U.S. DEPARTMENT OF COMMERCE

Technology Administration
National Institute of Standards and Technology

FIPS PUB 180-1
HO

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION (Supersedes FIPS PUB 180—1993 May 11)

SECURE HASH STANDARD

Category: Computer Security

1995 APRIL 17

-
-

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION (Supersedes FIPS PUB 180-1993 May 11)

SECURE HASH STANDARD

Category: Computer Security

Computer Systems Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-0001

Issued April 17, 1995

U.S. Department of Commerce

Ronald H. Brown, Secretary
Technology Administration
Mary L. Good, Under Secretary for Technology
National Institute of Standards and Technology
Arati Prabhakar, Director

Foreword

The Federal Information Processing Standards Publication Series of the National Institute of Standards and Technology (NIST) is the official publication relating to standards and guidelines adopted and promulgated under the provisions of Section 111(d) of the Federal Property and Administrative Services Act of 1949 as amended by the Computer Security Act of 1987, Public Law 100-235. These mandates have given the Secretary of Commerce and NIST important responsibilities for improving the utilization and management of computer and related telecommunications systems in the Federal Government. The NIST, through its Computer Systems Laboratory, provides leadership, technical guidance, and coordination of Government efforts in the development of standards and guidelines in these areas.

Comments concerning Federal Information Processing Standards Publications are welcomed and should be addressed to the Director, Computer Systems Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899.

James H. Burrows, Director Computer Systems Laboratory

Abstract

This standard specifies a Secure Hash Algorithm (SHA-1) which can be used to generate a condensed representation of a message called a message digest. The SHA-1 is required for use with the Digital Signature Algorithm (DSA) as specified in the Digital Signature Standard (DSS) and whenever a secure hash algorithm is required for Federal applications. The SHA-1 is used by both the transmitter and intended receiver of a message in computing and verifying a digital signature.

Key words: computer security; digital signatures; Federal Information Processing Standard (FIPS); hash algorithm.

U.S. Government Printing Office Washington: 1995

For sale by the National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

Federal Information
 Processing Standards Publication 180-1

1995 April 17

Announcing the

SECURE HASH STANDARD

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce pursuant to Section 111(d) of the Federal Property and Administrative Services Act of 1949 as amended by the Computer Security Act of 1987, Public Law 100-235.

Name of Standard: Secure Hash Standard.

Category of Standard: Computer Security.
Explanation: This Standard specifies a secure hash algorithm, SHA-1, for computing a condensed representation of a message or a data file. When a message of any length $<2^{64}$ bits is input, the SHA-1 produces a 160 -bit output called a message digest. The message digest can then be input to the Digital Signature Algorithm (DSA) which generates or verifies the signature for the message (see Figure 1). Signing the message digest rather than the message often improves the efficiency of the process because the message digest is usually much smaller in size than the message. The same hash algorithm must be used by the verifier of a digital signature as was used by the creator of the digital signature.

The SHA-1 is called secure because it is computationally infeasible to find a message which corresponds to a given message digest, or to find two different messages which produce the same message digest. Any change to a message in transit will, with very high probability, result in a different message digest, and the signature will fail to verify. SHA-1 is a technical revision of SHA (FIPS 180). A circular left shift operation has been added to the specifications in section 7, line b, page 9 of FIPS 180 and its equivalent in section 8, line c, page 10 of FIPS 180. This revision improves the security provided by this standard. The SHA-1 is based on principles similar to those used by Professor Ronald L. Rivest of MIT when designing the MD4 message digest algorith ${ }^{1}$, and is closely modelled after that algorithm.

[^0]Signature Generation

Message Digest

Signature Verification

Figure 1: Using the SHA-1 with the DSA

Approving Authority: Secretary of Commerce.
Maintenance Agency: U.S. Department of Commerce, National Institute of Standards and Technology, Computer Systems Laboratory.

Applicability: This standard is applicable to all Federal departments and agencies for the protection of unclassified information that is not subject to section 2315 of Title 10, United States Code, or section 3502(2) of Title 44, United States Code. This standard is required for use with the Digital Signature Algorithm (DSA) as specified in the Digital Signature Standard (DSS) and whenever a secure hash algorithm is required for Federal applications. Private and commercial organizations are encouraged to adopt and use this standard.

Applications: The SHA-1 may be used with the DSA in electronic mail, electronic funds transfer, software distribution, data storage, and other applications which require data integrity assurance and data origin authentication. The SHA-1 may also be used whenever it is necessary to generate a condensed version of a message.

Implementations: The SHA-1 may be implemented in software, firmware, hardware, or any combination thereof. Only implementations of the SHA-1 that are validated by NIST will be considered as complying with this standard. Information about the requirements for validating implementations of this standard can be obtained from the National Institute of Standards and Technology, Computer Systems Laboratory, Attn: SHS Validation, Gaithersburg, MD 20899.

Export Control: Implementations of this standard are subject to Federal Government export controls as specified in Title 15, Code of Federal Regulations, Parts 768 through 799. Exporters are advised to contact the Department of Commerce, Bureau of Export Administration for more information.

Patents: Implementations of the SHA-1 in this standard may be covered by U.S. and foreign patents.

Implementation Schedule: This standard becomes effective October 2, 1995.
Specifications: Federal Information Processing Standard (FIPS) 180-1, Secure Hash Standard (affixed).

Cross Index:

a. FIPS PUB 46-2, Data Encryption Standard.
b. FIPS PUB 73, Guidelines for Security of Computer Applications.
c. FIPS PUB 140-1, Security Requirements for Cryptographic Modules.
d. FIPS PUB 186, Digital Signature Standard.
e. Federal Information Resources Management Regulations (FIRMR) subpart 201.20.303, Standards, and subpart 201.39.1002, Federal Standards.

Objectives: The objectives of this standard are to:
a. Specify the secure hash algorithm required for use with the Digital Signature Standard (FIPS 186) in the generation and verification of digital signatures;
b. Specify the secure hash algorithm to be used whenever a secure hash algorithm is required for Federal applications; and
c. Encourage the adoption and use of the specified secure hash algorithm by private and commercial organizations.

Qualifications: While it is the intent of this standard to specify a secure hash algorithm, conformance to this standard does not assure that a particular implementation is secure. The responsible authority in each agency or department shall assure that an overall implementation provides an acceptable level of security. This standard will be reviewed every five years in order to assess its adequacy.

Waiver Procedure: Under certain exceptional circumstances, the heads of Federal departments and agencies may approve waivers to Federal Information Processing Standards (FIPS). The head of such agency may redelegate such authority only to a senior official designated pursuant to section 3506(b) of Title 44, United States Code. Waiver shall be granted only when:
a. Compliance with a standard would adversely affect the accomplishment of the mission of an operator of a Federal computer system; or
b. Compliance with a standard would cause a major adverse financial impact on the operator which is not offset by Governmentwide savings.

Agency heads may act upon a written waiver request containing the information detailed above. Agency heads may also act without a written waiver request when they determine that conditions for meeting the standard cannot be met. Agency heads may approve waivers only by a written decision which explains the basis on which the agency head made the required finding(s). A copy of each decision, with procurement sensitive or classified portions clearly identified, shall be sent to: National Institute of Standards and Technology; ATTN: FIPS Waiver Decisions, Technology Building, Room B-154, Gaithersburg, MD 20899.

In addition, notice of each waiver granted and each delegation of authority to approve waivers shall be sent promptly to the Committee on Government Operations of the House of Representatives and the Committee on Governmental Affairs of the Senate and shall be published promptly in the Federal Register.

When the determination on a waiver applies to the procurement of equipment and/or services, a notice of the waiver determination must be published in the Commerce Business Daily as a part of the notice of solicitation for offers of an acquisition or, if the waiver determination is made after that notice is published, by amendment to such notice.

A copy of the waiver, any supporting documents, the document approving the waiver and any accompanying documents, with such deletions as the agency is authorized and decides to make under 5 United States Code Section 552(b), shall be part of the procurement documentation and retained by the agency.

Where to Obtain Copies of the Standard: Copies of this publication are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. When ordering, refer to Federal Information Processing Standards Publication 180-1 (FIPSPUB180-1), and identify the title. When microfiche is desired, this should be specified. Prices are published by NTIS in current catalogs and other issuances. Payment may be made by check, money order, deposit account or charged to a credit card accepted by NTIS.

Federal Information
 Processing Standards Publication 180-1

1995 April 17
Specifications for the
SECURE HASH STANDARD

1. INTRODUCTION

The Secure Hash Algorithm (SHA-1) is required for use with the Digital Signature Algorithm (DSA) as specified in the Digital Signature Standard (DSS) and whenever a secure hash algorithm is required for federal applications. For a message of length $<2^{64}$ bits, the SHA-1 produces a 160 -bit condensed representation of the message called a message digest. The message digest is used during generation of a signature for the message. The SHA-1 is also used to compute a message digest for the received version of the message during the process of verifying the signature. Any change to the message in transit will, with very high probability, result in a different message digest, and the signature will fail to verify.

The SHA-1 is designed to have the following properties: it is computationally infeasible to find a message which corresponds to a given message digest, or to find two different messages which produce the same message digest.

2. BIT STRINGS AND INTEGERS

The following terminology related to bit strings and integers will be used:
a. A hex digit is an element of the set $\{0,1, \ldots, 9, A, \ldots, F\}$. A hex digit is the representation of a 4-bit string. Examples: $7=0111, \mathrm{~A}=1010$.
b. A word equals a 32 -bit string which may be represented as a sequence of 8 hex digits. To convert a word to 8 hex digits each 4-bit string is converted to its hex equivalent as described in (a) above. Example:

$$
10100001000000111111111000100011 .=\mathrm{A} 103 \mathrm{FE} 23
$$

c. An integer between 0 and $2^{32}-1$ inclusive may be represented as a word. The least significant four bits of the integer are represented by the right-most hex digit of the word representation. Example: the integer $291=2^{8}+2^{5}+2^{1}+2^{0}=256+32+2+1$ is represented by the hex word, 00000123.

If z is an integer, $0 \leq z<2^{64}$, then $z=2^{32} x+y$ where $0 \leq x<2^{32}$ and $0 \leq y<$ 2^{32}. Since x and y can be represented as words X and Y , respectively, z can be represented as the pair of words (X,Y).
d. block $=512$-bit string. A block (e.g., B) may be represented as a sequence of 16 words.

3. OPERATIONS ON WORDS

The following logical operators will be applied to words:
a. Bitwise logical word operations

$\mathrm{X} \wedge \mathrm{Y}$	$=$ bitwise logical "and" of X and Y.
$\mathrm{X} \vee \mathrm{Y}$	$=$ bitwise logical "inclusive-or" of X and Y.
X XOR Y	$=$ bitwise logical "exclusive-or" of X and Y.
$\sim \mathrm{X}$	$=$ bitwise logical "complement" of X.

Example:

01101100101110011101001001111011
XOR $\quad \begin{aligned} & 01100101110000010110100110110111\end{aligned}$
$=\quad 00001001011110001011101111001100$
b. The operation $X+Y$ is defined as follows: words X and Y represent integers x and y , where $0 \leq x<2^{32}$ and $0 \leq y<2^{32}$. For positive integers n and m, let $n \bmod m$ be the remainder upon dividing n by m . Compute

$$
\mathrm{z}=(\mathrm{x}+\mathrm{y}) \bmod 2^{32}
$$

Then $0 \leq \mathrm{z}<2^{32}$. Convert z to a word, Z , and define $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$.
c. The circular left shift operation $S^{n}(X)$, where X is a word and n is an integer with $0 \leq$ $\mathrm{n}<32$, is defined by

$$
S^{n}(X)=(X \ll n) \vee(X \gg 32-n)
$$

In the above, $\mathrm{X} \ll \mathrm{n}$ is obtained as follows: discard the left-most n bits of X and then pad the result with n zeroes on the right (the result will still be 32 bits). $X \gg n$ is obtained by discarding the right-most n bits of X and then padding the result with n
zeroes on the left. Thus $S^{n}(X)$ is equivalent to a circular shift of X by n positions to the left.

4. MESSAGE PADDING

The SHA-1 is used to compute a message digest for a message or data file that is provided as input. The message or data file should be considered to be a bit string. The length of the message is the number of bits in the message (the empty message has length 0). If the number of bits in a message is a multiple of 8 , for compactness we can represent the message in hex. The purpose of message padding is to make the total length of a padded message a multiple of 512. The SHA-1 sequentially processes blocks of 512 bits when computing the message digest. The following specifies how this padding shall be performed. As a summary, a " 1 " followed by m " 0 "s followed by a 64 -bit integer are appended to the end of the message to produce a padded message of length $512 \times \mathrm{n}$. The 64 -bit integer is l, the length of the original message. The padded message is then processed by the SHA-1 as n 512-bit blocks.

Suppose a message has length $l<2^{64}$. Before it is input to the SHA-1, the message is padded on the right as follows:
a. " 1 " is appended. Example: if the original message is " 01010000 ", this is padded to "010100001".
b. "0"s are appended. The number of " 0 "s will depend on the original length of the message. The last 64 bits of the last 512 -bit block are reserved for the length l of the original message.

Example: Suppose the original message is the bit string
0110000101100010011000110110010001100101.

After step (a) this gives

$$
01100001011000100110001101100100011001011 .
$$

Since $l=40$, the number of bits in the above is 41 and 407 " 0 " s are appended, making the total now 448. This gives (in hex)

$$
\begin{array}{llll}
61626364 & 65800000 & 00000000 & 00000000 \\
00000000 & 00000000 & 00000000 & 00000000 \\
00000000 & 00000000 & 00000000 & 00000000 \\
00000000 & 00000000 & &
\end{array}
$$

c. Obtain the 2 -word representation of l, the number of bits in the original message. If $l<2^{32}$ then the first word is all zeroes. Append these two words to the padded message.

Example: Suppose the original message is as in (b). Then $l=40$ (note that l is computed before any padding). The two-word representation of 40 is hex 00000000 00000028 . Hence the final padded message is hex

```
61626364 65800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000028.
```

The padded message will contain 16 n words for some $\mathrm{n}>0$. The padded message is regarded as a sequence of n blocks $M_{1}, M_{2}, \ldots, M_{n}$, where each M_{i} contains 16 words and M_{1} contains the first characters (or bits) of the message.

5. FUNCTIONS USED

A sequence of logical functions $f_{0}, f_{1}, \ldots, f_{79}$ is used in the SHA-1. Each $f_{t}, 0 \leq t \leq 79$, operates on three 32 -bit words and produces a 32-bit word as output. f_{t} is defined as follows: for words, B, C, D,

$$
\begin{array}{lll}
f_{t}(B, C, D)=(B \wedge C) & \vee(\sim B \wedge D) & (0 \leq t \leq 19) \\
f_{t}(B, C, D)=B \quad X O R & C \quad X O R \quad D & (20 \leq t \leq 39) \\
f_{t}(B, C, D)=(B \wedge C) & \vee(B \wedge D) \vee(C \wedge D) & (40 \leq t \leq 59) \\
f_{t}(B, C, D)=B & X O R & C \\
X O R & D & (60 \leq t \leq 79)
\end{array}
$$

6. CONSTANTS USED

A sequence of constant words $K_{0}, K_{1}, \ldots, K_{79}$ is used in the SHA-1. In hex these are given by

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{t}}=5 \text { A827999 } & (0 \leq \mathrm{t} \leq 19) \\
\mathrm{K}_{\mathrm{t}}=6 \text { ED9EBA1 } & (20 \leq \mathrm{t} \leq 39) \\
\mathrm{K}_{\mathrm{t}}=8 \text { F1BBCDC } & (40 \leq \mathrm{t} \leq 59) \\
\mathrm{K}_{\mathrm{t}}=\text { CA62C1D6 } & (60 \leq \mathrm{t} \leq 79)
\end{array}
$$

7. COMPUTING THE MESSAGE DIGEST

The message digest is computed using the final padded message. The computation uses two buffers, each consisting of five 32-bit words, and a sequence of eighty 32-bit words. The words of the first 5 -word buffer are labeled $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$. The words of the second 5 -word buffer are labeled $H_{0}, H_{1}, H_{2}, H_{3}, H_{4}$. The words of the 80 -word sequence are labeled $W_{0}, W_{1}, \ldots, W_{79}$. A single word buffer TEMP is also employed.

To generate the message digest, the 16 -word blocks $M_{1}, M_{2}, \ldots, M_{n}$ defined in Section 4 are processed in order. The processing of each \mathbf{M}_{i} involves 80 steps.

Before processing any blocks, the $\left\{H_{j}\right\}$ are initialized as follows: in hex,

$$
\begin{aligned}
& \mathrm{H}_{0}=67452301 \\
& \mathrm{H}_{1}=\text { EFCDAB89 } \\
& \mathrm{H}_{2}=98 \mathrm{BADCFE} \\
& \mathrm{H}_{3}=10325476 \\
& \mathrm{H}_{4}=\mathrm{C} 3 \mathrm{D} 2 \mathrm{E} 1 \mathrm{~F} 0
\end{aligned}
$$

Now $\mathbf{M}_{1}, \mathbf{M}_{2}, \ldots, \mathbf{M}_{\mathrm{n}}$ are processed. To process \mathbf{M}_{i}, we proceed as follows:
a. Divide M_{i} into 16 words $\mathrm{W}_{0}, \mathrm{~W}_{1}, \ldots, \mathrm{~W}_{15}$, where W_{0} is the left-most word.
b. For $\mathrm{t}=16$ to 79 let $\mathrm{W}_{\mathrm{t}}=\mathrm{S}^{1}\left(\mathrm{~W}_{\mathrm{t}-3}\right.$ XOR $\mathrm{W}_{\mathrm{t}-8}$ XOR $\mathrm{W}_{\mathrm{t}-14}$ XOR $\left.\mathrm{W}_{\mathrm{t}-16}\right)$.
c. Let $A=H_{0}, B=H_{1}, C=H_{2}, D=H_{3}, E=H_{4}$.
d. For $\mathrm{t}=0$ to 79 do

$$
\begin{aligned}
& \text { TEMP }=S^{5}(A)+f_{t}(B, C, D)+E+W_{t}+K_{t} \\
& E=D ; \quad D=C ; \quad C=S^{30}(B) ; \quad B=A ; A=T E M P
\end{aligned}
$$

e. Let $H_{0}=H_{0}+A, H_{1}=H_{1}+B, H_{2}=H_{2}+C, H_{3}=H_{3}+D, H_{4}=H_{4}+$ E.

After processing M_{n}, the message digest is the 160 -bit string represented by the 5 words

$$
\mathrm{H}_{0} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4} .
$$

8. ALTERNATE METHOD OF COMPUTATION

The above assumes that the sequence $\mathrm{W}_{0}, \ldots, \mathrm{~W}_{79}$ is implemented as an array of eighty 32 -bit words. This is efficient from the standpoint of minimization of execution time, since the addresses of $\mathrm{W}_{\mathrm{t}-3}, \ldots, \mathrm{~W}_{t-16}$ in step (b) are easily computed. If space is at a premium, an alternative is to regard $\left\{W_{t}\right\}$ as a circular queue, which may be implemented using an array of sixteen 32 -bit words W[0], \ldots W[15]. In this case, in hex let MASK $=0000000 \mathrm{~F}$. Then processing of M_{i} is as follows:
a. Divide M_{i} into 16 words $\mathrm{W}[0], \ldots$, W[15], where $\mathrm{W}[0]$ is the left-most word.
b. Let $\mathrm{A}=\mathrm{H}_{0}, \mathrm{~B}=\mathrm{H}_{1}, \mathrm{C}=\mathrm{H}_{2}, \mathrm{D}=\mathrm{H}_{3}, \mathrm{E}=\mathrm{H}_{4}$.
c. For $\mathrm{t}=0$ to 79 do

$$
\begin{aligned}
& s=t \wedge \text { MASK; } \\
& \text { if }(t \geq 16) \text { W[s] }=S^{1}(W[(s+13) \wedge \text { MASK }] \text { XOR W[}(s+8) \wedge \text { MASK] XOR } \\
& \quad W[(s+2) \wedge \text { MASK] XOR W[s }])
\end{aligned}
$$

TEMP $=S^{5}(A)+f_{t}(B, C, D)+E+W[s]+K_{t} ;$
$\mathrm{E}=\mathrm{D} ; \mathrm{D}=\mathrm{C} ; \mathrm{C}=\mathrm{S}^{30}(\mathrm{~B}) ; \mathrm{B}=\mathrm{A} ; \mathrm{A}=\mathrm{TEMP} ;$
d. Let $\mathrm{H}_{0}=\mathrm{H}_{0}+\mathrm{A}, \mathrm{H}_{1}=\mathrm{H}_{1}+\mathrm{B}, \mathrm{H}_{2}=\mathrm{H}_{2}+\mathrm{C}, \mathrm{H}_{3}=\mathrm{H}_{3}+\mathrm{D}, \mathrm{H}_{4}=\mathrm{H}_{4}+\mathrm{E}$.

9. COMPARISON OF METHODS

The methods of Sections 7 and 8 yield the same message digest. Although using the method of Section 8 saves sixty-four 32 -bit words of storage, it is likely to lengthen execution time due to the increased complexity of the address computations for the $\{\mathrm{W}[t]\}$ in step (c). Other computation methods which give identical results may be implemented in conformance with the standard.

APPENDIX A. A SAMPLE MESSAGE AND ITS MESSAGE DIGEST

This appendix is for informational purposes only and is not required to meet the standard.
Let the message be the ASCII binary-coded form of "abc", i.e.,

```
01100001 01100010 01100011.
```

This message has length $l=24$. In step (a) of Section 4, we append " 1 ". In step (b) we append 423 " 0 "s. In step (c) we append hex 0000000000000018 , the 2-word representation of 24 . Thus the final padded message consists of one block, so that $n=1$ in the notation of Section 4.

The initial hex values of $\left\{\mathrm{H}_{\mathrm{i}}\right\}$ are
$\mathrm{H}_{0}=67452301$
$\mathrm{H}_{1}=$ EFCDAB89
$\mathrm{H}_{2}=98 \mathrm{BADCFE}$
$H_{3}=10325476$
$\mathrm{H}_{4}=\mathrm{C} 3 \mathrm{D} 2 \mathrm{E} 1 \mathrm{~F} 0$.
Start processing block 1 . The words of block 1 are

$W[0]$	$=61626380$
$W[1]$	$=00000000$
$W[2]$	$=00000000$
$W[3]$	$=00000000$
$W[4]$	$=00000000$
$W[5]$	$=00000000$
$W[6]$	$=00000000$
$W[7]$	$=00000000$
$W[8]$	$=00000000$
$W[9]$	$=00000000$
$W[10]$	$=00000000$
$W[11]$	$=00000000$
$W[12]$	$=00000000$
$W[13]$	$=00000000$
$W[14]$	$=00000000$
$W[15]$	$=00000018$.

The hex values of A, B, C, D, E after pass t of the "for $t=0$ to 79 " loop (step (d) of Section 7 or step (c) of Section 8) are

B
67452301 0116FC33 8990536D A1390F08 CDD8E11B CFD499DE 3 FC7CA40 993E30C1 9E8C07D4 4B6AE328 8351F929 FBDA9E89 63188FE4 4607B664 9128F695 196BEE77 20BDD62F 4E925823 82AA6728 DC64901D FD9E1D7D 1A37B0CA 33A23BFC 21283486 D541F12D C7567DC6 48413 BA4 BE35FBD5 4AA84D97 8370B52E C5FBAF5D 1267B407 3B845D33 046 FAAOA 2C0EBC11 21796AD4 DCBBB0CB 0F511FD8 DC63973F 4C986405 32DE1CBA FC87DEDF 970A0D5C 7F193DC5 EE1B1AAF 40F28E09 1C51E1F2 A01B846C

C
7BF36AE2 59D148C0 C045BFOC 626414 DB 284 E 43 C 2 F3763846 B3F52677 0FF1F290 664 F8C30 27A301F5 12DAB8CA 60D47E4A 7EF6A7A2 18C623F9 1181ED99 644A3DA5 C65AFB9D C82F758B D3A49608 20AA99CA 77192407 7F67875F 868DEC32 0CE88EFF 884A0D21 75507C4B B1D59F71 12104EE9 6F8D7EF5 D2AA1365 A0DC2D4B 717 EEBD7 C499ED01 CEE1174C 811BEA82 4 B03AF04 085E5AB5 F72 EEC32 03D447F6 F718E5CF 53261901 8CB7872E FF21F7B7 25C28357 5FC64F71 FB86C6AB 503CA382 8714787C

D
98BADCFE 7BF36AE2 59D148C0 C045BFOC 626414 DB 284 E43C2 F3763846 B3F52677 0FF1F290 664 F8C30 27A301F5 12DAB8CA 60D47E4A 7EF6A7A2 18C623F9 1181ED99 644A3DA5 C65AFB9D C82F758B D3A49608 20AA99CA 77192407 7F67875F 868DEC32 0CE88EFF 884A0D21 75507C4B B1D59F71 12104 EE9 6F8D7EF5 D2AA1365 A0DC2D4B 717EEBD7 C499ED01 CEE1174C 811BEA82 4B03AF04 085E5AB5 F72EEC32 03D447F6 F718E5CF 53261901 8CB7872E FF21F7B7 25C28357 5FC64F71 FB86C6AB 503CA382

E
10325476 98BADCFE 7BF36AE2 59D148C0 C045BFOC 626414 DB 284E43C2 F3763846 B3F52677 0FF1F290 664 F8C30 27A301F5 12DAB8CA 60D47E4A 7EF6A7A2 18C623F9 1181ED99 644A3DA5 C65AFB9D C82F758B D3A49608 20AA99CA 77192407 7F67875F 868DEC32 0CE88EFF 884A0D21 75507C4B B1D59F71 12104 EE9 6F8D7EF5 D2AA1365 A0DC2D4B 717EEBD7 C499ED01 CEE1174C 811BEA82 4B03AF04 085E5AB5 F72EEC32 03D447F6 F718E5CF 53261901 8CB7872E FF21F7B7 25C28357 5FC64F71 FB86C6AB

50	
51	38
52	E4
53	27E9F1D8
54	7 B
56	C8460
57	D2
58	09D
59	
60	D75
61	
62	B66
63	B
64	19
65	101655F
66	C
= 67:	78DD4D2B
69:	3 F
71:	39
= 73	11793F6F
$=74$	EE76
6:	A0
78	57

$t=48:$ BAF39337
$t=49: 120731 C 5$
$t=50: 641$ DB2CE
$t=51: 3847$ AD66
$t=52:$ E490436D
$t=53: 27 E 9 F 1 D 8$
$t=54: 7 B 71 F 76 D$
$t=55: 5 \mathrm{E} 6456 \mathrm{AF}$
$t=56: C 846093 \mathrm{~F}$
$\mathrm{t}=57$: D262FF50
$t=58:$ 09D785FD
$\mathrm{t}=59: 3 \mathrm{~F} 52 \mathrm{DE} 5 \mathrm{~A}$
$\mathrm{t}=$ 60: D756C147
$t=61: 548 \mathrm{C9CB} 2$
$t=62:$ B66C020B
$t=63:$ 6B61C9E1
$t=64:$ 19DFA7AC
$t=65: 101655 \mathrm{~F} 9$
$t=66:$ 0C3DF2B4
$t=67: 78 D D 4 D 2 B$
$t=68: 497093 C 0$
$t=69: 3 F 2588 C 2$
$\mathrm{t}=70: \mathrm{C} 199 \mathrm{~F} 8 \mathrm{C} 7$
$t=71: 39859 \mathrm{DE} 7$
$t=72:$ EDB42DE4
$t=73: 11793 \mathrm{~F} 6 \mathrm{~F}$
$\mathrm{t}=74$: 5EE76897
$\mathrm{t}=75:$ 63F7DAB7
$t=76:$ A079B7D9
$\mathrm{t}=77: 860 \mathrm{D} 21 \mathrm{CC}$
$t=79: 42541$ B35

BEAD02CA
BAF39337
120731C5
641 DB2CE
3847AD66
E490436D
27E9F1D8
7B71F76D
5E6456AF
C846093F
D262FF50
09D785FD
3F52DE5A
D756C147
548C9CB2
B66C020B
6B61C9E1
19DFA7AC
101655F9
0C3DF2B4
78DD4D2B
497093C0
3F2588C2
C199F8C7
39859DE7
EDB42DE4
11793F6F
5EE76897
63F7DAB7
A079B7D9
860D21CC
5738D5E1

2806E11B
AFAB40B2
EEBCE4CD 4481CC71 99076CB3 8E11EB59 792410 DB 09FA7C76 5EDC7DDB D79915AB F211824F 3498BFD4 4275E17F 8FD4B796 F5D5B051 9523272C ED9B0082 5AD87278 0677 E9EB 4405957 E 030F7CAD DE37534A 125 C 24 FO 8FC96230 F0667E31 CE616779 3B6D0B79 C45E4FDB D7B9DA25 D8FDF6AD 681E6DF6 21834873

8714787C 2806E11B AFAB40B2 EEBCE4CD 4481CC71 99076 CB3 8E11EB59 79241 ODB 09FA7C76 5EDC7DDB D79915AB F211824F 3498BFD4 4275 E17F 8FD4B796 F5D5B051 9523272C ED9B0082 5AD87278 0677 E9EB 4405957 E 030F7CAD DE37534A 125C24F0 8FC96230 F0667E31 CE616779 3B6D0B79 C45E4FDB D7B9DA25 D8FDF6AD 681E6DF6

503CA382 8714787C 2806E11B AFAB40B2 EEBCE4CD 4481CC71 99076 CB 3 8E11EB59 792410 DB 09FA7C76 5EDC7DDB D79915AB F211824F 3498BFD4 4275E17F 8FD4B796 F5D5B051 9523272C ED9B0082 5AD87278 0677 E9EB 4405957 E 030F7CAD DE37534A 125C24F0 8FC96230 F0667E31 CE616779 3B6D0B79 C45E4FDB D7B9DA25 D8FDF6AD.

Block 1 has been processed. The values of $\left\{H_{i}\right\}$ are
$\mathrm{H}_{0}=67452301+42541 \mathrm{~B} 35=$ A9993E36
$\mathrm{H}_{1}=$ EFCDAB89 $+5738 \mathrm{D} 5 \mathrm{E} 1=4706816 \mathrm{~A}$
$\mathrm{H}_{2}=98 \mathrm{BADCFE}+21834873=$ BA3E2571
$\mathrm{H}_{3}=10325476+681 \mathrm{E} 6 \mathrm{DF6}=7850 \mathrm{C} 26 \mathrm{C}$
$\mathrm{H}_{4}=$ C3D2E1F0 + D8FDF6AD $=$ 9CD0D89D.

Message digest $=$ A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D

APPENDIX B. A SECOND SAMPLE MESSAGE AND ITS MESSA GE DIGEST

This appendix is for informational purposes only and is not required to meet the standard.
Let the message be the binary-coded form (cf. Appendix A) of the ASCII string
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq".
Since each of the 56 characters is converted to 8 bits, the length of the message is $l=448$. In step (a) of Section 4, we append "1". In step (b) we append 511 " 0 "s. In step (c) we append the 2 -word representation of 448 , i.e., hex 00000000000001 Co . This gives $\mathrm{n}=2$.

The initial hex values of $\left\{\mathrm{H}_{\mathrm{i}}\right\}$ are
$H_{0}=67452301$
$\mathrm{H}_{1}=$ EFCDAB89
$\mathrm{H}_{2}=98 \mathrm{BADCFE}$
$H_{3}=10325476$
$\mathrm{H}_{4}=\mathrm{C} 3 \mathrm{D} 2 \mathrm{E} 1 \mathrm{FO}$.
Start processing block 1 . The words of block 1 are
$\begin{array}{ll}W[0] & =61626364 \\ W[1] & =62636465 \\ W[2] & =63646566 \\ W[3] & =64656667 \\ W[4] & =65666768 \\ W[5] & =66676869 \\ W[6] & =6768696 \mathrm{~A} \\ W[7] & =68696 \mathrm{~A} 6 \mathrm{~B} \\ \mathrm{~W}[8] & =696 \mathrm{~A} 6 \mathrm{C} \\ \mathrm{W}[9] & =6 \mathrm{~A} 6 \mathrm{~B} 6 \mathrm{C} 6 \mathrm{D} \\ \mathrm{W}[10] & =6 \mathrm{~B} 6 \mathrm{C} 6 \mathrm{D} 6 \mathrm{E} \\ \mathrm{W}[11] & =6 \mathrm{C} 6 \mathrm{D} 6 \mathrm{E} 6 \mathrm{~F} \\ \mathrm{~W}[12] & =6 \mathrm{D} 6 \mathrm{E} 6 \mathrm{~F} 70 \\ \mathrm{~W}[13] & =6 \mathrm{E} 6 \mathrm{~F} 7071 \\ \mathrm{~W}[14] & =80000000 \\ \mathrm{~W}[15] & =00000000 .\end{array}$
The hex values of A,B,C,D,E after pass t of the "for $t=0$ to 79 " loop (step (d) of Section 7 or step (c) of Section 8) are

A
$t=0: 0116 \mathrm{FC} 17$
$t=1:$ EBF3B452
$t=2: 5109913 A$
$t=3: 2 \mathrm{C} 4 \mathrm{~F} 6 \mathrm{EAC}$
$t=4: 33 F 4 A E 5 B$
$t=5: 96 \mathrm{~B} 85189$
$t=6:$ DB04CB58
$\mathrm{t}=7: 45833 \mathrm{FOF}$
$t=8:$ C565C35E
$t=9:$ 6350AFDA
$t=10: 8993 E A 77$
$t=11:$ E19ECAA2
$t=12: 8603481 \mathrm{E}$
$t=13: 32 F 94 A 85$
$t=14:$ B2E7A8BE
$t=15: 42637 E 39$
$t=16: 6 B 068048$
$t=17: 426 B 9 C 35$
$t=18: 944 B 1 B D 1$
$t=19: 6 \mathrm{C} 445652$
$t=20: 95836 \mathrm{DA} 5$
$t=21: 09511177$
$t=22:$ E2B92DC4
$t=23:$ FD224575
$t=24:$ EEB82D9A
$t=25: 5 A 142 C 1 A$
$t=26: 2972 \mathrm{~F} 7 \mathrm{C} 7$
$t=27:$ D526A644
$t=28:$ E1122421
$t=29: 05 B 457 B 2$
$t=30:$ A9C84BEC
$t=31: 52 \mathrm{E} 31 \mathrm{~F} 60$
$t=32: 5 A F 3242 C$
$t=33: 31 C 756 A 9$
$t=34:$ E9AC987C
$t=35:$ AB7C32EE
$t=36: 5933 \mathrm{FC} 99$
$t=37: 43 F 87 A E 9$
$t=38: 24957 \mathrm{~F} 22$
$t=39:$ ADEB7478
$t=40:$ D70E5010
$t=41: 79 B C F B 08$
$t=42:$ F9BCB8DE
$t=43: 633 \mathrm{E9561}$
$t=44:$ 98C1EA64
$t=45:$ C6EA241E
$t=46:$ A2AD4F02
$t=47:$ C8A69090
$t=48: 88341600$
$t=49: 7 E 846 F 58$

B
67452301 0116 FC17 EBF3B452 5109913A 2C4F6EAC 33F4AE5B 96B85189 DB04CB58 45833 FOF C565C35E 6350AFDA 8993 EA77 E19ECAA2 8603481E 32F94A85 B2E7A8BE 42637E39 6B068048 426B9C35 $944 \mathrm{B1BD} 1$ 6 C445652 95836DA5 09511177 E2B92DC4 FD224575 EEB82D9A 5A142C1A 2972F7C7
D526A644
E1122421
05B457B2
A9C84BEC
52E31F60 5AF3242C 31C756A9 E9AC987C AB7C32EE 5933 FC99 43F87AE9 24957F22 ADEB7478 D70E5010 79BCFB08 F9BCB8DE 633 E9561 98C1EA64 C6EA241E A2AD4F02 C8A69090 88341600

C

7BF36AE2 59D148C0 C045BF05 BAFCED14 9442644 E 0B13DBAB CCFD2B96 65AE1462 36C132D6 D160CFC3 B15970D7 98D42BF6 E264FA9D B867B2A8 A180D207 4 CBE52A1 ACB9EA2F 5098DF8E 1AC1A012 509AE70D 6512C6F4 9B111594 6560DB69 C254445D 38AE4B71 7F48915D BBAE0B66 96850B06 CA5CBDF1 3549A991 78448908 816D15EC 2A7212FB 14B8C7D8 16BCC90B 4C71D5AA 3A6B261F AADFOCBB 564 CFF2 6 50FE1EBA 89255FC8 2B7ADD1E 35C39404 1E6F3EC2 BE6F2E37 58CFA558 26307A99 B1BA8907 A8AB53C0 3229A424

D
98BADCFE 7BF36AE2 59D148C0 C045BF05 BAFCED14 9442644 E 0B13DBAB CCFD2B96 65AE1462 36C132D6 D160CFC3 B15970D7 98D42BF6 E264FA9D B867B2A8 A180D207 4CBE52A1 ACB9EA2F 5098DF8E 1AC1A012 509AE70D 6512C6F4 9B111594 6560DB69 C254445D 38AE4B71 7F48915D BBAE0B66 96850B06 CA5CBDF1 3549A991 78448908 816D15EC 2A7212FB 14B8C7D8 16BCC90B 4C71D5AA 3A6B261F AADF0CBB 564 CFF2 6 50FE1EBA 89255FC8 2B7ADD1E 35C39404 1E6F3EC2 BE6F2E37 58CFA558 26307A99 B1BA8907 A8AB53C0

10325476 98BADCFE 7BF36AE2 59D148C0 C045BF05 BAFCED14 9442644 E 0B13DBAB CCFD2B96 65AE1462 36C132D6 D160CFC3 B15970D7 98D4 2BF6 E264FA9D B867B2A8 A180D207 4 CBE52A1 ACB9EA2F 5098DF8E 1AC1A012 509AE70D 6512C6F4 9B111594 6560DB69 C254445D 38AE4B71 7F48915D BBAE0B66 96850B06 CA5CBDF1 3549A991 78448908 816D15EC 2A7212FB 14B8C7D8 16BCC90B 4C71D5AA 3A6B261F AADFOCBB 564 CFF2 6 50FE1EBA 89255FC8 2B7ADD1E 35C39404 1E6F3EC2 BE6F2E37 58CFA558 26307A99 B1BA8907
$t=50:$ 86E358BA
$t=51:$ 8D2E76C8
$t=52:$ CE892E10
$t=53:$ EDEA95B1
$t=54:$ 36D1230A
$t=55: 776$ C3910
$t=56:$ A681B723
$t=57:$ ACOA794F
$t=58:$ F03D3782
$t=59:$ 9EF775C3
$t=60: 36254$ B13
$t=61:$ 4080D4DC
$t=62:$ 2BFAF7A8
$t=63:$ 513F9CA0
$t=64:$ E5895C81
$t=65:$ 1037D2D5
$t=66:$ 14A82DA9
$t=67:$ 6D17C9FD
$t=68:$ 2C7B07BD
$t=69:$ FDF6EFFF
$t=70:$ 112B96E3
$t=71:$ 84065712
$t=72:$ AB89FB71
$t=73:$ C5210E35
$t=74:$ 352D9F4B
$t=75: 1$ A0E0E0A
$t=76:$ D0D47349
$t=77:$ AD38620D
$t=78:$ D3AD7C25
$t=8 C E 34517$

Block 1 has been processed. The values of $\left\{H_{i}\right\}$ are
$\mathrm{H}_{0}=67452301+8 \mathrm{CE} 34517=\mathrm{F} 4286818$
$\mathrm{H}_{1}=$ EFCDAB89 + D3AD7C25 $=$ C37B27AE
$\mathrm{H}_{2}=98 \mathrm{BADCFE}+6 \mathrm{~B} 4 \mathrm{E} 1883=0408 \mathrm{~F} 581$
$\mathrm{H}_{3}=10325476+74351 \mathrm{CD} 2=84677148$
$\mathrm{H}_{4}=$ C3D2E1F0 $+86838382=4 \mathrm{~A} 566572$.

Start processing block 2 . The words of block 2 are
$\mathrm{W}[0]=00000000$
$\mathrm{W}[1]=00000000$
$W[2]=00000000$
$\mathrm{W}[3]=00000000$
$\mathrm{W}[4]=00000000$
$\mathrm{W}[5]=00000000$

7E846F58	220 D0580	3229A424	A8AB53C0
86E358BA	1FA11BD6	220D0580	3229A424
8D2E76C8	A1B8D62E	1FA11BD6	220 0580
CE892E10	234 B9DB2	A1B8D62E	1FA11BD6
EDEA95B1	33A24B84	234B9DB2	A1B8D62E
36D1230A	7B7AA56C	33A24B84	234B9DB2
776C3910	8DB448C2	7B7AA56C	33A24B84
A681B723	1DDB0E44	8DB448C2	7B7AA56C
AC0A794F	E9A06DC8	1DDB0E44	8DB448C2
F03D3782	EB029E53	E9A06DC8	1DDB0E44
9EF775C3	BC0F4DE0	EB029E53	E9A06DC8
36254B13	E7BDDD70	BC0F4DE0	EB029E53
4080D4DC	CD8952C4	E7BDDD70	BC0F4DE0
2BFAF7A8	10203537	CD8952C4	E7BDDD70
513F9CA0	OAFEBDEA	10203537	CD8952C4
E5895C81	144 FE728	OAFEBDEA	10203537
1037D2D5	79625720	144 FE728	OAFEBDEA
14A82DA9	$440 \mathrm{DF} 4 \mathrm{B5}$	79625720	144 FE 728
6D17C9FD	452A0B6A	440 DF4B5	79625720
2C7B07BD	5B45F27F	452A0B6A	$440 \mathrm{DF} 4 \mathrm{B5}$
FDF6EFFF	4B1EC1EF	5B45F27F	452A0B6A
112B96E3	FF7DBBFF	4B1EC1EF	5B45F27F
84065712	C44AE5B8	FF7DBBFF	4B1EC1EF
AB89FB71	A10195C4	C44AE5B8	FF7DBBFF
C5210E35	6AE27EDC	A10195C4	C44AE5B8
352D9F4B	7148438D	6AE27EDC	A10195C4
1A0EOEOA	CD4B67D2	7148438 D	6AE27EDC
DOD47349	86838382	CD4B67D2	7148438 D
AD38620D	74351 CD 2	86838382	CD4B67D2
D3AD7C25	6B4E1883	74351 CD 2	86838382

```
W[6] = 00000000
W[7] = 00000000
W[8] = 00000000
W[9] = 00000000
W[10] = 00000000
W[11] = 00000000
W[12] = 00000000
W[13] = 00000000
W[14] = 00000000
W[15] = 000001C0.
```

The hex values of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ after pass t of the for " $\mathrm{t}=0$ to 79 " loop (step (d) of Section 7 or step (c) of Section 8) are

A
$t=0: 2 D F 257 E 9$
$t=1: 4 D 3 D C 58 F$
$t=2:$ C352BB05
$t=3:$ EEF743C6
$t=4: 41$ E34277
$t=5: 5443915 \mathrm{C}$
$t=6:$ E7FA0377
$t=7:$ C6946813
$t=8:$ FDDE1DE1
$t=9:$ B8538ACA
$t=10: 6 B A 94$ F63
$t=11: 43 A 2792 \mathrm{~F}$
$t=12:$ FECD7BBF
$t=13:$ A2604CA8
$t=14: 258 B 0 B A A$
$t=15:$ D9772360
$t=16: 5507$ DB6E
$t=17:$ A51B58BC
$t=18:$ C2EB709F
$t=19:$ D8992153
$t=20: 37482 \mathrm{~F} 5 \mathrm{~F}$
$t=21:$ EE8700BD
$t=22:$ 9AD594B9
$t=23: 8 F B A A 5 B 9$
$t=24: 88 F B 5867$
$t=25:$ EEC50521
$t=26: 50 B C E 434$
$t=27: 5 C 416 \mathrm{DAF}$
$t=28: 2429 B E 5 F$
$t=29:$ 0A2FB108
$t=30: 17986223$
$t=31: 8 A 4 A F 384$
$t=32: 6 B 629993$
$t=33:$ F15F04F3
$t=34: 295 C C 25 B$

B
F4286818 2DF257E9 4D3DC58F C352BB05 EEF743C6 41E34277 5443915 C E7FA0377 C6946813 FDDE1DE1 B8538ACA 6BA94F63 43A2792F
FECD7BBF
A2604CA8
258B0BAA
D9772360
5507DB6E
A51B58BC
C2 EB709F
D8992153
37482F5F
EE8700BD
9AD594B9
8FBAA5B9
88 FB5867
EEC50521
50BCE434
5C416DAF
2429BE5F
0A2FB108
17986223
8A4AF384
6B629993
F15F04F3

C
B0DEC9EB 3D0A1A06 4B7C95FA D34F7163 70D4AEC1 BBBDD0F1 D078D09D 1510E457 F9FE80DD F1A51A04 7F778778 AE14E2B2
DAEA53D8 D0E89E4B
FFB35EEF 2898132A 8962C2EA 365DC8D8 $9541 F 6$ DB 2946D62F FOBADC27 F6264854 CDD20BD7 7BA1C02F 66B5652E 63EEA96E E23ED619
7BB14148 142F390D D7105B6B C90A6F97 028BEC42 C5E61888 2292BCE1 DAD8A664

D

0408 F 581 B0DEC9EB 3D0A1A06 4B7C95FA D34F7163 70D4AEC1 BBBDD0F1 D078D09D 1510E457 F9FE80DD F1A51A04 7F778778 AE14E2B2 DAEA53D8 D0E89E4B FFB35EEF 2898132A 8962C2EA 365DC8D8 954 1F6DB 294 6D62F FOBADC27 F6264854 CDD20BD7 7BA1C02F 66B5652E 63EEA96E E23ED619 7BB14148 142F390D D7105B6B C90A6F97 028BEC42 C5E61888 2292BCE1

E

84677148 0408F581 BODEC9EB 3D0A1A06 4B7C95FA D34F7163 70D4AEC1 BBBDD0F1 D078D09D 1510E457 F9FE80DD F1A51A04 7F778778 AE14E2B2 DAEA53D8 D0E89E4B FFB35EEF 2898132A 8962C2EA 365DC8D8 9541 F6DB 2946 D62F FOBADC27 F6264854 CDD20BD7 7BA1C02F 66B5652E 63EEA96E E23ED619
7BB14148
142F390D
D7105B6B
C90A6F97
028BEC42
C5E61888
$t=35: 696$ DA4 04
$t=36:$ CEF5AE12
$t=37: 87 D 5 B 80 C$
$\mathrm{t}=38: 84 \mathrm{E} 2 \mathrm{~A} 5 \mathrm{~F} 2$
$t=39: 03 B B 6310$
$t=40:$ C2D8F75F
$\mathrm{t}=41:$ BFB25768
$t=42: 28589152$
$t=43:$ EC1D3D61
$\mathrm{t}=44:$ 3CAED7AF
$t=45:$ C3D033EA
$t=46: 7316056 \mathrm{~A}$
$t=47: 46 F 93 B 68$
$t=48:$ DC8E7F26
$\mathrm{t}=49: 850 \mathrm{D} 411 \mathrm{C}$
$t=50: 7 E 4672 C 0$
$t=51: 89 F B D 41 D$
$t=52: 1797 \mathrm{E} 228$
$t=53: 431 D 65 B C$
$\mathrm{t}=54: 2 \mathrm{BDBB8CB}$
$t=55: 6 \mathrm{DA} 72 \mathrm{E} 7 \mathrm{~F}$
$t=56:$ A8495A9B
$t=57: E 785655 A$
$t=58: 5 B 086 C 42$
$t=59:$ A65818F7
$t=60: 7 A A B 101 B$
$t=61: 93614 \mathrm{C} 9 \mathrm{C}$
$t=62:$ F66D9BF4
$t=63:$ D504902B
$t=64:$ 60A9DA62
$t=65: 8 B 687819$
$t=66: 083 \mathrm{E} 90 \mathrm{C} 3$
$\mathrm{t}=67$: F6226BBF
$t=68: 76 C 0563 \mathrm{~B}$
$t=69: 989 D D 165$
$t=70: 8 B 2 C 7573$
$t=71:$ AE1B8E7B
$\mathrm{t}=72:$ CA1840DE
$t=73: 16 F 3 B A B B$
$t=74:$ D28D83AD
$t=75: 6 B C 02 D F E$
$t=76:$ D3A6E275
$t=77:$ DA955482
$t=78: 58 \mathrm{COAACO}$
$t=79: 906$ FD62C

295CC25B
696DA4 04
CEF5AE12
87D5B80C
84E2A5F2
03BB6310
C2D8F75F
BFB25768
28589152
EC1D3D61
3CAED7AF
C3D033EA
7316056A
46F93B68
DC8E7F26
850D411C
7E4672C0
89FBD41D
1797E228
431D65BC
2BDBB8CB
6DA72E7F
A8495A9B
E785655A
5B086C42
A65818F7
7AAB101B
93614 C9C
F66D9BF4
D504902B
60A9DA62
8B687819
083E90C3
F6226BBF
76C0563B
989DD165
8B2C7573
AE1B8E7B
CA1840DE
16F3BABB
D28D83AD
6BC02DFE
D3A6E275
DA955482
58C0AAC0

FC57C13C
CA573096
1A5B6901
B3BD6B84
21F56E03
A138A97C
00EED8C4
F0B63DD7
2FEC95DA
8A162454
7B074F58
CF2BB5EB
B0F40CFA
9CC5815A
11BE4EDA
B7239FC9
21435047
1F919CB0
627 EF507 05E5F88A 10C7596F CAF6EE32 DB69CB9F EA1256A6 B9E15956 96C21B10 E996063D DEAAC406 24D85327 3D9B66FD F541240A 982A7698 62DA1E06 C20FA430 FD889AEF DDB0158E 66277459 E2CB1D5C EB86E39E B2861037 C5BCEEAE 74A360EB 9AF00B7F 74E9B89D B6A55520

DAD8A664 FC57C13C CA573096 1A5B6901 B3BD6B84 21F56E03 A138A97C 00EED8C4 F0B63DD7 2FEC95DA 8A162454 7B074F58 CF2BB5EB B0F40CFA 9CC5815A 11BE4EDA B7239FC9 21435047 1F919CB0 627 EF507 05E5F88A 10C7596F CAF6EE32 DB69CB9F EA1256A6 B9E15956 96C21B10 E996063D DEAAC406 24D85327 3D9B66FD F541240A 982A7698 62DA1E06 C20FA430 FD889AEF DDB0158E 66277459 E2CB1D5C EB86E39E B2861037 C5BCEEAE 74A360EB 9AF00B7F 74E9B89D

2292BCE1 DAD8A664 FC57C13C CA573096 1A5B6901 B3BD6B84 21F56E03 A138A97C 00EED8C4 F0B63DD7 2FEC95DA 8A162454 7B074F58 CF2BB5EB B0F40CFA 9CC5815A 11BE4EDA B7239FC9 21435047 1F919CB0 627 EF507 05E5F88A 10C7596F CAF6EE32 DB69CB9F EA1256A6 B9E15956 96C21B10 E996063D DEAAC406 24D85327 3D9B66FD F541240A 982A7698 62DA1E06 C20FA430 FD889AEF DDB0158E 66277459 E2CB1D5C EB86E39E B2861037 C5BCEEAE 74A360EB 9AF00B7F.

Block 2 has been processed. The values of $\left\{H_{i}\right\}$ are
$\mathrm{H}_{0}=\mathrm{F} 4286818+906 \mathrm{FD} 62 \mathrm{C}=84983 \mathrm{E} 44$
$\mathrm{H}_{1}=\mathrm{C} 37 \mathrm{~B} 27 \mathrm{AE}+58 \mathrm{COAACO}=1 \mathrm{C} 3 \mathrm{BD} 26 \mathrm{E}$
$\mathrm{H}_{2}=0408 \mathrm{~F} 581+$ B6A55520 $=$ BAAE4AA1
$\mathrm{H}_{3}=84677148+74 \mathrm{E} 9 \mathrm{~B} 89 \mathrm{D}=\mathrm{F} 95129 \mathrm{E} 5$
$\mathrm{H}_{4}=4 \mathrm{~A} 566572+9 \mathrm{AF00B7F}=\mathrm{E} 4670 \mathrm{~F} 1$.

Message digest $=84983 \mathrm{E} 44$ 1C3BD26E BAAE4AA1 F95129E5 E54670F1

APPENDIX C. A THIIRD SAMPLE MESSAGE AND ITS MESSAGE DIGEST

This appendix is for informational purposes only and is not required to meet the standard.
Let the message be the binary-coded form of the ASCII string which consists of $1,000,000$ repetitions of "a".

Message digest $=34$ AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F

0
-

0
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Official Business
Penalty for Private Use $\$ 300$

[^0]: ${ }^{1 "}$ The MD4 Message Digest Algorithm," Advances in Cryptology - CRYPTO '90 Proceedings, Springer-Verlag, 1991, pp. 303-311.

