
IE
E

E
 S

td
 1

0
7
6
-1

9
8
7

Recognized as an
American National Standard (ANSI) IEEE Std 1076-1987

IEEE Standard VHDL Language
Reference Manual

NAT'L INST. OF STAND & TECH R.LC. !

Communications Technology

Computer
Cosponsored by the
Design Automation Standards Subcommittee of the
Design Automation Technical Committee of the
IEEE Computer Society and by the
Automatic Test Program Generation Subcommittee of the
IEEE Standards Coordinating Committee 20

Electromagnetics and
Radiation

Energy and Power

Industrial Applications

Signals and
Applications

Standards
Coordinating
Committees

Published by the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017, USA.

March 31, 1988 SH11957

Recognized as an

American National Standard (ANSI)

IEEE Standard VHDL
Language Reference Manual

Sponsors

Design Automation Standards Subcommittee
of the

Design Automation Technical Committee
of the

IHHK Computer Society

and

Automation Test Program Generation Subcommittee
of the

IEEE Standards Coordinating Committee 20

Approved December 10,1987

IEEE Standards Board

Approved October 23,1989

American National Standards Institute

Copyright © 1988 by

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

IEEE
Std 1076-1987

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise,

without the prior written permission of the publisher.

(

{

Foreword

(This Foreword is not a part of IEEE Std 1076-1987, IEEE Standard VHDL Language Reference Manual.)

The VHDL standardization effort has been supported by volunteers with expertise in computer
systems design and manufacturing, aerospace, communications, CAD tool development, IC
model development and other areas. The names of the participants in the VASG meetings are
given in the preface. Many of the VASG volunteers have made major contributions to the
analysis of VHDL requirements, the analysis of language issues, and the review of the design
of the language.

The final language design presented in this document is the result of the efforts of Erich
Marschner and Moe Shahdad, the principal designers of VHDL. Their hard work and
professionalism contributed significantly to the final result. Their dedication is to be
applauded.

Ronald Waxman Larry Saunders
Chairperson, DASS Chairperson, VASG

Preface

(This Preface is not a part of IEEE Std 1076-1987, IEEE Standard VHDL Language Reference Manual.)

The VHSIC Hardware Description Language (VHDL) is a formal notation intended for use in
all phases of the creation of electronic systems. Because it is both machine readable and
human readable, it supports the development, verification, synthesis, and testing of hardware
designs, the communication of hardware design data, and the maintenance, modification,
and procurement of hardware.

Development of IEEE Standard VHDL

IEEE Standard VHDL was developed through the work of the VHDL Analysis and
Standardization Group (VASG), a working group within the Design Automation Standards
Subcommittee (DASS) of the Design Automation Technical Committee (DATC) of the Computer
Society of the IEEE. The work of the VASG was jointly sponsored by the DATC and by the
Automatic Test Program Generation (ATPG) subcommittee of the IEEE Standards
Coordinating Committee 20 (SCC20). Mr. Larry Saunders is the Chairman of the VASG; Mr.
Ron Waxman is Chairman of the DASS; Mr. A1 Lowenstein is the Chairman of the ATPG
subcommittee.

The standardization of VHDL began in February 1986 with the adoption of VHDL version 7.2,
described below, as the baseline language. In order to assist the voluntary standardization
process of the IEEE, the Air Force Wright Aeronautical Laboratories contracted with CAD
Language Systems Inc. (CLSI) to support the IEEE in the analysis of VHDL language issues,
extension of the baseline language, and preparation of the draft and final definitions of the
IEEE Standard VHDL. This work was performed under contracts F33615-82-C-1716 and
F33615-86-C-1050.

CLSI prepared a series of analysis and recommendation reports, which were presented to the
VASG at eight industry meetings over a period of nine months. A draft standard was issued at
the end of 1986, and following a review, a second draft was issued and balloted in mid-1987.
The resulting standard reflects the adoption of recommendations made by CLSI, by members
of the VASG, and by others who contributed to the standardization effort.

The CLSI Project Manager for the IEEE standardization effort was Dr. Moe Shahdad, and the
CLSI Technical Lead for the development of IEEE Standard VHDL was Mr. Erich Marschner.
The Air Force point of contact for the IEEE VHDL standardization effort was Dr. John Hines.
Ron Waxman, Chairman of the DASS, was the IEEE coordinator.

Many individuals from many different organizations participated in the development of IEEE
Standard VHDL. In particular, the following people attended meetings of the VASG:

Dean Anderson
Kevin Anderson
Larry Anderson
Jim Armstrong
Lisa Asher
James Aylor
Jwahar Bammi
Peter Barck
Daniel Barclay

Dave Barton
Bill Beck
Victor Berman
Ken Caron
Hal Carter
Marc Casad
Moon Jung Chung
Patti Cochran
Dave Coelho

Doug Dunlop
Cathy Edwards
Thomas Elliot
Mike Endrizzi
Dave Evans
Deborah Frauenfelder
Mark Glewwe
Prabhu Goel
William Guzek

JefTHaefTele
Charlie Haynes
John Hines
Mike Hirasuna
Ray Hookway
Ching Hsiao
Paul Hubbard
Youm Huh
John Jensen

Bob Johnson Ellen Mickanin Bob Powell Tim Thorp

Susan Johnston Kieu Mien Le Kim Rawlinson Tuan Tran

George Konstantinow Dwight Miller Joel Rodriguez Stan Wagner

Stan Krolikoeki Kent Mofiat Cary Sandvig Rich Wallace

Rick Lazansky Bob Morris Larry Saunders Karen Watkins

Jean Lester Jim Morris Lowell Savage Ron Waxman

Roger Lipsett Dan Nash Tim Saxe Isaiah White

Shin-ming Liu John Newkirk Dick Schlotfeldt Greg Winter

A1 Lowenstein Tim Noble Peggy Schmidt Craig Winton

Bruce Lundeby Ghulam Nurie Ken Scott Dan Youngbauer

Mark Macke Leslie Orlidge Moe Shahdad

Robert Mackey Ed Ott Arina Shainski
Erich Marschner Thomas Panfil Alec Stanculescu

Paul Menchini Steve Piatz Stephen Sutherland

Lynn Meredith Signe Poet Tom Tempero

Jean Mermet Jean Pouilly Jacques Tete

IEEE Standard 1076-1987 is being maintained by the VHDL Analysis and Standardization
Group, a working group of the Design Automation Standards Subcommittee. This group has
been established to resolve issues that may arise with the language and to consider potential
extensions to the language. The working documents generated by the VASG will be available
from the Computer Society Standards Secretariat, Computer Society of the IEEE, 1730
Massachusetts Ave. N.W., Washington, DC 20036, 202-371-0101, and also from the Computer
Societv Secretariat, IEEE Standards Office, 345 East 47th Street, New York, NY 10017, 212-705-
7°C0. The working documents are not formally approved documents; however, they do reflect
current status of the working group's direction. If you have an interest in the issues related to
this standard, please contact the Chair of the VASG.

Documents Relating to IEEE Standard VHDL

In addition to this standard, a number of other documents were developed during the
standardization activity. These include:

• The Proceedings of the VHDL Analysis and Standardization Group. These
Proceedings include the VASG Analysis and Recommendation reports prepared by
CLSI and the minutes of the VASG meetings.

• The IEEE Standard VHDL Language Refinement Rationale. The Language
Refinement Rationale explains the reasons for the adopted changes, both as
compared to the baseline language (VHDL 7.2) and as compared to other changes that
were proposed but not adopted.

• The IEEE Standard VHDL Tutorial. The Tutorial makes extensive use of real
hardware design examples to present the language in terms of its relevance to
hardware design problems.

The Tutorial also illustrates how information expressed in the Electronic Design Interchange
Format (EDIF) can be represented within VHDL. These documents are available from CLSI.

Conventions Used in This Standard

The form of a VHDL description is described by means of context-free syntax together with
context-dependent syntactic and semantic requirements expressed by narrative rules. The
context free syntax of the language is described using a simple variant of Backus-Naur Form,
in particular:

(a) Lower case words, some containing embedded underlines, are used to denote
syntactic categories, for example:

formal_port_list

Whenever the name of a syntactic category is used, apart from the syntax rules
themselves, spaces take the place of underlines (thus; formal port list).

(b) Boldface words are used to denote reserved words, for example:

array

(c) A vertical bar separates alternative items unless it occurs immediately after an
opening brace, in which case it stands for itself:

letter_or_digit ::= letter I digit

choices ::= choice { I choice)

(d) Square brackets enclose optional items, thus the two following rules are equivalent:

return_statement ::= return [expression];

return_statement ::= return; I return expression;

(e) Braces enclose a repeated item. The item may appear zero or more times; the
repetitions occur from left to right as with an equivalent left-recursive rule. Thus the
following two rules are equivalent:

term ::= factor 1[multiplying_operator factor)

term :;= factor I term multiplying_operator factor

(f) If the name of any syntactic category starts with an italicized part, it is equivalent to
the category name without the italicized part. The italicized part is intended to
convey some semantic information. For example, <ype_name and subtype_x\aime
are both equivalent to name alone.

(g) An italicized term in the text indicates definition of that term.

(h) The term simple_name is used for any occurrence of an identifier that already
denotes some declared entity.

Some sections of this standard contain examples and notes. Examples are meant to illustrate
the possible forms of the construct described. Notes are meant to emphasize consequences of the
rules described in the section or elsewhere. Examples and notes are not part of the definition of
the language.

Development of VHDL version 1.2

The development of the VHDL version 7.2 language and support environment were sponsored
by the US Air Force under contract F33615-83-C-1003, and commenced in August 1983.
Intermediate versions of the language definition were reviewed extensively by the
Government, as well as by industry and academia, at various points during the development
program. The results of these reviews, as well as feedback from within the contractor team
resulting from the tool implementations, resulted in VHDL version 7.2.

The team of companies developing VHDL consisted of Intermetrics, International Business
Machines, and Texas Instruments, with Intermetrics as the prime contractor. The overall
VHDL program manager was Roger Lipsett of Intermetrics. Moe Shahdad of Intermetrics was
the chief language designer for the VHDL language definition effort. Erich Marschner of
Intermetrics provided many of the creative ideas embodied in the language definition. Other
major contributions were made by Howard Cohen, Doug Dunlop, Alfred Gilman, and Kellye
Sheehan of Intermetrics; by Dave Ackley and Don Newman of Texas Instruments; by Leon
Maissel, Larry Saunders, and Ron Waxman of International Business Machines; and by
Hillel Ofek of Silvar-Lisco.

Many other individuals contributed to the result with their comments, suggestions, and
criticism, both as part of internal language reviews and during coding of the benchmarks.
These people included: P. Belmont, M. Brown, W. Carlson, J. Crowley, F. Deitz, V.
Donaldson, M. Eskew, M. Gordon, E. Hassler, W. Johnson, C. Kronke, L. McCalla, K.
Michael, H. Mills, A. Savkar, C. Scarratt, C. Schaefer, E. Skuldt, E. Wasser, and R. Winter.

Finally, much assistance and guidance were provided by John Carnegie, the Texas
Instruments VHDL Program Manager, and Phil Johnson, the International Business
Machines VHDL Program Manager, as well as Capt. Allen M. Dewey, the COTR for the Air
Force, and the VHDL Tri-Service Committee.

Documents Relating to VHDL 7.2

The VHDL 7.2 Language Reference Manual is a formal description of VHDL version 7.2.
Other documents that accompany the Language Reference Manual and describe the
capabilities of the language with different emphasis are:

• The VHDL User's Manual, containing a VHDL tutorial, a VHDL reference guide,
examples of benchmarks coded in VHDL, and a set of usage scenarios showing the
ways in which the VHDL system may be employed to perform a variety of functions.

• The VHDL Design Analysis and Justification, which discusses key language
design decisions and justifies the choices made.

Certain VHDL constructs are either directly taken from Ada^ or resemble those of Ada. A
discussion of similarities and differences between Ada and VHDL is provided as part of the
Design Analysis and Justification Document.

1 Ada is a trademark of the US DoD.

The following persons were on the balloting committee that approved this document for
submission to the IEEE Standards Board:

Donald H. Abemathie Don Fraser Arthur E. Levy William E. Russell, Jr
Guy Adam Hingsum S. Fung Jeff Lewis Roy L. Russo

Gordon Adshead Daniel Gale John Lewis Jere L. Sanbum
Harvey Alperin Daniel Garvin Charles W. Lillie Albert Sanson
Kenneth Anderson Sumit Ghosh Dan Lorts Debabrata Sarma

James R. Armstrong Gerald Ginsberg David B. Loveman Paul R. Saucier
Lisa R. Asher Michael J. Gooding A1 Lowenstein Larry Saunders
Morris Balamut Donald F. Gorman Joseph F. P. Luhukay Lowell Savage

Peter E. Barck John Graham Chidchanok Lursinsap Anil D. Savkar
Daniel S. Barclay Arnold Greenspan Leon 1. Maissel Helmut Scheibenzuber
David Barton T. Winston Griflin Fred Malver Warren M. Scheinin
Joseph C. Batz J. Steven Grout Erich Marschner Steven Schlosser
Rodolfo Betancourt Hans Grundner Arthur J. Mason Dick Schlotfeld
William D. Billowitch Jeffrey Haeffele Lawrence Mature Moe Shahdad

Lester 1. Birman Arthur Hann Michael C. McFarland Ravi Shankar
Richard J. Bonneau Fred H. Harder Robert J. McGowen William H. Sherwood
Douglas B. Boyle Michael G. Harrison Paul J. Menchini Isao Shirakawa

Craig A. Brown Raymond L. Hasenstab Jean Mermet Sajjan G. Shiva
R. Scott Brunton Raymond L. Heather Alexander Miezo Ronald J. Short
Antonius Bunsen Robert Heatherington Viju Monie David M. Siefert
Raul Camposano Kenneth E. Hermance Kris Moorthi James E. Sigler
Lawrence Carpenter Jack Hilibrand David Morris Gabriel M. Silberman
William N. Carr John Hines Robert Morris Evangelos Simoudis
Harold W. Carter Michael Hirasuna John W. Mowery Alec Stanculescu
Michael T. Carter Raymond Hookway Lawrence J. O'Connell Richard Summar
Ralph Cavin III Paul W. Horstmann Eckhard Obel Tom H. Tabb
Edmund Cheng Ching Hsiao Roy Oishi Jacques Tete
Charles R. Childress Paul E. Hubbard Leslie A. Orlidge Tim L. Thorp
Shiu-Kai Chin Youm Huh Catherine Ozenfant Robert Tieche
James B. Clary John E. Jensen Rich Palmer William C. Topf
David Coelho Robert Johnson Alice C. Parker Tuan Tran
Frank Conforti Timothy V. Johnson Ken Parker Jack Trautman
Tedd Corman William A. Johnson Curtis Parks Steve Trimberger
James E. Cottrell Susan Johnston La tit Patnaik Joseph Tront
Scott H. Cravens Joe Kagenski Richard J. Patrick Richard W. Tucker
Mr Jack L. Cross Osamu Karatsu Frederick D. Petry Mark-Rene Uchida
Brian Dalio Helmuth M. Kaunzinger Steve Piatz Kenneth Van Bree
Michael W. Davis Eskil Kjelkerud Jean Pouilly Anthony A. F. Vogelpoel
Allen M. Dewey Berrie C. Knott Paolo Prinetto Rene J. Vuamoz
Bernd Dinklage Stanley Krolikoski Giorgio Puggelli L. W. Wagner
James Do Mike Kuzemchak Edward G. Pumphrey Ron Waxman
Gary Duggan Sonja V. Kval Richard Rath Richard J. Weger
Leo Egan, Jr. Tuvia Lamdan Kim Rawlinson John Michael Williams
Ludwig D. Eggermont Glen G. Langdon, Jr. James R. Reeder Ronald D. Williams
Bemd F. Eichenauer Robert P. Larsen Hassan K. Reghbati Craig Winton
Abdullah C. Erdal Lars-Olov Larsson Johannes Reh Chris J. Xydes
Wolf-Dieter Erdmann Edwin Law Daniel Rosenkrantz Jon J. Yerger
Jim Flournoy Rick Lazansky Donald E. Rudisill George W. Zobrist

When the IEEE Standards Board approved this standard on December 10,1987, it had the following
membership:

Donald C. Fleckenstein, Chairman Marco W. Migliaro, Vice Chairman

Andrew G. Salem, Secretary

James H. Beall
Dennis Bodson
Marshall L. Cain
James M. Daly
Stephen R. Dillon
Eugene P. Fogarty
Jay Forster
Kenneth D. Hendrix
Irvin N. Howell

Leslie R. Kerr
Jack Kinn
Irving Kolodny
Joseph L. Koepfmger*
Edward Lohse
John May
Lawrence V. McCall
L. Bruce McClung
Donald T. Michael’

L. John Rankine
John P. Riganati
Gary S. Robinson
Frank L. Rose
Robert E. Rountree
Sava I. Sherr*
William R. Tackaberry
William B. Wilkens
Helen M. Wood

Member emeritus

Contents

CHAPTER 1 DESIGN ENTITIES AND CONFIGURATIONS

1.1 Entity Declarations . 1-1
1.1.1 Entity Header. 1-2
1.1.1.1 Generics . 1-3
1.1.1.2 Ports . 1-3
1.1.2 Entity Declarative Part. 1-4
1.1.3 Entity Statement Part . 1-5
1.2 Architecture Bodies. 1-6
1.2.1 Architecture Declarative Part . 1-7
1.2.2 Architecture Statement Part. 1-7
1.3 Configuration Declarations. 1-9
1.3.1 Block Configuration . 1-10
1.3.2 Component Configuration. 1-12

CHAPTER 2 SUBPROGRAMS AND PACKAGES

2.1 Subprogram Declarations . 2-1
2.1.1 Formal Parameters . 2-2
2.1.1.1 Constant and Variable Parameters . 2-2
2.1.1.2 Signal Parameters . 2-3
2.2 Subprogram Bodies . 2-4
2.3 Subprogram Overloading . 2-5
2.3.1 Operator Overloading . 2-6
2.4 Resolution Functions . 2-7
2.5 Package Declarations . 2-8
2.6 Package Bodies . 2-10
2.7 Conformance Rules . 2-11

CHAPTER 3 TYPES

3.1 Scalar Types . 3-2
3.1.1 Enumeration Types . 3-3
3.1.1.1 Predefined Enumeration Types . 3-3
3.1.2 Integer Types . 3-4
3.1.2.1 Predefined Integer Types . 3-5
3.1.3 Physical Types . 3-5
3.1.3.1 Predefined Physical Types . 3-7
3.1.4 Floating Point Types. 3-7
3.1.4.1 Predefined Floating Point Types . 3-8

3.2 Composite Types . 3-8
3.2.1 Array Types. 3-8
3.2.1.1 Index Constraints and Discrete Ranges . 3-10
3.2.1.2 Predefined Array Types . 3-12
3.2.2 Record Types. 3-13
3.3 Access Types . 3-13
3.3.1 Incomplete Type Declarations . 3-14
3.3.2 Allocation and Deallocation of Objects . 3-15
3.4 File Types . 3-16
3.4.1 File Operations . 3-16

CHAPTER 4 DECLARATIONS

4.1 Type Declarations . 4-1
4.2 Subtype Declarations... 4-2
4.3 Objects . 4-3
4.3.1 Object Declarations . 4-4
4.3.1.1 Constant Declarations . 4-4
4.3.1.2 Signal Declarations . 4-5
4.3.1.3 Variable Declarations . 4-7
4.3.2 File Declarations. 4-7
4.3.3 Interface Declarations. 4-8
4.3.3.1 Interface Lists . 4-10
4.3.3.2 Association Lists. 4-11
4.3.4 Alias Declarations . 4-13
4.4 Attribute Declarations . 4-14
4.5 Component Declarations . 4-15

CHAPTER 5 SPECIFICATIONS

5.1 Attribute Specification . 5-1
5.2 Configuration Specification. 5-3
5.2.1 Binding Indication . 5-4
5.2.1.1 Entity Aspect. 5-4
5.2.1.2 Generic Map and Port Map Aspects . 5-5
5.2.2 Default Binding Indication . 5-6
5.3 Disconnection Specification . 5-7

CHAPTER 6 NAMES

6.1 Names . 6-1
6.2 Simple Names . 6-2
6.3 Selected Names . 6-2
6.4 Indexed Names . 6-3
6.5 Slice Names . 6-4
6.6 Attribute Names . 6-4

CHAPTER 7 EXPRESSIONS

7.1 Expressions . 7-1
7.2 Operators . 7-2
7.2.1 Logical Operators . 7-2
7.2.2 Relational Operators. 7-3
7.2.3 Adding Operators . 7-4
7.2.4 Multiplying Operators . 7-6
7.2.5 Miscellaneous Operators . 7-7
7.3 Operands . 7-8
7.3.1 Literals . 7-8
7.3.2 Aggregates . 7-9
7.3.2.1 Record Aggregates. 7-10
7.3.2.2 Array Aggregates. 7-10
7.3.3 Function Calls . 7-11
7.3.4 Qualified Expressions . 7-12
7.3.5 Type Conversions . 7-12
7.3.6 Allocators . 7-14
7.4 Static Expressions . 7-15
7.5 Universal Expressions . 7-17

CHAPTER 8 SEQUENTIAL STATEMENTS

8.1 Wait Statement . 8-1
8.2 Assertion Statement. 8-2
8.3 Signal Assignment Statement . 8-3
8.3.1 Updating a Projected Output Waveform. 8-4
8.4 Variable Assignment Statement . 8-6
8.4.1 Array Variable Assignments . 8-7
8.5 Procedure Call Statement. 8-7
8.6 If Statement. 8-8
8.7 Case Statement. 8-8
8.8 Loop Statement . 8-9
8.9 Next Statement. 8-10
8.10 Exit Statement. 8-10
8.11 Return Statement . 8-11
8.12 Null Statement. 8-11

CHAPTER 9 CONCURRENT STATEMENTS

9.1 Block Statement. 9-1
9.2 Process Statement . 9-3
9.2.1 Drivers . 9-4
9.3 Concurrent Procedure Call . 9-4
9.4 Concurrent Assertion Statement. 9-5
9.5 Concurrent Signal Assignment Statements . 9-6
9.5.1 Conditional Signal Assignment . 9-8
9.5.2 Selected Signal Assignment . 9-9
9.6 Component Instantiation Statement. 9-10
9.6.1 Instantiation of a Component . 9-11
9.7 Generate Statement. 9-13

CHAPTER 10 SCOPE AND VISmiLITY

10.1 Declarative Regions . 10-1
10.2 Scope of Declarations. 10-2
10.3 Visibility . 10-3
10.4 Use Clauses. 10-5
10.5 The Context of Overload Resolution . 10-6

CHAPTER 11 DESIGN UNITS AND THEIR ANALYSIS

11.1 Design Units . 11-1
11.2 Design Libraries . 11-2
11.3 Context Clauses . 11-3
11.4 Order of Analysis . 11-3

CHAPTER 12 ELABORATION AND EXECUTION

12.1 Elaboration of a Design Hierarchy. 12-1
12.2 Elaboration of a Block Header . 12-2
12.2.1 The Generic Clause . 12-2
12.2.2 The Generic Map Clause . 12-2
12.2.3 The Port Clause. 12-2
12.2.4 The Port Map Clause . 12-2
12.3 Elaboration of a Declarative Part. 12-3
12.3.1 Elaboration of a Declaration . 12-3
12.3.1.1 Subprogram Declarations and Bodies. 12-3
12.3.1.2 Type Declarations . 12-3
12.3.1.3 Subtype Declarations . 12-4
12.3.1.4 Object Declarations. 12-4
12.3.1.5 Alias Declarations . 12-5
12.3.1.6 Attribute Declarations. 12-5
12.3.1.7 Component Declarations. 12-5
12.3.2 Elaboration of a Specification. 12-5
12.3.2.1 Attribute Specifications . 12-5
12.3.2.2 Configuration Specifications. 12-6
12.3.2.3 Disconnection Specifications . 12-6
12.4 Elaboration of a Statement Part. 12-6
12.4.1 Block Statements . 12-7
12.4.2 Generate Statements . 12-7
12.4.3 Component Instantiation Statements . 12-8
12.4.4 Other Concurrent Statements . 12-8
12.5 Dynamic Elaboration . 12-8
12.6 Execution of a Model . 12-9
12.6.1 Propagation of Signal Values. 12-9
12.6.2 Updating Implicit Signals . 12-12
12.6.3 The Simulation Cycle. 12-13

CHAPTER 13 LEXICAL ELEMENTS

13.1 Character Set . 13-1
13.2 Lexical Elements, Separators, and Delimiters . 13-3
13.3 Identifiers . 13-4
13.4 Abstract Literals . 13-4
13.4.1 Decimal Literals . 13-4
13.4.2 Based Literals . 13-5
13.5 Character Literals . 13-6
13.6 String Literals . 13-6
13.7 Bit String Literals . 13-7
13.8 Comments . 13-7
13.9 Reserved Words . 13-8
13.10 Allowable Replacements of Characters . 13-10

CHAPTER 14 PREDEFINED LANGUAGE ENVIRONMENT

14.1 Predefined Attributes . 14-1
14.2 Package STANDARD . 14-9
14.3 Package TEXTIO . 14-11

APPENDIX A SYNTAX SUMMARY

APPENDIX B GLOSSARY

’L

Y

' • ' • t..]

!t* -iKil:'!'

V-

I

'1"^!

IEEE
Std 1076-1987

CHAPTER 1

DESIGN ENTITIES AND CONFIGURATIONS

The design entity is the primary hardware abstraction in VHDL. It represents a portion of a
hardware design that has well-defined inputs and outputs and performs a well-defined
function. A design entity may represent an entire system, a sub-system, a board, a chip, a
macro-cell, a logic gate, or any level of abstraction in between. A configuration can be used to
describe how design entities are put together to form a complete design.

A design entity may be described in terms of a hierarchy of blocks, each of which represents a
portion of the whole design. The top-level block in such a hierarchy is the design entity itself;
such a block is an external block that resides in a library and may be used as a component of
other designs. Nested blocks in the hierarchy are internal blocks, defined by block statements
(see Section 9.1).

A design entity may also be described in terms of interconnected components. Each
component of a design entity may be bound to a lower-level design entity in order to define the
structure or behavior of that component. Successive decomposition of a design entity into
components, and binding of those components to other design entities that may be decomposed
in like manner, results in a hierarchy of design entities representing a complete design. Such
a collection of design entities is called a design hierarchy. The bindings necessary to identify
a design hierarchy can be specified in a configuration of the top-level entity in the hierarchy.

This chapter describes the way in which design entities and configurations are defined. A
design entity is defined by an entity declaration together with a corresponding architecture
body. A configuration is defined by a configuration declaration.

1.1 Entity Declarations

An entity declaration defines the interface between a given design entity and the environment
in which it is used. It may also specify declarations and statements that are part of the entity.
A given entity declaration may be shared by many design entities, each of which has a
different architecture. Thus an entity declaration can potentially represent a class of design
entities, each with the same interface.

entity_declaration ;:=
entity identifier is

entity _header
entity _declarative_part

[begin
entity_statement_part]

end [en^j7y_simple_name] ;

1-1

IEEE
Std 1076-1987 CHAPTER 1

The entity header and entity declarative part consist of declarative items that pertain to each
design entity whose interface is defined by the entity declaration. The entity statement part, if
present, consists of concurrent statements that are present in each such design entity.

If a simple name appears at the end of an entity declaration, it must repeat the identifier of the
entity declaration.

1.1.1 Entity Header

The entity header declares objects used for communication between a design entity and its
environment.

entity_header ::=
[/brmaZ_generic_clause]
[/brmaZ_port_clause]

generic_clause ::=
generic (generic_list) ;

port_clause ::=
port (port_list);

The generic list in the formal generic clause defines generic constants whose values may be
determined by the environment. The port list in the formal port clause defines the input/output
ports of the design entity.

In certain circumstances, the names of generic constants and ports declared in the entity
header become visible outside of the design entity (see Sections 10.2 and 10.3).

Examples:

— an entity declaration with port declarations only:

entity Full_Adder is
port (X, Y, Cin: in Bit; Gout, Sum: out Bit);

end Full_Adder ;

— an entity declaration with generic declarations also:

entity AndGate is
generic

(N: Natural := 2);
port

(Inputs: in Bit_Vector (1 to N);
Result: out Bit) ;

end AndGate ;

— an entity declaration with neither:

entity TestBench is
end TestBench ;

1-2

DESIGN ENTITIES AND CONFIGURATIONS
IEEE

Std 1076-1987

l.l.l.l Generics

Generics provide a channel for static information to be communicated to a block from its
environment. The following applies to both external blocks defined by design entities and to
internal blocks defined by block statements.

generic_list ::= jgeneric_interface_list

The generics of a block are defined by a generic interface list; interface lists are described in
Section 4.3.3.1. Each interface element in such a generic interface list declares a formal
generic.

The value of a generic constant may be specified by the corresponding actual in a generic
association list. If no such actual is specified for a given formal generic, and if a default
expression is specified for that generic, the value of this expression is the value of the generic.
It is an error if no actual is specified for a given formal generic and no default expression is
present in the corresponding interface element.

Note:

Generics may be used to control structural, dataflow, or behavioral characteristics of a block,
or may simply be used as documentation. In particular, generics may be used to specify the
size of ports, the number of subcomponents within a block, the timing characteristics of a block,
or even the physical characteristics of a design such as temperature, capacitance, locatioti, etc.

1.1.1.2 Ports

Ports provide channels for dynamic communication between a block and its environment.
The following applies to both external blocks defined by design entities and to internal blocks
defined by block statements.

port_list :;= porMnterface_list

The ports of a block are defined by a port interface list; interface lists are described in Section
4.3.3.1. Each interface element in the port interface list declares a formal port.

The ports of a block may be associated with signals in the environment in which the block is
used, in order to communicate with other blocks in that environment. A port is itself a signal
(see Section 4.3.1.2), thus a formal port of a block may be associated with a port of an enclosing
block. The port or signal associated with a given formal port is called the actual
corresponding to the formal port (see Section 4.3.3.2). The actual must be denoted by a static
name (see Section 6.1).

If, when a given description is completely elaborated (see Chapter 12), a formal port is
associated with an actual that is itself a port, then the following restrictions apply depending
upon the mode (see Section 4.3.3) of the formal port:

1. For a formal port of mode in,
the associated actual may only be a port of mode in, inout, or buffer.

2. For a formal port of mode out,
the associated actual may only be a port of mode out or inout.

1-3

IEEE
Std 1076-1987 CHAPTER 1

3. For a formal port of mode inout,
the associated actual may only be a port of mode inout.

4. For a formal port of mode buffer,
the associated actual may only be a port of mode buffer.

5. For a formal port of mode linkage,
the associated actual may be a port of any mode.

A buffer port may have at most one source (see Section 4.3.1.2). Furthermore, any actual
associated with a formal buffer port may have at most one source.

If a formal port is associated with an actual port or signal, then the formal port is said to be
connected. If a formal port is instead associated with the reserved word open, then the formal
is said to be unconnected. A port of mode in may be unconnected only if its declaration
includes a default expression (see Section 4.3.3). A port of any mode other than in may be
unconnected as long as its type is not an unconstrained array type.

1.1.2 Entity Declarative Part

The entity declarative part of a given entity declaration declares items that are common to all
design entities whose interfaces are defined by the given entity declaration.

entity_declarative_part ::=
{ entity_declarative_item }

entity_declarative_item :;=
subprogram_declaration

I subprogram_body
I type_declaration
I subtype_declaration
I constant_declaration
I signal_declaration
I file_declaration
I alias_declaration
I attribute_declaration
1 attribute_specification
I disconnection_specification
I use_clause

Names declared by declarative items in the entity declarative part of a given entity
declaration are visible within the bodies of corresponding design entities, as well as within
certain portions of a corresponding configuration declaration.

1-4

DESIGN ENTITIES AND CONFIGURATIONS
IEEE

Std 1076-1987

Example:

- an entity declaration with entity declarative items:

entity ROM is

part(Addr: in Word;
Data: out Word;
Sel: in Bit);

type Instruction is array (1 to 5) of Natural;

type Program is array (Natural range <>) of Instruction;

use Work.OpCodes.all, Work.RegisterNames.all;

constant ROM_Code: Program :=

(
(STM, R14, R12, 12, R13),
(LD, R7, 32, 0, R1),
(BAL, R14, 0, 0, R7),

• - etc.

);

end ROM;

1.1,3 Entity Statement Part

The entity statement part contains concurrent statements that are common to each design
entity with this interface.

entity_statement_part ::=
{ entity_statement)

entity_statement ::=
concurrent_assertion_statement

I passit;e_concurrent_procedure_call
I passi[;e_process_statement

Only concurrent assertion statements, concurrent procedure call statements, or process
statements may appear in the interface statement part. All such statements must be passive
(see Section 9.2). Such statements may be used to monitor the operating conditions or
characteristics of a design entity.

1-5

IEEE
Std 1076-1987 CHAPTER 1

Example:

- an entity declaration with statements:

entity Latch is

port(Din: in Word;
Dout: out Word;
Load: in Bit;
Clk: in Bit);

constant Setup: Time := 12ns;
constant PulseWidth: Time := 50 ns;

use Work.TimingMonitors.all;

begin
assert Clk='l' or Clk'Delayed'Stable (PulseWidth);
CheckTiming (Setup, Din, Load, Clk);

end;

1^ Architecture Bodies

An architecture body defines the body of a design entity. It specifies the relationships between
the inputs and outputs of a design entity, and may be expressed in terms of structure, dataflow,
or behavior. Such specifications may be partial or complete.

architecture_body ::=
architecture identifier of entityjaame is

architecture_declarative_part
begin

architecture_statement_part
end [architecture_%\mp\e_x\avae] ;

The identifier defines the simple name of the architecture body; this simple name
distinguishes architecture bodies associated with the same entity declaration.

The entity name identifies the name of the entity declaration that defines the interface of this
design entity. For a given design entity, both the entity declaration and the associated
architecture body must reside in the same library.

If a simple name appears at the end of an architecture body, it must repeat the identifier of the
architecture body.

More than one architecture body may exist corresponding to a given entity declaration. Each
declares a different body with the same interface, thus each together with the entity declaration
represents a different design entity with the same interface.

1-6

DESIGN ENTITIES AND CONFIGURATIONS
IEEE

Std 1076-1987

Note:

Two architecture bodies that are associated with different entity declarations may have the
same simple name, even if both architecture bodies (and the corresponding entity
declarations) reside in the same library.

1.2.1 Architectiu^ Declarative Part

The architecture declarative part contains declarations of items that are available for use
within the block defined by the design entity.

architecture_declarative_part ::=
{ block_declarative_item }

block_declarative_item ::=
subprogram_declaration

I subprogram_body
I type_declaration
I subtype_declaration
I constant_declaration
I signal_declaration
I file_declaration
I alias_declaration
I component_declaration
I attribute_deduration
I attribute_specification
I configuration_specification
I disconnection_specification
I use_clause

The various kinds of declaration are described in Chapter 4, Declarations, and the various
kinds of specification are described in Chapter 5, Specifications. The use clause, which makes
externally defined names visible within the block, is described in Chapter 10, Scope and
Visibility.

1.2.2 Architecture Statement Part

The architecture statement part contains statements that describe the internal organization
and/or operation of the block defined by the design entity.

architecture_statement_part ;:=
(concurrent_statement)

All of the statements in the architecture statement part are concurrent statements, which
execute asynchronously with respect to one another. The various kinds of concurrent
statements are described in Chapter 9, Concurrent Statements.

1-7

IEEE
Std 1076-1987 CHAPTER 1

Examples:

— a body of entity Full_Adder

architecture DataFlow of Full_Adder is
signal A,B; Bit;

begin
A<= Xxor Y;
B <= A and Cin;
Sum <= A xor Cin;
Gout <= B or (X and Y);

end DataFlow ;

- a body of entity TestBench

library Test;
use Test.Components.all;

architecture Structure of TestBench is

component Full_Adder
port (X, Y, Cin: Bit; Cout, Sum: out Bit);

signal A,B,C,D,E,F,G: Bit;
signal OK: Boolean;

begin

UUT:
Full_Adder

Generator:
AdderTest

Comparator:
AdderCheck

end Structure;

port map (A,B,C,D,E);

port map (A,B,C,F,G);

port map (D,E,F,G,OK);

-- a body of entity AndGate

architecture Behavior of AndGate is
begin

process (Inputs)
variable Temp: Bit;

begin
Temp := '1';
for i in Inputs'Range loop

if Inputs(i) = 'O' then
Temp := 'O';
exit;

end if;
end loop;
Result <= Temp after 10ns;

end process;

end Behavior;

1-8

DESIGN ENTITIES AND CONFIGURATIONS
IEEE

Std 1076-1987

L3 Configuration Declarations

The binding of component instances to design entities is performed by configuration
specifications (see Section 5.2); such specifications appear in the declarative part of the block
in which the corresponding component instances are created. In certain cases, however, it
may be appropriate to leave unspecified the binding of component instances in a given block,
and to defer such specification until later. A configuration declaration provides the
mechanism for specifying such deferred bindings.

configuration_declaration ::=
configuration identifier of entity jciamQ is

configuration_declarative_part
block_configuration

end [con/jf^um<ion_simple_name] ;

configuration_declarative_part ;:=
{ configuration_declarative_item }

configuration_declarative_item ::=
use_clause

I attribute_specification

The entity name identifies the name of the entity declaration that defines the design entity at
the apex of the design hierarchy. For a configuration of a given design entity, both the
configuration declaration and the corresponding entity declaration must reside in the same
library.

If a simple name appears at the end of a configuration declaration, it must repeat the identifier
of the configuration declaration.

Note:

A configuration declaration achieves its effect entirely through elaboration (see Chapter 12).
There are no dynamic semantics associated with a configuration declaration.

A given configuration may be used in the definition of another, more complex configuration.

Example:

— an architecture of a microprocessor;

architecture Structure_View of Processor is
component ALU port (...) end component;
component MUX port (...) end component;
component Latch port (...) end component;

begin
A1: ALU port map (...);
Ml: MUX port map (...);
M2: MUX port map (...);
M3: MUX port map (...);
LI: Latch port map (...);
L2: Latch port map (...);

end Structure_View ;

1-9

IEEE
Std 1076-1987 CHAPTER 1

— a configuration of the microprocessor:

library TTL, Work ;
configuration V4_27_87 of Processor is

use Work.all ;
for StructureView

for Al: ALU
use configuration TTL.SN74LS181 ;

end for;
for Ml,M2,M3: MUX

use entity Multiplex4 (Behavior);
end for;
for aU: Latch

-- use defaults
end for;

end for;
end V4_27_87 ;

1^.1 Block Configuration

A block configuration defines the configuration of a block. Such a block may be either an
internal block defined by a block statement or an external block defined by a design entity.

block_configuration ::=
for block_specification

{ use_clause)
{ configuration_item }

end for;

block_specification ::=
architecture _r\a.vc\Q

I block_statement_\aLhe\
I generate_statement_\abe\ [(index_specification)]

index_specification ::=
discrete_range

I s^a<ic_expression

configuration_item ::=
block_configuration

I component_configuration

The block specification identifies the internal or external block to which this block
configuration applies.

If a block configuration appears immediately within a configuration declaration, then the
block specification of that block configuration must be an architecture name, and that
architecture name must denote a design entity body whose interface is defined by the entity
declaration denoted by the entity name of the enclosing configuration declaration.

If a block configuration appears immediately within a component configuration, then the
corresponding components must be fully bound (see Section 5.2.1.1), the block specification of

1-10

DESIGN ENTITIES AND CONFIGURATIONS
IEEE

Std 1076-1987

that block configuration must be an architecture name, and that architecture name must
denote the same architecture body as that to which the corresponding components are bound.

If a block configuration appears immediately within another block configuration, then the
block specification of the contained block configuration must be a block statement or generate
statement label, and the label must denote a block statement or generate statement that is
contained immediately within the block denoted by the block specification of the containing
block configuration.

If the scope of a declaration (see Section 10.2) includes the end of the declarative part of a block
corresponding to a given block configuration, then the scope of that declaration extends to each
configuration item contained in that block configuration, with the exception of block
configurations that configure external blocks.

For any name that is the label of a block statement appearing within a given block, a
corresponding block configuration may appear as a configuration item within a block
configuration corresponding to the given block. For any collection of names that are labels of
instances of the same component appearing within a given block, a corresponding component
configuration may appear as a configuration item within a block configuration corresponding
to the given block.

For any name that is the label of a generate statement within a given block, one or more
corresponding block configurations may appear as configuration items within a block
configuration corresponding to the given block. Such block configurations apply to implicit
blocks generated by that generate statement. If such a block configuration contains an index
specification that is a discrete range, then the block configuration applies to those implicit
block statements that are generated for the specified range of values of the corresponding
generate index. If such a block configuration contains an index specification that is a static
expression, then the block configuration applies only to the implicit block statement generated
for the specified value of the corresponding generate index. If no index specification appears
in such a block configuration, then it applies to all implicit blocks generated by the
corresponding generate statement.

Within a given block configuration, an implicit block configuration is assumed to appear for
any block statement that appears within the block corresponding to the given block
configuration, if no explicit block configuration appears for that block statement. Similarly,
an implicit component configuration is assumed to appear for each component instance that
appears within the block corresponding to the given block configuration, if no explicit
component configuration appears for that instance. Such implicit configuration items are
assumed to appear following all explicit configuration items in the block configuration.

It is an error if, in a given block configuration, more than one configuration item is defined
for the same block or component instance.

Note:

As a result of the rules described above and in Chapter 10, a simple name that is visible by
selection at the end of the declarative part of a given block is also visible by selection within
any configuration item contained in a corresponding block configuration. If such a name is
directly visible at the end of the given block declarative part, it will likewise be directly visible
in the corresponding configuration items, unless a use clause for a different declaration with
the same simple name appears in the corresponding configuration declaration, and the scope
of that use clause encompasses all or part of those configuration items. If such a use clause

1-11

Stxi 1076-1987 CHAPTER 1

appears, then the name will be directly visible within the corresponding configuration items
except at those places that fall within the scope of the additional use clause (at which places
neither name will be directly visible).

If an implicit configuration item is assumed to appear within a block configuration, that
implicit configuration item will never contain explicit configuration items.

Examples:

— a block configuration for a design entity:

for Work.ShiftReg -- an architecture name
— configuration items
— for blocks and components
— within ShiftReg

end for;

— a block configuration for a block statement:

fijrBl — a block label
— configuration items
— for blocks and components
— within block B1

end for;

1.3.2 Component Configuration

A component configuration defines the configuration of one or more component instances in a
corresponding block.

component_configuration ::=
for component_specification

[use binding_indication ;]
[block_configuration]

end for;

The component specification (see Section 5.2) identifies the component instances to which this
component configuration applies. A component configuration that appears immediately
within a given block configuration applies to component instances that appear immediately
within the corresponding block.

It is an error if both an explicit configuration specification (in an architecture body) and a
component configuration containing a binding indication (in a configuration declaration)
apply to the same component instance.

If the component configuration contains a binding indication (see Section 5.2.1), then the
component configuration implies a configuration specification for the component instances to
which it applies. This implicit configuration specification has the same component
specification and binding indication as that of the component configuration.

If a given component instance is unbound in the corresponding block, then any explicit
component configuration for that instance that does not contain an explicit binding indication

1-12

DESIGN ENTITIES AND CONFIGURATIONS
IEEE

Std 1076-1987

will contain an implicit, default binding indication (see Section 5.2.2). Similarly, if a given
component instance is unbound in the corresponding block, then any implicit component
configuration for that instance will contain an implicit, default binding indication.

Within a given component configuration, whether implicit or explicit, an implicit block
configuration is assumed for the design entity to which the corresponding component instance
is bound, if no explicit block configuration appears and if the corresponding component
instance is fully bound.

Examples:

— a component configuration with binding indication:

for all: 10Port
use entity StdCells.PadTriState4 (StdCells.DataFlow)

port map (Pout=>A, Pin=>B, 10=>Dir, Vdd=>Pwr, Gnd=>Gnd) ;
end for;

— a component configuration containing block configurations:

for Dl: DSP
- binding specified in design entity or else defaults
for Filterer

— configuration items for filtering components
end for;
for Processor

- configuration items for processing components
end for;

end for;

1-13

IEEE
Std 1076-1987

CHAPTER 2

SUBPROGRAMS AND PACKAGES

Subprograms define algorithms for computing values or exhibiting behavior. They may be
used as computational resources to convert between values of different types, to define the
resolution of output values driving a common signal, or to define portions of a process.
Packages provide a means of defining these and other resources in a way that allows different
design units to share the same declarations.

There are two forms of subprogram: procedures and functions. A procedure call is a
statement; a function call is an expression and returns a value. The definition of a
subprogram can be given in two parts: a subprogram declaration defining its calling
conventions, and a subprogram body defining its execution.

Packages may also be defined in two parts. A package declaration defines the visible contents
of a package; a package body provides hidden details. In particular, a package body contains
the bodies of any subprograms declared in the package declaration.

2.1 Subprogram Declarations

A subprogram declaration declares a procedure or a function, as indicated by the initial
reserved word.

subprogram_declaration ::=
subprogram_specification ;

subprogram_specification ::=
procedure designator [(formal_parameter_list)]

I function designator [(formal_parameter_list)] return type_mark

designator ::= identifier I operator_symbol

operator_symbol ::= string_literal

The specification of a procedure specifies its designator and its formal parameters (if any).
The specification of a function specifies its designator, its formal parameters (if any), and the
subtype of the returned value (the result subtype). A procedure designator is always an
identifier. A function designator is either an identifier or an operator symbol. A designator
that is an operator symbol is used for the overloading of an operator. The sequence of
characters represented by an operator symbol must be an operator belonging to one of the six

2-1

IEEE
Std 1076-1987 CHAPTER 2

classes of operators defined in Section 7.2. Extra spaces are not allowed in an operator symbol,
and the case of letters is not significant.

Note:

All subprograms can be called recursively.

2.1.1 Formal Parameters

The formal parameter list in a subprogram specification defines the formal parameters of the
subprogram.

formal_parameter_list ::= parameier_interface_list

Formal parameters of subprograms may be constants, variables, or signals. In all three
cases, the mode of a parameter determines how a given formal parameter may be accessed
within the subprogram. The mode of a formal parameter, together with its class, may also
determine how such access must be implemented.

The only modes that are allowed for formal parameters of a procedure are in, inout, and out. If
the mode is in and no object class is explicitly specified, constant is assumed. If the mode is
inout or out, and no object class is explicitly specified, variable is assumed.

The only mode that is allowed for formal parameters of a function is the mode in (whether this
mode is specified explicitly or implicitly). The object class must be constant or signal. If no
object class is explicitly given, constant is assumed.

In a subprogram call, the actual designator associated with a formal parameter of class signal
must be a signal. The actual designator associated with a formal of class variable must be a
variable. The actual designator associated with a formal of class constant must be an
expression.

Note:

Attributes of an actual are never passed into a subprogram: references to an attribute of a
formal parameter are legal only if that formal has such an attribute, and such references
retrieve the value of the attribute associated with the formal.

2.1.1.1 Constant and Variable Parameters

For parameters of class constant or variable, only the values of the actual or formal are
transferred into or out of the subprogram call. Tbe manner of such transfers, and the
accompanying access privileges that are granted for constant and variable parameters, are
described in this section.

For a parameter of a scalar type or an access type, the parameter is passed by copy. At the start
of each call, if the mode is in or inout, the value of the actual parameter is copied into the
associated formal parameter. After completion of the subprogram body, if the mode is inout or
out, the value of the formal parameter is copied back into the associated actual parameter.

2-2

SUBPROGRAMS AND PACKAGES
IEEE

Std 1076-1987

For a parameter whose type is an array or record, an implementation may pass parameter
values by copy, as for scalar types. If a parameter of mode out is passed by copy, then the range
of each index position of the actual parameter must be copied in, and likewise for its
subelements. Alternatively, an implementation may achieve these effects by reference, that
is, by arranging that every use of the formal parameter (to read or update its value) be treated
as a use of the associated actual parameter, throughout the execution of the subprogram call.
The language does not define which of these two mechanisms is to be adopted for parameter
passing, nor whether different calls to the same subprogram are to use the same mechanism.
The execution of a subprogram is erroneous if its effect depends on which mechanism is
selected by the implementation.

For a (variable) parameter whose type is a file type, no particular parameter passing
mechanism is defined by the language, but a reference to the formal parameter must be
equivalent to a reference to the actual parameter. It is an error if an association element
associates an actual with a formal parameter of a file type and that association element
contains a type conversion function.

Note:

Within the body of a subprogram, a formal parameter is subject to any constraint resulting
from the subtype indication given in the parameter specification. For a formal parameter of
an unconstrained array type, the ranges of each index position are obtained from the actual
parameter, and the formal parameter is constrained by these ranges.

For parameters of array and record types, the parameter passing rules imply that if no actual
parameter of such a type is accessible by more than one path, then the effect of a subprogram
call is the same whether or not the implementation uses copying for parameter passing. If,
however, there are multiple access paths to such a parameter (for example, if another formal
parameter is associated with the same actual parameter), then the value of the formal is
undefined after updating the actual other than by updating the formal. A program using such
an undefined value is erroneous.

2.1.1.2 Signal Parameters

For a formal parameter of class signal, references to the signal, the driver of the signal, or
both, are passed into the subprogram call.

For a signal parameter of mode in or inout, the actual signal is associated with the
corresponding formal signal parameter at the start of each call. Thereafter, during the
execution of the subprogram body, a reference to the formal signal parameter within an
expression is equivalent to a reference to the actual signal.

It is an error if signal-valued attributes STABLE, QUIET, and DELAYED of formal signal
parameters of any mode are read within a subprogram.

A process statement contains a driver for each actual signal associated with a formal signal
parameter of mode out or inout in a subprogram call. Similarly, a subprogram contains a
driver for each formal signal parameter of mode out or inout declared in its subprogram
specification.

For a signal parameter of mode inout or out, the driver of an actual signal is associated with
the corresponding driver of the formal signal parameter at the start of each call. Thereafter,

2-3

IEEE
Std 1076-1987 CHAPTER 2

during the execution of the subprogram body, an assignment to the driver of a formal signal
parameter is equivalent to an assignment to the driver of the actual signal.

If an actual signal is associated with a signal parameter of any mode, the actual must be
denoted by a static signal name. It is an error if a type conversion function appears in either
the formal part or the actual part of an association element that associates an actual signal
with a formal signal parameter.

Note:

Within the body of a subprogram, a formal signal parameter is subject to any constraint
resulting from the subtype indication given in the parameter specification. For a formal
signal parameter of an unconstrained array type, the bounds are obtained from the actual
signal parameter, and the formal parameter is constrained by these bounds.

It is a consequence of the above rules that a procedure with an out or inout signal parameter
called by a process does not have to complete in order for any assignments to that signal
parameter within the procedure to take effect. Assignments to the driver of a formal signal
parameter are equivalent to assignments directly to the actual driver contained in the process
calling the procedure.

22, Subprogram Bodies

A subprogram body specifies the execution of a subprogram.

subprogram_body ::=
subprogram_specification is

subprogram_declarative_part
begin

subprogTam_statement_part
end [designator];

subprogram_declarative_part ::=
{ subprogram_declarative_item)

subprogram_declarative_item ;:=
subprogram_declaration

I subprogram_body
I type_declaration
I subtype_declaration
I constant_declaration
I variable_declaration
I file_declaration
I alias_declaration
I attribute_declaration
I attribute_specification
I use_clause

subprogram_statement_part :;=
{ sequential_statement)

2-4

SUBPROGRAMS AND PACKAGES
IEEE

Std 1076-1987

The declaration of a subprogram is optional. In the absence of such a declaration, the
subprogram specification of the subprogram body acts as the declaration. For each subprogram
declaration, there must be a corresponding body. If both a declaration and a body are given, the
subprogram specification of the body must conform (see Section 2.7) to the subprogram
specification of the declaration. Furthermore, both the declaration and the body must occur
immediately within the same declarative region.

If a designator appears at the end of a subprogram body, it must repeat the designator of the
subprogram.

The algorithm performed by a subprogram is defined by the sequence of statements that appear
in the subprogram statement part.

The execution of a subprogram body is invoked by a subprogram call. For this execution, after
establishing the association between the formal and actual parameters, the sequence of
statements of the body is executed. Upon completion of the body, return is made to the caller
(and any necessary copying back of formal to actual parameters occurs).

A process or a subprogram is said to be a parent of a given procedure if that process or
subprogram contains a procedure call statement for the given procedure or for a parent of the
given procedure.

If a function subprogram is a parent of a given procedure, and that procedure contains a
reference to a signal or variable object, then that object must be declared within the declarative
region associated with the function or within the declarative region associated with the
procedure. Similarly, if a function subprogram contains a reference to a signal or variable
object, then that object must be declared within the declarative region associated with the
function.

It follows from the visibility rules that a subprogram declaration must be given if a call of the
subprogram occurs textually before the subprogram body, and that such a declaration must
occur before the call itself

The above rules concerning function subprograms, together with the fact that function
parameters may only be of mode in, imply that a function has no effect other than the
computation of the returned value. Thus a function invoked explicitly as part of the
elaboration of a declaration, or one invoked implicitly as part of the simulation cycle, is
guaranteed to have no effect on other objects in the description.

23 Subprogram Overloading

Two formal parameter lists are said to have the same parameter type profile if and only if they
have the same number of parameters, and at each parameter position corresponding
parameters have the same base type. Two subprograms are said to have the same parameter
and result type profile if and only if both have the same parameter type profile, and either both
are functions with the same result base type, or neither of the two is a function.

A given subprogram designator can be used in several subprogram specifications. The
subprogram designator is then said to be overloaded; the designated subprograms are also said
to be overloaded and to overload each other. If two subprograms overload each other, one of
them can hide the other only if both subprograms have the same parameter and result type
profile.

2-5

IEEE
Std 1076-1987 CHAPTER 2

A call to an overloaded subprogram is ambiguous (and therefore illegal) if the name of the
subprogram, the number of parameter associations, the types and order of the actual
parameters, the names of the formal parameters (if named associations are used), and the
result type (for functions) are not sufficient to identify exactly one (overloaded) subprogram
specification.

Examples'. :
— declarations of overloaded subprograms:

procedure Write (F: inout Text; Value: Integer) ;
procedure Write (F: inout Text; Value: String);

procedure Check (Setup: Time; signal D: Data; signal C: Clock);
procedure Check (Hold: Time; signal C: Clock; signal D: Data);

- calls to overloaded subprograms:

Write (Sys_Output, 12) ;
Write (Sys_Error, "Actual output does not match expected output") ;

Check (Setup=>10ns, D=>Bus, C=>Clkl) ;
Check (Hold=>5ns, D=>Bus, C=>Clk2);
Check (15ns, Bus, Clk) ; — ambiguous if Data'Base = Clock'Base

Note:

The notion of parameter and result type profile does not include parameter names, parameter
classes, parameter modes, parameter subtypes, or default expressions or their presence or
absence.

Ambiguities may (but need not) arise when actual parameters of the call of an overloaded
subprogram are themselves overloaded function calls, literals, or aggregates. Ambiguities
may also (but need not) arise when several overloaded subprograms belonging to different
packages are visible. These ambiguities can usually be solved in two ways: qualified
expressions can be used for some or all actual parameters, and for the result, if any; or the
name of the subprogram can be expressed more explicitly as an expanded name (see Section
6.3).

2.3.1 Operator Overloading

The declaration of a function whose designator is an operator symbol is used to overload an
operator. The sequence of characters of the operator symbol must be one of the operators in the
six operator classes defined in Section 7.2.

The subprogram specification of a unary operator must have a single parameter. The
subprogram specification of a binary operator must have two parameters; for each use of this
operator, the first parameter is associated with the left operand, and the second parameter is
associated with the right operand.

For each of the operators "+" and overloading is allowed both as a unary operator and as a
binary operator.

2-6

SUBPROGRAMS AND PACKAGES
IEEE

Std 1076-1987

Note:

Overloading of the equality operator does not affect the selection of choices in a case statement
or in a selected signal assignment statement.

Overloading a short-circuit operator such as and does not imply that the function designated by
the operator symbol will be invoked in a short-circuit manner.

Functions that overload operator symbols may also be called using function call notation
rather than operator notation.

Examples.'

type MVL is ('O’, '1', 'Z', 'X') ;

function "and" (L,R: MVL) return MVL ;
function "or" (L,R: MVL) retiu’n MVL ;
function "not" (R: MVL) retiuTi MVL ;

signal Q,R,S: MVL ;

Q <= 'X' or '1';
R <= "or" (’0’,’Z'):
S <= (Q and R) or not S;

2.4 Resolution Functions

A resolution function is a function that defines how the values of multiple sources of a given
signal are to be resolved into a single value for that signal. Resolution functions are
associated with signals that require resolution by including the name of the resolution
function in the declaration of the signal or in the declaration of the subtype of the signal. A
signal with an associated resolution function is called a resolved signal (see Section 4.3.1.2).

A resolution function must have a single input parameter that is a one-dimensional,
unconstrained array whose element type is that of the resolved signal. The index subtype of
this array must be sufficient for the number of sources of any signal resolved with this
function. The type of the return value of the function must also be that of the signal.

The resolution function associated with a resolved signal determines the resolved value of the
signal as a function of the collection of inputs from its multiple sources. If a resolved signal is
of a composite type, and subelements of that type also have associated resolution functions, such
resolution functions have no effect on the process of determining the resolved value of the
signal.

Resolution functions are implicitly invoked during each simulation cycle in which
corresponding resolved signals are active (see Section 12.6.1). Each time a resolution
function is invoked, it is passed an array value, each element of which is determined by a
corresponding source of the resolved signal, but excluding those sources that are drivers whose
values are determined by null transactions (see Section 8.3.1). Such drivers are said to be off.
For certain invocations (specifically, those involving the resolution of sources of a signal
declared with the signal kind bus), a resolution function may thus be invoked with an input
parameter that is a null array; this occurs when all sources of the bus are drivers, and they are

2-7

IEEE
Std 1076-1987 CHAPTER 2

all off. In such a case, the resolution function must return a value representing the value of the
bus when no source is driving it.

Example:

function WIRED_OR (Inputs: BIT_VECTOR) return BIT is
constant FloatValue: BIT := 'O';

begin
if Inputs'Length = 0 then

- this is a bus whose drivers are all off
return FloatValue;

else
for I in Inputs'Range loop

if Inputs(I) = '!' then
return '!';

end if;
end loop;
return 'O';

end if;
end;

2.5 Package Declarations

A package declaration defines the interface to a package. The scope of a declaration within a
package can be extended to other design units.

package_declaration ::=
package identifier is

package_declarative_part
end [pac/5agc_simple_name] ;

package_declarative_part ::=
{ package_declarative_item }

package_declarative_item ::=
subprogram_declaration

I type_declaration
I subtype_declaration
I constant_declaration
I signal_declaration
I file_declaration
I alias_declaration
I component_declaration
I attribute_declaration
I attribute_specification
I disconnection_specification
I use_clause

If a simple name appears at the end of the package declaration, it must repeat the identifier of
the package declaration.

2-8

SUBPROGRAMS AND PACKAGES
IEEE

Std 1076-1987

Items declared within a package declaration become visible by selection within a given design
unit wherever the name of that package is visible in the given unit. Such items may also be
made directly visible by an appropriate use clause (see Section 10.4).

Note:

Not all packages will have a package body. In particular, a package body is unnecessary if no
subprograms or deferred constants are declared in the package declaration.

A subprogram written in another language can be made available by defining its interface via
a subprogram declaration within a package declaration that has no corresponding package
body. The body of such a subprogram must be associated with the declaration of its interface in
some implementation-dependent fashion. For example, built-in functions provided by a given
simulator might be declared in this manner. Foreign language subprograms declared in this
manner are assumed to implement the semantics implied by their interface declarations.

Examples:

- a package declaration that needs no package body:

package TimeConstants is
constant tPLH: Time
constant tPHL: Time
constant tPLZ; Time
constant tPZL: Time
constant tPHZ: Time
constant tPZH; Time

end TimeConstants ;

10ns;
12ns;
7ns;
8ns;
8ns;
9ns;

— a package declaration that may have a package body:

package TriState is

type Tri is ('O', '!', 'Z', 'E');

function BitVal (Value: Tri) return Bit;
function TriVal (Value: Bit) return Tri;

type TriVector is array (Natural range <>) of Tri;

function Resolve (Sources: TriVector) return Tri ;

end TriState ;

2-9

IEEE
Std 1076-1987 CHAPTER 2

2.6 Package Bodies

A package body defines the bodies of subprograms declared in the interface to the package or
the values of deferred constants declared in the interface to the package.

package_body ::=
package body pacfea^e_simple_name is

package_body_declarative_part
end [pac/5a^e_simple_name] ;

package_body_declarative_part ::=
{ package_body_declarative_item }

package_body_declarative_item ::=
subprogram_declaration

1 subprogram_body
I type_declaration
I subtype_declaration
I constant_declaration
I file_declaration
I alias_declaration
I use_clause

The simple name at the start of a package body must repeat the package identifier. If a simple
name appears at the end of the package body, it must be the same as the identifier in the package
declaration.

In addition to subprogram body and constant declarative items, a package body may contain
certain other declarative items to facilitate the definition of the bodies of subprograms declared
in the interface. Items declared in the body of a package cannot be made visible outside of the
package body.

If a given package declaration contains a deferred constant declaration (see Section 4.3.1.1),
then a constant declaration with the same identifier must appear as a declarative item in the
corresponding package body. This object declaration is called the full declaration of the
deferred constant. The subtype indication given in the full declaration must conform to that
given in the deferred constant declaration.

Within a package declaration that contains the declaration of a deferred constant, and within
the body of that package, before the end of the corresponding full declaration, the use of a name
that denotes the deferred constant is only allowed in the default expression for a local generic,
local port, or formal parameter. The result of evaluating an expression that references a
deferred constant before the elaboration of the corresponding full declaration is not defined by
the language.

2-10

SUBPROGRAMS AND PACKAGES
IEEE

Std 1076-1987

Example:

package body TriState is

function BitVal (Value: Tri) return Bit is
constant Bits : Bit_Vector := "0100";

begin
return Bits(Tri'Pos(Value));

end;

function TriVal (Value; Bit) return Tri is
begin

return Tri'Val(Bit'Pos(Value));
end;

function Resolve (Sources: TriVector) return Tri is
variable V: Tri := Z';

be^
for i in Sources'Range loop

if Sources(i) /= 'Z' then
if V = Z' then

V := Sources(i);
else

return 'E';
end if;

end if;
end loop;
return V;

end;

end TriState ;

2.7 Conformance Rules

Whenever the language rules either require or allow the specification of a given subprogram to
be provided in more than one place, the following variations are allowed at each place:

• A numeric literal can be replaced by a different numeric literal if and only if both
have the same value.

• A simple name can be replaced by an expanded name in which this simple name is
the selector, if and only if at both places the meaning of the simple name is given by
the same declaration.

Two subprogram specifications are said to conform if, apart from comments and the above
allowed variations, both specifications are formed by the same sequence of lexical elements,
and corresponding lexical elements are given the same meaning by the visibility rules.

Conformance is likewise defined for subtype indications in deferred constant declarations.

2-11

IEEE
Std 1076-1987

Note:

A simple name can be replaced by an expanded name even if the simple name is itself the
prefix of a selected name. For example, Q.R can be replaced by P.Q.R if Q is declared
immediately within P.

The following specifications do not conform since they are not formed by the same sequence of
lexical elements;

procedure P (X,Y : INTEGER)
procedure P (X: INTEGER; Y ; INTEGER)
procedure P (X,Y : in INTEGER)

2-12

IEEE
Std 1076-1987

CHAPTERS

TYPES

This chapter describes the various categories of types that are provided by the language as well
as those specific types that are predefined. The declarations of all predefined types are
contained in package STANDARD, the declaration of which appears in Chapter 14.

A type is characterized by a set of values and a set of operations. The set of operations of a type
includes the explicitly declared subprograms that have a parameter or result of the type. The
remaining operations of a type are the predefined operators (see Section 7.2). These operations
are each implicitly declared for a given type declaration, immediately after the type
declaration and before the next explicit declaration, if any.

There are four classes of types. Scalar types are integer types, floating point types, physical
types, and types defined by an enumeration of their values; values of these types have no
elements. Composite types are array and record types; values of these types consist of element
values. Access types provide access to objects of a given type. File types provide access to
objects that contain a sequence of values of a given type.

The set of possible values for an object of a given type can be subjected to a condition that is
called a constraint (the case where the constraint imposes no restriction is also included); a
value is said to satisfy a constraint if it satisfies the corresponding condition. A subtype is a
type together with a constraint; a value is said to belong to a subtype of a given type if it belongs
to the type and satisfies the constraint; the given type is called the base type of the subtype. A
type is a subtype of itself; such a subtype is said to be unconstrained', it corresponds to a
condition that imposes no restriction. The base type of a type is the type itself.

The set of operations defined for a subtype of a given type includes the operations defined for the
type; however, the assignment operation to an object having a given subtype only assigns
values that belong to the subtype. Additional operations, such as qualification (in a qualified
expression) are implicitly defined by a subtype declaration.

The term subelement is used in this manual in place of the term element to indicate either an
element, or an element of another element or subelement. Where other subelements are
excluded, the term element is used instead.

A given type must not have a subelement whose type is the given type itself

The name of a class of types is used in this manual as a qualifier for objects and values that
have a type of the class considered. For example, the term "array object" is used for an object
whose type is an array type; similarly, the term "access value" is used for a value of an access
type.

3-1

IEEE
Std 1076-1987 CHAPTER 3

Note:

The set of values of a subtype is a subset of the values of the base type. This subset need not be a
proper subset.

3.1 Scalar Types

Scalar types consist of enumeration types, integer types, physical types, and floating point
types. Enumeration types and integer types are called discrete types. Integer types, floating
point types, and physical types are called numeric types. All scalar types are ordered; that is,
all relational operators are predefined for their values. Each value of a discrete or physical
type has a position number which is an integer value.

scalar_type_definition ::=
enumeration_type_definition I integer_type_definition

I floating_type_definition I physical_type_definition

range_constraint ::= range range

range ::=
mnge_attribute_name

I simple_expression direction simple_expression

direction :;= to I downto

A range specifies a subset of values of a scalar type. A range is said to be a null range if the
specified subset is empty.

The range L to R is called an ascending range; if L > R, then the range is a null range. The
range L downto R is called a descending range; if L < R, then the range is a null range. The
smaller of L and R is called the lower bound, and the larger, the upper bound, of the range. The
value V is said to belong to the range if the relations {lower bound <= V) and (V <= upper bound)
are both true and the range is not a null range. The operators >, <, and <= in the above
definitions are the predefined operators of the applicable scalar type.

A value VI is said to be to the left of a value V2 within a given range if both VI and V2 belong to
the range and either the range is an ascending range and V2 is the successor of VI, or the
range is a descending range and V2 is the predecessor of VI. A list of values of a given range
is in left to right order if each value in the list is to the left of the next value in the list within that
range, except for the last value in the list.

If a range constraint is used in a subtype indication, the type of the expressions (likewise, of the
bounds of a range attribute) must be the same as the base type of the type mark of the subtype
indication. A range constraint is compatible with a subtype if each bound of the range belongs
to the subtype, or if the range constraint defines a null range. Otherwise, the range constraint
is not compatible with the subtype.

The direction of a range constraint is the same as the direction of its range.

Note:

Indexing and iteration rules use values of discrete types.

3-2

TYPES
IEEE

Std 1076-1987

3.1.1 Enumeration Types

An enumeration type definition defines an enumeration type.

enumeration_type_definition ;:=
(enumeration_literal { , enumeration_literal))

enumeration_literal ;:= identifier I character_literal

The identifiers and character literals listed by an enumeration type definition must be
distinct. Each enumeration literal specification is the declaration of the corresponding
enumeration literal.

An enumeration type is said to be a character type if at least one of its enumeration literals is a
character literal.

Each enumeration literal yields a different enumeration value. The predefined order
relations between enumeration values follow the order of corresponding position numbers.
The position number of the value of the first listed enumeration literal is zero; the position
number for each additional enumeration literal is one more than that of its predecessor in the
list.

If the same identifier or character literal is specified in more than one enumeration type
definition, the corresponding literals are said to be overloaded. At any place where an
overloaded enumeration literal occurs in the text of a program, the type of the enumeration
literal must be determinable from the context.

Each enumeration type definition defines an ascending range.

Examples:

type MULTI_LEVEL_LOGIC is (LOW, HIGH, RISING, FALLING, AMBIGUOUS) ;

type BIT is (’O',!') ;

type SWITCH_LEVEL is ('0V1',’X') ; - overloads '0' and '1'

3.1.1.1 Predefined Enumeration Types

The predefined enumeration types are CHARACTER, BIT, BOOLEAN, and
SEVERITY_LEVEL.

The predefined type CHARACTER is a character type whose values are the 128 characters of the
ASCII character set. Each of the 95 graphic characters of this character set is denoted by the
corresponding character literal.

The declarations of the predefined types CHARACTER, BIT, BOOLEAN, and
SEVERITY_LEVEL appear in package STANDARD in Chapter 14.

3-3

IEEE
Std 1076-1987 CHAPTER 3

Note:

The non-graphic elements of the predefined type CHARACTER are the ASCII abbreviations for
the non-printing characters in the ASCII set (except for those noted in Chapter 14).

Type BOOLEAN can be used to model either active high or active low logic depending on the
particular conversion functions chosen to and from type BIT.

3.1,2 Integer Types

An integer type definition defines an integer type whose set of values includes those of the
specified range.

integer_type_definition ::= range_constraint

An integer type definition defines both a type and a subtype of that type. The type is an
anonymous type, the range of which is selected by the implementation; this range must be such
that it wholly contains the range given in the integer type definition. The subtype is a named
subtype of this anonymous base type, where the name of the subtype is that given by the
corresponding type declaration and the range of the subtype is the given range.

Each bound of a range constraint that is used in an integer type definition must be a locally
static expression of some integer type, but the two bounds need not have the same integer type.
(Negative bounds are allowed.)

Integer literals are the literals of an anonymous predefined type that is called
universaljnteger in this manual. Other integer types have no literals. However, for each
integer type there exists an implicit conversion that converts a value of type universal_integer
into the corresponding value (if any) of the integer type (see Section 7.3.5).

The position number of an integer value is the corresponding value of the type
universal _integer.

The same arithmetic operators are predefined for all integer types (see Section 7.2). It is an
error if the execution of such an operation (in particular, an implicit conversion) cannot
deliver the correct result (that is, if the value corresponding to the mathematical result is not a
value of the integer type).

An implementation may restrict the bounds of the range constraint of integer types, other than
type universal_integer. However, an implementation must allow the declaration of any
integer type whose range is wholly contained within the bounds -2147483647 and -(-2147483647,
inclusive.

Examples:

type TWOS_COMPLEMENT_INTEGER is range -32768 to 32767;

type BYTE_LENGTH_INTEGER is range 0 to 255;

type WORD_INDEX is range 31 downto 0;

subtype HIGH_BIT_LOW is BYTE_LENGTH_INTEGER range 0 to 127;

3-4

TYPES
IEEE

Std 1076-1987

3.1.2.1 Predefined Integer Types

The only predefined integer type is the type INTEGER. The range of INTEGER is
implementation-dependent, but it is guaranteed to include the range -2147483647 to
-1-2147483647. It is defined with an ascending range.

Note:

The range of INTEGER in a particular implementation may be determined from the 'LOW
and 'HIGH attributes.

3.1^ Physical Types

Values of a physical type represent measurements of some quantity. Any value of a physical
type is an integral multiple of the base unit of measurement for that type.

physical_type_definition ::=
range_constraint

units
base_unit_declaration
{ secondary_unit_declaration)

end units

base_unit_declaration ::= identifier ;

secondary_unit_declaration ::= identifier = physical_literal ;

physical_literal ::= [abstract_literal] unii_name

A physical type definition defines both a type and a subtype of that type. The type is an
anonymous type, the range of which is selected by the implementation; this range must be such
that it wholly contains the range given in the physical type definition. The subtype is a named
subtype of this anonymous base type, where the name of the subtype is that given by the
corresponding type declaration and the range of the subtype is the given range.

Each bound of a range constraint that is used in a physical type definition must be a locally
static expression of some integer type, but the two bounds need not have the same integer type.
(Negative bounds are allowed.)

Each unit declaration (either the base unit declaration or a secondary unit declaration)
defines a unit name. Unit names declared in secondary unit declarations must be directly or
indirectly defined in terms of integral multiples of the base unit of the type declaration in
which they appear.

The abstract literal portion (if present) of a physical literal appearing in a secondary unit
declaration must be an integer literal.

A physical literal consisting solely of a unit name is equivalent to the integer 1 followed by the
unit name.

There is a position number corresponding to each value of a physical type. The position
number of the value corresponding to a unit name is the number of base units represented by

3-5

IEEE
Std 1076-1987 CHAPTER 3

that unit name. The position number of the value corresponding to a physical literal with an
abstract literal part is the largest integer that is not greater than the product of the value of the
abstract literal and the position number of the accompanying unit name.

The same arithmetic operations are predefined for all physical types (see Section 7.2). It is an
error if the execution of such an operation cannot deliver the correct result (that is, if the value
corresponding to the mathematical result is not a value of the physical type).

An implementation may restrict the bounds of the range constraint of a physical type.
However, an implementation must allow the declaration of any physical type whose range is
wholly contained within the bounds -2147483647 and +2147483647, inclusive.

Examples:

type TIME is range -1 El 8 to 1E18
units

fs; - femtosecond
ps = 1000 fs; - picosecond
ns = 1000 ps; - nanosecond
us = 1000 ns; - microsecond
ms = 1000 us; — millisecond
sec = 1000 ms; - second
min = 60 sec; — minute

end units;

type DISTANCE is range 0 tolEl6
imits
— base unit:

A; — angstrom
— metric lengths:

nm = lOA; — nanometer
um = 1000 nm; — micrometer (or micron)
m m = 1000 um; — millimeter
cm =10 mm; — centimeter
m = 1000 mm; — meter
km = 1000 m; — kilometer

— English lengths:
mil = 254000 A; — mil
inch = 1000 mil; - inch
ft =12 inch; - foot
yd = 3 ft; - yard
f m = 6 ft; - fathom
m i = 5280 ft; — mile
Ig =3 mi; - league

end units;

x; distance; y: time; z: integer;

X := 5A + 13ft - 27inch;
y := 3ns + 5 min;
z := ns / ps;
X := z * mi;

y := y/10;

3-6

TYPES
IEEE

Std 1076-1987

Note:

The above definitions imply that, if 1 is not in the range specified by the physical type
definition, then the name of the base unit standing alone is not a legal literal of the physical
type.

The POS and VAL attributes may be used to convert between abstract values and physical
values.

3.1.3.1 Predefined Physical Types

The only predefined physical is type TIME. The range of TIME is implementation-dependent,
but it is guaranteed to include the range -2147483647 to +2147483467. It is defined with an
ascending range. All specifications of delays must be of type TIME. The declaration of type
TIME appears in package STANDARD in Chapter 14.

By default, the base unit of type TIME (1 femtosecond) is the resolution limit for type TIME.
Any TIME values smaller than this limit are truncated to zero (0) time units. An
implementation may allow a given execution of a model (see Section 12.6) to select a secondary
unit of type TIME as the resolution limit. Furthermore, an implementation may restrict the
precision of the representation of values of type TIME and the results of expressions of type
TIME, provided that values as small as the resolution limit are representable within those
restrictions. It is an error if a given unit of type TIME appears anywhere within the design
hierarchy defining a model to be executed, and the position number of that unit is less than that
of the secondary unit selected as the resolution limit for type TIME during the execution of the
model.

Note:

By selecting a secondary unit of type TIME as the resolution limit for type TIME, it may be
possible to simulate for a longer period of simulated time, with reduced accuracy, or to
simulate with greater accuracy for a shorter period of simulated time.

3.1.4 Floating Point Types

Floating point types provide approximations to the real numbers. Floating point types are
useful for models in which the precise characterization of a floating point calculation is not
important or not determined.

floating_type_definition := range_constraint

A floating type definition defines both a type and a subtype of that type. The type is an
anonymous type, the range of which is selected by the implementation; this range must be such
that it wholly contains the range given in the floating type definition. The subtype is a named
subtype of this anonymous base type, where the name of the subtype is that given by the
corresponding type declaration and the range of the subtype is the given range.

Each bound of a range constraint that is used in a floating type definition must be a locally
static expression of some floating point type, but the two bounds need not have the same floating
point type. (Negative bounds are allowed.)

3-7

IEEE
Std 1076-1987 CHAPTER 3

Floating point literals are the literals of an anonymous predefined type that is called
universaljreal in this manual. Other floating point types have no literals. However, for each
floating point type there exists an implicit conversion that converts a value of type
universal_real into the corresponding value (if any) of the floating point type (see Section
7.3.5).

The same arithmetic operations are predefined for all floating point types (see Section 7.2). It
is an error if the execution of such an operation cannot deliver the correct result (that is, if the
value corresponding to the mathematical result is not a value of the floating point type).
However, in the case of operations on floating point types, an implementation is not required to
detect such an error, since the detection of overflow conditions resulting from floating point
operations is not easily accomplished on many hosts.

An implementation may restrict the bounds of the range constraint of floating point types,
other than type universal_real. However, an implementation must allow the declaration of
any floating point type whose range is wholly contained within the bounds -1E38 and +1E38,
inclusive. The representation of floating point types must include a minimum of six decimal
digits of precision.

3.1.4.1 Predefined Floating Point Types

The only predefined floating point type is the type REAL. The range of REAL is host-
dependent, but it is guaranteed to include the range -1E38 to -I-1E38. It is defined with an
ascending range.

Note:

The range of REAL in a particular implementation may be determined from the 'LOW and
'HIGH attributes.

3^ Composite TVpes

Composite types are used to define collections of values. These include both arrays of values
(collections of values of a homogeneous type) and records of values (collections of values of
potentially heterogeneous types).

composite_type_definition ::=
array_type_definition

I record_type_definition

An object of a composite type represents a collection of objects, one for each element of the
composite object. A composite type may only contain elements that are of scalar, composite, or
access types; elements of file types are not allowed in a composite type. Thus an object of a
composite type ultimately represents a collection of objects of scalar or access types, one for
each non-composite subelement of the composite object.

3.2.1 Array Types

An array object is a composite object consisting of elements that have the same subtype. The
name for an element of an array uses one or more index values belonging to specified discrete

3-8

TYPES
IEEE

Std 1076-1987

types. The value of an array object is a composite value consisting of the values of its
elements.

array_type_definition ::=
unconstrained_array_definition I constrained_array_deflnition

unconstrained_array_definition ::=
array (index_subtype_definition { , index_subtype_definition })

of eZeme^^^_subtype_indication

constrained_array_definition ::=
array index_constraint of eZemen<_subtype_indication

index_subtype_definition ::= type_mark range <>

index_constraint :;= (discrete_range { , discrete_range))

discrete_range ;:= (ijscre^e_subtype_indication I range

An array object is characterized by the number of indices (the dimensionality of the array), the
type, position, and range of each index, and the type and possible constraints of the elements.
The order of the indices is significant.

A one-dimensional array has a distinct element for each possible index value. A
multidimensional array has a distinct element for each possible sequence of index values that
can be formed by selecting one value for each index (in the given order). The possible values
for a given index are all the values that belong to the corresponding range; this range of values
is called the index range.

An unconstrained array definition defines an array type and a name denoting that type. For
each object that has the array type, the number of indices, the type and position of each index,
and the subtype of the elements are as in the type definition. The index subtype for a given
index position is, by definition, the subtype denoted by the type mark of the corresponding index
subtype definition. The values of the left and right bounds of each index range are not defined
but must belong to the corresponding index subtype; similarly, the direction of each index
range is not defined. The symbol <> (called a box) in an index subtype definition stands for
an undefined range (different objects of the type need not have the same bounds and direction).

A constrained array definition defines both an array type and a subtype of this type;

• The array type is an implicitly declared anonymous type; this type is defined by an
(implicit) unconstrained array definition, in which the element subtype indication
is that of the constrained array definition, and in which the type mark of each index
subtype definition denotes the subtype defined by the corresponding discrete range.

• The array subtype is the subtype obtained by imposition of the index constraint on the
array type.

If a constrained array definition is given for a type declaration, the simple name declared by
this declaration denotes the array subtype.

3-9

IEEE
Std 1076-1987 CHAPTER 3

The direction of a discrete range is the same as the direction of the range or the discrete subtype
indication that defines the discrete range. If a subtype indication appears as a discrete range,
the subtype indication must not contain a resolution function.

Examples:

— Examples of constrained array declarations

type MY_WORD is array (0 to 31) of BIT ;
— a memory word type with an ascending range

type DATA_IN is array (7 downto 0) of FIVE_LEVEL_LOGIC ;
— an input port type with a descending range

- Example of unconstrained array declarations

type MEMORY is array (INTEGER range <>) of MY_WORD ;
— a memory array type

— Examples of array object declarations

signal DATA_LINE : DATAJN ;
— defines a data input line

variable MY_MEMORY : MEMORY (0 to 2**n-l) ;

— defines a memory of 2*^ 32-bit words

Note:

The rules concerning constrained type declarations mean that a type declaration with a
constrained array definition such as

type T is array (POSITIVE range MIN to MAX) of ELEMENT;

is equivalent to the sequence of declarations

subtype indexjsubtype is POSITIVE range MIN to MAX;
type arrayJype is array (index_subtype range <>) of ELEMENT;
subtype T is array_type iindex_subtype);

where index_subtype and arrayjtype are both anonymous. Consequently, T is the name of a
subtype and all objects declared with this type mark are arrays that have the same index
range.

3.2.1.1 Index Constraints and Discrete Ranges

An index constraint determines the index range for every index of an array type, and thereby
the corresponding array bounds.

For a discrete range used in a constrained array definition and defined by a range, an
implicit conversion to the predefined type INTEGER is assumed if each bound is either a
numeric literal or an attribute, and the type of both bounds (prior to the implicit conversion) is

3-10

TYPES
IEEE

Std 1076-1987

the type universal_integer. Otherwise, both bounds must be of the same discrete type, other than
universaljinteger; this type must be determined independently of the context, but using the fact
that the type must be discrete and that both bounds must have the same type. These rules apply
also to a discrete range used in an iteration scheme or a generation scheme.

If an index constraint appears after a type mark in a subtype indication, then the type or
subtype denoted by the type mark must not already impose an index constraint. The type mark
must denote either an unconstrained array type, or an access type whose designated type is
such an array type. In either case, the index constraint must provide a discrete range for each
index of the array type, and the type of each discrete range must be the same as that of the
corresponding index.

An index constraint is compatible with the type denoted by the type mark if and only if the
constraint defined by each discrete range is compatible with the corresponding index subtype.
If any of the discrete ranges defines a null range, any array thus constrained is a null array,
having no components. An array value satisfies an index constraint if at each index position
the array value and the index constraint have the same index range. (Note, however, that
assignment and certain other operations on arrays involve an implicit type conversion.)

The index range for each index of an array object is determined as follows:

• For a variable or signal declared by an object declaration, the subtype indication of
the corresponding object declaration must define a constrained array subtype (and
thereby, the index range for each index of the object). The same requirement exists
for the subtype indication of an element declaration, if the type of the record element
is an array type; and for the element subtype indication of an array type definition, if
the type of the array element is itself an array type.

• For a constant declared by an object declaration, the index ranges are defined by the
initial value, if the subtype of the constant is unconstrained; otherwise, they are
defined by this subtype (in which case the initial value is the result of an implicit
subtype conversion).

• For an attribute whose value is specified by an attribute specification, the index
ranges are defined by the expression given in the specification, if the subtype of the
attribute is unconstrained; otherwise, they are defined by this subtype (in which case
the value of the attribute is the result of an implicit subtype conversion).

• For an array object designated by an access value, the index ranges are defined by
the allocator that creates the array object (see Section 7.3.6).

• For an interface object declared with a subtype indication that defines a constrained
array subtype, the index ranges are defined by that subtype.

• For a formal parameter of a subprogram that is of an unconstrained array type, the
index ranges are obtained from the corresponding association element in the
applicable subprogram call.

• For a formal generic of a design entity that is of an unconstrained array type, the
index ranges are obtained from the corresponding association element in the generic
map clause of the applicable (implicit or explicit) binding indication.

3-11

IEEE
Std 1076-1987 CHAPTER 3

• For a formal port of a design entity that is of an unconstrained array type, the index
ranges are obtained from the corresponding association element in the port map
clause of the applicable (implicit or explicit) binding indication.

• For a local generic of a component that is of an unconstrained array type, the index
ranges are obtained from the corresponding association element in the generic map
clause of the applicable component instantiation statement.

• For a local port of a component that is of an unconstrained array type, the index
ranges are obtained from the corresponding association element in the port map
clause of the applicable component instantiation statement.

If the index ranges for an interface object are obtained from the corresponding association
element, then they are determined either by the actual part or the formal part of the association
element, depending upon the mode of the interface object, as follows:

• For an interface object of mode in, inout, or linkage, if the actual part includes a type
conversion function, then the result type of that function must be a constrained array
subtype, and the index ranges are obtained from this constrained subtype; otherwise,
the index ranges are obtained from the object or value denoted by the actual
designator.

• For an interface object of mode out, buffer, inout, or linkage, if the formal part
includes a type conversion function, then the parameter subtype of that function must
be a constrained array subtype, and the index ranges are obtained from this
constrained subtype; otherwise, the index ranges are obtained from the object denoted
by the actual designator.

For an interface object of mode inout or linkage, the index ranges determined by the first rule
must be identical to the index ranges determined by the second rule.

3.2.1.2 Predefined Array Types

The predefined array types are STRING and BIT_VECTOR, defined in package STANDARD
in Chapter 14.

The values of the predefined type STRING are one-dimensional arrays of the predefined type
CHARACTER, indexed by values of the predefined subtype POSITIVE:

subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH ;
type STRING is array (POSITIVE range <>) of CHARACTER ;

The values of the predefined type BIT_VECTOR are one-dimensional arrays of the predefined
type BIT, indexed by values of the predefined subtype NATURAL:

subtype NATURAL is INTEGER range 0 to INTEGER'HIGH ;
type BIT_VECTOR is array (NATURAL range <>) of BIT ;

3-12

TYPES
IEEE

Std 1076-1987

Examples:

variable MESSAGE : STRINGd to 17) := "THIS IS A MESSAGE" ;

signal LOW.BYTE : BIT_VECTOR (0 to 7);

3.2.2 Record Types

A record type is a composite type, objects of which consist of named elements. The value of a
record object is a composite value consisting of the values of its elements.

record_type_definition ::=
record

element_declaration
(element_declaration)

end record

element_declaration ::=
identifier_list : element_subtype_definition ;

identifier_list ::= identifier { , identifier }

element_subtype_definition subtype_indication

Each element declaration declares an element of the record type. The identifiers of all
elements of a record type must be distinct. The use of a name that denotes a record element is
not allowed within the record type definition that declares the element.

An element declaration with several identifiers is equivalent to a sequence of single element
declarations. Each single element declaration declares a record element whose subtype is
specified by the element subtype definition.

A record type definition creates a record type; it consists of the element declarations, in the
order in which they appear in the type definition.

Example:

type DATE is
record

DAY : INTEGER range 1 to 31;
MONTH : MONTH_NAME;
YEAR : INTEGER range 0 to 4000;

end record;

3.3 Access Types

An object declared by an object declaration is created by the elaboration of the object
declaration and is denoted by a simple name or by some other form of name. In contrast,
objects that are created by the evaluation of allocators (see Section 7.3.6) have no simple name.
Access to such an object is achieved by an access value returned by an allocator; the access
value is said to designate the object.

3-13

IEEE
Std 1076-1987 CHAPTER 3

access_type_definition :;= access subtype_indication

For each access type, there is a literal null which has a null access value designating no object
at all. The null value of an access type is the default initial value of the type. Other values of
an access type are obtained by evaluation of a special operation of the type, called an allocator.
Each such access value designates an object of the subtype defined by the subtype indication of
the access type definition; this subtype is called the designated subtype; the base type of this
subtype is called the designated type. The designated type must not be a file type.

An object declared to be of an access type must be an object of class variable. An object
designated by an access value is always an object of class variable.

The only form of constraint that is allowed after the name of an access type in a subtype
indication is an index constraint. An access value belongs to a corresponding subtype of an
access type either if the access value is the null value or if the value of the designated object
satisfies the constraint.

Examples:

type ADDRESS is access MEMORY;
type BUFFER_PTR is access BUFFER;

Note:

An access value delivered by an allocator can be assigned to several variables of the
corresponding access type. Hence it is possible for an object created by an allocator to be
designated by more than one variable of the access type. An access value can only designate
an object created by an allocator; in particular, it cannot designate an object declared by an
object declaration.

If the type of the object designated by the access value is an array type, this object is constrained
with the array boimds supplied implicitly or explicitly for the corresponding allocator.

3^.1 Incomplete Type Declarations

There are no particular limitations on the designated type of an access type. In particular, the
type of an element of the designated type can be another access type, or even the same access
type. This permits mutually dependent and recursive access types. Declarations of such types
require a prior incomplete type declaration for one or more types.

incomplete_type_declaration ::= type identifier ;

For each incomplete type declaration there must be a corresponding full type declaration with
the same identifier. This full type declaration must occur later and immediately within the
same declarative part as the incomplete type declaration to which it corresponds.

Prior to the end of the corresponding full type declaration, the only allowed use of a name that
denotes a type declared by an incomplete type declaration is as the type mark in the subtype
indication of an access type definition; no constraints are allowed in this subtype indication.

3-14

TYPES
IEEE

Std 1076-1987

Example of a recursive type:

type CELL; - incomplete type declaration
type LINK is access CELL;
type CELL is

record
VALUE : INTEGER;
SUCC : LINK;
PRED : LINK;

end record;
variable HEAD ; LINK := new CELL’(0, null, null);
variable NEXT : LINK := HEAD.SUCC;

Examples of mutually dependent access types:

type PART; -- incomplete type declarations
type WIRE;

type PART_PTR is access PART;
type WIRE_PTR is access WIRE;

type PART_LIST is array (POSITIVE range <>) of PART_PTR;
type WIRE_LIST is array (POSITIVE range <>) of WIRE_PTR;

type PART_LIST_PTR is access PART_LIST;
type WIRE_LIST_PTR is access WIRE_LIST;

type PART is
record

PART_NAME
CONNECTIONS

end record;

STRING;
WIRE_LIST_PTR;

type WIRE is
record

WIRE_NAME
CONNECTS

end record;

STRING;
PART_LIST_PTR;

3^.2 Allocation and Deallocation of Objects

An object designated by an access value is allocated by an allocator for that type. An allocator
is a primary of an expression; allocators are described in Section 7.3.6. For each access type, a
deallocation operation is implicitly declared immediately following the full type declaration
for the type. This deallocation operation makes it possible to explicitly deallocate the storage
occupied by a designated object.

Given the following access type declaration:

type AT is access T;

3-15

IEEE
Std 1076-1987 CHAPTER 3

the following operation is implicitly declared immediately following the access type
declaration:

procedure DEALLOCATE (P: inout AT);

Procedure DEALLOCATE takes as its single parameter a variable of the specified access type.
If the value of that variable is the null value for the specified access type, then the operation has
no effect. If the value of that variable is an access value that designates an object, the storage
occupied by that object is returned to the system and may then be reused for subsequent object
creation through the invocation of an allocator. The access parameter P is set to the null value
for the specified type.

3.4 FilelVpes

A file type definition defines a file type. File types are used to define objects representing files
in the host system environment. The value of a file object is the sequence of values contained
in the host system file.

file_type_definition ;:= file of type_mark

The type mark in a file type definition defines the subtype of the values contained in the file.
The type mark may denote either a constrained or an unconstrained subtype. The base type of
this subtype must not be a file type or an access type. If the base type is a composite type, it must
not contain a subelement of an access type. If the base type is an array type, it must be a one¬
dimensional array type.

Examples:

file of STRING — Defines a file type that can contain
— an indefinite number of strings

file of NATURAL — Defines a file type that can contain
— only non-negative integer values

3.4.1 File Operations

Three operations are provided for objects of a file type. Given the following file type
declaration:

type FT is file of TM;

where type mark TM denotes a scalar type, a record type, or a constrained array subtype, the
following operations are implicitly declared immediately following the file type declaration:

procedure READ (F: in FT; VALUE: out TM);

procedure WRITE (F: out FT; VALUE: in TM);

function ENDFILE (F: in FT) return BOOLEAN;

Procedure READ retrieves the next value from a file. Procedure WRITE appends a value to a
file. Function ENDFILE returns False if a subsequent READ operation on an input file can

3-16

TYPES
IEEE

Std 1076-1987

retrieve another value from the file; otherwise it returns True. Function ENDFILE always
returns True for an output file.

For a file type declaration in which the type mark denotes an unconstrained array type, the
same operations are implicitly declared, except that the READ operation is declared as follows:

procedure READ (F: in FT; VALUE: out TM; LENGTH: out Natural);

The READ operation for such a type performs the same function as the READ operation for
other types, but in addition it returns a value in parameter LENGTH that specifies the actual
length of the array value read by the operation. If the object associated with formal parameter
VALUE is shorter than this length, then only that portion of the array value read by the
operation that can be contained in the object is returned by the READ operation, and the rest of
the value is lost. If the object associated with formal parameter VALUE is longer than this
length, then the entire value is returned and remaining elements of the object are unaffected
by the READ operation.

An error will occur when a READ operation is performed on file F if ENDFILE(F) would
return True at that point.

Note:

Predefined package TEXTIO is provided to support formatted ASCII I/O. It defines type TEXT
(a file type representing files of variable-length ASCII strings) and type LINE (an access type
that designates such strings). READ and WRITE operations are provided in package
TEXTIO that append or extract data from a single line. Additional operations are provided to
read or write entire lines and to determine the status of the current line or of the file itself.
Package TEXTIO is defined in Chapter 14.

3-17

i..

IEEE
Std 1076-1987

CHAPTER 4

DECLARATIONS

The language defines several kinds of entities that are declared explicitly or implicitly by
declarations.

declaration ::=
type_declaration

I subtype_declaration
I object_declaration
I file_declaration
I interface_declaration
I alias_declaration
I attribute_declaration
I component_declaration
I entity_declaration
I configuration_declaration
I subprogTam_declaration
I package_declaration

For each form of declaration the language rules define a certain region of text called the scope
of the declaration. Each form of declaration associates an identifier with a declared entity.
Only within its scope, there are places where it is possible to use the identifier to refer to the
associated declared entity; these places are defined by the visibility rules. At such places the
identifier is said to be a name of the entity; the name is said to denote the associated entity.

This chapter describes type and subtype declarations, the various kinds of object declaration,
alias declarations, attribute declarations, and component declarations. The other kinds of
declarations are described in Chapter 1, Design Entities and Configurations, and in Chapter
2, Subprograms and Packages.

A declaration takes effect through the process of elaboration. Elaboration of declarations is
discussed in Chapter 12.

4.1 Type Declarations

A type declaration declares a type.

4-1

IEEE
Std 1076-1987 CHAPTER 4

type_declaration ::=
full_typ e_decl ar ati on

I incomplete_type_declaration

full_type_declaration ::=
type identifier is type_definition ;

type_definition :;=
scalar_type_definition

I composite_type_definition
I access_type_definition
I file_type_definition

The types created by the elaboration of distinct type definitions are distinct types. The
elaboration of the type definition for a scalar type or a constrained array type creates both a
base type and a subtype of the base type.

The simple name declared by a type declaration denotes the declared type, unless the type
declaration declares both a base type and a subtype of the base type, in which case the simple
name denotes the subtype, and the base type is anonymous. A type is said to be anonymous if it
has no simple name. For explanatory purposes, this reference manual sometimes refers to an
anonymous type by a pseudo-name, written in italics, and uses such pseudo-names at places
where the syntax normally requires an identifier.

Note:

Two type definitions always define two distinct types, even if they are textually identical.
Thus, the type definitions in the following two integer type declarations define distinct types;

type A is range 1 to 10;
type B is range 1 to 10;

This applies to type declarations for other classes of types as well.

The various forms of type definition are described in Chapter 3, Types. Examples of type
declarations are also given in that chapter.

A2 Subtype Declarations

A subtype declaration declares a subtype.

subtype_declaration ;:=
subtype identifier is subtypejndication ;

subtype_indication :;=
[resolution_functionjnsime] type_mark [constraint]

type_mark ::=
typejoavae

I subtype_r\ame

4-2

DECLARATIONS
IEEE

Std 1076-1987

constraint :;=
range_constraint

I index_constraint

A type mark denotes a type or a subtype. If a type mark is the name of a type, the type mark
denotes this type and also the corresponding unconstrained subtype. The base type of a type
mark is, by definition, the base type of the type or subtype denoted by the type mark.

A subtype indication defines a subtype of the base type of the type mark.

If a subtype indication includes a resolution function name, then any signal declared to be of
that subtype will be resolved, if necessary, by the named function (see Section 2.4). A
resolution function name has no effect on the declarations of objects other than signals or on
the declarations of files, aliases, attributes, or other subtypes.

If the subtype indication does not include a constraint, the subtype is the same as that denoted by
the type mark. The condition imposed by a constraint is the condition obtained after
evaluation of the expressions and ranges forming the constraint. The rules defining
compatibility are given for each form of constraint in the appropriate section. These rules are
such that if a constraint is compatible with a subtype, then the condition imposed by the
constraint cannot contradict any condition already imposed by the subtype on its values. An
error occurs if any check of compatibility fails.

The direction of a discrete subtype indication is the same as the direction of the range
constraint that appears as the constraint of the subtype indication. If no constraint is present,
and the type mark denotes a subtype, the direction of the subtype indication is the same as that of
the denoted subtype. If no constraint is present, and the type mark denotes a type, the direction
of the subtype indication is the same as that of the range used to define the denoted type. The
direction of a discrete subtype is the same as the direction of its subtype indication.

A subtype indication denoting an access type or a file type may not contain a resolution
function. Furthermore, the only allowable constraint on a subtype indication denoting an
access type is an index constraint (and then only if the designated type is an array type).

Note:

A subtype declaration does not define a new type.

4^ Objects

An object is an entity that contains (has) a value of a given type. An object is one of the
following:

• an object declared by an object declaration.

• a file declared by a file declaration,

• a loop or generate index.

• a formal parameter of a subprogram.

• a formal port of a design entity.

4-3

IEEE
Std 1076-1987 CHAPTER 4

• a formal generic.

• a local port.

• a local generic.

• an element or slice of another object.

• an object value designated by a value of an access type.

There are three classes of objects: constants, signals, and variables. The class of an
explicitly declared object is specified by the reserved word that must or may appear at the
beginning of the declaration of that object. For a given object of a composite type, each
subelement of that object is itself an object of the same class as the given object. The value of a
composite object is the aggregation of the values of its subelements.

Objects declared by object declarations and file declarations are available for use within
blocks, processes, subprograms or packages. Loop and generate indices are implicitly
declared by the corresponding statement and are available for use only within that statement.
Other objects, declared by interface declarations, create channels for the communication of
values between independent parts of a description.

4^.1 Object Declarations

An object declaration declares an object of a specified type.

object_declaration ::=
constant_declaration

1 signal_declaration
I variable_declaration

An object declaration is called a single object declaration if its identifier list has a single
identifier; it is called a multiple object declaration if the identifier list has two or more
identifiers. A multiple object declaration is equivalent to a sequence of the corresponding
number of single object declarations. For each identifier of the list, the equivalent sequence
has a single object declaration formed by this identifier, followed by a colon and by whatever
appears at the right of the colon in the multiple object declaration; the equivalent sequence is in
the same order as the identifier list.

A similar equivalence applies also for interface object declarations (see Section 4.3.3).

4.3.1.1 Constant Declaration

A constant declaration declares a constant of the specified type.

constant_declaration ::=
constant identifierjist: subtype_indication [:= expression] ;

If the assignment symbol followed by an expression is present in a constant declaration,
the expression specifies the value of the constant. The value of a constant cannot be modified
after the declaration is elaborated.

4-4

DECLARATIONS
IEEE

Std 1076-1987

If the assignment symbol followed by an expression is not present in a constant
declaration, then the declaration declares a deferred constant. Such a constant declaration
may only appear in a package declaration. The corresponding full constant declaration,
which defines the value of the constant, must appear in the body of the package (see Section 2.6).

Formal parameters of subprograms that are of mode in may be constants, and local and
formal generics are always constants; the declarations of such objects are discussed in Section
4.3.3. A loop index is a constant within the corresponding loop; similarly a generate index is a
constant within the corresponding generate statement; a subelement or slice of a constant is a
constant.

It is an error if a constant declaration declares a constant that is of a file type or an access type.

Examples:

constant TOLERANCE : DISTANCE := l.Snm ;
constant PI: REAL := 3.141592 ;
constant CYCLE_TIME : TIME := 100ns ;
constant Propagation_Delay ;

4.3.1.2 Signal Declaration

A signal declaration declares a signal of the specified type.

signal_declaration :;=
signal identifier_list : subtype_indication [signal_kind] [:= expression] ;

signal_kind ::= register I bus

If the name of a resolution function appears in the declaration of a signal, or in the declaration
of the subtype used to declare the signal, then that resolution function is associated with the
declared signal. Such a signal is called a resolved signal.

If a signal kind appears in a signal declaration, then the signals so declared are guarded
signals of the kind indicated. For a guarded signal that is of a composite type, each
subelement is likewise a guarded signal. A guarded signal is assigned values under the
control of Boolean-valued guard expressions {or guards). When a given guard becomes False,
the drivers of the corresponding guarded signals are implicitly assigned a null transaction
(see Section 8.3.1) to cause those drivers to turn off. A disconnection specification (see Section
5.3) is used to specify the time required for those drivers to turn off.

If the signal declaration includes the assignment symbol followed by an expression, it must be
of the same type as the signal. Such an expression is said to be a default expression. The
default expression defines a default value associated with the signal or, for a composite signal,
with each scalar subelement thereof. For a signal declared to be of a scalar subtype, the value
of the default expression is the default value of the signal. For a signal declared to be of a
composite subtype, each scalar subelement of the value of the default expression is the default
value of the corresponding subelement of the signal.

In the absence of an explicit default expression, an implicit default value is assumed for a
signal of a scalar subtype or for each scalar subelement of a composite signal, each of which is

4-5

IEEE
Std 1076-1987 CHAPTER 4

itself a signal of a scalar subtype. The implicit default value for a signal of a scalar subtype T
is defined to be that given by T’Left.

It is an error if a signal declaration declares a signal that is of a file type or an access type. It
is also an error if a guarded signal of a scalar type is neither a resolved signal nor a
subelement of a resolved signal.

A signal may have one or more sources. For a signal of a scalar type, each source is either a
driver (see Section 9.2.1) or an out, inout, buffer, or linkage port of a component instance with
which the signal is associated. For a signal of a composite type, each composite source is a
collection of scalar sources, one for each scalar subelement of the signal. It is an error if, after
the elaboration of a description, a signal has multiple sources and it is not a resolved signal.

If a subelement of a resolved signal of composite type is associated as an actual in a port map
clause (either in a component instantiation statement or in a binding indication), and the
corresponding formal is of mode out, inout, buffer, or linkage, then every scalar subelement of
that signal must be associated exactly once with such a formal in the same port map clause,
and the collection of the corresponding formal parts taken together constitute one source of the
signal. If a resolved signal of composite type is associated as an actual in a port map clause,
that is equivalent to each of its subelements being associated in the same port map clause.

If a subelement of a resolved signal of composite type has a driver in a given process, then
every scalar subelement of that signal must have a driver in the same process, and the
collection of all of those drivers taken together constitute one source of the signal.

The default value associated with a scalar signal defines the value component of a transaction
that is the initial contents of each driver (if any) of that signal. The time component of the
transaction is not defined, but the transaction is understood to have already occurred by the
start of simulation.

Examples:

signal S ; STANDARD.BIT_VECTOR (1 to 10) ;

signal CLKl, CLK2 : TIME ;

signal OUTPUT : WIRED_OR MultiValuedLogic ;

Note:

Ports of any mode are also signals. The term signal is used in this manual to refer to objects
declared either by signal declarations or by port declarations; the term port is used to refer to
objects declared by port declarations only.

Signals are given initial values by initializing their drivers; the initial values of drivers are
then propagated through the corresponding net to determine the initial values of the signals
that make up the net (see Section 12.6.3).

The value of a signal may be indirectly modified by a signal assignment statement (see
Section 8.3); such assignments affect the future values of the signal.

4-6

DECLARATIONS
IEEE

Std 1076-1987

4^.1^ Variable Declaration

A variable declaration declares a variable of the specified type.

variable_declaration ::=
variable identifier_list : subtype_indication [:= expression] ;

If the variable declaration includes the assignment symbol followed by an expression, the
expression specifies an initial value for the declared variable; the type of the expression must
be that of the variable. Such an expression is said to be an initial value expression.

If an initial value expression appears in the declaration of a variable, then the initial value of
the variable is determined by that expression each time the variable declaration is elaborated.
In the absence of an initial value expression, a default initial value applies. The default
initial value for a variable of a scalar subtype T is defined to be the value given by T'Left. The
default initial value of a variable of a composite type is defined to be the aggregate of the default
initial values of all of its scalar subelements, each of which is itself a variable of a scalar
subtype. The default initial value of a variable of an access type is defined to be the value null
for that t3rpe.

It is an error if a variable declaration declares a variable that is of a file type.

Note:

The value of a variable may be modified by a variable assignment statement (see Section 8.4);
such assignments take effect immediately. Procedure parameters of mode in may be file
variables; procedure parameters of mode out or inout may be variables of any kind.

The variables declared within a given procedure persist until that procedure completes and
returns to the caller. For procedures that contain wait statements, a variable may therefore
persist from one point in simulation time to another, and the value in the variable is thus
maintained over time. For processes, which never complete, all variables persist from the
beginning of simulation until the end of simulation.

Examples:

variable INDEX : INTEGER range 0 to 99 := 0 ;
- initial value is determined by the initial value expression

variable COUNT : POSITIVE ;
- initial value is POSITIVE'Left, or 1.

variable MEMORY : BIT_MATR1X (0 to 7, 0 to 1023);
- initial value is the aggregate of the initial values of each element

4.3^ File Declarations

Nfile object is created by a file declaration. Such an object is a member of the variable class of
objects; however, the operations on file objects are restricted in comparison to those available
on other variable objects. In particular, assignment to a file object is not allowed.

4-7

IEEE
Std 1076-1987 CHAPTER 4

file_declaration ::=
file identifier : subtype_indication is [mode] file_logical_name ;

file_logical_name ::= sirin^_expression

The subtype indication of a file declaration must define a file subtype. The only modes
allowed in an external file association are in and out.

The file logical name must be an expression of predefined type STRING. The value of this
expression is interpreted as a logical name for a file in the host system environment. An
implementation must provide some mechanism to associate a file logical name with a host-
dependent file. Such a mechanism is not defined by the language.

The file logical name identifies an external file in the host file system that is associated with
the file object. This association provides a mechanism for either importing data contained in
an external file into the design during simulation, or exporting data generated during
simulation to an external file.

If the mode specified in the file declaration is the mode in, then the contents of the external file
may be read by processes during simulation. In this case, the file object may be read, but not
updated, by one or more processes. If the mode specified in the file declaration is the mode out,
then the contents of the external file may be written by processes during simulation. In this
case, the file object may be updated, but not read, by one or more processes. The default mode is
in, if no mode is specified.

If multiple file objects are associated with the same file logical name, and each file object is
declared with a file declaration that specifies mode out, then values written to each file object
are written to an external file identified by that file logical name. The language does not
define the order in which such values are written to the external file, nor does it define whether
one external file or multiple external files are created as a result.

If a formal subprogram parameter is of a file type, it must be associated with an actual that is a
file object. A file object of a given mode may only be passed to a formal file variable of the
corresponding mode.

Note:

All external file objects associated with the same external file should be of the same base type.

4^^ Interface Declarations

An interface declaration declares an interface object of a specified type. Interface objects
include constants that appear as generics of a design entity, a component, or a block, or as
constant parameters of subprograms; signals that appear as ports of a design entity,
component, or block, or as signal parameters of subprograms; and variables that appear as
variable parameters of subprograms.

interface_declaration
interface_constant_declaration

I interface_signal_declaration
I interface_variable_declaration

4-8

DECLARATIONS
IEEE

Std 1076-1987

interface_constant_declaration ::=
[constant] identifier_list : [in] subtype_indication [:= static_expression]

interface_signal_declaration :;=
[signal] identifier_list: [mode] subtype_indication [bus] [:= static_exTpress\on]

interface_variable_declaration ::=
[variable] identifier_list: [mode] subtype_indication [;= static_expTession]

mode ::= in I out I inout I buffer I linkage

If no mode is explicitly given in an interface declaration, mode in is assumed.

For an interface constant declaration or an interface signal declaration, the subtype
indication must define a subtype that is neither a file type nor an access type.

If an interface signal declaration includes the reserved word bus, then the signal declared by
that interface declaration is a guarded signal of signal kind bus.

If an interface declaration contains a symbol followed by an expression, the expression is
said to be the default expression of the interface object. The type of a default expression must be
that of the corresponding interface object. It is an error if a default expression appears in an
interface declaration and the mode is linkage or the corresponding type mark denotes a file
type.

In an interface signal declaration, the default expression defines the default value(s)
associated with the interface signal or its subelements. In the absence of a default expression,
an implicit default value is assumed for the signal or for each scalar subelement, as defined
for signal declarations (see Section 4.3.1.2). The implicit value is used to determine the
initial contents of drivers of the interface signal, if any, as specified for signal declarations.

An interface object provides a channel of communication between the environment and a
particular portion of a description. The value of an interface object may be determined by the
value of an associated object or expression in the environment; similarly, the value of an
object in the environment may be determined by the value of an associated interface object.
The manner in which such associations are made is described in Section 4.3.3.2.

The value of an object is said to be read when one of the following conditions is satisfied:

• When the object is evaluated, and also (indirectly) when the object is associated with
an interface object of the modes in, inout, or linkage.

• When the object is a signal and a name denoting the object appears in a sensitivity
list in a wait statement or a process statement.

• When the object is a signal and the value of any of its predefined attributes STABLE,
QUIET, DELAYED, TRANSACTION, EVENT, ACTIVE, LAST_EVENT,
LAST_ACTIVE, or LAST_VALUE is read.

• When one of its subelements is read.

• When the object is a file and a READ operation is performed on the file.

4-9

IEEE
Std 1076-1987 CHAPTER 4

The value of an object is said to be updated when one of the following conditions is satisfied:

• When it appears as the target of an assignment statement, and also (indirectly) when
the object is associated with an interface object of the modes out, buffer, inout, or
linkage.

• When one of its subelements is updated.

• When the object is a file and a WRITE operation is performed on the file.

Only signal or variable objects may be updated. A variable of a file type can be updated only by
performing a WRITE operation; it is an error if a file variable appears as the target of an
assignment statement.

An interface object has one of the following modes:

• in. The value of the interface object may only be read. In addition, any attributes of
the interface object may be read, except that attributes STABLE, QUIET, DELAYED,
and TRANSACTION of a signal parameter may not be read within a subprogram.
For a file object, operation ENDFILE is allowed.

• out. The value of the interface object may be updated. Reading the attributes of the
interface element, other than the predefined attributes STABLE, QUIET, DELAYED,
TRANSACTION, EVENT, ACTIVE, LAST_EVENT, LAST_ACTIVE, and
LAST_VALUE, is allowed. For a file object, operation ENDFILE is allowed. No
other reading is allowed.

• inout. The value of the interface object may be both read and updated. Reading the
attributes of the interface object is also permitted. For a file object, operation
ENDFILE is allowed.

• buffer. The value of the interface object may be both read and updated. Reading the
attributes of the interface object is also permitted.

• linkage. The value of the interface object may be read or updated, but only by
appearing as an actual corresponding to an interface object of mode linkage. No
other reading or updating is permitted.

Note:

Although signals of modes inout and buffer have the same characteristics with respect to
whether they may be read or updated, a signal of mode inout may be updated by zero or more
sources, whereas a signal of mode buffer must be updated by at most one source (see Section
1.1.1.2).

A subprogram parameter that is of a file type must be declared as a variable parameter.

4.3.3.1 Interface Lists

An interface list contains the declarations of the interface objects required by a subprogram, a
component, a design entity, or a block statement.

4-10

DECLARATIONS
IEEE

Std 1076-1987

interface_list ::=
interface_element (; interface_element }

interface_element ::= interface_declaration

K generic interface list consists entirely of interface constant declarations. A port interface
list consists entirely of interface signal declarations. A parameter interface list may contain
interface constant declarations, interface signal declarations, or interface variable
declarations, or any combination thereof.

4.3^.2 Association Lists

An association list establishes correspondences between formal or local generic, port, or
parameter names on the one hand and local or actual names or expressions on the other.

association_list ::=
association_element { , association_element)

association_element ::=
[formal_part =>] actual_part

formal_part ;:=
formal_designator

I functionjaavae (formal_designator)

formal_designator :;=
genericjaame

I portjaavae
1 parameter jnama

actual_part ;;=
actual_designator

I function_x\ame (actual_designator)

actual_designator ;;=
expression

I signaljaame
I variablejaama
I (^)ein

Each association element in an association list associates one actual designator with the
corresponding interface element in the interface list of a subprogram declaration, component
declaration, entity declaration, or block statement. The corresponding interface element is
determined either by position or by name.

An association element is said to be named if the formal designator appears explicitly;
otherwise it is said to be positional. For a positional association, an actual designator at a
given position in an association list corresponds to the interface element at the same position
in the interface list.

Named associations can be given in any order, but if both positional and named associations
appear in the same association list, then all positional associations must occur first, at their

4-11

IEEE
Std 1076-1987 CHAPTER 4

normal position. Hence once a named association is used, the rest of the association list must
use only named associations.

In the following, the term actual refers to an actual designator, and the term formal refers to a
formal designator.

The formal part of a named element association may be in the form of a function call, where
the single argument of the function is the formal designator itself. In this case, the function
name must denote a function whose single parameter is of the type of the formal, and whose
result is the type of the corresponding actual. Such a function provides for type conversion in
the event that data flows from the formal to the actual.

Similarly, the actual part of a (named or positional) element association may be in the form of
a function call, where the single argument of the function is the actual designator itself. In
this case, the function name must denote a function whose single parameter is of the type of the
actual, and whose result is the type of the corresponding formal. Such a function provides for
type conversion in the event that data flows from the actual to the formal.

If the mode of the formal is in, inout, or linkage, and the actual is not open, then the type of the
actual (after applying the type conversion function, if present in the actual part) must be the
same as the type of the corresponding formal. Similarly, if the mode of the formal is out, inout,
buffer, or linkage, and the actual is not open, then the type of the formal (after applying the type
conversion function, if present in the formal part) must be the same as the corresponding
actual.

For the association of signals with corresponding formal ports, association of a formal of a
given composite type with an actual of the same type is equivalent to the association of each
scalar subelement of the formal with the matching subelement of the actual, provided that no
type conversion function is present in either the actual part or the formal part of the association
element. If a type conversion function is present, then the entire formal is considered to be
associated with the entire actual.

Similarly, for the association of actuals with corresponding formal subprogram parameters,
association of a formal parameter of a given composite type with an actual of the same type is
equivalent to the association of each scalar subelement of the formal parameter with the
matching subelement of the actual. Different parameter passing mechanisms may be
required in each case, but in both cases the associations will have an equivalent effect. This
equivalence applies provided that no actual is accessible by more than one path (see Section
2.1.1.1).

A formal may either be an explicitly declared interface object or it may be a subelement of such
an interface object. In the latter case, named association must be used to associate the formal
and actual. Furthermore, every subelement of the explicitly declared interface object must be
associated exactly once with an actual in the same association list, and all such associations
must appear in a contiguous sequence within that association list. Each such association
element must identify the formal with a locally static name.

If an interface element in an interface list includes a default expression for a formal generic,
or for a formal parameter of mode in, then any corresponding association list need not include
an association element for that interface element. If the association element is not included in
the association list, then the value of the default expression is used as the actual expression in
an implicit association element for that interface element.

4-12

DECLARATIONS
IEEE

Std 1076-1987

Note:

It is a consequence of the above rules that, if an association element is omitted from an
association list in order to make use of the default expression on the corresponding interface
element, all subsequent association elements in that association list must be named
associations.

Although a default expression can appear in an interface element that declares a (local or
formal) port, such a default expression is not interpreted as the value of an implicit association
element for that port, since ports must be associated with signals as opposed to values. Instead,
the value of the expression is used to determine the effective value of that port during
simulation if the port is left unconnected (see Section 12.6.1).

4^.4 Alias Declaration

An alias declaration declares an alternate name for an existing object.

alias_declaration ::=
alias identifier : subtypejndication is name ;

The identifier specified in an alias declaration denotes the object represented by the name in
the alias declaration. An alias of a signal denotes a signal; an alias of a variable denotes a
variable; an alias of a constant denotes a constant.

The name must be a static name (see Section 6.1) that denotes an object. The base type of the
name specified in an alias declaration must be the same as the base type of the type mark in the
subtype indication; this type must not be a multi-dimensional array type. When the object
denoted by the name is referenced via the alias defined by the alias declaration, it is viewed as
if it were of the subtype specified by the subtype indication. The same applies to attribute
references where the prefix of the attribute denotes the alias. If this subtype is a one¬
dimensional array subtype, then the subtype must include a matching element (see Section
7.2.2) for each element of that object denoted by the name.

A reference to an element of an alias is implicitly a reference to the matching element of the
object denoted by the alias. A reference to a slice of an alias consisting of the elements ej^, e2,

..., e^ is implicitly a reference to a slice of the object denoted by the alias consisting of the

matching elements corresponding to each of ei through ej^.

Examples:

variable REAL_NUMBER : BIT_VECTOR (0 to 31);

alias SIGN : BIT is REAL_NUMBER (0);

— SIGN is now a scalar (BIT) value

alias MANTISSA : BIT_VECTOR (23 downto 0) is REAL_NUMBER (8 to 31);

- MANTISSA is a 24-bit value whose range is 23 downto 0.
- Note that the ranges of MANTISSA and REAL_NUMBER (8 to 31)
- have opposite directions. A reference to MANTISSA (23 downto 18)
- is equivalent to a reference to REAL_NUMBER (8 to 13).

4-13

IEEE
Std 1076-1987 CHAPTER 4

alias EXPONENT : BIT_VECTOR (1 to 7) is REAL_NUMBER (1 to 7);

— EXPONENT is a 7-bit value whose range is 1 to 7.

4.4 Attribute Declarations

An attribute is a value, function, type, range, signal, or constant that may be associated with
one or more entities in a description. There are two categories of attributes; predefined
attributes and user-defined attributes. Predefined attributes provide information about
entities in a description. Chapter 14 contains the definition of all predefined attributes.
Predefined attributes that are signals may not be updated.

User-defined attributes are constants of arbitrary type. Such attributes are defined by an
attribute declaration.

attribute_declaration ::=
attribute identifier: type_mark ;

The identifier is said to be the designator of the attribute. An attribute may be associated with
an entity, an architecture, a configuration, a procedure, a function, a package, a type, a
subtype, a constant, a signal, a variable, a component, or a label.

The type mark must denote a subtype that is neither an access type nor a file type. The subtype
need not be constrained.

Examples:

type COORDINATE is record X,Y: INTEGER end record;
type POSITIVE is INTEGER range 1 to INTEGER'HIGH;
attribute LOCATION: COORDINATE;
attribute P1N_N0: POSITIVE;

Note:

A given entity E will inherit attribute A if and only if an attribute specification for the value of
attribute A accompanies the declaration of E. In the absence of such a specification, an
attribute name of the form E’A is illegal.

A user-defined attribute is associated with the entity denoted by the name specified in a
declaration, not with the name itself. Hence an attribute of an object can be referenced by
using an alias for that object rather than the declared name of the object as the prefix of the
attribute name, and the attribute referenced in such a way is the same attribute (and therefore
has the same value) as the attribute referenced by using the declared name of the object as the
prefix.

A user-defined attribute of a port, signal, variable, or constant of some composite type is an
attribute of the entire port, signal, variable, or constant, not of its elements. If it is necessary to
associate an attribute with each element of some composite object, then the attribute itself can be
declared to be of a composite type such that for each element of the object, there is a
corresponding element of the attribute.

4-14

DECLARATIONS
IEEE

Std 1076-1987

4.5 Component Declarations

A component declaration defines a virtual design entity interface that may be used in a
component instantiation statement. A component configuration or a configuration
specification can be used to associate a component instance with design entity that resides in a
library.

component_declaration ;:=
component identifier

[/ocaZ_generic_clause]
[/ocaZ_port_clause]

end component;

Each interface element in the local generic clause declares a local generic. Each interface
element in the local port clause declares a local port.

4-15

IEEE
Std 1076-1987

CHAPTERS

SPECIFICATIONS

This chapter describes specifications, which may be used to associate additional information
with a VHDL description. A specification associates additional information with a previously
declared entity. There are three kinds of specifications: attribute specifications,
configuration specifications, and disconnection specifications.

A specification always relates to entities that already exist; thus a given specification must
either follow or (in certain cases) be contained within the declaration of the entity to which it
relates. Furthermore, a specification must always appear either immediately within the same
declarative region as that in which the declaration of the related entity appears, or (in the case
of specifications that relate to design units) immediately within the declarative region
associated with the declaration of the related entity.

5.1 Attribute Specification

An attribute specification associates a user-defined attribute with one or more entities and
defines the value of that attribute for those entities.

attribute_specification ::=
attribute attribute_designator of entity_specification is expression ;

entity_specification ::=
entity_name_list : entity_class

entity_class ::=
entity

I procedure
I type
i signal
I label

entity_name_list ::=
entity_designator { , entity_designator)

I others
I all

entity_designator ::= simple_name I operator_symbol

I architecture
I function
I subtype
I variable

I configuration
I package
I constant
I conqx)nent

5-1

IEEE
Std 1076-1987 CHAPTER 5

The attribute designator must denote an attribute. The entity name list identifies those entities
that inherit the attribute, as defined below:

• If a list of entity designators is supplied, then the attribute specification applies to the
entities denoted by those designators. It is an error if the class of those names is not
the same as that denoted by the entity class.

• If the reserved word others is supplied, then the attribute specification applies to
entities of the specified class that are declared in the immediately enclosing
declarative region, provided that each such entity is not explicitly named in the entity
name list of a previous attribute specification.

• If the reserved word all is supplied, then the attribute specification applies to all
entities of the specified class that are declared in the immediately enclosing
declarative region.

An attribute specification with the entity name list others or all for a given entity class that
appears in a declarative region must be the last such specification for the given entity class in
that declarative region. No entity in the specified entity class may be declared in a given
declarative region following such an attribute specification.

The expression specifies the value of this attribute for each of the entities inheriting the
attribute as a result of this attribute specification. The type of the expression in the attribute
specification must be the same as (or implicitly convertible to) the type mark in the
corresponding attribute declaration.

An attribute specification for an attribute of a design unit (i.e., an entity, an architecture, a
configuration, or a package) must appear immediately within the declarative part of that
design unit. An attribute specification for an attribute of a procedure, a function, a type, a
subtype, an object (i.e., a constant, a signal, or a variable), a component, or a labeled entity
must appear within the declarative part in which that procedure, function, type, subtype, object,
component, or label, respectively, is declared.

For a given entity, the value of a user-defined attribute of that entity is the value specified in an
attribute specification for that attribute of that entity.

It is an error if a given attribute is associated more than once with a given entity. Similarly, it
is an error if two different attributes with the same simple name are both associated with a
given entity.

Examples:

attribute PIN_NO of CIN: signal is 10;
attribute PIN_NO of COUT: signal is 5;
attribute LOCATION of ADDERl: label is (10,15);
attribute LOCATION of others: label is (25,77);
attribute CAPACITANCE of all: signal is 15pF;

Note:

An entity designator that is an operator symbol is used to associate an attribute with an
overloaded operator.

5-2

SPECIFICATIONS
IEEE

Std 1076-1987

If an attribute specification appears, it must follow the declaration of the entity with which the
attribute is associated, and it must precede all references to that attribute of that entity.
Attribute specifications are allowed for all user-defined attributes, but are not allowed for
predefined attributes.

An attribute specification may reference an entity by using an alias for that entity in the entity
name list, but such a reference counts as the single attribute specification that is allowed for a
given attribute, and therefore prohibits a subsequent specification that uses the declared name
of the entity (or any other alias) as the prefix of the attribute name.

An attribute specification for an attribute of a variable of an access type associates the attribute
with the variable itself, not with the designated object. An attribute specification for one of
several overloaded subprograms, all of which are declared within the same declarative
region, has the effect of associating that attribute with each of the overloaded subprograms.

User-defined attributes represent local information only and cannot be used to pass
information from one description to another. For instance, both a signal X within an
architectural body and a port Y of a component within that architectural body may have the
same attribute A. However, the values of X'A and Y'A are not related in any way. In
particular, associating signal X with port Y in a component instantiation statement neither
imports the the value YA nor exports the value X'A.

5^ Configuration Specification

A configuration specification associates binding information with component labels
representing instances of a given component.

configuration_specification ::=
for component_specification use bindingjndication ;

component_specification ::=
instantiation_list : component_name

instantiation_list ::=
instantiation_\ahe\ { , instantiation_\ahe\ }

I others
I all

The instantiation list identifies those entities with which binding information is to be
associated, as defined below:

• If a list of instantiation labels is supplied, then the configuration specification
applies to the corresponding component instances. Such labels must be declared
within the immediately enclosing declarative region. It is an error if these
component instances are not instances of the component named in the component
specification.

• If the reserved word others is supplied, then the configuration specification applies to
instances of the specified component whose labels are declared in the immediately
enclosing declarative region, provided that each such component instance is not
explicitly named in the instantiation list of a previous configuration specification.

5-3

IEEE
Std 1076-1987 CHAPTER 5

• If the reserved word all is supplied, then the configuration specification applies to all
instances of the specified component whose labels are declared in the immediately
enclosing declarative region.

A configuration specification with the instantiation list others or all for a given component
name that appears in a declarative region must be the last such specification for the given
component name in that declarative region.

The elaboration of a configuration specification results in the association of binding
information with the labels identified by the instantiation list. A label that has binding
information associated with it is said to be hound. It is an error if the elaboration of a
configuration specification results in the association of binding information with a
component label that is already bound.

5.2.1 Binding Indication

A binding indication associates component instances with a particular design entity. It may
also associate actuals with formals in the entity interface.

binding_indication ;;=
entity _aspect
[generic_map_aspect]
[port_map_aspect]

The entity aspect of a binding indication identifies the design entity with which the component
instances are associated. If present, the generic map aspect of a binding indication identifies
the expressions to be associated with formal generics in the design entity interface. Similarly,
the port map aspect of a binding indication identifies the signals to be associated with formal
ports in the design entity interface.

If the generic map aspect or port map aspect of a binding indication is not present, then the
default rules as described in Section 5.2.2 apply.

5.2.1.1 Entity Aspect

An entity aspect identifies a particular design entity to be associated with component
instances. An entity aspect may also specify that such binding is to be deferred.

entity_aspect ::=
entity entityjoame [(architecture_\dieni\^\er)]

I configuration configurationjaavae
I open

The first form of entity aspect identifies a particular entity declaration and (optionally) a
corresponding architecture body. If no architecture identifier appears, then the immediately
enclosing binding indication is said to imply any design entity whose interface is defined by
the entity declaration denoted by the entity name. If an architecture identifier appears, then
the immediately enclosing binding indication is said to imply the design entity consisting of
the entity declaration denoted by the entity name together with an architecture body associated
with the entity declaration; the architecture identifier defines a simple name that is used

5-4

SPECIFICATIONS
IEEE

Stxl 1076-1987

during the elaboration of a design hierarchy to select the appropriate architecture body. In this
case, the corresponding component instances are said to be fully bound.

The second form of entity aspect identifies a design entity indirectly by identifying a
configuration. In this case, the entity aspect is said to imply the design entity at the apex of the
design hierarchy that is defined by the configuration denoted by the configuration name.

The third form of entity aspect is used to specify that identification of the design entity is to be
deferred. In this case, the immediately enclosing binding indication is said to not imply any
design entity. Furthermore, the immediately enclosing binding indication must not include
a generic map aspect or a port map aspect.

If an architecture identifier appears in the entity aspect of a binding indication in a component
configuration, then that identifier must be the same as the simple name of an architecture body
associated with the entity declaration denoted by the corresponding entity name.

5.2.L2 Generic Map And Port Map Aspects

A generic map aspect associates values with the formal generics of a block. Similarly, a port
map aspect associates signals with the formal ports of block. The following applies to both
external blocks defined by design entities and to internal blocks defined by block statements.

generic_map_aspect ::=
generic map (generic_association_list)

port_map_aspect ::=
port map (po7t_association_list)

Both named and positional association are allowed in a port or generic association list.

The following definitions hold in what follows:

• The term actual refers to both an actual designator that appears in an association
element of a port association list and an actual designator that appears in an
association element of a generic association list.

• The term formal refers to both a formal designator that appears in an association
element of a port association list and a formal designator that appears in an
association element of a generic association list.

The purpose of port and generic map aspects is to associate actuals with the formals of the
design entity interface implied by the immediately enclosing binding indication. Each local
port or generic of the component instances to which the enclosing configuration specification
applies must be associated as an actual with at least one formal. No formal may be associated
with more than one actual.

An actual associated with a formal generic in a generic map aspect must be an expression; an
actual associated with a formal port in a port map aspect must be a signal.

Certain restrictions apply to the actual associated with a formal port in a port map aspect; these
restrictions are described in Section 1.1.1.2.

5-5

IEEE
Std 1076-1987 CHAPTER 5

A formal that is not associated with an actual is said to be an unassociated formal.

Note:

A local generic (from a component declaration) or formal generic (from a block statement or
from the entity declaration of the enclosing design entity) may appear as an actual in a
generic map aspect. Similarly, a local port (from a component declaration) or formal port
(from a block statement or from the entity declaration of the enclosing design entity) may
appear as an actual in a port map aspect.

5.2.2 Default Binding Indication

In certain circumstances, a default binding indication will apply in the absence of an explicit
binding indication. The default binding indication consists of a default entity aspect, together
with a default generic map aspect and a default port map aspect, as appropriate.

If no visible entity declaration has the same simple name as that of the instantiated
component, then the default entity aspect is open. Otherwise, if such an entity declaration is
visible but has no associated architecture body, then the default entity aspect is of the form

entity entityjaame

where the entity name is the simple name of the instantiated component. Otherwise, the
default entity aspect is of the form

entity entityjaame (architecture_\der\i\^\eT)

where the entity name is the simple name of the instantiated component, and the architecture
identifier is the same as the simple name of the most recently analyzed architecture body
associated with the entity declaration.

The default binding indication includes a default generic map aspect if the design entity
implied by the entity aspect contains formal generics. The default generic map aspect
associates each local generic in the corresponding component instantiation (if any) with a
formal of the same simple name. It is an error if such a formal does not exist, or if its mode
and type are not appropriate for such an association. Any remaining unassociated formals
are associated with the actual designator open.

The default binding indication includes a default port map aspect if the design entity implied
by the entity aspect contains formal ports. The default port map aspect associates each local
port in the corresponding component instantiation (if any) with a formal of the same simple
name. It is an error if such a formal does not exist, or if its mode and type are not appropriate
for such an association. Any remaining unassociated formals are associated with the actual
designator open.

If an explicit binding indication lacks a generic map aspect, and the design entity implied by
the entity aspect contains formal generics, then the default generic map aspect is assumed
within that binding indication. Similarly, if an explicit binding indication lacks a port map
aspect, and the design entity implied by the entity aspect contains formal ports, then the default
port map aspect is assumed within that binding indication.

5-6

SPECIFICATIONS
IEEE

Std 1076-1987

5^ Disconnection Specification

A disconnection specification defines the time delay to be used in the implicit disconnection of
drivers of a guarded signal within a guarded signal assignment.

disconnection_specification ::=
disconnect guarded_signal_specification after ^ime_expression ;

guarded_signal_specification ;:=
gMarc?ec?_signal_list : type_mark

signal_list ::=
signal_name { , signal_name)

I others
I all

The guarded signal specification contains a signal list that identifies the signals for which the
implicit disconnection delay is to be defined, as follows:

• If a list of signal names is supplied, then each signal name must be a locally static
name that denotes a guarded signal, and the disconnection specification applies to
the named signals. Such signals must be declared in the immediately enclosing
declarative region.

• If the reserved word others is supplied, then the disconnection specification applies to
drivers of any signal of the specified type that are declared in the immediately
enclosing declarative region, provided that each such signal is not explicitly named
in the signal list of a previous disconnection specification.

• If the reserved word all is supplied, then the disconnection specification applies to
drivers of all signals of the specified type declared in the immediately enclosing
declarative region.

A disconnection specification with the signal list others or all for a given type that appears in a
declarative region must be the last such specification for the given type in that declarative
region. No guarded signal may be declared in a given declarative region following such a
disconnection specification.

The time expression in a disconnection specification must be static and must evaluate to a
non-negative value.

It is an error if more than one disconnection specification applies to drivers of the same
signal.

In the absence of a disconnection specification for a given scalar signal S of type T, the
following default disconnection specification is implicitly assumed:

disconnect S : T after 0ns;

Thus the implicit disconnection delay for any guarded signal is always defined, either by an
explicit disconnection specification or by an implicit one.

5-7

IEEE
Std 1076-1987

CHAPTER 6

NAMES

The rules applicable to the various forms of name are described in this chapter.

6.1 Names

Names can denote declared entities, whether declared explicitly or implicitly. Names can
also denote objects denoted by access values, and subelements or slices of composite objects and
values. Finally, names can denote attributes of any of the foregoing.

name ::=
simple_name

I operator_symbol
I selected_name
I indexed_name
I slice_name
I attribute_name

prefix :;=
name

1 function_call

Certain forms of name (indexed and selected names, slices, and attribute names) include a
prefix that is a name or a function call. If the prefix of a name is a function call, then the name
denotes an element, a slice, or an attribute, either of the result of the function call, or (if the
result is an access value) of the object designated by the result. Function calls are defined in
Section 7.3.3.

If the type of a prefix is an access type, then the prefix must not be a name that denotes a formal
parameter of mode out, or a subelement thereof.

A prefix is said to be appropriate for a type in either of the following cases:

• The type of the prefix is the type considered.

• The type of the prefix is an access type whose designated type is the type considered.

The evaluation of a name determines the entity denoted by the name. The evaluation of a
name that has a prefix includes the evaluation of the prefix, that is, of the corresponding name
or function call. If the type of the prefix is an access type, the evaluation of the prefix includes

6-1

IEEE
Std 1076-1987 CHAPTER 6

the determination of the object designated by the corresponding access value. In such a case, it
is an error if the value of the prefix is a null access value.

A name is said to be a static name if every expression that appears as part of the name (for
example, as an index expression) is a static expression. Furthermore, a name is said to be a
locally static name if every expression that appears as part of the name is a locally static
expression. A static signal name is a static name that denotes a signal. The longest static
prefix of a signal name is the name itself, if the name is a static signal name; otherwise, it is
the longest prefix of the name that is a static signal name.

Examples:

S(C,2)
R(J to 16)

- a static name: C is a static constant
- a non-static name: J is a signal
- R is the longest static prefix of R(J to 16)

T(n)
T(2)

- a static name; n is a generic constant
- a locally static name

6.2 Simple Names

A simple name for an entity is either the identifier associated with the entity by its declaration,
or another identifier associated with the entity by an alias declaration. In particular, the
simple name for an entity, a configuration, a package, a procedure, or a function is the
identifier that appears in the corresponding entity declaration, configuration declaration,
package declaration, procedure declaration, or function declaration, respectively. The simple
name of an architecture is that defined by the identifier of the architecture body.

simple_name ::= identifier

The evaluation of a simple name has no other effect than to determine the entity denoted by the
name.

6^ Selected Names

A selected name is used to denote an entity whose declaration appears either within the
declaration of another entity or within a design library.

selected_name ::= prefix . suffix

suffix ;:=
simple_name

I character_literal
I operator_symbol
I all

A selected name may be used to denote an element of a record, an object designated by an
access value, or an entity whose declaration is contained within another named entity,
particularly within a library or a package. Furthermore, a selected name may be used to
denote all entities whose declarations are contained within a library or a package.

6-2

NAMES
IEEE

Std 1076-1987

For a selected name that is used to denote a record element, the suffix must be a simple name
denoting an element of a record object or value. The prefix must be appropriate for the type of
this object or value.

For a selected name that is used to denote the object designated by an access value, the suffix
must be the reserved word all. The prefix must belong to an access type.

The remaining forms of selected name are called expanded names. The prefix of an
expanded name may not be a function call.

An expanded name denotes a primary unit contained in a design library if the prefix denotes
the library and the suffix is the simple name of a primary unit whose declaration is contained
in that library. An expanded name denotes all primary units contained in a library if the
prefix denotes the library and the suffix is the reserved word all. An expanded name is not
allowed for a secondary unit, particularly for an architecture body.

An expanded name denotes an entity declared in a package if the prefix denotes the package
and the suffix is the simple name, character literal, or operator symbol of an entity whose
declaration occurs immediately within that package. An expanded name denotes all entities
declared in a package if the prefix denotes the package and the suffix is the reserved word all.

An expanded name denotes an entity declared immediately within a named construct if the
prefix denotes a construct that is an entity, an architecture, a subprogram, a block statement, a
process statement, or a loop statement, and the suffix is the simple name, character literal, or
operator symbol of an entity whose declaration occurs immediately within that construct. This
form of expanded name is only allowed within the construct itself.

Examples:

INSTRUCTION.OPCODE - a record element
PTR.all -- the object designated by PTR

TTL.SN74LS221
CMOS.all

a design unit contained in a library
all design units contained in a library

MEASUREMENTS.VOLTAGE — an entity declared in a package
STANDARD.all -- all entities declared in a package

P.DATA an entity declared in process P

6.4 Indexed Names

An indexed name denotes an element of an array.

indexed_name :;= prefix (expression { , expression })

The prefix of an indexed name must be appropriate for an array type. The expressions specify
the index values for the element; there must be one such expression for each index position of
the array, and each expression must be of the type of the corresponding index. For the
evaluation of an indexed name, the prefix and the expressions are evaluated. It is an error if
an index value does not belong to the range of the corresponding index range of the array.

6-3

IEEE
Std 1076-1987 CHAPTER 6

Examples:

REGISTER_ARRAY(5) - an element of a one-dimensional array
MEMORY_CELL(l024,7) — an element of a two-dimensional array

6.5 Slice Names

A slice name denotes a one-dimensional array composed of a sequence of consecutive
elements of another one-dimensional array. A slice of a signal is a signal; a slice of a
variable is a variable; a slice of a constant is a constant; a slice of a value is a value.

slice_name ;:= prefix (discrete_range)

The prefix of a slice must be appropriate for a one-dimensional array object. The base type of
this array type is the type of the slice.

The bounds of the discrete range define those of the slice and must be of the type of the index of
the array. The slice is a null slice if the discrete range is a null range, or if the direction of the
discrete range is not the same as that of the object denoted by the prefix of the slice name.

For the evaluation of a name that is a slice, the prefix and the discrete range are evaluated. It
is an error if either of the bounds of the discrete range does not belong to the index range of the
prefixing array, unless the slice is a null slice. (The bounds of a null slice need not belong to
the subtype of the index.)

Examples:

signal R15: BIT_VECTOR (0 to 31);
constant DATA: BIT_VECTOR (31 downto 0);

R15(0to7)
DATA(24 downto 1)
DATA(24 to 25)

a slice with an ascending range
a slice with a descending range
a null slice

Note:

If A is a one-dimensional array of objects, the name A(N to N) or A(N downto N) is a slice that
contains one element; its type is the base type of A. On the other hand, A(N) is an element of the
array A and has the corresponding element type.

6.6 Attribute Names

An attribute name denotes a value, a function, a type, range, a signal, or a constant associated
with an entity.

attribute_name ::=
prefix ' attribute_designator [(static_expression)]

attribute_designator ::= a?fr/6j/fe_simple_name

6-4

NAMES
IEEE

Std 1076-1987

The applicable attribute designators depend on the prefix. The meaning of the prefix of an
attribute must be determinable independently of the attribute designator and independently of
the fact that it is the prefix of an attribute.

If the attribute designator denotes a predefined attribute, the static expression either must or
may appear, depending upon the definition of that attribute (see Chapter 14); otherwise, it must
not be present.

Examples:

REGISTER'LEFT(l)

OUTPUT’FANOUT

CLK’DELAYED(5ns)

— leftmost index bound of array REGISTER

— number of signals driven by port OUTPUT

— signal CLK delayed by 5ns

6-5

(

CHAPTER?

EXPRESSIONS

The rules applicable to the different forms of expression, and to their evaluation,
this chapter.

7.1 Expressions

An expression is a formula that defines the computation of a value.

expression ::=
relation { and relation)

I relation { or relation }
I relation (xor relation)
1 relation [nand relation]
I relation [nor relation]

relation ::=
simple_expression [relational_operator simple_expression]

simple_expression ::=
[sign] term { adding_operator term)

term :;=
factor { multiplying_operator factor)

factor ::=
primary [** primary]

I abs primary
I not primary

primary ::=
name

I literal
I aggregate
I function_call
I qualified_expression
I type_conversion
I allocator
I (expression)

IEEE
Std 1076-1987

are given in

7-1

IEEE
Std 1076-1987 CHAPTER 7

Each primary has a value and a type. The only names allowed as primaries are attributes that
yield values and names denoting objects or values. In the case of names denoting objects, the
value of the primary is the value of the object.

The type of an expression depends only upon the types of its operands and on the operators
applied; for an overloaded operand or operator, the determination of the operand type, or the
identification of the overloaded operator, depends on the context (see Section 10.5). For each
predefined operator, the operand and result types are given in the following section.

Note:

The syntax for an expression involving logical operators allows a sequence of and, or, or xor
operators, since the corresponding operations are associative. For operators nand and nor,
however, such a sequence is not allowed, since the corresponding operations are not
associative.

12 Operators

The operators that may be used in expressions are defined below. Each operator belongs to a
class of operators, all of which have the same precedence level; the classes of operators are
listed in order of increasing precedence.

logical_operator ::= and 1 or 1 nand 1 nor 1 xor

relational_operator ::= = 1 /= 1 < 1 < = 1 >

adding_operator :: = -1- 1 1 &

sign ::= + 1

multiplying_operator ::= * 1 / 1 mod 1 rem

miscellaneous_operator ;:= * * 1 abs 1 not

Operators of higher precedence are associated with their operands before operators of lower
precedence. For a sequence of operators with the same precedence level, the operators are
associated with their operands in textual order, from left to right. The precedence of an
operator is fixed and may not be changed by the user, but parentheses can be used to control the
association of operators and operands.

In general, operands in an expression are evaluated before being associated with operators.
For certain operations, however, the right-hand operand is evaluated if and only if the left-
hand operand has a certain value. These operations are called short-circuit operations. The
logical operations and, or, nand, and nor defined for operands of types BIT and BOOLEAN are
all short-circuit operations; furthermore, these are the only short-circuit operations.

7.2.1 Logical Operators

The logical operators and, or, nand, nor, xor, and not are defined for predefined types BIT and
BOOLEAN. They are also defined for any one-dimensional array type whose element type is
BIT or BOOLEAN. In the latter case, for the binary operators and, or, nand, nor, and xor, the

7-2

EXPRESSIONS
IEEE

Std 1076-1987

operands must be arrays of the same length, the operation is performed on matching elements
of the arrays, and the result is an array with the same index range as the left operand. For the
unary operator not, the operation is performed on each element of the operand, and the result is
an array with the same index range as the operand.

The effects of the logical operators are defined in the following tables. The symbol T represents
TRUE for type BOOLEAN, T' for type BIT; the symbol F represents FALSE for type
BOOLEAN, 'O' for type BIT.

A B AandB

T T T
T F F
FT F
F F F

A B A nand B

T T F
T F T
FT T
F F T

For the short-circuit operations and, or, nand, and nor on types BIT and BOOLEAN, the right
operand is evaluated only if the value of the left operand is not sufficient to determine the result
of the operation. For operations and and nand, the right operand is evaluated only if the value
of the left operand is T; for operations or and nor, the right operand is evaluated only if the
value of the left operand is F.

Note:

All of the binary logical operators belong to the class of operators with the lowest precedence.
The unary logical operator not belongs to the class of operators with the highest precedence.

A B Aor B

T T T
T F T
FT T
F F F

A B Anor B

T T F
T F F
FT F
F F T

A B AxorB

T T F
T F T
FT T
F F F

A not A

T F
F T

7,2.2 Relational Operators

Relational operators include tests for equality, inequality and ordering of operands. The
operands of each relational operator must be of the same type. The result type of each relational
operator is the predefined type BOOLEAN.

Operator Operation Operand Type

equality any type

/= inequality any type

<<=>>= ordering any scalar type
or discrete array

type

Result Type

BOOLEAN

BOOLEAN

BOOLEAN

7-3

IEEE
Std 1076-1987 CHAPTER 7

The equality and inequality operators (= and /=) are defined for all types other than file types.
The equality operator returns the value TRUE if the two operands are equal, and the value
FALSE otherwise. The inequality operator returns the value FALSE if the two operands are
equal, and the value TRUE otherwise.

Two scalar values of the same type are equal if and only if the values are the same. Two
composite values of the same type are equal if and only if for each element of the left operand
there is a matching element of the right operand and vice versa, and the values of matching
elements are equal, as given by the predefined equality operator for the element type. In
particular, two null arrays of the same type are always equal. Two values of an access type are
equal if and only if they both designate the same object or they both are equal to the null value
for the access type.

For two record values, matching elements are those that have the same element identifier. For
two one-dimensional array values, matching elements are those (if any) whose index values
match in the following sense: the left bounds of the index ranges are defined to match; if two
elements match, the elements immediately to their right are also defined to match. For two
multi-dimensional array values, matching elements are those whose indices match in
successive positions.

The ordering operators are defined for any scalar type, and for any discrete array type. A
discrete array is a one-dimensional array whose elements are of a discrete type. Each
operator returns TRUE if the corresponding relation is satisfied; otherwise the operator
returns FALSE.

For scalar types, ordering is defined in terms of the relative values. For discrete array types,
the relation < (less than) is defined such that the left operand is less than the right operand if
and only if:

• the left operand is a null array and the right operand is a non-null array; otherwise,

• both operands are non-null arrays, and one of the following conditions is satisfied:

— The leftmost element of the left operand is less than that of the right; or

— The leftmost element of the left operand is equal to that of the right, and the tail of
the left operand is less than that of the right (the tail consists of the remaining
elements to the right of the leftmost element and can be null).

The relation <= (less than or equal) for discrete array types is defined to be the inclusive
disjunction of the results of the < and = operators for the same two operands. The relations >
(greater than) and >= (greater than or equal) are defined to be the complements of the <= and <
operators respectively for the same two operands.

7^.3 Adding Operators

The adding operators + and - are predefined for any numeric type and have their conventional
meaning. The concatenation operator & is predefined for any one-dimensional array type.

7-4

IEEE
EXPRESSIONS Std 1076-1987

Operator Operation Left Operand

Type
Ri^t Operand

Type
Result
Type

-1- addition any numeric
type

same type same type

- subtraction any numeric
type

same type same type

& concatenation any array
type

same array
type

same array
type

any array
type

the element
type

same array
type

the element
type

any array
type

same array

type

the element
type

the element

type

any array

type

For concatenation, there are three cases:

1. If both operands are one-dimensional arrays, the result of the concatenation is a one¬
dimensional array whose length is the sum of the lengths of its operands, and whose
elements consist of the elements of the left operand (in left to right order) followed by
the elements of the right operand (in left to right order). The left bound of this result is
the left bound of the left operand, unless the left operand is a null array, in which case
the result of the concatenation is the right operand. The direction of the result is the
direction of the left operand, unless the left operand is a null array, in which case the
direction of the result is that of the right operand.

2. If only one of the operands is a one-dimensional array, the result of the concatenation
is given by the rules in case (1), using in place of the other operand an implicit array
having this operand as its only element. The left bound of this implicit array is the
left bound of the index subtype of the array, and its direction is ascending
(descending) if the index subtype is ascending (descending).

3. If neither operand is a one-dimensional array, the type of the result must be known
from the context. This type must be such that each operand is an element of an
implicit array, and the type of this implicit array is the same as the result type. The
subtype of this implicit array is determined as in case (2), and the result of the
concatenation is determined as in case (1).

Signs -I- and - are predefined for any numeric type and have their conventional meaning: they
represent the identity and negation functions respectively. For each of these unary operators,
the operand and the result have the same type.

Note:

Because of the relative precedence of signs -i- and - in the grammar for expressions, a signed
operand must not follow a multiplying operator, the exponentiating operator **, or the operators
abs and not. For example, the syntax does not allow the following expressions:

7-5

IEEE
Std 1076-1987 CHAPTER 7

A/+B - an illegal expression
A**-B — an illegal expression

However, these expressions may be rewritten legally as follows:

A/(+B) - a legal expression
A**(-B) -- a legal expression

7.2.4 Multiplying Operators

The operators * and / are predefined for any integer and any floating point type and have their
conventional meaning; the operators mod and rem are predefined for any integer type. For
each of these operators, the operands and the result are of the same type.

Operator Operation Left Operand
Type

Ri^t Operand
Type

Result
Type

* multiplication any integer
type

same type same type

any floating
point type

same type same type

1 division any integer
type

same type same type

any floating
point type

same type same type

mod modulus any integer
type

same type same type

rem remainder any integer
type

same type same type

Integer division and remainder are defined by the following relation:

A = (A/B)*B + (A rem B)

where (A rem B) has the sign of A and an absolute value less than the absolute value of B.
Integer division satisfies the following identity:

(-A)/B = -(A/B) = A/(-B)

The result of the modulus operation is such that (A mod B) has the sign of B and an absolute
value less than the absolute value of B; in addition, for some integer value N, this result must
satisfy the relation:

A = B*N + (A mod B)

In addition to the above, the operators * and / are predefined for any physical type.

7-6

IEEE
EXPRESSIONS Stdl076-1987

Operator Operation Left Operand
TVpe

Ri^t Operand
Type

Result
Type

* multiplication any physical
type

INTEGER same as
left

any physical
type

REAL same as
left

INTEGER any physical
type

same as
right

REAL any physical
type

same as
right

/ division any physical
type

INTEGER same as
left

any physical
type

REAL same as
left

any physical
type

the same type universal
integer

Multiplication of a value P of a physical type Tp by a value I of type INTEGER is equivalent to

the following computation;

Tp'VaK Tp'Pos(P) * I)

Multiplication of a value P of a physical type Tp by a value F of type REAL is equivalent to the

following computation:

Tp'VaK INTEGER(REAL(Tp'Pos(P)) * F))

Division of a value P of a physical type Tp by a value I of type INTEGER is equivalent to the

following computation;

Tp'VaK Tp'Pos(P) / I)

Division of a value P of a physical type Tp by a value F of type REAL is equivalent to the

following computation;

Tp'VaK INTEGER(REAL(Tp'Pos(P)) / F))

Division of a value P of a physical type Tp by a value P2 of the same physical type is equivalent

to the following computation:

Tp'Pos(P) / Tp'Pos(P2)

7^.5 Miscellaneous Operators

The unary operator abs is predefined for any numeric type.

7-7

IEEE
Sid 1076-1987 CHAPTER 7

Operator Operation Operand Type Result TVpe

abs absolute value any numeric type same numeric type

The exponentiating operator ** is predefined for each integer type and for each floating point
type. In either case the right operand, called the exponent, is of the predefined type INTEGER.

Operator Operation Left Operand Ri^t Operand Result
TVpe TVpe

* * exponentiation any integer
type

INTEGER same as
left

any floating
point type

INTEGER same as
left

Exponentiation with an integer exponent is equivalent to repeated multiplication of the left
operand by itself, for a number of times indicated by the absolute value of the exponent, and
from left to right; if the exponent is negative, then the result is the reciprocal of that obtained
with the absolute value of the exponent. Exponentiation with a negative exponent is only
allowed for a left operand of a floating point type. Exponentiation by a zero exponent results in
the value one. Exponentiation of a value of a floating point type is approximate.

7^ Operands

The operands in an expression include names (that denote objects, values, or attributes that
result in a value), literals, aggregates, function calls, qualified expressions, type conversions,
and allocators. In addition, an expression enclosed in parentheses may be an operand in an
expression. Names are defined in Section 6.1; the other kinds of operands are defined in the
following sections.

7.3.1 Literals

A literal is either a numeric literal, an enumeration literal, a string literal, a bit string
literal, or the literal null.

literal ::=
numeric_literal

1 enumeration_literal
I string_literal
I bit_string_literal
I nuU

numeric_literal :;=
abstract_literal

I physical_literal

Numeric literals include literals of the abstract types universal_integer and universal_real,
as well as literals of physical types. Abstract literals are defined in Chapter 13, Lexical
Elements; physical literals are defined in Section 3.1.3.

Enumeration literals are literals of enumeration types. They include both identifiers and
character literals. Enumeration literals are defined in Section 3.1.1.

7-8

EXPRESSIONS
IEEE

Std 1076-1987

String and bit string literals are representations of one-dimensional arrays of characters.
The type of a string or bit string literal must be determinable solely from the context in which
the literal appears, excluding the literal itself, but using the fact that the type of the literal must
be a one-dimensional array of a character type (for string literals) or of type BIT (for bit string
literals). The lexical structure of string and bit string literals are both defined in Chapter 13,
Lexical Elements.

For bit string literals, and for string literals that represent non-null array values, the
direction and bounds of the array value are determined according to the rules for positional
array aggregates, where the number of elements in the aggregate is equal to the length (see
Sections 13.6 and 13.7) of the string or bit string literal. For string literals that represent null
array values, the direction and leftmost bound of the array value are determined as for other
string literals. If the direction is ascending, then the rightmost bound is the predecessor (as
given by the PRED attribute) of the leftmost bound; otherwise the rightmost bound is the
successor (as given by the SUCC attribute) of the leftmost bound.

The character literals corresponding to the graphic characters contained within a string
literal or a bit string literal must be visible at the place of the string literal.

The literal null represents the null access value for any access type.

Evaluation of a literal yields the corresponding value.

Examples:

3.14159_26536
5280
10.7 ns
0"4777"
"54LS281"

7.3.2 Aggregates

An aggregate combines one or more values into a composite value of a record or array type,

aggregate ::=
(element_association (, element_association))

element_association ::=
[choices =>] expression

choices ::= choice { I choice)

choice ::=
simple_expression

I discrete_range
I eZemenf_Gimple_name
I others

Each element association associates an expression with elements. An element association is
said to be named if the elements are specified explicitly by choices; otherwise it is said to be

— a literal of type universal_real
— a literal of type universal_integer
- a literal of a physical type
- a literal of type BIT.STRING
- a literal of type STRING
— a string literal representing a null array

7-9

IEEE
Std 1076-1987 CHAPTER 7

positional. For a positional association, each element is implicitly specified by position, in the
textual order of the elements in the corresponding type declaration.

Both named and positional associations can be used in the same aggregate, with all positional
associations appearing first (in textual order), and all named associations appearing next (in
any order, except that no associations may follow an others association). Aggregates
containing a single element association must always be specified using named association in
order to distinguish them from parenthesized expressions.

An element association with a choice that is an element simple name is only allowed in a
record aggregate. An element association with a choice that is a simple expression or a
discrete range is only allowed in an array aggregate: a simple expression specifies the
element at the corresponding index value, whereas a discrete range specifies the elements at
each of the index values in the range. An element association with the single choice others is
allowed in either: it specifies all remaining elements, if any.

Each element of the value defined by an aggregate must be represented once and only once in
the aggregate.

The type of an aggregate must be determinable solely from the context in which the aggregate
appears, excluding the aggregate itself, but using the fact that the type of the aggregate must be a
composite type. The type of an aggregate in turn determines the required type for each of its
elements.

7.3.2.1 Record Aggregates

If the type of an aggregate is a record type, the element names given as choices must denote
elements of that record type. If the choice others is given as a choice of a record aggregate, it
must represent at least one element. An element association with more than one choice, or
with the choice others, is only allowed if the elements specified are all of the same type. The
expression of an element association must have the type of the associated record elements.

7^.2.2 Array Aggregates

For an aggregate of a one-dimensional array type, each choice must specify values of the index
type, and the expression of each element association must be of the element type. An aggregate
of an n-dimensional array type, where n is greater than 1, is written as a one-dimensional
aggregate in which the index subtype of the aggregate is given by the first index position of the
array type, and the expression specified for each element association is an (n-l)-dimensional
array or array aggregate. A string or bit string literal is allowed in a multi-dimensional
aggregate at the place of a one-dimensional array of a character type.

Apart from a final element association with the single choice others, the rest (if any) of the
element associations of an array aggregate must be either all positional or all named. A
named association of an array aggregate is allowed to have a choice that is not locally static, or
likewise a choice that is a null range, only if the aggregate includes a single element
association and this element association has a single choice. An others choice is locally static
if the applicable index constraint is locally static.

The subtype of an array aggregate that has an others choice must be determinable from the
context. That is, an array aggregate with an others choice may only appear:

7-10

EXPRESSIONS
IEEE

Std 1076-1987

1. As an actual associated with a formal parameter or formal generic declared to be of a
constrained array subtype;

2. As the default expression defining the default initial value of a port declared to be of a
constrained array subtype;

3. As the result expression of a function, where the corresponding function result type is
a constrained array subtype;

4. As a value expression in an assignment statement, where the target is a declared
object, and the subtype of the target is a constrained array subtype;

5. As the expression defining the initial value of a constant or variable object, where
that object is declared to be of a constrained array subtype;

6. As the expression defining the initial value of the drivers of one or more signals in
an initialization specification, where the corresponding subtype is a constrained
array subtype;

7. As the expression defining the value of an attribute in an attribute specification,
where that attribute is declared to be of a constrained array subtype;

8. As the operand of a qualified expression whose type mark denotes a constrained
array subtype;

9. As a subaggregate of a multi-dimensional aggregate, where that aggregate itself
appears in one of these contexts.

The bounds of an array that does not have an others choice are determined as follows. If the
aggregate appears in one of the above contexts, then the direction of the index subtype of the
aggregate is that of the corresponding constrained array subtype; otherwise, the direction of the
index subtype of the aggregate is that of the index subtype of the base type of the aggregate. For
an aggregate that has named associations, the leftmost and rightmost bounds are determined
by the direction of the index subtype of the aggregate and the smallest and largest choices
given. For a positional agg^regate, the leftmost bound is determined by the applicable index
constraint if the aggregate appears in one of the above contexts; otherwise, the leftmost bound is
given by S'LEFT where S is the index subtype of the base type of the array; in either case, the
rightmost bound is determined by the direction of the index subtype and the number of
elements.

7.3.3 Function Calls

A function call invokes the execution of a function body. The call specifies the name of the
function to be invoked and specifies the actual parameters, if any, to be associated with the
formal parameters of the function. Execution of the function body results in a value of the type
declared to be the result type in the declaration of the invoked function.

function_call ::=
function_na.m.e [(actual_parameter_part)]

actual_parameter_part ::= parame^er_association_list

7-11

IEEE
Std 1076-1987 CHAPTER 7

For each formal parameter of a function, a function call must specify exactly one
corresponding actual parameter. This actual parameter is specified either explicitly, by an
association element in the association list, or in the absence of such an association element, by
a default expression (see Section 4.3.3).

Evaluation of a function call includes evaluation of the actual parameter expressions specified
in the call and evaluation of the default expressions associated with formal parameters of the
function that do not have actual parameters associated with them. In both cases, the resulting
value must belong to the subtype of the associated formal parameter. (If the formal parameter
is of an unconstrained array type, then the formal parameter takes on the subtype of the actual
parameter.) The function body is executed using the actual parameter values and default
expression values as the values of the corresponding formal parameters.

7.3.4 Qualified Expressions

A qualified expression is used to explicitly state the type, and possibly the subtype, of an
operand that is an expression or an aggregate.

qualified_expression ::=
type_mark ’ (expression)

I type_mark ' aggregate

The operand must have the same type as the base type of the type mark. The value of a qualified
expression is the value of the operand. The evaluation of a qualified expression evaluates the
operand and checks that its value belongs to the subtype denoted by the type mark.

Note:

Whenever the type of an enumeration literal or aggregate is not known from the context, a
qualified expression can be used to state the type explicitly.

7.3.5 Type Conversions

A type conversion provides for explicit conversion between closely related types.

type_conversion ::= type_mark (expression)

The target type of a type conversion is the base type of the type mark. The type of the operand of a
type conversion must be determinable independent of the context (in particular, independent of
the target type). Furthermore, the operand of a type conversion is not allowed to be the literal
null, an allocator, an aggregate, or a string literal. An expression enclosed by parentheses is
allowed as the operand of a type conversion only if the expression alone is allowed.

If the type mark denotes a subtype, conversion consists of conversion to the target type followed
by a check that the result of the conversion belongs to the subtype.

Explicit type conversions are allowed between closely related types. In particular, conversion
of an operand of a given type to the type itself is allowed. The other allowed explicit type
conversions are as follows:

7-12

EXPRESSIONS
IEEE

Std 1076-1987

a. Abstract Numeric Types

The operand can be of any integer or floating point type. The value of the operand is
converted to the target type, which must also be an integer or floating point type. The
conversion of a floating point value to an integer type rounds to the nearest integer; if
the value is halfway between two integers, rounding may be up or down.

b. Array Types

The conversion is allowed if the operand type and the target type are array types that
satisfy the following conditions:

• the types have the same dimensionality;

• for each index position, the index types are either the same or are
convertible to each other; and

• the element types are the same.

If the type mark denotes an unconstrained array type, then, for each index position,
the bounds of the result are obtained by converting the bounds of the operand to the
corresponding index type of the target type. If the type mark denotes a constrained
array subtype, then the bounds of the result are those imposed by the type mark. In
either case, the value of each element of the result is that of the matching element of
the operand (see Section 7.2.2).

In the case of conversions between numeric types, it is an error if the result of the conversion
fails to satisfy a constraint imposed by the type mark.

In the case of conversions between array types, a check is made that any constraint on the
element subtype is the same for the operand array type as for the target array type. If the type
mark denotes an unconstrained array type, then, for each index position, a check is made that
the bounds of the result belong to the corresponding index subtype of the target type. If the type
mark denotes a constrained array subtype, a check is made that for each element of the
operand there is a matching element of the target subtype, and vice versa. It is an error if any
of these checks fail.

In certain cases, an implicit type conversion will be performed. An implicit conversion of an
operand of type universal_integer to another integer type, or of an operand of type
universal_real to another real type, can only be applied if the operand is either a numeric
literal or an attribute, or if the operand is an expression consisting of the division of a value of
a physical type by a value of the same type; such an operand is called a convertible universal
operand. An implicit conversion of a convertible universal operand is applied if and only if
the innermost complete context determines a unique (numeric) target type for the implicit
conversion, and there is no legal interpretation of this context without this conversion.

Note:

Two array types may be closely related even if corresponding index positions have different
directions.

7-13

IEEE
Std 1076-1987 CHAPTEE 7

7.3.6 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the

object.

allocator ::=
new subtype_indication

I new qualified_expression

The type of the object created by an allocator is the base type of the type mark given in either the
subtype indication or the qualified expression. For an allocator with a subtype indication, the
initial value of the created object is the same as the default initial value for an explicitly
declared variable of the designated subtype. For an allocator with a qualified expression, this
expression defines the initial value of the created object.

The type of the access value returned by an allocator must be determinable solely from the
context, but using the fact that the value returned is of an access type having the named
designated type.

The only allowed form of constraint in the subtype indication of an allocator is an index
constraint. If an allocator includes a subtype indication and if the type of the object created is
an array type, then the subtype indication must either denote a constrained subtype or include
an explicit index constraint. A subtype indication that is part of an allocator must not include
a resolution function.

If the type of the created object is an array type, then the created object is always constrained. If
the allocator includes a subtype indication, the created object is constrained by the subtype. If
the allocator includes a qualified expression, the created object is constrained by the bounds of
the initial value defined by that expression. For other types, the subtype of the created object is
the subtype defined by the subtype of the access type definition.

For the evaluation of an allocator, the elaboration of the subtype indication or the evaluation of
the qualified expression is first performed. The new object is then created, and the object is
then assigned its initial value. Finally, an access value that designates the created object is
returned.

In the absence of explicit deallocation, an implementation must guarantee that any object
created by the evaluation of an allocator remains allocated for as long as this object or one of its
subelements is accessible directly or indirectly; that is, as long as it can be denoted by some
name.

Note:

Procedure Deallocate is implicitly declared for each access type. This procedure provides a
mechanism for explicitly deallocating the storage occupied by an object created by an
allocator.

An implementation may (but need not) deallocate the storage occupied by an object created by
an allocator, once this object has become inaccessible.

7-14

EXPRESSIONS
IEEE

Std 1076-1987

Examples:

new NODE
new NODE'(15ns, null)
new NODE'CDelay => 5ns, Next =>

new BIT_VECTOR'("00110110")
new STRING (1 to 10)
new STRING

— takes on default initial value
— initial value is specified

Stack) - initial value is specified

— constrained by initial value
— constrained by index constraint
— illegal: must be constrained

7.4 Static Expressions

Certain expressions are said to be static. Similarly, certain discrete ranges are said to be
static, and the type marks of certain subtypes are said to denote static subtypes.

There are two categories of static expression. Certain forms of expression can be evaluated
during the analysis of the design unit in which they appear; such an expression is said to be
locally static, because its value is dependent only upon declarations that are local to the
containing design unit, or packages used by that design unit. Certain forms of expression can
be evaluated as soon as the design hierarchy in which they appear is elaborated; such an
expression is said to be globally static, because its value may be dependent upon declarations
that appear in other design units within the hierarchy, or upon the process of elaboration itself.
A locally static expression is also considered to be globally static.

An expression is said to be locally static if and only if every operator in the expression denotes
a predefined operator whose operands and result are scalar and every primary in the
expression is a locally static primary, where a locally static primary is defined to be one of the
following:

1. a literal of any type;

2. a constant (other than a deferred constant) explicitly declared by a constant
declaration with a locally static subtype and initialized with a locally static
expression;

3. a function call whose function name denotes a predefined operator, and whose actual
parameters are each locally static expressions;

4. a predefined attribute of a locally static subtype that is a value;

5. a predefined attribute of a locally static subtype that is a function, where the actual
parameter is a locally static expression;

6. a user-defined attribute whose value is defined by a locally static expression;

7. a qualified expression whose type mark denotes a locally static subtype and whose
operand is a locally static expression;

8. a locally static expression enclosed in parentheses.

A locally static range is a range whose bounds are locally static expressions. A locally static
range constraint is a range constraint whose range is locally static. A locally static scalar

7-15

IEEE
Std 1076-1987 CHAPTER 7

subtype is either a scalar base type, or a scalar subtype formed by imposing on a locally static
subtype a locally static range constraint. A locally static discrete range is either a locally
static subtype or a locally static range.

A locally static index constraint is an index constraint for which each index subtype of the
corresponding array type is locally static, and in which each discrete range is locally static. A
locally static array subtype is a constrained array subtype formed by imposing on an
unconstrained array type a locally static index constraint.

A locally static subtype is either a locally static scalar subtype or a locally static array subtype.

An expression is said to be globally static if and only if every operator in the expression
denotes a predefined operator and every primary in the expression is a globally static primary,
where a globally static primary is defined to be one of the following:

1. a locally static primary;

2. a generic constant;

3. a generate parameter;

4. a constant (including a deferred constant) explicitly declared by a constant
declaration with a globally static subtype and initialized with a static expression;

5. an aggregate of a globally static subtype whose element associations contain only
globally static expressions;

6. a function call whose function name denotes a predefined operator, and whose actual
parameters are each globally static expressions;

7. a predefined attribute of a globally static subtype that is a value or a range;

8. a predefined attribute of a globally static subtype that is a function, where the actual
parameter is a globally static expression;

9. a user-defined attribute whose value is defined by a globally static expression;

10. a qualified expression whose type mark denotes a globally static subtype and whose
operand is a globally static expression;

11. a globally static expression enclosed in parentheses.

A globally static range is a range whose bounds are globally static expressions. A globally
static range constraint is a range constraint whose range is globally static. A globally static
scalar subtype is either a scalar base type, or a scalar subtype formed by imposing on a globally
static subtype a globally static range constraint. A globally static discrete range is either a
globally static subtype or a globally static range.

A globally static index constraint is an index constraint for which each index subtype of the
corresponding array type is globally static, and in which each discrete range is globally static.
A globally static array subtype is a constrained array subtype formed by imposing on an
unconstrained array type a globally static index constraint.

7-16

EXPRESSIONS
IEEE

Std 1076-1987

A globally static subtype is either a globally static scalar subtype or a globally static array
subtype.

Note:

An expression that is required to be a static expression may either be a locally static expression
or a globally static expression. Similarly, a range, a range constraint, a scalar subtype, a
discrete range, an index constraint, or an array subtype that is required to be static may either
be locally static or globally static.

7.5 Universal Expressions

A universal_expression is either an expression that delivers a result of type universal_integer
or one that delivers a result of type universal_real.

The same operations are predefined for the type universal_integer as for any integer type. The
same operations are predefined for the type universal_real as for any floating point type. In
addition, these operations include the following multiplication and division operators;

Operator Operation Left Operand Rig^t Operand
Type

Result
Type

* multiplication universal
real

universal
integer

universal
real

universal
integer

universal
real

universal
real

/ division universal
real

universal
integer

universal
real

The accuracy of the evaluation of a universal expression of type universal_real is at least as
good as that of the most accurate predefined floating point type supported by the
implementation, apart from universal_real itself. Furthermore, if a universal expression is
a static expression, then the evaluation must be exact.

For the evaluation of an operation of a non-static universal expression, the following rules
apply. If the result is of type universal_integer, then the values of the operands and the result
must lie within the range of the integer type with the widest range provided by the
implementation, excluding type universal_integer itself. If the result is of type
universal_real, then the values of the operands and the result must lie within the range of the
floating point type with the widest range provided by the implementation, excluding type
universal_real itself.

7-17

IEEE
Std 1076-1987

CHAPTERS

SEQUENTIAL STATEMENTS

The various forms of sequential statement are described in this chapter. Sequential
statements are used to define algorithms for the execution of a subprogram or process; they
execute in the order in which they appear.

sequence_of_statements ::=
{ sequential_statement)

sequential_statement :;=
wait_statement

I assertion_statement
I signal_assignment_statement
I variable_assignment_statement
1 procedure_call_statement
I if_statement
I case_statement
I loop_statement
I next_statement
I exit_statement
I return_statement
I null_statement

Certain sequential statements may be labeled. Such labels are implicitly declared at the
beginning of the declarative part of the innermost enclosing process statement or subprogram
body.

8.1 Wait Statement

The wait statement causes the suspension of a process statement or a procedure.

wait_statement ::=
wait [sensitivity_clause] [condition_clause] [timeout_clause] ;

sensitivity_clause ::= on sensitivity_list

sensitivity_list ::= signal_name { , signaljaame }

condition_clause ::= until condition

condition ::= 6ooZean_expression

timeout_clause ::= for ^tme_expression

8-1

IEEE
Std 1076-1987 CHAPTER 8

The sensitivity clause defines the sensitivity set of the wait statement, i.e., the set of signals to
which the wait statement is sensitive. Each signal name in the sensitivity list identifies a
given signal as a member of the sensitivity set. Each signal name in the sensitivity list must
be a static signal name, and each name must denote a signal for which reading is permitted.
If no sensitivity clause appears, the sensitivity set will contain the signals denoted by the
longest static prefix of each signal name that appears as a primary in the condition of the
condition clause.

If a signal name that denotes a signal of a composite type appears in a sensitivity list, the effect
is as if the name of each scalar subelement of that signal appears in the list.

The condition clause specifies a condition that must be met for the process to continue
execution. If no condition clause appears, the condition clause until TRUE is assumed.

The timeout clause specifies the maximum amount of time the process will remain suspended
at this wait statement. If no timeout clause appears, the timeout clause for
(STD.STANDARD.TIME’HIGH - STD.STANDARD.NOW) is assumed. It is an error if the
time expression in the timeout clause evaluates to a negative value.

The execution of a wait statement causes the time expression to be evaluated to determine the
timeout interval. It also causes the execution of the corresponding process statement to be
suspended, where the corresponding process statement is the one that either contains the wait
statement or is the parent (see Section 2.2) of the procedure that contains the wait statement.
The suspended process will resume, at the latest, immediately after the timeout interval has
expired.

The suspended process may also resume as a result of an event occurring on any signal in the
sensitivity set of the wait statement. If such an event occurs, the condition in the condition
clause is evaluated. If the value of the condition is TRUE, the process will resume. If the value
of the condition is FALSE, the process will re-suspend. Such re-suspension does not involve the
recalculation of the timeout interval.

It is an error if a wait statement appears in a function subprogram, or in a procedure that has a
parent that is a function subprogram. Furthermore, it is an error if a wait statement appears in
an explicit process statement that includes a sensitivity list, or in a procedure that has a parent
that is such a process statement.

8.2 Assertion Statement

An assertion statement checks that a specified condition is true and reports an error if it is not.

assertion_statement ::=
assert condition

[report expression]
[severity expression];

If the report clause is present, it must include an expression of predefined type STRING that
specifies a message to be reported. If the severity clause is present, it must specify an
expression of predefined type SEVERITY_LEVEL that specifies the severity level of the
assertion.

8-2

SEQUENTIAL STATEMENTS
IEEE

Std 1076-1987

The report clause specifies a message string to be included in error messages generated by the
assertion. In the absence of a report clause for a given assertion, the default value for the
message string is "Assertion violation.". The severity clause specifies a severity level
associated with the assertion. In the absence of a severity clause for a given assertion, the
default value of the severity level is ERROR.

Evaluation of an assertion statement consists of evaluation of the boolean expression
specifying the condition. If the expression results in the value FALSE, then an assertion
violation is said to occur. When an assertion violation occurs, the report and severity clause
expressions, if present, of the corresponding assertion are evaluated. The specified message
string and severity level (or the corresponding default values, if not specified) are then used to
construct an error message.

The error message consists of at least:

1. an indication that this message is from an assertion;

2. the value of the severity level;

3. the value of the message string;

4. the name of the design unit (see Section 11.1) containing the assertion.

8^ Signal Assignment Statement

A signal assig;nment statement modifies the projected output waveforms contained in the
drivers of one or more signals (see Section 9.2.1).

signal_assignment_statement ::=
target <= [transport] waveform ;

target ::=
name

I aggregate

waveform ::=
waveform_element { , waveform_element)

If the target of the signal assignment statement is a name, then the name must denote a signal,
and the base type of the value component of each transaction produced by a waveform element
on the right-hand side must be the same as the base type of the signal denoted by that name.
This form of signal assignment assigns right-hand side values to the drivers associated with
a single (scalar or composite) signal.

If the target of the signal assignment statement is in the form of an aggregate, then the type of
the aggregate must be determinable from the context, excluding the aggregate itself, but
including the fact that the type of the aggregate must be a composite type. The base type of the
value component of each transaction produced by a waveform element on the right-hand side
must be the same as the base type of the aggregate. Furthermore, the expression in each
element association of the aggregate must be a locally static name that denotes a signal. This
form of signal assignment assigns subelements of the right-hand side values to the drivers
associated with the signal named as the corresponding subelement of the aggregate.

8-3

IEEE
Std 1076-1987 CHAPTER 8

If the target of a signal assignment statement is in the form of an aggregate, and the
expression in an element association of that aggregate is a signal name that denotes a given
signal, then the given signal and each subelement thereof (if any) are said to be identified by
that element association as targets of the assignment statement. It is an error if a given signal
or any subelement thereof is identified as a target by more than one element association in
such an aggregate. Furthermore, it is an error if an element association in such an aggregate
contains an others choice or a choice that is a discrete range.

The right-hand side of a signal assignment may optionally begin with the reserved word
transport. This specifies that the delay associated with the first waveform element is to be
construed as transport delay. Transport delay is characteristic of hardware devices (such as
transmission lines) that exhibit nearly infinite frequency response: any pulse is transmitted,
no matter how short its duration. If the reserved word is not present, the delay is construed to be
inertial delay. Inertial delay is characteristic of switching circuits: a pulse whose duration is
shorter than the switching time of the circuit will not be transmitted.

8^.1 Updating a Projected Output Waveform

The effect of execution of a signal assignment statement is defined in terms of its effect upon
the projected output waveforms (see Section 9.2.1) representing the current and future values of
drivers of signals.

waveform_element ::=
Da/ue_expression [after ^fme_expression]

I null [after <ime_expression]

The future behavior of the driver(s) for a given target is defined by transactions produced by
the evaluation of waveform elements in the waveform of a signal assignment statement. The
first form of waveform element is used to specify that the driver is to assign a particular value
to the target at the specified time. The second form of waveform element is used to specify that
the driver of the signal is to be turned off, so that it (at least temporarily) stops contributing to
the value of the target. This form of waveform element is called a null waveform element. It
is an error if the target of a signal assignment statement containing a null waveform element
is not a guarded signal.

The base type of the time expression in each waveform element must be the predefined physical
type TIME as defined in package STANDARD. If the after clause of a waveform element is
not present, then an implicit "after 0ns" is assumed. It is an error if the time expression in a
waveform element evaluates to a negative value.

Evaluation of a waveform element produces a single transaction. The time component of the
transaction is determined by the current time taken together with the value of the time
expression in the waveform element. For the first form of waveform element, the value
component of the transaction is determined by the value expression in the waveform element.
For the second form of waveform element, the value component is not defined by the language,
but it is defined to be of the type of the target. A transaction produced by the evaluation of the
second form of waveform element is called a null transaction.

For the execution of a signal assignment statement whose target is of a scalar type, the
waveform on its right-hand side is first evaluated. Evaluation of a waveform consists of the
evaluation of each waveform element in the waveform. Thus the evaluation of a waveform
results in a sequence of transactions, where each transaction corresponds to one waveform

8-4

SEQUENTIAL STATEMENTS
IEEE

Std 1076-1987

element in the waveform. These transactions are called new transactions. It is an error if the
sequence of new transactions is not in ascending order with respect to time.

The sequence of transactions is then used to update the projected output waveform representing
the current and future values of the driver associated with the signal assignment statement.
Updating a projected output waveform consists of the deletion of zero or more previously
computed transactions (called old transactions) from the projected output waveform, and the
addition of the new transactions, as follows;

1. All old transactions that are projected to occur at or after the time at which the earliest
new transaction is projected to occur are deleted from the projected output waveform;

2. The new transactions are then appended to the projected output waveform in the order
of their projected occurrence.

If the reserved word transport does not appear in the corresponding signal assignment
statement, then the initial delay is considered to be inertial delay, and the projected output
waveform is further modified as follows:

1 All of the new transactions are marked;

2. An old transaction is marked if it immediately precedes a marked transaction and
its value component is the same as that of the marked transaction;

3. The transaction that determines the current value of the driver is marked;

4. All unmarked transactions (all of which are old transactions) are deleted from the
projected output waveform.

For the purposes of marking transactions, any two successive null transactions in a projected
output waveform are considered to have the same value component.

The execution of a signal assignment statement whose target is of a composite type proceeds in
a similar fashion, except that the evaluation of the waveform results in one sequence of
transactions for each scalar subelement of the type of the target. Each such sequence consists of
transactions whose value portions are determined by the values of the same scalar subelement
of the value expressions in the waveform, and whose time portion is determined by the time
expression corresponding to that value expression. Each such sequence is then used to update
the projected output waveform of the driver of the matching subelement of the target. This
applies both to a target that is the name of a signal of a composite type and to a target that is in
the form of an aggregate.

If a given procedure is declared by a declarative item that is not contained within a process
statement, and a signal assignment statement appears in that procedure, then the target of the
assignment statement must be a formal parameter of the given procedure or of a parent of that
procedure, or an aggregate of such formal parameters.

Note:

If a right-hand side value expression is either a numeric literal, or an attribute that yields a
result of type universal_integer or universal_real, then an implicit type conversion is
performed.

8-5

IEEE
Std 1076-1987 CHAPTER 8

The above rules guarantee that the driver affected by a signal assignment statement is always
statically determinable if the signal assignment appears within a given process (including
the case in which it appears within a procedure that is declared within the given process). In
this case, the affected driver is the one defined by the process; otherwise, the signal assignment
must appear within a procedure, and the affected driver is the one passed to the procedure along
with a signal parameter of that procedure.

8.4 Variable Assignment Statement

A variable assignment statement replaces the current value of a variable with a new value
specified by an expression. The named variable and the right-hand side expression must be of
the same type.

variable_assignment_statement ::=
target := expression ;

If the target of the variable assignment statement is a name, then the name must denote a
variable, and the base type of the expression on the right-hand side must be the same as the base
type of the variable denoted by that name. This form of variable assignment assigns the right-
hand side value to a single (scalar or composite) variable.

If the target of the variable assignment statement is in the form of an aggregate, then the type of
the aggregate must be determinable from the context, excluding the aggregate itself, but
including the fact that the type of the aggregate must be a composite type. The base type of the
expression on the right-hand side must be the same as the base type of the aggregate.
Furthermore, the expression in each element association of the aggregate must be a locally
static name that denotes a variable. This form of variable assignment assigns each
subelement of the right-hand side value to the variable named as the corresponding
subelement of the aggregate.

If the target of a variable assignment statement is in the form of an aggregate, and the locally
static name in an element association of that aggregate denotes a given variable or denotes
another variable of which the given variable is a subelement, then the element association is
said to identify the given variable as a target of the assignment statement. It is an error if a
given variable is identified as a target by more than one element association in such an
aggregate.

For the execution of a variable assignment whose target is a variable name, the variable name
and the expression are first evaluated. A check is then made that the value of the expression
belongs to the subtype of the variable, except in the case of a variable that is an array (in which
case the assignment involves a subtype conversion). Finally, the value of the expression
becomes the new value of the variable.

The execution of a variable assignment whose target is in the form of an aggregate proceeds in
a similar fashion, except that each of the names in the aggregate is evaluated, and a subtype
check is performed for each subelement of the right-hand side value that corresponds to one of
the names in the aggregate. The value of the subelement of the right-hand side value then
becomes the new value of the variable denoted by the corresponding name.

An error occurs if the above-mentioned subtype checks fail.

8-6

SEQUENTIAL STATEMENTS
IEEE

Std 1076-1987

The determination of the type of the target of a variable assignment statement may require
determination of the type of the expression if the target is a name that can be interpreted as the
name of a variable designated by the access value returned by a function call, and similarly,
as an element or slice of such a variable.

Note:

If the right-hand side is either a numeric literal, or an attribute that yields a result of type
universal integer or universal real, then an implicit t)q)e conversion is performed.

Assignment to a variable of a file type is not allowed.

8.4.1 Array Variable Assignments

If the target of an assignment statement is a name denoting an array variable (including a
slice), the value assigned to the target is implicitly converted to the subtype of the array
variable; the result of this subtype conversion becomes the new value of the array variable.

This means that the new value of each element of the array variable is specified by the
matching element (see Section 7.2.2) in the corresponding array value obtained by evaluation
of the expression. The subtype conversion checks that for each element of the array variable
there is a matching element in the array value, and vice versa. An error occurs if this check
fails.

Note:

The implicit subtype conversion described above for assignment to an array variable is
performed only for the value of the right-hand side expression as a whole; it is not performed
for subelements that are array values.

8.5 Procedure Call Statement

A procedure call invokes the execution of a procedure body.

procedure_call_statement ::=
procedurejoame [(actual_parameter_part)] ;

The procedure name specifies the procedure body to be invoked. The actual parameter part, if
present, specifies the association of actual parameters with formal parameters of the
procedure.

For each formal parameter of a procedure, a procedure call must specify exactly one
corresponding actual parameter. This actual parameter is specified either explicitly, by an
association element in the association list, or in the absence of such an association element, by
a default expression (see Section 4.3.3).

Execution of a procedure call includes evaluation of the actual parameter expressions specified
in the call and evaluation of the default expressions associated with formal parameters of the
procedure that do not have actual parameters associated with them. In both cases, the resulting
value must belong to the subtype of the associated formal parameter. (If the formal parameter
is of an unconstrained array type, then the formal parameter takes on the subtype of the actual

8-7

IEEE
Std 1076-1987 CHAPTER 8

parameter.) The procedure body is executed using the actual parameter values and default
expression values as the values of the corresponding formal parameters.

8.6 If Statement

An if statement selects for execution one or none of the enclosed sequences of statements,
depending on the value of one or more corresponding conditions.

if_statement ;:=
if condition then

sequence_of_statements
{elsif condition then

sequence_of_statements }
[else

sequence_of_statements]
end if;

An expression specifying a condition must be of type BOOLEAN.

For the execution of an if statement, the condition specified after if, and any conditions
specified after elsif, are evaluated in succession (treating a final else as elsif TRUE then),
until one evaluates to TRUE or all conditions are evaluated and yield FALSE. If one condition
evaluates to TRUE, then the corresponding sequence of statements is executed; otherwise none
of the sequences of statements is executed.

8.7 Case Statement

A case statement selects for execution one of a number of alternative sequences of statements;
the chosen alternative is defined by the value of an expression.

case_statement ::=
case expression is

case_statement_alternative
{ case_statement_alternative }

end case;

case_statement_alternative ::=
when choices =>

sequence_of_statements

The expression must be of a discrete type, or of a one-dimensional character array type (whose
values are representable as string or bit string literals). This type must be determinable
independently of the context in which the expression occurs, but using the fact that the
expression must be of a discrete type or a one-dimensional character array type. Each choice
in a case statement alternative must be of the same type as the expression; the list of choices
specifies for which values of the expression the alternative is chosen.

If the expression is the name of an object whose subtype is locally static, whether a scalar type or
an array type, then each value of the subtype must be represented once and only once in the set
of choices of the case statement, and no other value is allowed; this rule is likewise applied if

8-8

SEQUENTIAL STATEMENTS
IEEE

Std 1076-1987

the expression is a qualified expression or type conversion whose type mark denotes a locally
static subtype.

If the expression is of a one-dimensional character array type, then the expression must be the
name of an object whose subtype is locally static, or it must be a qualified expression or type
conversion whose type mark denotes a locally static subtype. In such a case, each choice
appearing in any of the case statement alternatives must be a locally static expression whose
value is of the same length as that of the case expression.

For other forms of expression, each value of the (base) type of the expression must be
represented once and only once in the set of choices, and no other value is allowed.

The simple expression and discrete ranges given as choices in a case statement must be
locally static. A choice defined by a discrete range stands for all values in the corresponding
range. The choice others is only allowed for the last alternative and as its only choice; it
stands for all values (possibly none) not given in the choices of previous alternatives. An
element simple name is not allowed as a choice of a case statement alternative.

The execution of a case statement consists of the evaluation of the expression followed by the
execution of the chosen sequence of statements.

Note:

The execution of a case statement chooses one and only one alternative, since the choices are
exhaustive and mutually exclusive. Qualification of the expression of a case statement by a
locally static subtype can often be used to limit the number of choices that need be given
explicitly.

An others choice is required in a case statement if the type of the expression is the type
universalJinteger (for example, if the expression is an integer literal), since this is the only
way to cover all values of the type universal_integer.

Overloading the operator "=" has no effect on the semantics of case statement execution.

&8 Loop Statement

A loop statement includes a sequence of statements that is to be executed repeatedly, zero or
more times.

loop_statement ::=
[Zoop_label :]

[iteration_scheme] loop
sequence_of_statements

end loop [^oqpjabel];

iteration_scheme ::=
while condition

I for Zoop_parameter_specification

parameter_specification ::=
identifier in discrete_range

8-9

IEEE
Std 1076-1987 CHAPTER 8

If a label appears at the end of a loop statement, it must repeat the label at the beginning of the
loop statement.

A loop statement without an iteration scheme specifies repeated execution of the sequence of
statements. Execution of the loop statement is complete when the loop is left as a consequence of
the execution of a next statement, an exit statement, or a return statement.

For a loop statement with a while iteration scheme, the condition is evaluated before each
execution of the sequence of statements; if the value of the condition is TRUE, the sequence of
statements is executed, if FALSE the execution of the loop statement is complete.

For a loop statement with a for iteration scheme, the loop parameter specification is the
declaration of the loop parameter with the given identifier. The loop parameter is an object
whose type is the base type of the discrete range. Within the sequence of statements, the loop
parameter is a constant. Hence a loop parameter is not allowed as the target of an assignment
statement. Similarly, the loop parameter must not be given as an actual corresponding to a
formal of mode out or inout in an association list.

For the execution of a loop with a for iteration scheme, the discrete range is first evaluated. If
the discrete range is a null range, the execution of the loop statement is complete; otherwise, the
sequence of statements is executed once for each value of the discrete range (subject to the loop
not being left as a consequence of the execution of a next statement, an exit statement, or a
return statement). Prior to each such iteration, the corresponding value of the discrete range is
assigned to the loop parameter. These values are assigned in left to right order.

8^ Next Statement

A next statement is used to complete the execution of one of the iterations of an enclosing loop
statement (called "loop" in what follows). The completion is conditional if the statement
includes a condition.

next_statement ;;=
next [Zoop_label] [when condition];

A next statement with a loop label is only allowed within the labeled loop, and applies to that
loop; a next statement without a loop label is only allowed within a loop, and applies only to the
innermost enclosing loop (whether labeled or not).

For the execution of a next statement, the condition, if present, is first evaluated. The current
iteration of the loop is terminated if the value of the condition is TRUE or if there is no
condition.

8.10 Exit Statement

An exit statement is used to complete the execution of an enclosing loop statement (called
"loop" in what follows). The completion is conditional if the statement includes a condition.

exit_statement ;:=
exit [Zoop_label] [when condition];

8-10

SEQUENTIAL STATEMENTS
IEEE

Std 1076-1987

An exit statement with a loop label is only allowed within the labeled loop, and applies to that
loop; an exit statement without a loop label is only allowed within a loop, and applies only to the
innermost enclosing loop (whether labeled or not).

For the execution of an exit statement, the condition, if present, is first evaluated. Exit from the
loop then takes place if the value of the condition is TRUE or if there is no condition.

8.11 Return Statement

A return statement is used to complete the execution of the innermost enclosing function or
procedure body.

return_statement ::=
return [expression];

A return statement is only allowed within the body of a function or procedure, and it applies to
the innermost enclosing function or procedure.

A return statement appearing in a procedure body must not have an expression. A return
statement appearing in a function body must have an expression.

The value of the expression defines the result returned by the function. The type of this
expression must be the base type of the type mark given after the reserved word return in the
specification of the function. It is an error if execution of a function completes by means other
than the execution of a return statement.

For the execution of a return statement, the expression (if any) is first evaluated and a check is
made that the value belongs to the result subtype. The execution of the return statement is
thereby completed if the check succeeds; so also is the execution of the enclosing subprogram.
An error occurs at the place of the return statement if the check fails.

Note:

If the expression is either a numeric literal, or an attribute that yields a result of type
universal_integer or universaljreal, then an implicit conversion of the result is performed.

8.12 Null Statement

A null statement performs no action.

null_statement ::= null ;

The execution of the null statement has no effect other than to pass on to the next statement.

Note:

The null statement can be used to explicitly specify that no action is to be performed when
certain conditions are true. This is particularly useful in conjunction with the case statement,
in which all possible values of the case expression must be covered by choices: for certain
choices, it may be that no action is required.

8-11

1

(
\

IEEE
Std 1076-1987

CHAPTER 9

CONCURRENT STATEMENTS

The various forms of concurrent statement are described in this chapter. Concurrent
statements are used to define interconnected blocks and processes that jointly describe the
overall behavior or structure of a design. Concurrent statements execute asynchronously with
respect to each other.

concurrent_statement ::=
block_statement

I process_statement
I concurrent_procedure_call
I concurrent_assertion_statement
I concurrent_signal_assignment_statement
I component_instantiation_statement
I generate_statement

The primary concurrent statements are the block statement, which groups together other
concurrent statements, and the process statement, which represents a single independent
sequential process. Additional concurrent statements provide convenient syntax for
representing simple, commonly occurring forms of processes, as well as for representing
structural decomposition and regular descriptions.

Within a given simulation cycle, an implementation may execute concurrent statements in
parallel or in some order. The language does not define the order, if any, in which such
statements will be executed. A description that depends upon a particular order of execution of
concurrent statements is erroneous.

All concurrent statements may be labeled. Such labels are implicitly declared at the
beginning of the declarative part of the innermost enclosing entity declaration, architecture
body, or block statement.

9.1 Block Statement

A block statement defines an internal block representing a portion of a design. Blocks may be
hierarchically nested to support design decomposition.

9-1

IEEE
Std 1076-1987 CHAPTER 9

block_stateTnent ::=
6/oc/j_label ;
block [(^uard_expression)]

block_header
block_declarative_part

begin
block_statement_part

end block [block_\ahe\];

block_header ;:=
[generic_clause
[generic_map_aspect ;]]
[port_clause#
[port_map_aspect;]]

block_declarative_part :;=
{ block_declarative_item)

block_statement_part ;:=
(concurrent_statement)

If a guard expression appears after the reserved word block, then a signal with the simple
name GUARD of predefined type BOOLEAN is implicitly declared at the beginning of the
declarative part of the block, and the guard expression defines the value of that signal at any
given time (see Section 12.6.3). The type of the guard expression must be type BOOLEAN.
Signal GUARD may be used to control the operation of certain statements within the block (see
Section 9.5).

The implicit signal GUARD must not have a source.

If a block header appears in a block statement, it explicitly identifies certain values or signals
that are to be imported from the enclosing environment into the block and associated with
formal generics or ports. The generic and port clauses define the formal generics and formal
ports of the block (see Section 1.1.1.1 and 1.1.1.2); the generic map and port map aspects define
the association of actuals with those formals (see Section 5.2.1.2). Such actuals are evaluated
in the context of the enclosing declarative region.

If a label appears at the end of a block statement, it must repeat the block label.

Note:

The value of signal GUARD is always defined within the scope of a given block, and does not
implicitly extend to design entities bound to components instantiated within the given block.
However, the signal GUARD may be explicitly passed as an actual signal in a component
instantiation in order to extend its value to lower-level components.

An actual appearing in a port association list of a given block can never denote a formal port of
the same block.

9-2

CONCURRENT STATEMENTS
IEEE

Std 1076-1987

9^ Process Statement

A process statement defines an independent sequential process representing the behavior of
some portion of the design.

process_statement :;=
[processjabel ;]

process [(sensitivity_list)]
process_declarative_part

begin
process_statement_part

end process [processjabel];

process_declarative_part ::=
{ process_declarative_item)

process_declarative_item ::=

subprogram_declaration
I subprogram_body
I type_declaration
I subtype_declaration
I constant_declaration
I variable_declaration
I file_declaration
I alias_declaration
I attribute_declaration
I attribute_specification
I use_clause

process_statement_part ::=
{ sequential_statement)

If a sensitivity list appears following the reserved word process, then the process statement is
assumed to contain an implicit wait statement as the last statement of the process statement
part; this implicit wait statement is of the form

wait on sensitivity_list ;

where the sensitivity list of the wait statement is that following the reserved word process. Such
a process statement may not contain an explicit wait statement. Similarly, if such a process
statement is a parent of a procedure, then that procedure may not contain a wait statement.

Only static signal names (see Section 6.1) may appear in the sensitivity list of a process
statement.

If a label appears at the end of a process statement, it must repeat the process label.

The execution of a process statement consists of the repetitive execution of its sequence of
statements. After the last statement in the sequence of statements of a process statement is
executed, execution will immediately continue with the first statement in the sequence of
statements.

9-3

IEEE
Std 1076-1987 CHAPTER 9

A process statement is said to be a passive process if neither the process itself, nor any
procedure of which the process is a parent, contains a signal assignment statement. Such a
process, or any concurrent statement equivalent to such a process, may appear in the entity
statement part of an entity declaration.

Note:

The above rules imply that a process that has an explicit sensitivity list always has exactly one
(implicit) wait statement in it, and that wait statement appears at the end of the sequence of
statements in the process statement part. Thus a process with a sensitivity list always waits at
the end of its statement part; any event on a signal named in the sensitivity list will cause such
a process to execute from the beginning of its statement part down to the end, where it will wait
again. Such a process executes once through at the beginning of simulation, suspending for the
first time when it executes the implicit wait statement.

9.2.1 Drivers

Every signal assignment statement in a process statement defines a set of drivers for certain
scalar signals. There is a single driver for a given scalar signal S in a process statement
provided that there is at least one signal assignment statement in that process statement, and
the longest static prefix of the target signal of that signal assignment statement denotes S, or
denotes a composite signal of which S is a subelement. Each such signal assignment
statement is said to be associated with that driver. Execution of a signal assignment statement
affects only the associated driver(s).

A driver for a scalar signal is represented by a projected output waveform. A projected output
waveform consists of a sequence of one or more transactions, where each transaction is a pair
consisting of a value component and a time component. For a given transaction, the value
component represents a value that the driver of the signal is to assume at some point in time,
and the time component specifies which point in time. These transactions are ordered with
respect to their time components.

A driver always contains at least one transaction. The initial contents of a driver associated
with a given signal is defined by the default value associated with the signal (see Section
4.3.1.2).

For any driver, there is exactly one transaction whose time component is not greater than the
current simulation time. The current value of the driver is the value component of this
transaction. If, as the result of the advance of time, the current time becomes equal to the time
component of the next transaction, then the first transaction is deleted from the projected output
waveform, and the next becomes the current value of the driver.

9.3 Concurrent Procedure Call

A concurrent procedure call represents a process containing the corresponding sequential
procedure call.

concurrent_procedure_call :;=
[label :] procedure_call_statement

9-4

CONCURRENT STATEMENTS
IEEE

Std 1076-1987

For any concurrent procedure call, there is an equivalent process statement. The equivalent
process statement has no sensitivity list, an empty declarative part, and a statement part that
consists of a procedure call statement followed by a wait statement. The procedure call
statement consists of the same procedure name and actual parameter part that appear in the
concurrent procedure call. Each formal parameter of a procedure that is invoked by a
concurrent procedure call must be of class constant or signal.

If there exists a primary that denotes a signal in the actual part of any association element in
the concurrent procedure call, and that signal is associated with a formal parameter of mode
in or inout, then the equivalent process statement includes a final wait statement with a
sensitivity clause that contains the longest static prefix of each signal name appearing as a
primary in an actual part and associated with such a formal parameter; otherwise, the
equivalent process statement contains a final wait statement that has no explicit sensitivity
clause, condition clause, or timeout clause.

Execution of a concurrent procedure call is equivalent to execution of the equivalent process
statement.

Example:

CheckTiming (tPLH, tPHL, Clk, D, Q); - a concurrent procedure call

process - the equivalent process
begin

CheckTiming (tPLH, tPHL, Clk, D, Q);
wait on Clk, D, Q;

end process;

Note:

Concurrent procedure calls make it possible to declare procedures representing commonly
used processes and to easily create such processes by merely calling the procedure as a
concurrent statement. The wait statement at the end of the statement part of the equivalent
process statement allows a procedure to be called without having it loop interminably, even if
the procedure is not necessarily intended for use as a process (i.e., it contains no wait
statement). Such a procedure may persist over time (and thus the values of its variables may
retain state over time) if its outermost statement is a loop statement, and the loop contains a
wait statement. Similarly, such a procedure may be guaranteed to execute only once, at the
beginning of simulation, if its last statement is a wait statement that has no sensitivity clause,
condition clause, or timeout clause.

The value of an implicitly declared signal GUARD has no effect on evaluation of a concurrent
procedure call unless it is explicitly referenced in one of the actual parts of the actual
parameter part of the concurrent procedure call.

9.4 Concurrent Assertion Statement

A concurrent assertion statement represents a passive process statement containing the
specified assertion statement.

concurrent_assertion_statement ::=
[label :] assertion_statement

9-5

IEEE
Std 1076-1987 CHAPTER 9

For any concurrent assertion statement, there is an equivalent process statement. The
equivalent process statement has no sensitivity list, an empty declarative part, and a
statement part that consists of an assertion statement followed by a wait statement. The
assertion statement consists of the same condition, report clause, and severity clause, that
appear in the concurrent assertion statement.

If there exists a primary that denotes a signal in the boolean expression that defines the
condition of the assertion, then the equivalent process statement includes a final wait
statement with a sensitivity clause that contains the longest static prefix of each signal name
appearing as a primary in that expression; otherwise, the equivalent process statement
contains a final wait statement that has no explicit sensitivity clause, condition clause, or
timeout clause.

Execution of a concurrent assertion statement is equivalent to execution of the equivalent
process statement.

Note:

Since a concurrent assertion statement represents a passive process statement, such a process
has no outputs, and therefore the execution of a concurrent assertion statement will never cause
an event to occur. However, if the assertion is false, then the specified error message will be
sent to the simulation report.

The value of an implicitly declared signal GUARD has no effect on evaluation of the assertion
unless it is explicitly referenced in one of the expressions of that assertion.

A concurrent assertion statement whose condition is defined by a static expression is
equivalent to a process statement that ends in a wait statement that has no sensitivity clause;
such a process will execute once through at the beginning of simulation and then wait
indefinitely.

9^ Concurrent Signal Assignment Statement

A concurrent signal assignment statement represents an equivalent process statement that
assigns values to signals.

concurrent_signal_assignment_statement ::=
[label :] conditional_signal_assignment

I [label ;] selected_signal_assignment

options :;= [guarded] [transport]

There are two forms of the concurrent signal assignment statement. For each form, the
characteristics that distinguish it are discussed below.

Each form may include one or both of the two options guarded and transport. The option
guarded specifies that the signal assignment statement is executed when a signal GUARD
changes from FALSE to TRUE, or when that signal has been TRUE and an event occurs on one
of its inputs. (The signal GUARD may be one of the implicitly declared GUARD signals
associated with block statements that have guard expressions, or it may be an explicitly
declared signal of type Boolean that is visible at the point of the concurrent signal assignment

9-6

CONCURRENT STATEMENTS
IEEE

Std 1076-1987

statement.) The option transport specifies that the signal assignment statement has transport
delay.

If the target of a concurrent signal assignment is a name that denotes a guarded signal (see
Section 4.3.1.2), or if it is in the form of an aggregate, and the expression in each element
association of the aggregate is a static signal name denoting a guarded signal, then the target
is said to be a guarded target. If the target of a concurrent signal assignment is a name that
denotes a signal that is not a guarded signal, or if it is in the form of an aggregate, and the
expression in each element association of the aggregate is a static signal name denoting a
signal that is not a guarded signal, then the target is said to be an unguarded target. It is an
error if the target of a concurrent signal assignment is neither a guarded target nor an
unguarded target.

For any concurrent signal assignment statement, there is an equivalent process statement
with the same meaning. The process statement equivalent to a concurrent signal assignment
statement whose target is a signal name is constructed as follows:

1. If a label appears on the concurrent signal assignment statement, then the same label
appears on the process statement.

2. If the option transport appears in the conditional signal assignment, then the
reserved word transport appears in every signal assignment statement in the process
statement; otherwise, it appears in no signal assignment statement in the process
statement.

3. The statement part of the equivalent process statement contains a signal transform,
which is either a sequential signal assignment statement, or an if or case statement
containing sequential signal assignment statements, one for each of the alternative
waveforms. The signal transform determines which of the alternative waveforms is
to be assigned to the output signals. In addition, the statement part may contain a
sequence of disconnection statements, which assign null transactions to the target of
the concurrent signal assignment under certain conditions.

If the option guarded appears in the concurrent signal assignment statement, then the
concurrent signal assignment is called a guarded assignment. If the concurrent
signal assignment statement is a guarded assignment, and the target of the
concurrent signal assignment is a guarded target, then the statement part of the
equivalent process statement is as follows:

if GUARD then
signal _trans form

else
disconnection _statements

end if;

Otherwise, if the concurrent signal assignment statement is a guarded assignment,
but the target of the concurrent signal assignment is not a guarded target, then the
statement part of the equivalent process statement is as follows:

if GUARD then
signal jtransform

end if;

9-7

IEEE
Std 1076-1987 CHAPTER 9

Finally, if the concurrent signal assignment statement is not a guarded
assignment, and the target of the concurrent signal assignment is not a guarded
target, then the statement part of the equivalent process statement is as follows;

signal _trans form

It is an error if a concurrent signal assignment is not a guarded assignment, and the
target of the concurrent signal assignment is a guarded target.

4. If the concurrent signal assignment statement is a guarded assignment, or if there
exists a primary that denotes a signal in any expression (other than time
expressions) within the concurrent signal assignment statement, then the process
statement contains a final wait statement with an explicit sensitivity clause. The
sensitivity clause contains the longest static prefix of each signal name (if any)
appearing as a primary in one of the above-mentioned expressions. Furthermore, if
the concurrent signal assignment statement is a guarded assignment, then the
sensitivity clause also contains the simple name GUARD. (The signals identified
by these names are called the inputs of the signal assignment statement.) Otherwise,
the process statement contains a final wait statement that has no explicit sensitivity
clause, condition clause, or timeout clause.

If a sequence of disconnection statements is present in the equivalent process statement, the
sequence consists of one sequential signal assignment for each scalar subelement of the target
of the concurrent signal assignment statement. For each such sequential signal assignment,
the target of the assignment is the corresponding scalar subelement of the target of the
concurrent signal assignment, and the waveform of the assignment is a null waveform
element whose time expression is given by the applicable disconnection specification (see
Section 5.3).

If the target of a concurrent signal assignment statement is in the form of an aggregate, then
the same transformation applies. Such a target may only contain locally static signal names,
and no two signal names may identify the same object, or subelement thereof.

It is an error if a null waveform element appears in a waveform of a concurrent signal
assignment statement.

Execution of a concurrent signal assignment statement is equivalent to execution of the
equivalent process statement.

Note:

A concurrent signal assignment statement whose waveforms and target contain only static
expressions is equivalent to a process statement whose final wait statement has no explicit
sensitivity clause, so it will execute once through at the beginning of simulation and then
suspend permanently.

9.5.1 Conditional Signal Assignment

The conditional signal assignment represents a process statement in which the signal
transform is an if statement.

9-8

CONCURRENT STATEMENTS
IEEE

Std 1076-1987

conditional_signal_assignment ::=
target <= options conditional_waveforms ;

conditional_waveforms ;;=
{ waveform when condition else }
waveform

For a given conditional signal assignment, there is an equivalent process statement
corresponding to it as defined for any concurrent signal assignment statement. If the
conditional signal assignment is of the form

target <= options waveforml when conditionl else
waveform2 when condition2 else

waveformN-1 when conditionN-1 else
waveformN ;

then the signal transform in the corresponding process statement is of the form

if conditionl then
target <= [transport] waveforml ;

elsif condition2 then
target <= [transport] waveform2 ;

elsif conditionN-1 then
target <= [transport] waveformN-1 ;

else
target <= [transport] waveformN ;

end if;

If the conditional waveform is only a single waveform, the signal transform in the
corresponding process statement is of the form

target <= [transport] waveform ;

The characteristics of the waveforms and conditions in the conditional assignment statement
must be such that the if statement in the equivalent process statement is a legal statement.

9.5.2 Selected Signal Assignment

The selected signal assignment represents a process statement in which the signal transform
is a case statement.

selected_signal_assignment ::=
with expression select

target <= options selected_waveforms ;

9-9

IEEE
Std 1076-1987 CHAPTER 9

selected_waveforTns ::=
{ waveform when choices ,}
waveform when choices

For a given selected signal assignment, there is an equivalent process statement
corresponding to it as defined for any concurrent signal assignment statement. If the selected
signal assignment is of the form

with expression select
target <= options waveforml when choice_listl ,

waveform2 when choice_list2 ,

waveformN-1 when choice_listN-l,
waveformN when choice_listN ;

then the signal transform in the corresponding process statement is of the form

case expression is
when choice_listl =>

target <= [transport] waveforml ;

when choice_list2 =>
target <= [transport] waveform2 ;

when choice_listN-l =>
target <= [transport] waveformN-1 ;

when choiceJistN =>
target <= [transport] waveformN ;

end case;

The characteristics of the select expression, the waveforms and the choices in the selected
assignment statement must be such that the case statement in the equivalent process statement
is a legal statement.

9.6 Component Instantiation Statement

A component instantiation statement defines a subcomponent of the design entity in which it
appears and associates signals with the ports of that subcomponent. This subcomponent is one
instance of a class of components defined by a corresponding component declaration.

component_instantiation_statement ::=
instantiation_\ahe\ :

component _name
[generic_map_aspect]
[port_map_aspect] ;

9-10

CONCURRENT STATEMENTS
IEEE

Stdl076-1987

The component name must be the name of a component declared in a component declaration.
The generic map aspect, if present, associates a single actual with each local generic (or
subelement thereof) in the corresponding component declaration. Each local generic (or
subelement thereof) must be associated exactly once. Similarly, the port map aspect, if present,
associates a single actual with each local port (or subelement thereof) in the corresponding
component declaration. Each local port (or subelement thereof) must be associated exactly
once. The generic map and port map aspects are described in Section 5.2.1.2.

Note:

A configuration specification (see Section 5.2) can be used to bind a particular instance of a
component to a design entity, and to associate the local generics and local ports of the
component with the formal generics and formal ports of that entity.

The component instantiation statement may be used to imply a structural organization for a
hardware design. By using component declarations, signals, and component instantiation
statements, a given (internal or external) block may be described in terms of subcomponents
that are interconnected by signals.

Component instantiation provides a way of structuring the logical decomposition of a design.
The precise structural or behavioral characteristics of a given subcomponent may be described
later. Component instantiation also provides a mechanism for reusing existing designs in a
design library. A configuration specification can bind a given component instance to an
existing design entity, even if the generics and ports of the entity declaration do not precisely
match those of the component.

9^1 Instantiation of a Component

A component instantiation statement and a corresponding configuration specification, taken
together, imply that the block hierarchy within the design entity containing the component
instantiation is to be extended with a unique copy of the block defined by another design entity.
The generic map and port map aspects in the component instantiation statement and in the
binding indication of the configuration specification identify the connections that are to be
made in order to accomplish the extension.

A component instantiation statement is equivalent to a pair of nested block statements that
couple the block hierarchy in the containing design unit to a unique copy of the block hierarchy
contained in another design unit (i.e., the subcomponent). The outer block represents the
component declaration; the inner block represents the design entity to which the component is
bound. Each is defined by a block statement.

The header of the block statement corresponding to the component declaration consists of the
generic and port clauses (if present) that appear in the component declaration, followed by the
generic map and port map aspects (if present) that appear in the corresponding component
instantiation statement. The meaning of any identifier appearing in the header of this block
statement is that associated with the corresponding occurrence of the identifier in the generic
clause, port clause, generic map aspect, or port map aspect, respectively. The statement part of
the block statement corresponding to the component declaration consists of a nested block
statement corresponding to the design entity.

The header of the block statement corresponding to the design entity consists of the generic and
port clauses (if present) that appear in the entity declaration that defines the interface to the

9-11

IEEE
Std 1076-1987 CHAPTER 9

design entity, followed by the generic map and port map aspects (if present) that appear in the
binding indication that binds the component instance to that entity. The declarative part of the
block statement corresponding to the design entity consists of the declarative items from the
entity declarative part, followed by the declarative items from the declarative part of the
corresponding architecture body. The statement part of the block statement corresponding to
the design entity consists of the concurrent statements from the entity statement part, followed
by the concurrent statements from the statement part of the corresponding architecture body.
The meaning of any identifier appearing anywhere in this block statement is that associated
with the corresponding occurrence of the identifier in the entity declaration or architecture
body, respectively.

For example, consider the following component declaration, instantiation, and corresponding
configuration specification;

component COMP port (A,B : inout BIT);

for C: COMP use
entity X(Y)
port map (PI => A, P2 => B);

C: COMP port map (A => SI, B => S2);

Given the following entity declaration and architecture declaration:

entity X is
port (PI, P2 : inout BIT);
constant Delay: Time ;= 1ms;

begin
CheckTiming (PI, P2, 2*Delay);

endX;

architecture Y of X is
signal P3: Bit;

begin
P3 <= PI after Delay;
P2 <= P3 after Delay;
B: block

be^n

end block;
end Y;

then the following block statements implement the coupling between the block hierarchy in
which component C is declared and the block hierarchy contained in design entity X(Y):

9-12

CONCURRENT STATEMENTS
IEEE

Std 1076-1987

C: block
port (A,B : inout BIT);
port map (A => SI, B => S2);

component block
local ports
actual/local binding

begin
X; block

port (PI, P2 : inout BIT);
port map (PI => A, P2 => B);
constant Delay: Time := 1ms;
signal P3: Bit;

design entity block
formal ports
local/formal binding
entity declarative item
arch, declarative item

begin
CheckTiming (PI, P2, 2*Delay);
P3 <= PI after Delay;
P2 <= P3 after Delay;
B: block

entity statement
arch, statements . . .

internal block hierarchy

begin

end block;
end block X;

end block C;

The block hierarchy extensions implied by component instantiation statements that are bound
to design entities are accomplished during the elaboration of a design hierarchy (see Chapter
12).

9.7 Generate Statement

A generate statement provides a mechanism for iterative or conditional elaboration of a
portion of a description.

generate_statement ::=
generate_\abe\ :

generation_scheme generate
{ concurrent_statement)

end generate [generate_\dhe\];

generation_scheme ::=
for genera^e_parameter_specification

I if condition

label ::= identifier

If a label appears at the end of a generate statement, it must repeat the generate label.

For a generate statement with a for generation scheme, the generate parameter specification is
the declaration of the generate parameter with the given identifier. The generate parameter is
a constant object whose type is the base type of the discrete range of the generate parameter
specification.

The elaboration of a generate statement is described in Section 12.4.2.

9-13

IEEE
Std 1076-1987

Example:

B; block
begin

LI: CELL port map (Top, Bottom, A(0), B(0));

L2: for I in 1 to 3 generate
L3: for J in 1 to 3 generate

L4: if I+J>4 generate
L5: CELL port map (A(I-1),B(J-1),A(I),B(J)) ;

end generate;
end generate;

end generate;

L6: for I in 1 to 3 generate
L7: for J in 1 to 3 generate

L8: if I-fJ<4 generate
L9: CELL port map (A(I-Hl),B(J-hl),A(I),B(J));

end generate;
end generate;

end generate;

end block B;

9-14

IEEE
Std 1076-1987

CHAPTER 10

SCOPE AND VISIBILITY

The rules defining the scope of declarations and the rules defining which identifiers are
visible at various points in the text of the description are presented in this chapter. The
formulation of these rules uses the notion of a declarative region.

10.1 Declarative Region

A declarative region is a portion of the text of the description. A single declarative region is
formed by the text of each of the following:

1. An entity declaration, together with a corresponding architecture body.

2. A configuration declaration.

3. A subprogram declaration, together with the corresponding subprogram body.

4. A package declaration, together with the corresponding body (if any).

5. A record type declaration.

6. A component declaration.

7. A block statement.

8. A process statement.

9. A loop statement.

10. A block configuration.

11. A component configuration.

In each of the above cases, the declarative region is said to be associated with the corresponding
declaration or statement. A declaration is said to occur immediately within a declarative
region if this region is the innermost region that encloses the declaration, not counting the
declarative region (if any) associated with the declaration itself.

Certain declarative regions include disjoint parts. Each declarative region is nevertheless
considered as a (logically) continuous portion of the description text. Hence if any rule defines

10-1

IEEE
Std 1076-1987 CHAPTER 10

a portion of text as the text that extends from some specific point of a declarative region to the
end of this region, then this portion is the corresponding subset of the declarative region (thus it
does not include intermediate declarative items between the interface declaration and a
corresponding body declaration).

10^ Scope of Declarations

For each form of declaration, the language rules define a certain portion of the description text
called the scope of the declaration. The scope of a declaration is also called the scope of any
entity declared by the declaration. Furthermore, if the declaration associates some notation
(either an identifier, a character literal, or an operator symbol) with the declared entity, this
portion of the text is also called the scope of this notation. Within the scope of an entity, and
only there, there are places where it is legal to use the associated notation in order to refer to the
declared entity. These places are defined by the rules of visibility and overloading.

The scope of a declaration that occurs immediately within a declarative region extends from
the beginning of the declaration to the end of the declarative region; this part of the scope of a
declaration is called the immediate scope. Furthermore, for any of the declarations listed
below, the scope of the declaration extends beyond the immediate scope;

1. A declaration that occurs immediately within a package declaration.

2. An element declaration in a record type declaration.

3. A formal parameter declaration in a subprogram declaration.

4. A local generic declaration in a component declaration.

5. A local port declaration in a component declaration.

6. A formal generic declaration in an entity declaration.

7. A formal port declaration in an entity declaration.

In the absence of a separate subprogram declaration, the subprogram specification given in the
subprogram body acts as the declaration and rule (3) applies also in such a case. In each of
these cases, the given declaration occurs immediately within some enclosing declaration, and
the scope of the given declaration extends to the end of the scope of the enclosing declaration.

In addition to the above rules, the scope of any declaration that includes the end of the
declarative part of a given block (whether it be an external block defined by a design entity or
an internal block defined by a block statement) extends into a configuration declaration that
configures the given block.

If a component configuration appears as a configuration item immediately within a block
configuration that configures a given block, and the scope of a given declaration includes the
end of the declarative part of that block, then the scope of the given declaration extends from the
beginning to the end of the declarative region associated with the given component
configuration. A similar rule applies to a block configuration that appears as a configuration
item immediately within another block configuration, provided that the contained block
configuration configures an internal block. Furthermore, the scope of a use clause is

10-2

SCOPE AND VISIBILITY
IEEE

Std 1076-1987

similarly extended. Finally, the scope of a library unit contained within a design library is
extended along with the scope of the logical library name corresponding to that design library.

Note:

The above scope rules apply to all forms of declaration. In particular, they apply also to
implicit declarations.

10.3 Visibility

The meaning of the occurrence of an identifier at a given place in the text is defined by the
visibility rules and also, in the case of overloaded declarations, by the overloading rules. The
identifiers considered in this chapter include any identifier other than a reserved word. The
places considered in this chapter are those where a lexical element (such as an identifier)
occurs. The overloaded declarations considered in this chapter are those for subprograms and
enumeration literals.

For each identifier and at each place in the text, the visibility rules determine a set of
declarations (with this identifier) that define the possible meanings of an occurrence of the
identifier. A declaration is said to be visible at a given place in the text when, according to the
visibility rules, the declaration defines a possible meaning of this occurrence. Two cases may
arise in determining the meaning of such a declaration:

1. The visibility rules determine at most one possible meaning. In such a case the
visibility rules are sufficient to determine the declaration defining the meaning of
the occurrence of the identifier, or in the absence of such a declaration, to determine
that the occurrence is not legal at the given point.

2. The visibility rules determine more than one possible meaning. In such a case the
occurrence of the identifier is legal at this point if and only if exactly one visible
declaration is acceptable for the overloading rules in the given context.

A declaration is only visible within a certain part of its scope; this part starts at the end of the
declaration except in the declaration of a design unit, in which case it starts immediately after
the reserved word is given after the identifier of the design unit.

Visibility is either by selection or direct. A declaration is visible by selection at places that are
defined as follows:

1. For a primary unit contained in a library: at the place of the suffix in a selected
name whose prefix denotes the library.

2. For an architecture body associated with a given entity declaration: at the place of the
block specification in a block configuration for an external block whose interface is
defined by that entity declaration.

3. For a declaration given in a package declaration: at the place of the suffix in a
selected name whose prefix denotes the package.

4. For an element declaration of a given record type declaration: at the place of the
suffix in a selected name whose prefix is appropriate for the type; also at the place of a

10-3

IEEE
Std 1076-1987 CHAPTER 10

choice (before the compound delimiter =>) in a named element association of an
aggregate of the type.

5. For a predefined attribute that applies to a given range of definition: at the place of the
attribute designator (after the delimiter ') in an attribute name whose prefix belongs
to the given range of definition.

6. For a user-defined attribute: at the place of the attribute designator (after the
delimiter ') in an attribute name whose prefix denotes an entity with which that
attribute has been associated.

7. For a formal parameter declaration of a given subprogram declaration: at the place
of the formal designator (before the compound delimiter =>) in a named parameter
association list of a corresponding subprogram call.

8. For a local generic declaration of a given component declaration: at the place of the
formal designator (before the compound delimiter =>) in a named generic
association list of a corresponding component instantiation statement; similarly, at
the place of the actual designator (after the compound delimiter =>) in a generic
association list of a corresponding binding indication.

9. For a local port declaration of a given component declaration: at the place of the
formal designator (before the compound delimiter =>) in a named port association
list of a corresponding component instantiation statement; similarly, at the place of
the actual designator (after the compound delimiter =>) in a port association list of a
corresponding binding indication.

10. For a formal generic declaration of a given entity declaration: at the place of the
. formal designator (before the compound delimiter =>) in a named generic

association list of a corresponding binding indication.

11. For a formal port declaration of a given entity declaration: at the place of the formal
designator (before the compound delimiter =>) in a named port association list of a
corresponding binding specification.

Finally, within the declarative region associated with a construct other than a record type
declaration, any declaration that occurs immediately within the region is visible by selection
at the place of the suffix of an expanded name whose prefix denotes the construct.

A declaration is said to be directly visible within a certain part of its immediate scope; this part
extends to the end of the immediate scope of the declaration, but excludes places where the
declaration is hidden as explained below. In addition, a declaration occurring immediately
within the visible part of a package can be made directly visible by means of a use clause
according to the rules described in Section 10.4.

A declaration is said to be hidden within (part of) an inner declarative region if the inner
region contains a homograph of this declaration; the outer declaration is then hidden within
the immediate scope of the inner homograph. Each of two declarations is said to be a
homograph of the other if both declarations have the same identifier and overloading is
allowed for at most one of the two. If overloading is allowed for both declarations, then each of
the two is a homograph of the other if they have the same identifier, operator symbol, or
character literal, as well as the same parameter and result type profile.

10-4

SCOPE AND VISIBILITY
IEEE

Std 1076-1987

Within the specification of a subprogram, every declaration with the same designator as the
subprogram is hidden. Where hidden in this manner, a declaration is visible neither by
selection nor directly.

Two declarations that occur immediately within the same declarative region must not be
homographs, unless exactly one of them is the implicit declaration of a predefined operation.
In such cases, a predefined operation is always hidden by the other homograph. Where hidden
in this manner, an implicit declaration is hidden within the entire scope of the other
declaration; the implicit declaration is visible neither by selection nor directly.

Whenever a declaration with a certain identifier is visible from a given point, the identifier
and the declared entity (if any) are also said to be visible from that point. Direct visibility and
visibility by selection are likewise defined for character literals and operator symbols. An
operator is directly visible if and only if the corresponding operator declaration is directly
visible.

Example:

LI: block
signal A,B: Bit;

begin
L2: block

signal B: Bit;
begin

A <= B after 5ns;
B <= Ll.B after 10ns;

end block;
B <= A after 15ns;

end block;

-- an inner homograph of B

— means LI .A <= L2.B
— means L2.B <= Ll.B

— means Ll.B <= LI .A

10.4 Use Clauses

A use clause achieves direct visibility of declarations that are visible by selection.

use_clause ::=
use selected_name { , selected_name } ;

Each selected name in a use clause identifies one or more declarations that will potentially
become directly visible. If the suffix of the selected name is a simple name or operator symbol,
then the selected name identifies only the declaration(s) of that simple name or operator
symbol contained within the package or library denoted by the prefix of the selected name. If
the suffix is the reserved word all, then the selected name identifies all declarations that are
contained within the package or library denoted by the prefix of the selected name.

For each use clause, there is a certain region of text called the scope of the use clause. This
region starts immediately after the use clause. If a use clause is a declarative item of some
declarative region, the scope of the clause extends to the end of the declarative region. If a use
clause occurs within the context clause of a design unit, the scope of the use clause extends to the
end of the declarative region associated with the design unit. The scope of a use clause may
additionally extend into a configuration declaration (see Section 10.2).

10-5

IEEE
Std 1076-1987 CHAPTER 10

In order to determine which declarations are made directly visible at a given place by use
clauses, consider the set of declarations identified by all use clauses whose scopes enclose this
place. Any declaration in this set is a potentially visible declaration. A potentially visible
declaration is actually made directly visible except in the following two cases:

1. A potentially visible declaration is not made directly visible if the place considered
is within the immediate scope of a homograph of the declaration.

2. Potentially visible declarations that have the same designator are not made directly
visible unless each of them is either an enumeration literal specification or the
declaration of a subprogram (either by a subprogram declaration or by an implicit
declaration).

Note:

The above rules guarantee that a declaration that is made directly visible by a use clause
cannot hide an otherwise directly visible declaration.

If an entity X declared in package P is made potentially visible within a package Q (e.g., by the
inclusion of the clause "use P.X;" in the context clause of package Q), and the context clause
for design unit R includes the clause "use Q.all;", this does not imply that X will be potentially
visible in R. Only those entities that are actually declared in package Q will be potentially
visible in design unit R (in the absence of any other use clauses).

10^ The Context of Overload Resolution

Overloading is defined for subprograms and for enumeration literals.

For overloaded entities, overload resolution determines the actual meaning that an occurrence
of an enumeration literal has, whenever the visibility rules have determined that more than
one meaning is acceptable at the place of this occurrence; overload resolution likewise
determines the actual meaning of an occurrence of an operator.

At such a place all visible declarations are considered. The occurrence is only legal if there is
exactly one interpretation of each constituent of the innermost complete context; a complete
context is either a declaration, a specification, or a statement.

When considering possible interpretations of a complete context, the only rules considered are
the syntax rules, the scope and visibility rules, and the rules of the form described below.

1. Any rule that requires a name or expression to have a certain type, or to have the same
type as another name or expression.

2. Any rule that requires the type of a name or expression to be a type of a certain class;
similarly, any rule that requires a certain type to be a discrete, integer, real,
physical, universal, character, or boolean type.

3. Any rule that requires a prefix to be appropriate for a certain type.

4. The rules that require the type of an aggregate to be determinable solely from the
enclosing complete context. Similarly, the rules that require the type of the prefix of

10-6

SCOPE AND VISIBILITY
IEEE

Std 1076-1987

an attribute, the type of the expression of a case statement, or the type of the operand of
a type conversion to be determinable independently of the context.

5. The rules given for the resolution of overloaded subprogram calls, for the implicit
conversions of universal expression; for the interpretation of discrete ranges with
bounds having a universal type; and for the interpretation of an expanded name
whose prefix denotes a subprogram.

10-7

1

.. i'

{

IEEE
Std 1076-1987

CHAPTER 11

DESIGN UNITS AND THEIR ANALYSIS

The overall organization of descriptions, as well as their analysis and subsequent definition
in a design library, are discussed in this chapter.

11.1 Design Units

Certain constructs may be independently analyzed and inserted into a design library; these
constructs are called design units. One or more design units in sequence comprise a design
file.

design_file ::= design_unit { design_unit)

design_unit ::= context_clause library_unit

library_unit ::=
primary_unit

I secondary_unit

primary_unit ;:=
entity_declaration

I configuration_declaration
I package_declaration

secondary_unit ::=
architecture_body

I package_body

Design units in a design file are analyzed in the textual order of their appearance in the
design file. Analysis of a design unit defines the corresponding library unit in a design
library. A library unit is either a primary unit or a secondary unit. A secondary unit is a
separately analyzed body of a primary unit resulting from a previous analysis.

The name of a primary unit is given by the first identifier after the initial reserved word of
that unit. Of the secondary units, only architecture bodies are named; the name of an
architecture body is given by the identifier following the reserved word architecture. Each
primary unit in a given library must have a simple name that is unique within the given
library, and each architecture body associated with a given entity declaration must have a
simple name that is unique within the set of names of the architecture bodies associated with
that entity declaration.

11-1

IEEE
Std 1076-1987 CHAPTER 11

Entity declarations, architecture bodies, and configuration declarations are discussed in
Chapter 1, Design Entities and Configurations. Package declarations and package bodies are
discussed in Chapter 2, Subprograms and Packages.

11.2 Design Libraries

A design library is an implementation-dependent storage facility for previously analyzed
design units. A given implementation may have any number of design libraries.

library_clause ::= library logical_name_list ;

logical_name_list ::= logical_name { , logical_name)

logical_name ::= identifier

A library clause defines logical names for design libraries in the host environment. A
library clause appears as part of a context clause at the beginning of a design unit. There is a
certain region of text called the scope of a library clause; this region starts immediately after
the library clause, and it extends to the end of the declarative region associated with the design
unit in which the library clause appears. Within this scope, except where hidden, each logical
name defined by the library clause denotes a design library in the host environment.

For a given library logical name, the actual name of the corresponding design libraries in the
host environment may or may not be the same. A given implementation must provide some
mechanism to associate a library logical name with a host-dependent library. Such a
mechanism is not defined by the language.

There are two classes of design libraries: working libraries and resource libraries. A
working library is the library into which the library unit resulting from the analysis of a
design unit is placed. A resource library is a library containing library units that are
referenced within the design unit being analyzed. Only one library may be the working
library during the analysis of any given design unit; in contrast, any number of libraries
(including the working library itself) may be resource libraries during such an analysis.

Every design unit is assumed to contain the following implicit context items as part of its
context clause:

library STD, WORK ; use STD.STANDARD.all ;

Library logical name STD denotes the design library in which package STANDARD and
package TEXTIO reside; these are the only standard packages defined by the language (see
Chapter 14). (The use clause makes all declarations within package STANDARD directly
visible within the corresponding design unit; see Section 10.4). Library logical name WORK
denotes the current working library during a given analysis.

A secondary unit corresponding to a given primary unit may only be placed into the design
library in which the primary unit resides.

Note:

The design of the language assumes that the contents of resource libraries named in all
library clauses in the context clause of a design unit will remain unchanged during the

11-2

DESIGN UNITS AND THEIR ANALYSIS
IEEE

Std 1076-1987

analysis of that unit (with the possible exception of the updating of the library unit
corresponding to the analyzed design unit within the working library, if that library is also a
resource library).

It is recommended that library STD contain only those library units that correspond to design
units defined as part of the Language Reference Manual. This set of units may change over
time as the language evolves; however, portability of designs will be enhanced if, for any
given version of the language, library STD contains a known set of library units.

11.3 Context Clauses

A context clause defines the initial name environment in which a design unit is analyzed.

context_clause :;= { context_item)

context_item ;:=
library_clause

I use_clause

A library clause defines library logical names that may be referenced in the design unit;
library clauses are described in Section 11.2. A use clause makes certain declarations
directly visible within the design unit; use clauses are described in Section 10.4.

Dependencies among design units are defined by use clauses; that is, a design unit that
explicitly or implicitly mentions other library units in a use clause depends on those library
units. These dependencies affect the allowed order of analysis of design units, as explained in
Section 11.4.

Note:

The rules given for use clauses are such that the same effect is obtained whether the name of a
library unit is mentioned once or more than once by the applicable use clauses, or even within
a given use clause.

11.4 Order of Analysis

The rules defining the order in which design units can be analyzed are direct consequences of
the visibility rules. In particular:

1. A primary unit whose name is referenced within a given design unit must be
analyzed prior to the analysis of the given design unit.

2. A primary unit must be analyzed prior to the analysis of any corresponding
secondary unit.

The order in which design units are analyzed must be consistent with the partial ordering
defined by the above rules.

If any error is detected while attempting to analyze a design unit, then the attempted analysis
is rejected and has no effect whatsoever on the current working library.

11-3

IEEE
Std 1076-1987

A given library unit is potentially affected by a change in any library unit whose name is
referenced within the given library unit. A secondary unit is potentially affected by a change
in its corresponding primary unit. If a library unit is changed (e.g., by reanalysis of the
corresponding design unit), then all library units that are potentially affected by such a
change become obsolete and must be reanalyzed before they can be used again.

11-4

IEEE
Std 1076-1987

CHAPTER 12

ELABORATION AND EXECUTION

The process by which a declaration achieves its effect is called the elaboration of the
declaration. After its elaboration, a declaration is said to be elaborated. Prior to the
completion of its elaboration (including before the elaboration), the declaration is not yet
elaborated.

Elaboration is also defined for design hierarchies, declarative parts, statement parts
(containing concurrent statements), and concurrent statements. Elaboration of such
constructs is necessary in order to ultimately elaborate declarative items that are declared
within those constructs.

In order to execute a model, the design hierarchy defining the model must first be elaborated.
Initialization of nets in the model then occurs. Finally, simulation of the model proceeds.
Simulation consists of the repetitive execution of the simulation cycle, during which processes
are executed and nets updated.

12.1 Elaboration of a Design Hierarchy

The elaboration of a design hierarchy creates a collection of processes interconnected by nets;
this collection of processes and nets can then be executed to simulate the behavior of the design.

A design hierarchy may be defined by a design entity. Elaboration of a design hierarchy
defined in this manner consists of the elaboration of the block statement equivalent to the
external block defined by the design entity. The equivalent block statement is defined in
Section 9.6.1. Elaboration of a block statement is defined in Section 12.4.1.

A design hierarchy may also be defined by a configuration. Elaboration of a configuration
consists of the elaboration of the block statement equivalent to the external block defined by the
design entity configured by the configuration.

Elaboration of a block statement involves first elaborating each not yet elaborated package
used within the block. (A package is used within a given construct if the name of that package
appears within the construct, either standing alone or as the prefix of an expanded name.)
Similarly, elaboration of a given package involves first elaborating each not yet elaborated
package used within the given package. Elaboration of a package additionally consists of the
elaboration of the declarative part of the package declaration, followed by elaboration of the
declarative part of the corresponding package body, if any. Elaboration of a declarative part is
defined in Section 12.3.

12-1

IEEE
Std 1076-1987 CHAPTER 12

12J2 Elaboration of a Block Header

Elaboration of a block header consists of the elaboration of the generic clause, the generic map
clause, the port clause, and the port map clause, in that order.

12.2.1 The Generic Clause

Elaboration of a generic clause consists of the elaboration of each of the equivalent single
generic declarations contained in the clause, in the order given. The elaboration of a generic
declaration consists of elaborating the subtype indication and then creating a generic constant
of that subtype.

The value of a generic constant is not defined until a subsequent generic map clause is
evaluated, or in the absence of a generic map clause, until the default expression associated
with the generic constant is evaluated to determine the value of the constant.

12.2.2 The Generic Map Clause

Elaboration of a generic map clause consists of elaborating the generic association list. The
generic association list contains an implicit association element for each generic constant
that is not explicitly associated; the actual part of such an implicit association element is the
default expression appearing in the declaration of that generic constant.

Elaboration of a generic association list consists of the elaboration of each generic association
element in the association list. Elaboration of a generic association element consists of the
elaboration of the formal part and the evaluation of the actual part. The generic constant or
subelement thereof designated by the formal part is then initialized with the value resulting
from the evaluation of the corresponding actual part.

12.2.3 The Port Clause

Elaboration of a port clause consists of the elaboration of each of the equivalent single port
declarations contained in the clause, in the order given. The elaboration of a port declaration
consists of elaborating the subtype indication and then creating a port of that subtype.

12.2.4 The Port Map Clause

Elaboration of a port map clause consists of elaborating the port association list.

Elaboration of a port association list consists of the elaboration of each port association element
in the association list. Elaboration of a port association element consists of the elaboration of
the formal part; the port or subelement thereof designated by the formal part is then associated
with the signal designated by the actual part. This association involves a check that the
restrictions on port associations (see Section 1.1.1.2) are met. It is an error if this check fails.

If a given port is a port of mode in whose declaration includes a default expression, and no
association element associates a signal with that port, then the default expression is evaluated
and the value of the port is set to the value of the expression.

12-2

ELABORATION AND EXECUTION
IEEE

Std 1076-1987

12^ Elaboration of a Declarative Part

The elaboration of a declarative part consists of the elaboration of the declarative items, if any,
in the order in which they are given in the declarative part.

In certain cases, the elaboration of a declarative item involves the evaluation of expressions
that appear within the declarative item. The value of any object denoted by a primary in such
an expression must be defined at the time the expression is evaluated.

Note:

It is a consequence of the above rule that the name of a signal declared within a block cannot be
referenced in expressions appearing in declarative items within a block, because the value of a
signal is not defined until after the design hierarchy is elaborated. However, a signal
parameter name may be used within expressions in declarative items within a subprogram
declarative part, provided that the subprogram is only called after simulation begins, because
the value of every signal will be defined by that time.

12^.1 Elaboration of a Declaration

Elaboration of a declaration has the effect of creating the declared item.

For each declaration, the language rules (in particular scope and visibility rules) are such that
it is either impossible or illegal to use a given item before the elaboration of the declaration that
declares the item. For example, it is not possible to use the name of a type for an object
declaration before the corresponding type declaration is elaborated. Similarly, it is illegal to
call a subprogram before its corresponding body is elaborated.

12^.1.1 Subprogram Declarations and Bodies

Elaboration of a subprogram declaration involves the elaboration of the parameter interface
list of the subprogram declaration; this in turn involves the elaboration of the subtype
indication of each interface element to determine the subtype of each formal parameter of the
subprogram.

Elaboration of a subprogram body has no effect other than to establish that the body can from
then on be used for the execution of calls of the subprogram.

12.3.1^ Type Declarations

Elaboration of a type declaration generally consists of the elaboration of the definition of the
type and the creation of that type. For a constrained array type declaration, however,
elaboration consists of the elaboration of the equivalent anonymous unconstrained array type
followed by the elaboration of the named subtype of that unconstrained type.

Elaboration of an enumeration type definition has no effect other than the creation of the
corresponding type.

Elaboration of an integer, floating point, or physical type definition consists of the elaboration
of the corresponding subtype indication. For a physical type definition, each unit declaration

12-3

IEEE
Std 1076-1987 CHAPTER 12

in the definition is also elaborated. Elaboration of a physical unit declaration has no effect
other than to create the unit defined by the unit declaration.

Elaboration of an unconstrained array type definition consists of the elaboration of the
element subtype indication of the array type.

Elaboration of a record type definition consists of the elaboration of the equivalent single
element declarations in the given order. Elaboration of an element declaration consists of
elaboration of the element subtype indication.

Elaboration of an access type definition consists of the elaboration of the corresponding subtype
indication.

12^.1^ Subtype Declarations

Elaboration of a subtype declaration consists of the elaboration of the subtype indication. The
elaboration of a subtype indication creates a subtype. If the subtype does not include a
constraint, then the subtype is the same as that denoted by the type mark. The elaboration of a
subtype indication that includes a constraint proceeds as follows:

1. The constraint is first elaborated.

2. A check is then made that the constraint is compatible with the type or subtype denoted
by the type mark (see Sections 3.1 and 3.2.1.1).

Elaboration of a range constraint consists of the evaluation of the range. The evaluation of a
range defines the bounds and direction of the range. Elaboration of an index constraint
consists of the elaboration of each of the discrete ranges in the index constraint in some order
that is not defined by the language. Elaboration of a size constraint consists of the evaluation
of the expression.

12.3.1.4 Object Declarations

Elaboration of an object declaration that declares an object other than a file object proceeds as
follows:

1. The subtype indication is first elaborated. This establishes the subtype of the object.

2. If the object declaration includes an explicit initialization expression, then the
initial value of the object is obtained by evaluating the expression. Otherwise, any
implicit initial value for the object is determined.

3. The object is created.

4. Any initial value is assigned to the object.

The initialization of such an object (either the declared object or one of its subelements)
involves a check that the initial value belongs to the subtype of the object. For an array object
declared by an object declaration, an implicit subtype conversion is first applied as for an
assignment statement, unless the object is a constant whose subtype is an unconstrained array
type.

12-4

ELABORATION AND EXECUTION
IEEE

Std 1076-1987

The elaboration of a file object declaration consists of the elaboration of the subtype indication
followed by the creation of the object. The file logical name is then evaluated, and the
corresponding host file is associated with the file object.

Note:

These rules apply to all object declarations other than port and generic declarations, which are
elaborated as outlined in Sections 12.2.1 through 12.2.4.

The expression initializing a constant object need not be a static expression.

12.3.1.5 Alias Declarations

Elaboration of an alias declaration consists of the elaboration of the subtype indication to
establish the subtype associated with the alias, followed by the creation of the alias as an
alternative name for the named object. The creation of an alias for an array object involves a
check that the subtype associated with the alias includes a matching element for each element
of the named object. It is an error if this check fails.

12.3.1.6 Attribute Declarations

Elaboration of an attribute declaration has no effect other than to create a template for defining
attributes of items.

12.3.1.7 Component Declarations

Elaboration of a component declaration has no effect other than to create a template for
instantiating component instances.

12.3.2 Elaboration of a Specification

Elaboration of a specification has the effect of associating additional information with a
previously declared item.

12.3.2.1 Attribute Specifications

Elaboration of an attribute specification proceeds as follows:

1. The entity specification is elaborated in order to determine which items are affected
by the attribute specification.

2. The expression is evaluated to determine the value of the attribute.

3. A new instance of the designated attribute is created and associated with each of the
affected items.

4. Each new attribute instance is assigned the value of the expression.

12-5

IEEE
Std 1076-1987 CHAPTER 12

The assignment of a value to an instance of a given attribute involves a check that the value
belongs to the subtype of the designated attribute. For an attribute of a constrained array type,
an implicit subtype conversion is first applied as for an assignment statement. No such
conversion is necessary for an attribute of an unconstrained array type; the constraints on the
value determine the constraints on the attribute.

Note:

The expression in an attribute specification need not be a static expression.

123.2.2 Configuration Specifications

Elaboration of a configuration specification proceeds as follows:

1. The component specification is elaborated in order to determine which component
instances are affected by the configuration specification.

2. The binding indication is elaborated to identify the design entity to which the affected
component instances will be bound.

3. The binding information is associated with each affected component instance label
for later use in instantiating those component instances.

As part of this elaboration process, a check is made that both the entity declaration and the
corresponding architecture body implied by the binding indication exist within the specified
library. It is an error if this check fails.

12^^^ Disconnection Specifications

Elaboration of a disconnection specification proceeds as follows:

1. The guarded signal specification is elaborated in order to identify the signals
affected by the disconnection specification.

2. The time expression is evaluated to determine the disconnection time for drivers of
the affected signals.

3. The disconnection time is associated with each affected signal for later use in
constructing disconnection statements in the equivalent processes for guarded
assignments to the affected signals.

12.4 Elaboration of a Statement Part

Concurrent statements appearing in the statement part of a block must be elaborated before
execution begins. Elaboration of the statement part of a block consists of the elaboration of each
concurrent statement in the order given.

12-6

ELABORATION AND EXECUTION
IEEE

Std 1076-1987

12.4.1 Block Statements

Elaboration of a block statement consists of the elaboration of the block header, if present,
followed by the elaboration of the block declarative part, followed by the elaboration of the block
statement part.

Elaboration of a block statement may occur under the control of a configuration declaration.
In particular, a block configuration within a configuration declaration may supply a sequence
of additional implicit configuration specifications to be applied during the elaboration of the
corresponding block statement. If a block statement is being elaborated under the control of a
configuration declaration, then the sequence of implicit configuration specifications supplied
by the block configuration is elaborated as part of the block declarative part, following all other
declarative items in that part.

The sequence of implicit configuration specifications supplied by a block configuration
consists of each of the configuration specifications implied by component configurations (see
Section 1.3.2) occurring immediately within the block configuration, and in the order in
which the component configurations themselves appear.

12.4.2 Generate Statements

Elaboration of a generate statement consists of the replacement of the generate statement with
zero or more copies of a block statement whose statement part consists of the concurrent
statements contained within the generate statement. These block statements are said to be
represented by the generate statement. Each block statement is then elaborated.

For a generate statement with a for generation scheme, elaboration consists of the elaboration
of the discrete range, followed by the generation of one block statement for each value in the
range. The block statements all have the following form:

1. The label of the block statement is the same as the label of the generate statement.

2. The block declarative part contains a single constant declaration that declares a
constant with the same simple name as that of the applicable generate parameter; the
value of the constant is the value of the generate parameter for the generation of this
particular block statement. The type of this declaration is determined by the base type
of the discrete range of the generate parameter.

3. The block statement part consists of a copy of the concurrent statements contained
within the generate statement.

For a generate statement with an if generation scheme, elaboration consists of the evaluation
of the boolean expression, followed by the generation of exactly one block statement if the
expression evaluates to TRUE, and no block statement otherwise. If generated, the block
statement has the following form:

1. The block label is the same as the label of the generate statement.

2. The block declarative part is empty.

3. The block statement part consists of a copy of the concurrent statements contained
within the generate statement.

12-7

IEEE
Std 1076-1987 CHAPTER 12

Note:

The repetition of the block labels in the case of a for generation scheme does not produce
multiple declarations of the label on the generate statement. The multiple block statements
represented by the generate statement constitute multiple references to the same implicitly
declared label.

12.4.3 Component Instantiation Statements

Elaboration of a component instantiation statement has no effect unless the component
instance is either fully bound to a design entity defined by an entity declaration and
architecture body or it is bound to a configuration of such a design entity. If a component
instance is so bound, then elaboration of the corresponding component instantiation statement
consists of the elaboration of the implied block statement representing the component instance
and (within that block) the implied block statement representing the design entity to which the
component instance is bound. The implied block statements are defined in Section 9.6.1.

i2AA Other Concurrent Statements

All other concurrent statements are either process statements or are statements for which there
is an equivalent process statement.

Elaboration of a process statement proceeds as follows:

1. The process declarative part is elaborated.

2. The drivers required by the process statement are created.

3. The initial transaction defined by the default value associated with each scalar
signal driven by the process statement is inserted into the corresponding driver.

Elaboration of all concurrent signal assignment statements and concurrent assertion
statements consists of the construction of the equivalent process statement followed by the
elaboration of the equivalent process statement.

12.5 Dynamic Elaboration

The execution of certain constructs that involve sequential statements rather than concurrent
statements also involves elaboration. Such elaboration occurs during the execution of the
model.

There are three particular instances in which elaboration occurs dynamically during
simulation. These are as follows:

1. Execution of a loop statement with a for iteration scheme involves the elaboration of
the loop parameter specification prior to the execution of the statements enclosed by the
loop (see Section 8.8). This elaboration creates the loop parameter and evaluates the
discrete range.

12-8

ELABORATION AND EXECUTION
IEEE

Std 1076-1987

2. Execution of a subprogram call involves the elaboration of the parameter interface
list of the corresponding subprogram declaration; this involves the elaboration of
each interface declaration to create the corresponding formal parameters. Actual
parameters are then associated with formal parameters. Finally, the declarative
part of the corresponding subprogram body is elaborated, and the sequence of
statements in the subprogram body is executed.

3. Evaluation of an allocator that contains a subtype indication involves the elaboration
of the subtype indication prior to the allocation of the created object.

Note:

It is a consequence of the above rules that declarative items appearing within the declarative
part of a subprogram body are elaborated each time the corresponding subprogram is called;
thus successive elaborations of a given declarative item appearing in such a place may create
items with different characteristics. For example, successive elaborations of the same subtype
declaration appearing in a subprogram body may create subtypes with different constraints.

12.6 Execution of a Model

The elaboration of a design hierarchy produces a model that can be executed in order to
simulate the design represented by the model. Simulation involves the execution of user-
defined processes that interact with each other and with the environment.

The kernel process is a conceptual representation of the agent that coordinates the activity of
user-defined processes during a simulation. This agent causes the propagation of signal
values to occur and causes the values of implicit signals (such as S'Stable(T)) to be updated.
Furthermore, this process is responsible for detecting events that occur and for causing the
appropriate processes to execute in response to those events.

For any given signal that is explicitly declared within a model, the kernel process contains a
variable representing the current value of that signal. Any evaluation of a name denoting a
given signal retrieves the current value of the corresponding variable in the kernel process.
During simulation, the kernel process updates that variable from time to time, based upon the
current values of sources of the corresponding signal.

In addition, the kernel process contains a variable representing the current value of any
implicitly declared GUARD signal resulting from the appearance of a guard expression on a
given block statement. Furthermore, the kernel process contains both a driver for, and a
variable representing the current value of, any signal S'Stable(T), for any prefix S and any
time T, that is referenced within the model; likewise for any signal S'Quiet(T) or
S'Transaction.

12.6.1 Propagation of Signal Values

As simulation time advances, the transactions in the projected output waveform of a given
driver (see Section 9.2.1) will each, in succession, become the value of the driver. When a
driver acquires a new value in this way, regardless of whether the new value is different from
the previous value, that driver is said to be active during that simulation cycle. A signal is
said to be active during a given simulation cycle:

12-9

IEEE
Std 1076-1987 CHAPTER 12

• if one of its sources is active;

• if one of its subelements is active;

• if the signal is named in the formal part of an association element in a port
association list, and the corresponding actual is active;

• if the signal is a subelement of a resolved signal, and the resolved signal is active.

If a signal of a given composite type has a source that is of a different type (and therefore a type
conversion function appears in the corresponding association element), then each scalar
subelement of that signal is considered to be active if the source itself is active. Similarly, if a
port of a given composite type is associated with a signal that is of a different type (and
therefore a type conversion function appears in the corresponding association element), then
each scalar subelement of that port is considered to be active if the actual signal itself is active.

In addition to the above, an implicit signal is said to be active during a given simulation cycle
if the kernel process updates that implicit signal within the given cycle.

If a signal is not active during a given simulation cycle, then the signal is said to be quiet
during that simulation cycle.

The kernel process determines two values for certain signals during any given simulation
cycle. The driving value of a given signal is the value that signal provides as a source of other
signals. The effective value of a given signal is the value obtainable by evaluating a
reference to the signal within an expression. The driving value and the effective value of a
signal are not always the same, especially when resolution functions and type conversion
functions are involved in the propagation of signal values.

For a scalar signal S, the driving value of S is determined as follows:

• If S has no source, then the driving value of S is given by the default value associated
with S (see Section 4.3.1.2).

• If S has one source that is a driver, and S is not a resolved signal (see Section 4.3.1.2),
then the driving value of S is the value of that driver.

• If S has one source that is a port, and S is not a resolved signal, then the driving value
of S is the driving value of the formal part of the association element that associates S
with that port (see Section 4.3.3.2). The driving value of a formal part is obtained by
evaluating the formal part, using the driving value of the signal denoted by the
formal designator in place of the formal designator.

• If S is a resolved signal, then the driving value of S is the same as the resolved value
of S obtained by executing the resolution function associated with S, where that
function is called with an input parameter consisting of the concatenation of the
driving values of the sources of S, with the exception of the value of any driver of S
whose current value is determined by a null transaction (see Section 8.3.1).

For a composite signal R, the driving value of R is equal to the aggregate of the driving values
of each of the scalar subelements of R.

For a scalar signal S, the effective value of S is determined in the following manner:

12-10

ELABORATION AND EXECUTION
IEEE

Std 1076-1987

• If S is a signal declared by a signal declaration, a port of mode buffer, or an
unconnected port of mode inout, then the effective value of S is the same as the driving
value of S.

• If S is a connected port of mode in or inout, then the effective value of S is the same as
the effective value of the actual part of the association element that associates an
actual with S (see Section 4.3.3.2). The effective value of an actual part is obtained by
evaluating the actual part, using the effective value of the signal denoted by the actual
designator in place of the actual designator.

• If S is an unconnected port of mode in, the effective value of S is given by the default
value associated with S (see Section 4.3.1.2).

For a composite signal R, the effective value of R is the aggregate of the effective values of each
of the subelements of R.

For a scalar signal S, both the driving and effective values must belong to the subtype of the
signal. For a composite signal R, an implicit subtype conversion is performed to the subtype of
R; for each element of R, there must be a matching element in both the driving and the resolved
value, and vice versa.

In order to update a signal during a given simulation cycle, the kernel process first
determines the driving and effective values of that signal. The kernel process then updates
the variable containing the current value of the signal with the newly determined effective
value, as follows:

1. If S is a signal of some type that is not an array type, the effective value of S is used to
update the current value of S. A check is made that the effective value of S belongs to
the subtype of S. An error occurs if this subtype check fails. Finally, the effective
value of S is assigned to the variable representing the current value of the signal.

2. If S is an array signal (including a slice of an array), the effective value of S is
implicitly converted to the subtype of S. The subtype conversion checks that for each
element of S there is a matching element in the effective value, and vice versa. An
error occurs if this check fails. The result of this subtype conversion is then assigned
to the variable representing the current value of S.

If updating a signal causes the current value of that signal to change, then an event is said to
have occurred on the signal. This definition applies to any updating of a signal, whether such
updating occurs according to the above rules or according to the rules for updating implicit
signals given in Section 12.6.2. The occurrence of an event may cause the resumption and
subsequent execution of certain processes during the simulation cycle in which the event
occurs.

For any signal other than one declared with the signal kind register, the driving and effective
values of the signal are determined and the current value of that signal is updated as described
above in every simulation cycle. A signal declared with the signal kind register is updated in
the same fashion during every simulation cycle except those in which all of its sources have
current values that are determined by null transactions.

Implicit signals S'Stable(T), S'Quiet(T), and S'Transaction, for any prefix S and any time T,
are not updated according to the above rules; such signals are updated according to the rules
described in Section 12.6.2.

12-11

IEEE
Std 1076-1987 CHAPTER 12

Note:

In a simulation cycle, a subelement of a composite signal may be quiet, but the signal itself
may be active.

The rules concerning association of actuals with formals (see Section 4.3.3.2) imply that, if a
composite signal is associated with a composite port of mode out, inout, or buffer, and no type
conversion function appears in either the actual or formal part of the association element, then
each scalar subelement of the formal is a source of the matching subelement of the actual. In
such a case, a given subelement of the actual will be active if and only if the matching
subelement of the formal is active.

The algorithm for computing the driving value of a scalar signal S is recursive. For example,
if S is a local signal appearing in a port association list, the driving value of S can only be
obtained after the driving value of the corresponding actual part is computed. This may
involve multiple executions of the above algorithm.

Similarly, the algorithm for computing the effective value of a signal S is recursive. For
example, if a formal port S of mode in corresponds to an actual A, the effective value of A must
be computed before the effective value of S can be computed. The actual A may itself appear as a
formal port in a port association list.

No effective value is specified for out and linkage ports, since these ports may not be read.

12.6^ Updating Implicit Signals

The kernel process updates the value of each implicit signal GUARD associated with a block
statement that has a guard expression. Similarly, the kernel process updates the values of each
implicit signal S'Stable(T), S'Quiet(T), or S'Transaction, for any prefix S and any time T;
this also involves updating the drivers of S’Stable(T) and S'Quiet(T).

For any implicit signal GUARD, the current value of the signal is modified if and only if the
corresponding guard expression contains a reference to a signal S, and S is active during the
current simulation cycle. In such a case, the implicit signal GUARD is updated by evaluating
the corresponding guard expression and assigning the result of that evaluation to the variable
representing the current value of the signal.

For any implicit signal S'Stable(T), the current value of the signal (and likewise the current
state of the corresponding driver) is modified if and only if one of the following statements is
true:

• An event has occurred on S in this simulation cycle.

• The driver of S'Stable(T) is active.

If an event has occurred on signal S, then S'Stable(T) is updated by assigning the value FALSE
to the variable representing the current value of S'Stable(T), and the driver of S'Stable(T) is
assigned the waveform TRUE after T. Otherwise, if the driver of S'Stable(T) is active, then
S'Stable(T) is updated by assigning the current value of the driver to the variable representing
the current value of S'Stable(T). Otherwise, neither the variable nor the driver is modified.

12-12

ELABORATION AND EXECUTION
IEEE

Std 1076-1987

Similarly, for any implicit signal S'Quiet(T), the current value of the signal (and likewise the
current state of the corresponding driver) is modified if and only if one of the following
statements is true:

• S is active.

• The driver of S’Quiet(T) is active.

If signal S is active, then S'Quiet(T) is updated by assigning the value FALSE to the variable
representing the current value of S'Quiet(T), and the driver of S'Quiet(T) is assigned the
waveform TRUE after T. Otherwise, if the driver of S'Quiet(T) is active, then S’Quiet(T) is
updated by assigning the current value of the driver to the variable representing the current
value of S'Quiet(T). Otherwise, neither the variable nor the driver is modified.

Finally, for any implicit signal S'Transaction, the current value of the signal is modified if
and only if S is active. If signal S is active, then S'Transaction is updated by assigning the
value of the expression (not S'Transaction) to the variable representing the current value of
S'Transaction. At most one such assignment will occur during any given simulation cycle.

The current value of a given implicit signal R is said to depend upon the current value of
another signal S if one of the following statements is true:

• R denotes an implicit GUARD signal, and S is any other implicit signal named
within the guard expression that defines the current value of R.

• R denotes an implicit signal S'Stable(T).

• R denotes an implicit signal S'Quiet(T).

• R denotes an implicit signal S'Transaction.

These rules define a partial ordering on all signals within a model. The updating of implicit
signals by the kernel process is guaranteed to proceed in such a manner that, if a given
implicit signal R depends upon the current value of another signal S, then the current value of
S will be updated during a particular simulation cycle prior to the updating of the current value
of R.

Note:

The above rules imply that, if the driver of S'Stable(T) is active, then the new current value of
that driver is the value TRUE. Furthermore, the above rules imply that, if an event occurs on S
during a given simulation cycle, and the driver of S'Stable(T) becomes active during the same
cycle, the variable representing the current value of S'Stable(T) will be assigned the value
FALSE, and the current value of the driver of S'Stable(T) during the given cycle will never be
assigned to that signal.

12.6.3 The Simulation Cycle

The execution of a model consists of an initialization phase followed by the repetitive execution
of process statements in the description of that model. Each such repetition is said to be a
simulation cycle. In each cycle, the values of all signals in the description are computed. If as

12-13

IEEE
Std 1076-1987

a result of this computation an event occurs on a given signal, process statements that are
sensitive to that signal will resume and will be executed as part of the simulation cycle.

The initialization phase consists of the following steps;

1. The driving value and the effective value of each explicitly declared signal is
computed, and the current value of the sig^oal is set to the effective value. This value
is assumed to have been the value of the signal for an infinite length of time prior to
the start of simulation.

2. The value of each implicit signal of the form S'Stable(T) or S'Quiet(T) is set to True.

3. The value of each implicit GUARD signal is set to the result of evaluating the
corresponding guard expression.

4. Each process in the model is executed until it suspends.

At the beginning of simulation, current time is assumed to be 0ns.

A simulation cycle consists of the following steps:

1. If no driver is active, then simulation time advances to the next time at which a
driver becomes active or a process resumes. Simulation is complete when time
advances to TIME'High.

2. Each active explicit sfgnal in the model is updated. (Events may occur on signals as
a result.)

3. Each implicit signal in the model is updated. (Events may occur on signals as a
result.)

4. For each process P, if P is currently sensitive to a signal S, and an event has occurred
on S in this simulation cycle, then P resumes.

5. Each process that has just resumed is executed until it suspends.

Note:

The initial value of any implicit signal of the form S'Transaction is not defined.

Updating of explicit signals is described in Section 12.6.1; updating of implicit signals is
described in Section 12.6.2.

When a process resumes, it is added to the set of processes to be executed during the current
simulation cycle. However, no process actually begins to execute until the last step of the
simulation cycle, at which point all executable processes for this simulation cycle have been
identified.

12-14

IEEE
Std 1076-1987

CHAPTER 13

LEXICAL ELEMENTS

The text of a description consists of one or more design files. The text of a design file is a
sequence of lexical elements, each composed of characters; the rules of composition are given
in this chapter.

13.1 Character Set

The only characters allowed in the text of a VHDL description are the graphic characters and
format effectors. Each graphic character corresponds to a unique code of the ISO seven-bit
coded character set (ISO 646-1983*), and is represented (visually) by a graphical symbol. Some
graphic characters are represented by different graphical symbols in alternative national
representations of the ISO character set. The description of the language definition in this
standard reference manual uses the ASCII graphical symbols, the ANSI graphical
representation of the ISO character set.

graphic_character ::=
basic_graphic_character I lower_case_letter I other_special_character

basic_graphic_character ::=
upper_case_letter I digit I special_character I space_character

basic_character ::=
basic_gp‘aphic_character I format_effector

The basic character set is sufficient for writing any description. The characters included in
each of the categories of basic graphic characters are defined as follows:

(a) upper case letters
ABCDEFGHIJKLMNOPQRSTUVWXYZ

(b) digits
0123456789

ISO 646-1983, Information Processing-ISO 7-bit coded character set for information interchange, can be obtained
from the Sales Department, American National Standardards Institute, 1430 Broadway, New York, NY 10018.

13-1

IEEE
Std 1076-1987 CHAPTER 13

(c) special characters
-./:;< = >_!

(d) the space character

Format effectors are the ISO (and ASCII) characters called horizontal tabulation, vertical
tabulation, carriage return, line feed, and form feed.

The characters included in each of the remaining categories of graphic characters are defined
as follows:

(e) lower case letters
abcdefghijklmnopqrstuvwxyz

(f) other special characters

Allowable replacements for the special characters vertical bar (I), sharp (#), and quotation (")
are defined in the last section of this chapter.

Note:

The ISO character that corresponds to the sharp graphical symbol in the ASCII representation
appears as a pound sterling symbol in the French, German, and United Kingdom standard
national representations. In any case, the font design of graphical symbols (for example,
whether they are in italic or bold typeface) is not part of the ISO standard.

The meanings of the acronyms used in this section are as follows: ANSI stands for American
National Standards Institute, ASCII stands for American Standard Code for Information
Interchange, and ISO stands for International Organization for Standardization.

The following names are used when referring to special characters:

symbol name symbol name

" quotation > greater than
sharp - underline
& ampersand 1 vertical bar
* apostrophe ! exclamation mark

(left parenthesis $ dollar

) right parenthesis % percent
♦ star, multiply 9 question mark
+ plus @ commercial at

> comma [left square bracket
- hyphen, minus \ back-slash

dot, point, period] right square bracket
/ slash, divide A circumflex

colon grave accent

> semicolon { left brace
< less than) right brace
= equal ~ tilde

13-2

LEXICAL ELEMENTS
IEEE

Std 1076-1987

13^ Lexical Elements, Separators, and Delimiters

The text of each design unit is a sequence of separate lexical elements. Each lexical element is
either a delimiter, an identifier (which may be a reserved word), an abstract literal, a
character literal, a string literal, a bit string literal, or a comment.

In some cases an explicit separator is required to separate adjacent lexical elements (namely,
when without separation, interpretation as a single lexical element is possible). A separator is
any of a space character, a format effector, or the end of a line. A space character is a separator
except within a comment, a string literal, or a space character literal.

The end of a line is always a separator. The language does not define what causes the end of a
line. However if, for a given implementation, the end of a line is signified by one or more
characters, then these characters must be format effectors other than horizontal tabulation. In
any case, a sequence of one or more format effectors other than horizontal tabulation must
cause at least one end of line.

One or more separators are allowed between any two adjacent lexical elements, before the first
of each design unit, or after the last. At least one separator is required between an identifier or
an abstract literal and an adjacent identifier or abstract literal.

A delimiter is either one of the following special characters (in the basic character set)

&'()* + ,- ./ :;< = > I

or one of the following compound delimiters each composed of two adjacent special characters

> ** . /_ o

Each of the special characters listed for single character delimiters is a single delimiter except
if this character is used as a character of a compound delimiter, or as a character of a
comment, string literal, character literal, or abstract literal.

The remaining forms of lexical elements are described in other sections of this chapter.

Note:

Each lexical element must fit on one line, since the end of a line is a separator. The quotation,
sharp, and underline characters, likewise two adjacent hyphens, are not delimiters, but may
form part of other lexical elements.

The following names are used when referring to compound delimiters:

delimiter name

= > arrow
* * double star, exponentiate
; = variable assignment
/= inequality (pronounced: "not equal")

>= greater than or equal
<= less than or equal, also signal assignment
<> box

13-3

IEEE
Std 1076-1987 CHAPTER 13

13.3 Identifiers

Identifiers are used as names and also as reserved words,

identifier ::=
letter { [underline] letter_or_digit}

letter_or_digit ::= letter I digit

letter ;:= upper_case_letter I lower_case_letter

All characters of an identifier are significant, including any underline character inserted
between a letter or digit and an adjacent letter or digit. Identifiers differing only in the use of
corresponding upper and lower case letters are considered as the same.

Examples:

COUNT X c_out FFT Decoder

VHSIC XI PageCount STORE_NEXTJTEM

Note:

No space is allowed within an identifier since a space is a separator.

13.4 Abstract Literals

There are two classes of abstract literals: real literals and integer literals. A real literal is an
abstract literal that includes a point; an integer literal is an abstract literal without a point.
Real literals are the literals of the type universaljreal. Integer literals are the literals of the
type universal_integer.

abstract_literal ::= decimal_literal I based_literal

13.4.1 Decimal Literals

A decimal literal is an abstract literal expressed in the conventional decimal notation (that is,
the base is implicitly ten).

decimal_literal ::= integer [. integer] [exponent]

integer ::= digit { [underline] digit}

exponent :;= E [-i-] integer I E - integer

An underline character inserted between adjacent digpts of a decimal literal does not affect the
value of this abstract literal. The letter E of the exponent, if any, can be written either in lower
case or in upper case, with the same meaning.

13-4

LEXICAL ELEMENTS
IEEE

Std 1076-1987

An exponent indicates the power of ten by which the value of the decimal literal without the
exponent is to be multiplied to obtain the value of the decimal literal with the exponent. An
exponent for an integer literal must not have a minus sign.

Examples:

12 0 1E6 123_456 — integer literals

12.0 0.0 0.456 3.14159_26 — real literals

1.34E-12 1.0E-H6 6.023E-I-24 — real literals with exponents

Note:

Leading zeros are allowed. No space is allowed in an abstract literal, not even between
constituents of the exponent, since a space is a separator. A zero exponent is allowed for an
integer literal.

13.4.2 Based Literals

A based literal is an abstract literal expressed in a form that specifies the base explicitly. The
base must be at least two and at most sixteen.

based_literal ::=
base # based_integer [. based_integer] # [exponent]

base ::= integer

based_integer ::=
extended_digit { [underline] extended_digit}

extended_digit ::= digit I letter

An underline character inserted between adjacent digits of a based literal does not affect the
value of this abstract literal. The base and the exponent, if any, are in decimal notation. The
only letters allowed as extended digits are the letters A through F for the digits ten through
fifteen. A letter in a based literal (either an extended digit or the letter E of an exponent) can be
written either in lower case or in upper case, with the same meaning.

The conventional meaning of based notation is assumed; in particular the value of each
extended digit of a based literal must be less than the base. An exponent indicates the power of
the base by which the value of the based literal with the exponent.

Examples:

— integer literals of value 255

16#FF# 016#0FF#

-- integer literals of value 224

16#E#E1 2#1110_0000#

13-5

IEEE
Std 1076-1987 CHAPTER 13

— real literals of value 4095.0

16#F.FF#E-(-2

13^ Character Literals

A character literal is formed by enclosing one of the 95 graphic characters (including the
space) between two apostrophe characters. A character literal has a value that belongs to a
character type.

character_literal ::= ' graphic_character

Examples:

'A'

13.6 String Literals

A string literal is formed by a sequence of graphic characters (possibly none) enclosed between
two quotation characters used as string brackets.

string_literal ;:= " { graphic_character }

A string literal has a value that is a sequence of character values corresponding to the graphic
characters of the string literal apart from the quotation character itself. If a quotation
character value is to be represented in the sequence of character values, then a pair of adjacent
quotation characters must be written at the corresponding place within the string literal. (This
means that a string literal that includes two adjacent quotation characters is never interpreted
as two adjacent string literals.)

The length of a string literal is the number of character values in the sequence represented.
(Each doubled quotation character is counted as a single character.)

Examples:

"Setup time is too short" — an error message

-- an empty string literal

"A" """" — three string literals of length 1

"Characters such as $, %, and) are allowed in string literals"

Note:

A string literal must fit on one line since it is a lexical element (see Section 13.2). Longer
sequences of graphic character values can be obtained by concatenation of string literals. The
concatenation operation may also be used to obtain string literals containing nongraphic
character values. Predefined type CHARACTER in package STANDARD specifies the

13-6

LEXICAL ELEMENTS
IEEE

Std 1076-1987

enumeration literals denoting both graphic and non-graphic characters. Examples of such
uses of concatenation are given below:

"FIRST PART OF A SEQUENCE OF CHARACTERS " &
"THAT CONTINUES ON THE NEXT LINE"

"sequence that includes the" & ACK & "control character"

13.7 Bit String Literals

A bit string literal is formed by a sequence of extended digits enclosed between two quotations
used as bit string brackets, preceded by a base specifier.

bit_string_literal ::= base_specifier " bit_value

bit_value ::= extended_digit { [underline] extended_digit)

base_specifier ::= B I O 1 X

An underline character inserted between adjacent digits of a bit string literal does not affect
the value of this literal. The only letters allowed as extended digits are the letters A through F
for the digits ten through fifteen. A letter in a bit string literal (either an extended digit or the
base specifier) can be written either in lower case or in upper case, with the same meaning.

If the base specifier is 'B', the extended digits in the bit value are restricted to 0 and 1. If the
base specifier is 'O', the extended digits in the bit value are restricted to legal digpts in the octal
number system, i.e., the digits 0 through 7. If the base specifier is 'X', the extended digits are
all digits together with the letters A through F.

A bit string literal has a value that is a sequence of values taken from the predefined type BIT
(i.e., a sequence of 'O' and '!'). If the base specifier is 'B', the value of the bit string literal is
the sequence given explicitly by the bit_value itself. If the base specifier is 'O' (respectively
'X'), the value of the bit string literal is the sequence obtained by replacing each extended digit
in the bit_value by a sequence consisting of the three (respectively four) values representing
that extended digit taken from the predefined type BIT.

The length of a bit string literal is the number of values of type BIT in the sequence
represented.

Example:

- equivalent to
- equivalent to
- equivalent to B"0111_0111_0111"

X"FFF
0"777"
X"m"

13.8 Comments

A comment starts with two adjacent hyphens and extends up to the end of the line. A comment
can appear on any line of a VHDL description. The presence or absence of comments has no
influence on whether a description is legal or illegal. Furthermore, comments do not
influence the execution of a simulation module; their sole purpose is the enlightenment of the
human reader.

13-7

IEEE
Std 1076-1987 CHAPTER 13

Examples:

— the last sentence above echoes the Algol 68 report

end; — processing of LINE is complete

— a long comment may be split onto
— two or more consecutive lines

. the first two hyphens start the comment

Note:

Horizontal tabulation can be used in comments, after the double hyphen, and is equivalent to
one or more spaces (see Section 13.2).

13.9 Reserved Words

The identifiers listed below are called reserved words and are reserved for significance in the
language. For readability of this manual, the reserved words appear in lower case boldface.

abs else nand select
access elsif new severity
after end next signal
alias entity nor subtype
all exit not
and null then
architecture file to
array for cf transport
assert function on type
attribute

generate
open
cr units

be^n generic others until
block guarded oi:^ use
Ixxfy
buffer if package variable
bus in port

inout procedure wait
case is process when
component
configuration label range

while
with

constant library record
linkage register xor

disconnect loop rem
downto

map
mod

report
retiun

A reserved word must not be used as an explicitly declared identifier.

13-8

LEXICAL ELEMENTS
IEEE

Std 1076-1987

Note:

Reserved words differing only in the use of corresponding upper and lower case letters are
considered as the same (see Section 13.3). The reserved word range is also used as the name of
a predefined attribute.

13.10 Allowable Replacements of Characters

The following replacements are allowed for the vertical bar, sharp, and quotation basic
characters:

• A vertical bar character (I) can be replaced by an exclamation mark (!) where used
as a delimiter.

• The sharp characters (#) of a based literal can be replaced by colons (:) provided that
the replacement is done for both occurrences.

• The quotation characters (") used as string brackets at both ends of a string literal
can be replaced by percent characters (%) provided that the enclosed sequence of
characters contains no quotation character, and provided that both string brackets
are replaced. Any percent character within the sequence of characters must then be
doubled and each such doubled percent character is interpreted as a single percent
character value. The same replacement is allowed for a bit string literal, provided
that both bit string brackets are replaced.

These replacements do not change the meaning of the description.

Note:

It is recommended that use of the replacements for the vertical bar, sharp, and quotation
characters be restricted to cases where the corresponding graphical symbols are not available.
Note that the vertical bar appears as a broken bar on some equipment; replacement is not
recommended in this case.

The rules given for identifiers and abstract literals are such that lower case and upper case
letters can be used indifferently; these lexical elements can thus be written using only
characters of the basic character set.

13-9

N

IEEE
Std 1076-1987

CHAPTER 14

PREDEFINED LANGUAGE ENVIRONMENT

This chapter describes the predefined attributes of VHDL and the packages that all VHDL
implementations must provide.

14.1 Predefined Attributes

Predefined attributes denote values, functions, types, and ranges associated with various
kinds of entities. These attributes are described below. For each attribute, the following
information is provided:

The kind of attribute: value, type, range, function, or signal.

The prefixes for which the attribute is defined.

A description of the parameter or argument, if one exists.

The result of evaluating the attribute, and the result type (if applicable).

Any further restrictions or comments that apply.

T'BASE
Kind:
Prefix:
Result:

Type
Any type or subtype T.
The base type of T.
This attribute is allowed only as the prefix of the name of
another attribute; for example, T'BASE'LEFT.

Restrictions:

T’LEFT

Result Type:
Result:

Kind:
Prefix:

Value
Any scalar type or subtype T.
Same type as T.
The left bound of T.

T'RIGHT

Result Type:
Result:

Kind:
Prefix:

Value
Any scalar type or subtype T.
Same type as T.
The right bound of T.

14-1

•pppp^p

Std 1076-1987 CHAPTER 14

T'HIGH
Kind:
Prefix:
Result Type:
Result:

Value
Any scalar type or subtype T.
Same type as T.
The upper bound of T.

T'LOW
Kind:
Prefix:
Result Type:
Result:

Value
Any scalar type or subtype T.
Same type as T.
The lower bound of T.

T'POS(X)
Kind:
Prefix:
Parameter:
Result Type:
Result:

Function
Any discrete or physical type or subtype T.
An expression whose type is the base type of T.
universal _integer.
The position number of the value of the parameter.

T'VAL(X)
Kind:
Prefix:
Parameter:
Result Type:
Result:

Function
Any discrete or physical type or subtype T.
An expression of any integer type.
The base type of T.
The value whose position number is the
universal_integer value corresponding to X.

T'SUCC(X)
Kind:
Prefix:
Parameter:
Result Type:
Result:

Function
Any discrete or physical type or subtype T.
An expression whose type is the base type of T.
The base type of T.
The value whose position number is one greater than that
of the parameter.

Restrictions: An error occurs if X equals T'BASE’HIGH.

T'PRED(X)
Kind:
Prefix:
Parameter:
Result Type:
Result:

Function
Any discrete or physical type or subtype T.
An expression whose type is the base type of T.
The base type of T.
The value whose position number is one less than that of
the parameter.

Restrictions: An error occurs if X equals T'BASE'LOW.

14-2

PREDEFINED LANGUAGE ENVIRONMENT
IEEE

Std 1076-1987

T'LEFTOF(X)
Kind:
Prefix:
Parameter:
Result Type:
Result:

Function
Any discrete or physical type or subtype T.
An expression whose type is the base type of T.
The base type of T.
The value which is to the left of the parameter in the
range of T.

Restrictions: An error occurs if X equals T’BASE'LEFT.

T'RIGHTOF(X)
Kind:
Prefix:
Parameter:
Result Type:
Result:

Function
Any discrete or physical type or subtype T.
An expression whose type is the base type of T.
The base type of T.
The value which is to the right of the parameter in the
range of T.

Restrictions: An error occurs if X equals T'BASE'RIGHT.

A'LEFT [(N)]
Kind:
Prefix:

Function
Any prefix A that is appropriate for an array object, or an
alias thereof, or that denotes a constrained array
subtype.

Parameter: A locally static expression of type universal_integer, the
value of which must not exceed the dimensionality of A.
If omitted, it defaults to 1.

Result Type:
Result:

Type of the left bound of the Nth index range of A.
Left bound of the Nth index range of A. (If A is an alias
for an array object, then the result is the left bound of the
Nth index range from the declaration of A, not that of the
object.)

A'RIGHT [(N)]
Kind:
Prefix:

Function
Any prefix A that is appropriate for an array object, or an
alias thereof, or that denotes a constrained array
subtype.

Parameter: A locally static expression of type universal_integer, the
value of which must not exceed the dimensionality of A.
If omitted, it defaults to 1.

Result Type:
Result:

Type of the Nth index range of A.
Right bound of the Nth index range of A. (If A is an alias
for an array object, then the result is the right bound of
the Nth index range from the declaration of A, not that of
the object.)

14-3

IEEE
Std 1076-1987 CHAPTER 14

A'HIGH [(N)]
Kind:
Prefix:

Function
Any prefix A that is appropriate for an array object, or an
alias thereof, or that denotes a constrained array
subtype.

Parameter: A locally static expression of type universal Jinteger, the
value of which must not exceed the dimensionality of A.
If omitted, it defaults to 1.

Result Type:
Result:

Type of the Nth index range of A.
Upper bound of the Nth index range of A. (If A is an alias
for an array object, then the result is the upper bound of
the Nth index range from the declaration of A, not that of
the object.)

A’LOW [(N)]
Kind:
Prefix:

Function
Any prefix A that is appropriate for an array object, or an
alias thereof, or that denotes a constrained array
subtype.

Parameter: A locally static expression of type universal Jinteger, the
value of which must not exceed the dimensionality of A.
If omitted, it defaults to 1.

Result Type:
Result:

Type of the Nth index range of A.
Lower bound of the Nth index range of A. (If A is an
alias for an array object, then the result is the lower
bound of the Nth index range from the declaration of A,
not that of the object.)

ARANGE [(N)]
Kind:
Prefix:

Range
Any prefix A that is appropriate for an array object, or an
alias thereof, or that denotes a constrained array
subtype.

Parameter: A locally static expression of type universal Jnteger, the
value of which must not exceed the dimensionality of A.
If omitted, it defaults to 1.

Result Type:
Result:

The type of the Nth index range of A.
The range A'LEFT(N) to A’RIGHT(N) if the Nth index
range of A is ascending, or the range A'LEFT(N)
downto A'RIGHT(N) if the Nth index range of A is
descending. (If A is an alias for an array object, then the
result is determined by the Nth index range from the
declaration of A, not that of the object.)

14-4

PREDEFINED LANGUAGE ENVIRONMENT
IEEE

Std 1076-1987

A’REVERSE_RANGE [(N)]
Kind;
Prefix:

Parameter:

Result Type:
Result:

Range
Any prefix A that is appropriate for an array object, or an
alias thereof, or that denotes a constrained array
subtype.
A locally static expression of type universal_integer, the
value of which must not exceed the dimensionality of A.
If omitted, it defaults to 1.
The type of the Nth index range of A.
The range A'RIGHT(N) downto A'LEFT(N) if the Nth
index range of A is ascending, or the range
A'RIGHT(N) to A'LEFT(N) if the Nth index range of A
is descending. (If A is an alias for an array object, then
the result is determined by the Nth index range from the
declaration of A, not that of the object.)

ALENGTH [(N)]
Kind;
Prefix:

Parameter:

Result Type:
Result:

Value
Any prefix A that is appropriate for an array object, or an
alias thereof, or that denotes a constrained array
subtype.
A locally static expression of type universal_integer, the
value of which must not exceed the dimensionality of A.
If omitted, it defaults to 1.
universal _integer.
Number of values in the Nth index range, i.e., the value
A'HIGH(N) - ALOW(N) -t- 1.

S'DELAYED [(T)]
Kind:
Prefix;
Parameter:

Result Type:
Result:

Signal
Any signal denoted by the static signal name S.
A static expression of type TIME that evaluates to a non¬
negative value. If omitted, it defaults to 0ns.
The base type of S.
A signal equivalent to signal S delayed T units of time.
The value of S'DELAYED(t) at time Tn is always equal
to the value of S at time Tn-t. Specifically:

Let R be of the same subtype as S, let T >= 0ns, and let P be a process statement of the
form

P: process (S)
begin

R <= transport S after T;
end process;

Assuming that the initial value of R is the same as the initial value of S, then the
attribute 'DELAYED is defined such that S'DELAYED(T) = R for any T.

(Note that S'DELAYED(Ons) is not equal to S when S has just changed.)

14-5

IEEE
Std 1076-1987 CHAPTER 14

S'STABLE [(T)]
Kind:
Prefix:
Parameter:

Signal
Any signal denoted by the static signal name S.
A static expression of type TIME that evaluates to a non¬
negative value. If omitted, it defaults to 0ns.

Result Type:
Result:

Type Boolean.
A signal that has the value TRUE when an event has not
occurred on signal S for T units of time, and the value
FALSE otherwise. (See Section 12.6.2)

(Note that S'STABLE(Ons) = (S’DELAYED(Ons) = S), and S'STABLE(Ons) is
FALSE only when S has just changed.)

S'QUIET [(T)]
Kind:
Prefix:
Parameter:

Signal
Any signal denoted by the static signal name S.
A static expression of type TIME that evaluates to a non¬
negative value. If omitted, it defaults to 0ns.

Result Type:
Result:

Type Boolean.
A signal that has the value TRUE when the signal has
been quiet for T units of time, and the value FALSE
otherwise. (See Section 12.6.2)

For a given simulation cycle, S'QUIET(Ons) is TRUE if and only if S is quiet
for that simulation cycle.

S’TRANSACTION
Kind:
Prefix:
Result Type:
Result:

Signal
Any signal denoted by the static signal name S.
Type Bit.
A signal whose value toggles to the inverse of its
previous value in each simulation cycle in which signal
S becomes active.

S'EVENT
Kind:
Prefix:
Result Type:
Result:

Function
Any signal denoted by the static signal name S.
Type Boolean.
A value that indicates whether an event has just occurred
on signal S. Specifically:

For a scalar signal S, S'EVENT returns the value TRUE if an event has occurred
on S during the current simulation cycle; otherwise, it returns the value FALSE.

For a composite signal S, S'EVENT returns TRUE if an event has occurred on any
scalar subelement of S during the current simulation cycle; otherwise, it returns
FALSE.

14-6

PREDEFINED LANGUAGE ENVIRONMENT
IEEE

Std 1076-1987

S’ACTIVE
Kind: Function
Prefix: Any signal denoted by the static signal name S.
Result Type: Type Boolean.
Result: A value that indicates whether signal S is active.

Specifically:

For a scalar signal S, SACTIVE returns the value TRUE if signal S is active
during the current simulation cycle; otherwise, it returns the value FALSE.

For a composite signal S, SACTIVE returns TRUE if any scalar subelement of S is
active during the current simulation cycle; otherwise, it returns FALSE.

S’LAST_EVENT
Kind: Function
Prefix: Any signal denoted by the static signal name S.
Result Type: Type Time.
Result: The amount of time that has elapsed since the last event

occurred on signal S. Specifically:

For a scalar signal S, S'LAST_EVENT returns the largest value T of type Time for
which S'DELAYED(T)'STABLE would return TRUE, if such a value for T exists;
otherwise it returns 0ns.

For a composite signal S, S'LAST_EVENT returns the minimum of the values
R'LAST_EVENT for every scalar subelement R of S.

S'LAST_ACTIVE
Kind: Function
Prefix: Any signal denoted by the static signal name S.
Result Type: Type Time.
Result: The amount of time that has elapsed since the last time at

which signal S was active. Specifically:

For a scalar signal S, S'LAST_ACTIVE returns the largest value T of type Time
for which S'DELAYED(T)'QUIET would return TRUE, if such a value for T exists;
otherwise it returns 0ns.

For a composite signal S, S'LAST_ACTIVE returns the minimum of the values
R'LAST_ACTIVE for every scalar subelement R of S.

14-7

IEEE
Std 1076-1987 CHAPTER 14

S'LAST_VALUE
Kind; Function
Prefix: Any signal denoted by the static signal name S.
Result Type: The base type of S.
Result: The previous value of S, immediately before the last

change of S. Specifically:

For a scalar signal S, S'LAST_VALUE = S'DELAYED(T) where T >= 0ns is the
smallest value such that S'STABLE(T) is FALSE. If no such T exists, then
S'LAST_VALUE is equal to S.

For a composite signal S, S'LAST_VALUE is equal to the aggregate of the previous
values of each element of S.

(Note that;

(1) if S'STABLE(T) is FALSE, then by definition,
for some t where 0ns <= t <= T, S'DELAYED(t) /= S; and

(2) if Tg is the smallest value such that S'STABLE (Tg) is FALSE, then for all
t where 0ns <= t < Tg, S'DELAYED(t) = S.)

B’BEHAVIOR
Kind:
Prefix:

Result Type:
Result:

Value
Any block denoted by its block label or any design entity
denoted by its architecture name.
Boolean.
The value is TRUE if the block defined by the block
statement or by the design entity does not contain a
component instantiation statement. Otherwise the value
is FALSE.

B'STRUCTURE
Kind:
Prefix:

Result Type;
Result;

Value
Any block denoted by its block label or any design entity
denoted by its architecture name.
Boolean.
The value is TRUE if the block defined by the block
statement or by the design entity contains neither a non¬
passive process statement nor a concurrent statement
with an equivalent process statement that is non¬
passive. Otherwise the value is FALSE.

Note:

The relationship between the values of the LEFT, RIGHT, LOW, and HIGH attributes is
expressed in the following table:

14-8

PREDEFINED LANGUAGE ENVIRONMENT
IEEE

Std 1076-1987

Ascending Descendin
Range Range

T'LEFT = T'LOW THIGH

T'RIGHT = THIGH T'LOW

Since the attributes S'EVENT, S'ACTIVE, S'LAST_EVENT, S'LAST_ACTIVE, and
S'LAST_VALUE are functions, not signals, they cannot cause the execution of a process, even
though the value returned by such a function may change dynamically. It is thus
recommended that the equivalent signal-valued attributes S'STABLE and S'QUIET, or
expressions involving those attributes, be used in concurrent contexts such as guard
expressions or concurrent signal assignments. Similarly, function STANDARD.NOW
should not be used in concurrent contexts.

14.2 Package STANDARD

Package STANDARD predefines a number of types, subtypes and functions. An implicit
context clause naming this package is assumed to exist at the beginning of each design unit.
Package STANDARD may not be modified by the user.

package STANDARD is

- predefined enumeration types:

type BOOLEAN is (FALSE, TRUE);

type BIT is ('O', '1');

type CHARACTER is (
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DCl, DC2, DCS, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

) ’ 1' • J
t ((1

y '#’,
9

» »
> 9 9

t t
9 • 9

'O’, '1', ;2’, '3', '4', '5', '6', '7',
'8', '9', • >

t ^ f
9 9 — 9

t t
> , • 9

■A', ■B’, 'C, 'D', 'E', 'F', 'G',
'H', ■J’, 'K', 'L', 'M', 'N', 'O',
'P', 'Q', 'R', ■S', 'T', 'U', 'V, ;w’.
'X', 'Y', 'Z', ' A '

9 _ 9

> 'a'. 'b'. 'c'. 'd'. 'e'. 'f. 'g',
'h'. 'i', 'j', 'k'. 'm'. 'n'. 'o’,

'p', 'q', 'r'. 's'. 't'. 'u'. 'v'. 'W,
'x'. 'y', 'z', '1', DEL);

14-9

IEEE
Std 1076-1987 CHAPTER 14

type SEVERITY.LEVEL is (NOTE, WARNING, ERROR, FAILURE);

— predefined numeric types:

type INTEGER is range implementation_defined\

type REAL is range implementation_defined\

- predefined type TIME:

type TIME is range implementationjdefined
units

fs; — femtosecond
ps = 1000 fs; — picosecond
ns = 1000 ps; — nanosecond
us = 1000 ns; — microsecond
ms = 1000 us; — millisecond
sec = 1000 ms; — second
min = 60 sec; — minute
hr = 60 min; — hour

end units;

— function that returns the current simulation time:

function NOW return TIME;

-- predefined numeric subtypes:

subtype NATURAL is INTEGER range 0 to INTEGER'HIGH;

subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;

- predefined array types:

type STRING is array (POSITIVE range <>) of CHARACTER;

type BIT_VECTOR is array (NATURAL range <>) of BIT;

end STANDARD;

Note:

The ASCII mnemonics for file separator (FS), group separator (GS), record separator (RS), and
unit separator (US) are represented by FSP, GSP, RSP, and USP, respectively, in type
CHARACTER in order to avoid conflict with the units of type TIME.

14-10

PREDEFINED LANGUAGE ENVIRONMENT
IEEE

Std 1076-1987

14^ Package TEXnO

Package TEXTIO contains declarations of types and subprograms that support formatted
ASCII I/O operations,

package TEXTIO is

— Type Definitions for Text I/O

type LINE is access STRING;

type TEXT is file of STRING;

type SIDE is (RIGHT, LEFT);

subtype WIDTH is NATURAL;

-- Standard Text Files

-- a LINE is a pointer to a STRING value

— a file of variable-length ASCII records

— for justifying output data within fields

— for specifying widths of output fields

file INPUT: TEXT is in "STD_INPUT";

file OUTPUT: TEXT is out "STD_OUTPUT";

- Input Routines for Standard Types

procedure READLINE (F: in TEXT; L: out LINE);

procedure READ (L: inout LINE;
procedure READ (L: inout LINE;

VALUE: out BIT;
VALUE: out BIT);

GOOD: out BOOLEAN);

procedure READ (L: inout LINE;
procedure READ (L: inout LINE;

VALUE: out BIT.VECTOR;
VALUE: out BIT_VECTOR);

GOOD: out BOOLEAN);

procedure READ (L: inout LINE;
procedure READ (L: inout LINE;

VALUE: out BOOLEAN;
VALUE: out BOOLEAN);

GOOD: out BOOLEAN);

procedure READ (L: inout LINE;
procedure READ (L: inout LINE;

VALUE: out CHARACTER;
VALUE: out CHARACTER);

GOOD: out BOOLEAN);

procedure READ (L: inout LINE;
procedure READ (L: inout LINE;

VALUE: out INTEGER;
VALUE: out INTEGER);

GOOD: out BOOLEAN);

procedure READ (L: inout LINE;
procedure READ (L: inout LINE;

VALUE: out REAL;
VALUE: out REAL);

GOOD: out BOOLEAN);

procedvire READ (L: inout LINE;
procedure READ (L: inout LINE;

VALUE: out STRING;
VALUE: out STRING);

GOOD: out BOOLEAN);

procedure READ (L: inout LINE;
procedure READ (L: inout LINE;

VALUE: out TIME;
VALUE: out TIME);

GOOD: out BOOLEAN);

14-11

IEEE
Std 1076-1987 CHAPTER 14

- Output Routines for Standard Types

procedure WRITELINE (F: out TEXT; L: in LINE);

procedure WRITE (L: inout LINE; VALUE: in BIT;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in BIT_VECTOR;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in BOOLEAN;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in CHARACTER;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in INTEGER;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in REAL;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
DIGITS: in NATURAL:= 0);

procedure WRITE (L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in TIME;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
UNIT: in TIME:= ns);

— File Position Predicates

function ENDLINE (L: in LINE) return BOOLEAN;

- function ENDFILE (F: in TEXT) return BOOLEAN;

end TEXTIO;

Procedures READLINE and WRITELINE declared in package TEXTIO read and write entire
lines of a file of type TEXT. Procedure READLINE causes the next line to be read from the file
and returns as the value of parameter L an access value that designates an object representing
that line. If parameter L contains a non-null access value at the start of the call, the object
designated by that value is deallocated before the new object is created. Procedure
WRITELINE causes the current line designated by parameter L to be written to the file and
returns with the value of parameter L designating a null string. If parameter L contains a
null access value at the start of the call, then a null string is written to the file.

Each READ procedure declared in package TEXTIO extracts data from the beginning of the
string value designated by by parameter L and modifies L so that it designates the remaining
portion of the line on exit. Each WRITE procedure similarly appends data to the end of the
string value designated by parameter L; in this case, however, L continues to designate the
entire line being constructed. Note that write operations do not put apostrophes around single

14-12

PREDEFINED LANGUAGE ENVIRONMENT
IEEE

Std 1076-1987

character values or quotation marks around string values, nor do the corresponding read
operations remove such additional characters if they appear in the input file.

For each predefined data type there are two READ procedures declared in package TEXTIO.
The first has three parameters; L, the line to read from; VALUE, the value read from the line;
and GOOD, a boolean flag that indicates whether the read operation succeeded or not. For
example, the operation READ (L, IntVal, OK) would return with OK set to FALSE, L
unchanged, and IntVal undefined if IntVal is a variable of type INTEGER and L designates
the line "ABC". The success indication returned via parameter GOOD allows a process to
gracefully recover from unexpected discrepancies in input format. The second form of read
operation has only the parameters L and VALUE. If the requested type cannot be read into
VALUE from line L, then an error occurs. Thus the operation READ (L, IntVal) would cause
an error to occur if IntVal is of type INTEGER and L designates the line "ABC".

For each predefined data type there is one WRITE procedure declared in package TEXTIO.
Each of these has at least two parameters: L, the line to write to; and VALUE, the value to be
written. Additional parameters JUSTIFIED, FIELD, DIGITS, and UNIT control the
formatting of output data. Each write operation appends data to a line formatted within a field
that is at least as long as required to represent the data value. Parameter FIELD specifies the
desired field width. Since the actual field width will always be at least large enough to hold the
string representation of the data value, the default value 0 for the FIELD parameter has the
effect of causing the data value to be written out in a field of exactly the right width (i.e., no
leading or trailing spaces). Parameter JUSTIFIED specifies whether values are to be right- or
left-justified within the field; the default is right-justified.

Parameter DIGITS specifies how many digits to the right of the decimal point are to be output
when writing a real number; the default value 0 indicates that the number should be output in
standard form, consisting of a normalized mantissa plus exponent (e.g., 1.079236E-23). If
DIGITS is non-zero, then the real number is output as an integer part followed by followed
by the fractional part, using the specified number of digits (e.g., 3.14159).

Parameter UNIT specifies how values of type TIME are to be formatted. The value of this
parameter must be equal to one of the units declared as part of the declaration of type TIME; the
result is that the TIME value is formatted as an integer or real literal representing the number
of multiples of this unit, followed by the name of the unit itself. Thus the procedure call
WRITE(Line, 5ns, UNIT=>us) would result in the string value "0.005us" being appended to
the string value desig^iated by Line, whereas WRITE(Line, 5ns) would result in the string
value "5ns" being appended (since the default UNIT value is ns).

In addition to the above procedures, the predicate ENDLINE is defined for lines within a text
file. For an input parameter L of type Line, function ENDLINE returns the value of the
expression (L'Length = 0). Function ENDFILE is defined for files of type TEXT by the implicit
declaration of that function as part of the declaration of the file type.

Note:

For a variable L of type Line, attribute L'Length gives the current length of the line, whether
that line is being read or written. For a line L that is being written, the value of L’Length gives
the number of characters that have already been written to the line; this is equivalent to the
column number of the last character of the line. For a line L that is being read, the value of
L'Length gives the number of characters on that line remaining to be read.

14-13

IEEE
Std 1076-1987

The execution of a read or write operation may modify or even deallocate the string object
designated by input parameter L of type Line for that operation; thus a dangling reference may
result if the value of a variable L of type Line is assigned to another access variable and then a
read or write operation is performed on L.

14-14

IEEE
Std 1076-1987

APPENDIX A

SYNTAX SUMMARY

(This appendix is not a part of IEEE Std 1076-1987, IEEE Standard VHDL. It is included for information only.)

This appendix provides a summary of the syntax for VHDL. Productions are ordered
alphabetically by left-hand nonterminal name. The section number indicates the section
where the production is given.

abstract_literal ::= decimaljiteral 1 based_literal [§ 13,4]

access_type_definition ;:= access subtype_indication [§3,3]

actual_designator ::=
expression

1 signal_name
1 variable jaarae
1 open

[§ 4,3,3,2]

actual_parameter_part ;;= parame^er_association_list [§ 7,3,3]

actual_part ::=
actual_designator

1 functionjaavne (actual_designator)

[§ 4,3,3,2]

adding_operator ::= -i- 1 - 1 & [§ 7,2]

aggregate ::=
(element_association { , element_association })

[§ 7,3,2]

alias_declaration :;=
alias identifier ; subtype_indication is name ;

[§4,3,4]

allocator :;=
new subtype_indication

1 new qualified_expression

[§ 7,3,6]

A-1

Std 1076-1987 APPENDIX A

architecture_body ;;=
architecture identifier of entityis

architecture_declarative_part
begin

architecture_statement_part
end [architecture] ;

[§ 1.2]

architecture_declarative_part :;=
{ block_declarative_iteTn)

[§ 1.2.1]

architecture_statement_part ::=
{ concurrent_statement)

[§ 1.2.2]

array_type_definition ::=
unconstrained_array_definition 1 constrained_array_definition

[§ 3.2.1]

assertion_statement ::=
assert condition

[report expression]
[severity expression];

[§8.2]

association_element ::=
[formal_part =>] actual_part

[§ 4.3.3.2]

association_list ::=
association_element { , association_element }

[§ 4.3.3.2]

attribute_declaration ;:=
attribute identifier : type_mark ;

[§4.4]

attribute_designator ;:= attribute_s\mp\e_name [§6.6]

attribute_name ::=
prefix ' attribute_designator [(static_expression)]

[§ 6.6]

attribute_specification ;:=
attribute attribute_designator of entity_specification is expression ;

[§ 5.1]

base ::= integer [§ 13.4.2]

base_specifier ::= B 1 0 1 X [§ 13.7]

base_unit_declaration :;= identifier ; [§ 3.1.3]

based_integer ::=
extended_digit { [underline] extended_digit)

[§ 13.4.2]

based_literal ::=
base # based_integer [. basedjnteger] # [exponent]

[§ 13.4.2]

basic_character ::=
basic_graphic_character 1 format_effector

[§ 13.1]

SYNTAX SUMMARY
IEEE

Std 1076-1987

basic_graphic_character ::= [§ 13.1]
upper_case_letter I digit I special_character I space_character

binding_indication ::= [§ 5.2.1]
entity _aspect
[generic_map_aspect]
[port_map_aspect]

bit_string_literal ::= base_specifier " bit_value " [§13.7]

bit_value ::= extended_digit { [underline] extended_digit} [§ 13.7]

block_configuration ::= [§ 1.3.1]
for block_specification

{ use_clause }
{ configuration_item }

end for;

block_declarative_item [§ 1.2.1]
subprogram_declaration

I subprogram_body
I type_declaration
I subtype_declaration
I constant_declaration
I signal_declaration
1 file_declaration
I alias_declaration
I component_declaration
I attribute_declaration
I attribute_specification
I configuration_specification
1 disconnection_specification
1 use_clause

block_declarative_part ::=
{ block_declarative_item }

[§ 9.1]

block_header ;;=
[generic_clause
[generic_map_aspect ;]]
[port_clause
[port_map_aspect;]]

[§ 9.1]

block_specification ::=
architecture _name

1 block_statement_\ahe\
1 generate_statement_\s^hQ^ [(index_specification)]

[§ 1.3.1]

A-3

IEEE
Std 1076-1987 APPENDIX A

block_statement ::=
block_\aihe\ :

block [(^Mard_expression)]
block_header
block_declarative_part

begin
block_statement_part

end block [block_\2he\] ;

[§ 9.1]

block_statement_part ;:=
{ concurrent_statement }

[§ 9.1]

case_statement ;:=
case expression is

case_statement_alternative
{ case_statement_alternative)

end case;

[§8.7]

case_statement_alternative ::=
when choices =>

sequence_of_statements

[§ 8.7]

character_literal ::= ' gTaphic_character [§ 13.5]

choice ::=
simple_expression

1 discrete_range
1 eZemen^_simple_naTne
1 others

[§ 7.3.2]

choices ::= choice { 1 choice) [§ 7.3.2]

component_configuration ;;=

for component_specification
[use binding_indication ;]

[block_configuration]

end for;

[§ 1.3.2]

component_declaration ::=

component identifier
[ZocaZ_generic_clause]

[ZocaZ_port_clause]

end component;

[§4.5]

component_instantiation_statement ::=

instantiation_\aihe\ :

component jaame
[generic_map_aspect]

[port_map_aspect] ;

[§9.6]

component_specification ;:=

instantiation_list : component_m.me
[§ 5.3]

A-4

SYNTAX SUMMARY
IEEE

Std 1076-1987

composite_type_definition ::=
array _type_definition

1 record_type_definition

[§3.2]

concurrent_assertion_statement ::=
[label :] assertion_statement

[§9.4]

concurrent_procedure_call ::=
[label :] procedure_call_statement

[§9^]

concurrent_signal_assignTnent_statement ::=
[label :] conditional_signal_assignment

1 [label :] selected_signal_assignment

[§9.5]

concurrent_statement :;=
block_statement

1 process_statement
1 concurrent_procedure_call
1 concurrent_assertion_statement
1 concurrent_signal_assignment_statement
1 component_instantiation_statement
i generate_statement

[§9]

condition ::= boolean_expTession [§ 8.1]

condition_clause ::= until condition [§ 8.1]

conditional_signal_assignment ;:=
target <= options conditional_waveforms ;

[§ 9.5.1]

conditional_waveforms ::=
{ waveform when condition else)
waveform

[§ 9.5.1]

configuration_declaration ::=
configuration identifier of entity joame is

configuration_declarative_part
block_configuration

end [configuration_s,\my>\e_nav!\e] ;

[§ 1.3]

configuration_declarative_item ::=
use_clause

1 attribute_specification

[§ 1.3]

configuration_declarative_part ;:=
{ configuration_declarative_item }

[§ 1^]

configuration_item :;=
block_configuration

1 component_configuration

[§ 1.3.1]

IEEE
Std 1076-1987 APPENDIX A

configuration_specification ::=
for component_specification use binding_indication ;

[§5^]

constant_dec]aration :;=
constant identifier_list : subtype_indication [:= expression] ;

[§ 4.3.1.1]

constrained_array_definition ;:=
array index_constraint of e/eme«^_subtype_indication

[§ 3.2.1]

constraint ::=
range_constraint

I index_constraint

[§4.2]

context_clause ::= { contextjtem) [§ 11.3]

context_item ::= [§ 11.3]
library_clause

I use_clause

decimal_literal ::= integer [. integer] [exponent] [§ 13.4.1]

declaration [§4]
type_declaration

I subtype_declaration
I object_declaration
I file_declaration
I interface_declaration
I alias_declaration
I attribute_declaration
I coniponent_declaration
I entity_declaration
I configuration_declaration
I subprogTam_declaration
I package_declaration

design_file ::= design_unit { design_unit } [§ 11.1]

design_unit ::= context_clause library_unit [§ 11.1]

designator ::= identifier I operator_synibol [§ 2.1]

direction ::= to I downto [§ 3.1]

disconnection_specification ::= [§5.3]
disconnect guarded_signal_specification after time_expTession ;

discrete_range ::= cfiscre^e_subtype_indication I range [§ 3.2.1]

element_association ::= [§7.3.2]
[choices =>] expression

A-6

SYNTAX SUMMARY
IEEE

Std 1076-1987

element_declaration ::=
identifier_list : element_subtype_definition ;

[§ 3.2.2]

element_subtype_definition :;= subtype_indication [§ 3.2.2]

entity_aspect ::=
entity entity jcxame [(architecture J-denii^ier)]

1 configuration configurationjaaxne
1 open

[§ 5.2.1.1]

entity_class ::=
entity 1 architecture 1 configuration

1 procedure 1 function 1 package
1 type 1 subtype 1 constant
1 signal 1 variable 1 component
1 label

[§ 5.1]

entity_declaration ::=
entity identifier is

entity _header
entity _declarative_part

[begin
entity_statement_part]

end [enij7y_simple_name] ;

[§ 1.1]

entity_declarative_item ::=
subprogram_declaration

1 subprogram_body
1 type_declaration
1 subtype_declaration
1 constant_declaration
1 signal_declaration
1 file_declaration
1 alias_declaration
1 attribute_declaration
1 attribute_specification
1 disconnection_specification
1 use_clause

[§ 1.1.2]

entity_declarative_part ::=
{ entity_declarative_item)

[§ 1.1.2]

entity_designator ::= simple_name 1 operator_symbol [§ 5.1]

entity_header ::=
[/ormaZ_generic_clause]
[/brmaZ_port_clause]

[§ 1.1.1]

entity_name_list ::=
entity_designator { , entity_designator)

1 others
1 all

[§ 5.1]

A-7

IEEE
Std 1076-1987 APPENDIX A

entity_specification ;:=
entity_name_list : entity_class

[§ 5.1]

entity_statement ::=
concurrent_assertion_statement

1 passii;e_concurrent_procedure_call
1 passi[;e_process_statement

[§ 1.1.3]

entity_statement_part :;=
{ entity_statement)

[§ 1.1.3]

enumeration_literal ::= identifier 1 character_literal [§ 3.1.1]

enumeration_type_definition ::=
(enumeration_literal (, enumeration_literal })

[§ 3.1.1]

exit_statement ::=
exit [Zoopjabel] [when condition];

[§ 8.10]

exponent ::= E [-f-] integer 1 E - integer [§ 13.4.1]

expression ;:=
relation { and relation }

1 relation { or relation)
1 relation { xor relation)
1 relation [nand relation]
1 relation [nor relation]

[§ 7.1]

extended_digit :;= digit 1 letter [§ 13.4.2]

factor ;;=
primary [** primary]

1 abs primary
1 not primary

[§ 7.1]

file_declaration ;:=
file identifier ; subtype_indication is [mode] file_logical_name ;

[§4.3.2]

file_logical_name ::= string_expression [§4.3.2]

file_type_definition ::=
file of type_mark

[§3.4]

floating_type_definition := range_constraint [§ 3.1.4]

formal_designator ::=
generic_name

1 port _name
1 parameterjaama

[§ 4.3.3.2]

formal_parameter_list ;:= parameter_mier^ace_\\si [§ 2.1.1]

A-8

SYNTAX SUMMARY Std 1076-1987

formal_part ::=
formal_designator

1 function_r\acmQ (formal_designator)

[§ 4.3.3.2]

full_type_declaration ::=
type identifier is type_definition ;

[§ 4.1]

function_call ::=
functionjosivoe [(actual_parameter_part)]

[§ 7.3.3]

generate_statement ;;=
generate_\Qbe\ :

generation_scheme generate
(concurrent_stateTnent }

end generate [generate_\abc\] ;

[§9.7]

generation_scheme ;:=
for genera^e_paraTneter_specification

1 if condition

[§9.7]

generic_clause ::=
generic (generic_list) ;

[§ 1.1.1]

generic_list ::= generic_interface_list [§ l.l.l.l]

generic_map_aspect ::=
generic map (generic_association_list)

[§ 5.2.1.2]

gTaphic_character ::=
basic_graphic_character 1 lower_case_letter 1 other_special_character

[§ 13.1]

guarded_signal_specification ::=
gMarafe<i_signal_list : type_mark

[§ 5.3]

identifier ::=
letter {[underline] letter_or_digit)

[§ 13.3]

identifier_list ;:= identifier { , identifier } [§ 3.2.2]

if_statenient ::=
if condition then

sequence_of_statements
{elsif condition then

sequence_of_statements }
[else

sequence_of_statements]
end if;

[§8.6]

incomplete_type_declaration ::= type identifier ; [§ 3.3.1]

index_constraint ::= (discrete_range { , discrete_range)) [§ 3.2.1]

IEEE
Std 1076-1987 APPENDIX A

index_specification ::= [§ 1.3.1]
discrete_range

I static_expression

index_subtype_definition ::= type_mark range <> [§ 3.2.1]

indexed_name ::= prefix (expression { , expression }) [§ 6.4]

instantiation_list ;:= [§5.2]
instantiation_\ahe\ [, instantiation_\ahe\ }

I others
1 all

integer ;:= digit { [underline] digit) [§ 13.4.1]

integer_type_definition ::= range_constrain! [§ 3.1.2]

interface_constant_declaration ;;= [§4.3.3]
[constant] identifier_list: [in] subtype_indication [:= static_expression]

interface_declaration ::= [§4.3.3]
interface_constant_declaration

I interface_signal_declaration
I interface_variable_declaration

interface_element ::= interface_declaration [§ 4.3.3.1]

interface_list ::= [§ 4.3.3.1]
interface_element (; interface_element)

interface_signal_declaration ::= [§4.3.3]
[signal] identifier_list : [mode] subtype_indication [bus] [:= static_expression]

interface_variable_declaration ::= [§4.3.3]
[variable] identifier_list: [mode] subtype_indication [:= static_expTession]

iteration_scbeme ::= [§8.8]
while condition

I for /oop_parameter_specification

label ::= identifier [§ 9.7]

letter ::= upper_case_letter I lower_case_letter [§13.3]

letter_or_digit ::= letter I digit [§ 13.3]

library_clause ::= library logical_name_list ; [§ 11.2]

library_unit ::= [§ 11.1]
primary_unit

I secondary_unit

A-10

SYNTAX SUMMARY
IEEE

Std 1076-1987

literal ::=
numeric_literal

1 enumeration_literal
1 string_literal
1 bit_string literal
1 nuU

[§ 7.3.1]

logical_name ::= identifier [§ 11.2]

logical_name_list ::= logical_name { , logical_name) [§ 11.2]

logical_operator and 1 or 1 nand 1 nor 1 xor [§ 7.2]

loop_statement ::=
[/oop_label :]

[iteration_scheme] loop
sequence_of_statements

end loop [loop_\abe\];

[§8.8]

miscellaneous_operator ::= ** 1 abs 1 not [§7.2]

mode ::= in 1 out 1 inout 1 buffer 1 linkage [§4.3.3]

multiplying_operator ::= * 1 / 1 mod 1 rem [§ 7.2]

name ::=
simple_name

1 operator_symbol
1 selected_name
1 indexed_name
1 slice_name
1 attribute_name

[§ 6.1]

next_statement ::=
next [Zoopjabel] [when condition];

[§8.9]

null_statement ;:= null ; [§ 8.12]

numeric_literal ::=
abstract_literal

1 physical_literal

[§ 7.3.1]

object_declaration ::=
constant_declaration

1 signal_declaration
1 variable_declaration

[§ 4.3.1]

operator_symbol ::= string_literal [§ 2.1]

options ;:= [guarded] [transport] [§9.5]

A-11

IEEE
Std 1076-1987 APPENDIX A

package_body :;=
package body pac^age_simple_name is

package_body_declarative_part
end [pac/5age_simple_name] ;

[§ 2.6]

package_body_declarative_item ::=
subprogram_declaration

1 subprogram_body
1 type_declaration
1 subtype_declaration
1 constant_declaration
1 file_declaration
1 alias_declaration
I use_clause

[§ 2.6]

package_body_declarative_part ;:=
{ package_body_declarative_itein)

[§ 2.6]

package_declaration ::=
package identifier is

package_declarative_part
end [pac^a^e_simp]e_name] ;

[§ 2.5]

package_declarative_item ::=
subprogram_declaration

1 type_declaration
1 subtype_declaration
1 constant_declaration
1 signal_declaration
1 file_declaration
1 alias_declaration
1 component_declaration
1 attribute_declaration
1 attribute_specification
1 disconnection_specification
1 use_clause

[§2.5]

package_declarative_part ::=
{ package_declarative_item }

[§ 2.5]

parameter_specification ::=
identifier in discrete_range

[§8.8]

physical_literal :;= [abstract_literal] unit_name [§ 3.1.3]

physical_type_definition ::=
range_constraint

units
base_unit_declaration
(secondary_unit_declaration)

end units

[§ 3.1.3]

A-12

SYNTAX SUMMARY
IEEE

Std 1076-1987

port_clause ::=
port (port_list);

[§ 1.1.1]

port_list ::= porOnterface_list [§ 1.1.1.2]

port_map_aspect ::=
port map (por^_association_list)

[§ 5.2.1.2]

prefix ::=
name

1 function_call

[§ 6.1]

primary ::=
name

1 literal
1 aggregate
1 function_call
1 qualified_expression
1 type_conversion
1 allocator
1 (expression)

[§ 7.1]

primary_unit ::=
entity_declaration

1 configuration_declaration
1 package_declaration

[§ 11.1]

procedure_call_statement ;:=
procedure[(actual_parameter_part)] ;

[§8.5]

process_declarative_item ::=
subprogram_declaration

1 subprogram_body
1 type_declaration
1 subtype_declaration
1 constant_declaration
1 variable_declaration
1 file_declaration
1 alias_declaration
1 attribute_declaration
1 attribute_specification
1 use_clause

[§9.2]

process_declarative_part ::=
{ process_declarative_item }

[§9J2]

A-13

IEEE
Std 1076-1987 APPENDIX A

process_statement :;=
[process_label ;]

process [(sensitivity_list)]
process_declarative_part

begin
process_statement_part

end process [processjabel] ;

[§9^]

process_statement_part ::=
{ sequential_statement)

[§ 9^]

qualified_expression ;:=
type_mark ' (expression)

1 type_mark ' aggregate

[§ 7.3.4]

range ::=
range_attribute_name

1 simple_expression direction simple_expression

[§ 3.1]

range_constraint ::= range range [§ 3.1]

record_type_definition :;=
record

element_declaration
{ element_declaration)

end record

[§ 3.2.2]

relation ::=
simple_expression [relational_operator simple_expression]

[§ 7.1]

relational_operator ::= = 1 /= 1 < 1 <= 1 > 1 >= [§ 7.2]

return_statement ::=
return [expression];

[§ 8.11]

scalar_type_definition ;:=
enumeration_type_definition 1 integer_type_definition

1 floating_type_definition 1 physical_type_definition

[§ 3.1]

secondary_unit :;=
arcbitecture_body

1 package_body

[§ 11.1]

secondary_unit_declaration ::= identifier = pbysical_literal ; [§ 3.1.3]

selected_name ::= prefix . suffix [§ 6.3]

selected_signal_assignment ::=
with expression select

target <= options selected_wavefornis ;

[§ 9.5.2]

A-14

SYNTAX SUMMARY
IEEE

Std 1076-1987

selected_wavefornis ::= [§ 9.5.2]
{ waveform when choices ,}
waveform when choices

sensitivity_clause ::= on sensitivity_list [§ 8.1]

sensitivity_list ::= signaljnsivne { , signaljaame) [§ 8.1]

sequence_of_statements ::= [§8]
(sequential_statement)

sequential_statement ::= [§8]
wait_statement

I assertion_statement
I signal_assignment_statement
I variable_assignment_statement
I procedure_call_statement
I if_statement
I case_statement
I loop_statement
I next_statement
I exit_statement
I return_statement
I null_statement

sign ::= -t- I -

signal_assignment_statement ::=
target <= [transport] waveform ;

signal_declaration ::=
signal identifier_list ; subtype_indication [signal_kind] [

[§ 7.2]

[§8.3]

[§ 4.3.1.2]
:= expression] ;

signal_kind ::= register 1 bus [§ 4.3.1.2]

signaljist ::= [§5.3]
signaljaame { , signaljaame }

I others
I all

simple_expression ;;= [§ 7.1]
[sign] term { adding_operator term)

simple_name ::= identifier [§6.2]

slice_name ::= prefix (discrete_range) [§6.5]

string_literal ::= " { graphic_character) " [§ 13.6]

A-15

IEEE
Std 1076-1987 APPENDIX A

subprogram_body [§2.2]
subprogram_specification is

subprogram_declarative_part
begin

subprogram_statement_part
end [designator];

subprogram_declaration ::= [§ 2.1]
subprogram_specification ;

subprogram_declarative_item :;= [§ 2.2]
subprogram_declaration

I subprogram_body
I type_declaration
I subtype_declaration
I constant_declaration
I variable_declaration
I file_declaration
I alias_declaration
I attribute_declaration
I attribute_specification
I use_clause

subprogram_declarative_part ::= [§2.2]
{ subprogram_declarative_item)

subprograTn_specification ::= [§ 2.1]
procedure designator [(formal_parameter_list)]

1 function designator [(fomial_parameter_list)] return type_mark

subprograni_statement_part ::= [§ 2.2]
{ sequential_statement)

subtype_declaration :;= [§4.2]
subtype identifier is subtype_indication ;

subtype_indication ::= [§4.2]
[re solution _funct ion jaame] type_mark [constraint]

suffix [§ 6.3]
simple_name

I character_literal
I operator_symbol
1 all

target [§ 8.3]
name

I aggregate

term [§ 7.1]
factor { multiplying_operator factor)

A-16

SYNTAX SUMMARY
IEEE

Std 1076-1987

timeout_clause ::= for fjme_expression [§ 8.1]

type_conversion ::= type_mark (expression) [§ 7.3.5]

type_declaration ::=
full_type_declaration

1 incomplete_type_declaration

[§ 4.1]

type_definition ::=
scalar_type_definition

1 composite_type_definition
1 access_type_definition
1 file_type_definition

[§ 4.1]

type_mark :;=
type _na.mQ

1 su6^ype_name

[§4.2]

unconstrained_array_definition ::=
array (index_subtype_definition { , index_subtype_definition })

of eZemen^_subtype_indication

[§ 3.2.1]

use_clause ::=
use selected_name {, selected_name } ;

[§ 10.4]

variable_assignment_statement ::=
target ;= expression ;

[§8.4]

variable_declaration ::=
variable identifier_list : subtype_indication [;= expression] ;

[§ 4.3.1.3]

wait_statement :;=
wait [sensitivity_clause] [condition_clause] [timeout_clause] ;

[§ 8.1]

waveform ::=
waveform_element { , waveform_element }

[§8.3]

waveform_element ::=
i;a/i/e_expression [after ^jme_expression]

1 null [after ^jme_expression]

[§ 8.3.1]

A-17

1

IEEE
Std 1076-1987

APPENDIX B

GLOSSARY

(This appendix is not a part of IEEE Std 1076-1987, IEEE Standard VHDL. It is included for information only.)

This glossary contains brief definitions for the various terms and phrases used to define the
language. The complete definition of each term or phrase is provided in the main body of the
LRM. For each entry, the relevant section numbers in the text is given.

Access Type. A value of an access type may designate an object created by an allocator. (§3.3)

Active Driver. A driver is said to be active during a simulation cycle in which it acquires a
new value, regardless of whether the new value is different from the previous value.
(§12.6.1)

Actual. An actual is either an expression, a port, a signal, or a variable associated with a
formal port, formal parameter, or formal generic. (§1.1.1.2, §4.3.3.2, §5.2.1.2)

Alias. An alias is an alternate name for an object. (§4.3.4)

Aggregate. The evaluation of an aggregate yields a value of a composite type. The value is
specified by giving the value of each of the elements. Either positional association or
named association may be used to indicate which value is associated with which element.
(§7.3.2)

Allocator. An allocator is an operation used to create anonymous, variable objects accessible
by means of access values. (§3.3, §7.3.6)

Analysis. Analysis of a VHDL design file involves the syntactic and semantic analysis of
source code and the insertion of intermediate form representations of design units into a
design library. (§11.1)

Anonymous. Certain names are created implicitly; the simple name of such an item is not
always defined, in which case the item is said to be anonymous. The base type of a
numeric type or an array type is anonymous; similarly, the object denoted by an access
value is anonymous. (§4.1)

Appropriate. A prefix is said to be appropriate for a type if the type of the prefix is the type
considered, or the type of the prefix is an access type whose designated type is the type
considered. (§6.1)

B-1

IEEE
Std 1076-1987 APPENDIX B

Architecture Body. An architecture body describes the internal organization or operation of a
design entity. Each architecture body that is associated with a given entity declaration
defines a unique design entity. An architecture may be used to describe the behavior, data
flow, or structure of a design entity. (§1, §1.2)

Array Type. A value of an array type consists of elements that are all of the same subtype (and
hence, of the same type). Each element is uniquely distinguished by an index (for a one¬
dimensional array) or by a sequence of indices (for a multi-dimensional array). Each
index must be a value of a discrete type and must lie in the correct index range. (§3.2.1)

Ascending. A range L to R is called an ascending range. (§3.1)

ASCII. The American Standard Code for Information Interchange. Package Standard
contains the definition of type Character, which represents the ASCII character set. (§3.1.1,
§14.2)

Assertion Violation. An assertion violation occurs when the condition of an assertion
statement evaluates to false. (§8.2)

Associated Driver. The associated driver for a signal assignment statement is the single
driver for that signal in the (explicit or equivalent) process statement containing the
signal assignment statement. (§9.2.1)

Association Element. An association element associates an actual or local with a local or
formal. (§4.3.3.2)

Association List. An association list establishes correspondences between formal or local port
or parameter names and local or actual names or expressions. (§4.3.3.2)

Attribute. An attribute defines some characteristic of a named entity. Some attributes are
predefined and are either types, ranges, values, signals, or functions. The remaining
attributes are user-defined, and are always constants. (§4.4)

Belong (to a range). The value V is said to belong to a range if the relations (lower bound <= V)
and (V <= upper bound) are both true, where lower bound and upper bound are the lower and
upper bounds, respectively, of the range. (§3.1)

Belong (to a subtype). A value is said to belong to a subtype of a given type if it belongs to the type
and satisfies the applicable constraint. (§3)

Block. A block represents a portion of the hierarchy of a design. A block is either an external
block or an internal block. (§1)

Bound. A label is said to be bound if it is identified in the instantiation list of a configuration
specifications. (§5.2)

Box. The symbol <> (called a box) in an index subtype definition stands for an undefined
range (different objects of the type need not have the same bounds and direction). (§3.2.1)

Bus. A bus is one kind of guarded signal. A bus floats to a user-specified value when all of its
drivers are turned off. (§4.3.3, §4.3.1.2)

B-2

GLOSSARY
IEEE

Std 1076-1987

Character Type. An enumeration type is said to be a character type if at least one of its
enumeration literals is a character literal. (§ 3.1.1)

Compatible. A range constraint is compatible with a subtype if each bound of the range belongs
to the subtype, or if the range constraint defines a null range. An index constraint is
compatible with an array type if and only if the constraint defined by each discrete range
in the index constraint is compatible with the corresponding index subtype in the array
type. (§3.1, §3.2.1.1).

Complete Context. A complete context is either a declaration, a specification, or a statement.
(§10.5)

Composite Type. A composite type is one whose values have elements. There are two classes of
composite types: array and record types. (§3, §3.2)

Concurrent Statement. Concurrent statements execute asynchronously, with no defined
relative order. Concurrent statements are used for dataflow and structural description.
(§9)

Configuration. A configuration describes how component instances in a given block are
bound to design entities, in order to describe how design entities are put together to form a
complete design. (§1, §1.3)

Conform. Two subprogram specifications, are said to conform if, apart from certain allowed
minor variations, both specifications are formed by the same sequence of lexical elements,
and corresponding lexical elements are given the same meaning by the visibility rules.
Conformance is similarly defined for deferred constant declarations. (§2.7)

Connected. A formal port associated with an actual port or signal is said to be connected. A
formal port associated with the reserved word open is said to be unconnected. (§1.1.1.2)

Constant. A constant is an an object whose value may not be changed. (§4.3.1.1)

Constraint. A constraint defines a (not necessarily proper) subset of the values of a type.
There are index constraints, range constraints, and size constraints. (§3)

Convertible. An operand is convertible if there exists an implicit conversion of that operation
type to a given type. (§7.3.5)

Current Value. The current value of a driver is the value component of the one transaction
whose time component is not greater than the current simulation time. (§9.2.1)

Declaration. A declaration defines an entity and associates an identifier (or some other
notation) with the entity. This association is in effect within a region of text called the
scope of the declaration. Within the scope of a declaration, there are places where it is
possible to use the identifier to refer to the associated declared entity. At such places the
identifier is said to be the simple name of the entity; the name is said to denote the
associated entity. (§4)

Default Expression. A default expression provides a default value to be used for a formal
generic, port or parameter if the interface object is unassociated. A default expression is
also used to provide an initial value for signals and their drivers. (§4.3.1.2, §4.3.3)

B-3

IEEE
Std 1076-1987 APPENDK B

Deferred Constant. A deferred constant is a constant that is declared (by a deferred constant
declaration) in a package declaration and does not have a value part; a deferred constant
has a corresponding full declaration, in the corresponding package body, defining the
value of the constant. (§4.3.1.1)

Denote. Where a declaration is visible, the identifier given in the declaration is said to denote
the entity declared in the declaration. (§4)

Depend (on a library unit). A design unit that explicitly or implicitly mentions other library
units in a use clause depends on those library units. These dependencies affect the allowed
order of analysis of design units. (§11.3)

Depend (on a signal value). The current value of an implicit signal R is said to depend upon
the current value of another signal S if R denotes an implicit signal S'Stable(T),
S'Quiet(T), or S'Transaction, or if R denotes an implicit GUARD signal, and S is any
other implicit signal named within the guard expression that defines the current value of
R. (§12.6.2)

Descending. A range L downto R is called a descending range. (§3.1)

Design Entity. An entity declaration together with an associated architecture body defines a
design entity. Different design entities may share the same entity declaration, thus
describing different components with the same interface, or different views of the same
component. (§1)

Design File. A design file is one or more design units in sequence. (§11.1)

Design Hierarchy. A design hierarchy is a hierarchy of design entities, resulting from the
successive decomposition of a design entity into subcomponents that are further
decomposed. (§1)

Design Library. A design library is the host-dependent storage facility in which intermediate
form representations of analyzed descriptions are stored. (§11.2)

Design Unit. A design unit may be independently analyzed and inserted into a design
library. A design unit is an entity declaration, an architecture declaration, a
configuration declaration, a package declaration, or a package body declaration. (§11.1)

Designate. A non-null access value is said to designate an object. (§3.3)

Designated Subtype. The designated subtype of an access type is the subtype defined by the
subtype indication of the access type definition. (§3.3)

Designated Type. The designated type of an access type is the base type of the subtype defined
by the subtype indication of the access type definition. (§3.3)

Discrete Array. A discrete array is a one-dimensional array whose elements are of a discrete
type. (§7.2.2)

Discrete Range. A discrete range is a range whose bounds are of a discrete type. (§3.2.1.1)

Discrete Type. A discrete type is an enumeration type or an integer type. (§3.1)

B-4

GLOSSARY
IEEE

Std 1076-1987

Driver. A driver of a signal is a container for a projected output waveform. The signal's
value is a function of the current values of its drivers. Each process that assigns to a given
signal implicitly contains a driver for that signal. A signal assignment statement affects
only the associated driver(s). (§9.2.1)

Driving Value. The driving value of a signal is the value that signal provides as a source of
other signals. (§12.6.1)

Effective Value. The effective value of a given signal is the value obtainable by evaluating a
reference to the signal within an expression. (§12.6.1)

Elaboration. The process by which a declaration achieves its effect is called the elaboration of
the declaration. After its elaboration, a declaration is said to be elaborated. Prior to the
completion of its elaboration (including before the elaboration), the declaration is not yet
elaborated. (§12)

Entity Declaration. An entity declaration defines the interface between a given design entity
and the environment in which it is used. It may also specify declarations and statements
that are part of the entity. A given entity declaration may be shared by many design
entities, each of which has a different architecture. Thus an entity declaration can
potentially represent a class of design entities, each with the same interface. (§1, §1.1)

Enumeration type. An enumeration type is a type whose values are defined by listing, or
enumerating, them. The values are represented by enumeration literals. (§3.1, §3.1.1)

Error. An error is a condition which makes the source description illegal. If the error is
detected at the time of analysis of the design unit, it prevents the creation of a library unit
for the given source description. A run-time error causes simulation to terminate. (§11.4)

Erroneous. Erroneous refers to an error condition that cannot always be detected. (§2.1.1.1)

Event. An event is said to occur on a signal when the current value of the signal changes as a
result of the updating of that signal with its effective value. (§12.6.1)

Execute. A process is said to execute when it performs the actions specified by the algorithm
described in its statement part. (§12.6)

Expression. An expression defines the computation of a value. (§7.1)

Extend. In a declarative region with disjoint parts, if a portion of text is said to extend from
some specific point of a declarative region to the end of the region, then this portion is the
corresponding subset of the declarative region (and does not include intermediate
declarative items between an interface declaration and a corresponding body
declaration). (§10.1)

External Block. An external block is a block defined by a design entity. (§1)

File Type. File types provide access to files in the host system environment. (§3, §3.4)

Floating Point Types. Floating point types approximate real numbers. (§3.1, §3.1.4)

Formal. A formal is either a formal port or formal generic of a design entity or a formal
parameter of a subprogram. (§2.1, §2.1.1, §4.3.3.2, §5.2.1.2)

B-5

IEEE
Std 1076-1987 APPENDIX B

Full Declaration. A full constant declaration is a constant declaration occurring in a
package body with the same identifier as that of a deferred constant declaration in the
corresponding package declaration. A full type declaration is a type declaration
corresponding to an incomplete type declaration. (§2.6)

Fully Bound. A component instance is fully bound if a binding indication for the component
instance implies an entity and an architecture. (§5.2.1.1)

Generate Parameter. A generate parameter is declared by a generate statement. (§9.7)

Generic. A generic is a constant declared in a component declaration or an entity
declaration. Unlike constants, however, the value of a generic can be supplied externally,
either in a component instantiation statement or in a configuration specification.

(§1.1.1.1)

Generic Interface List. A generic interface list defines local or formal generic constants.
(§1.1.1.1, §4.3.3.1)

Globally Static Expression. A globally static expression is an expression which can be
evaluated as soon as the design hierarchy in which it appears is elaborated. A locally
static expression is also globally static. (§7.4)

Globally Static Primary. A globally static primary is a locally static primary, or one of a
certain group of primaries considered to be globally static. (§7.4)

Guard. See guard expression.

Guard Expression. A guard expression is an expression associated with a block statement
which controls assignment to guarded signals within the block. (§4.3.1.2, §9.1)

Guarded Assignment. A guarded assignment is a concurrent signal assignment statement
that includes the option guarded. (§9.5)

Guarded Signal. A guarded signal is a signal declared with a signal kind (register or bus),
such a signal is assigned values under the control of a Boolean-valued guard expression.
(§4.3.1.2)

Guarded Signal. A guarded signal is a signal declared as a register or a bus. Such signals
have special semantics when they are assigned to within guarded signal assignment
statements. (§4.3.1.2)

Guarded Target. A guarded target is a signal assignment target consisting only of guarded
signals. An unguarded target is a target consisting only of unguarded signals. (§9.5)

Hidden. A declaration may be hidden in its scope by a homograph of the declaration. A
hidden declaration is not directly visible. (§10.3)

Homograph. Each of two declarations is said to be a homograph of the other if both declarations
have the same identifier and overloading is allowed for at most one of the two. If
overloading is allowed for both declarations, then each of the two is a homograph of the
other if they have the same identifier, operator symbol, or character literal, as well as the
same parameter and result type profile. (§10.3)

B-6

GLOSSARY
IEEE

Std 1076-1987

Identify. A name in an element association in an aggregate used in an assignment target is
said to identify a signal or variable and any subelements of that signal or variable. (§8.3,
8.4)

Immediate Scope. The immediate scope of a declaration that occurs immediately within a
given declarative region is the portion of the scope that extends from the beginning of the
declaration to the end of the declarative region. (§10.2)

Immediately Within. A declaration is said to occur immediately within a declarative region
if this region is the innermost region that encloses the declaration, not counting the
declarative region (if any) associated with the declaration itself. (§10.1)

Implicit Sigfnal. An implicit signal is any signal S'Stable(T) or S'Quiet(T), or any implicit
GUARD signal. (§12.6.2)

Imply. A binding indication in a configuration specification is said to imply the design entity
indicated directly, indirectly, or by default. (§5.2.1.1)

Incomplete Type Declaration. An incomplete type declaration is used to define mutually
recursive access types. (§3.3.1)

Index Constraint. An index constraint determines the index range for every index of an
array type, and thereby the bounds of the array. (§3.2.1.1)

Index Range. An index range is the range of values that belong to the range corresponding to
an index. (§3.2.1)

Index Subtype. The index subtype for a given index position of an array is the subtype denoted
by the type mark of the corresponding index subtype definition. (§3.2.1)

Inertial Delay. Inertial delay is a delay model for modeling switching circuits; a pulse whose
duration is shorter than the switching time of the circuit will not be transmitted. It is the
default delay mode for signal assignment statements. (§8.3)

Initial Value Expression. An initial value expression specifies the initial value to be assigned
to a variable or constant. (§4.3.1.3)

Inputs. The inputs of a concurrent signal assignment statement are signals identified by the
longest static prefix of each signal name appearing as a primary in each expression (other
than time expressions) within the concurrent signal assignment statement. (§9.5)

Instance. A component instantiation statement represents an instance of the corresponding
component. Each instance of a component may have different actuals associated with its
local ports and generics. (§9.6.1)

Integer Type. The values of an integer type represent integer numbers within a specific
range. (§3.1, §3.1.2)

Interface List. An interface list declares the interface objects required by a subprogram,
component, design entity, or block statement. (§4.3.3.1)

Internal Block. An internal block is a nested block in a design unit, defined by a block
statement. (§1)

B-7

IEEE
Std 1076-1987 APPENDIX B

Kernel Process. The kernel process causes the execution of I/O operations, the propagation of
signal values, and the updating of values of implicit signals (such as S'Stable(T)); in
addition, detects events that occur and causes the appropriate processes to execute in
response to those events. (§12.6)

To the Left Of. A value VI is said to be to the left of a value V2 within a given range if both VI
and V2 belong to the range and either the range is an ascending range and V2 is the
successor of VI, or the range is a descending range and V2 is the predecessor of VI. (§3.1)

Left-to-Right Order. A list of values of a given range is in left to right order if each value in the
list is to the left of the next value in the list within that range, except for the last value in the
list. (§3.1)

Library. See design library.

Library Unit. A library unit is the intermediate form representation of an analyzed design
unit. (§11.1)

Locally Static Expression. A locally static expression is an expression which can be evaluated
during the analysis of the design unit in which it appears. (§7.4)

Locally Static Name. A name is said to be locally static if every expression in the name is a
locally static expression. (§6.1)

Locally Static Primary. A locally static primary is one of a certain group of primaries, which
includes literals, certain constants, and certain attributes. (§7.4)

Longest Static Prefix. The longest static prefix of a signal name is the name itself, if the name
is a static signal name; otherwise, it is the longest prefix of the name that is a static signal
name. (§6.1)

Loop Parameter. A loop parameter is declared by a loop statement. (§8.8)

Lower Bound. For a range L to R or L downto R, the smaller of L and R is called the lower
bound of the range. (§3.1)

Matching Element. Matching elements are elements of two composite type values defined to
correspond to each other, for certain logical and relational operations. (§7.2.2)

Mode. The mode of a port or parameter specifies the direction of information flow through the
port or parameter. Modes are in, out, inout, buffer, or linkage. (§4.3.3)

Model. The elaboration of a design hierarchy produces a model that can be executed in order to
simulate the desig^n represented by the model. (§12.6)

Name. Each form of declaration associates an identifier with a declared entity. Only within
its scope, there are places where it is possible to use the identifier to refer to the associated
declared entity; these places are defined by the visibility rules. At such places the
identifier is said to be a name of the entity. (§4, §6.1)

Named Association. An association element is said to be named if the formal designator
appears explicitly. (§4.3.3.2, §7.3.2)

B-8

GLOSSARY
IEEE

Std 1076-1987

Null Array. If in an array's index constraint any of the discrete ranges defines a null range,
then the array is a null array, having no components. (§3.2.1.1)

Null Range. A null range is a range that specifies an empty subset of values; a range L to R is
a null range if L > R; a range L downto R is a null range if L < R. (§3.1)

Null Slice. A null slice is a slice whose discrete range is a null range. (§6.5)

Null Waveform Element. A null waveform element is used to turn off a driver of a guarded
signal. (§8.3.1)

Null Transaction. A null transaction is a transaction produced by evaluating a null
waveform element. (§8.3.1)

Numeric Type. A numeric type is either an integer type, a floating point type, or a physical
type. (§3.1)

Object. An object is an entity that contains a value of a given type. There are three classes of
objects: constants, signals, and variables. (§4.3)

Overloading. Identifiers or enumeration literals that denote two different entities are said to
be overloaded. Enumeration literals, subprograms, and predefined operators may be
overloaded. (§2.3.1, §3.1.1)

Parameter. A parameter is a constant, variable, or signal declared in the interface list of a
subprogram specification. The characteristics of the class of objects to which a given
parameter belongs are also characteristics of the parameter. In addition, a parameter has
an associated mode that specifies the direction of data flow allowed through the parameter.
(§2.1.1)

Parameter Interface List. A parameter interface list declares the parameters for a
subprogram. It may contain interface constant declarations, interface signal
declarations, or interface variable declarations, or any combination thereof. (§4.3.3.1)

Parameter Type Profile. Two formal parameter lists are said to have the same parameter type
profile if and only if they have the same number of parameters, and at each parameter
position corresponding parameters have the same base type. (§2.3)

Parameter and Result Type Profile. Two subprograms are said to have the same parameter
and result type profile if and only if both have the same parameter type profile, and either
both are functions with the same result base type, or neither of the two is a function. (§2.3)

Parent. A process or a subprogram is said to be a parent of a given procedure if that process or
subprogram contains a procedure call statement for the given procedure or for a parent of
the given procedure. (§2.2)

Passive Process. A process statement is said to be a passive process if neither the process itself,
nor any procedure of which the process is a parent, contains a signal assignment
statement. (§9.2)

Physical Type. A physical type is used to represent measurements of some quantity. (§3.1,
§3.1.3)

B-9

IEEE
Std 1076-1987 APPENDIX B

Port. A port is a signal declared in the interface list of an entity declaration, or in the interface
list of a component declaration. In addition to the characteristics of signals, ports also have
an associated mode; the mode constrains the directions of data flow allowed through the
port. (§1.1.1.2, §4.3.1.2)

Port Interface List. A port interface list declares the ports of a block, component, or design
entity. It consists entirely of interface signal declarations. (§1.1.1.2, §4.3.1.1)

Positional Association. An association element is said to be positional if the formal
designator does not appear explicitly; an actual designator at a given position in an
association list corresponds to the interface element at the same position in the interface
list. (§4.3.3.2, §7.3.2)

Primary. A primary is one of the elements making up an expression. (§7.1)

Projected Output Waveform. A projected output waveform consists of a sequence of one or more
transactions, representing the current and projected future values of the driver. (§9.2.1)

Quiet. In a given simulation cycle, a signal that is not active is said to be quiet. (§12.6.1)

Range. A range specifies a subset of values of a scalar type. (§3.1)

Range Constraint. A range constraint specifies the range of values in a type. (§ 3.1, 3.1.2)

Read. The value of an object is said to be read when its value is referenced or when certain of
its attributes are referenced. (§4.3.3)

Record Type. A record type is a composite type. Values of a record type consist of named
elements. (§3.2.2, §7.3.2.1)

Register. A register is one kind of guarded signal. A register retains its last driven value
when all of its drivers are turned off. (§4.3.1.2)

Regular Structure. A regular structure consists of instances of one or more components
arranged and interconnected (via signals) in a repetitive way. Each instance may have
characteristics that depend upon its position within the group of instances. Regular
structures may be represented through the use of the generate statement. (§9.7)

Resolution. Resolution is the process of determining the resolved value of a resolved signal,
based on the values of multiple sources for that signal. (§2.4, §4.3.1.2)

Resolution Function. A resolution function is a user-defined function that computes the
resolved value of a resolved signal. (§2.4, §4.3.1.2)

Resolved Signal. A resolved signal is a signal that has an associated resolution function.
(§4.3.1.2)

Resolved Value. The resolved value of a signal is the output of the resolution function
associated with the resolved signal, determined as a function of the collection of inputs
from the signal's multiple sources. (§2.4, §4.3.1.2)

Resource Library. A resource library is a library containing library units that are referenced
within the design unit being analyzed. (§11.2)

B-10

GLOSSARY
IEEE

Std 1076-1987

Result Subtype. The result subtype of a function is the subtype of the returned value of the
function. (§2.1)

Resume. A process that resumes is a given simulation cycle becomes ready to execute and will
execute at the end of the given simulation cycle. (§12.6.3)

Satisfy. A value is said to satisfy a constraint if the value is in the subset determined by the
constraint. (§3, §3.2.1.1)

Scalar Type. A scalar type is a type such that values of the type have no elements. Integer
types, floating point types, physical types, and enumeration types are scalar types. (§3,
§3.1)

Scope. The scope of a declaration is a portion of the text in which a declaration may be visible.
This portion is defined by visibility and overloading rules. (§10.2)

Sensitivity Set. The sensitivity set of a wait statement is the set of signals to which the wait
statement is sensitive. The sensitivity set is given explicitly in an on clause, or is implied
by an until clause. (§8.1)

Sequential Statement. Sequential statements execute in sequence, one after another. They are
used for algorithmic description. (§8)

Short-Circuit Operation. A short-circuit operation is an operation for which the right operand
is evaluated if and only if the left operand has a certain value. The short-circuit operations
are the predefined logical operations and, or, nand, and nor, for operands of types BIT and
BOOLEAN. (§7.2)

Signal. A signal is an object with a past history of values. A signal may have multiple
drivers, each with a current value and projected future values. The term signal refers to
objects declared by either signal declarations or by port declarations. (§4.3.1.2)

Simple Name. A simple name for an entity is either the identifier associated with the entity by
its declaration, or another identifier associated with the entity by an alias declaration.
(§6.2)

Single Object Declaration. An object declaration is called a single object declaration if its
identifier list has a single identifier. (§4.3.1)

Slice. A slice is a one-dimensional array of a sequence of consecutive elements of another
one-dimensional array. (§6.5)

Source. A source of a signal contributes to the signal's value. A source is either a driver or port
of a component instance with which the signal is associated, or a composite collection of
sources. (§4.3.1.2)

Specification. A specification associates additional information with a previously declared
entity. There are four kinds of specifications: attribute specifications, initialization
specifications, configuration specifications, and disconnection specifications. (§5)

Static. See locally static and globally static.

B-11

IEEE
Std 1076-1987 APPENDIX B

Static Name. A name is said to be a static name if every expression that appears as part of the
name (for example, as an index expression) is a static expression. (§6.1)

Static Range. A static range is a range whose bounds are static expressions. (§7.4)

Static Signal Name. A static signal name is a static name that denotes a signal. (§6.1)

Subelement. The term subelement is used instead of "element" to indicate either an element
or an element of another element. Where other subelements are excluded, the term
"element" is used instead. (§3)

Subprogram Specification. A subprogram specification specifies the designator of the
subprogram, any formal parameters of the subprogram, and the result type for a function
subprogram. (§2.1)

Subtype. A subtype is a type together with a constraint. (§3)

Suspend. A process that stops executing and waits for an event or for a time period to elapse is
said to be suspended. (§12.6.3)

Timeout Interval. The timeout interval of a wait statement until clause determines the
maximum time the wait will suspend a process. (§8.1)

Transaction. A transaction is a pair consisting of a value and a time. The value part
represents a (current or) future value of the driver; the time part represents the relative
delay before the value becomes the current value. (§9.2.1)

Transport Delay. Transport delay is an optional delay model for signal assignment.
Transport delay is characteristic of hardware devices (such as transmission lines) that
exhibit nearly infinite frequency response: any pulse is transmitted, no matter how short
its duration. (§8.3)

Type. A type is a set of values and a set of operations. (§3)

Unassociated Formal. An unassociated formal is a formal that is not associated with an
actual. (§5.2.1.2)

Unconstrained Subtype. A subtype is said to be unconstrained if it corresponds to a condition
that imposes no restriction. (§4.3)

Unit Name. In a physical type declaration, each unit declaration (either the base unit
declaration or a secondary unit declaration) defines a unit name. (§3.1.3)

Universal_Integer. Integer literals are literals of an anonymous predefined integer type that
is called universal_integer in this manual. (§3.1.2, §7.3.1)

Universal_Real. Floating point literals are literals of an anonymous predefined type that is
called universaljreal in this manual. (§3.1.4, §7.3.1)

Update. The value of a signal is said to be updated when the signal appears as the target of an
assignment statement, (indirectly) when it is associated with an interface object of mode
out, buffer, inout, or linkage, or when one of its subelements is updated. (§4.3.3)

B-12

GLOSSARY
IEEE

Std 1076-1987

Upper bound. For a range L to R or L downto R, the larger of L and R is called the upper bound
of the range. (§3.1)

Variable. A variable is an object with a single current value. (§4.3.1.3)

Visible. A declaration of an identifier is said to be visible at a given place in the text when,
according to the visibility rules, the declaration defines a possible meaning of an
occurrence of the identifier used in the declaration. A visible declaration is visible by
selection (e.g., by using an expanded name) or directly visible (e.g., by using a simple
name). (§10.3)

Waveform. A waveform consists of a series of transactions. Each transaction represents a
future value of the driver of a signal. The transactions in a waveform are ordered with
respect to time, so that one transaction appears before another if the first represents a value
that will occur sooner than the value represented by the other. (§8.3)

Working Library. A working library is a design library into which the library unit resulting
from the analysis of a design unit is placed. (§11.2)

B-13

IEEE
Std 1076-1987

Acknowledgements

The work of the VHDL Analysis and Standardization Group was supported by many different
companies and organizations. The following list includes those that sponsored VASG
meetings, those that sent representatives to VASG meetings, and those that allowed their staff
the time to review and comment on preliminary drafts of this standard;

AAI Corporation
Aerospace Corporation
Air Force Institute of Technology
Air Force Wright Avionics Laboratories
AT&T Bell Labs
Boeing Aerospace
Boeing Electronics
CAE/Tektronix
Calma
Case Western University
CAD Language Systems, Inc.
Daisy Systems
Emerson Electric
ENDOT, Inc.
Gateway Design Automation
GEC Avionics, Ltd.
General Dynamics
General Electric
Harris Corporation
Hewlett-Packard
Honeywell, Inc.
Hughes Aircraft
IBM
IMAG/Grenoble
Intermetrics, Inc.
Lear Siegler, Inc.
Logic Automation
MATRA
MCC

McDonnell Douglas
Mentor Graphics
MITRE
NSA
PCA
Raytheon
Rensselaer Polytechnic University
Research Triangle Institute
Royal Systems and Radar Establishment
Silicon Solutions
Silvar-Lisco
Softool Corporation
Sperry
Stanford University
Thomson-CSF
Unisys
University of Grenoble
University of Cincinnati
University of Virginia
United Technologies Microelectronics Center
Virginia Polytechnic Institute
Valid Logic Systems
Vantage Analysis Systems
ViewLogic Systems
Warner Robins ALC
Westinghouse
Zycad

\

I

2/92

