1 PICTURE 9(4).

02 data-name-2 PICTURE 9(4).

02 data-name-3 PICTURE XX.

02 data-name [OCCURS integer-1 TIMES.

03 data-name-4 PICTURE X.

03 data-name-5 PICTURE X(12).

DESTINATION COUNT

TEXT LENGTH

STATUS KEY

DESTINATION TABLE

ERROR KEY

SYMBOLIC DESTINATION

NOTE: In the above, the information under 'COMMENT' is for

clarification and is not part of the data description.

(17) During the execution of a SEND,[PURGE, ENABLE OUTPUT, or DISABLE OUTPUT

statement, the content of the data item referenced by data-name-1 will indicate

to the MCS the number of symbolic destinations that are to be used from the area

referenced by data-name-5.

The

occurrence

MCS

of

finds the first symbolic destination name

the area referenced by data-name-5,

in the first

the second symbolic

destination name in the second occurrence of the area referenced by

data-name-5, ... , up to and including the occurrence of the area referenced by

data-name-5 indicated by the content of data-name-1 .

If during the execution of a SEND, [PURGE, ENABLE OUTPUT, or DISABLE

[OUTPUT]statement the value of the data item referenced by data-name-1 is outside

the range of 1 [through integer-1, an error condition is indicated, no action is

taken for any destination, and the execution of the SEND,[PURGE, ENABLE 0UTPUT~

lor DISABLE OUTPUT[statement is terminated.

(18) It is the responsibility of the user to insure that the value of the

data item referenced by data-name-1 is valid at the time of execution of the

SEND, [PURGE, ENABLE OUTPUT, or DISABLE 0UTPUT[statement.

(19) As part of the execution of a SEND statement, the MCS will interpret the

content of the data item referenced by data-name-2 to be the user's indication

XIV-10

Communication - CD Entry

of the number of leftmost character positions of the data item

referenced by the identifier in the associated SEND statement from which data is

to be transferred. (See page XIV-26, The SEND Statement.)

(20) Each occurrence of the

symbolic destination name

destination names must follow

data item referenced by data-name-5 contains a

previously known to the MCS. These symbolic

the rules for the formation of system-names.

(21)
status

DISABLE OUTPUT

The content of the

condition of the

statement.

data item referenced by data-name-3, indicates the

previously executed SEND, 1~PURGE, ENABLE OUTPUT, or |

The actual association between the content of the data item referenced

by data-name-3 and the status condition itself is defined in the table on page

XIV-15 .

(22) If, during execution of a IDISABLE OUTPUT, ENABLE OUTPUT, PURGE, or SEND

statement, the MCS determines an error has occurred, the content of the data

item referenced by data-name-3 and the content of each occurrence of

data-name-4, up to and including the occurrence spec ified by the content of

|data-name-l ,| are updated

The actual association between the content of the data item referenced

by data-name-4 and the error condition itself is defined in the table on page

XIV-16 .

FORMAT 3:

(23) The input-output CD information constitutes the communication between

the MCS and the program about the message being handled. This information does

not come from the terminal as part of the message.

(24) For each input-output CD, a record area of 33 contiguous character

positions is allocated. This record area is defined to the MCS as follows:

a. The MESSAGE DATE clause defines data-name-1 as the name of a data

item whose implicit description is that of an integer of 6 digits, without an

operational sign, occupying character positions 1 through 6 in the record.

b. The MESSAGE TIME clause defines data-name-2 as the name of a data

item whose implicit description is that of an integer of 8 digits, without an

operational sign, occupying character positions 7 through 14 in the record.

c. The SYMBOLIC TERMINAL clause defines data-name-3 as the name of an

elementary alphanumeric data item of 12 characters occupying positions 13

through 26 in the record.

d. The TEXT LENGTH clause defines data-name-4 as the name of an

elementary data item whose implicit description is that of an integer of 4

digits, without an operational sign, occupying character positions 27 through 30

in the record.

e. The END KEY clause defines data-name-5 as the name of an elementary

alphanumeric data item of 1 character occupying position 31 in the record.

XIV-11

Communication - CD Entry

f. The STATUS KEY clause defines data-name-6 as the name of an

elementary alphanumeric data item of 2 characters occupying positions 32 and 33

in the record.

The second option may be used to replace the above clauses by a series

of data-names which, taken in order, correspond to the data-names defined by

these clauses .

Use of either option results in a record whose implicit description is

equivalent to the following:

IMPLICIT DESCRIPTION COMMENT

01 data-name-0.

02 data-name-1

02 data-name-2

02 data-name-3

02 data-name-4

02 data-name-5

02 data-name-6

PICTURE 9(6).

PICTURE 9(8).

PICTURE X(12).

PICTURE 9(4).

PICTURE X.

PICTURE XX.

MESSAGE DATE

MESSAGE TIME

SYMBOLIC TERMINAL

TEXT LENGTH

END KEY

STATUS KEY

NOTE: In the above, the information under 'COMMENT' is for

clarification and is not part of the data description.

(25) When a program is scheduled by the MCS to process a message, the first

RECEIVE statement referencing the input-output CD with the INITIAL clause

returns the actual message that caused the program to be scheduled._

(26) Data-name-1 has the format 'YYMMDD' (year, month, day). Its content

represents the date on which the MCS recognizes that the message is complete.

The content of the data item referenced by data-name-1 is updated only

by the MCS as part of the execution of a RECEIVE statement.

(27) Data-name-2 has the format 'HHMMSSTT' (hours, minutes, seconds,

hundredths of a second) and its content represents the time at which the MCS

recognizes that the message is complete.

The content of the data item referenced by data-name-2 is updated only

by the MCS as part of the execution of the RECEIVE statement.

(28) Whenever a program is scheduled by the MCS to process a message, that

program establishes a run unit and the symbolic name of the communication

terminal that is the source of the message that invoked this program is placed

in the data item referenced by data-name-3 of the input-output CD associated

with the INITIAL clause as applicable. This symbolic name must follow the rules

for the formation of system-names.

In all other cases, the content of the data item referenced by

data-name-3 of the input-output CD associated with the INITIAL clause is

initialized to spaces.

The symbolic name is inserted, or the initialization to spaces is

completed, prior to the execution of the first Procedure Division statement.

XIV-12

Communication - CD Entry

(29) If the MCS attempts to schedule a program lacking an INITIAL clause, the

results are undefined.

(30) When the INITIAL clause is specified for an input-output CD and the

program is scheduled by the MCS, the content of the data item referenced by

data-name-3 must not be changed by the program. If this content is changed, the

execution of any statement referencing cd-name-1 is unsuccessful, and the data

item referenced by data-name-6 is set to indicate unknown source or destination,

as applicable. (See table on page XIV-15.)

(31) For an input-output CD without the INITIAL clause, or for an

input-output CD with the INITIAL clause|when the program is not scheduled by the

MCS, the program must specify the symbolic name of the source or destination in

data-name-3 prior to the execution of the first statement referencing cd-name-1.

After executing the first statement referencing cd-name-1, the content

of the data item referenced by data-name-3 must not be changed by the program.

If this content is changed, the execution of any statement referencing cd-name-1

is unsuccessful, and the data item referenced by data-name-6 is set to indicate

unknown source or destination, as applicable. (See table on page XIV-15.)

(32) The MCS indicates, through the content of the data item referenced by

data-name-4, the number of character positions filled as a result of the

execution of the RECEIVE statement. (See page XIV-23, The RECEIVE Statement.)

As part of the execution of a SEND statement, the MCS interprets the

content of the data item referenced by data-name-4 as the user's indication of

the number of leftmost character positions of the data item referenced by the

associated SEND identifier from which data is transferred. (See page XIV-26,

The SEND Statement.)

(33) The content of the data item referenced by data-name-5 is set only by

the MCS as part of the execution of a RECEIVE statement according to the

following rules:

a. When the RECEIVE MESSAGE phrase is specified:

1) If an end of group has be en detected, the content of the data

item referenced by data-name-5 is set to 3;

2) If an end of message has been detected, the content of the data

item referenced by data-name-5 is set to 2;

3) If less than a message is transferred, the content of the data

item referenced by data-name-5 is set to 0.

b. When the RECEIVE SEGMENT phrase is specified:

1) If an end of group has been detected, the content of the data

item referenced by data-name-5 is set to 3;

2) If an end of message has been detected, the content of the data

item referenced by data-name-5 is set to 2;

XIV-13

Communication - CD Entry

3) If an end of segment has been detected, the content of the data
item referenced by data-name -5 is set to 1 ;

4) If less than a message segment is transferred, the content of
the data item re fer enced by data-name-5 is set to 0.

c. When more than one of the conditions is satisfied simultaneously,

the rule first satisfied in the order listed determines the content of the data

item referenced by data-name-5.

(34) The content of the data i

status condition of the previous

SEND statement.

tem referenced by data-name-6 indicates

ly executed [DISABLE, ENABLE, PURGE, RECEIVE

the

or

The actual association between the content

by data-name-6 and the status condition itself

XIV-15.

of

is

the data item referenced

defined in table 1 on page

2.2.5 Communication Status Key Conditions

Table 1 on page XIV-15 indicates the possible contents of the data items

referenced by data-name-10 for format 1, by data-name-3 for format 2, and by

data-name-6 for format 3 at the completion of each statement shown. An 'X1 on a

line in a statement column indicates that the associated status key value shown

for that line is possible for that statement . [The symbol 2 indicates a level 2

[element that~is not available in level l.[

XIV-14

Communication - Communication Status Key Conditions

CM
CM

p <
<3 2
2 M
w §

X) H s Ed
CJ 2 w H

1 p H
4-> o O
3 o O 1 OJ
P 1 M CM 3

4-> T3 w M CM CM \ H 1—1
3 U o CM H H H p cd
O i <: H H p p P p >

1 4-J CO P P p p P H
4-1 3 CO P P H 2 2 p
3 (X w 2 2 p M (—1 o 0)
p 4-) s M M o p:

w 3 2 Ed Ed Ed
> •H o C\J H W W w P P P CO
M w p P p p CQ PQ p 3
w p Q o w PQ p PQ < <1 < 4-J
u 2 2 p CJ < < <3 CO CO CO cfl
w w W p u 2 2 2 M M H 4-»
pi CO CO p C W W Ed p p p CO

X X X X X X X X X X X 00 No error detected. Action completed.

X X 10 One or more destinations disabled.
Action completed. (See page XIV-16,
Error Key Values.)

X 10 Destination disabled. No action taken.

X X X X X X 15 Symbolic source, or one or more queues
or destinations already disabled/enabled.2
(See page XIV-16, Error Key Values.)

X X X X X 20 One or more destinations unknown. Action
completed for known destinations. (See
page XIV-16, Error Key Values.)

X X X X 20 One or more queues or subqueues unknown.
No action taken.

X X X 21 Symbolic source is unknown. No action
taken.

X X X X 30 Destination count invalid. No action
taken.

X X X X X X 40 Password invalid. No enabling/disabling
action taken.

X X 50 Text length exceeds size of identifier-1.

X X 60 Portion requested to be sent has text
length of zero or identifier-1 absent.
No action taken.

X 65 Output queue capacity exceeded. (See
page XIV-16, Error Key Values.)

X 70 One or more destinations do not have
portions associated with them. Action

completed for other destinations.2

X X X X X X 80 A combination of at least two status key
conditions 10, 15, and 20 have occurred.
(See page XIV-16, Error Key Values.)

9x Implementor-defined status

Table 1: Communication Status Key Conditions

XIV-15

Communication - Error Key Values

2.2.6 Error Key Values

Table 2 below indicates the possible content of the data item referenced by

data-name-4 for format 2 at the completion of each statement shown. An 'X' on a

line in a statement column indicates that the associated error key value shown

for that line is possible for that statement . pThe symbol 2 indicates a level ¥1

element that is not available in level 1.
S

E
N

D

CN
W
O
P4
!=>
Pm E

N
A

B
L

E

O
U

T
P

U
T
2

D
IS

A
B

L
E

O
U

T
P

U
T
2

E
r
r
o

r

K
e
y

V
a
lu

e

X X X X 0 No error.

X X X X 1 Symbolic destination unknown.

X X 2 Symbolic destination disabled.

X 4 No partial message with referenced symbolic
destination.^

X X 5
2

Symbolic destination already enabled/disabled.

X 6 Output queue capacity exceeded.

7-9 Reserved for future use.

,L
A-Z Implementor-defined condition.

Table 2: Error Key Values

XIV-16

Communication - ACCEPT MESSAGE COUNT

3. PROCEDURE DIVISION IN THE COMMUNICATION MODULE

3.1 THE ACCEPT MESSAGE COUNT STATEMENT

3.1.1 Function

The ACCEPT MESSAGE COUNT statement causes the number of complete messages in

a queue to be made available.

3.1.2 General Format

ACCEPT cd-name-1 MESSAGE COUNT

3.1.3 Syntax Rules

(1) Cd-name-1 must reference an input CD.

3.1.4 General Rules

(1) The ACCEPT MESSAGE COUNT statement causes the message count data item

specified for cd-name-1 to be updated to indicate the number of complete

messages that exist in the queue structure designated by the contents of the

data items specified by data-name-1 (SYMBOLIC QUEUE) | through data-name-4]

[(SYMBOLIC SUB-QUEUE-3)| of the area referenced by cd-name-1.

(2) Upon execution of the ACCEPT MESSAGE COUNT statement, the content of the

area specified by a communication description entry must contain at least the

name of the symbolic queue to be tested. Testing the condition causes the

content of the data items referenced by data-name-10

data-name-11 (MESSAGE COUNT) of the area associated with

description entry to be appropriately updated. (See

Communication Description Entry.)

(STATUS KEY) and

the communication

page XIV-3, The

XIV-17

Communication - DISABLE

3.2 THE DISABLE STATEMENT

3.2.1 Function

The DISABLE statement notifies the message control system (MCS) to inhibit

data transfer between specified output queues and destinations for output or

between specified sources and input queues for input or between the program and

one specified source or destination for input-output. The WITH KEY phrase is an

obsolete element in Standard COBOL because it is to be deleted from the next

revision of Standard COBOL.

3.2.2 General Format

DISABLE

1 INPUT [TERMINAL11

1-0 TERMINAL > cd-name-1 WITH KEY
(identifier-11

(literal-1 J 1 OUTPUT 1

3.2.3 Syntax Rules

(1) Cd-name-1 must reference an input CD when the INPUT phrase is specified.

(2) Cd-name-1 must reference an input-output CD when the 1-0 TERMINAL phrase

is specified.

(3) Cd-name-1 must reference an output CD when the OUTPUT phrase is

specified.

(4) Literal-1 or the content of the data item referenced by identifier-1

must be defined as alphanumeric.

3.2.4 General Rules

(1) The DISABLE statement provides a logical disconnection between the MCS

and the specified sources or destinations. When this logical disconnection is

already in existence, or is to be handled by some other means external to this

program, the DISABLE statement is not required in this program. No action is

taken when a DISABLE statement is executed which specifies a source or

destination which is already disconnected, except that the value in the status

key data item indicates this condition. The logical path for the transfer of

data between the COBOL programs and the MCS is not affected by the DISABLE

statement.

(2) The MCS will insure that the execution of a DISABLE statement will cause

the logical disconnection at the earliest time the source or destination is

inactive. The execution of the DISABLE statement will never cause the remaining

portion of the message to be terminated during transmission to or from a

terminal.

(3) When the INPUT phrase without the optional word TERMINAL is specified,

the logical paths between the queue and sub-queues specified by the contents of

data-name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the

area referenced by cd-name-1 and all the associated enabled sources are

deactivated.

XIV-18

Communication - DISABLE

(4) When the INPUT phrase with the optional word TERMINAL is specified, the

logical paths between the source (as defined by the content of the data item

referenced by data-name-7 (SYMBOLIC SOURCE) and all of its associated queues and

sub-queues are deactivated.

(5) When the 1-0 TERMINAL phrase is specified, the logical path between the

source (as defined by the content of the data item referenced by data-name-3

(SYMBOLIC TERMINAL)) and the program is deactivated.

(6) When the OUTPUT phrase is specified, the logical paths are deactivated

for all destinations specified by the content of each occurrence of data-name-5

up to and including the occurrence specified by the content of data-name-1 of

the area referenced by cd-name-1.

(7) Literal-1 or the content of the data item referenced by identifier-1

will be matched with a password built into the system. The DISABLE statement

will be honored only if literal-1 or the content of the data item referenced by

identifier-1 match the system password. When literal-1 or the content of the

data item referenced by identifier-1 do not match the system password, the value

of the STATUS KEY item in the area referenced by cd-name-1 is updated.

The message control system must be capable of handling a password of

from one to ten characters inclusive.

XIV-19

Communication - ENABLE

3.3 THE ENABLE STATEMENT

3.3.1 Function

The ENABLE statement notifies the message control system (MCS) to allow data

transfer between specified output queues and destinations for output or between

specified sources and input queues for input or between the program and one

specified source or destination for input-output. The WITH KEY phrase is an

obsolete element in Standard COBOL because it is to be deleted from the next

revision of Standard COBOL.

3.3.2 General Format

ENABLE

1 INPUT [TERMINALl|

' 1-0 TERMINAL > cd-name-1 WITH KEY
jidentifier-l)

1 OUTPUT I
(literal-1 (

3.3.3 Syntax Rules

(1) Cd-name-1 must reference an input CD when the INPUT phrase is specified.

(2) Cd-name-1 must reference an input-output CD when the 1-0 TERMINAL phrase

is specified.

(3) Cd-name-1 must reference an output CD when the OUTPUT phrase is

specified.

(4) Literal-1 or the content of the data item referenced by identifier-1

must be defined as alphanumeric.

3.3.4 General Rules

(1) The ENABLE statement provides a logical connection between the MCS and

the specified sources or destinations. When this logical connection is already

in existence, or is to be handled by some other means external to this program,

the ENABLE statement is not required in this program. No action is taken when

an ENABLE statement is executed which specifies a source or destination which is

already connected, except that the value in the status key data item indicates

this condition. The logical path for the transfer of data between the COBOL

programs and the MCS is not affected by the ENABLE statement.

(2) When the INPUT phrase without the optional word TERMINAL is specified,

the logical paths between the queue and sub-queues specified by the contents of

data-name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the

area referenced by cd-name-1 and all the associated sources are activated.

(3) When the INPUT phrase with the optional word TERMINAL is specified, the

logical paths between the source (as defined by the content of the data item

referenced by data-name-7 (SYMBOLIC SOURCE)) and all of its associated queues

and sub-queues are activated.

(4) When the 1-0 TERMINAL phrase is specified, the logical path between the

source (as defined by the content of the data item referenced by data-name-3

(SYMBOLIC TERMINAL)) and the program is activated.

XIV-20

Communication - ENABLE

(5) When the OUTPUT phrase is specified, the logical paths are activated for

all destinations specified by the content of each occurrence of data-name-5 up

to and including the occurrence specified by the content of data-name-1 of the

area referenced by cd-name-1.

(6) Literal-1 or the content of the data item referenced by identifier-1

will be matched with a password built into the system. The ENABLE statement

will be honored only if literal-1 or the content of the data item referenced by

identifier-1 match the system password. When literal-1 or the content of the

data item referenced by identifier-1 do not match the system password, the value

of the STATUS KEY item in the area referenced by cd-name-1 is updated.

The message control system must be capable of handling a password of

from one to ten characters inclusive.

XIV-21

Communication - PURGE

3.4 THE PURGE STATEMENT

3.4.1 Function

The PURGE statement eliminates from the message control system (MCS) a

partial message which has been released by one or more SEND statements.

3.4.2 General Format

PURGE cd-name-1

3.4.3 Syntax Rules

(1) Cd-name-1 must reference an output CD or input-output CD.

3.4.4 General Rules

(1) Execution of a PURGE statement causes the MCS to eliminate any partial

message awaiting transmission to the destinations specified in the CD referenced

by cd-name-1.

(2) Any message that has associated with it an EMI or EGI is not affected by

the execution of a PURGE statement.

(3) The content of the status key data item and the content of the error key

data item (if applicable) of the area referenced by cd-name-1 are updated by the

MCS. (See page XIV-3, The Communication Description Entry.)

XIV-22

Communication - RECEIVE

3.5 THE RECEIVE STATEMENT

3.5.1 Function

The RECEIVE statement makes

information about that data.

available a message or a message segment and

3.5.2 General Format

RECEIVE cd-name-1
MESSAGE (

I SEGMENTS
INTO identifier-1

[NO DATA imperative-statement-1]

[WITH DATA imperative-statement-2]

T END-RECEIVEl

3.5.3 Syntax Rules

(1) Cd-name-1 must reference an input CD or input-output CD.

3.5.4 General Rules

(1) If cd-name-1 references an input CD, the contents of the data items

specified by data-name-1 (SYMBOLIC QUEUE)

| SUB-QUEUE-3)] of the area referenced by cd-name-1

containing the message. (See page XIV-3, The Communication Description Entry.)

through data-name-4 (SYMBOLIC

designate the queue structure

(2) If cd-name-1 references an input-output CD, the content of the data item

specified by data-name-3 (SYMBOLIC TERMINAL) of the area referenced by cd-name-1

designates the source of the message. (See page XIV-3, The Communication

Description Entry.)

(3) The message,

transferred to the

identifier-1 aligned

message segment, or portion of a message or segment"]

receiving character positions of the area referenced

to the left without space fill.

is

by

(4) When, during the execution of a RECEIVE statement, the MCS makes data

available in the data item referenced by identifier-1, the NO DATA phrase, if

specified, is ignored and control is transferred to the end of the RECEIVE

statement or, if the WITH DATA phrase is specified, to imperative-statement-2.

If control is transferred to imperative-statement-2, execution continues

according to the rules for each statement specified in imperative-statement-2.

If a procedure branching or conditional statement which causes explicit transfer

of control is executed, control is transferred in accordance with the rules for

that statement; otherwise, upon completion of the execution of

imperative-statement-2, control is transferred to the end of the RECEIVE

statement .

(5) When, during the execution of a RECEIVE statement, the MCS does not make

data available in the data item referenced by identifier-1, one of the three

actions listed below will occur. The conditions under which data is not made

available are defined by the implementor.

XIV-23

Communication - RECEIVE

a. If the NO DATA phrase is specified in the RECEIVE statement, the

RECEIVE operation is terminated with the indication that action is complete and

control is transferred to imperative-statement-1. Execution then continues

according to the rules for each statement specified in imperative-statement-1.

If a procedure branching or conditional statement which causes explicit transfer

of control is executed, control is transferred in accordance with the rules for

that statement; otherwise, upon completion of the execution of

imperative-statement-1, control is transferred to the end of the RECEIVE

statement and the WITH DATA phrase, if specified, is ignored.

b. If the NO DATA phrase is not specified in the RECEIVE statement,

execution of the object program is suspended until data is made available in the

data item referenced by identifier-1.

c. If one or more queues [or subqueues) are unknown to the MCS, the

appropriate status key code is stored and control is then transferred as if data

had been made available. (See table on page XIV-15.)

(6) The data items identified by cd-name-1 are appropriately updated by the

message control system (MCS) at each execution of a RECEIVE statement. (See

page XIV-3, The Communication Description Entry.)

(7) A single execution of a RECEIVE statement never returns to the data item

referenced by identifier-1 more than a single message (when the MESSAGE phrase

is used)[or a single segment (when the SEGMENT phrase is used). However, the

MCS does not pass any portion of a message to the object program until the

entire message is available to the MCS, even if the SEGMENT phrase of the

RECEIVE statement is specified.

(8) When the MESSAGE phrase is used, end of segment indicators are ignored,

and the following rules apply to the data transfer:

a. If a message is the same size as the area referenced by

identifier-1, the message is stored in the area referenced by identifier-1.

b. If a message size is less than the area referenced by identifier-1,

the message is aligned to the leftmost character position of the area referenced

by identifier-1 and the contents of the character positions not occupied by

characters of the message are not changed.

c. If a message size is greater than the area referenced by

identifier-1, the message fills the area referenced by identifier-1 left to

right starting with the leftmost character of the message. In level 1, the

disposition of the remainder of the message is undefined. [In level 2^ further

RECEIVE statements which reference the same queue, sub-queue, ... , must be

executed to transfer the remainder of the message into the area referenced by

identifier-1. The remainder of the message, for the purposes of applying rules

8a, 8b, and 8c, is treated as a new message.

d.

the RECEIVE

If an end of group indicator is associated with the text accessed by

statement, the existence of an end of message indicator is implied.

XIV-24

Communication - RECEIVE

(9) When the SEGMENT phrase is used, the following rules apply:

a. If a segment is the same size as the area referenced by

identifier-1, the segment is stored in the area referenced by identifier-1.

b. If the segment size is less than the area referenced by

identifier-1, the segment is aligned to the leftmost character position of the

area referenced by identifier-1 and the contents of character positions not

occupied by characters of the segment are not changed.

c . If a segment size

identifier-1, the segment fil

right starting with the leftmost

statements which reference the

transfer the remainder of the se

The remainder of the segment, fo

is treated as a new segment.

is greater than the area referenced by

Is the area referenced by identifier-1 left to

character of the segment. Further RECEIVE

same queue, sub-queue, ... , must be executed to

gment into the area referenced by identifier-1,

r the purposes of applying rules 9a, 9b, and 9c,

d. If an end of message indicator or

associated with the text accessed by the RECEIVE

end of segment indicator is implied.

end of group indicator

statement, the existence of

is

an

(10) Once the execution of a RECEIVE statement has returned a portion of a

message, only subsequent execution of RECEIVE statements in that run unit can

cause the remaining portion of the message to be returned.

(11
(See

) The END-RECEIVE phrase delimits

page IV-40, Scope of Statements.)

the scope of the RECEIVE statement.

XIV-25

Communication SEND

3.6 THE SEND STATEMENT

3.6.1 Function

The SEND statement causes a message,[a message segment, or a portion of a|

message or segment! to be released to one]or more[output queues maintained by the

message control system (MCS).

3.6.2 General Format

Format 1:

SEND cd-name-1 FROM identifier-1

Format 2:

SEND cd-name-1 [FROM identifier-1]

WITH identifier-2

WITH ESI

(BEFORE1

1 AFTER J
ADVANCING

[REPLACING LINE]

WITH MI

WITH EGI

(identifier-3

[integer-1

1mnemonic-name-

PAGE

)(line 1

j LINEsJ

3.6.3 Syntax Rules

(1) Cd-name-1 must reference an output CD or input-output CD.

(2) Identifier-2 must reference a one-character integer without an

operational sign.__

(3) Identifier-3 must reference an integer data item.

(4) When the mnemonic-name phrase is used, the name is identified with a

particular feature specified by the implementor. The mnemonic-name is defined

in the SPECIAL-NAMES paragraph in the Environment Division._

(5) Integer-1 or the value of the data item referenced by identifier-3 may

be zero.

3.6.4 General Rules

ALL FORMATS:

(1) When a receiving communication device (printer, display screen, card

punch, etc.) is oriented to a fixed line size:

XIV-26

Communication - SEND

a .

position of

Each message|or message segment

the physical line.

begins at the leftmost character

b. A message[or message segment! that

size is released so as to appear space filled

is smaller than the

to the right.

physical line

c. Excess characters of a message|or message segment] are not truncated.

Characters are packed to a size equal to that of the physical line and then

transmitted to the output device. The process continues on the next line with

the excess characters.

(2) When a receiving communication device

computer, etc.) is oriented to handle variable le

message segment will begin on the next available

communication device.

(paper tape punch, another

ngth messages, each message [or]

character position of the

(3) As part of the execution of a SEND statement, the MCS will interpret the

content of the text length data item of the area referenced by cd-name-1 to be

the user's indication of the number of leftmost character positions of the data

item referenced by identifier-1 from which data is to be transferred. (See page

XIV-3, The Communication Description Entry.)

If the content of the text length data item of the area referenced by

cd-name-1 is zero, no characters of the data item referenced by identifier-1 are

transferred.

If the content of the text length data item of the area referenced by

cd-name-1 is outside the range of zero through the size of the data item

referenced by identifier-1 inclusive, an error is indicated by the value of the

status key data item of the area referenced by cd-name-1, and no data is

transferred. (See table on page XIV-15.)

(4) As part of the execution of a SEND statement, the content of the status

key data item of the area referenced by cd-name-1 is updated by the MCS. (See

XIV-3, The Communication Description Entry.

(5) The effect of having special control characters within the content of

the data item referenced by identifier-1 is undefined.

(6)
only a

the MCS.

A single execution of a SEND statement represented by format 1 releases

single portion of a message segment or a single portion of a message to

A single execution of a SEND statement represented by format 2 never

releases to the MCS more than a single message or a single message segment as

indicated|by the content of the data item referenced by identifier-2 or by

specified indicator ESI,1 EMI, or EGI.

the

However, the MCS will not transmit any portion of a message to a

communication device until the entire message has been released to the MCS.

(7) During the execution of the run unit, the disposition of a portion of a

message which is not terminated by an EMI or EGI or which has not been

eliminated by the execution of a PURGE statement is undefined. However, the

XIV-27

Communication - SEND

message does not logically exist for the MCS and hence cannot be sent to a

destination.

(8) Once the execution of a SEND statement has released a portion of a

message to the MCS, only subsequent execution of SEND statements in the same run

unit can cause the remaining portion of the message to be released.

FORMAT 2:

(9) The content of the data item referenced by identifier-2 indicates that

the content of the data item referenced by identifier-1, when specified, is to

have an associated end of segment indicator, end of message indicator, end of

group indicator, or no indicator (which implies a portion of a message or a

portion of a segment). If identifier-1 is not specified, only the indicator is

transmitted to the MCS.

If the content of

the data item

referenced by

identifier-2 is

then the content of

data item referenced

by identifier-1 has

an associated

which means

0 no indicator portion of message or

of a segment

1 end of segment

indicator (ESI)

end of current segment

2 end of message

indicator (EMI)

end of current message

3 end of group

indicator (EGI)

end of current group

of messages

Any character other than 1, 2, or 3 will be interpreted as 0.

If the content of the data item referenced by identifier-2 is other than

1, 2, or 3, and identifier-1 is not specified, then an error is indicated by the

value in the status key data item of the area referenced by cd-name-1, and no

data is transferred.

(10) The WITH EGI phrase indicates to the MCS that the group of messages is

complete.

The WITH EMI phrase indicates to the MCS that the message is complete.

The WITH ESI phrase indicates to the MCS that the message segment is

complete. _

The

necessary to

MCS will

maintain

recognize

segment,|

these

message

indications and establish

or group control.

whatever is

XIV-28

Communication - SEND

(11) The hierarchy of ending indicators is EGI, EMI, and ESI

EMI. not be preceded by an 1ESI or

An EGI need

An EMI need not be preceded by an ESI.

(12) The ADVANCING phrase allows control of the vertical positioning of each

message or message segment on a communication device where vertical positioning

is applicable. If vertical positioning is not applicable on the device, the MCS

will ignore the vertical positioning specified or implied.

(13) If identifier-2 is specified and the content of the data item referenced

by identifier-2 is zero, the ADVANCING

specified, are ignored by the MCS.

phrase and the REPLACING phrase, if

(14) On a device where vertical positioning is applicable and the ADVANCING

phrase is not specified, automatic advancing will be provided by the implementor

to act as if the user had specified AFTER ADVANCING 1 LINE.

(15) If the ADVANCING phrase is implicitly or explicitly specified and

vertical positioning is applicable, the following rules apply:

a. If integer-1 or identifier-3 is specified, characters transmitted to

the communication device are repositioned vertically downward the number of

lines equal to integer-1 or the value of

identifier-3.

the data item re ferenced by

b. If the value of the data item

negative, the results are undefined.

referenced by identifier-3 is

c. If mnemonic-name-1 is specified, characters

communication device are positioned according to the

implementor for that communication device.

transmitted to

rules specified by

the

the

d. If the BEFORE phrase is used, the message | or message segment is

represented on the communication device before vertical repositioning according

to general rules 15aland 15clabove.

e. If the AFTER phrase is used,

represented on the communication device

general rules 15a [and 15c|above.

the message | or message segment"

after vertical positioning according

is

to

f. If PAGE is specified, characters transmitted to the communication

device are represented on the device before or after (depending upon the phrase

used) the device is repositioned to the next (new) page. If PAGE is specified

but page has no meaning in conjunction with a specific device, then advancing is

provided by the implementor to act as if the user had specified BEFORE or AFTER

(depending upon the phrase used) ADVANCING 1 LINE.

(16) When a receiving communication device is a character-imaging device on

which it is possible to present two or more characters at the same position and

the device permits the choice of either the second or subsequent characters

appearing superimposed on characters already displayed at that position or each

character appearing in the place of the characters previously transmitted to

that line:

a. If the REPLACING phrase is specified, the characters transmitted by

the SEND statement replace all characters which may have previously been

XIV-29

Communication - SEND

transmitted to the same line beginning with the leftmost character position of

the line.

b. [If the REPLACING phrase is not specified, the characters transmitted

by the SEND statement appear superimposed upon the characters which may have

previously been transmitted to the same line beginning with the leftmost

character position of the line.

(17) When a receiving communication device does not support

of characters,

the replacement

regardless of whether or not the REPLACING phrase is specified,

the characters transmitted by the SEND statement appear superimposed upon the

characters which may have previously been transmitted to the same line,

beginning with the leftmost character position of the line.

(18) When a receiving communication device does not support the

superimposition of two or more characters at the same position, |regardless of

[whether or not the REPLACING phrase is specified,]the characters transmitted by

the SEND statement replace all characters which may have previously been

transmitted to the same line beginning with the leftmost character position of

the line.

XIV-30

Debug Int roduc tion

I

SECTION XV: DEBUG MODULE

1. INTRODUCTION TO THE DEBUG MODULE

1.1 FUNCTION

The Debug module provides a means by which the user can describe his

debugging algorithm including the conditions under which data items or

procedures are to be monitored during the execution of the object program.

The decisions of what to monitor and what information to display on the

output device are explicitly in the domain of the user. The COBOL facility

simply provides a convenient access to pertinent information.

The Debug module is an obsolete element in Standard COBOL because it is to be

deleted from the next revision of Standard COBOL.

1.2 LEVEL CHARACTERISTICS

Debug level 1 provides a basic debugging capability including the ability to

specify selective procedure monitoring.

Debug level 2 provides the full COBOL debugging facility.

1.3 LANGUAGE CONCEPTS

1.3.1 Debug Features

The features of the COBOL language that support the Debug module are:

a. A compile time switch — WITH DEBUGGING MODE clause.

b. An object time switch.

c. A USE FOR DEBUGGING statement.

d. A special register — DEBUG-ITEM.

1.3.2 Special Register DEBUG-ITEM

The reserved word DEBUG-ITEM is the name for a special register generated

automatically by the implementor's code that supports the debugging facility.

Only one DEBUG-ITEM is allocated per program. The names of the subordinate data

items in DEBUG-ITEM are also reserved words.

XV-1

Debug - Introduction

1.3.3 Compile Time Switch

The WITH DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER

paragraph. It serves as a compile time switch over the debugging statements

written in the program.

When the WITH DEBUGGING MODE clause is specified in a program, all debugging

sections are compiled as specified in this section of the document. When the

WITH DEBUGGING MODE clause is not specified, all debugging sections are compiled

as if they were comment lines.

1.3.4 Object Time Switch

An object time switch dynamically activates the debugging code inserted by

the compiler. This switch cannot be addressed in the program; it is controlled

outside the COBOL environment. If the switch is on, all the effects of the

debugging language written in the source program are permitted. If the switch

is off, all the effects described in the USE FOR DEBUGGING statement on page

XV-5 are inhibited. Recompilation of the source program is not required to

provide or take away this facility.

The object time switch has no effect on the execution of the object program

if the WITH DEBUGGING MODE clause was not specified in the source program at

compile time.

XV-2

Debug - WITH DEBUGGING MODE

2. ENVIRONMENT DIVISION IN THE DEBUG MODULE

2.1 THE WITH DEBUGGING MODE CLAUSE

2.1.1 Function

The WITH DEBUGGING MODE clause indicates that all debugging sections are to

be compiled. If this clause is not specified, all debugging sections are

compiled as if they were comment lines.

2.1.2 General Format

SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE].]

2.1.3 General Rules

(1) If the WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTER

paragraph of the Configuration Section of a program, all USE FOR DEBUGGING

statements are compiled.

(2) If the WITH DEBUGGING MODE clause is not specified in the

SOURCE-COMPUTER paragraph of the Configuration Section of a program, any USE FOR

DEBUGGING statements and all associated debugging sections are compiled as if

they were comment lines.

XV-3

Debug - Procedure Division

3. PROCEDURE DIVISION IN THE DEBUG MODULE

3.1 GENERAL DESCRIPTION

The Procedure Division contains declarative procedures when the

DEBUGGING statement from the Debug module is present in a COBOL source

Shown below is the general format of the Procedure Division when the

DEBUGGING statement is present.

PROCEDURE DIVISION.

DECLARATIVES.

(section-name SECTION.

USE FOR DEBUGGING statement.

[paragraph-name.

[sentence] ...] ... } ...

END DECLARATIVES.

(section-name SECTION.

[paragraph-name.

[sentence] ...] ... } ...

USE FOR

program.

USE FOR

XV-4

Debug - USE FOR DEBUGGING

3.2 THE USE FOR DEBUGGING STATEMENT

3.2.1 Function

The USE FOR DEBUGGING statement identifies the user items that are to be

monitored by the associated debugging section.

3.2.2 General Format

USE FOR DEBUGGING ON

Scd-name-1

[ALL REFERENCES OF] identifier-1

\ file-name-1__

/ procedure-name-1

\ ALL PROCEDURES

3.2.3 Syntax Rules

(1) Debugging section(s), if specified, must appear together immediately

after the DECLARATIVES header.

(2) Except in the USE FOR DEBUGGING statement itself, there must be no

reference to any non-declarative procedure within the debugging section.

(3) Statements appearing outside of the set of debugging sections must not

reference procedure-names defined within the set of debugging sections.

(4) Except for the USE FOR DEBUGGING statement itself, statements appearing

within a given debugging section may reference procedure-names defined within a

different USE procedure only with a PERFORM statement.

(5) Procedure-names defined within debugging sections must not appear within

USE FOR DEBUGGING statements.

(6) Any given [identifier, cd-name, file-name, or procedure-name may appear

in only one USE FOR DEBUGGING statement and may appear only once in that

statement.

(7) The ALL PROCEDURES phrase can appear only once in a program.

(8) When the ALL PROCEDURES phrase is specified, procedure-name-1 must not

be specified in any USE FOR DEBUGGING statement.

(9) Identifier-1 must not reference any data item defined in the Report

Section except sum counters.

(10) If the data description entry of the data item referenced by

identifier-1 contains an OCCURS clause or is subordinate to a data description

entry that contains an OCCURS clause, identifier-1 must be specified without the

subscripting or indexing normally required.

(11) References to the special register DEBUG-ITEM are restricted to

references from within a debugging section.

(12) Identifier-1 must not be reference modified.

XV-5

Debug - USE FOR DEBUGGING

3.2.4 General Rules

(1) Automatic execution of a debugging section is not caused by a statement

appearing in a debugging section.

(2) When file-name-1 is specified in a USE FOR DEBUGGING statement, that

debugging section is executed:

a. After the execution of any OPEN or CLOSE statement that references

fi.le-name-1, and

b. After the execution of any READ statement (after any other specified

USE procedure) not resulting in the execution of an associated AT END or INVALID

KEY imperative statement, and

c. After the execution of any DELETE or START statement that references

file-name-1.

(3) When procedure-name-1 is specified in a USE FOR DEBUGGING statement that

debugging section is executed:

a. Immediately before each execution of the named procedure;

b. Immediately after the execution of an ALTER statement which

references procedure-name-1.

(4) The ALL PROCEDURES phrase causes the effects described in general rule 3

to occur for every procedure-name in the program, except those appearing within

a debugging section.

(5) When the ALL REFERENCES OF identifier-1 phrase is specified, that

debugging section is executed for every statement that explicitly references

identifier-1 at each of the following times:

a. In the case of a WRITE or REWRITE statement immediately before the

execution of that WRITE or REWRITE statement and after the execution of any

implicit move resulting from the presence of the FROM phrase.

b. In the case of a GO TO statement with a DEPENDING ON phrase,

immediately before control is transferred and prior to the execution of any

debugging section associated with the procedure-name to which control is to be

transferred.

c. In the case of a PERFORM statement in which a VARYING, AFTER, or

UNTIL phrase references identifier-1, immediately after each initialization,

modification, or evaluation of the content of the data item referenced by

identifier-1.

d. In the case of any other COBOL statement, immediately after

execution of that statement.

If identifier-1 is specified in a phrase that is not executed or

evaluated, the associated debugging section is not executed.

XV-6

Debug - USE FOR DEBUGGING

(6) When identifier-1 is specified without the ALL REFERENCES OF phrase,

that debugging section is executed at each of the following times:

a. In the case of a WRITE or REWRITE statement that explicitly

references identifier-1, immediately before the execution of that WRITE or

REWRITE statement and after the execution of any implicit move resulting from

the presence of the FROM phrase.

b. In the case of a PERFORM statement in which a VARYING, AFTER, or

UNTIL phrase references identifier-1, immediately after each initialization,

modification, or evaluation of the content of the data item referenced by

identifier-1.

c. Immediately after the execution of any other COBOL statement that

explicitly references and causes the content of the data item referenced by

identifier-1 to be changed.

If identifier-1 is specified in a phrase that is not executed or

evaluated, the associated debugging section is not executed.

(7) The associated debugging section is not executed for a specific operand

more than once as a result of the execution of a single statement, regardless of

the number of times that operand is explicitly specified. In the case of a

PERFORM statement which causes iterative execution of a referenced procedure,

the associated debugging section is executed once for each iteration.

Within an imperative statement, each individual occurrence of an

imperative verb identifies a separate statement for the purpose of debugging.

(8) When cd-name-1 is specified in a USE FOR DEBUGGING statement, that

debugging section is executed:

a. After the execution of any ENABLE, DISABLE, and SEND statement that

references cd-name-1,

b. After the execution of a RECEIVE statement referencing cd-name-1

that does not result in the execution of the NO DATA imperative-statement, and

c. After the execution of an ACCEPT MESSAGE COUNT statement that

references cd-name-1. _

(9) A reference to identifier-1, cd-name-1, file-name-1, or| pr

as a qualifier does not constitute reference to that item for

described in the general rules above.

ocedure-name-1

the debugging

XV-7

Debug - USE FOR DEBUGGING

(10) Associated with each execution of a debugging section is the special

register DEBUG-ITEM, which provides information about the conditions that caused

the execution of a debugging section. DEBUG-ITEM has the following implicit

description:

DEBUG-ITEM.

02 DEBUG-LINE PICTURE IS X(6).

02 FILLER PICTURE IS X VALUE IS SPACE.

02 DEBUG-NAME PICTURE IS X(30) .

02 FILLER PICTURE IS X VALUE IS SPACE.

02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.

02 FILLER PICTURE IS X VALUE IS SPACE.

02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.

02 FILLER PICTURE IS X VALUE IS SPACE.

02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.

02 FILLER PICTURE IS X VALUE IS SPACE.

02 DEBUG-CONTENTS PICTURE IS X(n) .

(11) Prior to each execution of a debugging section, the content of the data

:em referenced by DEBUG-ITEM is space filled. The contents of data items

subordinate to DEBUG-ITEM are then updated, according to the following general

rules, immediately before control is passed to that debugging section. The

content of any data item not specified in the following general rules remains

spaces .

Updating is accomplished in accordance with the rules for the MOVE

statement, the sole exception being the move to DEBUG-CONTENTS when the move is

treated exactly as if it was an alphanumeric to alphanumeric elementary move

with no conversion of data from one form of internal representation to another.

(12) The content of DEBUG-LINE is the implementor-defined means of

identifying a particular source statement.

(13) DEBUG-NAME contains the first 30 characters of the name that caused the

debugging section to be executed.

All qualifiers of the name are separated in DEBUG-NAME by the word 'IN'

or 'OF'. Subscripts/indices, if any, are not entered into DEBUG-NAME.

(14) If the reference to a data item that causes the debugging section to be

executed is subscripted or indexed, the occurrence number of each level is

entered in DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3 respectively as necessary.

(15) DEBUG-CONTENTS is a data item that is large enough to contain the data

required by the following general rules.

(16) If the first execution of the first nondeclarative procedure in the

program causes the debugging section to be executed, the following conditions

exist:

a. DEBUG-LINE identifies the first statement of that procedure.

b. DEBUG-NAME contains the name of that procedure.

c. DEBUG-CONTENTS contains 'START PROGRAM'.

XV-8

Debug - USE FOR DEBUGGING

(17) If a reference to procedure-name-1 in an ALTER statement causes the

debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the ALTER statement that references

procedure-name-1.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains the applicable procedure-name associated

with the TO phrase of the ALTER statement.

(18) If the transfer of control associated with the execution of a GO TO

statement causes the debugging section to be executed, the following conditions

exist:

a.

control to

DEBUG-LINE identifies the GO TO statement whose execution

procedure-name-1.

trans fers

b. DEBUG-NAME contains procedure-name-1.

(19) If reference to procedure-name-1 in the INPUT or OUTPUT phrase of a SORT

or MERGE statement causes the debugging section to be executed, the following

conditions exist:

a. DEBUG-LINE identifies the SORT or MERGE statement that references

procedure-name-1.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains:

1) If the reference to procedure-name-1 is in the INPUT phrase of a

SORT statement, 'SORT INPUT'.

2) If the reference to procedure-name-1 is in the OUTPUT phrase of

a SORT statement, 'SORT OUTPUT'.

3) If the reference to procedure-name-1 is in the OUTPUT phrase of

a MERGE statement, 'MERGE OUTPUT'.

(20) If the transfer of control from the control mechanism associated with a

PERFORM statement caused the debugging section associated with procedure-name-1

to be executed, the following conditions exist:

a. DEBUG-LINE identifies the PERFORM statement that references

procedure-name-1.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains 'PERFORM LOOP'.

XV-9

Debug - USE FOR DEBUGGING

(21) If procedure-name-1 is a USE procedure that is to be executed, the

following conditions exist:

a. DEBUG-LINE identifies the statement that causes execution of the USE

procedure.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains 'USE PROCEDURE'.

(22) If an implicit transfer of control from the previous sequential

paragraph to procedure-name-1 causes the debugging section to be executed, the

following conditions exist:

a. DEBUG-LINE identifies the previous statement.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains 'FALL THROUGH'.

(23) If reference to file-name-1 or cd-name-1 causes the debugging section to

be executed, then:

a. DEBUG-LINE identifies the source statement that references

file-name-1 or cd-name-1.

b. DEBUG-NAME contains the name of file-name-1 or cd-name-1.

c. For READ, DEBUG-CONTENTS contains the entire record read.

d. For all other references to file-name-1, DEBUG-CONTENTS contains

spaces .

e. For any reference to cd-name-1, DEBUG-CONTENTS contains the content

of the area associated with the cd-name.

(24) If a reference to identifier-1 causes the debugging section to be

executed, then:

a. DEBUG-LINE identifies the source statement that references

identifier-1.

b. DEBUG-NAME contains the name of identifier-1, and

c. DEBUG-CONTENTS contains the content of the data item referenced by

identifier-1 at the time that control passes to the debugging section (see

general rules 5 and 6).

XV-10

Segmentation - Introduction

SECTION XVI: SEGMENTATION MODULE

1. INTRODUCTION TO THE SEGMENTATION MODULE

1.1 FUNCTION

The Segmentation module provides a means by which the user may communicate

with the compiler to specify object program overlay requirements.

The Segmentation module is an obsolete element in Standard COBOL because it

is to be deleted from the next revision of Standard COBOL.

1.2 LEVEL CHARACTERISTICS

Segmentation level 1 provides a facility for specifying permanent and

independent segments (see paragraph 1.4.1 below). All sections with the same

segment-number must be contiguous in the source program. All segments specified

as permanent segments must be contiguous in the source program.

Segmentation level 2 provides the facility for intermixing sections with

different segment-numbers and allows the fixed portion of the source program to

contain segments that may be overlaid (see paragraph 1.4.1 below)._

1.3 SCOPE

segmentation of procedures. As such, only

Environment Division are considered in

for an object program.

1 .4 ORGANIZATION

COBOL segmentation deals only with

the Procedure Division and the

determining segmentation requirements

1.4.1 Program Segments

Although it is not mandatory, the Procedure Division for a source program is

usually written as a consecutive group of sections, each of which is composed of

a series of closely related operations that are designed to collectively perform

a particular function. However, when segmentation is used, the entire Procedure

Division must be in sections. In addition, each section must be classified as

belonging either to the fixed portion or to one of the independent segments of

the object program. Segmentation in no way affects the need for qualification

of procedure-names to insure uniqueness.

1.4.2 Fixed Portion

The fixed portion is defined as that part of the object program

logically treated as if it were always in memory. This portion of

is composed of two types of segments:| fixed permanent segments

overlayable segments

which is

the program

| and fixed 1

XVI-1

Segmentation - Introduction

cannot be A fixed permanent segment is a segment in the fixed portion which_

overlaid by any other part of the program. A fixed overlayable segment is a

segment in the fixed portion which, although logically treated as if it were

always in memory, can be overlaid by another segment to optimize memory

utilization. Variation of the number of fixed permanent segments in the fixed

portion can be accomplished by using a special facility called the SEGMENT-LIMIT

clause (see page XVI-5, The SEGMENT-LIMIT Clause). Such a segment, if called

for by the program, is always made available in its last used state.

1.4.3 Independent Segments

An independent segment is defined as part of the object program which can

overlay, and can be overlaid by,[either a fixed overlayable segment or|another

independent segment. An independent segment is in its initial state whenever

control is transferred (either implicitly or explicitly) to that segment for the

first time during the execution of a program. On subsequent transfers of

control to the segment, an independent segment is also in its initial state
when:

(1) Control is transferred to that segment as a result of the implicit

transfer of control between consecutive statements from a segment with a

different segment-number.

(2) Control is transferred to that segment as the result of the implicit

transfer of control between a SORT or MERGE statement, in a segment with a

different segment-number, and an associated input or output procedure in that

independent segment.

(3) Control is transferred explicitly to that segment from a segment with a

different segment-number (with the exception noted in paragraph 2 below).

On subsequent transfer of control to the segment, an independent segment is

in its last-used state when:

(1) Control is transferred implicitly to that segment from a segment with a

different segment-number (except as noted in paragraphs 1 and 2 above).

(2) Control is transferred explicitly to that segment as the result of the

execution of an EXIT PROGRAM statement.

See paragraph 4.4.2, Explicit and Implicit Transfers of Control, page IV-25.

1.5 SEGMENTATION CLASSIFICATION

Sections which are to be segmented are classified, using a system

segment-numbers (see page XVI-7, Segment-Numbers) and the following criteria:

of

(1) Logic Requirements - Sections which must be available for reference at

all times, or which are referred to very frequently, are normally classified as

belonging to one of the permanent segments; sections which are used less

frequently are normally classified as belonging |either to one of the overlayable

[fixed segments or[to one of the independent segments, depending on logic

requirements.

XVI-2

Segmentation - Introduction

(2) Frequency of Use - Generally, the more frequently a section is referred

to, the lower its segment-number, the less frequently it is referred to, the

higher its segment-number.

(3) Relationship to Other Sections - Sections which frequently communicate

with one another should be given the same segment-numbers.

1.6 SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical sequence

except for specific transfers of control. If any reordering of the object

program is required to handle the flow from segment to segment, according to the

rules for segment-numbers on page XVI-7, the implementor must provide control

transfers to maintain the logical flow specified in the source program. The

implementor must also provide all controls necessary for a segment to operate

whenever the segment is used. Control may be transferred within a source

program to any paragraph in a section; that is, it is not mandatory to transfer

control to the beginning of a section.

XVI-3

Segmentation - OBJECT-COMPUTER

2. ENVIRONMENT DIVISION IN THE SEGMENTATION MODULE

2.1 CONFIGURATION SECTION

Information concerning the Configuration Section is located on page VI-9.

2.2 THE OBJECT-COMPUTER PARAGRAPH

2.2.1 Function

The OBJECT-COMPUTER paragraph provides a means of describing the computer on

which the program is to be executed.

2.2.2 General Format
/

OBJECT-COMPUTER. [computer-name

iWORDS)
MEMORY SIZE integer-1 < CHARACTERS /

I MODULES)

[PROGRAM COLLATING SEQUENCE IS alphabet-name-1]

rSEGMENT-LIMIT IS segment-number].]

2.2.3 Syntax Rules

(1) Computer-name is a system-name.

2.2.4 General Rules

(1) All clauses of the OBJECT-COMPUTER paragraph apply to the program in

which they are explicitly or implicitly specified and to any program contained

within that program.

(2) General rules concerning computer-name, the MEMORY SIZE clause, and the

PROGRAM COLLATING SEQUENCE clause are presented in the Nucleus module on page

VI-11.

(3) The SEGMENT-LIMIT clause is presented on page XVI-5.

XVI-4

Segmentation - SEGMENT-LIMIT

2.3 THE SEGMENT-LIMIT CLAUSE

2.3.1 Function

Ideally, all program segments having segment-numbers ranging from 0 through

49 should be specified as permanent segments. However, when insufficient memory

is available to contain all permanent segments plus the largest overlayable

segment, it becomes necessary to decrease the number of permanent segments. The

SEGMENT-LIMIT feature provides the user with a means by which he can reduce the

number of permanent segments in his program, while still retaining the logical

properties of fixed portion segments (segment-numbers 0 through 49).

2.3.2 General Format

SEGMENT-LIMIT IS segment-number

2.3.3 Syntax Rules

(1) Segment-number must be an integer ranging in value from 1 through 49.

2.3.4 General Rules

(1) When the SEGMENT-LIMIT clause is specified, only those segments having

segment-numbers from 0 up to, but not including, the segment-number designated

as the segment-limit, are considered as permanent segments of the object

program.

(2) Those segments having segment-numbers from the segment-limit through 49

are considered as overlayable fixed segments.

(3) When the SEGMENT-LIMIT clause is omitted, all segments having

segment-numbers from 0 through 49 are considered as permanent segments of the

object program.

XVI-5

Segmentation - Procedure Division

3. PROCEDURE DIVISION IN THE SEGMENTATION MODULE

3.1 GENERAL DESCRIPTION

The Procedure Division contains sections with segment-numbers when the

Segmentation module is used in a COBOL source program. Shown below is the

general format of the Procedure Division when sections and segment-numbers are

present.

PROCEDURE DIVISION,

rDECLARATIVES.

(section-name SECTION [segment-number].

USE statement.

[paragraph-name.

[sentence] ...] ... } ...

END DECLARATIVES.]

(section-name SECTION [segment-number].

[paragraph-name.

[sentence] ...] ... } ...

XVI-6

Segmentation - Segment-Numbers

3.2 SEGMENT-NUMBERS

3.2.1 Function

Section classification is accomplished by means of a system of

segment-numbers. The segment-number is included in the section header within

the Procedure Division.

3.2.2 General Format

section-name SECTION [segment-number].

3.2.3 Syntax Rules

(1) The segment-number must be an integer ranging in value from 0 through

99.

(2) If the segment-number is omitted from the section header, the

segment-number is assumed to be 0.

(3) Sections in the declaratives must contain segment-numbers less than 50.

3.2.4 General Rules

(1) All sections which have the same segment-number constitute a program

segment. In level 1 all sections which have the same segment-number must be

together in the source program. 1 In leve1 2 sections with the same

segment-numbers need not be physically contiguous in the source program.

(2) Segments with segment-number 0 through 49 belong to the fixed portion of

the object program. In level 1 all sections with segment-number 0 through 49

must be together in the source program.

(3) Segments with segment-number 50 through 99 are independent segments.

XVI-7

Segmentation - Restrictions

3.3 RESTRICTIONS ON PROGRAM FLOW

When segmentation is used, the following restrictions are placed on the

ALTER, PERFORM, MERGE, and SORT statements.

3.3.1 The ALTER Statement

A GO TO statement in a section whose segment-number is greater than or equal

to 50 must not be referred to by an ALTER statement in a section with a

different segment-number.

All other uses of the ALTER statement are valid and are performed even if the

GO TO to which the ALTER refers is in a fixed overlayable segment.

3.3.2 The PERFORM Statement

A PERFORM statement that appears in a section that is not in an independent

segment can have within its range, in addition to any declarative sections whose

execution is caused within that range, only one of the following:

(1) Sections and/or paragraphs wholly contained in one or more

non-independent segments.

(2) Sections and/or paragraphs wholly contained in a single independent

segment.

A PERFORM statement that appears in an independent segment can have within

its range, in addition to any declarative sections whose execution is caused

within that range, only one of the following:

(1) Sections and/or paragraphs wholly contained in one or more

non-independent segments.

(2) Sections and/or paragraphs wholly contained in the same independent

segment as that PERFORM statement.

3.3.3 The MERGE Statement

If the MERGE statement appears in a section that is not in an independent

segment, then any output procedure referenced by that MERGE statement must

appear:

(1) Totally within non-independent segments, or

(2) Wholly contained in a single independent segment.

If a MERGE statement appears in an independent segment, then any output

procedure referenced by that MERGE statement must be contained:

(1) Totally within non-independent segments, or

(2) Wholly within the same independent segment as that MERGE statement.

XVI-8

Segmentation - Restrictions

3.3.4 The SORT Statement

If a SORT statement appears in a section that is not an independent segment,

then any input procedures or output procedures referenced by that SORT statement

must appear:

(1) Totally within non-independent segments, or

(2) Wholly contained in a single independent segment.

If a SORT statement appears in an independent segment, then any input

procedures or output procedures referenced by that SORT statement must be

contained:

(1) Totally within non-independent segments, or

(2) Wholly within the same independent segment as that SORT statement.

XVI-9

History of COBOL

SECTION XVII: APPENDICES

APPENDIX A: THE HISTORY OF COBOL

1. THE DEVELOPMENT OF COBOL

1.1 ORGANIZATION OF COBOL EFFORT

On May 28 and 29, 1959, a meeting was held for the purpose of considering

both the desirability and the feasibility of establishing a common language for

programming of computers in business data processing applications. This meeting

was attended by representatives from users, both in private industry and in

government, computer manufacturers, and other interested parties. It was agreed

that the language must be open-ended and capable of accepting change and

amendment, that it should be problem-oriented and machine-independent, and that

it should use simple English or pseudo-English and avoid symbolism as far as

possible. The Conference on DAta SYstems Languages (CODASYL) developed out of

this meeting.

The original COBOL specifications resulted from the work of a committee of

CODASYL. By September 1959 this committee had specified a framework upon which

an effective common business language could be built. The name COBOL which

suggests a COmmon Business Oriented Language was adopted for these

specifications. The final report of this committee was accepted by the

Executive Committee of CODASYL and published in April 1960. The document was

titled: "COBOL - A Report to the Conference on Data Systems Languages,

including Initial Specifications for a Common Business Oriented Language (COBOL)

for Programming Electronic Digital Computers". The language described in this

report has since become known as COBOL-60.

1.2 THE COBOL MAINTENANCE COMMITTEE

The Executive Committee of CODASYL recognized that the task of defining the

COBOL language was a continuing one and that the COBOL language had to be

maintained and improved. To this end, the COBOL Maintenance Committee was

created in February 1960. The COBOL Maintenance Committee was charged with the

task of answering questions arising from users and implementors of the language

and making definitive modifications, including additions, clarifications, and

changes to the COBOL language.

In order to devote concentrated attention to publishing a revised and updated

COBOL specification, the Executive Committee of CODASYL created a Special Task

Group. This Special Task Group completed its task in early 1961 and published

the COBOL-61 document in mid-1961.

XVII-1

History of COBOL

The next official COBOL publication was also the product of the COBOL

Maintenance Committee and was called COBOL-61 Extended which was published in

mid-1963.

1.3 THE COBOL COMMITTEE

In January 1964 the COBOL Maintenance Committee was reorganized into the

COBOL Committee consisting of three subcommittees: the Language Subcommittee,

the Evaluation Subcommittee, and the Publication Subcommittee.

The Language Subcommittee's function was much the same as was that of the

former COBOL Maintenance Committee, namely, the maintenance and further

development of COBOL. In addition it carried on liaison with the United States

of America Standards Institute (USASI) and the International Organization for

Standardization (ISO) in their work concerning the standardization of the COBOL

language.

The third official COBOL publication was the product of the COBOL Committee

and was called COBOL, Edition 1965.

1.4 THE PROGRAMMING LANGUAGE COMMITTEE

In July 1968 the CODASYL Executive Committee adopted a revised constitution

which elevated the former COBOL Language Subcommittee to full committee status

having the name of the Programming Language Committee (PLC).

The purpose and objectives of the Programming Language Committee included and

extended those of the former COBOL Language Subcommittee. The objectives were

to make possible: compatible, uniform, source programs and object results, with

continued reduction in the number of changes necessary for conversion or

interchange of source programs and data. The Programming Language Committee

concentrated its efforts in the area of tools, techniques, and ideas aimed at

the programmer.

The Programming Language Committee produced five official COBOL publications

which were entitled: CODASYL COBOL Journal of Development 1968, CODASYL COBOL

Journal of Development 1969, CODASYL COBOL Journal of Development 1970, CODASYL

COBOL Journal of Development 1973, and CODASYL COBOL Journal of Development

1976 .

1.5 THE CODASYL COBOL COMMITTEE

In May 1977 the CODASYL Executive Committee approved the redesignation of the

CODASYL Programming Language Committee as the CODASYL COBOL Committee. This

redesignation was made to represent the responsibility of the committee more

accurately .

The CODASYL COBOL Committee produced two official COBOL publications that

were called the CODASYL COBOL Journal of Development 1978 and CODASYL COBOL

Journal of Development 1981.

XVII-2

History of COBOL

2. THE EVOLUTION OF CODASYL COBOL

2.1 COBOL-60

COBOL-60, the first version of the language

concept of a common business oriented language was

published, proved

indeed practical.

that the

2.2 COBOL-61

COBOL-61, the second official version of COBOL, was not completely compatible

with COBOL-60. The changes were in areas such as organization of the Procedure

Division rather than the addition of any major functions. The avowed goal of

CODASYL in terms of successive versions of the language was to make changes of

an evolutionary rather than revolutionary nature. This version was generally

implemented and was the basis for many COBOL compilers.

2.3 COBOL-61 EXTENDED

This version of COBOL was generally compatible with COBOL-61. The term

'generally' must be used, not because of any basic changes in the philosophy or

organization of the language, but because certain arithmetic extensions and

general clarifications did make the syntax for certain statements and entries

different from those in COBOL-61.

COBOL-61 Extended, then, was generally COBOL-61 with the following major

additions and modifications:

(1) The addition of the sort feature.

(2) The addition of the report writer option.

(3) The modification of the arithmetics to include multiple receiving fields

and to add the CORRESPONDING option to the ADD and SUBTRACT statements.

2.4 COBOL, EDITION 1965

This version of COBOL included COBOL-61 Extended plus certain additions and

modifications.

The major changes incorporated in COBOL, Edition 1965, were:

(1) The inclusion of a series of options to provide for the reading,

writing, and processing of mass storage files.

(2) The addition of the table handling feature which includes indexing and

search opt ions.

(3) The modification of the specifications to delete the requirement for

specific error diagnostic messages.

(4) The deletion of the terms "required" and "elective".

XVII-3

History of COBOL

2.5 CODASYL COBOL JOURNAL OF DEVELOPMENT 1968

This version of COBOL, published in the CODASYL COBOL Journal of Development

1968, was based on COBOL, Edition 1965, with certain additions and deletions.

The major changes incorporated in the COBOL specifications within the CODASYL

COBOL Journal of Development 1968 were:

(1) The inclusion of inter-program communication and the concept of a run

unit .

(2) The elimination of redundant editing clauses and certain data clauses

more succinctly expressed by the PICTURE clause.

(3) An improved COPY specification for all divisions except the

Identification Division and the elimination of the INCLUDE statement.

(4) The inclusion of a hardware independent means of specifying and testing

for page overflow conditions.

(5) The elimination of type 4 abbreviations.

(6) The elimination of the DEFINE statement.

(7) The inclusion of the REMAINDER phrase in the DIVIDE statement.

(8) The deletion of NOTE and REMARKS in favor of a general comment

capability for all divisions.

(9) The inclusion of the SUSPEND statement as additional means of

controlling graphic display devices.

(10) The inclusion of additional abbreviations.

2.6 CODASYL COBOL JOURNAL OF DEVELOPMENT 1969

This version of COBOL, published in the CODASYL COBOL Journal of Development

1969, was based on the COBOL specifications in the CODASYL COBOL Journal of

Development 1968 with certain additions and deletions.

The major changes incorporated in the COBOL specifications within the CODASYL

COBOL Journal of Development 1969 were:

(1) The deletion of the EXAMINE statement and the inclusion of a more

powerful statement, INSPECT, in its place.

(2) The inclusion of a communication facility to permit input and output

with communication devices.

(3) The inclusion of the STRING and UNSTRING statements to facilitate

character string manipulation.

(4) Deletion of the CONSTANT SECTION of the Data Division.

(5) The inclusion of a compile time page ejection facility.

XVII-4

History of COBOL

(6) The inclusion of a facility to access the system's date and time.

(7) The inclusion of the SIGN clause.

2.7 CODASYL COBOL JOURNAL OF DEVELOPMENT 1970

This version of COBOL, published in the CODASYL COBOL Journal of Development

1970, was based on the COBOL specifications in the CODASYL COBOL Journal of

Development 1969 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL

COBOL Journal of Development 1970 were:

(1) The deletion of the RANGE clause.

(2) The inclusion of the INITIALIZE statement.

(3) The inclusion of a debugging facility.

(4) The inclusion of a merge facility.

(5) A complete revision of the report writer function.

2.8 CODASYL COBOL JOURNAL OF DEVELOPMENT 1973

This version of COBOL, published in the CODASYL COBOL Journal of Development

1973, was based on the COBOL specifications in the CODASYL COBOL Journal of

Development 1970 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL

COBOL Journal of Development 1973 were:

(1) A revision and extension to the mass storage facility.

(2) A clarification and extension to the COBOL library facility.

(3) An enhancement of the INSPECT statement.

(4) A revision to the file control entry for a sort or merge file which

included the deletion of format 3.

(5) A revision to the RERUN facility.

(6) The removal of the restriction on 77 leve1-numbers that they must

precede 01 level numbers.

(7) The inclusion of a page advancing feature as part of the WRITE

statement.

(8) An enhancement of the LINAGE clause to permit specification of margins.

XVII-5

History of COBOL

2.9 CODASYL COBOL JOURNAL OF DEVELOPMENT 1976

This version of COBOL, published in the CODASYL COBOL Journal of Development

1976, was based on the COBOL specifications in the CODASYL COBOL Journal of

Development 1973 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL

COBOL Journal of Development 1976 were:

(1) The inclusion of a data base facility which interfaces with the CODASYL

Data Description Language Journal of Development.

(2) The inclusion of collating sequence and character set declarations.

(3) The inclusion of a boolean (bit) manipulation facility.

(4) The inclusion of a de-editing facility.

(5) The inclusion of a reference modification facility.

(6) The inclusion of extensions to the file processing capabilities in the

Environment and Data Divisions.

(7) The inclusion of the DELETE FILE statement.

(8) The inclusion of the PURGE statement.

(9) The inclusion of a variable length record facility.

(10) The removal of random processing specifications.

(11) The removal of the ALTER statement.

(12) The removal of all numeric paragraph-names and section-names.

(13) The removal of the OPEN REVERSED facility.

(14) The removal of level-number 77.

(15) Realignment of clauses between the Environment and Data Divisions.

(16) An option to omit the FILLER clause.

(17) An enhancement to the table handling facility to allow specification of

tables having more than three dimensions.

(18) An enhancement to the DISPLAY statement to allow NO ADVANCING.

(19) An enhancement to the INSPECT statement to simplify data transformation.

(20) The extension of the SORT and MERGE statements to permit multiple file

specifications in the GIVING phrase.

(21) The extension of the SORT and MERGE statements to relative and indexed

files .

XVII-6

History of COBOL

(22) The extension of the use of OPTIONAL to all file organizations.

2.10 CODASYL COBOL JOURNAL OF DEVELOPMENT 1978

This version of COBOL, published in the CODASYL COBOL Journal of Development

1978, was based on the COBOL specifications in the CODASYL COBOL Journal of

Development 1976 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL

COBOL Journal of Development 1978 are:

(1) The inclusion of a facility to specify symbolic-characters and

positionally relate them to the native character set or the user-defined

alphabet.

(2) The inclusion of an inter-program communication facility to permit

communication between constituent programs in a run unit.

(3) The inclusion of a global and external specification for data items.

(4) The inclusion of additional facilities to support structured

programming, including implicit and explicit terminators to delimit the scope of

statements and the CONTINUE statement.

(5) The inclusion of a multi-branch, multi-join structure, the EVALUATE

statement, to cause multiple conditions to be evaluated.

(6) The inclusion of an in-line PERFORM statement capability.

(7) The inclusion of a data base locking facility to maintain data base

integrity.

(8) The inclusion of a facility to specify overprinting and character

substitution on a receiving communication device or output device.

(9) The inclusion of the current volume pointer to facilitate exact

specification of the current physical volume of a sequential file.

(10) The inclusion of a facility for record selection by defined record keys.

(11) The inclusion of the ROLLBACK statement.

(12) The inclusion of the REPLACE statement.

(13) The inclusion of a facility in the SET statement to assign a value to a

condition-name.

(14) The inclusion of numeric paragraph-names and section-names.

(15) The inclusion of a facility for transaction oriented communication.

(16) The inclusion of facility to control input-output in separately compiled

programs.

XVII-7

History of COBOL

(17) The modification of specifications for data base keys, record keys, and

realms.

(18) The modification of currency indicators for use in maintaining position

during update of a data base.

(19) Modifications to facilitate the compatibility between the COBOL

subschema facilities and the CODASYL Data Description Language.

(20) The expansion and clarification of data base status indicators.

(21) The deletion of comment-entries.

2.11 CODASYL COBOL JOURNAL OF DEVELOPMENT 1981

This version of COBOL, published in the CODASYL COBOL Journal of Development

1981, was based on the COBOL specifications in the CODASYL COBOL Journal of

Development 1978 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL

COBOL Journal of Development 1981 are:

(1) The inclusion of a floating point data representation, including

literals and editing pictures.

(2) The inclusion of two new usages called BINARY and PACKED-DECIMAL.

(3) A change in the ADVANCING phrase of the WRITE statement to allow

positioning anywhere on a logical page.

(4) A change in the REDEFINES clause to allow the redefining item to be

either larger or smaller than the item it redefines.

(5) A change to subscripting to allow arithmetic expressions as subscripts

and to allow index-names to be used along with arithmetic expressions.

(6) The deletion of the DATA RECORDS clause.

(7) The inclusion of a RECONNECT statement to modify set membership.

(8) The deletion of the ENTER statement and a change to the CALL statement

to allow languages other than COBOL to be called.

(9) A change to the use of comma and semicolon to allow them to be used

anywhere a space can appear.

(10) The semantics for lowercase letters were defined.

(11) The deletion of the CORRESPONDING option.

(12) The inclusion of an EXIT PROGRAM statement.

(13) A change to the COLUMN clause in the report writer.

XVII-8

History of COBOL

(14) The inclusion of a PRESENT WHEN clause in the report writer for

selective printing.

(15) A change to the continuation of nonnumeric literals which removed the

hyphen in the indicator area and added a continuation mark ("-) at the end of

the line containing the literal to be continued.

(16) A change to the reference format to allow a free format representation.

(17) The inclusion of intrinsic functions such as sine and cosine.

(18) The deletion of all label processing.

(19) The deletion of the debug facility (except for debugging lines).

(20) The inclusion of a facility to allow the specification of initial values

for table items .

(21) The inclusion of a FETCH statement.

(22) A change to the SORT and MERGE statements which removed all restrictions

on transfers of control into and out of input or output procedures.

(23) The inclusion of realm segment locking to enhance data base concurrency.

(24) The deletion of the access control mechanism from the data base

faci1ity.

(25) The elimination of the requirement for a paragraph-name after a

section-name or at the beginning of a program.

(26) The deletion of key-names from the data base facility.

(27) A change to the intermediate data item to expand it to 20 digits.

(28) The expansion and addition of various file status codes.

2.12 CODASYL COBOL JOURNAL OF DEVELOPMENT 1984

This version of COBOL, published in the CODASYL COBOL Journal of Development

1984, was based on the COBOL specifications in the CODASYL COBOL Journal of

Development 1981 with certain additions, deletions, and modifications.

The major changes incorporated in the COBOL specifications within the CODASYL

COBOL Journal of Development 1984 are:

(1) The inclusion of a FALSE phrase in the SET statement.

(2) The deletion of the literal phrase from the STOP statement.

(3) The deletion of the SYNCHRONIZED clause.

(4) The inclusion of the WHEN-COMPILED function to return time and date of

compilation; the DATE-COMPILED entry was deleted.

XVII-9

History of COBOL

(5) The change of boolean operators from AND, EXOR, NOT, and OR to B-AND,

B-EXOR, B-NOT, and B-OR.

(6) The inclusion of the NUMVAL, NUMVAL-C, and NUMVAL-F functions.

(7) The revision of the rules for evaluation of arithmetic expressions to

enhance compatibility and portability.

(8) The inclusion of the VALIDATE facility.

(9) The inclusion of the ARITHMETIC clause in the OBJECT-COMPUTER paragraph

to allow the selection of standard or native arithmetic.

(10) The deletion of the restrictions on the use of explicit scope delimiters

and the NOT phrases of conditional statements.

(11) The inclusion of the LESS THAN operator in the START statement.

(12) The inclusion of the COLLATING SEQUENCE clause in the file control entry

of an indexed file and the deletion of the CODE-SET clause for indexed files.

(13) The revision of the rules for the READ statement to disallow executing a

READ statement after an at end condition is encountered.

(14) The inclusion of the relational operators B-LESS, CONTAINS, and IS

CONTAINED IN for boolean items.

(15) The inclusion of in-line comments.

(16) The inclusion of a CLASS clause in the SPECIAL-NAMES paragraph and a

class test for a user-defined class.

(17) The inclusion of a WITH STATUS phrase and a WITH ERROR STATUS phrase in

the STOP statement.

(18) The restoration of the integer-1 TO integer-2 phrase in the RECORD

CONTAINS clause; also the inclusion of explicit rules on the implementor-defined

aspects of this clause and the absence of a RECORD clause.

(19) The revision of the rules for computing the remainder in the DIVIDE

statement.

(20) The deletion of the RERUN clause.

(21) The deletion and revision of several 1-0 status values.

XVII-10

History of COBOL

3. THE STANDARDIZATION OF COBOL

3.1 INITIAL STANDARDIZATION EFFORT

American National Standards Committee on Computers and Information

Processing, X3, was established in 1960 under the sponsorship of the Computer

and Business Equipment Manufacturers Association. The X3 Committee in turn

established the X3.4 Subcommittee to pursue standards in the area of common

programming languages. Subsequently, Working Group X3.4.4 with the title

"Processor Specification and COBOL Standards" was established to pursue a COBOL

standard .

In December 1962 invitations to an organizational meeting of X3.4.4 were sent

to manufacturers and user groups who might be interested in participating in the

establishment of a COBOL standard. The first meeting of X3.4.4 was held on

January 15-16, 1963, in New York City. This meeting established the objective

of the X3.4.4 Working Group to be the production of a document which defined the

American standard for COBOL. It was agreed that this standard language was to

be based upon the specifications contained in the COBOL publication of CODASYL.

To accomplish its work, X3.4.4 was divided into subgroups. One of these

subgroups was X3.4.4.4 which was responsible for standard language

specifications.

3.2 USA STANDARD COBOL 1968

On August 30, 1966, X3.4.4 completed its work and approved the content and

format for a proposed USA Standard COBOL. The proposed USA Standard COBOL was

composed of a Nucleus and eight functional processing modules: Table Handling,

Sequential Access, Random Access, Random Processing, Sort, Report Writer,

Segmentation, and Library. The Nucleus and each of the eight modules were

divided into two or three levels. In all cases, the lower levels were subsets

of the higher levels within the same module. The minimum proposed standard was

defined as the low level of the Nucleus plus the low level of the Table Handling

and Sequential Access modules. The highest levels of the Nucleus and the eight

modules were defined as the full proposed USA Standard COBOL.

The X3 Committee authorized publication of the proposed USA Standard COBOL

for public review and comment from the data processing community. In April 1967

the proposed USA Standard COBOL was published as COBOL Information Bulletin #9

by the Association for Computing Machinery, Special Interest Committee on

Programming Languages (SICPLAN) in the SICPLAN Notices.

X3 also authorized that concurrent with publication of the proposed USA

Standard COBOL, a letter ballot be taken of the membership of the X3 Committee

on the acceptability of the proposed USA Standard COBOL as a USA Standard. The

ballots and comments received with the ballots indicated that the X3 members

were in favor of the proposed USA Standard COBOL. X3 voted to move the Random

Processing module from the body of the proposed USA Standard COBOL to an

appendix and to forward the proposed standard on to the Information Processing

Systems Standards Board of the USA Standards Institute (USASI). (NOTE: In

August 1966 the American Standards Association (ASA) became the USA Standards

Institute (USASI); then in the fall of 1969 the USA Standards Institute (USASI)

became the American National Standards Institute (ANSI).)

XVII-11

History of COBOL

The USA Standard COBOL proposed by X3 was approved by the Information

Processing Systems Standards Board of the USA Standards Institute (USASI) on

August 23, 1968, as a USA Standard. The specifications of this USA Standard

COBOL were published in the USA Standards Institute document X3.23-1968.

3.3 AMERICAN NATIONAL STANDARD COBOL 1974

The American National Standards Technical Committee X3J4 evolved from the

X3.4.4 Working Group and its subordinate working groups which included X3.4.4.4.

X3J4 was charged with the responsibility for the maintenance of the American

National Standard COBOL X3.23-1968 (formerly called the USA Standard COBOL

X3.23-1968). This maintenance responsibility also included the revision of the

specifications contained in American National Standard COBOL X3.23-1968.

In 1969 X3J4 began the task of preparing a revision of the COBOL standard

with the development of criteria against which each candidate for inclusion in

the proposed revision was to be matched. In June 1972, X3J4 completed its work

and approved the content and format for a draft proposed revision of American

National Standard COBOL X3.23-1968. This draft proposed revision was composed

of a Nucleus and eleven functional processing modules: Table Handling,

Sequential 1-0, Relative 1-0, Indexed 1-0, Sort-Merge, Report Writer,

Segmentation, Library, Debug, Inter-Program Communication, and Communication.

Each module contains two or three levels with nine modules having a null set as

the lowest level. In all cases, lower levels are subsets of the higher levels

within the same module. The minimum proposed standard was defined as the low

level of the Nucleus plus the low level of the Table Handling and Sequential 1-0

modules . The full proposed standard was defined as the highest levels of the

Nucleus and the eleven processing modules.

The X3 Committee authorized publication of the draft proposed revision of

American National Standard COBOL X3.23-1968 for public review and comment from

the data processing community. In August 1972 the draft proposed revised X3.23

American National Standard COBOL was published by the X3 Secretariat which is

the Computer and Business Equipment Manufacturers Association.

X3 also authorized a letter ballot be taken of the membership of the X3

Committee on the acceptability of the draft proposed revision of American

National Standard COBOL X3.23-1968 as an American National Standard. The

ballots and comments received with the ballots indicated that the X3 members

were in favor of the draft proposed revised X3.23 American National Standard

COBOL. X3 voted to forward the proposed revised X3.23 American National

Standard COBOL to the Standards Review Board of the American National Standards

Institute .

The revised X3.23 American National Standard COBOL proposed by X3 was

approved by the Standards Review Board of the American National Standards

Institute (ANSI) on May 10, 1974, as an American National Standard. The

specifications of this American National Standard were published in the American

National Standards Institute document X3.23-1974.

3.4 AMERICAN NATIONAL STANDARD COBOL 1985

The American National Standards Technical Committee X3J4 was charged with the

responsibility for the maintenance of the American National Standard COBOL

X3.23-1974. Thus X3J4 developed and put into effect procedures to handle

XVI1-12

History of COBOL

requests for information and requests for interpretation of the specifications

contained in American National Standard COBOL X3.23-1974. X3J4 published

information on the specifications contained in American National Standard COBOL

X3.23-1974 in COBOL Information Bulletins 17, 18, 19, and 20. These COBOL

Information Bulletins were published by the X3 Secretariat which is the Computer

and Business Equipment Manufacturers Association.

The maintenance responsibility of X3J4 also included the revision of the

specifications contained in American National Standard COBOL X3.23-1974. In

1977 X3J4 began the task of preparing a revision of American National Standard

COBOL X3.23-1974. In June 1981 X3J4 approved the content and format for a draft

proposed revision of American National Standard COBOL X3.23-1974. In subsequent

years, X3J4 held three public review and comment periods in which comments were

received from the data processing community on the content of the draft proposed

revision of American National Standard COBOL X3.23-1974. X3J4 reviewed and

responded to all comments received during these three public review periods.

In April 1985 X3J4 approved the final version of the draft proposed X3.23

American National Standard COBOL and forwarded the document to the X3 committee

for processing. The X3 committee then voted in favor of the acceptability of

the draft proposed revision of American National Standard COBOL X3.23-1974 as an

American National Standard. This X3 vote also forwarded the proposed revised

X3.23 American National Standard COBOL to the Board of Standards Review of the

American National Standards Institute.

The revised X3.23 American National Standard COBOL proposed by X3 was

approved by the Board of Standards Review of the American National Standards

Institute (ANSI) in September 1985 as an American National Standard. The

specifications of this American National Standard are published in the American

National Standards Institute document X3.23-1985.

XVI1-13

History of COBOL

4. INTERNATIONAL STANDARDIZATION OF COBOL

4.1 ISO RECOMMENDATION R-1989-1972 FOR COBOL

Throughout the COBOL standardization activity of the X3J4 (formerly X3.4.4)

Committee, close liaison was maintained with the various international groups.

As a result, American National Standard COBOL X3.23-1968 complied with the ISO

(International Organization for Standardization) recommendation for COBOL.

The ISO recommendation for the COBOL programming language was drawn up by the

Technical Committee ISO/TC 97, Computers and Information Processing, the

Secretariat of which is held by the American National Standards Institute

(ANSI). As a result of a six-year development period, the ISO recommendation

reflected the requirements of the international data processing community. The

primary objective was to reflect a language rich enough to allow description of

a wide variety of data processing problems and to reflect accurately the

requirements of the member bodies of the International Organization for

Standardization (ISO). Great care was also taken to ensure as far as possible

identical interpretation with respect to the national COBOL standards known to

be under development.

The draft ISO Recommendation for COBOL was circulated to all the ISO member

bodies for inquiry in July 1970. The draft was approved, subject to a few

modifications of an editorial nature, by all but one of the ISO member bodies.

The draft ISO Recommendation for COBOL was then submitted to the ISO Council,

which accepted it as an ISO Recommendation in 1972. The resulting ISO

Recommendation was called ISO Recommendation R-1989-1972 for COBOL.

4.2 ISO STANDARD 1989-1978 FOR COBOL

During X3J4's work on the revision of American National Standard COBOL

X3.23-1968, close and continuous liaison was maintained with the international

COBOL community. This culminated in February 1972 with a meeting of

representatives of X3J4, European Computer Manufacturers Association Technical

Committee 6 (ECMA TC 6), and several ISO (International Organization for

Standardization) member organizations to review the proposed changes and to

resolve any differences of opinion that existed concerning the technical content

of the proposed revision.

The draft revision of ISO Standard 1989 for COBOL was circulated to all the

ISO member bodies for inquiry. This revised ISO Standard 1989 was accepted by

the ISO Council in 1978. The resulting ISO Standard was called ISO Standard

1989-1978 for COBOL.

XVII-14

History of COBOL

4.3 ISO STANDARD 1989-1985 FOR COBOL

During X3J4's work on the revision of American National Standard COBOL

X3.23-1974, close and continuous liaison was maintained with the international

COBOL community through ISO/TC 97/SC 5 COBOL Experts Group (CEG). The draft

proposed revision of American National Standard COBOL X3.23-1974 was presented

to ISO/TC 97/SC 5 in October 1981 as a proposed revision of ISO 1989-1978,

Programming Language - COBOL. ISO/TC 97/SC 5 unanimously approved a resolution

to send the proposed revision of ISO 1989-1978 COBOL to the central secretariat

for registration as a draft proposal and for circulation to SC 5 primary members

for a comment period closing February 13, 1982.

The draft revision of ISO Standard 1989 for COBOL was circulated to all the

ISO member bodies for inquiry. This revised ISO Standard 1989 was accepted by

the ISO Council in 1985. The resulting ISO Standard was called ISO Standard

1989-1985 for COBOL.

XVII-15

Second and Third Standard Differences

APPENDIX B: DIFFERENCES BETWEEN SECOND AND THIRD STANDARD COBOL

1. SUMMARY OF DIFFERENCES BETWEEN SECOND AND THIRD STANDARD COBOL

This first portion of Appendix B contains a summary of all elements in second

Standard COBOL and in third Standard COBOL. These elements are organized

according to the COBOL divisions.

The column titled "2ND STD" specifies elements of second Standard COBOL. The

column titled "3RD STD" specifies elements of third Standard COBOL.

The letter N in a column indicates the absence of the specified element. The

presence of an element is specified by a three-character module abbreviation as

shown in the following table.

Abbreviat ion Meaning

NUC

TBL

SEQ

REL

INX

IPC

SRT

STM

LIB

RPW

COM

DEB

SEG

Nucleus

Table Handling

Sequential 1-0

Relative 1-0

Indexed 1-0

Inter-Program Communication

Sort-Merge

Source Text Manipulation

Library

Report Writer

Communication

Debug

Segmentation

The level of an element within the module is indicated by the number

preceding the three-character abbreviation of the module. For example, 2 NUC

indicates that the element is a level 2 element within the Nucleus module and

1 INX indicates that the element is a level 1 element within the Indexed 1-0

module. The letter Z follows the three-character abbreviation of the module if

the element is an obsolete element in third Standard COBOL that is to be deleted

from the next revision of Standard COBOL.

XVII-16

Language Concepts Difference Summary

SUMMARY OF DIFFERENCES IN LANGUAGE CONCEPTS

2ND 3RD

ELEMENT _ STD STD

LANGUAGE CONCEPTS

Character Set

Characters used in words 0-9 A-Z - (hyphen) . 1 NUC 1 NUC

Characters used in punctuation " () . space . 1 NUC 1 NUC

Characters used in punctuation , (comma) ; (semicolon) . 2 NUC 1 NUC

Characters used in punctuation : (colon) . N 2 NUC

Characters used in punctuation = 2 LIB 2 STM

Characters used in editing B + - . , Z * $ 0 CR DB / 1 NUC 1 NUC

Characters used in arithmetic operations + -*/** 2 NUC 2 NUC

Characters used in relation conditions = > < . 2 NUC 1 NUC

Characters used in relation conditions >= <= . N 1 NUC

Characters used in subscripting + - 2 TBL 1 NUC

Double character substitution allowed . 1 NUC 1 NUC Z

Single character substitution allowed . N 1 NUC

Single character substitution must be made for

missing COBOL characters . 1 NUC N

Separators

" () . space . 1 NUC 1 NUC

, (comma) ; (semicolon) . 2 NUC 1 NUC

: (colon) . N 2 NUC

== 2 LIB 2 STM

A space which is part of a separator may be one or more

space characters . N 1 NUC

Character-Strings

COBOL words

Maximum of 30 characters . 1 NUC 1 NUC

System-names and user-defined words must be disjoint sets . 1 NUC N

System-names and user-defined words form intersecting sets . N 1 NUC

User-defined words

Alphabet-name . 1 NUC 1 NUC

Cd-name . I COM 1 COM

Class-name . N 1 NUC

Condition-name . 2 NUC 2 NUC

Data-name . 1 NUC 1 NUC

Must begin with alphabetic character . 1 NUC N

Need not begin with alphabetic character . 2 NUC 1 NUC

File-name . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SRT 1 SRT

1 RPW 1 RPW

Index-name . 1 TBL 1 NUC

Level-number . 1 NUC 1 NUC

Library-name . 2 LIB 2 STM

Mnemonic-name . 1 NUC 1 NUC

Paragraph-name . 1 NUC 1 NUC

Program-name . 1 NUC 1 NUC

XVII-17

Language Concepts Difference Summary

SUMMARY OF DIFFERENCES IN LANGUAGE CONCEPTS

ELEMENT

2ND

STD

User-defined words (continued)

Record-name ... 1 SEQ

1 REL

1 INX

1 SRT

Report-name . 1 RPW

Routine-name . 1 NUC

Section-name . 1 NUC

Segment-number . 1 SEG

Symbolic-character . N

Text-name . 1 LIB

System-names

Computer-name . 1 NUC

Implementor-name . 1 NUC

Language-name . 1 NUC
Reserved words

Required words . 1 NUC

Key words . 1 NUC

Special character words

Arithmetic operators + - * / ** 2 NUC

Arithmetic operators used in subscripting + - N

Arithmetic operators used in indexing + - 2 TBL

Relation characters = > < ... 2 NUC

Relation characters >= <= . N

Optional words . 1 NUC

Connectives . 2 NUC

Special purpose words

Figurative constants

ZERO, SPACE, HIGH-VALUE, LOW-VALUE, QUOTE . 1 NUC

ALL option . N

ZEROS, ZEROES, SPACES, HIGH-VALUE, LOW-VALUES, QUOTES . 2 NUC

ALL option . N

Symbolic-character . N

ALL option . N

ALL literal . 2 NUC

Special registers

LINAGE-COUNTER . 2 SEQ

LINE-COUNTER . 1 RPW

PAGE-COUNTER . 1 RPW
DEBUG-ITEM . 1 DEB

Literals

Numeric literals: 1 through 18 digits . 1 NUC

Nonnumeric literals: 1 through 120 characters . 1 NUC

Nonnumeric literals: 1 through 160 characters . N

Nonnumeric literals: Length applies to representation in

object program . N

PICTURE character-strings . 1 NUC

Comment-entries . 1 NUC

3RD

STD

1 SEQ

1 REL

1 INX

1 SRT

1 RPW

1 NUC Z

1 NUC

1 SEG Z

2 NUC

1 STM

1 NUC

1 NUC

1 NUC Z

1 NUC

1 NUC

2 NUC

1 NUC

1 NUC

1 NUC

1 NUC

1 NUC

N

1 NUC

2 NUC

1 NUC

2 NUC

2 NUC

2 NUC

2 NUC

2 SEQ

1 RPW

1 RPW

1 DEB Z

1 NUC

N

1 NUC

1 NUC

1 NUC

1 NUC Z

XVII-18

Language Concepts Difference Summary

SUMMARY OF DIFFERENCES IN LANGUAGE CONCEPTS

2ND 3RD

ELEMENT __ _ STD STD

Uniqueness of Reference

Uniqueness of reference required at time of reference . N 1 NUC

Uniqueness of reference required at time of specification . 2 NUC N

Qualification

No qualification permitted . 1 NUC 1 NUC

Qualification permitted . 2 NUC 2 NUC

At least 5 levels of qualifiers must be permitted . 2 NUC N

50 qualifiers . N 2 NUC

Subscripting (data-name/1iteral) . 1 TBL 1 NUC

3 levels . 1 TBL 1 NUC

7 levels . N 2 NUC

Subscripting (index-name) . 1 TBL 1 NUC

3 levels . 1 TBL 1 NUC

7 levels . N 2 NUC

Relative subscripting . N 1 NUC

Relative indexing . 1 TBL 1 NUC

Reference modification . N 2 NUC

Reference Format

Sequence number . 1 NUC 1 NUC

Must be digits . 1 NUC N

May be any character in computer character set . N 1 NUC

Continuation of lines

Continuation of nonnumeric literal . 1 NUC 1 NUC

Continuation of COBOL word, numeric literal . 2 NUC 1 NUC

Continuation of PICTURE character-string . N 2 NUC

Intervening comment lines allowed . N 1 NUC

Intervening blank lines allowed . N 1 NUC

Blank lines . 1 NUC 1 NUC

Comment lines

Asterisk (*) comment line . 1 NUC 1 NUC

Slant (/) comment line . 1 NUC 1 NUC

Debugging line with D in indicator area . 1 DEB 1 NUC

Source Program Structure

Identification Division required . 1 NUC 1 NUC

Environment Division optional . N 1 NUC

Data Division optional . N 1 NUC

Procedure Division optional . N 1 NUC

End program header . N 2 NUC

Nested source programs . N 2 IPC

XVII-19

Identification Division Difference Summary

SUMMARY OF DIFFERENCES IN IDENTIFICATION DIVISION

2ND

ELEMENT _STD

1 DENT IFICAT ION DIVISION

PROGRAM-ID paragraph . 1 NUC

Program-name . 1 NUC

Identifies source program and listings . 1 NUC

Identifies object program . N

COMMON clause . N

INITIAL clause . N

AUTHOR paragraph . 1 NUC

INSTALLATION paragraph . 1 NUC

DATE-WRITTEN paragraph . 1 NUC

DATE-COMPILED paragraph . 2 NUC

SECURITY paragraph . 1 NUC

3RD

STD

1 NUC

1 NUC

1 NUC

1 NUC

2 IPC

2 IPC

1 NUC Z

1 NUC Z

1 NUC Z

2 NUC Z

1 NUC Z

XVI1-20

Environment Division Difference Summary

SUMMARY OF DIFFERENCES IN ENVIRONMENT DIVISION

2ND 3RD

ELEMENT_ STD STD

ENVIRONMENT DIVISION

Environment Division is required. 1 NUC N

Environment Division is optional. N] NUC

Configuration Section . 1 NUC 1 NUC

Configuration Section is required. 1 NUC N

Configuration Section is optional. N 1 NUC

SOURCE-COMPUTER paragraph . 1 NUC 1 NUC

SOURCE-COMPUTER paragraph is required. 1 NUC N

SOURCE-COMPUTER paragraph is optional. N 1 NUC

Empty paragraph may be specified. N 1 NUC

Computer-name. 1 NUC 1 NUC

WITH DEBUGGING MODE clause for debugging lines. 1 DEB 1 NUC

WITH DEBUGGING MODE clause for debugging sections. 1 DEB 1 DEB Z

OBJECT-COMPUTER paragraph . 1 NUC 1 NUC

OBJECT-COMPUTER paragraph is required. 1 NUC N

OBJECT-COMPUTER paragraph is optional. N 1 NUC

Empty paragraph may be specified. N 1 NUC

Computer-name. 1 NUC 1 NUC

MEMORY SIZE clause. 1 NUC 1 NUC Z

PROGRAM COLLATING SEQUENCE clause. 1 NUC 1 NUC

SEGMENT-LIMIT clause. 2 SEG 2 SEG Z

SPECIAL-NAMES paragraph . 1 NUC 1 NUC

ALPHABET clause. 1 NUC 1 NUC

STANDARD-1 option. 1 NUC 1 NUC

STANDARD-2 option. N 1 NUC

NATIVE option. 1 NUC 1 NUC

Implementor-name option. 1 NUC 1 NUC

Literal option. 2 NUC 2 NUC

CLASS clause. N 1 NUC

CURRENCY SIGN clause. 1 NUC 1 NUC

Literal can be figurative constant. 1 NUC N

DECIMAL-POINT clause. 1 NUC 1 NUC

Implementor-name clause. 1 NUC 1 NUC

IS mnemonic-name option. 1 NUC 1 NUC

If implementor-name is switch, condition-name must

be specified. 1 NUC N

If implementor-name is switch, condition-name may

be specified. N 1 NUC

ON STATUS IS condition-name option. 1 NUC 1 NUC

OFF STATUS IS condition-name option. 1 NUC 1 NUC

SYMBOLIC CHARACTERS clause. N 2 NUC

Input-Output Section. 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SRT 1 SRT

1 RPW 1 RPW

XVI1-21

Environment Division Difference Summary

SUMMARY OF DIFFERENCES IN ENVIRONMENT DIVISION

ELEMENT

2ND 3RD

STD STD

FILE-CONTROL paragraph . . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SRT 1 SRT

1 RPW 1 RPW

File control entry . . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SRT 1 SRT

1 RPW 1 RPW

SELECT clause .. . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SRT 1 SRT

1 RPW 1 RPW
OPTTONAT, phrase . . 2 SEQ 2 SEQ

2 REL

2 INX

1 RPW

Input file . . 2 SEQ 2 SEQ

2 REL

2 INX

1-0 file . . N 2 SEQ

2 REL

2 INX

Extend file . 2 SEQ

2 REL

2 INX

1 RPW

File-name references a file connector . 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

ACCESS MODE clause

SEQUENTIAL . . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

RANDOM . . 1 REL 1 REL

1 INX 1 INX

DYNAMIC . . 2 REL 2 REL

2 INX 2 INX

RELATIVE KEY phrase . . 1 REL 1 REL

ALTERNATE RECORD KEY clause . INX 2 INX

WITH DUPLICATES phrase . . 2 INX 2 INX

XVI1-22

Environment Division Difference Summary

SUMMARY OF DIFFERENCES IN ENVIRONMENT DIVISION

ELEMENT

2ND 3RD

STD STD

File control entry (continued)

ASSIGN clause .

Implement or-name

Literal

FILE STATUS clause

ORGANIZATION clause

SEQUENTIAL .

RELATIVE .

INDEXED .

PADDING CHARACTER clause

RECORD DELIMITER clause

RECORD KEY clause .

RESERVE AREA clause

I-Q-CONTROL paragraph

Order of clauses is immaterial

MULTIPLE FILE TAPE clause

RERUN clause .

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SRT 1 SRT

1 RPW 1 RPW

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SRT 1 SRT

1 RPW 1 RPW

N 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

1 SEQ 1 SEQ

1 RPW 1 RPW

1 REL 1 REL

1 INX 1 INX

N 2 SEQ

1 RPW

N 2 SEQ

1 RPW

1 INX 1 INX

2 SEQ 2 SEQ

2 REL 2 REL

2 INX 2 INX

1 RPW 1 RPW

2 SEQ 1 SEQ

2 REL 1 REL

2 INX 1 INX

2 SRT 1 SRT

1 RPW

N 1 SEQ

1 REL

1 INX

1 SRT

1 RPW

2 SEQ 2 SEQ Z

1 RPW Z

1 SEQ 1 SEQ Z

1 REL 1 REL Z
1 INX 1 INX Z

XVII-23

Environment Division Difference Summary

SUMMARY OF DIFFERENCES IN ENVIRONMENT DIVISION

2ND 3RD

ELEMENT STD STD

I-O-CONTROL paragraph (continued)

SAME AREA clause . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

SAME RECORD AREA clause . 2 SEQ 2 SEQ

2 REL 2 REL

2 INX 2 INX

2 SRT 1 SRT

SAME SORT/SORT-MERGE AREA clause . 2 SRT 1 SRT

XVII-24

Data Division Difference Summary

SUMMARY OF DIFFERENCES IN DATA DIVISION

ELEMENT

2ND 3RD

STD STD

DATA DIVISION

Data Division is required . NUC N

Data Division is optional . 1 NUC

File Sect ion. . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SRT 1 SRT

1 RPW 1 RPW

File description entry . . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

FD level indicator . . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

BLOCK CONTAINS clause

Integer RECORDS/CHARACTERS . . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

Integer-1 TO integer-2 RECORDS/CHARACTERS . . 2 SEQ 2 SEQ

2 REL 2 REL

2 INX 2 INX

1 RPW 1 RPW

CODE-SET clause . . 1 SEQ 1 SEQ

1 RPW 1 RPW
DATA RECORDS clause . . 1 SEQ 1 SEQ Z

1 REL 1 REL Z

1 INX 1 INX Z

EXTERNAL clause . 2 IPC

GLOBAL clause . 2 IPC

LABEL RECORDS clause . . 1 SEQ 1 SEQ Z
1 REL 1 REL z

1 INX 1 INX z

1 RPW 1 RPW z

LINAGE clause . . 2 SEQ 2 SEQ

FOOTING phrase . . 2 SEQ 2 SEQ

TOP phrase . . 2 SEQ 2 SEQ
BOTTOM phrase . . 2 SEQ 2 SEQ

RECORD clause

Integer-1 CHARACTERS . . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

VARYING IN SIZE phrase . 2 SEQ

2 REL

2 INX

XVI1-25

Data Division Difference Summary

SUMMARY OF DIFFERENCES IN DATA DIVISION

ELEMENT

2ND

STD

3RD

STD

Integer-4 TO integer-5 CHARACTERS . . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

REPORT clause . RPW 1 RPW

VALUE OF clause

Implementor-name IS literal . SEQ 1 SEQ Z
1 REL 1 REL Z
1 INX 1 INX Z
1 RPW 1 RPW Z

Implementor-name IS literal series . . 1 SEQ 1 SEQ Z
1 REL 1 REL z
1 INX 1 INX Z
1 RPW 1 RPW Z

Implementor-name IS data-name . . 2 SEQ 2 SEQ z
2 REL 2 REL z
2 INX 2 INX z
1 RPW 1 RPW z

Implementor-name IS data-name series . . 2 SEQ 2 SEQ z
2 REL 2 REL Z
2 INX 2 INX z
1 RPW 1 RPW zl

Sort-merge file description entry. . 1 SRT 1 SRT

SD level indicator . . 1 SRT 1 SRT

DATA RECORDS clause . . 1 SRT 1 SRT z
RECORD clause

Integer-1 CHARACTERS . . 1 SRT 1 SRT

VARYING IN SIZE phrase . . N 1 SRT

Integer-4 TO integer-5 CHARACTERS . . 1 SRT 1 SRT

Record description entry in File Section. . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SRT 1 SRT

Working-Storage Section. .. 1 NUC 1 NUC

Record description entry . . 1 NUC 1 NUC

77 level description entry . . 1 NUC 1 NUC

Linkage Section. . 1 IPC 1 IPC

Record description entry . . 1 IPC 1 IPC

77 level description entry . IPC 1 IPC

C

I

XVII-26

Data Division Difference Summary

SUMMARY OF DIFFERENCES IN DATA DIVISION

2ND 3RD

ELEMENT STD STD

Communication Section. 1 COM 1 COM

Communication description entry . 1 COM I COM

CD level indicator . 1 COM 1 COM

FOR INPUT clause . 1 COM 1 COM

INITIAL phrase . 2 COM 2 COM

END KEY clause . 1 COM 1 COM

MESSAGE COUNT clause . 1 COM 1 COM

MESSAGE DATE clause . 1 COM 1 COM

MESSAGE TIME clause . 1 COM 1 COM

SYMBOLIC QUEUE clause . 1 COM 1 COM

SYMBOLIC SOURCE clause . 1 COM 1 COM

SYMBOLIC SUB-QUEUE-1 clause . 1 COM 2 COM

SYMBOLIC SUB-QUEUE-2 clause . 1 COM 2 COM

SYMBOLIC SUB-QUEUE-3 clause . 1 COM 2 COM

STATUS KEY clause . 1 COM 1 COM

TEXT LENGTH clause . 1 COM 1 COM

Data-name series . 1 COM 2 COM

FOR OUTPUT clause . 1 COM 1 COM

DESTINATION COUNT clause . 1 COM 1 COM

Must be one . 1 COM 1 COM

Must be one or greater . 2 COM 2 COM

DESTINATION TABLE clause . 1 COM 2 COM

INDEXED BY clause . 1 COM 2 COM

ERROR KEY clause . 1 COM 1 COM

SYMBOLIC DESTINATION clause . 1 COM 1 COM

STATUS KEY clause . 1 COM 1 COM

TEXT LENGTH clause . 1 COM 1 COM

FOR 1-0 clause . N 1 COM

INITIAL phrase . N 2 COM

END KEY clause . N 1 COM

MESSAGE DATE clause . N 1 COM

MESSAGE TIME clause . N 1 COM

STATUS KEY clause . N 1 COM

SYMBOLIC TERMINAL clause . N 1 COM

TEXT LENGTH clause . N 1 COM

Data-name series . N 2 COM

Record description entry . 1 COM 1 COM

Report Section. 1 RPW 1 RPW

Report description entry . 1 RPW 1 RPW

RD level indicator . 1 RPW 1 RPW

CODE clause . 1 RPW 1 RPW

CONTROL clause . 1 RPW 1 RPW

GLOBAL clause . N 2 IPC

PAGE clause . 1 RPW 1 RPW

Report group description entry . 1 RPW 1 RPW

XVII-27

Data Division Difference Summary

SUMMARY OF DIFFERENCES IN DATA DIVISION

ELEMENT

2ND 3RD

STD STD

The following clauses appear in record description entry, data description

entry, 77 level description entry, or report group description entry:

BLANK WHEN ZERO clause .

COLUMN NUMBER clause .

Data-name clause .

EXTERNAL clause .

FILLER clause .

FILLER clause is optional .

Elementary item .

Group item .

GLOBAL clause .

JUSTIFIED clause .

Level-number clause .

01 through 10; level-number must be 2 digits .

01 through 49; level-number may be 1 or 2 digits .

66 .
77 .

88 .
LINE NUMBER clause .

NEXT GROUP clause .

OCCURS clause .

Integer TIMES ...

ASCENDING/DESCENDING KEY phrase .

INDEXED BY phrase .

Integer-1 TO integer-2 TIMES DEPENDING ON phrase .

Integer-1 may be zero .

DEPENDING ON data-name must be positive integer .

PICTURE clause .

Character-string has a maximum of 30 characters .

Data characters X 9 A .

Operational symbols S V P .

Nonfloating insertion characters B + - . , $ 0 CR DB /

B allowed in alphabetic item .

Replacement or floating insertion characters $ + - Z *

Currency sign substitution .

Decimal point substitution .

1 NUC 1 NUC

1 RPW 1 RPW

1 RPW 1 RPW

1 NUC 1 NUC

1 RPW 1 RPW

N 2 IPC

1 NUC 1 NUC

N 1 NUC

1 NUC 1 NUC

N 1 NUC

N 2 IPC

1 NUC 1 NUC

1 RPW 1 RPW

1 NUC 1 NUC

1 NUC N

2 NUC 1 NUC

1 RPW 1 RPW

2 NUC 2 NUC

1 NUC 1 NUC

2 NUC 2 NUC

1 RPW 1 RPW

1 RPW 1 RPW

1 TBL 1 NUC

1 TBL 1 NUC

2 TBL 2 NUC

1 TBL 1 NUC

2 TBL 2 NUC

N 2 NUC

2 TBL 2 NUC

1 NUC 1 NUC

1 RPW 1 RPW

1 NUC 1 NUC

1 RPW 1 RPW

1 NUC 1 NUC

1 RPW 1 RPW

1 NUC 1 NUC

1 RPW 1 RPW

1 NUC 1 NUC

1 RPW 1 RPW

1 NUC N

1 RPW N

1 NUC 1 NUC

1 RPW 1 RPW

1 NUC 1 NUC

1 RPW 1 RPW

1 NUC 1 NUC

1 RPW 1 RPW

XVII-28

Data Division Difference Summary

SUMMARY OF DIFFERENCES IN DATA DIVISION

I 2ND 3RD

ELEMENT _ _STD STD

REDEFINES clause . 1 NUC 1 NUC

May not be nested . 1 NUC 1 NUC

May be nested . 2 NUC 2 NUC

Redefining of 01 levels may be greater than size

of original area .o. 1 NUC 1 NUC

Redefining of non-01 levels must be equal to size

of original area . 1 NUC N

Redefining of non-01 levels must be less than or

equal to size of original area . N 1 NUC

RENAMES clause . 2 NUC 2 NUC

SIGN clause . 1 NUC 1 NUC

N 1 RPW

SOURCE clause . 1 RPW 1 RPW

SUM clause . 1 RPW 1 RPW

SYNCHRONIZED clause . 1 NUC 1 NUC

TYPE clause . 1 RPW 1 RPW

USAGE clause . 1 NUC 1 NUC

1 RPW 1 RPW

BINARY . N 1 NUC

COMPUTATIONAL . 1 NUC 1 NUC

DISPLAY 1 NUC 1 NUC

1 RPW 1 RPW

INDEX . 1 TBL 1 NUC

PACKED-DECIMAL . N 1 NUC

VALUE clause . 1 NUC 1 NUC

1 RPW 1 RPW

Literal . 1 NUC 1 NUC

1 RPW 1 RPW

Literal series . 2 NUC 2 NUC

Literal-1 THROUGH literal-2 . 2 NUC 2 NUC

Literal range series . 2 NUC 2 NUC

XVII-29

Procedure Division Difference Summary

ELEMENT

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

2ND 3RD f

STD STD

PROCEDURE DIVISION

Procedure Division is required .

Procedure Division is optional .

Procedure Division header .

USING phrase .

At least 5 operands permitted .

No minimum on number of operands permitted

Declarative procedures .

DECLARATIVES

END DECLARATIVES

Arithmetic expressions .

Binary arithmetic operators +-*/** .

Unary arithmetic operators + - .

Conditional expressions .

Simple condition .

Relation condition .

Relational operators .

[NOT] GREATER THAN .

[NOT] > .

[NOT] LESS THAN .

[NOT] < .

[NOT] EQUAL TO .

[NOT] = .

GREATER THAN OR EQUAL TO .

>= .
LESS THAN OR EQUAL TO .

<= .
Comparison of numeric operands .

Comparison of nonnumeric operands .

Operands must be of equal size .

Operands may be of unequal size .

Comparison of index-names and/or index data items

1 NUC N

N 1 NUC

1 NUC 1 NUC

1 IPC 1 IPC

N 1 IPC

1 IPC 2 IPC

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

1 DEB 1 DEB Z

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

1 DEB 1 DEB Z

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

1 DEB 1 DEB Z

2 NUC 2 NUC |
2 NUC 2 NUC

2 NUC 2 NUC

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

2 NUC 1 NUC

1 NUC 1 NUC

2 NUC 1 NUC

1 NUC 1 NUC

2 NUC 1 NUC

N 1 NUC

N 1 NUC

N 1 NUC

N 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC N

2 NUC 1 NUC

1 TBL 1 NUC

I

XVI1-30

Procedure Division Difference Summary

I
ELEMENT

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

2ND 3RD

STD STD

Conditional expression (continued)

Simple condition (continued)

Class condition .

NUMERIC .

ALPHABETIC (uppercase alphabetic characters) .

ALPHABETIC (uppercase and lowercase alphabetic characters)

ALPHABETIC-LOWER .

ALPHABETIC-UPPER .

Class-name .

Condition-name condition .

Sign condition .

Switch-status condition .

Complex condition .

Logical operators AND OR NOT .

Negated condition .

Combined condition .

Parenthesized conditions .

Abbreviated combined relation conditions .

Arithmetic statements .

Arithmetic operands limited to 18 digits .

Composite of operands limited to 18 digits .

ACCEPT statement .

Identifier ...

Only one transfer of data .

No restriction on number of transfers of data .

FROM mnemonic-name phrase .

FROM DATE/DAY/TIME phrase .

FROM DAY-OF-WEEK phrase .

ACCEPT MESSAGE COUNT statement .

ADD statement ...

Identifier/1iteral .

Identifier/literal series .

TO identifier .

TO identifier series .

TO identifier/literal GIVING identifier .

TO identifier/1itera1 GIVING identifier series .

GIVING identifier .

GIVING identifier series .

ROUNDED phrase .

ON SIZE ERROR phrase .

NOT ON SIZE ERROR phrase .

END-ADD phrase .

CORRESPONDING phrase .

ALTER statement .

Only one procedure-name .

Procedure-name series .

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC N

N 1 NUC

N 1 NUC

N 1 NUC

N 1 NUC

2 NUC 2 NUC

2 NUC 2 NUC

1 NUC 1 NUC

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 1 NUC

2 NUC 2 NUC

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC
N 2 NUC

1 COM 1 COM

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

2 NUC 1 NUC

N 1 NUC

N 1 NUC

1 NUC 1 NUC

2 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

N 1 NUC

N 1 NUC

2 NUC 2 NUC

1 NUC 1 NUC Z

1 NUC 1 NUC Z

2 NUC 2 NUC Z

XVII-31

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

2ND 3RD

STD STD

CALL statement .

Literal .

Identifier .

USING phrase .

Identifier .

At least 5 operands permitted .

No minimum on number of operands permitted

Elementary item other than 01 .

BY REFERENCE phrase .

BY CONTENT phrase .

ON OVERFLOW phrase .

ON EXCEPTION phrase .

NOT ON EXCEPTION phrase .

END-CALL phrase .

CANCEL statement .

Literal .

Identifier .

CLOSE statement ...

File-name

File-name series

REEL/UNIT phrase

FOR REMOVAL phrase .

WITH NO REWIND phrase

WITH LOCK phrase

COMPUTE statement .

Arithmetic expression ..

Identifier series .

ROUNDED phrase .

ON SIZE ERROR phrase ...

NOT ON SIZE ERROR phrase

END-COMPUTE phrase .

CONTINUE statement .

1 IPC 1 IPC

1 IPC 1 IPC

2 IPC 2 IPC

1 IPC 1 IPC

1 IPC 1 IPC

N 1 IPC

1 IPC 2 IPC

N 1 IPC

N 2 IPC

N 2 IPC

2 IPC 2 IPC

N 2 IPC

N 2 IPC

N 1 IPC

2 IPC 2 IPC

2 IPC 2 IPC

2 IPC 2 IPC

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

2 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

1 SEQ 1 SEQ

1 RPW 1 RPW

2 SEQ 2 SEQ

1 RPW 1 RPW

2 SEQ 2 SEQ

1 RPW 1 RPW

2 SEQ 2 SEQ

1 REL 2 REL

1 INX 2 INX

1 RPW 1 RPW

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC

N 2 NUC

N 2 NUC

N 1 NUC

XVI1-32

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

2ND 3RD

ELEMENT_STD STD

DELETE statement . 1 REL 1 REL

1 INX 1 INX

INVALID KEY phrase . 1 REL 1 REL

I INX 1 INX

NOT INVALID KEY phrase . N 1 REL

I INX

END-DELETE phrase . N 1 REL

1 INX

DISABLE statement . 1 COM 2 COM

INPUT phrase . 1 COM 2 COM

TERMINAL phrase . 2 COM 2 COM

1-0 TERMINAL phrase . N 2 COM

OUTPUT phrase . 1 COM 2 COM

KEY phrase . 1 COM 2 COM Z

DISPLAY statement . 1 NUC 1 NUC

Only one transfer of data . 1 NUC 1 NUC

No restriction on number of transfers of data . 2 NUC 2 NUC

Identif ier/literal . 1 NUC 1 NUC

Identifier/1iteral series . 1 NUC 1 NUC

UPON mnemonic-name phrase . 2 NUC 2 NUC

WITH NO ADVANCING phrase . N 2 NUC
DIVIDE statement . 1 NUC 1 NUC

BY identifier/literal . 1 NUC 1 NUC

INTO identifier . 1 NUC 1 NUC

INTO identifier series . 2 NUC 1 NUC

GIVING identifier . 1 NUC 1 NUC

GIVING identifier series . 2 NUC 1 NUC

ROUNDED phrase . 1 NUC 1 NUC

REMAINDER phrase . 2 NUC 2 NUC

ON SIZE ERROR phrase . 1 NUC 1 NUC

NOT ON SIZE ERROR phrase . N 1 NUC

END-DIVIDE phrase . N 1 NUC

ENABLE statement . 1 COM 2 COM

INPUT phrase . 1 COM 2 COM

TERMINAL phrase . 2 COM 2 COM

1-0 TERMINAL phrase . N 2 COM

OUTPUT phrase . 1 COM 2 COM

KEY phrase . 1 COM 2 COM Z

ENTER statement . I NUC 1 NUC Z

EVALUATE statement . N 2 NUC

Identifier/1 iteral . N 2 NUC

Arithmetic expression . N 2 NUC

Conditional expression . N 2 NUC

TRUE /FALSE . N 2 NUC

ALSO phrase . N 2 NUC

WHEN phrase . N 2 NUC

ALSO phrase . N 2 NUC

WHEN OTHER phrase . N 2 NUC

END-EVALUATE phrase . N 2 NUC

XVII-33

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

2ND

STD

EXIT statement . 1 NUC

EXIT PROGRAM statement . 1 IPC

GENERATE statement . 1 RPW

Data-name . 1 RPW

Report-name . 1 RPW

GO TO statement . 1 NUC

Procedure-name is required . 1 NUC

Procedure-name is optional . 2 NUC

DEPENDING ON phrase . 1 NUC

IF statement . 1 NUC

Only imperative statements . 1 NUC

Imperative and/or conditional statements . 2 NUC

Nested IF statements . 2 NUC

THEN optional word . N

NEXT SENTENCE phrase . 1 NUC

ELSE phrase . 1 NUC

END-IF phrase . N

INITIALIZE statement . N

Identifier series . N

REPLACING phrase . N

REPLACING series . N

INITIATE statement . 1 RPW

INSPECT statement . 1 NUC

Only single character data item . 1 NUC

Multi-character data item .. 2 NUC

TALLYING phrase . 1 NUC

BEFORE/AFTER phrase . 1 NUC
BEFORE/AFTER phrase series . N

ALL/LEADING identifier/1itera1 series . N

TALLYING phrase series . 2 NUC

REPLACING phrase . 1 NUC

BEFORE/AFTER phrase . 1 NUC

BEFORE/AFTER phrase series . N
ALL/LEADING/FIRST identifier/1iteral series . 2 NUC

REPLACING phrase series . N

TALLYING and REPLACING phrases . 1 NUC

CONVERTING phrase . N

MERGE statement . 2 SRT

ASCENDING/DESCENDING KEY phrase . 2 SRT

COLLATING SEQUENCE phrase . 2 SRT

USING phrase . 2 SRT

OUTPUT PROCEDURE phrase . 2 SRT

Section-name . 2 SRT

Procedure-name . N

GIVING phrase . 2 SRT

GIVING phrase series . N

USING/GIVING file must be sequential file . 2 SRT

USING/GIVING file may be sequential, relative, or indexed . N

3RD

STD

1 NUC

1 IPC

1 RPW

1 RPW

1 RPW

1 NUC

1 NUC

2 NUC Z

1 NUC

1 NUC

1 NUC

2 NUC

1 NUC

1 NUC

1 NUC

1 NUC

1 NUC

2 NUC

2 NUC

2 NUC

2 NUC

1 RPW

1 NUC

1 NUC

2 NUC

1 NUC

1 NUC
2 NUC

2 NUC

2 NUC

1 NUC

1 NUC

2 NUC

2 NUC

2 NUC

1 NUC

2 NUC

1 SRT

1 SRT

1 SRT

1 SRT

1 SRT

N

1 SRT

1 SRT

1 SRT

N

1 SRT

XVI1-34

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

I

ELEMENT

2ND 3RD

STD STD

MOVE statement .

TO identifier .

TO identifier series .

CORRESPONDING phrase .

De-editing of numeric edited items

MULTIPLY statement .

BY identifier .

BY identifier series .

GIVING identifier .

GIVING identifier series .

ROUNDED phrase .

ON SIZE ERROR phrase .

NOT ON SIZE ERROR phrase .

END-MULTIPLY phrase .

OPEN statement .

File-name

File-name series

INPUT phrase

WITH NO REWIND phrase

REVERSED phrase .

OUTPUT phrase .

WITH NO REWIND phrase

1-0 phrase .

EXTEND phrase

INPUT, OUTPUT, 1-0 series

EXTEND series .

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

2 NUC 2 NUC

N 2 NUC

1 NUC 1 NUC

1 NUC 1 NUC

2 NUC 1 NUC

1 NUC 1 NUC

2 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC
N 1 NUC

N 1 NUC

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

2 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

2 SEQ 2 SEQ

2 SEQ 2 SEQ Z

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

2 SEQ 2 SEQ

1 RPW 1 RPW

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

2 SEQ 2 SEQ

2 REL

2 INX

1 RPW

2 SEQ 1 SEQ

1 REL 1 REL

2 INX 1 INX

2 SEQ 2 SEQ

2 REL

2 INX

XVII-35

Procedure Division Difference Summary

ELEMENT

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

2ND 3RD |

STD STD

PERFORM statement .

Procedure-name is required .

Procedure-name is optional .

THROUGH procedure-name phrase .

Imperative-statement option .

END-PERFORM phrase .

TIMES phrase .

UNTIL phrase ...

TEST BEFORE/AFTER phrase .

VARYING phrase .

TEST BEFORE/AFTER phrase .

AFTER phrase .

Maximum of two AFTER phrases .

At least 6 AFTER phrases permitted .

Identifier-2 augmented before identifier-3 set

Identifier-5 set before identifier-2 augmented

PURGE statement .

READ statement .

NEXT phrase

INTO phrase

AT END phrase

NOT AT END phrase

KEY phrase .

INVALID KEY phrase ...

NOT INVALID KEY phrase

END-READ phrase .

RECEIVE statement .

MESSAGE phrase ...

SEGMENT phrase ...

INTO phrase .

NO DATA phrase ...

WITH DATA phrase .

END-RECEIVE phrase

RELEASE statement .

FROM phrase .

1 NUC 1 NUC

1 NUC N

N 1 NUC
1 NUC 1 NUC

N 1 NUC

N 1 NUC

1 NUC 1 NUC

2 NUC 1 NUC

N 2 NUC

2 NUC 2 NUC

N 2 NUC

2 NUC 2 NUC

2 NUC N

N 2 NUC

N 2 NUC

2 NUC N

N 2 COM

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

2 REL 2 REL

2 INX 2 INX

2 SEQ Ij

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

N 1 SEQ

1 REL

1 INX

2 INX 2 INX

1 REL 1 REL

1 INX 1 INX

N 1 REL

1 INX

N 1 SEQ

1 REL

1 INX

1 COM 1 COM

1 COM 1 COM

2 COM 2 COM

1 COM 1 COM

1 COM 1 COM

N 1 COM

N 1 COM

1 SRT 1 SRT i
1 SRT 1 SRT '

XVI1-36

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

I) 2ND 3RD

ELEMENT STD STD

RETURN statement . 1 SRT 1 SRT

INTO phrase . 1 SRT 1 SRT

AT END phrase . 1 SRT 1 SRT

NOT AT END phrase . N 1 SRT

END-RETURN phrase . N 1 SRT

REWRITE statement . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

FROM phrase . 1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

INVALID KEY phrase . 1 REL 1 REL

1 INX 1 INX

NOT INVALID KEY phrase . N 1 REL

1 INX

END-REWRITE phrase . N 1 SEQ

1 REL

1 INX

SEARCH statement . 2 TBL 2 NUC

VARYING phrase . 2 TBL 2 NUC

AT END phrase . 2 TBL 2 NUC

WHEN phrase . 2 TBL 2 NUC

WHEN phrase series . 2 TBL 2 NUC

END-SEARCH phrase . N 2 NUC

SEARCH ALL statement . 2 TBL 2 NUC

AT END phrase . 2 TBL 2 NUC

WHEN phrase . 2 TBL 2 NUC

END-SEARCH phrase . N 2 NUC

SEND statement . 1 COM 1 COM

FROM identifier phrase (portion of a message) . 2 COM 2 COM

FROM identifier phrase (complete message) . 1 COM 1 COM

WITH identifier phrase . 2 COM 2 COM

WITH ESI phrase . 2 COM 2 COM

WITH EMI phrase . 1 COM 1 COM

WITH EGI phrase . 1 COM 1 COM

BEFORE/AFTER ADVANCING phrase . 1 COM 1 COM

Integer LINE/LINES . 1 COM 1 COM

Identifier LINE/LINES . 1 COM 1 COM

Mnemonic-name . 1 COM 2 COM
PAGE . 1 COM 1 COM

REPLACING LINE phrase . N 2 COM

SET statement . 1 TBL 1 NUC

Index-name/identifier TO . 1 TBL 1 NUC

Index-name UP BY/DOWN BY . 1 TBL 1 NUC

Mnemonic-name TO ON/OFF . N 1 NUC

Condition-name TO TRUE . N 2 NUC

XVI1-37

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

2ND 3RD

STD STD

SORT statement .

ASCENDING/DESCENDING KEY phrase .

DUPLICATES phrase .

COLLATING SEQUENCE phrase .

INPUT PROCEDURE phrase .

Sect ion-name .

Procedure-name .

USING phrase ...

File-name series .

OUTPUT PROCEDURE phrase .

Section-name .

Procedure-name .

GIVING phrase .

File-name series .

USING/GIVING file must be sequential file .

USING/GIVING file may be sequential, relative, or indexed

START statement .

KEY phrase .

EQUAL TO .

GREATER THAN .

> .

NOT LESS THAN .

NOT < .

GREATER THAN OR EQUAL TO

>= .

INVALID KEY phrase .

NOT INVALID KEY phrase ..

END-START phrase .

STOP statement .

RUN .

Literal .

1 SRT 1 SRT

1 SRT 1 SRT

N 1 SRT

2 SRT 1 SRT

1 SRT 1 SRT

1 SRT N

N 1 SRT

1 SRT 1 SRT

2 SRT 1 SRT

1 SRT 1 SRT

1 SRT N

N 1 SRT

1 SRT 1 SRT

N 1 SRT

1 SRT N

N 1 SRT

2 REL 2 REL

2 INX 2 INX

2 REL 2 REL

2 INX 2 INX

2 REL 2 REL

2 INX 2 INX

2 REL 2 REL

2 INX 2 INX

2 REL 2 REL

2 INX 2 INX

2 REL 2 REL

2 INX 2 INX

2 REL 2 REL

2 INX 2 INX

2 REL 2 REL

2 INX 2 INX

N 2 REL

2 INX

N 2 REL

2 INX

2 REL 2 REL

2 INX 2 INX

N 2 REL

2 INX

N 2 REL

2 INX

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC Z

XVI1-38

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

2ND 3RD

STD STD

STRING statement .

DELIMITED BY series .

WITH POINTER phrase .

ON OVERFLOW phrase .

NOT ON OVERFLOW phrase ..

END-STRING phrase .

SUBTRACT statement .

Identifier/1iteral .

Identifier/1iteral series

FROM identifier .

FROM identifier series ..

GIVING identifier .

GIVING identifier series

ROUNDED phrase .

ON SIZE ERROR phrase

NOT ON SIZE ERROR phrase

END-SUBTRACT phrase .

CORRESPONDING phrase

SUPPRESS statement .

TERMINATE statement .

UNSTRING statement .

DELIMITED BY phrase .

DELIMITER IN phrase .

COUNT IN phrase .

WITH POINTER phrase .

TALLYING phrase .

ON OVERFLOW phrase .

NOT ON OVERFLOW phrase ..

END-UNSTRING phrase .

USE statement .

EXCEPTION/ERROR PROCEDURE phrase

GLOBAL phrase

ON file-name

ON file-name series

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC

N 2 NUC

N 2 NUC

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

2 NUC 1 NUC

1 NUC 1 NUC

2 NUC 1 NUC

1 NUC 1 NUC

1 NUC 1 NUC

N 1 NUC

N 1 NUC

2 NUC 2 NUC

1 RPW 1 RPW

1 RPW 1 RPW

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC

2 NUC 2 NUC
N 2 NUC

N 2 NUC

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

1 DEB 1 DEB Z

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

N 2 IPC

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

2 SEQ 2 SEQ

2 REL 2 REL

2 INX 2 INX

1 RPW 1 RPW

XVII-39

Procedure Division Difference Summary

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION

ELEMENT

USE statement (continued)

EXCEPTION/ERROR PROCEDURE phrase (continued)

ON INPUT .

ON OUTPUT

ON 1-0

ON EXTEND

BEFORE REPORTING phrase .

GLOBAL phrase .

FOR DEBUGGING phrase .

Procedure-name .

ALL PROCEDURES .

ALL REFERENCES OF identifier-1

Cd-name .

File-name .

WRITE statement .

FROM phrase

BEFORE/AFTER ADVANCING phrase

Integer LINE/LINES .

Identifier LINE/LINES .

Mnemonic-name .

PAGE .

AT END-OF-PAGE/EOP phrase ...

NOT AT END-OF-PAGE/EOP phrase

INVALID KEY phrase .

NOT INVALID KEY phrase .

END-WRITE phrase .

2ND 3RD |

STD STD

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 RPW 1 RPW

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

2 SEQ 2 SEQ

2 REL

2 INX

1 RPW

1 RPW 1 RPW

N 2 IPC

1 DEB 1 DEB Z
1 DEB 1 DEB Z
1 DEB 1 DEB Z
2 DEB 2 DEB Z
2 DEB 2 DEB f
2 DEB 2 DEB z1
1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SEQ 1 SEQ

1 REL 1 REL

1 INX 1 INX

1 SEQ 1 SEQ

1 SEQ 1 SEQ

2 SEQ 1 SEQ

2 SEQ 2 SEQ

1 SEQ 1 SEQ

2 SEQ 2 SEQ

N 2 SEQ

1 REL 1 REL

1 INX 1 INX

N 1 REL

1 INX

N 1 SEQ

1 REL
1 INX

I

XVI1-40

Additional Difference Summary

ADDITIONAL SUMMARY OF DIFFERENCES

2ND

ELEMENT STD

SEGMENTATION

Segment-numbers 0 through 49 for permanent segments . 1 SEG

Segment-numbers 50 through 99 for independent segments . 1 SEG

All sections with the same segment-number must be

together in the source program . 1 SEG

Sections with the same segment-number need not be

physically contiguous in the source program . 2 SEG

SOURCE TEXT MANIPULATION

COPY statement . 1 LIB

OF/IN library-name phrase . 2 LIB

REPLACING phrase . 2 LIB

Pseudo-text . 2 LIB

Identifier . 2 LIB

Literal . 2 LIB

Word . 2 LIB

REPLACE statement . N

Pseudo-text BY pseudo-text . N

OFF . N

3RD

STD

1 SEG Z

1 SEG Z

1 SEG Z

2 SEG Z

1 STM

2 STM

2 STM

2 STM

2 STM

2 STM

2 STM

2 STM

2 STM

2 STM

XVI1-41

Substantive Changes (Not Affecting)

2. SUBSTANTIVE CHANGES

2.1 SUBSTANTIVE CHANGES NOT AFFECTING EXISTING PROGRAMS

The following is a list of the changes of substance included in third

Standard COBOL that are new features not impacting existing programs; for

example, a new verb or an additional capability for an old verb.

(1) Lowercase letters (1 NUC). When the computer character set includes

lowercase letters, they may be used in character-strings. Except when used in

nonnumeric literals, each is equivalent to the corresponding uppercase letter.

(2) Colon (:) character (2 NUC). The COBOL character set has been expanded

to include the colon (:) character that is used in reference modification.

(3) Punctuation characters (1 NUC). The separators comma, semicolon, and

space are interchangeable within a source program.

(4) User-defined words and system-names (1 NUC). The same COBOL word may be

used as a system-name and as a user-defined word within a source program; the

context in which a COBOL word occurs determines what it is.

(5) Symbolic-characters (2 NUC). A symbolic-character is a user-defined

word that specifies a user-defined figurative constant.

(6) Nonnumeric literal (1 NUC). A nonnumeric literal has an upper limit of

160 characters in length. The upper limit was 120 characters in second Standard

COBOL.

(7) Figurative constant ZERO (2 NUC). The figurative constant ZERO is

allowed in arithmetic expressions.

(8) Uniqueness of reference (1 NUC). A user-defined word need not be unique

or be capable of being made unique unless referenced.

(9) Qualification (2 NUC). An implementor must provide the capability to

handle 50 levels of qualification. Five levels of qualification were required

in second Standard COBOL.

(10) Subscripting (2 NUC). A table may have up to seven dimensions. Up to

three dimensions were allowed in second Standard COBOL.

(11) Relative subscripting (1 NUC). Relative subscripting allows a subscript

to be followed by the operator + or - which is followed by an integer.

(12) Mixing subscripts and indexes (1 NUC). Indexes and data-name subscripts

may both be written in a single set of subscripts used to reference an

individual occurrence of a multi-dimensional table.

(13) Reference modification (2 NUC). Reference modification is a new method

of referencing data by specifying a leftmost character and length for the data

item.

XVII-42

Substantive Changes (Not Affecting)

(14) Sequence number (1 NUC). The sequence number may contain any character

in the computer's character set. In second Standard COBOL the sequence number

contained only digits.

(15) Data Division reference format (1 NUC). The word following a level

indicator, level-number 01, or level-number 77 on the same line may begin in

area A.

(16) End program header (2 NUC). The end program header indicates the end of

the named COBOL source program; the end program header may be followed by a

COBOL program that is to be compiled separately in the same invocation of the

compiler.

(17) Nested source programs (2 IPC). Programs can be contained in other

programs.

(18) INITIAL clause in PROGRAM-ID paragraph (2 IPC). The INITIAL clause

specifies a program whose state is initialized, whenever the program is called,

to the same state as when that program was first called in the run unit.

(19) COMMON clause in the PROGRAM-ID paragraph (2 IPC). The COMMON clause

specifies a program that, despite being directly contained within another

program, may be called from any program directly or indirectly contained in that

other program.

(20) Environment Division (1 NUC). The Environment Division is optional.

Within the Environment Division, the Configuration Section is optional. The

SOURCE-COMPUTER paragraph, the OBJECT-COMPUTER paragraph, as well as the entries

within the SOURCE-COMPUTER paragraph, OBJECT-COMPUTER paragraph, SPECIAL-NAMES

paragraph, and I-O-CONTROL paragraph are also optional.

(21) SPECIAL-NAMES paragraph (1 NUC). If implementor-name is a switch,

condition-name need not be specified.

(22) SPECIAL-NAMES paragraph (1 NUC). The reserved word IS has been made

optional in the SPECIAL-NAMES paragraph to be consistent with the use of IS

throughout the COBOL specifications.

(23) STANDARD-2 option (1 NUC). The STANDARD-2 option within the ALPHABET

clause of the SPECIAL-NAMES paragraph allows the specification of the ISO 7-bit

character set for a character code set or collating sequence.

(24) ASSIGN clause (1 SEP. 1 REL, 1 INX. 1 SRT. 1 RPW). A nonnumeric literal

may be specified in the ASSIGN clause.

(25) OPTIONAL phrase (2 SEQ, 2 REL, 2 INX). The OPTIONAL phrase within the

file control entry applies to sequential files, relative files, and indexed

files opened in the input, I-O, or extend mode. In second Standard COBOL the

OPTIONAL phrase within the file control entry applied to sequential files opened

in the input mode.

(26) ORGANIZATION clause (1 SEQ, 1 REL, 1 INX). Within the ORGANIZATION

clause of the file control entry the words ORGANIZATION IS have been made

optiona1.

XVI1-43

Substantive Changes (Not Affecting)

(27) PADDING CHARACTER clause (2 SEQ, 1 RPW). The PADDING CHARACTER clause

in the file control entry specifies the character which is to be used for block

padding on sequential files.

(28) RECORD DELIMITER clause (2 SEQ, 1 RPW). The RECORD DELIMITER clause in

the file control entry indicates the method of determining the length of a

variable length record on the external medium.

(29) I-0-CONTROL paragraph (1 SEQ, 1 REL, 1 INX. 1 RPW). The order of

clauses is immaterial in the I-0-C0NTR0L paragraph.

(30) Data Division (1 NUC)♦ The Data Division is optional.

(31) BLOCK CONTAINS clause (1 SEQ, 1 REL, 1 INX). Omission of the BLOCK

CONTAINS clause is permitted if the number of records contained in a block is

specified by the operating environment. In second Standard COBOL the absence of

the BLOCK CONTAINS clause denoted the standard physical record size designated

by the implementor.

(32) CODE-SET clause (1 SEQ, 1 RPW). The CODE-SET clause may be specified

for all files with sequential organization. In second Standard COBOL the

CODE-SET clause was restricted to non-mass storage files.

(33) LABEL RECORDS clause (1 SEQ, 1 REL, 1 INX, 1 RPW). The LABEL RECORDS

clause is optional; if not specified, then the clause LABEL RECORDS ARE

STANDARD is assumed.

(34) LINAGE clause (2 SEQ). Data-names within the LINAGE clause may be

qualified .

(35) EXTERNAL clause (2 IPC). The EXTERNAL clause specifies that a data item

or a file connector is external and may be accessed and processed by any program

in the run unit .

(36) GLOBAL clause (2 IPC). The GLOBAL clause specifies that a data-name or

a file-name is a global name that is available to every program contained within

the program which declares it.

(37) FILLER clause (1 NUC). The use of the word FILLER is optional for data

description entries. The word FILLER can appear in a data description entry

containing a REDEFINES clause. The word FILLER may be used in a data

description entry of a group item.

(38) OCCURS clause (2 NUC). The data item specified in the DEPENDING ON

phrase may have a zero value. Thus the minimum number of occurrences may be

zero .

(39) PICTURE character-string (2 NUC, 1 RPW). A PICTURE character-string may

be continued between coding lines.

(40) PICTURE clause (1 NUC). The insertion character (period) or

(comma) may be used as the last character of a PICTURE character-string,

provided it is immediately followed by the separator period terminating the data

description entry.

XVII-44

Substantive Changes (Not Affecting)

(41) RECORD clause (2 SEQ, 2 REL, 2 INX, 1 SRT) . The VARYING phrase of the

RECORD clause is used to specify variable length records. The DEPENDING phrase

associated with the VARYING phrase specifies a data item containing the number

of character positions in a record.

(42) REDEFINES clause (1 NUC). The size of the item associated with the

REDEFINES clause may be less than or equal to the size of the redefined item.

In second Standard COBOL, the two items had to have the same number of character

positions .

(43) SIGN clause (1 NUC). Multiple SIGN clauses may be specified in the

hierarchy of a data description entry; the specification at the subordinate

level takes precedence over the specification at the containing group level.

(44) SIGN clause (1 RPW). The SIGN clause is allowed in a report group

description entry.

(45) USAGE clause (1 NUC). BINARY and PACKED-DECIMAL are two new features of

the USAGE clause.

(46) VALUE clause (1 NUC). The VALUE clause may be specified in a data

description entry that contains an OCCURS clause. The VALUE clause may be

specified in a data description entry that is subordinate to an entry containing

an OCCURS clause. In second Standard COBOL the VALUE clause was not permitted

in a data description entry containing an OCCURS clause or in a data description

entry subordinate to an entry containing an OCCURS clause.

(47) Communication description entry (1 COM). The order of clauses in the

communication description entry is immaterial.

(48) FOR 1-0 phrase in communication description entry (1 COM). The FOR 1-0

phrase in a communication description entry provides for both input and output

functions by one CD entry.

(49) LINE NUMBER clause (1 RPW). The integer 0 may be specified as the

relative line number in the PLUS phrase of the LINE NUMBER clause.

(50) Procedure Division (1 NUC). The Procedure Division is optional.

(51) Procedure Division header (1 IPC). A Linkage Section item which

redefines, or is subordinate to one which redefines, an item appearing in the

Procedure Division header may be referenced in the Procedure Division.

(52) Scope terminators (1 NUC, 1 SEQ, 1 REL, 1 INX, 2 IPC,_1 SRT, 1 COM).

Scope terminators serve to delimit the scope of certain procedural statements.

The scope terminators include: END-ADD, END-CALL, END-COMPUTE, END-DELETE,

END-DIVIDE, END-EVALUATE, END-IF, END-MULTIPLY, END-PERFORM, END-READ,

END-RECEIVE, END-RETURN, END-REWRITE, END-SEARCH, END-START, END-STRING,

END-SUBTRACT, END-UNSTRING, END-WRITE.

(53) Relational operators (1 NUC). The relational operator IS GREATER THAN

OR EQUAL TO (>=) is equivalent to the relational operator IS NOT LESS THAN.

The relational operator IS LESS THAN OR EQUAL TO (<=) is equivalent to the

relational operator IS NOT GREATER THAN.

XVI1-45

Substantive Changes (Not Affecting)

(54) Class condition (1 NUC). Class-name is associated with a set of

characters specified by the user in the CLASS clause within the SPECIAL-NAMES

paragraph.

(55) DAY-OF-WEEK phrase of ACCEPT statement (2 NUC). The DAY-OF-WEEK phrase

of the ACCEPT statement provides access to an integer representing the day of

week; for example, 1 represents Monday, 2 represents Tuesday, and 7 represents

Sunday.

(56) ADD statement (1 NUCj . The word TO is an optional word in the format:

ADD identifier/literal TO identifler/literal GIVING identifier.

(57) NOT ON SIZE ERROR phrase of ADD statement (1 NUC). The NOT ON SIZE

ERROR phrase provides the programmer with the capability to specify procedures

to be executed when a size error condition does not exist for the ADD statement.

(58) CALI, statement (2 IPC). The BY CONTENT phrase indicates that the called

program cannot change the value of a parameter in the CALL statement's USING

phrase, but the called program may change the value of the corresponding data

item in the called program's Procedure Division header. The BY REFERENCE phrase

causes the parameter in the CALL statement's USING phrase to be treated the same

as specified in second Standard COBOL.

(59) CALL statement (1 IPC). The parameters passed in a CALL statement can

be other than an 01 or 77 level data item. The parameters passed in a CALL

statement may be subscripted and/or reference modified.

(60) ON EXCEPTION and NOT ON EXCEPTION phrases of CALL statement (2 IPC).

The ON EXCEPTION phrase of the CALL statement is equivalent to the ON OVERFLOW

phrase of the CALL statement. The NOT ON EXCEPTION phrase provides the

programmer with the capability to specify procedures to be executed when the

program specified by the CALL statement has been made available for execution.

(61) REEL/UNIT phrase of the CLOSE statement (1 SEQ, 1 RPW). The REEL/UNIT

phrase of the CLOSE statement can be applied to a single reel/unit file and is

specifically permitted for a report file.

(62) FOR REMOVAL phrase of the CLOSE statement (2 SEQ, 1_RPW). The FOR

REMOVAL phrase of the CLOSE statement is allowed for a sequential single

ree1/unit file.

(63) NOT ON SIZE ERROR phrase of COMPUTE statement (2 NUC_) . The NOT ON SIZE

ERROR phrase provides the programmer with the capability to specify procedures

to be executed when a size error condition does not exist for the COMPUTE

statement.

(64) CONTINUE statement (I NUC). The CONTINUE statement indicates that there

is no executable statement present and causes an implicit transfer of control to

the next executable statement.

(65) NOT INVALID KEY phrase of DELETE_statement (1 REL. 1 INX). The NOT

INVALID KEY phrase provides the programmer with the capability to specify

procedures to be executed when an invalid key condition does not exist for the

DELETE statement.

XVI1-46

Substantive Changes (Not Affecting)

(66) DISPLAY statement (1 NUC). The figurative constant ALL literal is

permitted in the DISPLAY statement. In second Standard COBOL, the figurative

constant ALL literal was not permitted in the DISPLAY statement.

(67) NOT ON SIZE ERROR phrase of DIVIDE statement (1 NUC). The NOT ON SIZE

ERROR phrase provides the programmer with the capability to specify procedures

to be executed when a size error condition does not exist for the DIVIDE

statement.

(68) WITH NO ADVANCING phrase of the DISPLAY statement (2 NUC). The WITH NO

ADVANCING phrase of the DISPLAY statement provides interaction with a hardware

device having vertical positioning.

(69) EVALUATE statement (2 NUC). The EVALUATE statement describes a

multi-branch, multi-join structure in which multiple conditions are evaluated to

determine the subsequent action of the object program.

(70) EXIT PROGRAM statement (1 IPC). The EXIT PROGRAM statement need not be

the only statement in a paragraph.

(71) GO TO DEPENDING statement (1 NUC). The number of procedure-names

required in a GO TO DEPENDING statement has been reduced to one.

(72) IF statement (1 NUC) . The optional word THEN has been added to the

general format of the IF statement.

(73) INITIALIZE statement (2 NUC). The INITIALIZE statement provides the

ability to set selected types of data fields to predetermined values.

(74) INSPECT statement (2 NUC). Multiple occurrences of the BEFORE/AFTER

phrase allow the TALLYING/REPLACING operation to be initiated after the

beginning of the inspection of the data begins and/or terminated before the end

of the inspection of the data ends.

(75) INSPECT statement (2 NUC). The ALL/LEADING adjective can be distributed

over multiple occurrences of identifier/1itera 1 and there can be multiple

occurrences of the REPLACLNG CHARACTERS phrase.

(76) INSPECT CONVERTING statement (2 NUC). The CONVERTING phrase provides a

new variation for the INSPECT statement.

(77) MERGE statement (1 SRT). Multiple file-names are allowed in the GIVING

phrase of the MERGE statement. A file named in a MERGE statement may contain

variable length records. A file named in either the USING or GIVING phrase of a

MERGE statement can be a relative file or an indexed file.

(78) MOVE statement (2 NUC). A numeric edited data item may be moved to a

numeric or numeric edited data item; thus de-editing takes place.

(79) NOT ON SIZE ERROR phrase of MULTIPLY statement (1 NUC). The NOT ON SIZE

ERROR phrase provides the programmer with the capability to specify procedures

to be executed when an on size error condition does not exist for the MULTIPLY

statement.

XVI1-47

Substantive Changes (Not Affecting)

(80) EXTEND phrase of the OPEN statement (2 REL, 2 INX). The EXTEND phrase

of the OPEN statement can be used with a relative file or an indexed file.

(81) PURGE statement (2 COM). The PURGE statement causes the message control

system (MCS) to eliminate any partial message that has been released by one or

more SEND statements.

(82) PERFORM statement (1 NUC). Procedure-name may be omitted resulting in

an in-line PERFORM of the imperative statements preceding the END-PERFORM phrase

terminating the PERFORM statement.

(83) PERFORM statement (2 NUC). The TEST AFTER phrase causes the condition

to be tested after the specified set of statements has been executed. The TEST

BEFORE phrase causes the condition to be tested before the specified set of

statements is executed.

(84) PERFORM statement (2 NUC). At least six AFTER phrases must be permitted

in the VARYING phrase of the PERFORM statement . A maximum of two AFTER phrases

existed in second Standard COBOL.

(85) READ statement (2 SEQ, 2 REL, 2 INX). Variable length records are

allowed when the READ statement has an INTO phrase. The NEXT phrase is allowed

in a READ statement referencing a file with sequential organization.

(86) NOT AT END phrase of READ statement (1 SEQ, 1 REL, 1 INX). The NOT AT

END phrase provides the programmer with the capability to specify procedures to

be executed when the at end condition does not exist for the READ statement.

(87) NOT INVALID KEY phrase_of READ statement (1 REL, 1 INX). The NOT

INVALID KEY phrase provides the programmer with the capability to specify

procedures to be executed when an invalid key condition does not exist for the

READ statement.

(88) WITH DATA phrase of RECEIVE statement (1 COM). The WITH DATA phrase

provides the programmer with the capability to specify procedures to be executed

when the MCS makes data available during execution of a RECEIVE statement.

(89) REPLACE statement (2 STM). The REPLACE statement causes each occurrence

of specified text in the source program to be replaced by the corresponding text

specified in the REPLACE statement.

(90) RETURN statement (1 SRT). Variable length records are allowed when the

RETURN statement has an INTO phrase.

(91) NOT AT END phrase of RETURN statement (1 SRT). The NOT AT END phrase

provides the programmer with the capability to specify procedures to be executed

when an at end condition does not exist for the RETURN statement.

(92) REWRITE statement (2 REL, 2 INX). A record of a different length can

replace a record within either a relative or indexed file.

(93) NOT INVALID KEY phrase of REWRITE statement (1 REL, 1 INX). The NOT

INVALID KEY phrase provides the programmer with the capability to specify

procedures to be executed when an invalid key condition does not exist for the

REWRITE statement.

XVI1-48

Substantive Changes (Not Affecting)

(94) SEND statement (2 COM). The REPLACING LINE phrase is a new feature of

the SEND statement.

(95) SET statement (1 NUC). Index-names and identifiers may now be mixed in

a series of operands preceding the word TO in a SET statement. Two new

variations of the SET statement permit the setting of an external switch to be

changed and permit the value of a conditional variable to be changed.

(96) SORT statement (1 SRT). Multiple file-names are allowed in the GIVING

phrase of the SORT statement. A file named in a SORT statement may contain

variable length records. A file named in either the USING or GIVING phrase of a

SORT statement can be a relative file or an indexed file. The files named in

the USING and GIVING phrases can reside on the same physical reel. If the

DUPLICATES phrase is specified, records whose key values are identical remain in

the same order as they were when they were input to the sort process after the

sort process is completed.

(97) SORT and MERGE statements (1 SRT). The input and output procedures of a

SORT or MERGE statement may contain explicit transfers of control to points

outside the input or output procedure. The remainder of the Procedure Division

may contain transfers of control to points inside the input or output procedure.

A paragraph-name may be specified in the INPUT PROCEDURE phrase or the OUTPUT

PROCEDURE phrase.

(98) NOT INVALID KEY phrase of START statement (2 REL, 2 INX). The NOT

INVALID KEY phrase provides the programmer with the capability to specify

procedures to be executed when an invalid key condition does not exist for the

START statement.

(99) STRING statement (2 NUC). The identifier in the INTO phrase of the

STRING statement may be a group item.

(100) NOT ON OVERFLOW phrase of STRING statement (2 NUC). The NOT ON OVERFLOW

phrase provides the programmer with the capability to specify procedures to be

executed when an overflow condition does not exist for the STRING statement.

(101) NOT ON SIZE ERROR phrase of the SUBTRACT statement (1 NUC). The NOT ON

SIZE ERROR phrase provides the programmer with the capability to specify

procedures to be executed when a size error condition does not exist for the

SUBTRACT statement.

(102) NOT ON OVERFLOW phrase of UNSTRING statement (2 NUC). The NOT ON

OVERFLOW phrase provides the programmer with the capability to specify

procedures to be executed when an overflow condition does not exist for the

UNSTRING statement .

(103) USE statement (1 SEQ, 1 REL, 1 INX). A USE AFTER EXCEPTION/ERROR

declarative statement specifying the name of a file takes precedence over a

declarative statement specifying the open mode of the file.

(104) USE statement (2 IPC). The GLOBAL phrase specifies that the associated

declarative procedures are invoked during the execution of any program contained

within the program which includes the USE statement.

XVII-49

Substantive Changes (Not Affecting)

(105) USE BEFORE REPORTING statement (2 IPC). The GLOBAL phrase specifies

that the associated declarative procedures are invoked during the execution of

any program contained within the program which includes the USE BEFORE REPORTING

statement.

(106) NOT END-OF-PAGE phrase of WRITE statement (1 SEQ). The NOT END-OF-PAGE

phrase provides the programmer with the capability to specify procedures to be

executed when an end-of-page condition does not exist for the WRITE statement.

(107) NOT INVALID KEY phrase of WRITE statement (1 REL. 1 INX). The NOT

INVALID KEY phrase provides the programmer with the capability to specify

procedures to be executed when an invalid key condition does not exist for the

WRITE statement.

XVII-50

Substantive Changes (Potentially Affecting)

2.2 SUBSTANTIVE CHANGES POTENTIALLY AFFECTING EXISTING PROGRAMS

This section contains a list of the changes of substance included in third

Standard COBOL that are new features or changes that could impact existing

programs; for example, the addition of a rule for a previously undefined

situation or the change of a rule for an existing verb. Associated with each

item in this list is a justification for the presence of that change in third

Standard COBOL. See the preface to this document for the definition of the

terms "first Standard COBOL", "second Standard COBOL", and "third Standard

COBOL" as they are used in this section.

The general philosophy in developing third Standard COBOL was that

clarifications of unclear or ambiguous rules should be made in the interest of

portability of programs and of ease of development of new programs. The

addition of new features has also been done with the intent of making new

programs easier and less costly to develop. The changes have been made with the

intent of impacting existing programs as little as possible. The long term

savings in program portability and development should outweigh the short term

costs of conversion of existing programs.

It should be noted that this section contains a list of changes having the

potential to impact existing programs. In those cases where second Standard

COBOL was unclear, the clarification has been made in accordance with a de facto

industry standard, if one existed. In any case, a clarification does not cause

an incompatibility between standards; it only causes the possibility of an

incompatibility between any particular implementation and third Standard COBOL.

The justifications included in the following list address primarily the effects

of the changes on COBOL programs which follow the rules of second Standard

COBOL. The effects of the changes are not always known for programs that: (1)

violate the rules of second Standard COBOL, or (2) use features for which the

rules were not well defined in second Standard COBOL and thus were dependent on

a particular implementor's extension or interpretation of the rules.

When a change has been made as a result of a request for an interpretation of

second Standard COBOL, the justification contains a reference to the X3J4

document containing the interpretation generated by the X3J4 COBOL Technical

Committee of the American National Standards Institute. The interpretation

documents generated by X3J4 were published in COBOL Information Bulletins 18,

20, and 21. These bulletins are available from: CBEMA, Suite 500, 311 First

Street NW, Washington, D. C. 20001, USA.

(1) Length of ALL literal (2 NUC). When the figurative constant ALL

literal is not associated with another data item, the length of the string is

the length of the literal.

Justification:

The rules in second Standard COBOL for the size of the figurative

constant ALL literal differ depending on where the figurative constant has

been used in the program. As reflected in the X3J4 interpretation document

B-142, when the figurative constant ALL literal is used in the SPECIAL-NAMES

paragraph, its length is one, and its value is the leftmost character of the

literal. Consider the following example:

XVII-51

Substantive Changes (Potentially Affecting)

IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

OBJECT-COMPUTER.

PROGRAM COLLATING SEQUENCE IS COL-SEQ.

SPECIAL-NAMES.

COL-SEQ IS ALL "0123456789".

DATA DIVISION.

01 FIELD1 PIC X(80).

PROCEDURE DIVISION.

START-PROGRAM.

IF FIELD1 = ALL "ABCDEF"

DISPLAY "TEXT IS TRUE".

In the above example, when the figurative constant ALL literal is used

in the alphabet-name clause of the SPECIAL-NAMES paragraph, only the first

character of the literal is used regardless of the number of characters

specified in the literal (see X3J4 interpretation document B-142). In the other

instance of IF FIELD1 = ALL "ABCDEF", the size of the literal is considered to

be all of the characters specified in the literal.

This inconsistency in the rule for the size of ALL literal causes

misleading behavior of the program. The new rules in third Standard COBOL

eliminate the inconsistency between program specification and behavior. In

particular, the rules in third Standard COBOL indicate that in the case of the

alphabet-name clause with the figurative constant ALL literal, the length of

the string is the length of the literal.

The X3J4 COBOL Technical Committee believes that the usefulness of the

rules in second Standard COBOL is limited to esoteric or misleading programming

practices, and that, therefore, the change would impact few, if any, programs.

(2) Alphabet-name clause (1 NUC). The key word ALPHABET must precede

alphabet-name within the alphabet-name clause of the SPECIAL-NAMES paragraph.

Justification:

Implementor-names are system-names; alphabet-names and mnemonic-names

are user-defined words. In third Standard COBOL, system-names and user-defined

words form intersecting sets and therefore can be the same word. The following

clause is permitted:

SPECIAL-NAMES. WORD-1 IS WORD-2.

In third Standard COBOL, if WORD-1 is both an implementor-name and an

alphabet-name and WORD-2 was both a mnemonic-name and an implementor-name, then

it would not be possible to distinguish whether the implementor-name clause or

alphabet-name clause was intended in the above clause. The introduction of the

key word ALPHABET in the alphabet-name clause resolves this ambiguity.

XVI1-52

Substantive Changes (Potentially Affecting)

This problem did not exist in second Standard COBOL because system-names

and user-defined words formed disjoint sets; therefore, the above construct was

not permitted. Thus the key word ALPHABET was not present in the alphabet-name

clause of the SPECIAL-NAMES paragraph within second Standard COBOL.

Allowing system-names and user-defined words to intersect makes it

easier to move a program from implementation to implementation; system-names no

longer need to be changed. To modify an existing program, the key word ALPHABET

must be inserted in front of the alphabet-name clause.

(3) Collating sequence (1 INX). The collating sequence used to access an

indexed file is the collating sequence associated with the native character set

that was in effect for the file at the time the file was created.

Jus tification:

In second Standard COBOL, rules did not state which collating sequence

is used for the retrieving and storing of records when accessing an indexed

file. Two different interpretations were possible:

a. The native collating sequence

b. The collating sequence specified by the PROGRAM COLLATING

SEQUENCE clause.

The new rule in third Standard COBOL explicitly specifies that the

native collating sequence will be used for the retrieving and storing of records

when accessing an indexed file. Most implementations known by the X3J4 COBOL

Technical Committee use the native collating sequence for the retrieving and

storing of records when accessing an indexed file.

(4) CURRENCY SIGN clause (1 NUC). The literal specified within the CURRENCY

SIGN clause may not be a figurative constant.

Justification:

In second Standard COBOL, the use of a figurative constant in the

CURRENCY SIGN clause was allowed, but no rules were specified for the meaning of

the use of HIGH-VALUE, LOW-VALUE, or ALL literal in this context. X3J4

interpretation documents B-123 and B-142 addressed these issues.

Rules could have been added to third Standard COBOL to clarify the

meaning of the various cases, but the utility seemed marginal. Thus use of a

figurative constant in the CURRENCY SIGN clause was disallowed in third Standard

COBOL. The X3J4 COBOL Technical Committee believes that few, if any, existing

programs will be affected by this change.

XVI1-53

Substantive Changes (Potentially Affecting)

(5) RELATIVE KEY phrase (1 REL). The relative key data item specified in

the RELATIVE KEY phrase must not contain the PICTURE symbol 'P'.

Jus tification:

In second Standard COBOL, a relative key is allowed to have the PICTURE

symbol 1P' in the PICTURE character-string (see X3J4 interpretation document

B-144). If a relative key were so described, not all of the records in the file

would be accessible to the program. For example, an item with PICTURE 9P can

have only the values 00, 10, 20, 30, 40, 50, 60, 70, 80, and 90. This means

that only records with these relative numbers could be accessed. Use of such a

key description is probably an error and can be diagnosed as such according to

third Standard COBOL. It is unlikely that any programs exist which use the

PICTURE symbol ’P1 in the description of a relative key data item.

(6) LINAGE clause (2 SEQ). Files for which the LINAGE clause has been

specified must not be opened in the extend mode.

Jus tification:

The behavior of a file having an associated LINAGE clause that is opened

in the extend mode is not well specified in second Standard COBOL. For example,

the value of LINAGE-COUNTER when an OPEN statement is executed is specified in
second Standard COBOL as being set to one. However, values are not specified in

second Standard COBOL for a file having an associated LINAGE clause that is

being opened in the extend mode.

The utility of the extend mode for the opening of a file having an

associated LINAGE clause is a function of the technique used to implement such

files. Some implementors have chosen to implement the extend mode for the

opening of a file having an associated LINAGE clause. Other implementors have

chosen to disallow the extend mode for the opening of a file having an

associated LINAGE clause.

Third Standard COBOL specifies that the EXTEND phrase must only be used

for files for which the LINAGE clause has not been specified. It is expected

that vendors who have implemented OPEN EXTEND for a file having the LINAGE

clause will continue to support this function.

Independent of what any one vendor has done or may do, the X3J4 COBOL Technical

Committee expects that few programs will be affected.

(7) FOOTING phrase (2 SEQ). If the FOOTING phrase is not specified, no

end-of-page condition independent of the page overflow condition exists.

Jus tification:

In second Standard COBOL, the specifications for the existence of the

footing area are contradictory between the LINAGE clause and the WRITE

statement. Some existing implementations provide a one line footing area while

other implementations provide no footing area when the FOOTING phrase is not

specified. There is no way to resolve the ambiguity without impact on some

existing implementations. The solution in third Standard COBOL reflects the

intuition that if no footing area is specified, then none is wanted. Thus if no

XVI1-54

Substantive Changes (Potentially Affecting)

FOOTING phrase is specified in the LINAGE clause, then no footing area exists

and no end-of-page condition occurs. This change will only affect programs

which specify no FOOTING phrase in the LINAGE clause for a file, use a WRITE

statement with the END-OF-PAGE phrase for that file, and use an existing

implementation that provides a footing area.

(8) OCCURS clause (2 NUC). When a receiving item is a variable length data

item and contains the object of the DEPENDING ON phrase, the maximum length of

the item will be used.

Justification:

In second Standard COBOL, the length was computed based on the value of

the item in the DEPENDING ON phrase prior to the execution of the statement.

Using the second Standard COBOL rules with a MOVE statement (or a READ INTO

statement) could have resulted in loss of data if the value of the DEPENDING ON

data item was not set to indicate the length of the sending data before the MOVE

statement was executed.

FD INPUT-FILE.

01 A.

02 A-TABLE.

03 A-ODO PIC 99.

03 A-ITEM OCCURS 1 TO 10 TIMES DEPENDING ON A-ODO.

WORKING-STORAGE SECTION.

01 B.

02 B-TABLE.

03 B-ODO PIC 99.

03 B-ITEM OCCURS 1 TO 10 TIMES DEPENDING ON B-ODO.

Suppose in the above program fragment, A-ODO is set to 10

set to 5. Under second Standard COBOL, in order to move all

A-ITEM to B-TABLE, one would first move A-ODO to B-ODO. Thus,

sequences of COBOL statements are equivalent:

and B-ODO is

occurrences of

the following

Under second Standard COBOL: Under third Standard COBOL:

MOVE A-ODO TO B-ODO. MOVE A TO B.

MOVE A TO B.

READ INPUT-FILE READ INPUT-FILE INTO B.

MOVE A-ODO TO B-ODO.

MOVE A TO B.

Some implementations allow as an extension to second Standard COBOL that

other data may follow the variable length table in a record; this feature was

allowed in the first Standard COBOL. In the following example, A-TRAILER and

B-TRAILER are, in some implementations, dynamically allocated during program

execution according to the values of A-ODO and B-ODO respectively.

XVII-55

Substantive Changes (Potentially Affecting)

FD INPUT-FILE.

01 A.

02 A-TABLE.

03 A-ODO PIC 99.

03 A-ITEM OCCURS 1 TO 10 TIMES DEPENDING ON A-ODO.

02 A-TRAILER PIC XX.

WORKING- -STORAGE SECTION.

01 B .

02 B-TABLE.

03 B-ODO PIC 99.

03 B-ITEM OCCURS 1 TO 10 TIMES DEPENDING ON B-ODO.

02 B-TRAILER PIC XX.

If the value of A-ODO is 10 and the value of B-ODO is 5, then under

second Standard COBOL, a move of A-TABLE to B-TABLE would move only five

occurrences of A-ITEM, and B-TRAILER would not be changed. But under third

Standard COBOL, occurrences 6 to 10 of A-ITEM would be moved as well, and

B-TRAILER would be overlaid.

If the value of A-ODO is 5 and the value of B-ODO is 5, then under

second Standard COBOL, a move of A-TABLE to B-TABLE would move only five

occurrences of A-ITEM, and B-TRAILER would not be changed. But under third

Standard COBOL, occurrences 6 to 10 of

B-TRAILER would be overlaid.

Programs which conform to second

this change in third Standard COBOL.

To change an existing program

affected data records so that there

length data item in a record.

B-ITEM would be filled with spaces, and

Standard COBOL will not be affected by

which is affected, restructure the

are no data items following a variable

(9) PICTURE symbol 'P1 (1 NUC). When a data item described by a PICTURE

containing the character ' P' is referenced, the digit positions specified by 'P1

will be considered to contain zeros in the following operations: (1) Any

operation requiring a numeric sending operand; (2) A MOVE statement where the

sending operand is numeric and its PICTURE character-string contains the symbol

'P'; (3) A MOVE statement where the sending operand is numeric edited and its

PICTURE character-string contains the symbol 'P' and the receiving operand is

numeric or numeric edited; (4) A comparison operation where both operands are

numeric.

Jus tification:

In second Standard COBOL, digit positions described by a 1P' were

considered to contain zeros when used in an operation involving conversion of

data from one form of internal representation to another. Second Standard COBOL

did not specify what happened in operations not involving data conversion, or

when conversion was required. Third Standard COBOL specifies when the digit

positions described by 'P' will be considered to contain zeros.

This clarification agrees with current implementations for the common

uses of PICTURE character ' P' in numeric contexts and gives consistent results

XVII-56

Substantive Changes (Potentially Affecting)

for numeric and alphanumeric moves where the sending item is numeric. For

example, moving a data item with PICTURE 9P VALUE IS 10 to data items

with PICTURE 99 and PICTURE XX will result in the receiving fields

containing 10 in both cases. For more obscure cases where a numeric item is not

required, as when the item is compared to an alphanumeric item, the character

value will be used. Thus an item with PICTURE 9P and VALUE IS 10 will

compare equal to an item with PICTURE XX and VALUE IS "1 " (digit 1 followed

by a space) .

The X3J4 COBOL Technical Committee believes that few programs will be

affected by this change in third Standard COBOL.

(10) Procedure Division header (1 IPC) . A data item appearing in the USING

phrase of the Procedure Division header must not have a REDEFINES clause in its

data description entry.

Jus tification:

In second Standard COBOL, an item which was described with a REDEFINES

clause could be specified in the USING phrase of the Procedure Division header.

Thus the following example was legal:

LINKAGE SECTION.

01 A PIC X(10).

01 B REDEFINES A PIC 9(10).

PROCEDURE DIVISION USING A, B.

If the calling program specified two different parameters, the results

were undefined. Allowing an item with a REDEFINES clause to be specified in the

USING phrase of the Procedure Division header could allow programming errors to

remain undetected causing incorrect results and does not provide any additional

function.

In most cases, a program which specified a redefining item in the USING

phrase of the Procedure Division header can be converted by substituting the

redefined item.

(11) Exponentiation (2 NUC). The following special cases of exponentiation

are defined in third Standard COBOL:

a. If an expression having a zero value is raised to a negative or

zero power, the size error condition exists.

b. If the evaluation of the exponentiation yields both a positive

and a negative real number, the positive number is returned.

c. If no real number exists as the result of the evaluation, the

size error condition exists.

Jus tification:

Since second Standard COBOL did not state what would happen in these

special cases of exponentiation, implementors were free to choose how to handle

XVII-57

Substantive Changes (Potentially Affecting)

them. This change is the resolution of an undefined situation and will help

promote program portability. Since two of these cases produce error conditions

and the third is consistent with most implementations, the X3J4 Technical

Committee expects that few existing programs will be affected.

(12) Order of execution for a conditional expression (2 NUC). Two or more

conditions connected by only the logical operator AND or only the logical

operator OR within a hierarchical level are evaluated in order from left to

right, and evaluation of that hierarchical level terminates as soon as a truth

value for it is determined regardless of whether all the constituent connected

conditions within that hierarchical level have been evaluated.

Jus tification:

Since the order of evaluation of a conditional expression is defined by

the implementor in second Standard COBOL (see X3J4 interpretation document

B-115), the same program could produce defined results on some implementations

and undefined results on others, even though the same data is used for input.

By specifying the order of evaluation, program portability will be enhanced.

This change will allow a program to safely test that a subscript is

within range immediately before using it as a subscript in the same statement;

for example: IF INDEX-A IS LESS THAN 5 AND TABLE-A (INDEX-A) IS EQUAL TO 25.

The change may affect the execution of debugging declaratives in some compilers

for the ALL REFERENCES phrase. The change will have no other effects on

existing programs.

(13) Class condition (1 NUC). The ALPHABETIC test is true for uppercase

letters, lowercase letters, and the space character. The ALPHABETIC-UPPER test

is true for uppercase letters and the space character. The ALPHABETIC-LOWER

test is true for lowercase letters and the space character.

Justification:

When COBOL was originally designed, the alphabetic characters accepted

in most character sets were only the uppercase characters. Thus in second

Standard COBOL, the ALPHABETIC test was true for uppercase letters and the space

character. Today, however, character sets include both uppercase and lowercase

alphabetic characters. In keeping with the change in technology, the ALPHABETIC

test now follows the logical meaning of the term and accepts all alphabetic

characters — both uppercase and lowercase.

For the subclasses of alphabetic characters, two additional tests have

been provided. In particular, changing ALPHABETIC to the new test

ALPHABETIC-UPPER in third Standard COBOL conforming source program will allow

that program to continue to execute as under second Standard COBOL.

Some implementors have already made this change to their

implementations. Thus, this change will impact any source program which used

the ALPHABETIC class test: (1) on an implementation which permitted only

uppercase letters and the space character, and (2) where that source program

XVI1-58

Substantive Changes (Potentially Affecting)

must not permit lowercase letters to be accepted. Many source programs use the

ALPHABETIC class test; however, the change from ALPHABETIC to ALPHABETIC-UPPER

can be reliably accomplished by an automated source code conversion program.

(14) CANCEL statement (2 IPC). The CANCEL statement closes all open files.

Jus tification:

In second Standard COBOL, the status of files left in the open mode when

the program was cancelled is not defined. The change in third Standard COBOL

produces a predictable result for processing this statement. The only programs

that will potentially be affected are those that cancelled programs and expected

files associated with the cancelled programs to remain open after execution of

the CANCEL statement. (See X3J4 interpretation document B-118.)

(15) CLOSE statement (2 SEQ). The NO REWIND phrase cannot be specified in a

CLOSE statement having the REEL/UNIT phrase.

Justification:

In second Standard COBOL, the rules for the NO REWIND phrase

REEL/UNIT phrase were sometimes in conflict. The conflict is that the

the NO REWIND phrase specify that the reel/unit is left in its current

whereas the rules for the REEL/UNIT phrase specify that a reel/unit

take place.

This change in third Standard COBOL will affect very few programs

because a CLOSE statement containing both the NO REWIND phrase and the REEL/UNIT

phrase could not be processed properly in second Standard COBOL.

and the

rules for

position,

swap must

(16) COPY statement (1 STM). If the word COPY appears in a comment-entry or

in the place where a comment-entry may appear, it is considered part of the

comment-entry.

Justification:

In second Standard COBOL, the appearance of the word COPY in a

comment-entry was an undefined situation. The specification of this situation

within third Standard COBOL will enhance program portability.

(17) COPY statement (1 STM). After all COPY statements have been processed,

a debugging line will be considered to have all the characteristics of a comment

line, if the WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER

paragraph.

Justification:

Second Standard COBOL did not address the situation of a COPY statement,

or a portion of a COPY statement, appearing on a debugging line. Consider the

following COPY statement:

XVII-59

Substantive Changes (Potentially Affecting)

COPY XYZ

D REPLACING 1 BY 2.

If the program is compiled without the WITH DEBUGGING MODE clause,

second Standard COBOL does not define whether or not the REPLACING phrase is

executed. Under the rules of third Standard COBOL, the REPLACING phrase is

executed.

An incompatibility exists if an implementor of second Standard COBOL

chose to treat the debugging line as a comment line. If an implementor of

second Standard COBOL chose not to treat the debugging line as a comment line,

then no incompatibility exists.

With this change in third Standard COBOL, there is one defined way to

handle this situation, thereby increasing the degree of program portability.

This change was made as a result of a request for an interpretation of second

Standard COBOL (see X3J4 interpretation document B-174). The X3J4 COBOL

Technical Committee estimates that few, if any, programs will be affected by

this change.

(18) COPY statement (2 STM). Pseudo-text-1 must not consist entirely of a

separator comma or a separator semicolon.

Jus tification:

Second Standard COBOL allowed pseudo-text-1 in a COPY statement to

consist entirely of a separator comma or a separator semicolon but did not

specify under what conditions replacement took place. Any attempt to define the

semantics in this situation would have caused a potential incompatibility.

Since there is no apparent utility in allowing replacement of single

commas or semicolons, the facility was removed from third Standard COBOL rather

than given a necessarily incompatible definition. The X3J4 Technical Committee

believes that few existing programs should be affected by this change.

(19) DISPLAY statement (1 NUC). After the last operand has been transferred

to the hardware device, the positioning of the hardware device will be reset to

the leftmost position of the next line of the device.

Jus tification:

In second Standard COBOL, the positioning of the hardware device after

the last operand was undefined. The new rule in third Standard COBOL is

necessary for a complete specification of the NO ADVANCING phrase. Most

implementations already function according to the new rule.

|

XVI1-60

Substantive Changes (Potentially Affecting)

(20) DIVIDE statement (2 NUC). Any subscripts for identifier-4 in the

REMAINDER phrase are evaluated after the result of the DIVIDE operation is

stored in identifier-3 of the GIVING phrase.

Jus tification:

In second Standard COBOL, the point at which any subscript in the

REMAINDER phrase is determined during the processing of the DIVIDE statement is

undefined (see X3J4 interpretation document B-159).

The only way that this change can affect existing programs is if:

(1) the quotient is used as a subscript for the remainder, and (2) the subscript

evaluation in the second Standard COBOL implementation does not already evaluate

the subscript in the same manner as defined in third Standard COBOL. For

example:

01 DD PIC 99 VALUE IS 50.

01 DR PIC 99 VALUE IS 2.

01 QU PIC 99.

01 REMAIN.

02 RM PIC 99 OCCURS 100 TIMES.

PROCEDURE DIVISION.

DIVIDE DD BY DR GIVING QU REMAINDER RM (QU).

Because of the nature of the statement in which the possible

incompatibility may occur, the X3J4 COBOL Technical Committee believes that few,

if any, programs will be affected.

(21) EXIT PROGRAM statement (1 IPC). When there is no next executable

statement in a called program, an implicit EXIT PROGRAM statement is executed.

Jus tification:

This situation was undefined in second Standard COBOL. Defining this

situation in third Standard COBOL makes programs more transportable. Only

programs which depend on some other implementation action when the EXIT PROGRAM

statement was omitted will be affected by this change.

(22) EXIT PROGRAM statement (1 IPC). The following new rule appears for the

EXIT PROGRAM statement: " ... the ends of the ranges of all PERFORM statements

executed by the called program are considered to have been reached." This

situation is undefined in second Standard COBOL.

Jus tification:

In second Standard COBOL, general rule 3 of the CALL statement states:

"On all other entries into the called program, the state of the program remains

unchanged from its state when last exited. This includes all data fields, the

status and positioning of all files, and all alterable switch settings." It is

not clear whether or not a PERFORM activation is considered part of the state of

XVI1-61

Substantive Changes (Potentially Affecting)

the program. The ambiguity is resolved in third Standard COBOL by the addition

of the rule that the program state is not altered except that the ranges of all

PERFORM statements will be considered reached.

A potential incompatibility exists if an implementor of second Standard

COBOL chose not to consider the ends of PERFORM ranges complete. If the

implementor of second Standard COBOL chose to consider the ends of PERFORM

ranges complete, then no incompatibility exists.

With this change in third Standard COBOL, there is one defined way to

handle this situation, thereby increasing the degree of program portability.

This change was made as a result of a request for an interpretation of second

Standard COBOL (see X3J4 interpretation document B-170). The X3J4 COBOL

Technical Committee believes that few existing programs will be affected by this

change .

(23) INSPECT statement (2 NUC). The order of execution for evaluating

subscripts in the INSPECT statement is specified. Subscripting associated with

any identifier is evaluated only once as the first operation in the execution of

the INSPECT statement.

Justification:

The order of execution for evaluating subscripts in the INSPECT

statement was undefined in second Standard COBOL. An incompatibility exists if

an implementor of second Standard COBOL chose to evaluate subscripts in the

INSPECT statement other than only once as the first operation.

This change in third Standard COBOL defines the order of execution for

evaluating subscripts in the INSPECT statement. Thus a statement such

as INSPECT X TALLYING I FOR ALL A (I) which is unclear under second Standard

COBOL becomes defined under third Standard COBOL. The definition of this

situation within third Standard COBOL will increase the degree of program

portability. The X3J4 COBOL Technical Committee believes that few existing

programs are affected by this change.

(24) MERGE statement (1 SRT). No two files in a MERGE statement may be

specified in the SAME AREA or SAME SORT-MERGE AREA clause. The only files in a

MERGE statement that can be specified in the SAME RECORD AREA clause are those

associated with the GIVING phrase.

Jus tification:

This rule is a clarification of the interaction of the SAME clause and

the MERGE statement. This rule was not present in second Standard COBOL. If

this rule, although not stated, had been violated in second Standard COBOL, the

MERGE statement would probably not have performed properly.

Consider the following rule from the MERGE statement in third Standard

COBOL: "No pair of file-names in a MERGE statement may be specified in the SAME

AREA or SAME SORT-MERGE AREA clause." With respect to the SAME AREA clause, the

MERGE statement may require that both files be open at the same time; however,

the SAME AREA clause does not permit two files specified in the SAME clause to

XVI1-62

Substantive Changes (Potentially Affecting)

be open at the same time. With respect to the SAME SORT-MERGE AREA clause, the

MERGE statement may require the storage area allocated for one of the files, but

that file may also be required to be open; the rules of the SAME SORT-MERGE AREA

clause would not allow that file to be open.

With respect to the rule stating "The only files in a MERGE statement

that can be specified in the SAME RECORD AREA clause are those associated with

the GIVING phrase", a standard merge algorithm requires one record from each

merge file to be available at the same time. Since the MERGE statement is

defined in terms of standard COBOL I/O, the merge files could not then share the

record area. The only known way in second Standard COBOL that the MERGE

statement could work properly was by ignoring the SAME RECORD AREA clause.

This new rule adds syntactic restrictions against situations which are

likely to be troublesome. Therefore, these situations probably appear in few

existing programs.

(25) PERFORM statement (2 NUC). The order of initialization of multiple

VARYING identifiers in the PERFORM statement is specified.

Justification:

The order of initialization of multiple VARYING identifiers in the

PERFORM statement was undefined in second Standard COBOL. In second Standard

COBOL, general rule 6d of the PERFORM statement stated in part: " ... when two

identifiers are varied, identifier-2 and identifier-5 are set ... ". Third

Standard COBOL states: " ... identifier-2 then identifier-5 are set", thus

specifying an order of initialization.

In the case where the setting of one identifier determines the value of

the other, and the implementor chose to set identifier-5 first, an

incompatibility may result. An example is as follows:

MOVE 2 TO X.

PERFORM PARAl VARYING X FROM 1 BY 1 UNTIL X = 3

AFTER Y FROM X BY 1 UNTIL Y = 3.

If Y is set first, it will be set to 2; if X is set first, Y will be set to 1.

In third Standard COBOL, X is set first, thus Y will be set to 1.

This change is the resolution of an ambiguity and will help promote

program portability. The chance of an incompatibility is small; the implementor

must have set identifier-5 first, which is possible but unlikely, and one

VARYING variable must depend on the other.

XVII-63

Substantive Changes (Potentially Affecting)

(26) PERFORM statement (2 NUC). Within the VARYING ... AFTER phrase of the

PERFORM statement, identifier-2 is augmented before identifier-5 is set. In

second Standard COBOL, identifier-5 was set before identifier-2 was augmented.

Jus tification:

In second Standard COBOL, general rule 6d of the PERFORM statement

stated that when varying two variables, at the intermediate stage when the inner

condition is true, the inner variable (identifier-5) was set to its current FROM

value before the outer variable was augmented with its current BY value. In

third Standard COBOL, identifier-2 is augmented before identifier-5 is set.

This change creates an incompatibility when there is a dependence

between identifier-2 and identifier-5. Consider the following example:

PERFORM PARA3 VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3

AFTER Y FROM X BY 1 UNTIL Y IS GREATER THAN 3.

Under second Standard COBOL, PARA3 will be executed 8 times with the following

values:

X: 1 1 1 2 2 2 3 3

Y: 1 2 3 1 2 3 2 3

Under third Standard COBOL, PARA3 will be executed 6 times with the following

values:

X: 111223

Y: 123233

One would expect the above example to perform the same as the following

example:

PERFORM PARA2 VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3.

PARA2.

PERFORM PARA3 VARYING Y FROM X BY 1 UNTIL Y IS GREATER THAN 3.

Under second Standard COBOL, PARA3 will be executed 8 times as shown above.

Under third Standard COBOL, PARA3 will be executed 6 times as shown above.

The X3J4 COBOL Technical Committee believes that few existing programs

will be affected by this change. The situation where one VARYING variable

depends on another is useful for processing half of a matrix along the diagonal;

the rules in third Standard COBOL specify this function properly while the rules

in second Standard COBOL did not specify this function properly.

XVII-64

Substantive Changes (Potentially Affecting)

(27) PERFORM statement (2 NUC). The order of execution for evaluating

subscripts in the PERFORM VARYING statement is specified. This situation was

undefined in second Standard COBOL.

Jus tification:

In third Standard COBOL, subscripts in a PERFORM VARYING statement are

evaluated as follows:

a. For the VARYING identifier(s) , subscripting is evaluated each

time the identifier is set or augmented.

b. For the FROM and BY identifier(s) , subscripting is evaluated

each time the identifier is used in a setting or augmenting operation.

c. For any identifiers included in an UNTIL condition, subscripting

is evaluated each time the condition is tested.

Second Standard COBOL did not state when subscripts were evaluated in

the PERFORM cycle. Therefore, implementors were free to choose when to evaluate

subscripts. This change in third Standard COBOL causes incompatibilities only

if a program:

a. uses subscripted identifiers in a PERFORM VARYING statement, and

b. changes the value(s) of the subscript(s) while the PERFORM

statement is active, and

c. runs on an implementation which chose to evaluate subscripts

other than as defined in the new rules in third Standard COBOL.

This change in third Standard COBOL is the resolution of an ambiguity

and will help promote program portability. The X3J4 COBOL Technical Committee

believes that few existing programs will be affected by this change.

(28) READ statement (1 SEQ, 1 REL, 1 INX). The INTO phrase cannot be

specified: (a) unless all records associated with the file and the data item

specified in the INTO phrase are group items or elementary alphanumeric items,

or (b) unless only one record description is subordinate to the file description

entry .

Justification:

In second Standard COBOL, the semantics for the move of the record to

the identifier specified in the INTO phrase of the READ statement are not

supplied. For a file with multiple elementary records, there is no statement as

to whether any conversion of data takes place or whether a group move is

performed. There have been two requests for interpretation resulting in X3J4

interpretation documents B-14 and B-134 that instigated this change. Thus, in

the following example:

XVII-65

Substantive Changes (Potentially Affecting)

FD FILEA ... •
01 RECA PIC S9(18).

01 RECB PIC 9(9)V9(9).

01 RECC PIC X(18).

WORKING-STORAGE SECTION.

01 A PIC S9(10)V9(8).

PROCEDURE DIVISION.

READ FILEA INTO A.

the move of the record to A is undefined in second Standard COBOL. Therefore,

various implementations may produce different results. The new rules in third

Standard COBOL disallow the ambiguous situation above. Programs affected by

this change are those performing a READ INTO statement on a file describing

multiple elementary records that include at least one numeric record.

The X3J4 COBOL Technical Committee believes that few, if any, programs

will be affected by this change.

(29) RECEIVE statement (2 COM). If a message size is greater than the area

referenced, the message fills the area referenced left to right starting with

the leftmost character of the message. Further RECEIVE statements which

reference the same queue, sub-queue, ... , must be executed to transfer the

remainder of the message into the area referenced.

Jus tification:

In second Standard COBOL, if a portion of a message is received and a

subsequent RECEIVE statement referring to a less specific queue structure is

used, the implementor defines whether or not the remaining portion of the

message is transferred. (See X3J4 interpretation document B-156.)

In third Standard COBOL, it is made clear that subsequent RECEIVE

statements referring to the fully qualified queue structure must be executed in

order to receive the remainder of the message.

The X3J4 COBOL Technical Committee believes that few, if any, programs

will be affected by this change.

(30) RETURN statement (1 SRT). The INTO phrase cannot be specified:

(a) unless all records associated with the file and the data item specified in

the INTO phrase are group items, or elementary alphanumeric items, or (b) unless

only one record description is subordinate to the sort-merge file description

entry .

Jus tification:

In second Standard COBOL, the semantics for the move of the record to

the identifier specified in the INTO phrase of the RETURN statement are not

supplied. For a file with multiple elementary records, there is no statement as

to whether any conversion of data takes place or whether a group move is

performed. There have been two requests for interpretation resulting in X3J4

XVII-66

Substantive Changes (Potentially Affecting)

interpretation documents B-14 and B-134 that instigated this change. Thus, in

the following example:

SD FILEA • • • •

01 RECA PIC S9(18).

01 RECB PIC 9(9)V9(9).

01 RECC PIC X(18) .

WORKING-STORAGE SECTION.

01 A PIC S9(10)V9(8) .

PROCEDURE DIVISION.

RETURN FILEA INTO A.

the move of the record to A is undefined in second Standard COBOL. Therefore,

various implementations may produce different results. The new rules in third

Standard COBOL disallow the ambiguous situation above. Programs affected by

this change are those performing a RETURN INTO statement on a file describing

multiple elementary records that include at least one numeric record.

The X3J4 COBOL Technical Committee believes that few, if any, programs

will be affected by this change.

(31) STOP RUN statement (1 NUC). The STOP RUN statement closes all files.

Justification:

In second Standard COBOL, the state of files remaining in the open mode

at run completion was not specified. In some cases, this situation could have

led to errors .

In third Standard COBOL, the STOP RUN statement closes all open files.

Many implementations already do this and few, if any, programs will be affected

by this change.

(32) STOP RUN statement (1 NUC). If the run unit has been accessing

messages, the STOP RUN statement causes the message control system (MCS) to

eliminate from the queue any message partially received by that run unit.

Jus tification:

In second Standard COBOL, it is undefined what happens to partially

received messages when a run unit executes a STOP RUN statement. There are

three possible alternatives that could have been implemented under second

Standard COBOL; they are:

a. The MCS makes partially received messages unavailable to any

subsequent run units, either by: (1) ignoring them, or (2) purging them from

the queues immediately or eventually as part of general queue maintenance.

Programs using this type of implementation would not be affected by the changed

specification.

XVII-67

Substantive Changes (Potentially Affecting)

b. The MCS restores the entire message, including the "received"

part, to the input queue for processing by some subsequent run unit.

Presumably, this would be done on the assumption that if a program does a STOP

RUN statement without finishing processing an input message, the program has

probably aborted and its transaction will probably have to be restarted.

Programs using this type of implementation would be affected by the changed

specification.

c. The MCS leaves in the input queues the fragments of messages

that have been partially received, and these fragments are made available to

subsequent run units . It is unlikely that any programs are dependent upon such

an implementation, as the potential for errors in processing would be very

great.

The X3J4 COBOL Technical Committee believes that most implementations

have taken the first alternative, and that therefore few programs are likely to

be affected by this change.

(33) STRING statement (2 NUC). The order of execution for evaluating

subscripts in the STRING statement is specified.

Jus tification:

In second Standard COBOL, the order of evaluation of subscripts is not

specified; thus it is defined by the implementor. In particular, the relative

order of subscript evaluation and pointer modification is undefined (see X3J4

interpretation document B-130).

Consider the following example:

01 A PIC X(1000) .

01 B PIC XXX.

01 PTR REDEFINES B PIC 999.

01 CC.

02 C PIC 9(4) OCCURS 100 TIMES

PROCEDURE DIVISION.

MOVE 1 TO PTR.

STRING A DELIMITED BY SPACE INTO B POINTER C (PTR).

In second Standard COBOL, it is undefined whether C (PTR) is evaluated

either (a) once, or (b) before or after storing into B on every iteration. The

new rules in third Standard COBOL state that C (PTR) is evaluated once,

immediately before the execution of the STRING statement.

In order for a program to be affected by this change, the identifier in

the INTO phrase of the STRING statement has to overlap the subscript of the

delimiter or the identifier in the WITH POINTER phrase. Such programming is

obscure and the X3J4 COBOL Technical Committee believes that few, if any,

programs will be affected by this change.

XVI1-68

Substantive Changes (Potentially Affecting)

(34) UNSTRING statement (2 NUC)» In the UNSTRING statement, any subscripting

associated with the DELIMITED BY identifier, the INTO identifier, the DELIMITER

IN identifier, or the COUNT IN identifier is evaluated once, immediately before

the examination of the sending fields for the delimiter.

Jus tification:

Consider the following example:

01 A PIC X(30) .

01 BB.

02 PTR PIC 99.

01 CC.

02 C PIC XX OCCURS 10 TIMES.

01 D PIC XX.

01 E PIC X(30).

PROCEDURE DIVISION.

UNSTRING A DELIMITED BY C (PTR) INTO BB, E

WITH POINTER PTR.

According to the rules in second Standard COBOL, the delimiter C (PTR)

would be re-evaluated before moving the second string to E. Whereas, under the

new rules in third Standard COBOL, C (PTR) is evaluated once before examining

the sending field. Thus, the delimiters never change during the entire unstring

process .

Although second Standard COBOL stated that any subscripting associated

with the delimiters is evaluated immediately before the transfer of data into

the respective data item, this is not possible because the delimiter must be

known before examining the sending field, and so cannot be evaluated immediately

before the move. Therefore, this change in the stated rules allows evaluation

of the delimiters at the appropriate time, as is the way some implementations

currently process the UNSTRING statement.

In order for a program to be affected by this change, the identifier in

the INTO phrase of the UNSTRING statement must overlap the subscript of the

delimiter. Such programming is obscure and the X3J4 Technical Committee

believes that few, if any, programs will be affected by this change.

(35) WRITE statement (2 SEQ). The phrases ADVANCING PAGE and END-OF-PAGE

must not both be specified in a single WRITE statement.

Justification:

In second Standard COBOL, it is possible to specify both of these

phrases within one WRITE statement. However, no rules are provided to identify

their order of processing. Consequently, processing is defined by the

implementor.

Both the ADVANCING PAGE and END-OF-PAGE phrases allow control of the

vertical positioning of the printed page. Advancing a page by means of the

ADVANCING PAGE phrase is done in accordance with a technique defined by the

implementor. Whereas, advancing a page by means of the END-OF-PAGE phrase is a

XVI1-69

Substantive Changes (Potentially Affecting)

user-controlled technique. Thus, the decision was made to separate these

diverse techniques.

Although these phrases were allowed together in second Standard COBOL,

few implementations could handle them. Thus there will be minimal impact on

existing programs.

(36) File position indicator (1 SEQ, 1 REL, 1 INX) . The concept of a current

record pointer in second Standard COBOL has been changed to a file position

indicator.

Justification:

In third Standard COBOL, the rules based on the file position indicator

are straightforward and easy to understand. However, for combinations of update

and READ NEXT statements, the current record pointer rules in second Standard

COBOL were complex and did not always give rise to the result intuitively

expected. The current record pointer rules were also poorly defined in certain

cases when the record pointed to became inaccessible.

The only two cases where this change in concepts may affect programs are

described in the next two items (item 37 and item 38). These only occur in very

unusual sequences of operations on files in the dynamic access mode.

(37) File position indicator (2 REL, 2 INX). For a relative or indexed file

in the dynamic access made, execution of an OPEN 1-0 statement followed by one

or more WRITE statements and then a READ NEXT statement will cause the READ

statement to access the first record in the file at the time of execution of the

READ statement.

Justification:

In second Standard COBOL, this sequence caused the READ statement to

access the first record at the time of execution of the OPEN statement. If one

of the WRITE statements inserted a record with a key or relative record number

lower than that of any records previously existing in the file, a different

record would be accessed by the READ statement .

It is considered to be more logical that on execution of the first READ

NEXT statement following the OPEN statement, the record accessed should be the

first record in the file at the time the READ statement is executed.

The semantics in third Standard COBOL bring the situation following an

OPEN statement into line with that following a READ statement. In the latter

case, if a WRITE statement inserts a record with a key such that it immediately

follows the last record read, a succeeding READ NEXT statement obtains the

inserted record.

The semantics in second Standard COBOL are particularly awkward when, in

addition to the insertions, the initial first record is deleted between the OPEN

statement and the READ NEXT statement.

XVII-70

Substantive Changes (Potentially Affecting)

(38) File position indicator (2 INX). If an alternate key is the key of

reference and the alternate key is changed by a REWRITE statement to a value

between the current value and the next value in the file, a subsequent READ NEXT

statement will obtain the same record.

Justification:

In second Standard COBOL, the subsequent READ statement would obtain the

record with the next value for that alternate key prior to the REWRITE

statement.

It is logically consistent that the subsequent READ statement obtains

the "same" record, since that record at that moment is the first existing record

in the file whose key value is greater than that of the record made available by

the last READ statement. In essence, it is not the "same" record as accessed by

the previous READ statement, since the alternate key value and possibly other

values have changed.

Second Standard COBOL semantics for this situation were the subject of a

request for clarification that resulted in the X3J4 interpretation document B-6.

(39) Reserved words (1 NUC). The following reserved words have been added:

ALPHABET END-DIVIDE EXTERNAL

ALPHABETIC-LOWER END-EVALUATE FALSE

ALPHABETIC-UPPER END-IF GLOBAL

ALPHANUMERIC END-MULTIPLY INITIALIZE

ALPHANUMERIC-EDITED END-PERFORM NUMERIC-EDITED

ANY END-READ ORDER

BINARY END-RECEIVE OTHER

CLASS END-RETURN PACKED-DECIMAL

COMMON END-REWRITE PADDING

CONTENT END-SEARCH PURGE

CONTINUE END-START REFERENCE

CONVERTING END-STRING REPLACE

DAY-OF-WEEK END-SUBTRACT STANDARD-2

END-ADD END-UNSTRING TEST

END-CALL END-WRITE THEN

END-COMPUTE EVALUATE TRUE

END-DELETE

Justification:

In each case, the benefits to be derived from the additional facility

provided through the addition of each reserved word were deemed to outweigh the

inconvenience caused by removing this word from the realm of user-defined words.

It is the intention that use of the new REPLACE statement will mitigate the

inconvenience to existing programs which may use any of the new reserved words

as user-defined words.

There have been some questions regarding the necessity of any reserved

words. Reserved words help allow production of efficient COBOL compilers, by

making syntactic analysis of the source program easier. Syntactic recognition

XVI1-71

Substantive Changes (Potentially Affecting)

of COBOL would be difficult without reserved words. Consider the following

program fragment: ADD A TO B C CONTINUE

Assuming no reserved words, it is not possible to determine if CONTINUE

is a receiving field for the ADD, or if it is the CONTINUE statement. For that

matter, it is not possible to determine if TO is a receiving field and the

statement is syntactically incorrect.

If the COBOL syntax had statement terminators which were required, the

above example could be written as ADD A TO B C; CONTINUE where it is clear

that CONTINUE is not part of the ADD statement. However, the COBOL syntax does

not have statement terminators; to require them would add a rather large

incompatibility.

Another possible solution would be to have the compiler check every

reserved word to see if it is used as a user-defined word before parsing a

statement. However, this would be very costly in terms of compiler complexity

and compilation speed.

Adding a few reserved words for a new facility is a much less serious

incompatibility than the incompatibility introduced by removing all reserved

words from COBOL.

Also, reserved words continue to be used in newer languages. For

example, Pascal and Ada, both developed after COBOL, also use reserved words.

(40) 1-0 status (1 SEQ, 1 REL, 1 INX) . New 1-0 status values have been

added .

Jus t i f icat ion :

Second Standard COBOL specified only a few 1-0 status code conditions.

As a result, the user could not distinguish among many different exceptional

conditions which he might wish to treat in a variety of ways, and/or each

implementor specified a different set of implementor-defined status codes which

covered a variety of situations in a variety of ways. Also, second Standard

COBOL left the results of many 1-0 situations undefined; that is: second

Standard COBOL stated that certain criteria were to be met, but not what

happened when they were not met; hence, execution of the object program becomes

undefined .

The intention in third Standard COBOL is to define status codes for

these undefined 1-0 situations. Thus the user can check for these error

conditions in a standard way and take corrective action for specific error

conditions where appropriate.

In general, the additions may impact programs:

a. If they test for specific implementor-defined status values to

detect conditions now defined.

XVI1-72

Substantive Changes (Potentially Affecting)

b. If they rely on a successful completion status for any of the

conditions now defined. (in the case of new 1-0 status values 04, 05, and 07,

this only affects programs which examine both character positions of the 1-0

status to check for successful completion.)

c. If they rely on some implementor dependent action such as

abnormal termination of the program when any of the newly defined conditions

arise.

This change may have a substantial impact on those programs which check

specific 1-0 status values.

It should be noted that the first Standard COBOL did not provide any

status codes .

The individual 1-0 status values affected are described in the following

paragraphs:

a. 1-0 status = 04. A READ statement is successfully executed but

the length of the record processed does not conform to the fixed file attributes

for the file.

Justification:

Second Standard COBOL does not define the consequences if a READ

statement accesses a record containing more or fewer characters than the maximum

and minimum, respectively, specified for that file. Thus, the result of reading

such a record is undefined. The new 1-0 status value of 04 alerts the user to

this situation.

Since third Standard COBOL prevents an attempt to write or

rewrite a record that is too large or too small, this situation cannot occur for

records written by a program on an implementation of third Standard COBOL.

b. 1-0 status = 05. An OPEN statement is successfully executed but

the referenced optional file is not present at the time the OPEN statement is

executed.

Justification:

According to second Standard COBOL, the absence of an

file is not signaled to the program until the first READ statement

file. The new 1-0 status value of 05 makes the information spec

available at the time the file is referenced by an OPEN statement, all

program to take more discerning action with respect to this condition.

The only programs that may be affected are those that use the

level 2 OPTIONAL phrase in the Sequential 1-0 module and examine both characters

of the 1-0 status data item to check for successful completion of the OPEN INPUT

statement.

optiona1

for this

ific and

owing the

XVI1-73

Substantive Changes (Potentially Affecting)

c. 1-0 status = 07. The input-output statement is successfully

executed. However, for a CLOSE statement with the NO REWIND, REEL/UNIT, or FOR

REMOVAL phrase or for an OPEN statement with the NO REWIND phrase, the

referenced file is on a non-reel/unit medium.

Jus tificat ion:

According to second Standard COBOL, an OPEN statement with the

NO REWIND phrase can only be used with sequential single reel/unit files, and a

CLOSE statement with the NO REWIND, REEL/UNIT, or FOR REMOVAL phrase is illegal

for a non-reel/unit file. However, with mass storage files, these instances of

OPEN and CLOSE can be considered successful in essence, if the anomaly of the NO

REWIND, REEL/UNIT, or FOR REMOVAL phrase is overlooked. The new 1-0 status

value of 07 makes successful completion possible, while preserving the

information for the user in case he wishes to take specific action.

d. 1-0 status = 14. A sequential READ statement is attempted for a

relative file and the number of significant digits in the relative record number

is larger than the size of the relative key data item described for the file.

Jus t i f icat ion:

Second Standard COBOL states that successful execution of a

format 1 READ statement referencing a relative file updates the content of the

relative key data item (if specified) to contain the relative record number of

the record made available. Second Standard COBOL does not define the result if

the number of significant digits of the relative record number is larger than

the relative key data item. The new 1-0 status value of 14 defines the result.

e. 1-0 status = 24. An attempt is made to write beyond the

externally defined boundaries of a relative or indexed file; or a sequential

WRITE statement is attempted for a relative file and the number of significant

digits in the relative record number is larger than the size of the relative key

data item described for the file.

Jus t i f icat ion :

In second Standard COBOL, the 1-0 status value of 24 covers only

an attempt to write beyond the externally defined boundaries of a relative or

indexed file. In third Standard COBOL, the 1-0 status value of 24 also includes

a sequential WRITE statement for a relative file where the number of significant

digits in the relative record number is larger than the size of the relative key

data item described for the file.

Second Standard COBOL states that on successful execution of a

WRITE statement referencing a relative file, the relative record number of the

record released will be placed in the relative key data item (if specified). It

does not define the result if the number of significant digits of the relative

record number is larger than the relative key data item.

Only programs which sequentially write more records than the

maximum value allowed by the PICTURE of the relative key data item may be

affected by this change.

XVI1-74

Substantive Changes (Potentially Affecting)

f.
attempted on a

1-0 status = 35.

non-optional file

An OPEN statement with

that is not present.

the INPUT phrase is

Justification:

Second Standard COBOL requires that the OPTIONAL phrase must be

specified for input files that are not necessarily present each time the object

program is executed. It does not specify what happens when a file which is not

declared as optional is absent. The new 1-0 status value of 35 allows the user

to test for this condition.

g. 1-0 status = 37. An OPEN statement is attempted on a file which

is required to be a mass storage file but is not.

Jus tification:

This new 1-0 status value will be returned if either:

OPEN 1-0 statement is attempted for a non-mass storage file, or (2)

statement is attempted for a non-mass storage file which is declared

program to be a relative or indexed file.

Second Standard COBOL does not specify what happens in these

circumstances. The new 1-0 status value of 37 permits the user to test for this

error condition.

Some implementors have provided extensions to use OPEN 1-0

statements to access terminals. Such extensions may be precluded by the new 1-0

status value of 37.

(1) an

an OPEN

in the

h. 1-0 status = 38. An OPEN statement is attempted on a file

previously closed with lock.

Justification:

Second Standard COBOL specifies that an implementation should

ensure that a file closed with lock cannot be opened again during the current

execution of the run unit, but does not specify what happens if an attempt is

made to reopen the file. The new 1-0 status value of 38 permits the user to

test for this condition.

i. 1-0 status = 39. An OPEN statement is unsuccessful because a

conflict has been detected between the fixed file attributes and the attributes

specified for that file in the program.

Jus tification:

Fixed file attributes are attributes of a file which are fixed

at the time the file is created and which cannot be changed throughout the

lifetime of the file. They are the organization, the code set, the minimum and

maximum logical record size, the record type (fixed or variable), the blocking

factor, the padding character, and the record delimiter. For indexed files

XVII-75

Substantive Changes (Potentially Affecting)

only, additional fixed file attributes are the prime record key, the alternate

record keys, and the collating sequence of the keys.

Second Standard COBOL specifies that the file organization is

established at the time a file is created and subsequently cannot be changed.

It also specifies for an OPEN INPUT, OPEN 1-0, or OPEN EXTEND statement that the

file description of the file, which includes the CODE-SET, RECORD, and BLOCK

CONTAINS clauses, must be equivalent to that used when the file was created.

The ability to specify a padding character and a record delimiter are new

facilities not available in second Standard COBOL. For indexed files, second

Standard COBOL specifies that the data descriptions and relative locations

within a record of the record key and alternate record key data items, and the

number of alternate record keys, must be the same as when the file was created.

Second Standard COBOL does not provide the ability to influence the collating

sequence used for the keys of an indexed file.

Second Standard COBOL does not specify what happens if the fixed

file attributes conflict with the attributes specified for a file in the

program. The new 1-0 status value of 39 allows the user to test for this

condition.

The new 1-0 status value of 39 may affect programs that depend

on implementations which have not previously enforced some of these checks.

j. 1-0 status = 41. An OPEN statement is attempted for a file in

the open mode.

Jus tification:

Second Standard COBOL does not allow an OPEN statement to refer

to a file in open mode, but does not define the consequence of such a reference.

The new 1-0 status value of 41 permits the user to test for the condition.

k. 1-0 status - 42. A CLOSE statement is attempted for a file not

in the open mode.

Jus tification:

Second Standard COBOL does not allow a CLOSE statement to refer

to a file which is not in the open mode, but does not define what happened if

the file is not in the open mode. The new 1-0 status value of 42 permits the

user to test for this condition.

l. 1-0 status ~ 43. For a mass storage file in the sequential

access mode, the last input-output statement executed for the associated file

prior to the execution of a DELETE or REWRITE statement was not a successfully

executed READ statement.

XVII-76

Substantive Changes (Potentially Affecting)

Jus tification:

Second

access mode, the last

execution of a DELETE

executed READ statement

is not satisfied. The

this condition.

Standard COBOL specifie

input-output statement

or REWRITE statement

, but it does not speci

new 1-0 status value of

s that for a file in sequent ia 1

execut ed for the f i le prior to the
mus t have been a successfu lly

f y wha t happens if the requirement

43 al lows the user t o test for

m. 1-0 status = 44. A boundary violation exists because an attempt

is made to rewrite a record to either: (1) a sequential file, (2) a relative

file in level 1 of the Relative 1-0 module, or (3) an indexed file in level 1 of

the Indexed 1-0 module, and the record is not the same size as the record being

replaced.

Jus tification:

Second Standard COBOL specifies for a REWRITE statement that the

of character positions in the new record must be equal to the number of

er positions in the record being replaced, but it does not specify what

if this requirement is not satisfied.

The new 1-0 status value of 44 allows the user to test for these

conditions.

number

charact

happens

n. 1-0 status = 46. A sequential READ statement is attempted on a

file opened in the input or 1-0 mode and no valid next record has been

established because either: (1) the preceding START statement was unsuccessful,

(2) the preceding READ statement was unsuccessful but did not cause an at end

condition, or (3) the preceding READ statement caused an at end condition.

Justification:

Second Standard COBOL specifies that in these circumstances

execution of the READ statement was illegal or its execution was unsuccessful,

but did not specify a status code to indicate the situation. The new 1-0 status

value of 46 allows the user to test for this condition. 1-0 status 46 can occur

only if no corrective action is taken following the previous READ or START

statement.

READ or START statement is

de .

Jus tification:

o. 1-0 status = 47. The execution of a

attempted on a file not opened in the input or 1-0 mo

the input

does not spe

value of 47

Second Standard COBOL requires that the file must be opened

or 1-0 mode at the time a READ or START statement is executed,

cify what happens if the requirement is not met. The new 1-0 sta

allows the user to test for this condition.

in

but

tus

XVI1-77

Substantive Changes (Potentially Affecting)

p. 1-0 status = 48. The execution of a WRITE statement is

attempted on either: (1) a sequential file not opened in the output or extend

mode, or (2) a relative or indexed file not opened in the 1-0, output, or extend

mode .

Jus tification:

Second Standard COBOL requires that the file be opened in one of

the modes specified, but does not specify what happens if the requirement is not

met. The new 1-0 status of 48 allows the user to test for this condition.

This change restricts an extension to second Standard COBOL

provided by some implementors to permit a WRITE statement on a sequential file

opened in the 1-0 mode.

q. 1-0 status = 49♦ The execution of a DELETE or REWRITE statement

is attempted on a file not opened in the 1-0 mode.

Jus tification:

Second Standard COBOL requires that the file be opened in the

1-0 mode, but does not specify what happens if the requirement is not met. The

new 1-0 status value of 49 allows the user to test for this condition.

(41) Communication status key (1 COM). New communication status key values

have been added.

Justification:

Second Standard COBOL leaves the results of some communication

situations undefined. Third Standard COBOL defines new communication status key

values for these situations so that the user can check for these error

conditions in a standard way and thus take corrective action if appropriate.

These new communication status key values only affect existing programs

which rely on some other action taking place when the newly defined exception

conditions occur.

The individual communication status key values added are described

below.

a. Communication status key = 15. Symbolic source, or one or more

queues or destinations already disabled/enabled.

Jus t i f icat ion:

If, at the time a DISABLE or ENABLE statement is executed, the

source or a queue or a destination referenced is already disabled or enabled

respectively, the second Standard COBOL specifications imply that a

communication status key value of 00 should be expected. The new communication

status key value of 15 provides this information to the user.

XVII-78

Substantive Changes (Potentially Affecting)

b. Communication status key = 21. Symbolic source is unknown.

Justification:

In second Standard COBOL, the user has to compare the symbolic

source data item with spaces to determine whether the symbolic name of the

source terminal is known to the message control system (MCS) on a RECEIVE

statement. Second Standard COBOL does not specify what happens if the symbolic

source in an input CD referenced in an ENABLE or DISABLE statement is unknown.

The new communication status key value of 21 provides this information.

c. Communication status key = 65. Output queue capacity exceeded.

Jus t if icat ion:

Second Standard COBOL does not specify what happens if the

capacity of the output queue is exceeded on a SEND statement. This situation is

now defined to give the new communication status key value of 65.

d. Communication status key = 70. One or more destinations do not

have portions associated with them.

Justification:

This communication status key value is only returned by the new

PURGE statement. Thus it cannot occur in programs written according to second

Standard COBOL.

e. Communication status key = 80. A combination of at least two

status key conditions 10, 15, and 20 has occurred.

Justification:

If the multiple destination facility in level 2 is used and one

of the destinations is disabled while a second destination is unknown, second

Standard COBOL does not specify whether communication status key value 10 or 20

should be returned by a SEND statement. The new communication status key value

of 80 is now defined to be returned in this situation. The new communication

status key value of 80 is also returned in the case of an ENABLE or DISABLE

statement where new communication status key condition 15 and communication

status key condition 20 both apply.

f. Communication status key = 9x. Implementor-defined status.

Jus t i f icat ion:

implementor to

the user with a

similar to the

implementor-defi

This new range of communicati

define a variety of differe

facility to test for impl

second Standard COBOL facilit

ned 1-0 errors .

on status

nt error co

ementor-def

y for testi

key

ndit

ined

ng I

val

ions

er

-0 s

ues allows the

. This provides

ror conditions,

tatus values for

XVII-79

Substantive Changes (Potentially Affecting)

(42) Communication error key (1 COM). New communication error key values

have been added. These new communication error key values are described below.

a. Communication error key value = 2. Symbolic destination disabled.

Justification:

A SEND statement was executed and the destination to which this

error key applies is disabled. In second Standard COBOL, this condition was not

distinguishable by the user.

b. Communication error key value = 5. Symbolic destination already

enabled/disabled.

Jus tification:

An ENABLE or DISABLE statement was executed and the destination to

which this communication error key value applies was already enabled/disabled.

In second Standard COBOL, this condition was not distinguishable by the user.

c. Communication error key value = 6. Output queue capacity exceeded.

Justification:

A SEND statement was executed and the MCS was not able to enqueue

the message, message segment, or portion of the message or message segment

because the output queue for the destination to which this communication error

key value applies was full. In second Standard COBOL, this condition was not

distinguishable by the user.

d. Communication error key value = A through Z.

condition .

Implementor-defined

Jus tification:

The MCS has detected an implementor-defined

covered by an existing communication error key value. In

the implementor could not provide such information to the

error

second

user .

condition not

Standard COBOL,

XVII-80

Obsolete Element List

APPENDIX C: LANGUAGE ELEMENT LISTS

1. OBSOLETE LANGUAGE ELEMENT LIST

The purpose of the obsolete language element category is to limit the impact

of deleting features that are seen as obsolete or improperly specified. It is

felt by X3J4 that, although the elements in this category are obsolete, their

abrupt removal from Standard COBOL would be a disservice to COBOL users.

Features placed in the obsolete element category have the following

characteristics:

• Language elements to be deleted from Standard COBOL will first be

identified as obsolete language elements prior to being deleted.

• Obsolete language elements will be neither enhanced, modified, nor

maintained.

• The interaction between obsolete language elements and other language

elements is undefined unless otherwise specified in Standard COBOL.

• Obsolete language elements will be deleted from the next revision of

Standard COBOL.

• A conforming implementation of Standard COBOL is required to support

obsolete language elements of the subset and levels of optional modules

for which support is claimed.

The following is a list of the obsolete language elements in third Standard

COBOL. Associated with each obsolete language element in this list is a

justification for placing that element into the obsolete element category.

(1) Double character substitution (1 NUC). When a character set contains

fewer than 51 characters, double characters must be substituted for the single

characters. This feature has been placed in the obsolete element category.

Jus tification:

These specifications are a carry-over from the time when most hardware

could not provide the complete COBOL character set. This limitation on number

of characters available in hardware no longer exists.

XVII-81

Obsolete Element List

(2) All literal and numeric or numeric edited item (2 NUC). The figurative

constant ALL literal, when associated with a numeric or numeric edited item and

when the length of the literal is greater than one, has been placed in the

obsolete element category.

Jus tification:

The reason for making this element obsolete is that the results of

moving an ALL literal to a numeric data item are often unexpected. For example,

according to the interpretation contained in X3J4 interpretation document B-23

the statements

01 A PIC 99V99.

MOVE ALL ”99" TO A.

MOVE ALL ”123" TO A.

give values of 99.00 and 31.00 respectively.

(3) AUTHOR. INSTALLATION. DATE-WRITTEN, DATE-COMPILED, and SECURITY

paragraphs (1 NUC). The AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and

SECURITY paragraphs in the Identification Division have been placed in the

obsolete element category.

Jus tification:

The purpose of the AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED,

and SECURITY paragraphs can be achieved through the use of comment lines within

the Identification Division since these paragraphs have no effect on the

operating of a COBOL program.

The goal of cleaning up and regularizing the COBOL language has been

achieved by declaring many implementor-defined elements as obsolete. The format

of the DATE-COMPILED and SECURITY paragraphs are examples of comment-entry

paragraphs which are defined by the implementor.

The interaction of the COPY statement with the comment-entries in the

AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and SECURITY paragraphs is

often ambiguous, i.e. the presence of the word COPY in a comment-entry versus

the use of the COPY statement in a comment-entry.

(4) MEMORY SIZE clause (1 NUC). The MEMORY SIZE clause of the

OBJECT-COMPUTER paragraph has been placed in the obsolete element category.

Justification:

This anachronistic feature of the language is a carry-over from the time

when many systems required a specification of memory size allocation to load the

run unit. Memory capacity for a family of main frame models often ranged from

8K to 64K maximum. COBOL programs used the MEMORY SIZE clause to generate

objects for specific models.

XVII-82

Obsolete Element List

This feature is considered to be a function more appropriately

controlled by the host operating system in today's computing environment. In

second Standard COBOL, the MEMORY SIZE clause was optional. Thus, there are no

standard conforming COBOL implementations that require the use of the MEMORY

SIZE clause to specify the object computer memory size.

(5) RERUN clause (1 SEQ, 1 REL, 1 INX). The RERUN clause of the I-O-CONTROL

paragraph has been placed in the obsolete element category.

Jus tification:

Seven forms of the RERUN clause are provided. The implementor is

required to support at least one form of the RERUN clause.

This feature is considered to be a function more appropriately

controlled by the host operating system in today's computing environment.

The RERUN clause provides only one-half of a complete rerun/res tart

facility. That is, the syntax and semantics for restart are not specified. Due

to the variety in forms of the RERUN clause, there is no guarantee that a

program using this clause would be transportable.

(6) MULTIPLE FILE TAPE clause (2 SEQ, 1 RPW). The MULTIPLE FILE TAPE clause

in the I-O-CONTROL paragraph of the Environment Division has been placed in the

obsolete element category.

Just ification:

The MULTIPLE FILE TAPE clause should be a function of the operating

system and not the individual COBOL program. Therefore, the MULTIPLE FILE TAPE

clause has been placed in the obsolete element category.

(7) LABEL RECORDS clause (1 SEQ, 1 REL, 1 INX. 1 RPW). The LABEL RECORDS

clause in the file description entry has been placed in the obsolete element

category and has been made an optional clause.

Jus tif icat ion :

The LABEL RECORDS clause has

obsolete element category. Specifying

a function of the operating system and

program.

been made an optional clause in the

the presence of file labels is considered

as such does not belong in the COBOL

(8) VALUE OF clause (1 SEQ, 1 REL, 1 INX, 1 RPW). The VALUE OF clause in

the file description entry has been placed in the obsolete element category.

Justification:

Describing file label items

system and does not belong in the

been placed in the obsolete element

is considered a function of the operating

COBOL program. Thus the VALUE OF clause has

category .

XVII-83

Obsolete Element List

(9) DATA RECORDS clause (1 SEP. 1 REL, 1 INX). The DATA RECORDS clause of

the file description entry has been placed in the obsolete element category.

Jus t i f icat ion :

The DATA RECORDS clause is redundant and may cause misleading

documentation.

(10') ALTER statement (1 NUC). The ALTER statement has been placed in the

obsolete element category.

Justification:

The use of the ALTER statement in a program results in a program which

may be difficult to understand and maintain. The ALTER statement provides no

unique function since the GO TO DEPENDING statement can serve the same purpose.

(11) KEY phrase of the DISABLE statement (2 COM). The KEY phrase of the

DISABLE statement has been placed in the obsolete element category and has been

made an optional phrase.

Jus tification:

The KEY phrase of the DISABLE statement is used as a password

for access to the DISABLE statement . However the rules for determining

value in the KEY phrase matches the system password are not specified,

resulting in a situation defined by the implementor. Thus the function

by the KEY phrase is not portable.

facility

when the

thereby

provided

(12) KEY phrase of the ENABLE statement (2 COM). The KEY phrase of the

ENABLE statement has been placed in the obsolete element category and has been

made an optional phrase.

Jus tification:

The KEY phrase of the ENABLE statement is used as a password

for access to the ENABLE statement. However the rules for determining

value in the KEY phrase matches the system password are not specified,

resulting in a situation defined by the implementor. Thus the function

by the KEY phrase is not portable.

facility

when the

thereby

provided

(13) ENTER statement (1 NUC). The ENTER statement has been placed in the

obsolete element category.

Jus tification:

The ENTER statement was a precursor of the CALL statement and the

calling of external subprograms. The ENTER statement provides no portability

because it is optional and is defined by the implementor; thus the ENTER

statement is not a good candidate for standardization.

XVII-84

Obsolete Element List

(14) The optionality of procedure-name-1 in GO TO statement (2 NUC) . The

optionality of procedure-name-1 in the GO TO statement has been placed in the

obsolete element category.

Justification:

The optionality of procedure-name-1 in the GO TO statement is dependent

upon the ALTER statement. If procedure-name-1 is not specified in format 1 of

the GO TO statement, then an ALTER statement referring to that GO TO statement

must be executed prior to the execution of the GO TO statement. Since the ALTER

statement has been placed in the obsolete element category, the optionality of

procedure-name-1 in the GO TO statement has also been placed in the obsolete

element category.

(15) REVERSED phrase of the OPEN statement (2 SEQ) . The REVERSED phrase of

the OPEN statement has been placed in the obsolete element category.

Jus tification:

A sequential file may be opened for input to be read in reversed order.

The necessary hardware to perform this function is not very widely available.

Hence, this is an infrequently implemented feature and not a good candidate for

standardization. Since this feature is on the hardware dependent list, it is an

optional feature which may or may not be implemented.

(16) STOP literal statement (1 NUC). The literal variation of the STOP

statement has been placed in the obsolete element category.

Justification:

General rule 4 of the STOP statement reads: "If STOP literal-1 is

specified, the execution of the run unit is suspended and literal-1 is

communicated to the operator. Continuation of the execution of the run unit

begins with the next executable statement when the implementor-defined procedure

governing run unit reinitiation is instituted."

The function of the STOP literal statement

the implementor and thus programs using it are not

is substantially

portable.

defined by

(17) Segmentation module. The Segmentation module has been placed in the

obsolete element category.

Jus tification:

In the current state of the art, the function provided by the

Segmentation module is provided at the operating system level, external to the

COBOL source code. Thus the feature remains in third Standard COBOL as an

obsolete element to be deleted in the next revision.

Making the Segmentation module optional allows existing implementations

to continue offering the feature for compatibility reasons, without forcing new

implementations to provide a capability grounded in obsolete technology.

XVII-85

Obsolete Element List

(18) Debug module. The Debug module has been placed in the obsolete element

category.

Jus tification:

In the current state of the art, the function provided by the Debug

module is frequently provided through an interactive debug facility which does

not require COBOL source statements . Thus, the feature remains in third

Standard COBOL as an obsolete element to be deleted in the next revision.

Making the Debug module optional allows existing implementations to

continue offering the feature for compatibility reasons, without forcing new

implementations to provide a capability grounded in obsolete technology.

XVI1-86

Implementor-Defined Element List

2. IMPLEMENTOR-DEFINED LANGUAGE ELEMENT LIST

The following is a list of the COBOL language elements within third Standard

COBOL that depend on implementor definition to complete the specification of the

syntax or rules for the elements .

(1) System-name. Rules for the formation of a system-name are defined by

the implementor. (See 4.2.2.1.2 on page IV-8.)

(2) Data representation. The selection of radix is generally dependent upon

the arithmetic capability of the computer. (See 4.3.4 on page IV-16.)

(3) Algebraic sign. If the SIGN clause is not used, operational signs will

be represented as defined by the implementor. (See 4.3.5 on page IV-16.)

(4) Data item alignment. Each implementor who provides for special types of

alignment will describe the effect of the implicit FILLER and the semantics of

any statement referencing these groups. (See 4.3.7 on page IV-17.)

(5) External switch. An external switch is a hardware or software device,

defined and named by the implementor. (See 4.5 on page IV-28.)

(6) External switch. The implementor defines the scope (program, run unit,

etc.) of each external switch and any facility external to COBOL which may be

used to modify the status of an external switch. (See 4.5 on page IV-28.)

(7) Area B. Area B occupies a finite number of character positions

specified by the implementor. (See 7.2 on page IV-41.)

(8) Computer-name in SOURCE-COMPUTER paragraph. Computer-name is a

system-name; thus the formation of a computer-name is defined by the

implementor. (See 4.3.3, syntax rule 1, on page VI-10.)

(9) Computer-name in OBJECT-COMPUTER paragraph. Computer-name is a

system-name; thus the formation of a computer-name is defined by the

implementor. (See 4.4.3, syntax rule 1, on page VI-11.)

(10) MEMORY SIZE clause. The implementor defines what is to be done if the

subset specified by the user is less than the minimum configuration required for

running the object program. (See 4.4.4, general rule 1, on page VI-11.)

(11) Program collating sequence. If the PROGRAM COLLATING SEQUENCE clause is

not specified, the program collating sequence is the native collating sequence.

(See 4.4.4, general rule 6, on page VI-11.)

(12) Implementor-name in SPECIAL-NAMES paragraph. Implementor-name is a

system-name; thus the formation of an implementor-name is defined by the

implementor. (See 4.5.2 on page VI-13.)

(13) STANDARD-1 in ALPHABET clause. The implementor defines the

correspondence between the characters of the standard character set and the

characters of the native character set for which there is no correspondence

otherwise specified. (See 4.5.4, general rule 4a, page VI-15.)

XVI1-87

Implementor-Defined Element List

(14) Implementor-name in ALPHABET clause. If the implementor-name-2 phrase

is specified, the character code set or collating sequence identified is that

defined by the implementor. The implementor also defines the correspondence

between characters of the character code set specified by implementor-name-2 and

the characters of the native character code set. (See 4.5.4, general rule 4c,

on page VI-15.)

(15) RERUN clause. The implementor must provide at least one of the

specified forms of the RERUN clause. (See 2.12.4, general rule 2, on page

VII-17.)

(16) RECORD clause. Where no RECORD clause is specified in the file

description entry for a file, or where the RECORD clause specifies a range of

character positions, it is implementor defined whether fixed length or variable

length records are obtained. (See 2.1.4.3, on page II-3.)

(17) INDEXED BY phrase. The index-name identified by the INDEXED BY phrase

is not defined elsewhere since its allocation and format are dependent on the

hardware and, not being data, cannot be associated with any data hierarchy.

(See 5.8.3, syntax rule 13, on page VI-27.)

(18) SIGN clause. If a numeric data description entry whose PICTURE contains

the character 'S' has no optional SIGN clause, the implementor will define the

position and representation of the operational sign. (See 5.12.4, general rule

4, on page VI-42.)

(19) SIGN clause. If the optional SEPARATE CHARACTER phrase is not present,

the implementor defines what constitutes valid sign(s) for data items. (See

5.12.4, general rule 5c, on page VI-43.)

(20) SYNCHRONIZED clause. SYNCHRONIZED not followed by either RIGHT or LEFT

specifies that the elementary item is to be positioned between natural

boundaries in such a way as to effect efficient utilization of the elementary

data item. The specific positioning is, however, determined by the implementor.

(See 5.13.4, general rule 2, on page VI-44.)

(21) SYNCHRONIZED clause. The implementor must specify how elementary items

associated with the SYNCHRONIZED clause are handled regarding: (a) The format

on the external media of records or groups containing elementary items whose

data description contains the SYNCHRONIZED clause; (b) Any necessary generation

of implicit FILLER, if the elementary item immediately preceding an item

containing the SYNCHRONIZED clause does not terminate at an appropriate natural

boundary. (See 5.13.4, general rule 8, on page VI-45.)

(22) SYNCHRONIZED clause. An implementor may, at his option, specify

automatic alignment for any internal data formats except, within a record, data

items whose usage is DISPLAY. However, the record itself may be synchronized.

(See 5.13.4, general rule 9, on page VI-45.)

(23) USAGE IS BINARY clause. Each implementor specifies the precise effect

of the USAGE IS BINARY clause upon the alignment and representation of the data

item in the storage of the computer, including the representation of any

algebraic sign. Sufficient computer storage must be allocated by the

implementor to contain the maximum range of values implied by the associated

decimal PICTURE character-string. (See 5.14.4, general rule 3, on page VI-47.)

XVI1-88

Implementor-Defined Element List

(24) USAGE IS COMPUTATIONAL clause. Each implementor specifies the precise

effect of the USAGE IS COMPUTATIONAL clause upon the alignment and

representation of the data item in the storage of the computer, including the

representation of any algebraic sign, and upon the range of values that the data

item can hold. (See 5.14.4, general rule 4, on page VI-47.)

(25) USAGE IS INDEX clause. Each implementor specifies the precise effect of

the USAGE IS INDEX clause upon the alignment and representation of the data item

in the storage of the computer, including the actual value assigned for any

given occurrence number. (See 5.14.4, general rule 7, on page VI-47.)

(26) USAGE IS PACKED-DECIMAL clause. Each implementor specifies the precise

effect of the USAGE IS PACKED-DECIMAL clause upon the alignment and

representation of the data item in the storage of the computer, including the

representation of any algebraic sign. Sufficient computer storage must be

allocated by the implementor to contain the maximum range of values implied by

the associated decimal PICTURE character-string. (See 5.14.4, general rule 9,

on page VI-47 .)

(27) Arithmetic expression. Each implementor will indicate the techniques

used in handling arithmetic expressions. (See 6.2.3, rule 6, on page VI-53.)

(28) ACCEPT statement. Mnemonic-name in the ACCEPT statement must be

associated with a hardware device. (See 6.5.3, syntax rule 1, on page VI-71.)

(29) ACCEPT statement. Any conversion of data required between the hardware

device and the data item referenced by identifier-1 is defined by the

implementor. (See 6.5.4, general rule 1, on page VI-71.)

(30) ACCEPT statement. The implementor will define, for each hardware

device, the size of a data transfer. (See 6.5.4, general rule 2, on page

VI-71 .)

(31) ACCEPT statement. If the FROM option is not given, the device that the

implementor specifies as standard is used. (See 6.5.4, general rule 5, on page

VI-72.)

(32) ADD statement. The compiler ensures that enough places are carried so

as not to lose any significant digits during execution. (See 6.6.4, general

rule 4, on page VI-74.)

(33) COMPUTE statement. Each implementor will indicate the techniques used

in handling arithmetic expressions. (See 6.8.4, general rule 3, on page VI-76.)

(34) DISPLAY statement. Mnemonic-name in the DISPLAY statement is associated

with a hardware device. (See 6.10.3, syntax rule 1, on page VI-78.)

(35) DISPLAY statement. Any conversion of data required between literal-1 or

the data item referenced by identifier-1 and the hardware device is defined by

the implementor. (See 6.10.4, general rule 1, on page VI-78.)

(36) DISPLAY statement. The implementor will define, for each hardware

device, the size of a data transfer. (See 6.10.4, general rule 2, on page

VI-78.)

XVII-89

Implementor-Defined Element List

(37) DISPLAY statement. If the UPON phrase is not specified, the

implementor's standard display device is used. (See 6.10.4, general rule 7, on

page VI-79.)

(38) ENTER statement. Language-name-1 is specified by the implementor. (See

6.12.3, syntax rule 1, on page VI-83.)

(39) SEARCH ALL statement. The initial setting of the index-name for

identifier-1 is ignored and its setting is varied during the search operation in

a manner specified by the implementor. (See 6.22.4, general rule 4, on page

VI- 124.)

(40) SET statement. The implementor defines which external switches can be

referenced by the SET statement. (See 6.23.3, syntax rule 5, on page VI-127.)

(41) STOP literal statement. Continuation of the execution of the run unit

begins with the next executable statement when the implementor-defined procedure

governing run unit reinitiation is instituted. (See 6.24.4, general rule 4, on

page VI-130.)

(42) SUBTRACT statement. The compiler insures enough places are carried so

as not to lose significant digits during execution. (See 6.26.4, general rule

4, on page VI-135.)

(43) 1-0 status. If the value of the 1-0 status for an input-output

operation indicates a critical error condition, the implementor determines what

action is taken after the execution of any applicable USE AFTER STANDARD

EXCEPTION procedure, or if none applies, after completion of the normal

input-output control system error processing. (See 1.3.5 on page VII-2; 1.3.4

on page VIII-2; 1.3.4 on page IX-2.)

(44) 1-0 status. The permanent error condition remains in effect for all

subsequent input-output operations on the file unless an implementor-defined

technique is invoked to correct the permanent error condition. (See 1.3.5, item

3, on page VII-2; 1.3.4, item 4, on page VIII-3; 1.3.4, item 4, on page IX-3.)

(45) 1-0 status . If more than one value applies, the implementor determines

which of the applicable values to place in the 1-0 status. (See 1.3.5 on page

VII- 3; 1.3.4 on page VIII-3; 1.3.4 on page IX-3.)

(46) 1-0 status 24. An attempt is made to write beyond the externally

defined boundaries of a relative or indexed file. The implementor specifies the

manner in which these boundaries are defined. (See 1.3.4 on page VIII-4; 1.3.4

on page IX-4.)

(47) 1-0 status 34. An attempt is made to write beyond the externally

defined boundaries of a sequential file. The implementor specifies the manner

in which these boundaries are defined. (See 1.3.5 on page VII-3.)

(48) 1-0 status 9x♦ An 1-0 status value of 9x indicates an

implementor-defined condition exists. The value of x is defined by the

implementor. (See 1.3.5 on page VII-5; 1.3.4 on page VIII-5; 1.3.4 on page

IX-6.)

XVII-90

Implementor-Defined Element List

(49) ASSIGN clause. The meaning and rules for the allowable content of

implementor-name-1 and the value of literal-1 are defined by the implementor.

(See 2.3.3, syntax rule 3, on page VII—7; 2.3.3, syntax rule 3, on page VIII-8;

2.3.3, syntax rule 3, on page IX-8; 2.3.3, syntax rule 3, on page XIII-3.)

(50) ASSIGN clause. The implementor will specify the consistency rules for

implementor-name-1 or literal-1. (See 2.3.4, general rule lb, on page VII-8;

2.3.4, general rule lb, on page VIII-9; 2.3.4, general rule lb, on page IX-9;

2.3.4, general rule lb, on page XIII-4).

(51) ASSIGN clause. The implementor will specify the association between a

file and a storage medium implied by each implementor-name or literal. (See

2.3.4, general rule 3, on page VII-8; 2.3.4, general rule 4, on page VIII-9;

2.3.4, general rule 5, on page IX-9; 2.3.4, general rule 3, on page XIII-4.)

(52) PADDING CHARACTER clause. If the PADDING CHARACTER clause is not

specified, the value used for the padding character will be defined by the

implementor. (See 2.7.4, general rule 5, on page VII-12.)

(53) Implementor-name in RECORD DELIMITER clause. Implementor-name is a

system-name; thus the formation of an implementor-name is defined by the

implementor. (See 2.8.2 on page VII-13.)

(54) RECORD DELIMITER clause. The implementor will specify the consistency

rules for implementor-name in the RECORD DELIMITER clause. (See 2.3.4, general

rule lc, on page VII-8.)

(55) RECORD DELIMITER clause. If the implementor-name-1 phrase is specified,

the method used for determining the length of a variable length record is that

associated with implementor-name-1 by the implementor. (See 2.8.4, general rule

3, on page VII-13.)

(56) RESERVE clause. If the RESERVE clause is not specified, the number of

input-output areas allocated is specified by the implementor. (See 2.9.3,

general rule 1, on page VII-14.)

(57) LABEL RECORDS clause. STANDARD specifies that labels exist for the file

or the device to which the file is assigned and the labels conform to the

implementor's label specifications. (See 3.6.3, general rule 2, on page

VII-26.)

(58) LABEL RECORDS clause. If the LABEL RECORDS clause is not specified for

a file, label records for that file must conform to the implementor's label

specifications. (See 3.6.3, general rule 3, on page VII-26.)

(59) VALUE OF clause. Implementor-name is a system-name; thus the formation

of an implementor-name is defined by the implementor. (See 3.9.2 on page

VII-33.)

(60) CLOSE statement. Labels are processed according to the implementor's

standard label convention. Closing operations specified by the implementor are

executed. (See 4.2.4, general rule 3C, on page VII-36; 4.2.4, general rule 2A,

on page VIII-17; 4.2.4, general rule 2A, on page IX-19, 4.2.4, general rule

3C, on page XIII-64.)

XVII-91

Implementor-Defined Element List

(61) OPEN statement. The labels are checked or written in accordance with

the implementor's specified conventions for input or output label handling.

(See 4.3.4, general rule 7, on page VII-41; 4.4.4, general rule 7, on page

VIII- 23; 4.4.4, general rule 7, on page IX-25; 4.4.4, general rule 14, on page

IX- 26; 4.5.4, general rule 5a, on page XIII-71.)

(62) WRITE statement. When mnemonic-name-1 is specified, the name is

associated with a particular feature specified by the implementor. (See 4.7.3,

syntax rule 6, on page VII-52.)

(63) WRITE statement. If mnemonic-name-1 is specified, the representation of

the printed page is advanced according to the rules specified by the implementor

for that hardware device. (See 4.7.4, general rule 15d, on page VII-55.)

(64) WRITE statement. If PAGE is specified and the LINAGE clause is not

specified in the associated file description entry, repositioning to the next

physical page is accomplished in accordance with an implementor-defined

technique. (See 4.7.4, general rule 15h, on page VII-55.)

(65) Reel. The dimensions of a reel are defined by the implementor. (See

page III-19.)

(66) Unit. The dimensions of a unit are defined by the implementor. (See

page II1-25.)

(67) Volume. The dimensions of a volume are defined by the implementor.

(See page III-26.)

(68) CALL statement. If the program being called is not a COBOL program, the

rules for formation of the program-name are defined by the implementor. (See

5.2.4, general rule 1 on page X-27.)

(69) CALL statement. The object time resources which must be checked in

order to determine the availability of the called program for execution are

defined by the implementor. (See 5.2.4, general rule 3, on page X-28.)

(70) CALL statement. If the program specified by the CALL statement cannot

be made available for execution and the ON OVERFLOW/EXCEPTION phrase is not

specified, all other effects of the CALL statement are defined by the

implementor. (See 5.2.4, general rule 3, on page X-28.)

(71) CALL statement. If the program being called is other than a COBOL

program, the use of the USING phrase is defined by the implementor. (See 5.2.4,

general rule 9, on page X-29.)

(72) SAME SORT/SORT MERGE AREA clause. The extent of allocation of non-sort

files or non-merge files will be specified by the implementor. (See 2.5.4,

general rule 2b, on page XI-5.)

(73) Record structure for report file. The report writer logical record

structure of the file associated with file-name-1 is defined by the implementor.

(See 3.2.4, general rule 2, on page XIII-7.)

XVII-92

Implementor-Defined Element List

(74) Symbolic name. The symbolic name of a communication terminal must

follow the rules for the formation of system-names; thus the formation of a

symbolic name is defined by the implementor. (See 2.2.4, general rule 10, on

page XIV-8.)

(75) Communication status key 9x. A communication status key value of 9x

indicates an implementor-defined condition exists. The value of x is defined by

the implementor. (See 2.2.5, on page XIV-15.)

(76) Communication error key. The communication error key values

through Z indicate an implementor-defined condition. (See 2.2.6

XIV-16.)

(77) KEY

(See 3.2.4,

phrase of DISABLE statement. Password is

general rule 7, on page XIV-19).

built into the system.

(78) KEY

(See 3.3.4,

phrase of ENABLE statement. Password is

general rule 6, on page XIV-21.)

built into the system.

(79) SEND statement. When the mnemonic-name phrase is used, the name is

identified

syntax rule

with a particular feature specified by the

4, on page XIV-26.)

implementor . (See 3.6.3,

(80) SEND statement. If mnemonic-name-1 is specified, characters transmitted

to the communication device are positioned according to the rules specified by

the implementor for that communication device. (See 3.6.4, general rule 15c, on

page XIV-29.)

from A

on page

XVII-93

Hardware Dependent Element List

3. HARDWARE DEPENDENT LANGUAGE ELEMENT LIST

The following is a list of the COBOL language elements within third Standard

COBOL that depend on specific types of hardware components.

(1) Double character substitution is dependent upon the character set

available with the computer. (1 NUC)

(2) The USAGE IS BINARY clause is dependent upon the availability of a

suitable computer architecture for the binary data format. (1 NUC)

(3) The USAGE IS PACKED-DECIMAL clause is dependent upon the availability of

a suitable computer architecture for the packed decimal data format. (1 NUC)

(4) If positioning is not applicable on the hardware device, the operating

system will ignore the positioning specified or implied by the DISPLAY

statement. (1 NUC)

(5) The PADDING CHARACTER clause is dependent upon whether padding

characters are applicable to the device type to which the file is assigned. (2

SEQ, 1 RPW)

(6) The STANDARD-1 phrase of the RECORD DELIMITER clause is dependent upon a

reel type of device. (2 SEQ, 1 RPW)

(7) The MULTIPLE FILE TAPE clause is dependent upon a reel type of device.

(2 SEQ, 1 RPW)

(8) The CODE-SET clause is dependent upon a device capable of supporting the

specified code. (1 SEQ, 1 RPW)

(9) The REEL/UNIT phrase of the CLOSE statement is dependent upon a reel or

mass storage type of device. (1 SEQ, 1 RPW)

(10) The FOR REMOVAL phrase of the CLOSE statement is dependent upon a reel

or mass storage type of device. (2 SEQ, 1 RPW)

(11) The WITH NO REWIND phrase of the CLOSE statement is dependent upon a

reel or mass storage type of device. (2 SEQ, 1 RPW)

(12) The DELETE statement is dependent upon a mass storage device. (1 REL, 1

INX)

(13) The 1-0 phrase of the OPEN statement is dependent upon a mass storage

type of device. (1 SEQ, 1 REL, 1 INX)

(14) The REVERSED phrase of the OPEN statement is dependent upon a reel or

mass storage type of device having the capability of making records available in

the reversed order. (2 SEQ)

(15) The WITH NO REWIND phrase of the OPEN statement is dependent upon a reel

or mass storage type of device. (2 SEQ, 1 RPW)

XVII-94

Hardware Dependent Element List

(16) The EXTEND phrase of the OPEN statement is dependent upon a reel or mass

storage type of device. (2 SEQ, 2 REL, 2 INX, 1 RPW)

(17) The REWRITE statement is dependent upon a mass storage type of device.

(1 SEQ, 1 REL, 1 INX)

(18) The 1-0 phrase of the USE statement is dependent upon a mass storage

type of device. (1 SEQ, 1 REL, 1 INX)

(19) The BEFORE/AFTER ADVANCING phrase of the WRITE statement is dependent

upon a device capable of vertical positioning or of an action based on

mnemonic-name. (1 SEQ)

(20) The BEFORE/AFTER ADVANCING phrase of the SEND

upon a device capable of vertical positioning or

mnemonic-name. (1 COM)

statement is dependent

of an action based on

XVII-95

Undefined Element List

4. UNDEFINED LANGUAGE ELEMENT LIST

The following is a list of the COBOL language elements within third Standard

COBOL that are explicitly undefined.

(1) Explicit and implicit transfers of control. When there is no next

executable statement and control is not transferred outside the COBOL program,

the program flow of control is undefined unless the program execution is in the

nondeclarative procedures portion of a program under control of a CALL

statement, in which case an implicit EXIT PROGRAM statement is executed. (See

4.4.2 on page IV-25.)

(2) Initial values of data items. The initial value of any index data item

or any data item not associated with a VALUE clause is undefined. (See 5.2.4 on

page VI-19.)

(3) DEPENDING ON phrase of OCCURS clause. The contents of data items whose

occurrence numbers exceed the value of the data item referenced by data-name-1

are undefined. (See 5.8.4, general rule 2b, page VI-28.)

(4) VALUE clause in the File Section. The initial value of the data items

in the File Section is undefined. (See 5.15.6, rule la, page VI-49.)

(5) VALUE clause in the Working-Storage Section and Communication Section.

If the VALUE clause is not associated with a data item in the Working-Storage

Section or Communication Section, the initial value of that data item is

undefined. (See 5.15.6, rule lc, page VI-49.)

(6) ON SIZE ERROR phrase. If the ON SIZE ERROR phrase is not specified and

a size error condition exists after the execution of the arithmetic operations

specified by an arithmetic statement, the values of the affected resultant

identifiers are undefined. (See 6.4.2 on page VI-68.)

(7) Overlapping operands. When a sending and a receiving item in any

statement share a part or all of their storage areas, yet are not defined by the

same data description entry, the result of the execution of such a statement is

undefined. (See 6.4.5 on page VI-69.)

(8) Incompatible data. Except for the class condition, when the content of

a data item is referenced in the Procedure Division and the content of that data

item is not compatible with the class specified for that data item by its

PICTURE clause, then the result of such a reference is undefined. (See 6.4.7 on

page VI-70 .)

(9) SEARCH ALL statement. In a SEARCH ALL statement, the results of the

SEARCH ALL operation are predictable only when: (a) The data in the table is

ordered in the same manner as described in the KEY IS phrase of the OCCURS

clause referenced by identifier-1, and (b) The contents of the key(s) referenced

in the WHEN phrase are sufficient to identify a unique table element. (See

6.22.4, general rule 3, on page VI-124.)

(10) SEARCH ALL statement. If any of the conditions specified in the WHEN

phrase cannot be satisfied for any setting of the index within the permitted

range, control is passed to imperative-statement-1 of the AT END phrase, when

XVII-96

Undefined Element List

specified, or to the end of the SEARCH statement when this phrase is not

specified; in either case the final setting of the index is not predictable.

(See 6.22.4, general rule 4, on page VI-124.)

(11) CLOSE statement. The behavior of the CLOSE statement when label records

are specified but not present, or when label records are not specified but are

present, is undefined. (See 4.2.4, general rule 3C, on page VII-36; 4.2.4,

general rule 2A, on pages VIII-17 and VIII-18; 4.2.4, general rule 2A, on pages

IX-19 and IX-20; 4.2.4, general rule 3C, on page XIII-64.)

(12) CLOSE statement. The unsuccessful execution of the CLOSE statement

without the REEL or UNIT phrase leaves the availability of the record area

undefined. (See 4.2.4, general rule 6, on page VII-38; 4.2.4, general rule 5,

on page VIII-18; 4.2.4, general rule 5, on page IX-20.)

(13) OPEN statement. The behavior of the OPEN statement when label records

are specified but not present, or when label records are not specified but are

present, is undefined. (See 4.3.4, general rule 7, on page VII-41; 4.4.4,

general rule 7, on page VIII-24; 4.4.4, general rule 7, on page IX-26; 4.5.4,

general rule 5, on page XIII-71.)

(14) READ statement. The contents of any data items which lie beyond the

range of the current data record are undefined at the completion of the

execution of the READ statement. (See 4.4.4, general rule 6, on page VII-45;

4.5.4, general rule 6, on page VIII-27; 4.5.4, general rule 6, on page IX-30.)

(15) READ statement. Following the unsuccessful execution of the READ

statement, the content of the associated record area is undefined; for indexed

files, the key of reference is also undefined. (See 4.4.4, general rule 12, on

page VII-46; 4.5.4, general rule 12, on page VIII-29; 4.5.4, general rule 12,

on page IX-31.)

(16) START statement. Following the unsuccessful execution of the START

statement for a given indexed file, the key of reference for that file is

undefined. (See 4.7.4, general rule 8, on page IX-37.)

(17) WRITE statement (sequential file). If a USE AFTER STANDARD EXCEPTION

declarative is not explicitly or implicitly specified for the file-name

associated with record-name-1, the result is undefined when an attempt is made

to write beyond the externally defined boundaries of a sequential file. (See

4.7.4, general rule 13c, on page VII-54.)

(18) ADVANCING phrase of WRITE statement. If the value of the data item

referenced by identifier-2 is negative, the results are undefined when the

ADVANCING phrase is used. (See 4.7.4, general rule 15b, on page VII-55.)

(19) CALL statement for program not written in COBOL. The CALL statement may

be used to call a program which is not written in COBOL, but the return

mechanism and inter-program data communication are not specified in this

document. (See 6.4.1 on page 11-23.)

(20) Linkage Section. If a data item in the Linkage Section is accessed in a

program which is not a called program, the effect is undefined. (See 4.1 on

page X-13.)

XVII-97

Undefined Element List

(21) MERGE statement. The results of the merge operation are undefined

unless the records in the files referenced by file-name-2 and file-name-3 are

ordered as described in the ASCENDING or DESCENDING KEY clauses associated with

the MERGE statement. (See 4.1.4, general rule 6, on page XI-10.)

(22) RETURN statement. When the at end condition occurs, execution of the

RETURN statement is unsuccessful and the contents of the record area associated

with file-name-1 are undefined. (See 4.3.4, general rule 2, on page XI-14.)

(23) SORT statement. If the DUPLICATES phrase is not specified and the

contents of all the key data items associated with one data record are equal to

the contents of the corresponding key data items associated with one or more

other data records, then the order of return of these records is undefined.

(See 4.4.4, general rule 4, on page XI-18.)

(24) SORT statement. For a relative file, the content of the relative key

data item is undefined after the execution of the SORT statement if file-name-2

is not referenced in the GIVING phrase. (See 4.4.4, general rule 9b, on page

XI-19.)

(25) Communication description entry. If the MCS attempts to schedule a

program lacking an INITIAL clause, the results are undefined. (See 2.2.4,

general rule 7, on page XIV-8.)

(26) SEND statement. The effect of having special control characters within

the content of the data item referenced by identifier-1 is undefined. (See

3.6.4, general rule 5, on page XIV-27.)

(27) SEND statement . During the execution of the run unit, the disposition

of a portion of a message which is not terminated by an EMI or EGI or which has

not been eliminated by the execution of a PURGE statement is undefined. (See

3.6.4, general rule 7, on page XIV-27.)

(28) SEND statement. If the value of the data item referenced by

identifier-3 is negative, the results are undefined. (See 3.6.4, general rule

15b, on page XIV-29.)

XVII-98

Index

INDEX

'A' PICTURE symbol, VI-31

Abbreviated combined relation conditions, VI-60

ACCEPT MESSAGE COUNT statement, XIV-17

USE FOR DEBUGGING statement, XV-7

ACCEPT statement , VI-71

Imperative statement, IV-39

Mnemonic-name, VI-13

SPECIAL-NAMES paragraph, VI-13

ACCESS MODE clause

DYNAMIC, VI11-8 , VIII-10, IX-8 , IX-10

RANDOM, VIII-8, VIII-10, IX-8, IX-10

SEQUENTIAL, VII-7, VII-9, VIII-8, VIII-10, IX-8,

IX-10, XIII-3

Access modes, VII-1, VIII-2, IX-2

Accessing data and files, 11-19

ADD statement, VI-73

Composite of operands, VI-69

COMPUTE statement, VI-76

Conditional statement, IV-37

CORRESPONDING (CORR), VI-68

Data conversion, VI-69

Decimal alignment, VI-69

Imperative statement, IV-39

Maximum operand size, VI-69

Multiple results, VI-69

ADD CORRESPONDING (ADD CORR) statement, VI-68,

VI-73

Additional language elements, 1-7

ADVANCING phrase

SEND statement , XIV-26

WRITE statement, VII-52

AFTER phrase

INSPECT statement, VI-94

PERFORM statement, VI-109, VI-110

SEND statement, XIV-26

WRITE statement, VII-52

Algebraic sign, IV-16

Alignment of data, IV-16

Synchronization, IV-17

ALL

Figurative constant, IV—11

INSPECT statement, VI-94

SEARCH statement, VI-122

UNSTRING, VI-136

USE FOR DEBUGGING statement, XV-5

ALL literal , IV-11

INSPECT statement, VI-95

STOP statement, VI-130

STRING statement, VI-131

UNSTRING statement, VI-136

ALL PROCEDURES phrase, XV-5

ALL REFERENCES OF phrase, XV-5

ALPHABET clause, VI-13

Alphabet-name, III-l, IV-6, VI-13

CODE-SET clause, VII-24

MERGE statement, XI-8

SORT statement , XI-16

ALPHABETIC

Class condition,-VI-57

INITIALIZE statement, VI-92

Alphabetic category, IV-15, VI-29, VI-48,

VI-104

Alphabetic class, IV-15, VI-56

Alphabetic data item, VI-29

ALPHABETIC-LOWER, VI-57

ALPHABETIC-UPPER, VI-57

ALPHANUMERIC, VI-92

Alphanumeric category, IV-15, VI-29, VI-48,

VI-104

Alphanumeric character, III—1

Alphanumeric class, IV-15

Alphanumeric data item, VI-30

ALPHANUMERIC-EDITED, VI-92

Alphanumeric edited category, IV-15, VI-29,

VI-48, VI-104

Alphanumeric edited data item, VI-30

ALSO phrase

ALPHABET clause, VI-13

EVALUATE statement, VI-84

ALTER statement, VI-75

GO TO statement, VI-89

Imperative statement, IV-39

Initial state of program, X-10

Segmentation, XVI-8

Transfer of control, IV-26

USE FOR DEBUGGING statement, XV-6

ALTERNATE RECORD KEY clause, IX-8, IX-11

AND

Abbreviated combined relation condition,

VI-61

Combined condition, VI-59

Evaluation order, VI-61

Logical operator, VI-59

SEARCH statement, VI-122

ANY, VI-84

Area A, IV-41

Area B, IV-41

Arithmetic expression, VI-51

COMPUTE statement, VI-76

EVALUATE statement, VI-84

Relation condition, VI-54

SEARCH statement, VI-122

Sign condition, VI-58

Arithmetic operator, IV-9, VI-52

Arithmetic statement, III-2, VI-69

ASCENDING KEY phrase

MERGE statement, XI-8

OCCURS clause, VI-26

SORT statement, XI-16

ASSIGN clause

Indexed 1-0 module, IX-8

Relative 1-0 module, VIII-8

Report Writer module, XIII-3

Sequential 1-0 module, VII-7

Sort-Merge module, XI-2

XVIII-1

Index

Asterisk (*) comment line, IV-42

Asterisk (*) PICTURE symbol, VI-32, VI-35

At end condition, VII-5, VIII-6, IX-7

READ statement, VII-46, VIII-28, IX-30

RETURN statement, XI-14

AT END phrase

READ statement, VI1-44, VIII-26, IX-28

RETURN statement , XI-14

SEARCH statement, VI-122

AT END-OF-PAGE phrase, VII-52

AUTHOR paragraph, VI-6

'B’ PICTURE symbol, VI-31, VI-33

BEFORE phrase

INSPECT statement, VI-94

PERFORM statement, VI-109, VI-110

SEND statement, XIV-26

WRITE statement, VII-52

BINARY, VI-46

Binary arithmetic operators, VI-52

Blank line , IV-42

BLANK WHEN ZERO clause, VI-22

PICTURE clause, VI-29

Report group description entry, XIII-21

USAGE IS INDEX clause, VI-46

VALUE clause, VI-49

BLOCK CONTAINS clause

Indexed 1-0 module, IX-16

Relative 1-0 module, VIII-14

Report Writer module, XIII-7

Sequential 1-0 module, VII-22, VII-23

Body group presentation rules, XIII-32

Braces , IV-2

Brackets , IV-2

BY

COPY statement, XII-2

DIVIDE statement, VI-80

INITIALIZE statement, VI-92

INSPECT statement, VI-94

MULTIPLY statement, VI-107

PERFORM statement, VI-110

BY CONTENT phrase, X-27

BY REFERENCE phrase, X-27

CALL statement, X-27

CANCEL statement, X-31

Conditional statement, IV-37

EXIT PROGRAM statement, X-33

Imperative statement, IV-39

Linkage Section, X-13

PERFORM statement, VI-120

Procedure Division header, X-25

Transfer of Control, 11-23, IV-26

Called program, II1-2, X-27

Calling program, 111 —2 , X-27

CANCEL statement, X-31

CALL statement, X-29

EXIT PROGRAM statement, X-33

Imperative statement, IV-39

Category of data, IV—15

Editing, VI-33

MOVE statement, VI-104

Nonnumeric literal , IV-10

Numeric literal , IV-10

PICTURE clause, VI-29

VALUE clause, VI-48

CD entry, XIV-3

CD level indicator, II1-13, XIV-3, XIV-4

Reference format, IV-43

Cd-name, 111-3, IV-6, XIV-3, XIV-4, XV-5

CF, XI11-55

CH, XI11-55

Character, IV-4

Alphabetic, III—1

Alphanumeric, III—1

Editing, 111—8

N ume ric, 111 — 15

Punctuation, III-18, IV-4

Relation, III-19

Special , II1-23

Character representation, IV-16

Character set, IV-4

Restriction, VI-1

Character-string, IV-5

Character substitution, 1-8, IV-4

CHARACTERS

BLOCK CONTAINS clause, VII-23

INSPECT statement, VI-94

MEMORY SIZE clause, VI-11

RECORD clause, VII-30

Choice indicators, IV-2

CLASS clause, VI-13, VI-16, VI-56

Class condition, VI-56

Class-name, III-3, IV-6, VI-13, VI-16, VI-57

Class of data, IV-15

Clause, 1II-3

CLOCK-UNITS phrase, VII-17, VII-18

CLOSE statement

Imperative statement, IV-39

Indexed I'-O module, IX-19

Relative 1-0 module, VIII-17

Report Writer module, XIII-63

Sequential 1-0 module, VII-35

STOP statement, VI-130

COBOL character set, III-3, IV-4

COBOL development, XVII-1

COBOL Journal of Development, XVII-2

COBOL library, XII-2

COBOL reserved words, IV-45

COBOL source program, IV-29, VI-3

COBOL standardization, XVII-11

COBOL word, IV-5

CODASYL, XVII-1

CODASYL COBOL Committee, XVII-2

CODE clause, XIII-11, XIII-14

CODE-SET clause

Report Writer module, XIII-7

Sequential 1-0 module, VII-22, VII-24

COLLATING SEQUENCE phrase

ALPHABET clause, VI-15

MERGE statement, XI-8

SORT statement, XI-16

Colon, IV-5

Restriction, VI-1

COLUMN NUMBER clause, XIII-21, XIII-42

Combined condition, VI-59

Comma

DECIMAL-POINT IS COMMA clause, VI-13, VI-17

Interchangeable with semicolon, IV-2

PICTURE symbol, VI-32, VI-33

Separator , IV-4

Comment-entry, IV-12, VI-6

DATE-COMPILED paragraph, VI-8

Comment line, IV-42

Library text, XII-4, XII-7

COMMON clause, X-12

Common program, 11-22, X-3, X-12

Communication concepts, 11-28

Communication description entry, III-4, IV-34,

XIV-2, XIV-3

Communication module, XIV-1

Element summary, 1-36

XVII1-2

Index

Communication Section, IV-33, XIV-2

Communication status key conditions, XIV-14

Compile time switch, VI-141, XV-2

Compiler directing sentence, IV-38

Compiler directing statement, IV-38

Complex condition, VI-59

Composite language skeleton, V-l

COMPUTATIONAL (COMP), VI-46

COMPUTE statement, VI-76

Composite of operands, VI-69

Conditional statement, IV-37

Data conversion, VI-69

Decimal alignment, VI-69

Imperative statement, IV-39

Maximum operand size, VI-69

Multiple results, VI-69

Computer-name, IV-8, VI-10, VI-11

Concepts, II—1

Condition, VI-54

Abbreviated combined relation condition,

VI-60

Class condition, VI-56

Combined condition, VI-59

Complex condition, VI-59

Condition-name condition, VI-58

EVALUATE statement, VI-84

Evaluation rules, VI-61

IF statement, VI-90

Negated condition, VI-59

PERFORM UNTIL statement, VI-109, VI-110

Relation condition, VI-54

SEARCH statement, VI-122

Sign condition, VI-58

Simple condition, VI-54

Switch-status condition, VI-58

Condition-name, IV-6, IV-7, IV-24

Condition-name condition, VI-58

Conventions, X-6

Level-number 88, IV-14

Qualified, IV-19

RERUN clause, VII-17, VII-18

SEARCH statement, VI-122

SET statement, VI-127

SPECIAL-NAMES paragraph, VI-13

Subscripted, IV-21

Switch-status condition, VI-58

Uniqueness, IV-24

VALUE clause, VI-49

Condition-name condition, VI-58

Condition-name data description entry, VI-21,

VI-25, VI-49

Conditional expression, VI-54

EVALUATE statement, VI-85

PERFORM statement, VI-11 I

SEARCH statement, VI-123

Conditional phrase, IV-37

Conditional sentence, IV-38

Conditional statement, IV-37

Conditional variable, III-6, VI-58, VI-127

FILLER, VI-23

Configuration Section, TV-31

Nucleus, VI-9

Conforming implementation, 1-6

Conforming source program, 1-9

Contained programs, X-l, X-8

Continuation line, IV-42

Continuation of lines, IV-42

Comment-entries, VI-6, VI-8

CONTINUE statement, VI-77

Continued line, IV-42

CONTROL clause, XIII-11, XIII-15

Control break

CONTROL clause, XIII-15

GENERATE statement, XIII-66

GROUP INDICATE clause, XIII-44

TYPE clause, XIII-56

CONTROL FOOTING (CF), XI11-55

CONTROL HEADING (CH), XIII-55

CONVERTING, VI-95
COPY statement, XII-2

Compiler directing statement, IV-38

CORRESPONDING (CORR) phrase, VI-68

ADD statement, VI-73

MOVE statement, VI-103

ON SIZE ERROR phrase, VI-68

SUBTRACT statement, VI-134

COUNT IN phrase, VI-136

CR PICTURE symbol, VI-32, VI-34

Currency PICTURE symbol, VI-32, VI-34

Currency sign, 111—6, VI-17, VI-34

CURRENCY SIGN clause, VI-13, VI-17, VI-34

Currency symbol, III-6, VI-17, VI-33

Current volume pointer, II-5, VII-2

Data description entry, III-7, VI-20

Inter-Program Communication module, X-19

Working-Storage Section, VI-18

Data Division, IV-33

Communication module, XIV-2

Element? summary, 1-48

Indexed 1-0 module, IX-16

Inter-Program Communication module, X-13

Nucleus , VI-18

Reference format, IV-43

Relative 1-0 module, VIII-14

Report Writer module, XIII-6

Sequential 1-0 module, VII-21

Sort-Merge module, XI-6

Data Division entries, IV-43

Data-name, III-7, IV-6, VI-23, XIII-20,

XI11-43

Conventions, X-6

Identifier, IV-23

Qualified, IV-19

Subscripted, IV-21
DATA BY phrase, VI-92

DATA RECORDS clause

Indexed 1-0 module, IX-16

Relative 1-0 module, VIII-14

Sequential 1-0 module, VII-22, VII-25

Sort-Merge module, XI-7

DATE, VI-72

DATE-COMPILED paragraph, VI-8

DATE-WRITTEN paragraph, VI-6

DAY, VI-72

DAY-OF-WEEK, VI-72

DB PICTURE symbol, VI-32, VI-34

DE, XIII-55

DEBUG-CONTENTS, XV-8

DEBUG-ITEM, IV-9, XV-1, XV-8

DEBUG-LINE, XV-8

Debug module, XV-1

Element summary, 1-38

DEBUG-NAME, XV-8

DEBUG-SUB-1, XV-8

DEBUG-SUB-2, XV-8

DEBUG-SUB-3, XV-8

Debugging line, VI-141

Library text, XII-4, XII-7

DEBUGGING MODE clause, VI-10, XV-2, XV-3

Debugging section, XV-5

XVII1-3

Index

Decimal point

Actual , VI-32

Allgnment, IV-16

Assumed, VI-32

DECIMAL POINT IS COMMA clause, VI-13, VI-17,

VI-33

Declarative sentence, III-7

Declaratives, IV-35

Reference format , IV-44

USE BEFORE REPORTING statement, XI11-78

USE FOR DEBUGGING statement, XV-5

USE statement, VII-50, VIII-35, IX-39

Declarative procedures

Debug module, XV-4

Indexed 1-0 module, IX-18

PERFORM statement, VI-121

Relative 1-0 module, VIII-16

Report Writer module, XIII-62

Sequential 1-0 module, VII-34

USE BEFORE REPORTING statement, XIII-78

USE FOR DEBUGGING statement, XV-5

USE statement, VII-50, VIII-35, IX-39

De-editing, VI-104

Definitions, 111 — 1

DELETE statement

Indexed 1-0 module, IX-21

Relative 1-0 module, V111— 19

DELIMITED BY phrase

STRING statement, VI-131

UNSTRING statement, VI-136

Delimited scope statement, IV-39

DELIMITER IN phrase, VI-136

Delimiters

Character-string, IV-5

Pseudo-text, 111 — 18 , IV-5

DEPENDING phrase

GO TO statement, VI-89

OCCURS clause, VI-26

RECORD clause, VII-30

DESCENDING KEY phrase

MERGE statement, XI-8

OCCURS clause, VI-26

SORT statement, XI-16

DESTINATION COUNT clause, XIV-4

DESTINATION TABLE OCCURS clause, XIV-4

DETAIL (DE), XIII-55

Development of COBOL, XVI1-1

Differences between current standard & draft

proposed revision, XVII-16

DISABLE statement, XIV-18

DISPLAY in USAGE clause, VI-46

DISPLAY statement , VI-78

Figurative constant, IV—11

Imperative statement, IV-39

Mnemonic-name, VI-13

DIVIDE statement, VI-80

Composite of operands, VI-69

COMPUTE statement, VI-76

Conditional statement, IV-37

Data conversion, VI-69

Decimal alignment, VI-69

Imperative statement, IV-39
Maximum operand size, VI-69

Multiple results, VI-69

Division, III-8, IV-30

Division header, III-8, IV-43

Double character substitution, IV-4

DOWN BY, VI-127

DUPLICATES phrase

ALTERNATE RECORD KEY clause, IX-8, IX-11

SORT statement , XI-16

Dynamic access, II-4, VIII-2, IX-2

Editing, VI-104

Editing characters, III-8

Editing rules, VI-33

Editing sign, IV-16, VI-32

Editing sign control symbols, VI-32

EGI, XIV-26

Element summary by COBOL division, 1-40

Element summary by module, I—10

Elementary item, IV-14

MOVE statement, VI-104

Noncontiguous, VI-18

PICTURE clause, VI-29

Elementary move, VI-104

Ellipsis, IV-2

ELSE clause, VI-90

EMI, XIV-26

ENABLE statement , XIV-20

END-ADD phrase, VI-73

END-CALL phrase, X-27

END-COMPUTE phrase, VI-76

END DECLARATIVES, IV-35, IV-44

END-DELETE phrase, VII1-19, IX-21

END-DIVIDE phrase, VI-80

END-EVALUATE phrase, VI-84

END-IF phrase, VI-90

END KEY clause, XIV-3, XIV-4

END-MULTIPLY phrase, VI-107

End of COBOL source program, IV-29, VI-3

End of group indicator (EGI), XIV-26

End of message indicator (EMI), XIV-26

END-OF-PAGE phrase, VII-52

END OF REEL/UNIT phrase, VII-15, VII-17

End of segment indicator (ESI), XIV-26

END-PERFORM phrase, VI-109, VI-110

END PROGRAM, VI-5

End program header

Inter-Program Communication module, X-8

X-11

Nucleus, VI-5

Reference format, IV-44

END-READ phrase, VII-44, VIII-26, IX-28

END-RECEIVE phrase, XIV-23

END-RETURN phrase, XI-14

END-REWRITE phrase, VII1-30, IX-33

END-SEARCH phrase, VI-122

END-START phrase, VI11-33, IX-36

END-STRING phrase, VI-131

END-SUBTRACT phrase, VI-134

END-WRITE phrase, VII-52, VIII-37, IX-41

ENTER COBOL, VI-83

ENTER statement, 1-9,VI-83

Entry, 111-8

Environment Division, IV-31

Debug module, XV-3

Element summary, 1-45

Indexed 1-0 module, IX-8

Nucleus, VI-9

Relative 1-0 module, VIII-8

Report Writer module, XIII-3

Segmentation module, XVI-4

Sequential 1-0 module, VII-6

Sort-Merge module, XI-2

EQUAL TO relation, VI-54, VI-122, VIII-33,

IX- 36

EOP phrase, VII-52

ERROR KEY clause, XIV-4

Error key values, XIV-16

ERROR PROCEDURES, VII-50, VIII-35, IX-39,

X- 34, XII1-76

XVII1-4

Index

ESI, XIV-26

EVALUATE statement , VI-84

Conditional expression, VI-54

Exception declarative, II-7

Exception handling, II-6

EXCEPTION PROCEDURE, VII-50, VIII-35, IX-39,

X- 34, XII1-76

Execution, IV-35

EXIT statement, VI-88

Imperative statement, IV-39

PERFORM statement, VI-120

EXIT PROGRAM statement, X-33

CANCEL statement, X-31

PERFORM statement, VI-120

Transfer of control , IV-26

Explicit specifications, IV-25

Exponentiation, VI-52

EXTEND phrase

OPEN statement, VII-39, VIII-21, IX-23, XIII-70

USE statement, VII-50, VIII-35, IX-39, XIII-76

Extension language elements, 1-8

EXTERNAL clause, X-23

OCCURS clause, VI-27

External objects , X-2

External switch, IV-28, VI-13, VI-15, VI-127

Externally provided functions, 1-7

FALSE, VI-84

FD level indicator, III-13

Indexed 1-0 module, IX-16

Inter-Program Communication module, X-15

Relative 1-0 module, VIII-14

Report Writer module, XIII-7

Sequential 1-0 module, VII-22

Figurative constant, IV-9, IV-10

DISPLAY statement, VI-78

INSPECT statement, VI-95

MOVE statement , VI-104

Restriction, VI-2

STOP statement , VI-130

STRING statement, VI-131

UNSTRING statement, VI-136

File, II-l

Attributes, II—1

Conceptual characteristics, IV-13

Physical aspects, IV-13

File attribute conflict condition, VII-5,

VIII-6, IX-7

File connector, III-9

File control entry, VII-8, VIII-8, IX-9

OPEN statement, VII-40, VIII-22, IX-24

File control entry, II1 — 9, IV-32

Indexed 1-0 module, IX-8

Relative 1-0 module, VIII-8

Report writer module, XIII-3

Sequential 1-0 module, VII-7

Sort-Merge module, XI-2

FILE-CONTROL paragraph, III-9, IV-31

Indexed 1-0 module, IX-8

Relative 1-0 module, VIII-8

Report Writer module, XIII-3

Sequential 1-0 module, VII-7

Sort-Merge module, XI-2

File description entry, III-10, IV-34

Indexed 1-0 module, IX-16

Inter-Program Communication module, X-15

Relative 1-0 module, VIII-14

Report Writer module, XIII-6, XIII-7

Sequential 1-0 module, VII-21, VII-22

File-name, III-10, IV-6, VII-7, VIII-8, IX-8,

XI- 7, XIII-3

File-name conventions, X-6

File operations, II-5

File position indicator, II-5, VII-2, VIII-2,

IX-2

File processing, 11 — 3

File Section, IV-33

Indexed 1-0 module, IX-16

Relative 1-0 module, VIII-14

Report Writer module, XIII-6

Sequential 1-0 module, VII-21

Sort-Merge module, XI-6

VALUE clause, VI-49

FILE STATUS clause

Indexed 1-0 module, IX-8

Relative 1-0 module, VIII-8

Report Writer module, XIII-3

Sequential 1-0 module, VII-7, VII-10

FILLER, VI-23

CORRESPONDING, VI-68

SYNCHRONIZED, VI-45

FINAL

CONTROL clause, XIII-15

SUM clause, XIII-52

TYPE clause, XIII-55

FIRST, VI-94

FIRST DETAIL, XIII-17

Fixed insertion editing, VI-34

Fixed length records, II-3, VII-31

Fixed overlayable segments, XVI-1

Fixed permanent segments, XVI-2

Floating insertion editing, VI-34

FOOTING, VII-27, XIII-17

FOR, VI-94

FOR REMOVAL phrase, VII-35, XIII-63

Format punctuation, IV-2

FROM phrase

ACCEPT statement, VI-71

PERFORM VARYING statement, VI-110

RELEASE statement, XI-13

REWRITE statement, VI1-48, VIII-30, IX-33

SEND statement, XIV-26

SUBTRACT statement, VI-134

WRITE statement, VII-52, VIII-37, IX-41

General format, IV-1

General rules, IV-3

GENERATE statement, XIII-66

Imperative statement, IV-39

Generic terms, IV-1

GIVING phrase
ADD statement, VI-73

DIVIDE statement , VI-80

MERGE statement, XI-8

MULTIPLY statement, VI-107

SORT statement, XI-16

SUBTRACT statement, VI-134

GLOBAL clause, X-24 , X-34, X-35

OCCURS clause, VI-27

Global names, X-2

Glossary of COBOL terms, III—1

GO TO statement , VI-89

Imperative statement, IV-39

Initial state of program, X-10

PERFORM statement, VI-120

SEARCH statement, VI-126

GREATER THAN relation, VI-54, VIII-33, IX-36

Group, IV-14

GROUP INDICATE clause, XIII-21, XII1-44

Hardware dependent language element list, XVII-94

Hardware dependent language elements, 1-8

XVIII-5

Index

HEADING phrase, XIII-17

High subset , 1-6

HIGH-VALUE/HIGH-VALUES, IV-11

SPECIAL-NAMES paragraph, VI-16

History of COBOL, XVII-1

Hyphen (-) continuation line, IV-42

Identification Division, IV-30

Element summary, 1-44

Inter-Program Communication module, X-12

Nucleus, VI-6

Identifier, IV-23, IV-35

IF statement, VI-90

Conditional expression, VI-54

Conditional statement, IV-37

Imperative statement, IV-39

SEARCH statement, VI-123

Imperative sentence, IV-39

Imperative statement, IV-39

Implementation of Standard COBOL, 1-6

Implementor-defined language element list,

XVI1-87

Implementor-defined record types, 11 — 3

Implementor-defined specifications, 1-7

Implementor-name, IV-8

ALPHABET clause, VI-13
ASSIGN clause, VII-7, VIII-8, IX-8, XI-2

XIII- 3

RECORD DELIMITER clause, VII-13

RERUN clause, VII-17

SPECIAL-NAMES paragraph, VI-13

VALUE OF clause, VII-33

Implicit specifications, IV-25

Implied relational operator, VI-61

Implied subject, VI-61

IN, IV-19, IV-20, XI1-2

Incompatible data, VI-70

Indentation, IV-44

Independent segments, XVI-2

Index, III-ll, IV-21 , IV-22

INDEX in USAGE clause, VI-46

Index data item, VI-47

Condition-name, VI-21

CONTROL clause, XIII-15

Initial value, VI-19

INITIALIZE statement, VI-92

MOVE statement , VI-103

PICTURE clause, VI-29

Relation condition, VI-56

SEARCH statement , VI-123

SET statement, VI-127

Index-name, III-ll, IV-6, IV-21

Conventions, X-7

OCCURS clause, VI-26

PERFORM statement, VI-110

Relation condition, VI-56

SEARCH statement, VI-122

SET statement, VI-127

INDEXED BY phrase, VI-26, VI-27, XIV-4

Indexed file, IX-1

Indexed 1-0 module, IX-1

Element summary, 1-25

Indexed organization, II-2, IX-1, IX-13

Indicator area, IV-41

INITIAL clause, X-12

INITIAL phrase

Communication description entry, XIV-3,

XIV- 4

INSPECT statement, VI-94

Initial program, 11-22, X-3

Initial state of program, X-10

Initial values

File Section, VII-21, XI-6

Linkage Section, X-14

Working-Storage Section, VI-19

INITIALIZE statement, VI-92

INITIATE statement, XIII-69

Imperative statement, IV-39

In-line PERFORM statement, VI-111

Input-Output Section, IV-31

Indexed 1-0 module, IX-8

Relative 1-0 module, VIII-8

Report Writer module, X111 — 3

Sequential 1-0 module, VII-6

Sort-Merge module, XI-2

Input-output statement, II1—12

INPUT phrase

Communication description entry, XIV-3

DISABLE statement, XIV-18

ENABLE statement, XIV-20

OPEN statement, VII-39, VI11-21, IX-23

USE statement, VII-50, VIII-35, IX-39

INPUT PROCEDURE phrase, XI-16

INSPECT statement , VI-94

Imperative statement, IV-39

INSTALLATION paragraph, VI-6

Integer , II1-12

Inter-program communication concepts, 11-22

Inter-Program Communication module, X-l

Element summary, 1-28

Intermediate subset, 1-6

International standardization of COBOL, XVII-14

International Organization for

Standardization (ISO), XVII-14

Internal objects, X-2

INTO

DIVIDE statement, VI-80

READ statement, VII-44, VIII-26, IX-28

RECEIVE statement, XIV-23

RETURN statement , XI-14

STRING statement, VI-131

UNSTRING statement , VI-136

Intra-program communication, 11-26

INVALID KEY condition, VIII-5, IX-6

DELETE statement, VII1-19, IX-21

READ statement, VIII-26, IX-28

REWRITE statement, VIII-30, IX-33

START statement, VIII-33, IX-36

WRITE statement, VIII-37, IX-41

I-O-CONTROL paragraph, 111 — 10

Indexed 1-0 module, IX—15

Relative 1-0 module, VI11 — 13

Report Writer module, XIII-5

Sequential 1-0 module, V11 — 15

Sort-Merge module, XI-3

1-0 phrase

Communication description entry, XIV-4

OPEN statement, VII-39, VIII-21, IX-23

USE statement, VII-50, VIII-35, IX-39

1-0 status , 11 — 7

FILE STATUS clause, VII-10

Indexed 1-0 module, IX-2

Relative 1-0 module, VIII-2

Sequential 1-0 module, VII-2

1-0 TERMINAL phrase, XIV-18, XIV-20

XVII1-6

Index

JUSTIFIED (JUST) clause, VI-24

Condition-name, VI-21

Figurative constant, IV—11

Report group description entry, XIII-21

Standard alignment, IV-17

STRING statement, VI-131

USAGE IS INDEX clause, VI-46

VALUE clause, VI-49

KEY data-names

MERGE statement, XI-8

SORT statement, XI-16

KEY phrase

DISABLE statement, XIV-18

ENABLE statement , XIV-20

MERGE statement, XI-8

OCCURS clause, VI-26

READ statement, TX-28

SEARCH statement, VI-123

SORT statement , XI-16

START statement, VIII-33, IX-36

Key word, IV-1, IV-8

LABEL RECORDS clause

Indexed 1-0 module, IX-16

Relative 1-0 module, VIII-14

Report Writer module, XIII-7

Sequential 1-0 module, VII-22, VII-26

Language concepts, IV-4

Element summary, 1-41

Language-name, III—13, IV-8, VI-83

Language structure, IV-4

LAST DETAIL phrase, XI11-17

LEADING

INSPECT statement, VI-94

SIGN clause, VI-42

LEFT, VI-44

LESS THAN relation, VI-54, VIII-33, IX-36

Level concept, IV-14

Level indicator, IV-43

Level-number, III-13, TV-6, IV-7, IV-14,

VI-21 , VI-25

Data description entry, VI-20

Notation, IV-2

Reference format, IV-44

Report group description entry, XIII-20,

XI11-45

Leveling of module elements, 1-1

Library, XI1-2

Library-name, 111 — 13, IV-6, XII-2

Library text, III—13, XII-2

LIMIT/LIMITS, XIII-17

LINAGE clause, VII-27, X-15

Linage concepts , II-5

LINAGE-COUNTER, VII-5, VII-28, VII-55

Qualified, IV-19, IV-20

Special register IV-9

LINE-COUNTER, XIII-1, XIII-13

Qualified, IV-19, IV-20

Special register, IV-9

LINE/LINES

PAGE clause, XIII-17

SEND statement, XIV-26

WRITE statement, VII-52

LINE NUMBER clause, XIII-20, XIII-21, XIII-46

LINES AT BOTTOM phrase, VII-27

LINES AT TOP phrase, VII-27

Linkage Section, IV-33, X-13

VALUE clause, VI-49

List of elements by COBOL division, 1-40

List of elements by module, 1-10

Literal , IV-9

ALPHABET clause, VI-13, VI-15

CURRENCY SIGN clause, VI-13, VI-17

STOP statement , VI-130

Local names, X-2

LOCK phrase, VII-35, VIII-17, IX-19, XIII-63

Logical operator, VI-59

Precedence, VI-60

Logical record, II-2, IV-13, VII-23

LOW-VALUE/LOW-VALUES, IV-11

SPECIAL-NAMES paragraph, VI-16

Lowercase letters, IV-5, VI-29, VI-56

MCS, 11-28

MEMORY SIZE clause, VI-11

Merge file , XI-1

MERGE statement, XI-8

Imperative statement, IV-39

Segmentation, XVI-8

Transfer of control, IV-26

Merging, II-6

Message concepts, 11-32

Message control system, 11-28

STOP statement, VI-130

MESSAGE COUNT clause, XIV-3

MESSAGE DATE clause, XIV-3, XIV-4

MESSAGE phrase, XIV-23

MESSAGE TIME clause, XIV-3, XIV-4

Minimum subset , 1-6

Minus (-) PICTURE symbol, VI-32, VI-34, VI-35

Mnemonic-name, IV-6, IV-7

ACCEPT statement, VI-71

DISPLAY statement, VI-78

SEND statement, XIV-26

SET statement, VI-127

SPECIAL-NAMES paragraph, VI-13

WRITE statement, VII-52

Module abbreviations, 1-4

Module chart, 1-5

Module concept, 1-1

MODULES, VI-11

MOVE statement, VI-103

CORRESPONDING (CORR), VI-68

Imperative statement, IV-39

Index data item, VI-47

MOVE CORRESPONDING (MOVE CORR) statement, VI-103

MULTIPLE FILE TAPE clause, VII-15, VII-16, XI11-5

Multiple results in arithmetics, VI-69

MULTIPLY statement, VI-107

Composite of operands, VI-69

COMPUTE statement , VI-76

Conditional statement, IV-37

Data conversion, VI-69

Decimal alignment, VI-69

Imperative statement, IV-39

Maximum operand size, VI-69

Multiple results, VI-69

NATIVE phrase, VI-13, VI-15

Native character set, III-14, VI-15

Native collating sequence, III-14, VI-15

NEGATIVE, VI-58

Negated condition, VI-59

Nested source programs, X-l, X-8

Nested statements, IV-40

NEXT phrase

Indexed 1-0 module, IX-28

Relative 1-0 module, VIII-26

Sequential 1-0 module, VII-44

NEXT GROUP clause, XIII-20, XI11-48

XVIII-7

Index

NEXT PAGE phrase

LINE NUMBER clause, XIII-46

NEXT GROUP clause, XI11-48

NEXT SENTENCE phrase

IF statement, VI-90

SEARCH statement, VI-122

NO DATA phrase, XIV-23

NO REWIND phrase, VII-35, VII-39, XIII-63,

XI11-70

Noncontiguous elementary item, VI-18, X-13

Level-number 77, VI-25

Nonnumeric comparison, VI-55

Nonnumeric literal , IV-9

Continuation, IV-42

NOT

EVALUATE statement, VI-84

Logical operator, VI-59

Relational operator, VI-55

NOT AT END-OF-PAGE phrase, VI1-52

NOT AT EOP phrase, VII-52

NOT AT END phrase

Implicit scope terminator, IV-27

READ statement, VII-44

RETURN statement, XI-14

NOT INVALID KEY phrase

DELETE statement, VIII-19, IX-21

READ statement, VIII-26, IX-28

REWRITE statement, VI11-30, IX-33

START statement, VII1-33, IX-36

WRITE statement, VIII-37, IX-41

NOT ON EXCEPTION phrase, X-27

NOT ON OVERFLOW phrase

STRING statement, VI-131

UNSTRING statement, VI-136

NOT ON SIZE ERROR phrase

ADD statement, VI-73

COMPUTE statement, VI-76

DIVIDE statement, VI-80

MULTIPLY statement, VI-107

SUBTRACT statement, VI-134

Notation rules, IV-1

Nucleus, VI-1

Element summary, I—11

NUMERIC

Class condition, VI-57

INITIALIZE statement, VI-92

Numeric category, IV-15, VI-29, VI-48, VI-104

Numeric character, II1—15

Numeric class, IV-15, VI-56

Numeric comparison, VI-55

Numeric data item, VI-30

NUMERIC-EDITED, VI-92

Numeric edited category, IV-15, VI-29, VI-48,

VI-104

Numeric edited data item, VI-30

Numeric literal, IV-10, VI-104

OBJECT-COMPUTER paragraph, VI-11, XVI-4

Object time switch, XV-2

Obsolete language element, 1-7

Obsolete language element list, XVII-81

Occurrence number, IV-21 , VI-124, VI-128

OCCURS clause, VI-26

CORRESPONDING phrase, VI-68

INITIALIZE statement, VI-92

MOVE statement, VI-104

REDEFINES clause, VI-38

RENAMES clause, VI-40

SEARCH statement, VI-123

SET statement, VI-128

SYNCHRONIZED clause, VI-45

VALUE clause, VI-50

OF, IV-19, IV-20, XI1-2

OFF, VI-127

OFF STATUS phrase, VI-13

ON, VI-127

ON EXCEPTION phrase, X-27

ON OVERFLOW phrase

CALL statement, X-27

STRING statement, VI-131

UNSTRING statement, VI-136

ON phrase, VII-17, VIII-13, IX-15

ON SIZE ERROR phrase, VI-67

ADD statement, VI-73

COMPUTE statement, VI-76

DIVIDE statement, VI-80

MULTIPLY statement, VI-107

SUBTRACT statement, VI-134

Open mode, II-4, VII-39, VIII-21, IX-23,

XI11-70

OPEN statement

Imperative statement, IV-39

Indexed 1-0 module, IX-23

Relative 1-0 module, VIII-21

Report Writer module, XIII-70

Sequential 1-0 module, VII-39

Operational sign, IV-16

Operator

Arithmetic, IV-9, VI-52

Logical, VI-59

Relational, VI-54, VI-55

Optional modules, 1-6

OPTIONAL phrase

Indexed 1-0 module, IX-8

Relative 1-0 module, VIII-8

Sequential 1-0 module, VII-7

Optional word, IV-9

OR phrase, VI-136

OR

Abbreviated combined relation condition,

VI-61

Combined condition, VI-59

Evaluation order, VI-61

Logical operator, VI-59

ORGANIZATION IS INDEXED clause, IX-13

ORGANIZATION IS RELATIVE clause, VIII-12

ORGANIZATION IS SEQUENTIAL clause, VI I-11, XIII-3

OTHER, VI-84

Out-of-line PERFORM statement, VI-111

OUTPUT phrase

Communication description entry, XIV-4

DISABLE statement, XIV-18

ENABLE statement, XIV-20

OPEN statement, VII-39, VIII-21, IX-23,

XI11-70

USE statement, VII-50, VIII-35, IX-39

OUTPUT PROCEDURE phrase, XI-8, XI-16

Overall language consideration, IV-1

OVERFLOW phrase

CALL statement , X-27

STRING statement, VI-131

UNSTRING statement, VI-136

Overlapping operands, VI-69

'P ' PICTURE symbol, VI-31

USAGE clause, VI-46

PACKED-DECIMAL, VI-46

PADDING CHARACTER clause, VII-7, VII-12, XIII-3

PAGE

SEND statement, XIV-26

WRITE statement, VII-52

PAGE clause, XIII-11, XIII-17

XVII1-8

Index

PAGE-COUNTER, XIII-1, XIII-12

Qualified, IV-19, IV-20

Special register, IV-9

PAGE FOOTING (PF), XI11-55

Page footing presentation rules, XI11 — 37

PAGE HEADING (PH), XII1-55

Page heading group presentation rules, XIII-30

Paragraph, IV-35, IV-43

Paragraph header, III—17, IV-43

Paragraph-name, IV-6, IV—7, IV-35

Qualified, IV-19

Reference format, IV-43

Parentheses

Arithmetic expression, VI-53

Condition, VI-60

PICTURE clause, VI-30

Separators, IV-4

Subscripting, IV-21

PERFORM statement, VI-109

Conditional expression, VI-54

Imperative statement, IV-39

Segmentation, XVI-8

SET statement, VI-128

Transfer of control, IV-26

Period, IV-3

DECIMAL-POINT IS COMMA clause, VI-17

PICTURE symbol, VI-32, VI-33

Separator, IV-4

PF, XI11-55

PH, XI11-55

Phrase, II I-17

Physical record, IV-13, VII-23

PICTURE character-string, IV-12

PICTURE (PIC) clause, VI-29

BLANK WHEN ZERO clause, VI-22

CURRENCY SIGN clause, VI-17

DECIMAL POINT IS COMMA clause, VI-17

Linkage Section, X-13

Report group description entry, X111 — 21

SIGN clause, VI-42

STRING statement, VI-131

SYNCHRONIZED clause, VI-44

UNSTRING statement, VI-136

USAGE clause, VI-46

Working-Storage Section, VI-18

PLUS phrase

LINE NUMBER clause, XIII-46

NEXT GROUP clause, XIII-48

Plus (+) PICTURE symbol, VI-32, VI-34, VI-35

POINTER phrase

STRING statement, VI-131

UNSTRING statement, VI-136

POSITION phrase, VII-16

POSITIVE, VI-58

Precedence rules for PICTURE character-string,

VI-36

Presentation rules tables, XIII-24

Prime record key, IX-14

Procedure, IV-35

Procedure branching statement, 111— 17 , IV-26

Procedure Division, IV-35

Communication module, XIV-17

Debug module, XV-4

Element summary, 1-53

Indexed 1-0 module, IX-18

Inter-Program Communication module, X-25

Nucleus , VI-51

Relative 1-0 module, VIII-16
Report Writer module, XIII-62

Segmentation module, XVI-6

Sequential 1-0 module, VII-34

Sort-Merge module, XI-8

Procedure Division header, IV-36 , X-25

Procedure-name, II1-18

GO TO statement , VI-89

MERGE statement, XI-8

PERFORM statement , VI-109

SORT statement, XI-16

USE FOR DEBUGGING statement, XV-5

PROGRAM-ID paragraph

Inter-Program Communication module, X-12

Nucleus, VI-7

Program-name, 111 — 18 , IV-6

Conventions, X-5

End program header, X—11

PROGRAM-ID paragraph, VI-7, X-12

PROGRAM COLLATING SEQUENCE clause, VI-11

ALPHABET clause, VI-15

Program & run unit organization, 11-18

Program classes, 11-22

Program segments, XVI-1

Pseudo-text, XI1-2, XII-6

Pseudo-text delimiters, III-18, IV-5, IV-43

Pseudo-text format, IV-43

Punctuation characters, II1—18

Format punctuation, IV-2

Separators , IV-4

PURGE statement, XIV-22

Qualification, IV-18

Restriction, VI-1

Queue, II1 — 18

Queue concepts, 11-32

Queue hierarchy, 11-33

Quotation mark

Separator, IV-5

QUOTE, QUOTES, IV-11

Random access, 11—4, VIII-2, IX-2

RD entry, XIII-10, XI1I-11

RD level indicator, 111 — 13 , X-22 , XI11 — 11

Reference format, IV-43

READ statement

Indexed 1-0 module, IX-28

Relative 1-0 module, VII1-26

Sequential 1-0 module, VII-44

RECEIVE statement, XIV-23

Record

Concepts, IV-14

Fixed length records, II-3

Implementor-defined record types, II-3

Linkage records, X-14

Logical, II-2, IV-13

Physical , IV-13

Variable length records, II-3

Working storage records, VI-18

RECORD clause

Indexed 1-0 module, IX-16

Relative 1-0 module, VIII-14

Report Writer module, XI11 — 7

Sequential 1-0 module, VII-22, VII-30

Sort-Merge module, XI-7

RECORD CONTAINS clause

Indexed 1-0 module, IX-16

Relative 1-0 module, VI11 — 14

Report Writer module, XIII-7

Sequential 1-0 module, VII-22, VII-30

Sort-Merge module, XI-7

RECORD DELIMITER clause
Report Writer module, XIII-3

Sequential 1-0 module, VII-7, VI1—13

Record description entry, 111 — 19 , IV-33,

IV-34

XVII1-9

Index

Record description structure, VI-19, VII-21,

XI-6, XIV-2

RECORD KEY clause, IX-14

Record-name, 111 — 19 , IV-6

Conventions, X-6

RECORDS, VI1-23

RECORDS phrase, VII-17, VII-18

RECORD VARYING clause, VII-22, VII-30,

VII1-14, IX-16 , XI-7

REDEFINES clause, VI-38

CORRESPONDING phrase, VI-68

INITIALIZE statement, VI-93

Procedure Division header, X-25

SYNCHRONIZED clause, VI-44

VALUE clause, VI-49

REEL, VI1-35, XI11-63

Reference format, IV-41

Restriction, VI-2

Text-words, XI1-4

Reference modification, IV-22

Restriction, VI-2

STRING statement, VI-131

UNSTRING statement, VI-136

USE FOR DEBUGGING statement, XV-5

Relation character, IV-9

Relation condition, VI-54

Abbreviated combined, VI-60

Indexed data item, VI-46

Nonnumeric operands, VI-55

Numeric operands, VI-55

Relational operator, VI-54, VI-55

Relative file, VI11 — 1

Relative 1-0 module, VI11 — 1

Element summary, 1-22

RELATIVE KEY phrase, VII1-8, VIII-10

Relative organization, II-2, VIII-1, VIII-12

Relative record number, VIII-1, VIII-10

RELEASE statement, XI-13

Imperative statement, IV-39

Relative subscripting, IV-22

REMAINDER phrase, VI-80

REMOVAL phrase, VII-35, XIII-63

RENAMES clause, VI-21, VI-40

CORRESPONDING phrase, VI-68

INITIALIZE statement, VI-92

Leve1-number, IV-15, VI-25

PICTURE clause, VI-29

REPLACE statement, XII-6

Compiler directing statement, IV-38

REPLACING LINE phrase, XIV-26

REPLACING phrase

COPY statement, XII-2

INITIALIZE statement, VI-92

INSPECT statement, VI-94

REPORT clause, XIII-9

Report description entry, III-20, X-22,

XIII-10, XIII-11

Report file, XIII-1, XI11-3

REPORT FOOTING (RF), XIII-55

Report footing presentation rules, XIII-39

Report group description entry, III-20,

XIII-10, XII1-20

REPORT HEADING (RH), XIII-55

Report heading group presentation rules, XIII-27

Report-name, III-21, IV-6, XIII-9, XIII-11,

XI11-66 , XII1-75

Conventions, X-6

Report Section, IV-33, XIII-10

Report writer concepts, II-8

Report Writer module, XIII-1

Element summary, 1-33

Required words, IV-8

RERUN clause

Indexed 1-0 module, IX-15

Relative 1-0 module, VIII-13

Sequential 1-0 module, VII-15, VII-17

RESERVE clause

Indexed 1-0 module, IX-8

Relative 1-0 module, VIII-8

Report Writer module, XIII-3

Sequential 1-0 module, VII-7, VII-14

Reserved word, IV-8, IV-45

Implementation, 1-8

Reserved word list, IV-45

RESET phrase, XIII-52

RETURN statement, XI-14

Conditional statement, IV-37

REVERSED phrase, VII-39

REWRITE statement

Indexed 1-0 module, IX-33

Relative 1-0 module, VIII-30

Sequential 1-0 module, VII-48

RF, XIII-55

RH, XIII-55

RIGHT, VI-24, VI-44

ROUNDED phrase, VI-67

ADD statement, VI-73

COMPUTE statement, VI-76

DIVIDE statement, VI-80

MULTIPLY statement, VI-107

SUBTRACT statement, VI-134

Routine-name, III-21, IV-6, VI-83

Rules, IV-3

RUN, VI-130

'S' PICTURE symbol, VI-31

SIGN clause, VI-42

USAGE clause, VI-46

SAME clause

Indexed 1-0 module, IX-15

Relative 1-0 module, VIII-13

Report Writer module, XIII-5

Sequential 1-0 module, VII-15, VII-19

SAME RECORD AREA clause

Indexed 1-0 module, IX-15

Relative 1-0 module, VIII-13

Sequential 1-0 module, VII-15, VII-19

Sort-Merge module, XI-3, XI-4

SAME SORT AREA clause, XI-3, XI-4

SAME SORT-MERGE AREA clause, XI-3, XI-4

Scope of names, X-4

Scope of statements, IV-40

Scope terminators, IV-27, IV-40

SD level indicator, III-13, XI-6, XI-7

Reference format, IV-43

SEARCH statement, VI-122

Conditional expression, VI-54

SET statement, VI-128

USAGE IS INDEX clause, VI-46

Section, IV-35 , IV-43

Section header, III-22, IV-43

Section-name, IV-6, IV-7

SECURITY paragraph, VI-6

Segment, XVI-1

SEGMENT-LIMIT clause, XVI-5

Segment-number, III-22, IV-6, XVI-7

SEGMENT phrase, XIV-23

Segmentation classification, XVI-2

Segmentation control, XVI-3

Segmentation module, XVI-1

Element summary, 1-39

XVIII-10

Index

SELECT clause

Indexed 1-0 module, IX-8

Relative 1-0 module, VIII-8

Report Writer module, XIII-3

Sequential 1-0 module, VII-7

Sort-Merge module, XI-2

Semicolon, IV-2, IV-4>

Interchangeable with comma, IV-2

SEND statement, XIV-26

Mnemonic-name, VI-13

SPECIAL-NAMES paragraph, VI-13

STOP statement, VI-130

Sentence, IV-35 , IV-37, IV-43

SEPARATE CHARACTER phrase, VI-42

Separator, IV-4

Restriction, VI-1

SEQUENCE clause, VI-11

Sequence number, IV-42

Sequence number area, IV-41

Sequential access, I1-3, VII-1, VIII-2, IX-2

Sequential file, VII-1

Sequential 1-0 module, VII-1

Element summary, 1-19

Sequential organization, 11 — 1 , VII-1, VII-11

SET statement, VI-127

Imperative statement, IV-39

SPECIAL-NAMES paragraph, VI-15

Shared memory area, 11-17

Sharing data, X-4

Sharing files, X-4

SIGN clause, VI-42

Class condition, VI-57

MOVE statement;, VI-105

Operational sign, IV-16

PICTURE clause, VI-31

Report group description entry, XIII-21,

XI11-49

Sign condition, VI-58

Simple condition, VI-54

Simple insertion editing, VI-33

Single character substitution, IV-4

SIZE, VI-11 , VI-131

SIZE ERROR phrase, VI-67

ADD statement, VI-73

COMPUTE statement, VI-76

DIVIDE statement, VI-80

MULTIPLY statement, VI-107

SUBTRACT statement, VI-134

Slant (/) comment line, IV-42

Sort file, XI-1

SORT statement, XI-16

Imperative statement, IV-39

Segmentation, XVI-9

Transfer of control, IV-26

Sort-merge file description entry, III-23,

XI-6, XI-7

Sort-Merge module, XI-1

Element summary, 1-30

Sorting, II-5

SOURCE clause, XIII-21, XI11-51

SOURCE-COMPUTER paragraph, VI-10

WITH DEBUGGING MODE phrase, XV-3

Source program, IV-29, VI-3

COPY statement, XII-2

Separately compiled, VI-4

Source text manipulation module, XII-1

Element summary, 1-32

Space, IV-4

SPACE/SPACES, IV-11, VI-104

Special character, III-23, IV-3

Special-character words, IV-3, IV-9

Special insertion editing, VI-33

SPECIAL-NAMES paragraph, VI-13

ACCEPT statement , VI-71

Condition-name, IV-7

DISPLAY statement, VI-78

Mnemonic-name, IV-7

SEND statement, XIV-26

Switch-status condition, VI-58

WRITE statement, VII-52

Special registers, IV-9

DEBUG-ITEM, XV-1

LINAGE-COUNTER, VII-5

LINE-COUNTER, XIII-1

PAGE-COUNTER, XIII-1

Standard alignment rules, IV-16

Standard COBOL, 1-6

Standard data format, III-24, IV-13

Standard language element acceptance, 1-7

STANDARD-1 phrase

ALPHABET clause, VI-13, VI-15

RECORD DELIMITER clause, VII-13

STANDARD-2 phrase, VI-13, VI-15

Standardization of COBOL, XVII-11

START statement

Indexed 1-0 module, IX-36

Relative 1-0 module, VIII-33

Statement , IV-35 , IV-37

STATUS KEY clause, XIV-3, XIV-4

STOP statement , VI-130

Figurative constant, IV-11

Imperative statement, IV-39

Transfer of control, IV-26

STRING statement, VI-131

Figurative constant, IV-11

Imperative statement, IV-39

Subscripting, IV-21

Concepts, 11-14

Condition-name, IV-24

Conditional variable, IV-24

MOVE statement , VI-103

Qualified, IV-21

Report Section, XIII-2

Restriction, VI-2

SET statement, VI-128

Subsets of Standard COBOL, 1-5

Substantive changes, XVII-42

Substitute language elements, 1-7

SUBTRACT statement , VI-134

Composite of operands, VI-69

COMPUTE statement, VI-76

Conditional statement, IV-37

CORRESPONDING (CORR), VI-68

Data conversion, VI-69

Decimal alignment, VI-69

Imperative statement, IV-39

Maximum operand size, VI-69

Multiple results, VI-69

SUBTRACT CORRESPONDING (SUBTRACT CORR), VI-68,

VI-134

SUM clause, XIII-21, XIII-52

Summary of elements by COBOL division, 1-40

Summary of elements by module, 1-10

Summary of differences, XVII-16

SUPPRESS statement, XIII-74

Imperative statement, IV-39

Switch-status condition, VI-58

Symbolic-character, III-24, IV-6

Symbolic-character figurative constant, TV-11

SYMBOLIC CHARACTERS clause, VI-13

SYMBOLIC DESTINATION clause, XIV-4

SYMBOLIC QUEUE clause, XIV-3

SYMBOLIC SOURCE clause, XIV-3

SYMBOLIC SUB-QUEUE-1 clause, XIV-3

XVIII-11

Index

SYMBOLIC SUB-QUEUE-2 clause, XIV-3

SYMBOLIC SUB-QUEUE-3 clause, XIV-3

SYMBOLIC TERMINAL clause, XIV-4

SYNCHRONIZED (SYNC) clause, VI-44

Elementary data item, VI-21

VALUE clause, VI-49

Syntax rules, IV-3

System-name, IV-8

Table, 11-12, VI-122, VI-127

Table definition, 11-12

Table element, 11-12, VI-122, VI-127

Table handling, 11-12, VI-127

TALLYING phrase

INSPECT statement, VI-94

UNSTRING statement, VI-136

TERMINAL phrase, XIV-18, XIV-20

TERMINATE statement, XIII-75

TEST AFTER phrase, VI-109, VI-110

TEST BEFORE phrase, VI-109, VI-110

TEXT LENGTH clause, XIV-3, XIV-4

Text-name, III-25, IV-6, XI1-2

Qualified, IV-19

Text word, II1-25, XII-2

THEN, VI-90

THROUGH (THRU)

ALPHABET clause, VI-13

EVALUATE statement, VI-84

MERGE statement, XI-8

PERFORM statement, VI-109

RENAMES clause, VI-40

SORT statement, XI-16

VALUE clause, VI-48

TIME, VI-72

TIMES, VI-109

TRAILING, VI-42

Transaction communication, 11-35

Transfer of control, 11-23, IV-25

TRUE, VI-84, VI-127

TYPE clause, XHI-20, XIII-55

Unary arithmetic operator, VI-52

Unary minus, VI-52

Unary plus, VI-52

Undefined language element list, XVII-96

Uniqueness of reference, IV-17

UNIT, VII-35, XIII-63

UNSTRING statement, VI-136

Figurative constant, IV-11

Imperative statement, IV-39

UNTIL phrase, VI-109, VI-110

UP BY, VI-127

UPON phrase

DISPLAY statement, VI-78

SUM clause, XIII-52

Uppercase letters, IV-6, VI-29, VI-56

USAGE clause, VI-46

Class condition, VI-57

INSPECT statement, VI-95

Relation condition, VI-54

Report group description entry, XIII-20,

XI11-21 , XI11-60

SIGN clause, VI-42

STRING statement, V.I-131

SYNCHRONIZED clause, VI-44

UNSTRING statement, VI-136

VALUE clause, VI-49

USAGE IS INDEX clause, VI-46

CORRESPONDING phrase, VI-68

SEARCH statement, VI-123

Working-Storage Section, VI-18

USE statement

Compiler directing statement, IV-38

Declaratives, IV-35

Indexed 1-0 module, IX-39

Inter-Program Communication module, X-34

Relative 1-0 module, VIII-35

Report Writer module, XI1I-76

Sequential 1-0 module, VII-50

USE BEFORE REPORTING statement, X-35, XII1-78

USE FOR DEBUGGING statement, XV-5

User-defined words, IV-6

Restrictions, VI-1

USING phrase in CALL statement, X-27

Index data item, VI-46

USING phrase in MERGE statement, XI-8

USING phrase in Procedure Division header, X-25

Index data item, VI-46

USING phrase in SORT statement, XI-16

'V' PICTURE symbol, VI-32

USAGE clause, VI-46

VALUE clause, VI-48

Report Writer module, XIII-21, XIII-61

SET statement, VI-129

VALUE OF clause

Indexed 1-0 module, IX-16

Relative 1-0 module, VIII-14

Report Writer module, XIII-7

Sequential 1-0 module, VII-22, VII-33

Variable length records, 11 — 3, VII-30

Variable occurrence data item, II1 — 26, VI-27,

VI-50

VARYING IN SIZE phrase, VII-30

VARYING phrase

PERFORM statement, VI-110

SEARCH statement, VI-122

Verb, III-26

WHEN phrase

EVALUATE statement, VI-84

SEARCH statement, VI-122

WITH DATA phrase, XIV-23

WITH DEBUGGING MODE clause, VI-10, XV-2,

XV-3

WITH DUPLICATES phrase

ALTERNATE RECORD KEY clause, IX-8, IX-11

SORT statement, XI-16

WITH EGI phrase, XIV-26

WITH EMI phrase, XIV-26

WITH ESI phrase, XIV-26

WITH FOOTING phrase, VII-27

WITH identifier phrase, XIV-26

WITH KEY phrase, XIV-18, XIV-20

WITH LOCK phrase, VII-35, VIII-17, IX-19,

XIII-63

WITH NO ADVANCING phrase, VI-78

WITH NO REWIND phrase, VII-35, VII-39, XIII-63,

XI11-70

WITH POINTER phrase

STRING statement, VI-131

UNSTRING statement, VI-136

WITH TEST phrase, VI-109

Word, IV-1

WORDS, VI-11

Working-Storage Section, IV-33, VI-18

VALUE clause, VI-49

XVIII-12

Index

WRITE statement

Conditional statement, IV-37

Imperative statement, IV-39

Indexed 1-0 module, IX-41

Mnemonic-name, VI-13

Relative 1-0 module, VIII-37

Sequential 1-0 module, VII-52

SPECIAL-NAMES paragraph, VI-13

'X' PICTURE symbol, VI-32

’ z' PICTURE symbol, VI-32, VI-35

ZERO/ZEROS/ZEROES, IV-11, VI-104

ZERO in sign condition, VI-58

Zero suppression editing, VI-35

'O' PICTURE symbol, VI-32, VI-33

'9' PICTURE symbol, VI-32, VI-46

'01 ' entry, IV-14, VI-25, XIII-20

'66' RENAMES data description entry, VI-21

VI-25, VI-40

'77' item description entry, VI-18, VI-25 ,

X-13

'88' condition-name data description entry

VI-21 , VI-25

> re lation, VI-54

< re lation, VI-54

= re lation, VI-54

+ operator, VI-52

+ PICTURE symbol, VI-32, VI-34, VI-35

- continuation line, IV-42

- operator, VI-52

- PICTURE symbol, VI-32, VI-34, VI-35

* comment tine, IV-42

* operator, VI-52

* PICTURE symbol, VI-32, VI-35

/ comment line, IV-42

/ operator, VI-52

/ PICTURE symbol, VI-32, VI-33

** operator , VI-52

== pseudo-text delimiter, III-18, IV-42

XVII1-13

■

X3.115-1984 Unformatted 80 Megabyte Trident Pack for Use
at 370 tpi and 6000 bpi (General, Physical, and Magnetic Charac¬
teristics)
X3.117-1984 Printable/lmage Areas for Text and Facsimile Com¬
munication Equipment
X3.118-1984 Financial Services — Personal Identification Number
- PIN Pad
X3.119-1984 Contact Start/Stop Storage Disk, 158361 Flux Trans¬
itions per Track, 8,268 Inch (210 mm) Outer Diameter and 3,937
inch (100 mm) Inner Diameter
X3.120-1984 Contact Start/Stop Storage Disk
X3.121-1985 Two-Sided, Double-Density, Unformatted 5.25-inch
(130-mm), 48-tpi (1,9-tpmm). Flexible Disk Cartridge for 7958
bpr Use
X3.124-1985 Graphical Kernel System (GKS) Functional
Description
X3.124.1-1985 Graphical Kernel System (GKS) FORTRAN
Binding

X3.126-1985 One-or Two-Sided Double-Density Unformatted
Flexible Disk Cartridge for 7958 BPR Use
X11.1-1977 Programming Language MUMPS
IEEE 416-1978 Abbreviated Test Language for All Systems
(ATLAS)
IEEE 716-1982 Standard C/ATLAS Language
IEEE 717-1982 Standard C/ATLAS Syntax
IEEE 770X3.97-1983 Programming Language PASCAL
IEEE 771-1980 Guide to the Use of ATLAS
Ml L-STD-1815A-1983 Reference Manual for the Ada Programming
Language

X3/TRI-82 Dictionary for Information Processing Systems
(Technical Report)

American National Standards for Information Processing
X3.1-1976 Synchronous Signaling Rates for Data Transmission

X3.2-1970 Print Specifications for Magnetic Ink Character

Recognition

X3.4-1977 Code for Information Interchange

X3.5-1970 Flowchart Symbols and Their Usage '

X3.6-1965 Perforated Tape Code

X3.9-1978 Programming Language FORTRAN

X3.11-1969 General Purpose Paper Cards

X3.14-1983 Recorded Magnetic Tape (200 CPI, NRZI)

X3.15-1976 Bit Sequencing of the American National Standard

Code for Information Interchange in Serial-by-Bit Data Transmission

X3.16-1976 Character Structure and Character Parity Sense for

Serial-by-Bit Data Communication in the American National Stan¬

dard Code for Information Interchange

X3.17-1981 Character Set for Optical Character Recognition

(OCR-A)

X3.18-1974 One-Inch Perforated Paper Tape

X3.19-1974 Eleven-Sixteenths-Inch Perforated Paper Tape

X3.20-1967 Take-Up Reels for One-Inch Perforated Tape

X3.21-1967 Rectangular Holes in Twelve-Row Punched Cards

X3.22-1983 Recorded Magnetic Tape (800 CPI, NRZI)

X3.23-1985 Programming Language COBOL

X3.25-1976 Character Structure and Character Parity Sense for

Parallel-by-Bit Data Communication in the American National

Standard Code for Information Interchange

X3.26-1980 Hollerith Punched Card Code

X3.27-1978 Magnetic Tape Labels and File Structure

X3.28-1976 Procedures for the Use of the Communication Control

Characters of American National Standard Code for Information

Interchange in Specified Data Communication Links

X3.29-1971 Specifications for Properties of Unpunched Oiled

Paper Perforator Tape

X3.30-1971 Representation for Calendar Date and Ordinal Date

X3.31-1973 Structure for the Identification of the Counties of the

United States

X3.32-1973 G raphic Representation of the Control Characters of

American National Standard Code for Information Interchange

X3.34-1972 Interchange Rolls of Perforated Tape

X3.36-1975 Synchronous High-Speed Data Signaling Rates between

Data Terminal Equipment and Data Communication Equipment

X3.37-1980 Programming Language APT

X3.38-1972 Identification of States of the United States

(Including the District of Columbia)

X3.39-1973 Recorded Magnetic Tape (1 600 CPI, PE)

X3.40-1983 Unrecorded Magnetic Tape (9-Track 800 CPI, NRZI;

1600 CPI, PE; and 6250 CPI, GCR)

X3.41-1974 Code Extension Techniques for Use with the 7-Bit

Coded Character Set of American National Standard Code for Infor¬

mation Interchange

X3.42-1975 Representation of Numeric Values in Character Strings

X3.43-1977 Representations of Local Time of the Day

X3.44-1974 Determination of the Performance of Data Communi¬

cation Systems

X3.45-1982 Character Set for Handprinting

X3.46-1974 Unrecorded Magnetic Six-Disk Pack (General, Physical,

and Magnetic Characteristics)

X3.47-1977 Structure for the Identification of Named Populated

Places and Related Entities of the States of the United States for

Information Interchange

X3.48-1977 Magnetic Tape Cassettes (3.810-mm [0.150-Inch]

Tape at 32 bpmm [800 bpi] , PE)

X3.49-1975 Character Set for Optical Character Recognition (OCR-B)

X3.50-1976 Representations for U.S. Customary, SI, and Other

Units to Be Used in Systems with Limited Character Sets

X3.51-1975 Representations of Universal Time, Local Time Differ¬

entials, and United States Time Zone References

X3.52-1976 Unrecorded Single-Disk Cartridge (Front Loading,

2200 BPI) (General, Physical, and Magnetic Requirements)

X3.53-1976 Programming Language PL/I

X3.54-1976 Recorded Magnetic Tape (6250 CPI, Group Coded

Recording)

X3.55-1982 Unrecorded Magnetic Tape Cartridge, 0.250 Inch

(6.30 mm), 1600 bpi (63 bpmm), Phase encoded

X3.56-1977 Recorded Magnetic Tape Cartridge, 4 Track, 0.250

Inch (6.30 mm), 1600 bpi (63 bpmm), Phase Encoded

X3.57-1977 Structure for Formatting Message Headings Using the

American National Standard Code for Information Interchange for

Data Communication Systems Control

X3.58-1977 Unrecorded Eleven-Disk Pack (General, Physical, and

Magnetic Requirements)

X3.59-1981 Magnetic Tape Cassettes, Dual Track Complementary

Return-to-Bias (CRB) Four-States Recording on 3.81-mm (0.150-
Inch) Tape

X3.60-1978 Programming Language Minimal BASIC

X3.61-1978 Representation of Geographic Point Locations

X3.62-1979 Paper Used in Optical Character Recognition (OCR)

Systems

X3.63-1981 Unrecorded Twelve-Disk Pack (100 Megabytes) (Gen¬

eral, Physical, and Magnetic Requirements)

X3.64-1979 Additional Controls for Use with American National

Standard Code for Information Interchange

X3.66-1979 Advanced Data Communication Control Procedures

(ADCCP)

X3.72-1981 Parallel Recorded Magnetic Tape Cartridge, 4 Track,

0.250 Inch (6.30 mm), 1 600 bpi (63 bpmm), Phase Encoded

X3.73-1980 Single-Sided Unformatted Flexible Disk Cartridge

(for 6631-BPR Use)

X3.74-1981 Programming Language PL/I, General-Purpose Subset

X3.76-1981 Unformatted Single-Disk Cartridge (Top Loading,

200 tpi 4400 bpi) (General, Physical, and Magnetic Requirements)

X3.77-1980 Representation of Pocket Select Characters

X3.78-1981 Representation of Vertical Carriage Positioning Char¬

acters in Information Interchange

X3.79-1981 Determination of Performance of Data Communica¬

tions Systems That Use Bit-Oriented Communication Procedures

X3.80-1981 Interfaces between Flexible Disk Cartridge Drives

and Their Host Controllers

X3.82-1980 One-Sided Single-Density Unformatted 5.25-Inch

Flexible Disk Cartridge (for 3979-BPR Use)

X3.83-1980 ANSI Sponsorship Procedures for ISO Registration

According to ISO 2375

X3.84-1981 Unformatted Twelve-Disk Pack (200 Megabytes) (Gen¬

eral, Physical, and Magnetic Requirements)

X3.85-1981 1/2-Inch Magnetic Tape Interchange Using a Self

Loading Cartridge

X3.86-1980 Optical Character Recognition (OCR) Inks

X3.88-1981 Computer Program Abstracts

X3.89-1981 Unrecorded Single-Disk, Double-Density Cartridge

(Front Loading, 2200 bpi, 200 tpi) (General, Physical, and Mag¬

netic Requirements)

X3.91M-1982 Storage Module Interfaces

X3.92-1981 Data Encryption Algorithm

X3.93M-1981 OCR Character Positioning

X3.94-1985 Programming Language PANCM

X3.95-1982 Microprocessors — Hexadecimal Input/Output, Using

5-Bit and 7-Bit Teleprinters

X3.96-1983 Continuous Business Forms (Single-Part)

X3.98-1983 Text Information Interchange in Page Image Format

(PIF)

X3.99-1983 Print Quality Guideline for Optical Character Recogni¬

tion (OCR)

X3.100-1983 Interface Between Data Terminal Equipment and

Data Circuit-Terminating Equipment for Packet Mode Operation

with Packet Switched Data Communications Network

X3.101-1984 Interfaces Between Rigid Disk Drive(s) and Host(s)

X3.102-1983 Data Communication Systems and Services — User-

Oriented Performance Parameters

X3.103-1983 Unrecorded Magnetic Tape Minicassette for Informa¬

tion Interchange, Coplanar 3.81 mm (0.150 in)

X3.104-1983 Recorded Magnetic Tape Minicassette for Informa¬

tion Interchange, Coplanar 3.81 mm (0.150 in). Phase Encoded

X3.105-1983 Data Link Encryption

X3.106-1983 Modes of Operation for the Data Encryption Algorithm

X3.110-1983 Videotex/Teletext Presentation Level Protocol Syntax

X3.112-1984 14-in (356-mm) Diameter Low-Surface-Friction

Magnetic Storage Disk

X3.114-1984 Alphanumeric Machines; Coded Character Sets for

Keyboard Arrangements in ANSI X4.23-1982 and X4.22-1983

(continued on reverse)

December 1985

