
X
3
.2

3
-1

9
7
4

 
ANSI X3.23-1974 

American National Standard 

programming language 

COBOL 

ansi. 
american national standards institute, inc. 
1430 broadway, new york, new york 10018 

Adopted for Use by 

the Federal Government 

FIPS PUB 21-1 
See Notice on Inside 

Front Cover 

C-> 



AMERICAN NATIONAL STANDARD 

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American 
National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American 
National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, mar¬ 
keting, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are sub¬ 
ject to periodic review and users are cautioned to obtain the latest editions. 

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American 
National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from 
the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or 
writing the American National Standards Institute. 

ACKNOWLEDGMENT 

Any organization interested in reproducing the COBOL standard and specifications in whole or in part, using ideas from this docu¬ 
ment as the basis for an instruction manual or for any other purpose, is free to do so. However, all such organizations are requested 
to reproduce the following acknowledgment paragraphs in their entirety as part of the preface to any such publication (any organi¬ 
zation using a short passage from this document, such as in a book review, is requested to mention “COBOL” in acknowledgment of 
the source, but need not quote the acknowledgment): 

COBOL is an industry language and is not the property of any company or group of companies, or of any organization or group of 
organizations. 

No warranty, expressed or implied, is made by any contributor or by the CODASYL Programming Language Committee as to the 
accuracy and functioning of the programming system and language. Moreover, no responsibility is assumed by any contributor, or by 
the committee, in connection therewith. 

The authors and copyright holders of the copyrighted material used herein 

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAC®I and II, Data Automation Systems 
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by 
IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell 

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such authorization extends to 
the reproduction and use of COBOL specifications in programming manuals or similar publications. 

This standard has been adopted for federal government use. 

Details concerning its use within the federal government are contained in FIPS PUB 21-1, COMMON BUSINESS 

ORIENTED LANGUAGE (COBOL). For a complete list of the publications available in the FEDERAL INFORMA¬ 

TION PROCESSING STANDARDS Series, write to the Office of Technical Information and Publications, National 

Bureau of Standards, Washington, D.C. 20234. 

Published by 

American National Standards Institute 
1430 Broadway, New York, New York 10018 

Copyright © 1974 by American National Standards Institute, Inc 

All rights reserved. 

No part of this publication may be reproduced in any form, 
in an electronic retrieval system or otherwise, without 
the prior written permission of the publisher. 

Printed in the United States of America 

QSl 2M874/12 



•rtfcra* ft**™ of 

DEC 7 1978 

• fi* A3 
no l*'-1 

\ 

ANSI 
X3.23-1974 

Revision of 

X3.23-1968 

American National Standard 
Programming Language 

COBOL 

Secretariat 

Computer and Business Equipment Manufacturers Association 

Approved May 10, 1974 

American National Standards Institute, Inc 



FOREWORD 

(This Foreword is not a part of American National Standard Programming Language 

COBOL, X3.23-1974.) 

This standard is a revision of American National Standard COBOL, X3.23-1968. The 

language specifications contained in this standard were drawn from both American 

National Standard X3.23-1968 and the CODASYL COBOL Journal of Development. Like 

its predecessor, this document provides specifications for both the form and 

interpretation of programs expressed in COBOL. It is intended to provide a high 

degree of machine independence in such programs in order to permit their use on 

a variety of automatic data processing systems. 

The organization of COBOL specifications in this standard is based on a func¬ 

tional processing concept. The standard defines a Nucleus and eleven functional 

processing modules: Table Handling, Sequential 1-0, Relative 1-0, Indexed 1-0, 

Sort-Merge, Report Writer, Segmentation, Library, Debug, Inter-Program Communica¬ 

tion, and Communication. Each module contains two or three levels with nine 

modules having a null set as the lowest level. In all cases, lower levels are 

proper subsets of the higher levels within the same module. The minimum standard 

is defined as the low level of the Nucleus plus the low level of the Table Han¬ 

dling and Sequential 1-0 modules. Full American National Standard COBOL is defined 

as the highest level of the Nucleus and the eleven processing modules. The major 

technical differences between this standard and its predecessor are detailed in 

Appendix B on pages XIV-9 through XIV-34. 

The Technical Committee responsible for this standard, X3J4, evolved from Com¬ 

mittee X3.4.4 and its subordinate working groups (the bodies responsible for the 

original COBOL standard). X3J4 began the task of preparing a revision of the 

COBOL standard in 1969 with the development of criteria against which each candi¬ 

date for inclusion in the proposed revision was to be matched. Detailed work on 

the revision began in early 1970 and, with the committee meeting every 4 to 6 

weeks, a draft was completed in June 1972. COBOL Information Bulletins 14, 15, 

and 16, published in the first half of 1972, kept the COBOL community informed 

on the progress being made. 

American National Standards Committee on Computers and Information Processing, 

X3, approved the publication of the draft in July 1972, and the full text of the 

proposed revision was made available to the community for comment in September 

1972. It was approved as an American National Standard on May 10, 1974. 

This standard was processed and approved for submittal to ANSI by American Na¬ 

tional Standards Committee on Computers and Information Processing, X3. Committee 

approval of the standard does not necessarily imply that all committee members 

voted for its approval. At the time it approved this standard, the X3 Committee 

had the following members: 

J. F. Auwaerter, Chairman 

V. E. Henriques, Vice-Chairman 

R. M. Brown, Secretary 

Organization Represented Name of Representative 

Addressograph Multigraph Corporation . A. C. Brown 

D. S. Bates (Alt) 

F. C. White 

M. E. McMahon 

J. Booth (Alt) 

Air Transport Association . 

American Bankers Association 



Organization Represented Name of Representative 

American Institute of Certified Public Accountants 

American Library Association . 

American Newspaper Publishers Association 

American Nuclear Society . 

American Society of Mechanical Engineers . 

Association for Computing Machinery . . . 

Association for Educational Data Systems . 

Association for Systems Management . 

Association of American Railroads . 

Association of Computer Programmers and Analysts . . . 

Association of Data Processing Service Organizations . 

Burroughs Corporation . 

Control Data Corporation . 

Data Processing Management Association . 

Edison Electric Institute . 

Electronic Industries Association . 

General Electric Company . 

General Services Administration . 

GUIDE International . 

Honeywell Information Systems Inc . 

Institute of Electrical and Electronics 

Engineers, Communications Society . 

Institute of Electrical and Electronics 

Engineers, Computer Society . 

Insurance Accounting and Statistical Association . . . 

International Business Machines Corporation . . . . . 

Joint Users Group... 

Life Office Management Association . 

Litton Industries .... . 

National Association of State Information Systems . . 

N. Zakin 
P. B. Goodstat (Alt) 

C. A. Phillips (Alt) 

F. Schiff (Alt) 

J. R. Rizzolo 

J. C. Kountz (Alt) 

M. S. Malinconico (Alt) 

W. D. Rinehart 

D. R. Vondy 

M. K. Butler (Alt) 

R. W. Rau 

R. T. Woythal (Alt) 

P. Skelly 

J. A. N. Lee (Alt) 

L. Revens (Alt) 

H. Thiess (Alt) 

C. Wilkes 

A. H. Vaughan 

R. A. Petrash 

T. G. Grieb 

G. Thomas (Alt) 
J. B. Christiansen 

E. Lohse 

J. F. Kalbach (Alt) 

S. F. Buckland 

C. E. Cooper (Alt) 

A. E. Dubnow 

D. W. Sanford (Alt) 

R. Bushner 

J. P. Markey (Alt) 

(Representation Vacant) 

A. M. Wilson (Alt) 

R. R. Hench 

J. K. Snell (Alt) 

D. L. Shoemaker 

M. W. Burris (Alt) 

T. E. Wiese 

D. Stanford (Alt) 

T. J. McNamara 

E. H. Clamons (Alt) 

R. Gibbs 

G. C. Schutz 

C. W. Rosenthal (Alt) 

W. Bregartner 

J. R. Kerber (Alt) 

L. Robinson 

W. F. McClelland (Alt) 

T. E. Wiese 

L. Rodgers (Alt) 

B. L. Neff 

A. J. Tufts (Alt) 

I. Danowitz 

G. H. Roehm 
C. Vorlander (Alt) 



Organization Represented Name of Representative 

National Bureau of Standards . . . 

National Cash Register Company . 

National Machine Tool Builders' Association 

National Retail Merchants Association . . 

Olivetti Corporation of America . 

Pitney-Bowes Inc . 

Printing Industries of America . 

Scientific Apparatus Makers Association 

SHARE Inc . 

Society of Certified Data Processors . . . 

Telephone Group . 

UNIVAC, Division of Sperry Rand Corporation 

U.S. Department of Defense . 

Xerox Corporation . 

. H. S. White, Jr 

J. 0. Harrison (Alt) 

. R. J. Mindlin 

T. W. Kern (Alt) 

. 0. A. Rodriques 

E. J. Loeffler (Alt) 

. I. Solomon 

. E. J. Almquist 

. D. J. Reyen 

B. Lyman (Alt) 

. N. Scharpf 

E. Masten (Alt) 

. A. Savitsky 

J. French (Alt) 

. T. B. Steel, Jr 

R. H. Wahlen (Alt) 

. A. Taylor 

J. J. Martin (Alt) 

. V. N. Vaughan, Jr 

S. M. Garland (Alt) 

J. C. Nelson (Alt) 

. M. W. Bass 

C. D. Card (Alt) 

. W. L. McGreer 

W. B. Rinehuls (Alt) 

W. B. Robertson (Alt) 

. J. L. Wheeler 

Technical Committee X3J4, which developed this standard, had the following 

personnel: 

R. Kearney, Chairman J. Couperus, Vice-Chairman P. A. Beard, Secretary 

G. Abrams R. M. Bland D. N. Gumina R. E. Rountree, 

D. G. Ashland J. Collica C. R. Kelleher S. D. Schiffman 

G. N. Baird M. D. Dent C. L. Kent R. Solt 

R. M. Barton J. P. Desmond J. N. Kirkeng L. J. Soma 

R. P. Belmont N. 0. Eaddy A. M. Nienhaus J. J. Strain 

W. E. Bender M. Fedora P. Olshansky L. Sturges 

R. F. Betscha R. C. Fredette W. C. Rinehuls D. L. Tucker 

J. E. Bishop P. R. Gustafson S. Root M. Vickers 

Others who contributed to the work on the revision were as follows: 

H. Bromberg H. S. Gile A. N. McMahan C. A. Schulz 
C. K. Cheng G. H. Goe R. M. Opsata J. G. Solomon 
J. S. Cousins J. S. Grant R. S. Pettus D. F. Wendell 
R. L. Dover H. Hicks M. L. Rakestraw C. E. Wilder 
H. R. Fletcher J. Holloway R. R. Risley 

The members of Technical Committee X3J4 wish to note the special contribu¬ 

tion of the secretary. Miss P. A. Beard, whose devotion and hard work made 

this revision possible. 



TABLE OF CONTENTS 

SECTION I: INTRODUCTORY INFORMATION 

Chapter 1. Introduction to the Standard 

1.1 Scope and Purpose.1-1 

1.2 Structure of Language Specifications . 1-1 

1.3 Organization of Document.1-3 

1.4 How To Use The Standard.1-3 

1.5 Definition of an Implementation of American 

National Standard COBOL . 1-4 

1.6 Implementor-Defined Language Specifications.1-7 

1.7 Elements That Pertain To Specific Hardware Components.1-8 

1.8 Shorthand Notation . 1-9 

Chapter 2. List of Elements by Module 

2.1 General Description.1-10 

2.2 Nucleus, Level 1 (1 NUC 1,2).1-11 

2.3 Nucleus, Level 2 (2 NUC 1,2).1-16 

2.4 Table Handling, Level 1 (1 TBL 1,2).1-19 

2.5 Table Handling, Level 2 (2 TBL 1,2).1-20 

2.6 Sequential 1-0, Level 1 (1 SEQ 1,2).1-21 

2.7 Sequential 1-0, Level 2 (2 SEQ 1,2).1-23 

2.8 Relative 1-0, Level 1 (1 REL 0,2).1-24 

2.9 Relative 1-0, Level 2 (2 REL 0,2).1-26 

2.10 Indexed 1-0, Level 1 (1 INX 0,2).1-27 

2.11 Indexed 1-0, Level 2 (2 INX 0,2).1-29 

2.12 Sort-Merge, Level 1 (1 SRT 0,2).1-30 

2.13 Sort-Merge, Level 2 (2 SRT 0,2).. . 1-31 

2.14 Report Writer, Level 1 (1 RPW 0,1).1-32 

2.15 Segmentation, Level 1 (1 SEG 0,2).1-34 

2.16 Segmentation, Level 2 (2 SEG 0,2).1-34 

2.17 Library, Level 1 (1 LIB 0,2).1-35 

2.18 Library, Level 2 (2 LIB 0,2).1-35 

2.19 Debug, Level 1 (1 DEB 0,2).1-36 

2.20 Debug, Level 2 (2 DEB 0,2).1-36 

2.21 Inter-Program Communication, Level 1 (1 IPC 0,2).1-37 

2.22 Inter-Program Communication, Level 2 (2 IPC 0,2).1-37 

2.23 Communication, Level 1 (1 COM 0,2).1-38 

2.24 Communication, Level 2 (2 COM 0,2).1-39 

Chapter 3. List of Elements Showing Disposition 

3.1 General Description.1-40 

Chapter 4. Glossary 

4.1 Introduction.1-52 

4.2 Definitions.1-52 

Chapter 5. Overall Language Consideration 

5.1 Introduction.1-72 

5.2 Notation Used in Formats and Rules.1-72 

5.3 Language Concepts . 1-75 

5.4 Identification Division . 1-94 



5.5 Environment Division.1-95 

5.6 Data Division.1-97 

5.7 Procedure Division.1-99 

5.8 Reference Format.1-105 

5.9 Reserved Words.1-109 

Chapter 6. Composite Language Skeleton 

6.1 General Description . I—111 

SECTION II: NUCLEUS 

Chapter 1. Introduction to the Nucleus 

1.1 Function.II-l 

1.2 Level Characteristics . II-l 

1.3 Level Restrictions on Overall Language.II-l 

Chapter 2. Identification Division in the Nucleus 

2.1 General Description . II-2 

2.2 Organization.II-2 

2.3 The PROGRAM-ID Paragraph.II-3 

2.4 The DATE-COMPILED Paragraph . II-4 

Chapter 3. Environment Division in the Nucleus 

3.1 Configuration Section . II-5 

3.1.1 The SOURCE-COMPUTER Paragraph . II-5 

3.1.2 The OBJECT-COMPUTER Paragraph . II-6 

3.1.3 The SPECIAL-NAMES Paragraph.II-8 

Chapter 4. Data Division in the Nucleus 

4.1 Working-Storage Section . 11-11 

4.2 The Data Description - Complete Entry Skeleton.11-12 

4.3 The BLANK WHEN ZERO Clause.11-14 

4.4 The Data-Name or FILLER Clause.11-15 

4.5 The JUSTIFIED Clause.11-16 

4.6 Level-Number.11-17 

4.7 The PICTURE Clause.11-18 

4.8 The REDEFINES Clause.11-27 

4.9 The RENAMES Clause.11-29 

4.10 The SIGN Clause.11-31 

4.11 The SYNCHRONIZED Clause.11-33 

4.12 The USAGE Clause.11-35 

4.13 The VALUE Clause.11-36 

Chapter 5. Procedure Division in the Nucleus 

5.1 Arithmetic Expressions.11-39 

5.2 Conditional Expressions . 11-41 

5.3 Common Phrases and General Rules for Statement Formats. . . . 11-50 

5.4 The ACCEPT Statement.11-53 

5.5 The ADD Statement.11-55 

5.6 The ALTER Statement.11-57 

5.7 The COMPUTE Statement.11-58 

5.8 The DISPLAY Statement.11-59 



5.9 The DIVIDE Statement.11-61 

5.10 The ENTER Statement.11-63 

5.11 The EXIT Statement.11-64 

5.12 The GO TO Statement.11-65 

5.13 The IF Statement.11-66 

5.14 The INSPECT Statement.11-68 

5.15 The MOVE Statement.11-74 

5.16 The MULTIPLY Statement.11-77 

5.17 The PERFORM Statement.11-78 

5.18 The STOP Statement.11-85 

5.19 The STRING Statement.11-86 

5.20 The SUBTRACT Statement.11-89 

5.21 The UNSTRING Statement.11-91 

SECTION III: TABLE HANDLING MODULE 

Chapter 1. Introduction to the Table Handling Module 

1.1 Function..III-l 

1.2 Level Characteristics . III-l 

Chapter 2. Data Division in the Table Handling Module 

2.1 The OCCURS Clause.III-2 

2.2 The USAGE IS INDEX Clause.III-5 

Chapter 3. Procedure Division in the Table Handling Module 

3.1 Relation Condition.III-6 

3.2 Overlapping Operands.III-6 

3.3 The SEARCH Statement.III-7 

3.4 The SET Statement.III-ll 

SECTION IV: SEQUENTIAL 1-0 MODULE 

Chapter 1. Introduction to the Sequential 1-0 Module 

1.1 Function.IV-1 

1.2 Level Characteristics.IV-1 

1.3 Language Concepts . IV-1 

Chapter 2. Environment Division in the Sequential 1-0 Module 

2.1 Input-Output Section.IV-4 

2.1.1 The FILE-CONTROL Paragraph.IV-4 

2.1.2 The File Control Entry.IV-4 

2.1.3 The I-0-C0NTR0L Paragraph.IV-6 

Chapter 3. Data Division in the Sequential 1-0 Module 

3.1 File Section.IV-9 

3.2 Record Description Structure.IV-9 

3.3 The File Description - Complete Entry Skeleton.IV-10 

3.4 The BLOCK CONTAINS Clause.IV-11 

3.5 The CODE-SET Clause.IV-12 

3.6 The DATA RECORDS Clause.IV-13 

3.7 The LABEL RECORDS Clause.IV-14 



3.8 The LINAGE Clause.IV-15 

3.9 The RECORD CONTAINS Clause.IV-18 

3.10 The VALUE OF Clause.IV-19 

Chapter 4. Procedure Division in the Sequential 1-0 Module 

4.1 The CLOSE Statement.IV-20 

4.2 The OPEN Statement.IV-24 

4.3 The READ Statement.IV-28 

4.4 The REWRITE Statement.IV-31 

4.5 The USE Statement.IV-32 

4.6 The WRITE Statement.IV-34 

SECTION V: RELATIVE I-Q MODULE 

Chapter 1. Introduction to the Relative 1-0 Module 

1.1 Function.V-l 

1.2 Level Characteristics . V-l 

1.3 Language Concepts . V-l 

Chapter 2. Environment Division in the Relative 1-0 Module 

2.1 Input-Output Section.V-5 

2.1.1 The FILE-CONTROL Paragraph.V-5 

2.1.2 The File Control Entry.V-5 

2.1.3 The I-O-CONTROL Paragraph.V-7 

Chapter 3. Data Division in the Relative 1-0 Module 

3.1 File Section.V-10 

3.2 Record Description Structure.V-10 

3.3 The File Description - Complete Entry Skeleton.V-ll 

3.4 The BLOCK CONTAINS Clause.V-12 

3.5 The DATA RECORDS Clause.V-13 

3.6 The LABEL RECORDS Clause.V-14 

3.7 The RECORD CONTAINS Clause.V-15 

3.8 The VALUE OF Clause.V-l6 

Chapter 4. Procedure Division in the Relative 1-0 Module 

4.1 The CLOSE Statement. V-17 

4.2 The DELETE Statement. V-19 

4.3 The OPEN Statement. V-20 

4.4 The READ Statement .. V-23 

4.5 The REWRITE Statement. V-26 

4.6 The START Statement. V-28 

4.7 The USE Statement. V-30 

4.8 The WRITE Statement. V-32 

SECTION VI: INDEXED 1-0 MODULE 

Chapter 1. Introduction to the Indexed 1-0 Module 

1.1 Function. VI-1 

1.2 Level Characteristics. VI-1 

1.3 Language Concepts. VI-1 



Chapter 2. Environment Division in the Indexed 1-0 Module 

2.1 Input-Output Section . VI-5 

2.1.1 The FILE-CONTROL Paragraph . VI-5 

2.1.2 The File Control Entry. VI-5 

2.1.3 The I-O-CONTROL Paragraph. VI-8 

Chapter 3. Data Division in the Indexed 1-0 Module 

3.1 File Section. VI-11 

3.2 Record Description Structure . VI-11 

3.3 The File Description - Complete Entry Skeleton . VI-12 

3.4 The BLOCK CONTAINS Clause. VI-13 

3.5 The DATA RECORDS Clause. VI-14 

3.6 The LABEL RECORDS Clause. VI-15 

3.7 The RECORD CONTAINS Clause. VI-16 

3.8 The VALUE OF Clause. VI-17 

Chapter 4. Procedure Division in the Indexed 1-0 Module 

4.1 The CLOSE Statement. VI-18 

4.2 The DELETE Statement. VI-20 

4.3 The OPEN Statement. VI-21 

4.4 The READ Statement. VI-24 

4.5 The REWRITE Statement. VI-28 

4.6 The START Statement. VI-30 

4.7 The USE Statement. VI-32 

4.8 The WRITE Statement. VI-33 

SECTION VII: SORT-MERGE MODULE 

Chapter 1. Introduction to the Sort-Merge Module 

1.1 Function.VII-1 

1.2 Level Characteristics . VII-1 

1.3 Relationship with Sequential 1-0 Module . VII-1 

Chapter 2. Environment Division in the Sort-Merge Module 

2.1 Input-Output Section.VII-2 

2.1.1 The FILE-CONTROL Paragraph.VII-2 

2.1.2 The File Control Entry.VII-2 

2.1.3 The I-O-CONTROL Paragraph.VII-3 

Chapter 3. Data Division in the Sort-Merge Module 

3.1 File Section.VII-5 

3.2 The Sort-Merge File Description - Complete Entry Skeleton . . VII-5 

3.3 The DATA RECORDS Clause.VII-6 

3.4 The RECORD CONTAINS Clause.VII-7 

Chapter 4. Procedure Division in the Sort-Merge Module 

4.1 The MERGE Statement.VII-8 

4.2 The RELEASE Statement . VII-12 

4.3 The RETURN Statement.VII-13 

4.4 The SORT Statement.VII-14 



SECTION VIII: REPORT WRITER MODULE 

Chapter 1. Introduction to the Report Writer Module 

1.1 Function.VIII-1 

1.2 Language Concepts . VIII-1 

1.3 Relationship with Sequential 1-0 Module . VIII-1 

Chapter 2. Data Division in the Report Writer Module 

2.1 File Section.VIII-2 

2.2 Report Section. ... . VIII-2 

2.3 The File Description - Complete Entry Skeleton.VIII-3 

2.4 The Report Description - Complete Entry Skeleton.VIII-4 

2.5 The Report Group Description - Complete Skeleton.VIII-6 

2.6 The BLOCK CONTAINS Clause . VIII-24 

2.7 The CODE Clause.VIII-25 

2.8 The CODE-SET Clause . VIII-26 

2.9 The COLUMN NUMBER Clause.VIII-27 

2.10 The CONTROL Clause.VII1-28 

2.11 The Data-Name Clause.VIII-30 

2.12 The GROUP INDICATE Clause . . VIII-31 

2.13 The LABEL RECORDS Clause.VIII-32 

2.14 The LINE NUMBER Clause.VIII-33 

2.15 The NEXT GROUP Clause.VIII-35 

2.16 The PAGE Clause.VIII-36 

2.17 The RECORD CONTAINS Clause.VIII-39 

2.18 The REPORT Clause . VIII-40 

2.19 The SOURCE Clause . VIII-41 

2.20 The SUM Clause.VIII-42 

2.21 The TYPE Clause.VIII-45 

2.22 The VALUE OF Clause.VIII-50 

Chapter 3. Procedure Division in the Report Writer Module 

3.1 The GENERATE Statement.VIII-51 

3.2 The INITIATE Statement.VIII-53 

3.3 The SUPPRESS Statement.VIII-54 

3.4 The TERMINATE Statement . VIII-55 

3.5 The USE Statement.VIII-56 

SECTION IX: SEGMENTATION MODULE 

Chapter 1. Introduction to the Segmentation Module 

1.1 Function.IX-1 

1.2 Level Characteristics . IX-1 

Chapter 2. General Description of Segmentation 

2.1 Scope.IX-2 

2.2 Organization...IX-2 

2.3 Segment Classification.IX-3 

2.4 Segmentation Control.IX-3 

Chapter 3. Structure of Program Segments 

3.1 Segment-Numbers.IX-4 

3.2 SEGMENT-LIMIT Clause.IX-5 



Chapter 4. Restriction on Program Flow 

4. 1 The ALTER Statement.IX-6 

4.2 The PERFORM Statement.IX-6 

4.3 The MERGE Statement.IX-6 

4.4 The SORT Statement.IX-7 

SECTION X: LIBRARY MODULE 

Chapter 1. Introduction to the Library Module 

1.1 Function.X-l 

1.2 Level Characteristics . X-l 

Chapter 2. The COPY Statement.X-2 

SECTION XI: DEBUG MODULE 

Chapter 1. Introduction to the Debug Module 

1.1 Function.XI-1 

1.2 Level Characteristics . XI-1 

1.3 Language Concepts . XI-1 

Chapter 2. Environment Division in the Debug Module 

2.1 The WITH DEBUGGING MODE Clause.XI-3 

Chapter 3. Procedure Division in the Debug Module 

3. 1 The USE FOR DEBUGGING Statement.XI-4 

3.2 Debugging Lines.XI-10 

SECTION XII: INTER-PROGRAM COMMUNICATION MODULE 

Chapter 1. Introduction to the Inter-Program Communication Module 

1.1 Function. XII-1 

1.2 Level Characteristics . XII-1 

Chapter 2. Data Division in the Inter-Program Communication Module 

2.1 Linkage Section. XII-2 

Chapter 3. Procedure Division in the Inter-Program Communication Module 

3.1 The Procedure Division Header . XII-4 

3.2 The CALL Statement. XII-5 

3.3 The CANCEL Statement. XII-7 

3.4 The EXIT PROGRAM Statement. XII-8 

SECTION XIII: COMMUNICATION MODULE 

Chapter 1. Introduction to the Communication Module 

1.1 Function. XIII-1 

1.2 Level Characteristics . XIII-1 



Chapter 2. Data Division in the Communication Module 

2.1 Communication Section . XIII-2 

2.2 The Communication Description - Complete Entry Skeleton . . . XIII-3 

Chapter 3. Procedure Division in the Communication Module 

3.1 The ACCEPT MESSAGE COUNT Statement. XIII-12 

3.2 The DISABLE Statement . XIII-13 

3.3 The ENABLE Statement. XIII-15 

3.4 The RECEIVE Statement.XIII-17 

3.5 The SEND Statement.XIII-20 

SECTION XIV: APPENDIXES 

Appendix A. The History of COBOL 

1.1 Organization of COBOL Effort . XIV-1 

1.2 Evolution of COBOL.XIV-2 

1.3 Standardization of COBOL.XIV-6 

Appendix B. The Revision of American National Standard COBOL 

2.1 The Role of X3J4.XIV-9 

2.2 Interaction with Other COBOL Groups.XIV-10 

2.3 Differences Between X3.23-1968 and the Revised Standard. . . . XIV-10 

Appendix C. Concepts 

3.1 Features of the Language . XIV-35 

3.2 Record Ordering.XIV-35 

3.3 Report Writer.XIV-35 

3.4 Table Handling . XIV-36 

3.5 File Organization and Access Methods . XIV-38 

3.6 Rerun.XIV-39 

3.7 Program Modularity . XIV-39 

3.8 Communication Facility . XIV-42 

3.9 Debugging.XIV-49 

3.10 Library.XIV-49 

SECTION XV: INDEX.XV-1 



Introduction 

1. INTRODUCTION TO THE STANDARD 

1.1 SCOPE AND PURPOSE 

The scope of this standard is to specify both the form and interpretation 

of programs expressed in COBOL. Its purpose is to promote a high degree of 

machine independence in such programs in order to permit their use on a 

variety of automatic data processing systems. 

1.2 STRUCTURE OF LANGUAGE SPECIFICATIONS 

The organization of COBOL specifications in this standard is based on a 

functional processing module concept. The standard defines a Nucleus and 

eleven functional processing modules: Table Handling, Sequential 1-0, Relative 

1-0, Indexed 1-0, Sort-Merge, Report Writer, Segmentation, Library, Debug, 

Inter-Program Communication, and Communication. Each module contains either 

two or three levels. In all cases, the lower levels are proper subsets of the 

higher levels within the same module. Nine modules contain a null set as their 

lowest level. 

This organization provides the flexibility necessary to tailor specifications 

in such a way that they will satisfy the requirements of a large variety of 

data processing applications. At the same time, inherent in this organization 

is the ability to determine, with a greater degree of certainty than previously 

possible, the elements of the standard that are included in a given compiler. 

The following is a characterization of the contents of the component levels 

of each module. 

The Nucleus contains lanugage elements that are necessary for internal 

processing. This module is divided into two levels. The low level supplies 

elements necessary to perform basic internal operations, i.e., the more ele¬ 

mentary options of the various clauses and verbs. The high level of the 

Nucleus provides more extensive and sophisticated internal processing 

capabilities. 

The Table Handling module contains the language elements necessary for: 

(1) the definition of tables, (2) the identification, manipulation and use of 

indices, and (3) reference to the items within tables. This module is 

divided into two levels. The low level provides the ability to define fixed 

length tables of up to three dimensions, and to refer to items within them 

using either a subscript or an index. The high level provides for the defini¬ 

tion of variable length tables. In addition, facilities for serial and 

nonserial lookup are provided by the SEARCH verb and its attendant Data 

Division clauses. 

The Sequential 1-0 module contains the language elements necessary for the 

definition and access of sequentially organized external files. The module is 

divided into two levels. The low level contains the basic facilities for the 

definition and access of sequential files and for the specification of check¬ 

points. The high level contains more complete facilities for defining and 

accessing these files. 

The Relative 1-0 module provides the capability of defining and accessing 

mass storage files in which records are identified by relative record numbers. 

1-1 



Introduction 

This module contains a null set as its lowest level, and two processing levels. 

The low processing level provides basic facilities. The high level provides 

more complete facilities, including the capability of accessing the file both 

randomly and sequentially in the same COBOL program. 

The Indexed 1-0 module provides the capability of defining mass storage 

files in which records are identified by the value of a key and accessed 

through an index. This module contains a null set as its lowest level, and 

two processing levels. The low processing level provides basic facilities. 

The high level provides more complete facilities, including alternate keys, 

and the capability of accessing the file both randomly and sequentially in 

the same COBOL program. 

The Sort-Merge module allows for the inclusion of one or more sorts in a 

COBOL program, and consists of a null set and two processing levels. The low 

processing level contains facilities sufficient to implement basic sorting, 

while the high level provides extended sorting capabilities, including a merge 

facility. 

The Report Writer module provides for the semi-automatic production of 

printed reports. This module consists of a null set and one processing level. 

The Segmentation module provides for the overlaying at object time of 

Procedure Division sections. This module consists of a null set and two 

processing levels. The low processing level provides for section segment- 

numbers and fixed segment limits. The high level adds the capability for 

varying the segment limit. 

The Library module consists of a null set and two processing levels. It 

provides for the inclusion into a program of predefined COBOL text. The low 

processing level contains the basic COPY verb, to which the high level adds 

the REPLACING phrase. 

The Debug module provides a means by which the user can specify his 

debugging algorithm — the conditions under which data or procedure items are 

monitored during execution of the program. It consists of a null set and two 

processing levels. The low processing level provides a basic debugging 

capability, including the ability to specify selective or full paragraph 

monitoring. The high level provides the full COBOL debugging capability. 

The Inter-Program Communication module provides a facility by which a 

program can communicate with one or more other programs. This module consists 

of a null set and two processing levels. The low processing level provides 

a capability to transfer control to another program known at compile time, 

and the ability for both programs to have access to certain common data items. 

The high level adds the ability to transfer control to a program not identified 

at compile time as well as the ability to determine the availability of 

object time memory for the called program. The high level also provides the 

capability for the release of memory areas occupied by called programs. 

The Communication module provides the ability to access, process and create 

messages or portions thereof, and to communicate through a Message Control 
System with local and remote communication devices. This module consists 

of a null set and two processing levels. The low processing level provides 

1-2 



Introduction 

basic facilities to send or receive complete messages. The high level provides 

a more sophisticated facility including the capability to send or receive 

segments of a message. 

1.3 ORGANIZATION OF DOCUMENT 

This document is divided into fifteen sections. The first section is com¬ 

posed of the introduction, a list of elements by module, a list of elements 

showing their disposition among the various modules, definitions, a discussion 

of overall language considerations, and a composite language skeleton. Sections 

II through XIII contain specifications for the Nucleus and for each of the 

functional processing modules. These sections comprise the detailed specifi¬ 

cations of American National Standard COBOL. Section XIV contains the 

appendices to the document and Section XV contains the index. 

The previous version of this standard contained a chapter for each level 

of the Nucleus and of the functional processing modules. This revision, in 

order to show more clearly the relationship of levels within a module, contains 

one section for each module. In each section, specifications unique to the 

high level are enclosed in boxes. 

1.4 HOW TO USE THE STANDARD 

It is envisioned that the standard will be examined from several different 

viewpoints. In addition to the table of contents and the index, the list of 

elements by module and the list of elements showing disposition are also 

intended to serve as a key to the standard. To determine the contents of any 

level, the list of elements by module beginning on page I-10 should be used. 

This list contains a detailed breakdown of each element of American National 

Standard COBOL and is organized by level. In addition, page and paragraph 

numbers indicate where within the standard the specification for each element 

is to be found. For example, to ascertain the contents of the low level of 

Sequential 1-0, reference is made to that module within the list of elements 

by module (see page 1-21). There will be found a list of all COBOL elements 

including overall language considerations, Environment Division and Data 

Division entries and Procedure Division verbs that pertain to Sequential 1-0. 

Because levels are nested, in order to determine the contents of the highest 

level, the entire module must be examined. To obtain more detailed informa¬ 

tion concerning a specific element, the page and paragraph numbers that 

accompany each element in the list may be used as a key to the technical 

specification section of the standard. 

To determine in which level or levels a specific language feature appears, 

the list of elements showing disposition is used. (See pages 1-40 through 

1-51.) This list shows in detail all elements of American National Standard 

COBOL and their occurrences within the various levels. In addition, for each 

appearance of an element, the appropriate page numbers are shown. Those 

elements which are not completely contained within one level are shown in 

sufficient detail to specify the location of each subelement. If more detailed 

information is desired concerning the use of a specific element in any level, 

the page numbers adjacent to each element in the list may be used as a guide 

to the technical specification section of the standard. For example, to locate 

where the READ statement appears within the standard, the list of elements 

showing disposition is used. It will be seen that the READ statement appears 

in low level of Sequential 1-0, Relative 1-0, and Indexed 1-0. Because certain 

1-3 



Introduction 

phrases of the READ statement appear only in the high levels of these modules, 

its subelements are listed separately. A page number appears for each appear¬ 

ance of a subelement. 

When the list of elements by module is used to determine the contents of a 

level and subsequently it is desired to ascertain where else in the standard 

a particular element is used, reference would be made to the list of elements 

showing disposition, and from there, to the detailed technical specifications, 

if necessary. 

For general information regarding overall language considerations or con¬ 

cepts, the table of contents or index may be used as a key to the standard. 

Finally, to determine the content of an implementation of American National 

Standard COBOL, the schematic diagram on page 1-5 should be used. The schemat¬ 

ic diagram is a graphic representation of the division of COBOL into the 

various functional processing modules and the Nucleus. Further, the schematic 

shows the hierarchy of levels within each functional processing module and 

within the Nucleus. 

1.5 DEFINITION OF AN IMPLEMENTATION OF AMERICAN NATIONAL STANDARD COBOL 

In terms of the schematic diagram on page 1-5, an implementation of American 

National Standard COBOL can be represented by a combination of boxes, consist¬ 

ing of one box from each of the twelve vertical columns. As illustrations, and 

for convenience of discourse, the following definitions are provided: 

(1) The full American National Standard COBOL is composed of the highest 

level of the Nucleus and of each of the functional processing modules. 

(2) A subset of American National Standard COBOL is any combination of 

levels of the Nucleus and of each of the functional processing modules other 

than the full American National Standard COBOL. 

(3) The minimum American National Standard COBOL is composed of the lowest 

level of the Nucleus and of each of the functional processing modules. (Because 

of the presence of null sets, the minimum standard consists of the low levels 

of the Nucleus, Table Handling and Sequential 1-0.) 

An implementation is defined to meet the requirements of the American 

National Standard COBOL specification if that implementation includes a fully 

implemented specified level of each of the functional processing modules and 

of the nucleus as defined in this standard. It follows from this that, in 

order to meet the requirements of this standard, an implementation must: 

(1) Not require the inclusion of substitute or additional language elements 

in the source program, in order to accomplish any part of the function of any 

of the standard language elements. 

(2) Accept all standard language elements contained in a given level of a 

module which is specified as being included in the implementation, except as 

specifically exempted by paragraph 1.7 on page 1-8. 

1-4 



Introduction 

1-5 



Introduction 

These points are of particular pertinence in two areas: 

(1) There are throughout the American National Standard COBOL specification 

certain language elements whose syntax or effect is specified to be, in part, 

implementor-defined. (See paragraph 1.6 on page 1-7 for a list of these elements.) 

While the implementor specifies the constraints on that portion of each element's 

syntax or rules that is indicated in this standard to be implementor-defined, 

such constraints may not include any requirement for the inclusion in the source 

program of substitute or additional language elements. 

(2) When a function is provided outside the source program that accomplishes 

a function specified by any particular standard COBOL element, then the imple¬ 

mentation must not require, except for Environment Division elements, the 

specification of that external function in place of or in addition to that 

standard language element. 

The following qualifications apply to the American National Standard COBOL 

specification: 

(1) There are certain language elements which pertain to specific types of 

hardware components (see paragraph 1.7 on page 1-8 for a list of these elements). 

In order for an implementation to meet the requirements of this standard, the 

implementor must specify the minimum hardware configuration required for that 

implementation and the hardware components that it supports. Further, when 

support is thus claimed for a specific hardware component, all standard lan¬ 

guage elements that pertain to that component must be implemented if the module 

in which they appear is included in the implementation. Language elements that 

pertain to specific hardware components for which support is not claimed, need 

not be implemented. However, the absence of such elements from an implementa¬ 

tion of American National Standard COBOL must be specified. 

(2) An implementation of American National Standard COBOL may include the 

ENTER statement or not, at the option of the implementor. 

(3) An implementation that includes, in addition to a specified level of 

each of the functional processing modules and of the Nucleus, elements or 

functions that either are not defined in the American National Standard COBOL 

specification or are defined in a given level of a standard module not other¬ 

wise included in the implementation, meets the requirements of this standard. 

This is true even though it may imply the extension of the list of reserved 

words by the implementor, and prevent proper compilation of some programs that 

meet the requirements of this standard. The implementor must specify any 

optional language (language not defined in a specified level but defined else¬ 

where in the standard) or extensions (language elements or functions not defined 

in this standard) that are included in the implementation. 

(4) In general, the American National Standard COBOL specification specifies 

no upper limit on such things as the number of statements in a program, the 

number of operands permitted in certain statements, etc. It is recognized 

that these limits will vary from one implementation of American National Stan¬ 

dard COBOL to another and may prevent the proper compilation of some programs 

that meet the requirements of this standard. 

1-6 



Introduction 

(5) For a discussion of character substitution which likewise may prevent 
the proper compilation of some programs that meet the requirements of this 

standard, see page 1-75, paragraph 5.3.1, Character Set. 

1.6 IMPLEMENTOR-DEFINED LANGUAGE SPECIFICATIONS 

The language elements in the following lists depend on implementor defini¬ 

tions to complete the specification of the syntax or rules for the elements. 

The elements whose syntax is partly implementor-defined are: 

Element Implementor-Defined Aspect 

SOURCE-COMPUTER paragraph computer-name 

OBJECT-COMPUTER paragraph computer-name 

MEMORY SIZE clause integer 

alphabet-name implementor-name; whether implementor-names 

are provided. 

SPECIAL-NAMES paragraph imp1emen t o r-name 

ASSIGN clause imp1emen t o r-n ame 

VALUE OF clause implementor-name; whether implementor-names 

are provided. 

RERUN clause implementor-name and the form; the 

implementor provides at least one 

of seven specified forms. 

CALL and CANCEL statements relationship between operand and the 

COPY statement 

referenced program. 

relationship between library-name, 

text-name, and the library. 

ENTER statement language-name 

Margin R The location. 

Area B The number of character positions. 

Qualification The number of qualifiers; at least five 

levels must be supported. 

The elements whose effect is partly implementor-defined are: 

Element Implementor-Defined Aspect 

alphabet-name The correspondence between native and 

foreign character sets. 

implementor-name switches Whether setting can change during 

execution. 

USAGE IS COMPUTATIONAL 

clause 

Representation and whether automatic 

alignment occurs. 

1-7 



Introduction 

Element Implementor-Defined Aspect 

USAGE IS INDEX clause 

SYNCHRONIZED clause 

ACCEPT statement 

DISPLAY statement 

Numeric test 

Comparison of nonnumeric 

items 

Arithmetic expressions 

Representation and whether automatic 

alignment occurs. 

Whether implicit FILLER positions are 

generated; their effect on the size of 

group items and redefining items. 

Maximum size of one transfer of data in 

Level 1 Nucleus. 

Maximum size of one transfer of data in 

Level 1 Nucleus. 

Representation of valid sign in the 

absence of the SIGN IS SEPARATE clause. 

Collating sequence, where NATIVE or imple¬ 

mentor-name collating sequence is 

implicitly or explicitly specified. 

Number of places carried for intermediate 

results. 

1.7 ELEMENTS THAT PERTAIN TO SPECIFIC HARDWARE COMPONENTS 

The standard language elements in the list that follows pertain to specific 

types of hardware components. These language elements must be implemented in 

an implementation of American National Standard COBOL when support is claimed, 

by the implementor, for the specific types of hardware components to which 

they pertain, and the module in which they are defined is included in that 

implementation. 

Element Hardware Component 

CODE-SET clause 

MULTIPLE FILE TAPE clause 

CLOSE...REEL/UNIT statement 

CLOSE...NO REWIND statement 

OPEN...REVERSED statement 

OPEN...NO REWIND statement 

0PEN...I-0 statement 

(Sequential 1-0 only) 

OPEN EXTEND statement 

REWRITE statement 

(Sequential 1-0 only) 

SEND...BEFORE/AFTER 

ADVANCING statement 

Device capable of supporting the specified 

code. 

Reel 

Reel or mass storage 

Reel or mass storage 

Reel with the capability of making records 

available in the reversed order; mass 

storage with the capability of making 

records available in the reversed order. 

Reel or mass storage 

Mass storage 

Reel or mass storage 

Mass storage 

Devices capable of vertical positioning; 

devices capable of action based on 

mnemonic-names. 

1-8 



Introduction 

Element 

USE...I-0 (Sequential 

1-0 only) 

WRITE...BEFORE/AFTER 

ADVANCING 

1.8 SHORTHAND NOTATION 

Hardware Component 

Mass storage 

Devices capable of vertical positioning; 

devices capable of action based on 

mnemonic-name. 

Within the schematic diagram on page 1-5, the list of elements by module on 

pages I—10 through 1-39, and the list of elements showing disposition on pages 

1-40 through 1-51, a shorthand notation has been adopted to indicate the hier¬ 

archical position of any level within the Nucleus or a functional processing 

module as well as the number of levels into which a module has been divided. 

This code is composed of, from left to right, a one-digit number indicating 

the level's position in the hierarchy, a three-character mnemonic name, and 

a two-digit number indicating the minimum and maximum levels of the module 

to which the level belongs. A level number of zero indicates a null level. 

For example, 2 NUC 1,2 indicates that this level is the second level of the 

Nucleus and that the Nucleus is composed of two levels, neither one of which 

is a null set. As a further example, 2 SRT 0,2 indicates that this level is 

the second non-null level of the Sort-Merge module which contains three 

levels, the lowest of which is a null level. 

The mnemonic names that are used in these codes are the following: 

Mnemonic Name Meaning 

NUC 

TBL 

SEQ 

REL 

INX 

SRT 

RPW 

SEG 

LIB 

DEB 

IPC 

COM 

Nucleus 

Table Handling 

Sequential 1-0 

Relative 1-0 

Indexed 1-0 

Sort-Merge 

Report Writer 

Segmentation 

Library 

Debug 

Inter-Program Communication 

Communication 

1-9 



List of Elements by Module 

2. LIST OF ELEMENTS BY MODULE 

2.1 GENERAL DESCRIPTION 

This chapter contains a list of all elements in the American National 

Standard COBOL organized by the level in which each element is located. 

Adjacent to each element is a text reference. This reference indicates the 

page number and the paragraph number of the detailed specification describing 

the particular element. 

I-10 



List of Elements by Module 

NUCLEUS, LEVEL 1 (1 NUC 1,2) 
PAGE 

ELEMENTS NUMBER 

Language Concepts. 1-75 

Characters used for words. 1-76 

0, 1, ..., 9 
A, B, . . . , Z 

- (hyphen or minus) 

Characters used for punctuation. 1-65 

" quotation mark 

( left parenthesis 

) right parenthesis 

. period 

space 

= equal sign 

Characters used in editing. 1-58 

B space 

0 zero 

+ plus 

- minus 

CR credit 

DB debit 

Z zero suppress 

* check protect 

$ currency sign 

, comma 

. period 

/ stroke 

Separators. 1-75 

The separators, semicolon and comma, are not 

allowed. II-1 

Character-strings . 1-76 

COBOL words. 1-76 

Not more than 30 characters 

User-defined words. 1-76 

data-name 

Must begin with an alphabetic character . II-1 

Must be unique; may not be qualified. . . II-l 

level-number 

mnemonic-name 

paragraph-name 

program-name 

routine-name 

section-name 

System-names . 1-78 

comput er-name 

implementor-name 

language-name 

Reserved words. 1-79 

Key words 

Optional words 

PARAGRAPH 

NUMBER 

5.3 

5.3.2.2.1 

4.2 

4.2 

5.3.2.1 

1.3.1 

5.3.2.2 

5.3.2.2.1 

5.3.2.2.1.1 

1.3.2 

1.3.2 

5.3.2.2.1.2 

5.3.2.2.1.3 

1-11 



List of Elements by Module 

NUCLEUS, LEVEL 1 (1 NUC 1,2) 

ELEMENTS 

PAGE 

NUMBER 

Reserved words (continued) 

Figurative constants . 1-80 

ZERO 

SPACE 

HIGH-VALUE 

LOW-VALUE 

QUOTE 

Special-character words.1-80 

Literals.1-80 

Nonnumeric literals have lengths from 1 

through 120 characters 

Numeric literals have lengths from 1 through 

18 digits 

PICTURE character-strings.1-82 

Comment-entries.1-82 

Reference format . 1-105 

Sequence number . 1-106 

Area A.1-105 

Division header.1-106 

Section header . 1-106 

Paragraph header . 1-107 

Data Division entries.1-107 

Area B.1-105 

Paragraphs.1-107 

Data Division entries.1-107 

Continuation of lines . 1-106 

Only nonnumeric literals may be continued.II-1 

Comment lines . 1-108 

Asterisk (*) comment line 

Stroke (/) comment line 

Identification Division.1-94 

The PROGRAM-ID paragraph.II-3 

The AUTHOR paragraph.II-2 

The INSTALLATION paragraph.II-2 

The DATE-WRITTEN paragraph.II-2 

The SECURITY paragraph.II-2 

Environment Division . 1-95 

The SOURCE-COMPUTER paragraph . II-5 

computer-name 

The OBJECT-COMPUTER paragraph . II-6 

computer-name 

MEMORY SIZE clause 

PROGRAM COLLATING SEQUENCE clause 

The SPECIAL-NAMES paragraph . II-8 

implementor-name IS mnemonic-name 

implementor-name IS mnemonic-name series 

ON STATUS 

OFF STATUS 

PARAGRAPH 

NUMBER 

5.3.2.2.1.3.5 

5.3.2.2.1.3.6 

5.3.2.2.2 

5.3.2.2.3 

5.3.2.2.4 

5.8 

5.8.2.1 

5.8.2 

5.8.3. 1 

5.8.3.2 

5.8.3.3 
5.8.4 

5.8.2 

5.8.3.3 

5.8.4 

5.8.2.2 

1.3.4 

5.8.6 

5.4 

2.3 

2.2.1.1 
2.2.1. 1 
2.2.1. 1 
2.2. 1. 1 

5.5 

3.1.1 

3.1.2 

3.1.3 

1-12 



List of Elements by Module 

NUCLEUS, LEVEL 1 (1 NUC 1,2) 
PAGE PARAGRAPH 

ELEMENTS NUMBER NUMBER 

The SPECIAL-NAMES paragraph (continued) 

alphabet-name clause 

CURRENCY SIGN clause 

DECIMAL-POINT clause 

Data Division. 1-97 5.6 

Working-Storage Section . 11-11 4.1 

The data description entry.11-12 4.2 

The BLANK WHEN ZERO clause.11-14 4.3 

The data-name or FILLER clause.11-15 4.4 

The JUSTIFIED clause (may be abbreviated JUST). 11-16 4.5 

Level-number.11-17 4.6 

01 through 10 (level numbers must be 2 digits) . . . 11-13 4.2.3 

77.11-11 4.1.1 

The PICTURE clause (may be abbreviated PIC).11-18 4.7 

Character-string may contain 30 characters . 11-18 4.7.3 

Data characters: AX9.11-18 4.7.4 

Operational symbols: SVP . 11-21 4.7.5 

Fixed insertion characters . 11-21 4.7.5 

0 (may be used only in edited items) 

) 

B (may be used only in edited items) 

$ (currency sign) 

+ and - (right or left) 

DB and CR 

/ 
Replacement or floating characters . 11-21 4.7.5 

$ (currency sign) 

+ and - 

Z 
* 

Currency sign substitution . 11-21 4.7.5 

Decimal point substitution . 11-21 4.7.5 

The REDEFINES clause (may not be nested). 11-27 4.8 

The SIGN clause.11-31 4.10 

The SYNCHRONIZED clause (may be abbreviated SYNC) . . . 11-33 4.11 

The USAGE clause. 11-35 4.12 

COMPUTATIONAL (may be abbreviated COMP) 

DISPLAY 

The VALUE clause. 11-36 4. 13 

literal 

Procedure Division . 1-99 5.7 

Conditional expressions . 11-41 5.2 

Simple condition.. . 11-41 5.2.1 

Relation condition.11-41 5.2. 1.1 

Relational operators 

[NOT] GREATER THAN 

[NOT] LESS THAN 

[NOT] EQUAL TO 

1-13 



List of Elements by Module 

NUCLEUS, LEVEL 1 (1 NUC 1,2) 

ELEMENTS 
PAGE PARAGRAPH 

NUMBER NUMBER 

Relation condition (continued) 

Comparison of numeric operands.11-42 

Comparison of nonnumeric operands (operands 

must be of equal size) ..11-42 

Class condition. . ..  11-43 

NOT option 

Switch-status condition. .... . 11-44 

The arithmetic statements.11-51 

Arithmetic operands limited to 18 digits 

Overlapping operands.  11-51 

The ACCEPT statement (only one transfer of data) . . . 11-53 

The ADD statement.. 11-55 

identifier/literal series 

TO identifier 

GIVING identifier 

ROUNDED phrase 

SIZE ERROR phrase 

The ALTER statement (only one procedure-name)..... 11-57 

The DISPLAY statement (only one transfer of data). . . 11-59 

The DIVIDE statement.... 11-61 

INTO identifier 

BY identifier/literal 

GIVING identifier 

ROUNDED phrase 

SIZE ERROR phrase 

The ENTER statement .. 11-63 

The EXIT statement...11-64 

The GO TO statement (procedure-name is required) . . . 11-65 

DEPENDING ON phrase 

The IF statement (statements must be imperative) . . . 11-66 

ELSE phrase 

The INSPECT statement (only single character data 

item).11-68 

TALLYING phrase 

ALL 

LEADING 

CHARACTERS 

REPLACING phrase 

ALL 

LEADING 

FIRST 

CHARACTERS 

TALLYING and REPLACING phrases 

The MOVE statement.11-74 

TO identifier 

identifier series 

The MULTIPLY statement...11-77 

BY identifier 

GIVING identifier 

ROUNDED phrase 

SIZE ERROR phrase 

5.2.1.1.1 

5.2.1.1.2 

5.2.1.2 

5.2.1.4 

5.3.4 

5.3.5 

5.4 

5.5 

5.6 

5.8 

5.9 

5.10 

5.11 

5.12 

5.13 

5.14 

5.15 

5.16 



List of Elements by Module 

NUCLEUS, LEVEL 1 (1 NUC 1,2) 

ELEMENTS  

PAGE 

NUMBER 

The PERFORM statement. 11-78 

procedure-name 

THRU phrase 

TIMES phrase 

The STOP statement. 11-85 

literal 

RUN 

The SUBTRACT statement. 11-89 

identifier/literal series 

FROM identifier 

GIVING identifier 

ROUNDED phrase 

SIZE ERROR phrase 

PARAGRAPH 

NUMBER 

5.17 

5. 18 

5.20 

1-15 



List of Elements by Module 

NUCLEUS, LEVEL 2 (2 NUC 1,2) 

ELEMENTS 

PAGE 

NUMBER 

All elements of 1 NUC 1,2 are a part of 2 NUC 1,2 

Language Concepts.1-75 

Characters used for punctuation.1-65 

, comma 

; semicolon 

Characters used for arithmetic operations . 1-52 

+ addition 

subtraction 

* multiplication 

/ division 

** exponentiation 

Characters used in relations.1-66 

= equal to 

> greater than 

< less than 

Separators. 1-75 

The separators, semicolon and comma, are allowed . . II-l 

Character-strings . 1-76 

COBOL words.1-76 

User-defined words.1-76 

condition-name 

data-name 

Need not begin with an alphabetic 

character.II-l 

May be qualified if necessary for 

uniqueness.II-l 

Reserved words.1-79 

Figurative constants . 1-80 

ZEROS; ZEROES 

SPACES 

HIGH-VALUES 

LOW-VALUES 

QUOTES 

ALL literal 

Connectives.1-79 

Qualifier connectives: OF, IN 

Series connectives: , (separator comma) 

and ; (separator semicolon) 

Logical connectives: AND, OR, AND NOT, 

OR NOT 

Qualification . 1-87 

Reference format . 1-105 

Continuation of lines (continuation of words and 

numeric literals is allowed) . II-l 

Identification Division.1-94 

The DATE-COMPILED paragraph . II-4 

PARAGRAPH 

NUMBER 

5.3 
4.2 

4.2 

4.2 

5.3.2.1 

1.3. 1 

5.3.2.2 

5.3.2.2. 1 

5.3.2.2.1.1 

1.3.2 

1.3.2 

5.3.2.2.1.3 

5.3.2.2.1.3.5 

5.3.2.2.1.3.3 

5.3.3.8.1 

5.8 

1.3.4 

5.4 

2.4 

1-16 



List of Elements by Module 

NUCLEUS, LEVEL 2 (2 NUC 1,2) 

ELEMENTS 
PAGE 

NUMBER 

Environment Division 

The SPECIAL-NAMES paragraph.II-8 

alphabet-name clause 

literal 

Data Division.1-97 

The data description entry.11-12 

Level-number . 11-17 

01 through 49 (level-numbers may be 1 or 2 digits) 

66 
88 

The REDEPINES clause (may be nested).11-27 

The RENAMES clause (may be nested).11-29 

data-name 

data-name THRU data-name 

The VALUE clause.11-36 

literal-1, literal-2, ... 

literal-1 THRU literal-2 

literal range series 

Procedure Division.1-99 

Arithmetic expressions . 11-39 

Conditional expressions.11-41 

Simple condition.11-41 

Relational condition . 11-41 

Relational operators 

[NOT] = 

[NOT] > 

[NOT] < 

Comparison of nonnumeric operands (operands 

of unequal size are allowed).11-42 

Condition-name condition . 11-44 

Sign condition.11-44 

NOT option 

Complex condition . 11-45 

Logical operators AND, OR, and NOT 

Negated simple condition . 11-45 

Combined and negated combined conditions .... 11-46 

Abbreviated combined relation condition . 11-47 

Multiple results in arithmetic statements.11-51 

The ACCEPT statement (no restrictions on the number 

of transfers of data).11-53 

FROM phrase 

The ADD statement.11-55 

TO identifier series 

GIVING identifier series 

CORRESPONDING phrase 

The ALTER statement.11-57 

The series option is allowed 

PARAGRAPH 

NUMBER 

3.1.3 

5.6 

4.2 

4.6 

4.8 

4.9 

4.13 

5.7 

5.1 

5.2 

5.2.1 

5.2.1. 1 

5.2.1.1.2 

5.2.1.3 

5.2.1.5 

5.2.2 

5.2.2.1 

5.2.2.2 

5.2.3 

5.3.6 

5.4 

5.5 

5.6 

1-17 



List of Elements by Module 

NUCLEUS, LEVEL 2 (2 NUC 1,2) 
PAGE 

ELEMENTS NUMBER 

The COMPUTE statement.11-58 

identifier series 

ROUNDED phrase 

SIZE ERROR phrase 

The DISPLAY statement (no restrictions on the number 

of transfers of data).11-59 

UPON phrase 

The DIVIDE statement.. 11-61 

INTO identifier series 

GIVING identifier series 

REMAINDER phrase 

The GO TO statement (procedure-name may be omitted). . 11-65 

The IF statement (nested statements) . 11-66 

The INSPECT statement (multi-character data items) . . 11-68 

series 

The MOVE statement.11-74 

CORRESPONDING phrase 

The MULTIPLY statement . 11-77 

BY identifier series 

GIVING identifier series 

The PERFORM statement.11-78 

UNTIL phrase 

VARYING phrase 

The STRING statement . 11-86 

DELIMITED series 

POINTER phrase 

ON OVERFLOW phrase 

The SUBTRACT statement . 11-89 

FROM identifier series 

GIVING identifier series 

CORRESPONDING phrase 

The UNSTRING statement . 11-91 

DELIMITED BY phrase 

POINTER phrase 

TALLYING phrase 

ON OVERFLOW phrase 

PARAGRAPH 

NUMBER 

5.7 

5.8 

5.9 

5.12 

5.13 

5.14 

5.15 

5.16 

5.17 

5.19 

5.20 

5.21 

1-18 



List of Elements by Module 

TABLE HANDLING, LEVEL 1 (1 TBL 1,2) 

ELEMENTS  

PAGE 

NUMBER 

Language Concepts 

User-defined words . 1-76 

index-name 

Subscripting - 3 levels.1-89 

Indexing - 3 levels.1-89 

Data Division 

The OCCURS clause.III-2 

integer TIMES 

INDEXED BY index-name series 

The USAGE IS INDEX clause.Ill-5 

Procedure Division 

Relation conditions.III-6 

Comparisons involving index-names and/or 

index data items 

Overlapping operands . III-6 

The SET statement.Ill-11 

index-name/identifier series 

index-name 

UP BY identifier/integer 

DOWN BY identifier/integer 

index-name series 

PARAGRAPH 

NUMBER 

5.3.2.2.1.1 

5.3.3.8.2 

5.3.3.8.3 

2.1 

2.2 

3. 1 

3.2 

3.4 

1-19 



List of Elements by Module 

TABLE HANDLING, LEVEL 2 (2 TBL 1,2) 

PAGE 

ELEMENTS NUMBER 

All elements of 1 TBL 1,2 are a part of 2 TBL 1,2 

Data Division 

The OCCURS clause.Ill-2 

integer-1 TO integer-2 DEPENDING ON data-name 

ASCENDING/DESCENDING data-name 

data-name series 

ASCENDING/DESCENDING series 

Procedure Division 

The SEARCH statement . III-7 

VARYING phrase 

AT END phrase 

WHEN phrase 

The SEARCH ALL statement.III-7 

AT END phrase 

WHEN phrase 

PARAGRAPH 

NUMBER 

2. 1 

3.3 

3.3 

1-20 



List of Elements by Module 

SEQUENTIAL 1-0, LEVEL 1 (1 SEQ 1,2) 
PAGE PARAGRAPH 

ELEMENTS _NUMBER NUMBER 

Language Concepts 

User-defined words . 1-76 5.3.2.2.1.1 

file-name 

record-name 

1-0 status.IV-1 1.3.4 

Environment Division 

The FILE-CONTROL paragraph.. IV-4 2.1.1 

The file control entry.IV-4 2.1.2 

SELECT clause 

ASSIGN TO implementor-name clause 

ORGANIZATION IS SEQUENTIAL clause 

ACCESS MODE IS SEQUENTIAL clause 

FILE STATUS clause 

The I-O-CONTROL paragraph.IV-6 2.1.3 

RERUN clause 

SAME AREA clause 

SAME AREA series 

Data Division 

File Section.IV-9 3.1 

The file description entry . IV-10 3.3 

The record description entry . IV-9 3.2 

The BLOCK CONTAINS clause.IV-11 3.4 

integer CHARACTERS 

integer RECORDS 

The CODE-SET clause.IV-12 3.5 

The DATA RECORDS clause.IV-13 3.6 

data-name 

data-name series 

The LABEL RECORDS clause . IV-14 3.7 

STANDARD 

OMITTED 

The RECORD CONTAINS clause . IV-18 3.9 

integer-1 TO integer-2 CHARACTERS 

The VALUE OF clause.IV-19 3.10 

implementor-name IS literal 

implementor-name IS literal series 

Procedure Division 

The CLOSE statement (only a single file-name may 

appear in a CLOSE statement).IV-20 4.1 

REEL 

UNIT 

The OPEN statement (only a single file-name may 

appear in an OPEN statement).IV-24 4.2 

INPUT 

OUTPUT 

1-0 

1-21 



List of Elements by Module 

SEQUENTIAL 1-0, LEVEL 1 (1 SEQ 1,2) 

ELEMENTS 

PAGE PARAGRAPH 

NUMBER NUMBER 

The READ statement. 

INTO identifier 

AT END phrase 

The REWRITE statement . . . 

FROM identifier 

The USE statement . 

EXCEPTION/ERROR PROCEDURE 

ON file-name 

ON INPUT 

ON OUTPUT 

ON 1-0 

The WRITE statement . 

FROM identifier 

BEFORE/AFTER integer LINES 

BEFORE/AFTER PAGE 

IV-28 A.3 

IV-31 4.A 

IV-32 A.5 

IV-3A A.6 

1-22 



List of Elements by Module 

SEQUENTIAL 1-0, LEVEL 2 (2 SEQ 1,2) 

ELEMENTS 

PAGE 

NUMBER 

All elements of 1 SEQ 1,2 are a part of 2 SEQ 1,2 

Language Concepts 

Special register . 1-80 

LINAGE-COUNTER.IV-3 

Environment Division 

The FILE-CONTROL paragraph . IV-4 

The file control entry.IV-4 

SELECT clause 

OPTIONAL phrase 

RESERVE integer AREA(S) clause 

The I-O-CONTROL paragraph.IV-6 

SAME RECORD AREA clause 

SAME RECORD AREA series 

MULTIPLE FILE TAPE clause 

Data Division 

The file description entry.IV-10 

The BLOCK CONTAINS clause.IV-11 

integer-1 TO integer-2 RECORDS 

integer-1 TO integer-2 CHARACTERS 

The LINAGE clause.IV-15 

FOOTING phrase 

TOP phrase 

BOTTOM phrase 

The VALUE OF clause.IV-19 

implementor-name IS data-name 

implementor-name IS data-name series 

Procedure Division 

The CLOSE statement. IV-20 

NO REWIND, REMOVAL, or LOCK 

file-name series 

The OPEN statement. IV-24 

INPUT 

REVERSED 

NO REWIND 

OUTPUT 

NO REWIND 

EXTEND 

file-name series 

INPUT, OUTPUT, 1-0, and EXTEND series 

The USE statement. IV-32 

EXCEPTION/ERROR PROCEDURE ON file-name series 

EXCEPTION/ERROR PROCEDURE ON EXTEND 

The WRITE statement. IV-34 

BEFORE/AFTER identifier LINES 

BEFORE/AFTER mnemonic-name 

AT END-OF-PAGE imperative-statement 

PARAGRAPH 

NUMBER 

5.3.2.2.1.3.4 

1.3.6 

2.1.1 
2.1.2 

2.1.3 

3.3 

3.4 

3.8 

3. 10 

4.1 

4.2 

4.5 

4.6 

1-23 



List of Elements by Module 

RELATIVE 1-0, LEVEL 1 (1 REL 0,2) 

ELEMENTS 

PAGE PARAGRAPH 

NUMBER NUMBER 

Language Concepts 

User-defined words. 

file-name 

record-name 

1-0 status... 

Environment Division 

The FILE-CONTROL paragraph. 

The file control entry. 
SELECT clause 

ASSIGN TO implementor-name clause 

ORGANIZATION IS RELATIVE clause 

ACCESS MODE clause 

SEQUENTIAL 

RANDOM 

FILE STATUS clause 

The I-O-CONTROL paragraph . 

RERUN clause 

SAME AREA clause 

SAME AREA series 

Data Division 

File Section. 

The file description entry. 

The record description entry. 

The BLOCK CONTAINS clause . 

integer CHARACTERS 

integer RECORDS 

The DATA RECORDS clause. 

data-name 

data-name series 

The LABEL RECORDS clause. 

STANDARD 

OMITTED 

The RECORD CONTAINS clause. 

integer-1 TO integer-2 CHARACTERS 

The VALUE OF clause . 

implementor-name IS literal 

implementor-name IS literal series 

Procedure Division 

The CLOSE statement . 

WITH LOCK 

file-name series 

The DELETE statement. 

INVALID KEY phrase 

The OPEN statement. 

INPUT 

OUTPUT 

1-0 

1-76 5.3.2.2.1.1 

V-2 1.3.4 

V-5 2.1.1 

V-5 2.1.2 

V-7 2.1.3 

V-10 3.1 

V-ll 3.3 

V-10 3.2 

V-12 3.4 

V-13 3.5 

V-14 3.6 

V-15 3.7 

V-16 3.8 

V-17 4.1 

V-19 4.2 

V-20 4.3 

1-24 



List of Elements by Module 

RELATIVE 1-0, LEVEL 1 (1 REL 0,2) 

ELEMENTS  

PAGE PARAGRAPH 
NUMBER NUMBER 

The OPEN statement (continued) 

file-name series 

INPUT, OUTPUT, and 1-0 series 

The READ statement. 

INTO identifier 

AT END phrase 

INVALID KEY phrase 

The REWRITE statement . 

FROM identifier 

INVALID KEY phrase 

The USE statement . 

EXCEPTION/ERROR PROCEDURE 

ON file-name 

ON INPUT 

ON OUTPUT 

ON 1-0 

The WRITE statement . 

FROM identifier 

INVALID KEY phrase 

V-23 4.4 

V-26 4.5 

V-30 4.7 

V-32 4.8 

1-25 



List of Elements by Module 

RELATIVE 1-0, LEVEL 2 (2 REL 0,2) 
PAGE PARAGRAPH 

ELEMENTS NUMBER NUMBER 

All elements of 1 REL 0,2 are a part of 2 REL 0,2 

Environment Division 

The FILE-CONTROL paragraph..V-5 2.1.1 

The file control entry.V-5 2.1.2 
SELECT clause 

RESERVE integer AREA(S) clause 

ACCESS MODE IS DYNAMIC clause 

The I-O-CONTROL paragraph.V-7 2.1.3 

SAME RECORD AREA 

SAME RECORD AREA series 

Data Division 
The file description entry. V-ll 3.3 

The BLOCK CONTAINS clause.V-12 3.4 

integer-1 TO integer-2 RECORDS 

integer-1 TO integer-2 CHARACTERS 
The VALUE OF clause.V-16 3.8 

implementor-name IS data-name 

implementor-name IS data-name series 

Procedure Division 

The READ statement.V-23 4.4 

NEXT RECORD 

The START statement.V-28 4.6 

KEY IS phrase 

INVALID KEY phrase 

The USE statement.V-30 4.7 

EXCEPTION/ERROR PROCEDURE 

ON file-name series 

1-26 



List of Elements by Module 

INDEXED I-0, LEVEL 1 (1 INX 0,2) 

ELEMENTS  

PAGE PARAGRAPH 

NUMBER NUMBER 

Language Concepts 

User-defined words 

file-name 

record-name 

1-0 status. . . . 

1-76 5.3.2.2.1.1 

VI-2 1.3.4 

Environment Division 

The FILE-CONTROL paragraph. VI-5 2.1.1 

The file control entry. VI-5 2.1.2 

SELECT clause 

ASSIGN TO implementor-name clause 

ORGANIZATION IS INDEXED clause 

ACCESS MODE clause 

SEQUENTIAL 

RANDOM 

RECORD KEY clause 

FILE STATUS clause 

The I-O-CONTROL paragraph. VI-8 2.1.3 

RERUN clause 

SAME AREA clause 

SAME AREA series 

Data Division 

File Section. VI-11 3.1 

The file description entry. VI-12 3.3 

The record description entry. VI-11 3.2 

The BLOCK CONTAINS clause . VI-13 3.4 

integer CHARACTERS 

integer RECORDS 

The DATA RECORDS clause. VI-14 3.5 

data-name 

data-name series 

The LABEL RECORDS clause. VI-15 3.6 

STANDARD 

OMITTED 

The RECORD CONTAINS clause. VI-16 3.7 

integer-1 TO integer-2 CHARACTERS 

The VALUE OF clause. VI-17 3.8 

implementor-name IS literal 

implementor-name IS literal series 

Procedure Division 

The CLOSE statement . VI-18 4.1 

WITH LOCK 

file-name series 

The DELETE statement. VI-20 4.2 

INVALID KEY phrase 

The OPEN statement. VI-21 4.3 

INPUT 

OUTPUT 

1-0 

1-27 



List of Elements by Module 

INDEXED 1-0, LEVEL 1 (1 INX 0,2) 

ELEMENTS 

PAGE PARAGRAPH 

NUMBER NUMBER 

The OPEN statement (continued) 

file-name series 

INPUT, OUTPUT, and 1-0 series 

The READ statement. 

INTO identifier 

AT END phrase 

INVALID KEY phrase 

The REWRITE statement . 

FROM identifier 

INVALID KEY phrase 

The USE statement . 

EXCEPTION/ERROR PROCEDURE 

ON file-name 

ON INPUT 

ON OUTPUT 

ON 1-0 

The WRITE statement . 

FROM identifier 

INVALID KEY phrase 

VI-24 4.4 

VI-28 4.5 

VI-32 4.7 

VI-33 4.8 

1-28 



List of Elements by Module 

INDEXED 1-0, LEVEL 2 (2 INX 0,2) 

ELEMENTS 

PAGE PARAGRAPH 

NUMBER NUMBER 

All elements of 1 INX 0,2 are a part of 2 INX 0,2 

Environment Division 

The FILE-CONTROL paragraph . VI-5 2.1.1 

The file control entry.VI-5 2.1.2 

SELECT clause 

RESERVE integer AREA(S) clause 

ACCESS MODE IS DYNAMIC clause 

ALTERNATE RECORD KEY clause 

WITH DUPLICATES phrase 

The I-O-CONTROL paragraph.VI-8 2.1.3 

SAME RECORD clause 

SAME RECORD AREA series 

Data Division 

The file description entry . VI-12 3.3 

The BLOCK CONTAINS clause.VI-13 3.4 

integer-1 TO integer-2 RECORDS 

integer-1 TO integer-2 CHARACTERS 

The VALUE OF clause.VI-17 3.8 

implementor-name IS data-name 

implementor-name IS data-name series 

Procedure Division 

The READ statement.VI-24 4.4 

KEY IS phrase 

NEXT RECORD 

The START statement.VI-30 4.6 

KEY IS phrase 

INVALID KEY phrase 

The USE statement.VI-32 4.7 

EXCEPTION/ERROR PROCEDURE 

ON file-name series 

1-29 



List of Elements by Module 

SORT-MERGE, LEVEL 1 (1 SRT 0,2) 
PAGE PARAGRAPH 

ELEMENTS NUMBER NUMBER 

Language Concepts 

User-defined words. 1-76 5.3.2.2.1.1 

file-name 

Environment Division 

The FILE-CONTROL paragraph. VII-2 2.1.1 

The file control entry. VII-2 2.1.2 

SELECT clause 

ASSIGN TO implementor-name clause 

Data Division 

File Section. VII-5 3.1 

The sort-merge file description entry . VII-5 3.2 

The DATA RECORDS clause. VI1-6 3.3 

The RECORD CONTAINS clause. VII-7 3.A 

Procedure Division 

The RELEASE statement . VII-12 4.2 

FROM phrase 

The RETURN statement. VII-13 4.3 

INTO phrase 

AT END phrase 

The SORT statement (only one SORT statement, a STOP 

RUN statement, and any associated input-output 

procedures allowed in the nondeclarative 

portion of a program) . VII-14 4.4 

KEY data-name 

data-name series 

ASCENDING series 

DESCENDING series 

mixed ASCENDING/DESCENDING 

INPUT PROCEDURE phrase 

THRU 

USING phrase 

OUTPUT PROCEDURE phrase 

THRU 

GIVING phrase 

1-30 



List of Elements by Module 

SORT-MERGE, LEVEL 2 (2 SRT 0,2) 
PAGE PARAGRAPH 

ELEMENTS_NUMBER NUMBER 

All elements of 1 SRT 0,2 are a part of 2 SRT 0,2 

Environment Division 

The FILE-CONTROL paragraph.VII-2 2.1.1 

The file control entry.VII-2 2.1.2 

SELECT clause 

The I-O-CONTROL paragraph . VII-3 2.1.3 

SAME RECORD AREA clause 

SAME SORT/SORT-MERGE AREA clause 

SAME series 

Procedure Division 

The MERGE statement . VII-8 4.1 

KEY data-name 

data-name series 

ASCENDING series 

DESCENDING series 

mixed ASCENDING/DESCENDING 

COLLATING SEQUENCE phrase 

USING phrase 

OUTPUT PROCEDURE phrase 

THRU 

GIVING phrase 

The SORT statement (multiple SORT statements are 

permitted).VII-14 4.4 

COLLATING SEQUENCE phrase 

1-31 



List of Elements by Module 

REPORT WRITER, LEVEL 1 (1 RPW 0,1) 

ELEMENTS 

PAGE PARAGRAPH 

NUMBER NUMBER 

Language Concept 

User-defined words 

file-name 

report-name 

Special registers 

LINE-COUNTER . 

PAGE-COUNTER . 

1-76 5.3.2.2.1.1 

1-80 5.3.2.2.1.3.4 

VIII-1 1.2.1 

VXII-1 1.2.2 

Data Division 

Report Section.VIII-2 2.2 

The file description entry.VIII-3 2.3 

The report description entry.VIII-4 2.4 

The report group description entry.VIII-6 2.5 

The BLOCK CONTAINS clause . VIII-24 2.6 

The CODE clause.VIII-25 2.7 

The CODE-SET clause . VIII-26 2.8 

The COLUMN NUMBER clause.VIII-27 2.9 

The CONTROL clause.VIII-28 2.10 

data-name 

data-name series 

FINAL 

FINAL data-name series 

The data-name clause.VIII-30 2.11 

The GROUP INDICATE clause . VIII-31 2.12 

The LABEL RECORDS clause.VIII-32 2.13 

The LINE NUMBER clause.VIII-33 2.14 

integer 

NEXT PAGE 

PLUS integer 

The NEXT GROUP clause.VIII-35 2.15 

integer 

PLUS integer 

NEXT PAGE 

The PAGE clause.VIII-36 2.16 

integer LINES 

HEADING 

FIRST DETAIL 

LAST DETAIL 

FOOTING 

The PICTURE clause.11-18 4.7 

The RECORD CONTAINS clause.VIII-39 2.17 

The REPORT clause . VIII-40 2.18 

report-name series 

The SOURCE clause . VIII-41 2.19 

The SUM clause.VIII-42 2.20 

UPON data-name series 

RESET phrase 

The TYPE clause.VIII-45 2.21 

REPORT HEADING (RH) 

PAGE HEADING (PH) 

CONTROL HEADING (CH) 

1-32 



List of Elements by Module 

REPORT WRITER, LEVEL 1 (1 RPW 0,1) 

ELEMENTS  

PAGE PARAGRAPH 

NUMBER NUMBER 

The TYPE clause (continued) 

DETAIL (DE) 

CONTROL FOOTING (CF) 

PAGE FOOTING (PF) 

REPORT FOOTING (RF) 

The VALUE IS clause. . . . 

The VALUE OF clause. . . . 

Procedure Division 

The GENERATE statement . . 

report-name 

data-name 

The INITIATE statement . . 

report-name 

The SUPPRESS statement . . 

report-name series 

The TERMINATE statement. . 

report-name series 

The USE statement. 

BEFORE REPORTING 

11-36 
VIII-50 

4.13 
2.22 

VIII-51 3.1 

VIII-53 3.2 

VIII-54 3.3 

VIII-55 3.4 

VIII-56 3.5 

1-33 



List of Elements by Module 

SEGMENTATION, LEVEL 1 (1 SEG 0,2) 

ELEMENTS 

PAGE 

NUMBER 

Language Concepts 

User-defined words.1-76 

segment-numb er 

Procedure Division 

Segment-numbers . IX-4 

Fixed segment-number range 0 through 49 

Non-fixed segment-number range 50 through 99 

All sections with the same segment-number must 

be together in the source program 

SEGMENTATION, LEVEL 2 (2 SEG 0,2) 

ELEMENTS 

PAGE 

NUMBER 

All elements of 1 SEG 0,2 are a part of 2 SEG 0,2 

Environment Division 

The OBJECT-COMPUTER paragraph 

SEGMENT-LIMIT.IX-5 

Procedure Division 

Segment-numbers . IX-4 

Sections with the same segment-number need not 

be physically contiguous in the source program. 

PARAGRAPH 

NUMBER 

5.3.2.2.1.1 

3.1 

PARAGRAPH 

NUMBER 

3.2 

3.1 

1-34 



List of Elements by Module 

LIBRARY, LEVEL 1 (1 LIB 0,2) 

ELEMENTS  

PAGE 

NUMBER 

Language Concepts 

User-defined words. 1-76 

t ext-name 

All divisions 

The COPY statement. X-2 

LIBRARY, LEVEL 2 (2 LIB 0,2) 

ELEMENTS 

PAGE 

NUMBER 

All elements of 1 LIB 0,2 are a part of 2 LIB 0,2 

Language Concepts 

User-defined words. 1-76 

library-name 

All divisions 

The COPY statement. X-2 

OF library-name 

REPLACING phrase 

PARAGRAPH 

NUMBER 

5.3.2.2.1.I 

2. 

PARAGRAPH 

NUMBER 

5.3.2.2.1.1 

2. 

1-35 



List of Elements by Module 

DEBUG, LEVEL 1 (DEB 0,2) 

ELEMENTS 
PAGE 

NUMBER 

Language Concepts 

Special registers. 1-80 

DEBUG-ITEM.XI-1 

Environment Division 

The SOURCE-COMPUTER paragraph 

WITH DEBUGGING MODE clause.XI-3 

Procedure Division 

USE FOR DEBUGGING statement.XI-4 

procedure-name 

procedure-name series 

ALL PROCEDURES 

Debugging lines.XI-10 

DEBUG, LEVEL 2 (2 DEB 0,2) 

ELEMENTS 

PAGE 

NUMBER 

All elements of 1 DEB 0,2 are a part of 2 DEB 0,2 

Procedure Division 

USE FOR DEBUGGING statement.XI-4 

ALL REFERENCES OF identifier series 

file-name series 

cd-name series 

PARAGRAPH 

NUMBER 

5.3.2.2.1.3.4 

1.3.1 

2.1 

3.1 

3.2 

PARAGRAPH 

NUMBER 

3.1 

1-36 



List of Elements by Module 

INTER-PROGRAM COMMUNICATION 1 (1 IPC 0,2) 
PAGE PARAGRAPH 

ELEMENTS_NUMBER NUMBER 

Data Division 
Linkage Section.XII-2 2.1 

Procedure Division 

Procedure Division header.XII-4 3.1 

USING phrase 

The CALL statement.XII-5 3.2 

literal 

USING data-name series 

The EXIT PROGRAM statement.XII-8 3.4 

INTER-PROGRAM COMMUNICATION 2 (2 IPC 0,2) 
PAGE PARAGRAPH 

ELEMENTS NUMBER NUMBER 

All elements of 1 IPC 0,2 are a part of 2 IPC 0,2 

Procedure Division 

The CALL statement. XII-5 3.2 

identifier 

ON OVERFLOW phrase 

The CANCEL statement. XII-7 3.3 

1-37 



List of Elements by Module 

COMMUNICATION (1 COM 0,2) 

ELEMENTS 
PAGE PARAGRAPH 

NUMBER NUMBER 

Language Concepts 
User-defined words 

cd-name 
1-76 5.3.2.2.1.1 

Data Division 
Communication Section . XIII-2 2.1 
The communication description entry . XIII-3 2.2 

FOR INPUT clause 
END KEY 
MESSAGE COUNT 
MESSAGE DATE 
MESSAGE TIME 
SYMBOLIC QUEUE 
SYMBOLIC SOURCE 
SYMBOLIC SUB-QUEUE-n 
STATUS KEY 
TEXT LENGTH 

FOR OUTPUT clause 
DESTINATION COUNT 
DESTINATION TABLE 

INDEXED BY 
ERROR KEY 
SYMBOLIC DESTINATION 
STATUS KEY 
TEXT LENGTH 

Procedure Division 
The ACCEPT MESSAGE COUNT statement. XIII-12 3.1 
The DISABLE statement . XIII-13 3.2 

INPUT 
OUTPUT 
KEY identifier/literal 

The ENABLE statement. XIII-15 3.3 
INPUT 
OUTPUT 
KEY identifier/literal 

The RECEIVE statement . XIII-17 3.4 
MESSAGE 
INTO identifier 
NO DATA phrase 

The SEND statement. XIII-20 3.5 
FROM identifier-1 WITH 
WITH EMI 
WITH EGI 
BEFORE/AFTER ADVANCING 

identifier-3 LINES 
integer LINES 
mnemonic-name 
PAGE 

1-38 



List of Elements by Module 

COMMUNICATION (2 COM 0,2) 

ELEMENTS  
PAGE 

NUMBER 

All elements of 1 COM 0,2 are a part of 2 COM 0,2 

Communication Section 
The communication description entry.XIII-3 

FOR INPUT 
INITIAL 

Procedure Division 

The DISABLE statement.XIII-13 
INPUT 

TERMINAL 
The ENABLE statement . XIII-15 

INPUT 

TERMINAL 
The RECEIVE statement.XIII-17 

SEGMENT 
The SEND statement . XIII-20 

FROM identifier-1 
WITH identifier-2 
WITH ESI 

PARAGRAPH 

NUMBER 

2.2 

3.2 

3.3 

3.4 

3.5 

1-39 



List of Elements Shotting Disposition 

3. LIST OF ELEMENTS SHOWING DISPOSITION 

3.1 GENERAL DESCRIPTION 

This chapter contains a list of all elements in American National Standard 
COBOL showing the levels in which each element is introduced. Adjacent to 
each level code is a text reference. This reference indicates the page 
number of the detailed specification describing the particular element. 

1-40 



List of Elements Showing Disposition 

PAGE 

ELEMENTS  LEVEL NUMBER 

Language Concepts 

Character set 

Characters used for words 

0,1,. .. ,9 ,A,B,.. . ,Z - (hyphen or minus).1 NUC 1-76 

Characters used for punctuation 

. " ( ) = space.1 NUC 1-65 

, ;  2 NUC 1-65 

Characters used in arithmetic operations 

+ -*/**  2 NUC 1-52 

Characters used in relations 

> < -  2 NUC 1-66 

Characters used in editing 

B 0 + - CR DB Z * $ , • /  1 NUC 1-58 
Separators.1 NUC 1-75 

Semicolon and comma not permitted.1 NUC II-l 

Semicolon and comma are allowed.2 NUC II-1 

Character-strings.1 NUC 1-76 

COBOL words.1 NUC 1-76 

Not more than 30 characters 

User-defined words.1 NUC 1-76 

cd-name.1 COM XIII-3 

condition-name.2 NUC 1-77 

data-name 

Must begin with an alphabetic character. . 1 NUC II-l 

Need not begin with an alphabetic 

character.2 NUC II-l 

file-name.1 SEQ 1-59 

index-name.1 TBL 111-2 

level-number.1 NUC 1-84 

library-name.2 LIB 1-61 

mnemonic-name.1 NUC 1-78 

paragraph-name.1 NUC 1-78 

program-name.1 NUC 1-65 

record-name.1 SEQ 1-66 

report-name.1 RPW 1-67 

routine-name.1 NUC 1-67 

section-name.1 NUC 1-78 

segment-number.1 SEG IX-4 

text-name.1 LIB X-2 

System-names.1 NUC 1-78 

computer-name 

implementor-name 

language-name 

Reserved words.1 NUC 1-79 

Key words.1 NUC 1-79 

Optional words.1 NUC 1-79 

Connectives 

Qualifier connectives: OF, IN .2 NUC 1-79 

Series connectives: , (separator comma) 

and ; (separator semicolon).2 NUC 1-79 

Logical connectives: AND, OR, AND NOT 

OR NOT.2 NUC 1-79 

1-41 



List of Elements Showing Disposition 

PAGE 
ELEMENTS_LEVEL NUMBER 

Reserved words (continued) 

Special registers 

LINE-COUNTER, PAGE-COUNTER. 1 RPW VIII-1 

LINAGE-COUNTER. 2 SEQ IV-3 

DEBUG-ITEM. 1 DEB XI-1 

Figurative constants 

ZERO. 1 NUC 1-80 

ZEROS, ZEROES. 2 NUC 1-80 

SPACE. 1 NUC 1-80 

SPACES. 2 NUC 1-80 

HIGH-VALUE, LOW-VALUE. 1 NUC 1-80 

HIGH-VALUES, LOW-VALUES . 2 NUC 1-80 

QUOTE. 1 NUC 1-80 

QUOTES. 2 NUC 1-80 

ALL literal. 2 NUC 1-80 

Special-character words 

Arithmetic operators. 2 NUC 1-80 

Relation characters. 2 NUC 1-80 

Literals. 1 NUC 1-80 

Nonnumeric literals have lengths from 1 through 

120 characters 

Numeric literals have lengths from 1 through 

18 digits 

PICTURE character-strings. 1 NUC 1-82 

Comment-entries. 1 NUC 1-82 

Qualification. 2 NUC 1-87 

No qualification permitted. 1 NUC II-1 

Qualification permitted. 2 NUC II-l 

Subscripting 

3 levels. 1 TBL 1-89 

Indexing 

3 levels. 1 TBL 1-89 

Identification Division 

The PROGRAM-ID paragraph. 1 NUC II-3 

The AUTHOR paragraph. 1 NUC II-2 

The INSTALLATION paragraph. 1 NUC II-2 

The DATE-WRITTEN paragraph. 1 NUC II-2 

The DATE-COMPILED paragraph. 2 NUC II-4 

The SECURITY paragraph. 1 NUC II-2 

Environment Division 

Configuration Section 

The SOURCE-COMPUTER paragraph. 1 NUC II-5 

computer-name. 1 NUC II-5 

WITH DEBUGGING MODE phrase. 1 DEB XI-3 

The OBJECT-COMPUTER paragraph. 1 NUC II-6 

computer-name. 1 NUC II-6 

MEMORY SIZE clause. 1 NUC II-6 

1-42 



List of Elements Showing Disposition 

PAGE 

ELEMENTS  LEVEL NUMBER 

The OBJECT-COMPUTER paragraph (continued) 
PROGRAM COLLATING SEQUENCE clause . 1 NUC II-6 
SEGMENT-LIMIT clause.1 SEG IX-5 

The SPECIAL-NAMES paragraph 
implementor-name IS mnemonic-name . 1 NUC II-8 
ON STATUS.1 NUC 11-8 
OFF STATUS.1 NUC 11-8 
implementor-name series . 1 NUC II-8 
alphabet-name clause 
STANDARD-1.1 NUC 11-8 
NATIVE.1 NUC 11-8 
implementor-name.1 NUC II-8 
literal.2 NUC II-8 

CURRENCY SIGN clause.1 NUC II-8 
DECIMAL-POINT clause.1 NUC II-8 

Input-Output Section 
The FILE-CONTROL paragraph 

SELECT clause.1 SEQ IV-4 
1 REL V-5 
1 INX VI-5 
1 SRT VII-2 

OPTIONAL phrase.2 SEQ IV-4 
ASSIGN TO implementor-name clause . 1 SEQ IV-4 

1 REL V-5 
1 INX VI-5 
1 SRT VII-2 

RESERVE AREA(S) clause.2 SEQ IV-4 
2 REL V-5 
2 INX VI-5 

ORGANIZATION clause 
SEQUENTIAL.1 SEQ IV-4 
RELATIVE.1 REL V-5 
INDEXED.1 INX VI-5 

ACCESS MODE clause 
SEQUENTIAL.1 SEQ IV-4 

1 REL V-5 
1 INX VI-5 

RANDOM.1 REL V-5 
1 INX VI-5 

DYNAMIC.2 REL V-5 
2 INX VI-5 

RECORD KEY clause.1 INX VI-5 
ALTERNATE RECORD KEY clause.2 INX VI-5 
FILE STATUS clause.1 SEQ IV-4 

1 REL V-5 
1 INX VI-5 

The I-O-CONTROL paragraph 
RERUN clause.1 SEQ IV-6 

1 REL V-7 
1 INX VI-8 

1-43 



List of Elements Showing Disposition 

ELEMENTS 

The I-O-CONTROL paragraph (continued) 
SAME AREA clause. 

SAME RECORD AREA clause 

SAME SORT/SORT-MERGE AREA clause 
SAME series . 

MULTIPLE FILE TAPE clause 

Data Division 
Communication Section . 
File Section. 

Linkage Section . 
Report Section. 
Working-Storage Section . 
The communication description entry 
The data description entry. 
The file description entry. 

The record description entry 

The report description entry. . . . 
The report group description entry. 
The sort-merge description entry. . 
The BLANK WHEN ZERO clause. 
The BLOCK CONTAINS clause 

integer CHARACTERS/RECORDS . . . 

integer-1 TO integer-2 CHARACTERS/RECORDS. 

The CODE clause .... 
The CODE-SET clause . . 

The COLUMN NUMBER clause 
The CONTROL clause. . . 
The data-name clause. . 

PAGE 
LEVEL NUMBER 

1 SEQ IV-6 
1 REL V-7 
1 INX VI-8 
2 SEQ IV-6 
2 REL V-7 
2 INX VI-8 
2 SRT VII-3 
2 SRT VII-3 
1 SEQ IV-6 
1 REL V-7 
1 INX VI-8 
2 SEQ IV-6 

1 COM XIII-2 
1 SEQ IV-9 
1 REL V-10 
1 INX VI-11 
1 SRT VII-5 
1 RPW VIII-2 
1 IPC XII-2 
1 RPW VIII-2 
1 NUC 11-11 
1 COM XIII-3 
1 NUC 11-12 
1 SEQ IV-10 
1 REL V-ll 
1 INX VI-12 
1 RPW VIII-3 
1 SEQ IV-9 
1 REL V-10 
I INX VI-11 
1 RPW VIII-4 
1 RPW VIII-6 
1 SRT VII-5 
1 NUC 11-14 

1 SEQ IV-11 
1 REL V-12 
1 INX VI-13 
1 RPW VIII-24 
2 SEQ IV-11 
2 REL V-12 
2 INX VI-13 
1 RPW VIII-24 
1 RPW VIII-25 
1 SEQ IV-12 
1 RPW VIII-26 
1 RPW VIII-27 
1 RPW VIII-28 
1 NUC 11-15 
1 RPW VIII-30 

1-44 



List of Elements Showing Disposition 

ELEMENTS LEVEL 

The DATA RECORDS clause.1 SEQ 
1 REL 
1 I NX 
1 SRT 

FILLER.1 NUC 
The GROUP INDICATE clause.1 RPW 
The JUSTIFIED clause (may be abbreviated JUST). 1 NUC 
The LABEL RECORDS clause 

STANDARD/OMITTED.1 SEQ 
1 REL 
1 INX 
1 RPW 

Level-number 
01 through 10 (level-number must be 2 digits).... 1 NUC 
1 through 49 (level-number may be 1 digit) . 2 NUC 
66 or 88.2 NUC 
77.1 NUC 

The LINAGE clause.2 SEQ 
The LINE NUMBER clause.1 RPW 
The NEXT GROUP clause.1 RPW 
The OCCURS clause 

integer TIMES.1 TBL 
ASCENDING/DESCENDING data-name . 2 TBL 

data-name series.2 TBL 
INDEXED BY index-name.1 TBL 
integer-1 TO integer-2 DEPENDING ON data-name. ... 2 TBL 

The PAGE clause.1 RPW 
The PICTURE clause (may be abbreviated PIC) 

Character-string may contain 30 characters . 1 NUC 
Data characters: AX9.1 NUC 
Operational symbols: SVP.1 NUC 
Fixed insertion characters: 0 B , . $ + - DB CR / 1 NUC 
Replacement or floating characters: + - Z * ... 1 NUC 
Currency sign substitution.1 NUC 
Decimal point substitution . 1 NUC 

The RECORD CONTAINS clause.1 SEQ 
1 REL 
1 INX 
1 SRT 
1 RPW 

The REDEFINES clause 
May not be nested.1 NUC 
May be nested.2 NUC 

The RENAMES clause.2 NUC 
The REPORT clause.1 RPW 
The SIGN clause.1 NUC 
The SOURCE clause.1 RPW 
The SUM clause.1 RPW 
The SYNCHRONIZED clause (may be abbreviated SYNC) ... 1 NUC 
The TYPE clause.1 RPW 

PAGE 

NUMBER 

IV- 13 
V- 13 
VI- 14 
VII- 6 
11-15 
VIII- 31 
11-16 

IV- 14 
V- 14 
VI- 15 
VIII-32 

11-13 
11-17 
II- 17 
11-11 
IV-15 
VIII-33 
VIII-35 

III- 2 
III-2 
III-2 
III-2 
III- 2 
VIII-36 

11-18 
11-18 
11-18 
11-21 
11-21 
11-21 
11-21 
IV- 18 
V- 15 
VI- 16 
VII- 7 
VIII- 39 

11-27 
11-27 
11-29 
VIII-40 
11-31 
VIII-41 
VIII-42 
11-33 
VIII-45 

1-45 



List of Elements Showing Disposition 

ELEMENTS LEVEL 

The USAGE clause 
COMPUTATIONAL (may be abbreviated COMP).1 NUC 
DISPLAY.1 NUC 
INDEX.1 TBL 

The VALUE clause 
literal.1 NUC 
literal series.2 NUC 
literal THRU literal.2 NUC 
literal range series . 2 NUC 

The VALUE OF clause 
implementor-name IS literal.1 SEQ 

1 REL 
1 I NX 
1 RPW 

implementor-name IS data-name.2 SEQ 
2 REL 
2 INX 
1 RPW 

Procedure Division 
USING phrase in Procedure Division header . 1 IPC 
Declaratives.1 SEQ 

1 REL 
1 INX 
1 RPW 
1 DEB 

Arithmetic expressions.2 NUC 
Conditional expressions . 1 NUC 

Simple conditions.  1 NUC 
Relation condition.1 NUC 

Relation operators 
[NOT] GREATER THAN.1 NUC 
[NOT] >  2 NUC 
[NOT] LESS THAN.1 NUC 
[NOT] <  2 NUC 
[NOT] EQUAL TO.1 NUC 
[NOT] =  2 NUC 

Comparison 
Numeric operands.1 NUC 
Nonnumeric operands 

Operands must be of equal size.1 NUC 
Operands may be unequal in size.2 NUC 

Class condition.1 NUC 
NOT option 

Switch-status condition . 1 NUC 
Condition-name condition.2 NUC 
Sign condition.2 NUC 

NOT option 
Complex conditions . 2 NUC 

Logical operators AND, OR, and NOT 
Negated simple conditions . 2 NUC 
Combined and negated combined conditions.2 NUC 

Abbreviated combined relation condition.2 NUC 

PAGE 
NUMBER 

11-35 
II- 35 
III- 5 

11-36 
11-36 
11-36 
11-36 

IV- 19 
V- 16 
VI- 17 
VIII-50 
IV- 19 
V- 16 
VI- 17 
VIII-50 

XII-4 
IV- 3 2 
V- 30 
VI- 32 
VIII-56 
XI-4 
11-39 
11-41 
11-41 
11-41 

11-42 
11-42 
11-42 
11-42 
11-42 
11-42 

11-42 

11-42 
11-42 
11-43 

11-44 
11-44 
11-44 

11-45 

11-45 
11-46 
11-47 

1-46 



List of Elements Showing Disposition 

ELEMENTS LEVEL 

The arithmetic statements 
Arithmetic operands limited to 18 digits.1 NUC 

Overlapping operands . 1 NUC 
1 TBL 

Multiple results in arithmetic statements.2 NUC 

The ACCEPT statement 
Only one transfer of data.1 NUC 
No restriction on the number of transfers of data . 2 NUC 
FROM phrase.2 NUC 
MESSAGE COUNT phrase. 1 COM 

The ADD statement 
identifier/literal series . 1 NUC 
TO identifier.1 NUC 
TO identifier series.2 NUC 
GIVING identifier . 1 NUC 
GIVING identifier series.2 NUC 
ROUNDED phrase.1 NUC 
SIZE ERROR phrase.1 NUC 
CORRESPONDING phrase.2 NUC 

The ALTER statement 
procedure-name. 1 NUC 
procedure-name series . 2 NUC 

The CALL statement 
literal.1 IPC 
identifier.2 IPC 
USING data-name.1 IPC 
ON OVERFLOW phrase.2 IPC 

The CANCEL statement.2 IPC 
The CLOSE statement 

Single file-name.1 SEQ 
file-name series.2 SEQ 

1 REL 
1 I NX 

REEL.1 SEQ 
UNIT.1 SEQ 
NO REWIND.2 SEQ 
FOR REMOVAL.2 SEQ 
LOCK.2 SEQ 

1 REL 
1 I NX 

The COMPUTE statement.2 NUC 
The DELETE statement. 1 REL 

1 I NX 
The DISABLE statement 
INPUT. 1 COM 
TERMINAL.2 COM 

OUTPUT.1 COM 
KEY identifier/literal.1 COM 

The DISPLAY statement 
Only one transfer of data. 1 NUC 
No restriction on the number of transfers of data . 2 NUC 
UPON phrase.2 NUC 

PAGE 

NUMBER 

11-51 
II- 51 
III- 6 
11-51 

11-53 
11-53 
11-53 
XIII-12 

11-55 
11-55 
11-55 
11-55 
11-55 
11-55 
11-55 
11-55 

11-57 
11-57 

XII-5 
XII-5 
XII-5 
XII-5 
XII- 7 

IV-20 
IV- 19 
V- 17 
VI- 18 
IV-20 
IV-20 
IV-20 
IV-20 
IV- 20 
V- 17 
VI- 18 
11-58 
V- 19 
VI- 20 

XIII- 13 
XIII-13 
XIII-13 
XIII-13 

11-59 
11-59 
11-59 

1-47 



List of Elements Showing Disposition 

PAGE 
ELEMENTS_LEVEL NUMBER 

The DIVIDE statement 
INTO identifier.1 NUC 11-61 
INTO identifier series.2 NUC 11-61 
BY identifier.1 NUC 11-61 
GIVING identifier.1 NUC 11-61 
GIVING identifier series . 2 NUC 11-61 
REMAINDER phrase.2 NUC 11-61 
ROUNDED phrase.1 NUC 11-61 
SIZE ERROR phrase.1 NUC 11-61 

The ENABLE statement 
INPUT.1 COM XIII-15 
TERMINAL.2 COM XI11-15 
OUTPUT.1 COM XI11-15 
KEY identifier/literal . 1 COM XIII-15 

The ENTER statement.1 NUC 11-63 
The EXIT statement.1 NUC 11-64 
The EXIT PROGRAM statement.1 IPC XII-8 
The GENERATE statement.1 RPW VIII-51 
The GO TO statement 

procedure-name is required.1 NUC 11-65 
procedure-name is optional . ..... 2 NUC 11-65 
DEPENDING ON phrase.1 NUC 11-65 

The IF statement 
Statements must be imperative statements.1 NUC 11-66 
Nested statements.2 NUC 11-66 
ELSE.1 NUC 11-66 

The INITIATE statement.1 RPW VIII-53 
The INSPECT statement 

Only single character data item.1 NUC 11-67 
Multi-character data item.2 NUC 11-67 

The MERGE statement.2 SRT VII-8 
The MOVE statement 

TO identifier.1 NUC 11-74 
TO identifier series.1 NUC 11-74 
CORRESPONDING phrase.2 NUC 11-74 

The MULTIPLY statement 
BY identifier.1 NUC 11-77 
BY identifier series.2 NUC 11-77 
GIVING identifier.1 NUC 11-77 
GIVING identifier series . 2 NUC 11-77 
ROUNDED phrase.1 NUC 11-77 
SIZE ERROR phrase.1 NUC 11-77 

The OPEN statement 
INPUT 

Single file-name..1 SEQ IV-24 
file-name series.2 SEQ IV-24 

1 REL V-20 
1 INX VI-21 

REVERSED.2 SEQ IV-24 
NO REWIND.2 SEQ IV-24 

1-48 



List of Elements Showing Disposition 

PAGE 

ELEMENTS_LEVEL NUMBER 

The OPEN statement (continued) 
1-0 

Single file-name. ..1 SEQ IV-24 
file-name series.2 SEQ IV-24 

1 REL V-20 
1 INX VI-21 

EXTEND 
file-name series.2 SEQ IV-24 

INPUT, OUTPUT, I-O, and EXTEND series.2 SEQ IV-24 
INPUT, OUTPUT, and 1-0 series.1 REL V-20 

1 INX VI-21 
The PERFORM statement 
procedure-name.1 NUC 11-78 
THRU phrase.1 NUC 11-78 
TIMES phrase.1 NUC 11-78 
UNTIL phrase.2 NUC 11-78 
VARYING phrase.2 NUC 11-78 

The READ statement 
file-name.1 SEQ IV-28 

1 REL V-23 
1 INX VI-24 

INTO identifier.1 SEQ IV-28 
1 REL V-23 
1 INX VI-24 

AT END phrase.1 SEQ IV-28 
1 REL V-23 
1 INX VI-24 

INVALID KEY phrase.1 REL V-23 
1 INX VI-24 

NEXT RECORD.2 REL V-23 
2 INX VI-24 

KEY IS phrase.2 INX VI-24 
The RECEIVE statement 
MESSAGE.1 COM XIII-17 
SEGMENT.2 COM XIII-17 
INTO identifier.1 COM XIII-17 
NO DATA phrase.1 COM XIII-17 

The RELEASE statement 
record-name.1 SRT VII-12 
FROM phrase.1 SRT VII-12 

The RETURN statement 
file-name.1 SRT VII-13 
INTO phrase.1 SRT VII-13 
AT END phrase.1 SRT VII-13 

The REWRITE statement 
FROM identifier.1 SEQ IV-31 

1 REL V-26 
1 INX VI-28 

INVALID KEY phrase.1 REL V-26 
1 INX VI-28 

The SEARCH statement.2 TBL III-7 

1-49 



List of Elements Showing Disposition 

ELEMENTS LEVEL 

The SEND statement 
FROM identifier-1.2 COM 
FROM identifier-1 WITH.1 COM 
WITH identifier-2.2 COM 
WITH EG I.1 COM 
WITH EMI.1 COM 
WITH ESI.2 COM 
BEFORE/AFTER ADVANCING . 1 COM 

The SET statement.1 TBL 
The SORT statement 

Only one SORT statement, a STOP RUN statement, and 
any associated input-output procedures allowed 
in the nondeclarative portion of a program. 1 SRT 

Program not limited to one SORT statement.2 SRT 
COLLATING SEQUENCE phrase.2 SRT 

The START statement.2 REL 
2 INX 

The STOP statement.1 NUC 
The STRING statement.2 NUC 
The SUBTRACT statement 

identifier/literal series.1 NUC 
FROM identifier.1 NUC 
FROM identifier series.2 NUC 
GIVING identifier.  1 NUC 
GIVING identifier series . 2 NUC 
ROUNDED phrase.1 NUC 
SIZE ERROR phrase.1 NUC 
CORRESPONDING phrase . 2 NUC 

The SUPPRESS statement.1 RPW 
The TERMINATE statement.1 RPW 
The UNSTRING statement.2 NUC 
The USE statement 

EXCEPTION/ERROR PROCEDURE 
ON file-name/INPUT/OUTPUT/I-O . 1 SEQ 

1 REL 
1 INX 

ON file-name series.2 SEQ 
2 REL 
2 INX 

ON EXTEND.2 SEQ 
BEFORE REPORTING.1 RPW 

The USE FOR DEBUGGING statement 
procedure-name.1 DEB 
procedure-name series.1 DEB 
ALL PROCEDURES.1 DEB 
ALL REFERENCES OF identifier series.2 DEB 
file-name series.2 DEB 
cd-name series.2 DEB 

PAGE 

NUMBER 

XIII-20 
XIII-20 
XIII-20 
XIII-20 
XIII-20 
XIII-20 
XIII-20 
III-ll 

VII-14 
VII-14 
VII- 14 
V- 28 
VI- 30 
11-85 
11-86 

11-89 
11-89 
11-89 
11-89 
11-89 
11-89 
11-89 
11-89 
VIII- 54 
VIII-55 
11-91 

IV- 3 2 
V- 30 
VI- 32 
IV- 32 
V- 30 
VI- 32 
IV-32 
VIII-56 

XI-4 
XI-4 
XI-4 
XI-4 
XI-4 
XI-4 

1-50 



List of Elements Shewing Disposition 

PAGE 

ELEMENTS LEVEL NUMBER 

The WRITE statement 
record-name.1 SEQ IV-34 

1 REL V-32 
1 INX VI-33 

FROM identifier.1 SEQ IV-34 
1 REL V-32 
1 INX VI-33 

BEFORE/AFTER ADVANCING 
integer LINES.1 SEQ IV-34 
PAGE.1 SEQ IV-34 
identifier LINES.2 SEQ IV-34 
mnemonic-name.2 SEQ IV-34 

AT END-OF-PAGE phrase.2 SEQ IV-34 
INVALID KEY phrase.1 REL V-32 

1 INX VI-33 

Segmentation 
Segment-number.1 SEG IX-4 
Fixed segment-number range 0 through 49.1 SEG IX-4 
Non-fixed segment-number range 50 through 99.1 SEG IX-4 
SEGMENT-LIMIT clause.2 SEG IX-5 

Library 
COPY statement.1 LIB X-2 

OF/IN library-name.2 LIB X-2 
REPLACING phrase.2 LIB X-2 

Reference format.1 NUC 1-105 
Sequence numbers.1 NUC 1-106 
Area A.1 NUC 1-105 

Division header.1 NUC 1-106 
Section header.1 NUC 1-106 
Paragraph header.1 NUC 1-107 
Data Division entries.1 NUC 1-107 

Area B.1 NUC 1-105 
Paragraphs.1 NUC 1-107 
Data Division entries.1 NUC 1-107 

Continuation of lines.1 NUC 1-106 
Nonnumeric literals.1 NUC II-l 
Words and numeric literals.2 NUC II-l 

Comment lines.1 NUC 1-108 
Asterisk (*) comment lines.1 NUC 1-108 
Stroke (/) comment lines.1 NUC 1-108 

1-51 



Glossary 

4. GLOSSARY 

4.1 INTRODUCTION 

The terms in this chapter are defined in accordance with their meaning as 

used in this document describing COBOL and may not have the same meaning for 

other languages. 

These definitions are also intended to be either reference material or 

introductory material to be reviewed prior to reading the detailed language 

specifications that follow. For this reason, these definitions are, in most 

instances, brief and do not include detailed syntactical rules. 

4.2 DEFINITIONS 

Abbreviated Combined Relation Condition. The combined condition that 

results from the explicit omission of a common subject or a common subject 

and common relational operator in a consecutive sequence of relation 

conditions. 

Access Mode. The manner in which records are to be operated upon within 

a file. 

Actual Decimal Point. The physical representation, using either of the 

decimal point characters period (.) or comma (,), of the decimal point 

position in a data item. 

Alphabet-Name. A user-defined word, in the SPECIAL-NAMES paragraph of the 

Environment Division, that assigns a name to a specific character set and/or 

collating sequence. 

Alphabetic Character. A character that belongs to the following set of 

letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V, 

W, X, Y, Z, and the space. 

Alphanumeric Character. Any character in the computer’s character set. 

Alternate Record Key. A key, other than the prime record key, whose 

contents identify a record within an indexed file. 

Arithmetic Expression. An arithmetic expression can be an identifier or a 

numeric elementary item, a numeric literal, such identifiers and literals 

separated by arithmetic operators, two arithmetic expressions separated by an 

arithmetic operator, or an arithmetic expression enclosed in parentheses. 

Arithmetic Operator. A single character, or a fixed two-character combin¬ 

ation, that belongs to the following set: 

Character 

+ 

* 

/ 
** 

Meaning 

addition 

subtraction 

multiplication 

division 

exponentiation 

1-52 



Glossary 

Ascending Key. A key upon the values of which data is ordered starting 
with the lowest value of key up to the highest value of key in accordance with 
the rules for comparing data items. 

Assumed Decimal Point. A decimal point position which does not involve the 
existence of an actual character in a data item. The assumed decimal point 
has logical meaning but no physical representation. 

At End Condition. A condition caused: 

1. During the execution of a READ statement for a sequentially accessed 

file. 

2. During the execution of a RETURN statement, when no next logical 
record exists for the associated sort or merge file. 

3. During the execution of a SEARCH statement, when the search opera¬ 
tion terminates without satisfying the condition specified in any of the 
associated WHEN phrases. 

Block. A physical unit of data that is normally composed of one or more 
logical records. For mass storage files, a block may contain a portion of a 
logical record. The size of a block has no direct relationship to the size of 
the file within which the block is contained or to the size of the logical 
record(s) that are either continued within the block or that overlap the block. 
The term is synonymous with physical record. 

Body Group. Generic name for a report group of TYPE DETAIL, CONTROL 
HEADING or CONTROL FOOTING. 

Called Program. A program which is the object of a CALL statement combined 
at object time with the calling program to produce a run unit. 

Calling Program. A program which executes a CALL to another program. 

Cd-Name. A user-defined word that names an MCS interface area described in 
a communication description entry within the Communication Section of the Data 
Division. 

Character. The basic indivisible unit of the language. 

Character Position. A character position is the amount of physical storage 
required to store a single standard data format character described as usage 
is DISPLAY. Further characteristics of the physical storage are defined by 
the implementor. 

Character-String. A sequence of contiguous characters which form a COBOL 
word, a literal, a PICTURE character-string, or a comment-entry. 

Class Condition. The proposition, for which a truth value can be deter¬ 
mined, that the content of an item is wholly alphabetic or is wholly numeric. 

Clause. A clause is an ordered set of consecutive COBOL character-strings 
whose purpose is to specify an attribute of an entry. 

1-53 



Glossary 

COBOL Character Set. The complete COBOL character set consists of the 51 

characters listed below: 

Character 

0,1,...,9 

A,B,...,Z 

+ 

* 

/ 

$ 

9 

9 

• 

tf 

( 
) 
> 

< 

COBOL Word. (See Word) 

Collating Sequence. The sequence in which the characters that are accept¬ 

able in a computer are ordered for purposes of sorting, merging, and comparing. 

Column. A character position within a print line. The columns are numbered 

from 1, by 1, starting at the leftmost character position of the print line and 

extending to the rightmost position of the print line. 

Combined Condition. A condition that is the result of connecting two or 

more conditions with the 'AND* or the 'OR* logical operator. 

Comment-Entry. An entry in the Identification Division that may be any 

combination of characters from the computer character set. 

Comment Line. A source program line represented by an asterisk in the 

indicator area of the line and any characters from the computer's character 

set in area A and area B of that line. The comment line serves only for 

documentation in a program. A special form of comment line represented by a 

stroke (/) in the indicator area of the line and any characters from the 

computer's character set in area A and area B of that line causes page 

ejection prior to printing the comment. 

Communication Description Entry. An entry in the Communication Section of 

the Data Division that is composed of the level indicator CD, followed by a 

cd-name, and then followed by a set of clauses as required. It describes the 

interface between the Message Control System (MCS) and the COBOL program. 

Communication Device. A mechanism (hardware or hardware/software) capable 

of sending data to a queue and/or receiving data from a queue. This mechanism 

may be a computer or a peripheral device. One or more programs containing 

communication description entries and residing within the same computer define 

one or more of these mechanisms. 

Meaning 

digit 

letter 

space (blank) 

plus sign 

minus sign (hyphen) 

asterisk 

stroke (virgule, slash) 

equal sign 

currency sign 

comma (decimal point) 

semicolon 

period (decimal point) 

quotation mark 

left parenthesis 

right parenthesis 

greater than symbol 

less than symbol 

1-54 



Glossary 

Communication Section. The section of the Data Division that describes the 

interface areas between the MCS and the program, composed of one or more CD 

description entries. 

Compile Time. The time at which a COBOL source program is translated, by a 

COBOL compiler, to a COBOL object program. 

Compiler Directing Statement. A statement, beginning with a compiler 

directing verb, that causes the compiler to take a specific action during 

compilation. 

Complex Condition. A condition in which one or more logical operators 

act upon one or more conditions. (See Negated Simple Condition, Combined 

Condition, Negated Combined Condition.) 

Computer-Name. A system-name that identifies the computer upon which the 

program is to be compiled or run. 

Condition. A status of a program at execution time for which a truth value 

can be determined. Where the term 'condition' (condition-1, condition-2, ...) 

appears in these language specifications in or in reference to 'condition' 

(condition-1, condition-2, ...) of a general format, it is a conditional 

expression consisting of either a simple condition optionally parenthesized, 

or a combined condition consisting of the syntactically correct combination 

of simple conditions, logical operators, and parentheses, for which a truth 

value can be determined. 

Condition-Name. A user-defined word assigned to a specific value, set of 

values, or range of values, within the complete set of values that a condition¬ 

al variable may possess; or the user-defined word assigned to a status of an 

implementor-defined switch or device. 

Condition-Name Condition. The proposition, for which a truth value can be 

determined, that the value of a conditional variable is a member of the set of 

values attributed to a condition-name associated with the conditional variable. 

Conditional Expression. A simple condition or a complex condition specified 

in an IF, PERFORM, or SEARCH statement. (See Simple Condition and Complex 

Condition.) 

Conditional Statement. A conditional statement specifies that the truth 

value of a condition is to be determined and that the subsequent action of the 

object program is dependent on this truth value. 

Conditional Variable. A data item one or more values of which has a 

condition-name assigned to it. 

Configuration Section. A section of the Environment Division that 

describes overall specifications of source and object computers. 

1-55 



Glossary 

Connective. A reserved word that is used to: 

1. Associate a data-name, paragraph-name, condition-name, or text-name 
with its qualifier. 

2. Link two or more operands written in a series. 

3. Form conditions (logical connectives). (See Logical Operator) 

Contiguous Items. Items that are described by consecutive entries in the 

Data Division, and that bear a definite hierarchic relationship to each other. 

Control Break. A change in the value of a data item that is referenced in 

the CONTROL clause. More generally, a change in the value of a data item that 

is used to control the hierarchical structure of a report. 

Control Break Level. The relative position within a control hierarchy at 

which the most major control break occurred. 

Control Data Item. A data item, a change in whose contents may produce a 

control break. 

Control Data-Name. A data-name that appears in a CONTROL clause and refers 

to a control data item. 

Control Footing. A report group that is presented at the end of the 

control group of which it is a member. 

Control Group. A set of body groups that is presented for a given value of 

a control data item or of FINAL. Each control group may begin with a CONTROL 

HEADING, end with a CONTROL FOOTING, and contain DETAIL report groups. 

Control Heading. A report group that is presented at the beginning of the 

control group of which it is a member. 

Control Hierarchy. A designated sequence of report subdivisions defined by 

the positional order of FINAL and the data-names within a CONTROL clause. 

Counter. A data item used for storing numbers or number representations in 

a manner that permits these numbers to be increased or decreased by the value 

of another number, or to be changed or reset to zero or to an arbitrary posi¬ 

tive or negative value. 

Currency Sign. The character of the COBOL character set. 

Currency Symbol. The character defined by the CURRENCY SIGN clause in the 

SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in a COBOL 

source program, the currency symbol is identical to the currency sign. 

Current Record. The record which is available in the record area 

associated with the file. 

Current Record Pointer. A conceptual entity that is used in the selection 

of the next record. 

1-56 



Glossary 

Data Clause. A clause that appears in a data description entry in the Data 

Division and provides information describing a particular attribute of a data 

item. 

Data Description Entry. An entry in the Data Division that is composed of 

a level-number followed by a data-name, if required, and then followed by a 

set of data clauses, as required. 

Data Item. A character or a set of contiguous characters (excluding in 

either case literals) defined as a unit of data by the COBOL program. 

Data-Name. A user-defined word that names a data item described in a data 

description entry in the Data Division. When used in the general formats, 

'data-name* represents a word which can neither be subscripted, indexed, nor 

qualified unless specifically permitted by the rules for that format. 

Debugging Line. A debugging line is any line with 'D' in the indicator 

area of the line. 

Debugging Section. A debugging section is a section that contains a 

USE FOR DEBUGGING statement. 

Declaratives. A set of one or more special purpose sections, written at 

the beginning of the Procedure Division, the first of which is preceded by the 

key word DECLARATIVES and the last of which is followed by the key words END 

DECLARATIVES. A declarative is composed of a section header, followed by a 

USE compiler directing sentence, followed by a set of zero, one or more asso¬ 

ciated paragraphs. 

Declarative-Sentence. A compiler-directing sentence consisting of a single 

USE statement terminated by the separator period. 

Delimiter. A character or a sequence of contiguous characters that identi¬ 

fy the end of a string of characters and separates that string of characters 

from the following string of characters. A delimiter is not part of the string 

of characters that it delimits. 

Descending Key. A key upon the values of which data is ordered starting 

with the highest value of key down to the lowest value of key, in accordance 

with the rules for comparing data items. 

Destination. The symbolic identification of the receiver of a transmission 

from a queue. 

Digit Position. A digit position is the amount of physical storage required 

to store a single digit. This amount may vary depending on the usage of the 

data item describing the digit position. Further characteristics of the 

physical storage are defined by the implementor. 

Division. A set of zero, one or more sections of paragraphs, called the 

division body, that are formed and combined in accordance with a specific set 

of rules. There are four (4) divisions in a COBOL program: Identification, 

Environment, Data, and Procedure. 

1-57 



Glossary 

Division Header. A combination of words followed by a period and a space 

that indicates that beginning of a division. The division headers are: 

IDENTIFICATION DIVISION. 

ENVIRONMENT DIVISION. 

DATA DIVISION. 

PROCEDURE DIVISION [USING data-name-1 [data-name-2] ... ] . 

Dynamic Access. An access mode in which specific logical records can be 

obtained from or placed into a mass storage file in a non-sequential manner 

(see Random Access) and obtained from a file in a sequential manner (see 

Sequential Access), during the scope of the same OPEN statement. 

Editing Character. A single character or a fixed two-character combination 

belonging to the following set: 

Character 
B 

0 
+ 

CR 

DB 

Z 
* 

$ 

9 

/ 

Meaning 

space 

zero 

plus 

minus 

credit 

debit 

zero suppress 

check protect 

currency sign 

comma (decimal point) 

period (decimal point) 

stroke (virgule, slash) 

Elementary Item. A data item that is described as not being further 

logically subdivided. 

End of Procedure Division. The physical position in a COBOL source program 

after which no further procedures appear. 

Entry. Any descriptive set of consecutive clauses terminated by a period 

and written in the Identification Division, Environment Division, or Data 

Division of a COBOL source program. 

Environment Clause. A clause that appears as part of an Environment 

Division entry. 

Execution Time. (See Object Time) 

Extend Mode. The state of a file after execution of an OPEN statement, 

with the EXTEND phrase specified, for that file and before the execution of a 

CLOSE statement for that file. 

Figurative Constant. A compiler generated value referenced through the use 

of certain reserved words. 

File. A collection of records. 

1-58 



Glossary 

File Clause. A clause that appears as part of any of the following Data 

Division entries: 

File description (FD) 

Sort-merge file description (SD) 

Communication description (CD) 

FILE-CONTROL. The name of an Environment Division paragraph in which the 

data files for a given source program are declared. 

File Description Entry. An entry in the File Section of the Data Division 

that is composed of the level indicator FD, followed by a file-name, and then 

followed by a set of file clauses as required. 

File-Name. A user-defined word that names a file described in a file 

description entry or a sort-merge file description entry within the File 

Section of the Data Division. 

File Organization. The permanent logical file structure established at the 

time that a file is created. 

File Section. The section of the Data Division that contains file 

description entries and sort-merge file description entries together with 

their associated record descriptions. 

Format. A specific arrangement of a set of data. 

Group Item. A named contiguous set of elementary or group items. 

High Order End. The leftmost character of a string of characters. 

I-O-CONTROL. The name of an Environment Division paragraph in which object 

program requirements for specific input-output techniques, rerun points, 

sharing of same areas by several data files, and multiple file storage on a 

single input-output device are specified. 

1-0 Mode. The state of a file after execution of an OPEN statement, with 

the 1-0 phrase specified, for that file and before the execution of a CLOSE 

statement for that file. 

Identifier. A data-name, followed as required, by the syntactically correct 

combination of qualifiers, subscripts, and indices necessary to make unique 

reference to a data item. 

Imperative Statement. A statement that begins with an imperative verb and 

specifies an unconditional action to be taken. An imperative statement may 

consist of a sequence of imperative statements. 

Implementor-Name. A system-name that refers to a particular feature avail¬ 

able on that implementor's computing system. 

Index. A computer storage position or register, the contents of which 
represent the identification of a particular element in a table. 

1-59 



Glossary 

Index Data Item. A data item in which the value associated with an 

index-name can be stored in a form specified by the implementor. 

Index-Name. A user-defined word that names an index associated with a 

specific table. 

Indexed Data-Name. An identifier that is composed of a data-name, followed 

by one or more index-names enclosed in parentheses. 

Indexed File. A file with indexed organization. 

Indexed Organization. The permanent logical file structure in which each 

record is identified by the value of one or more keys within that record. 

Input File. A file that is opened in the input mode. 

Input Mode. The state of a file after execution of an OPEN statement, with 

the INPUT phrase specified, for that file and before the execution of a CLOSE 

statement for that file. 

Input-Output File. A file that is opened in the 1-0 mode. 

Input-Output Section. The section of the Environment Division that names 

the files and the external media required by an object program and which pro¬ 

vides information required for transmission and handling of data during 

execution of the object program. 

Input Procedure. A set of statements that is executed each time a record 

is released to the sort file. 

Integer. A numeric literal or a numeric data item that does not include 

any character positions to the right of the assumed decimal point. Where the 

term 'integer' appears in general formats, integer must not be a numeric data 

item, and must not be signed, nor zero unless explicitly allowed by the rules 

of that format. 

Invalid Key Condition. A condition, at object time, caused when a specific 

value of the key associated with an indexed or relative file is determined to 

be invalid. 

Key. A data item which identifies the location of a record, or a set of 

data items which serve to identify the ordering of data. 

Key of Reference. The key, either prime or alternate, currently being used 

to access records within an indexed file. 

Key Word. A reserved word whose presence is required when the format in 

which the word appears is used in a source program. 

Language-Name. A system-name that specifies a particular programming 

language. 

Level Indicator. Two alphabetic characters that identify a specific type 

of file or a position in hierarchy. 

1-60 



Glossary 

Level-Number. A user-defined word which indicates the position of a data 
item in the hierarchical structure of a logical record or which indicates 
special properties of a data description entry. A level-number is expressed 
as a one or two digit number. Level-numbers in the range 1 through 49 indi¬ 
cate the position of a data item in the hierarchical structure of a logical 
record. Level-numbers in the range 1 through 9 may be written either as a 
single digit or as a zero followed by a significant digit. Level-numbers 66, 
77, and 88 identify special properties of a data description entry. 

Library-Name. A user-defined word that names a COBOL library that is to be 
used by the compiler for a given source program compilation. 

Library Text. A sequence of character-strings and/or separators in a COBOL 
library. 

Line. (See Report Line) 

Line Number. An integer that denotes the vertical position of a report 
line on a page. 

Linkage Section. The section in the Data Division of the called program 
that describes data items available from the calling program. These data 
items may be referred to by both the calling and called program. 

Literal. A character-string whose value is implied by the ordered set of 
characters comprising the string. 

Logical Operator. One of the reserved words AND, OR, or NOT. In the 
formation of a condition, both or either of AND and OR can be used as logical 
connectives. NOT can be used for logical negation. 

Logical Record. The most inclusive data item. The level-number for a 
record is 01. (See Report Writer Logical Record) 

Low Order End. The rightmost character of a string of characters. 

Mass Storage. A storage medium on which data may be organized and main¬ 
tained in both a sequential and nonsequential manner. 

Mass Storage Control System (MSCS). An input-output control system that 
directs, or controls, the processing of mass storage files. 

Mass Storage File. A collection of records that is assigned to a mass 
storage medium. 

MCS. (See Message Control System) 

Merge File. A collection of records to be merged by a MERGE statement. 
The merge file is created and can be used only by the merge function. 

Message. Data associated with an end of message indicator or an end of 
group indicator. (See Message Indicators) 

1-61 



Glossary 

Message Control System (MCS). A communication control system that supports 

the processing of messages. 

Message Count. The count of the number of complete messages that exist in 

the designated queue of messages. 

Message Indicators. EGI (end of group indicator), EMI (end of message 

indicator), and ESI (end of segment indicator) are conceptual indications that 

serve to notify the MCS that a specific condition exists (end of group, end of 

message, end of segment). 

Within the hierarchy of EGI, EMI, and ESI, an EGI is conceptually equiva¬ 

lent to an ESI, EMI, and EGI. An EMI is conceptually equivalent to an ESI 

and EMI. Thus, a segment may be terminated by an ESI, EMI, or EGI. A message 

may be terminated by an EMI or EGI. 

Message Segment. Data that forms a logical subdivision of a message 

normally associated with an end of segment indicator. (See Message Indicators) 

Mnemonic-Name. A user-defined word that is associated in the Environment 

Division with a specified implementor-name. 

MSCS. (See Mass Storage Control System) 

Native Character Set. The implementor-defined character set associated 

with the computer specified in the OBJECT-COMPUTER paragraph. 

Native Collating Sequence. The implementor-defined collating sequence 

associated with the computer specified in the OBJECT-COMPUTER paragraph. 

Negated Combined Condition. The ’NOT' logical operator immediately 

followed by a parenthesized combined condition. 

Negated Simple Condition. The 'NOT' logical operator immediately followed 

by a simple condition. 

Next Executable Sentence. The next sentence to which control will be 

transferred after execution of the current statement is complete. 

Next Executable Statement. The next statement to which control will be 

transferred after execution of the current statement is complete. 

Next Record. The record which logically follows the current record of a 

file. 

Noncontiguous Items. Elementary data items, in the Working-Storage and 

Linkage Sections, which bear no hierarchic relationship to other data items. 

Nonnumeric Item. A data item whose description permits its contents to be 

composed of any combination of characters taken from the computer's character 

set. Certain categories of nonnumeric items may be formed from more restrict¬ 

ed character sets. 

1-62 



Glossary 

Nonnumeric Literal. A character-string bounded by quotation marks. The 

string of characters may include any character in the computer's character set 

To represent a single quotation mark character within a nonnumeric literal, 

two contiguous quotation marks must be used. 

Numeric Character. A character that belongs to the following set of 

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

Numeric Item. A data item whose description restricts its contents to a 

value represented by characters chosen from the digits 'O' through '9'; if 

signed, the item may also contain a '+', or other representation of an 

operational sign. 

Numeric Literal. A literal composed of one or more numeric characters that 

also may contain either a decimal point, or an algebraic sign, or both. The 

decimal point must not be the rightmost character. The algebraic sign, if 

present, must be the leftmost character. 

OBJECT-COMPUTER. The name of an Environment Division paragraph in which 

the computer environment, within which the object program is executed, is 

described. 

Object of Entry. A set of operands and reserved words, within a Data 

Division entry, that immediately follows the subject of the entry. 

Object Program. A set or group of executable machine language instructions 

and other material designed to interact with data to provide problem solutions 

In this context, an object program is generally the machine language result of 

the operation of a COBOL compiler on a source program. Where there is no 

danger of ambiguity, the word 'program' alone may be used in place of the 

phrase 'object program'. 

Object Time. The time at which an object program is executed. 

Open Mode. The state of a file after execution of an OPEN statement for 

that file and before the execution of a CLOSE statement for that file. The 

particular open mode is specified in the OPEN statement as either INPUT, 

OUTPUT, 1-0 or EXTEND. 

Operand. Whereas the general definition of operand is 'that component 

which is operated upon', for the purposes of this publication, any lowercase 

word (or words) that appears in a statement or entry format may be considered 

to be an operand and, as such, is an implied reference to the data indicated 

by the operand. 

Operational Sign. An algebraic sign, associated with a numeric data item 

or a numeric literal, to indicate whether its value is positive or negative. 

Optional Word. A reserved word that is included in a specific format only 

to improve the readability of the language and whose presence is optional to 

the user when the format in which the word appears is used in a source program 

Output File. A file that is opened in either the output mode or extend 

mode. 

1-63 



Glossary 

Output Mode. The state of a file after execution of an OPEN statement, with 

the OUTPUT or EXTEND phrase specified for that file and before the execution 

of a CLOSE statement for that file. 

Output Procedure. A set of statements to which control is given during 

execution of a SORT statement after the sort function is completed, or during 

execution of a MERGE statement after the merge function has selected the next 

record in merged order. 

Page. A vertical division of a report representing a physical separation 

of report data, the separation being based on internal reporting requirements 

and/or external characteristics of the reporting medium. 

Page Body. That part of the logical page in which lines can be written 

and/or spaced. 

Page Footing. A report group that is presented at the end of a report page 

as determined by the Report Writer Control System. 

Page Heading. A report group that is presented at the beginning of a 

report page and determined by the Report Writer Control System. 

Paragraph. In the Procedure Division, a paragraph-name followed by a 

period and a space and by zero, one, or more sentences. In the Identification 

and Environment Divisions, a paragraph header followed by zero, one, or more 

entries. 

Paragraph Header. A reserved word, followed by a period and a space that 

indicates the beginning of a paragraph in the Identification and Environment 

Divisions. The permissible paragraph headers are: 

In the Identification Division: 

PROGRAM-ID. 

AUTHOR. 

INSTALLATION. 

DATE-WRITTEN. 

DATE-COMPILED. 

SECURITY. 

In the Environment Division: 

SOURCE-COMPUTER. 

OBJECT-COMPUTER. 

SPECIAL-NAMES. 

FILE-CONTROL. 

I-O-CONTROL. 

Paragraph-Name. A user-defined word that identifies and begins a paragraph 

in the Procedure Division. 

Phrase. A phrase is an ordered set of one or more consecutive COBOL 

character-strings that form a portion of a COBOL procedural statement or of 

a COBOL clause. 

1-64 



Glossary 

Physical Record. (See Block) 

Prime Record Key. A key whose contents uniquely identify a record within 

an indexed file. 

Printable Group. A report group that contains at least one print line. 

Printable Item. A data item, the extent and contents of which are speci¬ 

fied by an elementary report entry. This elementary report entry contains a 

COLUMN NUMBER clause, a PICTURE clause, and a SOURCE, SUM or VALUE clause. 

Procedure. A paragraph or group of logically successive paragraphs, or a 

section or group of logically successive sections, within the Procedure 

Division. 

Procedure-Name. A user-defined word which is used to name a paragraph or 

section in the Procedure Division. It consists of a paragraph-name (which may 

be qualified), or a section-name. 

Program-Name. A user-defined word that identifies a COBOL source program. 

Pseudo-Text. A sequence of character-strings and/or separators bounded by, 

but not including, pseudo-text delimiters. 

Pseudo-Text Delimiter. Two contiguous equal sign (=) characters used to 

delimit pseudo-text. 

Punctuation Character. A character that belongs to the following set: 

Character 

9 

9 

II 

( 
) 

Meaning 

comma 

semicolon 

period 

quotation mark 

left parenthesis 

right parenthesis 

space 

equal sign 

Qualified Data-Name. An identifier that is composed of a data-name followed 

by one or more sets of either of the connectives OF and IN followed by a data- 

name qualifier. 

Qualifier. 

1. A data-name which is used in a reference together with another 

data name at a lower level in the same hierarchy. 

2. A section-name which is used in a reference together with a 

paragraph-name specified in that section. 

3. A library-name which is used in a reference together with a 

text-name associated with that library. 

Queue. A logical collection of messages awaiting transmission or 

processing. 

1-65 



Glossary 

Queue Name. A symbolic name that indicates to the MCS the logical path by 

which a message or a portion of a completed message may be accessible in a 

queue. 

Random Access. An access mode in which the program-specified value of a 

key data item identifies the logical record that is obtained from, deleted 

from or placed into a relative or indexed file. 

Record. (See Logical Record) 

Record Area. A storage area allocated for the purpose of processing the 

record described in a record description entry in the File Section. 

Record Description. (See Record Description Entry) 

Record Description Entry. The total set of data description entries 

associated with a particular record. 

Record Key. A key, either the prime record key or an alternate record key, 

whose contents identify a record within an indexed file. 

Record-Name. A user-defined word that names a record described in a 

record description entry in the Data Division. 

Reference Format. A format that provides a standard method for describing 

COBOL source programs. 

Relation. (See Relational Operator) 

Relation Character. A character that belongs to the following set: 

Character Meaning 

greater than 

less than 

equal to 

> 

< 

Relation Condition. The proposition, for which a truth value can be deter¬ 

mined, that the value of an arithmetic expression or data item has a specific 

relationship to the value of another arithmetic expression or data item. (See 

Relational Operator) 

Relational Operator. A reserved word, a relation character, a group of 

consecutive reserved words, or a group of consecutive reserved words and 

relation characters used in the construction of a relation condition. The 

permissible operators and their meaning are: 

Relational Operator 

IS [NOT] GREATER THAN 

IS [NOT] > 

IS 

IS 

IS 

IS 

'1 
Less than or not less than 

Meaning 

Greater than or not greater than 

Equal to or not equal to 

Relative File. A file with relative organization. 

1-66 



Glossary 

Relative Key. A key whose contents identify a logical record in a 

relative file. 

Relative Organization. The permanent logical file structure in which each 

record is uniquely identified by an integer value greater than zero, which 

specifies the record’s logical ordinal position in the file. 

Report Clause. A clause, in the Report Section of the Data Division, that 

appears in a report description entry or a report group description entry. 

Report Description Entry. An entry in the Report Section of the Data 

Division that is composed of the level indicator RD, followed by a report 

name, followed by a set of report clauses as required. 

Report File. An output file whose file description entry contains a REPORT 

clause. The contents of a report file consist of records that are written 

under control of the Report Writer Control System. 

Report Footing. A report group that is presented only at the end of a 

report. 

Report Group. In the Report Section of the Data Division, an 01 level- 

number entry and its subordinate entries. 

Report Group Description Entry. An entry in the Report Section of the Data 

Division that is composed of the level-number 01, the optional data-name, a 

TYPE clause, and an optional set of report clauses. 

Report Heading. A report group that is presented only at the beginning of 

a report. 

Report Line. A division of a page representing one row of horizontal 

character positions. Each character position of a report line is aligned 

vertically beneath the corresponding character position of the report line 

above it. Report lines are numbered from 1, by 1, starting at the top of the 

page. 

Report-Name. A user-defined word that names a report described in a report 

description entry within the Report Section of the Data Division. 

Report Section. The section of the Data Division that contains one or more 

report description entries and their associated report group description 

entries. 

Report Writer Control System (RWCS). An object time control system, 

provided by the implementor, that accomplishes the construction of reports. 

Report Writer Logical Record. A record that consists of the Report Writer 

print line and associated control information necessary for its selection and 

vertical positioning. 

Reserved Word. A COBOL word specified in the list of words which may be 

used in COBOL source programs, but which must not appear in the programs as 

user-defined words or system-names. 

1-67 



Glossary 

Routine-Name. A user-defined word that identifies a procedure written in 
a language other than COBOL. 

Run Unit. A set of one or more object programs which function, at object 

time, as a unit to provide problem solutions. 

RWCS. (See Report Writer Control System) 

Section. A set of zero, one, or more paragraphs or entries, called a 

section body, the first of which is preceded by a section header. Each 

section consists of the section header and the related section body. 

Section Header. A combination of words followed by a period and a space 

that indicates the beginning of a section in the Environment, Data and 

Procedure Division. 

In the Environment and Data Divisions, a section header is composed of 

reserved words followed by a period and a space. The permissible section 

headers are: 

In the Environment Division: 

CONFIGURATION SECTION. 

INPUT-OUTPUT SECTION. 

In the Data Division: 

FILE SECTION. 

WORKING-STORAGE SECTION. 

LINKAGE SECTION. 

COMMUNICATION SECTION. 

REPORT SECTION. 

In the Procedure Division, a section header is composed of a section-name, 

followed by the reserved word SECTION, followed by a segment-number (optional), 

followed by a period and a space. 

Section-Name. A user-defined word which names a section in the Procedure 

Division. 

Segment-Number. A user-defined word which classifies sections in the 

Procedure Division for purposes of segmentation. Segment-numbers may contain 

only the characters 'O’, * 1 *, ..., '9'. A segment-number may be expressed 

either as a one or two digit number. 

Sentence. A sequence of one or more statements, the last of which is 

terminated by a period followed by a space. 

Separator. A punctuation character used to delimit character-strings. 

Sequential Access. An access mode in which logical records are obtained 

from or placed into a file in a consecutive predecessor-to-successor logical 

record sequence determined by the order of records in the file. 

Sequential File. A file with sequential organization. 

1-68 



Glossavy 

Sequential Organization. The permanent logical file structure in which a 

record is identified by a predecessor-successor relationship established when 

the record is placed into the file. 

Sign Condition. The proposition, for which a truth value can be determined, 

that the algebraic value of a data item or an arithmetic expression is either 

less than, greater than, or equal to zero. 

Simple Condition. Any single condition chosen from the set: 

relation condition 

class condition 

condition-name condition 

switch-status condition 

sign condition 

(simple-condition) 

Sort File. A collection of records to be sorted by a SORT statement. The 

sort file is created and can be used by the sort function only. 

Sort-Merge File Description Entry. An entry in the File Section of the 

Data Division that is composed of the level indicator SD, followed by a file¬ 

name, and then followed by a set of file clauses as required. 

Source. The symbolic identification of the originator of a transmission to 

a queue. 

SOURCE-COMPUTER. The name of an Environment Division paragraph in which 

the computer environment, within which the source program is compiled, is 

described. 

Source Item. An identifier designated by a SOURCE clause that provides 

the value of a printable item. 

Source Program. Although it is recognized that a source program may be 

represented by other forms and symbols, in this document it always refers to a 

syntactically correct set of COBOL statements beginning with an Identification 

Division and ending with the end of the Procedure Division. In contexts where 

there is no danger of ambiguity, the word 'program' alone may be used in place 

of the phrase 'source program'. 

1-69 



Glossary 

Special Character. A character that belongs to the following set: 

Character 
+ 

Meaning 

plus sign 

minus sign 

asterisk 

stroke (virgule, slash) 

equal sign 

currency sign 

comma (decimal point) 

semicolon 

period (decimal point) 

quotation mark 

left parenthesis 

right parenthesis 

greater than symbol 

less than symbol 

/ 

$ 

9 

ft 

( 
) 
> 

< 

Special-Character Word. A reserved word which is an arithmetic operator or 

a relation character. 

SPECIAL-NAMES. The name of an Environment Division paragraph in which 

implementor-names are related to user specified mnemonic-names. 

Special Registers. Compiler generated storage areas whose primary use is 

to store information produced in conjunction with the user of specific COBOL 

features. 

Standard Data Format. The concept used in describing the characteristics 

of data in a COBOL Data Division under which the characteristics or properties 

of the data are expressed in a form oriented to the appearance of the data on 

a printed page of infinite length and breadth, rather than a form oriented to 

the manner in which the data is stored internally in the computer, or on a 

particular external medium. 

Statement. A syntactically valid combination of words and symbols written 

in the Procedure Division beginning with a verb. 

Sub-Queue. A logical hierarchical division of a queue. 

Subjec-L of Entry. An operand or reserved word that appears immediately 

following the level indicator or the level-number in a Data Division entry. 

Subprogram. (See Called Program) 

Subscript. An integer whose value identifies a particular element in a 

table. 

Subscripted Data-Name. An identifier that is composed of a data-name 

followed by one or more subscripts enclosed in parentheses. 

Sum Counter. A signed numeric data item established by a SUM clause in the 

Report Section of the Data Division. The sum counter is used by the Report 

Writer Control System to contain the result of designated summing operations 

that take place during production of a report. 

1-70 



Glossary 

Switch-Status Condition. The proposition, for which a truth value can be 

determined, that an implementor-defined switch, capable of being set to an 

’on' or 'off' status, has been set to a specific status. 

System-Name. A COBOL word which is used to communicate with the operating 

environment. 

Table. A set of logically consecutive items of data that are defined in 

the Data Division by means of the OCCURS clause. 

Table Element. A data item that belongs to the set of repeated items 

comprising a table. 

Terminal. The originator of a transmission to a queue, or the receiver of 

a transmission from a queue. 

Text-Name. A user-defined word which identifies library text. 

Text-Word. Any character-string or separator, except space, in a COBOL 

library or in pseudo-text. 

Truth Value. The representation of the result of the evaluation of a 

condition in terms of one of two values 

true 

false 

Unary Operator. A plus (+) or a minus (-) sign, which precedes a variable 
or a left parenthesis in an arithmetic expression and which has the effect of 

multiplying the expression of +1 or -1 respectively. 

Unit. A module of mass storage the dimensions of which are determined by 

each implementor. 

User-Defined Word. A COBOL word that must be supplied by the user to 

satisfy the format of a clause or statement. 

Variable. A data item whose value may be changed by execution of the 

object program. A variable used in an arithmetic expression must be a numeric 

elementary item. 

Verb. A word that expresses an action to be taken by a COBOL compiler or 

object program. 

Word. A character-string of not more than 30 characters which forms a 

user-defined word, a system-name, or a reserved word. 

Working-Storage Section. The section of the Data Division that describes 

working storage data items, composed either of noncontiguous items or of 

working storage records or of both. 

77-Level-Description-Entry. A data description entry that describes a 

noncontiguous data item with the level-number 77. 

1-71 



Notation 

5. OVERALL LANGUAGE CONSIDERATION 

5.1 INTRODUCTION 

The language considerations and rules specified in this chapter, apply to 

the highest level of the American National Standard COBOL. When a particular 

level of a module does not allow all of these language concepts, the restric¬ 

tions will be pointed out in the chapter describing that language element. It 

should also be noted that restrictions contained in one module might possibly 

affect other modules. For example, series connectives are not allowed in 

Level 1 of the Nucleus; therefore, any module which is combined with Level 1 

of the Nucleus would have the same restriction. The flowcharts in this docu¬ 

ment illustrate the logic of the statement under which they are contained and 

are not meant to dictate implementation. 

5.2 NOTATION USED IN FORMATS AND RULES 

5.2.1 Definition of a General Format 

A general format is the specific arrangement of the elements of a clause 

or a statement. A clause or a statement consists of elements as defined below. 

Throughout this document a format is shown adjacent to information defining the 

clause or statement. When more than one specific arrangement is permitted, 

the general format is separated into numbered formats. Clauses must be writ¬ 

ten in the sequence given in the general formats. (Clauses that are optional 

must appear in the sequence shown if they are used.) In certain cases, stated 

explicitly in the rules associated with a given format, the clauses may appear 

in sequences other than that shown. Applications, requirements or restric¬ 

tions are shown as rules. Throughout this document, specifications unique to 

the high level are enclosed in boxes. 

5.2.1.1 Syntax Rules 

Syntax rules are those rules that define or clarify the order in which words 

or elements are arranged to form larger elements such as phrases, clauses, or 

statements. Syntax rules also impose restrictions on individual words or 

elements. 

These rules are used to define or clarify how the statement must be 

written, i.e., the order of the elements of the statement and restrictions 

on what each element may represent. 

5.2.1.2 General Rules 

A general rule is a rule that defines or clarifies the meaning or relation¬ 

ship of meanings of an element or set of elements. It is used to define or 

clarify the semantics of the statement and the effect that it has on either 

execution or compilation. 

5.2.1.3 Elements 

Elements which make up a clause or a statement consist of uppercase words, 

lowercase words, level-numbers, brackets, braces, connectives and special 

characters. 

1-72 



Notation 

5.2.1.4 Words 

All underlined uppercase words are called key words and are required when 

the functions of which they are a part are used. Uppercase words which are 

not underlined are optional to the user and may or may not be present in the 

source program. Uppercase words, whether underlined or not, must be spelled 

correctly. 

Lowercase words, in a general format, are generic terms used to represent 

COBOL words, literals, PICTURE character-strings, comment-entries, or a 

complete syntactical entry that must be supplied by the user. Where generic 

terms are repeated in a general format, a number or letter appendage to the 

term serves to identify that term for explanation or discussion. 

5.2.1.5 Level-Numbers 

When specific level-numbers appear in data description entry formats, 

those specific level-numbers are required when such entries are used in a 

COBOL program. In this document, the form 01, 02, ... , 09 is used to indi¬ 

cate level-numbers 1 through 9. 

5.2.1.6 Brackets and Braces 

When a portion of a general format is enclosed in brackets, [ ] , that 

portion may be included or omitted at the user's choice. Braces, { } , 

enclosing a portion of a general format means a selection of one of the 

options contained within the braces must be made. In both cases, a choice is 

indicated by vertically stacking the possibilities. When brackets or braces 

enclose a portion of a format, but only one possibility is shown, the function 

of the brackets or braces is to delimit that portion of the format to which a 

following ellipsis applies. (See paragraph 5.2.1.7, The Ellipsis.) If an 

option within braces contains only reserved words that are not key words, then 

the option is a default option (implicitly selected unless one of the other 

options is explicitly indicated). 

5.2.1.7 The Ellipsis 

In text, the ellipsis (...) may show the omission of a portion of a source 

program. This meaning becomes apparent in context. 

In the general formats, the ellipsis represents the position at which 

repetition may occur at the user's option. The portion of the format that 

may be repeated is determined as follows: 

Given ... in a clause or statement format, scanning right to left, deter¬ 

mine the ] or } immediately to the left of the ... ; continue scanning right 

to left and determine the logically matching [ or { ; the ... applies to the 

words between the determined pair of delimiters. 

5.2.1.8 Format Punctuation 

The punctuation characters comma and semicolon are shown in some formats. 

Where shown in the formats, they are optional and may be included or omitted 

by the user. In the source program these two punctuation characters are 

1-73 



Notation 

interchangeable and either one may be used anywhere one of them is shown in 

the formats. Neither one may appear immediately preceding the first clause 

of an entry or paragraph. 

If desired, a semicolon or comma may be used between statements in the 

Procedure Division. 

Paragraphs within the Identification and Procedure Divisions, and the 

entries within the Environment and Data Divisions must be terminated by the 

separator period. 

5.2.1.9 Use of Certain Special Characters in Formats 

The characters '+', ’>*, ’<', '=', when appearing in formats, although 

not underlined, are required when such formats are used. 

1-74 



Separators 

5.3 LANGUAGE CONCEPTS 

5.3.1 Character Set 

The most basic and indivisible unit of the language is the character. The 

set of characters used to form COBOL character-strings and separators includes 

the letters of the alphabet, digits and special characters. The character set 

consists of 51 characters as defined under COBOL Character Set in the glossary 

on page 1-54. In the case of nonnumeric literals, comment-entries, and comment 

lines, the character set is expanded to include the computer's entire character 

set. The characters allowable in each type of character-string and as separa¬ 

tors are defined in paragraph 5.3.2 and in the glossary beginning on page 1-52. 

Since the character set of a particular computer may not have the characters 

defined, single character substitution must be made as required. When such a 

character set contains fewer than 51 characters, double characters must be 

substituted for the single characters. 

5.3.2 Language Structure 

The individual characters of the language are concatenated to form 

character-strings and separators. A separator may be concatenated with another 

separator or with a character-string. A character-string may only be concate¬ 

nated with a separator. The concatenation of character-strings and separators 

forms the text of a source program. 

5.3.2.1 Separators 

A separator is a string of one or more punctuation characters. The rules 

for formation of separators are: 

(1) The punctuation character space is a separator. Anywhere a space is 

used as a separator, more than one space may be used. 

(2) The punctuation characters comma, semicolon and period, when immediate¬ 

ly followed by a space, are separators. These separators may appear in a COBOL 

source program only where explicitly permitted by the general formats, by 

format punctuation rules (see page 1-73, Format Punctuation), by statement and 

sentence structure definitions (see page 1-101, Statements and Sentences), or 

reference format rules (see page 1-105, Reference Format). 

(3) The punctuation characters right and left parenthesis are separators. 

Parentheses may appear only in balanced pairs of left and right parentheses 

delimiting subscripts, indices, arithmetic expressions, or conditions. 

(4) The punctuation character quotation mark is a separator. An opening 

quotation mark must be immediately preceded by a space or left parenthesis; a 

closing quotation mark must be immediately followed by one of the separators 

space, comma, semicolon, period, or right parenthesis. 

Quotation marks may appear only in balanced pairs delimiting nonnumeric 

literals except when the literal is continued. (See page 1-106, Continuation 

of Lines.) 

1-75 



Characters trings 

(5) Pseudo-text delimiters are separators. An opening pseudo-text delimiter 

must be immediately preceded by a space; a closing pseudo-text delimiter must 

be immediately followed by one of the separators space, comma, semicolon, or 

period. 

Pseudo-text delimiters may appear only in balanced pairs delimiting 

pseudo-text. 

(6) The separator space may optionally immediately precede all separators 

except: 

a. As specified by reference format rules (see page 1-105, Reference 

Format), and 

b. The separator closing quotation mark. In this case, a preceding 

space is considered as part of the nonnumeric literal and not as a separator. 

c. The opening pseudo-text delimiter, where the preceding space is 

required. 

(7) The separator space may optionally immediately follow any separator 

except the opening quotation mark. In this case, a following space is consid¬ 

ered as part of the nonnumeric literal and not as a separator. 

Any punctuation character which appears as part of the specification of a 

PICTURE character-string or numeric literal is not considered as a punctuation 

character, but rather as a symbol used in the specification of that PICTURE 

character-string or numeric literal. PICTURE character-strings are delimited 

only by the separators space, comma, semicolon, or period. 

The rules established for the formation of separators do not apply to the 

characters which comprise the contents of nonnumeric literals, comment-entries, 

or comment lines. 

5.3.2.2 Character-Strings 

A character-string is a character or a sequence of contiguous characters 

which forms a COBOL word, a literal, a PICTURE character-string, or a comment- 

entry. A character-string is delimited by separators. 

5.3.2.2.1 COBOL Words 

A COBOL word is a character-string of not more than 30 characters which 

forms a user-defined word, a system-name, or a reserved word. Within a given 

source program these classes form disjoint sets; a COBOL word may belong to 

one and only one of these classes. 

5.3.2.2.1.1 User-Defined Words 

A user-defined word is a COBOL word that must be supplied by the user to 

satisfy the format of a clause or statement. Each character of a user-defined 

word is selected from the set of characters ’A', 'B', 'C', ... 'Z', 'O', ... 

*9', and except that the may not appear as the first or last character. 

1-76 



User-Defined Words 

There are seventeen (17) types of user-defined words: 

alphabet-name 

cd-name 

c ondition-name 

data-name 

file-name 

index-name 

level-number 

library-name 

mnemonic-name 

paragraph-name 

program-name 

record-name 

report-name 

routine-name 

section-name 

segment-number 

text-name 

Within a given source program, fifteen (15) of these seventeen (17) types 

of user-defined words are grouped into thirteen (13) disjoint sets. The 

disjoint sets are: 

alphabet-names 

cd-names 

condition-names, data-names, and record-names 

file-names 

index-names 

library-names 

mnemonic-names 

paragraph-names 

program-names 

report-names 

routine-names 

section-names 

text-names 

All user-defined words, except segment-numbers and level-numbers, can belong 

to one and only one of these disjoint sets. Further, all user-defined words 

within a given disjoint set must be unique, either because no other user-defined 

word in the same source program has identical spelling or punctuation, or 

because uniqueness can be insured by qualification. (See page 1-87, Uniqueness 

of Reference.) 

With the exception of paragraph-name, section-name, level-number and segment- 

number, all user-defined words must contain at least one alphabetic character. 

Segment-numbers and level-numbers need not be unique; a given specification of 

a segment-number or level-number may be identical to any other segment-number 

or level-number and may even be identical to a paragraph-name or section-name. 

1-77 



System-Names 

5.3.2.2.1.1.1 Condition-Name 

A condition-name is a name which is assigned to a specific value, set of 

values, or range of values, within a complete set of values that a data item 

may assume. The data item itself is called a conditional variable. 

Condition-names may be defined in the Data Division or in the SPECIAL-NAMES 

paragraph within the Environment Division where a condition-name must be assigned 
to the ON STATUS or OFF STATUS, or both, of implementor-defined switches. 

A condition-name is used only in the RERUN clause or in conditions as an 

abbreviation for the relation condition; this relation condition posits that 

the associated conditional variable is equal to one of the set of values to 

which that condition-name is assigned. 

5.3.2.2.1.1.2 Mnemonic-Name 

A mnemonic-name assigns a user-defined word to an implementor-name. These 

associations are established in the SPECIAL-NAMES paragraph of the Environment 

Division. (See page II-8, The SPECIAL-NAMES Paragraph.) 

5.3.2.2.1.1.3 Paragraph-Name 

A paragraph-name is a word which names a paragraph in the Procedure Division. 

Paragraph-names are equivalent if, and only if, they are composed of the same 

sequence of the same number of digits and/or characters. 

5.3.2.2.1.1.4 Section-Name 

A section-name is a word which names a section in the Procedure Division. 

Section-names are equivalent if, and only if, they are composed of the same 

sequence of the same number of digits and/or characters. 

5.3.2.2.1.1.5 Other User-Defined Names 

See the glossary beginning on page 1-52 for definitions of all other types 

of user-defined words. 

5.3.2.2.1.2 System-Names 

A system-name is a COBOL word which is used to communicate with the operat¬ 

ing environment. Rules for the formation of a system-name are defined by the 

implementor, except that each character used in the formation of a system-name 

must be selected from the set of characters ’A', 'B*, 'C', ... ?Z', ’O', ... 

*9’, and except that the '-' may not appear as the first or last character. 

There are three (3) types of system-names: 

computer-name 

implementor-name 

language-name 

Within a given implementation these three types of system-names form 

disjoint sets; a given system-name may belong to one and only one of them. 

1-78 



Reserved Words 

The system-names listed on page 1-78 are individually defined in the glossary 

beginning on page 1-52. 

5.3.2.2.1.3 Reserved Words 

A reserved word is a COBOL word that is one of a specified list of words 

which may be used in COBOL source programs, but which must not appear in the 

programs as user-defined words or system-names. Reserved words can only be 

used as specified in the general formats. (See page 1-109, Reserved Words.) 

There are six (6) types of reserved words: 

Key words 

Optional words 

Connectives 

Special registers 

Figurative constants 

Special-character words 

5.3.2.2.1.3.1 Key Words 

A key word is a word whose presence is required when the format in which 

the word appears is used in a source program. Within each format, such words 

are uppercase and underlined. 

Key words are of three types: 

(1) Verbs such as ADD, READ, and ENTER. 

(2) Required words, which appear in statement and entry formats. 

(3) Words which have a specific functional meaning such as NEGATIVE, 

SECTION, etc. 

5.3.2.2.1.3.2 Optional Words 

Within each format, uppercase words that are not underlined are called 

optional words and may appear at the user's option. The presence or absence 

of an optional word does not alter the semantics of the COBOL program in 

which it appears. 

5.3.2.2.1.3.3 Connectives 

There are three types of connectives: 

(1) Qualifier connectives that are used to associate a data-name, a 

condition-name, a text-name, or a paragraph-name with its qualifier: OF, IN 

(2) Series connectives that link two or more consecutive operands: 

, (separator comma) or ; (separator semicolon) 

(3) Logical connectives that are used in the formation of conditions: 

AND, OR 

1-79 



Literals 

5.3.2.2.1.3.4 Special Registers 

Certain reserved words are used to name and reference special registers. 

Special registers are certain compiler generated storage areas whose primary 

use is to store information produced in conjunction with the use of specific 

COBOL features. These special registers include the following: LINAGE-COUNTER 

(see page IV-3), LINE-COUNTER (see page VIII-1), PAGE-COUNTER (see page VIII-1), 

and DEBUG-ITEM (see page XI-1). 

5.3.2.2.1.3.5 Figurative Constants 

Certain reserved words are used to name and reference specific constant 

values. These reserved words are specified on page 1-81, Figurative Constant 

Values. 

5.3.2.2.1.3.6 Special-Character Words 

The arithmetic operators and relation characters are reserved words. (See 

the glossary beginning on page 1-52.) 

5.3.2.2.2 Literals 

A literal is a character-string whose value is implied by an ordered set of 

characters of which the literal is composed or by specification of a reserved 

word which references a figurative constant. Every literal belongs to one of 

two types, nonnumeric or numeric. 

5.3.2.2.2.1 Nonnumeric Literals 

A nonnumeric literal is a character-string delimited on both ends by quota¬ 

tion marks and consisting of any allowable character in the computer's charac¬ 

ter set. The implementor must allow for nonnumeric literals of 1 through 120 

characters in length. To represent a single quotation mark character within 

a nonnumeric literal, two contiguous quotation marks must be used. The value 

of a nonnumeric literal in the object program is the string of characters 
itself, except: 

(1) The delimiting quotation marks are excluded, and 

(2) Each embedded pair of contiguous quotation marks represents a single 

quotation mark character. 

All other punctuation characters are part of the value of the nonnumeric 

literal rather than separators; all nonnumeric literals are category alpha¬ 

numeric. (See page 11-18, The PICTURE Clause.) 

5.3.2.2.2.2 Numeric Literals 

A numeric literal is a character-string whose characters are selected from 

the digits 'O’ through '9', the plus sign, the minus sign, and/or the decimal 

point. The implementor must allow for numeric literals of 1 through 18 digits 

in length. The rules for the formation of numeric literals are as follows: 

(1) A literal must contain at least one digit. 

1-80 



Figurative Constants 

(2) A literal must not contain more than one sign character. If a sign is 

used, it must appear as the leftmost character of the literal. If the literal 

is unsigned, the literal is positive. 

(3) A literal must not contain more than one decimal point. The decimal 

point is treated as an assumed decimal point, and may appear anywhere within 

the literal except as the rightmost character. If the literal contains no 

decimal point, the literal is an integer. 

If a literal conforms to the rules for the formation of numeric liter¬ 

als, but is enclosed in quotation marks, it is a nonnumeric literal and it is 

treated as such by the compiler. 

(4) The value of a numeric literal is the algebraic quantity represented 

by the characters in the numeric literal. Every numeric literal is category 

numeric. (See page 11-18, The PICTURE Clause.) The size of a numeric literal 

in standard data format characters is equal to the number of digits specified 

by the user. 

5.3.2.2.2.3 Figurative Constant Values 

Figurative constant values are generated by the compiler and referenced 

through the use of the reserved words given below. These words must not be 

bounded by quotation marks when used as figurative constants. The singular 

and plural forms of figurative constants are equivalent and may be used 

interchangeably. 

The figurative constant values and the reserved words used to reference 

them are as follows: 

ZERO 

ZEROS 

ZEROES 

SPACE 

SPACES 

HIGH-VALUE 

HIGH-VALUES 

LOW-VALUE 

LOW-VALUES 

QUOTE 

QUOTES 

ALL literal 

Represents the value 'O', or one or more of the character 

’O', depending on context. 

Represents one or more of the character space from the 

computer's character set. 

Represents one or more of the character that has the high¬ 

est ordinal position in the program collating sequence. 

Represents one or more of the character that has the lowest 

ordinal position in the program collating sequence. 

f f 

Represents one or more of the character " . The word 

QUOTE or QUOTES cannot be used in place of a quotation mark 

in a source program to bound a nonnumeric literal. Thus, 

QUOTE ABD QUOTE is incorrect as a way of stating the 

nonnumeric literal "ABD". 

Represents one or more of the string of characters compris¬ 

ing the literal. The literal must be either a nonnumeric 

literal or a figurative constant other than ALL literal. 

When a figurative constant is used, the word ALL is 

redundant and is used for readability only. 

1-81 



Data Description Concepts 

When a figurative constant represents a string of one or more characters, 

the length of the string is determined by the compiler from context according 
to the following rules: 

(1) When a figurative constant is associated with another data item, as 

when the figurative constant is moved to or compared with another data item, 

the string of characters specified by the figurative constant is repeated 

character by character on the right until the size of the resultant string is 

equal to the size in characters of the associated data item. This is done 

prior to and independent of the application of any JUSTIFIED clause that may 

be associated with the data item. 

(2) When a figurative constant is not associated with another data item, 

as when the figurative constant appears in a DISPLAY, STRING, STOP or UNSTRING 

statement, the length of the string is one character. 

A figurative constant may be used wherever a literal appears in a format, 

except that whenever the literal is restricted to having only numeric char¬ 

acters in it, the only figurative constant permitted is ZERO (ZEROS, ZEROES). 

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in 

the source program, the actual character associated with each figurative 

constant depends upon the program collating sequence specified. (See page 

II-6, The OBJECT-COMPUTER Paragraph, and page II-8, The SPECIAL-NAMES 

Paragraph.) 

Each reserved word which is used to reference a figurative constant value 

is a distinct character-string with the exception of the construction 'ALL 

literal' which is composed of two distinct character-strings. 

5.3.2.2.3 PICTURE Character-Strings 

A PICTURE character-string consists of certain combinations of characters 

in the COBOL character set used as symbols. See page 11-18, The PICTURE 

Clause, for the discussion of the PICTURE character-string and for the rules 

that govern their use. 

Any punctuation character which appears as part of the specification of a 

PICTURE character-string is not considered as a punctuation character, but 

rather as a symbol used in the specification of that PICTURE character-string. 

5.3.2.2.4 Comment-Entries 

A comment-entry is an entry in the Identification Division that may be any 

combination of characters from the computer's character set. 

5.3.3 Concept of Computer Independent Data Description 

To make data as computer independent as possible, the characteristics or 

properties of the data are described in relation to a standard data format 

rather than an equipment-oriented format. This standard data format is 

oriented to general data processing applications and uses the decimal system 

to represent numbers (regardless of the radix used by the computer) and the 

remaining characters in the COBOL character set to describe nonnumeric data 

items. 

1-82 



Data Description Concepts 

5.3.3.1 Logical Record and File Concept 

The approach taken in defining file information is to distinguish between 

the physical aspects of the file and the conceptual characteristics of the 

data contained within the file. 

5.3.3.1.1 Physical Aspects of a File 

The physical aspects of a file describe the data as it appears on the 

input or output media and include such features as: 

(1) The grouping of logical records within the physical limitations of 

the file medium. 

(2) The means by which the file can be identified. 

5.3.3.1.2 Conceptual Characteristics of a File 

The conceptual characteristics of a file are the explicit definition of 

each logical entity within the file itself. In a COBOL program, the input 

or output statements refer to one logical record. 

It is important to distinguish between a physical record and a logical 

record. A COBOL logical record is a group of related information, uniquely 

identifiable, and treated as a unit. 

A physical record is a physical unit of information whose size and record¬ 

ing mode is convenient to a particular computer for the storage of data on an 

input or output device. The size of a physical record is hardware dependent 

and bears no direct relationship to the size of the file of information 

contained on a device. 

A logical record may be contained within a single physical unit; or several 

logical records may be contained within a single physical unit; or, in the 

case of mass storage files, a logical record may require more than one 

physical unit to contain it. There are several source language methods 

available for describing the relationship of logical records and physical 

units. When a permissible relationship has been established, control of 

the accessibility of logical records as related to the physical unit must be 

provided by the interaction of the object program on the implementor’s 

hardware and/or software system. In this document, references to records 

means to logical records, unless the term 'physical record' is specifically 

used. 

The concept of a logical record is not restricted to file data but is 

carried over into the definition of working storage. Thus, working storage 

may be grouped into logical records and defined by a series of record descrip¬ 

tion entries. 

5.3.3.1.3 Record Concepts 

The record description consists of a set of data description entries which 

describe the characteristics of a particular record. Each data description 

entry consists of a level-number followed by a data-name, if required, followed 

by a series of independent clauses, as required. 

1-83 



Data Description Concepts 

5.3.3.2 Concept of Levels 

A level concept is inherent in the structure of a logical record. This 

concept arises from the need to specify subdivisions of a record for the 

purpose of data reference. Once a subdivision has been specified, it may be 

further subdivided to permit more detailed data referral. 

The most basic subdivisions of a record, that is, those not further sub¬ 

divided, are called elementary items; consequently, a record is said to 

consist of a sequence of elementary items, or the record itself may be an 

elementary item. 

In order to refer to a set of elementary items, the elementary items are 

combined into groups. Each group consists of a named sequence of one or more 

elementary items. Groups, in turn, may be combined into groups of two or 

more groups, etc. Thus, an elementary item may belong to more than one group 

5.3.3.2.1 Level-Numbers 

A system of level-numbers shows the organization of elementary items and 

group items. Since records are the most inclusive data items, level-numbers 

for records start at 01. Less inclusive data items are assigned higher (not 

necessarily successive) level-numbers not greater in value than 49. There 

are special level-numbers 66, 77, and 88, which are exceptions to this rule 

(see below). Separate entries are written in the source program for each 

level-number used. 

A group includes all group and elementary items following it until a level 

number less than or equal to the level-number of that group is encountered. 

All items which are immediately subordinate to a given group item must be 

described using identical level-numbers greater than the level-number used to 

describe that group item. 

Three types of entries exist for which there is no true concept of level. 

These are: 

(1) Entries that specify elementary items or groups introduced by a 

RENAMES clause, 

(2) Entries that specify noncontiguous working storage and linkage data 

items, 

(3) Entries that specify condition-names. 

Entries describing items by means of RENAMES clauses for the purpose of 

regrouping data items have been assigned the special level-number 66. 

Entries that specify noncontiguous data items, which are not subdivisions 

of other items, and are not themselves subdivided, have been assigned the 

special level-number 77. 

Entries that specify condition-names, to be associated with particular 

values of a conditional variable, have been assigned the special level-number 

88. 

1-84 



Data Description Concepts 

5.3.3.3 Concept of Classes of Data 

The five categories of data items (see page 11-18, The PICTURE Clause) are 

grouped into three classes: alphabetic, numeric, and alphanumeric. For 

alphabetic and numeric, the classes and categories are synonymous. The 

alphanumeric class includes the categories of alphanumeric edited, numeric 

edited and alphanumeric (without editing). Every elementary item except for 

an index data item belongs to one of the classes and further to one of the 

categories. The class of a group item is treated at object time as alpha¬ 

numeric regardless of the class of elementary items subordinate to that group 

item. The following chart depicts the relationship of the class and 

categories of data items. 

LEVEL OF ITEM CLASS CATEGORY 

Alphabetic Alphabetic 

Numeric Numeric 

Elementary 

Alphanumeric 

Numeric Edited 

Alphanumeric Edited 

Alphanumeric 

Nonelementary 

(Group) 

Alphanumeric 

Alphabetic 

Numeric 

Numeric Edited 

Alphanumeric Edited 

Alphanumeric 

5.3.3.4 Selection of Character Representation and Radix 

The value of a numeric item may be represented in either binary or decimal 

form depending on the equipment. In addition there are several ways of 

expressing decimal. Since these representations are actually combinations of 

bits, they are commonly called binary-coded decimal forms. The selection of 

radix is generally dependent upon the arithmetic capability of the computer. 

If more than one arithmetic radix is provided, the selection is dependent 

upon factors included in such clauses as USAGE. The binary-coded decimal 

form is also used to represent characters and symbols that are alphanumeric 

items. 

The selection of the proper binary-coded alphanumeric or binary-coded 

decimal form is dependent upon the capability of the computer and its 

external media. 

When a computer provides more than one means of representing data, the 

standard data format must be used if not otherwise specified by the data 

description. If both the external medium and the computer are capable of 

handling more than one form of data representation, or if there is no external 

medium associated with the data, the selection is dependent on factors 

1-85 



Data Description Concepts 

included in USAGE, PICTURE, etc., clauses. Each implementor provides a 
complete explanation of the possible forms on the computer for which he is 
implementing COBOL. The method used in selecting the proper data form is 
also provided to allow the programmer to anticipate and/or control the 
selection. 

The size of an elementary data item or a group item is the number of char¬ 
acters in standard data format of the item. Synchronization and usage may 
cause a difference between this size and the actual number of characters 
required for the internal representation. 

5.3.3.5 Algebraic Signs 

Algebraic signs fall into two categories: operational signs, which are 
associated with signed numeric data items and signed numeric literals to 
indicate their algebraic properties; and editing signs, which appear 
on edited reports to identify the sign of the item. 

The SIGN clause permits the programmer to state explicitly the location 
of the operational sign. The clause is optional; if it is not used operation¬ 
al signs will be represented as defined by the implementor. 

Editing signs are inserted into a data item through the use of the sign 
control symbols of the PICTURE clause. 

5.3.3.6 Standard Alignment Rules 

The standard rules for positioning data within an elementary item depend 
on the category of the receiving item. These rules are: 

(1) If the receiving data item is described as numeric: 

a. The data is aligned by decimal point and is moved to the receiving 
character positions with zero fill or truncation on either end as required. 

b. When an assumed decimal point is not explicitly specified, the 
data item is treated as if it had an assumed decimal point immediately 
following its rightmost character and is aligned as in paragraph la above. 

(2) If the receiving data item is a numeric edited data item, the data 
moved to the edited data item is aligned by decimal point with zero fill or 
truncation at either end as required within the receiving character positions 
of the data item, except where editing requirements cause replacement of the 
leading zeros. 

(3) If the receiving data item is alphanumeric (other than a numeric 
edited data item), alphanumeric edited or alphabetic, the sending data is 
moved to the receiving character positions and aligned at the leftmost char¬ 
acter position in the data item with space fill or truncation to the right, 
as required. 

If the JUSTIFIED clause is specified for the receiving item, these stan¬ 
dard rules are modified as described in the JUSTIFIED clause on page 11-16. 

1-86 



Qualification 

5.3.3.7 Item Alignment for Increased Object-Code Efficiency 

Some computer memories are organized in such a way that there are natural 

addressing boundaries in the computer memory (e.g., word boundaries, half-word 

boundaries, byte boundaries). The way in which data is stored is determined by 

the object program, and need not respect these natural boundaries. 

However, certain uses of data (e.g., in arithmetic operations or in 

subscripting) may be facilitated if the data is stored so as to be aligned on 

these natural boundaries. Specifically, additional machine operations in the 

object program may be required for the accessing and storage of data if 

portions of two or more data items appear between adjacent natural boundaries, 

or if certain natural boundaries bifurcate a single data item. 

Data items which are aligned on these natural boundaries in such a way as 

to avoid such additional machine operations are defined to be synchronized. 

A synchronized item is assumed to be introduced and carried in that form; 

conversion to synchronized form occurs only during the execution of a proce¬ 

dure (other than READ or WRITE) which stores data in the item. 

Synchronization can be accomplished in two ways: 

(1) By use of the SYNCHRONIZED clause 

(2) By recognizing the appropriate natural boundaries and organizing the 

data suitably without the use of the SYNCHRONIZED clause. (See page 11-34, 

The SYNCHRONIZED Clause, General Rule 9.) 

Each implementor who provides for special types of alignment will specify 

the precise interpretations which are to be made. 

5.3.3.8 Uniqueness of Reference 

5.3.3.8.1 Qualification 

Every user-specified name that defines an element in a COBOL source program 

must be unique, either because no other name has the identical spelling and 

hyphenation, or because the name exists within a hierarchy of names such that 

references to the name can be made unique by mentioning one or more of the 

higher levels of the hierarchy. The higher levels are called qualifiers and 

this process that specifies uniqueness is called qualification. Enough 

qualification must be mentioned to make the name unique; however, it may not 

be necessary to mention all levels of the hierarchy. Within the Data Division, 

all data-names used for qualification must be associated with a level indicator 

or a level-number. Therefore, two identical data-names must not appear as 

entries subordinate to a group item unless they are capable of being made 

unique through qualification. In the Procedure Division two identical 

paragraph-names must not appear in the same section. 

In the hierarchy of qualification, names associated with a level indicator 

are the most significant, then those names associated with level-number 01, 

then names associated with level-number 02, ... , 49. A section-name is the 

highest (and the only) qualifier available for a paragraph-name. Thus, the 

most significant name in the hierarchy must be unique and cannot be qualified. 

Subscripted or indexed data-names and conditional variables, as well as 

1-87 



Qualification 

procedure-names and data-names, may be made unique by qualification. The 

name of a conditional variable can be used as a qualifier for any of its 

condition-names. Regardless of the available qualification, no name can be 

both a data-name and procedure-name. 

Qualification is performed by following a data-name, a condition-name, a 

paragraph-name, or a text-name by one or more phrases composed of a qualifier 

preceded by IN or OF. IN and OF are logically equivalent. 

The general formats for qualification are: 

Format 1 

(data-name-1 

J M
 1

 O
 

a
h

 
data-name-2 

Format 2 

paragraph-name 
( OF^ 

| IN 
section-name 

Format 3 

text-name 

-
1

 

m
|o

 

library-name 

v. 

The rules for qualification are as follows: 

(1) Each qualifier must be of a successively higher level and within the 

same hierarchy as the name it qualifies. 

(2) The same name must not appear at two levels in a hierarchy. 

(3) If a data-name or a condition-name is assigned to more than one data 

item in a source program, the data-name or condition-name must be qualified 

each time it is referred to in the Procedure, Environment, and Data Divisions 

(except in the REDEFINES clause where qualification is unnecessary and must 

not be used.) 

(A) A paragraph-name must not be duplicated within a section. When a 

paragraph-name is qualified by a section-name, the word SECTION must not 

appear. A paragraph-name need not be qualified when referred to from within 

the same section. 

(5) A data-name cannot be subscripted when it is being used as a qualifier. 

(6) A name can be qualified even though it does not need qualifications; 

if there is more than one combination of qualifiers that ensures uniqueness, 

then any such set can be used. The complete set of qualifiers for a data-name 

must not be the same as any partial set of qualifiers for another data-name. 

1-88 



Subscripting 

Qualified data-names may have any number of qualifiers up to an implementor- 

defined limit. This limit must be at least five. 

(7) If more than one COBOL library is available to the compiler during 
compilation, text-name must be qualified each time it is referenced. 

5.3.3.8.2 Subscripting 

Subscripts can be used only when reference is made to an individual element 
within a list or table of like elements that have not been assigned individual 
data-names (see page III-2, The OCCURS Clause). 

The subscript can be represented either by a numeric literal that is an 
integer or by a data-name. The data-name must be a numeric elementary item 
that represents an integer. When the subscript is represented by a data-name, 
the data-name may be qualified but not subscripted. In the Report Section, 
neither a sum counter nor the special registers LINE-COUNTER and PAGE-COUNTER 
can be used as a subscript. 

The subscript may be signed and, if signed, it must be positive. The low¬ 
est possible subscript value is 1. This value points to the first element of 
the table. The next sequential elements of the table are pointed to by sub¬ 
scripts whose values are 2, 3, ... . The highest permissible subscript value, 
in any particular case, is the maximum number of occurrences of the item as 
specified in the OCCURS clause. 

The subscript, or set of subscripts, that identifies the table element is 
delimited by the balanced pair of separators left parenthesis and right 
parenthesis following the table element data-name. The table element data- 
name appended with a subscript is called a subscripted data-name or an 
identifier. When more than one subscript is required, they are written in 
the order of successively less inclusive dimensions of the data organization. 

The format is: 

subscript-2 [, subscript-3]J ) (subscript-1 

5.3.3.8.3 Indexing 

References can be made to individual elements within a table of like elements 
by specifying indexing for that reference. An index is assigned to that level 
of the table by using the INDEXED BY phrase in the definition of a table. A 
name given in the INDEXED BY phrase is known as an index-name and is used to 
refer to the assigned index. The value of an index corresponds to the occur¬ 
rence number of an element in the associated table. An index-name must be 
initialized before it is used as a table reference. An index-name can be 
given an initial value by either a SET, a SEARCH ALL, or a Format 4 PERFORM 
statement. 

Direct indexing is specified by using an index-name in the form of a 
subscript. Relative indexing is specified when the index-name is followed by 
the operator + or -, followed by an unsigned integer numeric literal all 

1-89 



Indexing 

delimited by the balanced pair of separators left parenthesis and right paren¬ 

thesis following the table element data-name. The occurrence number resulting 

from relative indexing is determined by incrementing (where the operator + is 

used) or decrementing (when the operator - is used), by the value of the 

literal, the occurrence number represented by the value of the index. When 

more than one index-name is required, they are written in the order of success 

ively less inclusive dimensions of the data organization. 

At the time of execution of a statement which refers to an indexed table 

element, the value contained in the index referenced by the index-name asso¬ 

ciated with the table element must neither correspond to a value less than 

one (1) nor to a value greater than the highest permissible occurrence number 

of an element of the associated table. This restriction also applies to the 

value resultant from relative indexing. 

The general format for indexing is: 

jdata-name ^ 
\condition-nameJ 

findex-name-1 [{±} literal-2]| 

1 literal-1 

Cindex-name-2 [{±} literal-4] " I index-name-3 [ {±} literal-6"] 

[literal-3 
k 

• 1 ̂ literal-5 

5.3.3.8.4 Identifier 

An identifier is a term used to reflect that a data-name, if not unique in 

a program, must be followed by a syntactically correct combination of quali¬ 

fiers, subscripts or indices necessary to ensure uniqueness. 

The general formats for identifiers are: 

Format 1 

data-name-1 

[, subscript-3]] ) 

(OF, ; „ o 
— > data-name-2 

Format 2 

data-name-1 
(of' 

jlN 
data-name-2 

(subscript-1 subscript-2 

{index-name-2 [ {±} literal-4] 

literal-3 

^ (index-name-1 [{±} literal-2]| 

lliteral-1 J 

(index-name-3 ["{±} literal-6]) 

literal-5 

1-90 



Condi tion-Name 

Restrictions on qualification, subscripting and indexing are: 

(1) A data-name must not itself be subscripted nor indexed when that 

data-name is being used as an index, subscript or qualifier. 

(2) Indexing is not permitted where subscripting is not permitted. 

(3) An index may be modified only by the SET, SEARCH, and PERFORM state¬ 

ments. Data items described by the USAGE IS INDEX clause permit storage of 

the values associated with index-names as data in a form specified by the 

implementor. Such data items are called index data items. 

(4) Literal-1, literal-3, literal-5 in the above format must be positive 

numeric integers. Literal-2, literal-4, literal-6 must be unsigned numeric 

integers. 

5.3.3.8.5 Condition-Name 

Each condition-name must be unique, or be made unique through qualification 

and/or indexing, or subscripting. 

If qualification is used to make a condition-name unique, the associated 

conditional variable may be used as the first qualifier. If qualification is 

used, the hierarchy of names associated with the conditional variable or the 

conditional variable itself must be used to make the condition-name unique. 

If references to a conditional variable require indexing or subscripting, 

then references to any of its condition-names also require the same combina¬ 

tion of indexing or subscripting. 

The format and restrictions on the combined use of qualification, subscript¬ 

ing, and indexing of condition-names is exactly that of 'identifier* except 

that data-name-1 is replaced by condition-name-1. 

In the general formats, 'condition-name' refers to a condition-name 

qualified, indexed or subscripted, as necessary. 

5.3.4 Explicit and Implicit Specifications 

There are three types of explicit and implicit specifications that occur 

in COBOL source programs: 

(1) Explicit and implicit Procedure Division references 

(2) Explicit and implicit transfers of control 

(3) Explicit and implicit attributes. 

5.3.4.1 Explicit and Implicit Procedure Division References 

A COBOL source program can reference data items either explicitly or 

implicitly in Procedure Division statements. An explicit reference occurs 

when the name of the referenced item is written in a Procedure Division 

statement or when the name of the referenced item is copied into the Procedure 

1-91 



Explicit & Implicit 

Division by the processing of a COPY statement. An implicit reference occurs 

when the item is referenced by a Procedure Division statement without the name 

of the referenced item being written in the source statement. An implicit 

reference also occurs, during the execution of a PERFORM statement, when the 

index or data item referenced by the index-name or identifier specified in the 

VARYING, AFTER or UNTII phrase is initialized, modified, or evaluated by the 

control mechanism associated with that PERFORM statement. Such an implicit 

reference occurs if and only if the data item contributes to the execution of 

the statement. 

5.3.4.2 Explicit and Implicit Transfers of Control 

The mechanism that controls program flow transfers control from statement 

to statement in the sequence in which they were written in the source program 

unless an explicit transfer of control overrides this sequence or there is no 

next executable statement to which control can be passed. The transfer of 

control from statement to statement occurs without the writing of an explicit 

Procedure Division statement, and therefore, is an implicit transfer of 

control. 

COBOL provides both explicit and implicit means of altering the implicit 

control transfer mechanism. 

In addition to the implicit transfer of control between consecutive state¬ 

ments, implicit transfer of control also occurs when the normal flow is altered 

without the execution of a procedure branching statement. COBOL provides the 

following types of implicit control flow alterations which override the state- 

ment-to-statement transfers of control: 

(1) If a paragraph is being executed under control of another COBOL state¬ 

ment (for example, PERFORM, USE, SORT and MERGE) and the paragraph is the last 

paragraph in the range of the controlling statement, then an implied transfer 

of control occurs from the last statement in the paragraph to the control 

mechanism of the last executed controlling statement. Further, if a paragraph 

is being executed under the control of a PERFORM statement which causes itera¬ 

tive execution and that paragraph is the first paragraph in the range of that 

PERFORM statement, an implicit transfer of control occurs between the control 

mechanism associated with that PERFORM statement and the first statement in 

that paragraph for each iterative execution of the paragraph. 

(2) When a SORT or MERGE statement is executed, an implicit transfer of 

control occurs to any associated input or output procedures. 

(3) When any COBOL statement is executed which results in the execution 

of a declarative section, an implicit transfer of control to the declarative 

section occurs. Note that another implicit transfer of control occurs after 

execution of the declarative section, as described in (1) above. 

An explicit transfer of control consists of an alteration of the implicit 

control transfer mechanism by the execution of a procedure branching or 

conditional statement. (See page 1-103, Categories of Statements.) An 

explicit transfer of control can be caused only by the execution of a proce¬ 

dure branching or conditional statement. The execution of the procedure 

branching statement ALTER does not in itself constitute an explicit transfer 

of control, but affects the explicit transfer of control that occurs when the 

1-92 



Explicit & Implicit 

associated GO TO statement is executed. The procedure branching statement 

EXIT PROGRAM causes an explicit transfer of control when the statement is 

executed in a called program. 

In this document, the term 'next executable statement' is used to refer to 

the next COBOL statement to which control is transferred according to the 

rules above and the rules associated with each language element in the 

Procedure Division. 

There is no next executable statement following: 

(1) The last statement in a declarative section when the paragraph in 

which it appears is not being executed under the control of some other COBOL 

statement. 

(2) The last statement in a program when the paragraph in which it appears 

is not being executed under the control of some other COBOL statement. 

5.3.4.3 Explicit and Implicit Attributes 

Attributes may be implicitly or explicitly specified. Any attribute which 

has been explicitly specified is called an explicit attribute. If an attri¬ 

bute has not been specified explicitly, then the attribute takes on the default 

specification. Such an attribute is known as an implicit attribute. 

For example, the usage of a data item need not be specified, in which case 

a data item's usage is DISPLAY. 

1-93 



Identification Division 

5.4 IDENTIFICATION DIVISION 

5.4.1 General Description 

The Identification Division must be included in every COBOL source program. 

This division identifies both the source program and the resultant output 

listing. In addition, the user may include the date the program is written, 

the date the compilation of the source program is accomplished and such other 

information as desired under the paragraphs in the general format shown below. 

5.4.2 Organization 

Paragraph headers identify the type of information contained in the 

paragraph. The name of the program must be given in the first paragraph, 

which is the PROGRAM-ID paragraph. The other paragraphs are optional and 

may be included in this division at the user’s choice, in order of presenta¬ 

tion shown by the format below. 

5.4.3 Structure 

The following is the general format of the paragraphs in the Identification 

Division and it defines the order of presentation in the source program. 

5.4.3.1 General Format 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name. 

[AUTHOR. [comment-entry] ... ] 

[INSTALLATION. [comment-entry] ... ] 

[DATE-WRITTEN. [comment-entry] ... ] 

[DATE-COMPILED. [comment-entry] ... ] 

[SECURITY. [comment-entry] ... ] 

1-94 



Environment Division 

5.5 ENVIRONMENT DIVISION 

5.5.1 General Description 

The Environment Division specifies a standard method of expressing those 

aspects of a data processing problem that are dependent upon the physical 

characteristics of a specific computer. This division allows specification 

of the configuration of the compiling computer and the object computer. In 

addition, information relating to input-output control, special hardware 

characteristics and control techniques can be given. 

The Environment Division must be included in every COBOL source program. 

5.5.2 Organization 

Two sections make up the Environment Division: the Configuration Section 

and the Input-Output Section. 

The Configuration Section deals with the characteristics of the source 

computer and the object computer. This section is divided into three para¬ 

graphs: the SOURCE-COMPUTER paragraph, which describes the computer configu¬ 

ration on which the source program is compiled; the OBJECT-COMPUTER paragraph, 

which describes the computer configuration on which the object program produced 

by the compiler is to be run; and the SPECIAL-NAMES paragraph, which relates 

the implementor-names used by the compiler to the mnemonic-names used in the 

source program. 

The Input-Output Section deals with the information needed to control 

transmission and handling of data between external media and the object pro¬ 

gram. This section is divided into two paragraphs: the FILE-CONTROL para¬ 

graph which names and associates the files with external media; and the 

I-O-CONTROL paragraph which defines special control techniques to be used in 

the object program. 

5.5.3 Structure 

The following is the general format of the sections and paragraphs in the 

Environment Division, and defines the order of presentation in the source 

program. 

1-95 



Environment Division 

5.5.3.1 General Format 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER, source-computer-entry 

OBJECT-COMPUTER. object-computer-entry 

[SPECIAL-NAMES. special-names-entry] 

[INPUT-OUTPUT SECTION. 

FILE-CONTROL. {file-control-entry} ... 

[1-0-CONTROL, input-output-control-entry] ] 

5.5.3.2 Syntax Rules 

(1) The Environment Division begins with the reserved words ENVIRONMENT 
DIVISION followed by a period and a space. 

1-96 



Data Division 

5.6 DATA DIVISION 

5.6.1 Overall Approach 

The Data Division describes the data that the object program is to accept 

as input, to manipulate, to create, or to produce as output. Data to be 

processed falls into three categories: 

a. That which is contained in files and enters or leaves the internal 

memory of the computer from a specified area or areas. 

b. That which is developed internally and placed into intermediate or 

working storage, or placed into specific format for output reporting purposes. 

c. Constants which are defined by the user. 

5.6.2 Physical and Logical Aspects of Data Description 

5.6.2.1 Data Division Organization 

The Data Division, which is one of the required divisions in a program, is 

subdivided into sections. These are the File, Working-Storage, Linkage, 

Communication, and Report Sections. 

The File Section defines the structure of data files. Each file is defined 

by a file description entry and one or more record descriptions, or by a file 

description entry and one or more report description entries. Record descrip¬ 

tions are written immediately following the file description entry. When the 

file description specifies a file to be used as a Report Writer output file, 

no record description entries are permitted for that file. Report description 

entries appear in a separate section of the Data Division, the Report Section. 

The Working-Storage Section describes records and noncontiguous data items 

which are not part of external data files but are developed and processed 

internally. It also describes data items whose values are assigned in the 

source program and do not change during the execution of the object program. 

The Linkage Section appears in the called program and describes data items 

that are to be referred to by the calling program and the called program. Its 

structure is the same as the Working-Storage Section. The Communication 

Section describes the data item in the source program that will serve as the 

interface between the MCS and the program. The Report Section describes the 

content and format of reports that are to be generated. 

1-97 



Data Division 

5.6.2.2 Data Division Structure 

The following gives the general format of the sections in the Data Division, 
and defines the order of their presentation in the source program. 

DATA DIVISION. 

FILE SECTION. 
- 

file-description-entry [record-description-entry] ... 
sort-merge-file-description-entry {record-description-entry} ... 

• • • 

WORKING-STORAGE SECTION. 

- 

77-level-description-entry 
I record-description-entry I-. 

‘linkage section. 
1 

P77-level-description-entry 
1 record-description-entry 

• • • 

COMMUNICATION SECTION. 

^communication-description-entry frecord-description-entry ] ... 

'report SECTION. 

report-description-entry ^ report- -group-description-entryJ ... ... 

1-98 



Procedure Division 

5.7 PROCEDURE DIVISION 

5.7.1 General Description 

The Procedure Division must be included in every COBOL source program. 

This division may contain declaratives and nondeclarative procedures. 

5.7.1.1 Declaratives 

Declarative sections must be grouped at the beginning of the Procedure 

Division preceded by the key word DECLARATIVES and followed by the key words 

END DECLARATIVES. (See pages IV-32, V-30, VI-32, VIII-56, and XI-4 for the 

USE statement.) 

5.7.1.2 Procedures 

A procedure is composed of a paragraph, or group of successive paragraphs, 

or a section, or a group of successive sections within the Procedure Division. 

If one paragraph is in a section, then all paragraphs must be in sections. A 

procedure-name is a word used to refer to a paragraph or section in the source 

program in which it occurs. It consists of a paragraph-name (which may be 

qualified), or a section-name. 

The end of the Procedure Division and the physical end of the program is 

that physical position in a COBOL source program after which no further 

procedures appear. 

A section consists of a section header followed by zero, one, or more 

successive paragraphs. A section ends immediately before the next section or 

at the end of the Procedure Division or, in the declaratives portion of the 

Procedure Division, at the key words END DECLARATIVES. 

A paragraph consists of a paragraph-name followed by a period and a space 

and by zero, one, or more successive sentences. A paragraph ends immediately 

before the next paragraph-name or section-name or at the end of the Procedure 

Division or, in the declaratives portion of the Procedure Division, at the 

key words END DECLARATIVES. 

A sentence consists of one or more statements and is terminated by a 

period followed by a space. 

A statement is a syntactically valid combination of words and symbols 

beginning with a COBOL verb. 

The term 'identifier* is defined as the word or words necessary to make 

unique reference to a data item. 

5.7.1.3 Execution 

Execution begins with the first statement of the Procedure Division, 

excluding declaratives. Statements are then executed in the order in which 

they are presented for compilation, except where the rules indicate some 

other order. 

1-99 



Procedure division 

5.7.1.4 Procedure Division Structure 

5.7.1.4.1 Procedure Division Header 

The Procedure Division is identified by and must begin with the following 
header: 

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] ... ]. 

5.7.1.4.2 Procedure Division Body 

The body of the Procedure Division must conform to one of the following 
formats: 

Format 1 

[DECLARATIVES. 

{section-name SECTION [segment-number], declarative-sentence 

[paragraph-name. [sentence] ... ] ... } ... 

END DECLARATIVES.] • 

{section-name SECTION [segment-number], 

[paragraph-name. [sentence] ... ] ... } ... 

Format 2 

{paragraph-name. [sentence] ... } ... 

I-100 



Statements and Sentences 

5.7.2 Statements and Sentences 

There are three types of statements: conditional statements, compiler 
directing statements, and imperative statements. 

There are three types of sentences: conditional sentences, compiler 
directing sentences, and imperative sentences. 

5.7.2.1 Conditional Statements and Conditional Sentences 

5.7.2.1.1 Definition of Conditional Statement 

A conditional statement specifies that the truth value of a condition is 
to be determined and that the subsequent action of the object program is 
dependent on this truth value. 

A conditional statement is one of the following: 

a. An IF, SEARCH or RETURN statement. 

b. A READ statement that specifies the AT END or INVALID KEY phrase. 

c. A WRITE statement that specifies the INVALID KEY or END-OF-PAGE phrase. 

d. A START, REWRITE or DELETE statement that specifies the INVALID KEY 
phrase. 

e. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) 
that specifies the SIZE ERROR phrase. 

f. A RECEIVE statement that specifies a NO DATA phrase. 

g. A STRING, UNSTRING or CALL statement that specifies the ON OVERFLOW 
phrase. 

5.7.2.1.2 Definition of Conditional Sentence 

A conditional sentence is a conditional statement, optionally preceded by 
an imperative statement, terminated by a period followed by a space. 

5.7.2.2 Compiler Directing Statements and Compiler Directing Sentences 

5.7.2.2.1 Definition of Compiler Directing Statement 

A compiler directing statement consists of a compiler directing verb and 
its operands. The compiler directing verbs are COPY, ENTER, and USE (see 
page X-2, The COPY Statement; page 11-63, The ENTER Statement; and The USE 
Statement on pages IV-32, V-30, VI-32, VIII-56, and XI-4). A compiler direct¬ 
ing statement causes the compiler to take a specific action during compilation. 

5.7.2.2.2 Definition of Compiler Directing Sentence 

A compiler directing sentence is a single compiler directing statement 
terminated by a period followed by a space. 

1-101 



Statements and Sentences 

5.7.2.3 Imperative Statements and Imperative Sentences 

5.7.2.3.1 Definition of Imperative Statement 

An imperative statement indicates a specific unconditional action to be 

taken by the object program. An imperative statement is any statement that 

is neither a conditional statement, nor a compiler directing statement. An 

imperative statement may consist of a sequence of imperative statements, each 

possibly separated from the next by a separator. The imperative verbs are: 

ACCEPT GENERATE SEND 

ADD (1) GO SET 
ALTER INITIATE SORT 

CALL (3) INSPECT START (2) 

CANCEL MERGE STOP 
CLOSE MOVE STRING (3) 

COMPUTE (1) MULTIPLY (1) SUBTRACT (1) 

DELETE (2) OPEN SUPPRESS 
DISABLE PERFORM TERMINATE 

DISPLAY READ (5) UNSTRING (3) 

DIVIDE (1) RECEIVE (4) WRITE (6) 

ENABLE RELEASE 

EXIT REWRITE (2) 

(1) Without the optional SIZE ERROR phrase. 

(2) Without the optional INVALID KEY phrase. 

(3) Without the optional ON OVERFLOW phrase. 

(4) Without the optional NO DATA phrase. 

(5) Without the optional AT END phrase or INVALID KEY phrase. 

(6) Without the optional INVALID KEY phrase or END-OF-PAGE phrase. 

When 'imperative-statement' appears in the general format of statements, 

'imperative-statement' refers to that sequence of consecutive imperative 

statements that must be ended by a period or an ELSE phrase associated with 

a previous IF statement or a WHEN phrase associated with a previous SEARCH 

statement. 

5.7.2.3.2 Definition of Imperative Sentence 

An imperative sentence is an imperative statement terminated by a period 

followed by a space. 

1-102 



Categories of Statements 

5.7.2.4 Categories of Statements 

Category Verbs 

Arithmetic ^ 

f ADD 
1 COMPUTE 
) DIVIDE 
k INSPECT (TALLYING) 

MULTIPLY 
V SUBTRACT 

Compiler Directing 
( COPY 

< ENTER 
t USE 

Conditional 

( ADD (SIZE ERROR) 
CALL (OVERFLOW) 
COMPUTE (SIZE ERROR) 
DELETE (INVALID KEY) 
DIVIDE (SIZE ERROR) 
IF 
MULTIPLY (SIZE ERROR) 

/ READ (END or INVALID KEY) 
RECEIVE (NO DATA) 
RETURN (END) 
REWRITE (INVALID KEY) 
SEARCH 
START (INVALID KEY) 
STRING (OVERFLOW) 
SUBTRACT (SIZE ERROR) 
UNSTRING (OVERFLOW) 

^ WRITE (INVALID KEY or END-OF-PAGE) 

Data Movement 

rACCEPT (DATE, DAY, or TIME) 
ACCEPT MESSAGE COUNT 
INSPECT (REPLACING) 
MOVE 
STRING 

^ UNSTRING 

Ending STOP 

1-103 



Categories of Statements 

Category 

Input-Output 

Verbs 

ACCEPT (identifier) 

CLOSE 

DELETE 

DISABLE 

DISPLAY 

ENABLE 

OPEN 

READ 

RECEIVE 

REWRITE 

SEND 

START 

STOP (literal) 

\ WRITE 

Inter-Program 

Communicating 

Ordering 

( CALL 

\ CANCEL 

( MERGE 

J RELEASE 

] RETURN 

I SORT 

Procedure Branching 

(ALTER 

CALL 

EXIT 

GO TO 

PERFORM 

Report Writing 

GENERATE 

INITIATE 

SUPPRESS 

TERMINATE 

Table Handling 
( SEARCH 

\SET 

IF is a verb in the COBOL sense; it is recognized that it is not a verb 

in English. 

5.7.2.4.1 Specific Statement Formats 

The specific statement formats, together with a detailed discussion of 

the restrictions and limitations associated with each, appear in alphabetic 

sequence in the appropriate section of this document. (See the index begin¬ 

ning on page XV-1 to determine the page containing the discussion of a 

specific verb.) 

1-104 



Reference Format 

5.8 REFERENCE FORMAT 

5.8.1 General Description 

The reference format, which provides a standard method for describing 

COBOL source programs, is described in terms of character positions in a line 

on an input-output medium. Each implementor must define what is meant by 

lines and character positions for each input-output medium used with his 

compiler. Within these definitions, each COBOL compiler accepts source pro¬ 

grams written in reference format and produces an output listing of the 

source program input in reference format. 

The rules for spacing given in the discussion of the reference format 

take precedence over all other rules for spacing. 

The divisions of a source program must be ordered as follows: the Identifi¬ 

cation Division, then the Environment Division, then the Data Division, then 

the Procedure Division. Each division must be written according to the rules 

for the reference format. 

5.8.2 Reference Format Representation 

The reference format for a line is represented as follows: 

jia rgin Margin Margin Margi il 
1 1 1 1 

2 3 4 5 6 7 8 9 0 1 2 3 

B 

Margin 
R 

-- y 
Sequence Number Area 

J" V. 
Area A Area B 

Indicator Area 

Margin L is immediately to the left of the leftmost character position of 
a line. 

Margin C is between the 6th and 7th character positions of a line. 

Margin A is between the 7th and 8th character positions of a line. 

Margin B is between the 11th and 12th character positions of a line. 

Margin R is immediately to the right of the rightmost character position 
of a line. 

The sequence number area occupies six character positions (1-6), and is 
between margin L and margin C. 

The indicator area is the 7th character position of a line. 

1-105 



Reference Format 

Area A occupies character positions 8, 9, 10, and 11, and is between 
margin A and margin B. 

Area B occupies a finite number of character positions specified by the 

implementor; it begins immediately to the right of margin B and terminates 

immediately to the left of margin R. 

5.8.2.1 Sequence Numbers 

A sequence number, consisting of six digits in the sequence area, may be 

used to label a source program line. 

5.8.2.2 Continuation of Lines 

Whenever a sentence, entry, phrase, or clause requires more than one line, 

it may be continued by starting subsequent line(s) in area B. These subse¬ 

quent lines are called the continuation line(s). The line being continued is 

called the continued line. Any word or literal may be broken in such a way 

that part of it appears on a continuation line. 

A hyphen in the indicator area of a line indicates that the first nonblank 

character in area B of the current line is the successor of the last 

nonblank character of the preceding line without any intervening space. How¬ 

ever, if the continued line contains a nonnumeric literal without closing 

quotation mark, the first nonblank character in area B on the continuation 

line must be a quotation mark, and the continuation starts with the character 

immediately after that quotation mark. All spaces at the end of the continued 

line are considered part of the literal. Area A of a continuation line must 

be blank. 

If there is no hyphen in the indicator area of a line, it is assumed 

that the last character in the preceding line is followed by a space. 

5.8.2.3 Blank Lines 

A blank line is one that is blank from margin C to margin R, inclusive. 

A blank line can appear anywhere in the source program, except immediately 

preceding a continuation line. (See paragraph 5.8.2.2 above.) 

5.8.3 Division, Section, Paragraph Formats 

5.8.3.1 Division Header 

The division header must start in area A. 

5.8.3.2 Section Header 

The section header must start in area A. 

A section consists of paragraphs in the Environment and Procedure Divisions 

and Data Division entries in the Data Division. 

1-106 



Reference Format 

5.8.3.3 Paragraph Header, Paragraph-Name and Paragraph 

A paragraph consists of a paragraph-name followed by a period and a space 

and by zero, one or more sentences, or a paragraph header followed by one or 

more entries. Comment entries may be included within a paragraph as indicated 

in paragraph 5.8.6 on page 1-108. The paragraph header or paragraph-name 

starts in area A of any line following the first line of a division or a 

section. 

The first sentence or entry in a paragraph begins either on the same line 

as the paragraph header or paragraph-name or in area B of the next nonblank 

line that is not a comment line. Successive sentences or entries either 

begin in area B of the same line as the preceding sentence or entry or in 

area B of the next nonblank line that is not a comment line. 

When the sentences or entries of a paragraph require more than one line 

they may be continued as described in paragraph 5.8.2.2 on page 1-106. 

5.8.4 Data Division Entries 

Each Data Division entry begins with a level indicator or a level-number, 

followed by a space, followed by its associated name (except in the Report 

Section), followed by a sequence of independent descriptive clauses. Each 

clause, except the last clause of an entry, may be terminated by either the 

separator semicolon or the separator comma. The last clause is always termi¬ 

nated by a period followed by a space. 

There are two types of Data Division entries: those which begin with a 

level indicator and those which begin with a level-number. 

A level indicator is any of the following: FD, SD, RD, CD. 

In those Data Division entries that begin with a level indicator, the 

level indicator begins in area A followed by a space and followed in area B 

with its associated name and appropriate descriptive information. 

Those Data Division entries that begin with level-numbers are called data 

description entries. 

A level-number has a value taken from the set of values 1 through 49, 66, 

77, 88. Level-numbers in the range 1 through 9 may be written either as a 

single digit or as a zero followed by a significant digit. At least one space 

must separate a level-number from the word following the level-number. 

In those data description entries that begin with a level-number 01 or 77, 

the level-number begins in area A followed by a space and followed in area B 

by its associated record-name or item-name and appropriate descriptive informa¬ 

tion. 

Successive data description entries may have the same format as the first 

or may be indented according to level-number. The entries in the output list¬ 

ing need be indented only if the input is indented. Indentation does not 

affect the magnitude of a level-number. 

1-107 



Reference Format 

When level-numbers are to be indented, each new level-number may begin 

any number of spaces to the right of margin A. The extent of indentation to 

the right is determined only by the width of the physical medium. 

5.8.5 Declaratives 

The key word DECLARATIVES and the key words END DECLARATIVES that precede 

and follow, respectively, the declaratives portion of the Procedure Division 

must appear on a line by itself. Each must begin in area A and be followed 

by a period and a space. 

5.8.6 Comment Lines 

A comment line is any line with an asterisk in the continuation indicator 

area of the line. A comment line can appear as any line in a source program 

after the Identification Division header. Any combination of characters from 

the computer's character set may be included in area A and area B of that line. 

The asterisk and the characters in area A and area B will be produced on the 

listing but serve as documentation only. A special form of comment line 

represented by a stroke in the indicator area of the line causes page 

ejection prior to printing the comment. 

Successive comment lines are allowed. Continuation of comment lines is 

permitted, except that each continuation line must contain an in the 

indicator area. 

1-108 



Reserved Words 

5.9 Reserved Words 

The following is a list of reserved words: 

ACCEPT 

ACCESS 

ADD 

ADVANCING 

AFTER 

ALL 

ALPHABETIC 

ALSO 

ALTER 

ALTERNATE 

AND 

ARE 

AREA 

AREAS 

ASCENDING 

ASSIGN 

AT 

AUTHOR 

BEFORE 

BLANK 

BLOCK 

BOTTOM 

BY 

CALL 

CANCEL 

CD 

CF 

CH 

CHARACTER 

CHARACTERS 

CLOCK-UNITS 

CLOSE 

COBOL 

CODE 

CODE-SET 

COLLATING 

COLUMN 

COMMA 

COMMUNICATION 

COMP 

COMPUTATIONAL 

COMPUTE 

CONFIGURATION 

CONTAINS 

CONTROL 

CONTROLS 

COPY 

CORR 

CORRESPONDING 

COUNT 

CURRENCY 

DATA 

DATE 

DATE-COMPILED 

DATE-WRITTEN 

DAY 

DE 

DEBUG-CONTENTS 

DEBUG-ITEM 

DEBUG-LINE 

DEBUG-NAME 

DEBUG-SUB-1 

DEBUG-SUB-2 

DEBUG-SUB-3 

DEBUGGING 

DECIMAL-POINT 

DECLARATIVES 

DELETE 

DELIMITED 

DELIMITER 

DEPENDING 

DESCENDING 

DESTINATION 

DETAIL 

DISABLE 

DISPLAY 

DIVIDE 

DIVISION 

DOWN 

DUPLICATES 

DYNAMIC 

EGI 

ELSE 

EMI 

ENABLE 

END 

END-OF-PAGE 

ENTER 

ENVIRONMENT 

EOP 

EQUAL 

ERROR 

ESI 

EVERY 

EXCEPTION 

EXIT 

EXTEND 

FD 

FILE 

FILE-CONTROL 

FILLER 

FINAL 

FIRST 

FOOTING 

FOR 

FROM 

GENERATE 

GIVING 

GO 

GREATER 

GROUP 

HEADING 

HIGH-VALUE 

HIGH-VALUES 

1-0 
I-O-CONTROL 

IDENTIFICATION 

IF 

IN 

INDEX 

INDEXED 

INDICATE 

INITIAL 

INITIATE 

INPUT 

INPUT-OUTPUT 

INSPECT 

INSTALLATION 

INTO 

INVALID 

IS 

JUST 

JUSTIFIED 

KEY 

LABEL 

LAST 

LEADING 

LEFT 

LENGTH 

LESS 

LIMIT 

LIMITS 

LINAGE 

LINAGE-COUNTER 

LINE 

LINE-COUNTER 

LINES 

LINKAGE 

LOCK 

LOW-VALUE 

LOW-VALUES 

MEMORY 

MERGE 

MESSAGE 

MODE 

MODULES 

MOVE 

MULTIPLE 

MULTIPLY 

NATIVE 

NEGATIVE 

NEXT 

NO 

NOT 

NUMBER 

NUMERIC 

OBJECT-COMPUTER 

OCCURS 

OF 

OFF 

OMITTED 

ON 

OPEN 

OPTIONAL 

OR 

ORGANIZATION 

OUTPUT 

OVERFLOW 

PAGE 

PAGE-COUNTER 

PERFORM 

PF 

PH 

PIC 
PICTURE 

1-109 



Reserved Words 

PLUS RERUN SPACE TYPE 
POINTER RESERVE SPACES 
POSITION RESET SPECIAL-NAMES UNIT 
POSITIVE RETURN STANDARD UNSTRING 
PRINTING REVERSED STANDARD-1 UNTIL 
PROCEDURE REWIND START UP 
PROCEDURES REWRITE STATUS UPON 
PROCEED RF STOP USAGE 
PROGRAM RH STRING USE 
PROGRAM-ID RIGHT SUB-QUEUE-1 USING 

ROUNDED SUB-QUEUE-2 
QUEUE RUN SUB-QUEUE-3 VALUE 
QUOTE SUBTRACT VALUES 
QUOTES SAME SUM VARYING 

SD SUPPRESS 
RANDOM SEARCH SYMBOLIC WHEN 
RD SECTION SYNC WITH 
READ SECURITY SYNCHRONIZED WORDS 
RECEIVE SEGMENT WORKING-STORAGE 
RECORD SEGMENT-LIMIT TABLE WRITE 
RECORDS SELECT TALLYING 
REDEFINES SEND TAPE ZERO 
REEL SENTENCE TERMINAL ZEROES 
REFERENCES SEPARATE TERMINATE ZEROS 
RELATIVE SEQUENCE TEXT 
RELEASE SEQUENTIAL THAN + 
REMAINDER SET THROUGH - 

REMOVAL SIGN THRU * 

RENAMES SIZE TIME / 
REPLACING SORT TIMES ** 

REPORT SORT-MERGE TO > 

REPORTING SOURCE TOP < 

REPORTS SOURCE-COMPUTER TRAILING = 

1-110 



Composite Language Skeleton 

6. COMPOSITE LANGUAGE SKELETON 

6.1 GENERAL DESCRIPTION 

This chapter contains the composite language skeleton of the American 
National Standard COBOL. It is intended to display complete and syntactically 
correct formats. 

The leftmost margin on pages 1-112 through 1-123 is equivalent to margin A 
in a COBOL source program. The first indentation after the leftmost margin is 
equivalent to margin B in a COBOL source program. (See page 1-105 for descrip¬ 
tion of margin A and margin B.) 

On pages 1-124 through 1-132 the leftmost margin indicates the beginning of 
the format for a new COBOL verb. The first indentation after the leftmost 
margin indicates continuation of the format of the COBOL verb. 

The following is a summary of the formats shown on pages 1-112 through 
1-135. 

Page 1-112: 

Page 1-113: 

Page 1-115: 

Page 1-117: 

Page 1-119: 

Page 1-120: 

Page 1-121: 

Page 1-123: 

Page 1-124: 

Page 1-133: 

Page 1-134: 

Page 1-135: 

Identification Division general format 

Environment Division general format 

The three formats of the file control entry 

Data Division general format 

The three formats for a data description entry 

The two general formats for a communication description entry 

The three formats for a report group description entry 

Procedure Division general format 

General format of verbs listed in alphabetical order 

General format for conditions 

Formats for qualification, subscripting, indexing, and 
an identifier 

General format for COPY statement 

1-111 



Identification Division 

GENERAL FORMAT FOR IDENTIFICATION DIVISION 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name. 

^AUTHOR. [comment-entry ] ... j 

^INSTALLATION. [ comment-entry] ...j 

^DATE-WRITTEN. [comment-entry] ...] 

[DATE-COMPILED. [comment-entry] ...] 

^SECURITY. [ comment-entry ] ...] 

1-112 



Environment Division 

GENERAL FORMAT FOR ENVIRONMENT DIVISION 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. computer-name |~ WITH DEBUGGING MODE 

OBJECT-COMPUTER. computer-name 

r WORDS 

, MEMORY SIZE integer - CHARACTERS 

MODULES J 
[, PROGRAM COLLATING SEQUENCE IS alphabet-name] 

SEGMENT-LIMIT IS segment-number ] 

SPECIAL-NAMES. [, implementor-name 

IS mnemonic-name [, ON STATUS IS condition-name-1 [, OFF STATUS IS condition-name-2 

IS mnemonic-name OFF STATUS IS condition-name-2 ON STATUS IS^ condition-name-1 

ON STATUS IS condition-name-1 [, OFF STATUS _IS condition-name-2^ 

OFF STATUS I§. condition-name-2 ON STATUS IS condition-name-l] 

( STANDARD-1 

1 NATIVE 

, alphabet-name IS -<( implementor-name 

fTHROUGH 1 

literal-1 \ THRU 
literal-2 

ALSO literal-3 [, ALSO literal-4]... 

literal-5 

{ THROUGH 'l , 
I THRO 1 lltera1-6 

ALSO literal-7 [, ALSO literal-8]... 

CURRENCY SIGN IS literal-9] 

DECIMAL-POINT IS COMMA ] . "j 

1-113 



Environment Division 

GENERAL FORMAT FOR ENVIRONMENT DIVISION 

[input-output section. 

FILE-CONTROL. 

{file-control-entry} ... 

[i-O-CONTROL. 

r _ 

; RERUN ON 
jfile-name-1 \ 
{implementor-nameJ _ 

j [™ OF] 
] ' 

■ OF file-name-2 

EVERY i (. integer-1 RECORDS ► 
integer-2 CLOCK-UNITS 

lcondition-name 

; SAME 

RECORD 

SORT 

SORT-MERGE 

AREA FOR file-name-3 {. file-name 

r« MULTIPLE FILE TAPE CONTAINS file-name-5 [ POSITION 

[, file-name-6 [ POSITION integer-4] ] ... J ... 

integer-3 ] 

1-114 



Environment Division 

GENERAL FORMAT FOR FILE CONTROL ENTRY 

FORMAT 1: 

SELECT fOPTIONAL] file-name 

ASSIGN TO implementor-name-1 [, implementor-name-2] ... 

; RESERVE integer-1 
AREA 

AREAS 

[; ORGANIZATION IS SEQUENTIAL] 

ACCESS MODE IS SEQUENTIAL ] 

[; FILE STATUS IS data-name-1 ] . 

FORMAT 2: 

SELECT file-name 

ASSIGN TO implementor-name-1 [, implementor-name-2 ] ... 

; RESERVE integer-1 
AREA 

AREAS 

; ORGANIZATION IS RELATIVE 

SEQUENTIAL [, RELATIVE KEY IS data-name-l] 

; ACCESS MODE IS 

(RANDOM \ , RELATIVE KEY IS data-name-l 
,|DYNAMIC -— J 

[; FILE STATUS IS data-name-2 ] 

1-115 



Environment Division 

GENERAL FORMAT FOR FILE CONTROL ENTRY 

FORMAT 3: 

SELECT file-name 

ASSIGN TO implementor-name-1 [, implementor-name-2 ] 

; RESERVE integer-1 
AREA ' 

AREAS 

; ORGANIZATION IS INDEXED 

r sequential] 

; ACCESS MODE IS A RANDOM [ 

DYNAMIC J 
; RECORD KEY IS data-name-1 

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES 1 ] ... 

[; FILE STATUS IS data-name-3 ] . 

FORMAT 4: 

SELECT file-name ASSIGN TO implementor-name-1 [, implementor-name-2 ] 

1-116 



Data Division 

GENERAL FORMAT FOR DATA DIVISION 

DATA DIVISION. 

[ FILE SECTION. 

[12. file-name 

; BLOCK CONTAINS [integer-1 TO ] integer-2 I CHARACTERsI 
V. J 

[ ; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS ] 

; LABEL 
RECORD IS ] f STANDARD'] 

RECORDS ARE OMITTED f 

, __ (data-name-1 , 
; VALUE OF implementor-name-1 IS 1 literal-1 

-i . o re I data-name-2 | 
, implementor-name-2 IS -j ]_-Ltera]__2 J • • • 

data-name-3 [, data-name-4] ... ; DATA 
(RECORD IS 

1 RECORDS ARE 

; LINAGE IS 
jdata-name-5 

\integer-5 
LINES 

(data-name-7 

, WITH FOOTING AT 
data-name-6 

integer-6 

, LINES AT TOP ^7 I 
- (^integer-/ 

[; CODE-SET IS alphabet-name] 

, LINES AT BOTTOM |data nama 8 
- l^mteger-8 

(report is ] r ^ o 1 
9 "[reports are j 

report-name-1 [, report-name-2 J • • • 

[record-description-entry ] ••• ] • • 

[SD file-name 

[; RECORD CONTAINS [integer-1 To] integer-2 CHARACTERS] 

; PATA I data-name-1 [.data-name-2] .... . 

[record-description-entry] 

[WORKING-STORAGE SECTION. 

77-level-description-entry 

record-description-entry 

1-117 



Data Division 

GENERAL FORMAT FOR DATA DIVISION 

LINKAGE SECTION. 

77-level-description-entry 

record-description-entry 

[COMMUNICATION SECTION, 

[communication-description-entry 

[record-description-entry ] ... ] . 

[REPORT SECTION. 

[RD report-name 

[; CODE literal-1 ] 

(CONTROL IS 

’ 1 CONTROLS Are] 1 FINAL [, data-name-1 [, data-name-2] 

(data-name-1 [, data-name-2] ... 

; PAGE 
LIMIT IS 

LIMITS ARE! i] [lJnes] [> HEADING lnteSer 

[, FIRST DETAIL integer-3] [, LAST DETAIL integer-4] 

[, FOOTING integer-5 ] ] . 

^report-group-description-entry ] ... ] ...J 

1-118 



Data Division 

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY 

FORMAT 1: 

, . (data-name-l] 
level-number | FILLER j 

j^; REDEFINES data-name-2j 

f PICTURE") , 
; -[ 1^ character-string 

f COMPUTATIONAL"! 

; [USAGE is] 
COMP 

DISPLAY 

; [SIGN is] | 

INDEX 

( LEADING ") 

TRAILING ( 

J . 

[ SEPARATE CHARACTER] 

(integer-1 TO integer-2 TIMES DEPENDING ON data-name-3 
; OCCURS jinteger_2 TIMES 

fASCENDING "1 
KEY IS data-name-4 [, data-name-5 ] ... 

1 DESCENDING j 

[INDEXED BY index-name-1 [, index-name-2] ... ] 

LEFT (SYNCHRONIZED 

’ [SYNC RIGHT 

JUSTIFIED 

JUST 
RIGHT 

[; BLANK WHEN ZERO ] 

[; VALUE IS literal ] . 

FORMAT 2: 

66 data-name-1; RENAMES data-name-2 
THROUGH") 

THRU j 
data-name-3 

FORMAT 3: 

88 condition-name; 
fVALUE IS 

1 VALUES ARE_ 
literal-1 

, literal-3 
( through"] 

literal-4 
THRU 
V.- J 

|THROUGH] 
literal-2 

|THRU | 

1-119 



Data Division 

GENERALFORMAT FOR COMMUNICATION DESCRIPTION ENTRY 

FORMAT 1: 

CD cd-name; 

FOR [INITIAL ] INPUT 

I SYMBOLIC QUEUE IS data-name-1] 

SYMBOLIC SUB-QUEUE-1 IS data-name-2] 

[; SYMBOLIC SUB-QUEUE-2 IS data-name-3] 

[; SYMBOLIC SUB-QUEUE-3 IS data-name-4] 

MESSAGE DATE IS data-name-5l 

[; MESSAGE TIME IS data-name-6 ] 

[; SYMBOLIC SOURCE IS data-name-7] 

[; TEXT LENGTH IS data-name-8 ] 

[; END KEY IS data-name-9] 

[; STATUS KEY IS data-name-io] 

[; MESSAGE COUNT IS data-name-11]"] 

^data-name-1, data-name-2, ..., data-name-11 ] 

FORMAT 2: 

CD cd-name; FOR OUTPUT 

DESTINATION COUNT IS data-name-l] 

TEXT LENGTH IS data-name-2] 

[; STATUS KEY IS data-name-3] 

[; DESTINATION TABLE OCCURS integer-2 TIMES 

INDEXED BY index-name-1 [, index-name-2]... ] 

[; ERROR KEY IS data-name-4] 

f; SYMBOLIC DESTINATION IS data-name-5 ] . 

1-120 



Data Division 

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY 

FORMAT 1: 

01 [data-name-1 ] 

LINE NUMBER IS \ ^^Z1 f NEXT PAGE 
|PLUS integer-2 

(integer-3 ^ 

; NEXT GROUP IS 4 PLUS integer-4 

[NEXT PAGE J 

REPORT HEADINGj 

TYPE IS 

RH 

PAGE HEADING] 

PH J 
CONTROL HEADING] ( data-name-2] 

CH J ) FINAL j 
DETAIL] 

DE J 
fCONTROL FOOTING] ( data-name-3] 

(CF j I FINAL J 
[PAGE FOOTING] 

{PF j 

[REPORT FOOTING] 

IM i 
[; [ USAGE is] DISPLAY 

FORMAT 2: 

level-number [data-name-1^ 

; LINE NUMBER IS 1 ^ °!J M®] . 
- [PLUS mteger-2 

[ USAGE IS] DISPLAY J . 

[■ 

1-121 



Data Division 

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY 

FORMAT 3: 

level-number [data-name-l] 

BLANK WHEN ZERO r* 
[; GROUP INDICATE ] 

( justified" 

’ \ JUST 

] 

RIGHT 

; LINE NUMBER IS 
' integer-1 f ON NEXT PAGE]' 

PLUS integer-2 

[; COLUMN NUMBER IS integer-3] 

PICTURE 

PIC J 
IS character-string 

r 

L 

SOURCE IS identifier-1 

VALUE IS literal 

SUM identifier-2 f, identifier-3^ ... 

^ UPON data-name-2 [, data-name-3 ] ... jj 

RESET ON i data”name ^ 
j FINAL 

[; [USAGE IS] DISPLAY ] . 

> 

1-122 



Procedure Division 

GENERAL FORMAT FOR PROCEDURE DIVISION 

FORMAT 1: 

PROCEDURE DIVISION [ USING data-name-1 [, data-name-2 ] ... J . 

^declaratives. 

[section-name SECTION [segment-number] . declarative-sentence 

[paragraph-name. [sentence] ••• 1 ... J ••• 

END DECLARATIVES.] 

[section-name SECTION [segment-number ] . 

[paragraph-name. [ sentence ] . . . J . .. ] • * * 

FORMAT 2: 

PROCEDURE DIVISION £ USING data-name-1 [ , data-name-2 ] ... J . 

[paragraph-name. [ sentence 3 ••• ] ••• 

1-123 



COBOL Verb Formats 

GENERAL FORMAT FOR VERBS 

ACCEPT identifier [ FROM mnemonic-name] 

DATE 
ACCEPT identifier FROM DAY 

TIME 

ACCEPT cd-name MESSAGE COUNT 

fidentifier-l) 
^literal-1 j 

|\ identifier-n ^ 

, identifier-2 
, literal-2 

ROUNDED 

ADD 

GIVING identifier-m f ROUNDED ] identifier-n £ 

ON SIZE ERROR imperative-statement] 

”j ... TO identifier-m [ ROUNDEDJ 

... [; ON SIZE ERROR imperative-statement] 

1] - 

(identifier- |identifier-2^ j*, identif ier-3~| 
\literal-l j J [^literal-2 j [, literal-3 J • • • 

ROUNDED 

ADD |CO||ESPOraiNGj identifier-1 TO identifier-2 [ROUNDED ] 

[; ON SIZE ERROR imperative-statement] 

ALTER procedure-name-1 TO [ PROCEED TO ] procedure-name-2 

[, procedure-name-3 TO [ PROCEED TOJ procedure-name-4 ] ... 

CALL lateral-ir_1j [USING data-name-1 [, data-name-2 ] ... j 

[; ON OVERFLOW imperative-statement ] 

( identifier-1) I", identifier-2 
]^literal-l J [, literal-2 

CLOSE file-name-1 

( REEL] T WITH NO REWIND 
1 UNITj I FOR REMOVAL 

HITH {UpM,} 

, file-name-2 

Creela 
[UNIT 

WITH NO REWIND! 

WITH iiypiNo 

FOR REMOVAL J 

} 
CLOSE file-name-1 [ WITH LOCK ] [, file-name-2 [WITH LOCK] ] ... 

1-124 



COBOL Verb Formats 

GENERAL FORMAT FOR VERBS 

COMPUTE identifier-1 [ROUNDED ] [, identifier-2 [ ROUNDED 1 ] ... 

= arithmetic-expression ON SIZE ERROR imperative-statement ] 

DELETE file-name RECORD INVALID KEY imperative-statement! 

, TTrrru T717V f identifier-ll cd-name WITH KEY 4 , J 

DISPLAY 
(identifier- 
"^literal 

ifier-l) f, 
al-1 j [, 

identifier-2 
literal-2 

"j^literal- 

• • • [UPON mnemonic-name"] 

DIVIDE |jiteral-ir ^ INT0 identifier-2 [ ROUNDED ] 

identifier-3 [ ROUNDED ] ] ... £ ; ON SIZE ERROR imperative-statement ] 

DIVIDE 
(identifier- 
jliteral 

ier-l! 

“1 J INTO ^iteral-^ 2] GIVING identifier-3 [ ROUNDED] 

identifier-4 [^ROUNDED j] ... [; ON SIZE ERROR imperative-statement] 

DIVIDE 
jidentifier- 
(JLiteral 

xer lj ^identifier 2j GIVING identifier-3 [ ROUND ED ] 

identifier-4 f ROUNDED ] j ... ON SIZE ERROR imperative-statement] 

} GIVING identifier-3 [ROUNDED'] DIVIDE 
(identifier- 
^literal -Ir_1) INTO 

(identifier-2 
\literal-2 

REMAINDER identifier-4 [”; ON SIZE ERROR imperative-statement] 

DIVIDE 
(identifier- 
\literal 

ier“1) RY -l 1 SC 
fidentifier-2 
\literal-2 

:| GIVING identifier-3 [ ROUNDED ] 

REMAINDER identifier-4 ON SIZE ERROR imperative-statement] 

™4T1TT, f INPUT [TERMINAL^ , T„m„ (identifier-l! 
MMLj | OUTPUT 1-~Jj cd-name WITH KEY (literal_1 J 
ENTER language-name [routine-name ] . 

EXIT [ PROGRAM ] . 

GENERATE (data”name 
-— 1 report-name 

GO TO [^procedure-name 

1-125 



COBOL Verb Formats 

GENERAL FORMAT FOR VERBS 

GO TO procedure-name-1 [, procedure-name-2] ... , procedure-name-n 

DEPENDING ON identifier 

ELSE statement-2 ] 
ELSE NEXT SENTENCE [ 

(Statement-1 1 (; 
IF condition; | NEXT SENTENCEj [; 

INITIATE report-name-1 [, report-name-2] ... 

INSPECT identifier-1 TALLYING 

, identifier 

{f [ALL ] [identifier-3] 

, ) [LEADING| [literal-1 J• 

[ CHARACTERS 

K BEFORE] 

AFTER j 
INITIAL l“enti^r“4] 

[literal-2 j 

INSPECT identifier-1 REPLACING 

CHARACTERS BY I*?®1*11?1”-6) fj 
--[literal-4 J [[AFTER J INITIAL 

[ {literal-” ^) — [{^ 

[identifier-7]] 

[literal-5 ij 

!AFTER j [literal-5 11) 
INSPECT identifier-1 TALLYING 

I, identifier-2 FOR 
ALL ] [identifier-3 

LEADING| \literal-l 

CHARACTERS 

BEFORE Jidentifier-4 
after'7 IN1TIAL \uIZ2-2 '}] 

REPLACING 

CHARACTERS BY | !<?entlf i?r“6 
- [literal-4 

{ALL ] 

LEADING ( 

FIRST j 

1 f(BEFORE] 

J [1A/TER | INITIAL 
(identifier- 

[literal-5 1] 

[identifier-5] 
[literal-3 j BY 

[identifier-6 
[literal-4 Ht 

BEFORE] 
AFTER j 

INITIAL 
[identifier-?]] 

[literal-5 jj 

1-126 



COBOL Verb Formats 

GENERAL FORMAT FOR VERBS 

MERGE file-name-1 ON . 
r ASCENDING 'l 
[DESCENDING ) 

KEY data-name-1 [, data-name-2] 

“ 

ON « 
"ASCENDING ") 

DESCENDING] 
KEY data-name-3 [, data-name-4] 

[collating SEQUENCE IS alphabet-name] 

USING file-name-2, file-name-3 [, file-name-4 ] ... 

OUTPUT PROCEDURE IS section-name-1 
f THROUGH 
1 THRU 

section-name-2 

MOVE 

GIVING file-name-5 

TO identifier-2 [, identifier-3] ... 
("identifier- V 
[literal 

„„„„ (CORRESPONDING"1 . . _. , _ . , 
MOVE ] coRR--| identifier-1 TO identifier-2 

MULTIPLY |literal-!^1} — identif ier~2 [ ROUNDED ] 

[, identifier-3 [ ROUNDED j "j ... [; ON SIZE ERROR imperative-statement ] 

MULTIPLY 
Jidentifier- 
1 literal .f'1) 

|identifier-2 
\literal-2 } GIVING identifier -3 [ ROUNDED ] 

identifier-4 [ ROUNDED ] j ... ["; ON SIZE ERROR imperative-statement] 

, file-name-2 
f 

OPEN A 

INPUT file-name-1 
REVERSED 

[ WITH NO REWIND 
REVERSED 
WITH NO REWIND 

OUTPUT file-name-3 [ WITH NO REWIND] [, file-name-4 [WITH NO REWIND] 

1-0 file-name-5 [, file-name-6 ] ... 

EXTEND file-name-7 [, file-name-8] ... 

••4 

INPUT file-name-1 [, file-name-2] ... 
OPEN . OUTPUT file-name-3 [, file-name-4 ] ... 

1-0 file-name-5 [, file-name-6 ] ... 

PERFORM procedure-name-1 

PERFORM procedure-name-1 

PERFORM procedure-name-1 

... 

’ ( THROUGH' 1 n THRU 
procedure-name-2 

("through ] 
■« 
ITHRU 

• procedure-name-2 

’ fTHROUGH] 
THRU i 

procedure-name-2 

(identifier- 
\integer 

ier-ll 

-1 J 
TIMES 

UNTIL condition-1 

1-127 



COBOL Verb Formats 

GENERAL FORMAT FOR VERBS 

PERFORM procedure-name-1 
THROUGH 
THRU } procedure-name-2 

(identifier-2 
\index-name-1 

Tidentifier- 
VARYING FROM ■1 index-name- 

(^literal-1 

BY 
lidentifier-4] 
[literal-3 J 

UNTIL condition-1 

- 

AFTER ‘ 
identifier-5l 
index-name-3J 

FROM -1 
identifier-6J 
index-name-4[ 

kliteral-3 J 

BY 1 
identifier-7| 
literal-4 J 

UNTIL condition-2 

AFTER 1 
identifier-8] 

^index-name-5 j 
FROM « 

[identifier-9] 
index-name-6 > 
[literal-5 J 

BY - 
identifier-10] 
JLiteral-6 J 

UNTIL condition-3 

READ file-name RECORD ^INTO identifier] AT END imperative-statement ] 
READ file-name [NEXT] RECORD [ INTO identifier] 

AT END imperative-statement] 

READ file-name RECORD f INTO identifier] j^; INVALID KEY imperative-statement] 

READ file-name RECORD fINTO identifier] 

£; KEY IS data-name] 

INVALID KEY imperative-statement] 

INTO identifier-1 ; NO DATA imperative-statement 

RELEASE record-name [ FROM identifier] 

RETURN file-name RECORD ^INTO identifier] ; AT END imperative-statement 

REWRITE record-name [FROM identifier] 

REWRITE record-name fFROM identifier] [; INVALID KEY imperative-statement] 

RECEIVE cd-name 
MESSAGE 

1 SEGMENT 

1-128 



COBOL Verb Formats 

GENERAL FORMAT FOR VERBS 

SEARCH identifier-1 

; WHEN condition-1 

; WHEN condition-2 

VARYING 
\identifier-2 
[index-name-1 

( imperative-statement-2"| 

[]"; AT END imperative-statement-1] 

NEXT SENTENCE X 
(imperative-statement-3 
]NEXT SENTENCE 

SEARCH ALL identifier-1 AT END imperative-statement-1 ] 

(identifier-3 

; WHEN 
data-name-l I ^ f^UAL T°| \ literal-1 

"A 

(.arithmetic-express ion-1 
condition-name-1 

AND 

f fIS EQUAL TO] f ^ffntl51^r 4 
J data-name-2 | ^- j -(lxteral-2 

[condition-name-2 
[arithmetic-expression-2^ 

imperative-statement-2' 
NEXT SENTENCE 

SEND cd-name FROM identifier-1 

(WITH identifier-2^ 
WITH ESI 
WITH EMI 

(with EGI 

BEFORE 
AFTER 

ADVANCING 

jidentifier-3 
l[ integer 

f mnemonic-name] 
1 PAGE J 

LINE 
LINES 

J 

gET (identifier-1 [, identifier-2] ... 
- [index-name-1 index-name-2] 

^ fidentifier-3 
TO ■< index-name-3 

[integer-1 

crT . , / f • j d fUP BY fidentifier-4[ 
SET index-name-4 I, index-name-5 J ... {—rTn—T, „ < . „ f 
- L’ J ]DOWN BY [integer-2 [integer-2 

1-129 



COBOL Verb Formats 

GENERAL FORMAT FOR VERBS 

SORT file-name-1 ON f KEY data-name-1 [ , data-name-2 ] 
- 1 DESCENDING L J 

„T ASCENDING ^ „ r , . , *1 
>N \ DESCENDING 1 KEY data-name-3 [, data-name-4J ... 

[collating SEQUENCE IS alphabet-name] 

INPUT PROCEDURE IS section-name-1 

” 
THROUGH^ 

> 

THRU 
section-name-2 

L > 

-2 [, file-name-3 ] ... USING file-name 

OUTPUT PROCEDURE IS section-name-3 
f THROUGH1 
^ THRU \ 

section-name-4 

GIVING file-name-4 

START file-name KEY { 

IS EQUAL TO 
IS = 
IS GREATER THAN 
IS > 
IS NOT LESS THAN 
IS NOT < 

data-name 

[» INVALID KEY imperative-statement] 

STOP 
(RUN 
[literal^ 

STRING 
( identifier-1 , identifier-2 
[literal-1 , literal-2 

(identifier-3 
DELIMITED BY ] literal-3 

1 SIZE 

[ identifier-6 
lxdentifier-41 , identifier-5 

DELIMITED BY 1 literal-6 
’ [literal-4 J , literal-5 

[size ] 
INTO identifier-7 [WITH POINTER identifier-8] 

[; ON OVERFLOW imperative-statement] 

SUBTRACT 
jidentifier-ll 
[literal-1 J 

, identifier-2 
, literal-2 

FROM identifier-m ROUNDED [ROUNDED] 

[, identifier-n [ ROUNDED]] ... [; ON SIZE ERROR imperative-statement] 

1-130 



COBOL Verb Formats 

GENERAL FORMAT FOR VERBS 

SUBTRACT { 
identifier-1 

literal-1 

iden tifier-2 

literal-2 
FROM 

(identifier-m 

literal-m 

GIVING identifier-n [ ROUNDED ] [, identifier-o 

; ON SIZE ERROR imperative-statement] 

[ROUNDED 

SUBTRACT ("PONDING^ identifier-l FROM identifier-2 [ROUNDED] 

[; ON SIZE ERROR imperative-statement] 

SUPPRESS PRINTING 

TERMINATE report-name-1 [, report-name-2 ] ... 

UNSTRING identifier-1 

DELIMIIED BY [^±1 (li“ra“r2) [• OR [ALL] {““r3}] ••• 

INTO identifier-4 [, DELIMITER IN identifier-5] [, COUNT IN identifier-6] 

[, identifier-7 [, DELIMITER IN identifier-8] [, COUNT IN identifier-9]J .. 

[WITH POINTER identifier-10] [TALLYING IN identifier-ll] 

[; ON OVERFLOW imperative-statement] 

USE AFTER STANDARD 
'exception' 

' ERROR 

USE AFTER STANDARD 
EXCEPTION I 

t: 
ERROR - 

PROCEDURE ON 

file-name-1 

INPUT 

1 OUTPUT 

1-0 

EXTEND 

[. file-name 

PROCEDURE ON 

file-name-1 

INPUT 

* OUTPUT 

1-0 

[. file-name 

USE BEFORE REPORTING identifier. 

1-131 



COBOL Verb Formats 

GENERAL FORMAT FOR VERBS 

{ cd-name-1 

\ [ALL REFERENCES OF] identifier-1, 

USE FOR DEBUGGING ON ^ file-name-1 

procedure-name-1 

ALL PROCEDURES 

cd-name-2 

IALL REFERENCES OF] identifier-2 

file-name-2 

procedure-name-2 

ALL PROCEDURES 

WRITE record-name fFROM identifier-l] 

(BEFORE 

|AFTER 

f (identifier-2 LINE ‘ 

ADVANCING ( llnteSer J 
LINES 

] (mnemonic-name 

L iPAGE 

AT 
END-OF-PAGE 

EOP 
imperative-statement 

J J 

WRITE record-name FROM identifier"] INVALID KEY imperative-statement] 

1-132 



Condition Formats 

GENERAL FORMAT FOR CONDITIONS 

RELATION CONDITION: 

fidentifier-1 

J literal-1 

'arithmetic-expression-1| 

index-name-1 

(IS [NOT] GREATER THAN^j 

IS [NOT] LESS THAN 

IS [NOT] EQUAL TO 

Vs 
[NOT] > 

IS 
[NOT] < 

Us [NOT] = 

( identifier-2 

J literal-2 

] arithmetic-expression-21 

index-name-2 

CLASS CONDITION: 

identifier IS [NOT] 
(NUMERIC 

1 ALPHABETIC 

SIGN CONDITION: 

arithmetic-expression is [NOT] 

( POSITIVE ^ 

NEGATIVE 

ZERO 
V- / 

CONDITION-NAME CONDITION: 

condition-name 

SWITCH-STATUS CONDITION: 

condition-name 

NEGATED SIMPLE CONDITION: 

NOT simple-condition 

COMBINED CONDITION: 

condition 
( (AND"] 

lor 
condition 

0— > J 

ABBREVIATED COMBINED RELATION CONDITION: 

relation-condition [ relational-operator ] object 

1-133 



Miscellaneous Formats 

MISCELLANEOUS FORMATS 

QUALIFICATION: 

fdata-name-1 

1 condition-name^ 

paragraph-name 

text-name 
f of' 
| IN 

| OF 

' IN 
* 

(or 
JIN 
^ - 

data-name-2 

section-name 

library-name 

SUBSCRIPTING: 

( data-name 

Lcondition-name 
) (subscript-1 [, subscript-2 [, subscript-3]] ) 

INDEXING: 

fdata-name 

(condition-name' ( 
index-name-I [{±} literal-2]1 

literal-1 J 

Cindex-name-2 | {±} literal-4]] 
I 
index-name-3 {±) literal-6]| 

y Vliteral-3 
j ’ literal-5 J 

m W 

IDENTIFIER: FORMAT 1 

data-name-1 if) 
[, subscript-3]] )J 

IDENTIFIER: FORMAT 2 

data-name-2 ... [^(subscript-1 [, subscript-2 

[{!) 

/ 

name-1 data-name-2 ... ( * 

L —J 

index-name-1 [{±} literal-2] 

literal-1 

index-name-2 [{±} literal-4] index-name-3 [{±} literal-6] 

, - ► 

literal-3 literal-5 
l o • 

1-134 



COPY Statement 

GENERAL FORMAT FOR COPY STATEMENT 

COPY text-name library-name 

’ 
f 

r “pseudo-text-1==N ==pseudo-text-2== 
> i 

REPLACING < 
1 identifier-1 

BY ^ 
identifier-2 

literal-1 literal-2 !> ••• 

vword-l ^word-2 

> 

1-135 



Nucleus - Introduction 

1. INTRODUCTION TO THE NUCLEUS 

1.1 FUNCTION 

The Nucleus provides a basic language capability for the internal process¬ 
ing of data within the basic structure of the four divisions of a program. 

1.2 LEVEL CHARACTERISTICS 

Nucleus Level 1 does not provide full COBOL facilities for qualification, 
punctuation characters, data-name formation, connectives, and figurative 
constants. Within the Procedure Division, the Nucleus Level 1 provides limit¬ 
ed capabilities for the ACCEPT, ADD, ALTER, DIVIDE, DISPLAY, IF, INSPECT, MOVE, 
MULTIPLY, PERFORM, and SUBTRACT statements and full capabilities for the ENTER, 
EXIT, GO, and STOP statements. 

Nucleus Level 2 provides full facilities for qualification, punctuation 
characters, data-name formation, connectives, and figurative constants. With¬ 
in the Procedure Division, the Nucleus Level 2 provides full capabilities for 
the ACCEPT, ADD, ALTER, DIVIDE, DISPLAY, IF, INSPECT, MOVE, MULTIPLY, PERFORM, 
and SUBTRACT statements. 

1.3 LEVEL RESTRICTIONS ON OVERALL LANGUAGE 

1.3.1 Format Notation 

The separators, comma and semicolon, are not included in Level 1. The 
comma and semicolon are not boxed within the general formats of this document 
in order to simplify the formats. 
included in Level 2d\ 

The separators, comma and semicolon, are | 

1.3.2 Name Characteristics 

All data-names must begin with an alphabetic character in Level 1. Quali¬ 
fication is not included, therefore, all data-names, paragraph-names, and 
text-names must be unique in Level 1. In Level 2 data-names need not begin 
with an alphabetic character; the alphabetic characters may be positioned any¬ 
where within the data-name. Qualification is permitted in Level 2; thus all 
data-names, condition-names, paragraph-names, and text-names need not be unique. 

1.3.3 Figurative Constants 

The only figurative constants that may be used in Level 1 are: ZERO, SPACE, 
HIGH-VALUE, LOW-VALUE, and QUOTE. In Level 2, all the following figurative 
constants may be used: ZERO, ZEROS, ZEROES, SPACE, SPACES, HIGH-VALUE, 
HIGH-VALUES, LOW-VALUE, LOW-VALUES, QUOTE, QUOTES, and ALL literal. 

1.3.4 Reference Format 

In Level 1 a word or numeric literal cannot be broken in such a wav that 
part of it appears on a continuation line. In Level 2 a word or numeric 
literal can be broken in such a way that part of it appears on a continuation 
line. 

II-l 



Nucleus - Identification Division 

2. IDENTIFICATION DIVISION IN THE NUCLEUS 

2.1 GENERAL DESCRIPTION 

The Identification Division must be included in every COBOL source program. 

This division identifies the source program and the resultant output listing. 

In addition, the user may include the date the program is written and such 

other information as desired under the paragraphs in the general format shown 

below. 

2.2 ORGANIZATION 

Paragraph headers identify the type of information contained in the 

paragraph. The name of the program must be given in the first paragraph, 

which is the PROGRAM-ID paragraph. The other paragraphs are optional and may 

be included in this division at the user’s choice, in the order of presenta¬ 

tion shown by the general format below. 

2.2.1 Structure 

The following is the general format of the paragraphs in the Identification 

Division and it defines the order of presentation in the source program. 

Paragraphs 2.3 and 2.4 define the PROGRAM-ID paragraph and the DATE-COMPILED 

paragraph. While the other paragraphs are not defined, each general format is 

formed in the same manner. 

2.2.1.1 General Format 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name. 

[AUTHOR. [comment-entry] ...1 

[INSTALLATION. [comment-entry ] ...] 

[date-written. [comment-entry] ...] 

[DATE-COMPILED . [comment-entry] ...J 
[ SECURITY. [comment-entry ] 

2.2.1.2 Syntax Rules 

(1) The Identification Division must begin with the reserved words 
IDENTIFICATION DIVISION followed by a period and a space. 

(2) The comment-entry may be any combination of the characters from the 
computer's character set. The continuation of the comment-entry by the use 
of the hyphen in the indicator area is not permitted; however, the comment- 
entry may be contained on one or more lines. 

II-2 



Nucleus - PROGRAM-ID 

2.3 THE PROGRAM-ID PARAGRAPH 

2.3.1 Function 

The PROGRAM-ID paragraph gives the name by which a program is identified. 

2.3.2 General Format 

PROGRAM-ID. program-name. 

2.3.3 Syntax Rules 

(1) The program-name must conform to the rules for formation of a 
user-defined word. 

2.3.4 General Rules 

(1) The PROGRAM-ID paragraph must contain the name of the program and 

must be present in every program. 

(2) The program-name identifies the source program and all listings 

pertaining to a particular program. 

II-3 



Nucleus - DATE-COMPILED 

2.4 THE DATE-COMPILED PARAGRAPH 

2.4.1 Function 

The DATE-COMPILED paragraph provides the compilation date in the 

Identification Division source program listing. 

2.4.2 General Format 

DATE-COMPILED. [comment-entry] ... 

2.4.3 Syntax Rules 

(1) The comment-entry may be any combination of the characters from the 

computer's character set. The continuation of the comment-entry by the use 

of the hyphen in the indicator area is not permitted; however, the comment- 

entry may be contained on one or more lines. 

2.4.4 General Rules 

(1) The paragraph-name DATE-COMPILED causes the current date to be insert¬ 

ed during program compilation. If a DATE-COMPILED paragraph is present, it is 

replaced during compilation with a paragraph of the form: 

DATE-COMPILED, current date. 

II-4 



Nucleus - SOURCE-COMPUTER 

3. ENVIRONMENT DIVISION IN THE NUCLEUS 

3.1 CONFIGURATION SECTION 

3.1.1 The SOURCE-COMPUTER Paragraph 

3.1.1.1 Function 

The SOURCE-COMPUTER paragraph identifies the computer upon which the 

program is to be compiled. 

3.1.1.2 General Format 

SOURCE-COMPUTER. computer-name. 

3.1.1.3 Syntax Rules 

(1) Computer-name is a system-name. 

3.1.1.4 General Rules 

(1) Fixed computer-names are assigned by the individual implementor. 

(2) The computer-name may provide a means for identifying equipment con¬ 

figuration, in which case the computer-name and its implied configuration are 

specified by each implementor. 

II-5 



Nucleus - OBJECT-COMPUTER 

3.1.2 The OBJECT-COMPUTER Paragraph 

3.1.2.1 Function 

The OBJECT-COMPUTER paragraph identifies the computer on which the program 

is to be executed. 

3.1.2.2 General Format 

OBJECT-COMPUTER. computer-name , MEMORY SIZE integer « 

'WORDS ^ 

CHARACTERS 

MODULES | 
[, PROGRAM COLLATING SEQUENCE IS alphabet-name ] . 

3.1.2.3 Syntax Rules 

(1) Computer-name is a system-name. 

3.1.2.4 General Rules 

(1) The computer-name may provide a means for identifying equipment config¬ 

uration, in which case the computer-name and its implied configuration are 

specified by each implementor. The configuration definition contains specific 

information concerning the memory size. 

The implementor defines what is to be done if the subset specified by 

the user is less than the minimum configuration required for running the 

object program. 

(2) If the PROGRAM COLLATING SEQUENCE clause is specified, the collating 

sequence associated with alphabet-name is used to determine the truth value of 

any nonnumeric comparisons: 

a. Explicitly specified in relation conditions. (See page 11-41, 

Relation Condition.) 

b. Explicitly specified in condition-name conditions. (See page 

11-44, Condition-Name Condition (Conditional Variable).) 

c. Implicitly specified by the presence of a CONTROL clause in a 

report description entry. (See page VIII-28, The CONTROL Clause.) 

(3) If the PROGRAM COLLATING SEQUENCE clause is not specified, the native 

collating sequence is used. 

(4) If the PROGRAM COLLATING SEQUENCE clause is specified, the program 

collating sequence is the collating sequence associated with the alphabet-name 

specified in that clause. 

(5) The PROGRAM COLLATING SEQUENCE clause is also applied to any nonnumeric 

merge or sort keys unless the COLLATING SEQUENCE phrase of the respective 

MERGE or SORT statement is specified. (See page VII-8, The MERGE Statement, 

and page VII-14, The SORT Statement.) 

II-6 



Nucleus - OBJECT-COMPUTER 

(6) The PROGRAM COLLATING SEQUENCE clause applies only to the program in 
which it is specified. 

II-7 



Nucleus - SPECIAL-NAMES 

3.1.3 The SPECIAL-NAMES Paragraph 

3.1.3.1 Function 

The SPECIAL-NAMES paragraph provides a means of relating implementor-names 

to user-specified mnemonic-names and of relating alphabet-names to character 

sets and/or collating sequences. 

3.1.3.2 General Format 

SPECIAL-NAMES. [, implementor-name 

IS mnemonic-name [, ON STATUS IS condition-name-1 [, OFF STATUS IS cond it ion-name-2^] 

IS mnemonic-name [, OFF STATUS I_S condition-name-2 [, ON STATUS I_S condition-name-l]] 

ON STATUS IS! condit ion-name-1 [, OFF STATUS IS^ condition-name-2 ] 

OFF STATUS IS^ condition-name-2 ON STATUS IS condition-name-1 ] j 

f STANDARD-1 

NATIVE 

> 

, alphabet-name IS -< implementor-name 

literal-1 

f THROUGH "i 
literal-2 

)THRU J 
ALSO literal-3 [, ALSO literal-4 ]... 

literal-5 

( THROUGH] 

\ THRU j 
literal-6 

ALSO literal-7 [, ALSO literal-8]... 

, CURRENCY SIGN IS literal-9] 

[, DECIMAL-POINT IS^ COMMA] 

3.1.3. 3 Syntax Rules 

(1) The literals specified in the literal phrase of the alphabet-name 

clause: 

a. If numeric, must be unsigned integers and must have a value within 

the range of one (1) through the maximum number of characters in the native 

character set. 

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must 

each be one character in length. 

(2) If the literal phrase of the alphabet-name clause is specified a 

given character must not be specified more than once in an alphabet-name 

clause. 

(3) The words THRU and THROUGH are equivalent. 

II-8 



Nucleus - SPECIAL-NAMES 

(4) In repetition, a comma may be used before implementor-name. 

3.1.3.4 General Rules 

(1) If the implementor-name is not a switch, the associated mnemonic-name 

may be used in the ACCEPT, DISPLAY, SEND, and WRITE statement. 

(2) If the implementor-name is a switch, at least one condition-name must 

be associated with it. The status of the switch is specified by condition- 

names and interrogated by testing the condition-names (see page 11-44, 

Switch-Status Condition). 

(3) The alphabet-name clause provides a means for relating a name to a 

specified character code set and/or collating sequence. When alphabet-name is 

referenced in the PROGRAM COLLATING SEQUENCE clause (see page II-6, The 

OBJECT-COMPUTER Paragraph) or the COLLATING SEQUENCE phrase of a SORT or MERGE 

statement (see page VII-8, The MERGE Statement, and page VII-14, The SORT 

Statement), the alphabet-name clause specifies a collating sequence. When 

alphabet-name is referenced in a CODE-SET clause in a file description entry 

(see page IV-10, The File Description - Complete Entry Skeleton), the 

alphabet-name clause specifies a character code set. 

a. If the STANDARD-1 phrase is specified, the character code set or 

collating sequence identified is that defined in American National Standard 

Code for Information Interchange, X3.4-1968. Each character of the standard 

character set is associated with its corresponding character of the native 

character set. The implementor defines the correspondence between the char¬ 

acters of the standard character set and the characters of the native charac¬ 

ter set for which there is no correspondence otherwise specified. 

b. If the NATIVE phrase is specified, the native character code set 

or native collating sequence is used. 

c. If the implementor-name phrase is specified, the character code 

set or collating sequence identified is that defined by the implementor. The 

implementor also defines the correspondence between characters of the char¬ 

acter code set specified by implementor-name and the characters of the native 

character code set. 

d. If the literal phrase is specified, the alphabet-name may not be 

referenced in a CODE-SET clause (see IV-12, The CODE-SET Clause). The collat¬ 

ing sequence identified is that defined according to the following rules: 

Rule 1: The value of each literal specifies: 

1. The ordinal number of a character within the native 

character set, if the literal is numeric. This value must not exceed the 

value which represents the number of characters in the native character set. 

2. The actual character within the native character set, 

if the literal is nonnumeric. If the value of the nonnumeric literal contains 

multiple characters, each character in the literal, starting with the leftmost 

character, is assigned successive ascending positions in the collating sequence 

being specified._ 

II-9 



Nucleus - SPECIAL-NAMES 

Rule 2: The order in which the literals appear in the alphabet- 

name clause specifies, in ascending sequence, the ordinal number of the 

character within the collating sequence being specified. 

Rule 3: Any characters within the native collating sequence, 

which are not explicitly specified in the literal phrase, assume a position, 

in the collating sequence being specified, greater than any of the explicitly 

specified characters. The relative order within the set of these unspecified 

characters is unchanged from the native collating sequence. 

Rule 4: If the THROUGH phrase is specified, the set of contiguous 

characters in the native character set beginning with the character specified 

by the value of literal-1, and ending with the character specified by the 

value of literal-2, is assigned a successive ascending position in the collat¬ 

ing sequence being specified. In addition, the set of contiguous characters 

specified by a given THROUGH phrase may specify characters of the native 

character set in either ascending or descending sequence. 

Rule 5: If the ALSO phrase is specified, the characters of the 

native character set specified by the value of literal-1, literal-3, literal-4, 

..., are assigned to the same position in the collating sequence being 

specified. 

(4) The character that has the highest ordinal position in the program 

collating sequence specified is associated with the figurative constant 

HIGH-VALUE. If more than one character has the highest position in the 

program collating sequence, the last character specified is associated with 

the figurative constant HIGH-VALUE. 

(5) The character that has the lowest ordinal position in the program 

collating sequence specified is associated with the figurative constant 

LOW-VALUE. If more than one character has the lowest position in the program 

collating sequence, the first character specified is associated with the 

figurative constant LOW-VALUE. 

(6) The literal which appears in the CURRENCY SIGN IS literal clause is 

used in the PICTURE clause to represent the currency symbol. The literal 

is limited to a single character and must not be one of the following 

characters. 

a. digits 0 thru 9; 

b. 

space; 

alphabetic characters A, B, 

c. 
t / » »_ i 

/ > • 

special characters '+' 

If this clause is not present, only the currency sign is used in the 

PICTURE clause. 

(7) The clause DECIMAL-POINT IS COMMA means that the function of comma and 

period are exchanged in the character-string of the PICTURE clause and in 

numeric literals. 

11-10 



Nucleus - Working-Storage Section 

4. DATA DIVISION IN THE NUCLEUS 

4.1 WORKING-STORAGE SECTION 

The Working-Storage Section is composed of the section header, followed by 

data description entries for noncontiguous data items and/or record description 

entries. Each Working-Storage Section record name and noncontiguous item name 

must be unique|since it cannot be qualified. Subordinate data-names need not 

be unique if they can be made unique by qualification. 

4.1.1 Noncontiguous Working-Storage 

Items and constants in Working-Storage which bear no hierarchical relation¬ 

ship to one another need not be grouped into records, provided they do not 

need to be further subdivided. Instead, they are classified and defined as 

noncontiguous elementary items. Each of these items is defined in a separate 

data description entry which begins with the special level-number, 77. 

The following data clauses are required in each data description entry: 

a. level-number 77 

b. data-name 
c. the PICTURE clause or the USAGE IS INDEX clause. 

Other data description clauses are optional and can be used to complete the 

description of the item if necessary. 

4.1.2 Working-Storage Records 

Data elements and constants in Working-Storage which bear a definite hier¬ 

archic relationship to one another must be grouped into records according to 

the rules for formation of record descriptions. All clauses which are used 

in record descriptions in the File Section can be used in record descriptions 

in the Working-Storage Section. 

4.1.3 Initial Values 

The initial value of any item in the Working-Storage Section except an 

index data item is specified by using the VALUE clause with the data item. 

The initial value of any index data item is unpredictable. 

11-11 



Nucleus - Data Description 

4.2 THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON 

4.2.1 Function 

A data description entry specifies the characteristics of a particular item 

of data. 

4.2.2 General Format 

Format 1 

, . , (data-name-ll 
level-number | filler j 

[; REDEFINES data-name-2 ] 

j"; 1|||p—-j IS character-string j 

fCOMPUTATIONAL] 
1 

; | USAGE IS | \ 'COMP f 

l DISPLAY ) 

; [sign is] |yIaxlxnG} [separate character] 

f. ( SYNCHRONIZED] [ LEFT ]] 

[* 1 SYNC j [ RIGHT J 

[. (W™) H 
[; blank when zero ] 

[i VALUE IS literal] . 

Format 2 

66 data-name-1; RENAMES data-name-2 
through] 
THRU J 

data-name-3 

Format 3 

88 condition-name; 
fVALUE IS 

' 1- 
VALUES ARE 

. -1 
— 

» literal-3 

LK- ) J 

"1 , , If through") 
j lltera1-1 [\thru j 

literal-2 

11-12 



Nucleus - Data Description 

4.2.3 Syntax Rules 

(1) In Level 1, the level-number in Format 1 may be any number from 01-10 

or 77. 1 In Level 2, the level-number in Format 1 may be any number from 01-49 

or 77. 

(2) The clauses may be written in any order with two exceptions: the data- 

name-1 or FILLER clause must immediately follow the level-number; the REDEFINES 

clause, when used, must immediately follow the data-name-1 clause. 

(3) The PICTURE clause must be specified for every elementary item except 

an index data item, in which case use of this clause is prohibited. 

(4) The words THRU and THROUGH are equivalent. 

4.2.4 General Rules 

(1) The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO, 

must not be specified except for an elementary data item. 

(2) Format 3 is used for each condition-name. Each condition-name requires 

a separate entry with level-number 88. Format 3 contains the name of the 

condition and the value, values, or range of values associated with the condi¬ 

tion-name. The condition-name entries for a particular conditional variable 

must follow the entry describing the item with which the condition-name is 

associated. A condition-name can be associated with any data description 

entry which contains a level-number except the following: 

a. Another condition-name. 

b. A level 66 item. 

c. A group containing items with descriptions including JUSTIFIED, 

SYNCHRONIZED or USAGE (other than USAGE IS DISPLAY). 

d. An index data item (See page III-5, The USAGE IS INDEX Clause). 

11-13 



Nucleus - BLANK WHEN ZERO 

4.3 THE BLANK WHEN ZERO CLAUSE 

4.3.1 Function 

The BLANK WHEN ZERO clause permits the blanking of an item when its value 

is zero. 

4.3.2 General Format 

BLANK WHEN ZERO 

4.3.3 Syntax Rules 

(1) The BLANK WHEN ZERO clause can be used only for an elementary item 

whose PICTURE is specified as numeric or numeric edited. (See page 11-18, 

The PICTURE Clause) 

4.3.4 General Rules 

(1) When the BLANK WHEN ZERO clause is used, the item will contain nothing 

but spaces if the value of the item is zero. 

(2) When the BLANK WHEN ZERO clause is used for an item whose PICTURE is 

numeric, the category of the item is considered to be numeric edited. 

11-14 



Nucleus - Data-Ncone 

4.4 THE DATA-NAME OR FILLER CLAUSE 

4.4.1 Function 

A data-name specifies the name of the data being described. The word 

FILLER specifies an elementary item of the logical record that cannot be 

referred to explicitly. 

4.4.2 General Format 

data-name^ 

FILLER 

4.4.3 Syntax Rules 

(1) In the File, Working-Storage, Communication and Linkage Sections, a 

data-name or the key word FILLER must be the first word following the level- 

number in each data description entry. 

4.4.4 General Rules 

(1) The key word FILLER may be used to name an elementary item in a record. 

Under no circumstances can a FILLER item be referred to explicitly. However, 

the key word FILLER may be used as a conditional variable because such use 

does not require explicit reference to the FILLER item, but to its value. 

11-15 



Nucleus - JUSTIFIED 

4.5 THE JUSTIFIED CLAUSE 

4.5.1 Function 

The JUSTIFIED clause specifies non-standard positioning of data within a 

receiving data item. 

4.5.2 General Format 

JUSTIFIED 

JUST 

4.5.3 Syntax Rules 

(1) The JUSTIFIED clause can be specified only at the elementary item 

level. 

(2) JUST is an abbreviation for JUSTIFIED. 

(3) The JUSTIFIED clause cannot be specified for any data item described 

as numeric or for which editing is specified. 

4.5.4 General Rules 

(1) When a receiving data item is described with the JUSTIFIED clause and 

the sending data item is larger than the receiving data item, the leftmost 

characters are truncated. When the receiving data item is described with the 

JUSTIFIED clause and it is larger than the sending data item, the data is 

aligned at the rightmost character position in the data item with space fill 

for the leftmost character positions. 

(2) When the JUSTIFIED clause is omitted, the standard rules for aligning 

data within an elementary item apply. (See page 1-86, Standard Alignment 

Rules.) 

RIGHT 

11-16 



Nucleus - Level-Number 

4.6 LEVEL-NUMBER 

4.6.1 Function 

The level-number shows the hierarchy of data within a logical record. In 

addition, it is used to identify entries for working storage items, linkage 

items,1 condition-names, and the RENAMES clause. 

4.6.2 General Format 

level-number 

4.6.3 Syntax Rules 

(1) A level-number is required as the first element in each data descrip¬ 
tion entry. 

(2) Data description entries subordinate to an FD, SD or CD entry must 

have level-numbers with the values 01 thru 10 in Level 1;|01-49, 66 or 88 in 

Level 2. (See page IV-10 for FD, page VII-5 for SD, and page XIII-3 for CD.) 

(3) Data description entries subordinate to an RD entry must have level- 

numbers with the value 01 thru 10 in Level 1:1 01 thru 49 in Level 2.1 (See 

page VIII-4 for RD.) 

(4) Data description entries in the Working-Storage Section and Linkage 

Section must have level-numbers with the values 01-10 or 77 in Level 1; 101—49, 

66, 77 or 88 in Level 2. 

4.6.4 General Rules 

(1) The level-number 01 identifies the first entry in each record 

description or a report group. (See page VIII-6, The Report Group Description.) 

(2) Special level-numbers have been assigned to certain entries where 

there is no real concept of level: 

a. Level-number 77 is assigned to identify noncontiguous working 

storage data items, noncontiguous linkage data items, and can be used only 

as described by Format 1 of the data description skeleton. (See page 11-12, 

The Data Description - Complete Entry Skeleton.) 

b. Level-number 66 is assigned to identify RENAMES entries and can be 

used only as described in Format 2 of the data description skeleton. (See 

page 11-12, The Data Description - Complete Entry Skeleton.) 

c. Level-number 88 is assigned to entries which define condition- 

names associated with a conditional variable and can be used only as described 

in Format 3 of the data description skeleton. (See page 11-12, The Data 

Description - Complete Entry Skeleton.)__ 

(3) Multiple level 01 entries subordinate to any given level indicator, 

other than RD, represent implicit redefinitions of the same area. 

11-17 



Nucleus - PICTURE 

4.7 THE PICTURE CLAUSE 

4.7.1 Function 

The PICTURE clause describes the general characteristics and editing 
requirements of an elementary item. 

4.7.2 General Format 

'PICTURE 

PIC 
IS character-string 

4.7.3 Syntax Rules 

(1) A PICTURE clause can be specified only at the elementary item level. 

(2) A character-string consists of certain allowable combinations of 

characters in the COBOL character set used as symbols. The allowable combina¬ 

tions determine the category of the elementary item. 

(3) The maximum number of characters allowed in the character-string is 30 

(4) The PICTURE clause must be specified for every elementary item except 

an index data item, in which case use of this clause is prohibited. 

(5) PIC is an abbreviation for PICTURE. 

(6) The asterisk when used as the zero suppression symbol and the clause 
BLANK WHEN ZERO may not appear in the same entry. 

4.7.4 General Rules 

(1) There are five categories of data that can be described with a PICTURE 

clause: alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric 

edited. 

(2) To define an item as alphabetic: 

a. Its PICTURE character-string can only contain the symbols 'A*, ’B' 

and 

b. Its contents when represented in standard data format must be any 

combination of the twenty-six (26) letters of the Roman alphabet and the space 

from the COBOL character set. 

(3) To define an item as numeric: 

a. Its PICTURE character-string can only contain the symbols *9', ’P' 

’S’, and 'V'. The number of digit positions that can be described by the 

PICTURE character-string must range from 1 to 18 inclusive; and 

b. If unsigned, its contents when represented in standard data format 

must be a combination of the Arabic numerals 'O', ’1', ?2’, ’3', '4*, *5', *6* 

11-18 



Nucleus - PICTURE 

'7', ’8’, and ’9’; if signed, the item may also contain a ' + ', '-', or other 

representation of an operational sign. (See page 11-31, The SIGN Clause.) 

(4) To define an item as alphanumeric: 

a. Its PICTURE character-string is restricted to certain combinations 

of the symbols 'A', 'X*, '9', and the item is treated as if the character¬ 

string contained all X's. A PICTURE character-string which contains all A's 

or all 9's does not define an alphanumeric item; and 

b. Its contents when represented in standard data format are allow¬ 

able characters in the computer's character set. 

(5) To define an item as alphanumeric edited: 

a. Its PICTURE character-string is restricted to certain combinations 

of the following symbols: 'A', 'X', '9', 'B', 'O', and '/'; and 

1) The character-string must contain at least one 'B' and at 

least one 'X' or at least one 'O' (zero) and at least one 'X' or at least one 

'/' (stroke) and at least one 'X'; or 

2) The character-string must contain at least one 'O' (zero) and 

at least one 'A' or at least one '/' (stroke) and at least one 'A'; and 

b. The contents when represented in standard data format are allow¬ 

able characters in the computer's character set. 

(6) To define an item as numeric edited: 

a. Its PICTURE character-string is restricted to certain combinations 

of the symbols 'B', '/', 'P\ 'V', 'Z', 'O', '9', '*', ' + ', '-', 

'CR', 'DB', and the currency symbol. The allowable combinations are determined 

from the order of precedence of symbols and the editing rules; and 

1) The number of digit positions that can be represented in the 

PICTURE character-string must range from 1 to 18 inclusive; and 

2) The character-string must contain at least one 'O', 'B', '/', 

'Z', '+', ',', 'CR', 'DB', or currency symbol. 

b. The contents of the character positions of these symbols that are 

allowed to represent a digit in standard data format, must be one of the 

numerals. 

(7) The size of an elementary item, where size means the number of char¬ 

acter positions occupied by the elementary item in standard data format, is 

determined by the number of allowable symbols that represent character posi¬ 

tions. An integer which is enclosed in parentheses following the symbols 'A', 

',', 'X', '9', 'P\ 'Z\ 'B', '/', 'O', ' + ', or the currency symbol 

indicates the number of consecutive occurrences of the symbol. Note that the 

following symbols may appear only once in a given PICTURE: 'S', 'V', '.', 

'CR', and 'DB'. 

11-19 



Nucleus - PICTURE 

(8) The functions of the symbols used to describe an elementary item are 

explained as follows: 

A Each 'A' in the character-string represents a character position 

which can contain only a letter of the alphabet or a space. 

B Each 'B' in the character-string represents a character position 

into which the space character will be inserted. 

P Each 'P' indicates an assumed decimal scaling position and is used 

to specify the location of an assumed decimal point when the point is not with 

in the number that appears in the data item. The scaling position character 

'P' is not counted in the size of the data item. Scaling position characters 

are counted in determining the maximum number of digit positions (18) in numer 

ic edited items or numeric items. The scaling position character 'P' can 

appear only to the left or right as a continuous string of 'P's within a 

PICTURE description; since the scaling position character 'P' implies an 

assumed decimal point (to the left of 'P's if 'P's are leftmost PICTURE char¬ 

acters and to the right if 'P's are rightmost PICTURE characters), the assumed 

decimal point symbol *V' is redundant as either the leftmost or rightmost 

character within such a PICTURE description. The character 'P' and the inser¬ 

tion character '.' (period) cannot both occur in the same PICTURE character¬ 

string. If, in any operation involving conversion of data from one form of 

internal representation to another, the data item being converted is described 

with the PICTURE character 'P', each digit position described by a 'P' is 

considered to contain the value zero, and the size of the data item is consid¬ 

ered to include the digit positions so described. 

S The letter 'S' is used in a character-string to indicate the 

presence, but neither the representation nor, necessarily, the position of an 

operational sign; it must be written as the leftmost character in the PICTURE. 

The 'S' is not counted in determining the size (in terms of standard data 

format characters) of the elementary item unless the entry is subject to a 

SIGN clause which specifies the optional SEPARATE CHARACTER phrase. (See page 

11-31, The SIGN Clause.) 

V The 'V' is used in a character-string to indicate the location of 

the assumed decimal point and may only appear once in a character-string. The 

'V' does not represent a character position and therefore is not counted in 

the size of the elementary item. When the assumed decimal point is to the 

right of the rightmost symbol in the string the 'V' is redundant. 

X Each 'X' in the character-string is used to represent a character 

position which contains any allowable character from the computer's character 

set. 

Z Each 'Z' in a character-string may only be used to represent the 

leftmost leading numeric character positions which will be replaced by a space 

character when the contents of that character position is zero. Each 'Z' is 

counted in the size of the item. 

9 Each '9' in the character-string represents a character position 

which contains a numeral and is counted in the size of the item. 

11-20 



Nucleus - PICTURE 

0 Each 'O' (zero) in the character-string represents a character 

position into which the numeral zero will be inserted. The 'O' is counted 

in the size of the item. 

/ Each */* (stroke) in the character-string represents a character 

position into which the stroke character will be inserted. The is counted 

in the size of the item. 

, Each ’,' (comma) in the character-string represents a character 

position into which the character ' will be inserted. This character posi¬ 

tion is counted in the size of the item. The insertion character ',' must not 

be the last character in the PICTURE character-string. 

When the character '.’ (period) appears in the character-string it 

is an editing symbol which represents the decimal point for alignment purposes 

and in addition, represents a character position into which the character *.' 

will be inserted. The character 'is counted in the size of the item. For 

a given program the functions of the period and comma are exchanged if the 

clause DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES paragraph. In 

this exchange the rules for the period apply to the comma and the rules for 

the comma apply to the period wherever they appear in a PICTURE clause. The 

insertion character ’.' must not be the last character in the PICTURE 

character-string. 

+ , -, CR, DB These symbols are used as editing sign control symbols. 

When used, they represent the character position into which the editing sign 

control symbol will be placed. The symbols are mutually exclusive in any one 

character-string and each character used in the symbol is counted in deter¬ 

mining the size of the data item. 

* Each (asterisk) in the character-string represents a leading 

numeric character position into which an asterisk will be placed when the 

contents of that position is zero. Each is counted in the size of the 

item. 

cs The currency symbol in the character-string represents a character 

position into which a currency symbol is to be placed. The currency symbol in 

a character-string is represented by either the currency sign or by the single 

character specified in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. 

The currency symbol is counted in the size of the item. 

4.7.5 Editing Rules 

(1) There are two general methods of performing editing in the PICTURE 

clause, either by insertion or by suppression and replacement. There are four 

types of insertion editing available. They are: 

a. Simple insertion 

b. Special insertion 

c. Fixed insertion 

d. Floating insertion 

11-21 



Nucleus - PICTURE 

There are two types of suppression and replacement editing: 

a. Zero suppression and replacement with spaces 

b. Zero suppression and replacement with asterisks 

(2) The type of editing which may be performed upon an item is dependent 

upon the category to which the item belongs. The following table specifies 

which type of editing may be performed upon a given category: 

CATEGORY TYPE OF EDITING 

Alphabetic Simple insertion ' B' only 

Numeric None 

Alphanumeric None 

Alphanumeric Edited Simple insertion 'O’, ' B' and */’ 

Numeric Edited All, subject to rules in rule 3 below 

(3) Floating insertion editing and editing by zero suppression and replace¬ 

ment are mutually exclusive in a PICTURE clause. Only one type of replacement 

may be used with zero suppression in a PICTURE clause. 

(4) Simple Insertion Editing. The (comma), *B’ (space), 'O’ (zero), 

and '/' (stroke) are used as the insertion characters. The insertion charac¬ 

ters are counted in the size of the item and represent the position in the 

item into which the character will be inserted. 

(5) Special Insertion Editing. The '.' (period) is used as the insertion 

character. In addition to being an insertion character it also represents the 

decimal point for alignment purposes. The insertion character used for the 

actual decimal point is counted in the size of the item. The use of the assumed 

decimal point, represented by the symbol 'V' and the actual decimal point, 

represented by the insertion character, in the same PICTURE character-string 

is disallowed. The result of special insertion editing is the appearance of 

the insertion character in the item in the same position as shown in the 

character-string. 

(6) Fixed Insertion Editing. The currency symbol and the editing sign 

control symbols, ’+', ’ CR', 'DBT, are the insertion characters. Only 

one currency symbol and only one of the editing sign control symbols can be 

used in a given PICTURE character-string. When the symbols ’CR* or ' DB' are 

used they represent two character positions in determining the size of the 

item and they must represent the rightmost character positions that are 

counted in the size of the item. The symbol '+' or when used, must be 

either the leftmost or rightmost character position to be counted in the size 

of the item. The currency symbol must be the leftmost character position to 

be counted in the size of the item except that it can be preceded by either a 

'+' or a symbol. Fixed insertion editing results in the insertion char¬ 

acter occupying the same character position in the edited item as it occupied 

in the PICTURE character-string. Editing sign control symbols produce the 

following results depending upon the value of the data item: 

11-22 



Nucleus - PICTURE 

EDITING SYMBOL IN 

PICTURE CHARACTER-STRING 

RESULT 

DATA ITEM 

POSITIVE OR ZERO 

DATA ITEM 

NEGATIVE 

+ + - 

- space - 

CR 2 spaces CR 

DB 2 spaces DB 

(7) Floating Insertion Editing. The currency symbol and editing sign 

control symbols '+' or are the floating insertion characters and as such 

are mutually exclusive in a given PICTURE character-string. 

Floating insertion editing is indicated in a PICTURE character-string 

by using a string of at least two of the floating insertion characters. This 

string of floating insertion characters may contain any of the fixed insertion 

symbols or have fixed insertion characters immediately to the right of this 

string. These simple insertion characters are part of the floating string. 

The leftmost character of the floating insertion string represents the 

leftmost limit of the floating symbol in the data item. The rightmost charac¬ 

ter of the floating string represents the rightmost limit of the floating 

symbols in the data item. 

The second floating character from the left represents the leftmost 

limit of the numeric data that can be stored in the data item. Non-zero 

numeric data may replace all the characters at or to the right of this limit. 

In a PICTURE character-string, there are only two ways of representing 

floating insertion editing. One way is to represent any or all of the leading 

numeric character positions on the left of the decimal point by the insertion 

character. The other way is to represent all of the numeric character posi¬ 

tions in the PICTURE character-string by the insertion character. 

If the insertion characters are only to the left of the decimal point 

in the PICTURE character-string, the result is that a single floating inser¬ 

tion character will be placed into the character position immediately preceding 

either the decimal point or the first non-zero digit in the data represented by 

the insertion symbol string, whichever is farther to the left in the PICTURE 

character-string. The character positions preceding the insertion character 

are replaced with spaces. 

If all numeric character positions in the PICTURE character-string are 

represented by the insertion character, the result depends upon the value of 

the data. If the value is zero the entire data item will contain spaces. If 

the value is not zero, the result is the same as when the insertion character 

is only to the left of the decimal point. 

To avoid truncation, the minimum size of the PICTURE character-string 

for the receiving data item must be the number of characters in the sending 

11-23 



Nucleus - PICTURE 

data item, plus the number of non-floating insertion characters being edited 

into the receiving data item, plus one for the floating insertion character. 

(8) Zero Suppression Editing. The suppression of leading zeroes in 

numeric character positions is indicated by the use of the alphabetic charac¬ 

ter 'Z' or the character (asterisk) as suppression symbols in a PICTURE 

character-string. These symbols are mutually exclusive in a given PICTURE 

character-string. Each suppression symbol is counted in determining the size 

of the item. If ' ZT is used the replacement character will be the space and 

if the asterisk is used, the replacement character will be 

Zero suppression and replacement is indicated in a PICTURE character¬ 

string by using a string of one or more of the allowable symbols to represent 

leading numeric character positions which are to be replaced when the asso¬ 

ciated character position in the data contains a zero. Any of the simple 

insertion characters embedded in the string of symbols or to the immediate 

right of this string are part of the string. 

In a PICTURE character-string, there are only two ways of representing 

zero suppression. One way is to represent any or all of the leading numeric 

character positions to the left of the decimal point by suppression symbols. 

The other way is to represent all of the numeric character positions in the 

PICTURE character-string by suppression symbols. 

If the suppression symbols appear only to the left of the decimal 

point, any leading zero in the data which corresponds to a symbol in the 

string is replaced by the replacement character. Suppression terminates at 

the first non-zero digit in the data represented by the suppression symbol 

string or at the decimal point, whichever is encountered first. 

If all numeric character positions in the PICTURE character-string 

are represented by suppression symbols and the value of the data is not zero 

the result is the same as if the suppression characters were only to the left 

of the decimal point. If the value is zero and the suppression symbol is ' Z', 

the entire data item will be spaces. If the value is zero and the suppression 

symbol is 'the data item will be all except for the actual decimal 

point. 

(9) The symbols ' + ’, ’Z1, and the currency symbol, when used as 

floating replacement characters, are mutually exclusive within a given 

character-string. 

4.7.6 Precedence Rules 

The chart on page 11-25 shows the order of precedence when using characters 

as symbols in a character-string. An ’X* at an intersection indicates that 

the symbol(s) at the top of the column may precede, in a given character¬ 

string, the symbol(s) at the left of the row. Arguments appearing in braces 

indicate that the symbols are mutually exclusive. The currency symbol is 

indicated by the symbol ' cs'. 

At least one of the symbols ’A', 'X*, 'Z', *9* or or at least two of 

the symbols '+', or 'cs* must be present in a PICTURE string. 

11-24 



Nucleus PICTURE 

PICTURE Character Precedence Chart 

\ First 

\Symbol 

SecondX 

Symbol \ 

Non-Floating 

Insertion Symbols 

Floating 

Insertion Symbols 
Other Symbols 

B 0 / > • (-) 
CS 12) {*] (-} 8 CS CS 9 

A 

X 
s V 

r~ 
p p 

N
o
n
-F

lo
a
ti

n
g

 

I
n
s
e
r
ti

o
n
 

S
y

m
b

o
ls

 

B X X X X X X X X X X X X X X X X X 

0 X X X X X X X X X X X X X X X X X 

/ X X X X X X X X X X X X X X X X X 

» X X X X X X X X X X X X X X X X 

• X X X X X X X X X X 

« X X X X X X X X X X X X X X 

{£} X X X X X X X X X X X X X X 

CS X 

F
lo

a
ti

n
g

 

I
n
s
e
r
ti

o
n
 

S
y
m

b
o
ls

 

{9 X X X X X X X 

(9 X X X X X X X X X X X 

(-} X X X X X X 

{!} X X X X X X X X X X 

CS X X X X X X 

CS X X X X X X X X X X 

O
th

e
r 

S
y
m

b
o
ls

 

9 X X X X X X X X X X X X X X X 

A 

X 
X X X X X 

S 

V X X X X X X X X X X X X 

p X X X X X X X X X X X X 

p X X X X X 

11-25 



Nucleus - PICTURE 

Non-floating insertion symbols '+' and floating insertion symbols 'Z', 

and 'csf, and other symbol 'P* appear twice in the PICTURE 

character precedence chart on page 11-25. The leftmost column and uppermost 

row for each symbol represents its use to the left of the decimal point posi¬ 

tion. The second appearance of the symbol in the chart represents its use to 

the right of the decimal point position. 

11-26 



Nucleus - REDEFINES 

4.8 THE REDEFINES CLAUSE 

4.8.1 Function 

The REDEFINES clause allows the same computer storage area to be described 

by different data description entries. 

4.8.2 General Format 

level-number data-name-1; REDEFINES data-name-2 

NOTE: Level-number, data-name-1 land the semicolon are shown in the 

above format to improve clarity. Level-number and data-name-1 

are not part of the REDEFINES clause. 

4.8.3 Syntax Rules 

(1) The REDEFINES clause, when specified, must immediately follow 

data-name-I. 

(2) The level-numbers of data-name-1 and data-name-2 must be identical, 

but must not be 66 or 88. 

(3) This clause must not be used in level 01 entries in the File Section. 

(See page IV-12, The DATA RECORDS Clause, General Rule 2.) 

(4) This clause must not be used in level 01 entries in the Communication 

Section. 

(5) The data description entry for data-name-2 cannot contain a REDEFINES 

clause. In Level 1, data-name-2 cannot be subordinate to an entry which con¬ 

tains a REDEFINES clause. In Level 2, data-name-2 may be subordinate to an 

entry which contains a REDEFINES clause.! The data description entry for data- 

name-2 cannot contain an OCCURS clause. (However, data-name-2 may be subordi¬ 

nate to an item whose data description entry contains an OCCURS clause. In 

this case, the reference to data-name-2 in the REDEFINES clause may not be 

subscripted or indexed. I Neither the original definition nor the redefinition 

can include an item whose size is variable as defined in the OCCURS clause. 

(See page III-2, The OCCURS Clause.) 

(6) No entry having a level-number numerically lower than the level-number 

of data-name-2 and data-name-1 may occur between the data description entries 

of data-name-2 and data-name-1. 

4.8.4 General Rules 

(1) Redefinition starts at data-name-2 and ends when a level-number less 

than or equal to that of data-name-2 is encountered. 

(2) When the level-number of data-name-1 is other than 01, it must specify 

the same number of character positions that the data item referenced by data- 

name-2 contains. It is important to observe that the REDEFINES clause speci¬ 

fies the redefinition of a storage area, not of the data items occupying the 

area. 

11-27 



Nucleus - REDEFINES 

(3) Multiple redefinitions of the same character positions are permitted. 

The entries giving the new descriptions of the character positions must follow 

the entries defining the area being redefined, without intervening entries 

that define new character positions. Multiple redefinitions of the same char¬ 

acter positions must all use the data-name of the entry that originally defined 

the area. 

(4) The entries giving the new description of the character positions must 

not contain any VALUE clauses,|except in condition-name entries.) 

(5) Multiple level 01 entries subordinate to any given level indicator 

represent implicit redefinitions of the same area. 

11-28 



Nucleus - RENAMES 

4.9 THE RENAMES CLAUSE 

4.9.1 Function 

The RENAMES clause permits alternative, possibly overlapping, groupings of 

elementary items. 

4.9.2 General Format 

66 data-name-1; RENAMES data-name-3 

NOTE: Level-number 66, data-name-1 and the semicolon are shown in the 

above format to improve clarity. Level-number and data-name-1 

are not part of the RENAMES clause. 

4.9.3 Syntax Rules 

(1) All RENAMES entries referring to data items within a given logical 

record must immediately follow the last data description entry of the asso¬ 

ciated record description entry. 

(2) Data-name-2 and data-name-3 must be names of elementary items or 

groups of elementary items in the same logical record, and cannot be the same 

data-name. A 66 level entry cannot rename another 66 level entry nor can it 

rename a 77, 88, or 01 level entry. 

(3) Data-name-1 cannot be used as a qualifier, and can only be qualified 

by the names of the associated level 01, FD, CD or SD entries. Neither 

data-name-2 nor data-name-3 may have an OCCURS clause in its data description 

entry nor be subordinate to an item that has an OCCURS clause in its data 

description entry. (See page III-2, The OCCURS Clause.) 

(4) The beginning of the area described by data-name-3 must not be to the 

left of the beginning of the area described by data-name-2. The end of the 

area described by data-name-3 must be to the right of the end of the area 

described by data-name-2. Data-name-3, therefore, cannot be subordinate to 

data-name-2. 

(5) Data-name-2 and data-name-3 may be qualified. 

(6) The words THRU and THROUGH are equivalent. 

(7) None of the items within the range, including data-name-2 and data- 

name-3, if specified, can be an item whose size is variable as defined in the 

OCCURS clause (see page III-2). 

4.9.4 General Rules 

(1) One or more RENAMES entries can be written for a logical record. 

(2) When data-name-3 is specified, data-name-1 is a group item which 

includes all elementary items starting with data-name-2 (if data-name-2 is an 

elementary item) or the first elementary item in data-name-2 (if data-name-2 

11-29 



Nucleus - RENAMES 

is a group item), and concluding with data-name-3 (if data-name-3 is an 

elementary item) or the last elementary item in data-name-3 (if data-name-3 

is a group item). 

(3) When data-name-3 is not specified, data-name-2 can be either a group 

or an elementary item; when data-name-2 is a group item, data-name-1 is treat¬ 

ed as a group item, and when data-name-2 is an elementary item, data-name-1 is 

treated as an elementary item. 

11-30 



Nucleus - SIGN 

4.10 THE SIGN CLAUSE 

4.10.1 Function 

The SIGN clause specifies the position and the mode of representation of 

the operational sign when it is necessary to describe these properties 
explicitly. 

4.10.2 General Format 

[sign is] 
''leading " 

trailing 
[separate character] 

4.10.3 Syntax Rules 

(1) The SIGN clause may be specified only for a numeric data description 

entry whose PICTURE contains the character 'S', or a group item containing at 

least one such numeric data description entry. 

(2) The numeric data description entries to which the SIGN clause applies 

must be described as usage is DISPLAY. 

(3) At most one SIGN clause may apply to any given numeric data descrip¬ 

tion entry. 

(4) If the CODE-SET clause is specified, any signed numeric data descrip¬ 

tion entries associated with that file description entry must be described 

with the SIGN IS SEPARATE clause. 

4.10.4 General Rules 

(1) The optional SIGN clause, if present, specifies the position and the 

mode of representation of the operational sign for the numeric data descrip¬ 

tion entry to which it applies, or for each numeric data description entry 

subordinate to the group to which it applies. The SIGN clause applies only 

to numeric data description entries whose PICTURE contains the character 'S'; 

the 'S' indicates the presence of, but neither the representation nor, neces¬ 

sarily, the position of the operational sign. 

(2) A numeric data description entry whose PICTURE contains the character 

'S', but to which no optional SIGN clause applies, has an operational sign, 

but neither the representation nor, necessarily, the position of the opera¬ 

tional sign is specified by the character ’S'. In this (default) case, the 

implementor will define the position and representation of the operational 

sign. General rules 3 through 5 do not apply to such signed numeric data 

items. 

(3) If the optional SEPARATE CHARACTER phrase is not present, then: 

a. The operational sign will be presumed to be associated with the 

leading (or, respectively, trailing) digit position of the elementary numeric 

data item. 

11-31 



Nucleus - SIGN 

b. The letter 'S' in a PICTURE character-string is not counted in 

determining the size of the item (in terms of standard data format characters). 

c. The implementor defines what constitutes valid sign(s) for data 

items. 

(4) If the optional SEPARATE CHARACTER phrase is present, then: 

a. The operational sign will be presumed to be the leading (or, 

respectively, trailing) character position of the elementary numeric data 

item; this character position is not a digit position. 

b. The letter ’S' in a PICTURE character-string is counted in deter¬ 

mining the size of the item (in terms of standard data format characters). 

c. The operational signs for positive and negative are the standard 

data format characters '+' and respectively. 

(5) Every numeric data description entry whose PICTURE contains the char¬ 

acter ’S' is a signed numeric data description entry. If a SIGN clause 

applies to such an entry and conversion is necessary for purposes of computa¬ 

tion or comparisons, conversion takes place automatically. 

11-32 



Nucleus - SYNCHRONIZED 

4.11 THE SYNCHRONIZED CLAUSE 

4.11.1 Function 

The SYNCHRONIZED clause specifies the alignment of an elementary item on 

the natural boundaries of the computer memory (see page 1-87, Item Alignment 

for Increased Object-Code Efficiency). 

4.11.2 General Format 

[SYNCHRONIZED] f LEFT 

[SYNC ] I RIGHT 

4.11.3 Syntax Rules 

(1) This clause may only appear with an elementary item. 

(2) SYNC is an abbreviation for SYNCHRONIZED. 

4.11.4 General Rules 

(1) This clause specifies that the subject data item is to be aligned in 

the computer such that no other data item occupies any of the character posi¬ 

tions between the leftmost and rightmost natural boundaries delimiting this 

data item. If the number of character positions required to store this data 

item is less than the number of character positions between those natural 

boundaries, the unused character positions (or portions thereof) must not be 

used for any other data item. Such unused character positions, however, are 

included in: 

and 

a. The size of any group item(s) to which the elementary item belongs; 

b. The character positions redefined when this data item is the object 

of a REDEFINES clause. 

(2) SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the 

elementary item is to be positioned between natural boundaries in such a way 

as to effect efficient utilization of the elementary data item. The specific 

positioning is, however, determined by the implementor. 

(3) SYNCHRONIZED LEFT specifies that the elementary item is to be posi¬ 

tioned such that it will begin at the left character position of the natural 

boundary in which the elementary item is placed. 

(4) SYNCHRONIZED RIGHT specifies that the elementary item is to be posi¬ 

tioned such that it will terminate on the right character position of the 

natural boundary in which the elementary item is placed. 

(5) Whenever a SYNCHRONIZED item is referenced in the source program, the 

original size of the item, as shown in the PICTURE clause, is used in deter¬ 

mining any action that depends on size, such as justification, truncation or 

overflow. 

11-33 



Nucleus - SYNCHRONIZED 

(6) If the data description of an item contains the SYNCHRONIZED clause 

and an operational sign, the sign of the item appears in the normal operation¬ 

al sign position, regardless of whether the item is SYNCHRONIZED LEFT or 

SYNCHRONIZED RIGHT. 

(7) When the SYNCHRONIZED clause is specified in a data description entry 

of a data item that also contains an OCCURS clause, or in a data description 

entry of a data item subordinate to a data description entry that contains an 

OCCURS clause, then: 

a. Each occurrence of the data item is SYNCHRONIZED. 

b. Any implicit FILLER generated for other data items within that 

same table are generated for each occurrence of those data items. (See 

general rule 8b.) 

(8) This clause is hardware dependent and in addition to rules 1 through 

7, the implementor must specify how elementary items associated with this clause 
are handled regarding: 

a. The format on the external media of records or groups containing 

elementary items whose data description contains the SYNCHRONIZED clause. 

b. Any necessary generation of implicit FILLER, if the elementary 

item immediately preceding an item containing the SYNCHRONIZED clause does 

not terminate at an appropriate natural boundary. Such automatically gener¬ 

ated FILLER positions are included in: 

1) The size of any group to which the FILLER item belongs; and 

2) The number of character positions allocated when the group 

item of which the FILLER item is a part appears as the object of a REDEFINES 

clause. 

(9) An implementor may, at his option, specify automatic alignment for 

any internal data formats except, within a record, data items whose usage is 

DISPLAY. However, the record itself may be synchronized. 

(10) Any rules for synchronization of the records of a data file, as this 

effects the synchronization of elementary items, will be specified by the 

implementor. 

11-34 



Nucleus - USAGE 

4.12 THE USAGE CLAUSE 

4.12.1 Function 

The USAGE clause specifies the format of a data item in the computer storage. 

4.12.2 General Format 

n I rCOMPUTATIONALT 

[usage is 1 \ , COMP | 

| DISPLAY ) 

4.12.3 Syntax Rules 

(1) The PICTURE character-string of a COMPUTATIONAL item can contain only 

' 9 ' s , the operational sign character 'S', the implied decimal point character 

'V', one or more 'P's. (See page 11-18, The PICTURE Clause.) 

(2) COMP is an abbreviation for COMPUTATIONAL. 

4.12.4 General Rules 

(1) The USAGE clause can be written at any level. If the USAGE clause is 

written at a group level, it applies to each elementary item in the group. 

The USAGE clause of an elementary item cannot contradict the USAGE clause of 

a group to which the item belongs. 

(2) This clause specifies the manner in which a data item is represented 

in the storage of a computer. It does not affect the use of the data item, 

although the specifications for some statements in the Procedure Division may 

restrict the USAGE clause of the operands referred to. The USAGE clause may 

affect the radix or type of character representation of the item. 

(3) A COMPUTATIONAL item is capable of representing a value to be used in 

computations and must be numeric. If a group item is described as 

COMPUTATIONAL, the elementary items in the group are COMPUTATIONAL. The group 

item itself is not COMPUTATIONAL (cannot be used in computations). 

(4) The USAGE IS DISPLAY clause indicates that the format of the data is 

a standard data format. 

(5) If the USAGE clause is not specified for an elementary item, or for 

any group to which the item belongs, the usage is implicitly DISPLAY. 

11-35 



Nualeus - VALVE 

4.13 THE VALUE CLAUSE 

4.13.1 Function 

The VALUE clause defines the value of constants, the value of Report 

Section printable items, the initial value of working storage items, the 

initial value of data items in the Communication Section,land the values 

associated with a condition-name. 

4.13.2 General Format 

Format 1 

VALUE IS literal 

Format 2 

[VALUE IS ] 

[VALUES AREj 
literal-1 

[THROUGH! 

1 THRU ] 
literal-2 

, literal-3 
(THROUGH) 

1 THRU [ 
literal-4 

- 

4.13.3 Syntax Rules 

(1) The words THRU and THROUGH are equivalent. 

(2) The VALUE clause cannot be stated for any items whose size is variable. 

(See page XIX-2, The OCCURS Clause.) 

(3) A signed numeric literal must have associated with it a signed numeric 

PICTURE character-string. 

(4) All numeric literals in a VALUE clause of an item must have a value 

which is within the range of values indicated by the PICTURE clause, and must 

not have a value which would require truncation of nonzero digits. Nonnumeric 

literals in a VALUE clause of an item must not exceed the size indicated by 

the PICTURE clause. 

4.13.4 General Rules 

(1) The VALUE clause must not conflict with other clauses in the data 

description of the item or in the data description within the hierarchy of 

the item. The following rules apply: 

a. If the category of the item is numeric, all literals in the VALUE 

clause must be numeric. If the literal defines the value of a working storage 

item, the literal is aligned in the data item according to the standard align¬ 

ment rules. (See page 1-86, Standard Alignment Rules.) 

11-36 



Nucleus - VALUE 

b. If the category of the item is alphabetic, alphanumeric, alpha¬ 

numeric edited or numeric edited, all literals in the VALUE clause must be 

nonnumeric literals. The literal is aligned in the data item as if the data 

item had been described as alphanumeric. (See page 1-86, Standard Alignment 

Rules.) Editing characters in the PICTURE clause are included in determining 

the size of the data item (see page 11-18, The PICTURE Clause) but have no 

effect on initialization of the data item. Therefore, the VALUE for an 

edited item is presented in an edited form. 

c. Initialization takes place independent of any BLANK WHEN ZERO or 

JUSTIFIED clause that may be specified. 

(2) A figurative constant may be substituted in both Format 1 and Format 2 

wherever a literal is specified. 

4.13.5 Condition-Name Rules 

(1) In a condition-name entry, the VALUE clause is required. The VALUE 

clause and the condition-name itself are the only two clauses permitted in the 

entry. The characteristics of a condition-name are implicitly those of its 

conditional variable. 

(2) Format 2 can be used only in connection with condition-names. (See 

page 1-91, Condition-Name.) Wherever the THRU phrase is used, literal-1 must 

be less than literal-2, literal-3 less than literal-4, etc. 

4.13.6 Data Description Entries Other Than Condition-Names 

(1) Rules governing the use of the VALUE clause differ with the respective 

sections of the Data Division: 

_a. In Level 1, the VALUE clause cannot be used in the File Section. 

In the File Section, the VALUE clause may be used only in condition-name 

entries. 

In the Working-Storage Section and the Communication Section, the 

VALUE clause must be used in condition-name entries. The VALUE clause may also 

be used to specify the initial value of any other data item; in which case the 

clause causes the item to assume the specified value at the start of the object 

program. If the VALUE clause is not used in an item's description, the initial 

value is undefined. 

_c. In Level 1, the VALUE clause cannot be used in the Linkage Section. 

In the Linkage Section, the VALUE clause may be used only in condition-name 

entries._______ 

d. In the Report Section, if the elementary report entry containing 

the VALUE clause does not contain a GROUP INDICATE clause, then the printable 

item will assume the specified value each time its report group is printed. 

However, when the GROUP INDICATE clause is also present, the specified value 

will be presented only when certain object time conditions exist. (See page 

VIII-31, The GROUP INDICATE Clause.) 

11-37 



Nucleus - VALUE 

(2) The VALUE clause must not be stated in a data description entry that 

contains an OCCURS clause, or in an entry that is subordinate to an entry 

containing an OCCURS clause. | This rule does not apply to condition-name 

entriesT] (See page III-2, The OCCURS Clause.) 

(3) The VALUE clause must not be stated in a data description entry that 

contains a REDEFINES clause, or in an entry that is subordinate to an entry 

containing a REDEFINES clause. This rule does not apply to condition-name 

entries, 

(4) If the VALUE clause is used in an entry at the group level, the 

literal must be a figurative constant or a nonnumeric literal, and the group 

area is initialized without consideration for the individual elementary or 

group items contained within this group. The VALUE clause cannot be stated 

at the subordinate levels within this group. 

(5) The VALUE clause must not be written for a group containing items 

with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other than 

USAGE IS DISPLAY). 

11-38 



Nucleus - Arithmetic Expressions 

5. PROCEDURE DIVISION IN THE NUCLEUS 

5.1 ARITHMETIC EXPRESSIONS 

5.1.1 Definition of an Arithmetic Expression 

An arithmetic expression can be an identifier of a numeric elementary item, 

a numeric literal, such identifiers and literals separated by arithmetic oper¬ 

ators, two arithmetic expressions separated by an arithmetic operator, or an 

arithmetic expression enclosed in parentheses. Any arithmetic expression may 

be preceded by a unary operator. The permissible combinations of variables, 

numeric literals, arithmetic operator and parentheses are given in Table 1, 

Combination of Symbols in Arithmetic Expressions, on page 11-40. 

Those identifiers and literals appearing in an arithmetic expression must 

represent either numeric elementary items or numeric literals on which arith¬ 

metic may be performed. 

5.1.2 Arithmetic Operators 

There are five binary arithmetic operators and two unary arithmetic opera¬ 

tors that may be used in arithmetic expressions. They are represented by 

specific characters that must be preceded by a space and followed by a space. 

Binary Arithmetic 

Operators Meaning 

+ 

* 

/ 
** 

Unary Arithmetic 

Operators 

Addition 

Subtraction 

Multiplication 

Division 

Exponentiation 

Meaning 

+ The effect of multiplication 

by numeric literal +1 

The effect of multiplication 

by numeric literal -1. 

5.1.3 Formation And Evaluation Rules 

(1) Parentheses may be used in arithmetic expressions to specify the 

order in which elements are to be evaluated. Expressions within parentheses 

are evaluated first, and within nested parentheses, evaluation proceeds from 

the least inclusive set to the most inclusive set. When parentheses are not 

used, or parenthesized expressions are at the same level of inclusiveness, 

the following hierarchical order of execution is implied: 

1st - Unary plus and minus 

2nd - Exponentiation 

3rd - Multiplication and division 

4th - Addition and subtraction 

11-39 



Nucleus - Arithmetic Expressions 

(2) Parentheses are used either to eliminate ambiguities in logic where 

consecutive operations of the same hierarchical level appear or to modify the 

normal hierarchical sequence of execution in expressions where it is necessary 

to have some deviation from the normal precedence. When the sequence of execu¬ 

tion is not specified by parentheses, the order of execution of consecutive 

operations of the same hierarchical level is from left to right. 

(3) The ways in which operators, variables, and parentheses may be combined 

in an arithmetic expression are summarized in Table 1, where: 

a. The letter *P' indicates a permissible pair of symbols. 

b. The character '-' indicates an invalid pair. 

c. ’Variable* indicates an identifier or literal. 

FIRST SECOND SYMBOL 

SYMBOL 
Variable */**_+ Unary + or - ( ) 

Variable - P - - P 

*/**+ P - P P - 

Unary + or - P - - P - 

( P - P P - 

) - P - - P 

Table 1. Combination of Symbols in Arithmetic Expressions 

(4) An arithmetic expression may only begin with the symbol ’(’, ’ + ’, 

or a variable and may only end with a ’)' or a variable. There must be a one- 

to-one correspondence between left and right parentheses of an arithmetic 

expression such that each left parenthesis is to the left of its corresponding 

right parenthesis. 

(5) Arithmetic expressions allow the user to combine arithmetic operations 

without the restrictions on composite of operands and/or receiving data items. 

See, for example, syntax rule 3 on page 11-55. Each implementor will indicate 

the techniques used in handling arithmetic expressions. 

11-40 



Nucleus - Conditional Expressions 

5.2 CONDITIONAL EXPRESSIONS 

Conditional expressions identify conditions that are tested to enable the 

object program to select between alternate paths of control depending upon the 

truth value of the condition. Conditional expressions are specified in the IF, 

PERFORM and SEARCH statements. There are two categories of conditions asso- 

ciated with conditional expressions: simple conditions[and complex conditions. 

Each may be enclosed within any number of paired parentheses, in which case its 

category is not changed. 

5.2.1 Simple Conditions 

The simple conditions are the relation, class,! condition-name,| switch-status. 

and sign conditions. A simple condition has a truth value of ’true' or 'false'. 

The inclusion in parentheses of simple conditions does not change the simple 

truth value. 

5.2.1.1 Relation Condition 

A relation condition causes a comparison of two operands, each of which may 

be the data item referenced by an identifier, a literal,! or the value result¬ 

ing from an arithmetic expression. A relation condition has a truth value of 

'true' if the relation exists between the operands. Comparison of two numeric 

operands is permitted regardless of the formats specified in their respective 

USAGE clauses. However, for all other comparisons the operands must have the 

same usage. If either of the operands is a group item, the nonnumeric compar¬ 

ison rules apply. 

The general format of a relation condition is as follows: 

f 

y.identifier-1 

\literal-1 

larithmetic-expression-1 

IS [NOT] GREATER THAN) 

IS [NOT] LESS THAN 

IS [NOT] EQUAL TO 

IS [NOT] s 

IS [NOT] < 

IS [NOT] - 

identifier-2 

literal-2 ) 
arithmetic-expression-2 

NOTE: The required relational characters '>', '<*, and '=' are 

not underlined to avoid confusion with other symbols 

such as '>' (greater than or equal to). 

The first operand (identifier-1, literal-1, or arithmetic-expression-11) is 

called the subject of the condition; the second operand (identifier-2, literal-2 

or arithmetic-expression-2 ) is called the object of the condition. The rela¬ 

tion condition must contain at least one reference to a variable. 

The relational operator specifies the type of comparison to be made in a 

relation condition. A space must precede and follow each reserved word com¬ 

prising the relational operator. When used, 'NOT* and the next key word or 

relation character are one relational operator that defines the comparison to 

be executed for truth value; e.g., 'NOT EQUAL' is a truth test for an 'unequal' 

11-41 



Nuoleus - Relation Condition 

comparison; 'NOT GREATER' is a truth test for an 'equal' or 'less' comparison. 

The meaning of the relational operators is as follows: 

Meaning Relational Operator 

Greater than or not greater than IS [NOT] GREATER THAN 

IS [NOT] ~ 

IS [NOT] LESS THAN 

is [notj 

IS [NOT] EQUAL TO 

IS [NOT] = 

NOTE: The required relational characters '>', '<', and '=' are not 

underlined to avoid confusion with other symbols such as 

'>' (greater than or equal to). 

Less than or not less than 

Equal to or not equal to 

5.2.1.1.1 Comparison of Numeric Operands 

For operands whose class is numeric (see page 1-85, paragraph 5.3.3.3), 

a comparison is made with respect to the algebraic value of the operands. The 

length of the literal|or arithmetic expression operands, in terms of number 

of digits represented, is not significant. Zero is considered a unique value 

regardless of the sign. 

Comparison of these operands is permitted regardless of the manner in which 

their usage is described. Unsigned numeric operands are considered positive 

for purposes of comparison. 

5.2.1.1.2 Comparison of Nonnumeric Operands 

For nonnumeric operands, or one numeric and one nonnumeric operand, a com¬ 

parison is made with respect to a specified collating sequence of characters 

(see page II-6, The OBJECT-COMPUTER Paragraph). If one of the operands is 

specified as numeric, it must be an integer data item or an integer literal 

and: 

a. If the nonnumeric operand is an elementary data item or a nonnumeric 

literal, the numeric operand is treated as though it were moved to an elemen¬ 

tary alphanumeric data item of the same size as the numeric data item (in terms 

of standard data format characters), and the contents of this alphanumeric data 

item were then compared to the nonnumeric operand. (See page 11-74, The MOVE 

Statement, and page 11-20, the PICTURE character 'P'.) 

b. If the nonnumeric operand is a group item, the numeric operand is 

treated as though it were moved to a group item of the same size as the numeric 

data item (in terms of standard data format characters), and the contents of 

this group item were then compared to the nonnumeric operand. (See page 11-74, 

The MOVE Statement, and page 11-20, the PICTURE character 'P'.) 

c. A non-integer numeric operand cannot be compared to a nonnumeric operand. 

11-42 



Nucleus - Class Condition 

The size of an operand is the total number of standard data format char¬ 

acters in the operand. Numeric and nonnumeric operands may be compared only 

when their usage is the same. 

There are two cases to consider: 

unequal size. 

operands of equal size and operands of 

( 

(1) Operands of equal size. If the operands are of equal size, comparison 

effectively proceeds by comparing characters in corresponding character posi¬ 

tions starting from the high order end and continuing until either a pair of 

unequal characters is encountered or the low order end of the operand is 
reached, whichever comes first. The operands are determined to be equal if all 

pairs of characters compare equally through the last pair, when the low order 

end is reached. 

The first encountered pair of unequal characters is compared to deter¬ 

mine their relative position in the collating sequence. The operand that 

contains the character that is positioned higher in the collating sequence is 

considered to be the greater operand. 

(2) Operands of unequal size. If the operands are of unequal size, com¬ 

parison proceeds as though the shorter operand were extended on the right by 

sufficient spaces to make the operands of equal size.__ 

5.2.1.2 Class Condition 

The class condition determines whether the operand is numeric, that is, 

consists entirely of the characters 'O', '1', '2', '3', ..., '9', with or 

without the operational sign, or alphabetic, that is, consists entirely of 

the characters 'A', 'B', 'C', ..., 'Z', space. The general format for the 

class condition is as follows: 

identifier IS fNOT] 
NUMERIC 

ALPHABETIC 

The usage of the operand being tested must be described as display. When 

used, 'NOT' and the next key word specify one class condition that defines 

the class test to be executed for truth value; e.g. 'NOT NUMERIC' is a truth 

test for determining that an operand is nonnumeric. 

The NUMERIC test cannot be used with an item whose data description describes 

the item as alphabetic or as a group item composed of elementary items whose 

data description indicates the presence of operational sign(s). If the data 

description of the item being tested does not indicate the presence of an oper¬ 

ational sign, the item being tested is determined to be numeric only if the 

contents are numeric and an operational sign is not present. If the data 

description of the item does indicate the presence of an operational sign, the 

item being tested is determined to be numeric only if the contents are numeric 

and a valid operational sign is present. Valid operational signs for data 

items described with the SIGN IS SEPARATE clause are the standard data format 

characters, '+' and the implementor defines what constitutes valid sign(s) 

for data items not described with the SIGN IS SEPARATE clause. I 

11-43 



Nucleus - Condition-Name Condition 

The ALPHABETIC test cannot be used with an item whose data description 

describes the item as numeric. The item being tested is determined to be 

alphabetic only if the contents consist of any combination of the alphabetic 

characters 'A' through * Z* and the space. 

5.2.1.3 Condition-Name Condition (Conditional Variable) 

In a condition-name condition, a conditional variable is tested to deter¬ 

mine whether or not its value is equal to one of the values associated with a 

condition-name. The general format for the condition-name condition is as 

follows: 

condition-name 

If the condition-name is associated with a range or ranges of values, then 

the conditional variable is tested to determine whether or not its value falls 

in this range, including the end values. 

The rules for comparing a conditional variable with a condition-name value 

are the same as those specified for relation conditions. 

The result of the test is true if one of the values corresponding to the 

condition-name equals the value of its associated conditional variable. 

5.2.1.4 Switch-Status Condition 

A switch-status condition determines the 'on' or 'off' status of an 

implementor-defined switch. The implementor-name and the 'on' or 'off' value 

associated with the condition must be named in the SPECIAL-NAMES paragraph of 

the Environment Division. The general format for the switch-status condition 

is as follows: 

condition-name 

The result of the test is true if the switch is set to the specified posi¬ 

tion corresponding to the condition-name. 

5.2.1.5 Sign Condition 

The sign condition determines whether or not the algebraic value of an 

arithmetic expression is less than, greater than, or equal to zero. The 

general format for a sign condition is as follows: 

arithmetic-expression IS ^NOTj 

11-44 



Nucleus - Complex Conditions 

When used, 'NOT' and the next key word specify one sign condition that 

defines the algebraic test to be executed for truth value; e.g., 'NOT ZERO' 

is a truth test for a nonzero (positive or negative) value. An operand is 

positive if its value is greater than zero, negative if its value is less 

than zero, and zero if its value is equal to zero. The arithmetic expression 

must contain at least one reference to a variable. 

5.2.2 Complex Conditions 

A complex condition is formed by combining simple conditions, combined 

conditions and/or complex conditions with logical connectors (logical opera¬ 

tors 'AND' and 'OR') or negating these conditions with logical negation 

(the logical operator 'NOT'). The truth value of a complex condition, whether 

parenthesized or not, is that truth value which results from the interaction 

of all the stated logical operators on the individual truth values of simple 

conditions, or the intermediate truth values of conditions logically connected 

or logically negated. 

The logical operators and their meanings are: 

Logical Operator Meaning 

AND 

OR 

NOT 

The logical operators must be preceded by a space and followed by a space. 

5.2.2.1 Negated Simple Conditions 

A simple condition (see page 11-41) is negated through the use of the 

logical operator 'NOT'. The negated simple condition effects the opposite 

truth value for a simple condition. Thus the truth value of a negated simple 

condition is 'true' if and only if the truth value of the simple condition is 

'false'; the truth value of a negated simple condition is 'false' if and only 

if the truth value of the simple condition is 'true'. The inclusion in paren¬ 

theses of a negated simple condition does not change the truth value. 

The general format for a negated simple condition is: 

NOT simple-condition 

Logical conjunction; the truth value is 'true' if 

both of the conjoined conditions are true; 'false' 

if one or both of the conjoined conditions is false. 

Logical inclusive OR; the truth value is 'true' if 

one or both of the included conditions is true; 

'false' if both included conditions are false. 

Logical negation or reversal of truth value; the 

truth value is 'true' if the condition is false; 

'false' if the condition is true. 

11-45 



Nucleus - Combined Conditions 

5.2.2.2 Combined and Negated Combined Conditions 

A combined condition results from connecting conditions with one of the 

logical operators 'AND' or 'OR'. The general format of a combined condition 

is: 

Where ’condition’ may be: 

(1) A simple condition, or 

(2) A negated simple condition, or 

(3) A combined condition, or 

(4) A negated combined condition; i.e., the ’NOT’ logical operator 

followed by a combined condition enclosed within parentheses, or 

(5) Combinations of the above, specified according to the rules summarized 

in table 2, Combinations of Conditions, Logical Operators, and Parentheses, 

located on the next page. 

Although parentheses need never be used when either ’AND' or 'OR' (but not 

both) is used exclusively in a combined condition, parentheses may be used to 

effect a final truth value when a mixture of 'AND', 'OR' and 'NOT' is used. 

(See table 2, Combinations of Conditions, Logical Operators, and Parentheses, 

on the next page and paragraph 5.2.4, Condition Evaluation Rules, on page 11-48.) 

Table 2 on the next page indicates the ways in which conditions and logical 

operators may be combined and parenthesized. There must be a one-to-one 

correspondence between left and right parentheses such that each left paren¬ 

thesis is to the left of its corresponding right parenthesis. 

11-46 



Nucleus - Abbreviated Combined Relation Conditions 

Given the follow¬ 

ing element 

Location in 

conditional 

expression 

In a left-to-right sequence of elements: 

Element, when not 

first, may be 

immediately pre¬ 

ceded by only: 

Element, when not 

last, may be 

immediately fol¬ 

lowed by only: 
First Last 

simple-condition Yes Yes OR, NOT, AND, ( OR, AND, ) 

OR or AND No No simple-condition, ) simple-condition, 

NOT, ( 

NOT Yes No OR, AND, ( simple-condition, ( 

( Yes No OR, NOT, AND, ( simple-condition, 

NOT, ( 

) No Yes simple-condition, ) OR, AND, ) 

Table 2. Combinations of Conditions, Logical Operators, and Parentheses 

Thus, the element pair 'OR NOT' is permissible while the pair 'NOT OR' is 

not permissible; 'NOT (' is permissible while 'NOT NOT' is not permissible. 

5.2.3 Abbreviated Combined Relation Conditions 

When simple or negated simple relation conditions are combined with logical 

connectives in a consecutive sequence such that a succeeding relation condition 

contains a subject or subject and relational operator that is common with the 

preceding relation condition, and no parentheses are used within such a 

consecutive sequence, any relation condition except the first may be abbre¬ 

viated by: 

(1) The omission of the subject of the relation condition, or 

(2) The omission of the subject and relational operator of the relation 

condition. 

The format for an abbreviated combined relation condition is: 

relation-condition [relational-operator] object 

Within a sequence of relation conditions both of the above forms of abbre¬ 

viation may be used. The effect of using such abbreviations is as if the last 

preceding stated subject were inserted in place of the omitted subject, and 

the last stated relational operator were inserted in place of the omitted 

relational operator. The result of such implied insertion must comply with 

the rules of Table 2, Combinations of Conditions, Logical Operators, and 

Parentheses, shown above. This insertion of an omitted subject and/or 

11-47 



Nucleus - Condition Evaluation Rules 

relational operator terminates once a complete simple condition is encountered 

within a complex condition. 

The interpretation applied to the use of the word 'NOT* in an abbreviated 

combined relation condition is as follows: 

(1) If the word immediately following 'NOT' is 'GREATER', '>’, 'LESS', 

'<’, 'EQUAL', '=', then the 'NOT' participates as part of the relational 

operator; otherwise 

(2) The 'NOT' is interpreted as a logical operator and, therefore, the 

implied insertion of subject or relational operator results in a negated 

relation condition. 

Some examples of abbreviated combined and negated combined relation 

conditions and expanded equivalents follow. 

Abbreviated Combined 

Relation Condition 

a > b AND NOT < c OR d 

a NOT EQUAL b OR c 

NOT a = b OR c 

NOT (a GREATER b OR < c) 

NOT (a NOT > b AND c AND NOT d) 

Expanded Equivalent 

((a > b) AND (a NOT < c)) OR (a NOT < d) 

(a NOT EQUAL b) OR (a NOT EQUAL c) 

(NOT (a = b)) OR (a = c) 

NOT ((a GREATER b) OR (a < c)) 

NOT ((((a NOT > b) AND (a NOT > c)) AND 

(NOT (a NOT > d)))) 

5.2.4 Condition Evaluation Rules 

Parentheses may be used to specify the order in which individual conditions 

of complex conditions are to be evaluated when it is necessary to depart from 

the implied evaluation precedence. Conditions within parentheses are evaluated 

first, and, within nested parentheses, evaluation proceeds from the least 

inclusive condition to the most inclusive condition. When parentheses are not 

used, or parenthesized conditions are at the same level of inclusiveness, the 

following hierarchical order of logical evaluation is implied until the final 

truth value is determined: 

(1) Values are established for arithmetic expressions. (See Formation 

and Evaluation Rules on page 11-39.) 

(2) Truth values for simple conditions are established in the following 

order: 

relation (following the expansion of any abbreviated relation 

condition) 

class 

condition-name 

switch-status 

sign 

11-48 



Nucleus - Condition Evaluation Rules 

(3) Truth values for negated simple conditions are established. 

(4) Truth values for combined conditions are established: 

'AND' logical operators, followed by 

'OR* logical operators. 

(5) Truth values for negated combined conditions are established. 

(6) When the sequence of evaluation is not completely specified by paren¬ 

theses, the order of evaluation of consecutive operations of the same 

hierarchical level is from left to right. 

11-49 



Nucleus - Options & Rules for Formats 

5.3 COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS 

In the statement descriptions that follow, several phrases appear frequent- 

ly: the ROUNDED phrase, the SIZE ERROR phrase,|and the CORRESPONDING phrase. 

In the discussion below, a resultant-identifier is that identifier associ¬ 

ated with a result of an arithmetic operation. 

5.3.1 The ROUNDED Phrase 

If, after decimal point alignment, the number of places in the fraction of 

the result of an arithmetic operation is greater than the number of places 

provided for the fraction of the resultant-identifier, truncation is relative 

to the size provided for the resultant-identifier. When rounding is requested, 

the absolute value of the resultant-identifier is increased by one (1) when¬ 

ever the most significant digit of the excess is greater than or equal to 

five (5) . 

When the low-order integer positions in a resultant-identifier are repre¬ 

sented by the character ' P* in the picture for that resultant-identifier, 

rounding or truncation occurs relative to the rightmost integer position for 

which storage is allocated. 

5.3.2 The SIZE ERROR Phrase 

If, after decimal point alignment, the absolute value of a result exceeds 

the largest value that can be contained in the associated resultant-identifier, 

a size error condition exists. Division by zero always causes a size error 

condition. The size error condition applies only to the final results of an 

arithmetic operation and does not apply to intermediate results, except in 

the MULTIPLY and DIVIDE statements, in which case the size error condition 

applies to the intermediate results as well. If the ROUNDED phrase is speci¬ 

fied, rounding takes place before checking for size error. When such a size 

error condition occurs, the subsequent action depends on whether or not the 

SIZE ERROR phrase is specified. 

(1) If the SIZE ERROR phrase is not specified and a size error condition 

occurs, the value of those resultant-identifier(s) affected is undefined. 

Values of resultant-identifier(s) for which no size error condition occurs 

are unaffected by size errors that occur for other resultant-identifier(s) 

during execution of this operation. 

(2) If the SIZE ERROR phrase is specified and a size error condition 

occurs, then the values of resultant-identifier(s) affected by the size errors 

are not altered. Values of resultant-identifier(s) for which no size error 

condition occurs are unaffected by size errors that occur for other resultant- 

identifier(s) during execution of this operation. After completion of the 

execution of this operation, the imperative statement in the SIZE ERROR phrase 

is executed. 

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT state¬ 

ment with the CORRESPONDING phrase, if any of the individual operations produces 

a size error condition, the imperative statement in the SIZE ERROR phrase is 

not executed until all of the individual additions or subtractions are completed. 

11-50 



Nucleus - Options & Rules for Formats 

5.3.3 The CORRESPONDING Phrase 

For the purpose of this discussion, and d^ must each be identifiers that 
refer to group items. A pair of data items, one from d^ and one from cor¬ 
respond if the following conditions exist: 

(1) A data item in d^ and a data item in d^ are not designated by the key 
word FILLER and have the same data-name and the same qualifiers up to, but not 
including, d^ and d^. 

(2) At least one of the data items is an elementary data item in the case 
of a MOVE statement with the CORRESPONDING phrase; and both of the data items 
are elementary numeric data items in the case of the ADD statement with the 
CORRESPONDING phrase or the SUBTRACT statement with the CORRESPONDING phrase. 

(3) The description of d1 and d must not contain level-number 66, 77, or 
88 or the USAGE IS INDEX clause. 1 

(4) A data item that is subordinate to d^ or d2 and contains a REDEFINES, 
RENAMES, OCCURS or USAGE IS INDEX clause is ignored, as well as those data 
items subordinate to the data item that contains the REDEFINES, OCCURS, or 
USAGE IS INDEX clause. However, d^ and d£ may have REDEFINES or OCCURS clauses 
or be subordinate to data items with REDEFINES or OCCURS clauses. (See page 
III-2, The OCCURS Clause.) 

5.3.4 The Arithmetic Statements 

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and 
SUBTRACT statements. They have several common features. 

(1) The data descriptions of the operands need not be the same; any 
necessary conversion and decimal point alignment is supplied throughout the 
calculation. 

(2) The maximum size of each operand is eighteen (18) decimal digits. The 
composite of operands, which is a hypothetical data item resulting from the 
superimposition of specified operands in a statement aligned on their decimal 

points (see page 11-55, The ADD Statement; page 11-61, The DIVIDE Statement; 
page 11-77, The MULTIPLY Statement; and page 11-89, The SUBTRACT Statement) 
must not contain more than eighteen decimal digits. 

5.3.5 Overlapping Operands 

When a sending and a receiving item in an arithmetic statement or an 
INSPECT, MOVE, SET,! STRING, or UNSTRING 1 statement share a part of their stor¬ 
age areas, the result of the execution of such a statement is undefined. 

5.3.6 Multiple Results in Arithmetic Statements 

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have multi¬ 
ple results. Such statements behave as though they had been written in the 
following way: 

11-51 



Nucleus - Options & Rules for Formats 

(T5 A statement which perforins all arithmetic necessary to arrive at the 

result to be stored in the receiving items, and stores that result in a 

temporary storage location. 

(2) A sequence of statements transferring or combining the value of this 

temporary location with a single result. These statements are considered to 

be written in the same left-to-right sequence that the multiple results are 

listed. 

The result of the statement 

ADD a, b, c TO c, d (c) , e 

is equivalent to 

ADD a, b, c GIVING temp 

ADD temp TO c 

ADD temp TO d (c) 

ADD temp TO e 

where 'temp* is an intermediate result item provided by the implementor. 

5.3.7 Incompatible Data 

Except for the class condition (see page 11-43, The Class Condition), when 

the contents of a data item are referenced in the Procedure Division and the 

contents of that data item are not compatible with the class specified for 

that data item by its PICTURE clause, then the result of such a reference is 

undefined. 

11-52 



Nucleus - ACCEPT 

5.4 THE ACCEPT STATEMENT 

5.4.1 Function 

The ACCEPT statement causes low volume data to be made available to the 

specified data item. 

5.4.2 General Format 

Format 1 

ACCEPT identifier ["FROM mnemonic-name] 

Format 2 

DATE''' 

ACCEPT identifier FROM \ DAY 

TIME 

• 

5.4.3 Syntax Rules 

(1) The mnemonic-name in Format 1 must also be specified in the SPECIAL- 

NAMES paragraph of the Environment Division and must be associated with a 

hardware device. 

5.4.4 General Rules 

FORMAT 1 

(1) The ACCEPT statement causes the transfer of data from the hardware 

device. This data replaces the contents of the data item named by the 

identifier. 

(2) The implementor will define, for each hardware device, the size of a 

data transfer. 

(3) If a hardware device is capable of transferring data of the same size 

as the receiving data item, the transferred data is stored in the receiving 

data item. 

(4) If a hardware device is not capable of transferring data of the same 

size as the receiving data item, then: 

a. If the size of the receiving data item (or of the portion of the 

receiving data item not yet currently occupied by transferred data) exceeds 

the size of the transferred data, the transferred data is stored aligned to 

the left in the receiving data item!(or the portion of the receiving data 

item not yet occupied, and additional data is requested. In Level 1, only one 

transfer of data is provided. 

11-53 



Nucleus - ACCEPT 

If the size of the transferred data exceeds the size of the 

receiving data item (or of the portion of the receiving data item not vet 

occupied by transferred data), only the leftmost characters of the transferred 

data are stored in the receiving data item (or in the portion remaining).! The 

remaining characters of the transferred data which do not fit into the receiv¬ 

ing data item are ignored. 

(5) If|the FROM phrase is not given, the device that the implementor speci¬ 

fies as standard is used. 

FORMAT 2 

(6) The ACCEPT statement causes the information requested to be trans¬ 

ferred to the data item specified by identifier according to the rules of 

the MOVE statement. DATE, DAY, and TIME are conceptual data items and, there¬ 

fore, are not described in the COBOL program. 

(7) DATE is composed of the data elements year of century, month of year, 

and day of month. The sequence of the data element codes shall be from high 

order to low order (left to right), year of century, month of year, and day 

of month. Therefore, July 1, 1968 would be expressed as 680701. DATE, when 

accessed by a COBOL program, behaves as if it had been described in the COBOL 

program as an unsigned elementary numeric integer data item six digits in 

length. 

(8) DAY is composed of the data elements year of century and day of year. 

The sequence of the data element codes shall be from high order to low order 

(left to right) year of century, day of year. Therefore, July 1, 1968 would 

be expressed as 68183. DAY, when accessed by a COBOL program, behaves as if 

it had been described in a COBOL program as an unsigned elementary numeric 

integer data item five digits in length. 

(9) TIME is composed of the data elements hours, minutes, seconds and 

hundredths of a second. TIME is based on elapsed time after midnight on a 

24-hour clock basis — thus, 2:41 p.m. would be expressed as 14410000. TIME, 

when accessed by a COBOL program behaves as if it had been described in a 

COBOL program as an unsigned elementary numeric integer data item eight digits 

in length. The minimum value of TIME is 00000000; the maximum value of TIME 

is 23595999. If the hardware does not have the facility to provide fractional 

parts of TIME, the value is converted to the closest decimal approximation. 

11-54 



Nucleus - ADD 

5.5 THE ADD STATEMENT 

5.5.1 Function 

The ADD statement causes two or more numeric operands to be summed and the 

result to be stored. 

5.5.2 General Format 

Format 1 

ADD 
(identifier-1] 

(literal-1 J 
, identifier-2 

, literal-2 
TO identifier-m ROUNDED [rounded] 

identifier-n ^ ROUNDED] j ... [; ON SIZE ERROR imperative-statement] 

Format 2 

identifier-1] (identifier-2] , identifier-3 

literal-1 J * \ literal-2 J , literal-3 

GIVING identifier-m [rounded] , identifier-n [rounded] 

[; ON SIZE ERROR imperative-statement] 

Format 3 

ADD |c'QRRESP0NI)INGj identifier-1 12. identifier-2 [ ROUNDED] 

[; ON SIZE ERROR imperative-statement] 

5.5.3 Syntax Rules 

(1) In Formats 1 

numeric item, except 

GIVING must refer to 

numeric edited item. 

1 item., 

and 2, each identifier must refer to an elementary 

that in Format 2 each identifier following the word 

either an elementary numeric item or an elementary 

In Format 3, each identifier must refer to a group 

(2) Each literal must be a numeric literal. 

(3) The composite of operands must not contain more than 18 digits (see 

page 11-51, The Arithmetic Statements). 

a. In Format 1 the composite of operands is determined by using all 

of the operands in a given statement. 

b. In Format 2 the composite of operands is determined by using all 

of the operands in a given statement excluding the data items that follow the 

word GIVING. 

11-55 



Nucleus - ADD 

c. In Format 3 the composite of operands is determined separately for 

each pair of corresponding data items. 

(4) CORR is an abbreviation for CORRESPONDING._ 

5.5.4 General Rules 

(1) See page 11-50, The ROUNDED Phrase; page 11-50, The SIZE ERROR Phrase; 

page II-5I, The CORRESPONDING Phrase;! page 11-51, The Arithmetic Statements; 

page 11-51, Overlapping Operands;|and page 11-51, Multiple Results in Arithmetic 

Statements. 

(2) If Format 1 is used, the values of the operands preceding the word TO 

are added together, then the sum is added to the current value of identifier-m 

storing the result immediately into identifier-m, and repeating this process 

respectively for each operand following the word TO. 

(3) If Format 2 is used, the values of the operands preceding the word 

GIVING are added together, then the sum is stored as the new value of[each I 

identifier-m, identifier-n, ...» the resultant-identifiers. 

(4) If Format 3 is used, data items in identifier-1 are added to and 

stored in corresponding data items in identifier-2. 

(5) The compiler insures that enough places are carried so as not to lose 

any significant digits during execution. 

11-56 



Nueleus - ALTER 

5.6 THE ALTER STATEMENT 

5.6.1 Function 

The ALTER statement modifies a predetermined sequence of operations. 

5.6.2 General Format 

ALTER procedure-name-1 TO [ PROCEED TO] pro cedure-name-2 

|\ procedure-name-3 TO ‘proceed to 1 procedure-name-4 ] ... 

5.6.3 Syntax Rules 

(1) Each procedure-name-1, procedure-name-3, ... , is the name of a para¬ 

graph that contains a single sentence consisting of a GO TO statement without 

the DEPENDING phrase. 

(2) Each procedure-name-2, procedure-name-4, is the name of a para¬ 

graph or section in the Procedure Division. 

5.6.4 General Rules 

(1) Execution of the ALTER statement modifies the GO TO statement in the 

so that subsequent paragraph named procedure-name-1, procedure-name-3, 

executions of the modified GO TO statements cause transfer of control to 

procedure-name-2, procedure-name-4, ..., respectively. Modified GO TO state¬ 

ments in independent segments may, under some circumstances, be returned to 

their initial states (see page IX-2, Independent Segments). 

(2) A GO TO statement in a section whose segment-number is greater than or 

equal to 50 must not be referred to by an ALTER statement in a section with a 

different segment-number. 

All other uses of the ALTER statement are valid and are performed even 

if procedure-name-l,| procedure-name-3[ is in an overlayable fixed segment. 

(See Section IX, Segmentation.) 

11-57 



Nucleus - COMPUTE 

I 5.7 THE COMPUTE STATEMENT 

5.7.1 Function 

The COMPUTE statement assigns to one or more data items the value of an 

arithmetic expression. 

5.7.2 General Format 

COMPUTE identifier-1 [ ROUNDED] 

= arithmetic-expression [; 

5.7.3 Syntax Rules 

(1) Identifiers that appear only to the left of = must refer to either an 

elementary numeric item or an elementary numeric edited item. 

5.7.4 General Rules 

(1) See page 11-50, The ROUNDED Phrase, page 11-50, The SIZE ERROR Phrase; 

page 11-51, The Arithmetic Statements; page 11-51, Overlapping Operands; and 

page 11-51, Multiple Results in Arithmetic Statements. 

(2) An arithmetic expression consisting of a single identifier or literal 

provides a method of setting the values of identifier-1, identifier-2, etc., 

equal to the value of the single identifier or literal. (See page 11-39, 

Arithmetic Expressions.) 

(3) If more than one identifier is specified for the result of the opera¬ 

tion, that is preceding =, the value of the arithmetic expression is computed, 

and then this value is stored as the new value of each of identifier-1, 

identifier-2, etc., in turn. 

(4) The COMPUTE statement allows the user to combine arithmetic operations 

without the restrictions on composite of operands and/or receiving data items 

imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE. 

Thus, each implementor will indicate the techniques used in handling 

arithmetic expressions. 

[•* identifier-2 [ROUNDED [ROUNDED] "j ... 

ON SIZE ERROR imperative-statement] 

11-58 



Nucleus - DISPLAY 

5.8 THE DISPLAY STATEMENT 

5.8.1 Function 

The DISPLAY statement causes low volume data to be transferred to an 

appropriate hardware device. 

5.8.2 General Format 

{“"era"!"'1) 
, identifier-2 

, literal-2 
^UPON mnemonic-namej 

5.8.3 Syntax Rules 

(1) The mnemonic-name is associated with a hardware device in the SPECIAL- 

NAMES paragraph in the Environment Division._ 

(2) Each literal may be any figurative constant, except ALL. 

(3) If the literal is numeric, then it must be an unsigned integer. 

5.8.4 General Rules 

(1) The DISPLAY statement causes the contents of each operand to be trans¬ 

ferred to the hardware device in the order listed. 

(2) The implementor will define, for each hardware device, the size of a 

data transfer. 

(3) If a figurative constant is specified as one of the operands, only a 

single occurrence of the figurative constant is displayed. 

(4) If the hardware device is capable of receiving data of the same size 

as the data item being transferred, then the data item is transferred. 

(5) If the hardware device is not capable of receiving data of the same 

size as the data item being transferred, then one of the following applies: 

a. If the size of the data item being transferred exceeds the size 

of the data that the hardware device is capable of receiving in a single 

transfer, the data beginning with the leftmost character is stored aligned to 

the left in the receiving hardware device and additional data is requested. 

In Level 1, only one transfer of data is provided. 

b. If the size of the data item that the hardware device is capable 

of receiving exceeds the size of the data being transferred, the transferred 

data is stored aligned to the left in the receiving hardware device. 

(6) When a DISPLAY statement contains more than one operand, the size of 

the sending item is the sum of the sizes associated with the operands, and the 

values of the operands are transferred in the sequence in which the operands 

are encountered. 

11-59 



Nucleus - DISPLAY 

. - —| 

(7) |If the UPON phrase is not used,|the implementor's standard display 

device is used. device is used. 

11-60 



Nucleus - DIVIDE 

5.9 THE DIVIDE STATEMENT 

5.9.1 Function 

The DIVIDE statement divides one numeric data item into others and sets the 

values of data items equal to the quotient and remainder.! 

5.9.2 General Format 

Format 1 

DIVIDE liberal-!1 ^ INTQ identifier-2 [ROUNDED] 

identifier-3 [ ROUNDED]" ... [; ON SIZE ERROR imperative-statement] 

Format 2 

DIVIDE i 
'identifier-1 

literal-1 j 
INTO • liLntll1^r-2} GIVING identifier-3 [ROUNDED] 

[, identifier-4 [ ROUNDED] ... f; ON SIZE ERROR imperative-statement] 

Format 3 

DIVIDE ■ 
identifier-f 

literal-1 
BY (j^ntl[1!r 2J GIVING identifier-3 [ROUNDED] 

[, identifier-4 fROUNDEDl] [; ON SIZE ERROR imperative-statement] 

Format 4 

DIVIDE jiiteral-l^1} INTQ {literal-^"2] GIVING identifier-3 [ROUNDED] 

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement] 

Format 5 

DIVIDE liiteral1^”1) — {literal-^”2} GIVING identifier-3 [ ROUNDED] 

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement] 

5.9.3 Syntax Rules 

(1) Each identifier must refer to an elementary numeric item, except that 

any identifier associated with the GIVING or REMAINDERI phrase must refer to 

either an elementary numeric item or an elementary numeric edited item. 

11-61 



Nucleus - DIVIDE 

(2) Each literal must be a numeric literal. 

(3) The composite of operands, which is the hypothetical data item result¬ 

ing from the superimposition of all receiving data items (except the REMAINDER 

data item) of a given statement aligned on their decimal points, must not 

contain more than eighteen digits._ 

6.9.4 General Rules 

(1) See page 11-50, The ROUNDED Phrase; page 11-50, The SIZE ERROR Phrase; 

page 11-51, The Arithmetic Statements; page 11-51, Overlapping Operands;|and 

page 11-51, Multiple Results in Arithmetic Statements;1 for a description of 

these functions. See also general rules 5 through 7 below for a discussion of 

the ROUNDED phrase and the SIZE ERROR phrase as they pertain to Formats 4 and 5. 

(2) When Format 1 is used, the value of identifier-1 or literal-1 is 

divided into the value of identifier-2. The value of the dividend (identifier-2) 

is replaced by this quotient; similarly for identifier-1 or literal-1 and 

identifier-3, etc.| 

(3) When Format 2 is used, the value of identifier-1 or literal-1 is 

divided into identifier-2 or literal-2 and the result is stored in 

identifier-3, identifier-4, etc. 

(4) When Format 3 is used, the value of identifier-1 or literal-1 is 

divided by the value of identifier-2 or literal-2 and the result is stored 

in identifier-3, identifier-4, etc.) 

(5) Formats 4 and 5 are used when a remainder from the division operation 

is desired, namely identifier-4. The remainder in COBOL is defined as the 

result of subtracting the product of the quotient (identifier-3) and the 

divisor from the dividend. If identifier-3 is defined as a numeric edited 

item, the quotient used to calculate the remainder is an intermediate field 

which contains the unedited quotient. If ROUNDED is used, the quotient used 

to calculate the remainder is an intermediate field which contains the quo¬ 

tient of the DIVIDE statement, truncated rather than rounded. 

(6) In Formats 4 and 5, the accuracy of the REMAINDER data item 

(identifier-4) is defined by the calculation described above. Appropriate 

decimal alignment and truncation (not rounding) will be performed for the 

content of the data item referenced by identifier-4, as needed. 

(7) When the ON SIZE ERROR phrase is used in Formats 4 and 5, the follow¬ 

ing rules pertain: 

a. If the size error occurs on the quotient, no remainder calcula¬ 

tion is meaningful. Thus, the contents of the data items referenced by both 

identifier-3 and identifier-4 will remain unchanged. 

b. If the size error occurs on the remainder, the contents of the 

data item referenced by identifier-4 remains unchanged. However, as with 

other instances of multiple results of arithmetic statements, the user will 

have to do his own analysis to recognize which situation has actually 

occurred. 

11-62 



Nucleus - ENTER 

5.10 THE ENTER STATEMENT 

5.10.1 Function 

The ENTER statement provides a means of allowing the use of more than one 

language in the same program. 

5.10.2 General Format 

ENTER language-name [ routine-name ] . 

5.10.3 Syntax Rules 

(1) The language-name may refer to any programming language which the 

implementor specifies may be entered through COBOL. Language-name is speci¬ 

fied by the implementor. 

(2) A routine-name is a COBOL word and it may be referred to only in an 

ENTER sentence. 

(3) The sentence ENTER COBOL must follow the last other-language state¬ 

ment in order to indicate to the compiler where a return to COBOL source 

language takes place. 

5.10.4 General Rules 

(1) The other language statements are executed in the object program as if 

they had been compiled into the object program following the ENTER statement. 

(2) Implementors will specify, for their compilers, all details on how the 

other language(s) are to be written. 

(3) If the statements in the entered language cannot be written in-line, 

a routine-name is given to identify the portion of the other language coding 

to be executed at this point in the procedure sequence. If the other 

language statements can be written in-line, routine-name is not used. 

11-63 



Nucleus - EXIT 

5.11 THE EXIT STATEMENT 

5.11.1 Function 

The EXIT statement provides a common end point for a series of procedures. 

5.11.2 General Format 

EXIT. 

5.11.3 Syntax Rules 

(1) The EXIT statement must appear in a sentence by itself. 

(2) The EXIT sentence must be the only sentence in the paragraph. 

5.11.4 General Rules 

(1) An EXIT statement serves only to enable the user to assign a procedure- 

name to a given point in a program. Such an EXIT statement has no other 

effect on the compilation or execution of the program. 

11-64 



Nucleus - GO TO 

5.12 THE GO TO STATEMENT 

5.12.1 Function 

The GO TO statement causes control to be transferred from one part of the 

Procedure Division to another. 

5.12.2 General Format 

Format 1 

GO TO j~[j procedure-name-1 

Format 2 

GO TO procedure-name-1 [, procedure-name-2] ... , procedure-name-n 

DEPENDING ON identifier 

5.12.3 Syntax Rules 

(1) Identifier is the name of a numeric elementary item described without 

any positions to the right of the assumed decimal point. 

(2) When a paragraph is referenced by an ALTER statement, that paragraph 

can consist only of a paragraph header followed by a Format 1 GO TO statement. 

(3) A Format 1 GO TO statement, without procedure-name-1, can only appear 

in a single statement paragraph.___ 

(4) If a GO TO statement represented by Format 1 appears in a consecutive 

sequence of imperative statements within a sentence, it must appear as the 

last statement in that sequence. 

5.12.4 General Rules 

(1) When a GO TO statement, represented by Format 1 is executed, control 

is transferred to procedure-name-1 or to another procedure-name if the GO TO 

statement has been modified by an ALTER statement. 

(2) If procedure-name-1 is not specified in Format 1, an ALTER statement, 

referring to this GO TO statement, must be executed prior to the execution 

of this GO TO statement. _ 

(3) When a GO TO statement represented by Format 2 is executed, control is 

transferred to procedure-name-1, procedure-name-2, etc., depending on the 

value of the identifier being 1, 2, ...» n. If the value of the identifier is 

anything other than the positive or unsigned integers 1, 2, ...» n, then no 

transfer occurs and control passes to the next statement in the normal 

sequence for execution. 

11-65 



Nucleus - IF 

5.13 THE IF STATEMENT 

5.13.1 Function 

The IF statement causes a condition (see page 11-41, Conditional Expressions) 

to be evaluated. The subsequent action of the object program depends on whether 

the value of the condition is true or false. 

5.13.2 General Format 

IF condition; 
( statement-1 

1 NEXT SENTENCE 

ELSE statement-2 

ELSE NEXT SENTENCE 

5.13.3 Syntax Rules 

(1) Statement-1 and statement-2 represent [either|an imperative statement 

or a conditional statement, and either may be followed by a conditional state¬ 

ment . 

(2) The ELSE NEXT SENTENCE phrase may be omitted if it immediately 

precedes the terminal period of the sentence. 

5.13.4 General Rules 

(1) When an IF statement is executed, the following transfers of control 

occur: 

a. If the condition is true, statement-1 is executed if specified. 

If statement-1 contains a procedure branching lor conditional!statement, control 

is explicitly transferred in accordance with the rules of that statement. (See 

page 1-103, Categories of Statements.) If statement-1 does not contain a pro¬ 

cedure branching lor conditional Istatement, the ELSE phrase, if specified, is 

ignored and control passes to the next executable sentence. 

b. If the condition is true and the NEXT SENTENCE phrase is specified 

instead of statement-1, the ELSE phrase, if specified, is ignored and control 

passes to the next executable sentence. 

c. If the condition is false, statement-1 or its surrogate NEXT 

SENTENCE is ignored, and statement-2, if specified, is executed. If statement-2 

contains a procedure branching lor conditional statement, control is explicitly 

transferred in accordance with the rules of that statement. (See page 1-103, 

Categories of Statements.) If statement-2 does not contain a procedure branch¬ 

ing EE^^d^^^all statement, control passes to the next executable sentence. 

If the ELSE statement-2 phrase is not specified, statement-1 is ignored and 

control passes to the next executable sentence. 

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is 

specified, statement-1 is ignored, if specified, and control passes to the 

next executable sentence. 

(2) Statement-1 and/or statement-2 may contain an IF statement. In this 

case the IF statement is said to be nested. 

11-66 



Nucleus - IF 

IF statements within IF statements may be considered as paired IF and 

ELSE combinations, proceeding from left to right. Thus, any ELSE encountered 

is considered to apply to the immediately preceding IF that has not been 

already paired with an ELSE. 

11-67 



Nucleus - INSPECT 

5.14 THE INSPECT STATEMENT 

5.14.1 Function 

The INSPECT statement provides the ability to tally (Format 1), replace 

(Format 2), or tally and replace (Format 3) occurrences of single characteis 

or groups of characters in a data item. 

5.14.2 General Format 

Format 1 

INSPECT identifier-1 TALLYING 

Format 2 

INSPECT identifier-1 REPLACING 

CHARACTERS BY 
( identifier-6l f( BEFORE') 

— \literal-4 1 AFTER ( 
INITIAL 

jidentifier-7 

(literal-5 

(all ( 
-j LEADING l 

(first j 

(identifier-5) 

’ jliteral-3 J ^ Uite 
(identifier-6 fier-6] (BEFORE) 

1-4 J (AFTER J 
INITIAL 

(identifier- 

\literal-5 I! E3 E3 

Format 3 

INSPECT identifier-1 TALLYING 

identifier-2 FOR FOR j, | (leading] {literal-/ l) [{ff|gP) 
] CHARACTERS —-- - ) 

INITIAL 
Jidentifier-4 

(.literal-2 }] E3 ED 

REPLACING 

CHARACTERS BY 

(ALL 

\LEADING 

(FIRST 

fidentifier-6[ 

1 literal-4 

■I (f before) t„t„711 J [{after-) initial 

(identif ier-7) 

(literal-5 J 

(identifier-5 

\literal-3 

(identifier-6) ((BEFORE) T„TTTAT 

^ Uiteral-4 j [j AFTeT] INITIAL 

(identifier- 

\literal 

11-68 



Nucleus - INSPECT 

5.14.3 Syntax Rules 

ALL FORMATS 

(1) Identifier-1 must reference either a group item or any category of ele¬ 

mentary item, described (either implicitly or explicitly) as usage is DISPLAY. 

(2) Identifier-3 ... identifier-n must reference either an elementary 

alphabetic, alphanumeric or numeric item described (either implicitly or 

explicitly) as usage is DISPLAY. 

(3) Each literal must be nonnumeric and may be any figurative constant, 

except ALL. 

(4) In Level 1, literal-1, literal-2, literal-3, literal-4, and literal-5, 

and the data items referenced by identifier-3, identifier-4, identifier-5, 

identifier-6, and identifier-7 must be one character in length. I Except as 

specifically noted in syntax and general rules, this restriction on length 

does not apply to Level 2. 

FORMATS 1 and 3 ONLY 

(5) Identifier-2 must reference an elementary numeric data item. 

(6) If either literal-1 or literal-2 is a figurative constant, the figura¬ 

tive constant refers to an implicit one character data item. 

FORMATS 2 AND 3 ONLY 

(7) The size of the data referenced by literal-4 or identifier-6 must be 

equal to the size of the data referenced by literal-3 or identifier-5. When 

a figurative constant is used as literal-4, the size of the figurative 

constant is equal to the size of literal-3 or the size of the data item 

referenced by identifier-5. 

(8) When the CHARACTERS phrase is used, literal-4, literal-5, or the size 

of the data item referenced by identifier-6, identifier-7 must be one character 

in length. 

(9) When a figurative constant is used as literal-3, the data referenced 

by literal-4 or identifier-6 must be one character in length. 

5.14.4 General Rules 

(1) Inspection (which includes the comparison cycle, the establishment of 

boundaries for the BEFORE or AFTER phrase, and the mechanism for tallying 

and/or replacing) begins at the leftmost character position of the data item 

referenced by identifier-1, regardless of its class, and proceeds from left to 

right to the rightmost character position as described in general rules 4 

through 6. 

(2) For use in the INSPECT statement, the contents of the data item refer¬ 

enced by identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 

or identifier-7 will be treated as follows: 

11-69 



Nucleus - INSPECT 

a. If any of identifier-1, identifier-3, identifier-4, identifier-5, 

identifier-6 or identifier-7 are described as alphanumeric, the INSPECT state¬ 

ment treats the contents of each such identifier as a character-string. 

b. If any of identifier-1, identifier-3, identifier-4, identifier-5, 

identifier-6 or identifier-7 are described as alphanumeric edited, numeric 

edited or unsigned numeric, the data item is inspected as though it had been 

redefined as alphanumeric (see general rule 2a) and the INSPECT statement 

had been written to reference the redefined data item. 

c. If any of the identifier-1, identifier-3, identifier-4, identi¬ 

fier-5, identifier-6 or identifier-7 are described as signed numeric, the data 

item is inspected as though it had been moved to an unsigned numeric data item 

of the same length and then the rules in general rule 2b had been applied. 

(See page 11-74, The MOVE Statement.) 

(3) In general rules 4 through 11 all references to literal-1, literal-2, 

literal-3, literal-4, and literal-5 apply equally to the contents of the data 

item referenced by identifier-3, identifier-4, identifier-5, identifier-6, 

and identifier-7, respectively. 

(4) During inspection of the contents of the data item referenced by 

identifier-1, each properly matched occurrence of literal-1 is tallied 

(Formats 1 and 3) and/or each properly matched occurrence of literal-3 is 

replaced by literal-4 (Formats 2 and 3). 

(5) The comparison operation to determine the occurrences of literal-1 

to be tallied and/or occurrences of literal-3 to be replaced, occurs as follows 

a. The operands of the TALLYING and REPLACING phrases are considered 

in the order they are specified in the INSPECT statement from left to right. 

The first literal-1, literal-3 is compared to an equal number of contiguous 

characters, starting with the leftmost character position in the data item 

referenced by identifier-1. Literal-1, literal-3 and that portion of the 

contents of the data item referenced by identifier-1 match if, and only if, 

they are equal, character for character. 

b. If no match occurs in the comparison of the first literal-1, 

literal-3, the comparison is repeated with each successive literal-1, literal-3 

if any, until either a match is found or there is no next successive literal-1, 

literal-3. When there is no next successive literal-1, literal-3, the char¬ 

acter position in the data item referenced by identifier-1 immediately to the 

right of the leftmost character position considered in the last comparison 

cycle is considered as the leftmost character position, and the comparison 

cycle begins again with the first literal-1, literal-3. 

c. Whenever a match occurs, tallying and/or replacing takes place as 

described in general rules 8 through 10. The character position in the data 

item referenced by identifier-1 immediately to the right of the rightmost 

character position that participated in the match is now considered to be the 

leftmost character position of the data item referenced by identifier-1, and 

the comparison cycle starts again with the first literal-1, literal-3. 

11-70 



Nucleus - INSPECT 

d. The comparison operation continues until the rightmost character 

position of the data item referenced by identifier-1 has participated in a 

match or has been considered as the leftmost character position. When this 

occurs, inspection is terminated. 

e. If the CHARACTERS phrase is specified, an implied one character 

operand participates in the cycle described in paragraphs 5a through 5d above, 

except that no comparison to the contents of the data item referenced by 

identifier-1 takes place. This implied character is considered always to 

match the leftmost character of the contents of the data item referenced by 

identifier-1 participating in the current comparison cycle. 

(6) The comparison operation defined in general rule 5 is affected by the 

BEFORE and AFTER phrases as follows: 

a. If the BEFORE or AFTER phrase is not specified, literal-1, literal-3 

or the implied operand of the CHARACTERS phrase participates in the comparison 

operation as described in general rule 5. 

b. If the BEFORE phrase is specified, the associated literal-1, 

literal-3 or the implied operand of the CHARACTERS phrase participates only 

in those comparison cycles which involve that portion of the contents of the 

data item referenced by identifier-1 from its leftmost character position up 

to, but not including, the first occurrence of literal-2, literal-5 within the 

contents of the data item referenced by identifier-1. The position of this 

first occurrence is determined before the first cycle of the comparison opera¬ 

tion described in general rule 5 is begun. If, on any comparison cycle, 

literal-1, literal-3 or the implied operand of the CHARACTERS phrase is not 

eligible to participate, it is considered not to match the contents of the 

data item referenced by identifier-1. If there is no occurrence of literal-2, 

literal-5 within the contents of the data item referenced by identifier-1, its 

associated literal-1, literal-3, or the implied operand of the CHARACTERS 

phrase participates in the comparison operation as though the BEFORE phrase 

had not been specified. 

c. If the AFTER phrase is specified, the associated literal-1, 

literal-3 or the implied operand of the CHARACTERS phrase may participate only 

in those comparison cycles which involve that portion of the contents of the 

data item referenced by identifier-1 from the character position immediately 

to the right of the rightmost character position of the first occurrence of 

literal-2, literal-5 within the contents of the data item referenced by iden¬ 

tifier- 1 and the rightmost character position of the data item referenced by 

identifier-1. The position of this first occurrence is determined before the 

first cycle of the comparison operation described in general rule 5 is begun. 

If, on any comparison cycle, literal-1, literal-3 or the implied operand of 

the CHARACTERS phrase is not eligible to participate, it is considered not to 

match the contents of the data item referenced by identifier-1. If there is 

no occurrence of literal-2, literal-5 within the contents of the data item 

referenced by identifier-1, its associated literal-1, literal-3, or the 

implied operand of the CHARACTERS phrase is never eligible to participate in 

the comparison operation. 

11-71 



Nucleus - INSPECT 

FORMAT 1 

(7) The contents of the data item referenced by identifier-2 is not 

initialized by the execution of the INSPECT statement. 

(8) The rules for tallying are as follows: 

a. If the ALL phrase is specified, the contents of the data item 

referenced by identifier-2 is incremented by one (1) for each occurrence of 

literal-1 matched within the contents of the data item referenced by 

identifier-1. 

b. If the LEADING phrase is specified, the contents of the data item 

referenced by identifier-2 is incremented by one (1) for each contiguous 

occurrence of literal-1 matched within the contents of the data item refer¬ 

enced by identifier-1, provided that the leftmost such occurrence is at the 

point where comparison began in the first comparison cycle in which literal-1 

was eligible to participate. 

c. If the CHARACTERS phrase is specified, the contents of the data 

item referenced by identifier-2 is incremented by one (1) for each character 

matched, in the sense of general rule 5e, within the contents of the data 

item referenced by identifier-1. 

FORMAT 2 

(9) The required words ALL, LEADING, and FIRST are adjectives that apply 

to each succeeding BY phrase until the next adjective appears, 

(10) The rules for replacement are as follows: 

a. When the CHARACTERS phrase is specified, each character matched, 

in the sense of general rule 5e, in the contents of the data item referenced 

by identifier-1 is replaced by literal-4. 

b. When the adjective ALL is specified, each occurrence of literal-3 

matched in the contents of the data item referenced by identifier-1 is replaced 
by literal-4. 

c. When the adjective LEADING is specified, each contiguous occurrence 

of literal-3 matched in the contents of the data item referenced by identifier-1 

is replaced by literal-4, provided that the leftmost occurrence is at the point 

where comparison began in the first comparison cycle in which literal-3 was 

eligible to participate. 

d. When the adjective FIRST is specified, the leftmost occurrence of 

literal-3 matched within the contents of the data item referenced by 

identifier-1 is replaced by literal-4. 

FORMAT 3 

(11) A Format 3 INSPECT statement is interpreted and executed as though two 

successive INSPECT statements specifying the same identifier-1 had been written 

with one statement being a Format 1 statement with TALLYING phrases identical 

11-72 



Nucleus - INSPECT 

to those specified in the Format 3 statement, and the other statement being a 

Format 2 statement with REPLACING phrases identical to those specified in the 

Format 3 statement. The general rules given for matching and counting apply 

to the Format 1 statement and the general rules given for matching and replac¬ 

ing apply to the Format 2 statement. 

5.14.5 Examples 

Following are six examples of the INSPECT statement: 

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A", count-1 FOR 

LEADING "A" BEFORE INITIAL "L". 

Where word = LARGE, count = 1, count-1 = 0. 

Where word = ANALYST, count = 0, count-1 = 1. 

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY "E" AFTER 

INITIAL "L". 

Where word = CALLAR, count = 2, word = CALLAR. 

Where word = SALAMI, count = 1, word = SALEMI. 

Where word = LATTER, count = 1, word = LETTER. 

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X". 

Where word = ARXAX, word = GRXAX. 

Where word = HANDAX, word = HGNDGX. 

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J" REPLACING ALL 

"A" BY "B". 

Where word = ADJECTIVE, count = 6, word = BDJECTIVE. 

Where word = JACK, count = 3, word = JBCK. 

Where word = JUJMAB, count = 5, word = JUJMBB. 

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "W" BY "Q" AFTER INITIAL "R". 

Where word = RXXBQWY, word = RYYZQQY. 

Where word = YZACDWBR, word = YZACDWZR. 

Where word = RAWRXEB, word = RAQRYEZ. 

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A". 

word before: 12 XZABCD 

word after: BBBBBABCD 

11-73 



Nucleus - MOVE 

5.15 THE MOVE STATEMENT 

5.15.1 Function 

The MOVE statement transfers data, in accordance with the rules of editing, 

to one or more data areas. 

5.15.2 General Format 

Format 1 

MOVE {identifier-O 
- (literal J 

TO identifier-2 [. identifier 

Format 2 

MOVE 
CORRESPONDING' 

CORR 
identifier-1 TO identifier-2 

5.15.3 Syntax Rules 

(1) Identifier-1 and literal represent the sending area; identifier-2, 

identifier-3, ..., represent the receiving area. 

(2) CORR is an abbreviation for CORRESPONDING. 

(3) When the CORRESPONDING phrase is used, both identifiers must be group 

items. 

(4) An index data item cannot appear as an operand of a MOVE statement. 

(See page III-5, The USAGE Clause.) 

5.15.4 General Rules 

(1) If the CORRESPONDING phrase is used, selected items within identifier-1 

are moved to selected items within identifier-2, according to the rules given 

in paragraph 5.3.3, The CORRESPONDING Phrase, on page 11-51. The results are 

the same as if the user had referred to each pair of corresponding identifiers 

in separate MOVE statements. 

(2) The data designated by the literal or identifier-1 is moved first to 

identifier-2, then to identifier-3. The rules referring to identifier-2 

also apply to the other receiving areas. Any subscripting or indexing associ¬ 

ated with identifier-2, ..., is evaluated immediately before the data is moved 

to the respective data item. 

Any subscripting or indexing associated with identifier-1 is evaluated 

only once, immediately before data is moved to the first of the receiving 

operands. The result of the statement 

MOVE a (b) TO b, c (b) 

11-74 



Nucleus - MOVE 

is equivalent to: 

MOVE a (b) TO temp 

MOVE temp TO b 

MOVE temp TO c (b) 

where 'temp' is an intermediate result item provided by the implementor. 

(3) Any MOVE in which the sending and receiving items are both elementary 

items is an elementary move. Every elementary item belongs to one of the fol¬ 

lowing categories: numeric, alphabetic, alphanumeric, numeric edited, alpha¬ 

numeric edited. These categories are described in the PICTURE clause. 

Numeric literals belong to the category numeric, and nonnumeric literals 

belong to the category alphanumeric. The figurative constant ZERO belongs to 

the category numeric. The figurative constant SPACE belongs to the category 

alphabetic. All other figurative constants belong to the category alphanumeric. 

The following rules apply to an elementary move between these 

categories: 

a. The figurative constant SPACE, a numeric edited, alphanumeric 

edited, or alphabetic data item must not be moved to a numeric or numeric 

edited data item. 

b. A numeric literal, the figurative constant ZERO, a numeric data 

item or a numeric edited data item must not be moved to an alphabetic data 

item. 

c. A non-integer numeric literal or a non-integer numeric data item 

must not be moved to an alphanumeric or alphanumeric edited data item. 

d. All other elementary moves are legal and are performed according 

to the rules given in general rule 4. 

(4) Any necessary conversion of data from one form of internal representa¬ 

tion to another takes place during legal elementary moves, along with any 

editing specified for the receiving data item: 

a. When an alphanumeric edited or alphanumeric item is a receiving 

item, alignment and any necessary space filling takes place as defined under 

Standard Alignment Rules on page 1-86. If the size of the sending item is 

greater than the size of the receiving item, the excess characters are trun¬ 

cated on the right after the receiving item is filled. If the sending item 

is described as being signed numeric, the operational sign will not be moved; 

if the operational sign occupied a separate character position (see page 11-31, 

The SIGN Clause), that character will not be moved and the size of the sending 

item will be considered to be one less than its actual size (in terms of 

standard data format characters). 

b. When a numeric or numeric edited item is the receiving item, 

alignment by decimal point and any necessary zero-filling takes place as 

defined under the Standard Alignment Rules on page 1-86, except where zeroes 

are replaced because of editing requirements. 

11-75 



Nucleus - MOVE 

1. When a signed numeric item is the receiving item, the sign of 
the sending item is placed in the receiving item. (See page 11-31, The SIGN 
Clause). Conversion of the representation of the sign takes place as neces¬ 
sary. If the sending item is unsigned, a positive sign is generated for the 
receiving item. 

2. When an unsigned numeric item is the receiving item, the 
absolute value of the sending item is moved and no operational sign is gener¬ 
ated for the receiving item. 

3. When a data item described as alphanumeric is the sending item, 
data is moved as if the sending item were described as an unsigned numeric 
integer. 

c. When a receiving field is described as alphabetic, justification 
and any necessary space-filling takes place as defined under the Standard Align¬ 
ment Rules on page 1-86. If the size of the sending item is greater than the 
size of the receiving item, the excess characters are truncated on the right 
after the receiving item is filled. 

(5) Any move that is not an elementary move is treated exactly as if it 
were an alphanumeric to alphanumeric elementary move, except that there is no 
conversion of data from one form of internal representation to another. In 
such a move, the receiving area will be filled without consideration for the 
individual elementary or group items contained within either the sending or 
receiving area, except as noted in general rule 4 of the OCCURS clause (see 
page III-4). 

(6) Data in the following chart summarizes the legality of the various 
types of MOVE statements. The general rule reference indicates the rule that 
prohibits the move or the behavior of a legal move. 

CATEGORY OF 
SENDING 

DATA ITEM 

CATEGORY OF RECEIVING DATA ITEM 

ALPHABETIC 
ALPHANUMERIC EDITED 
ALPHANUMERIC 

NUMERIC INTEGER 
NUMERIC NON-INTEGER 
NUMERIC EDITED 

ALPHABETIC Yes/4c Yes/4a No/3a 

ALPHANUMERIC Yes/4c Yes/4a Yes/4b 

ALPHANUMERIC EDITED Yes/4c Yes/4a No/3a 

NUMERIC 
INTEGER No/3b Yes/4a Yes/4b 

NON-INTEGER No/3b No/3c Yes/4b 

NUMERIC EDITED No/3b Yes/4a No/3a 

11-76 



Nucleus - MULTIPLY 

5.16 THE MULTIPLY STATEMENT 

5.16.1 Function 

The MULTIPLY statement causes numeric data items to be multiplied and sets 

the values of data items equal to the results. 

5.16.2 General Format 

Format 1 

MULTIPLY 
jidentifier- 

lliteral 

ier—1i r i 
_1 by identifier-2 [ROUNDED] 

|\ identifier-3 [ROUNDED ] ] • • • [; ON SIZE ERROR imperative-statement] 

Format 2 

MULTIPLY 
fidentifier-1 

\literal-l 

(identifier-2 

— \literal-2 
GIVING identifier-3 [ ROUNDED] 

, identifier-4 ^ROUNDED]J .». [; ON SIZE ERROR imperative-statement] 

5.16.3 Syntax Rules 

(1) Each identifier must refer to a numeric elementary item, except that 

in Format 2 each identifier following the word GIVING must refer to either an 

elementary numeric item or an elementary numeric edited item. 

(2) Each literal must be a numeric literal. 

(3) The composite of operands, which is that hypothetical data item 

resulting from the superimposition of all receiving data items of a given 

statement aligned on their decimal points, must not contain more than eighteen 

(18) digits. 

5.16.4 General Rules 

(1) See page 11-50, The ROUNDED Phrase; page 11-50, The SIZE ERROR Phrase; 

page 11-51, The Arithmetic Statements; page 11-51, Overlapping Operands:I and I 

[page 11-51, Multiple Results in Arithmetic Statements.! 

(2) When Format 1 is used, the value of identifier-1 or literal-1 is 

multiplied by the value of identifier-2. The value of the multiplier 

(identifier-2) is replaced by this product; similarly for identifier-1 or 

literal-1 and identifier-3, etc.1 

(3) When Format 2 is used, the value of identifier-1 or literal-1 is 

multiplied by identifier-2 or literal-2 and the result is stored in 

identifier-3, identifier-4, etc. 

11-77 



Nucleus - PERFORM 

5.17 THE PERFORM STATEMENT 

5.17.1 Function 

The PERFORM statement is used to transfer control explicitly to one or more 

procedures and to return control implicitly whenever execution of the specified 

procedure is complete. 

5.17.2 General Format 

Format 1 

PERFORM procedure-name-1 
{ THROUGH*! 

(THRU j 
procedure-name-2 

Format 2 

PERFORM procedure-name-1 
[through] 

(thru j 
procedure-name-2 

[identifier l] TIMES 
(integer-1 j 

Format 3 

PERFORM procedure-name-1 
[THROUGH] 

(THRU \ procedure-name-2 UNTIL condition-1 

Format 4 

PERFORM procedure-name-1 
"[through] 

(THRU j 
procedure-name-2 

varvtnp iidentifier-2] jidentifier 3 

- ^index-name-1j - Wral-1 

BY 
\identifier-4] 

AFTER 

(literal-2 

(identifier 

(index-name ~5| -3j 

► UNTIL condition-1 

[identifier-6> 

FROM ■< index-name-4 

[literal-3 

BY 7J UNTIL condition-2 

AFTER 

(literal-4 

fidentifier 

(index-name :5] FROM 

identifier-9 

index-name-6 

literal-5 

BY 
[identifier-10j 

(literal-6 J 
UNTIL condition-3 

11-78 



Nucleus - PERFORM 

5.17.3 Syntax Rules 

(1) Each identifier represents a numeric elementary item described in the 

Data Division. In Format 2, identifier-1 must be described as a numeric 

integer. 

(2) Each literal represents a numeric literal. 

(3) The words THRU and THROUGH are equivalent. 

(4) If an index-name is specified in the VARYING or AFTER phrase, then: 

a. The identifier in the associated FROM and BY phrases must be an 

integer data item. 

b. The literal in the associated FROM phrase must be a positive 

integer. 

c. The literal in the associated BY phrase must be a non-zero integer. 

(5) If an index-name is specified in the FROM phrase, then: 

a. The identifier in the associated VARYING or AFTER phrase must be 

an integer data item. 

b. The identifier in the associated BY phrase must be an integer 

data item. 

c. The literal in the associated BY phrase must be an integer. 

(6) Literal in the BY phrase must not be zero. 

(7) Condition-1, condition-2, condition-3 may be any conditional expression 

as described on page 11-41, Conditional Expressions. 

(8) Where procedure-name-1 and procedure-name-2 are both specified and 

either is the name of a procedure in the declarative section of the program 

then both must be procedure-names in the same declarative section. 

5.17.4 General Rules 

(1) The data items referenced by identifier-4, identifier-7, and identi¬ 

fier-10 must not have a zero value. 

(2) If an index-name is specified in the VARYING or AFTER phrase, and an 

identifier is specified in the associated FROM phrase, then the data item 

referenced by the identifier must have a positive value. 

(3) When the PERFORM statement is executed, control is transferred to the 

first statement of the procedure named procedure-name-1 (except as indicated 

in general rules 6b, 6c, and 6d). This transfer of control occurs only once 

for each execution of a PERFORM statement. For those cases where a transfer 

of control to the named procedure does take place, an implicit transfer of 

control to the next executable statement following the PERFORM statement is 

established as follows: 



Nucleus - PERFORM 

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is 

not specified, then the return is after the last statement of procedure-name-1. 

b. If procedure-name-1 is a section-name and procedure-name-2 is not 

specified, then the return is after the last statement of the last paragraph 

in procedure-name-1. 

c. If procedure-name-2 is specified and it is a paragraph-name, then 

the return is after the last statement of the paragraph. 

d. If procedure-name-2 is specified and it is a section-name, then 

the return is after the last statement of the last paragraph in the section. 

(4) There is no necessary relationship between procedure-name-1 and 

procedure-name-2 except that a consecutive sequence of operations is to be 

executed beginning at the procedure named procedure-name-1 and ending with 

the execution of the procedure named procedure-name-2. In particular, GO TO 

and PERFORM statements may occur between procedure-name-1 and the end of 

procedure-name-2. If there are two or more logical paths to the return point, 

then procedure-name-2 may be the name of a paragraph consisting of the EXIT 

statement, to which all of these paths must lead. 

(5) If control passes to these procedures by means other than a PERFORM 

statement, control will pass through the last statement of the procedure to 

the next executable statement as if no PERFORM statement mentioned these 

procedures. 

(6) The PERFORM statements operate as follows with rule 5 above applying 

to all formats: 

a. Format 1 is the basic PERFORM statement. A procedure referenced 

by this type of PERFORM statement is executed once and then control passes 

to the next executable statement following the PERFORM statement. 

b. Format 2 is the PERFORM...TIMES. The procedures are performed the 

number of times specified by integer-1 or by the initial value of the data item 

referenced by identifier-1 for that execution. If, at the time of execution of 

a PERFORM statement, the value of the data item referenced by identifier-1 is 

equal to zero or is negative, control passes to the next executable statement 

following the PERFORM statement. Following the execution of the procedures 

the specified number of times, control is transferred to the next executable 

statement following the PERFORM statement. 

During execution of the PERFORM statement, references to identi¬ 

fier-1 cannot alter the number of times the procedures are to be executed from 

that which was indicated by the initial value of identifier-1. 

c. Format 3 is the PERFORM...UNTIL. The specified procedures are 

performed until the condition specified by the UNTIL phrase is true. When the 

condition is true, control is transferred to the next executable statement 

after the PERFORM statement. If the condition is true when the PERFORM state¬ 

ment is entered, no transfer co procedure-name-1 takes place, and control is 

passed to the next executable statement following the PERFORM statement. 

11-80 



Nucleus - PERFORM 

d. Format 4 is the PERFORM...VARYING. This variation of the PERFORM 

statement is used to augment the values referenced by one or more identifiers 

or index-names in an orderly fashion during the execution of a PERFORM state¬ 

ment. In the following discussion, every reference to identifier as the 

object of the VARYING, AFTER and FROM (current value) phrases also refers to 

index-names. When index-name appears in a VARYING and/or AFTER phrase, it is 

initialized and subsequently augmented (as described below) according to the 

rules of the SET statement. When index-name appears in the FROM phrase, 

identifier, when it appears in an associated VARYING or AFTER phrase, is 

initialized according to the rules of the SET statement; subsequent augmenta¬ 

tion is as described below. 

In Format 4, when one identifier is varied, identifier-2 is set to 

the value of literal-1 or the current value of identifier-3 at the point of 

initial execution of the PERFORM statement; then, if the condition of the UNTIL 

phrase is false, the sequence of procedures, procedure-name-1 through procedure- 

name-2, is executed once. The value of identifier-2 is augmented by the 

specified increment or decrement value (the value of identifier-4 or literal-2) 

and condition-1 is evaluated again. The cycle continues until this condition 

is true; at which point, control is transferred to the next executable states 

ment following the PERFORM statement. If condition-1 is true at the beginning 

of execution of the PERFORM statement, control is transferred to the next 

executable statement following the PERFORM statement. 

ENTRANCE 

Flowchart for the VARYING Phrase of a PERFORM Statement Having One Condition 

11-81 

I 



Nucleus - PERFORM 

In Format 4, when two identifiers are varied, identifier-2 and 

identifier-5 are set to the current value of identifier-3 and identifier-6, 

respectively. After the identifiers have been set, condition-1 is evaluated; 

if true, control is transferred to the next executable statement; if false, 

condition-2 is evaluated. If condition-2 is false, procedure-name-1 through 

procedure-name-2 is executed once, then identifier-5 is augmented by identi¬ 

fier-7 or literal-4 and condition-2 is evaluated again. This cycle of 

evaluation and augmentation continues until this condition is true. When 

condition-2 is true, identifier-5 is set to the value of literal-3 or the 

current value of identifier-6, identifier-2 is augmented by identifier-4 and 

condition-1 is re-evaluated. The PERFORM statement is completed if condition-1 

is true; if not, the cycles continue until condition-1 is true. 

During the execution of the procedures associated with the PERFORM 

statement, any change to the VARYING variable (identifier-2 and index-name-1), 

the BY variable (identifier-4), the AFTER variable (identifier-5 and index- 

name-3) , or the FROM variable (identifier-3 and index-name-2) will be taken 

into consideration and will affect the operation of the PERFORM statement. 

ENTRANCE 

Flowchart for the VARYING Phrase of a PERFORM Statement Having Two Conditions 

At the termination of the PERFORM statement identifier-5 contains 

the current value of identifier-6. Identifier-2 has a value that exceeds the 

last used setting by an increment or decrement value, unless condition-1 was 

true when the PERFORM statement was entered, in which case identifier-2 

contains the current value of identifier-3. 

When two identifiers are varied, identifier-5 goes through a 

complete cycle (FROM, BY, UNTIL) each time identifier-2 is varied. 

11-82 



Nucleus - PERFORM 

For three identifiers the mechanism is the same as for two identi¬ 

fiers except that identifier-8 goes through a complete cycle each time that 

identifier-5 is augmented by identifier-7 or literal-4, which in turn goes 

through a complete cycle each time identifier-2 is varied. 

ENTRANCE 

Flowchart for the VARYING Phrase of a PERFORM Statement Having Three Conditions. 

After the completion of a Format 4 PERFORM statement, identifier-5 

and identifier-8 contain the current value of identifier-6 and identifier-9 
respectively. Identifier-2 has a value that exceeds its last used setting by 

one increment or decrement value, unless condition-1 is true when the PERFORM 

statement is entered, in which case identifier-2 contains the current value of 

identifier-3. 

11-83 



Nucleus - PERFORM 

(7) If a sequence of statements referred to by a PERFORM statement includes 

another PERFORM statement, the sequence of procedures associated with the 

included PERFORM must itself either be totally included in, or totally excluded 

from, the logical sequence referred to by the first PERFORM. Thus, an active 

PERFORM statement, whose execution point begins within the range of another 

active PERFORM statement, must not allow control to pass to the exit of the 

other active PERFORM statement; furthermore, two or more such active PERFORM 

statements may not have a common exit. See the illustration below. 

x PERFORM a THRU m 

a - 

d PERFORM f THRU j 

h 

m - 

f - 

j - 

x PERFORM a THRU m 

a - 

f - 

m- 

j - 

d PERFORM f THRU j 

x PERFORM a THRU m 

a -- 

d PERFORM f THRU j 

f - 

j - 

m - 

(8) A PERFORM statement that appears in a section that is not in an inde¬ 

pendent segment can have within its range, in addition to any declarative 

sections whose execution is caused within that range, only one of the following 

a. Sections and/or paragraphs wholly contained in one or more 

non-independent segments. 

b. Sections and/or paragraphs wholly contained in a single independent 

segment. 

(9) A PERFORM statement that appears in an independent segment can have 

within its range, in addition to any declarative sections whose execution is 

caused within that range, only one of the following: 

a. Sections and/or paragraphs wholly contained in one or more 

non-independent segments. 

b. Sections and/or paragraphs wholly contained in the same independent 

segment as that PERFORM statement. 

11-84 



Nucleus - STOP 

5.18 THE STOP STATEMENT 

5.18.1 Function 

The STOP statement causes a permanent or temporary suspension of the 

execution of the object program. 

5.18.2 General Format 

STOP 

5.18.3 Syntax Rules 

(1) The literal may be numeric or nonnumeric or may be any figurative 

constant, except ALL. 

(2) If the literal is numeric, then it must be an unsigned integer. 

(3) If a STOP RUN statement appears in a consecutive sequence of impera¬ 

tive statements within a sentence, it must appear as the last statement in 

that sequence. 

5.18.4 General Rules 

(1) If the RUN phrase is used, then the ending procedure established by 

the installation and/or the compiler is instituted. 

(2) If STOP literal is specified, the literal is communicated to the 

operator. Continuation of the object program begins with the execution of 

the next executable statement in sequence. 

11-85 



Nucleus - STRING 

5.19 THE STRING STATEMENT 

5.19.1 Function 

The STRING statement provides juxtaposition of the partial or complete 

contents of two or more data items into a single data item. 

5.19.2 General Format 

STRING 
identifier-1 , identifier-2 

literal-1 , literal-2 
DELIMITED BY 

{identifier-3' 

literal-3 

SIZE 

( identifier-4) , identifier-5 

’ \literal-4 J , literal-5 
DELIMITED BY 

identifier- 

literal-6 

SIZE 

INTO identifier-7 WITH POINTER identifier -8] 

ON OVERFLOW imperative-statement^ 

5.19.3 Syntax Rules 

(1) Each literal may be any figurative constant without the optional word 

ALL. 

(2) All literals must be described as nonnumeric literals, and all identi¬ 

fiers, except identifier-8, must be described implicitly or explicitly as 

usage is DISPLAY. 

(3) Identifier-7 must represent an elementary alphanumeric data item with¬ 

out editing symbols or the JUSTIFIED clause. 

(4) Identifier-8 must represent an elementary numeric integer data item 

of sufficient size to contain a value equal to the size plus 1 of the area 

referenced by identifier-7. The symbol 'P* may not be used in the PICTURE 

character-string of identifier-8. 

(5) Where identifier-1, identifier-2, ..., or identifier-3 is an elementary 

numeric data item, it must be described as an integer without the symbol 'P' 

in its PICTURE character-string. 

5.19.4 General Rules 

(1) All references to identifier-1, identifier-2, identifier-3, literal-1, 

literal-2, literal-3 apply equally to identifier-4, identifier-5, identifier-6, 

literal-4, literal-5 and literal-6, respectively, and all recursions thereof. 

(2) Identifier-1, literal-1, identifier-2, literal-2, represent the 

sending items. Identifier-7 represents the receiving item. 

(3) Literal-3, identifier-3, indicate the character(s) delimiting the move. 

If the SIZE phrase is used, the complete data item defined by identifier-1, 

11-86 



Nucleus - STRING 

literal-1, identifier-2, literal-2, is moved. When a figurative constant is 

used as the delimiter, it stands for a single character nonnumeric literal. 

(4) When a figurative constant is specified as literal-1, literal-2, 

literal-3, it refers to an implicit one character data item whose usage is 

DISPLAY. 

(5) When the STRING statement is executed, the transfer of data is 

governed by the following rules: 

a. Those characters from literal-1, literal-2, or from the contents 

of the data item referenced by identifier-1, identifier-2, are transferred to 

the contents of identifier-7 in accordance with the rules for alphanumeric to 

alphanumeric moves, except that no space-filling will be provided. (See page 

11-74, The MOVE Statement.) 

b. If the DELIMITED phrase is specified without the SIZE phrase, the 

contents of the data item referenced by identifier-1, identifier-2, or the 

value of literal-1, literal-2, are transferred to the receiving data item in 

the sequence specified in the STRING statement beginning with the leftmost 

character and continuing from left to right until the end of the data item 

is reached, or until the character(s) specified by literal-3, or by the 

contents of identifier-3 are encountered. The character(s) specified by 

literal-3 or by the data item referenced by identifier-3 are not transferred. 

c. If the DELIMITED phrase is specified with the SIZE phrase, the 

entire contents of literal-1, literal-2, or the contents of the data item 

referenced by identifier-1, identifier-2, are transferred, in the sequence 

specified in the STRING statement, to the data item referenced by identifier-7 

until all data has been transferred or the end of the data item referenced by 

identifier-7 has been reached. 

(6) If the POINTER phrase is specified, identifier-8 is explicitly avail¬ 

able to the programmer, and he is responsible for setting its initial value. 

The initial value must not be less than one. 

(7) If the POINTER phrase is not specified, the following general rules 

apply as if the user had specified identifier-8 with an initial value of 1. 

(8) When characters are transferred to the data item referenced by 

identifier-7, the moves behave as though the characters were moved one at a 

time from the source into the character position of the data item referenced 

by identifier-7 designated by the value associated with identifier-8, and then 

identifier-8 was increased by one prior to the move of the next character. 

The value associated with identifier-8 is changed during execution of the 

STRING statement only by the behavior specified above. 

(9) At the end of execution of the STRING statement, only the portion of 

the data item referenced by identifier-7 that was referenced during the execu¬ 

tion of the STRING statement is changed. All other portions of the data item 

referenced by identifier-7 will contain data that was present before this 

execution of the STRING statement. 

11-87 



Nucleus - STRING 

(10) If at any point at or after initialization of the STRING statement, 

but before execution of the STRING statement is completed, the value associ¬ 

ated with identifier-8 is either less than one or exceeds the number of 

character positions in the data item referenced by identifier-7, no (further) 

data is transferred to the data item referenced by identifier-7, and the 

imperative statement in the ON OVERFLOW phrase is executed, if specified. 

(11) If the ON OVERFLOW phrase is not specified when the conditions 

described in general rule 10 above are encountered, control is transferred to 

the next executable statement. 

11-88 



Nucleus - SUBTRACT 

5.20 THE SUBTRACT STATEMENT 

5.20.1 Function 

The SUBTRACT statement is used to subtract one, or the sum of two or more, 

numeric data items from one or more items, and set the values of one or more 

items equal to the results. 

5.20.2 General Format 

Format 1 

SUBTRACT 
identifier-lT 

literal-1 J 
identifier-2 

literal-2 
FROM identifier-m [ROUNDED 

identifier-n [ ROUNDED ] j ... [; ON SIZE ERROR imperative-statement] 

Format 2 

SUBTRACT 
[identifier-1] 

lliteral-1 J 

, identifier-2 

, literal-2 
FROM 

Jidentifier-m 

\literal-m 

GIVING identifier-n ^ROUNDED] £, identifier-o [ROUNDED]j ... 

[; ON SIZE ERROR imperative-statement] 

Format 3 

SUBTRACT 
CORRESPONDING^ 

CORR 
identifier-1 FROM identifier-2 

[; ON SIZE ERROR imperative-statement] 

[ROUNDED] 

5.20.3 Syntax Rules 

(1) Each identifier must refer to a numeric elementary item except that: 

a. In Format 2, each identifier following the word GIVING must refer 

to either an elementary numeric item or an elementary numeric edited item. 

b. In Format 3, where each identifier must refer to a group item. 

(2) Each literal must be a numeric literal. 

(3) The composite of operands must not contain more than 18 digits. (See 

page 11-51, The Arithmetic Statements.) 

a. In Format 1 the composite of operands is determined by using all 

of the operands in a given statement. 

11-89 



Nucleus - SUBTRACT 

b. In Format 2 the composite of operands is determined by using all 

of the operands in a given statement excluding the data items that follow the 

word GIVING. 

c. In Format 3 the composite of operands is determined separately for 

each pair of corresponding data items. 

(4) CORR is an abbreviation for CORRESPONDING. 

5.20.4 General Rules 

(1) See page 11-50, The ROUNDED Phrase; page 11-50, The SIZE ERROR Phrase; 

page 11-51, The CORRESPONDING Phrase;[page 11-51, The Arithmetic Statement; 

page 11-51, Overlapping Operands;|and page 11-51, Multiple Results in Arith¬ 

metic Statements.] 

(2) In Format 1, all literals or identifiers preceding the word FROM are 

added together and this total is subtracted from the current value of identi¬ 

fier-m storing the result immediately into identifier-m, and repeating this 

| process respectively for each operand following the word FROM. 

(3) In Format 2, all literals or identifiers preceding the word FROM are 

added together, the sum is subtracted from literal-m or identifier-m and the 

result of the subtraction is stored as the new value of identifier-n, 

identifier-o, etc. 1 

(4) If Format 3 is used, data items in identifier-1 are subtracted from 

and stored into corresponding data items in identifier-2._ 

(5) The 

significant 

compiler insures enough places are carried so as not to lose 

digits during execution. 

11-90 



Nucleus - UNSTRING 

5.21 THE UNSTRING STATEMENT 

5.21.1 Function 

The UNSTRING statement causes contiguous data in a sending field to be 

separated and placed into multiple receiving fields. 

5.21.2 General Format 

UNSTRING identifier-1 

DELIMITED BY [all] 
\identifier-2 

literal-1 
, OR [ALL] {Jj 

fidentifier-3 

literal-2 

INTO identifier-4 [, DELIMITER IN identifier-5] [, COUNT IN identifier-6] 

[, identifier-7 [, DELIMITER IN identifier-8] [, COUNT IN identifier-9]]... 

[WITH POINTER identifier-10] [TALLYING IN identifier-1l] 

[; ON OVERFLOW imperative-statement] 

5.21.3 Syntax Rules 

(1) Each literal must be a nonnumeric literal. In addition, each literal 

may be any figurative constant without the optional word ALL. 

(2) Identifier-1, identifier-2, identifier-3, identifier-5, and identi¬ 

fier-8 must be described, implicitly or explicitly, as an alphanumeric data 

item. 

(3) Identifier-4 and identifier-7 may be described as either alphabetic 

(except that the symbol 'B' may not be used in the PICTURE character-string), 

alphanumeric, or numeric (except that the symbol ’P* may not be used in the 

PICTURE character-string), and must be described as usage is DISPLAY. 

(4) Identifier-6, identifier-9, identifier-10, and identifier-11 must be 

described as elementary numeric integer data items (except that the symbol ’Pf 

may not be used in the PICTURE character-string). 

(5) No identifier may name a level 88 entry. 

(6) The DELIMITER IN phrase and the COUNT IN phrase may be specified only 

if the DELIMITED BY phrase is specified. 

5.21.4 General Rules 

(1) All references to identifier-2, literal-1, identifier-4, identifier-5 

and identifier-6, apply equally to identifier-3, literal-2, identifier-7, 

identifier-8 and identifier-9, respectively, and all recursions thereof. 

(2) Identifier-1 represents the sending area. 

11-91 



Nucleus - UNSTRING 

(3) Identifier-4 represents the data receiving area. Identifier-5 

represents the receiving area for delimiters. 

(4) Literal-1 or the data item referenced by identifier-2 specifies a 

delimiter. 

(5) Identifier-6 represents the count of the number of characters within 

the data item referenced by identifier-1 isolated by the delimiters for the 

move to identifier-4. This value does not include a count of the delimiter 

character(s). 

(6) The data item referenced by identifier-10 contains a value that indi¬ 

cates a relative character position within the area defined by identifier-1. 

(7) The data item referenced by identifier-11 is a counter that records 

the number of data items acted upon during the execution of an UNSTRING 

statement. 

(8) When a figurative constant is used as the delimiter, it stands for a 

single character nonnumeric literal. 

When the ALL phrase is specified, one occurrence or two or more 

contiguous occurrences of literal-1 (figurative constant or not) or the 

contents of the data item referenced by identifier-2 are treated as if it 

were only one occurrence, and this occurrence is moved to the receiving data 

item according to the rules in general rule 13d. 

(9) When any examination encounters two contiguous delimiters, the current 

receiving area is either space or zero filled according to the description of 

the receiving area. 

(10) Literal-1 or the contents of the data item referenced by identifier-2 

can contain any character in the computer's character set. 

(11) Each literal-1 or the data item referenced by identifier-2 represents 

one delimiter. When a delimiter contains two or more characters, all of the 

characters must be present in contiguous positions of the sending item, and 

in the order given to be recognized as a delimiter. 

(12) When two or more delimiters are specified in the DELIMITED BY phrase, 

an 'OR* condition exists between them. Each delimiter is compared to the 

sending field. If a match occurs, the character(s) in the sending field is 

considered to be a single delimiter. No character(s) in the sending field 

can be considered a part of more than one delimiter. 

Each delimiter is applied to the sending field in the sequence 

specified in the UNSTRING statement. 

(13) When the UNSTRING statement is initiated, the current receiving area 

is the data item referenced by identifier-4. Data is transferred from the 

data item referenced by identifier-1 to the data item referenced by identifier-4 

according to the following rules: 

11-92 



Nucleus - UNSTRING 

a. If the POINTER phrase is specified, the string of characters refer¬ 
enced by identifier-1 is examined beginning with the relative character posi¬ 

tion indicated by the contents of the data item referenced by identifier-10. 

If the POINTER phrase is not specified, the string of characters is examined 

beginning with the leftmost character position. 

b. If the DELIMITED BY phrase is specified, the examination proceeds 

left to right until either a delimiter specified by the value of literal-1 or 

the data item referenced by identifier-2 is encountered. (See general rule 

11.) If the DELIMITED BY phrase is not specified, the number of characters 

examined is equal to the size of the current receiving area. However, if the 

sign of the receiving item is defined as occupying a separate character posi¬ 

tion, the number of characters examined is one less than the size of the 

current receiving area. 

If the end of the data item referenced by identifier-1 is 

encountered before the delimiting condition is met, the examination terminates 

with the last character examined. 

c. The characters thus examined (excluding the delimiting character(s), 

if any) are treated as an elementary alphanumeric data item, and are moved 

into the current receiving area according to the rules for the MOVE statement. 

(See page 11-74, The MOVE Statement.) 

d. If the DELIMITER IN phrase is specified, the delimiting character(s) 

are treated as an elementary alphanumeric data item and are moved into the 

data item referenced by identifier-5 according to the rules for the MOVE 

statement. (See page 11-74, The MOVE Statement.) If the delimiting condition 

is the end of the data item referenced by identifier-1, then the data item 

referenced by identifier-5 is space-filled. 

e. If the COUNT IN phrase is specified, a value equal to the number 

of characters thus examined (excluding the delimiter character(s), if any) is 

moved into the area referenced by identifier-6 according to the rules for an 

elementary move. 

f. If the DELIMITED BY phrase is specified, the string of characters 

is further examined beginning with the first character to the right of the 

delimiter. If the DELIMITED BY phrase is not specified, the string of charac¬ 

ters is further examined beginning with the character to the right of the 

last character transferred. 

g. After data is transferred to the data item referenced by identi¬ 

fier-4, the current receiving area is the data item referenced by identifier-7. 

The behavior described in paragraph 13b through 13f is repeated until either 

all the characters are exhausted in the data item referenced by identifier-1, 

or until there are no more receiving areas. 

(14) The initialization of the contents of the data items associated with 

the POINTER phrase or the TALLYING phrase is the responsibility of the user. 

(15) The contents of the data item referenced by identifier-10 will be 

incremented by one for each character examined in the data item referenced by 

identifier-1. When the execution of an UNSTRING statement with a POINTER 

11-93 



Nucleus - UNSTRING 

phrase is completed, the contents of the data item referenced by identifier-10 

will contain a value equal to the initial value plus the number of characters 

examined in the data item referenced by identifier-1. 

(16) When the execution of an UNSTRING statement with a TALLYING phrase is 

completed, the contents of the data item referenced by identifier-11 contains 

a value equal to its initial value plus the number of data receiving items 

acted upon. 

(17) Either of the following situations causes an overflow condition: 

a. An UNSTRING is initiated, and the value in the data item referenced 

by identifier-10 is less than 1 or greater than the size of the data item 

referenced by identifier-1. 

b. If, during execution of an UNSTRING statement, all data receiving 

areas have been acted upon, and the data item referenced by identifier-1 

contains characters that have not been examined. 

(18) When an overflow condition exists, the UNSTRING operation is terminated. 

If an ON OVERFLOW phrase has been specified, the imperative statement included 
in the ON OVERFLOW phrase is executed. If the ON OVERFLOW phrase is not speci¬ 

fied, control is transferred to the next executable statement. 

(19) The evaluation of subscripting and indexing for the identifiers is as 

follows: 

a. Any subscripting or indexing associated with identifier-1, 

identifier-10, identifier-11 is evaluated only once, immediately before any 

data is transferred as the result of the execution of the UNSTRING statement. 

b. Any subscripting or indexing associated with identifier-2, 

identifier-3, identifier-4, identifier-5, identifier-6 is evaluated immediately 

before the transfer of data into the respective data item. 

11-94 



Table dandling - Introduction 

1. INTRODUCTION TO THE TABLE HANDLING MODULE 

1.1 FUNCTION 

The Table Handling module provides a capability for defining tables of 

contiguous data items and accessing an item relative to its position in the 

table. Language facility is provided for specifying how many times an item 

is to be repeated. Each item may be identified through use of a subscript 

or an index (see page 1-89). 

1.2 LEVEL CHARACTERISTICS 

Table Handling Level 1 provides a capability for accessing items in up to 

three-dimensional fixed length tables. This level also provides series options 

and the ability to vary the contents of indices by an increment or decrement. 

Table Handling Level 2 provides a capability for accessing items in up to 

three-dimensional variable length tables. This level also provides the addi¬ 

tional facilities for specifying ascending or descending keys and permits 

searching a dimension of a table for an item satisfying a specified condition. 

: 

iii-i 



Table Handling - OCCURS 

2. DATA DIVISION IN THE TABLE HANDLING MODULE 

2.1 THE OCCURS CLAUSE 

2.1.1 Function 

The OCCURS clause eliminates the need for separate entries for repeated 

data items and supplies information required for the application of subscripts 

or indices. 

2.1.2 General Format 

Format 1 

OCCURS integer-2 TIMES 

[• 
'ASCENDING " 

DESCENDING 
KEY IS data-name-2 [, data-name-3] 

[ INDEXED BY index-name-1 [, index-name-2] ... 

Format 2 

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1 

fASCENDING 1 

{DESCENDING 
■ KEY IS data-name-2 [, data-name-3] ... 

INDEXED BY index-name-1 [, index-name-2] . ..] 

2.1.3 Syntax Rules 

(1) Where both integer-1 and integer-2 are used, the value of integer-1 

must be less than the value of integer-2. 

(2) The data description of data-name-1 must describe a positive integer. 

(3) Data-name-1, data-name-2, data-name-3, ... may be qualified. 

(4) Data-name-2 must either be the name of the entry containing the OCCURS 

clause or the name of an entry subordinate to the entry containing the OCCURS 

clause. 

(5) Data-name-3, etc., must be the name of an entry subordinate to the 

group item which is the subject of this entry. 

(6) An INDEXED BY phrase is required if the subject of this entry, or an 

entry subordinate to this entry, is to be referred to by indexing. The index- 

name identified by this clause is not defined elsewhere since its allocation 

and format are dependent on the hardware, and not being data, cannot be 

associated with any data hierarchy. 

III-2 



Table Handling - OCCURS 

(7) A data description entry that contains Format 2 of the OCCURS clause 

may only be followed, within that record description, by data description 

entries which are subordinate to it. 

(8) The OCCURS clause cannot be specified in a data description entry that: 

a. Has a 01, 66, 77, or an 88 level-number. 

b. Describes an item whose size is variable. The size of an item is 

variable if the data description of any subordinate item contains Format 2 of 

the OCCURS clause. 

(9) In Format 2, the data item defined by data-name-1 must not occupy a 

character position within the range of the first character position defined by 

the data description entry containing the OCCURS clause and the last character 

position defined by the record description entry containing that OCCURS clause. 

(10) If data-name-2 is not the subject of this entry, then: 

a. All of the items identified by the data-names in the KEY IS phrase 

must be within the group item which is the subject of this entry. 

b. Items identified by the data-name in the KEY IS phrase must not 

contain an OCCURS clause. 

c. There must not be any entry that contains an OCCURS clause between 

the items identified by the data-names in the KEY IS phrase and the subject of 

this entry._ 

” ~ ” 1" 

(11) Index-name-1, index-name-2, ... must be unique words within the 

program. 

2.1.4 General Rules 

(1) The OCCURS clause is used in defining tables and other homogeneous 

sets of repeated data items. Whenever the OCCURS clause is used, the data- 

name which is the subject of this entry must be either subscripted or indexed 

whenever it is referred to in a statement other than SEARCH or USE FOR 

DEBUGGING. Further, if the subject of this entry is the name of a group item, 

then all data-names belonging to the group must be subscripted or indexed 

whenever they are used as operands, except as the object of a REDEFINES clause. 

(See page 1-89, Subscripting; page 1-89, Indexing; page 1-90, Identifier.) 

(2) Except for the OCCURS clause itself, all data description clauses 

associated with an item whose description includes an OCCURS clause apply to 

each occurrence of the item described. (See restriction in general rule 2 on 

page 11-38.) 

(3) The number of occurrences of the subject entry is defined as follows: 

a. In Format 1, the value of integer-2 represents the exact number of 

occurrences. 

b. In Format 2, the current value of the data item referenced by 

data-name-1 represents the number of occurrences._ 

III-3 



Table Handling - OCCURS 

This format specifies that the subject of this entry has a variable 

number of occurrences. The value of integer-2 represents the maximum number of 

occurrences and the value of integer-1 represents the minimum number of occur¬ 

rences. This does not imply that the length of the subject of the entry is 

variable, but that the number of occurrences is variable. 

The value of the data item referenced by data-name-1 must fall 

within the range integer-1 through integer-2. Reducing the value of the data 

item referenced by data-name-1 makes the contents of data items, whose occur¬ 

rence numbers now exceed the value of the data item referenced by data-name-1, 

unpredictable. 

(4) When a group item, having subordinate to it an entry that specifies 

Format 2 of the OCCURS clause, is referenced, only that part of the table 

area that is specified by the value of data-name-1 will be used in the opera¬ 

tion. 

(5) The KEY IS phrase is used to indicate that the repeated data is 

arranged in ascending or descending order according to the values contained in 

data-name-2, data-name-3, etc. The ascending or descending order is determined 

according to the rules for comparison of operands (see page 11-42, Comparison 

of Numeric Operands, and page 11-42, Comparison of Nonnumeric Operands). The 

data-names are listed in their descending order of significance. 

III-4 



Table Handling - USAGE 

2.2 THE USAGE CLAUSE 

2.2.1 Function 

The USAGE clause specifies the format of a data item in the computer storage. 

2.2.2 General Format 

[USAGE is] INDEX 

2.2.3 Syntax Rules 

(1) An index data item can be referenced explicitly only in a SEARCH or 1 

SET statement, a relation condition, the USING phrase of a Procedure Division 

header, or the USING phrase of a CALL statement. 

(2) The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO clauses 

cannot be used to describe group or elementary items described with the USAGE 

IS INDEX clause. 

2.2.4 General Rules 

Cl) The USAGE clause can be written at any level. If the USAGE clause is 

written at a group level, it applies to each elementary item in the group. 

The USAGE clause of an elementary item cannot contradict the USAGE clause of 

a group to which the item belongs. 

(2) An elementary item described with the USAGE IS INDEX clause is called 

an index data item and contains a value which must correspond to an occurrence 

number of a table element. The elementary item cannot be a conditional var¬ 

iable. The method of representation and the actual value assigned are deter¬ 

mined by the implementor. If a group item is described with the USAGE IS INDEX 

clause the elementary items in the group are all index data items. The group 

itself is not an index data item and cannot be used in the| SEARCH or I SET state¬ 

ment or in a relation condition. 

(3) An index data item can be part of a group which is referred to in a 

MOVE or input-output statement, in which case no conversion will take place. 

(4) The external and internal format of an index data item is specified 

by the implementor. 

III-5 



Table Handling - Procedure Division 

3. PROCEDURE DIVISION IN THE TABLE HANDLING MODULE 

3.1 RELATION CONDITION 

3.1.1 Comparisons Involving Index-Names and/or Index Data Items 

Relation tests may be made between: 

(1) Two index-names. The result is the same as if the corresponding 

occurrence numbers were compared. 

(2) An index-name and a data item (other than an index data item) or 

literal. The occurrence number that corresponds to the value of the index-name 

is compared to the data item or literal. 

(3) An index data item and an index-name or another index data item. The 

actual values are compared without conversion. 

(4) The result of the comparison of an index data item with any data item 

or literal not specified above is undefined. 

3.2 OVERLAPPING OPERANDS 

When a sending and a receiving item in a SET statement share a part of 

their storage areas, the result of the execution of such a statement is 

undefined. 

III-6 



Table Handling - SEARCH 

3.3 THE SEARCH STATEMENT 

3.3.1 Function 

The SEARCH statement is used to search a table for a table element that 
satisfies the specified condition and to adjust the associated index-name to 
indicate that table element. 

3.3.2 General Format 

Format 1 

SEARCH identifier-1 VARYING 
fidentifier-2 
}index-name-1 

AT END imperative-statement-1 ] 

; WHEN condition-1 
jimperative-statement-2 
I NEXT SENTENCE 

; WHEN condition-2 < 
fimperative-statement-3 

NEXT SENTENCE 

Format 2 

SEARCH ALL identifier-1 [ ; AT END imperative-statement-1J 

; WHEN 
1 data-name-l |SS*k 

[identifier-3 

IS = 

I condition-name-1 

arithmetic-expression-1 

AND 

, ^ „ (is EQUAL TO 
data-name-2 3s- 

condition-name-2 

J 

^ [identifier-4 
<literal-2 

I arithmetic-expression-2 

imperative-statement-2 
NEXT SENTENCE ) 

NOTE: The required relational character '=' is not underlined to avoid 
confusion with other symbols. 

3.3.3 Syntax Rules 

(1) In both Formats 1 and 2, identifier-1 must not be subscripted or 
indexed, but its description must contain an OCCURS clause and an INDEXED BY 
clause. The description of identifier-1 in Format 2 must also contain the KEY 
IS phrase in its OCCURS clause. 

III-7 



Table Handling - SEARCH 

(2) Identifier-2, when specified, must be described as USAGE IS INDEX or 

as a numeric elementary item without any positions to the right of the assumed 

decimal point. 

(3) In Format 1, condition-1, condition-2, etc., may be any condition as 

described in Conditional Expressions, page 11-41. 

(4) In Format 2, all referenced condition-names must be defined as having 

only a single value. The data-name associated with a condition-name must 

appear in the KEY clause of identifier-1. Each data-name-1, data-name-2 may 

be qualified. Each data-name-1, data-name-2 must be indexed by the first 

index-name associated with identifier-1 along with other indices or literals 

as required, and must be referenced in the KEY clause of identifier-1. Identi¬ 

fier-3, identifier-4, or identifiers specified in arithmetic-expression-1, 

arithmetic-expression-2 must not be referenced in the KEY clause of identifier-1 

or be indexed by the first index-name associated with identifier-1. 

In Format 2, when a data-name in the KEY clause of identifier-1 is 

referenced, or when a condition-name associated with a data-name in the KEY 

clause of identifier-1 is referenced, all preceding data-names in the KEY 

clause of identifier-1 or their associated condition-names must also be 

referenced. 

3.3.4 General Rules 

(1) If Format 1 of the SEARCH is used, a serial type of search operation 

takes place, starting with the current index setting. 

a. If, at the start of execution of the SEARCH statement, the index- 

name associated with identifier-1 contains a value that corresponds to an 

occurrence number that is greater than the highest permissible occurrence 

number for identifier-1, the SEARCH is terminated immediately. The number 

of occurrences of identifier-1, the last of which is the highest permissible, 

is discussed in the OCCURS clause. (See page III-2, The OCCURS Clause.) 

Then, if the AT END phrase is specified, imperative-statement-1 is executed; 

if the AT END phrase is not specified, control passes to the next executable 

sentence. 

b. If, at the start of execution of the SEARCH statement, the index- 

name associated with identifier-1 contains a value that corresponds to an 

occurrence number that is not greater than the highest permissible occurrence 

number for identifier-1 (the number of occurrences of identifier-1, the last 

of which is the highest permissible is discussed in the OCCURS clause; see 

page III-2, The OCCURS Clause), the SEARCH statement operates by evaluating 

the conditions in the order that they are written, making use of the index 

settings, wherever specified, to determine the occurrence of those items to 

be tested. If none of the conditions are satisfied, the index-name for 

identifier-1 is incremented to obtain reference to the next occurrence. The 

process is then repeated using the new index-name settings unless the new 

value of the index-name settings for identifier-1 corresponds to a table 

element outside the permissible range of occurrence values, in which case the 

search terminates as indicated in la above. If one of the conditions is 

satisfied upon its evaluation, the search terminates immediately and the 

imperative statement associated with that condition is executed; the index- 

name remains set at the occurrence which caused the condition to be satisfied. 

III-8 



Table Handling - SEARCH 

(2) In a Format 2 SEARCH, the results of the SEARCH ALL operation are pre¬ 

dictable only when: 

a. The data in the table is ordered in the same manner as described 

in the ASCENDING/DESCENDING KEY clause associated with the description of 

identifier-1, and 

b. The contents of the key(s) referenced in the WHEN clause are 

sufficient to identify a unique table element. 

(3) If Format 2 of the SEARCH is used, a nonserial type of search opera¬ 

tion may take place; the initial setting of the index-name for identifier-1 

is ignored and its setting is varied during the search operation in a manner 

specified by the implementor, with the restriction that at no time is it set 

to a value that exceeds the value which corresponds to the last element of 

the table, or that is less than the value that corresponds to the first ele¬ 

ment of the table. The length of the table is discussed in the OCCURS clause. 

(See page III-2, The OCCURS Clause.) If any of the conditions specified in 

the WHEN clause cannot be satisfied for any setting of the index within the 

permitted range, control is passed to imperative-statement-1 of the AT END 

phrase, when specified, or to the next executable sentence when this phrase is 

not specified; in either case the final setting of the index is not predictable. 

If all the conditions can be satisfied, the index indicates an occurrence that 

allows the conditions to be satisfied, and control passes to imperative-state¬ 

ment-2 . 

(4) After execution of imperative-statement-1, imperative-statement-2, or 

imperative-statement-3, that does not terminate with a GO TO statement, control 

passes to the next executable sentence. 

(5) In Format 2, the index-name that is used for the search operation is 

the first (or only) index-name that appears in the INDEXED BY phrase of identi¬ 

fier-1. Any other index-names for identifier-1 remain unchanged. 

(6) In Format 1, if the VARYING phrase is not used, the index-name that is 

used for the search operation is the first (or only) index-name that appears 

in the INDEXED BY phrase of identifier-1. Any other index-names for identi¬ 

fier-1 remain unchanged. 

(7) In Format 1, if the VARYING index-name-1 phrase is specified, and if 

index-name-1 appears in the INDEXED BY phrase of identifier-1, that index-name 

is used for this search. If this is not the case, or if the VARYING identi¬ 

fier-2 phrase is specified, the first (or only) index-name given in the INDEXED 

BY phrase of identifier-1 is used for the search. In addition, the following 

operations will occur: 

a. If the VARYING index-name-1 phrase is used, and if index-name-1 

appears in the INDEXED BY phrase of another table entry, the occurrence number 

represented by index-name-1 is incremented by the same amount as, and at the 

same time as, the occurrence number represented by the index-name associated 

with identifier-1 is incremented. 

b. If the VARYING identifier-2 phrase is specified, and identifier-2 

is an index data item, then the data item referenced by identifier-2 is incre¬ 

mented by the same amount as, and at the same time as, the index associated_ 

III-9 



Table Handling - SEARCH 

with identifier-1 is incremented. If identifier-2 is not an index data item, 

the data item referenced by identifier-2 is incremented by the value one (1) 

at the same time as the index referenced by the index-name associated with 

identifier-1 is incremented. 

(8) If identifier-1 is a data item subordinate to a data item that con¬ 

tains an OCCURS clause (providing for a two or three dimensional table), an 

index-name must be associated with each dimension of the table through the 

INDEXED BY phrase of the OCCURS clause. Only the setting of the index-name 

associated with identifier-1 (and the data item identifier-2 or index-name-1, 

if present) is modified by the execution of the SEARCH statement. To search 

an entire two or three dimensional table it is necessary to execute a SEARCH 

statement several times. Prior to each execution of a SEARCH statement, SET 

statements must be executed whenever index-names must be adjusted to appro¬ 

priate settings. 

A flowchart of the Format 1 SEARCH operation containing two WHEN phrases 

follows: 

START 

*These operations are options included only when specified in the SEARCH 

statement. 

**Each of these control transfers is to the next executable sentence unless 

the imperative-statement ends with a GO TO statement. 

III-10 



Table Handling - SET 

3.4 THE SET STATEMENT 

3.4.1 Function 

The SET statement establishes reference points for table handling operations 

by setting index-names associated with table elements. 

3.4.2 General Format 

Format 1 

SET 
{identifier-1 

index-name-1 

[, identifier-2] 

r, index-name-2 ] 

f identifier-3 

TO index-name-3 

[integer-1 

Format 2 

SET index-name-4 [. index-name 
| UP BY 

IDOWN BY 

(identifier-41 

[integer-2 

3.4.3 Syntax Rules 

(1) All references to index-name-1, identifier-1, and index-name-4 apply 

equally to index-name-2, identifier-2, and index-name-5, respectively. 

(2) Identifier-1 and identifier-3 must name either index data items, or 

elementary items described as an integer. 

(3) Identifier-4 must be described as an elementary numeric integer. 

(4) Integer-1 and integer-2 may be signed. Integer-1 must be positive. 

3.4.4 General Rules 

(1) Index-names are considered related to a given table and are defined by 

being specified in the INDEXED BY clause. 

(2) If index-name-3 is specified, the value of the index before the 

execution of the SET statement must correspond to an occurrence number of an 

element in the associated table. 

If index-name-4, index-name-5 is specified, the value of the index 

both before and after the execution of the SET statement must correspond to an 

occurrence number of an element in the associated table. If index-name-1, 

index-name-2 is specified, the value of the index after the execution of the 

SET statement must correspond to an occurrence number of an element in the 

associated table. The value of the index associated with an index-name after 

the execution of a 1 SEARCH or[PERFORM statement may be undefined. (See page 

III-7, The SEARCH Statement and page 11-78, The PERFORM Statement.) 

III-ll 



Table Handling - SET 

(3) In Format 1, the following action occurs: 

a. Index-name-1 is set to a value causing it to refer to the table 

element that corresponds in occurrence number to the table element referenced 

by index-name-3, identifier-3, or integer-1. If identifier-3 is an index data 

item, or if index-name-3 is related to the same table as index-name-1, no 

conversion takes place. 

b. If identifier-1 is an index data item, it may be set equal to 

either the contents of index-name-3 or identifier-3 where identifier-3 is 

also an index data item; no conversion takes place in either case. 

c. If identifier-1 is not an index data item, it may be set only to 

an occurrence number that corresponds to the value of index-name-3. Neither 

identifier-3 nor integer-1 can be used in this case. 

d. The process is repeated for index-name-2, identifier-2, etc., if 

specified. Each time the value of index-name-3 or identifier-3 is used as it 

was at the beginning of the execution of the statement. Any subscripting or 

indexing associated with identifier-1, etc., is evaluated immediately before 

the value of the respective data item is changed. 

(4) In Format 2, the contents of index-name-4 are incremented (UP BY) or 

decremented (DOWN BY) by a value that corresponds to the number of occurrences 

represented by the value of integer-2 or identifier-4; thereafter, the process 

is repeated for index-name-5, etc. Each time the value of identifier-4 is 

used as it was at the beginning of the execution of the statement. 

(5) Data in the following chart represents the validity of various operand 

combinations in the SET statement. The general rule reference indicates the 

applicable general rule. 

Sending Item 

Receiving Item 

Integer Data Item Index-name Index Data Item 

Integer Literal No/3c Valid/3a No/3b 

Integer Data Item No/3c Valid/3a No/3b 

Index-Name Valid/3c Valid/3a Valid/3b * 

Index Data Item No/3c Valid/3a * Valid/3b * 

*No conversion takes place 

III-12 



Sequential 1-0 - Introduction 

1. INTRODUCTION TO THE SEQUENTIAL I-Q MODULE 

1.1 FUNCTION 

The Sequential 1-0 module provides a capability to access records of a 

file in established sequence. The sequence is established as a result of 

writing the records to the file. It also provides for the specification of 

rerun points and the sharing of memory areas among files. 

1.2 LEVEL CHARACTERISTICS 

Sequential 1-0 Level 1 does not provide full COBOL facilities for the 

FILE-CONTROL, I-O-CONTROL, and FD entries as specified in the formats of this 

module. Within the Procedure Division, the Sequential 1-0 Level 1 provides 

limited capabilities for the CLOSE, OPEN, USE, and WRITE statements and full 

capabilities for the READ and REWRITE statements, as specified in the formats 

of this module. 

Sequential 1-0 Level 2 provides full facilities for the FILE-CONTROL, 

I-O-CONTROL, and FD entries as specified in the formats of this module. With¬ 

in the Procedure Division, the Sequential 1-0 Level 2 provides full capabil¬ 

ities for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements as 

specified in the formats of this module. The additional features available in 

Level 2 include: OPTIONAL files, the RESERVE clause, SAME RECORD AREA, 

MULTIPLE FILE tapes, REVERSED, EXTEND, and additional flexibility through 
series options. _ 

1.3 LANGUAGE CONCEPTS 

1.3.1 Organization 

Sequential files are organized such that each record in the file except 

the first has a unique predecessor record, and each record except the last 

has a unique successor record. These predecessor-successor relationships are 

established by the order of WRITE statements when the file is created. Once 

established, the predecessor-successor relationships do not change except in 

the case where records are added to the end of the file. 

1.3.2 Access Mode 

In the sequential access mode, the sequence in which records are accessed 

is the order in which the records were originally written. 

1.3.3 Current Record Pointer 

The current record pointer is a conceptual entity used in this document to 

facilitate specification of the next record to be accessed within a given file. 

The concept of the current record pointer has no meaning for a file opened in 

the output mode. The setting of the current record pointer is affected only 

by the OPEN and READ statements. 

1.3.4 1-0 Status 

If the FILE STATUS clause is specified in a file control entry, a value is 

placed into the specified two-character data item during the execution of an 

IV-1 



Sequential 1-0 - Introduction 

OPEN, CLOSE, READ, WRITE, or REWRITE statement and before any applicable 

USE procedure is executed, to indicate to the COBOL program the status of 

that input-output operation. 

1.3.4.1 Status Key 1 

The leftmost character position of the FILE STATUS data item is known as 

status key 1 and is set to indicate one of the following conditions upon 

completion of the input-output operation. 

'O' indicates Successful Completion 

f11 indicates At End 

'3’ indicates Permanent Error 

'9' indicates Implementor Defined 

The meaning of the above indications are as follows: 

0 - Successful Completion. The input-output statement was successfully 

executed. 

1 - At End. The sequential READ statement was unsuccessfully executed 

either as a result of an attempt to read a record when no next logical record 

exists in the file,lor as a result of the first READ statement being executed 

for a file described with the OPTIONAL clause, and that file was not available 

to the program at the time its associated OPEN statement was executed. 

3 - Permanent Error. The input-output statement was unsuccessfully executed 

as the result of a boundary violation for a sequential file or as the result of 

an input-output error, such as data check parity error, or transmission error. 

9 - Implementor Defined. The input-output statement was unsuccessfully 

executed as a result of a condition that is specified by the implementor. This 

value is used only to indicate a condition not indicated by other defined 

values of status key 1, or by specified combinations of the values of status 

key 1 and status key 2. 

1.3.4.2 Status Key 2 

The rightmost character position of the FILE STATUS data item is known as 

status key 2 and is used to further describe the results of the input-output 

operation. This character will contain a value as follows: 

1. If no further information is available concerning the input-output 

operation, then status key 2 contains a value of 'O'. 

2. When status key 1 contains a value of '3' indicating a permanent error 

condition, status key 2 may contain a value of '4’ indicating a boundary viola¬ 

tion. This condition indicates that an attempt has been made to write beyond 

the externally defined boundaries of a sequential file. The implementor 

specifies the manner in which these boundaries are defined. 

3. When status key 1 contains a value of *9’ indicating an implementor- 

defined condition, the value of status key 2 is defined by the implementor. 

IV-2 



Sequential 1-0 - Introduction 

1.3.4.3 Valid Combinations of Status Keys 1 and 2 

The valid permissible combinations of the values of status key 1 and status 

key 2 are shown in the following figure. An ’X* at an intersection indicates 
a valid permissible combination. 

Status Key 1 

Status Key 2 

No Further 

Information 

(0) 

Boundary 

Violation 

(4) 

Successful Completion (0) X 

At End (1) X 

Permanent Error (3) X X 

Implementor Defined (9) 

1.3.5 The AT END Condition 

The AT END condition can occur as a result of the execution of a READ 

statement. For details of the causes of the condition, see page IV-28, The 

READ Statement. 

1.3.6 LINAGE-COUNTER 

The reserved word LINAGE-COUNTER is a name for a special register generated 

by the presence of a LINAGE clause in a file description entry. The implicit 

description is that of an unsigned integer whose size is equal to the size of 

integer-1 or the data item referenced by data-name-1 in the LINAGE clause. 

See page IV-15, The LINAGE Clause, for the rules governing the LINAGE-COUNTER. 

IV-3 



Sequential 1-0 - FILE-CONTROL 

2. ENVIRONMENT DIVISION IN THE SEQUENTIAL 1-0 MODULE 

2.1 INPUT-OUTPUT SECTION 

2.1.1 The FILE-CONTROL Paragraph 

2.1.1.1 Function 

The FILE-CONTROL paragraph names each file and allows specification of 

other file-related information. 

2.1.1.2 General Format 

FILE-CONTROL. {file-control-entry} ... 

2.1.2 The File Control Entry 

2.1.2.1 Function 

The file control entry names a file and may specify other file-related 

information. 

2.1.2.2 General Format 

SELECT [optional] file-name 

ASSIGN TO implementor-name-1 [, implementor-name-2 ] ... 

; RESERVE integer-1 
AREA 

AREAS 

[ ; ORGANIZATION IS SEQUENTIAL] 

[ ; ACCESS MODE IS SEQUENTIAL] 

[ ; FILE STATUS IS data-name-1 ] . 

2.1.2.3 Syntax Rules 

(1) The SELECT clause must be specified first in the file control entry. 

The clauses which follow the SELECT clause may appear in any order. 

(2) Each file described in the Data Division must be named once and only 

once as file-name in the FILE-CONTROL paragraph. Each file specified in the 

file control entry must have a file description entry in the Data Division. 

(3) If the ACCESS MODE clause is not specified, the ACCESS MODE IS 

SEQUENTIAL clause is implied. 

(4) Data-name-1 must be defined in the Data Division as a two-character 

data item of the category alphanumeric and must not be defined in the File 

Section, the Report Section, or the Communication Section. 

IV-4 



Sequential 1-0 - FILE-CONTROL 

(5) Data-name-1 may be qualified. 

(6) When the ORGANIZATION IS SEQUENTIAL clause is not specified, the 

ORGANIZATION IS SEQUENTIAL clause is implied. 

(7) The OPTIONAL phrase may only be specified for input files. Its 

specification is required for input files that are not necessarily present 

each time the object program is executed. 

2.1.2.4 General Rules 

(1) The ASSIGN clause specifies the association of the file referenced by 

file-name to a storage medium. 

(2) The RESERVE clause allows the user to specify the number of input-output 

areas allocated. If the RESERVE clause is specified, the number of input-output 

areas allocated is equal to the value of integer-1. If the RESERVE clause is 

not specified the number of input-output areas allocated is specified by the 

implementor. 

(3) The ORGANIZATION clause specifies the logical structure of a file. 

The file organization is established at the time a file is created and cannot 

subsequently be changed. 

(4) Records in the file are accessed in the sequence dictated by the file 

organization. This sequence is specified by predecessor-successor record 

relationships established by the execution of WRITE statements when the file 

is created or extended. 

(5) When the FILE STATUS clause is specified, a value will be moved by 

the operating system into the data item specified by data-name-1 after the 

execution of every statement that references that file either explicitly or 

implicitly. This value indicates the status of execution of the statement. 

(See page IV-1, 1-0 Status.) 

i 

IV-5 



Sequential 1-0 - I-O-CONTROL 

2.1.3 The I-O-CONTROL Paragraph 

2.1.3.1 Function 

The I-O-CONTROL paragraph specifies the points at which rerun is to be 

established, the memory area which is to be shared by different files, and 

the location of files on a multiple file reel. 

2.1.3.2 General Format 

I-O-CONTROL. 

; RERUN ON 
(file-name- 

{implementor r-namej 
EVERY 

REELl 

[UNITf 

integer-1 RECORDS 

OF file-name-2 

integer-2 CLOCK-UNITS 

condition-name 

F; SAME [RECORD] AREA FOR file-name-3 {, file-name-4} . .. "j ... 
; MULTIPLE FILE TAPE CONTAINS file-name-5 [ POSITION integer-3 ] 

[, file-name-6 [ POSITION integer-4]] ... ] ... 

2.1.3.3 Syntax Rules 

(1) The I-O-CONTROL paragraph is optional. 

(2) File-name-1 must be a sequentially organized file. 

(3) The END OF REEL/UNIT clause may only be used if file-name-2 is a 

sequentially organized file. The definition of UNIT is determined by each 

implementor. 

(4) When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS 

clause is specified, implementor-name must be given in the RERUN clause. 

(5) More than one RERUN clause may be specified for a given file-name-2, 

subject to the following restrictions: 

a. When multiple integer-1 RECORDS clauses are specified, no two of 

them may specify the same file-name-2. 

b. When multiple END OF REEL or END OF UNIT clauses are specified, 

no two of them may specify the same file-name-2. 

(6) Only one RERUN clause containing the CLOCK-UNITS clause may be 

specified. 

IV-6 



Sequential 1-0 - I-O-CONTROL 

(7) The two forms of the SAME clause (SAME AREA,1SAME RECORD AREA) 

considered separately in the following: 

are 

More than one SAME clause may be included in a program, however: 

a. A file-name must not appear in more than one SAME AREA clause. 

b. A file-name must not appear in more than one SAME RECORD AREA 

clause. 

c. If one or more file-names of a SAME AREA clause appear in a SAME 

RECORD AREA clause, all of the file-names in that SAME AREA clause must 

appear in the SAME RECORD AREA clause. However, additional file-names not 

appearing in that SAME AREA clause may also appear in that SAME RECORD AREA 

clause. The rule that only one of the files mentioned in a SAME AREA clause 

can be open at any given time takes precedence over the rule that all files 

mentioned in a SAME RECORD AREA clause can be open at any given time. 

(8) The files referenced in the SAME AREA lor SAME RECORD AREA I clause need 

not all have the same organization or access. 

2.1.3.4 General Rules 

(1) The RERUN clause specifies when and where the rerun information is 

recorded. Rerun information is recorded in the following ways: 

a. If file-name-1 is specified, the rerun information is written on 

each reel or unit of an output file and the implementor specifies where, on 

the reel or file, the rerun information is to be recorded. 

b. If implementor-name is specified, the rerun information is 

written as a separate file on a device specified by the implementor. 

(2) There are seven forms of the RERUN clause, based on the several 

conditions under which rerun points can be established. The implementor 

must provide at least one of the specified forms of the RERUN clause. 

a. When either the END OF REEL or END OF UNIT clause is used with¬ 

out the ON clause. In this case, the rerun information is written on file¬ 

name-2, which must be an output file. 

b. When either the END OF REEL or END OF UNIT clause is used and 

file-name-1 is specified in the ON clause. In this case, the rerun infor¬ 

mation is written on file-name-1, which must be an output file. In addition, 

normal reel, or unit, closing functions for file-name-2 are performed. 

File-name-2 may either be an input or an output file. 

c. When either the END OF REEL or END OF UNIT clause is used and 

implementor-name is specified in the ON clause. In this case, the rerun 

information is written on a separate rerun unit defined by the implementor. 

File-name-2 may be either an input or output file. 

d. When the integer-1 RECORDS clause is used. In this case, the 

rerun information is written on the device specified by implementor-name, 

which must be specified in the ON clause, whenever integer-1 records of 

IV-7 



Sequential 1-0 - I-O-CONTROL 

file-name-2 have been processed. File-name-2 may be either an input or 

output file with any organization or access. 

e. When the integer-2 CLOCK-UNITS clause is used. In this case, the 

rerun information is written on the device specified by implementor-name, 

which must be specified in the ON clause, whenever an interval of time, 

calculated by an internal clock, has elapsed. 

f. When the condition-name clause is used and implementor-name is 

specified in the ON clause. In this case, the rerun information is written 

on the device specified by implementor-name whenever a switch assumes a 

particular status as specified by condition-name. In this case, the associated 

switch must be defined in the SPECIAL-NAMES paragraph of the Configuration 

Section of the Environment Division. The implementor specifies when the 

switch status is interrogated. 

g. When the condition-name clause is used and file-name-1 is 

specified in the ON clause. In this case, the rerun information is written 

on file-name-1, which must be an output file, whenever a switch assumed a 

particular status as specified by condition-name. In this case, as in 

paragraph f above, the associated switch must be defined in the SPECIAL-NAMES 

paragraph of the Configuration Section of the Environment Division. The 

implementor specifies when the switch status is interrogated. 

(3) The SAME AREA clause specifies that two or more files that do not 

represent sort or merge files are to use the same memory area during process¬ 

ing. The area being shared includes all storage area assigned to the files 

specified; therefore, it is not valid to have more than one of the files open 

at the same time. (See syntax rule 7c on page IV-7.) 

(4) The SAME RECORD AREA clause specifies that two or more files are to 

use the same memory area for processing of the current logical record. All of 

the files may be open at the same time. A logical record in the SAME RECORD 

AREA is considered as a logical record of each opened output file whose file¬ 

name appears in this SAME RECORD AREA clause and of the most recently read 

input file whose file-name appears in this SAME RECORD AREA clause. This is 

equivalent to an implicit redefinition of the area, i.e., records are aligned 

on the leftmost character position. 

(5) The MULTIPLE FILE clause is required when more than one file shares 

the same physical reel of tape. Regardless of the number of files on a single 

reel, only those files that are used in the object program need be specified. 

If all file-names have been listed in consecutive order, the POSITION clause 

need not be given. If any file in the sequence is not listed, the position 

relative to the beginning of the tape must be given. Not more than one file 

on the same tape reel may be open at one time. 

IV-8 



Sequential 1-0 - File Section 

3. DATA DIVISION IN THE SEQUENTIAL 1-0 MODULE 

3.1 FILE SECTION 

In a COBOL program the file description entry (FD) represents the highest 

level of organization in the File Section. The File Section header is followed 

by a file description entry consisting of a level indicator (FD), a file¬ 

name and a series of independent clauses. The FD clauses specify the size of 
the logical and physical records, the presence or absence of label records, 

the value of implementor-defined label items, the names of the data records 

which comprise the file, and the number of lines to be written on a logical 

printer page. The entry itself is terminated by a period. 

3.2 RECORD DESCRIPTION STRUCTURE 

A record description consists of a set of data description entries which 

describe the characteristics of a particular record. Each data description 

entry consists of a level-number followed by a data-name if required, followed 

by a series of independent clauses as required. A record description has a 

hierarchical structure and therefore the clauses used with an entry may vary 

considerably, depending upon whether or not it is followed by subordinate 

entries. The structure of a record description is defined in Concepts of 

Levels on page 1-84 while the elements allowed in a record description are 

shown in the data description skeleton on page 11-12. 

IV-9 



Sequential 1-0 - File Description 

3.3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 

3.3.1 Function 

The file description furnishes information concerning the physical struc¬ 

ture, identification, and record names pertaining to a given file. 

3.3.2 General Format 

FD file-name 

; BLOCK CONTAINS 

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS] 

[integer-1 TO ] 
. RECORDS 

integer 2 (CHARACTERS 

; LABEL 
JRECORD IS 

1 RECORDS ARE. 

| STANDARDT 

(OMITTED j 

[■- CODE-SET IS alphabet-name ] 

3.3.3 Syntax Rules 

(1) The level indicator FD identifies the beginning of a file description 

and must precede the file-name. 

(2) The clauses which follow the name of the file are optional in many 

cases, and their order of appearance is immaterial. 

(3) One or more record description entries must follow the file 

description entry. 

IV-10 



Sequential 1-0 - BLOCK CONTAINS 

3.4 THE BLOCK CONTAINS CLAUSE 

3.4.1 Function 

The BLOCK CONTAINS clause specifies the size of a physical record. 

3.4.2 General Format 

BLOCK CONTAINS [integer-1 TO j integer-2 
RECORDS ] 

CHARACTERS) 

3.4.3 General Rules 

(1) This clause is required except when: 

a. A physical record contains one and only one complete logical 

record. 

b. The hardware device assigned to the file has one and only one 

physical record size. 

c. The hardware device assigned to the file has more than one 

physical record size but the implementor has designated one as standard. In 

this case, the absence of this clause denotes the standard physical record 

size. 

(2) The size of the physical record may be stated in terms of RECORDS, 

unless one of the following situations exists, in which case the RECORDS 

phrase must not be used. 

a. In mass storage files, where logical records may extend across 

physical records. 

b. The physical record contains padding (area not contained in a 

logical record). 

c. Logical records are grouped in such a manner that an inaccurate 

physical record size would be implied. 

(3) When the word CHARACTERS is specified, the physical record size is 

specified in terms of the number of character positions required to store 

the physical record, regardless of the types of characters used to represent 

the items within the physical record. 

(4) If only integer-2 is shown, it represents the exact size of the 

physical record. If integer-1 and integer-2 are both shown, they refer to 

the minimum and maximum size of the physical record, respectively. 

(5) If logical records of differing size are grouped into one physical 

record, the technique for determining the size of each logical record is 

specified by the implementor. 

IV-11 



Sequential 1-0 - CODE-SET 

3.5 THE CODE-SET CLAUSE 

3.5.1 Function 

The CODE-SET clause specifies the character code set used to represent 

data on the external media. 

3.5.2 General Format 

CODE-SET IS alphabet-name 

3.5.3 Syntax Rules 

(1) When the CODE-SET clause is specified for a file, all data in that 

file must be described as usage is DISPLAY and any signed numeric data must be 

described with the SIGN IS SEPARATE clause. 

(2) The alphabet-name clause referenced by the CODE-SET clause must not 

specify the literal phrase. 

(3) The CODE-SET clause may only be specified for non-mass storage files. 

3.5.4 General Rules 

(1) If the CODE-SET clause is specified, alphabet-name specifies the 

character code convention used to represent data on the external media. It 

also specifies the algorithm for converting the character codes on the external 

media from/to the native character codes. This code conversion occurs during 

the execution of an input or output operation. (See page II-8, The SPECIAL- 

NAMES Paragraph.) 

(2) If the CODE-SET clause is not specified, the native character code 

set is assumed for data on the external media. 

IV-12 



Sequential 1-0 - DATA RECORDS 

3.6 THE DATA RECORDS CLAUSE 

3.6.1 Function 

The DATA RECORDS clause serves only as documentation for the names of data 

records with their associated file. 

3.6.2 General Format 

data-name-l [, data-name-2 ] ... DATA 

3.6.3 Syntax Rules 

(1) Data-name-l and data-name-2 are the names of data records and must 

have 01 level-number record descriptions, with the same names, associated 

with them. 

3.6.4 General Rules 

(1) The presence of more than one data-name indicates that the file 

contains more than one type of data record. These records may be of differ¬ 

ing sizes, different formats, etc. The order in which they are listed is not 

significant. 

(2) Conceptually, all data records within a file share the same area. 

This is in no way altered by the presence of more than one type of data 

record within the file. 

IV-13 



Sequential 1-0 - LABEL RECORDS 

3.7 THE LABEL RECORDS CLAUSE 

3.7.1 Function 

The LABEL RECORDS clause specifies whether labels are present. 

3.7.2 General Format 

LABEL 
RECORD IS 

RECORDS ARE 

( STANDARD' 

\ OMITTED 

3.7.3 Syntax Rules 

(1) This clause is required in every file description entry. 

3.7.4 General Rules 

(1) OMITTED specifies that no explicit labels exist for the file or the 

device to which the file is assigned. 

(2) STANDARD specifies that labels exist for the file or the device to 

which the file is assigned and the labels conform to the implementor’s label 

specifications. 

IV-14 



Sequential 1-0 - LINAGE 

3.8 THE LINAGE CLAUSE 

3.8.1 Function 

The LINAGE clause provides a means for specifying the depth of a logical 

page in terms of number of lines. It also provides for specifying the size of 

the top and bottom margins on the logical page, and the line number, within the 

page body, at which the footing area begins. 

3.8.2 General Format 

LINAGE IS 
fdata-name-1 

linteger-1 
LINES , WITH FOOTING AT 

|data-name-2) 

\integer-2 J 

, LINES AT TOP 
fdata-name-3 

integer-3 
, LINES AT BOTTOM 

data-name- 

integer-4 

3.8.3 Syntax Rules 

(1) Data-name-l, data-name-2, data-name-3, data-name-4 must reference 

elementary unsigned numeric integer data items. 

(2) The value of integer-1 must be greater than zero. 

(3) The value of integer-2 must not be greater than integer-1. 

(4) The value of integer-3, integer-4 may be zero. 

3.8.4 General Rules 

(1) The LINAGE clause provides a means for specifying the size of a logical 

page in terms of number of lines. The logical page size is the sum of the 

values referenced by each phrase except the FOOTING phrase. If the LINES AT 

TOP or LINES AT BOTTOM phrases are not specified, the values for these functions 

are zero. If the FOOTING phrase is not specified, the assumed value is equal 

to integer-1, or the contents of the data item referenced by data-name-l, 

whichever is specified. 

There is not necessarily any relationship between the size of the 

logical page and the size of a physical page. 

(2) The value of integer-1 or the data item referenced by data-name-l 

specifies the number of lines that can be written and/or spaced on the logical 

page. The value must be greater than zero. That part of the logical page in 

which these lines can be written and/or spaced is called the page body. 

(3) The value of integer-3 or the data item referenced by data-name-3 

specifies the number of lines that comprise the top margin on the logical page. 

The value may be zero. 

(4) The value of integer-4 or the data item referenced by data-name-4 

specifies the number of lines that comprise the bottom margin on the logical 

page. The value may be zero. 

IV-15 



Sequential 1-0 - LINAGE 

(5) The value of integer-2 or the data item referenced by data-name-2 

specifies the line number within the page body at which the footing area 

begins. The value must be greater than zero and not greater than the value 

of integer-1 or the data item referenced by data-name-1. 

The footing area comprises the area of the logical page between the 

line represented by the value of integer-2 or the data item referenced by 

data-name-2 and the line represented by the value of integer-1 or the data 

item referenced by data-name-1, inclusive. 

(6) The value of integer-1, integer-3, and integer-4, if specified, will 

be used at the time the file is opened by the execution of an OPEN statement 

with the OUTPUT phrase, to specify the number of lines that comprise each of 

the indicated sections of a logical page. The value of integer-2, if specified, 

will be used at that time to define the footing area. These values are used 

for all logical pages written for the file during a given execution of the 

program. 

(7) The values of the data items referenced by data-name-1, data-name-3, 

and data-name-4, if specified, will be used as follows: 

a. The values of the data items, at the time an OPEN statement with 

the OUTPUT phrase is executed for the file, will be used to specify the number 

of lines that are to comprise each of the indicated sections for the first 

logical page. 

b. The values of the data items, at the time a WRITE statement with 

the ADVANCING PAGE phrase is executed or page overflow condition occurs (see 

page IV-34, The WRITE Statement), will be used to specify the number of lines 

that are to comprise each of the indicated sections for the next logical page. 

(8) The value of the data item referenced by data-name-2, if specified, 

at the time an OPEN statement with the OUTPUT phrase is executed for the file, 

will be used to define the footing area for the first logical page. At the 

time a WRITE statement with the ADVANCING PAGE phrase is executed or a page 

overflow condition occurs, it will be used to define the footing area for the 

next logical page. 

(9) A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The 

value in the LINAGE-COUNTER at any given time represents the line number at 

which the device is positioned within the current page body. The rules govern¬ 

ing the LINAGE-COUNTER are as follows: 

a. A separate LINAGE-COUNTER is supplied for each file described in 

the File Section whose file description entry contains a LINAGE clause. 

b. LINAGE-COUNTER may be referenced, but may not be modified, by Pro¬ 

cedure Division statements. Since more than one LINAGE-COUNTER may exist in a 

program, the user must qualify LINAGE-COUNTER by file-name when necessary. 

c. LINAGE-COUNTER is automatically modified, according to the follow¬ 

ing miles, during the execution of a WRITE statement to an associated file: 

1) When the ADVANCING PAGE phrase of the WRITE statement is 

specified, the LINAGE-COUNTER is automatically reset to one (1)._ 

IV-16 



Sequential 1-0 - LINAGE 

2) When the ADVANCING identifier-2 or integer phrase of the WRITE 

statement is specified, the LINAGE-COUNTER is incremented by integer or the 

value of the data item referenced by identifier-2. 

3) When the ADVANCING phrase of the WRITE statement is not speci¬ 

fied, the LINAGE-COUNTER is incremented by the value one (1). (See page IV-34, 

The WRITE Statement.) 

4) The value of LINAGE-COUNTER is automatically reset to one (1) 

when the device is repositioned to the first line that can be written on for 

each of the succeeding logical pages. (See page IV-34, The WRITE Statement.) 

d. The value of LINAGE-COUNTER is automatically set to one (1) at the 

time an OPEN statement is executed for the associated file. 

(10) Each logical page is contiguous to the next with no additional spacing 

provided. 

IV-17 



Sequential 1-0 - RECORD CONTAINS 

3.9 THE RECORD CONTAINS CLAUSE 

3.9.1 Function 

The RECORD CONTAINS clause specifies the size of data records. 

3.9.2 General Format 

RECORD CONTAINS [integer-1 TO ] integer-2 CHARACTERS 

3.9.3 General Rules 

(1) The size of each data record is completely defined within the record 

description entry, therefore this clause is never required. When present, 

however, the following notes apply: 

a. Integer-2 may not be used by itself unless all the data records in 

the file have the same size. In this case integer-2 represents the exact 

number of characters in the data record. If integer-1 and integer-2 are both 

shown, they refer to the minimum number of characters in the smallest size 

data record and the maximum number of characters in the largest size data 

record, respectively. 

b. The size is specified in terms of the number of character posi¬ 

tions required to store the logical record, regardless of the types of charac¬ 

ters used to represent the items within the logical record. The size of a 

record is determined by the sum of the number of characters in all fixed 

length elementary items plus the sum of the maximum number of characters in 

any variable length item subordinate to the record. This sum may be different 

from the actual size of the record; see page 1-85, Selection of Character 

Representation and Radix; page 11-33, The SYNCHRONIZED Clause; and page 11-35, 

The USAGE Clause. 

IV-18 



Sequential 1-0 - VALUE OF 

3.10 THE VALUE OF CLAUSE 

3.10.1 Function 

The VALUE OF clause particularizes the description of an item in the label 

records associated with a file. 

3.10.2 General Format 

VALUE OF implementor-name-1 IS 

, implementor-name-2 IS 

fl data-name-ll 

literal-1 

[data-name-2 

k literal-2 

3.10.3 Syntax Rules 

(1) Data-name-l, data-name-2, etc., should be qualified when necessary, 

but cannot be subscripted or indexed, nor can they be items described with the 

USAGE IS INDEX clause. 

(2) Data-name-l, data-name-2, etc., must be in the Working-Storage Section. 

3.10.4 General Rules 

(1) For an input file, the appropriate label routine checks to see if the 

value of implementor-name-1 is equal to the value of literal-1.1 or of 

1 data-name-l, whichever has been specified. 

For an output file, at the appropriate time the value of implementor- 

name- 1 is made equal to the value of literal-1,| or of a data-name-l, whichever 

has been specified 

(2) A figurative constant may be substituted in the format above wherever 

a literal is specified. 

IV-19 



Sequential 1-0 - CLOSE 

4. PROCEDURE DIVISION IN THE SEQUENTIAL 1-0 MODULE 

4.1 THE CLOSE STATEMENT 

4.1.1 Function 

The CLOSE statement terminates the processing of reels/units and files 

with optional rewind and/or lock or removal where applicable. 

4.1.2 General Format 

4.1.3 Syntax Rules 

(1) The REEL or UNIT phrase must only be used for sequential files. 

(2) The files referenced in the CLOSE statement need not all have the same 

organization or access. 

4.1.4 General Rules 

Except where otherwise stated in the general rules below, the terms ’reel' 

and 'unit' are synonymous and completely interchangeable in the CLOSE state¬ 

ment. Treatment of sequential mass storage files is logically equivalent to 

the treatment of a file on tape or analogous sequential media. 

(1) A CLOSE statement may only be executed for a file in an open mode. 

(2) For the purpose of showing the effect of various types of CLOSE state¬ 

ments as applied to various storage media, all files are divided into the 

following categories: 

a. Non-reel/unit. A file whose input or output medium is such that 

the concepts of rewind and reels/units have no meaning. 

b. Sequential single-reel/unit. A sequential file that is entirely 

contained on one reel/unit. 

c. Sequential multi-reel/unit. A sequential file that is contained 

on more than one reel/unit. 

IV-20 



Sequential 1-0 - CLOSE 

(3) The results of executing each type of CLOSE for each category of file 

are summarized in Table 1, Relationship of Categories of Files and the Formats 

of the CLOSE Statement. 

File Category 
• 

CLOSE 

Statement 

Format Non-Reel/Unit 

Sequential 

Single- 

Reel /Unit 

Sequential 

Multi- 

Reel/Unit 

CLOSE C C,G C,G,A 

CLOSE WITH LOCK C, E C, G,E C,G,E,A 

CLOSE WITH NO REWIND X C,B C,B, A 

CLOSE REEL/UNIT X X F,G 

CLOSE REEL/UNIT 

FOR REMOVAL 

X X F,D,G 

CLOSE REEL/UNIT 

WITH NO REWIND 

X X F,B 

Table 1. Relationship of Categories of Files and the Formats 

of the CLOSE Statement 

The definitions of the symbols in the table are given below. Where 
the definition depends on whether the file is an input, output or input-output 

file, alternate definitions are given; otherwise, a definition applies to 

input, output, and input-output files. 

A. Previous Reels/Units Unaffected 

Input Files and Input-Output Files: 

All reels/units in the file prior to the current reel/unit are 

processed according to the implementor's standard reel/unit swap procedure, 

except those reels/units controlled by a prior CLOSE REEL/UNIT statement. If 

the current reel/unit is not the last in the file, the reels/units in the file 

following the current one are not processed. 

Output Files: 

All reels/units in the file prior to the current reel/unit are 

processed according to the implementor's standard reel/unit swap procedure, 

except those reels/units controlled by a prior CLOSE REEL/UNIT statement. 

B. No Rewind of Current Reel 

The current reel/unit is left in its current position. 

IV-21 



Sequential 1-0 - CLOSE 

C. Close File 

Input Files and Input-Output Files: 

If the file is positioned at its end and label records are speci¬ 

fied for the file, the labels are processed according to the implementor's 

standard label convention. The behavior of the CLOSE statement when label 

records are specified but not present, or when label records are not specified 

but are present, is undefined. Closing operations specified by the implementor 

are executed. If the file is positioned at its end and label records are not 

specified for the file, label processing does not take place but other closing 

operations specified by the implementor are executed. If the file is posi¬ 

tioned other than at its end, the closing operations specified by the implemen¬ 

tor are executed, but there is no ending label processing. 

Output Files: 

If label records are specified for the file, the labels are 

processed according to the implementor's standard label convention. The 

behavior of the CLOSE statement when label records are specified but not 

present, or when label records are not specified but are present, is undefined. 

Closing operations specified by the implementor are executed. If label records 

are not specified for the file, label processing does not take place but other 

closing operations specified by the implementor are executed. 

D. Reel/Unit Removal 

An implementor-defined technique is supplied to ensure that the 

current reel or unit is rewound when applicable, and that the operating 

system is notified that the reel or unit is logically removed from this run 

unit; however, the reel or unit may be accessed again, in its proper order 

of reels or units within the file, if a CLOSE statement without the REEL or 

UNIT phrase is subsequently executed for this file followed by the execution 

of an OPEN statement for the file. 

E. File Lock 

An implementor-defined technique is supplied to ensure that this 

file cannot be opened again during this execution of this rim unit. 

F. Close Reel/Unit 

Input Files: 

The following operations take place: 

1. A reel/unit swap. 

2. The standard beginning reel/unit label procedure is executed. 

The next executed READ statement for that file makes available 

the next data record on the new reel/unit. 

IV-2 2 



Sequential 1-0 - CLOSE 

Output Files and Input-Output Files: 

The following operations take place: 

1. (For output files only.) The standard ending reel/unit label 

procedure is executed. 

2. A reel/unit swap. 

3. The standard beginning reel/unit label procedure is executed. 

For input-output files, the next executed READ statement that 

references that file makes the next logical data record on the next mass 

storage unit available. For output files, the next executed WRITE statement 

that references that file directs the next logical data record to the next 

reel/unit of the file. 

G. Rewind 

The current reel or analogous device is positioned at its physical 

beginning. 

X. Illegal 

This is an illegal combination of a CLOSE option and a file 

category. The results at object time are undefined. 

(4) The action taken if the file is in the open mode when a STOP RUN 

statement is executed is specified by the implementor. The action taken for 

a file that has been opened in a called program and not closed in that program 

prior to the execution of a CANCEL statement for that program is also specified 

by the implementor. 

(5) If the OPTIONAL phrase has been specified for the file in the FILE- 

CONTROL paragraph of the Environment Division and the file is not present, 

the standard end-of-file processing is not performed for that file._ 

(6) If a CLOSE statement! without the REEL or UNIT phrase[has been exe¬ 

cuted for a file, no other statement (except the SORT or MERGE statements with 

the USING or GIVING phrases) can be executed that references that file, either 

explicitly or implicitly, unless an intervening OPEN statement for that file 

is executed. 

(7) The WITH NO REWIND and FOR REMOVAL phrases will have no effect at 

object time if they do not apply to the storage media on which the file 

resides. 

(8) Following the successful execution of a CLOSE statement[without the 

REEL or UNIT phrase,! the record area associated with file-name is no longer 

available. The unsuccessful execution of such a CLOSE statement leaves the 

availability of the record area undefined. 

IV-23 



Sequential 1-0 - OPEN 

4.2 THE OPEN STATEMENT 

4.2.1 Function 

The OPEN statement initiates the processing of files. It also performs 
checking and/or writing of labels and other input-output operations. 

4.2.2 General Format 

OPEN 

INPUT file-name-1 

OUTPUT file-name-3 

1-0 file-name-5 [, 

EXTEND file-name-7 

REVERSED 

WITH NO REWIND ’ 

[WITH NO REWIND][, 

file-name-2 

file-name-4 

file-name-6 ] ... 

[, file-name-8 ] ... 

REVERSED 
WITH NO REWIND] '* * 

[WITH NO REWIND]]... 
EU 

4.2.3 Syntax Rules 

(1) The REVERSED and the NO REWIND phrases can only be used with 

sequential files. (See The CLOSE Statement on page IV-20.)_ 

(2) The 1-0 phrase can be used only for mass storage files. 

(3) The EXTEND phrase can be used only for sequential files. 

(4) The EXTEND phrase must not be specified for multiple file reels. 

(See The I-O-CONTROL Paragraph on page IV-6.) 

(5) The files referenced in the OPEN statement need not all have the 

same organization or access. _ 

4.2.4 General Rules 

(1) The successful execution of an OPEN statement determines the avail¬ 

ability of the file and results in the file being in an open mode. 

(2) The successful execution of an OPEN statement makes the associated 

record area available to the program. 

(3) Prior to the successful execution of an OPEN statement for a given 

file, no statement (except for a SORT or MERGE statement with the USING or 

GIVING phrases) can be executed that references that file, either explicitly 

or implicitly. 

(4) An OPEN statement must be successfully executed prior to the execution 

of any of the permissible input-output statements. In Table 2, Permissible 

Statements, on page IV-25, ’X’ at an intersection indicates that the specified 

statement, used in the sequential access mode, may be used with the sequential 

file organization and open mode given at the top of the column. 

IV-2 4 



Sequential 1-0 - OPEN 

Statement 

Open Mode 

Input Output Input-Output Extend 

READ X X 

WRITE X X 

REWRITE X 

Table 2. Permissible Statements 

(5) A file may be opened with the INPUT, OUTPUT, EXTEND and 1-0 phrases 

in the same program. Following the initial execution of an OPEN statement 

for a file, each subsequent OPEN statement execution for that same file must 

be preceded by the execution of a CLOSE statement, without the REEL, UNIT, ED 

LOCkIphrase, for that file. 

(6) Execution of the OPEN statement does not obtain or release the first 

data record. 

(7) If label records are specified for the file, the beginning labels are 

processed as follows: 

a. When the INPUT phrase is specified, the execution of the OPEN 

statement causes the labels to be checked in accordance with the implementor’s 

specified conventions for input label checking. 

b. When the OUTPUT phrase is specified, the execution of the OPEN 

statement causes the labels to be written in accordance with the implementor's 

specified conventions for output label writing. 

The behavior of the OPEN statement when label records are specified 

but not present, or when label records are not specified but are present, 

is undefined. 

(8) The file description entry for file-name-1, file-name-2,|file-name-5, 

file-name-6, file-name-7, or file-name-81 must be equivalent to that used when 

this file was created. 

(9) If an input file is designated with the OPTIONAL phrase in its SELECT 

clause, the object program causes an interrogation for the presence or 

absence of this file. If the file is not present, the first READ statement 

for this file causes the AT END condition to occur. (See The READ Statement 

on page IV-28.) 

(10) The REVERSED and NO REWIND phrases can only be used with sequential 

single reel/unit files. (See The CLOSE Statement on page IV-20.) 

(11) The REVERSED and WITH NO REWIND phrases will be ignored if they do 

not apply to the storage media on which the file resides.__ 

IV-25 



Sequential 1-0 - OPEN 

(12) If the storage medium for the file permits rewinding, the following 

rules apply: 

When neither the REVERSED, the EXTEND, nor the NO REWIND phrase is| 

specified, execution of the OPEN statement causes the file to be positioned at 

its beginning. 

b. When the NO REWIND phrase is specified, execution of the OPEN 

statement does not cause the file to be repositioned; the file must be already 

positioned at its beginning prior to execution of the OPEN statement. 

c. When the REVERSED phrase is specified, the file is positioned at 

its end by execution of the OPEN statement. 

(13) When the REVERSED phrase is specified, the subsequent READ statements 

for the file make the data records of the file available in reversed order; 

that is, starting with the last record._ 

(14) For files being opened with the INPUT or 1-0 phrase, the OPEN state¬ 

ment sets the current record pointer to the first record currently existing 

within the file. If no records exist in the file, the current record pointer 

is set such that the next executed READ statement for the file will result in 

an AT END condition. 

(15) When the EXTEND phrase is specified, the OPEN statement positions the 

file immediately following the last logical record of that file. Subsequent 

WRITE statements referencing the file will add records to the file as though 

the file had been opened with the OUTPUT phrase. 

(16) When the EXTEND phrase is specified and the LABEL RECORDS clause 

indicates label records are present, the execution of the OPEN statement 

includes the following steps: 

a. The beginning file labels are processed only in the case of a 

single reel/unit file. 

b. The beginning reel/unit labels on the last existing reel/unit are 

processed as though the file was being opened with the INPUT phrase. 

c. The existing ending file labels are processed as though the file 

is being opened with the INPUT phrase. These labels are then deleted. 

d. Processing then proceeds as though the file had been opened with 

the OUTPUT phrase. 

(17) The 1-0 phrase permits the opening of a mass storage file for both 

input and output operations. Since this phrase implies the existence of the 

file, it cannot be used if the mass storage file is being initially created. 

(18) When the 1-0 phrase is specified and the LABEL RECORDS clause indicates 

label records are present, the execution of the OPEN statement includes the 

following steps: 

a. The labels are checked in accordance with the implementor's 

specified conventions for input-output label checking. 

IV-26 



Sequential T-0 - OPEN 

b. The new labels are written in accordance with the implementor’s 

specified conventions for input-output label writing. 

(19) Upon successful execution of an OPEN statement with the OUTPUT phrase 

specified, a file is created. At that time the associated file contains no 

data records. 

IV-2 7 



Sequential 1-0 - READ 

4.3 THE READ STATEMENT 

4.3.1 Function 

The READ statement makes available the next logical record from a file. 

4.3.2 General Format 

READ file-name RECORD fINTO identifier] ["; AT END imperative-statement] 

4.3.3 Syntax Rules 

(1) The INTO phrase must not be used when the input file contains logical 

records of various sizes as indicated by their record descriptions. The 

storage area associated with identifier and the record area associated with 

file-name must not be the same storage area. 

(2) The AT END phrase must be specified if no applicable USE procedure 

is specified for file-name. 

4.3.4 General Rules 

(1) The associated file must be open in the INPUT or 1-0 mode at the time 

this statement is executed. (See The OPEN Statement on page IV-24.) 

(2) The record to be made available by the READ statement is determined 

as follows: 

a. If the current record pointer was positioned by the execution of 

the OPEN statement, the record pointed to by the current record pointer is 

made available. 

b. If the current record pointer was positioned by the execution of 

a previous READ statement, the current record pointer is updated to point to 

the next existing record in the file and then that record is made available. 

(3) The execution of the READ statement causes the value of the FILE 

STATUS data item, if any, associated with file-name to be updated. (See page 

IV-1, 1-0 Status.) 

(4) Regardless of the method used to overlap access time with processing 

time, the concept of the READ statement is unchanged in that a record is 

available to the object program prior to the execution of any statement 

following the READ statement. 

(5) When the logical records of a file are described with more than one 

record description, these records automatically share the same storage area; 

this is equivalent to an implicit redefinition of the area. The contents of 

any data items which lie beyond the range of the current data record are 

undefined at the completion of the execution of the READ statement. 

(6) If the INTO phrase is specified, the record being read is moved from 

the record area to the area specified by identifier according to the rules 

specified for the MOVE statement without the CORRESPONDING phrase. The implied 

IV-28 



Sequential 1-0 - READ 

MOVE does not occur if the execution of the READ statement was unsuccessful. 

Any subscripting or indexing associated with identifier is evaluated after the 

record has been read and immediately before it is moved to the data item. 

(7) When the INTO phrase is used, the record being read is available in 

both the input record area and the data area associated with identifier. 

(8) If, at the time of execution of a READ statement, the position of 

current record pointer for that file is undefined, the execution of that READ 

statement is unsuccessful. 

(9) If the end of a reel or unit is recognized during execution of a READ 

statement, and the logical end of the file has not been reached, the following 

operations are executed: 

a. The standard ending reel/unit label procedure. 

b. A reel/unit swap. 

c. The standard beginning reel/unit label procedure. 

d. The first data record of the new reel/unit is made available. 

(10) If a file described with the OPTIONAL phrase is not present at the 

time the file is opened, then at the time of execution of the first READ state¬ 

ment for the file, the AT END condition occurs and the execution of the READ 

statement is unsuccessful. The standard end-of-file procedures are not per¬ 

formed. (See page IV-4, The FILE-CONTROL Paragraph; page IV-24, The OPEN 

Statement; page IV-32, The USE Statement; and page IV-1, 1-0 Status.) Execu¬ 

tion of the program then proceeds as specified in general rule 12. 

(11) If, at the time of the execution of a READ statement, no next logical 

record exists in the file, the AT END condition occurs, and the execution of 

the READ statement is considered unsuccessful. (See page IV-1, 1-0 Status.) 

(12) When the AT END condition is recognized the following actions are 

taken in the specified order: 

a. A value is placed into the FILE STATUS data item, if specified 

for this file, to indicate an AT END condition. (See page IV-1, 1-0 Status.) 

b. If the AT END phrase is specified in the statement causing the 

condition, control is transferred to the AT END imperative-statement. Any 

USE procedure specified for this file is not executed. 

c. If the AT END phrase is not specified, then a USE procedure must 

be specified, either explicitly or implicitly, for this file and that 

procedure is executed. 

When the AT END condition occurs, execution of the input-output state¬ 

ment which caused the condition is unsuccessful. 

IV-29 



Sequential 1-0 - READ 

(13) Following the unsuccessful execution of any READ statement, the con¬ 

tents of the associated record area and the position of the current record 

pointer are undefined. 

(14) When the AT END condition has been recognized, a READ statement for 

that file must not be executed without first executing a successful CLOSE state¬ 

ment followed by the execution of a successful OPEN statement for that file. 

IV-30 



Sequential 1-0 - REWRITE 

4.4 THE REWRITE STATEMENT 

4.4.1 Function 

The REWRITE statement logically replaces a record existing in a mass 

storage file. 

4.4.2 General Format 

REWRITE record-name fFROM identifier] 

4.4.3 Syntax Rules 

(1) Record-name and identifier must not refer to the same storage area. 

(2) Record-name is the name of a logical record in the File Section of 

the Data Division and may be qualified. 

4.4.4 General Rules 

(1) The file associated with record-name must be a mass storage file and 

must be open in the 1-0 mode at the time of execution of this statement. 

(See page IV-24, The OPEN Statement.) 

(2) The last input-output statement executed for the associated file prior 

to the execution of the REWRITE statement must have been a successfully 

executed READ statement. The MSCS logically replaces the record that was 

accessed by the READ statement. 

(3) The number of character positions in the record referenced by record- 

name must be equal to the number of character positions in the record being 

replaced. 

(4) The logical record released by a successful execution of the REWRITE 

statement is no longer available in the record area[unless the associated file 

is named in a SAME RECORD AREA clause, in which case the logical record is 

available to the program as a record of other files appearing in the same 

SAME RECORD AREA clause as the associated 1-0 file, as well as to the file 

associated with record-name. 

(5) The execution of a REWRITE statement with the FROM phrase is equiva¬ 

lent to the execution of: 

MOVE identifier TO record-name 

followed by the execution of the same REWRITE statement without the FROM 

phrase. The contents of the record area prior to the execution of the implicit 

MOVE statement have no effect on the execution of the REWRITE statement. 

(6) The current record pointer is not affected by the execution of a 

REWRITE statement. 

(7) The execution of the REWRITE statement causes the value of the FILE 

STATUS data item, if any, associated with the file to be updated. (See page 

IV-1, 1-0 Status.) 

IV-31 



Sequential 1-0 - USE 

4.5 THE USE STATEMENT 

4.5.1 Function 

The USE statement specifies procedures for input-output error handling 

that are in addition to the standard procedures provided by the input-output 

control system. 

4.5.2 General Format 

USE AFTER STANDARD 
f EXCEPTION 

1 ERROR 

r file-name-1 [, f ile-name-2~T~ 
INPUT 

PROCEDURE ON V OUTPUT 

1-0 

EXTEND 

4.5.3 Syntax Rules 

(1) A USE statement, when present, must immediately follow a section 

header in the declaratives section and must be followed by a period followed 

by a space. The remainder of the section must consist of zero, one or more 

procedural paragraphs that define the procedures to be used. 

(2) The USE statement itself is never executed; it merely defines the 

conditions calling for the execution of the USE procedures. 

(3) The same file-name can appear in a different specific arrangement of 

the format. Appearance of a file-name in a USE statement must not cause the 

simultaneous request for execution of more than one USE procedure. 

(4) The words ERROR and EXCEPTION are synonymous and may be used inter¬ 

changeably. 

(5) The files implicitly or explicitly referenced in a USE statement need 

not all have the same organization or access. 

4.5.4 General Rules 

(1) The designated procedures are executed by the input-output system 

after completing the standard input-output error routine, or upon recognition 

of the AT END condition, when the AT END phrase has not been specified in the 

input-output statement. 

(2) After execution of a USE procedure, control is returned to the 

invoking routine. 

(3) Within a USE procedure, there must not be any reference to any non¬ 

declarative procedures. Conversely, in the nondeclarative portion there must 

be no reference to procedure-names that appear in the declarative portion, 

except that PERFORM statements may refer to a USE statement or to the proce¬ 

dures associated with such a USE statement. 

IV-3 2 



Sequential 1-0 - USE 

(4) Within a USE procedure, there must not be the execution of any state¬ 

ment that would cause the execution of a USE procedure that had previously 

been invoked and had not yet returned control to the invoking routine. 

IV-3 3 



Sequential 1-0 - WRITE 

4.6 THE WRITE STATEMENT 

4.6.1 Function 

The WRITE statement releases a logical record for an output file. It can 

also be used for vertical positioning of lines within a logical page. 

4.6.2 General Format 

WRITE record-name £_FROM identifier-1] 

("BEFORE 

AFTER 
ADVANCING 1! identifier-2 1 

' 
LINE 

integer j LINES ^ 

Imnemonic-namel 

PAGE 

; AT 
( END-OF-PAGE 

EOP 
J 

imperative-s tatement 

4.6.3 Syntax Rules 

(1) Record-name and identifier-1 must not reference the same storage area. 

(2) When mnemonic-name is specified, the name is associated with a parti¬ 

cular feature specified by the implementor. The mnemonic-name is defined in 

the SPECIAL-NAMES paragraph of the Environment Division. _ 

(3) The record-name is the name of a logical record in the File Section 

of the Data Division and may be qualified. 

(4) When identifier-2 is used in the ADVANCING phrase, it must be the 

name of an elementary integer data item. 

(5) 

be zero. 

or the value of the data item referenced by identifier-2 

(6) If the END-OF-PAGE phrase is specified, the LINAGE clause must be 

specified in the file description entry for the associated file. 

(7) The words END-OF-PAGE and EOP are equivalent. 

(8) The ADVANCING mnemonic-name phrase cannot be specified when writing 

a record to a file whose file description entry contains the LINAGE clause. 

4.6.4 General Rules 

(1) The associated file must be open in the OUTPUT |or EXTEND (mode at the 

time of the execution of this statement. (See page IV-24, The OPEN Statement.) 

(2) The logical record released by the execution of the WRITE statement 

is no longer available in the record area unless |the associated file is named 

fin a SAME RECORD AREA clause or[the execution of the WRITE statement was_ 

unsuccessful due to a boundary violation. 1 The logical record is also avail- 

IV-34 



Sequential 1-0 - WRITE 

able to the program as a record of other files referenced in the same SAME 

RECORD AREA clause as the associated output file, as well as to the file 

associated with record-name. 

(3) The results of the execution of the WRITE statement with the FROM 

phrase is equivalent to the execution of: 

a. The statement: 

MOVE identifier-1 TO record-name 

according to the rules specified for the MOVE statement, followed by: 

b. The same WRITE statement without the FROM phrase. 

The contents of the record area prior to the execution of the implicit 

MOVE statement have no effect on the execution of this WRITE statement. 

After execution of the WRITE statement is complete, the information 

in the area referenced by identifier-1 is available, even though the informa¬ 

tion in the area referenced by record-name may not be. (See general rule 2.) 

(4) The current record pointer is unaffected by the execution of a WRITE 

statement. 

(5) The execution of the WRITE statement causes the value of the FILE 

STATUS data item, if any, associated with the file to be updated. (See page 

IV-1, 1-0 Status.) 

(6) The maximum record size for a file is established at the time the 

file is created and must not subsequently be changed. 

(7) The number of character positions on a mass storage device required 

to store a logical record in a file may or may not be equal to the number of 

character positions defined by the logical description of that record in the 

program. 

(8) The execution of the WRITE statement releases a logical record to the 

operating system. 

(9) Both | the ADVANCING phrase land the END-OF-PAGE phrase allow control of 

the vertical positioning of each line on a representation of a printed page. 

If the ADVANCING phrase is not used, automatic advancing will be provided by 

the implementor to act as if the user had specified AFTER ADVANCING 1 LINE. 

If the ADVANCING phrase is used, advancing is provided as follows: 

a. If identifier-2 is specified, the representation of the printed 

page is advanced the number of lines equal to the current value associated 

with identifier-2.__ 

b. If integer is specified, the representation of the printed page 

is advanced the number of lines equal to the value of integer. 

c. If mnemonic-name is specified, the representation of the printed 

page is advanced according to the rules specified by the implementor for 

that hardware device.___ 

IV-35 



Sequential 1-0 - WRITE 

d. If the BEFORE phrase is used, the line is presented before the 

representation of the printed page is advanced according to rules a, b, and 

c above. 

e. If the AFTER phrase is used, the line is presented after the 

representation of the printed page is advanced according to rules a, b, and c 

above. 

f. If PAGE is specified, the record is presented on the logical page 

before or after (depending on the phrase used) the device is repositioned to 

the next logical page. If the record to be written is associated with a file 

whose file description entry contains a LINAGE clause, the repositioning is 

to the first line that can be written on the next logical page as specified in 

the LINAGE clause, iIf the record to be written is associated with a file 

whose file description entry does not contain a LINAGE clause, the reposition¬ 

ing to the next logical page is accomplished in accordance with an implementor- 

defined technique. If page has no meaning in conjunction with a specific 

device, then advancing will be provided by the implementor to act as if the 

user had specified BEFORE or AFTER (depending on the phrase used) ADVANCING 1 

LINE. 

(10) If the logical end of the representation of the printed page is reached 

during the execution of a WRITE statement with the END-OF-PAGE phrase, the 

imperative-statement specified in the END-OF-PAGE phrase is executed. The 

logical end is specified in the LINAGE clause associated with record-name. 

(11) An end-of-page condition is reached whenever the execution of a given 

WRITE statement with the END-OF-PAGE phrase causes printing or spacing within 

the footing area of a page body. This occurs when the execution of such a 

WRITE statement causes the LINAGE-COUNTER to equal or exceed the value speci¬ 

fied by integer-2 or the data item referenced by data-name-2 of the LINAGE 

clause, if specified. In this case, the WRITE statement is executed and then 

the imperative statement in the END-OF-PAGE phrase is executed. 

An automatic page overflow condition is reached whenever the execution 

of a given WRITE statement (with or without an END-OF-PAGE phrase) cannot be 

fully accommodated within the current page body. 

This occurs when a WRITE statement, if executed, would cause the 

LINAGE-COUNTER to exceed the value specified by integer-1 or the data item 

referenced by data-name-1 of the LINAGE clause. In this case, the record is 

presented on the logical page before or after (depending on the phrase used) 

the device is repositioned to the first line that can be written on the next 

logical page as specified in the LINAGE clause. The imperative statement in 

the END-OF-PAGE clause, if specified, is executed after the record is written 

and the device has been repositioned. 

If integer-2 or data-name-2 of the LINAGE clause is not specified, no 

end-of-page condition distinct from the page overflow condition is detected. 

In this case, the end-of-page condition and page overflow condition occur 

simultaneously. 

If integer-2 or data-name-2 of the LINAGE clause is specified, but 

the execution of a given WRITE statement would cause LINAGE-COUNTER to 

IV-36 



Sequential 1-0 - WRITE 

simultaneously exceed the value of both integer-2 or the data item referenced 

by data-name-2 and integer-1 or the data item referenced by data-name-1, then 

the operation proceeds as if integer-2 or data-name.-2 had not been specified. 

(12) When an attempt is made to write beyond the externally defined boun¬ 

daries of a sequential file, an exception condition exists and the contents 

of the record area are unaffected. The following action takes place: 

a. The value of the FILE STATUS data item, if any, of the associated 

file is set to a value indicating a boundary violation. (See page IV-1, 

1-0 Status.) 

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or 

implicitly specified for the file, that declarative procedure will then be 

executed. 

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly 

or implicitly specified for the file, the result is undefined. 

(13) After the recognition of an end-of-reel or an end-of-unit of an output 

file that is contained on more than one physical reel/unit, the WRITE state¬ 

ment performs the following operations: 

a. The standard ending reel/unit label procedure. 

b. A reel/unit swap. 

c. The standard beginning reel/unit label procedure. 

IV-3 7 



Relative 1-0 - Introduction 

1. INTRODUCTION TO THE RELATIVE 1-0 MODULE 

1.1 FUNCTION 

The Relative 1-0 module provides a capability to access records of a mass 

storage file in either a random or sequential manner. Each record in a rela¬ 

tive file is uniquely identified by an integer value greater than zero which 

specifies the record's logical ordinal position in the file. 

1.2 LEVEL CHARACTERISTICS 

Relative 1-0 Level 1 does not provide full COBOL facilities for the 

FILE-CONTROL, I-O-CONTROL, and FD entries as specified in the formats of this 

module. Within the Procedure Division, the Relative 1-0 Level 1 provides 

limited capabilities for the READ and USE statements and full capabilities for 

the CLOSE, DELETE, OPEN, REWRITE, and WRITE statements, as specified in the 

formats of this module. 

Relative 1-0 Level 2 provides full facilities for the FILE-CONTROL, 

I-O-CONTROL, and FD entries as specified in the formats of this module. Within 

the Procedure Division, the Relative 1-0 Level 2 provides full capabilities 

for the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements 

as specified in the formats of this module. The additional features available 

in Level 2 include: the RESERVE clause, DYNAMIC accessing, SAME RECORD AREA, 

READ NEXT, and the entire START statement.__ 

1.3 LANGUAGE CONCEPTS 

1.3.1 Organization 

Relative file organization is permitted only on mass storage devices. A 

relative file consists of records which are identified by relative record 

numbers. The file may be thought of as composed of a serial string of areas, 

each capable of holding a logical record. Each of these areas is denominated 

by a relative record number. Records are stored and retrieved based on this 

number. For example, the tenth record is the one addressed by relative record 

number 10 and is in the tenth record area, whether or not records have been 

written in the first through the ninth record areas. 

1.3.2 Access Modes 

In the sequential access mode, the sequence in which records are accessed 

is the ascending order of the relative record numbers of all records which 

currently exist within the file. 

In the random access mode, the sequence in which records are accessed is 

controlled by the programmer. The desired record is accessed by placing its 

relative record number in a relative key data item. 

In the dynamic access mode, the programmer may change at will from 

sequential access to random access using appropriate forms of input-output 
statements. 

V-l 



Relative 1-0 - Introduction 

1.3.3 Current Record Pointer 

The current record pointer is a conceptual entity used in this document to 

facilitate specification of the next record to be accessed within a given file. 

The concept of the current record pointer has no meaning for a file opened in 

the output mode. The setting of the current record pointer is affected only 

by the OPEN, START, ( and READ statements. 

1.3.4 1-0 Status 

If the FILE STATUS clause is specified in a file control entry, a value is 

placed into the specified two-character data item during the execution of an 

OPEN, CLOSE, READ, WRITE, REWRITE, DELETE.for START\statement and before any 

applicable USE procedure is executed, to indicate to the COBOL program the 

status of that input-output operation. 

1.3.4.1 Status Key 1 

The leftmost character position of the FILE STATUS data item is known as 

status key 1 and is set to indicate one of the following conditions upon 

completion of the input-output operation. 

’O' indicates Successful Completion 

'1' indicates At End 

'2' indicates Invalid Key 

’3’ indicates Permanent Error 

'9' indicates Implementor Defined 

The meaning of the above indications are as follows: 

0 - Successful Completion. The input-output statement was successfully 

executed. 

1 - At End. The Format 1 READ statement was unsuccessfully executed as a 

result of an attempt to read a record when no next logical record exists in the 

file. 

2 - Invalid Key. The input-output statement was unsuccessfully executed as 

a result of one of the following: 

Duplicate Key 

No Record Found 

Boundary Violation 

3 - Permanent Error. The input-output statement was unsuccessfully 

executed as the result of an input-output error, such as data check, parity 

error, or transmission error. 

9 - Implementor Defined. The input-output statement was unsuccessfully 

executed as a result of a condition that is specified by the implementor. This 

value is used only to indicate a condition not indicated by other defined 

values of status key 1, or by specified combinations of the values of status 

key 1 and status key 2. 

V-2 



Relative 1-0 - Introduction 

1.3.4.2 Status Key 2 

The rightmost character position of the FILE STATUS data item is known as 

status key 2 and is used to further describe the results of the input-output 

operation. This character will contain a value as follows: 

1. If no further information is available concerning the input-output 

operation, then status key 2 contains a value of ’O'. 

2. When status key 1 contains a value of '2* indicating an INVALID KEY 

condition, status key 2 is used to designate the cause of that condition as 

follows: 

a. A value of '2' in status key 2 indicates a duplicate key value. 

An attempt has been made to write a record that would create a duplicate key 

in a relative file. 

b. A value of '3' in status key 2 indicates no record found. An 

attempt has been made to access a record, identified by a key, and that 

record does not exist in the file. 

c. A value of ’4' in status key 2 indicates a boundary violation. 

An attempt has been made to write beyond the externally-defined boundaries of 

a relative file. The implementor specifies the manner in which these bound¬ 

aries are defined. 

3. When status key 1 contains a value of ’9' indicating an implementor- 

defined condition, the value of status key 2 is defined by the implementor. 

1.3.4.3 Valid Combinations of Status Keys 1 and 2 

The valid permissible combinations of the values of status key 1 and status 

key 2 are shown in the following figure. An 'X' at an intersection indicates 

a valid permissible combination. 

Status 

Key 1 

Status Key 2 

No Further 

Information 

(0) 

Duplicate 

Key 

(2; 

No Record 

Found 

(3) 

Boundary 

Violation 

(4) 

Successful 

Completion (0) 
X 

At End (1) X 

Invalid Key (2) X X X 

Permanent 

Error (3) 
X 

Implementor 

Defined (9) 

V-3 



Relative 1-0 - Introduction 

1.3.5 The INVALID KEY Condition 

The INVALID KEY condition can occur as a result of the execution of a 

START, READ, WRITE, REWRITE or DELETE statement. For details of the causes 

of the condition, see}page V-28, The START Statement; page V-23, The READ 

Statement; page V-32, The WRITE Statement; page V-26, The REWRITE Statement; 

and page V-19, The DELETE Statement. 

When the INVALID KEY condition is recognized, the MSCS takes these actions 

in the following order: 

1. A value is placed into the FILE STATUS data item, if specified for this 

file, to indicate an INVALID KEY condition. (See page V-2, 1-0 Status.) 

2. If the INVALID KEY phrase is specified in the statement causing the 

condition, control is transferred to the INVALID KEY imperative statement. 

Any USE procedure specified for this file is not executed. 

3. If the INVALID KEY phrase is not specified, but a USE procedure is 

specified, either explicitly or implicitly, for this file, that procedure is 

executed. 

When the INVALID KEY condition occurs, execution of the input-output state¬ 

ment which recognized the condition is unsuccessful and the file is not 

affected. 

1.3.6 The AT END Condition 

The AT END condition can occur as a result of the execution of a READ 

statement. For details of the causes of the condition, see page V-23, 

The READ Statement. 

V-4 



Relative 1-0 - FILE-CONTROL 

2. ENVIRONMENT DIVISION IN THE RELATIVE 1-0 MODULE 

2.1 INPUT-OUTPUT SECTION 

2.1.1 The FILE-CONTROL Paragraph 

2.1.1.1 Function 

The FILE-CONTROL paragraph names each file and allows specification of 

other file-related information. 

2.1.1.2 General Format 

FILE-CONTROL. {file-control-entry} ... 

2.1.2 The File Control Entry 

2.1.2.1 Function 

The file control entry names a file and may specify other file-related 

information. 

2.1.2.2 General Format 

SELECT file-name 

ASSIGN TO implementor-name-1 [, implementor-name-2] ... 

; ORGANIZATION IS RELATIVE 

; ACCESS MODE IS < 

[; FILE STATUS IS data-name-2] . 

2.1.2.3 Syntax Rules 

(1) The SELECT clause must be specified first in the file control entry. 

The clauses which follow the SELECT clause may appear in any order. 

(2) Each file described in the Data Division must be named once and only 

once as file-name in the FILE-CONTROL paragraph. Each file specified in the 

file control entry must have a file description entry in the Data Division. 

(3) If the ACCESS MODE clause is not specified, the ACCESS MODE IS 

SEQUENTIAL clause is implied. 

V-5 



Relative 1-0 - FILE-CONTROL 

(4) Data-name-2 must be defined in the Data Division as a two-character 

data item of the category alphanumeric and must not be defined in the File 

Section, the Report Section, or the Communication Section. 

(5) Data-name-1 and data-name-2 may be qualified. 

(6) If a relative file is to be referenced by a START statement, the 

RELATIVE KEY phrase must be specified for that file. 

(7) Data-name-1 must not be defined in a record description entry 

associated with that file-name. 

(8) The data item referenced by data-name-1 must be defined as an 

unsigned integer. 

2.1.2.4 General Rules 

(1) The ASSIGN clause specifies the association of the file referenced by 

file-name to a storage medium. 

(2) The RESERVE clause allows the user to specify the number of input- 

output areas allocated. If the RESERVE clause is specified, the number of 

input-output areas allocated is equal to the value of integer-1. If the 

RESERVE clause is not specified the number of input-output areas allocated 

is specified by the implementor. 

(3) The ORGANIZATION clause specifies the logical structure of a file. 

The file organization is established at the time a file is created and cannot 

subsequently be changed. 

(4) When the access mode is sequential, records in the file are accessed 

in the sequence dictated by the file organization. This sequence is the order 

of ascending relative record numbers of existing records in the file. 

(5) When the FILE STATUS clause is specified, a value will be moved by 

the operating system into the data item specified by data-name-2 after the 

execution of every statement that references that file either explicitly or 

implicitly. This value indicates the status of execution of the statement. 

(See page V-2, 1-0 Status.) 

(6) If the access mode is random, the value of the RELATIVE KEY data item 

indicates the record to be accessed. 

(7) When the access mode is dynamic, records in the file may be accessed 

sequentially and/or randomly. (See general rules 4 and 6.) 

(8) All records stored in a relative file are uniquely identified by 

relative record numbers. The relative record number of a given record 

specifies the record's logical ordinal position in the file. The first 

logical record has a relative record number of one (1), and subsequent 

logical records have relative record numbers of 2, 3, 4, ... . 

(9) The data item specified by data-name-1 is used to communicate a 

relative record number between the user and the MSCS. 

V-6 



Relative 1-0 - I^O-CONTROL 

2.1.3 The I-O-CONTROL Paragraph 

2.1.3.1 Function 

The I-O-CONTROL paragraph specifies the points at which rerun is to be 

established and the memory area which is to be shared by different files. 

2.1.3.2 General Format 

I-O-CONTROL. 

RERUN ON (fl1? name 1 
- (implementor-name 

f; SAME | [ RECORD T 

finteger-1 RECORDS OF file-name-2' 

VERY integer-2 CLOCK-UNITS j 

[.condition-name j 

AREA FOR file-name-3 {, file-name-4) . . . "j ... 

2.1.3.3 Syntax Rules 

(1) The I-O-CONTROL paragraph is optional. 

(2) File-name-1 must be a sequentially organized file. 

(3) When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS 

clause is specified, implementor-name must be given in the RERUN clause. 

(4) More than one RERUN clause may be specified for a given file-name-2, 

subject to the following restriction: 

a. When multiple integer-1 RECORDS clauses are specified, no two of 

them may specify the same file-name-2. 

(5) Only one RERUN clause containing the CLOCK-UNITS clause may be 

specified. 

(6) The two forms of the SAME clause (SAME AREA,1 SAME RECORD AREA) 

considered separately in the following: ' 

are 

More than one SAME clause may be included in a program, however: 

a. A file-name must not appear in more than one SAME AREA clause. 

b. A file-name must not appear in more than one SAME RECORD AREA 

clause. 

c. If one or more file-names of a SAME AREA clause appear in a SAME 

RECORD AREA clause, all of the file-names in that SAME AREA clause must 

appear in the SAME RECORD AREA clause. However, additional file-names not 

appearing in that SAME AREA clause may also appear in that SAME RECORD AREA 

clause. The rule that only one of the files mentioned in a SAME AREA clause 

can be open at any given time takes precedence over the rule that all files 

mentioned in a SAME RECORD AREA clause can be open at any given time. 

V-7 



Relative 1-0 - I-O-CONTROL 

(7) The files referenced in the SAME AREA!or SAME RECORD AREA 
not all have the same organization or access. 

clause need 

2.1.3.4 General Rules 

(1) The RERUN clause specifies when and where the rerun information is 
recorded. Rerun information is recorded in the following ways: 

a. If file-name-1 is specified, the rerun information is written on 
each reel or unit of an output file and the implementor specifies where, on 
the file, the rerun information is to be recorded. 

b. If implementor-name is specified, the rerun information is 
written as a separate file on a device specified by the implementor. 

(2) There are four forms of the RERUN clause, based on the several 
conditions under which rerun points can be established. The implementor 
must provide at least one of the specified forms of the RERUN clause. 

a. When the integer-1 RECORDS clause is used. In this case, the 
rerun information is written on the device specified by implementor-name, 
which must be specified in the ON clause, whenever integer-1 records or 
file-name-2 has been processed. File-name-2 may be either an input or 
output file with any organization or access. 

b. When the integer-2 CLOCK-UNITS clause is used. In this case, the 
rerun information is written on the device specified by implementor-name, 
which must be specified in the ON clause, whenever an interval of time, 
calculated by an internal clock has elapsed. 

c. When the condition-name clause is used and implementor-name is 
specified in the ON clause. In this case, the rerun information is written 
on the device specified by implementor-name whenever a switch assumes a 
particular status as specified by condition-name. In this case, the associated 
switch must be defined in the SPECIAL-NAMES paragraph of the Configuration 
Section of the Environment Division. The implementor specifies when the 
switch status is interrogated. 

d. When the condition-name clause is used and file-name-1 is 
specified in the ON clause. In this case, the rerun information is written 
on file-name-1, which must be an output file, whenever a switch assumed a 
particular status as specified by condition-name. In this case, as in 
paragraph c above, the associated switch must be defined in the SPECIAL-NAMES 
paragraph of the Configuration Section of the Environment Division. The 
implementor specifies when the switch status is interrogated. 

(3) The SAME AREA clause specifies that two or more files that do not 
represent sort or merge files are to use the same memory area during process¬ 
ing. The area being shared includes all storage areas (including alternate 
areas) assigned to the files specified; therefore, it is not valid to have 
more than one of the files open at the same time. (See syntax rule 6c on 
page V-7.) 

V-8 



Relative 1-0 - I-O-CONTROL 

(4) The SAME RECORD AREA clause specifies that two or more files are to 

use the same memory area for processing of the current logical record. All of 

the files may be open at the same time. A logical record in the SAME RECORD 

AREA is considered as a logical record of each opened output file whose file¬ 

name appears in this SAME RECORD AREA clause and of the most recently read 

input file whose file-name appears in this SAME RECORD AREA clause. This is 

equivalent to an implicit redefinition of the area, i.e., records are aligned 

on the leftmost character position. 



Relative 1-0 - File Section 

3. DATA DIVISION IN THE RELATIVE I-Q MODULE 

3.1 FILE SECTION 

In a COBOL program the file description entry (FD) represents the highest 

level of organization in the File Section. The File Section header is followed 

by a file description entry consisting of a level indicator (FD), a file¬ 

name and a series of independent clauses. The FD clauses specify the size of 

the logical and physical records, the presence or absence of label records, 

the value of implementor-defined label items, and the names of the data records 

which comprise the file. The entry itself is terminated by a period. 

3.2 RECORD DESCRIPTION STRUCTURE 

A record description consists of a set of data description entries which 

describe the characteristics of a particular record. Each data description 

entry consists of a level-number followed by a data-name if required, followed 

by a series of independent clauses as required. A record description has a 

hierarchical structure and therefore the clauses used with an entry may vary 

considerably, depending upon whether or not it is followed by subordinate 

entries. The structure of a record description is defined in Concepts of 

Levels on page 1-84 while the elements allowed in a record description are 

shown in the data description skeleton on page 11-12. 

V-10 



Relative 1-0 - File Description 

3.3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 

3.3.1 Function 

The file description furnishes information concerning the physical struc¬ 

ture, identification, and record names pertaining to a given file. 

3.3.2 General Format 

FD file-name 

BLOCK CONTAINS integer-1 TO] integer-2 
fRECORDS 

)CHARACTERS 
* 

RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS] 

LABEL 
f RECORD IS ] ( STANDARD') 

1 RECORDS AREJ OMITTED 

VALUE OF implementor-name-1 IS 

, implementor-name-2 IS 

]l ldata-name-l| 1 

(_literal-l ) 

data-name-2 

literal-2 

; DATA \ RECORD IS 1 
data-name-3 [, data-name-4] ... 

iRECORDS ARE 

3.3.3 Syntax Rules 

(1) The level indicator FD identifies the beginning of a file description 

and must precede the file-name. 

(2) The clauses which follow the name of the file are optional in many 

cases, and their order of appearance is immaterial. 

(3) One or more record description entries must follow the file description 

entry. 

V-ll 



Relative 1-0 - BLOCK CONTAINS 

3.4 THE BLOCK CONTAINS CLAUSE 

3.4.1 Function 

The BLOCK CONTAINS clause specifies the size of a physical record. 

3.4.2 General Format 

BLOCK CONTAINS [integer-1 TO] integer-2 
RECORDS T 

CHARACTERS) 

3.4.3 General Rules 

(1) This clause is required except when: 

a. A physical record contains one and only one complete logical 

record. 

b. The hardware device assigned to the file has one and only one 

physical record size. 

c. The hardware device assigned to the file has more than one 

physical record size but the implementor has designated one as standard. In 

this case, the absence of this clause denotes the standard physical record 

size. 

(2) The size of the physical record may be stated in terms of RECORDS, 

unless one of the following situations exists, in which case the RECORDS 

phrase must not be used 

a. Where logical records may extend across physical records. 

b. The physical record contains padding (area not contained in a 

logical record). 

c. Logical records are grouped in such a manner that an inaccurate 

physical record size would be implied. 

(3) When the word CHARACTERS is specified, the physical record size is 

specified in terms of the number of character positions required to store 

the physical record, regardless of the types of characters used to represent 

the items within the physical record. 

(4) If only integer-2 is shown, it represents the exact size of the 

physical record. If integer-1 and integer-2 are both shown, they refer to 

the minimum and maximum size of the physical record, respectively. 

(5) If logical records of differing size are grouped into one physical 

record, the technique for determining the size of each logical record is 

specified by the implementor. 

V-12 



Relative 1-0 - DATA RECORDS 

3.5 THE DATA RECORDS CLAUSE 

3.5.1 Function 

The DATA RECORDS clause serves only as documentation for the names of data 

records with their associated file. 

3.5.2 General Format 

(RECORD IS ] , r „n 
| RECORDS are! [. data-name-2] ... 

3.5.3 Syntax Rules 

(1) Data-name-l and data-name-2 are the names of data records and must 

have 01 level-number record descriptions, with the same names, associated 

with them. 

3.5.4 General Rules 

(1) The presence of more than one data-name indicates that the file 

contains more than one type of data record. These records may be of differ¬ 

ing sizes, different formats, etc. The order in which they are listed is not 

significant. 

(2) Conceptually, all data records within a file share the same area. 

This is in no way altered by the presence of more than one type of data 

record within the file. 

V-13 



Relative 1-0 - LABEL RECORDS 

3.6 THE LABEL RECORDS CLAUSE 

3.6.1 Function 

The LABEL RECORDS clause specifies whether labels are present. 

3.6.2 General Format 

label IS ) (standard) 
- 1 RECORDS AREJ 1 OMITTED j 

3.6.3 Syntax Rules 

(1) This clause is required in every file description entry. 

3.6.4 General Rules 

(1) OMITTED specifies that no explicit labels exist for the file or the 

device to which the file is assigned. 

(2) STANDARD specifies that labels exist for the file or the device to 

which the file is assigned and the labels conform to the implementor's label 

specifications. 

V-14 



Relative 1-0 - RECORD CONTAINS 

3.7 THE RECORD CONTAINS CLAUSE 

3.7.1 Function 

The RECORD CONTAINS clause specifies the size of data records. 

3.7.2 General Format 

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS 

3.7.3 General Rules 

(1) The size of each data record is completely defined within the record 

description entry, therefore this clause is never required. When present, 

however, the following notes apply: 

a. Integer-2 may not be used by itself unless all the data records in 

the file have the same size. In this case integer-2 represents the exact 

number of characters in the data record. If integer-1 and integer-2 are both 

shown they refer to the minimum number of characters in the smallest size 

data record and the maximum number of characters in the largest size data 

record, respectively. 

b. The size is specified in terms of the number of character posi¬ 

tions required to store the logical record, regardless of the types of charac¬ 

ters used to represent the items within the logical record. The size of a 

record is determined by the sum of the number of characters in all fixed 

length elementary items plus the sum of the maximum number of characters in 

any variable length item subordinate to the record. This sum may be different 

from the actual size of the record; see page 1-85, Selection of Character 

Representation and Radix; page 11-33, The SYNCHRONIZED Clause; and page 11-35, 

The USAGE Clause. 

V-15 



Relative 1-0 - VALUE OF 

3.8 THE VALUE OF CLAUSE 

3.8.1 Function 

The VALUE OF clause particularizes the description of an item in the label 

records associated with a file. 

3.8.2 General Format 

VALUE OF implementor-name-1 IS 

, implementor-name-2 IS 

(Idata-name-ll 

literal-1 

ldata-name-2| 

yliteral-2 

3.8.3 Syntax Rules 

(1) Data-name-l, data-name-2, etc., should be qualified when necessary, 

but cannot be subscripted or indexed, nor can they be items described with the 

USAGE IS INDEX clause. 

(2) Data-name-l, data-name-2, etc., must be in the Working-Storage Section. 

3.8.4 General Rules 

(1) For an input file, the appropriate label routine checks to see if the 

value of implementor-name-1 is equal to the value of literal-1, or 

data-name-l, whichever has been specified. 
Hi 

For an output file, at the appropriate time the value of implementor- 

name- 1 is made equal to the value of literal-1,|or of a data-name-l, whichever 

has been specified.] 

(2) A figurative constant may be substituted in the format above wherever 

a literal is specified. 

V-16 



Relative 1-0 - CLOSE 

4. PROCEDURE DIVISION IN THE RELATIVE 1-0 MODULE 

4.1 THE CLOSE STATEMENT 

4.1.1 Function 

The CLOSE statement terminates the processing of files with optional lock. 

4.1.2 General Format 

CLOSE file-name-1 [ WITH LOCK.] [, file-name-2 [WITH LOCK.] J ... 
4.1.3 Syntax Rules 

(1) The files referenced in the CLOSE statement need not all have the 

same organization or access. 

4.1.4. General Rules 

(1) A CLOSE statement may only be executed for a file in an open mode. 

(2) Relative files are classified as belonging to the category of 

non-sequential single/multi-reel/unit. The results of executing each type 

of CLOSE for this category of file are summarized in the following table. 

CLOSE 

Statement 

Format 

File Category = 

Non-sequential 

Single/Multi-Reel/Unit 

CLOSE A 

CLOSE WITH LOCK A,B 

The definitions of the symbols in the table are given below. Where 

the definition depends on whether the file is an input, output or input-output 

file, alternate definitions are given; otherwise, a definition applies to 

input, output, and input-output files. 

A. Close File 

Input Files and Input-Output Files (Sequential Access Mode): 

If the file is positioned at its end and label records are 

specified for the file, the labels are processed according to the implementor’s 

standard label convention. The behavior of the CLOSE statement when label 

records are specified but not present, or when label records are not specified 

but are present, is undefined. Closing operations specified by the implementor 

are executed. If the file is positioned at its end and label records are not 

specified for the file, label processing does not take place but other closing 

operations specified by the implementor are executed. If the file is positioned 

other than at its end, the closing operations specified by the implementor 

are executed, but there is no ending label processing. 

V-17 



Relative 1-0 - CLOSE 

Input Files and Input-Output Files (Random or Dynamic Access Mode); 

Output Files (Random, Dynamic, or Sequential Access Mode): 

If label records are specified for the file, the labels are pro¬ 

cessed according to the implementor's standard label convention. The behavior 

of the CLOSE statement when label records are specified but not present, or 

when label records are not specified but are present, is undefined. Closing 

operations specified by the implementor are executed. If label records are 

not specified for the file, label processing does not take place but other 

closing operations specified by the implementor are executed. 

B. File Lock 

An implementor-defined technique is supplied to insure that this 

file cannot be opened again during this execution of this run unit. 

(3) The action taken if a file is in the open mode when a STOP RUN state¬ 

ment is executed is specified by the implementor. The action taken for a 

file that has been opened in a called program and not closed in that program 

prior to the execution of a CANCEL statement for that program is also speci¬ 

fied by the implementor. 

(4) If a CLOSE statement has been executed for a file, no other statement 

can be executed that references that file, either explicitly or implicitly, 

unless an intervening OPEN statement for that file is executed. 

(5) Following the successful execution of a CLOSE statement, the record 

area associated with file-name is no longer available. The unsuccessful 

execution of such a CLOSE statement leaves the availability of the record 

area undefined. 

V-18 



Relative 1-0 - DELETE 

4.2 THE DELETE STATEMENT 

4.2.1 Function 

The DELETE statement 

4.2.2 General Format 

DELETE file-name RECORD 

4.2.3 Syntax Rules 

(1) The INVALID KEY phrase must not be specified for a DELETE statement 

which references a file which is in sequential access mode. 

(2) The INVALID KEY phrase must be specified for a DELETE statement which 

references a file which is not in sequential access mode and for which an 

applicable USE procedure is not specified. 

4.2.4 General Rules 

logically removes a record from a mass storage file. 

[; INVALID KEY imperative-statement] 

(1) The associated file must be open in the 1-0 mode at the time of the 

execution of this statement. (See page V-20, The OPEN Statement.) 

(2) For files in the sequential access mode, the last input-output state¬ 

ment executed for file-name prior to the execution of the DELETE statement must 

have been a successfully executed READ statement. The MSCS logically removes 

from the file the record that was accessed by that READ statement. 

(3) For a file in random!or dynamic) access mode, the MSCS logically removes 

from the file that record identified by the contents of the RELATIVE KEY data 

item associated with file-name. If the file does not contain the record 

specified by the key, an INVALID KEY condition exists. (See page V-4, The 

INVALID KEY Condition.) 

(4) After the successful execution of a DELETE statement, the identified 

record has been logically removed from the file and can no longer be accessed. 

(5) The execution of a DELETE statement does not affect the contents of 

the record area associated with file-name. 

(6) The current record pointer is not affected by the execution of a 

DELETE statement. 

(7) The execution of the DELETE statement causes the value of the spec¬ 

ified FILE STATUS data item, if any, associated with file-name to be updated. 

(See page V-2, 1-0 Status.) 

V-19 



Relative 1-0 - OPEN 

4.3 THE OPEN STATEMENT 

4.3.1 Function 

The OPEN statement initiates the processing of files. It also performs 

checking and/or writing of labels and other input-output operations. 

4.3.2 General Format 

(INPUT file-name-1 f, file-name-2] ... 

OPEN J OUTPUT file-name-3 [, file-name-4] ... 

1 1-0 file-name-5 [, file-name-6] ... 

4.3.3 Syntax Rules 

(1) The files referenced in the OPEN statement need not all have the 

same organization or access. 

4.3.4 General Rules 

(1) The successful execution of an OPEN statement determines the avail¬ 

ability of the file and results in the file being in an open mode. 

(2) The successful execution of the OPEN statement makes the associated 

record area available to the program. 

(3) Prior to the successful execution of an OPEN statement for a given 

file, no statement can be executed that references that file, either explicit¬ 

ly or implicitly. 

(4) An OPEN statement must be successfully executed prior to the execution 

of any of the permissible input-output statements. In Table 1, Permissible 

Statements, 'X' at an intersection indicates that the specified statement, 

used in the access mode given for that row, may be used with the relative 

file organization and the open mode given at the top of the column. 

V-20 



Relative 1-0 - OPEN 

File Access 

Mode Statement 

Open Mode 

Input Output Input-Output 

Sequential READ X X 

WRITE X 

REWRITE X 

START X X 

DELETE X 

Random READ X X 

WRITE X X 

REWRITE x 

START 

DELETE X 

Dynamic READ X X 

WRITE X X 

REWRITE X 

START X X 

DELETE X 

Table 1. Permissible Statements 

(5) A file may be opened with the INPUT, OUTPUT, and 1-0 phrases in the 

same program. Following the initial execution of an OPEN statement for a 

file, each subsequent OPEN statement execution for that same file must be 

preceded by the execution of a CLOSE statement, without the LOCK phrase, for 

that file. 

(6) Execution of the OPEN statement does not obtain or release the first 

data record. 

(7) If label records are specified for the file, the beginning labels are 

processed as follows: 

a. When the INPUT phrase is specified, the execution of the OPEN 

statement causes the labels to be checked in accordance with the implementor’s 

specified conventions for input label checking. 

b. When the OUTPUT phrase is specified, the execution of the OPEN 

statement causes the labels to be written in accordance with the implementor's 

specified conventions for output label writing. 

The behavior of the OPEN statement when label records are specified 

but not present, or when label records are not specified but are present, is 

undefined. 

V-21 



Relative 1-0 - OPEN 

(8) The file description entry for file-name-1, file-name-2, file-name-5, 

or file-name-6 must be equivalent to that used when this file was created. 

(9) For files being opened with the INPUT or 1-0 phrase, the OPEN state¬ 

ment sets the current record pointer to the first record currently existing 

within the file. If no records exist in the file, the current record pointer 

is set such that the next executed Format 1 READ statement for the file will 

result in an AT END condition. 

(10) The 1-0 phrase permits the opening of a file for both input and output 

operations. Since this phrase implies the existence of the file, it cannot be 

used if the file is being initially created. 

(11) When the 1-0 phrase is specified and the LABEL RECORDS clause indicates 

label records are present, the execution of the OPEN statement includes the 

following steps: 

a. The labels are checked in accordance with the implementor’s 

specified conventions for input-output label checking. 

b. The new labels are written in accordance with the implementor’s 

specified conventions for input-output label writing. 

(12) Upon successful execution of an OPEN statement with the OUTPUT phrase 

specified, a file is created. At that time the associated file contains no 

data records. 

V-22 



Relative 1-0 - READ 

4.4 THE READ STATEMENT 

4.4.1 Function 

For sequential access, the READ statement makes available the next logical 

record from a file. For random access, the READ statement makes available a 

specified record from a mass storage file. 

4.4.2 General Format 

Format 1 

READ file-name NEXT RECORD ^INTO identifier] AT END imperative-statementj 

Format 2 

READ file-name RECORD j]INTO identifier] [; INVALID KEY imperative-statement] 

4.4.3 Syntax Rules 

(1) The INTO phrase must not be used when the input file contains logical 

records of various sizes as indicated by their record descriptions. The 

storage area associated with identifier and the record area associated with 

file-name must not be the same storage area. 

(2) Format 1 must be used for all files in sequential access mode. 

(3) The NEXT phrase must be specified for files in dynamic access mode, 

when records are to be retrieved sequentially. 

(4) Format 2 is used for files in random access mode or for files in 

dynamic access model when records are to be retrieved randomly. 

(5) The INVALID KEY phrase or the AT END phrase must be specified if no 

applicable USE procedure is specified for file-name. 

4.4.4 General Rules 

(1) The associated files must be open in the INPUT or 1-0 mode at the 

time this statement is executed. (See page V-20, The OPEN Statement.) 

(2) The record to be made available by a Format 1 READ statement is deter¬ 

mined as follows: 

a. The record, pointed to by the current record pointer, is made 

available provided that the current record pointer was positioned by the 

I START or 1 OPEN statement and the record is still accessible through the path 

indicated by the current record pointer; if the record is no longer access¬ 

ible, which may have been caused by the deletion of the record, the current 

record pointer is updated to point to the next existing record in the file 

and that record is then made available. 

V-23 



Relative 1-0 - READ 

b. If the current record pointer was positioned by the execution of 

a previous READ statement, the current record pointer is updated to point to 

the next existing record in the file and then that record is made available. 

(3) The execution of the READ statement causes the value of the FILE 

STATUS data item, if any, associated with file-name to be updated. (See page 

V-2, 1-0 Status.) 

(4) Regardless of the method used to overlap access time with processing 

time, the concept of the READ statement is unchanged in that a record is 

available to the object program prior to the execution of any statement fol¬ 

lowing the READ statement. 

(5) When the logical records of a file are described with more than one 

record description, these records automatically share the same storage area; 

this is equivalent to an implicit redefinition of the area. The contents of 

any data items which lie beyond the range of the current data record are 

undefined at the completion of the execution of the READ statement. 

(6) If the INTO phrase is specified, the record being read is moved from 

the record area to the area specified by identifier according to the rules 

specified for the MOVE statement without the CORRESPONDING phrase. The implied 

MOVE does not occur if the execution of the READ statement was unsuccessful. 

Any subscripting or indexing associated with identifier is evaluated after the 

record has been read and immediately before it is moved to the data item. 

(7) When the INTO phrase is used, the record being read is available in 

both the input record area and the data area associated with identifier. 

(8) If, at the time of execution of a Format 1 READ statement, the posi¬ 

tion of current record pointer for that file is undefined, the execution of 

that READ statement is unsuccessful. 

(9) If, at the time of the execution of a Format 1 READ statement, no 

next logical record exists in the file, the AT END condition occurs, and the 

execution of the READ statement is considered unsuccessful. (See page V-2, 

1-0 Status.) 

(10) When the AT END condition is recognized the following actions are 

taken in the specified order: 

a. A value is placed into the FILE STATUS data item, if specified 

for this file, to indicate an AT END condition. (See page V-2, 1-0 Status.) 

b. If the AT END phrase is specified in the statement causing the 

condition, control is transferred to the AT END imperative-statement. Any 

USE procedure specified for this file is not executed. 

c. If the AT END phrase is not specified, then a USE procedure must 

be specified, either explicitly or implicitly, for this file, and that 

procedure is executed. 

When the AT END condition occurs, execution of the input-output state¬ 

ment which caused the condition is unsuccessful. 

V-24 



Relative 1-0 - READ 

(11) Following the unsuccessful execution of any READ statement, the con¬ 

tents of the associated record area and the position of the current record 

pointer are undefined. 

(12) When the AT END condition has been recognized, a Format 1 READ state¬ 

ment for that file must not be executed without first executing one of the 

following: 

a. A successful CLOSE statement followed by the execution of a 

successful OPEN statement for that file. 

b. A successful START statement for that file. 

c. A successful Format 2 READ statement for that file. 

(13) For a file for which dynamic access mode is specified, a Format 1 

READ statement with the NEXT phrase specified causes the next logical record 

to be retrieved from the file as described in general rule 2. 

(14) If the RELATIVE KEY phrase is specified, the execution of a Format 1 

READ statement updates the contents of the RELATIVE KEY data item such that 

it contains the relative record number of the record made available. 

(15) The execution of a Format 2 READ statement sets the current record 

pointer to, and makes available, the record whose relative record number is 

contained in the data item named in the RELATIVE KEY phrase for the file. If 

the file does not contain such a record, the INVALID KEY condition exists and 
execution of the READ statement is unsuccessful. (See page V-4, The INVALID 

KEY Condition.) 

V-25 



Relative 1-0 - REWRITE 

4.5 THE REWRITE STATEMENT 

4.5.1 Function 

The REWRITE statement logically replaces a record existing in a mass 

storage file. 

4.5.2 General Format 

REWRITE record-name ^ FROM identifier] ; INVALID KEY imperative-statement] 

4.5.3 Syntax Rules 

(1) Record-name and identifier must not refer to the same storage area. 

(2) Record-name is the name of a logical record in the File Section of 

the Data Division and may be qualified. 

(3) The INVALID KEY phrase must not be specified for a REWRITE statement 

which references a file in sequential access mode. 

(4) The INVALID KEY phrase must be specified in the REWRITE statement for 

files in the randomlor dynamic access mode for which an appropriate USE 

procedure is not specified. 

4.5.4 General Rules 

(1) The file associated with record-name must be open in the 1-0 mode at 

the time of execution of this statement. (See page V-20, The OPEN Statement.) 

(2) For files in the sequential access mode, the last input-output 

statement executed for the associated file prior to the execution of the 

REWRITE statement must have been a successfully executed READ statement. 

The MSCS logically replaces the record that was accessed by the READ state¬ 

ment . 

(3) The number of character positions in the record referenced by record- 

name must be equal to the number of character positions in the record being 

replaced. 

(4) The logical record released by a successful execution of the REWRITE 

statement is no longer available in the record areal unless the associated file 

is named in a SAME RECORD AREA clause, in which case the logical record is 

available to the program as a record of other files appearing in the same 

SAME RECORD AREA clause as the associated 1-0 file, as well as to the file 

associated with record-name.  

(5) The execution of a REWRITE statement with the FROM phrase is equiva¬ 

lent to the execution of: 

MOVE identifier TO record-name 

followed by the execution of the same REWRITE statement without the FROM phrase. 

The contents of the record area prior to the execution of the implicit MOVE 

statement have no effect on the execution of the REWRITE statement. 

V-26 



Relative 1-0 - REWRITE 

(6) The current record pointer is not affected by the execution of a 

REWRITE statement. 

(7) The execution of the REWRITE statement causes the value of the FILE 

STATUS data item, if any, associated with the file to be updated. (See page 

V-2, 1-0 Status.) 

(8) For a file accessed in[either random lor dynamic 1 access mode, the MSCS 

logically replaces the record specified by the contents of the RELATIVE KEY 

data item associated with the file. If the file does not contain the record 

specified by the key, the INVALID KEY condition exists. (See page V-3, The 

INVALID KEY Condition.) The updating operation does not take place and the 

data in the record area is unaffected. 

V-2 7 



Relative 1-0 - START 

4.6 THE START STATEMENT 

4.6.1 Function 

The START statement provides a basis for logical positioning within a 

relative file, for subsequent sequential retrieval of records. 

4.6.2 General Format 

name KEY i 

'is EQUAL TO ^ 

IS = 

IS GREATER THAN 

IS > 
► data-name 

IS NOT LESS THAN 

[iS NOT < 

[; INVALID KEY imperative-statement] 

NOTE: The required relational characters '>', ' <', and ' = ' 

are not underlined to avoid confusion with other symbols 

such as ’>' (greater than or equal to). 

4.6.3 Syntax Rules 

(1) File-name must be the name of a file with sequential or dynamic access. 

(2) Data-name may be qualified. 

(3) The INVALID KEY phrase must be specified if no applicable USE proce¬ 

dure is specified for file-name. 

(4) Data-name, if specified, must be the data item specified in the 

RELATIVE KEY phrase of the associated file control entry. 

4.6.4 General Rules 

(1) File-name must be open in the INPUT or 1-0 mode at the time that 

the START statement is executed. (See page V-20, The OPEN Statement.) 

(2) If the KEY phrase is not specified the relational operator 'IS EQUAL 

TO' is implied. 

(3) The type of comparison specified by the relational operator in the 

KEY phrase occurs between a key associated with a record in the file referenced 

by file-name and a data item as specified in general rule 5. 

a. The current record pointer is positioned to the first logical 

record currently existing in the file whose key satisfies the comparison. 

b. If the comparison is not satisfied by any record in the file, an 

INVALID KEY condition exists, the execution of the START statement is 

unsuccessful, and the position of the current record pointer is undefined. 

(See V-4, The INVALID KEY Condition.) __ 

V-28 



Relative 1-0 - START 

(4) The execution of the START statement causes the value of the FILE 

STATUS data item, if any, associated with file-name to be updated. (See 

page V-2, 1-0 Status.) 

(5) The comparison described in general rule 3 uses the data item 

referenced by the RELATIVE KEY clause associated with file-name. 

V-29 



Relative 1-0 - USE 

4.7 THE USE STATEMENT 

4.7.1 Function 

The USE statement specifies procedures for input-output error handling 

that are in addition to the standard procedures provided by the input-output 
control system. 

4.7.2 General Format 

USE AFTER STANDARD 
| EXCEPTION 

1 ERROR 
PROCEDURE ON 

ffile-name-1 

) INPUT 

| OUTPUT 

1-0 

f, file-name-2] . . . 

4.7.3 Syntax Rules 

(1) A USE statement, when present, must immediately follow a section 

header in the declaratives section and must be followed by a period followed 

by a space. The remainder of the section must consist of zero, one or more 

procedural paragraphs that define the procedures to be used. 

(2) The USE statement itself is never executed; it merely defines the 

conditions calling for the execution of the USE procedures. 

(3) The same file-name can appear in a different specific arrangement of 

the format. Appearance of a file-name in a USE statement must not cause the 

simultaneous request for execution of more than one USE procedure. 

(4) The words ERROR and EXCEPTION are synonymous and may be used 

interchangeably. 

(5) The files implicitly or explicitly referenced in a USE statement need 

not all have the same organization or access. 

4.7.4 General Rules 

(1) The designated procedures are executed by the input-output system 

after completing the standard input-output error routine, or upon recognition 

of the INVALID KEY or AT END conditions, when the INVALID KEY phrase or AT END 

phrase, respectively, has not been specified in the input-output statement. 

(2) After execution of a USE procedure, control is returned to the 

invoking routine. 

(3) Within a USE procedure, there must not be any reference to any nonde¬ 

clarative procedures. Conversely, in the nondeclarative portion there must be 

no reference to procedure-names that appear in the declarative portion, except 

that PERFORM statements may refer to a USE statement or to the procedures 

associated with such a USE statement. 

V-30 



Relative 1-0 - USE 

(4) Within a USE procedure, there must not be the execution of any state¬ 

ment that would cause the execution of a USE procedure that had previously 

been invoked and had not yet returned control to the invoking routine. 

V-31 



Relative 1-0 - WRITE 

4.8 THE WRITE STATEMENT 

4.8.1 Function 

The WRITE statement releases a logical record for an output or input-output 
file. 

4.8.2 General Format 

WRITE record-name ^ FROM identifier] [; INVALID KEY imperative-statement] 

4.8.3 Syntax Rules 

(1) Record-name and identifier must not reference the same storage area. 

(2) The record-name is the name of a logical record in the File Section 

of the Data Division and may be qualified. 

(3) The INVALID KEY phrase must be specified if an applicable USE proce¬ 

dure is not specified for the associated file. 

4.8.4 General Rules 

(1) The associated file must be open in the OUTPUT or 1-0 mode at the 

time of the execution of this statement. (See page V-20, The OPEN Statement.) 

(2) The logical record released by the execution of the WRITE statement 

is no longer available in the record area unless [the associated file is named 

in a SAME RECORD AREA clause or the execution of the WRITE statement is unsuc¬ 

cessful due to an INVALID KEY condition. The logical record is also available 

to the program as a record of other files referenced in the same SAME RECORD 

AREA clause as the associated output file, as well as to the file associated 

with record-name.  

(3) The results of the execution of the WRITE statement with the FROM 

phrase is equivalent to the execution of: 

a. The statement: 

MOVE identifier TO record-name 

according to the rules specified for the MOVE statement, followed by: 

b. The same WRITE statement without the FROM phrase. 

The contents of the record area prior to the execution of the implicit 

MOVE statement have no effect on the execution of this WRITE statement. 

After execution of the WRITE statement is complete, the information in 

the area referenced by identifier is available, even though the information in 

the area referenced by record-name may not be. (See general rule 2.) 

(4) The current record pointer is unaffected by the execution of a WRITE 

statement. 

V-32 



Relative 1-0 - WRITE 

(5) The execution of the WRITE statement causes the value of the FILE 
STATUS data item, if any, associated with the file to be updated. (See page 
V-2, 1-0 Status.) 

(6) The maximum record size for a file is established at the time the 
file is created and must not subsequently be changed. 

(7) The number of character positions on a mass storage device required 
to store a logical record in a file may or may not be equal to the number of 
character positions defined by the logical description of that record in the 
program. 

(8) The execution of the WRITE statement releases a logical record to the 
operating system. 

(9) When a file is opened in the output mode, records may be placed into 
the file by one of the following: 

a. If the access mode is sequential, the WRITE statement will cause 
a record to be released to the MSCS. The first record will have a relative 
record number of one (1) and subsequent records released will have relative 
record numbers of 2, 3, 4, ... . If the RELATIVE KEY data item has been 
specified in the file control entry for the associated file, the relative 
record number of the record just released will be placed into the RELATIVE 
KEY data item by the MSCS during execution of the WRITE statement. 

b. If the access mode is random or dynamic, prior to the execution of 
the WRITE statement the value of the RELATIVE KEY data item must be initialized 
in the program with the relative record number to be associated with the record 
in the record area. That record is then released to the MSCS by execution of 
the WRITE statement. 

(10) When a file is opened in the 1-0 mode and the access mode is random 
or dynamic, records are to be inserted in the associated file. The value of 
the RELATIVE KEY data item must be initialized by the program with the relative 
record number to be associated with the record in the record area. Execution 
of a WRITE statement then causes the contents of the record area to be released 
to the MSCS. 

(11) The INVALID KEY condition exists under the following circumstances: 

a. When the access mode is random or dynamic, and the RELATIVE KEY 
data item specifies a record which already exists in the file, or 

b. When an attempt is made to write beyond the externally defined 
boundaries of the file. 

(12) When the INVALID KEY condition is recognized, the execution of the 
WRITE statement is unsuccessful, the contents of the record area are unaffected, 
and the FILE STATUS data item, if any, of the associated file is set to a value 
indicating the cause of the condition. Execution of the program proceeds 
according to the rules stated in the INVALID KEY condition on page V-3. 
(See page V-2, 1-0 Status.) 

V-33 



Indexed 1-0 - Introduction 

1. INTRODUCTION TO THE INDEXED 1-0 MODULE 

1.1 FUNCTION 

The Indexed 1-0 module provides a capability to access records of a mass 

storage file in either a random or sequential manner. Each record in an 

indexed file is uniquely identified by the value of one or more keys within 

that record. 

1.2 LEVEL CHARACTERISTICS 

Indexed 1-0 Level 1 does not provide full COBOL facilities for the FILE- 

CONTROL, I-O-CONTROL, and FD entries as specified in the formats of this module. 

Within the Procedure Division, the Indexed 1-0 Level 1 provides limited capabil¬ 

ities for the READ and USE statements and full capabilities for the CLOSE, 

DELETE, OPEN, REWRITE, and WRITE statements, as specified in the formats for 

this module. 

Indexed 1-0 Level 2 provides full facilities for the FILE-CONTROL, I-O-CONTROL, 

and FD entries as specified in the formats for this module. Within the Procedure 

Division, the Indexed 1-0 Level 2 provides full capabilities for the CLOSE, 

DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements as specified in 

the formats for this module. The additional features available in Level 2 

include: the RESERVE clause, DYNAMIC accessing, ALTERNATE KEYS, SAME RECORD 

AREA, READ NEXT, and the entire START statement. 

1.3 LANGUAGE CONCEPTS 

1.3.1 Organization 

If 

A file whose organization is indexed is a mass storage file in which data 

records may be accessed by the value of a key. A record description may include 

one or more key data items, each of which is associated with an index. Each index 

provides a logical path to the data records according to the contents of a data 

item within each record which is the record key for that index. 

The data item named in the RECORD KEY clause of the file control entry for a 

file is the prime record key for that file. For purposes of inserting, updating 

and deleting records in a file, each record is identified solely by the value of 

its prime record key. This value must, therefore, be unique and must not be 

changed when updating the record. 

A data item named in the ALTERNATE RECORD KEY clause of the file control entry 

for a file is an alternate record key for that file. The value of an alternate 

record key may be non-unique if the DUPLICATES phrase is specified for it. These 

keys provide alternate access paths for retrieval of records from the file._ 

1.3.2 Access Modes 

In the sequential access mode, the sequence in which records are accessed 

is the ascending order of the record key values. The order of retrieval of 

records within a set of records having duplicate record key values is the 

order in which the records were written into the set. 

VI-1 



Indexed 1-0 - Introduction 

In the random access mode, the sequence in which records are accessed is 

controlled by the programmer. The desired record is accessed by placing the 

value of its record key in a record key data item. 

In the dynamic access mode, the programmer may change at will from sequential 

access to random access using appropriate forms of input-output statements. 

1.3.3 Current Record Pointer 

The current record pointer is a conceptual entity used in this document to 

facilitate specification of the next record to be accessed within a given file. 

The concept of the current record pointer has no meaning for a file opened in 

the output mode. The setting of the current record pointer is affected only 

by the OPEN, START, and READ statements. 

1.3.4 1-0 Status 

If the FILE STATUS clause is specified in a file control entry, a value is 

placed into the specified two-character data item during the execution of an 

OPEN, CLOSE, READ, WRITE, REWRITE, DELETE for START) statement and before any 

applicable USE procedure is executed, to indicate to the COBOL program the 

status of that input-output operation. 

1.3.4.1 Status Key 1 

The leftmost character position of the FILE STATUS data item is known as 

status key 1 and is set to indicate one of the following conditions upon 

completion of the input-output operation. 

’O' 

’1’ 

121 

*3* 
.9» 

indicates 

indicates 

indicates 

indicates 

indicates 

Successful Completion 

At End 

Invalid Key 

Permanent Error 

Implementor Defined 

The meaning of the above indications are as follows: 

0 - Successful Completion. The input-output statement was successfully 

executed. 

1 - At End. The Format 1 READ statement was unsuccessfully executed as a 

result of an attempt to read a record when no next logical record exists in 

the file. 

2 - Invalid Key. The input-output statement was unsuccessfully executed 

as a result of one of the following: 

Sequence Error 

Duplicate Key 

No Record Found 

Boundary Violation 

3 - Permanent Error. The input-output statement was unsuccessful as the 

result of an input-output error, such as data check, parity error, or trans¬ 

mission error. 

VI-2 



Indexed 1-0 - Introduction 

9 - Implementor Defined. The input-output statement was unsuccessfully 

executed as a result of a condition that is specified by the implementor. 

This value is used only to indicate a condition not indicated by other defined 

values of status key 1, or by specified combinations of the value of status 

key 1 and status key 2. 

1.3.4.2 Status Key 2 

The rightmost character position of the FILE STATUS data item is known as 

status key 2 and is used to further describe the results of the input-output 

operation. This character will contain a value as follows: 

1. If no further information is available concerning the input-output 

operation, then status key 2 contains a value of ’O'. 

2. When status key 1 contains a value of 'O' indicating a successful com¬ 

pletion, status key 2 may contain a value of *2' indicating a duplicate key. 

This condition indicates: 

a. For a READ statement, the key value for the current key of refer¬ 

ence is equal to the value of that same key in the next record within the 

current key of reference. 

b. For a WRITE or REWRITE statement, the record just written created 

a duplicate key value for at least one alternate record key for which 

d ■'licates are allowed. 

3. When status key 1 contains a value of '2' indicating an INVALID KEY 

condition, status key 2 is used to designate the cause of that condition as 

follows: 

a. A value of *1' in status key 2 indicates a sequence error for a 

sequentially accessed indexed file. The ascending sequence requirements of 

successive record key values have been violated (see The WRITE Statement on 

page VI-33), or the prime record key value has been changed by the COBOL 

program between the successful execution of a READ statement and the execution 

of the next REWRITE statement for that file. 

b. A value of *2' in status key 2 indicates a duplicate key value. 

An attempt has been made to write or rewrite a record that would create a 

duplicate key in an indexed file. 

c. A value of '3’ in status key 2 indicates no record found. An 

attempt has been made to access a record, identified by a key, and that record 

does not exist in the file. 

d. A value of '4' in status key 2 indicates a boundary violation. An 

attempt has been made to write beyond the externally defined boundaries of an 

indexed file. The implementor specifies the manner in which these boundaries 

are defined. 

4. When status key 1 contains a value of *9' indicating an implementor- 

defined condition, the value of status key 2 is defined by the implementor. 

VI-3 



Indexed 1-0 - Introduction 

1.3.4.3 Valid Combinations of Status Keys 1 and 2 
r 

The valid permissible combinations of the value of status key 1 and status 

key 2 are shown in the following figure. An ’X* at an intersection indicates 
a valid permissible combination. 

Status 

Key 1 

Status Key 2 

No Further 

Information 

(0) 

Sequence 

Error 

(1) 

Duplicate 

Key 

(2) 

No Record 

Found 

(3) 

Boundary 

Violation 

(4) 

Successful 

Completion (0) 
X X 

At End (1) X 

Invalid Key (2) X X X X 

Permanent 

Error (3) 
X 

Implementor 

Defined (9) 

1.3.5 The INVALID KEY Condition 

The INVALID KEY condition can occur as a result of the execution of a START, 

READ, WRITE, REWRITE or DELETE statement. For details of the causes of the 

condition, see page VI-30, The START Statement; page VI-24, The READ Statement; 

page VI-33, The WRITE Statement; page VI-28, The REWRITE Statement; and page 

VI-20, The DELETE Statement. 

When the INVALID KEY condition is recognized, the MSCS takes these actions 

in the following order: 

1. A value is placed into the FILE STATUS data item, if specified for this 

file, to indicate an INVALID KEY condition. (See page VI-2, 1-0 Status.) 

2. If the INVALID KEY phrase is specified in the statement causing the 

condition, control is transferred to the INVALID KEY imperative statement. 

Any USE procedure specified for this file is not executed. 

3. If the INVALID KEY phrase is not specified, but a USE procedure is 

specified, either explicitly or implicitly, for this file, that procedure 

is executed. 

When the INVALID KEY condition occurs, execution of the input-output state¬ 

ment which recognized the condition is unsuccessful and the file is not affected. 

1.3.6 The AT END Condition 

The AT END condition can occur as a result of the execution of a READ state¬ 

ment. For details of the causes of the condition, see page VI-24, The READ 

Statement. 

VI-4 



Indexed 1-0 - FILE-CONTROL 

2. ENVIRONMENT DIVISION IN THE INDEXED 1-0 MODULE 

2.1 INPUT-OUTPUT SECTION 

2.1.1 The FILE-CONTROL Paragraph 

2.1.1.1 Function 

The FILE-CONTROL paragraph names each file and allows specification of 

other file-related information. 

2.1.1.2 General Format 

FILE-CONTROL. {file-control-entry} ... 

2.1.2 The File Control Entry 

2.1.2.1 Function 

The file control entry names a file and may specify other file-related 

information. 

2.1.2.2 General Format 

SELECT file-name 

ASSIGN TO implementor-name-1 [, implementor-name-2] ... 

; RESERVE integer-1 
AREA 

.AREAS. . 

; ORGANIZATION IS INDEXED 

f SEQUENTIAL^ 

; ACCESS MODE IS \ RANDOM 

| DYNAMIC 

; RECORD KEY IS data-name-1 

; ALTERNATE RECORD KEY IS data-name-2 [ WITH DUPLICATES ' ] ... 
; FILE STATUS IS data-name-3 ] . 

2.1.2.3 Syntax Rules 

(1) The SELECT clause must be specified first in the file control entry. 

The clauses which follow the SELECT clause may appear in any order. 

(2) Each file described in the Data Division must be named once and only 

once as file-name in the FILE-CONTROL paragraph. Each file specified in the 

file control entry must have a file description entry in the Data Division. 

VI-5 



Indexed 1-0 - FILE-CONTROL 

(3) If the ACCESS MODE clause is not specified, the ACCESS MODE IS 

SEQUENTIAL clause is implied. 

(4) Data-name-3 must be defined in the Data Division as a two-character 

data item of the category alphanumeric and must not be defined in the File 

Section, the Report Section, or the Communication Section. 

(5) Data-name-1, data-name-2, and data-name-3 may be qualified. 

(6) The data items referenced by data-name-1 and data-name-2 must each be 

defined as a data item of the category alphanumeric within a record description 

entry associated with that file-name. 

(7) Neither data-name-11 nor data-name-21 can describe an item whose size 

is variable. (See page III-2, The OCCURS Clause.) 

(8) Data-name-2 cannot reference an item whose leftmost character position 

corresponds to the leftmost character position of an item referenced by data- 

name-1 or by any other data-name-2 associated with this file. 

2.1.2.4 General Rules 

(1) The ASSIGN clause specifies the association of the file referenced by 

file-name to a storage medium. 

(2) The RESERVE clause allows the user to specify the number of input- 

output areas allocated. If the RESERVE clause is specified, the number of 

input-output areas allocated is equal to the value of integer-1. If the 

RESERVE clause is not specified the number of input-output areas allocated 

is specified by the implementor. _ 

(3) The ORGANIZATION clause specifies the logical structure of a file. 

The file organization is established at the time a file is created and cannot 

subsequently be changed. 

(4) When the access mode is sequential, records in the file are accessed 

in the sequence dictated by the file organization. For indexed files this 

sequence is the order of ascending record key values within a given key of 

reference. 

(5) When the FILE STATUS clause is specified, a value will be moved by 

the operating system into the data item specified by data-name-3 after the 

execution of every statement that references that file either explicitly or 

implicitly. This value indicates the status of execution of the statement. 

(See page VI-2, 1-0 Status.) 

(6) If the access mode is random, the value of the record key data item 

indicates the record to be accessed. 

(7) When the access mode is dynamic, records in the file may be accessed 

sequentially and/or randomly. (See general rules 4 and 6.)_ 

VI-6 



Indexed 1-0 - FILE-CONTROL 

(8) The RECORD KEY clause specifies the record key that is the prime 

record key for the file. The values of the prime record key must be unique 

among records of the file. This prime record key provides an access path to 

records in an indexed file. 

(9) An ALTERNATE RECORD KEY clause specifies a record key that is an 

alternate record key for the file. This alternate record key provides an 

alternate access path to records in an indexed file. 

(10) The data descriptions of data-name-l[and data-name-2 as well as their 

relative locations within a record must be the same as that used when the file 

was created. | The number of alternate keys for the file must also be the same 

as that used when the file was created. 

(11) The DUPLICATES phrase specifies that the value of the associated 

alternate record key may be duplicated within any of the records in the file. 

If the DUPLICATES phrase is not specified, the value of the associated alter¬ 

nate record key must not be duplicated among any of the records in the file. 

VI-7 



Indexed 1-0 - I-O-CONTROL 

2.1.3 The I-O-CONTROL Paragraph 

2.1.3.1 Function 

The I-O-CONTROL paragraph specifies the points at which rerun is to be 

established and the memory area which is to be shared by different files. 

2.1.3.2 General Format 

T-O-CONTROL. 

; RERUN ON 
file-name-1 

implementor-name } EVERY 

finteger-1 RECORDS OF file-name-2 

\integer-2 CLOCK-UNITS 

(.condition-name 

SAME [record] AREA FOR file-name-3 {, file-name 

2.1.3.3 Syntax Rules 

(1) The I-O-CONTROL paragraph is optional. 

(2) File-name-1 must be a sequentially organized file. 

(3) When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS 

clause is specified, implementor-name must be given in the RERUN clause. 

(4) When multiple integer-1 RECORDS clauses are specified, no two of 

them may specify the same file-name-2. 

(5) Only one RERUN clause containing the CLOCK-UNITS clause may be 

specified. 

(6) The two forms of the SAME clause (SAME AREA, SAME RECORD AREA! ) are 

considered separately in the following: 

More than one SAME clause may be included in a program, however: 

a. A file-name must not appear in more than one SAME AREA clause. 

b. A file-name must not appear in more than one SAME RECORD AREA 

clause. 

c. If one or more file-names of a SAME AREA clause appear in a SAME 

RECORD AREA clause, all of the file-names in that SAME AREA clause must 

appear in the SAME RECORD AREA clause. However, additional file-names not 

appearing in that SAME AREA clause may also appear in that SAME RECORD AREA 

clause. The rule that only one of the files mentioned in a SAME AREA clause 

can be open at any given time takes precedence over the rule that all files 

mentioned in a SAME RECORD AREA clause can be open at any given time. 

VI-8 



Indexed 1-0 - I-O-CONTROL 

(7) The files referenced in the SAME AREA or SAME RECORD AREA]clause need 

not all have the same organization or access. 

2.1.3.4 General Rules 

(1) The RERUN clause specifies when and where the rerun information is 

recorded. Rerun information is recorded in the following ways: 

a. If file-name-1 is specified, the rerun information is written on 

each reel or unit of an output file and the implementor specifies where, on 

the file, the rerun information is to be recorded. 

b. If implementor-name is specified, the rerun information is 

written as a separate file on a device specified by the implementor. 

(2) There are four forms of the RERUN clause, based on the several 

conditions under which rerun points can be established. The implementor 

must provide at least one of the specified forms of the RERUN clause. 

a. When the integer-1 RECORDS clause is used. In this case, the 

rerun information is written on the device specified by implementor-name, 

which must be specified in the ON clause, whenever integer-1 records of 

file-name-2 has been processed. File-name-2 may be either an input or 

output file with any organization or access. 

b. When the integer-2 CLOCK-UNITS clause is used. In this case, the 

rerun information is written on the device specified by implementor-name, 

which must be specified in the ON clause, whenever an interval of time, 

calculated by an internal clock, has elapsed. 

c. When the condition-name clause is used and implementor-name is 

specified in the ON clause. In this case, the rerun information is written 

on the device specified by implementor-name whenever a switch assumes a 

particular status as specified by condition-name. In this case, the associated 

switch must be defined in the SPECIAL-NAMES paragraph of the Configuration 

Section of the Environment Division. The implementor specifies when the 

switch status is interrogated. 

d. When the condition-name clause is used and file-name-1 is 

specified in the ON clause. In this case, the rerun information is written 

on file-name-1, which must be an output file, whenever a switch assumes a 

particular status as specified by condition-name. In this case, as in 

paragraph c above, the associated switch must be defined in the SPECIAL-NAMES 

paragraph of the Configuration Section of the Environment Division. The 

implementor specifies when the switch status is interrogated. 

(3) The SAME AREA clause specifies that two or more files that do not 

represent sort or merge files are to use the same memory area during process¬ 

ing. The area being shared includes all storage areas assigned to the files 

specified; therefore, it is not valid to have more than one of the files open 

at the same time. (See syntax rule 6c on page VI-8.) 

VI-9 



Indexed 1-0 - I-O-CONTROL 

(4) The SAME RECORD AREA clause specifies that two or more files are to 

use the same memory area for processing of the current logical record. All of 

the files may be open at the same time. A logical record in the SAME RECORD 

AREA is considered as a logical record of each opened output file whose file¬ 

name appears in this SAME RECORD AREA clause and of the most recently read 

input file whose file-name appears in this SAME RECORD AREA clause. This is 

equivalent to an implicit redefinition of the area, i.e., records are aligned 

on the leftmost character position. 

VI-10 



Indexed 1-0 - File Section 

3. DATA DIVISION IN THE INDEXED 1-0 MODULE 

3.1 FILE SECTION 

In a COBOL program the file description entry (FD) represents the highest 

level of organization in the File Section. The File Section header is followed 

by a file description entry consisting of a level indicator (FD), a file-name 

and a series of independent clauses. The FD clauses specify the size of the 

logical and physical records, the presence or absence of label records, the 

value of implementor-defined label items, and the names of the data records 

which comprise the file. The entry itself is terminated by a period. 

3.2 RECORD DESCRIPTION STRUCTURE 

A record description consists of a set of data description entries which 

describe the characteristics of a particular record. Each data description 

entry consists of a level-number followed by a data-name if required, followed 

by a series of independent clauses as required. A record description has a 

hierarchical structure and therefore the clauses used with an entry may vary 

considerably, depending upon whether or not it is followed by subordinate 

entries. The structure of a record description is defined in Concepts of 

Levels on page 1-84 while the elements allowed in a record description are 

shown in the data description skeleton on page 11-12. 

VI-11 



Indexed 1-0 - File Description 

3.3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 

3.3.1 Function 

The file description furnishes information concerning the physical struc¬ 

ture, identification, and record names pertaining to a given file. 

3.3.2 General Format 

FD file-name 

; BLOCK CONTAINS [integer-1 TO ] integer-2 
f RECORDS 

1 CHARACTERS 

[; RECORD CONTAINS [integer-3 To] integer-4 CHARACTERS] 

RECORD IS 
; LABEL <records ARE| \ OMITTED 

STANDARD 

data-name-1 j 

-1 J ; VALUE OF implementor-name-1 IS literal 

|, implement 
data-name-2 i 

...] 
literal-2 j 

; DATA 
RECORD IS 1 

RECORDS ARE 
data-name-3 [, data-name-*] ... ] . 

3.3.3 Syntax Rules 

(1) The level indicator FD identifies the beginning of a file description 

and must precede the file-name. 

(2) The clauses which follow the name of the file are optional in many 

cases, and their order of appearance is immaterial. 

(3) One or more record description entries must follow the file 

description entry. 

VI-12 



Indexed 1-0 - BLOCK CONTAINS 

3.4 THE BLOCK CONTAINS CLAUSE 

3.4.1 Function 

The BLOCK CONTAINS clause specifies the size of a physical record. 

3.4.2 General Format 

BLOCK CONTAINS [integer-1 TO] integer-2 
[RECORDS T 
1CHARACTERS] 

3.4.3 General Rules 

(1) This clause is required except when: 

a. A physical record contains one and only one complete logical 

record. 

b. The hardware device assigned to the file has one and only one 

physical record size. 

c. The hardware device assigned to the file has more than one 

physical record size but the implementor has designated one as standard. In 

this case, the absence of this clause denotes the standard physical record 

size. 

(2) The size of the physical record may be stated in terms of RECORDS, 

unless one of the following situations exists, in which case the RECORDS 

phrase must not be used 

a. Where logical records may extend across physical records. 

b. The physical record contains padding (area not contained in a 

logical record). 

c. Logical records are grouped in such a manner that an inaccurate 

physical record size would be implied. 

(3) When the word CHARACTERS is specified, the physical record size is 

specified in terms of the number of character positions required to store 

the physical record, regardless of the types of characters used to represent 

the items within the physical record. 

(4) If only integer-2 is shown, it represents the exact size of the 

physical record. If integer-1 and integer-2 are both shown, they refer to 

the minimum and maximum size of the physical record, respectively. 

(5) If logical records of differing size are grouped into one physical 

record, the technique for determining the size of each logical record is 

specified by the implementor. 

VI-13 



Indexed 1-0 - DATA RECORDS 

3.5 THE DATA RECORDS CLAUSE 

3.5.1 Function 

The DATA RECORDS clause serves only as documentation for the names of data 

records with their associated file. 

3.5.2 General Format 

:-l [, dat :-2] data-name- DATA a-name- 

3.5. 3 Syntax Rules 

(1) Data-name-l and data-name-2 are the names of data records and must 

have 01 level-number record descriptions, with the same names, associated 

with them. 

3.5.4 General Rules 

(1) The presence of more than one data-name indicates that the file 

contains more than one type of data record. These records may be of differ¬ 

ing sizes, different formats, etc. The order in which they are listed is not 

significant. 

(2) Conceptually, all data records within a file share the same area. 

This is in no way altered by the presence of more than one type of data 

record within the file. 

VI-14 



Indexed 1-0 - LABEL RECORDS 

3.6 THE LABEL RECORDS CLAUSE 

3.6.1 Function 

The LABEL RECORDS clause specifies whether labels are present. 

3.6.2 General Format 

LAB FT (RECORD IS T f STANDARD-) 
- ^RECORDS ARE ( |OMITTED j 

3.6.3 Syntax Rules 

(1) This clause is required in every file description entry. 

3.6.4 General Rules 

(1) OMITTED specifies that no explicit labels exist for the file or the 

device to which the file is assigned. 

(2) STANDARD specifies that labels exist for the file or the device to 

which the file is assigned and the labels conform to the implementor’s label 

specifications. 

VI-15 



Indexed 1-0 - RECORD CONTAINS 

3.7 THE RECORD CONTAINS CLAUSE 

3.7.1 Function 

The RECORD CONTAINS clause specifies the size of data records. 

3.7.2 General Format 

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS 

3.7.3 General Rules 

(1) The size of each data record is completely defined within the record 

description entry, therefore this clause is never required. When present, 

however, the following notes apply: 

a. Integer-2 may not be used by itself unless all the data records in 

the file have the same size. In this case integer-2 represents the exact 

number of characters in the data record. If integer-1 and integer-2 are both 

shown, they refer to the minimum number of characters in the smallest size 

data record and the maximum number of characters in the largest size data 

record, respectively. 

b. The size is specified in terms of the number of character posi¬ 

tions required to store the logical record, regardless of the types of charac¬ 

ters used to represent the items within the logical record. The size of a 

record is determined by the sum of the number of characters in all fixed 

length elementary items plus the sum of the maximum number of characters in 

any variable length item subordinate to the record. This sum may be different 

from the actual size of the record; see page 1-85, Selection of Character 

Representation and Radix; page 11-33, The SYNCHRONIZED Clause; and page 11-35, 

The USAGE Clause. 

VI-16 



Indexed 1-0 - VALUE OF 

3.8 THE VALUE OF CLAUSE 

3.8.1 Function 

The VALUE OF clause particularizes the description of an item in the label 

records associated with a file. 

3.8.2 General Format 

VALUE OF implementor-name-1 IS 

, implementor-name-2 IS 

f jdata-name-lj | 

|literal-1 J 

fldata-name-2| 

I literal-2 

3.8.3 Syntax Rules 

(1) Data-name-l, data-name-2, etc., should be qualified when necessary, 

but cannot be subscripted or indexed, nor can they be items described with 

the USAGE IS INDEX clause. 

(2) Data-name-l, data-name-2, etc., must be in the Working-Storage Section. 

3.8.4 General Rules 

(1) For an input file, the appropriate label routine checks to see if the 

value of implementor-name-1 is equal to the value of literal-1, or of 

|data-name-1, whichever has been specified. 

For an output file, at the appropriate time the value of implementor- 

name- 1 is made equal to the value of literal-1 ♦ 1 or of a data-name-l. whichever"! 

has been specified. 

(2) A 

a literal 

figurative constant may be substituted in the format above wherever 

is specified. 

VI-17 



Indexed 1-0 - CLOSE 

4. PROCEDURE DIVISION IN THE INDEXED I-0 MODULE 

4.1 THE CLOSE STATEMENT 

4.1.1 Function 

The CLOSE statement terminates the processing of files with optional lock. 

4.1.2 General Format 

CLOSE file-name-1 [wiTHLOCK] , file-name-2 f WITH LOCK 1 ] ... 

4.1.3 Syntax Rules 

(1) The files referenced in the CLOSE statement need not all have the same 

organization or access. 

4.1.4 General Rules 

(1) A CLOSE statement may only be executed for a file in an open mode. 

(2) Indexed files are classified as belonging to the category of 

non-sequential single/multi-reel/unit. The results of executing each type 

of CLOSE for this category of file are summarized in the following table. 

CLOSE File Category = 

Statement Non-sequential 

Format Single/Multi-Reel/Unit 

CLOSE A 

CLOSE WITH LOCK A,B 
f 

The definitions of the symbols in the table are given below. Where 

the definition depends on whether the file is an input, output, or input-output 

file, alternate definitions are given; otherwise, a definition applies to 

input, output, and input-output files. 

A. Close File 

Input Files and Input-Output Files (Sequential Access Mode): 

If the file is positioned at its end and label records are 

specified for the file, the labels are processed according to the implementor’s 

standard label convention. The behavior of the CLOSE statement when label 

records are specified but not present, or when label records are not specified 

but are present, is undefined. Closing operations specified by the implementor 

are executed. If the file is positioned at its end and label records are not 

specified for the file, label processing does not take place but other closing 

operations specified by the implementor are executed. If the file is positioned 

other than at its end, the closing operations specified by the implementor are 

executed, but there is no ending label processing. 

VI-18 



Indexed 1-0 - CLOSE 

Input Files and Input-Output Files (Random or Dynamic Access Mode); 

Output Files (Random, Dynamic, or Sequential Access Mode): 

If label records are specified for the file, the labels are pro¬ 

cessed according to the implementor's standard label convention. The behavior 

of the CLOSE statement when label records are specified but not present, or 

when label records are not specified but are present, is undefined. Closing 

operations specified by the implementor are executed. If label records are 

not specified for the file, label processing does not take place but other 

closing operations specified by the implementor are executed. 

B. File Lock 

An implementor-defined technique is supplied to insure that this 

file cannot be opened again during this execution of this run unit. 

(3) The action taken if a file is in the open mode when a STOP RUN state¬ 

ment is executed is specified by the implementor. The action taken for a 

file that has been opened in a called program and not closed in that program 

prior to the execution of a CANCEL statement for that program is also speci¬ 

fied by the implementor. 

(4) If a CLOSE statement has been executed for a file, no other statement 

can be executed that references that file, either explicitly or implicitly, 

unless an intervening OPEN statement for that file is executed. 

(5) Following the successful execution of a CLOSE statement, the record 

area associated with file-name is no longer available. The unsuccessful 

execution of such a CLOSE statement leaves the availability of the record 

area undefined. 

VI-19 



Indexed 1-0 - DELETE 

4.2 THE DELETE STATEMENT 

4.2.1 Function 

The DELETE statement logically removes a record from a mass storage file. 

4.2.2 General Format 

DELETE file-name RECORD ^; INVALID KEY imperative-statement] 

4.2.3 Syntax Rules 

(1) The INVALID KEY phase must not be specified for a DELETE statement 

which references a file which is in sequential access mode. 

(2) The INVALID KEY phrase must be specified for a DELETE statement which 

references a file which is not in sequential access mode and for which an 

applicable USE procedure is not specified. 

4.2.4 General Rules 

(1) The associated file must be open in the 1-0 mode at the time of the 

execution of this statement. (See page VI-21, The OPEN Statement.) 

(2) For files in the sequential access mode, the last input-output state¬ 

ment executed for file-name prior to the execution of the DELETE statement 

must have been a successfully executed READ statement. The MSCS logically 

removes from the file the record that was accessed by that READ statement. 

(3) For a file in random!or dynamic I access mode, the MSCS logically 

removes from the file the record identified by the contents of the prime 

record key data item associated with file-name. If the file does not contain 

the record specified by the key, an INVALID KEY condition exists. (See page 

VI-4, The INVALID KEY Condition.) 

(4) After the successful execution of a DELETE statement, the identified 

record has been logically removed from the file and can no longer be accessed. 

(5) The execution of a DELETE statement does not affect the contents of 

the record area associated with file-name. 

(6) The current record pointer is not affected by the execution of a 

DELETE statement. 

(7) The execution of the DELETE statement causes the value of the spec¬ 

ified FILE STATUS data item, if any, associated with file-name to be updated. 

(See page VI-2, 1-0 Status.) 

VI-20 



Indexed 1-0 - OPEN 

4.3 THE OPEN STATEMENT 

4.3.1 Function 

The OPEN statement initiates the processing of files. It also performs 

checking and/or writing of labels and other input-output operations. 

4.3.2 General Format 

(INPUT file-name-1 [, file-name-2] 

OPEN < OUTPUT file-name-3 [, file-name-4] 

( 1-0 file-name-5 [, file-name-6] 

4.3.3 Syntax Rules 

(1) The files referenced in the OPEN statement need not all have the 

same organization or access. 

4.3.4 General Rules 

(1) The successful execution of an OPEN statement determines the avail¬ 

ability of the file and results in the file being in an open mode. 

(2) The successful execution of the OPEN statement makes the associated 

record area available to the program. 

(3) Prior to the successful execution of an OPEN statement for a given 

file, no statement can be executed that references that file, either explicit¬ 

ly or implicitly. 

(4) An OPEN statement must be successfully executed prior to the execution 

of any of the permissible input-output statements. In Table 2, Permissible 

Statements, 'X' at an intersection indicates that the specified statement, 

used in the access mode given for that row, may be used with the indexed file 

organization and the open mode given at the top of the column. 



Indexed 1-0 - OPEN 

File Access 

Mode Statement 

Open Mode 

Input Output Input-Ouput 

Sequential READ X X 

WRITE X 

REWRITE X 

START X X 

DELETE X 

Random READ X X 

WRITE X X 

REWRITE X 

START 

DELETE X 

Dynamic READ X X 

WRITE X X 

REWRITE X 

START X X 

DELETE X 

Table 2. Permissible Statements 

(5) A file may be opened with the INPUT, OUTPUT, and 1-0 phrases in the 

same program. Following the initial execution of an OPEN statement for a 

file, each subsequent OPEN statement execution for that same file must be 

preceded by the execution of a CLOSE statement, without the LOCK phrase, for 

that file. 

(6) Execution of the OPEN statement does not obtain or release the first 

data record. 

(7) If label records are specified for the file, the beginning labels are 

processed as follows: 

a. When the INPUT phrase is specified, the execution of the OPEN 

statement causes the labels to be checked in accordance with the implementor's 

specified conventions for input label checking. 

b. When the OUTPUT phrase is specified, the execution of the OPEN 

statement causes the labels to be written in accordance with the implementor's 

specified conventions for output label writing. 

The behavior of the OPEN statement when label records are specified 

but not present, or when label records are not specified but are present, is 

undefined. 

VI-22 



Indexed 1-0 - OPEN 

(8) The file description entry for file-name-1, file-name-2, file-name-5, 

or file-name-6 must be equivalent to that used when this file was created. 

(9) For files being opened with the INPUT or 1-0 phrase, the OPEN state¬ 

ment sets the current record pointer to the first record currently existing 

within the file. For indexed files, the prime record key is established as 

the key of reference and is used to determine the first record to be accessed. 

If no records exist in the file, the current record pointer is set such that 

the next executed Format 1 READ statement for the file will result in an AT 

END condition. 

(10) The 1-0 phrase permits the opening of a file for both input and output 

operations. Since this phrase implies the existence of the file, it cannot be 

used if the file is being initially created. 

(11) When the 1-0 phrase is specified and the LABEL RECORDS clause indi¬ 

cates label records are present, the execution of the OPEN statement includes 

the following steps: 

a. The labels are checked in accordance with the implementor’s 

specified conventions for input-output label checking. 

b. The new labels are written in accordance with the implementor's 

specified conventions for input-output label writing. 

(12) Upon successful execution of an OPEN statement with the OUTPUT phrase 

specified, a file is created. At that time the associated file contains no 

data records. 

VI-23 



Indexed 1-0 - READ 

4.4 THE READ STATEMENT 

4.4.1 Function 

For sequential access, the READ statement makes available the next logical 

record from a file. For random access, the READ statement makes available a 

specified record from a mass storage file. 

4.4.2 General Format 

Format 1 

READ file-name [NEXT] RECORD [INTO identifier] 

[; AT END imperative-statement] 

Format 2 

READ file-name RECORD [INTO identifier] 

[; KEY IS data-name] 

[; INVALID KEY imperative-statement] 

4.4.3 Syntax Rules 

(1) The INTO phrase must not be used when the input file contains logical 

records of various sizes as indicated by their record descriptions. The 

storage area associated with identifier and the storage area which is the 

record area associated with file-name must not be the same storage area. 

(2) Data-name must be the name of a data item specified as a record key 

associated with file-name. 

(3) Data-name may be qualified. 

(4) Format 1 must be used for all files in sequential access mode. 

(5) The NEXT phrase must be specified for files in dynamic access mode, 

when records are to be retrieved sequentially. 

(6) Format 2 is used for files in random access mode or for files in 

dynamic access model when records are to be retrieved randomly. 

(7) The INVALID KEY phrase or the AT END phrase must be specified if no 

applicable USE procedure is specified for file-name. 

4.4.4 General Rules 

(1) The associated file must be open in the INPUT or 1-0 mode at the 

time this statement is executed. (See page VI-21, The OPEN Statement.) 

VI-24 



Indexed 1-0 - READ 

(2) The record to be made available by a Format 1 READ statement is 
determined as follows: 

a. The record, pointed to by the current record pointer, is made 
available provided that the current record pointer was positioned by the 

OPEN statement and the record is still accessible through the path START or 
indicated by the current record pointer; if the record is no longer accessible. 
which may have been caused by the deletion of the record or a change in an 
alternate record key, the current record pointer is updated to point to the 
next existing record within the established key of reference and that record 
is then made available. 

b. If the current record pointer was positioned by the execution of 
a previous READ statement, the current record pointer is updated to point to 
the next existing record in the file with the established key of reference and 
then that record is made available. 

(3) The execution of the READ statement causes the value of the FILE STATUS 
data item, if any, associated with file-name to be updated. (See page VI-2, 
1-0 Status.) 

(4) Regardless of the method used to overlap access time with processing 
time, the concept of the READ statement is unchanged in that a record is 
available to the object program prior to the execution of any statement fol¬ 
lowing the READ statement. 

(5) When the logical records of a file are described with more than one 
record description, these records automatically share the same storage area; 
this is equivalent to an implicit redefinition of the area. The contents of 
any data items which lie beyond the range of the current data record are 
undefined at the completion of the execution of the READ statement. 

(6) If the INTO phrase is specified, the record being read is moved from 
the record area to the area specified by identifier according to the rules 
specified for the MOVE statement without the CORRESPONDING phrase. The implied 
MOVE does not occur if the execution of the READ statement was unsuccessful. 
Any subscripting or indexing associated with identifier is evaluated after the 
record has been read and immediately before it is moved to the data item. 

(7) When the INTO phrase is used, the record being read is available in 
both the input record area and the data area associated with identifier. 

(8) If, at the time of execution of a Format 1 READ statement, the posi¬ 
tion of current record pointer for that file is undefined, the execution of 
that READ statement is unsuccessful. 

(9) If, at the time of the execution of a Format 1 READ statement, no next 
logical record exists in the file, the AT END condition occurs, and the execu¬ 
tion of the READ statement is considered unsuccessful. (See page VI-2, 1-0 
Status.) 

(10) When the AT END condition is recognized the following actions are 
taken in the specified order: 

VI-25 



1Indexed 1-0 - READ 

a. A value is placed into the FILE STATUS data item, if specified for 

this file, to indicate an AT END condition. (See page VI-2, 1-0 Status.) 

b. If the AT END phrase is specified in the statement causing the 

condition, control is transferred to the AT END imperative statement. Any 

USE procedure specified for this file is not executed. 

c. If the AT END phrase is not specified, then a USE procedure must 

be specified, either explicitly or implicitly, for this file, and that 

procedure is executed. 

When the AT END condition occurs, execution of the input-output state¬ 

ment which caused the condition is unsuccessful. 

(11) Following the unsuccessful execution of any READ statement, the con¬ 

tents of the associated record area and the position of the current record 

pointer are undefined. For indexed files the key of reference is also 

undefined. 

(12) When the AT END condition has been recognized, a Format 1 READ state¬ 

ment for that file must not be executed without first executing one of the 

following: 

a. A successful CLOSE statement followed by the execution of a 

successful OPEN statement for that file. 

b. A successful START statement for that file. 

c. A successful Format 2 READ statement for that file. 

(13) For a file for which dynamic access mode is specified, a Format 1 READ 

statement with the NEXT phrase specified causes the next logical record to be 

retrieved from that file as described in general rule 2. 

(14) For an indexed file being sequentially accessed, records having the 

same duplicate value in an alternate record key which is the key of refer¬ 

ence are made available in the same order in which they are released by 

execution of WRITE statements, or by execution of REWRITE statements which 

create such duplicate values. 

(15) For an indexed file if the KEY phrase is specified in a Format 2 READ 

statement, data-name is established as the key of reference for this retrieval. 

If the dynamic access mode is specified, this key of reference is also used 

for retrievals by any subsequent executions of Format 1 READ statements for the 

file until a different key of reference is established for the file. 

(16) If the KEY phrase is not specified in a Format 2 READ statement, the 

prime record key is established as the key of reference for this retrieval. 

If the dynamic access mode is specified, this key of reference is also used 

for retrievals by any subsequent executions of Format 1 READ statements for 

the file until a different key of reference is established for the file._ 

(17) Execution of a Format 2 READ statement causes the value of the key of 

reference to be compared with the value contained in the corresponding data 

item of the stored records in the file, until the first record having an equal 

VI-26 



Indexed 1-0 - READ 

value is found. The current record pointer is positioned to this record which 

is then made available. If no record can be so identified, the INVALID KEY 

condition exists and execution of the READ statement is unsuccessful. (See 

page VI-4, The INVALID KEY Condition.) 



Indexed 1-0 - REWRITE 

4.5 THE REWRITE STATEMENT 

4.5.1 Function 

The REWRITE statement logically replaces a record existing in a mass 

storage file. 

4.5.2 General Format 

REWRITE record-name ^ FROM identifier^ INVALID KEY imperative-statementJ 

4.5.3 Syntax Rules 

(1) Record-name and identifier must not refer to the same storage area. 

(2) Record-name is the name of a logical record in the File Section of 

the Data Division and may be qualified. 

(3) The INVALID KEY phrase must be specified in the REWRITE statement for 

files for which an appropriate USE procedure is not specified. 

4.5.4 General Rules 

(1) The file associated with record-name must be open in the 1-0 mode at 

the time of execution of this statement. (See page VI-21, The OPEN Statement.) 

(2) For files in the sequential access mode, the last input-output state¬ 

ment executed for the associated file prior to the execution of the REWRITE 

statement must have been a successfully executed READ statement. The MSCS 

logically replaces the record that was accessed by the READ statement. 

(3) The number of character positions in the record referenced by record- 

name must be equal to the number of character positions in the record being 

replaced. 

(4) The logical record released by a successful execution of the REWRITE 

statement is no longer available in the record areajunless the associated file 

is named in a SAME RECORD AREA clause, in which case the logical record is 

available to the program as a record of other files appearing in the same 

SAME RECORD AREA clause as the associated 1-0 file, as well as to the file 

associated with record-name.  

(5) The execution of a REWRITE statement with the FROM phrase is equiva¬ 

lent to the execution of: 

MOVE identifier TO record-name 

followed by the execution of the same REWRITE statement without the FROM 

phrase. The contents of the record area prior to the execution of the implicit 

MOVE statement have no effect on the execution of the REWRITE statement. 

(6) The current record pointer is not affected by the execution of a 

REWRITE statement. 

VI-28 



Indexed 1-0 - REWRITE 

(7) The execution of the REWRITE statement causes the value of the FILE 

STATUS data item, if any, associated with the file to be updated. (See page 

VI-2, 1-0 Status.) 

(8) For a file in the sequential access mode, the record to be replaced is 

specified by the value contained in the prime record key. When the REWRITE 

statement is executed the value contained in the prime record key data item of 

the record to be replaced must be equal to the value of the prime record key 

of the last record read from this file. 

(9) For a file in the random[or dynamic access mode, the record to be 

replaced is specified by the prime record key data item. 

(10) The contents of alternate record key data items of the record being 

rewritten may differ from those in the record being replaced. The MSCS 

utilizes the content of the record key data items during the execution of the 

REWRITE statement in such a way that subsequent access of the record may be 

made based upon any of those specified record keys. 

(11) The INVALID KEY condition exists when: 

a. The access mode is sequential and the value contained in the 

prime record key data item of the record to be replaced is not equal to the 

value of the prime record key of the last record read from this file, or 

b. The value contained in the prime record key data item does not 

equal that of any record stored in the file, or 

c. The value contained in an alternate record key data item for which 

a DUPLICATES clause has not been specified is equal to that of a record 

already stored in the file. 

The updating operation does not take place and the data in the record 

area is unaffected. (See page VI-4, The INVALID KEY Condition.) 

VI-29 



Indexed 1-0 - START 

4.6 THE START STATEMENT 

4.6.1 Function 

The START statement provides a basis for logical positioning within an 

indexed file, for subsequent sequential retrieval of records. 

4.6.2 General Format 

'is equal to 

IS = 

IS GREATER THAN 
START file-name KEY ■< ► data-name 

IS > 

IS NOT LESS THAN 

[is NOT < 

; INVALID KEY imperative-statement] 

NOTE: The required relational characters '>', '<', and ' = ' 

are not underlined to avoid confusion with other symbols 

such as '>' (greater than or equal to). 

4.6.3 Syntax Rules 

(1) File-name must be the name of an indexed file. 

(2) File-name must be the name of a file with sequential or dynamic access. 

(3) Data-name may be qualified. 

(4) The INVALID KEY phrase must be specified if no applicable USE proce¬ 

dure is specified for file-name. 

(5) If file-name is the name of an indexed file, and if the KEY phrase is 

specified, data-name may reference a data item specified as a record key asso¬ 

ciated with file-name, or it may reference any data item of category alpha¬ 

numeric subordinate to the data-name of a data item specified as a record key 

associated with file-name whose leftmost character position corresponds to 

the leftmost character position of that record key data item. 

4.6.4 General Rules 

(1) File-name must be open in the INPUT or 1-0 mode at the time that 

the START statement is executed. (See page VI-21, The OPEN Statement.) 

(2) If the KEY phrase is not specified the relational operator 'IS EQUAL 

TO' is implied. 

(3) The type of comparison specified by the relational operator in the KEY 

phrase occurs between a key associated with a record in the file referenced by 

file-name and a data item as specified in general rule 5. If file-name refer¬ 

ences an indexed file and the operands are of unequal size, comparison proceeds 

as though the longer one were truncated on the right such that its length is 

VI-30 



Indexed 1-0 - START 

equal to that of the shorter. All other nonnumeric comparison rules apply 

except that the presence of the PROGRAM COLLATING SEQUENCE clause will have 

no effect on the comparison. (See page 11-42, Comparison of Nonnumeric 

Operands.) 

a. The current record pointer is positioned to the first logical 

record currently existing in the file whose key satisfies the comparison. 

b. If the comparison is not satisfied by any record in the file, an 

INVALID KEY condition exists, the execution of the START statement is unsuc¬ 

cessful, and the position of the current record pointer is undefined. (See 

page VI-4, The INVALID KEY Condition.) 

(4) The execution of the START statement causes the value of the FILE 

STATUS data item, if any, associated with file-name to be updated. (See 

page VI-2, 1-0 Status.) 

(5) If the KEY phrase is specified, the comparison described in general 

rule 3 uses the data item referenced by data-name. 

(6) If the KEY phrase is not specified, the comparison described in gen¬ 

eral rule 3 uses the data item referenced in the RECORD KEY clause associated 

with file-name. 

(7) Upon completion of the successful execution of the START statement, 

a key of reference is established and used in subsequent Format 1 READ state¬ 

ments as follows: (See page VI-24, The READ Statement.) 

a. If the KEY phrase is not specified, the prime record key specified 

for file-name becomes the key of reference. 

b. If the KEY phrase is specified, and data-name is specified as a 

record key for file-name, that record key becomes the key of reference. 

c. If the KEY phrase is specified, and data-name is not specified as 

a record key for file-name, the record key whose leftmost character position 
corresponds to the leftmost character position of the data item specified by 

data-name, becomes the key of reference. 

(8) If the execution of the START statement is not successful, the key of 

reference is undefined. 

VI-31 



Indexed 1-0 - USE 

4.7 THE USE STATEMENT 

4.7.1 Function 

The USE statement specifies procedures for input-output error handling 

that are in addition to the standard procedures provided by the input-output 

control system. 

4.7.2 General Format 

USE AFTER STANDARD PROCEDURE ON 

4.7.3 Syntax Rules 

(1) A USE statement, when present, must immediately follow a section 

header in the declaratives section and must be followed by a period followed 

by a space. The remainder of the section must consist of zero, one or more 

procedural paragraphs that define the procedures to be used. 

(2) The USE statement itself is never executed; it merely defines the 

conditions calling for the execution of the USE procedures. 

(3) The same file-name can appear in a different specific arrangement of 

the format. Appearance of a file-name in a USE statement must not cause the 

simultaneous request for execution of more than one USE procedure. 

(4) The words ERROR and EXCEPTION are synonymous and may be used inter¬ 

changeably. 

(5) The files implicitly or explicitly referenced in a USE statement need 

not all have the same organization or access. 

4.7.4 General Rules 

(1) The designated procedures are executed by the input-output system 

after completing the standard input-output error routine, or upon recognition 

of the INVALID KEY or AT END conditions, when the INVALID KEY phrase or AT 

END phrase, respectively, has not been specified in the input-output statement. 

(2) After execution of a USE procedure, control is returned to the 

invoking routine. 

(3) Within a USE procedure, there must not be any reference to any 

nondeclarative procedures. Conversely, in the nondeclarative portion there 

must be no reference to procedure-names that appear in the declarative portion, 

except that PERFORM statements may refer to a USE statement or to the proce¬ 

dures associated with such a USE statement. 

(4) Within a USE procedure, there must not be the execution of any statement 

that would cause the execution of a USE procedure that had previously been 

invoked and had not yet returned control to the invoking routine. 

VI-32 



Indexed 1-0 - WRITE 

4.8 THE WRITE STATEMENT 

4.8.1 Function 

The WRITE statement releases a logical record for an output or input-output 

file. 

4.8.2 General Format 

WRITE record-name ^FROM identifier ] [; INVALID KEY imperative-statement] 

4.8.3 Syntax Rules 

(1) Record-name and identifier must not reference the same storage area. 

(2) The record-name is the name of a logical record in the File Section 

of the Data Division and may be qualified. 

(3) The INVALID KEY phrase must be specified if an applicable USE proce¬ 

dure is not specified for the associated file. 

4.8.4 General Rules 

(1) The associated file must be open in the OUTPUT or 1-0 mode at the time 

of the execution of this statement. (See page VI-21, The OPEN Statement.) 

(2) The logical record released by the execution of the WRITE statement is 

no longer available in the record area unless Ithe associated file is named_ 

in a SAME RECORD AREA clause or the execution of the WRITE statement is unsuc¬ 

cessful due to an INVALID KEY condition. The logical record is also available 

to the program as a record of other files referenced in the same SAME RECORD 

AREA clause as the associated output file, as well as to the file associated 

with record-name. 

(3) The results of the execution of the WRITE statement with the FROM 

phrase is equivalent to the execution of: 

a. The statement: 

MOVE identifier TO record-name 

according to the rules specified for the MOVE statement, followed by: 

b. The same WRITE statement without the FROM phrase. 

The contents of the record area prior to the execution of the implicit 

MOVE statement have no effect on the execution of this WRITE statement. 

After execution of the WRITE statement is complete, the information 

in the area referenced by identifier is available, even though the information 

in the area referenced by record-name may not be. (See general rule 2.) 

(4) The current record pointer is unaffected by the execution of a WRITE 

statement. 

VI-33 



Indexed 1-0 - WRITE 

(5) The execution of the WRITE statement causes the value of the FILE 

STATUS data item, if any, associated with the file to be updated. (See page 

VI-2, 1-0 Status.) 

(6) The maximum record size for a file is established at the time the 

file is created and must not subsequently be changed. 

(7) The number of character positions on a mass storage device required 

to store a logical record in a file may or may not be equal to the number of 

character positions defined by the logical description of that record in the 

program. 

(8) The execution of the WRITE statement releases a logical record to the 

operating system. 

(9) Execution of the WRITE statement causes the contents of the record 

area to be released. The MSCS utilizes the content of the record keys in 

such a way that subsequent access of the record key may be made based upon any 

of those specified record keys. 

(10) The value of the prime record key must be unique within the records 

in the file. 

(11) The data item specified as the prime record key must be set by the 

program to the desired value prior to the execution of the WRITE statement. 

(See general rule 3.) 

(12) If sequential access mode is specified for the file, records must be 

released to the MSCS in ascending order of prime record key values. 

(13) If random or dynamic access mode is specified, records may be released 

to the MSCS in any program-specified order. 

(14) When the ALTERNATE RECORD KEY clause is specified in the file control 

entry for an indexed file, the value of the alternate record key may be 

non-unique only if the DUPLICATES phrase is specified for that data item. In 

this case the MSCS provides storage of records such that when records are 

accessed sequentially, the order of retrieval of those records is the order 

in which they are released to the MSCS._ 

(15) The INVALID KEY condition exists under the following circumstances: 

a. When sequential access mode is specified for a file opened in 

the output mode, and the value of the prime record key is not greater than 

the value of the prime record key of the previous record, or 

b. When the file is opened in the output or 1-0 mode, and the value 

of the prime record key is equal to the value of a prime record key of a 

record already existing in the file, or 

c. When the file is opened in the output or 1-0 mode, and the value 

of an alternate record key for which duplicates are not allowed equals the 

corresponding data item of a record already existing in the file, or 

VI-34 



Indexed 1-0 - WRITE 

d. When an attempt is made to write beyond the externally defined 

boundaries of the file. 

(16) When the INVALID KEY condition is recognized the execution of the WRITE 

statement is unsuccessful, the contents of the record area are unaffected and 

the FILE STATUS data item, if any, associated with file-name of the associated 

file is set to a value indicating the cause of the condition. Execution of the 

program proceeds according to the rules stated on page VI-4, The INVALID KEY 

Condition. (See page VI-2, 1-0 Status.) 

VI-35 



Sort-Merge - Introduction 

1. INTRODUCTION TO THE SORT-MERGE MODULE 

1.1 FUNCTION 

The Sort-Merge module provides the capability to order one or more files of 

records,) or to combine two or more identically ordered files of records,! accord¬ 

ing to a set of user-specified keys contained within each record. Optionally, 

a user may apply some special processing to each of the individual records by 

input or output procedures. This special processing may be applied before 

and/or after the records are ordered by the SORT [or after the records have 

been combined by the MERGE. 

1.2 LEVEL CHARACTERISTICS 

Sort-Merge Level 1 provides the facility for sorting a single file only 

once within a given execution of a COBOL program. Procedures for special 

handling of each record in the file before and/or after it has been sorted are 

also provided. 

Sort-Merge Level 2 provides the facility for sorting one or more files, or 

combining two or more files, one or more times within a given execution of a 

COBOL program._ 

1.3 RELATIONSHIP WITH SEQUENTIAL 1-0 MODULE 

The files specified in the USING and GIVING phrases of the SORT and MERGE 

statements must be described implicitly or explicitly in the FILE-CONTROL 

paragraph as having sequential organization. No input-output statement may 

be executed for the file named in the sort-merge file description. 

VII-1 



Sort-Merge - FILE-CONTROL 

2. ENVIRONMENT DIVISION IN THE SORT-MERGE MODULE 

2.1 INPUT-OUTPUT SECTION 

2.1.1 The FILE-CONTROL Paragraph 

2.1.1.1 Function 

The FILE-CONTROL paragraph names each file and allows specification of 

other file-related information. 

2.1.1.2 General Format 

FILE-CONTROL. {file-control-entry} ... 

2.1.2 The File Control Entry 

2.1.2.1 Function 

The file 

tion of the 

control entry names a sort 

file to a storage medium. 

or merge file and specifies the associa- 

2.1.2.2 General Format 

SELECT file-name ASSIGN TO implementor-name-1 [, implementor-name-2] 

2.1.2.3 Syntax Rules 

(1) Each sort or merge file described in the Data Division must be named 

once and only once as file-name in the FILE-CONTROL paragraph. Each sort for 1 

merge file specified in the file control entry must have a sort-merge file 

description entry in the Data Division. 

(2) Since file-name represents a sort 

clause is permitted to follow file-name in the FILE-CONTROL paragraph. 

2.1.2.4 General Rules 

or merge file, only the ASSIGN 

(1) The ASSIGN clause specifies the association of the sort 

referenced by file-name to a storage medium. 

or merge file 

VII-2 



Sort-Merge - I-O-CONTROL 

2.1.3 The I-O-CONTROL Paragraph 

2.1.3.1 Function 

The I-O-CONTROL paragraph specifies the memory area which is to be shared 

by different files. 

2.1.3.2 General Format 

I-O-CONTROL. 

; SAME - 

r RECORD 

SORT • AREA FOR file-name-1 file-name-2} ... 

SORT-MERGE 

2.1.3.3 Syntax Rules 

(1) The I-O-CONTROL paragraph is optional. 

(2) In the SAME AREA clause, SORT and SORT-MERGE are equivalent. 

(3) If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least 

one of the file-names must represent a sort or merge file. Files that do not 

represent sort or merge files may also be named in the clause. 

(4) The three formats of the SAME clause (SAME RECORD AREA, SAME SORT 

AREA, SAME SORT-MERGE AREA) are considered separately in the following: 

More than one SAME clause may be included in a program, however: 

a. A file-name must not appear in more than one SAME RECORD AREA 

clause. 

b. A file-name that represents a sort or merge file must not appear 

in more than one SAME SORT AREA or SAME SORT-MERGE AREA clause. 

c. If a file-name that does not represent a sort or merge file appears 

in a SAME AREA clause and one or more SAME SORT AREA or SAME SORT-MERGE AREA 

clauses, all of the files named in that SAME AREA clause must be named in that 

SAME SORT AREA or SAME SORT-MERGE AREA clause(s). (See page IV-6, Sequential 

1-0.) 

(5) The files referenced in the SAME SORT AREA, SAME SORT-MERGE AREA, or 

SAME RECORD AREA clause need not all have the same organization or access. 

2.1.3.4 General Rules 

(1) The SAME RECORD AREA clause specifies that two or more files are to 

use the same memory area for processing of the current logical record. All of 

the files may be open at the same time. A logical record in the SAME RECORD 

AREA is considered as a logical record of each opened output file whose file¬ 

name appears in this SAME RECORD AREA clause and of the most recently read 

input file whose file-name appears in this SAME RECORD AREA clause. This is 

VII-3 



Sort-Merge - I-O-CONTROL 

equivalent to implicit redefinition of the area, i.e., records are aligned on 

the leftmost character position. 

(2) If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least 

one of the file-names must represent a sort or merge file. Files that do not 

represent sort or merge files may also be named in the clause. This clause 

specifies that storage is'shared as follows: 

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a 

memory area which will be made available for use in sorting or merging each 

sort or merge file named. Thus any memory area allocated for the sorting or 

merging of a sort or merge file is available for reuse in sorting or merging 

any of the other sort or merge files. 

b. In addition, storage areas assigned to files that do not represent 

sort or merge files may be allocated as needed for sorting or merging the sort 

or merge files named in the SAME SORT AREA or SAME SORT-MERGE AREA clause. 

The extent of such allocation will be specified by the implementor. 

c. Files other than sort or merge files do not share the same storage 

area with each other. If the user wishes these files to share the same stor¬ 

age area with each other, he must also include in the program a SAME AREA or 

SAME RECORD AREA clause naming these files. 

d. During the execution of a SORT or MERGE statement that refers to 

a sort or merge file named in this clause, any non sort-merge files named in 

this clause must not be open. 

VII-4 



Sort-Merge - Sort-Merge File Description 

3. DATA DIVISION IN THE SORT-MERGE MODULE 

3.1 FILE SECTION 

An SD file description gives information about the size and the names of 

the data records associated with the file to be sorted or merged. There are 

no label procedures which the user can control, and the rules for blocking 

and internal storage are peculiar to the SORT [and MERGE 1 statements. 

3.2 THE SORT-MERGE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 

3.2.1 Function 

The sort-merge file description furnishes information concerning the 

physical structure, identification, and record names of the file to be sorted 

or merged. 

3.2.2 General Format 

SD file-name 

[; RECORD CONTAINS [integer-1 TO ] integer-2 CHARACTERS] 

; DATA - 
RECORD IS ] 

data-name-1 , data-name-2 
RELORDb ARE \ L J 

3.2.3 Syntax Rules 

(1) The level indicator SD identifies the beginning of the sort-merge 

file description and must precede the file-name. 

(2) The clauses which follow the name of the file are optional and their 
order of appearance is immaterial. 

(3) One or more record description entries must follow the sort-merge 

file description entry, however, no input-output statements may be executed 

for this file. 

VII-5 



Sort-Merge - DATA RECORDS 

3.3 THE DATA RECORDS CLAUSE 

3.3.1 Function 

The DATA RECORDS clause serves only as documentation for the names of data 

records with their associated file. 

3.3.2 General Format 

DATA 

3.3.3 Syntax Rules 

(1) Data-name-1 and data-name-2 are the names of data records and must 

have 01 level-number record descriptions, with the same names, associated 

with them. 

3.3.4 General Rules 

(1) The presence of more than one data-name indicates that the file 

contains more than one type of data record. These records may be of differ¬ 

ing sizes, different formats, etc. The order in which they are listed is not 

significant. 

(2) Conceptually, all data records within a file share the same area. 

This is in no way altered by the presence of more than one type of data 

record within the file. 

( RECORD IS 'j r i 
\ RECORDS AREt 

data-name-1 I, data-name-2 I . .. 

VII-6 



Sort-Merge - RECORD CONTAINS 

3.4 THE RECORD CONTAINS CLAUSE 

3.4.1 Function 

The RECORD CONTAINS clause specifies the size of data records. 

3.4.2 General Format 

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS 

3.4.3 General Rules 

(1) The size of each data record is completely defined within the record 

description entry, therefore this clause is never required. When present, 

however, the following notes apply: 

a. Integer-2 may not be used by itself unless all the data records in 

the file have the same size. In this case integer-2 represents the exact 

number of characters in the data record. If integer-1 and integer-2 are both 

shown, they refer to the minimum number of characters in the smallest size 

data record and the maximum number of characters in the largest size data 

record, respectively. 

b. The size is specified in terms of the number of character positions 

required to store the logical record, regardless of the types of characters 

used to represent the items within the logical record. The size of a record 

is determined by the sum of the number of characters in all fixed length ele¬ 

mentary items plus the sum of the maximum number of characters in any variable 

length item subordinate to the record. This sum may be different from the 

actual size of the record; see page 1-85, Selection of Character Representation 

and Radix; page 11-33, The SYNCHRONIZED Clause; and page 11-35, The USAGE 

Clause. 

VII-7 



Sort-Merge - MERGE 

4. PROCEDURE DIVISION IN THE SORT-MERGE MODULE 

4.1 THE MERGE STATEMENT 

4.1.1 Function 

The MERGE statement combines two or more identically sequenced files on a 

set of specified keys, and during the process makes records available, in 

merge order, to an output procedure or to an output file. 

4.1.2 General Format 

KEY data-name-1 [", data-name-2 ] 

(ASCENDING j . r , ,1 
0N j DESCENDING [ KEY data-name-3 [, data-name-4J 

[collating SEQUENCE IS alphabet-name] 

USING file-name-2, file-name-3 [, file-name-4 ] ... 

MERGE file-name-1 ON 
j ASCENDING J 

)DESCENDING j 

( OUTPUT PROCEDURE IS section-name-1 
( THROUGH "I 

[THRU J section-name-2 

GIVING file-name-5 

4.1.3 Syntax Rules 

(1) File-name-1 must be described in a sort-merge file description entry 

in the Data Division. 

(2) Section-name-1 represents the name of an output procedure. 

(3) File-name-2, file-name-3, file-name-4, and file-name-5 must be 

described in a file description entry, not in a sort-merge file description 

entry, in the Data Division. The actual size of the logical record (?) 

described for file-name-2, file-name-3, file-name-4, and file-name-5 must be 

equal to the actual size of the logical record(s) described for file-name-1. 

If the data descriptions of the elementary items that make up these records 

are not identical, it is the programmer's responsibility to describe the 

corresponding records in such a manner so as to cause an equal number of 

character positions to be allocated for the corresponding records. 

(4) The words THRU and THROUGH are equivalent. 

(5) Data-name-1, data-name-2, data-name-3, and data-name-4 are KEY data- 

names and are subject to the following rules: 

a. The data items identified by KEY data-names must be described in 

records associated with file-name-1. 

b. KEY data-names may be qualified. 

VII-8 



Sort-Merge - MERGE 

c. The data items identified by KEY data-names must not be variable 

length items. 

d. If file-name-1 has more than one record description, then the data 

items identified by KEY data-names need be described in only one of the record 

descriptions. 

e. None of the data items identified by KEY data-names can be 

described by an entry which either contains an OCCURS clause or is subordinate 

to an entry which contains an OCCURS clause. 

(6) No more than one file-name from a multiple file reel can appear in the 

MERGE statement. 

(7) File-names must not be repeated within the MERGE statement. 

(8) MERGE statements may appear anywhere except in the declaratives portion 

of the Procedure Division or in an input or output procedure associated with a 

SORT or MERGE statement. 

4.1.4 General Rules 

(1) The MERGE statement will merge all records contained on file-name-2, 

file-name-3, and file-name-4. The files referenced in the MERGE statement 

must not be open at the time the MERGE statement is executed. These files 

are automatically opened and closed by the merge operation with all implicit 

functions performed, such as the execution of any associated USE procedures. 

The terminating function for all files is performed as if a CLOSE statement, 

without optional phrases, had been executed for each file. 

(2) The data-names following the word KEY are listed from left to right in 

the MERGE statement in order of decreasing significance without regard to how 

they are divided into KEY phrases. In the format, data-name-1 is the major 

key, data-name-2 is the next most significant key, etc. 

a. When the ASCENDING phrase is specified, the merged sequence will 

be from the lowest value of the contents of the data items identified by the 

KEY data-names to the highest value, according to the rules for comparison 

of operands in a relation condition. 

b. When the DESCENDING phrase is specified, the merged sequence will 

be from the highest value of the contents of the data items identified by the 

KEY data-names to the lowest value, according to the rules for comparison of 

operands in a relation condition. 

(3) The collating sequence that applies to the comparison of the nonnumeric 

key data items specified is determined in the following order of precedence: 

a. First, the collating sequence established by the COLLATING 

SEQUENCE phrase, if specified, in that MERGE statement. 

b. Second, the collating sequence established as the program 

collating sequence._ 

VII-9 



Sort-Merge - MERGE 

(4) The output procedure must consist of one or more sections that appear 

contiguously in a source program and do not form a part of any other procedure. 

In order to make merged records available for processing, the output procedure 

must include the execution of at least one RETURN statement. Control must not 

be passed to the output procedure except when a related SORT or MERGE state¬ 

ment is being executed. The output procedure may consist of any procedures 

needed to select, modify, or copy the records that are being returned one at 

a time in merged order, from file-name-1. The restrictions on the procedural 

statements within the output procedure are as follows: 

a. The output procedure must not contain any transfers of control to 

points outside the output procedure; ALTER, GO TO and PERFORM statements in 

the output procedure are not permitted to refer to procedure-names outside the 

output procedure. COBOL statements are allowed that will cause an implied 

transfer of control to declaratives. 

b. The output procedures must not contain any SORT or MERGE state¬ 

ments . 

c. The remainder of the Procedure Division must not contain any trans¬ 

fers of control to points inside the output procedures; ALTER, GO TO, and 

PERFORM statements in the remainder of the Procedure Division are not permitted 

to refer to procedure-names within the output procedures. 

(5) If an output procedure is specified, control passes to it during 

execution of the MERGE statement. The compiler inserts a return mechanism 

at the end of the last section in the output procedure. When control passes 

the last statement in the output procedure, the return mechanism provides for 

termination of the merge, and then passes control to the next executable 

statement after the MERGE statement. Before entering the output procedure, 

the merge procedure reaches a point at which it can select the next record 

in merged order when requested. The RETURN statements in the output procedure 

are the requests for the next record. 

(6) Segmentation, as defined in Section IX, can be applied to programs 

containing the MERGE statement. However, the following restrictions apply: 

a. If the MERGE statement appears in a section that is not in an 

independent segment, then any output procedure referenced by that MERGE 

statement must appear: 

1) Totally within non-independent segments, or 

2) Wholly contained in a single independent segment. 

b. If a MERGE statement appears in an independent segment, then any 

output procedure referenced by that MERGE statement must be contained: 

1) Totally within non-independent segments, or 

2) Wholly within the same independent segment as that MERGE 

statement. 

VII-10 



Sort-Merge - MERGE 

(7) If the GIVING phrase is specified, all the merged records in 

file-name-1 are automatically written on file-name-5 as the implied output 

procedure for this MERGE statement. 

(8) In the case of an equal compare, according to the rules for comparison 

of operands in a relation condition, on the contents of the data items identi¬ 

fied by all the KEY data-names between records from two or more input files 

(file-name-2, file-name-3, file-name-4, ...), the records are written on file¬ 

name-5 or returned to the output procedure, depending on the phrase specified, 

in the order that the associated input files are specified in the MERGE 

statement. 

(9) The results of the merge operation are predictable only when the 

records in the files referenced by file-name-2, file-name-3, ...» are ordered 

as described in the ASCENDING or DESCENDING KEY clause associated with the 

I MERGE statement. 

VII-11 



Sort-Merge - RELEASE 

4.2 THE RELEASE STATEMENT 

4.2.1 Function 

The RELEASE statement transfers records to the initial phase of a SORT 

operation. 

4.2.2 General Format 

RELEASE record-name [ FROM identifier] 

4.2.3 Syntax Rules 

(1) A RELEASE statement may only be used within the range of an input 

procedure associated with a SORT statement for a file whose sort-merge file 

description entry contains record-name. (See page VII-14, The SORT State¬ 

ment .) 

(2) Record-name must be the name of a logical record in the associated 

sort-merge file description entry and may be qualified. 

(3) Record-name and identifier must not refer to the same storage area. 

4.2.4 General Rules 

(1) The execution of a RELEASE statement causes the record named by 

record-name to be released to the initial phase of a sort operation. 

(2) If the FROM phrase is used, the contents of the identifier data area 

are moved to record-name, then the contents of record-name are released to 

the sort file. Moving takes place according to the rules specified for the 

MOVE statement without the CORRESPONDING phrase. The information in the 

record area is no longer available, but the information in the data area 

associated with identifier is available. 

(3) After the execution of the RELEASE statement, the logical record is 

no longer available in the record area unless the associated sort-merge file 

is named in a SAME RECORD AREA clause. The logical record is also available 

to the program as a record of other files referenced in the same SAME RECORD 

AREA clause as the associated sort-merge file, as well as to the file 

associated with record-name. When control passes from the input procedure, 

the file consists of all those records which were placed in it by the 

execution of RELEASE statements. 

VII-12 



Sort-Merge - RETURN 

4.3 THE RETURN STATEMENT 

4.3.1 Function 

The RETURN statement obtains!either!sorted records from the final phase of 

a SORT operation or merged records during a MERGE operation. 

4.3.2 General Format 

RETURN file-name RECORD [INTO identifier] ; AT END imperative-statement 

4.3.3 Syntax Rules 

(1) File-name must be described by a sort-merge file description entry in 

the Data Division. 

(2) A RETURN statement may only be used within the range of an output 

procedure associated with a SORT|or MERGE statement for file-name. 

(3) The INTO phrase must not be used when the input file contains logical 

records of various sizes as indicated by their record descriptions. The 

storage area associated with identifier and the record area associated with 

file-name must not be the same storage area. 

4.3.4 General Rules 

(1) When the logical records of a file are described with more than one 

record description, these records automatically share the same storage area; 

this is equivalent to an implicit redefinition of the area. The contents of 

any data items which lie beyond the range of the current data record are 

undefined at the completion of the execution of the RETURN statement. 

(2) The execution of the RETURN statement causes the next record, in the 

order specified by the keys listed in the SORT!or MERGE!statement. to 

available for processing in the record areas associated with the sort 

file. 

(3) If the INTO phrase is specified, the current record is moved from the 

input area to the area specified by identifier according to the rules for the 

MOVE statement without the CORRESPONDING phrase. The implied MOVE does not 

occur if there is an AT END condition. Any subscripting or indexing associated 

with identifier is evaluated after the record has been returned and immediately 

before it is moved to the data item. 

(4) When the INTO phrase is used, the data is available in both the input 

record area and the data area associated with identifier. 

(5) If no next logical record exists for the file at the time of the execu¬ 

tion of a RETURN statement, the AT END condition occurs. The contents of the 

record areas associated with the file when the AT END condition occurs are 

undefined. After the execution of the imperative-statement in the AT END 

phrase, no RETURN statement may be executed as part of the current output 

procedure. 

be made 

or merge 

VII-13 



Sort-Merge - SORT 

4.4 THE SORT STATEMENT 

4.4.1 Function 

The SORT statement creates a sort file by executing input procedures or by 

transferring records from another file, sorts the records in the sort file on 

a set of specified keys, and in the final phase of the sort operation, makes 

available each record from the sort file, in sorted order, to some output 

procedures or to an output file. 

4.4.2 General Format 

SORT file-name-1 ON 
[ASCENDING j 

|DESCENDING J 
KEY data-name-1 [, data-name-2 ] 

on ! 
'ascending j 

DESCENDING 
KEY c 

[collating sequence IS alphabet-name] 

INPUT PROCEDURE IS section-name-1 
[THROUGH 

| THRU 

■n 
section-name-2 

USING file-name-2 [, file-name-3] ... 

OUTPUT PROCEDURE IS section-name-3 
jTHROUGH] 

[THRU j 
section-name-4 

GIVING file-name-4 

4.4.3 Syntax Rules 

(1) File-name-1 must be described in a sort-merge file description entry 

in the Data Division. 

(2) Section-name-1 represents the name of an input procedure. 

name-3 represents the name of an output procedure. 

Section- 

(3) File-name-2. file-name-3 and file-name-4 must be described in a file 

description entry, not in a sort-merge file description entry, in the Data 

Division. The actual size of the logical record(s) described for file-name-2, 

file-name-3 land file-name-4 must be equal to the actual size of the logical 

record(s) described for file-name-1. If the data descriptions of the elemen¬ 

tary items that make up these records are not identical, it is the programmer's 

responsibility to describe the corresponding records in such a manner so as to 

cause equal amounts of character positions to be allocated for the correspond¬ 

ing records. 

(4) Data-name-1, data-name-2, data-name-3, and data-name-4 are KEY data- 

names and are subject to the following rules: 

a. The data items identified by KEY data-names must be described in 

records associated with file-name-1. 

VII-14 



Sovt-Merge - SORT 

b. KEY data-names may be qualified. 

c. The data items identified by KEY data-names must not be variable 
length items. 

d. If file-name-1 has more than one record description, then the data 
items identified by KEY data-names need be described in only one of the record 
descriptions. 

e. None of the data items identified by KEY data-names can be 
described by an entry which either contains an OCCURS clause or is subordinate 
to an entry which contains an OCCURS clause. 

(5) The words THRU and THROUGH 

(6) SORT statements may appear 
of the Procedure Division or in an 
SORT or MERGE!statement. 

are equivalent. 

anywhere except 
input or output 

in the declaratives portion 
procedure associated with a 

(7) No more than one file-name from a multiple file reel can appear in 
the SORT statement. 

4.4.4 General Rules 

(1) In Level 1, the Procedure Division of a program contains one SORT 
statement and a STOP RUN statement in the first non-declarative portion. 
Other sections consist of only the input and output procedures associated 
with the SORT statement. 

(2) In Level 2, the Procedure Division may contain more than one SORT 
statement appearing anywhere except: 

a. in the declaratives portion, or 

b. in the input and output procedures associated with a SORT or 
MERGE statement. 

(3) The data-names following the word KEY are listed from left to right in 
the SORT statement in order of decreasing significance without regard to how 
they are divided into KEY phrases. In the format, data-name-1 is the major 
key, data-name-2 is the next most significant key, etc. 

a. When the ASCENDING phrase is specified, the sorted sequence will 
be from the lowest value of the contents of the data items identified by the 
KEY data-names to the highest value, according to the rules for comparison of 
operands in a relation condition. 

b. When the DESCENDING phrase is specified, the sorted sequence will 
be from the highest value of the contents of the data items identified by the 
KEY data-names to the lowest value, according to the rules for comparison of 
operands in a relation condition. 

(4) The collating sequence that applies to the comparison of the nonnumeric 
key data items specified is determined in the following order of precedence: 

VII-15 



Sort-Merge - SORT 

a. First, the collating sequence established by the COLLATING 

SEQUENCE phrase, if specified, in the SORT statement. 

b. Second, the collating sequence established as the program 
collating sequence. 

(5) The input procedure must consist of one or more sections that appear 

contiguously in a source program and do not form a part of any output proce¬ 

dure. In order to transfer records to the file referenced by file-name-1, the 

input procedure must include the execution of at least one RELEASE statement. 

Control must not be passed to the input procedure except when a related SORT 

statement is being executed. The input procedure can include any procedures 

needed to select, create, or modify records. The restrictions on the proce¬ 

dural statements within the input procedure are as follows: 

a. The input procedure must not contain any SORT or MERGE statements. 

b. The input procedure must not contain any explicit transfers of 

control to points outside the input procedure; ALTER, GO TO, and PERFORM 

statements in the input procedure are not permitted to refer to procedure- 

names outside the input procedure. COBOL statements are allowed that will 

cause an implied transfer of control to declaratives. 

c. The remainder of the Procedure Division must not contain any 

transfers of control to points inside the input procedure; ALTER, GO TO and 

PERFORM statements in the remainder of the Procedure Division must not refer 

to procedure-names within the input procedure. 

(6) If an input procedure is specified, control is passed to the input 

procedure before file-name-1 is sequenced by the SORT statement. The compiler 

inserts a return mechanism at the end of the last section in the input proce¬ 

dure and when control passes the last statement in the input procedure, the 

records that have been released to file-name-1 are sorted. 

(7) The output procedure must consist of one or more sections that appear 

contiguously in a source program and do not form part of any input procedure. 

In order to make sorted records available for processing, the output procedure 

must include the execution of at least one RETURN statement. Control must not 

be passed to the output procedure except when a related SORT statement is being 

executed. The output procedure may consist of any procedures needed to select, 

modify or copy the records that are being returned, one at a time in sorted 

order, from the sort file. The restrictions on the procedural statements with¬ 

in the output procedure are as follows: 

a. The output procedure must not contain any SORT or MERGE statements. 

b. The output procedure must not contain any explicit transfers of 

control to points outside the output procedure; ALTER, GO TO, and PERFORM 

statements in the output procedure are not permitted to refer to procedure- 

names outside the output procedure. COBOL statements are allowed that will 

cause an implied transfer of control to declaratives. 

c. The remainder of the Procedure Division must not contain any trans¬ 

fers of control to points inside the output procedure; ALTER, GO TO and PERFORM 

statements in the remainder of the Procedure Division are not permitted to 

refer to procedure-names within the output procedure. 

VII-16 



Sovt-Mevge - SORT 

(8) If an output procedure is specified, control passes to it after file¬ 

name-1 has been sequenced by the SORT statement. The compiler inserts a return 

mechanism at the end of the last section in the output procedure and when 

control passes the last statement in the output procedure, the return mechanism 

provides for termination of the sort and then passes control to the next 

executable statement after the SORT statement. Before entering the output 

procedure, the sort procedure reaches a point at which it can select the 

next record in sorted order when requested. The RETURN statements in the 

output procedure are the requests for the next record. 

(9) Segmentation as defined in Section IX can be applied to programs 

containing the SORT statement. However, the following restrictions apply: 

a. If a SORT statement appears in a section that is not in an inde¬ 

pendent segment, then any input procedures or output procedures referenced 

by that SORT statement must appear: 

1) Totally within non-independent segments, or 

2) Wholly contained in a single independent segment. 

b. If a SORT statement appears in an independent segment, then any 

input procedures or output procedures referenced by that SORT statement must 

be contained: 

1) Totally within non-independent segments, or 

2) Wholly within the same independent segment as that SORT 

statement. 

(10) If the USING phrase is specified, all the records in file-name-2 and 

file-name-31 are transferred automatically to file-name-1. At the time of 

execution of the SORT statement, file-name-2 and file-name-3] must not be open. 

The SORT statement automatically initiates the processing of, makes available 

the logical records for, and terminates the processing of file-name-21 and file¬ 

name- 37} These implicit functions are performed such that any associated USE 

procedures are executed. The terminating function for all files is performed 

as if a CLOSE statement, without optional phrases, had been executed for each 

file. The SORT statement also automatically performs the implicit functions 

of moving the records from the file area of file-name-2 and file-name-3 to the 

file area for file-name-1 and the release of records to the initial phase of 

the sort operation. 

(11) If the GIVING phrase is specified, all the sorted records in file¬ 

name-1 are automatically written on file-name-4 as the implied output procedure 

for this SORT statement. At the time of execution of the SORT statement file- 

name-4 must not be open. The SORT statement automatically initiates the 

processing of, releases the logical records to, and terminates the processing 

of file-name-4. These implicit functions are performed such that any asso¬ 

ciated USE procedures are executed. The terminating function is performed as 

if a CLOSE statement, without optional phrases, had been executed for the file. 

The SORT statement also automatically performs the implicit functions of the 

return of the sorted records from the final phase of the sort operation and 

the moving of the records from the file area for file-name-1 to the file area 

for file-name-4. 

VII-17 



Report Writer - Introduction 

1. INTRODUCTION TO THE REPORT WRITER MODULE 

1.1 FUNCTION 

The Report Writer module provides the facility for producing reports by 

specifying the physical appearance of a report rather than requiring specifi¬ 

cation of the detailed procedures necessary to produce that report. 

A hierarchy of levels is used in defining the logical organization of a 

report. Each report is divided into report groups, which in turn are divided 

into sequences of items. Such a hierarchical structure permits explicit 

reference to a report group with implicit reference to other levels in the 

hierarchy. A report group contains one or more items to be presented on one 

or more lines. 

1.2 LANGUAGE CONCEPTS 

1.2.1 LINE-COUNTER 

The reserved word LINE-COUNTER is a name for a special register that is 

generated for each report description entry in the Report Section of the Data 

Division. The implicit description is that of an unsigned integer that must 

be capable of representing a range of values from 0 through 999999. The usage 

is defined by the implementor. The value in LINE-COUNTER is maintained by 

the Report Writer Control System, and is used to determine the vertical 

positioning of a report. The value in LINE-COUNTER may be accessed by 

Procedure Division statements; however, only the RWCS may change the value of 

LINE-COUNTER. 

1.2.2 PAGE-COUNTER 

The reserved word PAGE-COUNTER is a name for a special register that is 

generated for each report description entry in the Report Section of the Data 

Division. The implicit description is that of an unsigned integer that must 

be capable of representing a range of values from 1 through 999999. The usage 

is defined by the implementor. The value in PAGE-COUNTER is maintained by the 

Report Writer Control System and is used by the program to number the pages of 

a report. The value in PAGE-COUNTER may be altered by Procedure Division 

statements. 

1.2.3 SUBSCRIPTING 

In the Report Section, neither a sum counter nor the special registers 

LINE-COUNTER and PAGE-COUNTER can be used as a subscript. 

1.3 RELATIONSHIP WITH SEQUENTIAL 1-0 MODULE 

A report file is a sequential file as described in the Sequential 1-0 module 

and is subject to the restrictions in the following paragraph. 

An OPEN statement, specifying either the OUTPUT or EXTEND phrase, must have 

been executed prior to the execution of the INITIATE statement, and a CLOSE, 

without the REEL or UNIT phrase, must be executed for this file subsequent to 

the execution of the TERMINATE statement. No other input-output statement may 

be executed for this file. 

VIII-1 



Report Writer - Report Section 

2. DATA DIVISION IN THE REPORT WRITER MODULE 

2.1 FILE SECTION 

A REPORT clause is required in the FD entry to list the names of the 

reports to be produced. 

2.2 REPORT SECTION 

In the Report Section the description of each report must begin with a 

report description entry (RD entry) and be followed by the entries that 

describe the report groups within the report. 

2.2.1 Report Description Entry 

In addition to naming the report, the RD entry defines the format of each 

page of the report by specifying the vertical boundaries of the region within 

which each type of report group may be printed. The RD entry also specifies 

the control data items. When the report is produced, changes in the values 

of the control data items cause the detail information of the report to be 

processed in groups called control groups. 

Each report named in the REPORTS clause of an RD entry in the File Section 

must be the subject of an RD entry in the Report Section. Furthermore each 

report in the Report Section must be named in one and only one FD entry. 

2.2.2 Report Group Description Entry 

The report groups that will comprise the report are described following the 

RD entry. The description of each report group begins with a report group 

description entry; that is an entry that has a 01 level-number and a TYPE 

clause. Subordinate to the report group description entry, there may appear 

group and elementary entries that further describe the characteristics of the 

report group. 

VIII-2 



Report Writer - File Description 

2.3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 

2.3.1 Function 

The file description furnishes information concerning the physical struc¬ 

ture, identification and report names pertaining to a given report file. 

2.3.2 General Format 

FD file-name 

; BLOCK CONTAINS [lnteger-1 To] integer-2 {§ii|ERSj 

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS] 

(RECORD IS ) (STANDARD] 

’ - |RECORDS ARE] 1 OMITTED ] 

; VALUE OF implementor-name- 

, implementor-name-2 

[; CODE-SET IS alphabet-name 

(REPORT IS 'l 
* | REPORTS ARE) report-name-1 

2.3.3 Syntax Rules 

(1) The level indicator FD identifies the beginning of a file description 

and must precede the file-name. 

(2) The clauses which follow the name of the file are optional in many 

cases, and their order of appearance is immaterial. 

(3) The file referenced by file-name must be defined, implicitly or 

explicitly in the FILE-CONTROL paragraph of the Environment Division, as a 

sequential file. Further, each report named in the REPORT clause must be 

the subject of a report description entry in the Report Section. 

(4) No record description entries are permitted for file-name and no 

input-output statements, except the OPEN with either the OUTPUT or EXTEND 

phrase and the CLOSE without either the REEL or UNIT phrase, may be executed 

for this file. 

IS 

IS 

(data-name-lj 

(literal-1 j 

(data-name-2 

\literal-2 

[, report-name-2] 

VIII-3 



Report Writer - Report Description 

2.4 THE REPORT DESCRIPTION - COMPLETE ENTRY SKELETON 

2.4.1 Function 

The report description entry names a report, specifies any identifying 

characters to be appended to each print line, and describes the physical 

structure and organization of that report. 

2.4.2 General Format 

RD report-name 

[; CODE literal-1 ] 

(CONTROL is | I data-name-1 [, data-name-2 ] ... 1 

* (controls are) FINAL T, data-name- ■1 [, data-name-2 J . . . J j 

I" LIMIT IS fLINE 1 r „ 1 
; PAGE 

LIMITS ARE 
integer-1 

LINES, 
[, HEADING integer-2 | 

[, FIRST DETAIL integer-3 ] [, LAST DETAIL integer-4 ] 

[, FOOTING integer-5 ] . 

2.4.3 Syntax Rules 

(1) The report-name must appear in one and only one REPORT clause. 

(2) The order of appearance of the clauses following the report-name 

is immaterial. 

(3) Report-name is the highest permissible qualifier that may be specified 

for LINE-COUNTER, PAGE-COUNTER and all data-names defined within the Report 

Section. 

(4) One or more report group description entries must follow the report 

description entry. 

2.4.4 PAGE-COUNTER Rules 

(1) PAGE-COUNTER is the reserved word to reference a special register 

that is automatically created for each report specified in the Report Section. 

(See page VIII-1, PAGE-COUNTER.) 

(2) In the Report Section, a reference to PAGE-COUNTER can only appear in 

a SOURCE clause. Outside of the Report Section, PAGE-COUNTER may be used in 

any context in which a data-name of integral value can appear. 

(3) If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER must 

be qualified by a report-name whenever it is referenced in the Procedure 

Division. 

VIII-4 



Report Writer - Report Description 

In the Report Section an unqualified reference to PAGE-COUNTER is 

implicitly qualified by the name of the report in which the reference is made. 

Whenever the PAGE-COUNTER of a different report is referenced, PAGE-COUNTER 

must be explicitly qualified by that report-name. (See page II-1, Name 

Characteristics, for constraints that apply when Report Writer is associated 
with Nucleus, Level 1.) 

(4) Execution of the INITIATE statement causes the Report Writer Control 

System to set the PAGE-COUNTER of the referenced report to one (1). 

(5) PAGE-COUNTER is automatically incremented by one (1) each time the 

Report Writer Control System executes a page advance. 
o 

(6) PAGE-COUNTER may be altered by Procedure Division statements. 

2.4.5 LINE-COUNTER Rules 

(1) LINE-COUNTER is the reserved word used to reference a special register 

that is automatically created for each report specified in the Report Section. 

(See page VIII-1, LINE-COUNTER.) 

(2) In the Report Section a reference to LINE-COUNTER can only appear in 

a SOURCE clause. Outside the Report Section, LINE-COUNTER may be used in 

any context in which a data-name of integral value may appear. However, only 

the Report Writer Control System can change the contents of LINE-COUNTER. 

(3) If more than one LINE-COUNTER exists in a program, LINE-COUNTER must 

be qualified by a report-name whenever it is referenced in the Procedure 

Division. 

In the Report Section an unqualified reference to LINE-COUNTER is 

implicitly qualified by the name of the report in which the reference is made. 

Whenever the LINE-COUNTER of a different report is referenced, LINE-COUNTER 

must be explicitly qualified by that report-name. (See page II-l, Name 

Characteristics, for constraints that apply when Report Writer is associated 

with Nucleus, Level 1.) 

(4) Execution of an INITIATE statement causes the Report Writer Control 

System to set the LINE-COUNTER of the referenced report to zero (0). The 

Report Writer Control System also automatically resets LINE-COUNTER to zero 

each time it executes a page advance. 

(5) The value of LINE-COUNTER is not affected by the processing of 

non-printable report groups nor by the processing of a printable report group 

whose printing is suppressed by means of the SUPPRESS statement. 

(6) At the time each print line is presented, the value of LINE-COUNTER 

represents the line number on which the print line is presented. The value of 

LINE-COUNTER after the presentation of a report group is governed by the 

presentation rules for the report group. (See paragraph 2.5.5, Presentation 

Rules Tables, beginning on page VIII-9.) 

VIII-5 



Report Writer - Report Group description 

2.5 THE REPORT GROUP DESCRIPTION - COMPLETE SKELETON 

2.5.1 Function 

The report group description entry specifies the characteristics of a 

report group and of the individual items within a report group. 

2.5.2 General Format 

Format 1 

01 [data-name-l] 

JJ LINE NUMBER IS { 1 °!J 
- I PLUS mteger-2 

[integer-3 

; NEXT GROUP IS <PLUS integer-4| 

~ .~ NEXT PAGE 

((REPORT HEADING') 

1M J 
[PAGE HEADING] 

(PH ) 

fCONTROL HEADING' 

TYPE IS < ICH 

'DETAIL! 

‘ DE j 

/CONTROL FOOTING 

,CF 

[PAGE FOOTING] 

(PF J 
[REPORT FOOTING! 

(M J 

[; [USAGE IS] DISPLAY J . 

{data-name-2] 

FINAL j 

(data-name-3] 
1 FINAL J 

Format 2 

level-number [ data-name-1] 

; LINE NUMBER IS j^t^ger_1 ^ NEXT PAGE^|") 
- [PLUS mteger-2 J 

[; [USAGE IS] DISPLAY ] . 

VIII-6 



Report Writer - Report Group Description 

Format 3 

level-number [ data-name-l] 

[; BLANK WHEN ZERO] 

[; GROUP INDICATE] 

(JUSTIFIED1 

* 1 JUST 
RIGHT 

; LINE NUMBER IS 

[; COLUMN NUMBER IS integer-3] 

PICTURED 

(integer-1 [ ON NEXT PAGE] 

j^PLUS integer-2 

PIC 
IS character-string 

; SOURCE IS identifier-1 

; VALUE IS literal 

SUM identifier-2 [, identifier-3] ... 

[UPON data-name-2 [, data-name-3 ] ... ]j 

I RESET ON 
(data-name-4l 

1 FINAL 

[; [USAGE IS] DISPLAY] . 

2.5.3 Syntax Rules 

(1) The report group description entry can appear only in the Report 

Section. 

(2) Except for the data-name clause, which when present must immediately 

follow the level-number, the clauses may be written in any sequence. 

(3) In Format 2 the level-number may be any integer from 02 to 48 

inclusive. In Format 3 the level-number may be any integer from 02 to 

49 inclusive. 

(4) The description of a report group may consist of one, two or three 

hierarchic levels: 

a. The first entry that describes a report group must be a Format 1 

entry. 

b. Both Format 2 and Format 3 entries may be immediately subordinate 

to a Format 1 entry. 

VIII-7 



Report Writer - Report Group Description 

c. At least one Format 3 entry must be immediately subordinate to a 

Format 2 entry. 

d. Format 3 entries must be elementary. 

(5) In a Format 1 entry, data-name-1 is required only when: 

a. A DETAIL report group is referenced by a GENERATE statement, 

b. A DETAIL report group is referenced by the UPON phrase of a 

SUM clause, 

c. A report group is referenced in a USE BEFORE REPORTING sentence, 

d. The name of a CONTROL FOOTING report group is used to qualify a 

reference to a sum counter. 

(6) A Format 2 entry must contain at least one optional clause. 

(7) In a Format 2 entry, data-name-1 is optional. If present it may be 

used only to qualify a sum counter reference. 

(8) In the Report Section, the USAGE clause is used only to declare the 

usage of printable items. 

a. If the USAGE clause appears in a Format 3 entry, that entry must 

define a printable item. 

b. If the USAGE clause appears in a Format 1 or Format 2 entry, at 

least one subordinate entry must define a printable item. 

(9) An entry that contains a LINE NUMBER clause must not have a subordi¬ 

nate entry that also contains a LINE NUMBER clause. 

(10) In Format 3: 

a. A GROUP INDICATE clause may appear only in a TYPE DETAIL report 

group. 

b. A SUM clause may appear only in a TYPE CONTROL FOOTING report group. 

c. An entry that contains a COLUMN NUMBER clause but no LINE NUMBER 

clause must be subordinate to an entry that contains a LINE NUMBER clause. 

d. Data-name-1 is optional but may be specified in any entry. Data- 

name-1, however, may be referenced only if the entry defines a sum counter. 

e. A LINE NUMBER clause must not be the only clause specified. 

f. An entry that contains a VALUE clause must also have a COLUMN 

NUMBER clause. 

(11) The following table shows all permissible clause combinations for a 

Format 3 entry. The table is read from left to right along the selected row. 

VIII-8 



Report Writer - Report Group Description 

An ’M' indicates that the presence of the clause is mandatory. 

A 'P* indicates that the presence of the clause is permitted, but 

not required. 

A blank indicates that the clause is not permitted. 

CLAUSES 

PIC COLUMN SOURCE SUM VALUE JUST 

BLANK 

WHEN 

ZERO 

GROUP 

INDICATE 
USAGE LINE 

M M P 

M M M P P P 

M P M P P P P 

M P M P P P P 

M M M P P P P 

Permissible Clause Combinations in Format 3 Entries 

2.5.4 General Rules 

(1) Format 1 is the report group entry. The report group is defined by 

the contents of this entry and all of its subordinate entries. 

2.5.5 Presentation Rules Tables 

2.5.5.1 Description 

The tables and rules on the following pages specify: 

(1) The permissible combinations of LINE NUMBER and NEXT GROUP clauses 

for each type of report group, 

(2) The requirements that are placed on the use of these clauses, and 

(3) The interpretation that the RWCS gives to these clauses. 

2.5.5.2 Organization 

There is an individual presentation rules table for each of the following 

types of report groups: REPORT HEADING, PAGE HEADING, PAGE FOOTING, REPORT 

FOOTING. In addition, DETAIL report groups, CONTROL HEADING report groups, 

and CONTROL FOOTING report groups are treated jointly in the Body Group 

Presentation Rules Table. (See paragraph 2.5.5.8, The Body Group Presentation 

Rules Table, beginning on page VIII-15.) 

Columns 1 and 2 of a presentation rules table list all of the permissible 

combinations of LINE NUMBER and NEXT GROUP clauses for the designated report 

group TYPE. Consequently, for the purpose of identifying the set of presen- 

VIII-9 



Report Writer - Report Group Description 

tation rules that apply to a particular combination of LINE NUMBER and NEXT 

GROUP clauses, a presentation rules table is read from left to right, along 

the selected row. 

The applicable rules columns of a presentation rules table are partitioned 

into two parts. The first part specifies the rules that apply if the report 

description contains a PAGE clause, and the second part specifies the rules 

that apply if the PAGE clause is omitted. The purpose of the rules named in 

the applicable rules columns is discussed below: 

(1) Upper Limit Rules and Lower Limit Rules. These rules specify the 

vertical subdivisions of the page within which the specified report group 

may be presented. 

In the absence of a PAGE clause the printed report is not considered 

to be partitioned into vertical subdivisions. Consequently, within the tables 

no upper limit rule and lower limit rule is specified for a report description 

in which the PAGE clause is omitted. 

(2) Fit Test Rules. The fit test rules are applicable only to body groups, 

and hence fit test rules are specified only within the Body Group Presentation 

Rules Table. At object time the RWCS applies the fit test rules to determine 

whether the designated body group can be presented on the page to which the 

report is currently positioned. 

However, even for body groups there are no fit test rules when the 

PAGE clause is omitted from the report description entry. 

(3) First Print Line Position Rules. The first print line position rules 

specify where on the report medium the RWCS shall present the first print line 

of the given report group. 

The presentation rule tables do not specify where on the report medium 

the RWCS shall present the second and subsequent print lines (if any) of a 

report group. Certain general rules determine where the second and subsequent 

print lines of a report group shall be presented. Refer to the LINE NUMBER 

clause general rules for this information. (See page VIII-33, The LINE NUMBER 

Clause.) 

(4) Next Group Rules. The next group rules relate to the proper use of 

the NEXT GROUP clause. 

(5) Final LINE-COUNTER Setting Rules. The terminal values that the RWCS 

places in LINE-COUNTER after presenting report groups are specified by the 

final LINE-COUNTER setting rules. 

2. 5. 5. 3 LINE NUMBER Clause Notation 

Column 1 of the presentation rules table uses a shorthand notation to 

describe the sequence of LINE NUMBER clauses that may appear in the descrip¬ 

tion of a report group. The meaning of the abbreviations used in column 1 

is as follows: 

VIII-10 



Report Writer - Report Group Description 

(1) The letter 'A' represents one or more absolute LINE NUMBER clauses, 

none of which have the NEXT PAGE phrase, that appear in consecutive order 

within the sequence of LINE NUMBER clauses in the report group description 

entry. 

(2) The letter 'R' represents one or more relative LINE NUMBER clauses 

that appear in consecutive order within the sequence of LINE NUMBER clauses 

in the report group description entry. 

(3) The letters ’NP? represent one or more absolute LINE NUMBER clauses 

that appear in consecutive order within the sequence of LINE NUMBER clauses 

in the report group description entry, with the phrase NEXT PAGE appearing in 

the first, and only in the first, LINE NUMBER clause. 

When two abbreviations appear together, they refer to a sequence of LINE 

NUMBER clauses that consists of the two specified consecutive sequences. For 

example 'AR' refers to a report group description entry within which the 'A' 

sequence (defined in rule 1 above) is immediately followed by the ' R’ sequence 

(defined in rule 2 above). 

2.5.5.4 LINE NUMBER Clause Sequence Substitutions 

Where ’AR' is shown to be a permissible sequence in the presentation rules 

table, 'A' is also permissible and the same presentation rules are applicable. 

When 'NP R' is shown to be a permissible sequence in the presentation rules 

table, ’NP' is also permissible and the same presentation rules are applicable. 

2. 5. 5. 5 Saved Next Group Integer Description 

Saved next group integer is a data item that is addressable only by the 

RWCS. When an absolute NEXT GROUP clause specifies a vertical positioning 

value which cannot be accommodated on the current page, the RWCS stores that 

value in saved next group integer. After page advance processing, the RWCS 

positions the next body group using the value stored in saved next group 

integer. 

2.5.5.6 Table 1 - REPORT HEADING Group Presentation Rules Table 

The table on page VIII-12 points to the appropriate presentation rules for 

all permissible combinations of LINE-NUMBER and NEXT GROUP clauses in a REPORT 

HEADING report group. 

2.5.5.6.1 Table 1 Presentation Rules 

(1) Upper Limit Rule. The first line number on which the REPORT HEADING 

report group can be presented is the line number specified by the HEADING 

phrase of the PAGE clause. 

(2) Lower Limit Rules 

a. The last line number on which the REPORT HEADING report group can 

be presented is the line number that is obtained by subtracting 1 from the 

value of integer-3 of the FIRST DETAIL phrase of the PAGE clause. 

VIII-11 



Report Writer - Report Group Description 

Table 1 - REPORT HEADING Group Presentation Rules Table 

+ + + + +
+

 

+
4
-

 

3 CJ 3 3 3 3 
0) 04 00 o o O O O O 
cn Ed 3 P •H •H P •H P 
3 rH 1 H *H d 4-3 4-» d 4J 4-J 

3 « H 2 U 3 3 3 3 3 d 3 d 3 
i-H • 3 2 5 x) 3 3 3 3 3 in 3 in in 
O d •H M O 3 P •H P P P P 

3 
Id d 
O d 
< -H 

Id p O co 
•a ■a ■a •a ■a ■a 

CJ o CJ u o o 
G B 3 

O O rH rH rH 
3 

rH rH 
0) •H 03 3 3 3 3 
d CO d d d 00 00 00 OO 00 00 
d -H CO 3 <U -H 3 3 3 3 3 d 3 d a 

3 P 3 CO 1-1 rH rH rH 1-1 CO rH CO co 
4-1 •H d -H O (-1 i—1 i—1 rH rH rH 
M G G P G M H H M M M 

* 
•K 
* Pi oo 

W 3 
CO rH 1 H -H 
0) 3 Id d 03 d O d 03 d 3 d 3 

1—1 
3 

o4 

0) 

C 2 5 d 
•H H O 3 
Id d O CO 

ln m in in in in in in in 

rH 

•I d 
(X 

d 3 
u 3 X O 3 d o 3 d a 

•H •H 3 d <r 
rH 4-) 2 O 
G •H 
g 3 

<d 3 
G 3 
CO O 

*H 
CO d d d 3 3 3 3 d d d d a 

•H CO 3 0) P 
d -H 3 co 

CO CO CO co CO co CO co CO 

0) 

a 

P d P O 
Pd G P G 

rH 
o 

w 

d di 

%t 3 3 d 3 3 3 d 3 
u O P CM CN CN 04 CN CN CN CN 
c d d 
G 

CU 

d d d 
d 3 p 

G B «-H rH rH rH rH rH rH rH 
44 G P 
M P d 

P 
O 3 3 3 8 3 3 

id 
o 

Pi CO 4-> > < d > < 
O 3 3 •H G 3 P Pd 

3 d 4-J rH d 
O 3 H o 3 H 
CO rH X CO rH X 

Pd 
2 3 

3 
04 

Id 
2 $ 

3 
04 

Id 
2 

■X 

4-1 Pi 
O Ed * 

3 3 
3 d CO 
3 2: 3 
3 3 04 04 Pi pi 
3 Id d 
crp 3 
3 d 

C < C 04 04 04 04 

CO d 

3 
3 

3 3 3 
3 P d 3 
d d 3 
d 3 t—1 

3 4-1 3 
4-1 3 O 
o 3 G 

i—1 3 P 
3 3 3 O 
o 3 04 

•rH d 3 O 
d 3 3 
G B d H 

•H 3 3 X 
d 3 W 
3 3 2 
3 3 d 
3 d • d d 
d d X 3 

d 3 3 
3 d d 3 

3 3 d 04 
d d 3 3 Pd 
O d 3 CG 

4-1 3 •H s 
3 O d p 
3 P 3 

3 d d •H 
O 3 G w 
P 3 -H 3 2 
d P d B M 
3 d 3 3 P 
d 3 3 iH 
O P 3 O 4-1 
z d 3 O 

CN 
3 G 3 3 
3 3 3 3 o 
3 B O i—1 ■H 
3 3 d 3 d 

rH rH 00 d 3 
O • o 3 

rH 3 d 3 •H 
04 d iH d 
Id 3 d O d B 
PQ B O G 3 o 
S 3 3 3 3 
P rH r d •H 
2 O rH 3 

3 3 3 G 3 
Id B d G > 
2 3 3 d 3 •H 
W P rH 00 
p o B 3 

d 3 O 3 3 
d d 

O 3 3 4-1 3 d 
—' 3 P •H 

1 d d 
M 3 x s PH O 
w c d 3 d 4-1 
M O d 3 d 
> P 3 d 3 3 

d 3 3 3 tH 
3 3 3 
00 P d Ph d d 
3 > 3 rH 3 
G 3 3 iH 3 d 

d rH 3 i—1 3 
3 d d d) d B 
3 d O 3 

C/0 3 C d C 3 

HC ■* * 
* * 

* 

3 
3 
w 

+ 

3 
3 

CO 

t 

VIII-12 

p
a
g

e
 
V

I
I
I
-
3
3
, 

T
h
e
 

L
IN

E
 

N
U

M
B

E
R
 
C

la
u

s
e
, 

p
a
g

e
 
V

I
I
I
-
3
5
, 

T
h

e
 

N
E

X
T
 

G
R

O
U

P
 

C
la

u
s
e
. 



Report Writer - Report Group Description 

b. The last line number on which the REPORT HEADING report group can 

be presented is the line number specified by integer-1 of the PAGE clause. 

(3) First Print Line Position Rules 

a. The first print line of the REPORT HEADING report group is pre¬ 

sented on the line number specified by the integer of its LINE NUMBER clause. 

b. The first print line of the REPORT HEADING report group is pre¬ 

sented on the line number obtained by adding the integer of the first LINE 

NUMBER clause and the value obtained by subtracting 1 from the value of 

integer-2 of the HEADING phrase of the PAGE clause. 

c. The REPORT HEADING report group is not presented. 

d. The first print line of the REPORT HEADING report group is pre¬ 

sented on the line number obtained by adding the contents of its LINE-COUNTER 

(in this case, zero) to the integer of the first LINE NUMBER clause. 

(4) Next Group Rules 

a. The NEXT GROUP integer must be greater than the line number on 

which the final print line of the REPORT HEADING report group is presented. 

In addition, the NEXT GROUP integer must be less than the line number speci¬ 

fied by the value of integer-3 of the FIRST DETAIL phrase of the PAGE clause. 

b. The sum of the NEXT GROUP integer and the line number on which the 

final print line of the REPORT HEADING report group is presented must be less 

than the value of integer-3 of the FIRST DETAIL phrase of the PAGE clause. 

c. NEXT GROUP NEXT PAGE signifies that the REPORT HEADING report 

group is to be presented entirely by itself on the first page of the report. 

The RWCS processes no other report group while positioned to the first page 

of the report. 

(5) Final LINE-COUNTER Setting Rules 

a. After the REPORT HEADING report group is presented, the RWCS places 

the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER setting. 

b. After the REPORT HEADING report group is presented, the RWCS places 

the sum of the NEXT GROUP integer and the line number on which the final print 

line of the REPORT HEADING report group was presented into LINE-COUNTER as the 

final LINE-COUNTER setting. 

c. After the REPORT HEADING report group is presented, the RWCS places 

zero into LINE-COUNTER as the final LINE-COUNTER setting. 

d. After the REPORT HEADING report group is presented, the final LINE- 

COUNTER setting is the line number on which the final print line of the REPORT 

HEADING report group was presented. 

e. LINE-COUNTER is unaffected by the processing of a non-printable 

report group. 

VIII-13 



Report Writer - Report Group Description 

2.5.5.7 Table 2 - PAGE HEADING Group Presentation Rules Table 

The following table points to the appropriate presentation rules for all 

permissible combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE 

HEADING report group. 

Table 2 - PAGE HEADING Group Presentation Rules Table 

** 
Applicable Rules *** 

If the PAGE clause is specified **** 

Sequence of 

LINE NUMBER 

clauses* 

NEXT GROUP 

cl aus e 

Upper 

Limit 

Lower 

Limit 

First Print 

Line Position 

Next 

Group 

Final LINE- 

COUNTER 

Setting 

A R 1 2 3a 4a 

R 1 2 3b 4a 

3c 4b 

* See page VII.I-10, LINE NUMBER Clause Notation, for a description of the 

abbreviations used in column 1. 

** A blank entry in column 1 or column 2 indicates that the named clause is 

totally absent from the report group description entry. 

*** A blank entry in an applicable rules column indicates the absence of the 

named rule for the given combination of LINE NUMBER and NEXT GROUP clauses. 

**** xf the PAGE clause is omitted from the report description entry, then a 

PAGE HEADING report group may not be defined. (See page VIII-45, The 

TYPE Clause.) 

2.5.5.7.1 Table 2 Presentation Rules 

(1) Upper Limit Rules. If a REPORT HEADING report group has been presented 

on the page on which the PAGE HEADING report group is to be presented, then the 

first line number on which the PAGE HEADING report group can be presented is 

one greater than the final LINE-COUNTER setting established by the REPORT 

HEADING. 

Otherwise the first line number on which the PAGE HEADING report group 

can be presented is the line number specified by the HEADING phrase of the 

PAGE clause. 

(2) Lower Limit Rule. The last line number on which the PAGE HEADING 

report group can be presented is the line number that is obtained by subtract¬ 

ing one (1) from the value of integer-3 of the FIRST DETAIL phrase of the PAGE 

clause. 

VIII-14 



Report Writer - Report Group Description 

(3) First Print Line Position Rules. 

a. The first print line of the PAGE HEADING report group is presented 

on the line number specified by the integer of its LINE NUMBER clause. 

b. If a REPORT HEADING report group has been presented on the page on 

which the PAGE HEADING report group is to be presented, then the sum of the 

final LINE-COUNTER setting established by the REPORT HEADING report group and 

the integer of the first LINE NUMBER clause of the PAGE HEADING report group 

defines the line number on which the first print line of the PAGE HEADING 

report group is presented. 

Otherwise the sum of the integer of the first LINE NUMBER clause 

of the PAGE HEADING report group and the value obtained by subtracting one (1) 

from the value of integer-2 of the HEADING phrase of the PAGE clause defines 

the line number on which the first print line of the PAGE HEADING report group 

is presented. 

c. The PAGE HEADING report group is not presented. 

(4) Final LINE-COUNTER Setting Rules 

a. The final LINE-COUNTER setting is the line number on which the 

final print line of the PAGE HEADING report group was presented. 

b. LINE-COUNTER is unaffected by the processing of a non-printable 

report group. 

2. 5.5.8 Table 3 - Body Group Presentation Rules Table 

The table on page VIII-16 points to the appropriate presentation rules for 

all permissible combinations of LINE NUMBER and NEXT GROUP clauses in CONTROL 

HEADING, DETAIL and CONTROL FOOTING report groups. 

2.5.5.8.1 Table 3 Presentation Rules 

(1) Upper Limit Rule. The first line number on which a body group can be 

presented is the line number specified by the FIRST DETAIL phrase of the PAGE 

clause. 

(2) Lower Limit Rules. The last line number on which a CONTROL HEADING 

report group or DETAIL report group can be presented is the line number 

specified by the LAST DETAIL phrase of the PAGE clause. 

The last line number on which a CONTROL FOOTING report group can be 

presented is the line number specified by the FOOTING phrase of the PAGE clause 

(3) Fit Test Rules. 

a. If the value in LINE-COUNTER is less than the integer of the first 

absolute LINE NUMBER clause, then the body group shall be presented on the 

page to which the report is currently positioned. 

Otherwise the RWCS executes page advance processing. After the 

PAGE HEADING report group (if defined) has been processed, the RWCS determines 

VIII-15 



Report Writer - Report Group Description 

Table 3 - Body Group Presentation Rules Table 

A
p
p
li

c
a
b
le
 

R
u
le

s
 

*
*

*
 

I
f
 

th
e
 

P
A

G
E
 

c
la

u
s
e

 

is
 

o
m

it
te

d
. 

F
in

a
l 

L
IN

E
- 

C
O

U
N

T
E

R
 

S
e
tt

in
g

 
+ 

3 
o 

•H 
4-1 
3 
3 

•H 

•a 
o 

I
ll

e
g
a
l 

C
o

m
b

in
a
ti

o
n
 

+•
 

I
ll

e
g
a
l 

C
o
m

b
in

a
ti

o
n
 

+
 

I
ll

e
g
a
l 

C
o

m
b

in
a
ti

o
n
 

+
 

I
ll

e
g
a
l 

C
o

m
b

in
a
ti

o
n
 
+

+
 

6
f 

t 
s 
o 

•H 
4J 
CO 
3 

■§ 
O 

6
d

 

I
ll

e
g
a
l 

C
o

m
b

in
a
ti

o
n
 

+
 

I
ll

e
g
a
l 

C
o

m
b

in
a
ti

o
n
 

+
 

I
ll

e
g
a
l 

C
o

m
b

in
a
ti

o
n
 

+
 

I
ll

e
g
a
l 

C
o

m
b

in
a
ti

o
n
 

+
 

6
e

 

F
ir

s
t 

P
r
in

t 

L
in

e
 

P
o
s
it

io
n

 o 

iH 
cd 
60 
<D 

i—1 
rH 
H 

T3 

u 

rH 
CO 
00 
3 

rH 
rH 
M 

o 

j 
I
f
 

th
e
 

P
A

G
E
 
c
la

u
s
e
 
is
 
s
p

e
c
if

ie
d

. 

F
in

a
l 

L
IN

E
- 

C
O

U
N

T
E

R
 

S
e
tt

in
g

 

n) 
v£> 6

b
 

6
c

 P
9

 6
a

 

6
b

 

6
c

 

6
d

 

6
a

 
JO 

6
c

 P
9

 6
e

 
_

l
 

N
e
x
t 

G
ro

u
p

 

u~> m n 

F
ir

s
t 

P
r
in

t 

L
in

e
 

P
o
s
it

io
n

 

cd 
'd- 

CO 
-<r 

c0 cd rO JO rO cd cd cd cd a 

F
it

 

T
e
s
t 

3
a

 

3
a

 

3
a

 

3
a

 

co £ 
JO 
co $ 3

c
 

3
c

 

3
c

 

3
c

 

L
o

w
e
r 

L
im

it
 

CN CNJ CN CN CN CN CN CN CN CN 04 CN 

U
p

p
e
r 

L
im

it
 

pH H *-H rH H t-H »-H rH r-H 

* 
* 

N
E

X
T
 

G
R

O
U

P
 

c
la

u
s
e

 

A
b

s
o

lu
te

 

R
e
la

ti
v
e

 

N
E

X
T
 

P
A

G
E

 

A
b
s
o
lu

te
 

R
e
la

ti
v

e
 

i 

N
E

X
T
 

P
A

G
E

 

A
b

s
o

lu
te

 

R
e
la

ti
v
e

 

N
E

X
T
 

P
A

G
E

 

S
e
q

u
e
n

c
e

 

o
f 

L
IN

E
 

N
U

M
B

E
R

 

c
la

u
s
e
s
*

 

A
 

R
 

A
 

R
 

A
 

R
 

A
 

R
 

pi pi a Pi N
P
 

R
 

N
P
 

R
 

N
P
 

R
 

N
P
 

R
 

CO 
3 

CD 3 CO 
3 •H JO 3 

JO 4J 3 
■u (0 i—1 

CO <4-1 o 
M-l 3 O 
O cO Pl, 

rH 0) to 
3 o a o 
o 3 Pi 

•H TO a) o 
4-1 (0 CO 
a e JO H 

•H cO 3 X 
3 W 

u CU z 
cn <0 JO 
3 JO • 4J TO 

TO 4J X 3 
J-i CO 3 

cO 4J 4J <D 
CO 3 4-J Pi 

JO <0 3 W 
O 4J O pQ 

<4-1 3 •H § 
CO O TO 5 

r ai •H 3 
(0 4J 4J •H 
o cO 3. w 

•H a •H 3 z 
4-1 •H >-i e M 
CO TO O 3 rJ . 
4J c CO i—I 3 . 
O •H 3 O <4-4 CO 3 
2 13 O O 3 CO 

CN 3 3 
cu a CD 3 tH 3 
CO 3 3 3 O CJ rH 
3 1 o t—! •H cj 
cO 3 u 3 4-1 Pi 

rH t—1 00 3 3 w 34 
o . O 3 PQ 2 

pel 

rH o 4J 3 •H O 
H >H JO Pi 

w c M O JO B 2 O 
pq E O 3. 3 o 
>*, 3 cu CJ o W H 

rH iH 3 •H 2 X 
z o i—1 3 IH W 

o H <u a 3 rJ 2 
w 6 JO 3. > 
2 3 3 4-1 3 •H 3 3 
H •H rH 00 J= JO 
rJ o e 3 p N 

•3 o o 3 3 
•* a) 3 JO A 

o CD c <4-1 3 4-1 CO in 
rH 

1 
3 •H 

4-> 
•H 

V4 

co 
1 

CO 

w CO X 3 Oh o M w 
M e 3 3 >4-1 M M 
H o 4-1 CD 4-1 M W 

> *H s JO 3 3 > > 
4-1 (0 cO 3 rH 

CO CO 3 3 3 
00 -H j*: Oh Jrf 3 00 00 
cO > 3 r-1 3 3 3 
O. <0 cO rH 3 33 O. a 

H i—i CO rH 3 
(0 JO JO 4J JO e 3 3 
a) JO O 3 3 3 

CQ cO C 4J < 3 C/0 CO 

* •K ■K + + 
-K * 

* 

VIII-16 



Report Writer - Report Group Description 

whether the saved next group integer location was set when the final body group 

was presented on the preceding page. (See final LINE-COUNTER setting rule 6a 

on page VIII-18.) If the saved next group integer was not so set, the body 

group shall be presented on the page to which the report is currently positioned. 

If the saved next group integer was so set, the RWCS moves the saved next 

group integer into LINE-COUNTER, resets the saved next group integer to zero, 
and reapplies fit test rule 3a. 

b. If a body group has been presented on the page to which the report 

is currently positioned, the RWCS computes a trial sum in a work location. The 

trial sum is computed by adding the contents of LINE-COUNTER to the integers of 

all LINE NUMBER clauses of the report group. If the trial sum is not greater 

than the body group's lower limit integer, then the report group is presented 

on the current page. If the trial sum exceeds the body group's lower limit 

integer, then the RWCS executes page advance processing. After the PAGE HEADING 

report group (if defined) has been processed, the RWCS reapplies fit test rule 3b. 

If no body group has yet been presented on the page to which the 

report is currently positioned, the RWCS determines whether the saved next group 

integer location was set when the final body group was presented on the preced¬ 

ing page. (See final LINE-COUNTER setting rule 6a on page VIII-18.) If the 

saved next group integer was not so set, the body group shall be presented on 

the page to which the report is currently positioned. If the saved next group 

integer was so set, the RWCS moves the saved next group integer into LINE- 

COUNTER, resets the saved next group integer to zero, and computes a trial sum 

in a work location. 

The trial sum is computed by adding the contents of LINE-COUNTER to 

the integer one (1) and the integers of all but the first LINE NUMBER clause 

of the body group. If the trial sum is not greater than the body group's 

lower limit integer, then the body group is presented on the current page. If 

the trial sum exceeds the body group's lower limit integer, then the RWCS 

executes page advance processing. After the PAGE HEADING report group (if 

defined) has been processed, the RWCS presents the body group on that page. 

c. If a body group has been presented on the page to which the report 

is currently positioned, the RWCS executes page advance processing. After the 

PAGE HEADING report group (if defined) has been processed, the RWCS reapplies 

fit test rule 3c. 

If no body group has yet been presented on the page to which the 

report is currently positioned, the RWCS determines whether the saved next 

group integer location was set when the final body group was presented on the 

preceding page. (See final LINE-COUNTER setting rule 6a on page VIII-18.) If 

the saved next group integer was not so set, the body group shall be presented 

on the page to which the report is currently positioned. If the saved next 

group integer was so set, the RWCS moves the saved nekt group integer into 

LINE-COUNTER and resets the saved next group integer to zero. If then the 

value in LINE-COUNTER is less than the integer of the first absolute LINE 

NUMBER clause, the body group shall be presented on the page to which the 

report is currently positioned. Otherwise the RWCS executes page advance 

processing. After the PAGE HEADING report group (if defined) has been processed, 

the RWCS presents the body group on that page. 

VIII-17 



Report Writer - Report Group Description 

(4) First Print Line Position Rules 

a. The first print line of the body group is presented on the line 

number specified by the integer of its LINE NUMBER clause. 

b. If the value in LINE-COUNTER is equal to or greater than the line 

number specified by the FIRST DETAIL phrase of the PAGE clause, and if no body 

group has previously been presented on the page to which the report is current¬ 

ly positioned, then the first print line of the current body group is presented 

on the line immediately following the line indicated by the value contained in 

LINE-COUNTER. 

If the value in LINE-COUNTER is equal to or greater than the line 

number specified by the FIRST DETAIL phrase of the PAGE clause, and if a body 

group has previously been presented on the page to which the report is current¬ 

ly positioned, then the first print line of the current body group is presented 

on the line that is obtained by adding the contents of LINE-COUNTER and the 

integer of the first LINE NUMBER clause of the current body group. 

If the value in LINE-COUNTER is less than the line number speci¬ 

fied by the FIRST DETAIL phrase of the PAGE clause, then the first print line 

of the body group is presented on the line specified by the FIRST DETAIL phrase. 

c. The body group is not presented. 

d. The sum of the contents of LINE-COUNTER and the integer of the 

first LINE NUMBER clause defines the line number on which the first print line 

is presented. 

(5) Next Group Rule. The integer of the absolute NEXT GROUP clause must 

specify a line number that is not less than that specified in the FIRST DETAIL 

phrase of the PAGE clause, and that is not greater than that specified in the 

FOOTING phrase of the PAGE clause. 

(6) Final LINE-COUNTER Setting Rules 

a. If the body group that has just been presented is a CONTROL FOOTING 

report group and if the CONTROL FOOTING report group is not associated with the 

highest level at which the RWCS detected a control break, then the final LINE- 

COUNTER setting is the line number on which the final print line of the CONTROL 

FOOTING report group was presented. 

For all other cases the RWCS makes a comparison of the line number 

on which the final print line of the body group was presented and the integer 

of the NEXT GROUP clause. If the former is less than the latter, then the 

RWCS places the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER 

setting. If the former is equal to or greater than the latter, then the RWCS 

places the line number specified by the FOOTING phrase of the PAGE clause into 

LINE-COUNTER as the final LINE-COUNTER setting; in addition the RWCS places 

the NEXT GROUP integer into the saved next group integer location. 

b. If the body group that has just been presented is a CONTROL FOOTING 

report group, and if the CONTROL FOOTING report group is not associated with 

the highest level at which the RWCS detected a control break, then the final 

VIII-18 



Report Writer - Report Group Description 

LINE-COUNTER setting is the line number on which the final print line of the 
CONTROL FOOTING report group was presented. 

For all other cases the RWCS computes a trial sum in a work loca¬ 
tion. The trial sum is computed by adding the integer of the NEXT GROUP clause 
to the line number on which the final print line of the body group was present¬ 
ed. If the sum is less than the line number specified by the FOOTING phrase 
of the PAGE clause, then the RWCS places that sum into LINE-COUNTER as the 
final LINE-COUNTER setting. If the sum is equal to or greater than the line 
number specified by the FOOTING phrase of the PAGE clause, then the RWCS 
places the line number specified by the FOOTING phrase of the PAGE clause 
into LINE-COUNTER as the final LINE-COUNTER setting. 

c. If the body group that has just been presented is a CONTROL FOOT¬ 
ING report group, and if the CONTROL FOOTING report group is not associated 
with the highest level at which the RWCS detected a control break, then the 
final LINE-COUNTER setting is the line number on which the final print line 
of the CONTROL FOOTING report group was presented. 

For all other cases the RWCS places the line number specified by 
the FOOTING phrase of the PAGE clause into LINE-COUNTER as the final LINE- 
COUNTER setting. 

d. The final LINE-COUNTER setting is the line number on which the 
final print line of the body group was presented. 

e. LINE-COUNTER is unaffected by the processing of a non-printable 
body group. 

f. If the body group that has just been presented is a CONTROL FOOTING 
report group, and if the CONTROL FOOTING report group is not associated with 
the highest level at which the RWCS detected a control break, then the final 
LINE-COUNTER setting is the line number on which the final print line of the 
CONTROL FOOTING report group was presented. 

For all other cases the RWCS places the sum of the line number on 
which the final print line was presented and the NEXT GROUP integer into 
LINE-COUNTER as the final LINE-COUNTER setting. 

VIII-19 



Report Writer - Report Group Description 

2.5.5.9 Table 4 - PAGE FOOTING Presentation Rules 

The following table points to the appropriate presentation rules for all 

permissible combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE 

FOOTING report group. 

Table 4 - PAGE FOOTING Presentation Rules Table 

** 

Applicable Rules *** 

If the PAGE clause is specified **** 

Sequence of 

LINE NUMBER 

clauses* 

NEXT GROUP 

claus e 

Upper 

Limit 

Lower 

Limit 

First Print 

Line Position 

Next 

Group 

Final LINE- 

COUNTER 

Setting 

A R Absolute 1 2 3a 4a 5a 

A R Relative 1 2 3a 4b 5b 

A R 1 2 3a 5c 

3b 5d 

* See page VIII-10, LINE NUMBER Clause Notation, for a description of the 

abbreviations used in column 1. 

** A blank entry in column 1 or column 2 indicates that the named clause is 

totally absent from the report group description entry. 

*** A blank entry in an applicable rules column indicates the absence of the 

named rule for the given combination of LINE NUMBER and NEXT GROUP clauses. 

**** Xf the PAGE clause is omitted from the report description entry, then a 

PAGE FOOTING report group may not be defined. (See page VIII-45, The 

TYPE Clause.) 

2.5.5.9.1 Table 4 Presentation Rules 

(1) Upper Limit Rule. The first line number on which the PAGE FOOTING 

report group can be presented, is the line number obtained by adding one to 

the value of integer-5 of the FOOTING phrase of the PAGE clause. 

(2) Lower Limit Rule. The last line number on which the PAGE FOOTING 

report group can be presented is the line number specified by integer-1 of 

the PAGE clause. 

(3) First Print Line Position Rules 

a. The first print line of the PAGE FOOTING report group is presented 

on the line specified by the integer of its LINE NUMBER clause. 

b. The PAGE FOOTING report group is not presented. 

VI11-20 



Report Writer - Report Group Description 

(4) NEXT GROUP Rules 

a. The NEXT GROUP integer must be greater than the line number on 

which the final print line of the PAGE FOOTING report group is presented. In 

addition, the NEXT GROUP integer must not be greater than the line number 

specified by integer-1 of the PAGE clause. 

b. The sum of the NEXT GROUP integer and the line number on which the 

final print line of the PAGE FOOTING report group is presented must not be 

greater than the line number specified by integer-1 of the PAGE clause. 

(5) Final LINE-COUNTER Setting Rules 

a. After the PAGE FOOTING report group is presented, the RWCS places 

the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER setting. 

b. After the PAGE FOOTING report group is presented, the RWCS places 

the sum of the NEXT GROUP integer and the line number on which the final print 

line of the PAGE FOOTING report group was presented into LINE-COUNTER as the 

final LINE-COUNTER setting. 

c. After the PAGE FOOTING report group is presented the final LINE- 

COUNTER setting is the line number on which the final print line of the PAGE 

FOOTING report group was presented. 

d. LINE-OOUNTER is unaffected by the processing of a non-printable 

report group. 

2.5.5.10 Table 5 - REPORT FOOTING Presentation Rules Table 

The table on page VIII-22 points to the appropriate presentation rules for 

all permissible combinations of LINE NUMBER and NEXT GROUP clauses in a REPORT 

FOOTING report group. 

2.5.5.10.1 Table 5 Presentation Rules 

(1) Upper Limit Rules 

a. If a PAGE FOOTING report group has been presented on the page to 

which the report is currently positioned, then the first line number on which 

the REPORT FOOTING report group can be presented is one greater than the final 

LINE-COUNTER setting established by the PAGE FOOTING report group. 

Otherwise the first line number on which the REPORT FOOTING report 

group can be presented is the line number obtained by adding one and the value 

of integer-5 of the PAGE clause. 

b. The first line number on which the REPORT FOOTING report group can 

be presented, is the line number specified by the HEADING phrase of the PAGE 

clause. 

(2) Lower Limit Rule. The last line number on which the REPORT FOOTING 

report group can be presented is the line number specified by integer-1 of 

the PAGE clause. 

VIII-21 



Report Writer - Report Group Description 

Table 5 - REPORT FOOTING Presentation Rules Table 

* 
* 
* 

cn 
O) 

i—i 

3 
pi 

JO 
3 
o 

a 
CM 
< 

+ 

Pp 
3 3 

3 00 O o 
3 W 3 •H •H 
3 1-1 1 H •H 4-J 4-J 
CO cO W -U cd cd 3 03 

rH • 3 -U 3 <r 3 
O TO •H M o 03 •H •H 

3 
W 3 

Pu p-j o cn 
■i •i 

O 3 o o 

<3 -H C_) o 
pm e 3 

o O 1—1 1—1 
a) •H 3 cd 
jo 3 ■U 4-» 4J 00 TO 00 3 
3 -H Cfi 3 03 •H 03 CO 3 CO 

3-1 •H 3 cn 1-1 1-1 
4-4 •H 3-1 •H o 1-1 rH 
M Pm Pm 2 CM M M 

pc3 00 

W 3 
i—1 i H •H 

cO Pl3 4J cd 3 cd OP 
a 2 4J 

•H M o 03 
Pm hj o CO 

TO 
0) 

•H CM 
mm ■U 3 
*H X O 
u 03 3 
a) 
cm 
3 

2 O 

03 3 
•H O 

•H 
03 4-J 4-J 4-J 3 JO o 3 
03 Cfl a 03 •H co CO CO CO 
3 3-1 •H 3 U) 
cO •H 3m •H o 

'-1 Pm Cm X Cm 
O 

w 
O u 44 

< 03 *H 
CM 1* E CM Cn| CM 

O *H 
03 X 2 

jo 
4J 

44 3m 4-» 
M 03 • H 

CM 3 cd JO 
CM •H r—H •—i r—1 
2 2 

Pm 
2 
O 03 
Pi cn 
O 3 

cd 
E-M i—1 
2 u 
W 
2 

■K 44 Pi 
■K o U1 

03 § * 
CO P~> 01 
c 2 ai PCm 
03 3 Pi 
3 2 3 Cm 
cr z cd < pi 2 
03 M »—i 

cn 2 CJ 

3 
3 

3 3 3 
3 •H J3 3 

-3 3 3 
4-1 3 t—1 

3 3 3 
MM 3 O 
O 3 Pm 

i—1 3 2 
3 3 3 O 
O 3 PCS 

•H TO 3 2 
4-1 3 3 
CM B JP H 

•H 3 3 2 
3 3 W 
3 3 2 
3 3 -3 
3 -3 • 3 TO 

TO 3 to 3 
3 3 3 

3 3 3 3 
3 3 3 Pi 

3 40 3 3 2 
O 3 3 pH 

mm 3 •H tp 

3 O TO 5 
- 3 *H 3 2; 

3 3 3 •H 
O 3 CM 2 

*H 3 -H 3 2 
3 •H 3 E MM 

3 TO 3 3 2 • 

3 3 3 i—1 3 
O •H 3 o 4M 3 
2 TO 3 O 3 

CM 3 
3 CM 3 3 i—1 
3 3 3 3 O O 
3 E O i—1 •H 
3 3 3 3 3 Pi 

i—1 iH 00 3 3 2 
2 • O 3 pq 

*—4 3 3 3 •H bit 
pi 3 rH JP 2 
W 3 3 O JP E 2 
pg E O CM 3 O 
§ 3 3 3 3 2 
2 rH —I 3 •H 2 
2 O ?—1 3 (H 

o 3 3 CM 3 2 
w E -3 CM > 
2 3 3 3 3 •H 3 
M *H rH 00 JO 
X o E 3 H 

TO 3 O 3 3 
- 3 3 JP 

O 3 3 Mm 3 3 co 
r-M 3 •H •H CO 

1 3 3 1 
M 3 to 3 to O 1—1 
i—* 3 3 3 3 Mm I—1 
W O 3 3 3 1—1 
> 'H 3 JO 3 3 ;> 

3 3 3 3 rH 
3 3 3 3 
00 -H X to X 3 00 
3 > 3 2 3 3 
CM 3 3 i—1 3 TO 2 

3 i—1 3 iH 3 
3 ,40 JP 3 JP E 3 
3 OP O 3 3 
cn 3 <3 3 < 3 2 

* * * + 
* * 

VIII-22 



Report Writer - Report Group Description 

(3) First Print Line Position Rules 

a. The first print line of the REPORT FOOTING report group is pre¬ 
sented on the line specified by the integer of its LINE NUMBER clause. 

b. If a PAGE FOOTING report group has been presented on the page to 
which the report is currently positioned, then the sum of the final LINE- 
COUNTER setting established by the PAGE FOOTING report group and the integer 
of the first LINE NUMBER clause of the REPORT FOOTING report group defines the 
line number on which the first print line of the REPORT FOOTING report group 
is presented. Otherwise the sum of the integer of the first LINE NUMBER 
clause of the REPORT FOOTING report group, and the line number specified by 
the value of integer-5 of the FOOTING phrase of the PAGE clause defines the 
line number on which the first print line of the REPORT FOOTING report group 
is presented. 

c. The NEXT PAGE phrase in the first absolute LINE NUMBER clause 
directs that the REPORT FOOTING report group is presented on a page on which 
no other report group has been presented. The first print line of the REPORT 
FOOTING report group is presented on the line number specified by the integer 
of its LINE NUMBER clause. 

d. The sum of the contents of LINE-COUNTER and the integer of the 
first LINE NUMBER clause defines the line number on which the first print 
line is presented. 

e. The REPORT FOOTING report group is not presented. 

(4) Final LINE-COUNTER Setting Rules. 

a. The final LINE-COUNTER setting is the line number on which the 
final print line of the REPORT FOOTING report group is presented. 

b. LINE-COUNTER is unaffected by the processing of a non-printable 
report group. 

VIII-23 



Report Writer - BLOCK CONTAINS 

2.6 THE BLOCK CONTAINS CLAUSE 

2.6.1 Function 

The BLOCK CONTAINS clause specifies the size of a physical record. 

2.6.2 General Format 

BLOCK CONTAINS [ integer-1 TO ] integer-2 

2.6.3 General Rules 

(1) This clause is required except when: 

a. A physical record contains one and only one complete logical 

record. 

b. The hardware device assigned to the file has one and only one 

physical record size. 

c# The hardware device assigned to the file has more than one 

physical record size but the implementor has designated one as standard. In 

this case, the absence of this clause denotes the standard physical record 

size. 

(2) The size of the physical record may be stated in terms of RECORDS, 

unless one of the following situations exists, in which case the RECORDS 

phrase must not be used 

a. In mass storage files, where logical records may extend across 

physical records. 

b. The physical record contains padding (area not contained in a 

logical record). 

c. Logical records are grouped in such a manner that an inaccurate 

physical record size would be implied. 

(3) When the word CHARACTERS is specified, the physical record size is 

specified in terms of the number of character positions required to store 

the physical record, regardless of the types of characters used to represent 

the items within the physical record. 

(4) If only integer-2 is shown, it represents the exact size of the 

physical record. If integer-1 and integer-2 are both shown, they refer to 

the minimum and maximum size of the physical record, respectively. 

(5) If logical records of differing size are grouped into one physical 

record, the technique for determining the size of each logical record is 

specified by the implementor. 

RECORDS 

CHARACTERS 

VIII-24 



Report Writer - CODE 

2.7 THE CODE CLAUSE 

2.7.1 Function 

The CODE clause specifies a two character literal that identifies each 

print line as belonging to a specific report. 

2.7.2 General Format 

CODE literal-1 

2.7.3 Syntax Rules 

(1) Literal-1 is a two character nonnumeric literal. 

(2) If the CODE clause is specified for any report in a file, then it 

must be specified for all reports in the same file. 

2.7.4 General Rules 

(1) When the CODE clause is specified, literal-1 is automatically placed 

in the first two character positions of each Report Writer logical record. 

(2) The positions occupied by literal-1 are not included in the 

description of the print line, but are included in the logical record size. 

VIII-25 



Report Writer - CODE-SET 

2.8 THE CODE-SET CLAUSE 

2.8.1 Function 

The CODE-SET clause specifies the character code set used to represent 

data on the external media. 

2.8.2 General Format 

CODE-SET IS alphabet-name 

2.8.3 Syntax Rules 

(1) When the CODE-SET clause is specified for a file, all data in that 

file must be described as usage is DISPLAY and any signed numeric data must be 

described with the SIGN IS SEPARATE clause. 

(2) The alphabet-name clause referenced by the CODE-SET clause must not 

specify the literal phrase. 

(3) The CODE-SET clause may only be specified for non-mass storage files. 

2.8.4 General Rules 

(1) If the CODE-SET clause is specified, alphabet-name specifies the 

character code convention used to represent data on the external media. It 

also specifies the algorithm for converting the character codes on the external 

media from the native character codes. This code conversion occurs during 

the execution of an output operation. (See page II-8, The SPECIAL-NAMES 

Paragraph.) 

(2) If the CODE-SET clause is not specified, the native character code 

set is assumed for data on the external media. 

VIII-26 



Report Writer - COLUMN NUMBER 

2.9 THE COLUMN NUMBER CLAUSE 

2.9.1 Function 

The COLUMN NUMBER clause identifies a printable item and specifies the 

column number position of the item on a print line. 

2.9.2 General Format 

COLUMN NUMBER IS integer-1 

2.9.3 Syntax Rules 

(1) The COLUMN NUMBER clause can only be specified at the elementary level 

within a report group. The COLUMN NUMBER clause, if present, must appear in 

or be subordinate to an entry that contains a LINE NUMBER clause. 

(2) Within a given print line, the printable items must be defined in 

ascending column number order such that each character defined occupies a 

unique position. 

2.9.4 General Rules 

(1) The COLUMN NUMBER clause indicates that the object of a SOURCE clause 

or the object of a VALUE clause or the sum counter defined by a SUM clause is 

to be presented on the print line. The absence of a COLUMN NUMBER clause 

indicates that the entry is not to be presented on a print line. 

(2) Integer-1 specifies the column number of the leftmost character posi¬ 

tion of the printable item. 

(3) The Report Writer Control System supplies space character for all 

positions of a print line that are not occupied by printable items. 

(4) The first position of the print line is considered to be column 

number 1. 

VIII-27 



Report Writer - CONTROL 

2.10 THE CONTROL CLAUSE 

2.10.1 Function 

The CONTROL clause establishes the levels of the control hierarchy for the 

report. 

2.10.2 General Format 

CONTROL IS 

CONTROLS ARE 

2.10.3 Syntax Rules 

(1) Data-name-l and data-name-2 must not be defined in the Report Section. 

Data-name-1 and data-name-2 may be qualified but must not be subscripted or 

indexed. 

(2) Each data-name must identify a different data item. 

(3) Data-name-l, data-name-2, ..., must not have subordinate to it a data 

item whose size is variable as defined in the OCCURS clause. (See page III-2, 

The OCCURS Clause.) 

2.10.4 General Rules 

(1) The data-names and the word FINAL specify the levels of the control 

hierarchy. FINAL, if specified, is the highest control, data-name-l is the 

major control, data-name-2 is an intermediate control, etc. The last data- 

name specified is the minor control. 

(2) The execution of the chronologically first GENERATE statement for a 

given report causes the RWCS to save the values of all control data items 

associated with that report. On subsequent executions of all GENERATE state¬ 

ments for that report, control data items are tested by the RWCS for a change 

of value. A change of value in any control data item causes a control break 

to occur. The control break is associated with the highest level for which 

a change of value is noted. (See page VIII-51, The GENERATE Statement.) 

(3) The Report Writer Control System tests for a control break by compar¬ 

ing the contents of each control data item with the prior contents saved from 

the execution of the previous GENERATE statement for the same report. The 

RWCS applies the inequality relation test described on page 11-41, The Relation 

Condition, as follows: 

a. If the control data item is a numeric data item, the relation 

test is for the comparison of two numeric operands. 

b. If the control data item is an index data item, the relation test 

is for the comparison of two index data items. 

1 data-name-l [, data-name-2 ] ... 

FINAL [, data-name-l [, data-name-2 ] ... J 

VIII-28 



Report Writer - CONTROL 

c. If the control data item is a data item other than as described in 

paragraph 3a and 3b, the relation test is for the comparison of two nonnumeric 

operands. 

See page II-6, PROGRAM COLLATING SEQUENCE clause. 

(4) FINAL is used when the most inclusive control group in the report is 

not associated with a control data-name. 

VIII-29 



Report Writer - Data-Name 

2.11 THE DATA-NAME CLAUSE 

2.11.1 Function 

A data-name specifies the name of the data being described. 

2.11.2 General Format 

data-name 

2.11.3 Syntax Rules 

(1) In the Report Section a data-name need not appear in a data descrip¬ 

tion entry and FILLER must not be used. 

2.11.4 General Rules 

(1) In the Report Section, data-name must be given in the following cases: 

a. When the data-name represents a report group to be referred to by 

a GENERATE or a USE statement in the Procedure Division. 

b. When reference is to be made to the sum counter in the Procedure 

Division or Report Section. 

c. When a DETAIL report group is referenced in the UPON phrase of 

the SUM clause. 

d. When the data-name is required to provide sum counter qualification. 

VIII-30 



Report- Writer - GROUP INDICATE 

2.12 THE GROUP INDICATE CLAUSE 

2.12.1 Function 

The GROUP INDICATE clause specifies that the associated printable item is 

presented only on the first occurrence of its report group after a control 

break or page advance. 

2.12.2 General Format 

GROUP INDICATE 

2.12.3 Syntax Rules 

(1) The GROUP INDICATE clause may only appear in a DETAIL report group 

entry that defines a printable item. 

2.12.4 General Rules 

(1) If a GROUP INDICATE clause is specified, it causes the SOURCE or 

VALUE clause to be ignored and spaces supplied, except: 

a. On the first presentation of the DETAIL report group in the 

report, or 

b. On the first presentation of the DETAIL report group after every 

page advance, or 

c. On the first presentation of the DETAIL report group after every 

control break. 

(2) If the report description entry specifies neither a PAGE clause nor a 

CONTROL clause, then a GROUP INDICATE printable item is presented the first 

time its DETAIL is presented after the INITIATE statement is executed. There¬ 

after spaces are supplied for indicated items with SOURCE or VALUE clauses. 

VIII-31 



Report Writer - LABEL RECORDS 

2.13 THE LABEL RECORDS CLAUSE 

2.13.1 Function 

The LABEL RECORDS clause specifies whether labels are present. 

2.13.2 General Format 

LABEL 
f RECORD IS T ( standard") 

} RECORDS ARE] | OMITTED J 

2.13.3 Syntax Rules 

(1) This clause is required in every File Description entry. 

2.13.4 General Rules 

(1) OMITTED specifies that no explicit labels exist for the file or the 

device to which the file is assigned. 

(2) STANDARD specifies that labels exist for the file or the device to 

which the file is assigned and the labels conform to the implementor's label 

specifications. 

VIIX-32 



Report Writer - LIRE NUMBER 

2.14 THE LINE NUMBER CLAUSE 

2.14.1 Function 

The LINE NUMBER clause specifies vertical positioning information for its 

report group. 

2.14.2 General Format 

LINE NUMBER IS 

2.14.3 Syntax Rules 

(1) Integer-1 and integer-2 must not exceed three significant digits in 

length. 

Neither integer-1 nor integer-2 may be specified in such a way as to 

cause any line of a report group to be presented outside of the vertical sub¬ 

division of the page designated for the report group type, as defined by the 

PAGE clause. (See page VIII-36, The PAGE Clause.) 

(2) Within a given report group description entry, an entry that contains 

a LINE NUMBER clause must not contain a subordinate entry that also contains a 

LINE NUMBER clause. 

(3) Within a given report group description entry, all absolute LINE 

NUMBER clauses must precede all relative LINE NUMBER clauses. 

(4) Within a given report group description entry, successive absolute 

LINE NUMBER clauses must specify integers that are in ascending order. The 

integers need not be consecutive. 

(5) If the PAGE clause is omitted from a given report group description 

entry, only relative LINE NUMBER clauses can be specified in any report group 

description entry within that report. 

(6) Within a given report group description entry a NEXT PAGE phrase can 

appear only once and, if present, must be in the first LINE NUMBER clause in 

that report group description entry. 

A LINE NUMBER clause with the NEXT PAGE phrase can appear only in the 

description of body groups and in a REPORT FOOTING report group. 

(7) Every entry that defines a printable item (see page VIII-27, The 

COLUMN NUMBER Clause) must either contain a LINE NUMBER clause, or be subordi¬ 

nate to an entry that contains a LINE NUMBER clause. 

(8) The first LINE NUMBER clause specified within a PAGE FOOTING report 

group must be an absolute LINE NUMBER clause. 

VIII-33 



Report Writer - LIRE NUMBER 

2.14.4 General Rules 

(1) A LINE NUMBER clause must be specified to establish each print line 

of a report group. 

(2) The RWCS effects the vertical positioning specified by a LINE NUMBER 

clause, before presenting the print line established by that LINE NUMBER clause 

(3) Integer-1 specifies an absolute line number. An absolute line number 

specifies the line number on which the print line is presented. 

(4) Integer-2 specifies a relative line number. If a relative LINE NUMBER 

clause is not the first LINE NUMBER clause in the report group description 

entry, then the line number on which its print line is presented is determined 

by calculating the sum of the line number on which the previous print line of 

the report group was presented and integer-2 of the relative LINE NUMBER clause 

If a relative LINE NUMBER clause is the first LINE NUMBER clause in 

the report group description entry, then the line number on which its print 

line is presented is determined by the rules stated in paragraph 2.5.5, 

Presentation Rules Tables, beginning on page VIII-9. 

(5) The NEXT PAGE phrase specifies that the report group is to be presented 

beginning on the indicated line number on a new page. (See paragraph 2.5.5, 
Presentation Rules Tables, beginning on page VIII-9.) 

VIII-34 



Report Writer - NEXT GROUP 

2.15 THE NEXT GROUP CLAUSE 

2.15.1 Function 

The NEXT GROUP clause specifies Information for vertical positioning of a 

page following the presentation of the last line of a report group. 

2.15.2 General Format 

V 

2.15.3 Syntax Rules 

(1) A report group entry must not contain a NEXT GROUP clause unless the 

description of that report group contains at least one LINE NUMBER clause. 

(2) Integer-1 and integer-2 must not exceed three significant digits in 

length. 

(3) If the PAGE clause is omitted from the report description entry only 

a relative NEXT GROUP clause may be specified in any report group description 

entry within that report. 

(4) The NEXT PAGE phrase of the NEXT GROUP clause must not be specified 

in a PAGE FOOTING report group. 

(5) The NEXT GROUP clause must not be specified in a REPORT FOOTING report 

group or in a PAGE HEADING report group. 

2.15.4 General Rules 

(1) Any positioning of the page specified by the NEXT GROUP clause takes 

place after the presentation of the report group in which the clause appears. 

(See paragraph 2.5.5, Presentation Rules Table, beginning on page VIII-9.) 

(2) The vertical positioning information supplied by the NEXT GROUP clause 

is interpreted by the RWCS along with information from the TYPE and PAGE clauses, 

and the value in LINE-COUNTER, to determine a new value for LINE-COUNTER. (See 

paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9.) 

(3) The NEXT GROUP clause is ignored by the RWCS when it is specified on 

a CONTROL FOOTING report group that is at a level other than the highest level 

at which a control break is detected. 

(4) The NEXT GROUP clause of a body group refers to the next body group to 

be presented, and therefore can affect the location at which the next body 

group is presented. The NEXT GROUP clause of a REPORT HEADING report group 

can affect the location at which the PAGE HEADING report group is presented. 

The NEXT GROUP clause of a PAGE FOOTING report group can affect the location 

at which the REPORT FOOTING report group is presented. (See paragraph 2.5.5, 

Presentation Rules Tables, beginning on page VIII-9.) 

VIII-35 



Report Writer - PAGE 

2.16 THE PAGE CLAUSE 

2.16.1 Function 

The PAGE clause defines the length of a page and the vertical subdivisions 

within which report groups are presented. 

2.16.2 General Format 

PAGE 
LIMIT IS 

LIMITS ARE 
integer-1 

LINE 

LINES 

[, HEADING integer-2] [, FIRST DETAIL integer-3 ] 

[> LAST" DETAIL integer-4 ] [ , FOOTING integer-5 ] 

2.16.3 Syntax Rules 

(1) The HEADING, FIRST DETAIL, LAST DETAIL and FOOTING phrases may be 

written in any order. 

(2) Integer-1 mus t not : exceed three (3) significant digits 

(3) Integer-2 mus t be greater than or equal to one (1). 

(4) Integer-3 must be greater than or equal to integer-2. 

(5) Integer-4 mus t be greater than or equal to integer-3. 

(6) Integer-5 mus t be greater than or equal to integer-4. 

(7) Integer-1 must be greater than or equal to integer-5. 

(8) The following rules indicate the vertical subdivision of the page in 

which each TYPE of report group may appear when the PAGE clause is specified. 

(See page VIII-38, Page Regions Table.) 

a. A REPORT HEADING report group that is to be presented on a page 

by itself, if defined, must be defined such that it can be presented in the 

vertical subdivision of the page that extends from the line number specified 

by integer-2 to the line number specified by integer-1, inclusive. 

A REPORT HEADING report group that is not to be presented on a 

page by itself, if defined, must be defined such that it can be presented in 

the vertical subdivision of the page that extends from the line number speci¬ 

fied by integer-2 to the line number specified by integer-3 minus 1, inclusive. 

b. A PAGE HEADING report group, if defined, must be defined such that 

it can be presented in the vertical subdivision of the page that extends from 

the line number specified by integer-2 to the line number specified by 

integer-3 minus 1, inclusive. 

VIII-36 



Report Writer - PAGE 

c. A CONTROL HEADING or DETAIL report group, if defined, must be 

defined such that it can be presented in the vertical subdivision of the page 

that extends from the line number specified by integer-3 to the line number 

specified by integer-4, inclusive. 

d. A CONTROL FOOTING report group, if defined, must be defined such 

that it can be presented in the vertical subdivision of the page that extends 

from the line number specified by integer-3 to the line number specified by 

integer-5, inclusive. 

e. A PAGE FOOTING report group, if defined, must be defined such that 

it can be presented in the vertical subdivision of the page that extends from 

the line number specified by integer-5 plus 1 to the line number specified by 

integer-1, inclusive. 

f. A REPORT FOOTING report group that is to be presented on a page 

by itself, if defined, must be defined such that it can be presented in the 

vertical subdivision of the page that extends from the line number specified 

by integer-2 to the line number specified by integer-1, inclusive. 

A REPORT FOOTING report group that is not to be presented on a 

page by itself, if defined, must be defined such that it can be presented in 

the vertical subdivision of the page that extends from the line number speci¬ 

fied by integer-5 plus 1 to the line number specified by integer-1, inclusive. 

(9) All report groups must be described such that they can be presented 

on one page. The RWCS never splits a multi-line report group across page 

boundaries. 

2.16.4 General Rules 

(1) The vertical format of a report page is established using the integer 

values specified in the PAGE clause. 

a. Integer-1 defines the size of a report page by specifying the 

number of lines available on each page. 

b. HEADING integer-2 defines the first line number on which a REPORT 

HEADING or PAGE HEADING report group may be presented. 

c. FIRST DETAIL integer-3 defines the first line number on which a 

body group may be presented. REPORT HEADING and PAGE HEADING report groups 

may not be presented on or beyond the line number specified by integer-3. 

d. LAST DETAIL integer-4 defines the last line number on which a 

CONTROL HEADING or DETAIL report group may be presented. 

e. FOOTING integer-5 defines the last line number on which a CONTROL 

FOOTING report group may be presented. PAGE FOOTING and REPORT FOOTING report 

groups must follow the line number specified by integer-5. 

(2) If the PAGE clause is specified the following implicit values are 

assumed for any omitted phrases: 

VIII-37 



Report Writer - PAGE 

a. If the HEADING phrase is omitted, a value of one (I) is assumed 

for integer-2. 

b. If the FIRST DETAIL phrase is omitted, a value equal to integer-2 

is given to integer-3. 

c. If the LAST DETAIL and the FOOTING phrases are both omitted, the 

value of integer-1 is given to both integer-4 and integer-5. 

d. If the FOOTING phrase is specified and the LAST DETAIL phrase is 

omitted, the value of integer-5 is given to integer-4. 

e. If the LAST DETAIL phrase is specified and the FOOTING phrase is 

omitted, the value of integer-4 is given to integer-5. 

(3) If the PAGE clause is omitted, the report consists of a single page 

of indefinite length. 

(4) The presentation rules for each TYPE of report group are specified 

in paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9. 

2.16.5 Page Regions Table 

Page regions that are established by the PAGE clause are described below. 

Report Groups That May Be 

Presented In The Region 

First Line Number 

Of The Region 

Last Line Number 

Of The Region 

REPORT HEADING described with NEXT 

GROUP NEXT PAGE 

REPORT FOOTING described with LINE 

integer-1 NEXT PAGE 

integer-2 integer-1 

REPORT HEADING not described with 

NEXT GROUP NEXT PAGE 

PAGE HEADING 

integer-2 integer-3 

minus 1 

CONTROL HEADING 

DETAIL 
intege r-3 integer-4 

CONTROL FOOTING integer-3 integer-5 

PAGE FOOTING 

REPORT FOOTING not described with 

LINE integer-1 NEXT PAGE 

intege r-5 

plus 1 

integer-1 

VIII-38 



Report Writer - RECORD CONTAINS 

2.17 THE RECORD CONTAINS CLAUSE 

2.17.1 Function 

The RECORD CONTAINS clause specifies the size of data records. 

2.17.2 General Format 

RECORD CONTAINS [integer-1 TO ] integer-2 CHARACTERS 

2.17.3 General Rules 

(1) The size of each data record is completely defined within the record 

description entry, therefore this clause is never required. When present, 

however, the following notes apply: 

a. Integer-2 may not be used by itself unless all the data records in 

the file have the same size. In this case integer-2 represents the exact 

number of characters in the data record. If integer-1 and integer-2 are both 

shown, they refer to the minimum number of characters in the smallest size 

data record and the maximum number of characters in the largest size data 

record, respectively. 

b. The size is specified in terms of the number of character posi¬ 

tions required to store the logical record, regardless of the types of charac¬ 

ters used to represent the items within the logical record. The size of a 

record is determined by the sum of the number of characters in all fixed 

length elementary items plus the sum of the maximum number of characters in 

any variable length item subordinate to the record. This sum may be different 

from the actual size of the record; see page 1-85, Selection of Character 

Representation and Radix; page 11-33, The SYNCHRONIZED Clause; and page 11-35, 

The USAGE Clause. 

VIII-39 



Report Writer - REPORT 

2.18 THE REPORT CLAUSE 

2.18.1 Function 

The REPORT clause specifies the names of reports that comprise a report 

file. 

2.18.2 General Format 

report-name-1 [ , report-name-2 ] ... 

2.18.3 Syntax Rules 

(1) Each report-name specified in a REPORT clause must be the subject of 

a report description entry in the Report Section. The order of appearance 

of the report-names is not significant. 

(2) A report-name must appear in only one REPORT clause. 

(3) The subject of a file description entry that specifies a REPORT clause 

may only be referred to by the OPEN OUTPUT, OPEN EXTEND, and CLOSE statements. 

2.18.4 General Rules 

(1) The presence of more than one report-name in a REPORT clause indicates 

that the file contains more than one report. 

VIII-40 



Report Writer - SOURCE 

2.19 THE SOURCE CLAUSE 

2.19.1 Function 

The SOURCE clause identifies the sending data item that is moved to an 

associated printable item defined within a report group description entry. 

2.19.2 General Format 

SOURCE IS identifier-1 

2.19.3 Syntax Rules 

(1) Identifier-1 may be defined in any section of the Data Division. If 

identifier-1 is a Report Section item it can only be: 

a. PAGE-COUNTER, or 

b. LINE-COUNTER, or 

c. A sum counter of the report within which the SOURCE clause appears. 

(2) Identifier-1 specifies the sending data item of the implicit MOVE 

statement that the RWCS will execute to move identifier-1 to the printable 

item. Identifier-1 must be defined such that it conforms to the rules for 

sending items in the MOVE statement. (See page 11-74, The MOVE Statement.) 

2.19.4 General Rules 

(1) The RWCS formats the print lines of a report group just prior to 

presenting the report group. (See page VIII-45, The TYPE Clause.) It is at 

this time that the implicit MOVE statements specified by SOURCE clauses are 

executed by the RWCS. 

VIII-41 



Report Writer - SUM 

2.20 THE SUM CLAUSE 

2.20.1 Function 

The SUM clause establishes a sum counter and names the data items to be 

summed. 

2.20.2 General Format 

^SUM identifier-1 [, identifier-2] ... 

UPON data-name-1 [, data-name-2 

RESETS {££—3)- 

2.20.3 Syntax Rules 

(1) Identifier-1 and identifier-2 must be defined as numeric data items. 

When defined in the Report Section, identifier-1 and identifier-2 must be the 

names of sum counters. 

If the UPON phrase is omitted, any identifiers in the associated SUM 

clause which are themselves sum counters must be defined either in the same 

report group that contains this SUM clause or in a report group which is at 

a lower level in the control hierarchy of this report. 

If the UPON phrase is specified, any identifiers in the associated 

SUM clause must not be sum counters. 

(2) Data-name-1 and data-name-2 must be the names of DETAIL report groups 

described in the same report as the CONTROL FOOTING report group in which the 

SUM clause appears. Data-name-1 and data-name-2 may be qualified by a 

report-name. 

(3) A SUM clause can appear only in the description of a CONTROL FOOTING 

report group. 

(4) Data-name-3 must be one of the data-names specified in the CONTROL 

clause for this report. Data-name-3 must not be a lower level control than 

the associated control for the report group in which the RESET phrase appears. 

FINAL, if specified in the RESET phrase, must also appear in the 

CONTROL clause for this report. 

(5) The highest permissible qualifier of a sum counter is the report-name. 

2.20.4 General Rules 

(1) The SUM clause establishes a sum counter. The sum counter is a numeric 

data item with an optional sign. At object time the RWCS adds directly into 

the sum counter each of the values contained in identifier-1 and identifier-2. 

This addition is performed under the rules of the ADD statement. (See page 

11-55, The ADD Statement.) 

VIII-42 



Report Writer - SUM 

(2) The size of the sum counter is equal to the number of receiving char¬ 

acter positions specified by the PICTURE clause that accompanies the SUM clause 

in the description of the elementary item. 

(3) Only one sum counter exists for an elementary report entry regardless 

of the number of SUM clauses specified in the elementary report entry. 

(4) If the elementary report entry for a printable item contains a SUM 

clause, the sum counter serves as a source data item. The RWCS moves the data 

contained in the sum counter, according to the rules of the MOVE statement, to 

the printable item for presentation. 

(5) If a data-name appears as the subject of an elementary report entry 

that contains a SUM clause, the data-name is the name of the sum counter; the 

data-name is not the name of the printable item that the entry may also define. 

It is permissible for Procedure Division statements to alter the 

contents of sum counters. 

(6) Addition of the identifiers into sum counters is performed by the RWCS 

during the execution of GENERATE and TERMINATE statements. There are three 

categories of sum counter incrementing called subtotalling, crossfooting, and 

rolling forward. Subtotalling is accomplished during execution of GENERATE 

statements only, after any control break processing but before processing of 

the DETAIL report group. (See page VIII-51, The GENERATE Statement.) Cross¬ 

footing and rolling forward are accomplished during the processing of CONTROL 

FOOTING report groups. (See page VIII-45, The TYPE Clause.) 

(7) The UPON phrase provides the capability to accomplish selective 

subtotalling for the DETAIL report groups named in the phrase. 

(8) The RWCS adds each individual addend into the sum counter at a time 

that depends upon the characteristics of the addend. 

a. When the addend is a sum counter defined in the same CONTROL FOOTING 

report group, then the accumulation of that addend into the sum counter is 

termed crossfooting. 

Crossfooting occurs when a control break takes place and at the 

time the CONTROL FOOTING report group is processed. 

Crossfooting is performed according to the sequence in which sum 

counters are defined within the CONTROL FOOTING report group. That is, all 

crossfooting into the first sum counter defined in the CONTROL FOOTING report 

group is completed, and then all crossfooting into the second sum counter 

defined in the CONTROL FOOTING report group is completed. This procedure is 

repeated until all crossfooting operations are completed. 

b. When the addend is a sum counter defined in a lower level CONTROL 

FOOTING report group, then the accumulation of that addend into the sum counter 

is termed rolling forward. A sum counter in a lower level CONTROL FOOTING 

report group is rolled forward when a control break occurs and at the time 

that the lower level CONTROL FOOTING report group is processed. 

VIII-43 



Report Writer - SUM 

c. When the addend is not a sum counter the accumulation into a sum 

counter of such an addend is called subtotalling. If the SUM clause contains 

the UPON phrase, the addends are sub totalled when a GENERATE statement for the 

designated DETAIL report group is executed. If the SUM clause does not contain 

the UPON phrase, the addends which are not sum counters are subtotalled when 

any GENERATE data-name statement is executed for the report in which the SUM 

clause appears. 

(9) If two or more of the identifiers specify the same addend, then the 

addend is added into the sum counter as many times as the addend is referenced 

in the SUM clause. It is permissible for two or more of the data-names to 

specify the same DETAIL report group. When a GENERATE data-name statement 

for such a DETAIL report group is given, the incrementing occurs repeatedly, 

as many times as data-name appears in the UPON phrase. 

(10) For the subtotalling that occurs when a GENERATE report-name statement 

is executed, see page VIII-51, The GENERATE Statement. 

(11) In the absence of an explicit RESET phrase, the RWCS will set a sum 

counter to zero at the time that the RWCS is processing the CONTROL FOOTING 

report group within which the sum counter is defined. If an explicit RESET 

phrase is specified, then the RWCS will set the sum counter to zero at the 

time that the RWCS is processing the designated level of the control hierarchy. 

(See page VIII-45, The TYPE Clause.) 

Sum counters are initially set to zero by the RWCS during the execution 

of the INITIATE statement for the report containing the sum counter. 

VIII-44 



Report Writer - TYPE 

2.21 THE TYPE CLAUSE 

2.21.1 Function 

The TYPE clause specifies the particular type of report group that is 

described by this entry and indicates the time at which the report group is 

to be processed by the Report Writer Control System. 

2.21.2 General Format 

TYPE IS < 

( JREPORT HEADING] 

' RH ! 
'PAGE HEADINGJ 

PH 

fCONTROL HEADING] ( data-name-1) 

] /FINAL 1 CH 

DETAIL 1 

DE J 
f CONTROL FOOTING 

CF 

(PAGE FOOTING] 

(PF | 

[ REPORT FOOTING] 

J 

] /data-name-2] 

{ /FINAL J 

J 

2.21.3 Syntax Rules 

(1) RH is an abbreviation for REPORT HEADING. 

PH is an abbreviation for PAGE HEADING. 

CH is an abbreviation for CONTROL HEADING. 

DE is an abbreviation for DETAIL. 

CF is an abbreviation for CONTROL FOOTING. 

PF is an abbreviation for PAGE FOOTING. 

RF is an abbreviation for REPORT FOOTING. 

(2) REPORT HEADING, PAGE HEADING, CONTROL HEADING FINAL, CONTROL FOOTING 

FINAL, PAGE FOOTING, and REPORT FOOTING report groups may each appear no more 

than once in the description of a report. 

(3) PAGE HEADING and PAGE FOOTING report groups may be specified only if 

a PAGE clause is specified in the corresponding report description entry. 

(4) Data-name-1, data-name-2 and FINAL, if present, must be specified in 

the CONTROL clause of the corresponding report description entry. At most, 

one CONTROL HEADING report group and one CONTROL FOOTING report group can be 

specified for each data-name or FINAL in the CONTROL clause of the report 

description entry. However, neither a CONTROL HEADING report group nor a 

CONTROL FOOTING report group is required for a data-name or FINAL specified 

in the CONTROL clause of the report description entry. 

(5) In CONTROL FOOTING, PAGE HEADING, PAGE FOOTING, and REPORT FOOTING 

report groups, SOURCE clauses and USE statements must not reference any of the 

following: 

VIII-45 



Report Writer - TYPE 

a. Group data items containing a control data item. 

b. Data items subordinate to a control data item. 

c. A redefinition or renaming of any part of a control data item. 

In PAGE HEADING and PAGE FOOTING report groups, SOURCE clauses and USE 

statements must not reference control data-names. 

(6) When a GENERATE report-name statement is specified in the Procedure 

Division, the corresponding report description entry must include no more than 

one DETAIL report group. If no GENERATE data-name statements are specified 

for such a report, a DETAIL report group is not required. 

(7) The description of a report must include at least one body group. 

2.21.4 General Rules 

(1) DETAIL report groups are processed by the RWCS as a direct result of 

GENERATE statements. If a report group is other than TYPE DETAIL, its pro¬ 

cessing is an automatic RWCS function. 

(2) The REPORT HEADING phrase specifies a report group that is processed 

by the RWCS only once, per report, as the first report group of that report. 

The REPORT HEADING report group is processed during the execution of the 

chronologically first GENERATE statement for that report. 

(3) The PAGE HEADING phrase specifies a report group that is processed by 

the RWCS as the first report group on each page of that report except under 

the following conditions: 

a. A PAGE HEADING report group is not processed on a page that is to 

contain only a REPORT HEADING report group or only a REPORT FOOTING report 

group. 

b. A PAGE HEADING report group is processed as the second report 

group on a page when it is preceded by a REPORT HEADING report group that is 

not to be presented on a page by itself. 

See paragraph 2.5.5, Presentation Rules Tables, beginning on page 

VIII-9, for further information. 

(4) The CONTROL HEADING phrase specifies a report group that is processed 

by the RWCS at the beginning of a control group for a designated control data- 

name or, in the case of FINAL, is processed during the execution of the 

chronologically first GENERATE statement for that report. During the execution 

of any GENERATE statement at which the RWCS detects a control break, any 

CONTROL HEADING report groups associated with the highest control level of the 

break and lower levels are processed. 

(5) The DETAIL phrase specifies a report group that is processed by the 
RWCS when a corresponding GENERATE statement is executed. 

(6) The CONTROL FOOTING phrase specifies a report group that is processed 

by the RWCS at the end of a control group for a designated control data-name. 

VIII-46 



Report Writer - TYRE 

In the case of FINAL, the CONTROL FOOTING report group is processed 

only once per report as the last body group of that report. During the 

execution of any GENERATE statement in which the RWCS detects a control break, 

any CONTROL FOOTING report group associated with the highest level of the 

control break or more minor levels is presented. All CONTROL FOOTING report 

groups are presented during the execution of the TERMINATE statement if there 

has been at least one GENERATE statement executed for the report. (See page 

VIII-55, The TERMINATE Statement.) 

(7) The PAGE FOOTING phrase specifies a report group that is processed by 

the RWCS as the last report group on each page except under the following 

conditions: 

a. A PAGE FOOTING report group is not processed on a page that is to 

contain only a REPORT HEADING report group or only a REPORT FOOTING report 

group. 

b. A PAGE FOOTING report group is processed as the second to last 

report group on a page when it is followed by a REPORT FOOTING report group 

that is not to be processed on a page by itself. 

See paragraph 2.5.5, Presentation Rules Tables, beginning on page 

VIII-9, for further information. 

(8) The REPORT FOOTING phrase specifies a report group that is processed 

by the RWCS only once per report and as the last report group of that report. 

The REPORT FOOTING report group is processed during the execution of a corre¬ 

sponding TERMINATE statement, if there has been at least one GENERATE state¬ 

ment executed for the report. (See page VIII-55, The TERMINATE Statement.) 

(9) The sequence of steps that the RWCS executes when it processes a 

REPORT HEADING, PAGE HEADING, CONTROL HEADING, PAGE FOOTING, or REPORT FOOTING 

report group is described below. 

a. If there is a USE BEFORE REPORTING procedure that references the 

data-name of the report group, the USE procedure is executed. 

b. If a SUPPRESS statement has been executed or if the report group 

is not printable, there is no further processing to be done for the report 

group. 

c. Otherwise, the RWCS formats the print lines and presents the 

report group according to the presentation rules for that type of report group. 

(See paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9.) 

(10) The sequence of steps that the RWCS executes when it processes a 

CONTROL FOOTING report group is described below. 

The GENERATE rules specify that when a control break occurs, the RWCS 

produces the CONTROL FOOTING report groups beginning at the minor level, and 

proceeding upwards, through the level at which the highest control break was 

sensed. In this regard, it should be noted that even though no CONTROL FOOTING 

report group has been defined for a given control data-name, the RWCS will still 

have to execute the step described in paragraph lOf below if a RESET phrase 

within the report description specifies that control data-name. 

VIII-47 



Report Writer - TYPE 

a. Sum counters are crossfooted, i.e., all sum counters defined in 
this report group that are operands of SUM clauses in the same report group 
are added to their sum counters. (See page VIII-42, The SUM Clause.) 

b. Sum counters are rolled forward, i.e., all sum counters defined 
in the report group that are operands of SUM clauses in higher level CONTROL 
FOOTING report groups are added to the higher level sum counters. (See page 
VIII-42, The SUM Clause.) 

c. If there is a USE BEFORE REPORTING procedure that references the 
data-name of the report group the USE procedure is executed. 

d. If a SUPPRESS statement has been executed or if the report group 
is not printable, the RWCS next executes the step described in paragraph lOf 
below. 

e. Otherwise the RWCS formats the print lines and presents the report 
group according to the presentation rules for CONTROL FOOTING report groups. 

f. Then the RWCS resets those sum counters that are to be reset when 
the RWCS processes this level in the control hierarchy. (See page VIII-42, 
The SUM Clause.) 

(11) The DETAIL report group processing that the RWCS executes in response 
to a GENERATE data-name statement is described in paragraphs 11a through lie 
below. 

When the description of a report includes exactly one DETAIL report 
group, the detail-related processing that the RWCS executes in response to a 
GENERATE report-name statement is described in paragraph 11a through paragraph 
lid below. These steps are performed as though a GENERATE data-name statement 
were being executed. 

When the description of a report includes no DETAIL report groups, the 
detail-related processing that the RWCS executes in response to a GENERATE 
report-name statement is described in paragraph 11a below. This step is per¬ 
formed as though the description of the report included exactly one DETAIL 
report group, and a GENERATE data-name statement were being executed. 

a. The RWCS performs any subtotalling that has been designated for 
the DETAII report group. (See page VIII-42, The SUM Clause.) 

b. If there is a USE BEFORE REPORTING procedure that refers to the 
data-name of the report group, the USE procedure is executed. 

c. If a SUPPRESS statement has been executed or if the report group 
is not printable there is no further processing done for the report group. 

d. If the DETAIL report group is being processed as a consequence of 
a GENERATE report-name statement, there is no further processing done for the 
report group. 

e. Otherwise the RWCS formats the print lines and presents the report 
group according to the presentation rules for DETAIL report groups. (See 
paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9.) 

VIII-48 



Report Writer - TYPE 

(12) When the RWCS is processing a CONTROL HEADING, CONTROL FOOTING, or 

DETAIL report group, as described in general rules 9, 10, and 11, the RWCS 

may have to interrupt the processing of that body group after determining 

that the body group is to be presented, and execute a page advance (and 

process PAGE FOOTING and PAGE HEADING report groups) before actually present¬ 

ing the body group. 

(13) During control break processing, the values of control data items that 

the RWCS used to detect a given control break are referred to as prior values. 

a. During control break processing of a CONTROL FOOTING report group, 

any references to control data items in a USE procedure or SOURCE clause 

associated with that CONTROL FOOTING report group are supplied with prior 

values. 

b. When a TERMINATE statement is executed, the RWCS makes the prior 

control data item values available to SOURCE clause or USE procedure references 

in CONTROL FOOTING and REPORT FOOTING report groups as though a control break 

had been detected in the highest control data-name. 

c. All other data item references within report groups and their USE 

procedures access the current values that are contained within the data items 

at the time the report group is processed. 

VIII-49 



Report Writer - VALUE OF 

2.22 THE VALUE OF CLAUSE 

2.22.1 Function 

The VALUE OF clause particularizes the description of an item in the label 

records associated with a file. 

2.22.2 General Format 

VALUE OF implementor-name-1 IS 

, implementor-name-2 IS 

2.22.3 Syntax Rules 

(1) Data-name-l, data-name-2, etc., should be qualified when necessary, 

but cannot be subscripted or indexed, nor can they be items described with the 

USAGE IS INDEX clause. 

(2) Data-name-l, data-name-2, etc., must be in the Working-Storage Section. 

(3) See page IV-19, The VALUE OF Clause, for constraints that apply when 

Report Writer is associated with Sequential 1-0, Level 1. 

2.22.4 General Rules 

(1) For an output file, at the appropriate time the value of implementor- 

name-1 is made equal to the value of literal-1, or of data-name-l, whichever 

has been specified. 

(2) A figurative constant may be substituted in the format above wherever 

a literal is specified. 

VIII-50 



Report Writer - GENERATE 

3. PROCEDURE DIVISION IN THE REPORT WRITER MODULE 

3.1 THE GENERATE STATEMENT 

3.1.1 Function 

The GENERATE statement directs the RWCS to produce a report in accordance 

with the report description that was specified in the Report Section of the 

Data Division. 

3.1.2 General Format 

GENERATE 
{data-name 

report-name. 

3.1.3 Syntax Rules 

(1) Data-name must name a TYPE DETAIL report group and may be qualified by 

a report-name. 

(2) Report-name may be used only if the referenced report description 

contains: 

a. A CONTROL clause, and 

b. Not more than one DETAIL report group, and 

c. At least one body group. 

3.1.4 General Rules 

Cl) In response to a GENERATE report-name statement, the RWCS performs 

summary processing. If all of the GENERATE statements that are executed for 

a report are of the form GENERATE report-name, then the report that is pro¬ 

duced is called a summary report. A summary report is one in which no DETAIL 

report group is presented. 

(2) In response to a GENERATE data-name statement, the RWCS performs 

detail processing that includes certain processing that is specific for the 

DETAIL report group designated by the GENERATE statement. Normally, the 

execution of a GENERATE data-name statement causes the RWCS to present the 

designated DETAIL report group. 

(3) During the execution of the chronologically first GENERATE statement 

for a given report, the RWCS saves the values within the control data items. 

During the execution of the second and subsequent GENERATE statements for the 

same report, and until a control break is detected, the RWCS utilizes this set 

of control values to determine whether a control break has occurred. When a 

control break occurs, the RWCS saves the new set of control values, which it 

thereafter uses to sense for a control break until another control break occurs. 

(4) During report presentation, an automatic function of the RWCS is to 

process PAGE HEADING and PAGE FOOTING report groups, if defined, when the RWCS 

VIII-51 



Report Writer - GENERATE 

must advance the report to a new page for the purpose of presenting a body 

group. (See paragraph 2.5.5, Presentation Rules Tables, beginning on page 

VIII-9.) 

(5) When the chronologically first GENERATE statement for a given report 

is executed, the RWCS processes, in order, the report groups that are named 

below, provided that such report groups are defined within the report des¬ 

cription. The RWCS also processes PAGE HEADING and PAGE FOOTING report groups 

as described in general rule 4. See page VIII-45, The TYPE Clause, for the 

actions that the RWCS takes when it processes each type of report group. 

a. The REPORT HEADING report group is processed. 

b. The PAGE HEADING report group is processed. 

c. All CONTROL HEADING report groups are processed from major to minor. 

d. If a GENERATE data-name statement is being executed, the process¬ 

ing for the designated DETAIL report group is performed. If a GENERATE 

report-name statement is being executed, certain of the steps that are involved 

in the processing of a DETAIL report group are performed. (See page VIII-45, 

The TYPE Clause.) 

(6) When a GENERATE statement other than the chronologically first is 

executed for a given report, the RWCS performs the steps enumerated below, 

as applicable. The RWCS also processes PAGE HEADING and PAGE FOOTING report 

groups as described in general rule 4. See page VIII-45, The TYPE Clause, for 

the actions that the RWCS takes when it processes each type of report group. 

a. Sense for control break. The rules for determining the equality 

of control data items are the same as those specified for relation conditions. 

If a control break has occurred then: 

1) Enable the CONTROL FOOTING USE procedures and CONTROL FOOTING 

SOURCE clauses to access the control data item values that are described on 

page VIII-45, The TYPE Clause. 

2) Process the CONTROL FOOTING report groups in the order minor 

to major. Only CONTROL FOOTING report groups that are not more major than the 

highest level at which a control break occurred are processed. 

3) Process the CONTROL HEADING report groups in the order major 

to minor. Only the CONTROL HEADING report groups that are not more major than 

the highest level at which a control break occurred are processed. 

b. If a GENERATE data-name statement is being executed, the pro¬ 

cessing for the designated DETAIL report group is performed. If a GENERATE 

report-name statement is being executed, certain of the steps that are involved 

in the processing of a DETAIL report group are performed. (See page VIII-45, 

The TYPE Clause.) 

(7) GENERATE statements for a report can be executed only after an 

INITIATE statement for the report has been executed and before a TERMINATE 

statement for the report has been executed. 

VIII-52 



Report Writer - INITIATE 

3.2 THE INITIATE STATEMENT 

3.2.1 Function 

The INITIATE statement causes the Report Writer Control System to begin the 

processing of a report. 

3.2.2 General Format 

INITIATE report-name-1 [, report-name-2] ... 

3.2.3 Syntax Rules 

(1) Each report-name must be defined by a report description entry in 

the Report Section of the Data Division. 

3.2.4 General Rules 

(1) The INITIATE statement performs the following initialization functions 

for each named report: 

a. All sum counters are set to zero. 

b. LINE-COUNTER is set to zero. 

c. PAGE-COUNTER is set to one (1). 

(2) The INITIATE statement does not open the file with which the report 

is associated, therefore an OPEN statement with either the OUTPUT phrase or 

the EXTEND phrase for the file must be executed prior to the execution of 

the INITIATE statement. 

(3) A subsequent INITIATE statement for a particular report-name must not 

be executed unless an intervening TERMINATE statement has been executed for 

that report-name. 

VIII-53 



Report Writer - SUPPRESS 

3.3 THE SUPPRESS STATEMENT 

3.3.1 Function 

The SUPPRESS statement causes the Report Writer Control System to inhibit 

the presentation of a report group. 

3.3.2 General Format 

SUPPRESS PRINTING 

3. 3. 3 Syntax Rules 

(1) The SUPPRESS statement may only appear in a USE BEFORE REPORTING 

procedure. 

3.3.4 General Rules 

(1) The SUPPRESS statement inhibits presentation only for the report group 

named in the USE procedure within which the SUPPRESS statement appears. 

(2) The SUPPRESS statement must be executed each time the presentation of 

the report group is to be inhibited. 

(3) When the SUPPRESS statement is executed, the RWCS is instructed to 

inhibit the processing of the following report group functions: 

a. The presentation of the print lines of the report group, 

b. The processing of all LINE clauses in the report group, 

c. The processing of the NEXT GROUP clause in the report group, 

d. The adjustment of LINE-COUNTER. 

VIII-54 



Report Writer - TERMINATE 

3.4 THE TERMINATE STATEMENT 

3.4.1 Function 

The TERMINATE statement causes the Report Writer Control System to complete 

the processing of the specified reports. 

3.4.2 General Format 

TERMINATE report-name-1 [ , report-name-2 ] ... 

3.4.3 Syntax Rules 

(1) Each report-name given in a TERMINATE statement must be defined by an 

RD entry in the Report Section of the Data Division. 

3.4.4 General Rules 

(1) The TERMINATE statement causes the RWCS to produce all the CONTROL 

FOOTING report groups beginning with the minor CONTROL FOOTING report group. 

Then the REPORT FOOTING report group is produced. The RWCS makes the prior 

set of control data item values available to the CONTROL FOOTING and REPORT 

FOOTING SOURCE clauses and USE procedures, as though a control break has been 

sensed in the most major control data-name. 

(2) If no GENERATE statements have been executed for a report during the 

interval between the execution of an INITIATE statement and a TERMINATE state¬ 

ment, for that report, the TERMINATE statement does not cause the RWCS to 

produce any report groups or perform any of the related processing. 

(3) During report presentation, an automatic function of the RWCS is to 

process PAGE HEADING and PAGE FOOTING report groups, if defined, when the RWCS 

must advance the report to a new page for the purpose of presenting a body 

group. (See paragraph 2.5.5, Presentation Rules Tables, beginning on page 

VIII-9.) 

(4) The TERMINATE statement cannot be executed for a report unless the 

TERMINATE statement was chronologically preceded by an INITIATE statement for 

that report and for which no TERMINATE statement has yet been executed. 

(5) The TERMINATE statement does not close the file with which the report 

is associated; a CLOSE statement for the file must be executed. Every report 

in a file that is in an initiated condition must be terminated before a CLOSE 

statement is executed for that file. 

VIII-55 



Report Writer - USE 

3.5 THE USE STATEMENT 

3.5.1 Function 

The USE statement specifies Procedure Division statements that are executed 

just before a report group named in the Report Section of the Data Division is 

produced. 

3.5.2 General Format 

USE BEFORE REPORTING identifier. 

3.5.3 Syntax Rules 

(1) A USE statement, when present, must immediately follow a section 

header in the declaratives section and must be followed by a period followed 

by a space. The remainder of the section must consist of zero, one or more 

procedural paragraphs that define the procedures to be used. 

(2) Identifier represents a report group. Identifier must not appear in 

more than one USE statement. 

The GENERATE, INITIATE or TERMINATE statements must not appear in a 

paragraph within a USE BEFORE REPORTING procedure. 

A USE BEFORE REPORTING procedure must not alter the value of any 

control data item. 

(3) The USE statement itself is never executed; it merely defines the 

conditions calling for the execution of the USE procedures. 

3.5.4 General Rules 

(1) The designated procedures are executed by the Report Writer Control 

System just before the named report group is produced. (See page VIII-45, 

The TYPE Clause.) 

(2) Within a USE procedure, there must not be any reference to any 

nondeclarative procedures. Conversely, in the nondeclarative portion there 

must be no reference to procedure-names that appear in the declarative portion, 

except that PERFORM statements may refer to a USE BEFORE REPORTING statement 

or to the procedures associated with such a USE statement. 

VIII-56 



Segmentation - Introduction 

1. INTRODUCTION TO THE SEGMENTATION MODULE 

1.1 FUNCTION 

The Segmentation module provides a capability to specify object program 

overlay requirements. 

1.2 LEVEL CHARACTERISTICS 

Segmentation Level 1 provides a facility for specifying permanent and 

independent segments (see paragraph 2.2.1 on page IX-2). All sections with 

the same segment-number must be contiguous in the source program. All segments 

specified as permanent segments must be contiguous in the source program. 

Segmentation Level 2 provides the facility for intermixing sections with 

different segment-numbers and allows the fixed portion of the source program 

to contain segments that may be overlaid (see paragraph 2.2.2 on page IX-2). 

IX-1 



Segmentation - General Description 

2. GENERAL DESCRIPTION OF SEGMENTATION 

COBOL segmentation is a facility that provides a means by which the user 

may communicate with the compiler to specify object program overlay require¬ 

ments. 

2.1 SCOPE 

COBOL segmentation deals only with segmentation of procedures. As such, 

only the Procedure Division and the Environment Division are considered in 

determining segmentation requirements for an object program. 

2.2 ORGANIZATION 

2.2.1 Program Segments 

Although it is not mandatory, the Procedure Division for a source program 

is usually written as a consecutive group of sections, each of which is com¬ 

posed of a series of closely related operations that are designed to collec¬ 

tively perform a particular function. However, when segmentation is used, the 

entire Procedure Division must be in sections. In addition, each section must 

be classified as belonging either to the fixed portion or to one of the inde¬ 

pendent segments of the object program. Segmentation in no way affects the 

need for qualification of procedure-names to insure uniqueness. 

2.2.2 Fixed Portion 

The fixed portion is defined as that part of the object program which is 

logically treated as if it were always in memory. This portion of the program 

is composed of two types of segments: 

overlayable segments. 

fixed permanent segments land fixed 

A fixed permanent segment is a segment in the fixed portion which cannot be 

overlaid by any other part of the program. A fixed overlayable segment is a 

segment in the fixed portion which, although logically treated as if it were 

always in memory, can be overlaid by another segment to optimize memory utili¬ 

zation. Variation of the number of fixed permanent segments in the fixed 

portion can be accomplished by using a special facility called the SEGMENT- 

LIMIT clause (see page IX-5, SEGMENT-LIMIT). Such a segment, if called for 

by the program, is always made available in its last used state. 

2.2.3 Independent Segments 

An independent segment is defined as part of the object program which can 

overlay, and can be overlaid by,|either a fixed overlayable segment or another 

independent segment. An independent segment is in its initial state whenever 

control is transferred (either implicitly or explicitly) to that segment for 

the first time during the execution of a program. On subsequent transfers of 

control to the segment, an independent segment is also in its initial state 

when: 

(1) Control is transferred to that segment as a result of the implicit 

transfer of control between consecutive statements from a segment with a 

different segment-number. 

IX-2 



Segmentation - Geneval Description 

(2) Control is transferred to that segment as the result of the implicit 

transfer of control between a SORT or MERGE statement, in a segment with a 

different segment-number, and an associated input or output procedure in that 

independent segment. 

(3) Control is transferred explicitly to that segment from a segment with 

a different segment-number (with the exception noted in paragraph 2 below). 

On subsequent transfer of control to the segment, an independent segment 

is in its last-used state when: 

(1) Control is transferred implicitly to that segment from a segment with 

a different segment-number (except as noted in paragraphs 1 and 2 above). 

(2) Control is transferred explicitly to that segment as the result of 

the execution of an EXIT PROGRAM statement. 

See paragraph 3.4.2, Explicit and Implicit Transfers of Control, page 1-92. 

2.3 SEGMENTATION CLASSIFICATION 

Sections which are to be segmented are classified, using a system of 

segment-numbers (see paragraph 3.1 on page IX-4) and the following criteria: 

(1) Logic Requirements - Sections which must be available for reference at 

all times, or which are referred to very frequently, are normally classified 

as belonging to one of the permanent segments; sections which are used less 

frequently are normally classified as belonging either to one of the over- 

layable fixed segments or to one of the independent segments, depending on 

logic requirements. 

(2) Frequency of Use - Generally, the more frequently a section is referred 

to, the lower its segment-number, the less frequently it is referred to, the 

higher its segment-number. 

(3) Relationship to Other Sections - Sections which frequently communicate 

with one another should be given the same segment-numbers. 

2.4 SEGMENTATION CONTROL 

The logical sequence of the program is the same as the physical sequence 

except for specific transfers of control. If any reordering of the object 

program is required to handle the flow from segment to segment, according to 

the rules in paragraph 3.1 on page IX-4, the implementor must provide control 

transfers to maintain the logical flow specified in the source program. The 

implementor must also provide all controls necessary for a segment to operate 

whenever the segment is used. Control may be transferred within a source pro¬ 

gram to any paragraph in a section; that is, it is not mandatory to transfer 

control to the beginning of a section. 

IX-3 



Segmentation - Segment-Numbers 

3. STRUCTURE OF PROGRAM SEGMENTS 

3.1 SEGMENT-NUMBERS 

Section classification is accomplished by means of a system of segment- 

numbers. The segment-number is included in the section header. 

3.1.1 General Format 

section-name SECTION ^segment-number ] . 

3.1.2 Syntax Rules 

(1) The segment-number must be an integer ranging in value from 0 through 

99. 

(2) If the segment-number is omitted from the section header, the segment- 

number is assumed to be 0. 

(3) Sections in the declaratives must contain segment-numbers less than 
50. 

3.1.3 General Rules 

(1) All sections which have the same segment-number constitute a program 

segment. In Level 1 all sections which have the same segment-number must be 

together in the source program. |In Level 2 sections with the same segment- 

[numbers need not be physically contiguous in the source program 

(2) Segments with segment-number 0 through 49 belong to the fixed portion 

of the object program. In Level 1 all sections with segment-number 0 through 

49 must be together in the source program. 

(3) Segments with segment-number 50 through 99 are independent segments. 

IX-4 



Segmentation - SEGMENT-LIMIT 

3.2 SEGMENT-LIMIT 

Ideally, all program segments having segment-numbers ranging from 0 through 

49 should be specified as permanent segments. However, when insufficient mem¬ 

ory is available to contain all permanent segments plus the largest overlayable 

segment, it becomes necessary to decrease the number of permanent segments. 

The SEGMENT-LIMIT feature provides the user with a means by which he can reduce 

the number of permanent segments in his program, while still retaining the log¬ 

ical properties of fixed portion segments (segment-numbers 0 through 49). 

3.2.1 General Format 

The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph and has 

the following format: 

[, SEGMENT-LIMIT IS segment-number] 

3.2.2 Syntax Rules 

(1) Segment-number must be an integer ranging in value from 1 through 49. 

3.2.3 General Rules 

(1) When the SEGMENT-LIMIT clause is specified, only those segments having 

segment-numbers from 0 up to, but not including, the segment-number designated 

as the segment-limit, are considered as permanent segments of the object pro¬ 

gram. 

(2) Those segments having segment-numbers from the segment-limit through 

49 are considered as overlayable fixed segments. 

(3) When the SEGMENT-LIMIT clause is omitted, all segments having segment- 

numbers from 0 through 49 are considered as permanent segments of the object 

program. _ 

IX-5 



Segmentation - Restrictions 

4. RESTRICTIONS ON PROGRAM FLOW 

When segmentation is used, the following restrictions are placed on the 

ALTER, PERFORM, MERGE, and SORT statements. 

4.1 THE ALTER STATEMENT 

A GO TO statement in a section whose segment-number is greater than or 

equal to 50 must not be referred to by an ALTER statement in a section with 

a different segment-number. 

All other uses of the ALTER statement are valid and are performed even if 

the GO TO to which the ALTER refers is in a fixed overlayable segment._ 

4.2 THE PERFORM STATEMENT 

A PERFORM statement that appears in a section that is not in an independent 

segment can have within its range, in addition to any declarative sections 

whose execution is caused within that range, only one of the following: 

a. Sections and/or paragraphs wholly contained in one or more 

non-independent segments. 

b. Sections and/or paragraph wholly contained in a single independent 

segment. 

A PERFORM statement that appears in an independent segment can have within 

its range, in addition to any declarative sections whose execution is caused 

within that range, only one of the following: 

a. Sections and/or paragraphs wholly contained in one or more 

non-independent segments. 

b. Sections and/or paragraphs wholly contained in the same independent 

segment as that PERFORM statement 

4.3 THE MERGE STATEMENT 

If the MERGE statement appears in a section that is not in an independent 

segment, then any output procedure referenced by that MERGE statement must 

appear: 

a. Totally within non-independent segments, or 

b. Wholly contained in a single independent segment. 

If a MERGE statement appears in an independent segment, then any output 

procedure referenced by that MERGE statement must be contained: 

a. Totally within non-independent segments, or 

b. Wholly within the same independent segment as that MERGE statement. 

IX-6 



Segmentation - Restrictions 

4.4 THE SORT STATEMENT 

If a SORT statement appears in a section that is not an independent segment, 

then any input procedures or output procedures referenced by that SORT state¬ 

ment must appear: 

a. Totally within non-independent segments, or 

b. Wholly contained in a single independent segment. 

If a SORT statement appears in an independent segment, then any input 

procedures or output procedures referenced by that SORT statement must be 

contained: 

a. Totally within non-independent segments, or 

b. Wholly within the same independent segment as that SORT statement. 

IX- 7 



Library - Introduction 

1. INTRODUCTION TO THE LIBRARY MODULE 

1.1 FUNCTION 

The Library module provides a capability for specifying text that is to be 

copied from a library. 

COBOL libraries contain library texts that are available to the compiler 

for copying at compile time. The effect of the interpretation of the COPY 

statement is to insert text into the source program, where it will be treated 

by the compiler as part of the source program. 

COBOL library text is placed on the COBOL library as a function independent 

of the COBOL program and according to implementor-defined techniques. 

1.2 LEVEL CHARACTERISTICS 

Library Level 1 provides the facility for copying text from a single library 

into the source program. Text is copied from the library without change. 

Library Level 2 provides the additional capability of replacing all occur¬ 

rences of a given literal, identifier, word or group of words in the library 

text, with alternate text, during the copying process. Level 2 also provides 

for the availability of more than one COBOL library at compile time. 

X-l 



Library - COPY 

2. THE COPY STATEMENT 

2.1 FUNCTION 

The COPY statement incorporates text into a COBOL source program. 

2.2 GENERAL FORMAT 

(1) |If more than one COBOL library is available"during compilation, text- 

name must be qualified by the library-name identifying the COBOL library in 

which the text associated with text-name resides. (See page II-l, Name Char¬ 

acteristics, for constraints that apply when Library is associated with 

Nucleus, Level 1.) 

Within one COBOL library, each text-name must be unique. 

(2) The COPY statement must be preceded by a space and terminated by the 

separator period. 

(3) Pseudo-text-1 must not be null, nor may it consist solely of the 

character space(s), nor may it consist solely of comment lines. 

(4) Pseudo-text-2 may be null. 

(5) Character-strings within pseudo-text-1 and pseudo-text-2 may be 

continued. However, both characters of a pseudo-text delimiter must be on 

the same line. (See page 1-106, Continuation of Lines.) 

(6) Word-1 or word-2 may be any single COBOL word. 

(7) A COPY statement may occur in the source program anywhere a character¬ 

string or a separator may occur except that a COPY statement must not occur 

within a COPY statement. 

2.4 GENERAL RULES 

(1) The compilation of a source program containing COPY statements is 

logically equivalent to processing all COPY statements prior to the processing 

of the resulting source program. 

(2) The effect of processing a COPY statement is that the library text 

associated with text-name is copied into the source program, logically replac¬ 

ing the entire COPY statement, beginning with the reserved word COPY and ending 

with the punctuation character period, inclusive. 

X-2 



Library - COPY 

(3) If the REPLACING phrase is not specified, the library text is copied 

unchanged. 

If the REPLACING phrase is specified, the library text is copied and 

each properly matched occurrence of pseudo-text-1, identifier-1, word-1, and 

literal-1 in the library text is replaced by the corresponding pseudo-text-2, 

identifier-2, word-2, or literal-2. 

(4) For purposes of matching, identifier-1, word-1, and literal-1 are 

treated as pseudo—text containing only identifier-1, word-1, or literal-1, 

respectively. 

(5) The comparison operation to determine text replacement occurs in the 

following manner: 

Any separator comma, semicolon and/or space(s) preceding the leftmost 

library text-word is copied into the source program. Starting with the left¬ 

most library text-word and the first pseudo-text-1, identifier-1, word-1, or 

literal-1 that was specified in the REPLACING phrase, the entire REPLACING 

phrase operand that precedes the reserved word BY is compared to an equiva¬ 

lent number of contiguous library text-words. 

Pseudo-text-1, identifier-1, word-1, or literal-1 match the library 

text if, and only if, the ordered sequence of text-words that forms pseudo- 

text-1, identifier-1, word-1, or literal-1 is equal, character for character, 

to the ordered sequence of library text-words. For purposes of matching, each 

occurrence of a separator comma or semicolon in pseudo-text-1 or in the library 

text is considered to be a single space except when pseudo-text-1 consists 

solely of either a separator comma or semicolon, in which case it participates 

in the match as a text-word. Each sequence of one or more space separators is 

considered to be a single space. 

If no match occurs, the comparison is repeated with each next success¬ 

ive pseudo-text-1, identifier-1, word-1, or literal-1, if any, in the REPLACING 

phrase until either a match is found or there is no next successive REPLACING 

operand. 

When all the REPLACING phrase operands have been compared and no match 

has occurred, the leftmost library text-word is copied into the source program. 

The next successive library text-word is then considered as the leftmost 

library text-word, and the comparison cycle starts again with the first pseudo¬ 

text-1, identifier-1, word-1, or literal-1 specified in the REPLACING phrase. 

Whenever a match occurs between pseudo-text-1, identifier-1, word-1, 

or literal-1 and the library text, the corresponding pseudo-text-2, identifier-2, 

word-2, or literal-2 is placed into the source program. The library text-word 

immediately following the rightmost text-word that participated in the match is 

then considered as the leftmost library text-word. The comparison cycle starts 

again with the first pseudo-text-1, identifier-1, word-1, or literal-1 specified 

in the REPLACING phrase. 

The comparison operation continues until the rightmost text-word in the 

library text has either participated in a match or been considered as a leftmost 

library text-word and participated in a complete comparison cycle. _ 

X-3 



Library - COPY 

A comment line occurring in the library text and pseudo-text-1 is inter-1 (6) 
preted, for purposes of matching, as a single space. I Comment lines appearing 
m 

' * * . . i .!--« - —r l  -o 

pseudo-text-2 and library text are copied into the source program unchanged. 

(7) Debugging lines are permitted within library text I and pseudo-text-2. 

Debugging lines are not permitted within pseudo-text-1; text-words within a 

debugging line participate in the matching rules as if the 'D1 did not appear 

in the indicator area. If a COPY statement is specified on a debugging line, 

then the text that is the result of the processing of the COPY statement will 

appear as though it were specified on debugging lines with the following 

exception: comment lines in library text will appear as comment lines in the 

resultant source program. 

(8) The text produced as a result of the complete processing of a COPY 

statement must not contain a COPY statement. 

(9) The syntactic correctness of the library text cannot be independently 

determined. The syntactic correctness of the entire COBOL source program 

cannot be determined until all COPY statements have been completely processed. 

(10) Library text must conform to the rules for COBOL reference format. 

(11) For purposes of compilation, text-words after replacement are placed 

in the source program according to the rules for reference format. (See 

page 1-105, Reference Format.)_ 

X-4 



Debug - Introduction 

1. INTRODUCTION TO THE DEBUG MODULE 

1.1 FUNCTION 

The Debug module provides a means by which the user can describe his 

debugging algorithm including the conditions under which data items or 

procedures are to be monitored during the execution of the object program. 

The decisions of what to monitor and what information to display on the 

output device are explicitly in the domain of the user. The COBOL debug 

facility simply provides a convenient access to pertinent information. 

1.2 LEVEL CHARACTERISTICS 

Debug Level 1 provides a basic debugging capability, including the ability 

to specify: (a) selective or full procedure monitoring, and (b) optionally 

compiled debugging statements. 

Debug Level 2 provides the full COBOL debugging facility. 

1.3 LANGUAGE CONCEPTS 

The features of the COBOL language that support the Debug module are: 

a. A compile time switch — WITH DEBUGGING MODE. 

b. An object time switch. 

c. A USE FOR DEBUGGING statement. 

d. A special register — DEBUG-ITEM. 

e. Debugging lines. 

1.3.1 DEBUG-ITEM 

The reserved word DEBUG-ITEM is the name for a special register generated 

automatically by the implementor's code that supports the debugging facility. 

Only one DEBUG-ITEM is allocated per program. The names of the subordinate 

data items in DEBUG-ITEM are also reserved words. 

1.3.2 A Compile Time Switch 

The WITH DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER 

paragraph. It serves as a compile time switch over the debugging statements 

written in the program. 

When the WITH DEBUGGING MODE clause is specified in a program, all debugging 

sections and all debugging lines are compiled as specified in this section of 

the document. When the WITH DEBUGGING MODE clause is not specified, all 

debugging lines and all debugging sections are compiled as if they were comment 

lines. 

XI-1 



Debug - Introduction 

1.3.3 An Object Time Switch 

An object time switch dynamically activates the debugging code inserted by 

the compiler. This switch cannot be addressed in the program; it is controlled 

outside the COBOL environment. If the switch is 'on', all the effects of the 

debugging language written in the source program are permitted. If the switch 

is 'off', all the effects described in paragraph 3.1 on page XI-4, The USE FOR 

DEBUGGING Statement, are inhibited. Recompilation of the source program is 

not required to provide or take away this facility. 

The object time switch has no effect on the execution of the object program 

if the WITH DEBUGGING MODE clause was not specified in the source program at 

compile time. 

XI-2 



Debug - WITH DEBUGGING MODE 

2. ENVIRONMENT DIVISION IN THE DEBUG MODULE 

2.1 THE WITH DEBUGGING MODE CLAUSE 

2.1.1 Function 

The WITH DEBUGGING MODE clause indicates that all debugging sections and 

all debugging lines are to be compiled. If this clause is not specified, all 

debugging lines and sections are compiled as if they were comment lines. 

2.1.2 General Format 

SOURCE-COMPUTER. computer-name [ WITH DEBUGGING MODE ] . 

2.1.3 General Rules 

(1) If the WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTER 

paragraph of the Configuration Section of a program, all USE FOR DEBUGGING 

statements and all debugging lines are compiled. 

(2) If the WITH DEBUGGING MODE clause is not specified in the SOURCE- 

COMPUTER paragraph of the Configuration Section of a program, any USE FOR 

DEBUGGING statements and all associated debugging sections, and any debugging 
lines are compiled as if they were comment lines. 

XI-3 



Debug - USE FOR DEBUGGING 

3. PROCEDURE DIVISION IN THE DEBUG MODULE 

3.1 THE USE FOR DEBUGGING STATEMENT 

3.1.1 Function 

The USE FOR DEBUGGING statement identifies the user items that are to be 

monitored by the associated debugging section. 

3.1.2 General Format 

section-name SECTION [segment-number ] . 

3.1.3 Syntax Rules 

(1) Debugging section(s), if specified, must appear together immediately 

after the DECLARATIVES header. 

(2) Except in the USE FOR DEBUGGING statement itself, there must be no 

reference to any non-declarative procedure within the debugging section. 

(3) Statements appearing outside of the set of debugging sections must not 

reference procedure-names defined within the set of debugging sections. 

(4) Except for the USE FOR DEBUGGING statement itself, statements appear¬ 

ing within a given debugging section may reference procedure-names defined 

within a different USE procedure only with a PERFORM statement. 

(5) Procedure-names defined within debugging sections must not appear with¬ 

in USE FOR DEBUGGING statements. 

(6) Any given identifier, cd-name, file-name, or[procedure-name may appear 

in only one USE FOR DEBUGGING statement and may appear only once in that 

statement. 

(7) The ALL PROCEDURES phrase can appear only once in a program. 

(8) When the ALL PROCEDURES phrase is specified, procedure-name-1, 

procedure-name-2, ... must not be specified in any USE FOR DEBUGGING statement. 

XI-4 



Debug - USE FOR DEBUGGING 

(9) Identifier-1, identifier-2, ..., must not reference any data item 

defined in the Report Section except sum counters. 

(10) If the data description entry of the data item referenced by identi¬ 

fier-1, identifier-2, ..., contains an OCCURS clause or is subordinate to a 

data description entry that contains an OCCURS clause, identifier-1, identi¬ 

fier-2, ...» must be specified without the subscripting or indexing normally 

required. 

(11) References to the special register DEBUG-ITEM are restricted to refer¬ 

ences from within a debugging section. 

3.1.4 General Rules 

(1) In the following general rules all references to lcd-name-1, identi- cd-nai 

fier-1, procedure-name-1, and file-name-1]apply equally to]cd-name-2, 

identifier-2,| procedure-name-2, and file-name-2, respectively. 

(2) Automatic execution of a debugging section is not caused by a state¬ 

ment appearing in a debugging section. 

(3) When file-name-1 is specified in a USE FOR DEBUGGING statement, that 

debugging section is executed: 

a. After the execution of any OPEN or CLOSE statement that references 

file-name-1, and 

b. After the execution of any READ statement (after any other speci¬ 

fied USE procedure) not resulting in the execution of an associated AT END or 

INVALID KEY imperative statement, and 

c. After the execution of any DELETE or START statement that refer¬ 

ences file-name-1. 

(4) When procedure-name-1 is specified in a USE FOR DEBUGGING statement 

that debugging section is executed: 

a. Immediately before each execution of the named procedure; 

b. Immediately after the execution of an ALTER statement which 

references procedure-name-1. 

(5) The ALL PROCEDURES phrase causes the effects described in general rule 

4 to occur for every procedure-name in the program, except those appearing 

within a debugging section. 

(6) When the ALL REFERENCES OF identifier-1 phrase is specified, that 

debugging section is executed for every statement that explicitly references 

identifier-1 at each of the following times: 

a. In the case of a WRITE or REWRITE statement immediately before 

the execution of that WRITE or REWRITE statement and after the execution of 

any implicit move resulting from the presence of the FROM phrase. 

XI-5 



Debug - USE FOR DEBUGGING 

b. In the case of a GO TO statement with a DEPENDING ON phrase, 
immediately before control is transferred and prior to the execution of any 
debugging section associated with the procedure-name to which control is to be 
transferred. 

c. In the case of a PERFORM statement in which a VARYING, AFTER, or 
UNTIL phrase references identifier-1, immediately after each initialization, 
modification or evaluation of the contents of the data item referenced by 
identifier-1. 

d. In the case of any other COBOL statement, immediately after 
execution of that statement. 

If identifier-1 is specified in a phrase that is not executed or 
evaluated, the associated debugging section is not executed. 

(7) When identifier-1 is specified without the ALL REFERENCES OF phrase, 
that debugging section is executed at each of the following times: 

a. In the case of a WRITE or REWRITE statement that explicitly 
references identifier-1, immediately before the execution of that WRITE or 
REWRITE statement and after the execution of any implicit move resulting 
from the presence of the FROM phrase. 

b. In the case of a PERFORM statement in which a VARYING, AFTER or 
UNTIL phrase references identifier-1, immediately after each initialization, 
modification or evaluation of the contents of the data item referenced by 
identifier-1. 

c. Immediately after the execution of any other COBOL statement 
that explicitly references and causes the contents of the data item referenced 
by identifier-1 to be changed. 

If identifier-1 is specified in a phrase that is not executed or 
evaluated, the associated debugging section is not executed. 

(8) The associated debugging section is not executed for a specific 
operand more than once as a result of the execution of a single statement, 
regardless of the number of times that operand is explicitly specified. In 
the case of a PERFORM statement which causes iterative execution of a refer¬ 
enced procedure, the associated debugging section is executed once for each 
iteration. 

Within an imperative statement, each individual occurrence of an 
imperative verb identifies a separate statement for the purpose of debugging. 

(9) When cd-name-1 is specified in a USE FOR DEBUGGING statement, that 
debugging section is executed: 

a. After the execution of any ENABLE, DISABLE, and SEND statement 
that references cd-name-1, 

b. After the execution of a RECEIVE statement referencing cd-name-1 
that does not result in the execution of the NO DATA imperative-statement, and 

XI-6 



Debug - USE FOR DEBUGGING 

c. After the execution of an ACCEPT MESSAGE COUNT statement that 

references cd-name-1. _ 

(10) A reference to file-name-1, identifier-1, procedure-name-1 or cd-name-1 

as a qualifier does not constitute reference to that item for the debugging 

described in the general rules above. 

(11) Associated with each execution of a debugging section is the special 

register DEBUG-ITEM, which provides information*about the conditions that 

caused the execution of a debugging section. DEBUG-ITEM has the following 

implicit description: 

01 DEBUG-ITEM. 

02 DEBUG-LINE PICTURE IS X(6) . 

02 FILLER PICTURE IS X VALUE SPACE. 

02 DEBUG-NAME PICTURE IS X(30). 

02 FILLER PICTURE IS X VALUE SPACE. 

02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER. 

02 FILLER PICTURE IS X VALUE SPACE. 

02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER. 

02 FILLER PICTURE IS X VALUE SPACE. 

02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER. 

02 FILLER PICTURE IS X VALUE SPACE. 

02 DEBUG-CONTENTS PICTURE IS X(n) . 

(12) Prior to each execution of a debugging section, the contents of the 

data item referenced by DEBUG-ITEM are space-filled. The contents of data 

items subordinate to DEBUG-ITEM are then updated, according to the following 

general rules, immediately before control is passed to that debugging section. 

The contents of any data item not specified in the following general rules 

remains spaces. 

Updating is accomplished in accordance with the rules for the MOVE 

statement, the sole exception being the move to DEBUG-CONTENTS when the move 

is treated exactly as if it was an alphanumeric to alphanumeric elementary 

move with no conversion of data from one form of internal representation to 

another. 

(13) The contents of DEBUG-LINE is the implementor-defined means of iden¬ 

tifying a particular source statement. 

(14) DEBUG-NAME contains the first 30 characters of the name that caused 

the debugging section to be executed. 

All qualifiers of the name are separated in DEBUG-NAME by the word 

'IN' or 'OF'. Subscripts/indices, if any, are not entered into DEBUG-NAME. 

(15) If the reference to a data item that causes the debugging section to 

be executed is subscripted or indexed, the occurrence number of each level is 

entered in DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3 respectively as necessary. 

(16) DEBUG-CONTENTS is a data item that is large enough to contain the 

data required by the following general rules. 

XI-7 



Debug - USE FOR DEBUGGING 

(17) If the first execution of the first nondeclarative procedure in the 

program causes the debugging section to be executed, the following conditions 

exist: 

a. DEBUG-LINE identifies the first statement of that procedure. 

b. DEBUG-NAME contains the name of that procedure. 

c. DEBUG-CONTENTS contains 'START PROGRAM'. 

(18) If a reference to procedure-name-1 in an ALTER statement causes the 

debugging section to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the ALTER statement that references procedure- 
name- 1. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains the applicable procedure-name associated 

with the TO phrase of the ALTER statement. 

(19) If the transfer of control associated with the execution of a GO TO 

statement causes the debugging section to be executed, the following conditions 

exist: 

a. DEBUG-LINE identifies the GO TO statement whose execution transfers 

control to procedure-name-1. 

b. DEBUG-NAME contains procedure-name-1. 

(20) If reference to procedure-name-1 in the INPUT or OUTPUT phrase of a 

SORT or MERGE statement causes the debugging section to be executed, the 

following conditions exist: 

a. DEBUG-LINE identifies the SORT or MERGE statement that references 

procedure-name-1. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains: 

1. If the reference to procedure-name-1 is in the INPUT phrase 

of a SORT statement, 'SORT INPUT'. 

2. If the reference to procedure-name-1 is in the OUTPUT phrase 

of a SORT statement, 'SORT OUTPUT'. 

3. If the reference to procedure-name-1 is in the OUTPUT phrase 

of a MERGE statement,'MERGE OUTPUT'. 

(21) If the transfer to control from the control mechanism associated with 

a PERFORM statement caused the debugging section associated with procedure- 

name- 1 to be executed, the following conditions exist: 

XI-8 



Debug - USE FOR DEBUGGING 

a. DEBUG-LINE identifies the PERFORM statement that references 

procedure-name-1. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains 'PERFORM LOOP'. 

(22) If procedure-name-1 is a USE procedure that is to be executed, the 

following conditions exist: 

a. DEBUG-LINE identifies the statement that causes execution of the 

USE procedure. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains 'USE PROCEDURE'. 

(23) If an implicit transfer of control from the previous sequential 

paragraph to procedure-name-1 causes the debugging section to be executed, the 

following conditions exist: 

a. DEBUG-LINE identifies the previous statement. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains 'FALL THROUGH'. 

(24) If references to file-name-1, cd-name-1 causes the debugging section 

to be executed, then: 

a. DEBUG-LINE identifies the source statement that references file¬ 

name- 1, cd-name-1. 

b. DEBUG-NAME contains the name of file-name-1, cd-name-1. 

c. For READ, DEBUG-CONTENTS contains the entire record read. 

d. For all other references to file-name-1, DEBUG-CONTENTS contains 

spaces. 

e. For any reference to cd-name-1, DEBUG-CONTENTS contains the 

contents of the area associated with the cd-name. 

(25) If a reference to identifier-1 causes the debugging section to be 

executed, then: 

a. DEBUG-LINE identifies the source statement that references 

identifier-1, 

b. DEBUG-NAME contains the name of identifier-1, and 

c. DEBUG-CONTENTS contains the contents of the data item referenced 

by identifier-1 at the time that control passes to the debugging section (see 

general rules 6 and 7). 

XI-9 



Debug - Debugging Lines 

3.2 DEBUGGING LINES 

A debugging line is any line with a 'D' in the indicator area of the line. 

Any debugging line that consists solely of spaces from margin A to margin R 

is considered the same as a blank line. 

The contents of a debugging line must be such that a syntactically correct 

program is formed with or without the debugging lines being considered as 

comment lines. 

A debugging line will be considered to have all the characteristics of a 

comment line, if the WITH DEBUGGING MODE clause is not specified in the 

SOURCE-COMPUTER paragraph. 

Successive debugging lines are allowed. Continuation of debugging lines 

is permitted, except that each continuation line must contain a 'D' in the 

indicator area, and character-strings may not be broken across two lines. 

A debugging line is only permitted in the program after the OBJECT-COMPUTER 

paragraph. 

XI-10 



Inter-Program Communication - Introduction 

1. INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE 

1.1 FUNCTION 

The Inter-Program Communication module provides a facility by which a pro¬ 

gram can communicate with one or more programs. This communication is provided 

by: (a) the ability to transfer control from one program to another within a 

run unit and (b) the ability for both programs to have access to the same data 

items. 

1.2 LEVEL CHARACTERISTICS 

Inter-Program Communication Level 1 provides a capability to transfer control 

to one or more programs whose names are known at compile time and for the 

sharing of data among such programs. 

Additionally Inter-Program Communication Level 2 provides the capability to 

transfer control to one or more programs whose names are not known at compile 
time as well as the ability to determine the availability of object time 

memory for the program to which control is being passed. 

XII-1 



Inter-Program Communication - Linkage Section 

2. DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE 

2.1 LINKAGE SECTION 

The Linkage Section in a program is meaningful if and only if the object 

program is to function under the control of a CALL statement, and the CALL 

statement in the calling program contains a USING phrase. 

The Linkage Section is used for describing data that is available through 

the calling program but is to be referred to in both the calling and the called 

program. No space is allocated in the program for data items referenced by 

data-names in the Linkage Section of that program. Procedure Division refer¬ 

ences to these data items are resolved at object time by equating the reference 

in the called program to the location used in the calling program. In the case 

of index-names, no such correspondence is established. Index-names in the 

called and calling program always refer to separate indices. 

Data items defined in the Linkage Section of the called program may be 

referenced within the Procedure Division of the called program only if they 

are specified as operands of the USING phrase of the Procedure Division header 

or are subordinate to such operands, and the object program is under the 

control of a CALL statement that specifies a USING phrase. 

The structure of the Linkage Section is the same as that previously 

described for the Working-Storage Section, beginning with a section header, 

followed by data description entries for noncontiguous data items and/or 

record description entries. 

Each Linkage Section record-name and noncontiguous item name must be 

unique within the called program since it cannot be qualified. Data items 

defined in the Linkage Section of the called program must not be associated 

with data items defined in the Report Section of the calling program. 

Of those items defined in the Linkage Section only data-name-1, data-name-2, 

... in the USING phrase of the Procedure Division header, data items subordi¬ 

nate to these data-names, and condition-names and/or index-names associated 

with such data-names and/or subordinate data items, may be referenced in the 

Procedure Division. 

2.1.1 Noncontiguous Linkage Storage 

Items in the Linkage Section that bear no hierarchic relationship to one 

another need not be grouped into records and are classified and defined as 

noncontiguous elementary items. Each of these data items is defined in a 

separate data description entry which begins with the special level-number 77. 

The following data clauses are required in each data description entry: 

a. level-number 77 

b. data-name 

c. the PICTURE clause or the USAGE IS INDEX clause. 

Other data description clauses are optional and can be used to complete the 

description of the item if necessary. 

XII-2 



Inter-Program Communication - Linkage Section 

2.1.2 Linkage Records 

Data elements in the Linkage Section which bear a definite hierarchic 

relationship to one another must be grouped into records according to the 

rules for formation of record descriptions. Any clause which is used in an 

input or output record description can be used in a Linkage Section. 

2.1.3 Initial Values 

The VALUE clause must not be specified in the Linkage Section except in 

condition-name entries (level 88). 

XII-3 



Inter-Program Communication - Procedure Division 

3. PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE 

3.1 THE PROCEDURE DIVISION HEADER 

The Procedure Division is identified by and must begin with the follow¬ 

ing header: 

PROCEDURE DIVISION USING data-name-1 [, data-name-2 ] ...] . 

The USING phrase is present if and only if the object program is to func¬ 

tion under the control of a CALL statement, and the CALL statement in the 

calling program contains a USING phrase. 

Each of the operands in the USING phrase of the Procedure Division header 

must be defined as a data item in the Linkage Section of the program in which 

this header occurs, and it must have a 01 or 77 level-number. 

Within a called program. Linkage Section data items are processed according 

to their data descriptions given in the called program. 

When the USING phrase is present, the object program operates as if data- 

name-1 of the Procedure Division header in the called program and data-name-1 

in the USING phrase of the CALL statement in the calling program refer to a 

single set of data that is equally available to both the called and calling 

programs. Their descriptions must define an equal number of character posi¬ 

tions; however, they need not be the same name. In like manner, there is an 

equivalent relationship between data-name-2, ..., in the USING phrase of the 

called program and data-name-2, ..., in the USING phrase of the CALL state¬ 

ment in the calling program. A data-name must not appear more than once in 

the USING phrase in the Procedure Division header of the called program; how¬ 

ever, a given data-name may appear more than once in the same USING phrase of 

a CALL statement. 

If the USING phrase is specified, the INITIAL clause must not be present 

in any CD entry. (See syntax rule 2 of the communication description entry 

on page XIII-4.) 

XII-4 



Inter-Program Communication - CALL 

3.2 THE CALL STATEMENT 

3.2.1 Function 

The CALL statement causes control to be transferred from one object program 

to another, within the run unit. 

3.2.2 General Format 

CALL [ USING data-name-1 [ , data-name-2 ] . .. ] 

ON OVERFLOW imperative-statement] 

3.2.3 Syntax Rules 

(1) Literal-1 must be a nonnumeric literal. 

(2) Identifier-1 must be defined as an alphanumeric data item such that 

its value can be a program name._ 

(3) The USING phrase is included in the CALL statement only if there is 

a USING phrase in the Procedure Division header of the called program and the 

number of operands in each USING phrase must be identical. 

(4) Each of the operands in the USING phrase must have been defined as a 

data item in the File Section, Working-Storage Section, Communication Section, 

or Linkage Section, and must have a level-number of 01 or 77. Data-name-1, 

data-name-2, ..., may be qualified when they reference data items defined in 

the File Section or the Communication Section. 

3.2.4 General Rules 

(1) The program whose name is specified by the value of literal-l[_or_[ 

I identifier-1 is the called program; the program in which the CALL statement 

appears is the calling program. 

(2) The execution of a CALL statement causes control to pass to the called 

program. 

(3) A called 

within a run unit 

urogram is in its initial state the first time it is called 

and the first time it is called after a CANCEL to the 

called program. 

On all other entries into the called program, the state of the program 

remains unchanged from its state when last exited. This includes all data 

fields, the status and positioning of all files, and all alterable switch 

settings. 

(4) If during the execution of a CALL statement, it is determined that 

the available portion of object time memory is incapable of accommodating the 

program specified in the CALL statement and the ON OVERFLOW phrase is speci- 

fied, no action is taken and the imperative-statement is executed._ 

XII-5 



Inter-Program Communication - CALL 

If the above condition exists and the ON OVERFLOW phrase is not speci¬ 

fied, the effects of the CALL statement are defined by the implementor. 

(5) Called programs may contain CALL statements. However, a called pro¬ 

gram must not contain a CALL statement that directly or indirectly calls the 

calling program. 

(6) The data-names, specified by the USING phrase of the CALL statement, 

indicate those data items available to a calling program that may be referred 

to in the called program. The order of appearance of the data-names in the 

USING phrase of the CALL statement and the USING phrase in the Procedure Divi¬ 

sion header is critical. Corresponding data-names refer to a single set of 

data which is available to the called and calling program. The correspondence 

is positional, not by name. In the case of index-names, no such correspon¬ 

dence is established. Index-names in the called and calling program always 

refer to separate indices. 

(7) The CALL statement may appear anywhere within a segmented program. 

The implementor must provide all controls necessary to insure that the proper 

logic flow is maintained. Therefore, when a CALL statement appears in a sec¬ 

tion with a segment-number greater than or equal to 50, that segment is in 

its last used state when the EXIT PROGRAM statement returns control to the 

calling program. 

XI1-6 



Inter-Pro gram Communication - CANCEL 

3.3 THE CANCEL STATEMENT 

3.3.1 Function 

The CANCEL statement releases the memory areas occupied by the referred to 

program. 

3.3.2 General Format 

CANCEL 

3.3.3 Syntax Rules 

(1) Literal-1, literal-2, ..., must each be a nonnumeric literal. 

(2) Identifier-1, identifier-2, ..., must each be defined as an alpha¬ 
numeric data item such that its value can be a program name. 

3.3.4 General Rules 

(1) Subsequent to the execution of a CANCEL statement, the program referred 

to therein ceases to have any logical relationship to the run unit in which 

the CANCEL statement appears. A subsequently executed CALL statement naming 

the same program will result in that program being initiated in its initial 

state. The memory areas associated with the named programs are released so 

as to be made available for disposition by the operating system. 

(2) A program named in the CANCEL statement must not refer to any program 

that has been called and has not yet executed an EXIT PROGRAM statement. 

(3) A logical relationship to a cancelled subprogram is established only 

by execution of a subsequent CALL statement. 

(4) A called program is cancelled either by being referred to as 

the operand of a CANCEL statement or by the termination of the run unit of 

which the program is a member. 

(5) No action is taken when a CANCEL statement is executed naming a pro¬ 

gram that has not been called in this run unit or has been called and is at 

present cancelled. Control passes to the next statement. 

XII-7 



Inter-Program Communication - EXIT PROGRAM 

3.4 THE EXIT PROGRAM STATEMENT 

3.4.1 Function 

The EXIT PROGRAM statement marks the logical end of a called program. 

3.4.2 General Format 

EXIT PROGRAM. 

3.4.3 Syntax Rules 

(1) The EXIT PROGRAM statement must appear in a sentence by itself. 

(2) The EXIT PROGRAM sentence must be the only sentence in the paragraph. 

3.4.4 General Rules 

(1) An execution of an EXIT PROGRAM statement in a called program causes 

control to be passed to the calling program. Execution of an EXIT PROGRAM 

statement in a program which is not called behaves as if the statement were 

an EXIT statement. (See page 11-64, The EXIT Statement.) 

XI I-8 



Communication - Introduction 

1. INTRODUCTION TO THE COMMUNICATION MODULE 

1.1 FUNCTION 

The Communication module provides the ability to access, process, and 

create messages or portions thereof. It provides the ability to communicate 

through a Message Control System with local and remote communication devices. 

1.2 LEVEL CHARACTERISTICS 

Communication Level 1 does not provide the full COBOL facility for the CD 

entry as specified in the formats for this module. In the Procedure Division, 

Level 1 provides limited capabilities for the ENABLE, DISABLE, RECEIVE and 

SEND statements, as specified in the formats of this module. There is also 

a provision for determining the number of messages in an input queue. 

Communication Level 2 provides full facility for the CD entry as specified 

in the formats of this module. Within the Procedure Division, full capabilities 

are provided for the ENABLE, DISABLE, RECEIVE and SEND statements, as specified 

in the formats for this module. The additional features available in Level 2 

include: partial messages, segmented messages, multiple destination message 

processing, and program invocation by the MCS as specified by the INITIAL CD. 

XIII-1 



Communication - Communication Section 

2. DATA DIVISION IN THE COMMUNICATION MODULE 

2.1 COMMUNICATION SECTION 

In a COBOL program the communication description entries (CD) represent the 

highest level of organization in the Communication Section. The Communication 

Section header is followed by a communication description entry consisting of 

a level indicator (CD), a data-name and a series of independent clauses. These 

clauses indicate the queues and sub-queues, the message date and time, the 

source, the text length, the status and end keys, and message count of input. 

These clauses specify the destination count, the text length, the status and 

error keys, and destinations for output. The entry itself is terminated by a 

period. These record areas may be implicitly redefined by user-specified 

record description entries following the various communication description 

clauses. 

XIII-2 



Communication - CD Entry Skeleton 

2.2 THE COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON 

2.2.1 Function 

The communication description specifies the interface area between the MCS 

and a COBOL program. 

2.2.2 General Format 

Format 1 

CD cd-name; 

FOR [initial] INPUT 

£[; SYMBOLIC QUEUE IS data-name-l] 

[ SYMBOLIC SUB-QUEUE-1 IS data-name-2] 

SYMBOLIC SUB-QUEUE-2 IS data-name-3] 

SYMBOLIC SUB-QUEUE-3 IS data-name-4] 

MESSAGE DATE IS data-name-5 ] 

MESSAGE TIME IS data-name-6] 

SYMBOLIC SOURCE IS data-name-7] 

TEXT LENGTH IS data-name-8] 

END KEY IS data-name-9] 

STATUS KEY IS data-name-io] 

MESSAGE COUNT IS data-name-ll]] 

data-name-l, data-name-2, ...» data-name-11J 

Format 2 

CD cd-name; FOR OUTPUT 

[; DESTINATION COUNT IS data-name-l] 

[; TEXT LENGTH IS data-name-2] 

[; STATUS KEY IS data-name-3] 

[; DESTINATION TABLE OCCURS integer-2 TIMES 

[; INDEXED BY index-name-1 [, index<-name-2 ] • • •"] 

[; ERROR KEY IS data-name-4 ] 

[; SYMBOLIC DESTINATION IS data-name-5 ] . 

XII1-3 



Communication - CD Entry Skeleton 

2.2.3 Syntax Rules 

FORMAT 1 

(1) A CD must appear only in the Communication Section. 

(2) Within a single program, the INITIAL clause may be specified in only 

one CD. The INITIAL clause must not be used in a program that specifies the 

USING phrase of the Procedure Division Header. (See page XII-4, The Procedure 

Division Header.)_ 

(3) Except for the INITIAL clause, the optional clauses may be written 

in any order. 

(4) If neither option in the format is specified, a level 01 data descrip¬ 

tion entry must follow the CD description entry. Either option may be followed 

by a level 01 data description entry. 

(5) For each input CD, a record area of 87 contiguous standard data format 

characters is allocated. This record area is defined to the MCS as follows: 

a. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an 

elementary alphanumeric data item of 12 characters occupying positions 1-12 

in the record. 

b. The SYMBOLIC SUB-QUEUE-1 clause defines data-name-2 as the name 

of an elementary alphanumeric data item of 12 characters occupying positions 

13-24 in the record. 

c. The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the name of 

an elementary alphanumeric data item of 12 characters occupying positions 

25-36 in the record. 

d. The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the name of 

an elementary alphanumeric data item of 12 characters occupying positions 

37-48 in the record. 

e. The MESSAGE DATE clause defines data-name-5 as the name of a data 

item whose implicit description is that of an integer of 6 digits without an 

operational sign occupying character positions 49-54 in the record. 

f. The MESSAGE TIME clause defines data-name-6 as the name of a data 

item whose implicit description is that of an integer of 8 digits without an 

operational sign occupying character positions 55-62 in the record. 

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of an 

elementary alphanumeric data item of 12 characters occupying positions 63-74 

in the record. 

h. The TEXT LENGTH clause defines data-name-8 as the name of an 

elementary data item whose implicit description is that of an integer of 4 

digits without an operational sign occupying character positions 75-78 in the 

record. 

XIII-4 



Communication - CD Entry Skeleton 

i. The END KEY clause defines data-name-9 as the name of an elementary 

alphanumeric data item of 1 character occupying position 79 in the record. 

j. The STATUS KEY clause defines data-name-10 as the name of an 

elementary alphanumeric data item of 2 characters occupying positions 80-81 

in the record. 

k. The MESSAGE COUNT clause defines data-name-11 as the name of an 

elementary data item whose implicit description is that of an integer of 6 

digits without an operational sign occupying character positions 82-87 in 

the record. 

The second option may be used to replace the above clauses by a series 

of data-names which, taken in order, correspond to the data-names defined by 

these clauses. 

Use of either option results in a record whose implicit description 

is equivalent to the following: 

IMPLICIT DESCRIPTION COMMENT 

data-name-0. 

02 data-name-1 PICTURE X(12). SYMBOLIC QUEUE 

02 data-name-2 PICTURE X(12). SYMBOLIC SUB-QUEUE-1 

02 data-name-3 PICTURE X(12). SYMBOLIC SUB-QUEUE-2 

02 data-name-4 PICTURE X(12). SYMBOLIC SUB-QUEUE-3 
02 data-name-5 PICTURE 9(06) . MESSAGE DATE 

02 data-name-6 PICTURE 9(08). MESSAGE TIME 

02 data-name-7 PICTURE X(12). SYMBOLIC SOURCE 
02 data-name-8 PICTURE 9(04). TEXT LENGTH 

02 data-name-9 PICTURE X. END KEY 

02 data-name-10 PICTURE XX. STATUS KEY 

02 data-name-11 PICTURE 9(06). MESSAGE COUNT 

NOTE: In the above, the information under 'COMMENT' is for 

clarification and is not part of the description. 

(6) Record description entries following an input CD implicitly redefine 

this record and must describe a record of exactly 87 characters. Multiple 

redefinitions of this record are permitted; however, only the first redefini¬ 

tion may contain VALUE clauses. However, the MCS will always reference the 

record according to the data descriptions defined in syntax rule 5. 

(7) Data-name-1, data-name-2, ..., data-name-11 must be unique within the 

CD. Within this series, any data-name may be replaced by the reserved word 
FILLER. 

FORMAT 2 

(8) A CD must appear only in the Communication Section. 

(9) If none of the optional clauses of the CD is specified, a level 01 data 

description entry must follow the CD description entry. 

XIII-5 



Communication - CD Entry Skeleton 

(10) For each output CD, a record area of contiguous standard data format 

characters is allocated according to the following formula: (10 plus 13 times 
integer-2). 

a. The DESTINATION COUNT clause defines data-name-1 as the name of a 

data item whose implicit description is that of an integer without an opera¬ 

tional sign occupying character positions 1-4 in the record. 

b. The TEXT LENGTH clause defines data-name-2 as the name of an 

elementary data item whose implicit description is that of an integer of 4 

digits without an operational sign occupying character positions 5-8 in the 

record. 

c. The STATUS KEY clause defines data-name-3 to be an elementary 

alphanumeric data item of 2 characters occupying positions 9-10 in the record. 

d. Character positions 11-23 and every set of 13 characters thereafter 

will form table items of the following description: 

1) The ERROR KEY clause defines data-name-4 as the name of an 

elementary alphanumeric data item of 1 character. 

2) The SYMBOLIC DESTINATION clause defines data-name-5 as the 

name of an elementary alphanumeric data item of 12 characters. 

Use of the above clauses results in a record whose implicit 

description is equivalent to the following: 

IMPLICIT DESCRIPTION COMMENT 

01 data-name-0. 

02 data-name-1 PICTURE 9(04). 

02 data-name-2 PICTURE 9(04). 

02 data-name-3 PICTURE XX. 

02 data-name OCCURS integer-2 TIMES. 

03 data-name-4 PICTURE X. 

03 data-name-5 PICTURE X(12). 

DESTINATION COUNT 

TEXT LENGTH 

STATUS KEY 

DESTINATION TABLE 

ERROR KEY 

SYMBOLIC DESTINATION 

NOTE: In the above, the information under 'COMMENT' is for 

clarification and is not part of the description. 

(11) Record descriptions following an output CD implicitly redefine this 

record. Multiple redefinitions of this record are permitted; however, only the 

first redefinition may contain VALUE clauses. However, the MCS will always 

reference the record according to the data descriptions defined in syntax rule 10. 

(12) Data-name-1, data-name-2, ...» data-name-5 must be unique within a CD. 

(13) If the DESTINATION TABLE OCCURS clause is not specified, one (1) ERROR 

KEY and one (1) SYMBOLIC DESTINATION area is assumed. In this case, neither 

subscripting nor indexing is permitted when referencing these data items. 

(14) If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and 

data-name-5 may only be referred to by subscripting or indexing. 

XIII-6 



Communication - CD Entry Skeleton 

(15) In Level 1, the value of the data item referenced by data-name-1 and 

integer-2 must be 1. In Level 2, there is no restriction on the value of the 

data item referenced by data-name-1 and integer-2. 

2.2.4 General Rules 

FORMAT 1 

(1) The input CD information constitutes the communication between the MCS 

and the program as information about the message being handled. This informa¬ 

tion does not come from the terminal as part of the message. 

(2) The contents of the data items referenced by data-name-2, data-name-3, 

and data-name-4, when not being used must contain spaces. 

(3) The data items referenced by data-name-1, data-name-2, data-name-3, 

and data-name-4 contain symbolic names designating queues, sub-queues, ... 

respectively. All symbolic names must follow the rules for the formation 

of system-names, and must have been previously defined to the MCS. 

(4) A RECEIVE statement causes the serial return of the 'next' message Lorj 

a portion of a message from the queue as specified by the entries in the CD. 

If during the execution of a RECEIVE statement, a message from a more 

specific source is needed, the contents of the data item referenced by data- 

name-1 can be made more specific by the use of the contents of the data items 

referenced by data-name-2, data-name-3, and in turn data-name-4. When a 

given level of the queue structure is specified, all higher levels must also 

be specified. 

If less than all the levels of the queue hierarchy are specified, the 

MCS determines the 'next' message or portion of a message to be accessed. 

After the execution of a RECEIVE statement, the contents of the data 

items referenced by data-name-1 through data-name-4 will contain the symbolic 

names of all the levels of the queue structure. 

(5) Whenever a program is scheduled by the MCS to process a message, the 

symbolic names of the queue structure that demanded this activity will be 

placed in the data items referenced by data-name-1 through data-name-4 of the 

CD associated with the INITIAL clause as applicable. In all other cases, the 

contents of the data items referenced by data-name-1 through data-name-4 of 

the CD associated with the INITIAL clause are initialized to spaces. 

The symbolic names are inserted or the initialization to spaces is 

completed prior to the execution of the first Procedure Division statement. 

The execution of a subsequent RECEIVE statement naming the same 

contents of the data items referenced by data-name-1 through data-name-4 will 

return the actual message that caused the program to be scheduled. Only at 

that time will the remainder of the CD be updated. 

(6) If the MCS attempts to schedule a program lacking an INITIAL clause, 

the results are undefined. 

XIII-7 



Communication - CD Entry Skeleton 

(7) Data-name-5 has the format 'YYMMDD' (year, month, day). Its contents 

represent the date on which the MCS recognizes that the message is complete. 

The contents of the data item referenced by data-name-5 are only 

updated by the MCS as part of the execution of a RECEIVE statement. 

(8) The contents of data-name-6 has the format 'HHMMSSTT* (hours, minutes, 

seconds, hundredths of a second) and its contents represent the time at which 

the MCS recognizes that the message is complete. 

The contents of the data item referenced by data-name-6 are only 

updated by the MCS as part of the execution of the RECEIVE statement. 

(9) During the execution of a RECEIVE statement, the MCS provides, in the 

data item referenced by data-name-7, the symbolic name of the communications 

terminal that is the source of the message being transferred. However, if the 

symbolic name of the communication terminal is not known to the MCS, the 

contents of the data item referenced by data-name-7 will contain spaces. 

(10) The MCS indicates via the contents of the data item referenced by 

data-name-8 the number of character positions filled as a result of the 

execution of the RECEIVE statement. (See page XIII-17.) 

(11) The contents of the data item referenced by data-name-9 are set only 

by the MCS as part of the execution of a RECEIVE statement according to the 

following rules: 

a. When the RECEIVE MESSAGE phrase is specified, then: 

1. If an end of group has been detected, the contents of 

the data item referenced by data-name-9 are set to 3; 

2. If an end of message has been detected, the contents of the 

data item referenced by data-name-9 are set to 2; 

3. If less than a message is transferred, the contents of the 

data item referenced by data-name-9 are set to 0. 

b. When the RECEIVE SEGMENT phrase is specified, then: 

1. If an end of group has been detected, the contents of 

the data item referenced by data-name-9 are set to 3; 

2. If an end of message has been detected, the contents of the 

data item referenced by data-name-9 are set to 2; 

3. If an end of segment has been detected, the contents of the 

data item referenced by data-name-9 are set to 1; 

4. If less than a message segment is transferred, the contents 

of the data item referenced by data-name-9 are set to 0. 

c. When more than one of the above conditions is satisfied simultan¬ 

eously, the rule first satisfied in the order listed determines the contents 

of the data item referenced by data-name-9. 

XIII-8 



Communication - CD Entry Skeleton 

(12) The contents of the data item referenced by data-name-10 indicate the 

status condition of the previously executed RECEIVE, ACCEPT MESSAGE COUNT, 

ENABLE INPUT, or DISABLE INPUT statements. 

The actual association between the contents of the data item referenced 

by data-name-10 and the status condition itself is defined in the table on page 

XIII-10. 

(13) The contents of the data item referenced by data-name-11 indicate the 

number of messages that exist in a queue, sub-queue-1, ... . The MCS updates 

the contents of the data item referenced by data-name-11 only as part of the 

execution of an ACCEPT statement with the COUNT phrase. 

FORMAT 2 

(14) The nature of the output CD information is such that it is not sent 

to the terminal, but constitutes the communication between the program and the 

MCS as information about the message being handled. 

(15) During the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT 

statement, the contents of the data item referenced by data-name-1 will indicate 

to the MCS the number of symbolic destinations that are to be used from the 

area referenced by data-name-5. 

The MCS finds the first symbolic destination in the first occurrence 

of the area referenced by data-name-5, the second symbolic destination in the 

second occurrence of the area referenced by data-name-5 ...» up to and includ¬ 

ing the occurrence of the area referenced by data-name-5 indicated by the 

contents of data-name-1. 

If during the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT 

statement the value of the data item referenced by data-name-1 is outside the 

range of 1 through integer-2, an error condition is indicated and the execu¬ 
tion of the SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement is terminated. 

(16) It is the responsibility of the user to insure that the value of the 

data item referenced by data-name-1 is valid at the time of execution of the 

SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement. 

(17) As part of the execution of a SEND statement, the MCS will interpret 

the contents of the data item referenced by data-name-2 to be the user's 

indication of the number of leftmost character positions of the data item 

referenced by the associated SEND identifier from which data is to be trans¬ 

ferred. (See page XIII-20.) 

(18) Each occurrence of the data item referenced by data-name-5 contains a 

symbolic destination previously known to the MCS. These symbolic destination 

names must follow the rules for the formation of system-names. 

(19) The contents of the data item referenced by data-name-3 indicate the 

status condition of the previously executed SEND, ENABLE OUTPUT, or DISABLE 

OUTPUT statement. 

The actual association between the contents of the data item referenced 

by data-name-3 and the status condition itself is defined in the table on page 

XIII-10. 

XII1-9 



Communication - CD Entry Skeleton 

(20) If, during the execution of a SEND, an ENABLE OUTPUT, or a DISABLE 

OUTPUT statement, the MCS determines that any specified destination is unknown, 

the contents of the data item referenced by data-name-3 and all occurrences of 

the data items referenced by data-name-A are updated. 

The contents of the data item referenced by data-name-A when equal to 

1 indicate that the associated value in the area referenced by data-name-5 has 

not been previously defined to the MCS. Otherwise, the contents of the data 

item referenced by data-name-A are set to zero (0). 

ALL FORMATS 

(21) For Level 1, the table below indicates the possible contents of the 

data items referenced by data-name-10 for Format 1 and by data-name-3 for 

Format 2 at the completion of each statement shown. An 'X* on a line in a 

statement column indicates that the associated code shown for that line is 

possible for that statement. 

R
E

C
E

IV
E

 

S
E

N
D

 

A
C

C
E

P
T
 

M
E

S
S

A
G

E
 

C
O

U
N

T
 

E
N

A
B

L
E
 

IN
P

U
T

 

(w
it

h
o

u
t 

T
E

R
M

IN
A

L
) 

E
N

A
B

L
E
 

O
U

T
P

U
T

 

D
IS

A
B

L
E
 

IN
P

U
T

 

(w
it

h
o
u
t 

T
E

R
M

IN
A

L
) 

D
IS

A
B

L
E
 

O
U

T
P

U
T

 

S
T

A
T

U
S
 

K
E

Y
 

C
O

D
E

 

X X X X X X X 00 No error detected. Action completed. 

X 10 Destination is disabled. Action completed. 

X X X 20 

Destination unknown. No action taken for 

unknown destination. Data-name-A (ERROR KEY) 

indicates unknown. 

X X X X 20 
One or more queues or sub-queues unknown. 

No action taken. 

X X X 30 
Content of DESTINATION COUNT invalid. 

No action taken. 

X X X X A0 
Password invalid. No enabling/disabling 

action taken. 

X 50 
Character count greater than length of 

sending field. No action taken. 

Communication Status Key Condition in Level 1 

XIII-10 



Communication - CD Entry Skeleton 

(22) For Level 2, the table below indicates the possible contents of the 

data items referenced by data-name-10 for Format 1 and by data-name-3 for 

Format 2 at the completion of each statement shown. An ’X’ on a line in a 

statement column indicates that the associated code shown for that line is 

possible for that statement. 

R
E

C
E

IV
E

 

S
E

N
D

 

A
C

C
E

P
T
 

M
E

S
S

A
G

E
 

C
O

U
N

T
 

E
N

A
B

L
E
 

IN
P

U
T

 

(w
it

h
o
u
t 

T
E

R
M

IN
A

L
) 

E
N

A
B

L
E
 

IN
P

U
T

 

(w
it

h
 

T
E

R
M

IN
A

L
) 

1 
E

N
A

B
L

E
 

O
U

T
P

U
T

 

D
IS

A
B

L
E
 

IN
P

U
T

 

(w
it

h
o
u
t 

T
E

R
M

IN
A

L
) 

D
IS

A
B

L
E
 

IN
P

U
T

 

(w
it

h
 

T
E

R
M

IN
A

L
) 

D
IS

A
B

L
E
 

O
U

T
P

U
T

 

S
T

A
T

U
S
 

K
E

Y
 

C
O

D
E

 

X X X X X X X X X 00 No error detected. Action completed. 

X 10 
One or more destinations are 

disabled. Action completed. 

X X X 20 

One or more destinations unknown. 

Action completed for known destina¬ 

tions. No action taken for unknown 

destinations. Data-name-4 (ERROR 

KEY) indicates known or unknown. 

X X X X 20 
One or more queues or sub-queues 

unknown. No action taken. 

X X 20 
The source is unknown. No action 

taken. 

X X X 30 
Content of DESTINATION COUNT 

invalid. No action taken. 

X X X X X X 40 
Password invalid. No 

enabling/disabling action taken. 

X 50 
Character count greater than length 

of sending field. No action taken. 

X 

J 

60 

Partial segment with either zero 

character count or no sending area 

specified. No action taken. 

Communication Status Key Condition in Level 2 

XIII-11 



Communication - ACCEPT MESSAGE COVET 

3. PROCEDURE DIVISION IN THE COMMUNICATION MODULE 

3.1 THE ACCEPT MESSAGE COUNT STATEMENT 

3.1.1 Function 

The ACCEPT MESSAGE COUNT statement causes the number of messages in a 

queue to be made available. 

3.1.2 General Format 

ACCEPT cd-name MESSAGE COUNT 

3.1.3 Syntax Rules 

(1) Cd-name must reference an input CD. 

3.1.4 General Rules 

(1) The ACCEPT MESSAGE COUNT statement causes the MESSAGE COUNT field 

specified for cd-name to be updated to indicate the number of messages that 

exist in a queue, sub-queue-1, ... 

(2) Upon execution of the ACCEPT MESSAGE COUNT statement, the contents of 

the area specified by a communication description entry must contain at least 

the name of the symbolic queue to be tested. Testing the condition causes the 

contents of the data items referenced by data-name-10 (STATUS KEY) and 

data-name-11 (MESSAGE COUNT) of the area associated with the communication 

entry to be appropriately updated. (See page XIII-3, The Communication 

Description - Complete Entry Skeleton.) 

XIII-12 



Communication - DISABLE 

3.2 THE DISABLE STATEMENT 

3.2.1 Function 

The DISABLE statement notifies the MCS to inhibit data transfer between 

specified output queues and destinations for output or between specified 

sources and input queues for input. 

3.2.2 General Format 

DISABLE 
(INPUT [TERMINAL] 

1 OUTPUT 
a 

cd-name WITH KEY 
identifier-1j 

literal-1 J 

3.2.3 Syntax Rules 

(1) Cd-name must reference an input CD when the INPUT phrase is specified. 

(2) Cd-name must reference an output CD when the OUTPUT phrase is specified. 

(3) Literal-1 or the contents of the data item referenced by identifier-1 

must be defined as alphanumeric. 

3.2.4 General Rules 

(1) The DISABLE statement provides a logical disconnection between the MCS 

and the specified sources or destinations. When this logical disconnection is 

already in existence, or is to be handled by some other means external to this 

program, the DISABLE statement is not required in this program. The logical 

path for the transfer of data between the COBOL programs and the MCS is not 

affected by the DISABLE statement. 

(2) When the INPUT phrase with the optional word TERMINAL is specified, 

the logical path between the source and all queues and sub-queues is deacti¬ 

vated. Only the contents of the data item referenced by data-name-7 (SYMBOLIC 

SOURCE) of the area referenced by cd-name are meaningful. 

(3) When the INPUT phraselwithout the optional word TERMINAL|is specified, 

the logical paths for all of the sources associated with the queues and sub¬ 

queues specified by the contents of data-name-1 (SYMBOLIC QUEUE) through 

data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by cd-name are 

deactivated. 

(4) When the OUTPUT phrase is specified, the logical path for destination, 

or the logical paths for all destinations,) specified by the contents of the 

data item referenced by data-name-5 (SYMBOLIC DESTINATION) of the area refer¬ 

enced by cd-name are deactivated. 

(5) Literal-1 or the contents of the data-name referenced by identifier-1 

will be matched with a password built into the system. The DISABLE statement 

will be honored only if literal-1 or the contents of the data item referenced 

by identifier-1 matches the system password. When literal-1 or the contents 

of the data item referenced by identifier-1 do not match the system password, 

the value of the STATUS KEY item in the area referenced by cd-name is updated 

XIII-13 



Communication - DISABLE 

The MCS must be capable of handling a password of from one to ten 

characters inclusive. 

(6) The MCS will insure that the execution of a DISABLE statement will 

cause the logical disconnection at the earliest time the source or destination 

is inactive. The execution of the DISABLE statement will never cause the 

remaining portion of the message to be terminated during transmission to or 

from a terminal. 

XIII-14 



Communication - ENABLE 

3.3 THE ENABLE STATEMENT 

3.3.1 Function 

The ENABLE statement notifies the MCS to allow data transfer between 

specified output queues and destinations for output or between specified 

sources and input queues for input. 

3.3.2 General Format 

ENABLE (SEE 

OUTPUT 

3.3.3 Syntax Rules 

(1) Cd-name must reference an input CD when the INPUT phrase is specified. 

(2) Cd-name must reference an output CD when the OUTPUT phrase is specified. 

(3) Literal-1 or the contents of the data item referenced by identifier-1 

must be defined as alphanumeric. 

3.3.4 General Rules 

(1) The ENABLE statement provides a logical connection between the MCS and 

the specified sources or destinations. When this logical connection is already 

in existence, or is to be handled by some other means external to this program, 

the ENABLE statement is not required in this program. The logical path for the 

transfer of data between the COBOL programs and the MCS is not affected by the 

ENABLE statement. 

f TERMINAL1 
cd-name WITH KEY 

j identifier-1 

"^literal-1 

(2) When the INPUT phrase with the optional word TERMINAL is specified, 

the logical path between the source and all associated queues and sub-queues 

which are already enabled is activated. Only the contents of the data item 

referenced by data-name-7 (SYMBOLIC SOURCE) of the area referenced by cd-name 

are meaningful to the MCS._ 

(3) When the INPUT phrase without the optional word TERMINAL I is specified, 

the logical paths for all of the sources associated with the queue and sub¬ 

queues specified by the contents of data-name-1 (SYMBOLIC QUEUE) through 

data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by cd-name are 

activated. 

(4) When the OUTPUT phrase is specified, the logical path for destination, 

or the logical paths for all destinations, specified by the contents of the 

data item referenced by data-name-5 (SYMBOLIC DESTINATION) of the area refer¬ 

enced by cd-name are activated. 

(5) Literal-1 or the contents of the data item referenced by identifier-1 

will be matched with a password built into the system. The ENABLE statement 

will be honored only if literal-1 or the contents of the data item referenced 

by identifier-1 match the system password. When literal-1 or the contents of 

XIII-15 



Communication - ENABLE 

the data item referenced by identifier-1 do not match the system password, 

the value of the STATUS KEY item in the area referenced by cd-name is updated. 

The MCS must be capable of handling a password of from one to ten 

characters inclusive. 

XIII-16 



Communication - RECEIVE 

3.4 THE RECEIVE STATEMENT 

3.4.1 Function 

The RECEIVE statement makes available to the COBOL program a message, 

message segment, or a portion of a message or segment,] and pertinent informa¬ 

tion about that data from a queue maintained by the Message Control System. 

The RECEIVE statement allows for a specific imperative statement when no 

data is available. 

3.4.2 General Format 

RECEIVE cd-name 
MESSAGE 

SEGMENT 
INTO identifier-1 [; NO DATA imperative-statement 

3.4.3 Syntax Rules 

(1) Cd-name must reference an input CD. 

3.4.4 General Rules 

(1) The contents of the data items specified by data-name-1 (SYMBOLIC 

QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by 

cd-name designate the queue structure containing the message. (See page 

XIII-3, The CD Entry.) 

(2) The message, message segment, or portion of a message or segment is 

transferred to the receiving character positions of the area referenced by 

identifier-1 aligned to the left without space fill. 

(3) When during the execution of a RECEIVE statement, the MCS makes data 

available in the data item referenced by identifier-1, control is transferred 

to the next executable statement, whether or not the NO DATA phrase is 

specified. 

(4) When, during the execution of a RECEIVE statement, the MCS does not 

make data available in the data item referenced by identifier-1: 

a. If the NO DATA phrase is specified, the RECEIVE operation is 

terminated with the indication that action is complete (see general rule 5), 

and the imperative statement in the NO DATA phrase is executed. 

b. If the NO DATA phrase is not specified, execution of the object 

program is suspended until data is made available in the data item referenced 

by identifier-1. 

c. If one or more queues or sub-queues is unknown to the MCS, control 

passes to the next executable statement, whether or not the NO DATA phrase is 

specified. (See page XIII-10 and XIII-11, Communication Status Key Condition.) 

(5) The data items identified by the input CD are appropriately updated 

by the Message Control System at each execution of a RECEIVE statement. (See 

page XIII-3, The CD Entry.) 

XIII-17 



Communication - RECEIVE 

(6) A single execution of a RECEIVE statement never returns to the data 

item referenced by identifier-1 more than a single message (when the MESSAGE 

phrase is used) or a single segment(when the SEGMENT phrase is used). How¬ 

ever , the MCS does not pass any portion of a message to the object program 

until the entire message is available in the input queue, even if the SEGMENT 

phrase of the RECEIVE statement is specified. 

(7) When the MESSAGE phrase is used, end of segment indicators are ignored, 

and the following rules apply to the data transfer: 

a. If a message is the same size as the area referenced by identifier-1, 

the message is stored in the area referenced by identifier-1. 

b. If a message size is less than the area referenced by identifier-1, 

the message is aligned to the leftmost character position of the area refer¬ 

enced by identifier-1 with no space fill. 

c. If a message size is greater than the area referenced by identi¬ 

fier-1, the message fills the area referenced by identifier-1 left to right 

starting with the leftmost character of the message. In Level 1, the dispo¬ 

sition of the remainder of the message is undefined. In Level 2, the remain 

der of the message can be transferred to the area referenced by identifier-1 

with subsequent RECEIVE statements referring to the same queue, sub-queue ... . 

The remainder of the message, for the purposes of applying rules 7a, 7b, and 

7c, is treated as a new message. 

(8) When the SEGMENT phrase is used, the following rules apply: 

a. If a segment is the same size as the area referenced by identifier-1, 

the segment is stored in the area referenced by identifier-1. 

b. If the segment'size is less than the area referenced by identifier-1, 

the segment is aligned to the leftmost character position of the area referenced 

by identifier-1 with no space fill. 

c. If a segment size is greater than the area referenced by identifier-1, 

the segment fills the area referenced by identifier-1 left to right starting 

with the leftmost character of the segment. The remainder of the segment can 

be transferred to the area referenced by identifier-1 with subsequent RECEIVE 

statements calling out the same queue, sub-queue ... . The remainder of the 

segment, for the purposes of applying rules 8a, 8b, and 8c, is treated as a 

new segment. 

d. If the text to be accessed by the RECEIVE statement has associated 

with it an end of message indicator or end of group indicator, the existence 

of an end of segment indicator associated with the test is implied and the 

text is treated as a message segment according to general rule 8. 

(9) Once the execution of a RECEIVE statement has returned a portion of 

a message, only subsequent execution of RECEIVE statements in that run unit 

can cause the remaining portion of the message to be returned. 

XIII-18 



Communication - RECEIVE 

(10) After the execution of a STOP RUN statement, the disposition of a 

remaining portion of a message partially obtained in that run unit is defined 

by the implementor. (See page 11-85, The STOP Statement.) 



Communication - SEND 

3.5 THE SEND STATEMENT 

3.5.1 Function I 

The SEND statement causes a message,|_a message segment, or a portion of a 

| message or segmentjto be released to onejor morel output queues maintained by 

the Message Control System. 

3.5.2 General Format 

Format 1 

SEND cd-name FROM identifier-1 

Fo rmat 2 

SEND cd-name ^FROM identifier-1] 

WITH identifier-2 

WITH ESI 

WITH EMI 

WITH EGI 

( before') 
IStItJ advancing 

((identifier-3) TlINE 

^(integer J [_LINES 

mn emon x c-n ame 

PAGE '] 
3.5.3 Syntax Rules 

(1) Cd-name must reference an output CD. 

(2) Identifier-2 must reference a one character integer without an 

operational sign. 

(3) When identifier-3 is used in the ADVANCING phrase, it must be the 

name of an elementary integer item. 

(4) When the mnemonic-name phrase is used, the name is identified with a 

particular feature specified by the implementor. The mnemonic-name is defined 

in the SPECIAL-NAMES paragraph of the Environment Division. 

(5) Integer or the value of the data item referenced by identifier-3 may 

be zero. 

3.5.4 General Rules 

ALL FORMATS 

(1) When a receiving communication device (printer, display screen, card 

punch, etc.) is oriented to a fixed line size: 

a. Each message or message segment will begin at the leftmost 

character position of the physical line. 

XIII-20 



Communication - SEND 

b. A message lor message segment that is smaller than the physical 

line size is released so as to appear space-filled to the right. 

Excess characters of a message or message segment) will not be c. 

truncated. Characters will be packed to a size equal to that of the physical 

line and then outputted to the device. The process continues on the next line 

with the excess characters. 

(2) When a receiving communication device (paper tape punch, another 

computer, etc.) is oriented to handle variable length messages, each message 

or message segment[will begin on the next available character position of the 

communications device. 

(3) As part of the execution of a SEND statement, the MCS will interpret 

the contents of the data item referenced by data-name-2 (TEXT LENGTH) of the 

area referenced by cd-name to be the user's indication of the number of left¬ 

most character positions of the data item referenced by identifier-1 from 

which data is to be transferred. 

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) 

of the area referenced by cd-name- are zero, no characters of the data item 

referenced by identifier-1 are transferred. 

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) 

of the area referenced by cd-name are outside the range of zero through the 

size of the data item referenced by identifier-1 inclusive, an error is 

indicated by the value of the data item referenced by data-name-3 (STATUS KEY) 

of the area referenced by cd-name, and no data is transferred. (See pages 

XIII-10 and XIII-11, Communication Status Key Condition.) 

(4) As part of the execution of a SEND statement, the contents of the data 

item referenced by data-name-3 (STATUS KEY) of the area referenced by cd-name 

is updated by the MCS. (See page XIII-3, The CD Entry.) 

(5) The effect of having special control characters within the contents 

of the data item referenced by identifier-1 is undefined. 

(6) A single execution of a SEND statement for Format 1 releases only a 

single portion of a message or of a message segment to the MCS._ 

A single execution of a SEND statement of Format 2 never releases to 

as indicated the MCS more than a single message]or a single message segment 

by the contents of the data item referenced by identifier-2 or by the speci¬ 

fied indicator ESI, EMI or EGI. 

However, the MCS will not transmit any portion of a message to a 

communications device until the entire message is placed in the output queue. 

(7) During the execution of the run unit, the disposition of a portion of 

a message not terminated by an EMI or EGI is undefined. However, the message 

does not logically exist for the MCS and hence cannot be sent to a destination. 

After the execution of a STOP RUN statement, any portion of a message 

transferred from the run unit via a SEND statement, but not terminated by an 

EMI or EGI, is purged from the system. Thus no portion of the message is sent. 

XIII-21 



Communication - SEND 

(8) Once the execution of a SEND statement has released a portion of a 

message to the MCS, only subsequent execution of SEND statements in the same 

run unit can cause the remaining portion of the message to be released._ 

FORMAT 2 

(9) The contents of the data item referenced by identifier-2 indicate that 

the contents of the data item referenced by identifier-1 are to have associated 

with it an end of segment indicator, an end of message indicator or an end of 

transmission indicator according to the following schedule: 

If the content of the 

data item referenced 

by identifier-2 is 

then the contents of 

data item referenced 

by identifier-1 have 

associated with it 

which means 

'O' no indicator no indicator 

111 ESI an end of segment indicator 

i2. EMI an end of message indicator 

’ 3’ EGI an end of group indicator 

Any character other than ' 1', ’2’, or * 3 * will be interpreted as ’O'. 

If the content of the data item referenced by identifier-2 is other 

than '1', *2’, or '3’, and identifier-1 is not specified, then an error is 

indicated by the value in the data item referenced by data-name-3 (STATUS KEY) 

of the area referenced by cd-name, and no data is transferred. 

(10) The ESI indicates to the MCS that the message segment is complete. 

The EMI indicates to the MCS that the message is complete. 

The EGI indicates to the MCS that the group of messages is complete. 

The implementor will specify the interpretation that is given to the EGI by 

the MCS. 

The MCS will recognize these indications and establish whatever is 

necessary to maintain group, message,! and segment!control. 

(11) The hierarchy of ending indicators is EGI, EMI, and ESI. An EGI need 

not be preceded by an!ESI or!EMI. I An EMI need not be preceded by an ESI. 

(12) The ADVANCING phrase allows control of the vertical positioning of 

each message or message segment on a communication device where vertical 

positioning is applicable. If vertical positioning is not applicable on the 

device, the MCS will ignore the vertical positioning specified or implied. 

(13) If identifier-2 is specified and the content of the data item refer- 

enced by identifier-2 is zero, the ADVANCING phrase is ignored by the MCS. 

XIII-22 



Communication - SEND 

(14) On a device where vertical positioning is applicable and the ADVANCING 

phrase is not specified, automatic advancing will be provided by the implemen¬ 

tor to act as if the user had specified AFTER ADVANCING 1 LINE. 

(15) If the ADVANCING phrase is implicitly or explicitly specified and 

vertical positioning is applicable, the following rules apply: 

a. If identifier-3 or integer is specified, characters transmitted 

to the communication device will be repositioned vertically downward the 

number of lines equal to the value associated with the data item referenced by 

identifier-3 or integer. 

b. If mnemonic-name is specified, characters transmitted to the 

communication device will be positioned according to the rules specified by 

the implementor for that communication device. 

c. If the BEFORE phrase is used, the message lor message segment| is 

represented on the communication device before vertical repositioning 

according to general rules 15a and 15b above. 

d. If the AFTER phrase is used, the message lor message segment! is 

represented on the communication device after vertical repositioning accord¬ 

ing to general rules 15a and 15b above. 

e. If PAGE is specified, characters transmitted to the communication 

device will be represented on the device before or after (depending upon the 

phrase used) the device is repositioned to the next page. If PAGE is specified 

but page has no meaning in conjunction with a specific device, then advancing 

will be provided by the implementor to act as if the user had specified BEFORE 

or AFTER (depending upon the phrase used) ADVANCING 1 LINE. 

XIII-23 



History of COBOL 

1. APPENDIX A: THE HISTORY OF COBOL 

1.1 ORGANIZATION OF COBOL EFFORT 

On May 28 and 29, 1959, a meeting was held in the Pentagon for the purpose 

of considering both the desirability and the feasibility of establishing a 

common language for the programming of electronic computers for business-type 

applications. Representatives from users, both in private industry and in 

government, computer manufacturers, and other interested parties were present. 

The group agreed that the project should be undertaken. The Conference on 

DAta SYsterns Languages (CODASYL) developed out of this meeting. 

The original COBOL specification resulted from the work of a committee of 

CODASYL. By September, 1959, this committee had specified a language which 

they considered superior to existing language-compiler systems. This language 

specification was further modified and by December, 1959, COBOL existed as a 

language that was not identified with any manufacturer and therefore presented 

advantages for both government and private industry users. 

1.1.1 Initial Organization 

The product of phase I of COBOL development was a report published in April 

of 1960 by the Government Printing Office entitled "COBOL—A Report to the 

Conference on Data Systems Languages, including Initial Specifications for a 

Common Business Oriented Language (COBOL) for Programming Electronic Digital 

Computers". The language described in this report has since become known as 

COBOL-60. 

1.1.2 The COBOL Maintenance Committee 

The Executive Committee of CODASYL recognized that the task of defining 

COBOL was a continuing one and that the language had to be maintained and 

improved. To this end, the COBOL Maintenance Committee was created and charged 

with the task of answering questions arising from users and implementors of the 

language and making definitive modifications, including additions, clarifica¬ 

tions, and changes to the language. 

The Maintenance Committee was comprised of a Users Group and a Manufacturers 

Group. These groups met together but voted on proposals separately. 

In order to devote concentrated attention to publishing a revised and up¬ 

dated "COBOL 60", the Executive Committee created a Special Task Group. The 

product of this task group was the COBOL-61 manual, which was published by 

the Government Printing Office in mid-1961. 

The next official COBOL publication was also the product of the Maintenance 

Committee and was called COBOL-61 Extended; released in mid-1963. 

1.1.3 The COBOL Committee 

In January, 1964, the COBOL Maintenance Committee was reorganized to pro¬ 

vide a true industry group and to broaden its scope of activities. The separate 

user and manufacturer groups were combined into the COBOL Committee consisting 

of three subcommittees: the Language Subcommittee, the Evaluation Subcommittee, 

and the Publication Subcommittee. 

XIV-1 



History of COBOL 

The Language Subcommittee's function was much the same as was that of the 

former COBOL Maintenance Committee, namely, the maintenance and further 

development of COBOL. In addition it carried on liaison with the United 

States of America Standards Institute (USASI: formerly the American Standards 

Association — ASA) and the International Organization for Standardization (ISO) 

in their work concerning the development of proposed COBOL Standards. 

The Publication Subcommittee was charged with the production of official 

COBOL publications and liaison with USASI as to the content of the COBOL 

Information Bulletin (CIB). The CIB is a collection of material relating to 

COBOL, distributed to the COBOL community by USASI. 

The Evaluation Subcommittee’s task was the analysis and evaluation of 

compiler implementations and user surveys. This subcommittee provided 

information to the COBOL Committee regarding the use of COBOL. 

The product of the COBOL Committee was the manual, "COBOL, Edition 1965". 

1.1.4 Programming Language Conmittee 

In July, 1968, the CODASYL Executive Committee adopted a revised constitu¬ 

tion which accomplished certain needed organizational changes in an effort to 

stabilize and improve the methods of achieving CODASYL objectives. CODASYL 

now consists of four standing committees: the Executive Committee, the Pro¬ 

gramming Language Committee, the Planning Committee, and the Systems Committee. 

With the formation of the Programming Language Committee (PLC) the former 

COBOL Language Subcommittee was elevated to full committee status, and its 

chairman became a member of the Executive Committee. 

The purpose and objectives of PLC include and extend those of the former 

COBOL Language Subcommittee. The objectives are to make possible: compat¬ 

ible, uniform, source programs and object results, with continued reduction 

in the number of changes necessary for conversion or interchange of source 

programs and data. The PLC concentrates its efforts in the area of tools, 

techniques and ideas aimed at the programmer. 

The Programming Language Committee is responsible for the presentation 

of the COBOL Journal of Development. 

1.2 EVOLUTION OF COBOL 

1.2.1 C0B0L-60 

COBOL-60, the first version of the language published, proved that the 

concept of a common business oriented language was indeed practical. 

1.2.2 COBOL-61 

COBOL-61, the second official version of COBOL, was not completely compat¬ 

ible with COBOL-60. The changes were in areas such as organization of the 

Procedure Division rather than the addition of any major functions. The 

avowed goal of CODASYL in terms of successive versions of the language was to 

make changes of an evolutionary rather than revolutionary nature. This 

version was generally implemented and was the basis for many COBOL compilers. 

XIV-2 



History of COBOL 

1.2.3 COBOL-61 Extended 

This version of COBOL was generally compatible with COBOL-61. The term 

'generally' must be used, not because of any basic changes in the philosophy 

or organization of the language, but because certain arithmetic extensions 

and general clarifications did make the syntax for certain statements and 

entries different from those in COBOL-61. 

COBOL-61 Extended, then, was generally COBOL-61 with the following major 

additions and modifications: 

a. The addition of the Sort feature, 

b. The addition of the Report Writer option, 

c. The modification of the arithmetics to include multiple receiving 

fields and to add the CORRESPONDING option to the ADD and SUBTRACT statements, 

and 

d. The inclusion of various clarifications. 

1.2.4 COBOL, Edition 1965 

This version of COBOL included COBOL-61 Extended plus certain additions and 

modifications. 

The major changes incorporated in COBOL, Edition 1965, were: 

a. The inclusion of a series of options to provide for the reading, 

writing and processing of mass storage files, 

b. The addition of the Table Handling feature which includes indexing 

and search options, 

c. The modification of the specifications to delete the requirement for 

specific error diagnostic messages, 

d. The deletion of the terms "Required" and "Elective", and 

e. The inclusion of various clarifications. 

1.2.5 COBOL, 1968 

This version of COBOL, published in the Journal of Development, was based 

on COBOL, Edition 1965, with certain additions and deletions. 

The major changes incorporated in COBOL, 1968, were: 

a. The inclusion of inter-program communication and the concept of a 

run unit, 

b. The elimination of redundant editing clauses and certain data clauses 

more succinctly expressed by the PICTURE clause, 

XIV-3 



History of COBOL 

c. An improved COPY specification for all divisions except the Identifi¬ 

cation Division and the elimination of the INCLUDE statement, 

d. The inclusion of a hardware independent means of specifying and testing 

for page overflow conditions, 

e. The elimination of type 4 abbreviations, 

f. The elimination of the DEFINE statement, 

g. The inclusion of a remainder option for the DIVIDE statement, 

h. The deletion of NOTE and REMARKS in favor of a general comment capabil¬ 

ity for all divisions, 

i. The inclusion of the SUSPEND statement as additional means of control¬ 

ling graphic display devices, 

j. The inclusion of additional abbreviations, 

k. A revision of the EXAMINE statement to allow the specification of 

dynamic parameter values, and 

l. The inclusion of various clarifications. 

1.2.6 COBOL, 1969 

This version of COBOL, published in the Journal of Development, is based on 

COBOL, 1968, with certain additions and deletions. 

The major changes incorporated in COBOL, 1969, are: 

a. The deletion of the EXAMINE statement and the inclusion of a more 

powerful statement, INSPECT, in its place, 

b. The inclusion of a communication facility to permit input and output 

with communications devices, 

c. The inclusion of the STRING and UNSTRING statements, to facilitate 

character string manipulation, 

d. Deletion of the CONSTANT SECTION of the Data Division, 

e. The inclusion of a compile-time page ejection facility, 

f. The inclusion of a facility to access the system's date and time, 

g. The inclusion of a SIGN clause as a means of specifying the position 

and mode of representation of the operational sign, and 

h. The inclusion of various clarifications. 

XIV-4 



His tori) of COBOL 

1.2.7 COBOL, 1970 

This version of COBOL, published in the Journal of Development, is based on 

COBOL, 1969, with certain additions, deletions, and modifications. 

The major changes incorporated in COBOL, 1970, are: 

a. The deletion of the RANGE clause, 

b. The inclusion of the INITIALIZE statement, to facilitate setting data 

items to values consistent with their data descriptions, 

c. The inclusion of a debugging facility, 

d. The inclusion of a merge facility, 

e. A complete revision to the Report Writer function, and 

f. The inclusion of various clarifications. 

1.2.8. COBOL, 1973 

This version of COBOL, published in the Journal of Development, is based on 

COBOL, 1970, with certain additions, deletions, and modifications. 

The major changes incorporated in COBOL, 1973, are: 

a. A revision and extension to the mass storage facility, 

b. A clarification and extension to the COBOL library facility, 

c. An enhancement of the INSPECT statement, 

d. A revision to the file control entry for a sort or merge file which 

included the deletion of Format 3, 

e. A revision to the RERUN facility, 

f. The removal of the restriction on 77 level-numbers that they must 

precede 01 level-numbers, 

g. The inclusion of a page advancing feature as part of the WRITE 

statement, 

h. A clarification and enhancement of the COBOL language structure, 

i. An enhancement of the LINAGE clause to permit specification of margins, 

and 

j. The inclusion of various clarifications. 

XIV-5 



History of COBOL 

1.3 STANDARDIZATION OF COBOL 

1.3.1 Initial Standardization Effort 

American National Standards Committee on Computers and Information Pro¬ 

cessing, X3, was established in 1960 under the sponsorship of the Business 

Equipment Manufacturers Association. The X3 Committee in turn established the 

X3-4 Subcommittee to pursue standards in the area of Common Programming Lan¬ 

guages. Subsequently, Working Group X3.4.4 with the title "Processor Specifi¬ 

cation and COBOL Standards" was established to pursue a COBOL standard. Part 

of the scope of X3.4.4 follows: 

"Standardization of COBOL and its characteristics, establishment 

of an X3.4 COBOL bulletin, publication of interpretations and 

clarifications, and the definition of test problems." 

On December 17, 1962, invitations to an organizational meeting of X3.4.4 

were sent to manufacturers and user groups who might be interested in parti¬ 

cipating in the establishment of a COBOL standard. The first meeting was held 

on January 15-16, 1963, in New York and the following program of work was 

accepted: 

(1) Establish the X3.4 COBOL Information Bulletin (CLB) and provide for 

its broad publication. 

(2) Ascertain the features of existing or proposed COBOL processors. 

(3) Refer ambiguities to the COBOL Maintenance Committee for interpretation. 

(4) Publish these interpretations in the CIB. 

(5) Write test problems to test specific and combinatorial features of 

COBOL. 

(6) Refer any new ambiguities which are revealed through the test problems 

to the COBOL Maintenance Committee. 

(7) When appropriate, write and publish in the X3.4 CIB a proposed draft 

standard for COBOL and process it through the X3 Committee. 

(8) When appropriate, publish proposed standard test problems for COBOL 

and process them through the X3 Committee. 

(9) Review and augment these standards as necessary. 

(10) Maintain close liaison with other standards bodies interested in COBOL. 

The objective of the X3.4.4 Working Group was to produce a document which 

defined the American Standard* or standards for COBOL. The resulting standard 

language was to be based upon the specifications set out in the CODASYL publi¬ 
cation. 

* 
In August, 1966, the American Standards Association (ASA) became the USA 

Standards Institute (USASI). Then in the fall of 1969, the USA Standards 

Institute (USASI) became the American National Standards Institute (ANSI). 

XIV-6 



History of COBOL 

The criteria used to consider and evaluate various language elements for 

inclusion in the proposed standard included (not in order of importance): 

(1) General usefulness, as determined by: 

a. Degree of implementation 

b. User acceptance 

c. User desires 

d. Experience 

(2) Cost of implementation versus advantages of use. 

(3) Functional capability of element, considering redundancy. 

(4) Overall consistency of defined level. 

(5) Upward compatibility. 

(6) Processing system capability. 

To accomplish its work, X3.4.4 was divided into the following four 

subgroups: 

X3.A.A.1 - Compiler Features Study Group 

X3.A.A.2 - Audit Routine Group 

X3.A.A.3 - COBOL Information Bulletin 

X3.A.A.A - Standard Language Specifications 

1.3.2 USA Standard COBOL 

On August 30, 1966, X3.A.A completed its work and approved the content and 

format for a proposed USA Standard COBOL. The proposed USA Standard COBOL was 

composed of a nucleus and eight functional processing modules: Table Handling, 

Sequential Access, Random Access, Random Processing, Sort, Report Writer, 

Segmentation, and Library. The Nucleus and each of the eight modules were 

divided into two or three levels. In all cases, the lower levels are proper 

subsets of the higher levels within the same module. The minimum proposed 

standard was defined as the low level of the nucleus plus the low level of 

the table handling and sequential access modules. The highest levels of the 

nucleus and the eight modules were defined as the full proposed USA Standard 

COBOL. 

The USA Standards Committee on Computer and Information Processing, X3, 

authorized publication of the proposed USA Standard COBOL to elicit comment 

and criticism from the data processing community in order that the final 

standard reflect the largest public consensus. In April 1967, the proposed 

USA Standard COBOL was published, as COBOL Information Bulletin //9, by the 

Association for Computing Machinery, Special Interest Committee on Programming 

Languages (SICPLAN) in the SICPLAN Notices. 

X3 also authorized that concurrent with publication of the proposed USA 

Standard COBOL, a letter ballot be taken of the membership of the X3 committee 

on the acceptability of the proposed USA Standard COBOL as a USA Standard. 

The ballots and comments received with the ballots indicated that the X3 

members were in favor of the proposed USA Standard COBOL. X3 voted to move 

XIV-7 



History of COBOL 

the Random Processing module from the body of the proposed USA Standard COBOL 

to an appendix and to forward the proposed standard on to the Information 

Processing Systems Standards Board. 

The USA Standard COBOL proposed by X3 was approved by the Information 

Processing Systems Standards Board on August 23, 1968, as a USA Standard. 

The specifications of the USA Standard COBOL were published in the USA 

Standards document X3.23-1968. 

The Working Group on Processor Specifications and COBOL, X3.4.4, which 

developed the Standard, had the following personnel: 

H. Bromberg, Chairman 

G. F. Archer 

G. N. Baird 

P. A. Beard 

R. F. Betscha 

H. W. Fischbeck 

H. R. Fletcher 

R. C. Fredette 

H. S. Gile 

N. C. Godfrey 

J. S. Grant 

W. D. Green 

D. C. Harris 

M. Hill 

K. R. Jensen 

A. N. McMahan 

J. S. Meach 

H. S. Millman 

S. N. Naftaly 

P. B. Olshansky 

R. S. Pettus 

E. D. Phillips 

L. Rodgers 

R. E. Rountree, Jr 

J. G. Solomon 

R. L. Solt 

L. J. Soma 

M. Spratt 

L. Sturges 

M. V. Vickers 

L. J. Wilson 

1.3.3 International Standardization of COBOL 

Throughout the entire COBOL standardization activity of the X3.4.4 

Working Group, close liaison was maintained with the various international 

groups. As a result, American National Standard COBOL complies with the ISO 

(International Organization for Standardization) Recommendation on COBOL. 

The ISO Recommendation R-1989, Programming Language COBOL, was drawn up 

by the Technical Committee ISO/TC 97, Computers and Information Processing, 

the Secretariat of which is held by the American National Standards Institute 

(ANSI). As a result of a six-year development period, the ISO Recommendation 

reflected the requirements of the international data processing community. 

The primary objective was to reflect a language rich enough to allow description 

of a wide variety of data processing problems and to reflect accurately the 

requirements of the Member Bodies of ISO. Great care was also taken to ensure 

as far as possible identical interpretation with respect to the national COBOL 

standards known to be under development. 

The Draft ISO Recommendation R-1989 was circulated to all the ISO member 

bodies for inquiry in July, 1970. The draft was approved, subject to a few 

modifications of an editorial nature, by all but one of the ISO member bodies. 

The Draft ISO Recommendation R-1989 was then submitted to the ISO Council, 

which accepted it as an ISO Recommendation. 

XIV-8 



Revision 

2. APPENDIX B: THE REVISION OF AMERICAN NATIONAL STANDARD COBOL 
— 

2.1 THE ROLE OF X3J4 

Technical Committee X3J4 evolved from Working Group X3.4.4 and its sub¬ 

ordinate working groups, the bodies responsible for the development of the 

first COBOL standard (X3.23-1968). X3J4 was charged with the responsibility 

for the maintenance of the COBOL standard and in the period immediately 

following the publication of X3.23-1968, the committee developed and put into 

effect procedures to handle requests for information, clarification or inter¬ 

pretation of that document. 

X3J4 began the task of preparing a revision to the COBOL standard in 1969 

with the development of criteria against which each candidate for inclusion 

in the proposed revision was to be matched. The criteria used were: 

(1) The general usefulness of an element or function in terms of: 

a. The degree of implementation 

b. Acceptance by users 

c. The degree to which a function was required 

(2) The overall functional capability of the language, considering such 

things as redundancy. 

(3) The state-of-the-art technology with regard to implementing the ^ 

language feature. 

(4) The usefulness, in terms of application requirements, of language 

capabilities within each level of a module. 

(5) Compatibility with other standards. 

(6) The cost of implementation versus advantages of use. 

(7) Overall language consistency within a defined level or module. 

(8) Upward compatibility of levels within a module. 

Detailed work on the proposed revision began in early 1970 and, with the 

committee meeting every 4 to 6 weeks, a draft proposed revision was completed 

in June 1972. The COBOL community was apprised of the nature of the proposed 

changes through publication, in the first half of 1972, of COBOL Information 

Bulletins 14, 15, and 16. 

American National Standards Committee X3 agreed, in July 1972, to accept the 

draft proposal for publication and subsequent letter ballot on the question of its 

acceptance as a proposed American National Standard. The full text of the proposed 

revision was made available to the COBOL community for review and comment in 

September 1972. 

( 

XIV-9 



Revision 

2.2 INTERACTION WITH OTHER COBOL GROUPS 

2.2.1 Programming Language Committee 

The entire technical content of this revision to the COBOL standard was 

drawn either from the existing COBOL standard (X3.23-1968) or from the CODASYL 

COBOL Journal of Development (JOD). The Journal of Development is a publica¬ 

tion of the CODASYL Programming Language Committee (PLC), the body responsible 

for the continuing development of the COBOL language. Since the language, and 

hence the JOD, is constantly changing, it was necessary to select the JOD of a 

given date to serve as the base document for the revision process. This date, 

known as the cutoff date, was December 31, 1971. Changes to the language 

after that date were considered for inclusion in the revision only where they 

were in response to X3J4 proposals or where they affected items whose final 

disposition had been deferred by X3J4 pending specific PLC action. 

Throughout the revision cycle, PLC gave priority in its agenda to X3J4 

proposals and requests for language clarification. Their generous cooperation 

during this period made the task of X3J4 considerably lighter and contributed 

significantly to the quality of the revised standard. 

2.2.2 International Standardization Bodies 

Close and continuous liaison was maintained with the international COBOL 

community during the work on the revision. This culminated in February 1972 

with a meeting of representatives of X3J4, European Computer Manufacturers 

Association Technical Committee 6 (ECMA TC6), and several ISO (International 

Organization for Standardization) member organizations to review the proposed 

changes and to resolve any differences of opinion that existed concerning the 

technical content of the proposed revision. 

ECMA TC6 played a very active part throughout the revision process and made 

a number of significant contributions to the enhancement and clarification of 

the revision. 

2.3 DIFFERENCES BETWEEN X3.23-1968 AND THE REVISED STANDARD 

2.3.1 Format of the Revised Standard 

As was the case with X3.23-1968, the organization of the specifications in 

the revised standard is based on a functional processing module concept with 

each module divided into two or more levels. Unlike X3.23-1968, however, 

where a separate chapter was devoted to each processing level, each module 

in the revised document is covered in a single chapter. The high level 

features are boxed and any restrictions in the low levels are covered by 

additional rules. 

The revision defines a Nucleus and eleven functional processing modules: 

Table Handling, Sequential 1-0, Relative 1-0, Indexed 1-0, Sort-Merge, Report 

Writer, Segmentation, Library, Debug, Inter-Program Communication, and Communi¬ 

cation. Nine modules contain a null set as their lowest level and in all cases 

the lower levels are proper subsets of the higher levels within the same module 

XIV-10 



Module Overview 

2.3.2 Overview of the Revised Modules 

As in X3.23-1968, the Nucleus is divided into two levels. The major changes 

introduced into the Nucleus are: 

(1) The REMARKS paragraph and the NOTE statement have been deleted in 

favor of a generalized comment facility. An * in character position 7 now 

identifies any line as a comment line. A further refinement of this (a slash 

*/* in character position 7) causes the line to be treated as a comment and 

causes page ejection. 

(2) The EXAMINE statement has been deleted in favor of the more general 

and powerful INSPECT statement. The INSPECT statement provides the ability 

to count (Format 1), replace (Format 2) or count and replace (Format 3) 

occurrences of single characters or groups of characters in a data item. 

(3) Level 77 items need no longer precede level 01 items in the Working- 

Storage Section. 

(4) The punctuation rules with regard to spaces have been relaxed, e.g., 

spaces may now optionally precede the comma, period or semicolon, and may 

optionally precede or follow a left parenthesis. 

(5) Two contiguous quotation marks may be used within a nonnumeric literal 

to represent a single occurrence of the character quotation mark. 

(6) A SIGN clause has been added that permits the specification of the 

position that the sign is to occupy in a signed numeric item (either leading 

or trailing) and/or that it is to occupy a separate character position. 

Other changes in the Data Division permit the object of a REDEFINES clause to 

be subordinate to a data item described with an OCCURS clause, set the maximum 

size of a numeric field at 18 digits, permit the stroke '/' as an editing 

character and specify some tightening of the rules concerning literals in the 

VALUE clause (if the literal is signed, the data item must be described as 

signed; if the data item is numeric edited, the literal must be nonnumeric). 

(7) The ACCEPT statement has been expanded to provide access to internal 

DATE, DAY and TIME. 

(8) GIVING identifier series has been added to the arithmetic statements; 

identifier series has been added to the COMPUTE statement; and INTO identifier 

series has been added to the DIVIDE statement. 

(9) The STRING statement has been added. This statement provides for the 

juxtapositioning within a single data item of the partial or complete contents 

of two or more data items. A companion statement, the UNSTRING, has also been 

added. This statement causes contiguous data within a single data item to be 

separated and placed in multiple receiving fields. 

(10) Certain ambiguities in abbreviated combined conditions with regard to 

NOT and the use of parentheses have been eliminated. Where any portion of an 

abbreviated combined condition is enclosed in parentheses, all subjects and 

operators required for the expansion of that portion must be included within 

the same set of parentheses. 

XIV-11 



Module Overview 

(11) The PROGRAM COLLATING SEQUENCE clause was added, to permit specifica¬ 

tion of the collating sequence used in nonnumeric comparisons. Native, ASCII, 

implementor-defined and user-defined collating sequences may be specified. 

This makes possible the processing of ASCII files without changing source 

program logic. 

The Table Handling module is divided into two levels; Level 1 contains 

essentially all that appears in Levels 1 and 2 of X3.23-1968, and Level 3 of 

X3.23-1968 becomes Level 2 in the revision. Among the more important changes 

introduced into this module are: 

(1) The left parenthesis enclosing subscripts need not be preceded by a 

space. Commas are not required between subscripts or indices. Literals and 

index-names may be mixed in a table reference. 

(2) A data description entry that contains an OCCURS DEPENDING ON clause 

may only be followed, within that record description, by data description 

entries that are subordinate to it. Thus, the "fixed" portion of a record 

must entirely precede any "variable" portion. The effect of the OCCURS 

DEPENDING ON was clarified to state explicitly that internal operations 

involving tables described with this clause reference only the portion of the 

table that is "active" (i.e., the actual size as defined by the current value 

of the operand of the DEPENDING ON phrase is used). 

(3) An index may be set up or down by a negative value. 

(4) The subject of the condition in the WHEN phrase of the SEARCH ALL 

statement must be a data item named in the KEY phrase of the referenced table; 

the object of this condition may not be such a data item. X3.23-1968 speci¬ 

fied that either the subject or the object could be a data item named in the 

KEY phrase. 

As in X3.23-1968, the Sequential 1-0 module is divided into two levels. 

Among the significant changes introduced into this module are: 

(1) The FILE-LIMITS clause, the MULTIPLE REEL/UNIT clause, and the integer 

implementor-name phrase of the file control entry were deleted because it was 

felt that these functions could be handled better outside of the COBOL 

program. 

(2) The SEEK statement was deleted because it was felt to be redundant (it 

is implied by the READ, WRITE, etc.) and ineffective. 

(3) OPEN REVERSED now positions a file at its end. OPEN EXTEND was added 

to permit the addition of records at the end of an existing sequential file. 

(4) USE AFTER STANDARD ERROR was changed to read USE AFTER STANDARD 

ERROR/EXCEPTION; the function was expanded to permit invocation of the asso¬ 

ciated procedure on both error (e.g., boundary violation) or exception (e.g., 

AT END) conditions. 

(5) The AT END phrase of the READ statement was made optional; it must 

appear, however, if no applicable USE procedure appears. 

XIV-12 



Module Overview 

(6) The INVALID KEY phrase of the WRITE was deleted since there is no 

user-defined key for sequential files. Error and/or exception conditions can 

be monitored through appropriate USE statements. 

(7) The FILE STATUS clause was added to permit the system to convey 

information to the program concerning the status of I/O operations. Codes 

for "error", AT END, etc., have been defined. 

(8) The REWRITE statement was added to permit the explicit updating of 

records on a sequential file. 

(9) The LINAGE clause was added to permit programmer definition of logical 

page size and of the size of top and bottom margins on the logical page. 

(10) The PAGE phrase was added to the WRITE statement to permit presenta¬ 

tion of a line before or after advance to the top of the next logical page. 

(11) The facility of define, initialize and access user-defined labels has 

been deleted. 

(12) The CODE-SET clause has been added to provide for conversion of 

sequential non-mass storage files encoded in ASCII or implementor-specified 

codes from/to the native character code. 

The Random Access module of X3.23-1968 has been replaced by two new modules, 

the Relative 1-0 and Indexed 1-0 modules. Both of the modules are composed of 

three levels, the first of which is null. While there is much functional and 

even syntactic similarity between the Relative 1-0 module and the existing 

Random Access module, the Indexed 1-0 module has no functional equivalent in 

the previous standard. 

Among the major features of the Relative 1-0 module are: 

(1) An ORGANIZATION IS RELATIVE clause. 

(2) A RELATIVE KEY clause. 

(3) An ACCESS MODE clause which specifies random, sequential or dynamic 

access. Dynamic access permits the file to be accessed both randomly and 

sequentially. 

(4) FILE STATUS and USE AFTER STANDARD ERROR/EXCEPTION as outlined in the 

Sequential 1-0 module. Here also the USE procedure may be used in place of 

the AT END and INVALID KEY phrases of the READ, WRITE, etc. 

(5) In addition to OPEN, CLOSE, READ and WRITE, the DELETE, REWRITE, and 

START verbs are provided. READ NEXT provides for the intermixing of sequen¬ 

tial with random accesses of the file (when access mode is dynamic). START 

provides the facility to position the file such that the next sequential READ 

statement will reference a specified record. 

Among the major features of the Indexed 1-0 module are: 

(1) An ORGANIZATION IS INDEXED clause. 

XIV-13 



Module Overview 

(2) An ACCESS MODE clause with characteristics similar to that of the 

Relative 1-0 module. 

(3) FILE STATUS and USE procedures, as in the Relative 1-0 module. 

(4) The RECORD KEY clause specifies the data item that serves as the 

unique identifier for each record. The data item is known as the prime record 

key. The ALTERNATE KEY clause specifies additional (alternate) keys for the 

file. All insertion, updating or deletion of records is done on the basis of 

the prime record key. Retrieval, however, may be on the basis of either the 

prime or alternate record keys, thus providing more than one access path 

through the file. 

(5) As in the Relative 1-0 module, the new verbs DELETE, START and REWRITE 

are available. READ NEXT and READ...KEY IS... are also available; the latter 

provides the means of specifying the key upon which retrieval is to be based 

(prime or alternate). The START statement also provides the means of speci¬ 

fying whether the prime or alternate key is to be used for positioning the 

file. 

The Sort-Merge module contains three levels, one of which is null. The 

major change to the Sort module of the previous standard has been the addition 

of a MERGE statement to permit the combination of two or more identically 

ordered files. The MERGE statement parallels the SORT statement in format, 

except that no input procedure is provided. The COLLATING SEQUENCE phrase has 

been added to permit overriding of the program collating sequence when execut¬ 

ing a SORT or MERGE statement. 

The Report Writer module has two levels, one of which is null (X3.23-1968 

has two non-null levels). The Report Writer module was completely rewritten 

in order to remove existing ambiguities and to provide a stronger and more 

useful facility. Care was taken in the rewrite not to imply that reports had 

to be presented on a printer (rather than on a type of graphic device). 

The Segmentation module has three levels, the first of which is null. The 

major changes introduced are: 

(1) There is no logical difference between fixed and fixed overlayable 

segments (X3.23-1968 placed certain restrictions on the range of PERFORM's 

involving fixed overlayable segments). 

(2) A PERFORM statement in a non-independent segment may have only one of 

the following within its range: (1) non-independent segments or (2) sections 

wholly contained in a single independent segment. A similar constraint applies 

to a PERFORM in an independent segment, except that (2) reads "Sections wholly 

contained in the same independent segment." Where a SORT or MERGE statement 

appears in a segmented program, then any associated input/output procedures 

are subject to the same constraints that apply to the range of a PERFORM 

(e.g., where the SORT is in a non-independent segment, the associated input/ 

output procedures must be either wholly contained in non-independent segments 

or wholly contained in a single independent segment). 

The Library module has a null level and two non-null levels. The major 

changes introduced are: 

XIV-14 



Module Overview 

(1) The COPY statement may appear anywhere in the program that a COBOL 
word or separator may appear (X3.23-1968 permitted the COPY statement to 
appear only in certain specified places). 

(2) More than one library can be available. 

(3) All occurrences of a given literal, identifier, word or group of 
words in the library text can be replaced. (X3.23-1968 did not permit 
replacement of groups of words.) 

(4) The matching and replacement process has been significantly clarified. 

The new Debug module provides a means by which the programmer can specify 
a debugging algorithm, including the conditions under which data items or 
procedures are to be monitored during program execution. This module has a 
null level and two non-null levels. The major features of this module are: 

(1) A USE FOR DEBUGGING statement which permits full or selective proce¬ 
dure and data-name monitoring; control is passed to the procedure when the 
specified condition arises. Associated with the execution of each debugging 
section (i.e., the declarative procedure associated with the USE FOR DEBUGGING 
statement) is the special register DEBUG-ITEM. This is updated by the system 
each time a debugging section is executed with such information as the name 
(with occurrence numbers if it should be the name of a table element), that 
caused the execution, the line number upon which the name appears, etc. The 
USE FOR DEBUGGING statements and their associated declarative procedures are 
treated as comment lines if the WITH DEBUGGING MODE clause does not appear in 
the program. An object time switch is also provided, outside of the COBOL 
program, through which the USE FOR DEBUGGING procedures can be "turned off" 
without the need to recompile the program. 

(2) Debugging lines. Any line with a "D" in the continuation area is a 
debugging line and will be compiled and executed only if the WITH DEBUGGING 
MODE clause appears in the program. Where this compile time switch does not 
appear in the program, these lines are treated as comment lines. The setting 
of the object time switch has no effect on the execution of debugging lines. 
Through the debugging line facility, the programmer has at his disposal the 
full power of the COBOL language for debugging purposes. 

The new Inter-Program Communication module provides a facility by which a 
program can communicate with one or more other programs. This communication 
is provided by: (a) the ability to transfer control from one program to 
another within a run unit and (b) the ability for both programs to have access 
to the same data items. This module has three levels, the first of which is 
null. The major features of this module are: 

(1) The CALL statement causes control to be transferred from one object 
program to another. The CALL statement can be "static" (i.e., the name of 
the called program is known at compile time) or dynamic (i.e., the name of 
the called program is not known until program execution time). The USING 
phrase of the CALL statement names the data to be shared with the called 
program; a USING phrase in the Procedure Division header of the called program 
specifies the names by which this shared data is to be known in the called 
program. The ON OVERFLOW phrase of the CALL statement will cause control to 

XIV-15 



Substantive Changes 

be transferred to an associated imperative statement if there is not enough 

memory available at execution time to permit the loading of the called program. 

(2) The CANCEL statement releases the areas occupied by called programs 

that are no longer required to be in memory. 

(3) The EXIT PROGRAM statement marks the logical end of a called program 

and causes control to be returned to the calling program (i.e., the program 

in which the CALL statement appears). 

(4) The Linkage Section appears in a program that is to operate under the 

control of a CALL statement. It is used in the called program to describe 

data that is to be made available from the calling program through the CALL 

USING facility described above. 

The new Communication module provides the ability to access, process, and 

create messages or portions thereof. It provides the ability to communicate 

through a Message Control System with local and remote communication devices. 

This new module has three levels, the first of which is null. Among the major 

features of the module are: 

(1) The communication description entry (CD) specifies the interface area 

between the Message Control System (MCS) and a COBOL program. The CD specifies 

the input message queue structure, the symbolic names of destinations for out¬ 

put messages and such things as message date, message time and text length. 

(2) The ENABLE and DISABLE statements notify the MCS to permit or inhibit 

the transfer of data between specified output queues and destinations for 

output or between sources and input queues for input. 

(3) The RECEIVE statement makes available, from a queue maintained by the 

Message Control System, to the COBOL program a message, or portion thereof, 

and pertinent information about the message. 

(4) The SEND statement causes a message or a portion of a message to be 

released to one or more output queues maintained by the MCS. 

(5) The ACCEPT MESSAGE COUNT statement causes the number of messages in a 

queue to be made available. 

(6) The FOR INITIAL INPUT clause of the CD entry permits the MCS to 

schedule a program for execution upon receipt of a message for that program. 

In addition to the technical changes outlined above, a number of changes 

were made in the definition of an implementation of American National Standard 

COBOL. (See page 1-4.) 

2.3.3 Substantive Changes 

The list beginning on page XIV-17 contains the changes of substance that 

have been included in the revised standard. The code reflected under the 

remarks column is as follows: 

(1) Indicates the change will not impact existing programs. For example, 

a new verb or an additional capability for an old verb. 

XIV-16 



Substantive Changes 

(2) Indicates the change could impact existing programs and some 

re-programming may be needed. For example, where the semantics or syntax of 

an existing verb were changed. 

(3) Indicates that the change impacts an area that was implementor-defined 

in the original standard. As such it may or may not affect existing programs. 

Additions to the reserved word list that will impact existing programs are 

not included in the list. 

Language elements associated with the Report Writer module are not assigned 

codes because the report writer specifications were completely rewritten and 

comparison with the previous standard is therefore not meaningful. 

SUBSTANTIVE CHANGE 

MODULE 

AFFECTED REMARKS 

1. Space may immediately precede or may 1 NUC 

immediately follow a parenthesis 

(except in a PICTURE character-string). 

(1) Relaxes punctuation 

rules. 

2. Period, comma, or semicolon may be 

preceded by a space. 

1 NUC (1) Relaxes punctuation 

1 TBL rules. 

3. Semicolon and comma are interchangeable. 1 NUC (1) 

4. An asterisk (*) in the continuation 

area (seventh character position) 

causes the line to be treated as a 

comment by the compiler. The comment 

line may appear in any division. 

1 NUC (1) New feature; replaces 

the NOTE statement and 

REMARKS paragraph. 

5. A stroke (slash, '/f> virgule) in the 1 NUC (1) 

continuation area (seventh character 

position) of a line causes page ejec¬ 

tion of the compilation listing. (The 

line is treated as a comment.) 

6. A phrase or clause (as well as a 1 NUC (1) 

sentence or entry) may be continued 

by starting subsequent lines in 

area B. 

7. Two contiguous quotation marks may be 1 NUC (1) New feature, 

used to represent a single quotation 

mark character in a nonnumeric literal. 

8. Last line in program may be a comment 1 NUC (1) 

line. 

9. Mnemonic-name must have at least one 

alphabetic character. 

1 NUC (3) X3.23-1968 had no 
such restriction. 

XIV-17 



Substantive Changes 

MODULE 

SUBSTANTIVE CHANGE AFFECTED 

10. Number of qualifiers permitted is 2 NUC 

implementor-defined, but must be at 

least five. 

11. Complete set of qualifiers for a name 2 NUC 

may not be same as partial list of 

qualifiers for another name. 

12. REMARKS paragraph is deleted. 1 NUC 

13. Continuation of Identification Division 1 NUC 

comment-entries must not have a hyphen 

in the continuation indicator area. 

14. PROGRAM COLLATING SEQUENCE clause 1 NUC 

specifies that the collating sequence 

associated with alphabet-name is 

used in nonnumeric comparisons. 

15. SPECIAL-NAMES paragraph: 'L', 7', and 2 NUC 

'=' may not be specified in the CURRENCY 

SIGN clause. 

16. Alphabet-name clause relates a user- 1 NUC 

defined name to a specified collating 

sequence or character code set (ANSI, 

native, or implementor-specified). 

17. Alphabet-name clause: the literal 2 NUC 

phrase specifies a user-defined 

collating sequence. 

18. Condition-name may be given the status 1 NUC 

of an implementor-defined switch. 

Switches are implementor-defined and 

may be either software or hardware 

switches. 

19. All items which are immediately 1 NUC 

subordinate to a group item must have 

the same level-number. 

20. Level 77 items need not precede level 1 NUC 

01 items in the Working-Storage Section. 

21. Level numbers 02-49 may appear anywhere 1 NUC 
to the right of margin A. (Margin A 

is defined as being between character 

positions 7 and 8.) 

REMARKS 

(2) X3.23-1968 specified 

no such lower limit. 

(2) 

(2) Function was replaced 

by the comment line. 

(2) 

(1) New feature. 

(2) This restriction 

did not exist in 

X3.23-1968. 

(1) New feature. 

(1) New feature. 

(1) X3.23-1968 specified 

hardware switches only. 

(2) 

(1) New feature. 

(1) 

XIV-18 



Substantive Changes 

SUBSTANTIVE CHANGE 

MODULE 

AFFECTED REMARKS 

22. Object of a REDEFINES clause can be 

subordinate to an item described with 

an OCCURS clause, but must not be 

referred to in the REDEFINES clause 

with a subscript or an index. 

1 NUC (1) New feature. 

23. REDEFINES: No entry with lower level- 

number can appear between the redefined 

and redefining items. 

1 NUC (2) X3.23-1968 had 

no such restriction. 

24. Multiple redefinition of same storage 

area permitted. 

1 NUC (3) 

25. As asterisk used as a zero suppression 

symbol in a PICTURE clause and the 

BLANK WHEN ZERO clause may not 

appear in the same entry. 

1 NUC (2) 

26. Alphabetic PICTURE character-string 

may contain the character B. 

1 NUC (1) New feature. 

27. The number of digit positions that can 

be described by a numeric PICTURE 

character-string cannot exceed 18. 

1 NUC (2) X3.23-1968 had 

no such rule. 

28. Stroke (/) permitted as an editing 

character. 

1 NUC (1) New feature. 

29. PICTURE character-string is limited 

to 30 characters. 

1 NUC (3) X3.23-1968 defines 

limit as 30 symbols where 

one symbol could have 

been two characters. 

30. SIGN clause allows the specification 

of the sign position. 

1 NUC (1) New feature. 

31. A signed numeric literal cannot be 

used in a VALUE clause unless it is 

associated with a signed PICTURE 

character-string. 

1 NUC (2) 

32. If the item is numeric edited, the 

literal in the VALUE clause must be 

nonnumeric. 

1 NUC (2) 

33. In the Procedure Division a section may 

contain zero or more paragraphs and a 

paragraph may contain zero or more 

sentences. 

1 NUC (1) New feature. 

34. The unary + is permitted in 

arithmetic expressions. 

2 NUC (1) New feature. 

XIV-19 



Substantive Changes 

MODULE 

SUBSTANTIVE CHANGE AFFECTED 

35. The TO is not required in the 1 NUC 

EQUAL TO of a relation condition. 

36. In relation and sign conditions, 1 NUC 

arithmetic expressions must 

contain at least one reference 

to a variable. 

37. Comparison of nonnumeric operands; 1 NUC 

If one of the operands is described as 

numeric, it is treated as though it 

were moved to an alphanumeric item of 

the same size and the contents of this 

alphanumeric item were then compared 

to the nonnumeric operand. 

38. Abbreviated combined relation 2 NUC 

condition: When any portion is 

enclosed in parentheses, all subjects 

and operators required for the expan¬ 

sion of that portion must be included 

within the same set of parentheses. 

39. Abbreviated combined relation 2 NUC 

condition: If NOT is immediately 

followed by a relational operator, 

it is interpreted as part of the 

relational operator. 

40. Class condition: The numeric test 1 NUC 

cannot be used with a group item 

composed of elementary items 

described as signed. 

41. In an arithmetic operation, the 1 NUC 

composite of operands must not 

contain more than 18 decimal digits. 

42. ACCEPT identifier FROM DATE/DAY/TIME 2 NUC 

allows the programmer to access the 

date, day, and time. 

43. ADD statement: the GIVING identifier 2 NUC 

series. 

44. COMPUTE statement: the identifier 2 NUC 

series. 

45. DISPLAY statement: If the operand is a 1 NUC 

numeric literal, it must be an unsigned 

integer. 

REMARKS 

(1) X3.23-1968 required 

the word TO. 

(2) 

(3) 

(2) No such restriction 

appeared in X3.23-1968. 

(2) In X3.23-1968, 

NOT was a logical 

operator in such cases. 

(3) 

(2) X3.23-1968 specified 

limits only for ADD and 

SUBTRACT. 

(1) New feature. 

(1) New feature. 

(1) New feature. 

(2) 

XIV-20 



Substantive Changes 

MODULE 

SUBSTANTIVE CHANGE AFFECTED 

46. DIVIDE statement: the INTO identifier 1 NUC 

series and the GIVING identifier series. 

47. DIVIDE statement: the remainder item 

can be numeric edited. 

48. GO TO statement: the word TO is not 

required. 

49. EXAMINE statement and the special 

register TALLY were deleted. 

50. INSPECT statement provides ability 

to count or replace occurrences of 

single characters or groups of 

characters. 

51. MOVE statement: A scaled integer item 

(i.e., the rightmost character of the 

PICTURE character-string is a P) may be 

moved to an alphanumeric or alphanumeric 

edited item. 

52. MULTIPLY statement: the BY identifier 2 NUC 

series and the GIVING identifier series. 

53. PERFORM statement: Format 4 (PERFORM 2 NUC 

...VARYING, not using index-names) 

identifiers need not be described as 

integers. 

54. PERFORM statement: Changing the FROM 2 NUC 

variable during execution can affect 

the number of times the procedures are 

executed in a Format 4 PERFORM if more 

than one AFTER phrase is specified. 

55. PERFORM statement: There is no logical 1 NUC 

difference to the user between fixed 

and fixed overlayable segments. 

56. A PERFORM statement in a non-indepen- 1 NUC 

dent segment can have in its range 1 SEG 

only one of the following: 

a. Non-independent segment (fixed/ 

fixed overlayable) 

b. Sections and/or paragraphs 

wholly contained in a single 

independent segment. 

2 NUC 

1 NUC 

1 NUC 

1 NUC 

1 NUC 

REMARKS 

(2) 

(1) New feature. 

(1) X3.23-1968 requires 

the word TO. 

(2) Function was replaced 

by the INSPECT statement. 

(1) New feature. 

(1) New feature. 

(1) New feature. 

(1) New feature. 

(2) 

(1) X3.23-1968 did not 

permit fixed overlayable 

segments to be treated 

the same as a fixed 

segment. 

(3) 

XIV-21 



Substantive Changes 

SUBSTANTIVE CHANGE 

MODULE 

AFFECTED REMARKS 

57. A PERFORM statement in an independent 1 NUC (3) 

segment can have in its range only 1 SEG 

one of the following: 

a. Non-independent segments (fixed/ 

fixed overlayable). 

b. Sections and/or paragraphs wholly 

contained in the same independent 

segment as that PERFORM. 

58. PERFORM statement: Control is passed 1 NUC (3) 

only once for each execution of a 1 SEG 

Format 2 PERFORM statement. (i.e., 

an independent segment referred to 

by such a PERFORM is made available 

in its initial state only once for 

each execution of that PERFORM 

statement.) 

59. STOP statement: If the operand is 

numeric literal, it must be an 

unsigned integer. 

60. STRING statement provides for the 

juxtaposition of the partial or 

complete contents of two or more 

data items into a single data item. 

61. STRING: Delimiter identifiers need 

not be fixed length items. 

62. SUBTRACT statement: the GIVING 

identifier series. 

1 NUC (2) 

2 NUC (1) New feature. 

2 NUC (1) 

2 NUC (1) New feature. 

63. UNSTRING statement permits contiguous 2 NUC (1) New feature, 

data in sending field to be separated 

and placed into multiple receiving 

fields. 

64. Commas are not required between 1 TBL (1) 

subscripts or index-names. 

65. Literal subscripts may be mixed 1 TBL (1) New feature, 

with index-names when referencing a 

table item. 

66. The DEPENDING phrase is now required 

in the Format 2 of the OCCURS clause. 

2 TBL (2) X3.23-1968 has no 

restriction. 

67. Integer-1 cannot be zero in the 

Format 2 of the OCCURS clause. 

2 TBL (2) 

XIV-22 



Substantive Changes 

MODULE 

SUBSTANTIVE CHANGE AFFECTED 

68. A data description entry with an OCCURS 2 TBL 

DEPENDING clause may be followed within 

that record, only by entries subordi¬ 

nate to it. (i.e., only the last part 

of the record may have a variable 

number of occurrences.) 

69. When a group item, having subordinate 2 TBL 

to it an entry that specifies Format 2 

of the OCCURS clause, is referenced, 

only that part of the table area that 

is defined by the value of the operand 

of the DEPENDING phrase will be used 

in the operation. (i.e., the actual 

size of a variable length item is 

used, not the maximum size.) 

70. If SYNCHRONIZED is specified for an 1 TBL 

item containing an OCCURS clause, 

any implicit FILLER generated for 

items in the same table are generated 

for each occurrence of those items. 

71. The results of a SEARCH ALL operation 2 TBL 

are predictable only when the data in 

the table is ordered as described by 

the ASCENDING/DESCENDING KEY clause 

associated with identifier-1. 

72. The subject of the condition in the 2 TBL 

WHEN phrase of the SEARCH ALL state¬ 

ment must be a data item named in the 

KEY phrase of the table; the object 

of this condition may not be a data 

item named in the KEY phrase. 

73. SEARCH...VARYING identifier-2: If 2 TBL 

identifier-2 is an index data item, 

it is incremented as the associated 

index is incremented. 

74. In Format 2 of the SET statement, 1 TBL 

literal may be negative. 

75. File control entry: The ASSIGN TO 1 SRT 

implementor-name-1 OR implementor- 

name-n clause for the GIVING 

file of a SORT statement was deleted. 

76. MERGE statement 2 SRT 

REMARKS 

(2) This rule did not 

appear in X3.23-1968. 

(2) 

(3) 

(3) 

(2) X3.23-1968 specified 

that either the subject 

or object could be a 

data item named in the 

KEY phrase. 

(3) In X3.23-1968 the 

data item is incremented 

by same amount as 

occurrence number, i.e., 

by one. 

(1) New feature. 

(2) 

(1) New feature. 

XIV-23 



Substantive Changes 

MODULE 

SUBSTANTIVE CHANGE AFFECTED REMARKS 

77. RELEASE... FROM identifier is placed 

in Level 1 of Sort-Merge module. 

1 SRT (1) Was a Level 2 

feature. 

78. RETURN... INTO identifier is placed 

in Level 1 of Sort-Merge module. 

1 SRT (1) Was a Level 2 

feature. 

79. SORT statement: the USING file-name 

series. 

2 SRT (1) X3.23-1968 allowed 

only one file-name. 

80. SORT statement: semicolon deleted 

from format. 

1 SRT (2) 

81. SORT statement: COLLATING SEQUENCE 

phrase provides the ability to 

override the program collating 

sequence. 

2 SRT (1) New feature 

82. No more than one file-name from 

a multiple file reel can appear 

in a SORT statement. 

2 SRT (2) 

83. Where a SORT or MERGE statement 1 SRT (2) No such restriction 

appears in a segmented program, then 

any associated input/output procedures 

are subject to the same constraints 

that apply to the range of a PERFORM. 

1 SEG in X3.23-1968. 

84. Segment-numbers permitted in 

declaratives. 

1 SEG (1) 

85. PAGE-COUNTER and LINE-COUNTER are 

described as unsigned integers that 

must handle values from 0 through 999999 

RPW 

86. The value in LINE-COUNTER must not be 

changed by the user. 

RPW 

87. LINE-COUNTER, PAGE-COUNTER and sum 

counters must not be used as subscripts 

in the Report Section. 

RPW 

88. PAGE-COUNTER is always generated. RPW 

89. PAGE-COUNTER does not need to be 

qualified in the Report Section. 

RPW 

90. LINE-COUNTER is always generated. RPW 

91. LINE-COUNTER does not need to be 

qualified in the Report Section. 

RPW 

XIV-24 



Substantive Changes 

MODULE 

SUBSTANTIVE CHANGE AFFECTED 

92. The words LINE and LINES are optional RPW 

in the PAGE clause. 

93. The DATA RECORDS clause and the REPORT RPW 

clause are mutually exclusive. 

94. A report may not be sent to more RPW 

than one file. 

95. RESET is no longer a clause; it is a RPW 

phrase under the SUM clause. 

96. Multiple SUM clauses may be specified RPW 

in an item; multiple UPON phrases may 

be specified. 

97. Up to three hierarchical levels are RPW 

permitted in a report group description. 

98. A report group level 01 entry cannot RPW 

be elementary. 

99. An entry that contains a LINE NUMBER RPW 

clause must not have a subordinate 

entry that also contains a LINE 

NUMBER clause. 

100. An entry that contains a COLUMN NUMBER RPW 

clause but no LINE NUMBER clause must be 

subordinate to an entry that contains 

a LINE NUMBER clause. 

101. An entry that contains a VALUE clause RPW 

must also have a COLUMN NUMBER clause. 

102. In the CODE clause, mnemonic-name has RPW 

been replaced by literal. (A two char¬ 

acter nonnumeric literal placed in the 

first two character positions of the 

logical record.) 

103. If the CODE clause is specified for any RPW 

report in a file, it must be specified 

for all reports in the same file. 

104. Control data items may not be RPW 

subscripted or indexed. 

105. Each data-name in the CONTROL clause RPW 

must identify a different data item. 

REMARKS 

XIV-25 



Substantive Changes 

MODULE 

SUBSTANTIVE CHANGE AFFECTED 

106. The GROUP INDICATE clause may only RPW 

appear in a DETAIL report group entry 

that defines a printable item (contains 

a COLUMN and PICTURE clause.) 

107. LINE clause integers must not exceed RPW 

three significant digits in length. 

108. The NEXT PAGE phrase of the LINE clause RPW 

is no longer legal in RH, PH, and PF 

groups. 

109. A relative LINE NUMBER clause can no RPW 

longer be the first LINE NUMBER clause 

in a PAGE FOOTING group. 

110. A NEXT GROUP clause without a LINE RPW 

clause is no longer legal. 

111. Integer-2 in the NEXT GROUP clause must RPW 

not exceed three significant digits in 

length. 

112. If the PAGE clause is omitted, only a RPW 

relative NEXT GROUP clause may be 

specified. 

113. The NEXT PAGE phrase of the NEXT GROUP RPW 

clause must not be specified in a 

PAGE FOOTING report group. 

114. The NEXT GROUP clause must not be RPW 

specified in a REPORT FOOTING report 

group. 

115. The phrases of the PAGE clause may be RPW 

written in any order. 

116. In the PAGE clause, the maximum size RPW 

of the integer is three significant 

digits. 

117. It is no longer possible to sum upon RPW 

an item in another report. 

118. Source-sum correlation is not required. RPW 

(Operands of a SUM clause need not be 

operands of a SOURCE clause in DETAIL 

groups.) 

119. TYPE clause data-names may not be RPW 

subscripted or indexed. 

REMARKS 

XIV-26 



Substantive Changes 

MODULE 

SUBSTANTIVE CHANGE AFFECTED 

120. PAGE HEADING and PAGE FOOTING report RPW 

groups may be specified only if a 

PAGE clause is specified in the corre¬ 

sponding report description entry. 

121. In CONTROL FOOTING, PAGE HEADING, PAGE RPW 

FOOTING, and REPORT FOOTING report 

groups, SOURCE clauses and USE state¬ 

ments may not reference: 

a. Group data items containing 

control data items. 

b. Data items subordinate to a 

control data item. 

c. A redefinition or renaming of any 

part of a control data item. 

In PAGE HEADING and PAGE FOOTING report 

groups, SOURCE clauses and USE statements 

must not reference control data-name. 

122. In summary reporting, only one detail RPW 

group is allowed. 

123. The description of a report must RPW 

include at least one body group. 

124. Report files must be opened with either RPW 

the OPEN OUTPUT or OPEN EXTEND statement. 

125. A file described with a REPORT clause RPW 

cannot be referenced by any input-output 

statement except the OPEN or CLOSE 

statement. 

126. The SUPPRESS statement RPW 

127. If no GENERATE statements have been RPW 

executed for a report during the 

interval between the execution of an 

INITIATE statement and a TERMINATE 

statement for that report, the 

TERMINATE statement does not cause the 

Report Writer Control System to 

perform any of the related processing. 

128. A USE procedure may refer to a RPW 

DETAIL group. 

REMARKS 

XIV-27 



Substantive Changes 

SUBSTANTIVE CHANGE 

MODULE 

AFFECTED REMARKS 

129. FILE STATUS clause: data-name is 

updated by the system at the com¬ 

pletion of each input-output 

operation. 

130. ACCESS MODE IS DYNAMIC clause: 

provides ability to access a file 

sequentially or randomly in the 

same program. 

131. ALTERNATE RECORD KEY clause: allows 

specification of multiple keys, any 

of which can be used to access an 

indexed file 

1 SEQ (1) New feature. 

1 REL 

1 INX 

2 REL (1) New feature. 

2 INX 

2 INX (1) New feature. 

132. ACTUAL KEY clause deleted. (2) 

133. RELATIVE KEY clause added for 

relative organization. 

134. RECORD KEY clause added for 

indexed organization. 

135. FILE-LIMITS clause deleted. 

136. PROCESSING MODE clause deleted. 

137. FILE-CONTROL paragraph: except for 

the ASSIGN clause, the order of 

clauses following file-name is 

optional. 

138. ORGANIZATION IS RELATIVE clause 

139. ORGANIZATION IS SEQUENTIAL clause 

140. ORGANIZATION IS INDEXED clause 

141. MULTIPLE REEL/UNIT clause deleted. 

142. RESERVE...ALTERNATE AREAS deleted. 

1 REL (1) New feature. 

1 INX (1) New feature, 

(2) 

(2) 

1 SEQ (1) 

1 REL 

1 INX 

1 REL (2) New feature, 

1 SEQ (2) New feature. 

1 INX (2) New feature, 

(2) 

(2) 

143. RESERVE integer AREAS to allow the 

user to specify the exact number 

of areas to be used. 

1 SEQ (1) New feature. 

1 REL 

1 INX 

144. The file description entry for file¬ 

name must be equivalent to that used 

when this file was created. 

1 SEQ (3) No such rule in 

1 REL X3.23-1968. 

1 INX 

XIV-28 



Substantive Changes 

MODULE 

SUBSTANTIVE CHANGE AFFECTED REMARKS 

145. The data-name option of the LABEL 

RECORDS clause was deleted. 

1 SEQ 

1 REL 

1 I NX 

(2) X3.23-1968 provided 

for user-defined label 

records. 

146. Data-name in the VALUE OF clause 

must be an implementor-name. 

1 SEQ (2) X3.23-1968 provided 

for user-defined field 

in label records. 

147. LINAGE clause permits programmer 

definition of logical page size. 

2 SEQ (1) New feature. 

148. CLOSE...FOR REMOVAL statement. 2 SEQ (1) New feature. 

149. DELETE statement. 1 REL 

1 I NX 

(1) New feature. 

150. OPEN REVERSED positions file at its 

end. 

2 SEQ (2) 

151. OPEN INPUT or OPEN 1-0 makes a record 

area available to the program. 

1 SEQ 

1 REL 

1 I NX 

(1) New feature. 

152. OPEN EXTEND statement: adds records 

to an existing file. 

2 SEQ (1) New feature. 

153. The OPEN and CLOSE statements with the 

NO REWIND phrase apply to all devices 

that claim support for this function. 

2 SEQ (1) X3.23-1968 restricted 

the application of this 

phrase. 

154. The OPEN REVERSED statement applies to 

all devices that claim support for 

this function. 

2 SEQ (1) X3.23-1968 restricted 

the application of this 

phrase. 

155. READ statement: AT END phrase required 

only if no applicable USE AFTER ERROR/ 

EXCEPTION procedure specified. 

1 SEQ 

1 REL 

1 I NX 

(1) New feature. 

156. READ statement: INVALID KEY phrase 

required only if no applicable USE 

AFTER ERROR/EXCEPTION procedure 

specified. 

1 REL 

1 I NX 

(1) New feature. 

157. READ statement: INTO phrase placed in 

Level 1. 

1 SEQ 

1 REL 

1 INX 

(1) Level 2 feature in 

X3.23-1968. 

158. READ...NEXT statement: used to retrieve 2 REL (1) New feature. 

the next logical record from a file 

when the access mode is dynamic. 

XIV-29 



Substantive Changes 

MODULE 

SUBSTANTIVE CHANGE AFFECTED REMARKS 

159. REWRITE statement 1 SEQ 

1 REL 

1 I NX 

(1) New feature. 

160. SEEK statement was deleted. (2) 

161. START statement: provides for logical 

positioning within a relative or 

indexed file for sequential retrieval 

of records. 

2 REL (1) New feature. 

162. USE statement: the label processing 

options were deleted. 

1 SEQ 

1 REL 

1 I NX 

(2) X3.23-1968 provided 

for the processing of 

user-defined labels. 

163. USE...ERROR/EXCEPTION statement 1 SEQ 

1 REL 

1 I NX 

(1) New feature. 

164. Recursive invocation of USE procedures 

prohibited. 

1 SEQ 

1 REL 

1 I NX 

(2) 

165. WRITE statement: INVALID KEY phrase 

deleted. 

1 SEQ (2) 

166. WRITE statement: INVALID KEY phrase 

required only if no applicable USE 

AFTER ERROR/EXCEPTION procedure 

specified. 

1 REL 

1 INX 
(1) 

167. WRITE statement: FROM phrase placed 

in Level 1. 

1 SEQ 

1 REL 

1 INX 

(1) 
X3. 

Level 1 feature in 

23-1968. 

168. WRITE statement: BEFORE/AFTER PAGE 

phrase provides ability to skip to 

top of a page. 

1 SEQ (1) 

169. WRITE statement: END-OF-PAGE phrase 2 SEQ (1) New feature. 

170. Debugging line: defined by a 'D' 

in the continuation column. 

1 DEB (1) New feature. 

171. WITH DEBUGGING MODE clause: a 

compile time switch; in addition an 

object time switch can be used to 

suppress coding at object time. 

1 DEB (1) New feature. 

172. USE FOR DEBUGGING statement. 1 DEB (1) New feature. 

173. DEBUG-ITEM 1 DEB (1) New feature. 

XIV-30 



deleted Elements 

MODULE 

SUBSTANTIVE CHANGE AFFECTED REMARKS 

174. Linkage Section 1 IPC (1) New feature. 

175. Procedure Division header: the 

USING phrase. 
1 IPC (1) New feature. 

176. CALL identifier statement. 1 IPC (1) New feature. 

177. CALL identifier ON OVERFLOW statement. 2 IPC (1) New feature. 

178. CANCEL statement 2 IPC (1) New feature. 

179. EXIT PROGRAM statement 1 IPC (1) New feature. 

180. COPY statement may appear anywhere 

a COBOL word may appear. 

1 LIB (1) New feature. 

181. Identifier, COBOL word, or a group 

of COBOL words may be replaced. 

2 LIB (1) New feature. 

182. Multiple libraries are permitted. 2 LIB (1) New feature. 

183. Library-name is a user-defined word. 2 LIB (1) New feature. 

184. Communication description entry (CD) 1 COM (1) New feature. 

185. ACCEPT cd-name MESSAGE COUNT statement. 1 COM (1) New feature. 

186. ENABLE statement 1 COM (1) New feature. 

187. DISABLE statement 1 COM (1) New feature. 

188. RECEIVE statement 1 COM (1) New feature. 

189. SEND statement 1 COM (1) New feature. 

2.3.4 Elements Deleted From X3.23-1968 

The following elements were deleted from X3.23-1968 in the process of 

revising the standard. Page numbers refer to pages in the document X3.23-1968. 

REMARKS Paragraph (page 2-4)♦ The REMARKS paragraph of the Identification 

Division was deleted and the function replaced by the * comment line. 

EXAMINE Statement (pages 2-33 and 2-85). The EXAMINE statement and the 

special register TALLY were deleted in favor of the new more powerful 

INSPECT statement. 

NOTE Statement (pages 2-40 and 2-92). The NOTE statement was deleted and 

the function replaced by the * comment line. 

XIV-31 



Excluded Elements 

FILE-LIMITS Clause (pages 2-119 and 2-155). This clause was deleted from 

the file control entry because the function could be handled better outside 

the COBOL program. 

SEEK Statement (page 2-164). This statement was redundant; it is implied 

by the READ, WRITE, etc. 

MULTIPLE REEL/UNIT Clause (page 2-119). This clause was deleted from the 

file control entry because the function could be handled better outside the 

COBOL program. 

ACTUAL KEY Clause (page 2-156). This clause was replaced by the RELATIVE 

KEY clause. 

RESERVE integer ALTERNATE AREAS Clause (page 2-134). This clause was 

replaced by the RESERVE integer AREAS clause. 

OR implementor-name (page 2-138). This clause was deleted from the file 

control entry because the function could be handled better outside the COBOL 

program. 

integer implementor-name (pages 2-119 and 2-155). This clause was deleted 

from the file control entry because the function could be handled better 

outside the COBOL program. 

PROCESSING MODE IS SEQUENTIAL Clause (pages 2-119 and 2-155). This clause 

was deleted from the file control entry as not being needed in a synchronous 

environment. 

USE...LABEL Statement (pages 2-150 and 2-180). An extensive revision to 

label processing is currently underway to remove ambiguities and provide for 

the processing of ANSI standard labels. This work was not completed in time 

to be included in this revision. In order not to hinder the introduction of 

this new facility, it was decided to define only a minimum label processing 

capability in the revised standard. 

LABEL RECORDS IS data-name Clause (pages 2-141 and 2-174). An extensive 

revision to label processing is currently underway to remove ambiguities and 

provide for the processing of ANSI standard labels. This work was not 

completed in time to be included in this revision. In order not to hinder 

the introduction of this new facility, it was decided to define only a minimum 

label processing capability in the revised standard. 

2.3.5 JOD Elements Not Chosen For Standardization 

This list represents the language elements in the Journal of Development 

at the cutoff date (December 31, 1971) which were not chosen for inclusion 

in the revised standard. Many of these elements were previously excluded 

from X3.23-1968. An asterisk indicates those elements not available for 

consideration at the time the original standard was specified. The symbol + 

represents an element which was in X3.23-1968 but was excluded from the 

revised standard. 

XIV-32 



Excluded Elements 

1. The figurative constants: UPPER-BOUND, UPPER-BOUNDS, LOWER-BOUND, 

and LOWER-BOUNDS. 

2. In the SOURCE-COMPUTER paragraph, SUPERVISOR CONTROL, MEMORY SIZE, 

ADDRESS option, and implementor-name(s). 

3. In the OBJECT-COMPUTER paragraph, SUPERVISOR CONTROL, MEMORY SIZE 

(ADDRESS option), implementor-name(s), and ASSIGN OBJECT-PROGRAM. 

4. In the file control entry, ORGANIZATION IS RELATIVE clause for files 

referenced as the object of: 

a. USING/GIVING phrase of a SORT or MERGE statement 

b. file description entry containing the REPORT clause 

5. In the file control entry, ORGANIZATION IS INDEXED clause for files 

referenced as the object of: 

a. USING/GIVING phrase of a SORT or MERGE statement 

b. file description entry containing the REPORT clause 

6. In the file control entry, the PROCESSING MODE clause. 

7. In the I-O-CONTROL paragraph, the APPLY clause. 

8. In the I-O-CONTROL paragraph, an indexed or relative file may be 

specified in the ON clause of RERUN. 

9. In the I-O-CONTROL paragraph, an indexed or relative file may be 

specified in the END OF REEL/UNIT clause of RERUN. 

+10. In the file description entry, the LABEL RECORDS IS data-name clause. 

11. In the file description entry, the RECORDING MODE clause. 

12. The saved area description entry. 

13. In the PICTURE clause, the DEPENDING ON phrase and the character L. 

14. In the USAGE clause, COMPUTATIONAL-n, DISPLAY-n, and INDEX-n. 

15. The requirement of supporting more than five levels of qualification 

for a data-name. 

16. The complete set of qualifiers for a data-name may be the same as the 

partial list of qualifiers for another data-name. 

17. The relational operators: UNEQUAL TO, EQUALS, EXCEEDS. 

18. In the COMPUTE statement, FROM and EQUALS. 

19. In the DISPLAY statement, numeric literal may be signed and/or 

noninteger. 

XIV-33 



Excluded Elements 

20. The HOLD statement. 

*21. The INITIALIZE statement. 

22. In Format 3 of the INSPECT statement, the BEFORE/AFTER REPLACING phrase. 

23. In the MOVE CORRESPONDING statement, the identifier series. 

24. The PROCESS statement. 

25. Dynamic redefinition of the collating sequence by means of the SET 

statement. 

26. In the STOP statement, numeric literal may be signed and/or noninteger. 

*27. The SUSPEND statement. 

+28. In the USE statement, the LABEL option. 

*29. In the USE statement, the RANDOM PROCESSING option. 

*30. In the USE statement, recursive invocation of USE procedures. 

XIV-34 



Concepts 

3. APPENDIX C: CONCEPTS 

3.1 FEATURES OF THE LANGUAGE 

COBOL offers many features which allow the user to obtain a necessary 

function without programming the function in detail. In this appendix each 

of these features and the concept of its use will be discussed. 

3.2 RECORD ORDERING 

The ability to arrange records into a particular order is a common require¬ 

ment of the data processing user. The Sort and Merge features of COBOL provide 

facilities to assist in meeting this requirement. 

While both are concerned with record ordering, the functions and capabil¬ 

ities of the SORT and MERGE statements are different in a number of respects. 

The Sort will produce an ordered file from one or more files that may be 

completely unordered in the sort sequence whereas the Merge can only produce 

an ordered file from two or more files each of which is already ordered in 

the specified sequence. 

In many applications it is necessary to apply some special processing to 

the contents of the sort or merge file(s) before or after sorting or merging. 

This special processing may consist of addition, deletion, creation, altering, 

editing, or other modification of the individual records in the file. The 

COBOL Sort-Merge feature allows the user to express these procedures in the 

COBOL language. A COBOL program may contain any number of sorts and merges, 

and each of them may have its own independent special procedures. The Sort- 

Merge feature automatically causes execution of these procedures in such a 

way that extra passes over the sort or merge files are not required. 

3.3 REPORT WRITER 

The Report Writer is a feature which places its emphasis on the organiza¬ 

tion, format, and contents of an output report. Although a report can be 

produced using the standard COBOL language, the Report Writer language 

features provide a more concise facility for report structuring and report 

production. Much of the Procedure Division programming which would normally 

be supplied by the programmer is instead provided automatically by the Report 

Writer Control System (RWCS). Thus the programmer is relieved of writing 

procedures for moving data, constructing print lines, counting lines on a 

page, numbering pages, producing heading and footing lines, recognizing the 

end of logical data subdivisions, updating sum counters, etc. All these 

operations are accomplished by the RWCS as a consequence of source language 

statements that appear primarily in the Report Section of the Data Division 

of the source program. 

Data movement to a report is directed by the Report Section clauses SOURCE, 

SUM, and VALUE. Fields of data are positioned on a print line by means of the 

COLUMN NUMBER clause. The PAGE clause specifies the length of the page, the 

size of the heading and footing areas, and the size of the area in which the 

detail lines will appear. Data items may be specified to form a control hier¬ 

archy. During the execution of a GENERATE statement, the Report Writer Control 

System uses the control hierarchy to check automatically for control breaks. 

When a control break occurs, summary information (e.g. subtotals) can be presented. 

XIV-35 



Concepts 

3.4 TABLE HANDLING 

Tables of data are common components of business data processing problems. 

Although items of data that make up a table could be described as contiguous 

data items, there are two reasons why this approach is not satisfactory. 

First, from a documentation standpoint, the underlying homogeneity of the 

items would not be readily apparent; and second, the problem of making avail¬ 

able an individual element of such a table would be severe when there is a 

decision as to which element is to be made available at object time. 

Tables composed of contiguous data items are defined in COBOL by including 

the OCCURS clause in their data description entries. This clause specifies 

that the item is to be repeated as many times as stated. The item is considered 

to be a table element and its name and description apply to each repetition 

or occurrence. Since each occurrence of a table element does not have assigned 

to it a unique data-name, reference to a desired occurrence may be made only 

by specifying the data-name of the table element together with the occurrence 

number of the desired table element. Subscripting and indexing are the two 

methods that are used to specify the occurrence number of a desired table 

element. 

3.4.1 Table Definition 

To define a one-dimensional table, the programmer uses an OCCURS clause as 

part of the data description of the table element, but the OCCURS clause must 

not appear in the description of group items which contain the table element. 

Example 1 shows a one-dimensional table. 

Example 1. 

01 TABLE-1. 

02 TABLE-ELEMENT OCCURS 20 TIMES. 

03 NAME . 

03 SSAN . 

Defining a one-dimensional table within each occurrence of an element of 

another one-dimensional table gives rise to a two-dimensional table. To 

define a two-dimensional table, then, an OCCURS clause must appear in the data 

description of the element of the table, and in the description of only one 

group item which contains that table element. To define a three-dimensional 

table, the OCCURS clause should appear in the data description of the element 

of the table and in the description of 2 group items which contain the element. 

In COBOL, tables of up to 3 dimensions are permitted. Example 2 shows a table 

which has one dimension for CONTINENT-NAME, two dimensions for COUNTRY-NAME, 

and three dimensions for CITY-NAME and CITY-POPULATION. The table includes 

100,510 data items -- 10 for CONTINENT-NAME, 500 for COUNTRY-NAME, 50,000 for 

CITY-NAME, and 50,000 for CITY-POPULATION. Within the table there are ten 

occurrences of CONTINENT-NAME. Within each CONTINENT-NAME there are 50 

occurrences of COUNTRY-NAME and within each COUNTRY-NAME there are one 

hundred occurrences of CITY-NAME and CITY-POPULATION. 

XIV-36 



Concepts 

Example 2. 

01 CENSUS-TABLE. 

05 CONTINENT-TABLE OCCURS 10 TIMES. 

10 CONTINENT-NAME PIC XXXXXX. 

10 COUNTRY-TABLE OCCURS 50 TIMES. 

15 COUNTRY-NAME PIC XXXXXXXX. 

15 CITY-TABLE OCCURS 100 TIMES. 

20 CITY-NAME PIC XXXXXXXXXX. 

20 CITY-POPULATION PIC 999999999999. 

3.4.2 References to Table Items 

Whenever the user refers to a table element, the reference must indicate 

which occurrence of the element is intended. For access to a one-dimensional 

table, the occurrence number of the desired element provides complete informa¬ 

tion. For access to tables of more than one dimension, an occurrence number 

must be supplied for each dimension of the table accessed. In Example 2 then, 

a reference to the 4th CONTINENT-NAME would be complete, whereas a reference 

to the 4th COUNTRY-NAME would not. To refer to COUNTRY-NAME, which is an 

element of a two-dimensional table, the user must refer to, for example, the 

4th COUNTRY-NAME within the 6th CONTINENT-TABLE. 

One method by which occurrence numbers may be specified is to append one 

or more subscripts to the data-name. A subscript is an integer whose value 

specifies the occurrence number of an element. The subscript can be repre¬ 

sented either by a literal which is an integer or by a data-name which is 

defined elsewhere as a numeric elementary item with no character positions to 

the right of the assumed decimal point. In either case, the subscript, 

enclosed in parentheses, is written immediately following the name of the 

table element. A table reference must include as many subscripts as there are 

dimensions in the table whose element is being referenced. That is, there 

must be a subscript for each OCCURS clause in the hierarchy containing the 

data-name, including the data-name itself. In Example 2, references to 

CONTINENT-NAME require only one subscript, reference to COUNTRY-NAME requires 

two, and references to CITY-NAME and CITY-POPULATION require three. 

When more than one subscript is required, they are written in order of 

successively less inclusive dimensions of the data organization. When a 

data-name is used as a subscript, it may be used to refer to items in many 

different tables. These tables need not have elements of the same size. The 

data-name may also appear as the only subscript with one item and as one of 

two or three subscripts with another item. Also, it is permissible to mix 

literal and data-name subscripts, for example: CITY-POPULATION(10, NEWKEY, 42). 

Another method of referring to items in a table is indexing. To use this 

technique, the programmer assigns one or more index-names to an item whose 

data description contains an OCCURS clause. There is no separate entry to 

describe the index-name since its definition is completely hardware-oriented 

and it is not considered data per se. At object time the contents of the 

index-name will correspond to an occurrence number for that specific dimension 

of the table to which the index-name was assigned; however, the manner of 

correspondence will be determined by the implementor. The initial value of 

an index-name at object time is not determinable and the index-name must be 

initialized by the SET statement before use. 

XIV-37 



Conoep ts 

When a reference is made to a table element, or to an item within a table 

element, and the name of the item is followed by its related index-name or 

names in parentheses, then each occurrence number required to complete the 

reference will be obtained from the respective index-name. The index-name 

thus acts as a subscript whose value is used in any table reference that 

specifies indexing. 

When a reference requires more than one occurrence number for completeness, 

the programmer must not use a data-name subscript to indicate one occurrence 

number and an index-name for another. Therefore, if indexing is to be used, 

each OCCURS clause within the hierarchy (each dimension of the table) must 

contain an INDEXED BY clause. The programmer may, however, mix literals and 

index-names within one reference, just as he may mix literals and data-name 

subscripts. 

3.4.3 Table Searching 

Data that has been arranged in the form of a table is very often searched. 

In COBOL the SEARCH statement provides facilities, through its two options, 

for producing serial and non-serial (for example, binary) searches. In using 

the SEARCH statement, the programmer may vary an associated index-name or 

data-name. This statement also provides facilities for execution of impera¬ 

tive statements when certain conditions are true. 

3.5 FILE ORGANIZATION AND ACCESS METHODS 

Magnetic tape, punched paper tape, and punched card files are normally 

organized in a sequential manner and the Procedure Division of COBOL reflects 

this use. Mass storage media can be used to store sequentially organized 

files, and this technique has been provided; but, more significantly, mass 

storage devices have been designed to provide nonsequential organization and 

access capabilities. 

3.5.1 Sequential Organization 

A file whose organization is sequential can only be accessed in the 

sequential mode. Records in such a file can be accessed in the sequence 

established as a result of writing the records to the file. A sequential 

mass storage file may be used for input and output at the same time. One file 

maintenance method made possible by this facility is to read a record, process 

it, and, if it is updated, return it, modified, to its previous position. 

3.5.2 Relative Organization 

A file whose organization is relative can be accessed either sequentially, 

dynamically, or randomly. Sequential access provides the same results as if 

the file were organized sequentially. Random access allows the sequence in 
which the records are accessed to be controlled by the programmer. Each 

record in a relative file is identified by an integer value greater than zero 

which specifies the record's logical ordinal position in the file. The 

desired record is accessed by placing its relative record number in a Relative 

Key data item. Such a file may be thought of as a serial string of areas, 

each capable of holding a logical record. Each of these areas is denominated 

by a relative record number. Records are stored and retrieved based on this 

XIV-38 



Concepts 

number. For example, the tenth record is the one addressed by relative record 

number 10 and is in the tenth record area, whether or not records have been 

written in the first through the ninth record areas. 

In the dynamic access mode, the programmer may change at will from sequen¬ 

tial access to random access using appropriate forms of input-output statements. 

3.5.3 Indexed Organization 

A file whose organization is indexed can be accessed either sequentially, 

dynamically, or randomly. Sequential access provides access to the records 

in the ascending order of the record key values. The order of retrieval of 

records within a set of records having duplicate record key values is the 

order in which the records were written into the set. 

In the random access mode, the sequence in which records are accessed is 

controlled by the programmer. Each record in the file is identified by the 

value of one or more keys within that record, and the desired record is 

accessed by placing the value of its record key in a record key data item 
before accessing the record. 

In the dynamic access mode, the programmer may change at will from 

sequential access to random access by using appropriate forms of input-output 

statements. 

3.6 RERUN 

The RERUN feature of COBOL provides a facility for check restart. That is, 

executing a RERUN takes a snapshot of the program status and stores the infor¬ 

mation. It is then possible to restart the program from the point of the most 

recent RERUN. The use of the RERUN clause protects the user from having to 

start a program over from the beginning in the event of a hardware failure 

while the job is running. 

There are two basic parts to the RERUN clause. The user must designate a 

medium to receive the data and a criterion from which the frequency of check¬ 

points may be determined. The receiving medium may be specified by designating 

a file name or a separate hardware device. The determination of frequency of 

the dump may be made on the basis of a number of records of a particular file 

having been processed, of the end of a reel of a particular file having been 

reached, of the setting of a hardware switch or of a specified number of units 

of an internal clock having been counted. 

3.7 PROGRAM MODULARITY 

Complex data processing problems are frequently solved by the use of 

separately compiled but logically coordinated programs, which, at execution 

time, form logical and physical subdivisions of a single run unit. This 

approach lends itself to dividing a large problem into smaller, more manage¬ 

able segments which can be programmed and debugged independently. At execute 

time, control is transferred from program to program by the use of CALL and 

EXIT PROGRAM statements. 

XIV-39 



Concepts 

Under certain circumstances, e.g., a shortage of computer storage, it is 
desirable to subdivide a single program into physical segments, so that, at 
execute time, it is not necessary to load the entire program into computer 
storage at one time. This approach would permit the overlaying of some seg¬ 
ments, with a corresponding saving in total computer storage required to 
execute the program. This facility is called segmentation. 

There are no special statements in COBOL for communication between segments 
of such a program. There are, however, some special clauses used by the COBOL 
programmer to specify how the object program is to be segmented. 

3.7.1 Inter-Program Communication 

In COBOL terminology, a program is either a source program or an object 
program depending on context; a source program is a syntactically correct set 
of COBOL statements; an object program is the set of instructions, constants, 
and other machine-oriented data resulting from the operation of a compiler on 
a source program; and a run unit is the total machine language necessary to 
solve a data processing problem. It includes one or more object programs as 
defined above, and it may include machine language from sources other than a 
COBOL compiler. 

When the statement of a problem is subdivided into more than one program, 
the constituent programs must be able to communicate with each other. This 
communication may take two forms: transfer of control and reference to common 
data. 

3. 7.1.1 Transfer of Control 

The CALL statement provides the means whereby control can be passed from 
one program to another within a run unit. A program that is activated by a 
CALL statement may itself contain CALL statements. However, results are 
unpredictable where circularity of control is initiated; i.e. , where program 
A calls program B, then program B calls program A or another program that 
calls program A. 

When control is passed to a called program, execution proceeds in the normal 
way from procedure statement to procedure statement beginning with the first 
nondeclarative statement. If control reaches a STOP RUN statement, this sig¬ 
nals the logical end of the run unit. If control reaches an EXIT PROGRAM 
statement, this signals the logical end of the called program only, and control 
then reverts to the point immediately following the CALL statement in the call¬ 
ing program. Stated briefly, the EXIT PROGRAM statement terminates only the 
program in which it occurs, and the STOP RUN statement terminates the entire 
run unit. 

If the called program is not COBOL then the termination of the run unit or 
the return to the calling program must be programmed in accordance with the 
language of the called program. 

XIV-40 



Concepts 

3.7.1.2 Inter-Program Data Storage 

Program interaction requires that both programs have access to the same 

data items. In the calling program the common data items are described along 

with all other data items in the File Section, Working-Storage Section, 

Communication Section, or Linkage Section. At object time memory is allocated 

for the entire Data Division. In the called program, common data items are 

described in the Linkage Section. At object time memory space is not allocated 

for this section. Communication between the called program and the common data 

items stored in the calling program is effected through USING clauses contained 

in both programs. The USING clause in the calling program is contained in the 

CALL statement and the operands are a list of common data-identifiers described 

in its Data Division. The USING clause in the called program follows the 

Procedure Division header and the operands are a list of common data identifiers 

described in its Linkage Section. The identifiers specified by the USING clause 

of the CALL statement indicate those data items available to a calling program 

that may be referred to in the called program. The sequence of appearance 

of the identifiers in the USING clause of the CALL statement and the USING 

clause in the Procedure Division header is significant. Corresponding identi¬ 

fiers refer to a single set of data which is available to the calling program. 

The correspondence is positional, and not by name. While the called program 

is being executed, every reference to an operand whose identifier appears in 

the called program’s USING clause is treated as if it were a reference to the 

corresponding operand in the USING clause of the active CALL statement. 

Once control leaves a called program its state is maintained until a CANCEL 

is executed naming that program. Therefore, initialization of the program in 

case of repetitive calls is not necessary. 

Execution of the CANCEL statement allows the user to indicate that the 

memory areas occupied by the called program(s) may be released. In addition, 

the CANCEL guarantees that the program cancelled will be in its initial state 

when called by a subsequent CALL statement. 

3.7.2 Segmentation 

The segmentation facility permits the user to subdivide physically the 

Procedure Division of a COBOL object program. All source paragraphs which 

contain the same segment-number in their section headers will be considered 

at object time to be one segment. Since segment-numbers can range from 00 

through 99, it is possible to subdivide any object program into a maximum of 

100 segments. 

Program segments may be of three types: fixed permanent, fixed overlayable, 

and independent as determined by the programer’s assignment of segment numbers. 

Fixed segments are always in computer storage during the execution of the 

entire program, i.e., they cannot be overlayed except when the system is 

executing another program, in which case fixed segments may be 'rolled out' 

temporarily. 

Fixed overlayable segments may be overlayed during program execution, but 

any such overlaying is transparent to the user, i.e. , they are logically 

identical to fixed segments, but physically different from them. 

XIV-41 



Concepts 

Independent segments may be overlayed, but such overlaying will result in 

the initialization of that segment. Therefore, independent segments are 

logically different from fixed permanent/fixed overlayable segments, and 

physically different from fixed segments. 

3.8 COMMUNICATION FACILITY 

The communication facility provides the ability to access, process, and 

create messages or portions thereof. It provides the ability to communicate 

through a Message Control System with local and remote communication de-vices. 

3.8.1 The Message Control System 

The implementation of the communication facility requires that a Message 

Control System (MCS) be present in the COBOL object program's operating envi¬ 

ronment. 

The MCS is the logical interface to the operating system under which the 

COBOL object program operates. The primary functions of the MCS are the 

following: 

(1) To act as an interface between the COBOL object program and the network 

of communication devices, in much the same manner as an operating system acts 

as an interface between the COBOL object program and such devices as card 

readers, magnetic tape and mass storage devices, and printers. 

(2) To perform line discipline, including such tasks as dial-up, polling, 

and synchronization. 

(3) To perform device-dependent tasks, such as character translation and 

insertion of control characters, so that the COBOL user can create device¬ 

independent programs. 

The first function, that of interfacing the COBOL object program with the 

communication devices, is the most obvious to the COBOL user. In fact, the 

COBOL user may be totally unaware that the other two functions exist. Messages 

from communication devices are placed in input queues by the MCS while awaiting 

disposition by the COBOL object program. Output messages from the COBOL object 

program are placed in output queues by the MCS while awaiting transmission to 

communication devices. The structures, formats, and symbolic names of the 

queues are defined by the user to the MCS at some time prior to the execution 

of the COBOL object program. Symbolic names for message sources and destina¬ 

tions are also defined at that time. The COBOL user must specify in his COBOL 

program symbolic names which are known to the MCS. 

During execution of a COBOL object program, the MCS performs all necessary 

actions to update the various queues as required. 

3.8.2 The COBOL Object Program 

The COBOL object program interfaces with the MCS when it is necessary to 

send data, receive data, or to interrogate the status of the various queues 

which are created and maintained by the MCS. In addition, the COBOL object 

program may direct the MCS to establish or break the logical connection 

XIV-42 



Concepts 

between the communication device and a specified portion of the MCS queue 

structure. The method of handling the physical connection is a function of 

the MCS. 

3.8.3 Relationship of the COBOL Program to the Message Control System 
and Communication Devices 

The interfaces which exist in a COBOL communication environment are esta¬ 

blished by the use of a CD and associated clauses in the Communication Section 

of the Data Division. There are two such interfaces: 

(1) The interface between the COBOL object program and the MCS, and; 

(2) The interface between the MCS and the communication devices. 

The COBOL source program uses three statements to control the interface 

with the MCS: 

(1) The RECEIVE statement, which causes data in a queue to be passed to 

the COBOL object program, 

(2) The SEND statement, which causes data associated with the COBOL object 

program to be passed to one or more queues, and; 

(3) The ACCEPT statement with the COUNT phrase, which causes the MCS to 

indicate to the COBOL object program the number of complete messages in the 

specified queue structure. 

The COBOL source program uses two statements to control the interface 

between the MCS and the communication devices: 

(1) The ENABLE statement, which establishes logical connection between 

the MCS and one or more given communication devices, and; 

(2) The DISABLE statement, which breaks a logical connection between the 

MCS and one or more given communication devices. 

These relationships are shown in Figure 1, COBOL Communication Environment, 

which is located on page XIV-44. 

XIV-43 



Concepts 

COBOL Program Message Control System Communications 

Figure 1: COBOL Communication Environment 

3.8.3.1 Invoking the COBOL Object Program 

There are two methods of invoking a COBOL communication object program: 

(1) Schedule initiation 

(2) MCS invocation 

Regardless of the method of invocation, the only operating difference 

between the two methods is that MCS invocation causes the areas referenced 

by the symbolic queue and subqueue names in the specified CD to be filled. 

3.8.3.1.1 Scheduled Initiation of the COBOL Object Program 

A COBOL object program using the communication facility may be scheduled 

for execution through the normal means available in the program's operating 

environment, such as job control language. In that case, the COBOL program 

can use three methods to determine what messages, if any, are available in 

the input queues: 

(1) The ACCEPT statement with the COUNT phrase, 

(2) The RECEIVE statement with a NO DATA phrase, and 

(3) The RECEIVE statement without a NO DATA phrase (in which case a program 

wait is implied if no data is available). 

XIV-44 



Concepts 

3.8.3.1.2 Invocation of the COBOL Object Program by the MCS 

It is sometimes desirable to schedule a COBOL object communication program 

only when there is work available for it to do. Such scheduling occurs if the 

MCS determines what COBOL object program is required to process the available 

message and subsequently causes that program to be scheduled for execution. 

Prior to the execution of the COBOL object program, the MCS places symbolic 

queue and sub-queue names in the data items of the CD that specifies the FOR 

INITIAL INPUT clause. 

A subsequent RECEIVE statement directed to that CD will result in the 

available message being passed to the COBOL object program. 

3.8.3.1.3 Determining the Method of Scheduling 

A COBOL source program can be written so that its object program can 

operate with either of the two modes of scheduling. In order to determine 

which method was used to load the COBOL object program, the following is one 

technique that may be used: 

(1) One CD must contain a FOR INITIAL INPUT clause. 

(2) The Procedure Division may contain statements to test the initial 

value of the symbolic queue name in that CD. If it is space-filled, job 

control statements were used to schedule the COBOL object program. If not 

space filled, the MCS has invoked the COBOL object program and replaced the 

spaces with the symbolic name of the queue containing the message to be 

processed. 

3.8.4 The Concept of Messages and Message Segments 

A message consists of some arbitrary amount of information, usually char¬ 

acter data, whose beginning and end are defined or implied. As such, messages 

comprise the fundamental but not necessarily the most elementary unit of data 

to be processed in a COBOL communication environment. 

Messages may be logically subdivided into smaller units of data called 

message segments which are delimited within a message by means of end of 

segment indicators (ESI). A message consisting of one or more segments is 

delimited from the next message by means of an end of message indicator (EMI). 

In a similar manner, a group of several messages may be logically separated 

from succeeding messages by means of an end of group indicator (EGI). When a 

message or message segment is received by the COBOL program, a communication 

description interface area is updated by the MCS to indicate which, if any, 

delimiter was associated with the text transferred during the execution of 

that RECEIVE statement. On output the delimiter, if any, to be associated 

with the text released to the MCS during execution of a SEND statement is 

specified or referenced in the SEND statement. Thus the presence of these 

logical indicators is recognized and specified both by the MCS and by the 

COBOL object program; however, no indicators are included in the message text 

processed by COBOL programs. 

A precedence relationship exists between the indicators EGI, EMI and ESI. 

EGI is the most inclusive indicator and ESI is the least inclusive indicator. 

The existence of an indicator associated with message text implies the 

XIV-45 



Concepts 

association of all less inclusive indicators with that text. For example, the 

existence of the EGI implies the existence of EMI and ESI. 

3.8.5 The Concept of Queues 

Queues consist of one or more messages from or to one or more communication 

devices, and as such, form the data buffers between the COBOL object program 

and the MCS. Input queues are logically separate from output queues. 

The MCS logically places in queues or removes from queues only complete 

messages. Portions of messages are not logically placed in queues until the 

entire message is available to the MCS. That is, the MCS will not pass a 

message segment to a COBOL object program unless all segments of that message 

are in the input queue, even though the COBOL source program uses the SEGMENT 

phrase of the RECEIVE statement. For output messages, the MCS will not trans¬ 

mit any segment of a message until all its segments are in the output queue. 

The number of messages that exist in a given queue reflects only the number of 

complete messages that exist in the queue. 

The process by which messages are placed into a queue is called enqueueing. 

The process by which messages are removed from a queue is called dequeueing. 

3.8.5.1 Independent Enqueueing and Dequeueing 

It is possible that a message may be received by the MCS from a communica¬ 

tion device prior to the execution of the COBOL object program. In this case 

the MCS enqueues the message in the proper input queue until the COBOL object 

program requests dequeueing with the RECEIVE statement. It is also possible 

that a COBOL object program will cause the enqueueing of messages in an output 

queue which are not transmitted to a communication device until after the 

COBOL object program has terminated. Two common reasons for this occurrence 

are: 

(1) When data transfer between the specified output queue and its destina¬ 

tion is inhibited. 

(2) When the COBOL object program creates output messages at a speed 

faster than the destination can receive them. 

3.8.5.2 Enabling and Disabling Logical Connectives 

Usually, the MCS will logically connect and disconnect sources and destina¬ 

tions based on time of day, message activity, or other factors unrelated to 

the COBOL program. However, the COBOL program has the ability to perform 

these functions through use of the ENABLE and DISABLE statements. 

A key is required in both statements in order to prevent indiscriminate 

use of the facility by a COBOL user who is not aware of the total network 

environment, and who may therefore disrupt system functions by the untimely 

issuance of ENAJBLE and DISABLE statements. However, this action never 

interrupts a transmission. 

XIV-46 



Concepts 

3.8.5.3 Enqueueing and Dequeueing Methods 

In systems that allow the user to specify certain MCS functions, it may be 

necessary that the user specify to the MCS, prior to execution of programs 

which reference these facilities, the selection algorithm and other designated 

MCS functions to be used by the MCS in placing messages in the various queues. 

A typical selection algorithm, for example, would specify that all messages 

from a given source be placed in a given input queue, or that all messages 

to be sent to a given destination be placed in a given output queue. 

Dequeueing is often done on a first in, first out basis. Thus, messages 

dequeued from either an input or output queue are those messages which have 

been in the queue for the longest period of time. However, the MCS can, upon 

prior specification by the user, dequeue on some other basis, i.e., priority 

queueing can be employed. 

3.8.5.4 Queue Hierarchy 

In order to control more explicitly the messages being enqueued and dequeued, 

it is possible to define in the MCS a hierarchy of input queues, i.e., queues 

comprising queues. In COBOL, four levels of queues are available to the user. 

In order of decreasing significance, the queue levels are named queue, 

sub-queue-1, sub-queue-2 and sub-queue-3. The full queue structure is 

depicted in Figure 2, Hierarchy of Queues, where queues and sub-queues have 

been named with the letters A through 0. Messages have been named with a 

letter according to their source (X, Y, or Z) and with a sequential number. 

QUEUE 

SUB-QUEUE (1) 

SUB-QUEUE (2) 

SUB-QUEUE (3) 

MESSAGE 

H 

Z1 

X2 

1 J K 

X3 XI Z6 

X4 Y3 Z7 

X5 Y5 Y6 

Z5 

Y7 

Y8 

M 

Y_1_ 

Y2 

N 

X6 Z2 

Z3 

Z4 

Y4 

Figure 2: Hierarchy of Queues 

Let us assume that the MCS is operating under the following queueing 

algorithm: 

(1) Messages are placed in queues according to the contents of some 

specified data field in each message. 

XIV-47 



Concepts 

(2) With the RECEIVE statement, if the user does not specify a given sub¬ 

queue level, the MCS will choose the sub-queue from that level in alphabetical 

order, e.g., if sub-queue-1 is not specified by the user, the MCS will dequeue 

from sub-queue-1 B. 

The following examples illustrate the effect of the algorithms shown in 

Figure 2 on page XIV-47: 

(1) The program executes a RECEIVE statement, specifying via the CD: 

Queue A 

MCS returns: Message Z1 

(2) The program executes a RECEIVE statement, specifying via the CD: 

Queue A 

Sub-queue-1 C 

MCS returns: Message Y7 

(3) The program executes a RECEIVE statement, specifying via the CD: 

Queue A 

Sub-queue-1 B 

Sub-queue-2 E 

MCS returns: Message XI 

(4) The program executes a RECEIVE statement, specifying via the CD: 

Queue A 

Sub-queue-1 C 

Sub-queue-2 G 

Sub-queue-3 N 

MCS returns: Message X6 

If the COBOL programmer wishes to access the next message in a queue, 

regardless of which sub-queue that message may be in, he specifies the queue 

name only. The MCS, when supplying the message, will return to the COBOL 

object program, any applicable sub-queue names via the data items in the 

associated CD. If, however, he desires the next message in a given sub-queue, 

he must specify both the queue name and any applicable sub-queue names. 

For output, the COBOL user specifies only the destination(s) of the message, 

and the MCS places the message in the proper output queue structure. 

There is no one-to-one relationship between a communication device and a 

source/destination. A source or destination may consist of one or more 

physical devices. The device or devices which comprise a source/destination 

are defined to the MCS. 

XIV-48 



Concepts 

3.9 DEBUGGING 

To assist in error detection, COBOL provides the facility to monitor, 

during program execution: 

(1) transfers of control to user selected procedures and 

(2) values of user selected data items. 

The user statements required to accomplish this monitoring are included 

in the source program and can be compiled or not according to the presence 

or absence of one clause in the source program. Once compiled into the 

program, these statements may be executed or ignored at run time according 

to the setting of a run-time switch. 

3.10 LIBRARY 

The library feature provides the facility to copy source text from a 

"library" of source text material that is available at compile time. A short 

phrase can cause inclusion of large amounts of source library material into 

the source program, thus saving repetitious coding. Once established, a 

source library may be referenced many times by many programs. 

XIV-49 



Index 

INDEX 

'A' PICTURE symbol, 11-20 

Abbreviated combined relation conditions, 

11-47 

ACCEPT MESSAGE COUNT statement, XIII-12 

USE FOR DEBUGGING statement, XI-7 

ACCEPT statement, 11-53 

Imperative statement, 1-102 

Mnemonic-name, II-9 

SPECIAL-NAMES paragraph, II-9 

ACCESS MODE clause 

DYNAMIC, V-5, VI-5 

RANDOM, V-5, VI-5 

SEQUENTIAL, IV-4, V-5, VI-5 

Access modes, IV-1, V-l, VI-1 

ADD statement, 11-55 

Composite of operands, 11-51 

COMPUTE statement, 11-58 

Conditional statement, 1-101 

CORRESPONDING (CORR), 11-55 

Data conversion, 11-51 

Decimal alignment, 11-51 

Imperative statement, 1-102 

Maximum operand size, 11-51 

Multiple results, 11-51 

ADD CORRESPONDING (ADD CORR) statement, 

11-55 

ADVANCING phrase, IV-34, XIII-20 

AFTER phrase 

INSPECT statement, 11-68 

PERFORM statement, 11-78 

SEND statement, XIII-20 

WRITE statement, IV-34 

Algebraic sign, 1-86 

Alignment of data, 1-86 

ACCEPT statement, 11-53 

MOVE statement, 11-74 

ALL 

INSPECT statement, 11-68 

SEARCH statement, III-7 

USE FOR DEBUGGING statement, XI-4 

ALL literal, 1-81 

DISPLAY statement, 11-59 

INSPECT statement, 11-69 

STOP statement, 11-85 

STRING statement, 11-86 

UNSTRING statement, 11-91 

ALL PROCEDURES phrase, XI-4, XI-5 

ALL REFERENCES OF phrase, XI-4, XI-5, 

XI-6 

Alphabet-name, 1-52, 1-77 

CODE-SET clause, IV-12 

MERGE statement, VII-8 

SORT statement, VII-14 

Alphabet-name clause, II-9 

Alphabetic category, 1-85, 11-18, 11-75 

Alphanumeric character, 1-85 

Alphabetic class, 1-85, 11-43 

Alphanumeric edited category, 1-85 

11-19, 11-75 

ALSO phrase, II-8 

ALTER statement, 11-57 

GO TO statement, 11-65 

Imperative statement, 1-102 

MERGE statement, VII-10 

Segmentation, IX-6 

SORT statement, VII-16 

USE FOR DEBUGGING statement, XI-5, 

XI-8 

ALTERNATE RECORD KEY clause, VI-1, VI-5 

AND, 11-45 

Abbreviated combined relation 

condition, 11-47 

Combined condition, 11-46 

Connective, 1-79 

Hierarchy, 11-48 

Negated combined condition, 11-46 

SEARCH statement, III-7 

Area B, 1-105 

Arithmetic expression, 11-39 

COMPUTE statement, 11-58 

Relation condition, 11-41 

Sign condition, 11-44 

Arithmetic operator, 11-39 

Arithmetic statements, 11-51 

ASCENDING KEY phrase 

MERGE statement, VII-8 

OCCURS clause, III-2 

SEARCH statement, III-9 

SORT statement, VII-14 

ASSIGN clause 

Indexed 1-0 module, VI-5 

Relative 1-0 module, V-5 

Sequential 1-0 module, IV-4 

Sort-Merge module, VII-2 

Asterisk (*) comment line, 1-108 

Asterisk (*) PICTURE symbol, 11-21 

AT END condition, IV-3, V-4, VI-4 

READ statement, IV-29, V-24, VI-26 

RETURN statement, VII-13 

Status key, IV-2, V-2, VI-2 

USE statement, IV-32, V-30, VI-32 

AT END phrase 

READ statement, IV-29, V-24, VI-26 

RETURN statement, VII-13 

SEARCH statement, III-7 

USE statement, IV-32, V-30, VI-32 

AUTHOR paragraph, 1-94, II-2 

'B' PICTURE symbol, 11-20 

BEFORE phrase 

INSPECT statement, 11-68 

SEND statement, XIII-20 

WRITE statement, IV-34 

Binary arithmetic operators, 11-39 

XV-1 



Index 

BLANK WHEN ZERO clause, 11-14 

PICTURE clause, 11-18 

USAGE IS INDEX clause, III-5 

VALUE clause, 11-37 

BLOCK CONTAINS clause 

Indexed 1-0 module, VI-13 

Relative 1-0 module, V-12 

Report Writer module, VIII-24 

Sequential 1-0 module, IV—11 

Body group presentation rules table 

VIII-15 

Braces, 1-73 

Brackets, 1-73 

BY 

COPY statement, X-2 

DIVIDE statement, 11-61 

INSPECT statement, 11-68 

MULTIPLY statement, 11-77 

PERFORM statement, 11-78 

CALL statement, XII-5 

CANCEL statement, XII-7 

Imperative statement, 1-102 

Linkage Section, XII-2 

Procedure Division header, XII-4 

Called program, 1-53 

Calling program, 1-53 

CANCEL statement, XII-7 

CALL statement, XII-5 

CLOSE statement, VI-19 

EXIT program statement, XII-8 

Imperative statement, 1-102 

Category of data, 1-85 

Editing, 11-22 

MOVE statement, 11-75 

Nonnumeric literal, 1-80 

Numeric literal, 1-80 

PICTURE clause, 11-18 

VALUE clause, 11-36, 11-37 

Category of statements, 1-103 

CD entry, XIII-3 

CD level indicator, 1-107, XIII-3 

Cd-name, 1-77, XIII-3 

CF (See CONTROL FOOTING) 

CH (See CONTROL HEADING) 

Character, 1-75 

Alphabetic, 1-52 

Alphanumeric, 1-52 

Editing, 1-58 

Numeric, 1-63 

Punctuation, 1-65, 1-73, 1-75 

Relation, 1-66 

Special, 1-70 

Character representation, 1-85 

Character set, 1-75 

Character-string, 1-76 

Character substitution, 1-75 

CHARACTERS 

OBJECT-COMPUTER paragraph, II-6 

BLOCK CONTAINS clause, IV-11 

RECORD CONTAINS clause, IV-18 

Class condition, 11-43 

Class of data, 1-85 

Incompatible, 11-52 

Clause, 1-53, 1-72, 1-107 

CLOSE statement 

AT END condition, IV-30, V-25, VI-26 

Imperative statement, 1-102 

Indexed 1-0 module, VI-18 

1-0 status, IV-2, V-2, VI-2 

OPEN statement, IV-25, V-21, VI-22 

READ statement, IV-30, V-25, VI-26 

Relative 1-0 module, V-17 

Report Writer module, VIII-1 

Sequential 1-0 module, IV-20 

TERMINATE statement, VIII-55 

USE FOR DEBUGGING statement, XI-5 

COBOL character set, 1-54, 1-75 

COBOL development, XIV-1 

COBOL Journal of Development, XIV-2 

COBOL word, 1-76 

CODASYL, XIV-1 

CODE clause, VIII-25 

CODE-SET clause 

Report Writer module, VIII-26 

Sequential 1-0 module, IV-12 

COLLATING SEQUENCE clause, II-6 

COLLATING SEQUENCE phrase 

MERGE statement, VII-8 

SORT statement, VII-14 

COLUMN NUMBER clause, VIII-27 

Combined condition, 11-46 

Comma, 1-73 

Connective, 1-79 

DECIMAL-POINT IS COMMA clause, II-8 

Identifier, 1-90 

Indices, 1-90 

Interchangeable with semicolon, 1-73 

1-74 

Library text-word, X-3 

PICTURE symbol, 11-21 

Restriction, II—1 

Series connective, 1-79 

Separator, 1-75 

Subscripts, 1-89 

Comment-entry, 1-82, II-2 

DATE-COMPILED paragraph, II-4 

Comment line, 1-108 

Debugging line, XI-9 

Library text, X-4 

WITH DEBUGGING MODE clause, XI-3 

Communication description entry, 1-54 

1-98, XIII-3 

Communication module, XIII-1 

Communication Section, XIII-2 

COMP, 11-35 

Compiler directing sentence, I—101 

Compiler directing statement, I—101 

Complex condition, 11-45 

Composite language skeleton, I—111 

COMPUTATIONAL (COMP), 11-35 

COMPUTE statement, 11-58 

Composite of operands, 11-51 

Conditional statement, 1-101 

Data conversion, II—51 

Decimal alignment, 11-51 

Imperative statement, 1-102 

Maximum operand size, 11-51 

Multiple results, 11-51 

Computer-name, II-5, II-6 

XV-2 



Index 

Concepts, XIV-35 

Condition, 11-41 

Abbreviated combined relation 

condition, 11-47 

Class condition, 11-43 

Combined condition, 11-46 

Complex condition, 11-45 

Condition-name condition, 11-44 

Evaluation rules, 11-48 

IF statement, 11-66 

Negated combined condition, 11-46 

Negated simple condition, 11-45 

PERFORM UNTIL statement, 11-78, 11-80 

Relation condition, 11-41 

SEARCH statement, III-7 

Sign condition, 11-44 

Simple condition, 11-41 

SIZE ERROR condition, 11-50 

Switch-status condition, 11-44 

Condition-name, 1-77, 1-91 

Indexed, 1-90 

Level-number 88, 1-84, 11-17 

Qualified, 1-88 

REDEFINES clause, 11-28 

RERUN clause, IV-6, V-7, VI-8 

SEARCH statement, III-7 

SPECIAL-NAMES paragraph, II-8 

Subscripted, 1-89 

VALUE clause, 11-36 

Condition-name condition, 11-44 

Condition-name data description entry, 

11-12, 11-37 

Conditional expression, 11-41 

Conditional sentence, I-101 

Conditional statement, I-101 

Conditional variable, 1-55, 11-44 

Configuration Section, 1-95 

Connective, 1-79 

Logical, 1-79, 11-45 

Qualifier, 1-79 

Restriction, II-l 

Series, 1-79 

Continuation line, 1-106 

Continuation of lines, 1-106 

Comment-entries, II-2, II-4 

Comment lines, 1-108 

Debugging lines, XI-10 

Library pseudo-text, X-2 

Restriction, II-l 

Continued line, 1-106 

CONTROL clause, VIII-28 

Control break 

CONTROL clause, VIII-28 

GENERATE statement, VII1-51 

GROUP INDICATE clause, VIII-31 

TYPE clause, VIII-46 

CONTROL FOOTING (CF), VIII-6, VIII-45 

Body group presentation rules, 

VIII-15, VIII-18, VIII-19 

Presentation rules table, VIII-9 

CONTROL HEADING (CH), VIII-6, VIII-45 

Body group presentation rules, 

VIII-15, VIII-18, VIII-19 

Presentation rules table, VIII-9 
COPY statement, X-2 

Compiler directing statement, 1-101 

CORR, 11-74, 11-89 

CORRESPONDING (CORR) phrase, 11-51 

ADD statement, 11-55 

MOVE statement, 11-74 

SIZE ERROR phrase, 11-50 

SUBTRACT statement, 11-89 

CR PICTURE symbol, 11-21 

Crossfooting, VIII-43, VIII-48 

Currency PICTURE symbol, 11-21 

Currency sign, 1-56, 11-10, 11-21 

CURRENCY SIGN clause, II-8, II-10, 11-21 

Currency symbol, 1-56, 11-10, 11-21 

Current record pointer 

DELETE statement, V-19, VI-20 

Indexed 1-0 module, VI-2 

OPEN statement, IV-26, V-22, VI-22 

READ statement, IV-28, V-23, VI-25 

Relative 1-0 module, V-2 

REWRITE statement, IV-31, V-27, VI-28 

Sequential 1-0 module, IV-1 

START statement, V-28, VI-31 

WRITE statement, VI-33, V-32, VI-33 

Data description entry, 1-57, 11-12 

Linkage Section, XII-2 

Working-Storage Section, 11-11 

Data Division, 1-97 

Communication module, XIII-2 

Indexed 1-0 module, VI-11 

Inter-Program Communication module, 

XII-2 

Nucleus, 11-11 

Reference format, 1-107 

Relative 1-0 module, V-10 

Report Writer module, VIII-2 

Sequential 1-0 module, IV-9 

Sort-Merge module, VII-5 

Table Handling module, III-2 

Data-name, 1-77, 11-15, VIII-30 

Identifier, 1-90 

Indexed, 1-90 

Qualified, 1-88 

Restriction, II-l 

Subscripted, 1-89 

DATA RECORDS clause 

Indexed 1-0 module, VI-14 

Relative 1-0 module, V-13 

Sequential 1-0 module, IV-13 

Sort-Merge module, VII-6 

DATE, 11-53 

DATE-COMPILED paragraph, II-4 

DATE-WRITTEN paragraph, II-2 

DAY, 11-53 

DB PICTURE symbol, 11-21 

DE (See DETAIL) 

DEBUG-CONTENTS, XI-7 

DEBUG-ITEM, XI-1, XI-5, XI-7 

DEBUG-LINE, XI-7 

Debug module, XI-1 

DEBUG-NAME, XI-7 

DEBUG-SUB-1, XI-7 

DEBUG-SUB-2, XI-7 

DEBUG-SUB-3, XI-7 

Debugging line, XI-10 

Library text, X-4 

XV-3 



Index 

DEBUGGING MODE clause, XI-3 

Compile time switch, XI-1 

Debugging lines, XI-10 

Debugging section, XI-4 

Decimal point 

Actual, 11-21 

Alignment, 1-86 

Assumed, 11-20 

DECIMAL POINT IS COMMA clause, II-8 

11-10, 11-21 
Declarative-sentence, 1-57, I-100 

Declaratives, 1-99 

Reference format, 1-100, 1-108 

Segmentation, IX-4 

USE BEFORE REPORTING statement, VIII-56 

USE FOR DEBUGGING statement, XI-4 

USE statement, IV-32, V-30, VI-32 

Definitions, 1-52 

DELETE statement 

Indexed 1-0 module, VI-20 

OPEN mode, V-21, VI-22 

Relative 1-0 module, V-19 

USE FOR DEBUGGING statement, XI-5 

Delimiters 

Character-string, 1-76 

Pseudo-text, 1-65, 1-76 

DEPENDING phrase 

GO TO statement, 11-65 

OCCURS clause, III-2 

DESCENDING KEY phrase 

MERGE statement, VII-8 

OCCURS clause, III-2 

SORT statement, VII-14 

DESTINATION COUNT clause, XIII-3, XIII-6 

DESTINATION TABLE OCCURS clause, XIII-3, 

XIII-6 

DETAIL (DE), VIII-45 

DISABLE statement, XIII-13 

USE FOR DEBUGGING statement, XI-6 

DISPLAY in USAGE clause, 11-35 

DISPLAY statement, 11-59 

Figurative constant, 1-82 

Imperative statement, 1-102 

Mnemonic-name, II-9 

SPECIAL-NAMES paragraph, II-9 

DIVIDE statement, 11-61 

Composite of operands, 11-51 

COMPUTE statement, 11-58 

Conditional statement, 1-101 

Data conversion, 11-51 

Decimal alignment, 11-51 

Imperative statement, 1-102 

Maximum operand size, 11-51 

Multiple results, 11-51 

SIZE ERROR phrase, 11-50 

Division, 1-57, 1-105 
Format, 1-106 

Division header, 1-58, 1-106 
DOWN BY, III-ll 

DUPLICATES phrase, VI-5 

EDMA TC6, XIV-10 

Editing characters, 1-58 

Editing rules, 11-21 

Editing sign, 1-86 

EGI, XIII-20 

Elementary item, 1-84 

Noncontiguous, II-11 

Elements, 1-72 

Ellipsis, 1-73 

ELSE clause, 11-66 

EMI, XIII-20 

ENABLE statement, XIII-15 

USE FOR DEBUGGING statement, XI-6 

END DECLARATIVES, 1-99, 1-108 

END KEY clause, XIII-3, XIII-5 

End of group indicator (EGI), XIII-22 

End of message indicator (EMI), XIII-22 

END-OF-PAGE phrase, IV-34 

End of segment indicator (ESI), XIII-22 

ENTER COBOL statement, 11-63 

ENTER statement, 11-63 

Entry, 1-58 

Environment Division, 1-95 

Debug module, XI-3 

Indexed 1-0 module, VI-5 

Nucleus, II-5 

Relative 1-0 module, V-5 

Segmentation module, IX-5 

Sequential 1-0 module, IV-4 

Sort-Merge module, VII-2 

EQUAL TO relation, 11-41, 11-42 

EOP phrase, IV-34 

ERROR KEY clause, XIII-3, XIII-6 

ESI, XIII-20 

Execution, 1-99 

EXIT statement, 11-64 

Imperative statement, 1-102 

EXIT PROGRAM statment, XII-8 

CALL statement, XII-6 

CANCEL statement, XII-7 

Explicit, 1-91 

Exponentiation, 11-39 

FD level indicator, 1-107 

Indexed 1-0 module, VI-12 

Relative 1-0 module, V-ll 

Report Writer module, VIII-3 

Sequential 1-0 module, IV-10 

Figurative constant, 1-79, 1-80, 1-81 

DISPLAY statement, 11-59 

INSPECT statement, 11-69 

Restriction, II-l 

STOP statement, 11-85 

STRING statement, 11-86, 11-87 

UNSTRING statement, 11-91 

VALUE clause, 11-37 

VALUE OF clause, IV-19, VI-17, VIII-50 

File control entry, 1-96 

Indexed 1-0 module, VI-5 

Relative 1-0 module, V-5 

Sequential 1-0 module, IV-4 

Sort-Merge module, VII-2 

FILE-CONTROL paragraph 

Indexed 1-0 module, VI-5 

Relative 1-0 module, V-5 

Sequential 1-0 module, VI-4 

Sort-Merge module, VII-2 

File description entry, 1-59, 1-98 

Indexed 1-0 module, VI-12 

Relative 1-0 module, V-ll 

Report Writer module, VIII-3 

Sequential 1-0 module, IV-10 



Index 

File-name, 1-59, 1-77 

File Section, 1-97 

Indexed 1-0 module, VI-11 

Relative 1-0 module, V-10 

Report Writer module, VIII-2 

Sequential 1-0 module, IV-9 

Sort-Merge module, VII-5 

FILE STATUS clause 

Indexed 1-0 module, VI-5 

Relative 1-0 module, V-5 

Sequential 1-0 module, IV-4 

FILE STATUS data item 

Indexed 1-0 module, VI-2 

Relative 1-0 module, V-2 

Sequential 1-0 module, IV-1 

FILLER, 11-15 

FINAL 

CONTROL clause, VIII-28 

SUM clause, VIII-42 

TYPE clause, VIII-45 

FIRST, 11-68 

FIRST DETAIL, VIII-36 

Floating insertion editing, 11-23 

FOOTING, VIII-45 

FOR, 11-68 

Format punctuation, 1-73 

FROM phrase 

ACCEPT statement, 11-53 

PERFORM VARYING statement, 11-78 

RELEASE statement, VII-12 

SUBTRACT statement, 11-89 

WRITE statement, IV-35, V-32, VI-33 

General format, 1-72 

General rules, 1-72 

GENERATE statement, VIII-51 

CONTROL clause, VIII-28 

Data-name, VIII-30 

Imperative statement, 1-102 

SUM clause, VIII-43 

TERMINATE statement, VIII-55 

Generic terms, 1-73 
GIVING phrase 

ADD statement, 11-55 

DIVIDE statement, 11-61 

MERGE statement, VII-8 

MULTIPLY statement, 11-77 

SORT statement, VII-14 

SUBTRACT statement, 11-89 

Glossary of COBOL terms, 1-52 

GO TO statement, 11-65 

ALTER statement, 11-57 

Imperative statement, 1-102 

MERGE statement, VII-10 

PERFORM statement, 11-80 

SEARCH statement, III-9 

Segmentation module, IX-6 

SORT statement, VII-16 

USE FOR DEBUGGING statement, XI-6, 
XI-8 

GREATER THAN relation, 11-41, 11-42 
Group, 1-84 

GROUP INDICATE clause, VIII—31 

VALUE clause, 11-37 

HEADING, VIII-45 

HIGH-VALUE/HIGH-VALUES, 1-81 

Restriction, II-1 

History of COBOL, XIV-1 

Identification Division, 1-94, II-2 

Identifier, 1-90, 1-99 

IF statement, 11-66 

Conditional statement, 1-101 

Imperative statement, 1-102 

Imperative sentence, 1-102 

Imperative statement, 1-102 

Implementation of the standard, 1-4 

Implementor-defined specifications, 1-7 

Implementor-name, 1-59 

Alphabet-name clause, II-8 

ASSIGN clause, IV-4, V-5, VI-5, VII-2 

RERUN clause, IV-6, V-7, VI-8 

SPECIAL-NAMES paragraph, II-8 

VALUE OF clause, IV-19, V-16, VI-17, 

VIII-50 

Implicit, 1-91 

Implied relational operator, 11-47 

Implied subject, 11-47 

IN qualifier connective, 1-79, 1-88 
Incompatible data, 11-52 

Indentation, 1-107 

Index, 1-89 

Index data item, III-5 

Condition-name, 11-13 

CONTROL clause, VIII-28 

Initial value, 11-11 

MOVE statement, 11-74 

Index-name, 1-77, 1-89 

OCCURS clause, III-2 

PERFORM statement, 11-78 
Relation condition, III-6 

SEARCH statement, III-7 

SET statement, III-ll 

Indexed file, VI-1 

Indexed 1-0 module, VI-1 

Indexing, 1-89 

Condition-name, 1-90 

Conditional variable, 1-91 

CONTROL clause, VIII-28 

DEBUG-NAME, XI-7 

MOVE statement, 11-74 

OCCURS clause, III-2 

Qualification, 1-90 

RETURN statement, VII-13 

Subscripting, 1-89 

Indicator area, 1-105 

COPY statement, X-4 

Debugging line, XI-10 

INITIAL clause, XIII-3, XIII-4 

INITIATE statement, VIII-53 

GENERATE statement, VIII-52 

Imperative statement, 1-102 

OPEN statement, VIII-1 

SUM clause, VIII-44 

TERMINATE statement, VIII-55 

USE BEFORE REPORTING statement, 

VIII-56 

Input-Output Section, 1-95 

Indexed 1-0 module, VI-5 

Relative 1-0 module, V-5 

Sequential 1-0 module, IV-4 

Sort-Merge module, VII-2 

XV-5 



Index 

INPUT PROCEDURE phrase, VII-14 

INSPECT statement, 11-68 

Imperative statement, 1-102 

INSTALLATION paragraph, 1-94, II-2 

Integer, 1-60 

Inter-Program Communication module, XII-1 

International Organization for 

Standardization, XIV-8, XIV-10 

INTO 

DIVIDE statement, 11-61 

READ statement, IV-28, V-23, VI-25 

RETURN statement, VII-13 

STRING statement, 11-86 

INVALID KEY condition, V-4, VI-4 

DELETE statement, V-19, VI-20 

READ statement, V-23, VI-24 

REWRITE statement, V-26, VI-28 

START statement, V-28, VI-30 

WRITE statement, V-32, VI-33 

I-O-CONTROL paragraph, 1-96 

Indexed 1-0 module, VI-8 

Relative 1-0 module, V-7 

Sequential 1-0 module, IV-6 

Sort-Merge module, VII-3 

ISO, XIV-8, XIV-10 

Journal of Development, XIV-2 

JUST, 11-16 

JUSTIFIED (JUST) clause, 11-16 

Condition-name, 11-13 

Figurative constant, 1-82 

Standard alignment, 1-86 

USAGE IS INDEX clause, II1-5 

VALUE clause, 11-37 

KEY data-names 

MERGE statement, VII-8 

SORT statement, VII-14 

KEY phrase 

DISABLE statement, XIII-13 

ENABLE statement, XIII-15 

Indexed I/O alternate record key, VI-5 

OCCURS clause, 111-2 , III-3, 111-4 

READ statement, VI-24 

Relative I/O relative key, V-5 

SEARCH statement, 111 — 8 

START statement, VI-30 

Key word, 1-73, 1-79 

LABEL RECORDS clause 

Indexed 1-0 module, VI-15 

Relative 1-0 module, V-14 

Report Writer module, VIII-32 

Sequential 1-0 module, IV-14 

Language-name, 11-63 

LAST DETAIL, VIII-36 

LEADING 

INSPECT statement, 11-68 

SIGN clause, 11-31 

LEFT, 11-33 

LESS THAN relation, 11-42 

Level indicator, 1-107 

Level-number, 1-84, 11-13, 11-17 

Data description entry, 11-12 

Notation, 1-73 

Qualifier, 1-87 

Level-number (continued) 

Reference format, 1-107 

Report group description entry, VIII-6 

Library module, X-l 

Library-name, 1-77, X-2 

LINAGE clause, IV-15 

LINAGE-COUNTER, IV-3, IV-16 

LINE-COUNTER, VIII-1, VIII-5 

Final setting rules, VIII-13, VIII-15 

VIII-18, VIII-23 

Special register, 1-80 

Subscripting, 1-89 

LINE NUMBER clause, VIII-33 

Notation, VIII-10 

Sequence substitution, VIII-11 

Linkage Section, XII-2 

VALUE clause, 11-37 

List of elements by module, 1-10 

List of elements showing disposition, 

I- 40 

Literal, 1-80 

CURRENCY SIGN clause, II-8, 11-10 

STOP statement, 11-85 

Logical connective, 1-79 

Logical operator, 11-45 

LOW-VALUE/LOW-VALUES, 1-81 

Restriction, II—1 

MEMORY SIZE clause, II-6 

MERGE statement, VII-8 

Imperative statement, 1-102 

OPEN statement, IV-24 

Segmentation, IX-6 

USE FOR DEBUGGING statement, XI-8 

MESSAGE COUNT clause, XIII-3, XIII-4 

MESSAGE DATE clause, XIII-3, XIII-4 

MESSAGE TIME clause, XIII-3, XIII-4 

Minus (-) PICTURE symbol, 11-21 

Mnemonic-name, 1-78 

ACCEPT statement, 11-53 

DISPLAY statement, 11-59 

SEND statement, XIII-20 

SPECIAL-NAMES paragraph, II-8 

WRITE statement, IV-34 

MODULES, I1-6 

MOVE statement, 11-74 

CORRESPONDING (CORR), 11-74 

Imperative statement, 1-102 

Index data item, III-5 

Overlapping operands, 11-51 

MOVE CORRESPONDING (MOVE CORR) statement, 

II- 74 

MULTIPLE FILE clause, IV-6, IV-8 

Multiple results in arithmetics, 11-51 

MULTIPLY statement, 11-77 

Composite of operands, 11-51 

COMPUTE statement, 11-58 

Conditional statement, I — 101 

Data conversion, 11-51 

Imperative statement, 1-102 

Maximum operand size, 11-51 

Multiple results, 11-51 

SIZE ERROR phrase, 11-50 

NATIVE phrase, II-8, II-9 

Native character set, 1-62 

Native collating sequence, 1-62 

XV-6 



Index 

Negated combined condition, 11-46 

Negated simple condition, 11-45 

NEXT phrase 

Indexed 1-0 module, VI-24 

Relative 1-0 module, V-23 

NEXT GROUP clause, VIII-35 

Body group presentation rules, VIII-18 

PAGE FOOTING presentation rules, 

VIII-20 

REPORT HEADING group presentation 

rules, VIII-13 

Saved next group integer, VIII-11 

NEXT PAGE phrase 

LINE NUMBER clause, VIII-33 

NEXT GROUP clause, VIII-35 

NEXT SENTENCE phrase 

IF statement, 11-66 

SEARCH statement, III-7 

NO DATA phrase, XIII-17 

Noncontiguous elementary item, II — 11 

Level-number 77, 11-17 

Nonnumeric comparison, 11-42 

Nonnumeric literal, 1-80 

Continuation , 1-106 

NOT 

Logical connective, 1-79 

Logical operator, 11-45 

Relational operator, 11-41 

Notation rules, 1-72 

Nucleus, II-1 

Numeric category, 1-85, 11-18, 11-75 

Numeric character, 1-63 

Numeric class, 1-85, 11-43 

Numeric comparison, 11-42 

Numeric edited category, 1-85, 11-19, 

11-75 

Numeric literal, 1-80 

OBJECT-COMPUTER paragraph, II-6 

Occurrence number, III-3 

OCCURS clause, III-2 

CORRESPONDING phrase, 11-51 

MOVE statement, 11-76 

REDEFINES clause, 11-27 

RENAMES clause, 11-29 

SEARCH statement, III-7 

SYNCHRONIZED clause, 11-34 

USE FOR DEBUGGING statement, XI-5 

VALUE clause, 11-36 

OF qualifier connective, 1-79, 1-88 

OFF STATUS phrase, II-8 

ON SIZE ERROR phrase, 11-50 

ON STATUS phrase, I1-8 

OPEN statement 

CLOSE statement, IV-22, V-18, VI-19 

Imperative statement, 1-102 

Indexed 1-0 module, VI-21 

INITIATE statement, VIII-53 

1-0 status, IV-1, V-2, VI-2 

LINAGE clause, IV-16 

READ statement, IV-28, V-23, VI-24 

Relative 1-0 module, V-20 

REPORT clause, VIII-40 

Report Writer module, VIII-1 

REWRITE statement, IV-31, V-26, VI-28 

Sequential 1-0 module, IV-24 

OPEN statement (continued) 

START statement, V-28, VI-30 

USE FOR DEBUGGING statement, XI-5 

WRITE statement, IV-34, V-32, VI-33 

Operands, 11-41, 11-51 

Operational sign, 1-86 

Operator 

Arithmetic, 11-39 

Logical, 11-45 

Relational, 11-42 

OPTIONAL phrase, IV-4 

CLOSE statement, IV-23 

READ statement, IV-29 

Optional word, 1-73, 1-79 

OR phrase, 11-91, 11-92 

OR logical connective, 1-79, 11-45 

Abbreviated combined relation 

condition, 11-47 

Hierarchy, 11-48 

ORGANIZATION IS INDEXED clause, VI-5 

ORGANIZATION IS RELATIVE clause, V-5 

ORGANIZATION IS SEQUENTIAL clause, IV-4 

OUTPUT PROCEDURE phrase, VII-8, VII-13 

Overall language consideration, 1-72 

OVERFLOW phrase 

CALL statement, XII-5 

STRING statement, 11-86 

UNSTRING statement, 11-91 

Overlapping operands 

Nucleus, 11-51 

Table Handling module, III-6 

Overlays, IX-2 

'P' PICTURE symbol, 11-20 

PAGE 

SEND statement, XIII-20 

WRITE statement, IV-36 

PAGE clause, VIII-35 

PAGE-COUNTER, VIII-1, VIII-4 

Special register, 1-80 

Subscripting, 1-89 

PAGE FOOTING (PF), VIII-45 

PAGE FOOTING presentation rules table, 

VIII-20 

PAGE HEADING (PH), VIII-45 

PAGE HEADING group presentation rules 

table, VIII-14 

Paragraph, 1-99, 1-107 

Paragraph header, 1-107 

Paragraph-name, 1-77, 1-99, 1-107 

Qualified, 1-88 

Parentheses, 11-39 

Condition, 11-46 

Indices, 1-89 

PICTURE clause, 11-19 

Separators, 1-75 

Subscripts, 1-89 

PERFORM statement, 11-78 

Imperative statement, 1-102 

USE FOR DEBUGGING statement, XI-4, 

XI-6, XI-8 

USE statement, IV-32, V-30, VI-32 

Period, 1-74, 1-99 

Separator, 1-75 

Period (.) PICTURE symbol, 11-21 

PF, VIII-45 

XV-7 



Index 

PH, VIII-45 

Phrase, 1-64, 1-72 

PIC clause, 11-18 

PICTURE character-string, 1-82 

PICTURE (PIC) clause, 11-18 

BLANK WHEN ZERO clause, 11-14 

COMPUTATIONAL clause, 11-35 

CURRENCY SIGN clause, 11-10 

DECIMAL POINT IS COMMA clause, II-10 

Linkage Section, XII-2 

SYNCHRONIZED clause, 11-33 

USAGE IS INDEX clause, III-5 

Working-Storage Section, 11-11 

PLC, XIV-2, XIV-10 

Plus (+) PICTURE symbol, 11-21 

POINTER phrase 

STRING statement, 11-86 

UNSTRING statement, 11-93 

Precedence rules for PICTURE character¬ 

string, 11-24 

Procedure, 1-99 

Procedure Division, 1-99 

Communication module, XIII-12 

Debug module, XI-4 

Indexed 1-0 module, VI-18 

Inter-Program Communication module, 

XII-4 

Nucleus, 11-39 

Relative 1-0 module, V-17 

Report Writer module, VIII-51 

Sequential 1-0 module, IV-20 

Sort-Merge module, VII-8 

Table Handling module, III-6 

Procedure Division header, 1-100, XII-4 

Procedure-name, 1-65 

Qualifier, 1-88 

PROGRAM-ID paragraph, II-3 

Program-name, 1-77 

CALL statement, XII-5 

CANCEL statement, XII-7 

Programming Language Committee (PLC), 

XIV-2, XIV-10 

PROGRAM COLLATING SEQUENCE clause, 

II-6 
Pseudo-text delimiters, 1-76, X-2 

Punctuation characters, 1-65 

Format punctuation, 1-73 

Separators, 1-75 

Qualification, 1-87 

CD entry, XIII-5, XIII-6 

CONTROL clause, VIII-28 

COPY statement, X-2 

CORRESPONDING phrase, 11-51 

DEBUG-NAME, XI-7 

LINE-COUNTER, VIII-5 

Linkage Section, XII-2 

MERGE statement, VII-8 

OCCURS clause, III-2 

PAGE-COUNTER, VIII-4 

Qualifier connective, 1-79 

READ statement, VI-24 

RELEASE statement, VII-12 

RENAMES clause, 11-29 

Restriction, II-l 

REWRITE statement, IV-31, V-26, VI-28 

SORT statement, VII-14 

Qualification (continued) 

START statement, V-28, VI-30 

VALUE OF clause, IV-19, V-16, VI-17, 

VIII-50 

Working-Storage Section, II—11 

WRITE statement, IV-34, V-32, VI-33 

Queue, 1-65 

Quotation mark 

Separator, 1-75 

QUOTE/QUOTES, 1-81, II-l 

RD entry, VIII-2 

RD level indicator, 1-107, VIII-4 

READ statement 

CLOSE statement, IV-22 

DELETE statement, V-19, VI-20 

Indexed 1-0 module, VI-24 

OPEN statement, IV-25, V-21, VI-22 

Relative 1-0 module, V-23 

REWRITE statement, V-26, VI-28 

Sequential 1-0 module, IV-28 

USE FOR DEBUGGING statement, XI-5 

RECEIVE statement, XIII-17 

USE FOR DEBUGGING statement, XI-6 

Record 

Logical, 1-83 

Physical, 1-83 

RECORD CONTAINS clause 

Indexed 1-0 module, VI-16 

Relative 1-0 module, V-15 

Report Writer module, VIII-39 

Sequential 1-0 module, IV-18 

Sort-Merge module, VII-7 

Record description entry, 1-66, 1-97, 

1-98 

Indexed 1-0 module, VI-11 

Relative 1-0 module, V-10 

Sequential 1-0 module, IV-9 

RECORD KEY clause, VI-1, VI-5, VI-7 

Record-name, 1-77 

REDEFINES clause, 11-27 

REEL, IV-20 

Reference format, 1-105 

Restriction, II-l 

Text-words, X-4 

Relation character, 1-66 

Relation condition, 11-41 

Abbreviated combined, 11-47 

Index data item, III-6 

Index-name, III-6 

MERGE statement, VII-9 

Nonnumeric operands, 11-42 

Numeric operands, 11-42 

SORT statement, VII-15 

Relational operator, 11-41 

Relative file, V-l 

Relative indexing, 1-89 

Relative 1-0 module, V-l 

RELATIVE KEY phrase, V-5 

READ statement, V-25 

REWRITE statement, V-27 

START statement, V-29 

WRITE statement, V-33 

Relative record number, V-l, V-6. V-33 

RELEASE statement, VII-12 

Imperative statement, 1-102 

XV-8 



Index 

REMAINDER phrase, 11-61, 11-62 

RENAMES clause, 11-29 

Level-number, 1-84, 11-17 

REPLACING phrase, 11-68, X-2 

REPORT clause, VIII-40 

Report description entry, 1-67, VIII-2, 

VIII-4 

REPORT FOOTING (RF), VIII-45 

REPORT FOOTING presentation rules table 

VIII-21, VIII-22 

Report group description entry, 1-67, 

VIII-2, VIII-6 

REPORT HEADING (RH), VIII-45 

REPORT HEADING group presentation rules 

table, VIII-11, VIII-12 

Report-name, 1-77 

Report Section, 1-107, VIII-2 

Report Writer module, VIII-1 

RERUN clause 

Indexed 1-0 module, VI-8 

Relative 1-0 module, V-7 

Sequential 1-0 module, IV-6 

RESERVE AREA/AREAS clause 

Indexed 1-0 module, VI-5 

Relative 1-0 module, V-5 

Sequential 1-0 module, IV-4 

Reserved word, 1-79, 1-109 

Reserved word list, 1-109 

RESET phrase, VIII-42 

RETURN statement, VII-13 

Conditional statement, I-101 

Revision history, XIV-9 

REWRITE statement 

Indexed 1-0 module, VI-28 

OPEN statement, IV-25, V-21, VI-22 

Relative 1-0 module, V-26 

Sequential 1-0 module, IV-31 

USE FOR DEBUGGING statement, XI-5, 

XI-6 

RF, VIII-45 

RH, VIII-45 

RIGHT, 11-16, 11-33 

Rolling forward, VIII-43, VIII-48 

ROUNDED phrase, 11-50 

Routine-name, 1-77, 11-63 

RUN, 11-85 

'S' PICTURE symbol, 11-20 

SAME AREA clause 

Indexed 1-0 module, VI-8 

Relative 1-0 module, V-7 

Sequential 1-0 module, IV-6 

SAME RECORD AREA clause 

Indexed 1-0 module, VI-8 

Relative 1-0 module, V-7 

Sequential 1-0 module, IV-6 

Sort-Merge module, VII-3 

SAME SORT AREA clause, VII-3 

SAME SORT-MERGE AREA clause, VII-3 

SD level indicator, 1-107, VII-5 

SEARCH statement, III-7 

Conditional statement, I-101 

USAGE IS INDEX clause, III-5 

Section, 1-99, 1-106 

Section header, 1-106 

Section-name, 1-77 

SECURITY paragraph, II-2 

Segment, IX-2 

SEGMENT-LIMIT clause, IX-5 

Segment-number, 1-77, IX-4 

SEGMENT phrase, XIII-17 

Segmentation, IX-2 

CALL statement, XII-6 

MERGE statement, VII-10 

SORT statement, VII-17 

Segmentation module, IX-1 

SELECT clause 

Indexed 1-0 module, VI-5 

Relative 1-0 module, V-5 

Sequential 1-0 module, IV-4 

Sort-Merge module, VII-2 

Semicolon 

Connective, 1-79 

Interchangeable with comma, 1-73 

Library text-word, X-3 

Punctuation character, 1-73 

Restriction, II—1 

SEND statement, XIII-20 

SPECIAL-NAMES paragraph, II-9 

USE FOR DEBUGGING statement, XI-6 

Sentence, 1-99, 1-101, 1-102 

Separator, 1-75 

Restriction, II-l 

SEQUENCE clause, II-6 

Sequence number, 1-106 

Sequential file, IV-1 

Sequential 1-0 module, IV-1 

Series connective, 1-79 

SET statement, III-ll 

Imperative statement, 1-102 

Overlapping operands, 11-51, III-6 

SEARCH statement, III-10 

USAGE IS INDEX clause, III-5 

SIGN clause, 11-31 

Class condition, 11-43 

MOVE statement, 11-75 

Operational sign, 1-86 

PICTURE clause, 11-20 

Sign condition, 11-44 

Simple condition, 11-41 

SIZE ERROR phrase, 11-50 

Conditional statement, 1-101 

SORT statement, VII-14 

Imperative statement, 1-102 

OPEN statement, IV-24 

Segmentation, IX-7 

USE FOR DEBUGGING statement, XI-8 

Sort-merge file description entry, 1-69 

VII-5 

Sort-Merge module, VII-1 

SOURCE clause, VIII-41 

SOURCE-COMPUTER paragraph, II-5 

WITH DEBUGGING MODE phrase, XI-3 

Source program, 1-69, 1-105 

COPY statement, X-2 

Space 

Library text-word, X-3 

Separator, 1-75 

SPACE/SPACES, 1-81 

Restriction, II-l 

Special character, 1-70, 1-74 

Special-character words, 1-80 

XV-9 



Index 

SPECIAL-NAMES paragraph, II-8 

ACCEPT statement, 11-53 

Condition-name, 1-78 

DISPLAY statement, 11-59 
Mnemonic-name, 1-78 

Switch-status condition, 11-44 

WRITE statement, IV-34 

Special registers, 1-80 

DEBUG-ITEM, XI-1 

LINAGE-COUNTER, IV-3 

LINE-COUNTER, VIII-1 

PAGE-COUNTER, VIII-1 

Standard alignment rules, 1-86 

Standard data format, 1-70, 1-82 

STANDARD-1 phrase, II-8, II-9 

START statement 

Indexed 1-0 module, VI-30 

OPEN statement, V-21, VI-22 

READ statement, V-25, VI-26 

Relative 1-0 module, V-28 

USE FOR DEBUGGING statement, XI-5 

Statement, 1-72, 1-99, I-101, 1-102 

Status key 
Indexed 1-0 module, VI-2 

Relative 1-0 module, V-2 

Sequential 1-0 module, IV-2 

STATUS KEY clause, XIII-3, XIII-5 

ENABLE statement, XIII-16 

SEND statement, XIII-21 

STOP statement, 11-85 

Figurative constant, 1-82 

Imperative statement, 1-102 

STRING statement, 11-86 

Figurative constant, 1-82 

Imperative statement, 1-102 

Overlapping operands, 11-51 

SUB-QUEUE, XIII-3 

Subscripting, 1-89 

Condition-name, 1-91 

Conditional variable, 1-91 

CONTROL clause, VIII-28 

Qualification, 1-88 

Subtotalling, VIII-43 

SUBTRACT statement, 11-89 

Composite of operands, 11-51 

COMPUTE statement, 11-58 

Conditional statement, 1-101 

CORRESPONDING (CORR), 11-89 

Data conversion, 11-51 

Decimal alignment, 11-51 

Imperative statement, 1-102 

Maximum operand size, 11-51 

Multiple results, 11-51 

SUBTRACT CORRESPONDING (SUBTRACT CORR) 

11-89 

SUM clause, VIII-42 

Sum counter, VIII-42 

INITIATE statement, VIII-53 

USE FOR DEBUGGING statement, XI-5 

SUPPRESS statement, VIII-54 

Imperative statement, 1-102 

Switch-status condition, 11-44 

SYMBOLIC DESTINATION clause, XIII-3, 

XIII-6 

DISABLE statement, XIII-13 

ENABLE statement, XIII-15 

RECEIVE statement, XIII-17 

SYMBOLIC SOURCE clause, XIII-3, XIII-4 

SYMBOLIC SUB-QUEUE-1, XIII-3, XIII-4 

SYMBOLIC SUB-QUEUE-2, XIII-3, XIII-4 

SYMBOLIC SUB-QUEUE-3, XIII-3, XIII-4 

SYNC clause, 11-33 

SYNCHRONIZED (SYNC) clause, 11-33 

Elementary data item, 11-13 

USAGE IS INDEX clause, III-5 

Syntax rules, 1-72 

System-name, 1-78 

Table Handling module, III-l 

TALLYING phrase 

INSPECT statement, 11-68 

UNSTRING statement, 11-91 

TERMINAL phrase, XIII-13, XIII-15 

TERMINATE statement, VIII-55 

GENERATE statement, VIII-52 

Imperative statement, 1-102 

INITIATE statement, VIII-53 

Sequential 1-0 module, VIII-1 

SUM clause, VIII-43 

TYPE clause, VIII-47, VIII-49 

USE statement, VIII-56 

TEXT LENGTH clause, XIII-3, XIII-4 

Text-name, 1-77, X-2 

Qualified, 1-88 

THROUGH (THRU) 

MERGE statement, VII-8 

PERFORM statement, 11-78 

RENAMES clause, 11-29 

SORT statement, VII-14 

VALUE clause, 11-36 

THRU (See THROUGH) 

TIME, 11-53 

TIMES, 11-78 

TRAILING, 11-31 
TYPE clause, VIII-45 

Unary arithmetic operator, 11-39 

Unary minus, 11-39 

Unary plus, 11-39 

UNIT, IV-20 

UNSTRING statement, 11-91 

Figurative constant, 1-82 

Imperative statement, 1-102 

Overlapping operands, 11-51 

UNTIL phrase, 11-80 

UP BY, III-ll 

UPON phrase 

DISPLAY statement, 11-59 

SUM clause, VIII-42 

USAGE clause, 11-35 

Class condition, 11-43 

INSPECT statement, 11-69 

Relation condition, 11-41 

SIGN clause, 11-31 

STRING statement, 11-86 

UNSTRING statement, 11-91 

USAGE IS INDEX clause, III-5 

CORRESPONDING phrase, 11-51 

MOVE statement, 11-74 

SEARCH statement, III-8 

Working-Storage Section, II—11 

USE statement 

Compiler directing statement, I—101 

Declarative statement, 1-99 

XV-10 



Index 

USE statement (continued) 

DELETE statement, V-19, VI-20 

Indexed 1-0 module, VI-32 

INVALID KEY condition, V-2, VI-4 

READ statement, IV-29, V-23, VI-24 

Relative 1-0 module, V-30 

REWRITE statement, V-26, VI-28 

Sequential 1-0 module, IV-32 

START statement, V-28, VI-30 

WRITE statement, IV-37, V-32, VI-33 

USE BEFORE REPORTING statement, VIII-56 

USE FOR DEBUGGING statement, XI-4 

User-defined words, 1-76 

USING phrase 

CALL statement, XII-5 

Linkage Section, XII-2 

MERGE statement, VII-8 

Procedure Division header, XII-4 

SORT statement, VII-14 

'V' PICTURE symbol, 11-20 

VALUE clause, 11-36 

VALUE OF clause 

Indexed 1-0 module, VI-17 

Relative 1-0 module, V-16 

Report Writer module, VIII-50 

Sequential 1-0 module, IV-19 

VARYING phrase 

PERFORM statement, 11-81 

SEARCH statement, III-9 

Verbs, 1-79 

WHEN, III-7 

Word, 1-76 

Working-Storage Section, 1-97, II—11 

WRITE statement 

Conditional statement, I—101 

Imperative statement, 1-102 

WRITE statement (continued) 

Indexed 1-0 module, VI-33 

OPEN statement, IV-25, V-21, VI-22 

Relative 1-0 module, V-32 

Sequential 1-0 module, IV-34 

SPECIAL-NAMES paragraph, II-9 

USE FOR DEBUGGING statement, XI-5, XI-6 

'X' PICTURE symbol, 11-20 

X3J4 technical committee, XIV-9 

X3.4.4 working group, XIV-6 

X3.23-1968 document, XIV-8 

’Z' PICTURE symbol, 11-20 

ZERO/ZEROS/ZEROES, 1-81 

Restriction, II—1 

'O' PICTURE symbol, 11-21 

'9' PICTURE symbol, 11-20 

'66' RENAMES data description entry, 11-29 

'77' item description entry, 11-11 

'88' condition-name data description 

entry, 11-12, 11-13, 11-17 

> relation, 11-41 

< relation, 11-41 

= relation, 11-41 

+ operator, 11-39 

+ PICTURE symbol, 11-21 

continuation line, 1-106 

operator, 11-39 

- PICTURE symbol, 11-21 

* comment line, 1-108 

* operator, 11-39 

* PICTURE symbol, 11-21 

/ comment line, 1-108 

/ operator, 11-39 

/ PICTURE symbol, 11-21 

** operator, 11-39 

== pseudo-text delimiter, 1-65 

XV-11 







ustt? -V 

American National Standards 
on Computers 
and Information Processing 

■oaf, jht r 
JJW- ->{3.24-1968 Signal Quality at Interface Between Data Proces- 

v J3-~&3?ng Terminal Equipment and Synchronous Data Communica- 

X3.2-1970 Print Specifications for Magnetic Ink Character tion Equipment for Serial Data Transmission 

Recognition „ ,j . , , 

A ' ‘ X3.25-1968 Character Structure and Character Parity Sense 

X3.3-1970 Bank Check Specifications for Magnetic Ink Char- ’O J-> '-‘fdr Parallel-by-Bit Communication in the American National 

acter Recognition Standard Code for Information Interchange 

X3.4-1968 Code for Information Interchange X3.26-1970 Hollerith Punched Card Code 

4OfTA0USi« 3«IS« S'. 

:V»(tSPf, LCW.VCSTWiAiir. SNK1 . 

X3.5-1970 Flowchart Symbols and Their Usage in Information 

Processing , *. ■.- 

X3.6-1965 (R1973) Perforated Tape Code for Information 

Interchange 

& ■ 
X3.9-1966 FORTRAN 

X& 1,0-1966 Basic'.FORTRA^Q "Sp 

X3.11-1969 Specifications for General Purpose Paper Cards for 

Information Processing 

:h£5i gj ?.^qoT§BUBqdiL-i.: jof i 
X3.12-1970 Vocabulary for Information Processing 

X3.14^1973 Recorded Magnetic¥Jj^f<^^?cMf?at&fiinter¬ 

change (200 CPI, NRZI) - «• S ■'ISlh.fptt P.Kfi «0 ? 

->u -.if. too 
X3.15-1966 Bit Sequencing of;the American National Standard 

Code for Information Interchange in Serial-by-Bit Data Trans¬ 

mission 

X3.16-1966 Character Structure and Character Parity Sense for 

Serial-by-Bit Data Communication in the American National 

Standard Code for Information Interchange - 

X3.18-1967 One-Inch Perforated Paper Tape for Information 

Interchange 

X3.19-1967 Eleven-Sixteenths Inch Perforated Paper Tape for 

Information Interchange 

X3.20-1967 Take-Up Reels for One-Inch Perforated Tape for 

Information Interchange 

X3.21-1967 Rectangular Holes in Twelve-Row Punched Cards 

X3.22-1973 Recorded Magnetic Tape for Information Inter¬ 

change (800 CPI, NRZI) 

X3.23-1974 Programming Language COBOL 

X3.27-1969 Magnetic Tape Labels for Information Inter- 

h change 

X3.28-1971 Procedures for the Use of the Communication 

Control Characters of American National Standard Code for 

Irwformation Interchange in Specified Data Communication 

Links 

; ; t X3.29-1971 Specifications for Properties of Unpunched Oiled 

Paper Perforator Tape 

X3.3Q-1971 Representation for Calendar Date and Ordinal 

Date for Information Interchange 

X3.31-1973 Structure for the Identification of the Counties 

of the United States for Information Interchange 

X3.32-1973 Graphic Representation of the Control Char¬ 

acters of American National Standard Code for Information 

Interchange 

X3.34-1972 Interchange Rolls of Perforated Tape for Infor¬ 

mation Interchange 

. X3.37-1974 Programming Language APT 

X3.38-1972 Identification of States of the United States (In¬ 

cluding the District of Columbia) for Information Interchange 

X3.39-1973 Recorded Magnetic Tape for Information Inter¬ 

change (1600 CPI, PE) 

X3.40-1973 Unrecorded Magnetic Tape for Information Inter¬ 

change (9-Track 200 and 800 CPI, NRZI, and 1600 CPI, PE) 

X3.41-1974 Code Extension Techniques for Use with the 7-Bit 

Coded Character Set of American National Standard Code for 

Information Interchange 

X3.45-1974 Character Set for Handprinting 

X3.46-1974 Unrecorded Magnetic Six-Disk Pack (General, 

Physical, and Magnetic Characteristics) 

For a free and complete list of all American National Standards, write: 

American National Standards Institute, Inc 

1430 Broadway 

New York, N.Y. 10018 


