
F
IP

S
 P

U
B
 1

93

REFERENCE

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards and Technology

FIPS PUB 193
ItL'S

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION

SQL ENVIRONMENTS

Category: Software Standard Subcategory: Database

1995 FEBRUARY 3

. A8A3

NO.193
1995

i

-

(

FIPS PUB 193

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION

SQL ENVIRONMENTS

Category: Software Standard Subcategory: Database

Computer Systems Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-0001

Issued February 3, 1995

U.S. Department of Commerce
Ronald H. Brown, Secretary

Technology Administration
Mary L. Good, Under Secretary for Technology

National Institute of Standards

and Technology

Arati Prabhakar, Director

Foreword

The Federal Information Processing Standards Publication Series of the National

Institute of Standards and Technology (NIST) is the official publication relating to

standards and guidelines adopted and promulgated under the provisions of Section

111 (d) of the Federal Property and Administrative Services Act of 1949 as amended by

the Computer Security Act of 1987, Public Law 100-235. These mandates have given the

Secretary of Commerce and NIST important responsibilities for improving the utilization

and management of computer and related telecommunications systems in the Federal

Government. The NIST, through its Computer Systems Laboratory, provides leadership,

technical guidance, and coordination of Government efforts in the development of stan¬

dards and guidelines in these areas.

Comments concerning Federal Information Processing Standards Publications are

welcomed and should be addressed to the Director, Computer Systems Laboratory,

National Institute of Standards and Technology, Gaithersburg, MD 20899.

James H. Burrows, Director

Computer Systems Laboratory

Abstract

An SQL environment is an integrated data processing environment in which hetero¬

geneous products, all supporting some aspect of the FIPS SQL standard (FIPS PUB

127), are able to communicate with one another and provide shared access to data and

data operations and methods under appropriate security, integrity, and access control

mechanisms. Some components in an SQL environment will be full-function SQL imple¬

mentations that conform to an entire level of FIPS SQL and support all of its required

clauses for schema definition, data manipulation, transaction management, integrity

constraints, access control, and schema information. Other components in an SQL envi¬

ronment may be specialized data repositories, legacy databases, or graphical user

interfaces and report writers, all of which support selected portions of the SQL standard

and thereby provide a degree of integration between themselves and other products in

the same SQL environment. This FIPS PUB is the beginning of a continuing effort to

define appropriate conformance profiles that can be used by both vendors and users to

specify exact requirements for how various products fit into an SQL environment. The

emphasis in this first publication is to specify general purpose, SQL external repository

interface (SQL/ERI) server profiles for non-SQL data repositories. Two major SQL/ERl

Server Profiles are specified: read-only and read-write. To make it easier to specify

integration among heterogeneous, non-SQL data models, this specification defines a

new minimal level of the SQL language that can be supported by various non-SQL

implementations.

Key words: CLI; client; conformance; database; ERI; Federal Information Processing

Standard (FIPS); interface; Internet; ISP; multimedia; object; profile; PSM; RDA; rela¬

tional; repository; server; standard; SQL; testing.

and Technology
FIPS PUB 193

National Institute of Standards U.S. Government Printing Office
Washington: 1995

For sale by the National
Technical Information
Service
U.S. Department of Commerce
Springfield, VA 22161

72 pages (Feb. 3, 1995)
CODEN: FIPPAT

FEDERAL INFORMATION
PROCESSING STANDARDS PUBLICATION 193

February 3, 1995

Announcing the Standard for

SQL Environments

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National

Institute of Standards and Technology after approval by the Secretary of Commerce pursuant to

Section 111(d) of the Federal Property and Administrative Services Act of 1949 as amended by the

Computer Security Act of 1987, Public Law 100-235.

1. Name of Standard. SQL Environments (FIPS PUB 193).

2. Category of Standard. Software Standard, Database.

3. Explanation. An SQL environment is an integrated data processing environment in which

heterogeneous products, all supporting some aspect of the FIPS SQL standard (FIPS PUB 127), are

able to communicate with one another and provide shared access to data and data operations and

methods under appropriate security, integrity, and access control mechanisms. Some components

in an SQL environment will be full-function SQL implementations that conform to an entire level

of FIPS SQL and support all of its required clauses for schema definition, data manipulation,

transaction management, integrity constraints, access control, and schema information. Other

components in an SQL environment may be specialized data repositories, legacy databases, or

graphical user interfaces and report writers, all of which support selected portions of the SQL

standard and thereby provide a degree of integration between themselves and other products in the

same SQL environment.

This FIPS PUB is the beginning of a continuing effort to define appropriate conformance profiles that

can be used by both vendors and users to specify exact requirements for how various products fit into
an SQL environment. The emphasis in this first FIPS for SQL Environments is to specify general

purpose, SQL external repository interface (SQL/ERI) profiles for non-SQL data repositories. These

profiles specify how a subset of the SQL standard can be used to provide limited SQL access to legacy

databases, or to support SQL gateways to specialized data managers such as Geographic Information

Systems (GIS), full-text document management systems, or object database management systems.

All of the profiles specified herein are for server-side products, that is, products that control

persistent data and provide an interface for user access to that data. Subsequent versions of this

FIPS PUB may specify SQL environment profiles for client-side products, that is, products that

A-l

FIPS PUB 193

access data and then present that data in graphical or report-writer style to an end user, or process

the data in some other way on behalf of the end user.

4. Approving Authority. Secretary of Commerce.

5. Maintenance Agency. Department of Commerce

National Institute of Standards and Technology

(Computer Systems Laboratory)

6. Cross Index.

- Federal Information Resources Management Regulations (FIRMR) subpart 201.20.303, Standards,

and subpart 201.39.1002, Federal Standards, April 1992.

- FIPS PUB 127-2, Federal Information Processing Standards Publication - Database Language

SQL, adoption of ANSI SQL (ANSI X3.135-1992) and ISO SQL (ISO/IEC 9075:1992) for Federal

use, U.S. Department of Commerce, National Institute of Standards and Technology, June 2,

1993.

- ANSI/ISO/IEC 9579, International Standard for Remote Database Access (RDA), Part 1: Generic

RDA and Part 2: SQL Specialization, ISO/IEC 9579-1:1993 and ISO/IEC 9579-2:1993, published

December, 1993.

- ANSI/ISO/IEC DIS 9075-3, (Draft) International Standard for Database Language SQL, Part 3:

Call Level Interface (SQL/CLI), JTC1 Draft International Standard (DIS), document SC21N9117,

13 October 1994.

- ANSI/ISO/IEC CD 9075-4, (Draft) International Standard for Database Language SQL, Part 4:

Persistent Stored Modules (SQL/PSM), JTCl Committee Draft (CD), CD Ballot document SC21

N8897, August 1994.

7. Related Documents. SQL Environment specifications depend upon existing standards and

stable specifications (see Cross Index above) and upon emerging SQL and SQL Multimedia

standards. The following items identify formal ISO/IEC international standards projects for which

preliminary specifications and base documents exist, but where the development effort has not yet

reached a complete and stable stage (i.e. the Committe Draft (CD) stage). As these specifications

mature and move through the standards processs, they can be referenced more reliably in

procurement requirements.

(Working Draft) Database Language SQL (SQL3)
Part 1: Framework

Part 2: Foundation — including Abstract Data Types and Object SQL

Part 3: Call Level Interface — extensions to ISO/IEC CD 9075-3 identified above.

Part 4: Persistent Stored Modules - extensions to ISO/IEC CD 9075-4 identified above.
Part 5: Language Bindings — extensions to the binding clauses of ISO/IEC 9075:1992.

Part 6: SQL XA Interface Specialization - to support X/Open XA-interface.

A-2

FIPS PUB 193

(Working Draft) SQL Multimedia (SQL/MM)

Part 1: Framework
Part 2: Full Text

Part 3: Spatial

Part 4: General Purpose Facilities
Other Parts: Reserved for other SQL/MM sub-projects with no current base

document (e.g., images, photographs, motion pictures, sound, music,

video, etc.).

For information on the current status of the above Working Drafts, contact NIST personnel working

on SQL Standardization at 301-975-3251. For document references to the above and for additional

related documents, see the References section of the SQL/ERI Server Profiles specification (attached).

8. Objective. The primary objective of this FIPS PUB for SQL Environments is to specify SQL

profiles that can be used by Federal departments and agencies to support integration of legacy

databases and other non-SQL data repositories into an SQL environment. The intent is to provide

a high level of control over a diverse collection of legacy or specialized data resources. An SQL

environment allows an organization to obtain many of the advantages of SQL without requiring a
large, complex, and error-prone conversion effort; instead, the organization can evolve, in a controlled

manner, to a new integrated environment.

9. Applicability

This standard is applicable in any situation where it is desirable to integrate a client-side productivity tool or a

server-side data repository into an SQL environment. It is a non-mandatory standard that may be invoked on

a case-by-case basis subject to the integration objectives of the procuring department or agency. It is particularly

suitable for specifying limited SQL interfaces to legacy databases or to specialized data repositories not under

the control of a full-function SQL database management system. It can be used along with other procurement

information to specify SQL interface requirements for a wide range of data management procurements.

One special area of application envisioned for this standard is Electronic Commerce, a National Challenge

Application area of the National Information Infrastructure. The primary objective of Electronic Commerce is

to integrate communications, data management, and security services in a distributed processing environment,

thereby allowing business applications within different organizations to interoperate and exchange information

without human intervention. At the data management level, electronic commerce requires a logically integrated

database of diverse data stored in geographically separated data banks under the management and control of

heterogeneous database management systems. An over-riding requirement is that these diverse data managers

be able to communicate with one another and provide shared access to data and data operations and methods

under appropriate security, integrity, and access control mechanisms. FIPS SQL provides a powerful database

language for data definition, data manipulation, and integrity management to satisfy many of these requirements.

It is unrealistic to expect that every data manager involved in electronic commerce will conform to even the

Entry SQL level of the FIPS SQL standard; however, it is not unrealistic to require that they support a limited

SQL interface, even a read-only interface, provided by one of the SQL/ERI Server profiles specified herein.

New procurements to add components to the National Information Infrastructure, or to upgrade existing

components, can define the necessary SQL schemas and point to appropriate SQL/ERI Server profiles as
procurement requirements.

A-3

FIPS PUB 193

This standard may also be applicable, on a case-by-case basis, in many of the following areas:

Legacy databases

Full-Text document databases

Geographic Information Systems

Bibliographic information retrieval

Object database interfaces

Federal data distribution

Operating system file interface

Open system directory interface

Electronic mail repositories

CASE tool repositories

XBase repositories

C++ sequence class repositories

Object Request Broker interface repository

Real-time database interface

Internet file repositories

Further detail on each of these potential application areas can be found in Section 8, "Applicability", of the FIPS

specification for SQL Environments.

10. Specifications. See the Specifications for SQL Environments - SQL External Repository Interface

(SQL/ERI) - Server Profiles (attached).

11. Implementation. Implementation of this standard involves four areas of consideration: the effective

date, acquisition of conforming implementations, interpretation, and validation.

11.1 Effective date. This publication is effective beginning February 3, 1995. Since it is a non-mandatory

specification, based on the established FIPS SQL standard, and used at the discretion of individual Federal

procurements, no transitional period or delayed effective date is necessary.

11.2 Acquisition. All conforming implementations of a specific SQL/ERI profile will support some aspects

of the FIPS SQL standard. However, such implementations will not normally be full function database

management systems and conformance will often be dependent upon SQL schema definitions and other

requirements provided as part of each individual procurement. In most cases, a procurement will not be able

to simply point to an SQL/ERI profile and demand conformance to it. Instead, successful procurements will

normally use an appropriate SQL/ERI profile, together with an application-specific schema definition, as one

aspect of overall procurement requirements. In many cases, vendors of products that provide a limited SQL

interface will define their interfaces in terms of a fixed SQL schema definition. In those cases, procurements

can point to the vendor-provided schema definition and to an appropriate SQL/ERI profile as a procurement

requirement. In some cases, especially in those situations where schema definitions and requirements are not

known in advance, a request for a proposal (RFP) may require that an SQL schema, and adherence to one of

the SQL/ERI Server profiles, be presented as part of the response proposal.

11.3 Interpretation. NIST provides for the resolution of questions regarding specifications and

requirements of the FIPS for SQL Environments, and issues official interpretations as needed. Procedures for

A-4

FIPS PUB 193

interpretations are specified in FIPS PUB 29-3. All questions about the interpretation of FIPS SQL

Environments should be addressed to:

Director

Computer Systems Laboratory

ATTN: SQL Environments

National Institute of Standards and Technology

Gaithersburg, MD 20899

Telephone: (301) 975-2833

11.4 Validation. Implementations of the FIPS for SQL Environments may be validated in accordance with

NIST Computer Systems Laboratory (CSL) validation procedures for FIPS SQL (FIPS PUB 127).

Recommended procurement terminology for validation of FIPS SQL is contained in the U.S. General Services

Administration publication Federal ADP & Telecommunications Standards Index, Chapter 4 Part 2. This GSA

publication provides terminology for three validation options: Delayed Validation, Prior Validation Testing, and

Prior Validation. The agency may select the appropriate validation option and may specify appropriate time

frames for validation and correction of nonconformities.

Implementations may be evaluated using the NIST SQL Test Suite, a suite of automated validation tests for SQL

implementations. Although this test suite was designed to test conformance of full-function SQL database

management systems, it can be modified to accommodate testing of SQL/ERI Server implementations. The

results of validation testing by the SQL Testing Service are published on a quarterly basis in the Validated

Products List, available from the National Technical Information Service (NTIS).

Current information about the NIST SQL Validation Service and the status of validation testing for SQL

Environments is available from:

National Institute of Standards and Technology

Computer Systems Laboratory

Software Standards Validation Group

Building 225, Room A266

Gaithersburg, Maryland 20899

(301) 975-2490

12. Where to Obtain Copies. Copies of this publication are for sale by the National Technical

Information Service, U.S. Department of Commerce, Springfield, VA 22161, telephone 703-487-4650. When

ordering, refer to Federal Information Processing Standards Publication 193 (FIPSPUB193), SQL Environments.

Payment may be made by check, money order, or deposit account.

>

A-5

(

i

(

FEDERAL INFORMATION
PROCESSING STANDARDS PUBLICATION 193

Specifications for

SQL Environments

SQL External Repository Interface
(SQL/ERI)

Server Profiles

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Computer Systems Laboratory
Information Systems Engineering Division

Gaithersburg, MD 20899

(

(

Table of Contents

Abstract . v

1. Introduction. 1

1.1 Database Language SQL . 1

1.2 SQL environment . 2

2. Data Integration Architecture . 4

3. SQL External Repository Interface (SQL/ERI) . 6

4. SQL/ERI Leveling Rules. 7

4.1 Minimal Schema Definition Language. 8

4.2 Minimal Data Manipulation Language. 9

5. Optional Extensions . 10

5.1 SQL’92 features . 10

5.2 Stored procedures and callable routines (SQL/PSM) . 10

5.3 SQL multimedia class library (SQL/MM) . 11

5.4 Abstract data types and methods . 11

5.5 Object data management . 12

5.6 Encompassing transactions . 12

6. SQL Binding Alternatives. 13

6.1 SQL Module processor . 13

6.2 Embedded SQL preprocessor . 13

6.3 Direct invocation of SQL statements . 14

6.4 SQL call level interface (SQL/CLI) . 15

6.5 RDA/SQL-Server interface . 17

7. SQL/ERI Server Profiles. 19

7.1 SQL/ERI Read-Only Server. 23

7.2 SQL/ERI Read-Write Server . 27

7.3 Object Identifiers for SQL/ERI Server profiles. 32

7.4 Specific SQL/ERI CLI Server profiles. 39

7.5 Specific SQL/ERI RDA Server profiles. 41

8. Applicability. 43

8.1 Legacy databases. 43

8.2 Full-Text document databases. 43

8.3 Geographic Information Systems. 44

8.4 Bibliographic information retrieval . 44

8.5 Object database interfaces. 44

8.6 Federal data distribution . 45

iii

FIPS PUB 193

8.7 Operating system file interface. 45

8.8 Open system directory interface. 45

8.9 Electronic mail repositories . 46

8.10 CASE tool repositories . 46

8.11 XBase repositories . 46

8.12 C++ sequence class repositories. 47

8.13 Object Request Broker repositories. 47

8.14 Real-Time database interface. 47

8.15 Internet file repositories. 47

9. Conformance Testing. 48

9.1 NIST SQL Test Suite . 48

9.2 Testing SQL/ERI implementations . 50

10. Procurement Considerations . 51

10.1 Client-side products . 52

10.2 SQL/ERI Clients. 52

10.3 SQL/ERI Servers . 53

References . 57

FIPS PUBLICATION 193

Specification for SQL Environments - SQL External
Repository Interface (SQL/ERI) - Server Profiles

Abstract

An SQL environment is an integrated data processing environment in which heterogeneous

products, all supporting some aspect of the FIPS SQL standard (FIPS PUB 127), are able to

communicate with one another and provide shared access to data and data operations and methods

under appropriate security, integrity, and access control mechanisms. Some components in an

SQL environment will be full-function SQL implementations that conform to an entire level of

FIPS SQL and support all of its required clauses for schema definition, data manipulation,

transaction management, integrity constraints, access control, and schema information. Other

components in an SQL environment may be specialized data repositories, legacy databases, or

graphical user interfaces and report writers, all of which support selected portions of the SQL

standard and thereby provide a degree of integration between themselves and other products in

the same SQL environment. This FIPS PUB is the beginning of a continuing effort to define

appropriate conformance profiles that can be used by both vendors and users to specify exact

requirements for how various products fit into an SQL environment. The emphasis in this first

publication is to specify general purpose, SQL external repository interface (SQL/ERI) server

profiles for non-SQL data repositories. The SQL/ERI interface supports integration of

heterogeneous, non-SQL data repositories into an SQL environment while retaining full use of the

SQL language for user applications. All of the profiles specified herein are for server-side

products, that is, products that control persistent data and provide a standard interface for

accessing that data. Subsequent versions of this FIPS PUB may specify profiles for client-side

products in an SQL environment, that is, products that access data and then present that data in

graphical or report-writer style to an end user, or process the data in some other way on behalf

of the end user. To make it easier to specify integration among heterogeneous, non-SQL data

models, this specification defines a new minimal level of the SQL language that can be supported

by various non-SQL implementations. Non-SQL data repositories, such as Geographic

Information Systems (GIS), full-text document management systems, or object database

management systems, may use this minimal level, or one of the other levels specified in FIPS

SQL, to describe their capabilities as SQL/ERI Servers. Two major SQL/ERI Server profiles are

specified: read-only and read-write. This specification may also be used as a starting point for

defining International Standardized Profiles (ISPs) for SQL language access to non-SQL data

repositories.

Keywords: (CLI; client; conformance; database; ERI; FIPS; interface; Internet; ISP; multimedia;

object; profile; PSM; RDA; relational; repository; server; standard; SQL; testing)

v

FIPS PUB 193

Electronic Availability: An electronic version of this specification is available using Internet

anonymous FTP protocols.

Internet Node:

User name:

Password:

Change Directory to:

Get File:

speckle.ncsl.nist.gov

ftp

<YourName>@<YourIntemetAddress>

isowg3/FIPSdocs

fipsl93.ps — Postscript version

An ASCII text version of this document is also available in the same directory as above, but with

file name "fipsl93.txt".

You will receive some sign-on messages. If these messages confuse your FTP client, you can turn

them off when you sign-on again by preceding your password with a hyphen (-).

FIPS PUB 193

1. Introduction

An SQL environment is an integrated data processing environment in which heterogeneous products, all

supporting some aspect of the FIPS SQL standard (FIPS PUB 127), are able to communicate with one another

and provide shared access to data and data operations and methods under appropriate security, integrity, and

access control mechanisms. Some components in an SQL environment will be full-function SQL

implementations that conform to an entire level of FIPS SQL and support all of its required clauses for schema

definition, data manipulation, transaction management, integrity constraints, access control, and schema

information. Other components in an SQL environment may be specialized data repositories, legacy databases,

or graphical user interfaces and report writers, all of which support selected portions of the SQL standard and

thereby provide a degree of integration between themselves and other products in the same SQL environment.

The intent is to provide a high level of control over a diverse collection of legacy or specialized data resources.

An SQL environment allows an organization to obtain many of the advantages of SQL without requiring a large,

complex, and error-prone conversion effort; instead, the organization can evolve, in a controlled manner, to a

new integrated environment.

This FIPS PUB is the beginning of a continuing effort to define appropriate conformance profiles that can be

used by both vendors and users to specify exact requirements for how various products fit into an SQL

environment. The emphasis in this first specification is to specify general purpose, SQL external repository

interface (SQL/ERI) profiles for non-SQL data repositories. These profiles specify how a subset of the SQL

standard can be used to provide limited SQL access to legacy databases, or to support SQL gateways to

specialized data managers such as Geographic Information Systems (GIS), full-text document management

systems, or object database management systems. All of the profiles specified herein are for server-side

products, that is, products that control persistent data and provide an interface for user access to that data.

Subsequent versions of this FIPS PUB may specify SQL environment profiles for client-side products, that is,

products that access data and then present that data in graphical or report-writer style to an end user, or process

the data in some other way on behalf of the end user.

1.1 Database Language SQL

Database Language SQL is enjoying success as an effective International Standard for customers and

implementors of full-function, SQL-compliant database management systems that support the relational data

model. Many vendors have implemented an entire level of the SQL’92 standard [8] and offer products that

conform to all of its clauses for schema definition, data manipulation, transaction management, integrity

constraints, access control, and schema information. Other vendors have implemented selected portions of the

SQL standard, most often read-only data retrieval or very restricted data manipulation, in order to provide SQL

access to legacy databases or to support SQL gateways to specialized data managers.

The first SQL standard, in 1986, provided basic language constructs for defining and manipulating tables of data;

a revision in 1989 added language extensions for referential integrity and generalized integrity constraints; and

the most recent revision in 1992 provides new facilities for schema manipulation and data administration, as well

as substantial enhancements for data definition and data manipulation. A companion standard for Remote

Database Access (RDA) [9], completed in 1993, provides the basic services and protocols for SQL

interoperability in a distributed, wide area client/server environment. A companion standard for an SQL Call

Level Interface (SQL/CLI) [10], registered as a draft international standard (DIS) in October 1994, provides a

language binding appropriate for third-party software developers in a local client/server environment. An

1

FIPS PUB 193

extension to SQL for definition and invocation of persistent stored procedures and for SQL flow of control

statements, named Persistent SQL Modules (SQL/PSM) [11] and registered as a draft standard in March 1994,

permits user definition of procedural program blocks that can then be optimized at multiple SQL servers and

invoked as needed, thereby reducing both processing time and communications volume. Features of the SQL’92

standard are discussed in References (1], [2], and [15]. Proposed features of the next SQL revision, often called

SQL3, are discussed in [4], [5], and [23].

SQL is particularly appropriate for the definition and management of data that is structured into repeated

occurrences having common data structure definitions. SQL provides a high-level query and update language

for set-at-a-time retrieval and update operations, as well as required database management functions for schema

and view definition, integrity constraints, schema manipulation, and access control. SQL provides a data

manipulation language that is mathematically sound and based on a first-order predicate calculus. SQL is self¬

describing in the sense that all schema information is queryable through a set of catalog tables called the

Information Schema.

SQL is becoming the language of choice for many user productivity tools — such tools communicate with a

human user through a graphical user interface and then formulate SQL queries to communicate with underlying

persistent data repositories. Formal language profiles for partial SQL conformance are necessary because the

user productivity tools and the underlying data managers may be purchased at different times from different

vendors and are unlikely to even know of one another’s existence. A recognized profile specification will allow

limited portability and interoperability, even in otherwise non-homogeneous environments.

1.2 SQL environment

Many applications require a logically integrated database of diverse data (e.g. documents, graphics, spatial data,

alphanumeric records, complex objects, images, voice, video) stored in geographically separated data banks under

the management and control of heterogeneous data management systems. An over-riding requirement is that

these various data managers be able to communicate with one another and provide shared access to data and data

operations and methods under appropriate security, integrity, and access control mechanisms. Much of this

source data may be stored in simple file systems, legacy data management systems, or very specialized data

repositories that satisfy only a small percentage of these data management requirements. The objective of an

SQL environment is to logically integrate these diverse data repositories "as if they were under the control of

a single SQL data manager. User presentation tools, such as graphical user interfaces or report writers, can then

use this SQL interface to collect data from various sources, merge it together under ad hoc join conditions, and

present it to the user in a pleasing graphical format.

A properly functioning SQL environment will use the SQL language to describe this data using standardized

facilities, integrate it into a single federated collection, enforce any integrity or access control constraints, and

make it available as a logical whole to sophisticated user productivity or presentation tools. These client-side

tools can then use the full power and flexibility of SQL for data retrieval and manipulation. The underlying data

managers may implement non-relational data models and thus may have difficulty supporting SQL requirements

for nested subqueries, multi-table joins, derived columns in a select list, referential integrity, or other relational

model features. On the other hand, they may offer advanced features of other data models that are rarely

supported by relational implementations. With emerging features in the SQL language for user-defined abstract

data types (ADTs), stored procedures, encapsulation, polymorphism, and other object management facilities, these

diverse data repositories can be described as specialized SQL repositories and accessed using already

standardized SQL binding alternatives identified in Section 6. With this approach, SQL may prove to be as

successful as an integrator of heterogeneous data repositories as it has been as a language interface to the

relational data model. The SQL language can meet these integration objectives if non-SQL implementations

2

FIPS PUB 193

provide a "simple" SQL interface to their data and services, and if full-function SQL implementations use that

simple interface to provide full-function services to end user tools. This specification defines standard profiles
for such "simple" SQL interfaces, thereby making it easier to specify and support the desired integration.

An SQL environment depends upon the data integration architecture presented in Section 2. A simplification

of this architecture is given in the figure below. Components in the architecture consist of Application

Processors, Full-Funtion SQL Processors, and Non-SQL Processors. The Application Processors represent client-

side products that desire the ability to use the full power and flexibility of the SQL language when accessing

data from a database. The Non-SQL Processors are server-side products representing data managers that control

much of the data that is to be integrated and made available to the Application Processors. The Full-Function

SQL Processors serve a dual role, both as server-side data managers and as "integrators" that make it possible

for Application Processors to access data managed by the Non-SQL Processors in a standard manner. The

interface between an Application Processor and an SQL Processor is a full-function SQL interface, whereas the

interface between an SQL Processor and a Non-SQL Processor is one of the more limited SQL/ERI interfaces

described in Section 3. All interfaces use one of the binding styles identified in Section 6. It is the integrator’s

role to provide access to all data as if it were managed by a full-function SQL processor.

L GUL Application

m Processor

I Full Function SQL

Full Function
SQL Processor

i ^ Limited SQL

Non-SQL
Processor

SQL Environment

Section 4 describes existing conformance levels of the SQL language and then defines a new, minimal SQL

language level that can be used to define conformance alternatives for SQL/ERI Servers. Section 5 identifies

various higher level SQL features and data types that an SQL/ERI Server may support. In this way, an SQL/ERI

Server can present the features of a different data model to an SQL application by describing them as SQL

abstract data types, methods, procedures, or other callable routines. Section 7 specifies two major SQL/ERI

Server profiles — a read-only profile for static data repositories, and a read-write profile that allows SQL Update,

Insert, and Delete statements. The read-write profile also provides an option that allows creation of SQL tables

and views. Section 8 identifies a number of application areas for which SQL/ERI Server profiles may be

applicable. Section 9 describes how the NIST SQL Test Suite serves as the basis for conformance testing of

SQL/ERI Servers and Section 10 identifies some procurement considerations for users that intend to use this

FIPS PUB for SQL Evironments to aide in the specification of procurement requirements.

3

FIPS PUB 193

The SQL/ERI profiles specified herein may be used by customers and vendors of non-SQL processors to validate

claims of conformance for partial support of the SQL language. If these SQL/ERI Server profiles prove to be

helpful for integrating non-SQL data repositories into SQL environments, then later versions of this FIPS PUB

may specify profiles for SQL/ERI Clients as enhancements to full-function SQL implementations and profiles

for other client-side products in an SQL environment. This specification may also be used as a starting point

for defining International Standardized Profiles (ISPs) [14] for SQL language access to non-SQL data

repositories.

2. Data Integration Architecture

This FIPS for SQL Environments envisions an integrated data processing environment in which SQL and non-

SQL processors are able to comunicate with each other and provide shared access to data and data operations

and methods under appropriate security, integrity, and access control mechanisms. Application processors will

then have protected access to all data using the full power and flexibility of Database Language SQL.

Standard communication among cooperating systems is possible at the present time using either OSI protocols

[16] or Internet Society protocols [7]. Efforts are underway within both of these arenas to provide cross-protocol

mappings for interoperability. Application services in both protocol environments provide for association control,

file transfer, virtual terminal, and electronic mail. Future versions will contain extensions of these facilities as

well as enhancements for remote database access (RDA), document management, and electronic data interchange

(EDI). Near-term extensions to these protocols should make it possible for user-defined objects at various remote

sites to communicate their existence and provide access to their methods to application processors. Objects at

remote sites may be able to "show themselves" to users at local workstations by using emerging specifications

and standards for graphical user interfaces.

The RDA component of both OSI and Internet Society communication protocols provides the basis of distributed

access to remote data repositories and "standard" access to the data they manage. With implementation of an

External Repository Interface (ERI), discussed in Section 3 below, it is possible for non-SQL data repositories

to be "self-describing" in terms of SQL facilities so that they can be accessed and manipulated by all other sites

using standard SQL language and RDA protocols. With longer-term emerging data management standards that

support object-oriented and knowledge-based features, an ERI interface can evolve into a "seamless" integration

of complex, structured data and supporting application services.

Begin with an Application Processor that wishes to communicate with and access data at a number of different

data repositories, some local and some remote. The Application Processor could use existing communication

protocols to connect to external processes or transfer files, but it would prefer not to have to manage its own

communications links or worry about integrity, access control, remote transactions, or any number of different

data manipulation functions; instead, it would rather communicate with a single, "familiar" data manager for both

schema data and actual data occurrences. The "familiar" data manager could then connect itself to remote sites

and access the desired data and data definitions, returning them to the accessing processor in a standard format.

A remote object would still be able to use windowing protocols to "show itself' to the accessing process or use

file transfer protocols to transfer objects or object definitions not under the control of the communicating data

managers.

This architecture assumes the existence of any number of heterogeneous data repositories, some at the local site

and some at distributed sites. It also assumes a full-function SQL processor at all sites, but not necessarily as

the manager of the most important data. The non-SQL processors may control the maps, documents, graphics

4

FIPS PUB 193

images, or complex engineering structures that the Application Processor wishes to access. The local SQL

processor conforms to Database Language SQL and has two integrated client components, one conforming to

the RDA/SQL Specialization and one conforming to the SQL/ERI interface proposed in Section 3 of this

specification. Communications among the three SQL components are likely to be proprietary. The local site

may have any number of non-SQL data repositories each controlled by a non-SQL Processor having a component

that conforms to the SQL/ERI interface. Communications among the internal components of the non-SQL

Processor are also proprietary. The local site has a proprietary local procedure calling mechanism and a

proprietary local inter-process communications capability. Using these proprietary mechanisms and one of the

standard local binding styles identified in Section 6 (e.g. SQL/CLI), the Application Processor issues standard

SQL calls to the local full-function SQL processor, and the SQL/ERI Client component of the SQL processor

is able to communicate, using an ERI specified subset of standard SQL, with the SQL/ERI Server of the non-

SQL Processor.

Data Integration Architecture

The local site is connected to one or more remote sites via a standard OSI or Internet communications network

([16], [7]) that allows "messages" or "calls" to be exchanged among processes. Some messages may be sent

directly from the Application Processor to processes or file stores at the remote site, but ideally, some local

repository manager makes a connection and sends messages on behalf of the Application Processor. The Generic

RDA and RDA/SQL Specialization standards [9] specify protocols that allow the RDA Client component of the

5

FIPS PUB 193

local SQL processor to send SQL statements to the RDA Server component of a remote SQL processor, or the

SQL/ERI Server component of any Non-SQL processor, and receive data in return. All protocols and data

formats are defined in the RDA standards and are transmitted as ASN.l (ISO 8825) packages. If the Application

Processor is operating, interactively, on behalf of a human user, then any of the data repositories may use a local

graphical user interface (GUI), or non-local windowing protocols, to present status information or a "menu of

choices" to the human user. In this way an interactive "browsing" or "navigational" capability is provided to

the human user without losing the standard RDA/SQL communications used by the non-human processors.

At the remote site there exists a full-function SQL Processor as well as any number of non-SQL Processors.

Components of the SQL Processor conform to the SQL and RDA standards, and satisfy the proposed SQL/ERI

Client requirements. Each non-SQL Processor has a component that conforms to the SQL/ERI Server

specification. The remote site handies internal communications and procedure calls in the same proprietary

manner as does the local site.

At the present time the RDA standards specify interchange protocols for transmitting records of data from a

server site to a client site, provided that the data items in the records are either numbers or character strings.

Near term RDA follow-on specifications will extend the data types handled to all of those specified in the

SQL’92 standard [8], i.e. fixed and variable length character strings, fixed and variable length bit strings, fixed

and floating point numerics, dates, times, timestamps, and intervals. Later RDA follow-on specifications will

provide interchange mechanisms, in terms of ASN.l elements, for the user defined abstract data types (ADTs)

specified in the emerging SQL3 working draft [12]. RDA protocols do not by themselves provide interchange

mechanisms for other data objects, so interchange standards for images, motion pictures, maps, topologies, or

other complex objects will remain critical for transmitting object instances among various sites.

SQL and RDA provide the basis for standardized communication. An SQL external repository interface

(SQL/ERI) makes it possible for non-SQL data repositories to share their data with user applications. With

emerging SQL3 enhancements for object-oriented and knowledge-based data management and emerging RDA

extensions for distributed database, the ERI can evolve to support "seamless" data integration.

3. SQL External Repository Interface (SQL/ERI)

Applications require access to multiple data repositories, many of which are managed by non-SQL processors.

It is not unusual for applications to require data from the operating system, from graphics repositories, from CD-

ROM’s, from CAD/CAM databases, or from libraries of cataloged data. From a user’s perspective, it is

unrealistic to expect every data repository to be able to handle even the lowest "Entry SQL" queries. For

example, who would expect an electronic mail system to handle SQL joins and subqueries over its message

headers? Yet, every e-mail system is a data repository with information that applications sometimes require.

What is needed is an interface specification that enables a non-SQL data repository to make certain external

views available to SQL processors and for those SQL processors to, in turn, allow the full power and flexibility

of the SQL query language over those views to the end user. It makes sense to specify a "client" and a "server"

interface to external repositories so that non-SQL systems can act as servers to SQL requests for data. It makes

sense to develop the conformance requirements needed for non-SQL systems to provide SQL views of their data

and for SQL systems to provide full function SQL operations over that data to SQL users.

This interface is defined to be the SQL External Repository Interface (SQL/ERI). It consists of a "Server" part

and a "Client" part. Non-SQL systems may claim conformance as SQL/ERI Servers and full-function SQL

systems may claim conformance as SQL/ERI Clients. This first FIPS PUB for SQL Environments only

6

FIPS PUB 193

addresses conformance criteria for SQL/ERI Servers; subsequent versions may address conformance criteria for
SQL/ERI Clients. A wide range of non-SQL products and services might be able to claim conformance as

SQL/ERI Servers. They could provide high level abstract data types with application-specific methods and

operations. They would be required to evaluate "simple" SQL queries over individual tables defined in the

schema. The exact meaning of "simple" is specified in the SQL/ERI profile specifications at different levels of

service. The SQL processor can then think of the external repository as an SQL-environment that can be

connected to, but that can only respond to whatever SQL statements are specified for that level of service.

If an SQL system claims conformance as an SQL/ERI Client, then it agrees to provide SQL functionality, at

whatever level of the SQL standard it conforms to, over any table provided by an SQL/ERI Server. This may

require that the SQL system automatically create a temporary table whenever the external view is referenced in

a query, and then populate that table using the limited capabilities provided by the "server" interface so that it

can guarantee the ability to perform nested queries, or searched updates and deletes, or recursive queries, or

whatever is requested by its application.

With the SQL/ERI "client" and "server" definitions, non-SQL systems would be able to provide services to SQL-

based applications even though they might not be able to provide the expected query flexibility, access control,

concurrency control, or updatability required of a full-function SQL data manager. Full-function SQL processors

could provide these expected data management facilities and, in addition, provide user access to data repositories

not otherwise accessible via the SQL language. Section 2 describes how SQL/ERI profiles might be used to

provide uniform and integrated application access to both SQL and non-SQL data at local and remote sites.

The SQL/ERI profile specifications provide several different conformance levels for non-SQL systems. A

conforming SQL/ERI server is required to be "self-describing" as if it were a separate SQL-environment. It is

required to supply an SQL Information Schema describing all available tables and the equivalent SQL data types

for its columns. If the ERI Server provides new abstract data types not defined in the SQL standard, then it is

also required to provide an SQL ADT interface definition as specified in the emerging SQL3 standard [12].

What is needed to make the above scenario feasible is an SQL/ERI Server profile, so that these non-SQL data

repositories can provide a simple, external interface, accessible from full-function SQL systems. Sophisticated

applications can then be built without the need to "understand" the non-standard data access methods unique to

each repository. Instead, full-function SQL systems could be used as intermediaries. The SQL "client" could

connect itself to the non-SQL "server" using the standard SQL/ERI interface; the application could then use the

full power and flexibility of the SQL data manipulation language, as well as the system provided special access

methods, to select and mange the data as if it were maintained in an SQL database. Section 7 of this FIPS PUB

provides the necessary SQL/ERI Server profiles to get this integration scenario started.

4. SQL/ERI Leveling Rules

The SQL’92 standard [8] specifies three levels of conformance for SQL language and SQL implementations:

Entry SQL, Intermediate SQL, and Full SQL. In addition, FIPS SQL [3] defines a fourth level of conformance,

called Transitional SQL, approximately halfway between Entry SQL and Intermediate SQL. FIPS Transitional

SQL is intended to provide a common, near-term goal for SQL implementations that already have a number of

features beyond Entry SQL. It is intended for use in U.S. federal government procurements in the interim period

before Intermediate SQL implementations are readily available. All of these existing SQL conformance levels

7

FIPS PUB 193

require the facilities of a full-function SQL processor, i.e. schema definition, data manipulation, transaction

management, and access control.

New conformance alternatives are needed for non-SQL processors that wish to claim conformance to only a

portion of the SQL language. Such processors may be able to provide very sophisticated data retrieval

capabilities, but may not be able to allow update of data instances or creation of new schema objects. Since

existing SQL levels cut across both the schema definition and data manipulation facilities in the SQL standard,

it is necessary to consider each SQL level separately as applied to schema definition or data manipulation.

Consider the SQL leveling rules separately for schema definition and data manipulation. Use the term Schema

Definition Language (SDL) to identify SQL language features defined in Clause 11, "Schema definition and

manipulation", in the SQL’92 standard, and use the term Data Manipulation Language (DML) to identify SQL

language features defined in Clause 13, "Data Manipulation". One is then able to discuss the following

alternatives for partial support of the SQL language:

Entry DML Entry SDL

Transitional DML Transitional SDL

Intermediate DML Intermediate SDL

Full DML Full SDL

There is an additional requirement to specify new Minimal DML and Minimal SDL levels to be used exclusively

in the definition of SQL/ERI Server profiles. These Minimal definitions are intended for use only by non-SQL

processors and cannot be used to claim conformance to the SQL standard as an SQL processor. Minimal DML

will support SQL operations on a single table, with no joins and no subqueries, and with severe limitations on

derived columns and set functions. Minimal SDL will support specification of only the simplest views and the

simplest SQL tables, using only character string, integer, decimal, and real data types, with no table constraints,

with only very limited column constraints, and possibly no support for null values.

Levels of conformance in the SQL standard are specified by Leveling Rules in each clause of the specification.

Using the style of the SQL standard, the following subsections specify restrictions that apply for Minimal SDL

and Minimal DML in addition to any restrictions for Entry SQL. All Clause and Subclause references, and all

syntactic terms delimited by angle brackets (i.e. <...>) are from SQL’92 [8].

4.1 Minimal Schema Definition Language

1. A <schema element> contained in a <schema definition> shall be a <table definition> or a cview

definitionx

2. A <table element> contained in a <table definition> shall be a ccolumn definitionx

3. A <column constraint shall not be a cunique specificationx a creferences specifications or a ccheck

constraint definitions thus a <column constraint may only specify NOT NULL.

4. In some cases, an SQL/ERI Server implementation at the Minimal SDL level or below may choose not

to provide support for SQL null values; if every column of every accessible table is constrained to be

NOT NULL, then the implementation may require that every <column definition> in a new ctable

definition> have an explicit or implicit NOT NULL constraint.

8

FIPS PUB 193

5. The <data type> of a ccolumn definition shall not specify NUMERIC, FLOAT, or DOUBLE
PRECISION; thus a ccolumn definition> may only specify DECIMAL, REAL, INTEGER, SMALLINT,

and fixed length CHARACTER string cdata typos.

6. A cview definition> shall not specify WITH CHECK OPTION.

7. The cquery expression> contained in a cview definition> shall satisfy the restrictions specified by the

Minimal Data Manipulation Language leveling rules below.

4.2 Minimal Data Manipulation Language

1. A cquery expression> shall be a cquery specification>.

2. A cderived column> in the cselect list> of a cquery specification> shall be a cvalue expression primary>

that is either a ccolumn reference> or a cset function specification^ and the cderived column> shall not

contain an cas clause>.

3. A cset function specification> that is a cderived column> in the cselect list> of a cquery specification>

shall be either COUNT(*) or a cgeneral set function> whose directly contained cvalue expression> is

a ccolumn referenco.

4. A ctable expression> shall not contain a cgroup by clause> or a chaving clauses

5. The cfrom clause> contained in a ctable expression> shall contain exactly one ctable references and

that ctable referenco shall be a single ctable name> without an associated ccorrelation name>. A ctable

name> may be qualified to include a cschema name>.

6. A csearch condition> contained in an cSQL data statement shall not contain any csubquery>. Any

cpredicato contained in a csearch condition> shall be a ccomparison predicate> without subqueries, a

cbetween predicato, a dike predicato, a cnull predicato, or an cin predicato whose cin predicate

value> is a parenthesized list of cvalue specifications.

7. A crow value constructor contained in any cpredicato shall have exactly one crow value constructor

element* that is a cvalue expressions

8. A cvalue expression> in a csearch condition> shall be either a cnumeric value expression> or a cstring

value expression> that is a ccharacter primaryx

9. A cvalue expression primary> in a csearch condition> shall be either a ccolumn referenco or an

cunsigned value specifications thus it may not be a cset function specification> or a cscalar subqueryx

10. A cnumeric primary> shall not be a cnumeric value functions

11. A ccharacter primary> shall not be a ccharacter value functions

12. A csort key> in a cdeclare cursor shall be a ccolumn namo; thus it may not be an cunsigned integer.

Note: Leveling Rule 2a of Subclause 13.8, "cinsert statement^', is incorrect in that it should also allow

a cnull specifications This is corrected in SQL Technical Corrigendum 1 [20],

9

FIPS PUB 193

5. Optional Extensions

An SQL/ERI Server will often support additional data types and SQL language facilities beyond those specified

for the given level of service. This section identifies features in the SQL’92 standard, and emerging features

in the SQL3 and SQL/MM specifications, that an SQL/ERI Server may support. Each of these items is an

optional indication that must be explicitly declared by an SQL/ERI Server implementation before an application

program can rely on its existence.

An SQL/ERI Server that supports a Read-Only interface will support only the read-only aspects of each feature.

Thus a non-SQL implementation may be able to define itself to an SQL client using very complex abstract data

types (ADTs) and methods specified in SQL3, even though it does not allow creation or modification of such

types. The SQL/ERI server will declare the accessing "signature" of such facilities in the Information Schema,

so that an application can use the SQL/PSM routine and procedure calling mechanisms to access the data. This

is how the very specialized data managers such as document management systems, geographic information

systems, or CAD/CAM systems may make their specialized features available to SQL applications.

5.1 SQL’92 features

The SQL conformance levels defined in Section 4 of this specification identify a broad level of capability for

conforming SQL/ERI servers. In addition, it is sometimes desirable to identify other features specified in the

SQL’92 standard [8] as either offered by a product or required by a specific procurement. Section 14 of FIPS

SQL [3] identifies 83 features of the SQL’92 standard beyond the Entry SQL requirements. An SQL/ERI Server

could identify which features are supported beyond its declared level of service by implementing the

SQL_FEATURES table as specified in Section 15 of FIPS SQL. Implementation of the SQL_FEATURES table

is a requirement for all SQL/ERI Servers that claim a base level of SQL data manipulation language support at

the Intermediate DML level or above. A procurement could also use this list to identify, unambiguously, those

SQL features beyond the identified conformance level that are either required or desirable for that procurement.

FIPS SQL also identifies default minimum requirements for the precision, size, or number of occurrences of

database constructs (see section 16.6 of [3]). Unless otherwise specified in a procurement, the Entry Value sizing

limits apply to all Entry SQL or Transitional SQL features and the Intermediate Value sizing limits apply to all

Intermediate SQL or Full SQL features. An SQL/ERI Server could identify its own sizing limits by

implementing the SQL_SIZING table as specified in Section 15 of FIPS SQL. Implementation of the

SQL_SIZING table is a requirement for all SQL/ERI Servers that claim a base level of SQL data manipulation

language support at the Intermediate DML level or above. A procurement is responsible for identifying its own

sizing limits on all required features, but in the absence of an explicit declaration, the default minimum limits

apply for that procurement.

5.2 Stored procedures and callable routines (SQL/PSM)

An emerging new part of the SQL standard for Persistent Stored Modules (SQL/PSM) was registered as an

ISO/IEC Committee Draft (CD) in March 1994 (see [11]). Although this specification will not reach formal

standardization until at least late 1995 or early 1996, it should be sufficiently complete and stable to justify its

careful use in procurements before that date. The intent of SQL/PSM is to make SQL a computationally

complete programming language with variables, procedures, functions, and flow-of-control statements. In

10

FIPS PUB 193

particular, packages of SQL procedures (i.e., modules) may be stored at server nodes in a communications

network with only a procedure call needed to invoke a desired action. The advantage is that modules may be

stored persistently in the database, subject to SQL access control and integrity management, thereby allowing

a reduction of comunications overhead along with optimization and other performance efficiencies at the server

site.

A major advantage of the SQL/PSM is that non-SQL data managers will be able to present their special features

to applications in an SQL environment as callable SQL functions or procedures. The only requirement is that

the calling syntax be standard SQL syntax as far as the calling application is concerned and that the parameters

be defined as SQL data types. The content body of the functions and procedures may not be visible to the end

user and thus may be implementation-dependent. The SQL/ERI Server can use the SQL Information Schema

catalog tables to make known to the users exactly which functions and procedures are available for their use.

The "signature" of such routines will also be available from the Information Schema.

5.3 SQL multimedia class library (SQL/MM)

A new ISO/IEC international standardization project for development of an SQL class library for multimedia

applications was approved in early 1993. This new standardization activity, named SQL Multimedia (SQL/MM),

will specify packages of SQL abstract data type (ADT) definitions using the facilities for ADT specification and

invocation provided in the emerging SQL3 specification [12]. SQL/MM intends to standardize class libraries

for science and engineering, full-text and document processing, and methods for the management of multimedia

objects such as image, sound, animation, music, and video. It will likely provide an SQL language binding for

multimedia objects defined by other JTC1 standardization bodies (e.g. SC 18 for documents, SC24 for images,

and SC29 for photographs and motion pictures).

The project plan for SQL/MM indicates that it will be a multi-part standard consisting of an evolving number

of parts. Part 1 will be a Framework that specifies how the other parts are to be constructed. Each of the other

parts will be devoted to a specific SQL application package. Even though this project is just getting started,

initial base documents exist for Part 1: Framework, Part 2: Full Text, Part 3: Spatial, and Part 4: General Purpose

Facilities (see [13]). As the different components of the SQL/MM specification reach CD and DIS stability, an

SQL/ERI Server could claim support for specific features.

5.4 Abstract data types and methods

The emerging SQL3 specification contains a number of data abstraction facilities, including user-defined data

types and methods. For example, see Clauses 4.11, "Abstract data types", 11.47, "<abstract data type

definition^', and 11.48, "<abstract data type body>", of the August, 1994, version of [12]. If data abstraction

is an inherent requirement of an SQL/ERI Server, then it could define its Abstract Data Types and make them

available to SQL applications using these definitional mechanisms. As the data abstraction facilities of the SQL3

specification reach CD and DIS stability, an SQL/ERI Server could use them with more confidence to

permanently define its abstract data types and methods.

A major advantage of these ADT features combined with the SQL/PSM identified above is that non-SQL data

managers will be able to present their application-specific ADTs to applications in an SQL environment. The

signature of such ADTs would be available in the Information Schema provided by each SQL/ERI Server, and

the special methods on each ADT would be callable as SQL functions or procedures. The only requirement is

that the calling syntax be standard SQL syntax as far as the calling application is concerned and that the

11

FIPS PUB 193

parameters be SQL data types or known ADT types provided by the SQL/ERI Server. The abstract data type

body of usable ADTs may not be visible to the end user and thus may be implementation-dependent. The

SQL/ERI Server can use the SQL Information Schema catalog tables to make known to the users exactly which

ADTs and associated methods are available for their use.

5.5 Object data management

The emerging SQL3 specification contains facilities for defining and referencing object identifiers. For example,

see Clauses 4.10 "Object identifier", 11.48 "<abstract data type body>" WITH OID option, and 6.12 "<OID value

function>", of the August, 1994, version of [12]. If object identity is an inherent requirement of an SQL/ERI

Server, then it could define its Abstract Data Types with Object Identifiers (OID) and make them available to

SQL applications using these definitional mechanisms. In this manner, object database management systems and

specialized object repositories could make their features and facilities available to an SQL environment. As the

different OID facilities of the SQL3 specification reach CD and DIS stability, an object-oriented SQL/ERI Server

could use them with more confidence to permanently define its objects and their methods.

5.6 Encompassing transactions

Database Language SQL [8] already supports the notion of an "encompassing transaction", that is, a transaction

that may involve resource managers other than a single SQL database system (including possibly non-SQL

resource managers) and controlled by some entity other than the SQL database system. Communication between

that other entity (usually called a transaction manager) and the resource managers requires a standardized

interface, because such products are often required to participate in the same global transaction even though they

are purchased from different vendors at different times and may be operating at different nodes in a

communications network. In this more global transaction processing environment, the encompassing transaction

will be initiated and terminated by that other agent, which interacts with the SQL environment via an interface

that may be different from SQL COMMIT and ROLLBACK statements.

The X/Open Company, Ltd., has defined an application program interface (API), called the "XA interface", to

coordinate the activities of resource managers (RM) and transaction managers (TM). This interface has two

components, called the xa_component and the ax_component. The xa_component is to be used by TMs to

influence the actions of RMs, whereas the ax_component is to be used by RMs to communicate with the TMs.

The XA-interface, as defined by X/Open, specifies an API for the ISO Distributed Transaction Processing (DTP)

standard (ISO/IEC 10026:1992), which itself only specifies services and protocols. ISO has not yet published

any APIs for this standard, or for other related OSI standards, although there is a study group in ISO/IEC

JTC1/SC21 to examine the API question. The XA-interface was published by the X/Open Company, Ltd., in

1991 and 1992 as a "Common Application Environment" specification, which is intended to be completely stable.

X/Open has continued work on their DTP specifications and a follow-on enhancement, informally called XA2,

is in development; however, XA2 is expected to be completely compatible with the existing XA specification,

while adding additional facilities.

A number of SQL resource managers are also beginning to claim conformance to the xa_component of the XA-

interface. In recognition of this trend, both ANSI and ISO/IEC approved new SQL standardization projects in

1994 that will lead to formal standardization of an SQL Specialization of the X/Open XA-interface as an

ANSI/ISO/IEC International Standard. These projects are just getting started, but the base document is derived

from and completely compatible with the existing X/Open specification, and the project description requires that

it retain this compatibility during development. The following functions are defined as part of the xa-component:

12

FIPS PUB 193

xa_close, xa_commit, xa_complete, xa_end, xa_forget, xa_open, xa_prepare, xa_recover, xa_rollback, and

xa_start. The resulting International Standard for the SQL/XA Interface will be a specialization of these

functions for SQL resource managers that retains existing syntax and intended semantics, but may refine the

details of how SQL resource managers shall respond to xa-routines in terms of existing SQL transaction

semantics.

The XA-interface is intended only for calls from a global transaction manager to various resource managers.

It is not intended for normal use by end-user application programs. Instead, application programs should use

interfaces designed for communications between the application program and the global transaction manager.

For this reason, procurements should be very careful how they specify requirements for encompassing

transactions; it may be a requirement that SQL/ERI Servers be able to process two-phase commit requests, and

thereby participate as resource managers in a global transaction under the direction of a global transaction

manager, but it may not be a requirement that an end-user application program be able to communicate directly

with such a resource manager using xa-routines.

6. SQL Binding Alternatives

The SQL’92 standard [8] specifies three different binding styles: Module, Embedded SQL, and Direct Invocation.

The RDA’93 standard [9] specifies protocol interfaces for RDA clients and RDA servers, and an emerging

standard for the SQL call level interface (SQL/CLI) is under a rapid development path in ISO/IEC with final

approval as a new International Standard expected sometime during calendar year 1995. The following

subsections describe how an SQL/ERI Server may claim conformance to an SQL/ERI profile using one of these

interface alternatives.

6.1 SQL Module processor

An SQL/ERI Server may provide a Module binding style to application programs. If a user creates a <module>

according to the Format and Syntax Rules of Clause 12, "Module", of the SQL’92 standard, and if the <module>

satisfies the restrictions of a given level of SQL for a given programming language, then the SQL/ERI Server

shall process that <module> as an input text file and shall produce a binary output file that can be linked to the

compiled output of any application program written in the programming language identified by the clanguage

clause> of the <module>. The <module> output file shall abide by whatever restrictions are required for cross¬

language procedure calls by the operating system and processing platform for which Module binding support
is claimed.

6.2 Embedded SQL preprocessor

An SQL/ERI Server may provide an Embedded SQL binding style to application programs. If a user creates

an <embedded SQL host program> according to the Format and Syntax Rules of Clause 13, "Embedded SQL",

of the SQL’92 standard, and if the <embedded SQL host program> satisfies the restrictions of a given level of

SQL for a given programming language, then the SQL/ERI Server shall process that <embedded SQL host

program> according to the General Rules and other requirements specified in the SQL’92 standard. An SQL/ERI

Server may compile the entire <embedded SQL host program> to produce an executable file, or it may produce

a conforming program, P, written in the language identified by the clanguage clause> of the cembedded SQL

13

FIPS PUB 193

host program> and an implicit (maybe not actual) module, M, both as specified by Syntax Rules 13 through 15

of Subclause 19.1, "<embedded SQL host program>", of the SQL’92 standard. If the user compiles program

P with a standard conforming programming language compiler designed for the operating system and processing

platform environment for which Embedded SQL support is claimed, then the compiled version of P and an

implementor-dependent version of M shall be linkable in that processing environment to produce an executable

file that executes correctly according to the SQL’92 standard.

6.3 Direct invocation of SQL statements

An SQL/ERI Server may provide a Direct Invocation style of binding according to the requirements of Clause

20, "Direct invocation of SQL", of the SQL’92 standard. This binding style is very difficult to write

conformance tests for because there is no "standard" way to capture data returned as the result of a query.

Instead, conformance to this binding style requires a subjective evaluation of the results by a human user. For

this reason, among others, the FIPS SQL standard [3] does not recognize Direct Invocation as the sole

conformance alternative of an SQL implementation. Instead, it allows Interactive Direct SQL as a conformance

option in addition to a Module or Embedded binding style.

For an SQL/ERI Server it makes more sense to recognize the Direct Invocation binding style as a viable

conformance alternative. There are many situations, e.g. electronic bulletin boards, where a user may desire to

send an SQL statement to an SQL/ERI Server and have the data results displayed on a screen or dumped into

a human readable text file. For these reasons, the SQL/ERI Server profiles specified in Section 7 below do

recognize Direct Invocation as a valid conforming interface style.

If a user creates a <direct SQL statement according to the Format and Syntax Rules of Clause 20, "Direct

invocation of SQL", of the SQL’92 standard, and if the <direct SQL statement satisfies the restrictions of a

given level of SQL, then the SQL/ERI Server shall process that <direct SQL statement as input text and shall

display the results, if any, in a human readable form on some sort of display device. For SQL/ERI Servers

providing access to multimedia data, the display device may include a sound system, motion picture display,

or even some form of virtual reality. The only real requirement is that a reasonable conformance testing authority

be able to decide, subjectively, whether or not the <direct SQL statement was properly executed.

If a <direct SQL statement is a <direct select statement: multiple rows> that returns only character string or

numeric data in the result rows and columns, then the SQL/ERI Server shall provide a user option to redirect

the output of the query into a human readable text file. In this context, human readable means formatted so that

a reasonable conformance testing authority can readily distinguish rows and columns and easily read the data.

All numeric data returned as text shall be in the form of a valid SQL <signed numeric literal>, unless some

explicit user action results in its being cast into some other form, e.g. Money with currency symbols attached.

The SQL/ERI Server may use General Rules 5a, 5b, 6a, and 6b, of Subclause 6.10, "<cast specification;*", of

the SQL’92 standard, for additional guidance in casting numeric values into numeric literals.

Other requirements for the Direct Invocation binding style are as follows: if a statement raises an exception

condition, then the SQL/ERI Server shall display a message indicating that the statement failed, giving a textual

description of the failure; if a statement raises a completion condition that is a "warning" or "no data", then the

SQL/ERI Server shall display a message indicating that the statement completed, giving a textual description of

the "warning" or "no data"; an SQL/ERI Server that supports null values shall provide some implementation-

defined symbol for displaying null values and, for character string values, this symbol must be distinguishable

from a value of all <space>s. Preferably, the SQL/ERI Server will provide an implementor-defined method for

a user to specify how null values shall be displayed, e.g. SET NULL AS however, this SET feature is not

14

FIPS PUB 193

really needed if, instead, the SQL/ERI Server supports the NULL alternative in the <cast operand> of the <cast

specifications

6.4 SQL call level interface (SQL/CLI)

An SQL/ERI Server may provide an SQL Call Level Interface binding style according to the requirements of

the emerging standard for SQL/CLI [10]. We expect the SQL/CLI specification to be formally approved as an

ANSI/ISO/IEC standard sometime during calendar year 1995, in time for any future NIST testing of SQL/ERI

Server profiles.

The call level interface is a requirement for third-party software developers who produce "shrink-wrapped"

software for use on personal computers and workstations. They do not wish to use a Module processor or an

Embedded SQL preprocessor binding style because they do not wish to distribute any source code with the

products they sell to individual users. Instead they desire a services call interface to SQL data repositories that

can be invoked from the calling environment provided by the host operating system. The calls to the SQL data

repository can then be embedded in the object code just like calls to any other system service.

The Call Level Interface is an alternative mechanism for executing SQL statements. Reference [10] states that

the SQL/CLI consists of a number of routines that:

Allocate and deallocate resources.

Control connections to SQL-servers.

Execute SQL statements using mechanisms similar to Dynamic SQL.

Obtain diagnostic information.

Control transaction termination.

Obtain information about the implementation.

The AllocHandle routine allocates resources to manage an SQL-environment, an SQL-connection, a CLI

descriptor area, or SQL-statement processing. An SQL-connection is allocated in the context of an allocated

SQL-environment, and a CLI descriptor descriptor area and an SQL-statement are allocated in the context of an

allocated SQL-connection. The FreeHandle routine deallocates a specified resource. The ReleaseEnv routine

is used to deallocate all the allocated SQL-connections within a specified allocated SQL-environment.

Each allocated SQL-environment has an attribute that determines whether output character strings are null

terminated by the implementation. The application can set the value of this attribute by using the routine

SetEnvAttr and can retrieve the current value of the attribute by using the routine GetEnvAttr.

The Connect routine establishes an SQL-connection. The Disconnect routine terminates an established SQL-

connection. Switching between established SQL connections occurs automatically whenever the application

switches processing to a dormant SQL-connection. The ExecDirect routine is used for a one-time execution of

an SQL-statement. The Prepare routine is used to prepare an SQL-statement for subsequent execution using the

Execute routine. In each case, the executed SQL-statement may contain dynamic parameters.

15

FIPS PUB 193

The interface for a description of dynamic parameters, dynamic parameter values, the resultant columns of a

dynamic select statement, and the target specifications for the resultant columns is a CLI descriptor area. A CLI

descriptor area for each type of interface is automatically allocated when an SQL-statement is allocated. The

application may allocate additional CLI descriptor areas and nominate them for use as the interface for the

description of dynamic parameter values or the description of target specifications by using the routine

SetStmtAttr. The application can determine the handle value of the CLI descriptor area currently being used for

a specific interface by using the routine GetStmtAttr. The GetDescField and GetDescRec routines enable

information to be retrieved from a CLI descriptor area. The CopyDesc routine enables the contents of a CLI

descriptor area to be copied to another CLI descriptor area.

When a dynamic select statement is prepared or executed immediately, a description of the resultant columns

is automatically provided in the applicable CLI descriptor area. In this case, the application may additionally

retrieve information by using the DescribeCol routine to obtain a description of a single resultant column and

by using the NumResultCols routine to obtain a count of the number of resultant columns. The application sets

values in the CLI descriptor area for the description of the corresponding target specifications either explicitly

using the routines SetDescField and SetDescRec or implicitly using the routine BindCol.

When an SQL-statement is prepared or executed immediately, a description of the dynamic parameters is

automatically provided in the applicable CLI descriptor area if this facility is supported by the current SQL-

connection. An attribute associated with the allocated SQL-connection indicates whether this facility is

supported. The value of the attribute may be retrieved using the routine GetConnectAttr. The application sets

values in the CLI descriptor area for the description of dynamic parameter values and, regardless of whether

automatic population is supported, in the CLI descriptor area for the description of dynamic parameters either

explicitly using the routines SetDescField and SetDescRec or implicitly using the routine BindParam.

When a dynamic select statement is executed, a cursor is implicitly declared and opened. The cursor name can

be supplied by the application by using the routine SetCursorName. If a cursor name is not supplied by the

application, an implementation-dependent cursor name is generated. The same cursor name is used for each

implicit cursor within a single allocated SQL-statement. The cursor name can be retrieved by using the

GetCursorName routine.

The Fetch routine is used to position an open cursor on the next row and retrieve the values of bound columns

for that row. A bound column is one whose target specification in the specified CLI descriptor area defines a

location for the target value. Values for unbound columns can be individually retrieved by using the GetCol

routine. The GetCol routine also enables the values of character string columns to be retrieved piece by piece.

The current row of a cursor can be deleted or updated by executing a preparable dynamic delete statement or

a preparable dynamic update statement, respectively, for that cursor under a different allocated SQL-statement

to the one under which the cursor was opened. The CloseCursor routine enables a cursor to be closed.

The GetDiagField and GetDiagRec routines obtain diagnostic information about the most recent routine operating

on a particular resource. The Error routine is used to obtain diagnostic information about the execution of the

most recent routine. The Error routine may be used instead of the resource specific diagnostic routines

GetDiagField and GetDiagRec. Information on the number of rows affected by the last executed SQL-statement

can be obtained by using the RowCount or GetDiagField routine. The GetFunctions, Getlnfo, and GetTypelnfo

routines are used to obtain other information about the implementation.

An SQL-transaction is terminated by using the EndTran routine. The Cancel routine is used to cancel the

execution of a concurrently executing SQL/CLI routine or to terminate the processing of deferred parameter

values and the execution of the associated SQL-statement.

16

FIPS PUB 193

The CLI ExecDirect routine and the CLI Prepare routine each support an input character string parameter

identified as StatementText. If P is the value of StatementText, then P shall satisfy the following restrictions:

1. P shall conform to the Format, Syntax Rules, and Access Rules for a <preparable statement as specified

in Subclause 17.6, "<prepare statement", of the SQL’92 standard.

2. P shall not be a ccommit statement or a crollback statements

3. P shall abide by the Leveling Rules of the level of SQL support claimed by the SQL/ERI Server.

The SQL/CLI specification is intended to support CLI routines embedded into both pointer-based programming

languages and non-pointer-based programming languages. In particular, the Syntax Rules of <CLI routine>

specified in Subclause 5.1 of [10] indiate that CLI routines may be embedded into any one of the following

standard programming languages: Ada, C, COBOL, Fortran, MUMPS, Pascal, and PL/I. An SQL/ERI Server

will indicate which of those languages it supports.

6.5 RDA/SQL-Server interface

An SQL/ERI Server may provide an RDA/SQL-Server protocol interface according to the protocols defined in

the RDA’93 standard [9]. The RDA protocols allow communication and interoperability among conforming RDA

processors in an OSI communications network. Many vendors are also supporting the RDA protocols in a

TCP/IP communications network using agreements specified by the NIST Opens Systems Environment

Implementors Workshop (OIW) for RDA accessibility using Internet RFC 1006 for upper layer OSI interface

to Internet protocols. This SQL/ERI profile specification allows an SQL/ERI Server to claim conformance to

the RDA/SQL-Server interface over an arbitrary communications network. If an application program, acting as

an RDA client, is able to form an association with an SQL/ERI Server and communicate thereafter using RDA

protocols subject to the implementor agreements specified by the Open Systems Environment Implementor’s

Workshop (e.g. in [16]), then the SQL/ERI Server may claim conformance to the RDA/SQL-Server interface

style.

Reference [9] describes the services of the RDA standard in terms of an RDA Client, an RDA Server, and an
RDA Service as follows:

An RDA client is an application-process, within an open system, that requests database services from another

application-process called a database server. A database server is an application-process, within the same or

another open system, that supplies database storage facilities and provides, through OSI communication,

database services to RDA clients. An RDA client and a database server communicate by means of the RDA

Service, supported by an RDA service-provider. The part of the database server that uses the RDA service-

provider to communicate with an RDA client is called an RDA server. The RDA client has the ability to

initiate RDA service requests, while the RDA server can only issue RDA service responses to reply to such
requests.

A data resource is a named collection of data and/or capabilities on the database server known to both the

RDA client and the RDA server. The meaning of the data content and capabilities of a data resource depend

upon the application of RDA, which is determined by each RDA specialization standard (e.g. the SQL

specialization). The RDA client opens a data resource in order to gain access to the data content or

capabilities of that resource through Database Language services (e.g. SQL).

17

FIPS PUB 193

An RDA transaction is a logically complete unit of processing as determined by the RDA client. Execution

during an RDA transaction of a sequence of database access services that change data resources enables the

set of changes to be handled as an atomic unit. When the RDA transaction is terminated, either the whole

set of changes is applied to the data resources or no changes are applied. The RDA client requests

termination of an RDA transaction by requesting the RDA server either to commit or to roll back the

complete set of changes of that transaction. Changes made to the data content of data resources during an

RDA transaction are not made available to other RDA clients until that RDA transaction is terminated at the

RDA server. RDA provides a choice of two application-contexts for managing RDA transactions: 1) a basic

application-context for one-phase commitment, and 2) a TP application-context for two-phase commitment.

The RDA protocol for the basic application-context is completely specified in the RDA standard, whereas

the protocol for the TP application context is dependent upon the ISO/IEC Distributed Transaction Processing

standard (ISO/IEC 10026).

An RDA operation models a request by an RDA client that is transferred to an RDA server for processing.

RDA operations enable an RDA client to request any of five types of RDA services:

a) RDA Dialogue Management services, to start and end RDA dialogues;

b) RDA Transaction Management services, to start and end RDA transactions;

c) RDA Control services, to report the status or cancel existing operations;

d) Resource Handing services, to enable or disable access by RDA clients to data resources;

e) Database Language services, to access and modify data resources.

An RDA client may request RDA operations without waiting for the results of previously requested RDA

operations. Thus an RDA server may have several RDA operations outstanding for a particular RDA

dialogue.

An RDA dialogue is a cooperative relationship between and RDA client and an RDA server. The RDA client

initilizes the RDA dialogue and requests RDA operations that are to be performed by the RDA server. An

RDA dialogue is uniquely identified within the scope of the OSI environment, and all RDA operations occur

within the bounds of an RDA dialogue. An RDA dialogue can exist only in the context of an established

application-association, and ceases to exist if the association is released. A failed RDA dialogue cannot be

recovered; the process of recovery after a failure is a local matter beyond the scope of the RDA 1993

standard, and recovery actions outside the RDA service-provider may be necessary. In the event of dialogue

failure, it is a requirement that all changes made to data resources by any RDA transaction that is not already

terminating when RDA dialogue failure occurs be rolled back by the database server during its recovery

process. If an RDA dialogue is terminating when RDA dialogue failure occurs, then it may either be

committed or rolled back.

The NIST OSE Implementor’s Workshop (OIW) has specified implementation agreements for the Basic

Application Context of the RDA’93 standard [9], with profiles for: Immediate Execution, Stored Execution,

Status, and Cancel. Future work is in progress by the OIW to specify corresponding profiles for the Transaction

Processing (TP) Application Context of the RDA’93 standard. For the purpose of the SQL/ERI Server profiles

specified in this document, support for the RDA/SQL-Server interface requires support as an RDA Server for

the Immediate Execution profile of the Basic Application Context as specified in [16], with the ability to respond

to SQL statements at the level of support for SQL language claimed by the SQL/ERI Server. The other profiles

18

FIPS PUB 193

of the Basic Application Context defined in [16], and the TP Application Context, are optional enhancements

to this basic requirement as follows:

RDA Stored Execution, Support for the basic requirements specified above and, in addition, support for the

RDA Stored Execution Functional Unit as specified in the RDA’93 standard and with implementor agreements

for the Stored Execution profile as specified in [16].

RDA Status. Support for the basic requirements specified above and, in addition, support for the RDA Status

Functional Unit as specified in the RDA’93 standard and with implementor agreements for the Status profile

as specified in [16].

RDA Cancel. Support for the basic requirements specified above and, in addition, support for the RDA Cancel

Functional Unit as specified in the RDA’93 standard and with implementor agreements for the Cancel profile

as specified in [16].

RDA TP Application Context. Support for the basic requirements specified above and, in addition, support

for the RDA SQL TP Application Context as specified in the RDA’93 standard, and dependent upon ISO/IEC

10026 (Distributed Transaction Processing), and with implementor agreements for Distributed Transaction

Processing as specified in [16].

7. SQL/ERI Server Profiles

This section specifies two general-purpose functional profiles for partial SQL language support that an

implementation may claim conformance to, as follows:

SQL/ERI Read-Only Server

SQL/ERI Read-Write Server

Each general-purpose profile has a number of "level of service" alternatives for data manipulation, schema

definiton, transaction management, and binding style. If an implementation conforms to any one of these

profiles, then it may claim to be a FIPS conforming SQL/ERI Server. Because many of the alternatives in these

profiles identify a proper subset of full-function SQL requirements, conformance to any one of them does not

imply conformance to the standard for Database Language SQL [8]. These profiles are intended for use by

customers and vendors of products that claim only partial support of an SQL language interface to their data
repository.

Any implementation claiming conformace to one of the SQL/ERI Server profiles shall provide a written public

statement responding to the ten profile items identified in the following paragraphs. The implementation

requirements of each response are given in Subsection 7.1 for Read-Only Servers and in Subsection 7.2 for Read-

Write Servers. Syntax for deriving specific SQL-related object identifiers is given in Section 7.3, and popular

profiles for CLI and RDA binding alternatives are defined in Sections 7.4 and 7.5, respectively.

An SQL/ERI Server profile shall specify:

19

FIPS PUB 193

1. A base level of SQL data manipulation language (DML) support, by choosing exactly one of the

following DML alternatives.

Minimal DML

Entry DML

Transitional DML

Intermediate DML

Full DML

2. A base level of SQL schema definition language (SDL) support, by choosing exactly one of the following

SDL alternatives.

No SDL

Minimal SDL

Entry SDL

Transitional SDL

Intermediate SDL

Full SDL

3. A base level of SQL transaction management support, by choosing exactly one of the following

transaction management alternatives.

No Transactions

Commit-Rollback

Transaction Mode

Transaction Isolation

Transaction Diagnostics

Constraints

Note: The alternatives for SQL transaction management support are nested. Support for any one of them

implies support for all those listed above it. The three alternatives for Transaction Mode, Transaction

Isolation, and Transaction Diagnostics support transaction mode>, <isolation level>, and diagnostics size>,

respectively, in the SQL’92 <set transaction statement>, and the Constraints alternative supports the SQL’92

<set constraints mode statements-.

4. A default isolation level for SQL transaction management, by choosing exactly one of the following

default isolation level alternatives.

Read Uncommitted

Read Committed

Repeatable Read

Serializable

Note: If the default isolation level is anything other than Serializable, and if other concurrent users are able

to update the database, then read statements may be subject to "dirty read", "non-repeatable read", or

"phantom" rows (see Subclause 4.28, "SQL-trarisactions", of the SQL’92 standard). Even a read-only profile

is subject to these phenomena if other concurrent users (not through that profile) can update the database.

20

FIPS PUB 193

5. Which binding styles are supported, by choosing one or more of the following binding style alternatives.

Module

Embedded SQL

Direct Invocation

SQL/CLI

RD A/SQL

Note: It is expected that the SQL/CLI binding style will be the most popular choice for SQL/ERI products

within a single local client/server environment and that the Direct Invocation or RD A/SQL binding styles will

be the most popular when the server data repository is an isolated node in a wide area client/server

environment.

6. For each of the Module, Embedded SQL, or SQL/CLI binding styles chosen, which programming

language interfaces are supported, by choosing one or more of the following programming language

alternatives.

Ada

C

COBOL

Fortran

MUMPS

Pascal

PL/I

SAMeDL (via module, embedded, or effect)

Note: The Direct Invocation and RD A/SQL binding styles do not require or provide a programming language

interface. The preferred language interfaces for SQL/CLI are C and/or COBOL. SAMeDL is an alternative

only for the Module binding style (see [21]).

7. Which SQL session management facilities are supported, by specifying one or more of the following
session management features.

No Session

Set Catalog

Set Schema

Set Names

Set Session Authorization

Set Time Zone

All Session

Note: SQL session management is defined in Clause 16, "Session management", of SQL’92. If the base

level of SQL DML support specified above is Intermediate DML or above, then implementations shall

support both Set Session Authorization and Set Time Zone, because they are required Intermediate SQL

features. Because of its importance for users, support for "SET SCHEMA cunqualified schema name>" is

required if SQL DML support is Transitional DML or above.

21

FIPS PUB 193

8. Which optional extensions are supported, by choosing one or more of the following optional extensions.

No Extensions

SQL Features

Executable SQL/PSM

Definable SQL/PSM

SQL/MM: FullText

SQL/MM: Spatial

SQL/MM: General

ADTs and methods

Object data management

SQL/XA

Note: If SQL Features is chosen, then the implementation shall support the SQL_FEATURES table as

specified in Section 15 of FIPS SQL (see [3]); if Executable SQL/PSM is chosen, then the implementation

shall support croutine invocation> and the ROUTINES base table as specified in the SQL/PSM specification

(see [11]); if Definable SQL/PSM is chosen, then the implementation shall support all requirements of the

SQL/PSM specification (see [11]); if SQL/MM: Full Text, SQL/MM: Spatial, or SQL/MM: General is chosen,

then the implementation shall point to the then current SQL/MM specification (see Section 5.3 above and

[13]) and explicitly indicate which Parts, and which conformance alternatives within each Part, are supported;

if ADTs and methods is chosen, then the implementation shall support the appropriate Abstract Data Type

clauses in the then current SQL3 specification (see Section 5.4 above and [12]); if Object data management

is chosen, then the implementation shall support the appropriate object management clauses in the then

current SQL3 specification (see Section 5.5 above and [12]); if SQL/XA is chosen, then the implementation

shall support the SQL specializaion of the X/Open XA interface specification (see Section 5.6 above and

[12]).

9. If the RDA/SQL binding style is chosen, then which underlying communications protocols are supported,

by choosing one or more of the following alternatives.

Minimal OSI (MOSI)

Full Stack OSI

Internet RFC 1006

Other Transport

— see new OIW 1994 agreements

— see [16] for 1992 OIW stable agreements

— see unpublished NIST RDA TestBed Agreements

— give name & version of transport mechanism used

Note: All of the above depend upon the International Standard for Remote Database Access (RDA) [9] in

their upper layers; however, they may differ in their directory services and in their services for making an

association at the application layer and in how that association is propagated through to the transport and

physical layers. It is expected that the Internet RFC 1006 alternative will be the most popular in the near

term (because the Internet is so pervasive) for ad hoc associations among RDA clients and servers in a wide

area network.

10. If the RDA/SQL binding style is chosen, then which RDA options are supported, by choosing one or

more of the following (see Section 6.5 above).

None

RDA Stored Execution

RDA Status

RDA Cancel

RDA TP Application Context

22

FIPS PUB 193

7.1 SQL/ERI Read-Only Server

This profile specifies a read-only interface to a data repository. It does not include support for any of the

Schema Definition or Schema Manipulation SQL language elements specified in Clause 11 of the SQL’92

standard, or for any of the SQL data change statements, i.e. Insert, Update, or Delete, specified in Clause 13.

It is most likely that the level of support specified for SQL schema definition language will be "No SDL".

Depending upon the various base level attributes specified, this profile may have Information Schema

requirements that differ from those specified in SQL’92 [8] or FIPS SQL [3].

Schema Definition Rules

1. The SQL/ERI Read-Only Server profile assumes that all schema objects are owned by a user different

from the user accessing the repository through this profile, and that appropriate privileges have been

granted to all accessing users. If the SQL/CLI binding style is identified, then users are made known to

the system using the Connect routine specified in Subclause 6.10, "Connect", of [10]. If the RDA/SQL

binding style is identified, then users are made known to the system using the NIST OIW RDA Testbed

implementor agreements. Otherwise, as with the SQL’92 standard, the particular method by which users

are made known to the system is implementation-defined.

2. If the level of SQL data manipulation language support claimed for the SQL/ERI Read-Only Server

profile is Minimal DML, Entry DML, or Transitional DML, then the implicit schema definition may

contain some ctable constraints, or various <schema elements, that are not visible to the user but

whose existence may affect the semantics of certain statements.

3. If the level of SQL data manipulation language support claimed for the SQL/ERI Read-Only Server

profile is Minimal DML or Entry DML, and if a table with table name TN is visible in the Information

Schema TABLES view for a user with user name UN, then one of the following <grant statements,

executed by the owner of table TN, is implicit:

GRANT SELECT ON TABLE TN TO UN, or

GRANT SELECT ON TABLE TN TO PUBLIC

It doesn’t make any difference to a read-only user which of these statements is implicit, so the choice

is implementation-dependent.

4. Information about schema objects, privileges, and constraints are made visible to potential users through

the Information Schema views, subject to the Information Schema Rules specified below.

Data Manipulation Rules

1. If the Module, Embedded SQL, or RDA/SQL binding styles are specified, then the SQL/ERI Read-Only

Server profile requires support for the following SQL statements, as specified in Clause 13, "Data

Manipulation", in the SQL’92 standard, with any restrictions specified by the given level of SQL data

manipulation language support and subject to other rules specified in this profile.

<declare cursor>

<open statement*

<fetch statement*

<close statement*

<select statement: single row>

23

FIPS PUB 193

2. If the Direct Invocation binding style is specified, then the SQL/ERI Read-Only Server profile requires

support for the following <direct SQL statements listed in Clause 20, "Direct invocation of SQL", in

the SQL’92 standard, with any restrictions specified by the given level of SQL data manipulation

language support and subject to other rules specified in this profile:

<direct select statement: multiple rows>

3. If the SQL/CLI binding style is specified, then the SQL/ERI Read-Only Server profile requires support

for the following <preparable statements listed in Subclause 17.6 of the SQL’92 standard, with any

restrictions specified by the given level of SQL data manipulation language support and subject to other

rules specified in this profile:

<dynamic single row select statement

<dynamic select statement

4. If an SQL/ERI Server implementation at the Minimal SDL level or below chooses not to provide support

for null values (see item 4 of Section 4.1), then it may raise an implementation-defined exception in any

SQL statement that attempts to process null values.

Transaction Management Rules

1. If the level of SQL transaction management support is "No Transactions", then SQL transaction

management is not supported for any binding style. Otherwise, Commit and Rollback transaction

management is supported depending on the specified binding style as follows.

Case:

a. If the Module, Embedded SQL, or Direct Invocation binding style is specified, then the

requirements of the SQL <commit statement and the SQL crollback statement from Clause 14,

"Transaction management", of the SQL’92 standard [8] apply to this profile.

b. If the SQL/CLI binding style is specified, then the requirements of the routines for transaction

management (e.g. EndTran and Cancel) as specified in the SQL/CLI specification [10] apply to this

profile.

c. If the RDA/SQL binding style is specified, then the requirements for transaction management in

the RDA Basic Application Context, as specified in the RDA standard [9], with implementor

agreements specified in [16], apply to this profile.

d. If the RDA option for TP Application Context is specified, then the requirements for the TP

Application Context, as specified in the RDA standard [9], with implementor agreements for

Distributed Transaction Processing as specified in [16], apply to this profile.

Note: The purpose of requiring support for SQL Commit and Rollback in Read-Only profiles is to give

the user a standard way to signal to the system that a read-only transaction has completed. This has

semantic implications only if other concurrent users (not through this profile) are able to update the

database.

2. If the level of SQL transaction management support is "No Transactions", and if the default isolation

level is XXX, then the <set transaction statement

24

FIPS PUB 193

SET TRANSACTION READ ONLY, ISOLATION LEVEL XXX

is implicit for the single implicit transaction of any SQL-session through this profile.

3. If the level of SQL transaction management support is Commit-Rollback, and if the default isolation level

is XXX, then the <set transaction statement

SET TRANSACTION READ ONLY, ISOLATION LEVEL XXX

is implicit for every transaction of any SQL-session through this profile.

4. If the level of SQL transaction management support is Transaction Mode or above, then this profile

includes support for the transaction access mode> alternative of the SQL <set transaction statement

as specified in Subclause 14.1 of the SQL’92 standard; however, the transaction access mode> shall

always be READ ONLY.

5. If the level of SQL transaction management support is Transaction Isolation or above, then this profile

includes support for the cisolation level> alternative of the SQL <set transaction statement as specified

in Subclause 14.1 of the SQL’92 standard. If the default isolation level is XXX, and if an explicit <set

transaction statement with an explicit cisolation level> is not specified for a transaction of any SQL-

session through this profile, then the cset transaction statement*

SET TRANSACTION READ ONLY, ISOLATION LEVEL XXX

is implicit for that transaction.

6. If the level of SQL transaction management support is Transaction Diagnostics or above, then this profile

includes support for the cdiagnostics size> alternative of the SQL cset transaction statement* as specified

in Subclause 14.1 of the SQL’92 standard.

7. If the level of SQL transaction management support is Constraints, then this profile includes support for

the cset constraints mode statement* as specified in Subclause 14.2 of the SQL’92 standard.

8. If the optional extension for SQL/XA is specified, then the implementation shall support the SQL

specializaion of the X/Open XA interface specification (see Section 5.6 above and [12]).

Connection Management Rules

1. If the Module, Embedded SQL, or Direct Invocation binding styles are specified, and if the level of SQL

data manipulation language support is Full DML, then the SQL/ERI Read-Only Server profile requires

support for cSQL connection statements as specified in Clause 15, "Connection management", of the

SQL’92 standard. If the level of SQL data manipulation language support is anything other than Full

SQL, then there is no requirement to support any cSQL connection statement for these binding styles.

2. If the SQL/CLI binding style is specified, then the requirements of the routines for connection

management (i.e. Connect, Disconnect) as specified in the SQL/CLI specification [10] apply to this
profile.

25

FIPS PUB 193

3. If the RDA/SQL binding style is specified, then the requirements of RDA Dialogue Management and

RDA Resource Handling as specified in the RDA standard [9], with implementor agreements specified

in [16], apply to this profile.

Session Management Rules

1. If the indicated SQL session management support is "No Session", then SQL session management is not

supported for any binding style. Otherwise, for each feature identified, this profile supports the

requirements of that feature as identified in Clause 16, "Session management", of the SQL’92 standard.

If the indicated SQL session management support is "All Session", then all features of Clause 16 are

supported in this profile.

2. If SQL data manipulation language support specifies Transitional DML or above, then support for "SET

SCHEMA unqualified schema name>" is implicit in this profile.

3. If SQL data manipulation language support specifies Intermediate DML or above, then support for "SET

SCHEMA unqualified schema name>", SET SESSION AUTHORIZATION, and SET TIME ZONE is

implicit in this profile.

4. If SQL data manipulation language support specifies Full DML, then support for "All Session" is implicit

in this profile.

Dynamic SQL and Diagnostics Management Rules

1. If SQL data manipulation language support specifies Minimal DML or Entry SQL, then support for SQL

statements in Clause 17, "Dynamic SQL", and Clause 18, "Diagnostics management", is not required.

2. If SQL data manipulation language support specifies Transitional DML or above, then support for all

read-only provisions of Clause 17, "Dynamic SQL", and Clause 18, "Diagnostics management", with any

restrictions identified in the Leveling Rules for higher levels of DML, is required for all implementations

that claim that level of DML support.

Information Schema Rules

1. If the level of SQL data manipulation language support claimed for the SQL/ERI Read-Only Server

profile is Minimal DML or Entry DML, then support for the following Information Schema views, as

specified in Clause 21, "Information Schema and Definition Schema", of the SQL’92 standard, is

required:

TABLES

COLUMNS

Note: See FIPS 127-2 Errata for handling "long" names.

2. If an SQL/ERI Server implementation at the Minimal SDL level or below chooses not to provide support

for null values (see item 4 of Section 4.1), then it shall provide an implementation-defined conversion

of would-be null values in Information Schema tables to an appropriate non-null value.

26

FIPS PUB 193

3. If the level of SQL data manipulation language support claimed for the SQL/ERI Read-Only Server

profile is Transitional DML, then support for the following Information Schema views, as specified in

Clause 21, "Information Schema and Definition Schema", of the SQL’92 standard, is required:

TABLES

VIEWS

COLUMNS

TABLE.PRIVILEGES

COLUMN_PRIVILEGES

U S AGE_PRI VILEGES

Note: See FIPS 127-2 Errata for handling "long" names.

4. If the level of SQL data manipulation language support claimed for the SQL/ERI Read-Only Server

profile is Intermediate DML or Full DML, then an implementation conforming to this profile shall

provide all of the Information Schema views required by the SQL’92 standard for Intermediate SQL or

Full SQL, respectively. In many cases some of these tables may be empty, or trivial, but a conforming

SQL/ERI Server at these SQL data manipulation language levels is required to support them to reflect

an accurate picture of the implicit schema definition.

7.2 SQL/ERI Read-Write Server

This profile specifies a read-write interface to a data repository. It requires support for the SQL data change

statements, i.e. Insert, Update, and Delete, specified in Clause 13, "data manipulation", of the SQL’92 standard.

Depending upon the level of SQL schema definition language support specified, it may or may not require

support for SQL schema definition or schema manipulation statements. Depending upon the various base level

attributes specified, this profile may have Information Schema requirements that differ from those specified in

SQL’92 [8] or FIPS SQL [3],

Schema Definition Rules

1. The SQL/ERI Read-Write Server profile assumes that some schema objects are owned by a user different

from the user accessing the repository through this profile, and that appropriate privileges have been

granted to all accessing users. If the SQL/CLI binding style is identified, then users are made known to

the system using the Connect routine specified in Subclause 6.10, "Connect", of [10]. If the RDA/SQL

binding style is identified, then users are made known to the system using the NIST OIW RDA Testbed

implementor agreements. Otherwise, as with the SQL’92 standard, the particular method by which users

are made known to the system is implementation-defined.

2. If the level of SQL data manipulation language support claimed for the SQL/ERI Read-Write Server

profile is Minimal DML, Entry DML, or Transitional DML, then the implicit schema definition may

contain some <table constraints, or various <schema elements, that are not visible to the user but

whose existence may affect the semantics of certain statements.

3. Information about schema objects, privileges, and constraints are made visible to potential users through

the Information Schema views, subject to the Information Schema Rules specified below.

27

FIPS PUB 193

4. If the level of SQL schema definition language support is different from "No SDL", then

Case:

a. If the Module, Embedded SQL, or RDA/SQL binding styles are specified, then the SQL/ERI Read-

Write Server profile requires support for all of the SQL data definition and manipulation

statements, as specified in Clause 11, "Schema definition and manipulation", of the SQL’92

standard, with any restrictions specified by the given level of SQL schema definition language

support and subject to other rules specified in this profile.

b. If the Direct Invocation binding style is specified, then the SQL/ERI Read-Write Server profile

requires support for the following <direct SQL statements listed in Clause 20, "Direct invocation

of SQL", in the SQL’92 standard, with any restrictions specified by the given level of SQL schema

definition language support and subject to other rules specified in this profile:

<SQL schema statement

c. If the SQL/CLI binding style is specified, then the SQL/ERI Read-Write Server profile requires

support for the following <preparable statements listed in Subclause 17.6 of the SQL’92 standard,

with any restrictions specified by the given level of SQL schema defintion language support and

subject to other rules specified in this profile:

<preparable SQL schema statement

Data Manipulation Rules

1. If the Module, Embedded SQL, or RDA/SQL binding styles are specified, then the SQL/ERI Read-Write

Server profile requires support for the following SQL statements, as specified in Clause 13, "Data

Manipulation", in the SQL’92 standard, with any restrictions specified by the given level of SQL data

manipulation language support and subject to other rules specified in this profile.

<declare cursor>

copen statement

cfetch statement

cclose statement

cselect statement: single row>

cdelete statement: positioned>

cdelete statement: searched>

cinsert statement

cupdate statement: positioned>

cupdate statement: searched>

ctemporary table declaration> — Full DML only

2. If the Direct Invocation binding style is specified, then the SQL/ERI Read-Only Server profile requires

support for the following cdirect SQL statements listed in Clause 20, "Direct invocation of SQL", in

the SQL’92 standard, with any restrictions specified by the given level of SQL data manipulation

language support and subject to other rules specified in this profile:

cdirect select statement: multiple rows>

cdelete statement: searched>

28

FIPS PUB 193

<insert statement

cupdate statement: searched>
temporary table declaration> — Full DML only

3. If the SQL/CLI binding style is specified, then the SQL/ERI Read-Write Server profile requires support

for the following <preparable statements listed in Subclause 17.6 of the SQL’92 standard, with any

restrictions specified by the given level of SQL data manipulation language support and subject to other

rules specified in this profile:

<dynamic single row select statement

<dynamic select statement

<delete statement: searched>

<insert statement

<update statement: searched>

<preparable dynamic delete statement: positioned>

<preparable dynamic update statement: positioned>

4. If an SQL/ERI Server implementation at the Minimal SDL level or below chooses not to provide support

for null values (see item 4 of Section 4.1), then it may raise an implementation-defined exception in any

SQL statement that attempts to process null values.

Transaction Management Rules

1. The level of SQL transaction management support shall not be "No Transactions". In all cases, SQL

Commit and Rollback transaction management is supported as defined by the specified binding style.

Case:

a. If the Module, Embedded SQL, or Direct Invocation binding style is specified, then the

requirements of the SQL <commit statement and the SQL <rollback statement from Clause 14,

"Transaction management", of the SQL’92 standard [8] apply to this profile.

b. If the SQL/CLI binding style is specified, then the requirements of the routines for transaction

management (e.g. EndTran and Cancel) as specified in the SQL/CLI specification [10] apply to this

profile.

c. If the RDA/SQL binding style is specified, then the requirements for transaction management in

the RDA Basic Application Context, as specified in the RDA specification [9], with implementor

agreements specified in [16], apply to this profile.

d. If the RDA option for TP Application Context is specified, then the requirements for the TP

Application Context, as specified in the RDA standard [9], with implementor agreements for

Distributed Transaction Processing as specified in [16], apply to this profile.

2. If the level of SQL transaction management support is Commit-Rollback, then the <set transaction

statement

SET TRANSACTION READ WRITE, ISOLATION LEVEL SERIALIZABLE

is implicit for every transaction of any SQL-session through this profile.

29

FIPS PUB 193

3. If the level of SQL transaction management support is Transaction Mode or above, then this profile

includes support for the transaction access mode> alternative of the SQL <set transaction statement

as specified in Subclause 14.1 of the SQL’92 standard.

Case:

a. If an explicit <set transaction statement with an explicit <tranaction access mode> is not specifed

for a transaction of any SQL-session through this profile, then the <set transaction statement

SET TRANSACTION READ WRITE, ISOLATION LEVEL SERIALIZABLE

is implicit for that transaction.

b. If an explicit <set transaction statement with a <tranaction access mode> of READ ONLY is

specifed for a transaction of any SQL-session through this profile, and if the default isolation level

is XXX, then the <set transaction statement

SET TRANSACTION READ ONLY, ISOLATION LEVEL XXX

is implicit for that transaction.

4. If the level of SQL transaction management support is Transaction Isolation or above, then this profile

includes support for the cisolation level> alternative of the SQL <set transaction statement as specified

in Subclause 14.1 of the SQL’92 standard. If an explicit <set transaction statement with a ctranaction

access mode> of READ ONLY is specifed, and if an explicit <set transaction statement* with an explicit

isolation level> is not specified for a transaction of any SQL-session through this profile, and if the

default isolation level is XXX, then the <set transaction statement

SET TRANSACTION READ ONLY, ISOLATION LEVEL XXX

is implicit for that transaction.

5. If the level of SQL transaction management support is Transaction Diagnostics or above, then this profile

includes support for the diagnostics size> alternative of the SQL <set transaction statement as specified

in Subclause 14.1 of the SQL’92 standard.

6. If the level of SQL transaction management support is Constraints, then this profile includes support for

the <set constraints mode statement as specified in Subclause 14.2 of the SQL’92 standard.

7. If the optional extension for SQL/XA is specified, then the implementation shall support the SQL

specializaion of the X/Open XA interface specification (see Section 5.6 above and [12]).

Connection Management Rules

1. If the Module, Embedded SQL, or Direct Invocation binding styles are specified, and if the level of SQL

data manipulation language support is Full DML, then the SQL/ERI Read-Write Server profile requires

support for <SQL connection statements as specified in Clause 15, "Connection management", of the

SQL’92 standard. If the level of SQL data manipulation language support is anything other than Full

SQL, then there is no requirement to support any <SQL connection statement for these binding styles.

30

FIPS PUB 193

2. If the SQL/CLI binding style is specified, then the requirements of the routines for connection

management (i.e. Connect, Disconnect) as specified in the SQL/CLI specification [10] apply to this

profile.

3. If the RDA/SQL binding style is specified, then the requirements of RDA Dialogue Management and

RDA Resource Handling as specified in the RDA standard [9], with implementor agreements specified

in [16], apply to this profile.

Session Management Rules

1. If the indicated SQL session management support is "No Session", then SQL session management is not

supported for any binding style. Otherwise, for each feature identified, this profile supports the

requirements of that feature as identified in Clause 16, "Session management", of the SQL’92 standard.

If the indicated SQL session management support is "All Session", then all features of Clause 16 are

supported in this profile.

2. If SQL data manipulation language support specifies Transitional DML or above, then support for "SET

SCHEMA unqualified schema name>" is implicit in this profile.

3. If SQL data manipulation language support specifies Intermediate DML or above, then support for "SET

SCHEMA unqualified schema name>", SET SESSION AUTHORIZATION, and SET TIME ZONE is

implicit in this profile.

4. If SQL data manipulation language support specifies Full DML, then support for "All Session" is implicit

in this profile.

Dynamic SQL and Diagnostics Management Rules

1. If SQL data manipulation language support specifies Minimal DML or Entry SQL, then support for SQL

statements in Clause 17, "Dynamic SQL", and Clause 18, "Diagnostics management", is not required.

2. If SQL data manipulation language support specifies Transitional DML or above, then support for all

provisions of Clause 17, "Dynamic SQL", and Clause 18, "Diagnostics management", with any

restrictions identified in the Leveling Rules for higher levels of DML, is required for all implementations

that claim that level of DML support.

Information Schema Rules

1. If the level of SQL data manipulation language support claimed for the SQL/ERI Read-Write Server

profile is Minimal DML or Entry DML, then support for the following Information Schema views, as

specified in Clause 21, "Information Schema and Definition Schema", of the SQL’92 standard, is

required:

TABLES

VIEWS

COLUMNS

TABLE_PRIVILEGES

COLUMN_PRIVILEGES

Note: See FIPS 127-2 Errata for handling "long" names.

31

FIPS PUB 193

2. If an SQL/ERI Server implementation at the Minimal SDL level or below chooses not to provide support

for null values (see item 4 of Section 4.1), then it shall provide an implementation-defined conversion {

of would-be null values in Information Schema tables to an appropriate non-null value.

3. If the level of SQL data manipulation language support claimed for the SQL/ERI Read-Write Server

profile is Transitional DML, then support for the following Information Schema views, as specified in

Clause 21, "Information Schema and Definition Schema", of the SQL’92 standard, is required:

TABLES

VIEWS

COLUMNS

T AB LE_PRI VILEGES

COLUMN_PRIVILEGES

USAGE_PRIVILEGES

Note: See FIPS 127-2 Errata for handling "long" names.

4. If the level of SQL data manipulation language support claimed for the SQL/ERI Read-Write Server

profile is Intermediate DML or Full DML, then an implementation conforming to this profile shall

provide all of the Information Schema views required by the SQL’92 standard for Intermediate SQL or

Full SQL, respectively. In many cases some of these tables may be empty, or trivial, but a conforming

SQL/ERI Server at these SQL data manipulation language levels is required to support them to reflect

an accurate picture of the implicit schema definition.

7.3 Object Identifiers for SQL/ERI Server profiles

The National Institute of Standards and Technology is the registration authority for the following node in the

joint ISO/IEC and CCITT branch of the international object-identifier hierarchical name tree (see CCITT X.660

or ISO/IEC 9834-1):

{ joint-iso-ccitt (2) country (16) us (840) gov (101) sq! (4) }

It is NIST’s intention to use this node to register objects derived from NIST publications related to Database

Language SQL, including profiles defined in this FIPS for SQL Environments. Other registered objects will

include FIPS SQL profiles, FIPS SQL test suite reports, FIPS SQL certificates, client-side profiles in an SQL

environment, SQL/ERI Client profiles, a register of SQL environments, and possibly others. For information

on the current state of this register, including its on-line availability through an SQL/ERI Read-Only RDA Server

interface, contact FIPS SQL registration authority personnel at telephone +1-301-975-3251 or send e-mail to

LGallagher@nist.gov.

The following syntactic productions yield object identifiers for SQL-related objects. See Clause 3.2, "Notation",

of ISO/IEC 9075:1992 for definition of the syntactic notation used.

cnist sql-related object identifier ::= <nist sql-related provenance> cnist sql-related object>

<nist sql-related provenance> ::= <joint-iso-ccitt> <country> <us> <gov> <sql>

<joint-iso-ccitt> ::= 2 I joint-iso-ccitt I joint-iso-ccitt cleft paren> 2 cright paren>

32

FIPS PUB 193

<country> ::= 16 I country I country <left paren> 16 cright paren>

<us> ::= 840 I us I us <left paren> 840 <right paren>

<gov> ::= 101 I gov I gov cleft paren> 101 cright paren>

csql> ::= 4 I sql I sql cleft paren> 4 cright paren>

cnist sql-related object> ::=

cfips 127 profile>

I cfips 127 certificate>

I cfips 193 client-side profile>

I cfips 193 sql-eri-client profile>

I cfips 193 sql-eri-server profile>

I cnist sql test report>

I cnist sql environment*

cfips 127 profile> ::= cfips 127 profile designator cfips 127 profile identifier

cfips 127 profile designator ::= 1 I sql-profile cleft paren> 1 cright paren>

cfips 127 profile identifier ::= cSQL variant>

Note: cSQL variant> is defined in Clause 3.4, "Object identifier for SQL", of Reference [8], with the

following extension to accommodate the FIPS SQL definition of Transitional SQL.

cSQL conformance> ::= clow> I ctransitional> I cintermediate> I chigh>

ctransitional> ::= 3 I Transitional cleft paren> 3 cright paren>

cfips 127 certificate> ::= cfips 127 certificate register [cfips 127 certificate identifier]

cfips 127 certificate register ::= 2 I nist-sql-cert cleft paren> 2 cright paren>

cfips 127 certificate identifier ::= cyears value> ccertificate number

cyears value> ::= MDefined in ISO/IEC 9075 to be an cunsigned integer

ccertificate number ::= cunsigned integer

cfips 193 client-side profile> ::= cfips 193 client profile designator cfips 193 client profile identifier

cfips 193 client profile designator ::= 3 I env-client cleft paren> 3 cright paren>

cfips 193 client profile identifier ::= !! To be defined in a future NIST publication.

cfips 193 sql-eri-client profile> ::= ceri-client profile designator ceri-client profile identifier

ceri-client profile designator ::= 4 I eri-client cleft paren> 4 cright paren>

ceri-client profile identifier ::= !! To be defined in a future NIST publication.

cfips 193 sql-eri-server profile> ::=

ceri-server profile designator

ceri-server profile identifier

[cfips 193 options list>]

ceri-server profile designator ::= 5 I eri-server cleft paren> 5 cright paren>

ceri-server profile identifier ::= !! See below,

cfips 193 options list> ::= !! See below.

cnist sql test report> cnist sql test report register [cnist vsr identifier]

cnist sql test report register ::= 6 I nist-vsr cleft paren> 6 cright paren>

cnist vsr identifier ::= cyears value> cvsr number

33

FIPS PUB 193

<years value> ::= !!Defined in ISO/IEC 9075 to be an <unsigned integer>

<vsr number> ::= <unsigned integer>

Note: If a NIST validation summary report (VSR) results in the award of a certificate for conformance to

FIPS SQL, then the <years value> and the certificate number> of an entry in the <fips 127 certificate>

register will match the <years value> and the <vsr number>, respectively, of an entry in the <nist sql test

report> register.

cnist sql environment ::= cnist sql environment register> [<sql environment identifier]

cnist sql environment register ::= 7 1 sql-env cleft paren> 7 cright paren>

csql environment identifier ::= !! To be defined in a future NIST publication.

ceri-server profile identifier ::=

ceri module-ro server

1 ceri module-rw server

I ceri embedded-ro server

I ceri embedded-rw server

I ceri direct-ro server

I ceri direct-rw server

I ceri cli-ro server

I ceri cli-rw server

I ceri rda-ro server

I ceri rda-rw server

I ceri cli-ro 1 server

I ceri cli-rw 1 server

I ceri rda-ro 1 server

1 ceri rda-rw 1 server

I ceri cli-ro2 server

I ceri cli-rw2 server

I ceri rda-ro2 server

I ceri rda-rw2 server

I ceri cli-ro3 server

I ceri cli-rw3 server

1 ceri rda-ro3 server

1 ceri rda-rw3 server

I ceri cli-ro4 server

I ceri cli-rw4 server

1 ceri rda-ro4 server

I ceri rda-rw4 server

ceri module-ro server 1 1 mod-ro cleft paren> 1 cright paren>

ceri module-rw server ::= 2 1 mod-rw cleft paren> 2 cright paren>

ceri embedded-ro server ::= 3 I emb-ro cleft paren> 3 cright paren>

ceri embedded-rw server ::= 4 I emb-rw cleft paren> 4 cright paren>

ceri direct-ro server 5 I dir-ro cleft paren> 5 cright paren>

ceri direct-rw server ::= 6 I dir-rw cleft paren> 6 cright paren>

ceri cli-ro server ::= 7 I cli-ro cleft paren> 7 cright paren>

ceri cli-rw server ::= 8 I cli-rw cleft paren> 8 cright paren>

ceri rda-ro server ::= 9 I rda-ro cleft paren> 9 cright paren>

ceri rda-rw server ::= 10 1 rda-rw cleft paren> 10 cright paren>

34

FIPS PUB 193

ceri cli-rol server> := 11

ceri cli-rwl server> ::= 12

ceri rda-rol server> :;= 13

ceri rda-rwl server> ::= 14

ceri cli-ro2 server> := 15

ceri cli-rw2 server> ::= 16

ceri rda-ro2 server> ::= 17

ceri rda-rw2 server> ::= 18

ceri cli-ro3 server> := 19

ceri cli-rw3 server> ::= 20

ceri rda-ro3 server> ::= 21

ceri rda-rw3 server> ::= 22

ceri cli-ro4 server> := 23

ceri cli-rw4 server> ::= 24

ceri rda-ro4 server> ::= 25

ceri rda-rw4 server> ::= 26

cli-rol deft paren> 11 <right paren>

cli-rwl deft paren> 12 <right paren>

rda-rol deft paren> 13 <right paren>

I rda-rwl <left paren> 14 cright paren>

cli-ro2 <left paren> 15 <right paren>

cli-rw2 deft paren> 16 <right paren>

rda-ro2 <left paren> 17 <right paren>

I rda-rw2 <left paren> 18 cright paren>

cli-ro3 deft paren> 19 cright paren>

cli-rw3 deft paren> 20 cright paren>

rda-ro3 cleft paren> 21 cright paren>

I rda-rw3 cleft paren> 22 cright paren>

cli-ro4 cleft paren> 23 cright paren>

cli-rw4 cleft paren> 24 cright paren>

rda-ro4 cleft paren> 25 cright paren>

I rda-rw4 deft paren> 26 cright paren>

Note: Each of the first ten profile identifiers above identifies a family of profiles, with support for the

specified binding alternative and the specified read-only or read-write alternative; an explicit profile is given

by adding the optional cfips 193 options list>. In each case, an implementation of the profile is only required

to satisfy the minimal conformance options specified herein, plus the explicitly specified options. The

remaining profile identifiers identify explicit profiles as defined in Sections 7.4 and 7.5 below; they may also

include the optional cfips 193 options list> to identify support for SQL features above the base requirements

of that profile. Other profile identifiers and profiles may be added later, as appropriate. Requests to add new

profiles to this register may be addressed to the NIST Computer Systems Laboratory, attention: SQL

Environment profiles.

cfips 193 options list> ::= { cfips 193 option> } ...

cfips 193 option> ::=

cdml option>

I csdl option>

I ctransaction option>

I cisolation option>

I cadditional binding option>

I clanguage option>

I csession option>

I cextension option>

I cprotocol option>

I crda option>

cdml option> ::=

cminimal dml>

I centry dml>

I ctransitional dml>

I cintermediate dml>

I cfull dml>

cminimal dml> ::= 110 I dml-min cleft paren> 110 cright paren>

centry dml> ::= 120 ! dml-ent cleft paren> 120 cright paren>

35

FIPS PUB 193

ctransitional dml> ::= 130 I dml-tran cleft paren> 130 cright paren>

cintermediate dml> ::= 140 I dml-int cleft paren> 140 cright paren>

cfull dml> ::= 150 I dml-full cleft paren> 150 cright paren>

csdl option> ::=

cno sdl>

I cminimal sdl>

I centry sdl>

I ctransitional sdl>

I cintermediate sdl>

I cfull sdl>

cno sdl> ::= 200 I sdl-none cleftparen> 200 cright paren>

cminimal sdl> ::= 210 I sdl-min cleft paren> 210 cright paren>

centry sdl> ::= 220 I sdl-ent cleft paren> 220 cright paren>

ctransitional sdl> ::= 230 I sdl-tran cleft paren> 230 cright paren>

cintermediate sdl> ::= 240 I sdl-int cleft paren> 240 cright paren>

cfull sdl> ::= 250 I sdl-full cleft paren> 250 cright paren>

ctransaction option> ::=

cno transaction>

I ccommit-rollback>

1 ctransaction mode>

I ctransaction isolation>

I ctransaction diagnostics>

I ctransaction constraints>

cno transaction> ::= 300 I tx-nor.e cleftparen> 300 cright paren>

ccommit-rollback> ::= 310 1 tx-cr cleft paren> 310 cright paren>

ctransaction mode> 320 I tx-tm cleft paren> 320 cright paren>

ctransaction isolation> ::= 330 I tx-ti cleft paren> 330 cright paren>

ctransaction diagnostics> ::= 340 1 tx-td cleft paren> 340 cright paren>

ctransaction constraints> ::= 350 I tx-tc cleft paren> 350 cright paren>

cisolation option> ::=

cread uncommitted>

I cread committed>

I crepeatable read>

I cserializable>

cread uncommitted> ::= 410 I isol-ru cleft paren> 410 cright paren>

cread committed> ::= 420 I isol-rc cleft paren> 420 cright paren>

crepeatable read> ::= 430 I isol-rr cleft paren> 430 cright paren>

cserializable> ::= 440 I isol-sr cleft paren> 440 cright paren>

cadditional binding option> ::=

cno additions>

I cplus modulo

I cplus embedded>

1 cplus direct>

36

FIPS PUB 193

I <plus cli>

I <plus rda>

<no additions> ::= 500 I bind-none cleft paren> 500 cright paren>

cplus modulo ::= 510 I bind-mod cleft paren> 510 cright paren>

cplus embedded> ::= 520 I bind-emb cleft paren> 520 cright paren>

cplus direct> ::= 530 I bind-dir cleft paren> 530 cright paren>

cplus cli> ::= 540 I bind-cli cleft paren> 540 cright paren>

cplus rda> ::= 550 I bind-rda cleft paren> 550 cright paren>

clanguage option> ::=

clanguage not applicablo

I cembedded ada>

I cembedded c>

I cembedded cobol>

I cembedded fortran>

I cembedded mumps>

I cembedded pascal>

I cembedded pll>

I cmodule ada>

I cmodule c>

I cmodule cobol>

I cmodule fortran>

I cmodule mumps>

I cmodule pascal>

I cmodule pi 1 >

I ccli ada>

! ccli c>

I ccli cobol>
I ccli fortran>

I ccli mumps>

I ccli pascal>

I ccli pll>

I csamedl via module mapping>

I csamedl via embedded mapping>

! csamedl via effects>

clanguage not applicablo ::= 600 I lang-none I lang-none cleft paren> 600 cright paren>

cembedded ada> ::= 621 I emb-ada cleft paren> 621 cright paren>

cembedded o ::= 622 I emb-c cleft paren> 622 cright paren>

cembedded cobol> ::= 623 I emb-cob cleft paren> 623 cright paren>

cembedded fortran> ::= 624 I emb-for cleft paren> 624 cright paren>

cembedded mumps> ::= 625 I emb-mum cleft paren> 625 cright paren>

cembedded pascal> ::= 626 I emb-pas cleft paren> 626 cright paren>

cembedded pi 1 > ::= 627 I emb-pll cleft paren> 627 cright paren>

cmodule ada> ::= 641 I mod-ada cleft paren> 641 cright paren>

cmodule c> ::= 642 I mod-c cleft paren> 642 cright paren>

cmodule cobol> ::= 643 i mod-cob cleft paren> 643 cright paren>

cmodule fortran> ::= 644 I mod-for cleft paren> 644 cright paren>

cmodule mumps> ::= 645 I mod-mum cleft paren> 645 cright paren>

37

FIPS PUB 193

<module pascal> ::= 646 I mod-pas <left paren> 646 <right paren>

<module pll> ::= 647 I mod-pll deft paren> 647 <right paren>

<cli ada> ::= 661 I cli-ada deft paren> 661 <right paren>

<cli c> ::= 662 I cli-c deft paren> 662 <right paren>

<cli cobol> ::= 663 I cli-cob deft paren> 663 cright paren>

<cli fortran> ::= 664 I cli-for deft paren> 664 cright paren>

ccli mumps> ::= 665 I cli-mum deft paren> 665 cright paren>

ccli pascal> ::= 666 I cli-pas cleft paren> 666 cright paren>

ccli pi 1 > ::= 667 I cli-pll cleft paren> 667 cright paren>

csamedl via module mapping> ::= 610 I samedl-mod cleft paren> 610 cright paren>

csamedl via embedded mapping> ::= 611 I samedl-emb cleft paren> 611 cright paren>

csamedl via effects> ::= 612 I samedl-eff cleft paren> 612 cright paren>

csession option> ::=

cno session>

I cset catalog>

I cset schema>

I cset names>

I cset session authorization>

I cset time zone>

I call session>

cno session> ::= 700 I sess-none cleftparen> 700 cright paren>

cset catalog> ::= 710 I sess-cat cleft paren> 710 cright paren>

cset schema> ::= 720 I ses-schema cleft paren> 720 cright paren>

cset names> ::= 730 I sess-names cleft paren> 730 cright paren>

cset session authorization> ::= 740 I sess-auth cleft paren> 740 cright paren>

cset time zone> ::= 750 I sess-tz cleft paren> 750 cright paren>

call session> ::= 760 I sess-all cleft paren> 760 cright paren>

cextension option> ::=

cno extensions>

I csql features table>

I cexecutable sql psm>

I cdefinable sql psm>

I csql multimedia full text>

I csql multimedia spatial>

I csql multimedia general>

I ccomplex number extension>

I cvector extension>

I cnumerics extension>

I cboolean extension>

I cabstract data type extension>

I cobject data management

I csql xa-interface routines>

cno extensions> ::= 800 I ext-none cleft paren> 800 cright paren>

csql features table> ::= 810 I ext-features cleft paren> 810 cright paren>

cexecutable sql psm> ::= 820 I psm-call cleft paren> 820 cright paren>

cdefinable sql psm> ::= 830 I psm-all cleft paren> 830 cright paren>

38

FIPS PUB 193

<sql multimedia: full text> ::= 840 I ext-fulltext <left paren> 840 <right paren>

<sql multimedia: spatial> ::= 850 I ext-spatial <left paren> 850 cright paren>

<sql multimedia: general> ::= 860 I ext-general deft paren> 860 <right paren>

<complex number extension> ::= 861 I ext-complex deft paren> 861 cright paren>

cvector extension> ::= 862 I ext-vector deft paren> 862 cright paren>

cnumerics extension> ::= 863 I ext-numerics cleft paren> 863 cright paren>

cboolean extension> ::= 864 I ext-boolean cleft paren> 864 cright paren>

cabstract data type extension> ::= 870 I ext-adt cleft paren> 840 cright paren>

cobject data management extensions> ::= 880 I ext-odm cleft paren> 850 cright paren>

csql xa-interface routines> ::= 890 I sql-xa cleft paren> 850 cright paren>

cprotocol option> ::=

cprotocol not applicable>

I cminimal osi>

I cfull stack osi>

I cietf rfc 1006>

I cother transport

cprotocol not applicable> ::= 900 I rda-none I rda-none cleft paren> 900 cright paren>

cminimal osi> ::= 910 I prot-mosi cleft paren> 910 cright paren>

cfull stack osi> ::= 920 I prot-osi cleft paren> 920 cright paren>

cintemet rfc 1006> ::= 930 I prot-1006 cleft paren> 930 cright paren>

cother transport> ::= 940 I prot-other cleft paren> 940 cright paren>

crda option> ::=

I crda stored execution>

I crda status>

I crda cancel>

I crda tp context>

crda stored execution> ::= 960 I rda-stored cleft paren> 960 cright paren>

crda status> ::= 970 I rda-status cleft paren> 970 cright paren>

crda cancel> ::= 980 I rda-cancel cleft paren> 980 cright paren>

crda tp context> ::= 990 I rda-tp cleft paren> 990 cright paren>

7.4 Specific SQL/ERI CLI Server profiles

The SQL/CLI binding style is expected to be very popular in local area networks consisting of client applications

and server data repositories. The following object identifiers, whose syntax is defined in Section 7.3 above,

identify specific SQL/ERI CLI Server profiles that will be popular for Federal procurements over the next several
years.

SQL/ERI Read-Only CLI Server Profile - Level 1

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) cli-ro 1(11) }

39

FIPS PUB 193

Profile: 1) Minimal DML 2) No SDL 3) Commit-Rollback 4) Read Committed 5) SQL/CLI

6) C 7) No Session 8) No Extensions 9) Not Applicable 10) Not Applicable

SQL/ERI Read-Only CLI Server Profile - Level 2

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) cli-ro2(15) }

Profile: 1) Transitional DML 2) No SDL 3) Commit-Rollback 4) Read Committed 5) SQL/CLI

6) C 7) Set Schema 8) SQL Features 9) Not Applicable 10) Not Applicable

SQL/ERI Read-Only CLI Server Profile - Level 3

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) cli-ro3(19) }

Profile: 1) Intermediate DML 2) No SDL 3) Commit-Rollback 4) Read Committed 5) SQL/CLI

6) C 7) {Set Schema, Set Session Authorization, Set Time Zone} 8) SQL Features

9) Not Applicable 10) Not Applicable

SQL/ERI Read-Only CLI Server Profile - Level 4

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) cli-ro4(23) }

Profile: 1) Intermediate DML 2) No SDL 3) Commit-Rollback 4) Read Committed 5) SQL/CLI

6) C 7) All Session 8) {SQL Features, Executable SQL/PSM} 9) Not Applicable

10) Not Applicable

SQL/ERI Read-Write CLI Server Profile - Level 1

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) cli-rwl(12) }

Profile: 1) Minimal DML 2) No SDL 3) Commit-Rollback 4) Serializable 5) SQL/CLI

6) C 7) No Session 8) No Extensions 9) Not Applicable 10) Not Applicable

SQL/ERI Read-Write CLI Server Profile - Level 2

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) cli-rw2(16) }

Profile: 1) Transitional DML 2) No SDL 3) Transaction Isolation 4) Serializable 5) SQL/CLI

6) C 7) Set Schema 8) SQL Features 9) Not Applicable 10) Not Applicable

SQL/ERI Read-Write CLI Server Profile - Level 3

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) cli-rw3(20) }

40

FIPS PUB 193

Profile: 1) Intermediate DML 2) No SDL 3) Transaction Isolation 4) Serializable 5) SQL/CLI

6) C 7) {Set Schema, Set Session Authorization, Set Time Zone} 8) SQL Features

9) Not Applicable 10) Not Applicable

SQL/ERI Read-Write CLI Server Profile - Level 4

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) cli-rw4(24) }

Profile: 1) Intermediate DML 2) Minimal SDL 3) Transaction Isolation 4) Serializable 5) SQL/CLI

6) C 7) All Session 8) {SQL Features, Executable SQL/PSM}

9) Not Applicable 10) Not Applicable

7.5 Specific SQL/ERI RDA Server profiles

A very beneficial use of SQL-related object identifiers is in "level of service" negotiations that may take place

when one open system opens a dialogue with another open system. The following object identifiers, whose

syntax is defined in Section 7.3 above, identify specific SQL/ERI RDA/SQL-Server profiles that will be popular

for Federal procurements over the next several years.

SQL/ERI Read-Only RDA Server Profile - Level 1

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) rda-rol(13) }

Profile: 1) Minimal DML 2) No SDL 3) Commit-Rollback 4) Read Committed 5) RDA/SQL

6) No Language 7) No Session 8) No Extensions 9) Internet RFC 1006 10) No RDA Options

SQL/ERI Read-Only RDA Server Profile - Level 2

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) rda-ro2(17) }

Profile: 1) Transitional DML 2) No SDL 3) Commit-Rollback 4) Read Committed 5) RD A/SQL

6) No Language 7) Set Schema 8) SQL Features 9) Internet RFC 1006

10) {RDA Status, RDA Cancel}

SQL/ERI Read-Only RDA Server Profile - Level 3

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) rda-ro3(21) }

Profile: 1) Intermediate DML 2) No SDL 3) Commit-Rollback 4) Read Committed 5) RD A/SQL

6) No Language 7) {Set Schema, Set Session Authorization, Set Time Zone} 8) SQL Features

9) Internet RFC 1006 10) {RDA status, RDA cancel}

41

FIPS PUB 193

SQL/ERI Read-Only RDA Server Profile - Level 4

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(lOl) sql(4) eri-server(5) rda-ro4(25) }

Profde: 1) Intermediate DML 2) No SDL 3) Commit-Rollback 4) Read Committed 5) RDA/SQL

6) No Language 7) All Session 8) {SQL Features, Executable SQL/PSM) 9) Internet RFC 1006

10) {RDA Status, RDA Cancel, RDA Stored Execution}

SQL/ERI Read-Write RDA Server Profile - Level 1

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) rda-rwl(14) }

Profile: 1) Minimal DML 2) No SDL 3) Commit-Rollback 4) Serializable 5) RDA/SQL

6) No Language 7) No Session 8) No Extensions 9) Internet RFC 1006 10) No RDA Options

SQL/ERI Read-Write RDA Server Profile - Level 2

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) rda-rw2(18) }

Profile: 1) Transitional DML 2) No SDL 3) Transaction Isolation 4) Serializable 5) RDA/SQL 6) No

Language 7) Set Schema 8) SQL Features 9) Internet RFC 1006

10) {RDA Status, RDA Cancel}

SQL/ERI Read-Write RDA Server Profile - Level 3

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) rda-rw3(22) }

Profile: 1) Intermediate DML 2) No SDL 3) Transaction Isolation 4) Serializable 5) RDA/SQL

6) No Language 7) {Set Schema, Set Session Authorization, Set Time Zone} 8) SQL Features

9) Internet RFC 1006 10) {RDA Status, RDA Cancel}

SQL/ERI Read-Write RDA Server Profile - Level 4

Object Identifier: { joint-iso-ccitt(2) country(16) us(840) gov(101) sql(4) eri-server(5) rda-rw4(26) }

Profile: 1) Intermediate DML 2) Minimal SDL 3) Transaction Isolation 4) Serializable

5) RDA/SQL 6) No Language 7) {Set Schema, Set Session Authorization, Set Time Zone} 8)

{SQL Features, Executable SQL/PSM 9) Internet RFC 1006

10) {RDA Status, RDA Cancel, RDA Stored Execution}

42

FIPS PUB 193

8. Applicability

This standard is applicable in any situation where it is desirable to integrate a client-side productivity tool or a

server-side data repository into an SQL environment. It is a non-mandatory standard that may be invoked on

a case-by-case basis subject to the integration objectives of the procuring department or agency. It is particularly

suitable for specifying limited SQL interfaces to legacy databases or to specialized data repositories not under

the control of a full-function SQL database management system. It can be used along with other procurement

information to specify SQL interface requirements for a wide range of data management procurements.

One special area of application envisioned for this standard is Electronic Commerce, a National Challenge

Application area of the National Information Infrastructure. The primary objective of Electronic Commerce is

to integrate communications, data management, and security services in a distributed processing environment,

thereby allowing business applications within different organizations to interoperate and exchange information

without human intervention. At the data management level, electronic commerce requires a logically integrated

database of diverse data stored in geographically separated data banks under the management and control of

heterogeneous database management systems. An over-riding requirement is that these diverse data managers

be able to communicate with one another and provide shared access to data and data operations and methods

under appropriate security, integrity, and access control mechanisms. FIPS SQL provides a powerful database

language for data definition, data manipulation, and integrity management to satisfy many of these requirements.

It is unrealistic to expect that every data manager involved in electronic commerce will conform to even the

Entry SQL level of the FIPS SQL standard; however, it is not unrealistic to require that they support a limited

SQL interface, even a read-only interface, provided by one of the SQL/ERI Server profiles. New procurements

to add components to the National Information Infrastructure, or to upgrade existing components, can define the

necessary SQL schemas and point to appropriate SQL/ERI Server profiles as procurement requirements.

This standard may also be applicable, on a case-by-case basis, in many of the following areas.

8.1 Legacy databases. A legacy database is an already installed database managed by a non-standard

database management system (DBMS). This may include hierarchical and network databases popular in the 1970

to 1990 timeframe, non-standard relational databases, other non-standard data repositories, or even home-grown

databases developed by Federal departments and agencies over the past three decades as enhancements to

proprietary file access mechanisms. A Federal procurement might solicit development of a new interface to a

legacy database that supports one of the SQL/ERI Server profiles. Modem applications could then access the

legacy data using standard SQL statements.

8.2 Full-Text document databases. A document database is a database specialized to optimize the

handling of text and text operations. Traditional SQL systems have been weak in this area because the SQL

1986 and 1989 standards had very minimal requirements for text management. The SQL 1992 standard has

enhanced requirements for character sets and character string operations, but still falls short of the text handling

requirements of text-intensive applications. An emerging standard for SQL/MM Part 2: Full-Text [13], expected

sometime after 1996, is addressing more sophisticated user requirements for SQL management of text. In the

meantime, some SQL vendors are offering Full-Text extensions and some Full-Text document database vendors

are offering limited SQL interfaces. A Federal procurement for a Full-Text document database management

system may stipulate, in addition to its requirements for text management, conformance to one of the SQL/ERI

Server profiles as either a mandatory or a desirable requirement of that procurement.

43

FIPS PUB 193

8.3 Geographic Information Systems. A geographic information database is a database structured

to optimize the handling of spatial data and spatial operations, especially traditional earth science information

such as maps or physical topography, as well as any social, economic, or demographic data that is spatially

referenced. Traditional SQL systems have been weak in this area because the existing SQL 1992 standard does

not require support for constructor data types such as lists, sets, and arrays, often required as the basis of

definition for more complex spatial data structures. An emerging standard for SQL/MM Part 3: Spatial [13],

expected sometime after 1996, is addressing more sophisticated user requirements for SQL definition and

management of spatial data types and spatial operations. In the meantime, some SQL vendors are offering

Spatial extensions and some Geographic Information System (GIS) vendors are offering limited SQL interfaces.

Since many Federal applications require integration of traditional government data (e.g. Census, Labor statistics.

Economic Indicators, Meteorological, Health Care) with Geographic Information Systems, a Federal procurement

for a Geographic Information System (GIS) may stipulate requirements for two-way integration capabilities, both

to read data from an SQL database into the GIS for incorporation into spatial objects and to provide SQL

application access to the value-added result. The first of these requirements is discussed in Section 10.1 below,

the second could be addressed in a GIS procurement by specifying mandatory support for application access via

one of the SQL/ERI Server profiles specified herein.

8.4 Bibliographic information retrieval. A bibliographic database is a database that supports the

requirements of American National Standard Z39.50-1992, a standard for information retrieval developed by the

National Information Standards Organization (NISO). Appendix C of that standard specifies a list of

approximately 75 attributes for each database of documents. Each attribute assumes an ASCII character string

value. The 1992 version of Z39.50 specifies application layer protocols for read-only queries over one or more

databases each supporting the listed attributes. The results of a query are returned to the user using a NISO

Record Syntax specified by other NISO standards. Annex E of Z39.50 identifies 19 possible formats for Record

Syntax. If it is desirable to integrate such bibliographic databases into an SQL environment, then a procurement

might solicit development of a new interface to the bibliographic database that supports one of the SQL/ERI

Read-Only Server profiles, probably with an RDA/SQL binding style to take advantage of the underlying

communications protocols already specified by Z39.50. Each NISO database would map to an SQL table and

each bibliographic attribute would map to a column of the table. Each NISO supported Record Syntax would

also map to an SQL Table with each field of the record equivalent to a column of the table. SQL applications

could then access the bibliographic data using standard SQL statements.

8.5 Object database interfaces. An object database is a database managed by an object database

management system (ODBMS). Object database management systems may implement non-relational data models

and thus may have difficulty supporting full-function SQL requirements for nested subqueries, multi-table joins,

Group-By set functions, derived columns in a Select list, value-based referential integrity, or other relational

model features. On the other hand, ODBMS’s may offer advanced features of object models that are rarely

supported by relational implementations. These features might include user-defined abstract data types (ADTs),

object identifiers, methods, inheritance, polymorphism, encapsulation, and other object-oriented enhancements.

Because of their close relationship with an object-oriented programming language (e.g., C+-I- or Smalltalk),

ODBMS’s often make it easy to integrate user-written routines into database operations. Often object DBMS’s

are used for specialized applications with complex data structures and application-specific methods on those

structures. The next version of the SQL standard, expected sometime after 1996 (see [12]), will likely

incorporate many of these object database features into the SQL language. In the meantime, some SQL vendors

are enhancing their products to support user-defined ADT’s and other object capabilities and some object

database vendors are supporting robust SQL interfaces to their products. The ODMG-93 specification sponsored

by the Object Database Management Group, an informal consortium of approximately ten object database

44

FIPS PUB 193

vendors, points to an Object Query Language that has many of the same features as SQL. Thus it makes sense

to support an SQL interface, at least a Read Only SQL interface, to these products. The specialized methods

appropriate to each object could be viewed as callable SQL functions and procedures. If it is desirable to

integrate an object database into an SQL environment, then an original procurement for ODBMS software, or

a follow-on new procurement for an SQL interface, could point to one of the SQL/ERI Server profiles as a

mandatory or desirable procurement requirement. The vendor of an object database product may automatically

support SQL views of its collection types, or a procurement could specify an exact mapping from object

collection types to tables that must be supported as a procurement requirement. In either case, the result is that

an SQL application would have access to objects and methods using standard SQL syntax and a standard SQL

binding style.

8.6 Federal data distribution. A number of Federal agencies support public access to federally

maintained data either by maintaining a public database of information or by distributing data on floppy disks,

CD-ROMs, or magnetic tape. All Federal departments and Agencies, but especially those with responsibility

for providing public data (e.g. Agriculture, Health and Human Services, Census, NASA, NOAA, BLS), will have

increasing requests for convenient public access to data. Even individuals will be requesting additional electronic

access to their individual data maintained by various Federal agencies (e.g. IRS, Social Security, Medicare). An

existing SQL database could provide public access by supporting a Remote Database Access (RDA) or Direct

Invocation user interface with appropriate access control restrictions; a non-SQL legacy database could support

one of the SQL/ERI Read Only Server profiles for RDA or Direct Invocation in addition to the ERI profiles

supported for internal goverment use (see 8.1 above). When goverment data is distributed on disk or CD-ROM,

it is often accompanied by software, executable on different workstations, to provide convenient views of the

data using a graphical user interface (GUI). At the present time, the government must provide software

executable on a number of different workstation platforms with different GUI capabilities and requirements. In

the future, the government might reduce its software development efforts by providing an appropriate SQL/ERI

front-end, usually with the SQL Call Level Interface option, for each workstation family (e.g. DOS, Macintosh,

Unix). Such software should be available commercially in the near term. End users could then use their favorite

client-side SQL environment tool to browse the data and present it using report-writer, graphical viewer, or
hypermedia presentation techniques.

8.7 Operating system file interface. Sometimes an SQL application desires access to the file

characteristics of files stored in an operating system’s file store. For example, the POSIX standard (FIPS PUB

151) requires that the following file characteristics be maintained for each file in the persistent file directory: file

mode, file serial number, id of device containing file, number of links, id of file owner, id of file group, file size

in bytes, time of last access, time of last data modification, and time of last file status change. If it is desirable

that this information, as well as file name, file extension, and file usage characteristics, be accessible to SQL

applications in the same operating system environment, then an original procurement for a POSIX compliant

operating system, or a follow-on new procurement for SQL query access, could point to one of the SQL/ERI

Read Only Server profiles supporting an SQL schema description of the desired attributes as a procurement
requirement.

8.8 Open system directory interface. Sometimes an SQL application desires access to the directory

information related to all of the workstations accessible in a local area network (LAN), or a wide area network

(WAN). For example, the X.500 (Directory) standards supported by the International Telecommunications Union

(ITU) require that certain explicit directory information be accessible at each site, and part of the IEEE POSIX

standard specifies an application program interface (API) for these directory services. In addition to supporting

45

FIPS PUB 193

the required X.500 communications protocols and the POSIX API, a number of implementations are also making

this information available as an SQL database. If it is desirable that this information be accessible to SQL

applications in the same open systems environment, then an original procurement for X.500 compatble

communications products, or a follow-on new procurement for SQL query access to directory information, could

point to one of the SQL/ERI Read Only Server profiles supporting an SQL schema description of the desired

directory information as a procurement requirement.

8.9 Electronic mail repositories. Most electronic mail systems use the host file system to maintain e-

mail documents in a user’s file space and to maintain a log of e-mail activity in its own file space. Sometimes

an electronic mail usability tool, procured separately from the e-mail system itself, will require SQL query access

to these files, either relative to a specific individual user or to a group of users. If such SQL access is desirable,

then the original procurement for the e-mail system, or a new procurement just for a follow-on SQL interface,

might specify an SQL schema of metadata that must be maintained and an appropriate SQL/ERI profile for

limited SQL access. Under this scenario, there might exist an underlying base table with column attributes such

as: mail-id, owner, title, subject, to/from-address, linked-to-mail-id, timestamp, length, confirmation, content.

Each e-mail user might own a table view that identifies all instances from the base table of e-mail sent or

received by that user. Users would then be able to grant Select or Delete permissions on their own views to

other users, thereby maintaining privacy in the database while supporting flexible multi-user access for the

usability tools.

8.10 CASE tool repositories. Many computer-aided software engineering (CASE) tools operate similarly

to the e-mail usability tools described above. Each CASE tool may use the underlying file system to maintain

persistent data pertinent to its application domain. It is unrealistic to expect every such data repository to handle

full function SQL statements. Instead, such repositories can be integrated into an SQL environment if they

provide even the simplest SQL/ERI minimal SQL interface. The CASE tool can make simple external SQL

views available to more powerful SQL processors, and those processors can, in turn, provide the full power and

flexibility of the SQL language to end user applications. If integration of CASE tools into an SQL environment

is desirable, then the original CASE tool procurement, or a new follow-on SQL interface procurement, can

require implementation of an appropriate SQL/ERI Server profile over an SQL schema specified by that

procurement.

8.11 XBase repositories. XBase is an emerging ANSI standard specification for a computer database and

graphical presentation language popular on personal computers. The project description for this proposed new

language standard specifies the desirability of an SQL interface so that XBase users can have access to standard

conforming SQL databases. In this situation, XBase may be regarded as a client-side product in an SQL

environment. The XBase language also provides data definition and data management capabilities for persistent

tables of data in personal computer environments. With the advent of computer networks, it is often desirable

to consider data on individual personal computers or workstations as stand-alone data repositoires in an integrated

data processing environment. In this situation, XBase implementations may be regarded as a server-side products

in an SQL environment. If it is desirable to integrate data from individual XBase repositories into a distributed

SQL processing environment, then the original XBase procurement, or a follow-on SQL interface procurement,

could specify an appropriate SQL/ERI Read-Only Server or SQL/ERI Read-Write Server profile for convenient

access from other applications in the SQL environment. All XBase tables and columns would map directly to

SQL tables and columns, with either XBase data types or SQL data types for columns, as appropriate. If XBase

data types are used, then the SQL view would present those columns as SQL Domains and would provide special

callable functions for XBase operations on those data types. All applications could then depend upon a single,

46

FIPS PUB 193

standard language for access to persistent data, and the SQL Call Level Interface (SQL/CLI) and/or SQL Remote

Database Access (SQL/RDA) could be used for interoperability.

8.12 C++ sequence class repositories. The emerging ANSI standard for the C++ programming language

specifies search capabilities for Sequence classes in its Standard Template Library. Such sequence classes may

sometimes be considered as persistent, data repositories. Often a small, or isolated, database application will use

C++ Sequence classes for data management. Since the template library for Sequence classes provides search

capabilities analogous to simple SQL predicates, it may be possible to integrate C++ Sequence class repositories

into an SQL environment with a minimum of development effort. If such integration is desirable, then either

in-house development, or inexpensive commercial software, may provide the appropriate SQL/ERI interface.

All applications in the SQL environment would then have homogeneous access to the C++ data repository using

standard SQL language statements.

8.13 Object Request Broker repositories. An Object Request Broker (ORB) provides user access to

a collection of objects that have public interface definitions. In the X/Open and Object Management Group’s

architecture for a common object request broker (CORBA), these interface definitions are maintained in a

database, called the Interface Repository, that is analogous in intent to an SQL Information Schema. If

integration of such interface repositories, or integration of the public interfaces themselves, into an SQL

environment is desirable, then the original ORB procurement, or a new follow-on SQL interface procurement,

can require implementation of an appropriate SQL/ERI Server profile over an SQL schema specified by that

procurement.

8.14 Real-Time database interface. A real-time database is a database optimized for access speed and

specialized for handling data structures prevalent in radar systems, aircraft guidance, and satellite transmission.

Often real-time databases are specially developed in a systems programming language for performance efficiency.

Application-specific data structures are then stored in collection types, usually analogous to the C++ sequence

classes mentioned above, with SQL cursor-like operations (e.g., Fetch, Insert) for moving structure instances to

and from the database. The Real-Time Object Manager (RTOM) supporting Navy command and control systems

is an example of such a system. If it is desirable to integrate real-time databases into an SQL environment, then

either the original real-time database procurement, or an explicit follow-on for an SQL interface, could point to

an appropriate SQL/ERI Server profile supporting an application-specific schema as a procurement requirement.

8.15 Internet file repositories. The Internet Engineering Task Force (IETF), the engineering group

responsible for developing Internet Society applications, has published file access specifications for Wide Area

Information System (WAIS) and World Wide Web (WWW). Files stored in these repositories in standard text

formats, or in multimedia formats for hypertext, images, audio, motion pictures, or music, are then accessible

on the Internet using File Transfer Protocols (FTP) or other client-side file access and presentation tools such

as GOPHER and MOSAIC. Since the metadata for these files is very similar to the metadata of a file system

(see 8.7 above) and the text content is often subject to bibliographic information retrieval (see 8.4 above), it may

be possible to integrate these repositories into an SQL environment with a minimum of development effort,

possibly even using tools already available for integrating file systems and bibliographic retrieval systems. If

it is desirable to integrate WAIS and Web repositories into an SQL environment, then either ad hoc academic

development, or inexpensive commercial software, may provide the appropriate SQL/ERI Server interface. Use

of SQL/ERI profiles may provide needed access controls and integrity constraints on the repository side, as well

as homogeneous access from SQL applications in remote client-side sites.

47

FIPS PUB 193

9. Conformance Testing

The National Institute of Standards and Technology offers a formal testing service for SQL implementations in

support of its federally mandated program of Federal Information Processing Standards (FIPS). The NIST SQL

Test Suite was first developed in 1988 to support testing of FIPS PUB 127, the standard for Database Language

SQL. This test suite has evolved over the years to support new interfaces and other enhancements to the SQL

standard as they are adopted by national and international SQL standardization groups. Version 4.0 of the NIST

SQL Test Suite, available since June 1993, contains tests for the Entry SQL level of the 1992 standard; future

versions will test other levels of conformance as well as new interface standards such as the Call Level Interface

(CLI) and Remote Database Access (RDA). It is expected that this test suite will be modified as needed to

enable conformance testing of the various SQL/ERI Server profiles specified herein and that validation reports

for tested SQL/ERI products will be published quarterly in the NIST Validated Products List. The following

sections discuss features of the NIST SQL Test Suite and how it might be modified for future validation of

SQL/ERI products.

9.1 NIST SQL Test Suite

The purpose of the NIST SQL Test Suite is to help evaluate conformance of SQL implementations to mandatory

requirements of FIPS PUB 127. This test suite is used as part of the formal testing service for SQL that issues

Certificates of Validation for tested products passing all required tests. A Validation Summary Report is issued

for all implementations tested. A Validation Summary Report documents, to the extent tested, the

implementation’s conformance to FIPS PUB 127-2. NIST publishes a quarterly register. Validated Products List,

showing SQL implementations which hold current Certificates of Validation and registered Validation Summary

Reports.

The NIST SQL Test Suite was first made available to the public in August 1988 as Version 1.1, and included

tests for three programming languages: COBOL, FORTRAN, and C. In May 1989 the test suite was enlarged

and released as Version 1.2, and included tests for additional SQL features, as well as tests for Embedded SQL

Pascal and a Pascal interface to Module Language SQL. Version 2.0, completed about a year later, contained

additional tests as well as the support system (software utilities) to administer the validation process. Continuing

standardization work for SQL resulted in a revised SQL standard, ANSI X3.135-1989, published December 1989.

This revised standard contained integrity enhancements for SQL, including referential integrity, default values

for columns, and check clauses. FIPS PUB 127 was revised to specify these new integrity features as an optional

module which federal agencies could either require or (by default) not require in a procurement. Version 2.0

of the test suite also contained a set of tests to validate conformance to this optional module. In the same time

frame, ANSI X3.168-1989 standardized the embedding of SQL in programming languages (Ada, C, COBOL,

FORTRAN, Pascal and PL/I). The first release of the NIST SQL Test Suite contained tests for Embedded SQL,

in anticipation of this standard. Since numerous implementations of Embedded SQL already existed, prior to

standardization, NIST hoped that the early availability of tests for that interface would hasten the conformance

of implementations to the revised FIPS PUB 127-1. Version 3.0 provided test suites for Ada bindings to SQL

and also tests for the errata in the SQL Information Bulletin SQLIB-1. ANSI X3.135-1992, the 1992 revision

of the SQL standard, represents a major enhancement in SQL functionality. Conformance to FIPS PUB 127-2,

Entry SQL, requires additional capabilities from an SQL implementation beyond those required for minimal

conformance to FIPS PUB 127-1. The Integrity Enhancement Feature is now mandator)'. Support for the

following additional features is now required: SQLSTATE status codes, delimited identifiers, renaming columns,

commas in parameter lists, SQL Errata against ANSI X3.135- 1989 (approved after publication of SQLIB-1).

48

FIPS PUB 193

Version 4.0 of the NIST SQL Test Suite provides tests for all the features in Entry SQL. Version 2.0 was used

in the formal testing service offered by NIST which opened in April 1990. Version 3.0 became the official
version of the test suite in July 1992, and Version 4.0 became the official version in January 1994.

The NIST SQL Test Suite provides ten programming language test suite types: Embedded (preprocessor) SQL

Ada, Embedded SQL C, Embedded SQL COBOL, Embedded SQL FORTRAN, Embedded SQL Pascal, Module

Language Ada, Module Language C, Module Language COBOL, Module Language FORTRAN, and Module

Language Pascal. NIST also provides an Interactive Direct SQL test suite type to test interactive invocation of

SQL statements as defined in FIPS 127-2. The original test programs were developed in Embedded

(preprocessor) SQL for the C language. The design objective for the test programs was to provide a simple test

for every general rule in the standard and to cover fully all SQL syntax. Ada, COBOL, FORTRAN, and Pascal

test routines, as well as module language test routines, were generated by software (written by NIST) from the

original Embedded SQL C language. The original Embedded SQL C Language tests are very simple, using only

a carefully restricted subset of the C Language. Otherwise, it would be technically infeasible to translate these

tests into the other programming languages. The Interactive Direct SQL test files were created by extracting

SQL statements from the Embedded SQL C programs. Test cases were reworked to avoid reference to cursors

and host variables. The resulting text files were annotated with comments describing the test and the expected

results required for a "pass."

Each test is designed to be short and simple, exercising as little of the host language as possible. The host

language compiler should be validated separately to ensure that it conforms to the applicable standards. The use

of complex host language code in SQL conformance programs would make tests difficult to understand and

would make it more difficult to resolve questions of interpretation of the SQL standard. Most of the tests

involve 3 small tables containing a total of 23 rows. The data types of columns in these tables are either

character string or integer, so the tests will work across all these programming languages. Other tables are used

to test approximate numeric and scaled exact numeric data types. Additional tests have been written to cover

the data type variables specific to each language. Each program contains one or more tests. Although allowing

only one test per program would simplify the evaluation of implementations with a high degree of

nonconformity, it would impose additional overhead on implementations with a high degree of conformity. The

tests within a program are intended to be independent so any one test may be removed without affecting the

remaining tests.

Each test is self-evaluating; i.e., each test is written with knowledge of the data in the database and the correct

response for a specific SQL statement. Each test checks for correct execution of the SQL statement and then

inserts into the reporting table, TESTREPORT, a "pass" or "fail" value for that test. After all the test programs

have executed, a summary of test results is produced automatically by another program which reads

TESTREPORT. As each test is executed, a description of the test is printed on standard output (the screen)

along with appropriate data values and the test result. This output should be considered as a "log" of the test

programs. It is intended to assist in debugging and in analyzing nonconformities. This output is not needed to

produce the automated conformance analysis of the SQL test suite.

These tests are not designed to debug DBMS software; however, they may help identify problem areas. The use

of small tables does not challenge the buffer-management strategy of an implementation. In addition, the

frequent use of ROLLBACK (after tests which modify tables), to restore the base data to its original state (and

thus simplify testing), limits testing of the COMMIT path. Since the SQL standard does not address physical

database design, it is likely that schema definition and DML tests will be run in the simplest manner possible,

without optimization.

The test suite includes a few tests for the "SQL Flagger" option specified in Section lO.d of FIPS PUB 127-2.

These tests contain extensions to the SQL standard. In general, if an SQL implementation supports these

49

FIPS PUB 193

extensions, it must be able to flag the extensions with warning messages. These tests are to be run with the

flagging turned off and then, if successful, rerun with the flagging turned on. Test evaluation for the SQL

Flagger is subjective, based upon examination of any warnings which are printed (or displayed on the screen)

when extensions to SQL are used. The "SQL Flagger" tests are very limited. They are intended to demonstrate

the existence and style of monitoring provided by a vendor. They do not systematically attempt to detect SQL

extensions which are not flagged. For Entry SQL, standard features which are required only by higher levels

(beyond Entry) should all be flagged along with nonstandard features. It is desirable, but not required, that the

flagging message indicate the exact status (Transitional SQL, Intermediate SQL, Full SQL, nonstandard

extension) of the flagged feature.

The test suite has a set of programs to test the specifications in FIPS PUB 127-2, Section 16.6, "Sizing for

database constructs." These minimum specifications for the precision, size, or number of occurrences of database

constructs are contained (by default) in procurements which do not provide alternate specifications. Reporting

of the FIPS sizing tests is separate from reporting on other tests. FIPS sizing tests are not technically considered

conformance tests, and passing these tests is not required for a Certificate of Validation for FIPS 127-2. Utility

programs are included to make global and program-specific changes in a controlled and systematic manner and

to document those changes in the automated report.

The test suite contains additional tests to help evaluate conformance to: (1) the minimum sizing parameters for

database constructs specified in FIPS PUB 127-2, Section 16.6, (2) the flagging of extensions, specified in FIPS

PUB 127-2, Section lO.d, SQL Flagger, and (3) Interactive Direct SQL, as specified in FIPS PUB 127-2 Section

16.5.

The test suite contains ten different programming language test suite types. An SQL implementation claiming

conformance to FIPS PUB 127-2 for a particular SQL interface; for example. Embedded SQL COBOL, should

be tested with the appropriate test suite type. The programming language compiler used for testing should

conform to the FIPS standard for that language and should be listed in the Validated Products List, which is

published quarterly by NIST.

The intention of NIST is that this test suite should be used to help evaluate compliance of implementations of

SQL to FIPS PUB 127- 2. A correct implementation of FIPS 127-2 requires the incorporation of the SQL

standard document, ANSI X3.135-1992 (or ISO/IEC 9075:1992), into the design specifications for the SQL

implementation. The SQL test suite then confirms that the standard has been interpreted and implemented

correctly by the SQL supplier. The test suite is intended to be used, in conjunction with the SQL supplier’s own

independently-developed regression tests, to ensure a robust and internally consistent product. A quality SQL

implementation is not achievable by simply "fixing the product" until it passes the tests.

It is important to recognize the limitations of this test suite and of any test suite. In particular, it would be

incorrect for implementations to claim conformance to FIPS PUB 127-2 simply by virtue of correct performance

of these tests. It is reasonable, however, for purposes of procurement, to substantiate claims of conformance to

FIPS PUB 127-2 by demonstrating correct execution of these tests. Performance is recognized as a critical

selection factor in many DBMS procurements. However, performance is not an issue for standards validation

testing and is not measured by this test suite.

9.2 Testing SQL/ERI implementations

The NIST SQL Test Suite tests an entire level of the FIPS SQL standard and includes tests for schema definition,

data manipulation, transaction management, and programming language interface at each level. Each of these

areas are tested separately, so with a moderate effort it will be possible to modify the test programs to test the

50

FIPS PUB 193

various levels of SDL and DML, the transaction mangement alternatives, and the different binding styles of the

SQL/ERI Read-Write profiles. At the present time, the test suite does not distinguish between the Minimal SQL

and Entry SQL levels, so more extensive modification will be needed to accommodate Minimal DML testing

without losing completeness of coverage. The timescale and scope of this work is dependent upon available
funding for NIST SQL Test Suite development.

In many cases, SQL/ERI profile testing will be accomplished by giving an implementation an SQL script of table

definitions that will be used for DML testing. Any implementation claiming to support Minimal SDL or above

will be able to read and implement the table definitions. If an implementation does not claim to support any

schema definition, then they will be free to implement the schema definition in an implementation-dependent

manner, so long as the result is "as if" the SQL script had been properly executed.

Most of the DML testing is accomplished over just three table definitions with a handful of rows in each table.

If an SQL/ERI Server implementation supports Read-Write at the Minimal DML level or above, it should be

able to load data into the three tables to satisfy the testing requirements of a large majority of the tests. If the

SQL/ERI Server implementation is a Read-Only implementation, then it would be free to load the data in an

implementation-dependent manner.

Since the test suite in the past did not make a distinction between Read-Write servers and Read-Only servers,

a number of the tests have Update and Select statements mixed together in the same test. Often a test will

update an existing column, or add a new row to a table, and then test to determine if a certain query condition

is satisfied. For a Read-Only implementation, these tests will have to be substantially modified in order not to

lose completeness of coverage. It is the intent of NIST to do this modification on a schedule consistent with

the availability of funding and other resource requirements.

10. Procurement Considerations

This FIPS for SQL Environments may be used to assist in the procurement of any of the following types of

products:

Client-side user tools

SQL/ERI Clients

SQL/ERI Servers

This first specification is particularly oriented toward implementation profiles for SQL/ERI Servers, but may be

of limited assistance in procurements for each of the other two types of products. The assumptions on each of

these product types in an SQL Environment are given in Section 1.2, "SQL environment", Section 2, "Data

Integration Architecture", and Section 3, "SQL External Repository Interface (SQL/ERI)". This specification

cannot be used as the sole procurement instrument for any one of these product types. Instead, to be effective,

it must be supplemented by other requirements and/or complementary schema information as indicated in other

parts of this specification. The following subsections offer advice on how best to use this specification when

procuring a product to be integrated into an SQL environment from any one of these product types.

51

FIPS PUB 193

10.1 Client-side products

A client-side product in an SQL environment is a product that uses the SQL language to access persistent data

on behalf of some end user. The product could be a graphical user interface (GUI) or some other presentation

tool interfacing with a human end user, or it could be a value-added, computer-aided software engineering

(CASE) productivity tool that is accessed from some other end user tool. The following steps may be helpful:

1. State the functional requirements of the tool itself. This could vary considerably and is beyond the scope

of the FIPS PUB for SQL Environments.

2. Case:

a. If the tool interacts directly with a human end user, then state the requirements of the human to computer

interface. This interface may depend upon "Human/Computer Interface Services" as discussed in Sections

3.3.2 and 4.8 of the NIST Application Portability Profile (APP) for Open Systems Environments (see

[22]).

b. If the tool provides a services interface to other software tools, then state the calling requirements and

data types that must pass across this interface. This interface may depend upon the Common Object

Request Broker Architecture (CORBA) published by OMG and X/Open, or upon emerging international

standards for language independent procedure calling mechanisms.

3. Choose an SQL binding style to be used between the client-side tool and the SQL data repository. See

Section 6, "SQL Binding Alternatives", for discussion of the available binding styles. It is expected that

the SQL/CLI binding style will be the most popular choice for client-side products within a single local

client/server environment and that the Direct Invocation or RDA/SQL binding styles will be the most

popular choices when the client-side tool is accessing server data in a remote data repository.

4. Identify all of the SQL data types, and all of the SQL Abstract Data Type (ADT) instances, that may

need to be imported into the application tool. Make sure that the functional requirements of the tool

include the manipulation and presentation of these application-specific objects.

5. If the client-side tool is going to create and manage its own public persistent data, and thereby be an

SQL/ERI Server for other products in the SQL Environment, then follow the steps in Section 10.3 below

for procurement of an SQL/ERI Server.

10.2 SQL/ERI Clients

An SQL/ERI Client is a full-function, conforming FIPS SQL data manager that, in addition, supports the

SQL/ERI interface described in Section 3. The functional requirements of the client side of this interface must

be supplied by an individual procurement since they are beyond the scope of this first specification for SQL/ERI

profiles. The following steps may be helpful:

1. If a full-function, conforming FIPS SQL data manager is not already available, then follow the Special

Procurement Considerations given in Section 16 of FIPS PUB 127-2 [3] for procurement of an SQL

Processor.

52

FIPS PUB 193

2. State the minimum profile of the SQL/ERI Server products that are to be integrated into the SQL

Environment by this SQL/ERI Client. Use the profile items identified in Section 7 to determine this

minimum profile.

3. Make sure that the SQL Processor supports all of the binding styles identified in the minimum profile

for SQL/ERI Servers to be accessed, since a conforming FIPS SQL Processor need only support one such

binding style. In particular, if the SQL/CLI or RDA binding styles are specified, make sure that the SQL

Processor supports Connection Management statements (a Full SQL feature) and can map those

statements to appropriate SQL/CLI service calls or appropriate RDA/SQL-Client protocols.

4. State the functional requirements for "schema federation", that is, the requirements for how the SQL

processor is to make the SQL Schemas from an SQL/ERI Server visible as schema elements in some

Catalog of the SQL Processor. The end user, be it human or software, should not be expected to have

to do its own schema federation; a database administrator should be able to integrate the external schemas

from the SQL/ERI Servers and make them appear as if they were part of the local SQL data. Most SQL

implementations have the ability to do this, but it is not yet part of the de jure SQL standard, so the

procuring authority cannot yet point to this capability in a formal standard and require conformance. This

topic will be addressed further in profile specifications for SQL/ERI Clients, a follow-on objective of the

FIPS for SQL Environments.

5. Make sure that the SQL Processor can translate full-function SQL DML statements into a module of

lower level SQL DML statements (e.g. Minimal DML) that have the same effect. In order to do this,

it may be necessary for the SQL Processor to build temporary tables, populate the temporary tables from

data retrieved from external SQL/ERI Servers, and then further manipulate the data in the temporary

tables before returning the correct result to the end user. For a further discussion of this point see Section

3, which discusses the assumed capabilities of an SQL/ERI Client. This topic will be addressed further

in profile specifications for SQL/ERI Clients, a follow-on objective of the FIPS for SQL Environments.

6. If the profile for SQL/ERI Server products to be supported requires SQL/PSM, SQL/MM, ADTs and

methods, or Object data management, then make sure that the SQL Processor is able to invoke SQL

functions and ADT methods that are defined by an external server.

10.3 SQL/ERI Servers

An SQL/ERI Server is a server-side product in an SQL environment that controls the data that is to be made

available to client-side tools. An SQL/ERI Server may be a legacy database, a specialized data manager such

as a Geographic Information System or a Full-Text document management system, or an object database

management system. With even partial support of the SQL language, such products are able to provide a degree

of integration between themselves and other products in the SQL environment. The following steps may be

helpful in the procurement of an SQL/ERI Server:

1. Determine if the SQL/ERI Server is to be a Read-Only Server or a Read-Write Server. A read-only

server will have a much easier time meeting the conformance requirements specified in Section 7.

Failure to specify either Read-Only or Read-Write means that, by default, the SQL/ERI Server is to be

a Read-Only Server.

2. Identify any SQL schema definitions that the server shall support. See the discussions in Section 8 for

examples of the kinds of schema definitions that might be specified. A procurement may require that

53

FIPS PUB 193

a specific schema definition be supported, or alternatively, it may simply require that a proposal in

response to a procurement request include an SQL schema for the data that is to be made available.

Implicitly, the schema definition determines whether or not a conforming implemenation shall support

SQL null values (see item 4 of Section 4.1). Failure to identify any SQL schema definitions to be

supported means that, by default, the supported SQL schema definitions are implementation-defined.

3. Specify a base level of SQL data manipulation language (DML) that shall be supported, by choosing

exactly one of the following DML alternatives: Minimal DML, Entry DML, Transitional DML,

Intermediate DML, or Full DML. See the discussion of each of these alternatives in Section 4 and the

"Data Manipulation Rules" in Section 7.1 (Read-Only) or Section 7.2 (Read-Write). Failure to choose

a base level of SQL data manipulation language means that, by default, the base level of SQL data

manipulation language is Minimal DML.

4. Specify a base level of SQL schema definition language (SDL) that shall be supported, by choosing

exactly one of the following SDL alternatives: No SDL, Minimal SDL, Entry SDL, Transitional SDL,

Intermediate SDL, or Full SDL. See the discussion of each of these alternatives in Section 4 and the

"Schema Definition Rules" in Section 7.1 (Read-Only) or Section 7.2 (Read-Write). Failure to choose

a base level of SQL schema definition language means that, by default, the base level of SQL schema

definition language is No SDL.

5. Specify a base level of SQL transaction management that shall be supported, by choosing exactly one

of the following transaction management alternatives: No Transactions, Commit-Rollback, Transaction

Mode, Transaction Isolation, Transaction Diagnostics, or Constraints. See the discussion of each of these

alternatives in Section 7 and the "Transaction Management Rules" in Section 7.1 (Read-Only) or Section

7.2 (Read-Write). Failure to choose a base level of SQL transaction management means that, by default,

the base level of SQL transaction management is Commit-Rollback.

6. Specify a default isolation level for SQL transaction management that shall be supported, by choosing

exactly one of the following default isolation level alternatives: Read Uncommitted, Read Committed,

Repeatable Read, or Serializable. See the discussion of each of these alternatives in Section 7 and the

"Transaction Management Rules" in Section 7.1 (Read-Only) or Section 7.2 (Read-Write). Failure to

choose a default isolation level means that, by default, the default isolation level is Read Committed.

7. Specify the binding styles that shall be supported, by choosing one or more of the following binding style

alternatives: Module, Embedded SQL, Direct Invocation, SQL/CLI, or RDA/SQL. See the discussion

of each of these alternatives in Section 6 and the effect of each alternative in the rules in Section 7.1

(Read-Only) or Section 7.2 (Read-Write). It is expected that the SQL/CLI binding style will be the most

popular choice for SQL/ERI products within a single local client/server environment and that the Direct

Invocation or RDA/SQL binding styles will be the most popular when the server data repository is an

isolated node in a wide area client/server environment. Failure to choose a binding style means that, by

default, an implementation may choose to support either the SQL/CLI binding style (see Section 6.4) or

the SQL/RDA binding style (see Section 6.5).

8. For each of the Module, Embedded SQL, or SQL/CLI binding styles chosen above, specify the

programming language interface that shall be supported, by choosing one or more of the following

programming language alternatives: Ada, C, COBOL, Fortran, MUMPS, Pascal, PL/I, or SAMeDL.

Failure to choose a programming language interface means that, by default, the interface for Programming

Language C is the only requirement.

54

FIPS PUB 193

9. Specify which SQL Features beyond those required above are to be supported, by choosing "No

Extensions" or by identifying features by feature number from FIPS PUB 127-2 (see Section 14 of [3]).

See the discussion of SQL Features in Section 5.1. Identify which features are "required" and which are

"desirable". Be very careful about requiring individual features (rather than a FIPS specified level of

features) as that practice can easily lead to procurement protests. Be sure to declare how desirable

features will be scored in the evaluation of responses to the procurement. Note that a Read-Only

interface need only support the Read-Only aspects of each feature. Determine if it is a procurement

requirement for the implementation to support the SQL_FEATURES table as specified in Section 15 of

FIPS PUB 127-2 (required for Intermediate DML and above and also required if the "SQL Features"

option is selected in the implementation profile declaration). Failure to specify any additional SQL

Features to be supported means that none are required.

10. Specify whether or not the SQL/PSM optional extension shall be supported; if SQL/PSM support is

required, then the implementation shall support the Executable SQL/PSM or the Definable SQL/PSM

requirements of the SQL/PSM specification. See Section 5.2 and item (8) of Section 7 above for a

discussion of SQL/PSM. Note that a Read-Only interface need only support the Read-Only aspects of

SQL/PSM. If SQL/PSM is required and if the SQL/ERI Server is a Read-Only server, then specify

exactly which functions and abstract data types (ADTs) are to be invokable by supplying the appropriate

SQL3 schema definitions for the required functions, modules, and procedures. Failure to specify a

requirement for SQL/PSM means that no support for any aspects of SQL/PSM is required.

11. Specify which, if any, conformance alternatives from SQL/MM shall be supported; if SQL/MM support

is required, then point to the then current SQL/MM specification (see [13]) and explicitly indicate which

Parts, and which conformance alternatives within each Part, are required. See Section 5.3 and item (8)

of Section 7 above for a discussion of SQL/MM. Also see the identifiers for various features of

SQL/MM in Section 7.3. Note that a Read-Only interface need only support the Read-Only aspects of

SQL/MM. To be successful, a Read-Only procurement should include the desired SQL/MM features in

the SQL schemas produced in item 2 above. Failure to specify a requirement for any of the SQL/MM

Parts, or conformance alternatives within each Part, means that none are required. Keep in mind that at

the time of publication of this FIPS for SQL Environments, the SQL/MM specification was very

immature; it may change considerably before final adoption of any of its parts as International Standards.

12. Specify which SQL3 features dealing with abstract data types (ADTs), methods, and object data

management are to be supported; if any of these SQL3 facilities are to be supported, then point to the

appropriate ADT or object management clauses in the then current SQL3 specification (see Sections 5.4

and 5.5 above and [12]) and explicitly indicate which features are required. Note that a Read-Only

interface need only support the Read-Only aspects of any indicated SQL3 features. To be successful, a

Read-Only procurement should include the desired SQL3 features in the SQL schemas produced in item

2 above. Failure to specify a requirement for any of these SQL3 features means that none are required.

13. Specify whether or not the SQL/ERI Server shall support encompassing transactions or the emerging

standard for SQL/XA (see Section 5.6 above and [12]). Note that it may or may not make any sense to

require that a Read-Only SQL/ERI Server participate in read-write transactions managed by a global

transaction manager. Failure to explicitly specify a requirement for SQL/XA in a procurement means

that support for SQL/XA is not required.

14. Specify the minimum requirements for the precision, size, or number of occurrences of any required SQL

data types or features. See the discussion of sizing in Section 5.1. Unless otherwise specified in a

procurement, the Entry Value sizing limits from Section 16.6 of FIPS PUB 127-2 apply to all Entry SQL

or Transitional SQL features and the Intermediate Value sizing limits apply to all Intermediate SQL or

55

FIPS PUB 193

Full SQL features. A procurement is responsible for identifying its own sizing limits on all required

features, but in the absence of an explicit declaration, the default minimum limits apply for that

procurement. Determine if it is a procurement requirement for the implementation to support the

SQL_SIZING table as specified in Section 15 of FIPS PUB 127-2 (required for Intermediate DML and

above).

15. Specify the minimum requirements for character set support. See the discussion of character sets in

Section 16.7 of FTPS PUB 127-2. Failure to indicate explicit character set requirements for an SQL/ERI

Server means that support for the representation of the 95-character graphic subset of ASCII (FIPS PUB

1-2), in an implementation defined collating sequence, is by default the minimum requirement for

Minimal, Entry, and Transitional profiles. Profiles that require Intermediate DML or above must support

the Intermediate SQL character set requirements.

16. Specify any SQL/ERI Server performance requirements. This standard is silent on the topic of

performance. The NIST SQL test suite also makes no attempt to test the performance aspects of a

conforming system. Whenever performance requirements are known in advance, they may be included

as an integral part of the procurement specification.

17. Specify any SQL/ERI Server security requirements. Some environments require "trusted" database access

beyond the GRANT and REVOKE privileges and the view definition capabilities specified by the

SQL’92 standard. Procurements for systems that operate in these environments should include explicit

additional requirements to be supported. For additional information, refer to Trusted Database

Management System Criteria (NCSC-TG-021 Version 1), National Computer Security Center, April 1991,

and Security Issues in Database Language SQL, NIST Special Publication 800-8, NIST, August 1993.

18. Read Sections 16.8, "DBMS procurement", and 16.11, "System integration", in FIPS PUB 127-2 to see

if any of the discussions therein apply to this procurement for an SQL/ERI Server. Section 16.8 lists a

number of emerging SQL3 features (see [12]) that might be listed as "desirable" features in an SQL/ERI

Server procurement. Remember that a Read-Only interface need only support the Read-Only aspects of

any specified features.

56

References

1. Cannan, S.J. and G.A.M. Otten. SQL - The Standard Handbook, McGraw-Hill Book Co, Berkshire SL6

2QL England, October 1992.

2. Date, C.J. with Hugh Darwen. A Guide to the SQL Standard, Addison-Wesley Publishing, Reading, MA

01867 USA, October 1992.

3. FIPS SQL, Federal Information Processing Standard for Database Language SQL, 2nd revision, FIPS

PUB 127-2, U.S. Department of Commerce, National Institute of Standards and Technology, June 2,

1993.

4. Gallagher, Leonard. Object SQL: Language Extensions for Object Data Management, Proceedings of

the First International Conference on Information and Knowledge Management (CIKM), Baltimore, MD,

9-12 November 1992, International Society of Mini and Micrcomputers (ISMM), pages 17-26.

5. Gallagher, Leonard and Joan Sullivan. Database Language SQL: Integrator of CALS Data Repositories,

NIST technical report, NISTIR 4902, September 1992.

6. IEEE SFQL. IEEE Standards Committee on Optical Disk and Multimedia Platforms (SCODMP), SFQL

Working Group, Institute of Electrical and Electronics Engineers, Inc., Washington, DC 20036-1903,

USA.

7. IETF Netdata. Internet Engineering Task Force (IETF), Network Database Working Group (netdata),

Corporation for National Research Initiatives, Reston, VA 22091, USA.

8. ISO/IEC 9075. Database Language SQL, International Standard ISO/IEC 9075:1992, American National

Standard X3.135-1992, American National Standards Institute, New York, NY 10036, November 1992.

9. ISO/IEC 9579. Open Systems Interconnection - Remote Database Access (RDA), Part 1: Generic Model

and Part 2: SQL Specialization, International Standard ISO/IEC 9579:1993, American National Standard

ANSI/ISO/IEC 9579:1993, American National Standards Institute, New York, NY 10036, December

1993.

10. ANSI/ISO/IEC CD 9075-3, (Draft) International Standard for Database Language SQL, Part 3: Call

Level Interface (SQL/CLI), JTC1 Draft International Standard (DIS), document SC21 N9117, 13 October
1994.

11. ANSI/ISO/IEC CD 9075-4, (Draft) International Standard for Database Language SQL, Part 4:

Persistent Stored Modules (SQL/PSM), JTC1 Committee Draft (CD), CD Ballot document SC21 N8897,
August 1994.

12. ISO/IEC SQL3. (ISO-ANSI Working Draft) Database Language SQL (SQL3), document ISO/IEC

JTC1/SC21 N6931, American National Standards Institute, July 1992. Later versions available from

Working Group or Rapporteur Group documents as a six-part document. Part 1: Framework, Part 2:

Foundation, Part 3: Call Level Interface, Part 4: Persistent Stored Modules, Part 5: Language Bindings,
Part 6: SQL XA Specialization.

57

FIPS PUB 193

13. ISO/IEC SQL/MM. SQL Multimedia and Application Packages (SQL/MM), Project description in

document ISO/IEC JTC1/SC21 N7179, American National Standards Institute, January 1993. Initial draft

available as a four-part document. Part 1: Framework, Part 2: Full-Text, Part 3: Spatial, Part 4: General

Purpose Facilities, with additional parts expected for other multimedia areas.

14. ISO/IEC TR 10000-3. Information Technology - Framework and Taxonomy of International

Standardized Profiles - Part 1: General Principles and Framework, Part 2: Principles and Taxonomy

for OSI Profiles, Part 3: Principles and Taxonomy for Open System Environment Profiles, all three Parts

have been published by ISO/IEC and are available through the American National Standards Institute.

The final text of Part 3 was distributed as document ISO/IEC JTC1/SGFS N1249, dated 3 January 1995.

15. Melton, Jim and Alan Simon. Understanding the New SQL: A Complete Guide, Morgan Kauffman

Publishers, San Mateo, CA 94403, October 1992.

16. NIST OIW. Stable Implementation Agreements for OSI Protocols, Version 6, Edition 1, NIST Open

Systems Environment Workshop, document NIST SP 500-206, December 1992.

17. NIST SQL Test Suite. An automated suite of tests for evaluating conformance to FIPS SQL, Version

4.0, NIST Computer Systems Laboratory, July 1993.

18. NIST SQL Validation Procedures. Database Language SQL Validation Procedures, unpublished NIST

technical report, NIST Computer Systems Laboratory, 1993.

19. NIST VPL. Validated Products List: Programming Languages, Database Language SQL, Graphics,

GOSIP, POSIX, Security; Judy B. Kailey, Editor, NISTIR 5585, issue No. 1, January 1995 (republished

quarterly). Available by subscription from the National Technical Information Service (NTIS).

20. SQL Errata. Database Language SQL - Technical Corrigendum I, ISO/IEC 9075:1992 TC 1, document

ISO/IEC JTC1/SC21 N8574, dated June 1994, American National Standards Institute, published by

ISO/IEC in October 1994.

21. SAMeDL. SQL/Ada Module Description Language, ISO/IEC DIS 12227, Draft International Standard,

document ISO/IEC JTC1/SC22 N1385, Spring 1994.

22. NIST APP. Application Portability Profile (APP) - Open System Environment Profile, OSE/1 Version

2.0, NIST Special Publication 500-210, June 1993.

23. Melton, Jim. Object Technology and SQL: Adding Objects to a Relational Language, Data Engineering,

December 1994, pages 15-26.

☆ u.S. GOVERNMENT PRINTING OFFICE: I99S - 386-627/37903

58

0

)

U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Official Business

Penalty for Private Use $300

