
NIST

PUBLICATIONS

ANSI X3.159-1989

ADOPTED FOR USE BY THE
FEDERAL GOVERNMENT

Wirt?
PUB 160

SEE NOTICE ON INSIDE

for Information Systems -

Programming Language
C

American National Standards Institute
1430 Broadway

New York , New York

10018

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in Federal Information Process¬

ing Standards Publication 160, C. For a complete list of the publications available in the Federal Informa¬

tion Processing Standards Series, write to the Standards Processing Coordinator (ADP), National Institute

of Standards and Technology, Gaithersburg, MD 20899.

American National Standard
for Information Systems -

Programming Language
C

Secretariat

Computer and Business Equipment Manufacturers Association

Approved December 14, 1989

American National Standards Institute, Inc

Abstract

This standard specifies the form and establishes the interpretation of programs expressed in the program¬
ming language C. Its purpose is to promote portability, reliability, maintainability, and efficient execution of
C language programs on a variety of computing systems.

Sections are included that detail the C language itself and the contents of the C-language execution
library. Appendixes summarize aspects of both of them, and enumerate factors that influence the portabil¬
ity of C programs.

Although this standard is intended to guide knowledgeable C-language programmers as well as imple¬
mentators of C-language translation systems, the document itself is not designed to serve as a tutorial.

American
National
Standard

Approval of an American National Standard requires verification by ANSI that the

requirements for due process, consensus, and other criteria for approval have been met by

the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,

substantial agreement has been reached by directly and materially affected interests.

Substantial agreement means much more than a simple majority, but not necessarily

unanimity. Consensus requires that all views and objections be considered, and that a

concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not

in any respect preclude anyone, whether he has approved the standards or not, from

manufacturing, marketing, purchasing, or using products, processes, or procedures not

conforming to the standards.

The American National Standards Institute does not develop standards and will in no

circumstances give an interpretation of any American National Standard. Moreover, no

person shall have the right or authority to issue an interpretation of an American National

Standard in the name of the American National Standards Institute. Requests for

interpretations should be addressed to the secretariat or sponsor whose name appears on

the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn

at any time. The procedures of the American National Standards Institute require that

action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of

American National Standards may receive current information on all standards by calling

or writing the American National Standards Institute.

Published by

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright © 1989 by American National Standards Institute

All rights reserved.

No part of this publication may be reproduced in any
form, in an electronic retrieval system or otherwise,
without prior written permission of the publisher.

Printed in the United States of America

BB1M491/50

I

P^q fC WO rd ^’S ^orewori^ 's not Part American National Standard X3.159-1989.)

This standard specifies the syntax and semantics of programs written in the C

programming language. It specifies the C program's interactions with the

execution environment via input and output data. It also specifies restrictions

and limits imposed upon conforming implementations of C language translators.

The standard was developed by the X3J1I Technical Committee on the C

Programming Language under project 381-D by American National Standards

Committee on Computers and Information Processing (X3). SPARC document

number 83-079 describes the purpose of this project to “provide an unambiguous

and machine-independent definition of the language C.”

The need for a single clearly defined standard had arisen in the C community due

to a rapidly expanding use of the C programming language and the variety of

differing translator implementations that had been and were being developed.

The existence of similar but incompatible implementations was a serious problem

for program developers who wished to develop code that would compile and

execute as expected in several different environments.

Part of this problem could be traced to the fact that implementors did not have

an adequate definition of the C language upon which to base their

implementations. The de facto C programming language standard. The C

Programming Language by Brian W. Kernighan and Dennis M. Ritchie, is an

excellent book; however, it is not precise or complete enough to specify the C

language fully. In addition, the language has grown over years of use to

incorporate new ideas in programming and to address some of the weaknesses of

the original language.

American National Standard Programming Language C addresses the problems of

both the program developer and the translator implementor by specifying the C

language precisely.

The work of X3J11 began in the summer of 1983, based on the several

documents that were made available to the Committee (see 1.5, Base

Documents). The Committee divided the effort into three pieces: the

environment, the language, and the library. A complete specification in each of

these areas is necessary if truly portable programs are to be developed. Each of

these areas is addressed in the standard. The Committee evaluated many

proposals for additions, deletions, and changes to the base documents during its

deliberations. A concerted effort was made to codify existing practice wherever

unambiguous and consistent practice could be identified. However, where no

consistent practice could be identified, the Committee worked to establish clear

rules that were consistent with the overall flavor of the language.

This document was approved as an American National Standard by the American

National Standards Institute (ANSI) on December 14, 1989.

Suggestions for improvement of this standard are welcome. They should be sent

to the Computer and Business Equipment Manufacturers Association, 311 First

Street, N.W., Suite 500, Washington. DC 20001-2178.

The standard was processed and approved for submittal to ANSI by the

Accredited Standards Committee on Information Processing Systems, X3.

Committee approval of the standard does not necessarily imply that all members

voted for its approval. At the time that it approved this standard, the X3

Committee had the following members:

Richard Gibson, Chair

Donald C. Loughry, Vice-Chair

(Vacant), Administrative Secretary

Organization Represented

Allen-Bradley.

American Library Association.

American Nuclear Society.

AMP, Inc.

Apple Computer, Inc.

Association of the Institute

for Certification of Computer Professionals

AT&T.

Boeing Company.

Compaq Computer Corporation

Control Data Corporation.

Cooperating Users of Burroughs Equipment

Dataproducts Corporation.

Digital Equipment Computer Users Society .

Digital Equipment Corporation

Eastman Kodak.

Electronic Data Systems Corporation ...

GUIDE International .

Hewlett-Packard.

Honeywell Bull..

IBM Corporation.

IEEE Computer Society .

Lawrence Berkeley Laboratory .

MAPATOP.

Moore Business Forms.

National Communications System

National Institute of Standards and Technology

NCR Corporation .

OMNICOM.

Prime Computer, Inc.

Recognition Technology Users Association .

SHARE, Inc.

3M Company.

Unisys.

U.S. Department of Defense.

U.S. General Services Administration . . .

US WEST.

Name of Representative

Ronald H. Reimer

Paul E. Peters

Geraldine C. Main

Edward R. Kelly

Ronald Lloyd (Alt)

Karen Higginbottom

Michael J. Lawler (Alt)

Thomas M. Kurihara

Thomas F. Frost

Paul D. Bartoli (Alt)

Paul W. Mercer

James L. Barnes

Ernest L. Fogle

Thomas Easterday

Donald Miller (Alt)

Charles D. Card

James R. Ebright

Gary S. Robinson

Delbert L. Shoemaker (Alt)

Gary Haines

James D. Converse (Alt)

Jerrold S. Foley

Frank Kirshenbaum

Jeffery Roberts (Alt)

Donald C. Loughry

David M. Taylor

Robert H. Follett

Mary Anne Gray (Alt)

Tom Hannon

Bob Pritchard (Alt)

David F. Stevens

Robert L. Fink (Alt)

Michael Kaminski

Delmer H. Oddy

Dennis Bodson

Donald Wilson (Alt)

Robert E. Rountree

Michael D. Hogan (Alt)

Thomas W. Kem

A. R. Daniels (Alt)

Harold C. Folts

Cheryl C. Slobodian (Alt)

Thomas Connerty

Phillip Cieply (Alt)

Herbert F. Schantz

Thomas B. Steel Jr.

Gary Ainsworth (Alt)

Paul D. Jaimke

Marvin W. Bass

Steven P. Oksala (Alt)

William C. Rinehuls

Thomas M. Kurihara (Alt)

Dale O. Christensen

Larry L. Jackson (Alt)

Gary Dempsey

Susan Capraro (Alt)

Chris Tanner

John Ulrich (Alt)

VIM

Organization Represented

Wang Corporation . .

Name of Representative

J. J. Cinecoe

Sarah Wagner (Alt)

Wintergreen Information Services.John L. Wheeler

Xerox Corporation.Roy Pierce

Technical Committee X3J11 on the C Programming Language had the following

members at the time they forwarded this document to X3 for processing as an

American National Standard:

Jim Brodie, Chair

Thomas Plum, Vice-Chair

P. J. Plauger, Secretary

P. J. Plauger, International Representative (previously: Steve Hersee)

Andrew Johnson, Vocabulary Representative

David F. Prosser, Draft Redactor (previously: Lawrence Rosier)

Randy Hudson, Rationale Redactor

Ralph Ryan; Ralph Phraner, Environment Subcommittee Chairs

Lawrence Rosier, Language Subcommittee Chair

P. J. Plauger, Library Subcommittee Chair

Organization Represented

AT&T .

Alliant Computer Systems

Amdahl.

American Cimflex . . .

Amoco Production Company

Analog Devices

Apollo Computer

Apple Computer, Inc. . .

Arinc.

Aspen Scientific

Bell Communications Research

Borland International

Boston Systems Office . . .

COSMIC.

Charles River Data Systems . .

Chemical Abstracts Service . .

Chicago Research & Trading Group

Citibank.

Cobra S/A.

Cog nos.

Columbia U. Center for Computing

CompuDas.

Computer Associates

Computer Innovations

Computrition .

Concurrent Computer Corporation

Control Data.

Cormorant Communications . .

Name of Representative

David F. Prosser

Steven J. Adamski, X3H2 SQL liaison (Alt)

Kevin Brosnan

Neal Weidenhofer

Philip C. Steel

Eric McGlohon (Alt)

Tracy Pipkin

William Allen (Alt)

Stephen Kafka

Kevin Leary (Alt)

Gordon Sterling (Alt)

John Peyton

Elizabeth Crockett

Ed Wells

Tom Ketterhagen (Alt)

Vaughn Vernon

Craig Bordelon

Steve Carter (Alt)

William Puig (Alt)

Bob Jervis

Yom-Tov Meged

Rose Thomson (Alt)

Maurice Fathi

John Wu

Daniel Mickey

Thomas Mimlitch (Alt)

Alan Losoff

Edward Briggs

Firmo Freire

Jim Patterson

Bruce Tetelman

Terry Moore

Mark Barrenechea

George Eberhardt

Dave Neathery (Alt)

Joseph Bibbo

Steve Davies

Don Fosbury

George VandeBunte (Alt)

Lloyd Irons

Organization Represented

Cray Research . . .

Custom Development Environments

DEC Professional.

DECUS .

Data General .

Datapoint.

Data Systems Analysts . . .

Delft Consulting .

Digital Equipment Corporation

Digital Systems International, Inc.

EDS.

EPI.

Edinburgh Portable Compilers . .

Edison Design Group.

Everest Solutions.

Farance Inc.

Floradin .

General Electric Information Services

Gould CSD.

HCR Corporation . .

Harris Computer Systems

Hewlett Packard . .

Honeywell Information Systems .

IBM..

Instruction Set.

Intel .

InterACT.

Intermetrics.

International Computers Ltd.

J. Brodie & Associates .

Kendall Square Research.

LSI Logic Europe Ltd.

Language Processors Inc.

Laurel Arts.

Lawrence Livermore National Laboratory .

Los Alamos National Laboratory . . .

Modcomp .

Masscomp.

MetaLink.

MetaWare Incorporated.

Microsoft.

Microware Systems .

Minnesota Educational Computing . . .

Mosaic Technologies.

Name of Representative

Tom MacDonald

Lynne Johnson (Alt)

Dave Becker (Alt)

Jean Risley

Rex Jaeschke

Mike Terrazas

Michael Meissner

Mark Harris (Alt)

Leonard Ohmes

James Stanley

Chaim Schaap

Randy Meyers

Art Bjork (Alt)

Lu Anne Van de Pas (Alt)

Glen W. Zorn

Ben Patel

Richard Relph

Graham Andrews

Colin McPhail (Alt)

J. Stephen Adamczyk

Eric Schwarz (Alt)

Dmitry Lenkov

Frank Farance

Peter Hayes (Alt)

Florin Jordan

Philip Provin

Mike Bennett

Liz Sanville (Alt)

Tina Aleksa (Alt)

Thomas Kelly

Paul Jackson (Alt)

Gary Jeter

Sue Meloy

Walter Murray (Alt)

Larry Rosier (Alt)

Thomas E. Osten

David Kayden (Alt)

Shawn Elliott

Larry Breed (Alt)

Mel Goldberg (Alt)

Mike Banahan

Clark Nelson

Dan Lau (Alt)

John Wolfe

Lillian Toll (Alt)

Randy Hudson

Keith Winter

Honey M. Schrecker (Alt)

Jim Brodie

Jacklin Kotikian

W. Peter Hesse

John Kaminski

David Yost

Mike Branstetter

Bob Weaver

Lidia Eberhart

Patricia Jenkins

Dave Hinman (Alt)

Michael Kearns

Tom Pennello

David F. Weil

Mitch Harder (Alt)

Kim Kempf

Shane McCarron

Bruce Olsen

Organization Represented

Motorola.

NCR.

National Semiconductor . .

National Bureau of Standards

Naval Research Laboratory

Novell, Inc.

OCLC .

Oakland University

Omniware.

Oracle Complex Systems . .

Oregon Software

Perennial.

Peritus International . . .

Plum Hall .

Prime Computer

Prismatics.

Production Languages . . .

Pugh Killeen .

Purdue University

Pyramid Technology . . .

Quantitative Technology Corp.

Que Corporation

Rabbit Software.

Rational Systems

Saber Software Inc. . . .

Saks & Associates

SAS Institute .

SDRC .

SEI Information Technology .

SRI International

Sierra Systems.

Southern Bell Telephone . .

Spruce Technology

Stellar Computer

Storage Technology Corp.

Sun Microsystems

Supercomputer Systems, Inc.

Sydetech System Development Technologies, Inc.

Tandem.

Tartan Laboratories..

TauMetric.

Tektronix.

Texas Instruments.

Thinking Machines.

Tokheim.

Name of Representative

Michael Paton

Rick Schubert

Brian Johnson (Alt)

Joseph Mueller

Derek Godfrey (Alt)

Jim Upperman

James W. Williams

Tom Scribner

Doug Snapp (Alt)

Lisa Simon

Paul Amaranth

August R. Hansen

Michael Redraw

Carl Ellis

Barry Hedquist

Sassan Hazeghi

James Holmlund (Alt)

Thomas Plum

Christopher Skelly (Alt)

Andrew Johnson

Fran Litterio (Alt)

Daniel J. Conrad

David Fritz

Kenneth Pugh

Ed Ramsey

Stephen Roberts (Alt)

Zona Walcott

George Basick (Alt)

Kevin Nolan

Robert Mueller (Alt)

Chris DeVoney

Jon Tulk

Terry Colligan

Samuel C. Kendall

Stephen Kaufer (Alt)

Daniel Saks

Nancy Saks (Alt)

Oliver Bradley

Alan Beale (Alt)

Larry Jones

Donald Kossman

Kenneth Harrenstien

Larry Rosenthal

Phil Hempfner

Purshotam Rajani

Peter Darnell

Lee W. Cooprider (Alt)

Paul Gilmartin

Courtney Meissen

Alan Fargusson (Alt)

Steve Muchnick (Alt)

Chuck Rasbold

Kelly O'Hair (Alt)

Savu Savulescu

Henry Richardson

John M. Hausman (Alt)

Samuel Harbison

Michael S. Ball

Carl Sutton

Jim Besemer (Alt)

Reid Tatge

James Frankel

Ed Brower

Robert Mansfield (Alt)

Organization Represented

Tymlabs.

Unisys.

University of Maryland

University of Michigan

University of Southern California CTC

University of Waterloo

US Army BRL.

VideoFinancial.

Wang Labs.

Watcom Systems.

Whitesmiths, Ltd.

Wick Hill .

Zehntel.

Individual Members

Jim Balter

Robert Bradbury

Edward Chin

Marc Cochran

Neil Daniels

Stephen Desofi

Michael Duffy

Phillip Escue

John Gidman

Ralph Phraner

D. Hugh Redelmeier

Arnold Davi Robbins

A1 Stevens

Roger Wilks

Michael J. Young

Name of Representative

Monika Khushf

Morgan Jones (Alt)

Don Bixler

Steve Bartels (Alt)

Glenda Berkheimer (Alt)

Annice Jackson (Alt)

Fred Blonder

Fred Schwarz

R. Jordan Kreindler

Mike Carmody

Douglas Gwyn, IEEE PI003 liaison

C. Dale Pierce (Alt)

John C. Black

Joseph Musacchia

Fred Rozakis (Alt)

Fred Crigger

P. J. Plauger

Kim Leeper

Mark Wittenberg

Contents SECTION PAGE

I

I

1. Introduction. 1

1.1 Purpose . 1

1.2 Scope. 1

1.3 References. 2

1.4 Organization of the Document. 2

1.5 Base Documents. 2

1.6 Definitions of Terms. 2

1.7 Compliance. 4

1.8 Future Directions. 5

2. Environment. 6

2.1 Conceptual Models. 6

2.1.1 Translation Environment. 6

2.1.2 Execution Environments. 7

2.2 Environmental Considerations. 11

2.2.1 Character Sets. 11

2.2.2 Character Display Semantics. 13

2.2.3 Signals and Interrupts . 13

2.2.4 Environmental Limits . 13

3. Language. 19

3.1 Lexical Elements. 19

3.1.1 Keywords. 20

3.1.2 Identifiers. 20

3.1.3 Constants . 26

3.1.4 String Literals. 31

3.1.5 Operators. 32

3.1.6 Punctuators. 33

3.1.7 Header Names. 33

3.1.8 Preprocessing Numbers. 34

3.1.9 Comments. 34

3.2 Conversions. 35

3.2.1 Arithmetic Operands. 35

3.2.2 Other Operands. 37

3.3 Expressions. 39

3.3.1 Primary Expressions. 40

3.3.2 Postfix Operators. 40

3.3.3 Unary Operators. 44

3.3.4 Cast Operators. 46

3.3.5 Multiplicative Operators. 47

3.3.6 Additive Operators. 47

3.3.7 Bitwise Shift Operators. 49

3.3.8 Relational Operators. 49

3.3.9 Equality Operators . 50

3.3.10 Bitwise AND Operator. 51

3.3.11 Bitwise Exclusive OR Operator. 51

3.3.12 Bitwise Inclusive OR Operator. 51

3.3.13 Logical AND Operator. 52

3.3.14 Logical OR Operator. 52

3.3.15 Conditional Operator. 52

3.3.16 Assignment Operators. 54

3.3.17 Comma Operator. 55

3.4 Constant Expressions. 56

3.5 Declarations. 58

3.5.1 Storage-Class Specifiers. 59

SECTION PAGE

3.5.2 Type Specifiers . 59

3.5.3 Type Qualifiers . 65

3.5.4 Declarators. 66

3.5.5 Type Names. 70

3.5.6 Type Definitions .. 71

3.5.7 Initialization. 72

3.6 Statements. 76

3.6.1 Labeled Statements. 76

3.6.2 Compound Statement, or Block . 76

3.6.3 Expression and Null Statements. 77

3.6.4 Selection Statements. 78

3.6.5 Iteration Statements. 79

3.6.6 Jump Statements. 80

3.7 External Definitions. 82

3.7.1 Function Definitions. 82

3.7.2 External Object Definitions. 84

3.8 Preprocessing Directives. 86

3.8.1 Conditional Inclusion. 87

3.8.2 Source File Inclusion. 88

3.8.3 Macro Replacement. 90

3.8.4 Line Control. 94

3.8.5 Error Directive . 94

3.8.6 Pragma Directive. 94

3.8.7 Null Directive. 95

3.8.8 Predefined Macro Names . 95

3.9 Future Language Directions. 96

3.9.1 External Names. 96

3.9.2 Character Escape Sequences . 96

3.9.3 Storage-Class Specifiers. 96

3.9.4 Function Declarators. 96

3.9.5 Function Definitions. 96

3.9.6 Array Parameters. 96

4. Library. 97

4.1 Introduction. 97

4.1.1 Definitions of Terms. 97

4.1.2 Standard Headers. 97

4.1.3 Errors <errno. h>. 98

4.1.4 Limits <float. h> and <limits . h>. 99

4.1.5 Common Definitions <stddef. h>. 99

4.1.6 Use of Library Functions .100

4.2 Diagnostics <assert. h>.102

4.2.1 Program Diagnostics.102

4.3 Character Handling <ctype . h>.103

4.3.1 Character Testing Functions . 103

4.3.2 Character Case Mapping Functions. 105

4.4 Localization clocale . h> . 107

4.4.1 Locale Control. 108

4.4.2 Numeric Formatting Convention Inquiry.109

4.5 Mathematics <math. h>.112

4.5.1 Treatment of Error Conditions.112

4.5.2 Trigonometric Functions.112

4.5.3 Hyperbolic Functions.114

SECTION PAGE

4.5.4 Exponential and Logarithmic Functions.115

4.5.5 Power Functions. 116

4.5.6 Nearest Integer, Absolute Value, and Remainder Functions 117

4.6 Nonlocal Jumps <setjmp. h>.119

4.6.1 Save Calling Environment.119

4.6.2 Restore Calling Environment.120

4.7 Signal Handling <signal. h>.121

4.7.1 Specify Signal Handling.121

4.7.2 Send Signal .122

4.8 Variable Arguments <stdarg. h>.123

4.8.1 Variable Argument List Access Macros.123

4.9 Input/Output <stdio. h>.125

4.9.1 Introduction .125

4.9.2 Streams. 126

4.9.3 Files.127

4.9.4 Operations on Files.128

4.9.5 File Access Functions.129

4.9.6 Formatted Input/Output Functions.132

4.9.7 Character Input/Output Functions.142

4.9.8 Direct Input/Output Functions.145

4.9.9 File Positioning Functions.146

4.9.10 Error-Handling Functions.148

4.10 General Utilities <stdlib. h>.150

4.10.1 String Conversion Functions.150

4.10.2 Pseudo-Random Sequence Generation Functions ... 154

4.10.3 Memory Management Functions.155

4.10.4 Communication with the Environment.156

4.10.5 Searching and Sorting Utilities.158

4.10.6 Integer Arithmetic Functions.159

4.10.7 Multibyte Character Functions.160

4.10.8 Multibyte String Functions.162

4.11 String Handling <string. h>.163

4.11.1 String Function Conventions.163

4.11.2 Copying Functions.163

4.11.3 Concatenation Functions.164

4.11.4 Comparison Functions.165

4.11.5 Search Functions.166

4.11.6 Miscellaneous Functions. 169

4.12 Date and Time <time . h> .171

4.12.1 Components of Time.171

4.12.2 Time Manipulation Functions.171

4.12.3 Time Conversion Functions.173

4.13 Future Library Directions.177

4.13.1 Errors <errno. h>.177

4.13.2 Character Handling Cctype . h>.177

4.13.3 Localization <locale . h>.177

4.13.4 Mathematics <math. h>.177

4.13.5 Signal Handling <signal. h>.177

4.13.6 Input/Output <stdio. h>.177

4.13.7 General Utilities <stdlib. h>.177

4.13.8 String Handling <string. h> .177

SECTION PAGE

A. Language Syntax Summary .178

A.l Lexical Grammar.178

A.2 Phrase Structure Grammar.182

A.3 Preprocessing Directives .187

B. Sequence Points.189

C. Library Summary. 190

C.l Errors <errno. h>. 190

C.2 Common Definitions <stddef. h>. 190

C.3 Diagnostics <assert. h>.190

C.4 Character Handling <ctype . h>.190

C.5 Localization <locale . h> .190

C.6 Mathematics <math. h>.191

C.l Nonlocal Jumps <setjmp . h>.191

C.8 Signal Handling <signal. h>. 191

C.9 Variable Arguments <stdarg. h>. 192

C.10 Input/Output <stdio . h>. 192

C.ll General Utilities <stdlib. h>. 194

C.12 String Handling <string. h>.195

C. 13 Date and Time Ctime . h> .195

D. Implementation Limits.196

E. Common Warnings.198

F. Portability Issues.199

F. 1 Unspecified Behavior.199

F.2 Undefined Behavior.200

F.3 Implementation-Defined Behavior.204

F.4 Locale-Specific Behavior.207

F.5 Common Extensions.208

Index 210

American National Standard
for Information Systems -

Programming Language -
C

1. Introduction

1.1 Purpose

This standard specifies the form and establishes the interpretation of programs written in the

C programming language.1

5 1.2 Scope

This standard specifies:

• the representation of C programs;

• the syntax and constraints of the C language;

• the semantic rules for interpreting C programs;

10 »the representation of input data to be processed by C programs;

• the representation of output data produced by C programs;

• the restrictions and limits imposed by a conforming implementation of C.

This standard does not specify:

• the mechanism by which C programs are transformed for use by a data-processing system;

15 • the mechanism by which C programs are invoked for use by a data-processing system;

• the mechanism by which input data are transformed for use by a C program;

• the mechanism by which output data are transformed after being produced by a C program;

• the size or complexity of a program and its data that will exceed the capacity of any specific

data-processing system or the capacity of a particular processor;

20 • all minimal requirements of a data-processing system that is capable of supporting a

conforming implementation.

1. This standard is designed to promote the portability of C programs among a variety of data-processing systems.
It is intended for use by implementors and knowledgeable programmers, and is not a tutorial. It is
accompanied by a Rationale document that explains many of the decisions of the Technical Committee that
produced it.

AMERICAN NATIONAL STANDARD X3.159-1989 1.2

C Standard Introduction

1.3 References

1. “The C Reference Manual" by Dennis M. Ritchie, a version of which was published in

The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, Prentice-

Hall. Inc., (1978). Copyright owned by AT&T.

5 2. 1984 lusrlgroup Standard by the /usr/group Standards Committee, Santa Clara, California.

USA (November, 1984).

3. ANSI X3/TR-1-82 (1982), American National Dictionary for Information Processing

Systems, Information Processing Systems Technical Report.

4. ISO 646:1983. Information Processing — ISO 7-Bit Coded Character Set for Information

10 Interchange.

5. ANSI/IEEE 734-1985. American National Standard for Binary Floating-Point Arithmetic.

6. ISO 4217:1987, Codes for the Representation of Currencies and Funds.

1.4 Organization of the Document

This document is divided into four major sections:

15 1. this introduction;

2. the characteristics of environments that translate and execute C programs;

3. the language syntax, constraints, and semantics;

4. the library facilities.

Examples are provided to illustrate possible forms of the constructions described. Footnotes

20 are provided to emphasize consequences of the rules described in the section or elsewhere in the

standard. References are used to refer to other related sections. A set of appendixes summarizes

information contained in the standard. The abstract, the foreword, the examples, the footnotes,

the references, and the appendixes are not part of the standard.

1.5 Base Documents

25 The language section (Section 3) is derived from "The C Reference Manual” by Dennis M.

Ritchie, a version of which was published as Appendix A of The C Programming Language by

Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall, Inc., 1978; copyright owned by

AT&T.

The library section (Section 4) is based on the 1984 lusrl group Standard by the /usr/group

30 Standards Committee, Santa Clara. California. USA (November 14, 1984).

1.6 Definitions of Terms

In this standard, "shall" is to be interpreted as a requirement on an implementation or on a

program; conversely, "shall not” is to be interpreted as a prohibition.

The following terms are used in this document:

35 • Alignment — a requirement that objects of a particular type be located on storage boundaries

with addresses that are particular multiples of a byte address.

• Argument — an expression in the comma-separated list bounded by the parentheses in a

function call expression, or a sequence of preprocessing tokens in the comma-separated list

bounded by the parentheses in a function-like macro invocation. Also known as "actual

40 argument” or "actual parameter.”

• Bit — the unit of data storage in the execution environment large enough to hold an object

that may have one of two values. It need not be possible to express the address of each

individual bit of an object.

1.3 AMERICAN NATIONAL STANDARD X3.159-1989 1.6

C Standard 3 Introduction

• Byte — the unit of data storage large enough to hold any member of the basic character set

of the execution environment. It shall be possible to express the address of each individual

byte of an object uniquely. A byte is composed of a contiguous sequence of bits, the number

of which is implementation-defined. The least significant bit is called the low-order bit; the

5 most significant bit is called the high-order bit.

• Character — a bit representation that fits in a byte. The representation of each member of the

basic character set in both the source and execution environments shall fit in a byte.

• Constraints — syntactic and semantic restrictions by which the exposition of language

elements is to be interpreted.

10 • Diagnostic message — a message belonging to an implementation-defined subset of the

implementation’s message output.

• Forward references — references to later sections of the standard that contain additional

information relevant to this section.

• Implementation — a particular set of software, running in a particular translation environment

15 under particular control options, that performs translation of programs for, and supports

execution of functions in, a particular execution environment.

• Implementation-defined behavior — behavior, for a correct program construct and correct

data, that depends on the characteristics of the implementation and that each implementation

shall document.

20 • Implementation limits — restrictions imposed upon programs by the implementation.

• Locale-specific behavior — behavior that depends on local conventions of nationality, culture,

and language that each implementation shall document.

• Multibyte character — a sequence of one or more bytes representing a member of the

extended character set of either the source or the execution environment. The extended

25 character set is a superset of the basic character set.

• Object — a region of data storage in the execution environment, the contents of which can

represent values. Except for bit-fields, objects are composed of contiguous sequences of one

or more bytes, the number, order, and encoding of which are either explicitly specified or

implementation-defined. When referenced, an object may be interpreted as having a particular

30 type; see 3.2.2.1.

• Parameter — an object declared as part of a function declaration or definition that acquires a

value on entry to the function, or an identifier from the comma-separated list bounded by the

parentheses immediately following the macro name in a function-like macro definition. Also

known as “formal argument” or “formal parameter.”

35 • Undefined behavior — behavior, upon use of a nonportable or erroneous program construct,

of erroneous data, or of indeterminately valued objects, for which the standard imposes no

requirements. Permissible undefined behavior ranges from ignoring the situation completely

with unpredictable results, to behaving during translation or program execution in a

documented manner characteristic of the environment (with or without the issuance of a

40 diagnostic message), to terminating a translation or execution (with the issuance of a

diagnostic message).

If a “shall” or “shall not” requirement that appears outside of a constraint is violated,

the behavior is undefined. Undefined behavior is otherwise indicated in this standard by the

words “undefined behavior” or by the omission of any explicit definition of behavior. There

45 is no difference in emphasis among these three; they all describe “behavior that is

undefined.”

• Unspecified behavior — behavior, for a correct program construct and correct data, for which

the standard explicitly imposes no requirements.

1.6 AMERICAN NATIONAL STANDARD X3.159-1989 1.6

C Standard 4 Introduction

Other terms are defined at their first appearance, indicated by italic type. Terms explicitly

defined in this standard are not to be presumed to refer implicitly to similar terms defined

elsewhere. Terms not defined in this standard are to be interpreted according to the American

National Dictionary for Information Processing Systems, Information Processing Systems

5 Technical Report ANSI X3/TR-1-82 (1982).

Examples

An example of unspecified behavior is the order in which the arguments to a function are

evaluated.

An example of undefined behavior is the behavior on integer overflow.

10 An example of implementation-defined behavior is the propagation of the high-order bit when

a signed integer is shifted right.

An example of locale-specific behavior is whether the islower function returns true for

characters other than the 26 lowercase English letters.

Forward references: bitwise shift operators (3.3.7), expressions (3.3), function calls (3.3.2.2),

15 the islower function (4.3.1.6), localization (4.4).

1.7 Compliance

A strictly conforming program shall use only those features of the language and library

specified in this standard. It shall not produce output dependent on any unspecified, undefined, or

implementation-defined behavior, and shall not exceed any minimum implementation limit.

20 The two forms of conforming implementation are hosted and freestanding. A conforming

hosted implementation shall accept any strictly conforming program. A conforming freestanding

implementation shall accept any strictly conforming program in which the use of the features

specified in the library section (Section 4) is confined to the contents of the standard headers

<float.h>, <limits.h>, <stdarg.h>. and <stddef .h>. A conforming implementation

25 may have extensions (including additional library functions), provided they do not alter the

behavior of any strictly conforming program."

A conforming program is one that is acceptable to a conforming implementation.'

An implementation shall be accompanied by a document that defines all implementation-

defined characteristics and all extensions.

30 Forward references: limits <float.h> and <limits.h> (4.1.4), variable arguments

<stdarg.h> (4.8), common definitions <stddef .h> (4.1.5).

2. This implies that a conforming implementation reserves no identifiers other than those explicitly reserved in this
standard.

3. Strictly conforming programs are intended to be maximally portable among conforming implementations.
Conforming programs may depend upon nonportable features of a conforming implementation.

1.6 AMERICAN NATIONAL STANDARD X3.159-1989 1.7

C Standard 5 Introduction

1.8 Future Directions

With the introduction of new devices and extended character sets, new features may be added

to the standard. Subsections in the language and library sections warn implementors and

programmers of usages which, though valid in themselves, may conflict with future additions.

5 Certain features are obsolescent, which means that they may be considered for withdrawal in

future revisions of the standard. They are retained in the standard because of their widespread

use, but their use in new implementations (for implementation features) or new programs (for

language or library features) is discouraged.

Forward references: future language directions (3.9.9), future library directions (4.13).

1.8 AMERICAN NATIONAL STANDARD X3.159-1989 1.8

C Standard 6 Environment

2. Environment

An implementation translates C source tiles and executes C programs in two data-processing-

system environments, which will be called the translation environment and the execution

environment in this standard. Their characteristics define and constrain the results of executing

5 conforming C programs constructed according to the syntactic and semantic rules for conforming

implementations.

Forward references: In the environment section (Section 2), only a few of many possible

forward references have been noted.

2.1 Conceptual Models

10 2.1.1 Translation Environment

2.1.1.1 Program Structure

A C program need not all be translated at the same time. The text of the program is kept in

units called source files in this standard. A source file together with all the headers and source

files included via the preprocessing directive #include, less any source lines skipped by any of

15 the conditional inclusion preprocessing directives, is called a translation unit. Previously

translated translation units may be preserved individually or in libraries. The separate translation

units of a program communicate by (for example) calls to functions whose identifiers have

external linkage, manipulation of objects whose identifiers have external linkage, or manipulation

of data files. Translation units may be separately translated and then later linked to produce an

20 executable program.

Forward references: conditional inclusion (3.8.1), linkages of identifiers (3.1.2.2), source file

inclusion (3.8.2).

2.1.1.2 Translation Phases

The precedence among the syntax rules of translation is specified by the following phases.4 5

25 1. Physical source file characters are mapped to the source character set (introducing new-line

characters for end-of-line indicators) if necessary. Trigraph sequences are replaced by

corresponding single-character internal representations.

2. Each instance of a new-line character and an immediately preceding backslash character is

deleted, splicing physical source lines to form logical source lines. A source file that is not

30 empty shall end in a new-line character, which shall not be immediately preceded by a

backslash character.

3. The source file is decomposed into preprocessing tokens^ and sequences of white-space

characters (including comments). A source file shall not end in a partial preprocessing

token or comment. Each comment is replaced by one space character. New-line characters

35 are retained. Whether each nonempty sequence of white-space characters other than new-

line is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed and macro invocations are expanded. A #include

preprocessing directive causes the named header or source file to be processed from phase

1 through phase 4, recursively.

4. Implementations must behave as if these separate phases occur, even though many are typically folded together
in practice.

5. As described in 3.1, the process of dividing a source file's characters into preprocessing tokens is context-
dependent. For example, see the handling of < within a #include preprocessing directive.

9 AMERICAN NATIONAL STANDARD X3.159-1989 2.1.1.2

Environment 7 Conceptual Models

5. Each source character set member and escape sequence in character constants and string

literals is converted to a member of the execution character set.

6. Adjacent character string literal tokens are concatenated and adjacent wide string literal

tokens are concatenated.

5 7. White-space characters separating tokens are no longer significant. Each preprocessing

token is converted into a token. The resulting tokens are syntactically and semantically

analyzed and translated.

8. All external object and function references are resolved. Library components are linked to

satisfy external references to functions and objects not defined in the current translation.

10 All such translator output is collected into a program image which contains information

needed for execution in its execution environment.

Forward references: lexical elements (3.1), preprocessing directives (3.8), trigraph sequences

(2.2.1.1).

2.1.1.3 Diagnostics

15 A conforming implementation shall produce at least one diagnostic message (identified in an

implementation-defined manner) for every translation unit that contains a violation of any syntax

rule or constraint. Diagnostic messages need not be produced in other circumstances.6

2.1.2 Execution Environments

Two execution environments are defined: freestanding and hosted. In both cases, program

20 startup occurs when a designated C function is called by the execution environment. All objects

in static storage shall be initialized (set to their initial values) before program startup. The

manner and timing of such initialization are otherwise unspecified. Program termination returns

control to the execution environment.

Forward references: initialization (3.5.7).

25 2.1.2.1 Freestanding Environment

In a freestanding environment (in which C program execution may take place without any

benefit of an operating system), the name and type of the function called at program startup are

implementation-defined. There are otherwise no reserved external identifiers. Any library

facilities available to a freestanding program are implementation-defined.

30 The effect of program termination in a freestanding environment is implementation-defined.

2.1.2.2 Hosted Environment

A hosted environment need not be provided, but shall conform to the following specifications

if present.

2.1.2.2.1 Program Startup

35 The function called at program startup is namc„ main. The implementation declares no

prototype for this function. It can be defined with no parameters:

int main(void) { /*...*/ }

or with two parameters (referred to here as argc and argv, though any names may be used, as

they are local to the function in which they are declared):

6. The intent is that an implementation should identify the nature of, and where possible localize, each violation.
Of course, an implementation is free to produce any number of diagnostics as long as a valid program is still
correctly translated. An implementation may also successfully translate an invalid program.

2.1.1.2 AMERICAN NATIONAL STANDARD X3.159-1989 2.1.2.2.1

Environment 8 Conceptual Models

int main(int argc, char *argv[]) { /*...*/ }

If they are defined, the parameters to the main function shall obey the following constraints:

• The value of argc shall be nonnegative.

• argv[argc] shall be a null pointer.

5 0 If the value of argc is greater than zero, the array members argv[0] through

argv[argc-l] inclusive shall contain pointers to strings, which are given implementation-

defined values by the host environment prior to program startup. The intent is to supply to

the program information determined prior to program startup from elsewhere in the hosted

environment. If the host environment is not capable of supplying strings with letters in both

10 uppercase and lowercase, the implementation shall ensure that the strings are received in

lowercase.

• If the value of argc is greater than zero, the string pointed to by argv[0] represents the

program name: argv[0] [0] shall be the null character if the program name is not available

from the host environment. If the value of argc is greater than one, the strings pointed to

15 byargv[l] through argv [argc-1] represent the program parameters.

• The parameters argc and argv and the strings pointed to by the argv array shall be

modifiable by the program, and retain their last-stored values between program startup and

program termination.

2.1.2.2.2 Program Execution

20 In a hosted environment, a program may use all the functions, macros, type definitions, and

objects described in the library section (Section 4).

2.1.2.2.3 Program Termination

A return from the initial call to the main function is equivalent to calling the exit function

with the value returned by the main function as its argument. If the main function executes a

25 return that specifies no value, the termination status returned to the host environment is

undefined.

Forward references: definition of terms (4.1.1), the exit function (4.10.4.3).

2.1.2.3 Program Execution

The semantic descriptions in this standard describe the behavior of an abstract machine in

30 which issues of optimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or calling a function that

does any of those operations are all side effects, which are changes in the state of the execution

environment. Evaluation of an expression may produce side effects. At certain specified points

in the execution sequence called sequence points, all side effects of previous evaluations shall be

35 complete and no side effects of subsequent evaluations shall have taken place.

In the abstract machine, all expressions are evaluated as specified by the semantics. An actual

implementation need not evaluate part of an expression if it can deduce that its value is not used

and that no needed side effects are produced (including any caused by calling a function or

accessing a volatile object).

40 When the processing of the abstract machine is interrupted by receipt of a signal, only the

values of objects as of the previous sequence point may be relied on. Objects that may be

modified between the previous sequence point and the next sequence point need not have

received their correct values yet.

An instance of each object with automatic storage duration is associated with each entry into

45 its block. Such an object exists and retains its last-stored value during the execution of the block

and while the block is suspended (by a call of a function or receipt of a signal).

2.1.2.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 2.1.2.3

Environment 9 Conceptual Models

The least requirements on a conforming implementation are:

• At sequence points, volatile objects are stable in the sense that previous evaluations are

complete and subsequent evaluations have not yet occurred.

• At program termination, all data written into tiles shall be identical to the result that execution

5 of the program according to the abstract semantics would have produced.

• The input and output dynamics of interactive devices shall take place as specified in 4.9.3.

The intent of these requirements is that unbuffered or line-buffered output appear as soon as

possible, to ensure that prompting messages actually appear prior to a program waiting for

input.

10 What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by

each implementation.

Examples

An implementation might define a one-to-one correspondence between abstract and actual

15 semantics: at every sequence point, the values of the actual objects would agree with those

specified by the abstract semantics. The keyword volatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation

unit, such that the actual semantics would agree with the abstract semantics only when making

function calls across translation unit boundaries. In such an implementation, at the time of each

20 function entry and function return where the calling function and the called function are in

different translation units, the values of all externally linked objects and of all objects accessible

via pointers therein would agree with the abstract semantics. Furthermore, at the time of each

such function entry the values of the parameters of the called function and of all objects

accessible via pointers therein would agree with the abstract semantics. In this type of

25 implementation, objects referred to by interrupt service routines activated by the signal

function would require explicit specification of volatile storage, as well as other

implementation-defined restrictions.

In executing the fragment

char cl, c2;

30 /*...*/

cl = cl + c2;

the “integral promotions" require that the abstract machine promote the value of each variable to

int size and then add the two ints and truncate the sum. Provided the addition of two chars

can be done without creating an overflow exception, the actual execution need only produce the

35 same result, possibly omitting the promotions.

Similarly, in the fragment

float fl, f2;

double d;

/*-..*/
40 fl = f2 * d;

the multiplication may be executed using single-precision arithmetic if the implementation can

ascertain that the result would be the same as if it were executed using double-precision

arithmetic (for example, if d were replaced by the constant 2.0, which has type double).

Alternatively, an operation involving only ints or floats may be executed using double-

45 precision operations if neither range nor precision is lost thereby.

To illustrate the grouping behavior of expressions, in the following fragment

2.1.2.3 AMERICAN NATIONAL STANDARD X3.159-1989 2.1.2.3

Environment

int a, b;

/*...*/
a = a + 32760 + b + 5;

10 Conceptual Models

the expression statement behaves exactly the same as

5 a = (((a + 32760) + b) + 5) ;

due to the associativity and precedence of these operators. Thus, the result of the sum “ (a +

32760)” is next added to b, and that result is then added to 5 which results in the value

assigned to a. On a machine in which overflows produce an exception and in which the range of

values representable by an int is [-32768,4-32767], the implementation cannot rewrite this

10 expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, -32754 and -15, the sum a + b would

produce an exception while the original expression would not; nor can the expression be rewritten

either as

15 a = ((a + 32765) + b);

or

a = (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However

on a machine in which overflows do not produce an exception and in which the results of

20 overflows are reversible, the above expression statement can be rewritten by the implementation

in any of the above ways because the same result will occur.

The grouping of an expression does not completely determine its evaluation. In the following

fragment

#include <stdio.h>

25 int sum;

char *p;

/*...*/
sum = sum * 10 - 'O' + (*p++ = getchar ());

the expression statement is grouped as if it were written as

30 sum = (((sum * 10) - '0') + ((*(p++)) = (getchar()))) ;

but the actual increment of p can occur at any time between the previous sequence point and the

next sequence point (the ;), and the call to getchar can occur at any point prior to the need of

its returned value.

Forward references: compound statement, or block (3.6.2), expressions (3.3), files (4.9.3),

35 sequence points (3.3, 3.6), the signal function (4.7), type qualifiers (3.5.3).

2.1.2.3 AMERICAN NATIONAL STANDARD X3.159-1989 2.1.2.3

Environment Environmental Considerations

2.2 Environmental Considerations

2.2.1 Character Sets

Two sets of characters and their associated collating sequences shall be defined: the set in

which source files are written, and the set interpreted in the execution environment. The values

5 of the members of the execution character set are implementation-defined; any additional

members beyond those required by this section are locale-specific.

In a character constant or string literal, members of the execution character set shall be

represented by corresponding members of the source character set or by escape sequences

consisting of the backslash \ followed by one or more characters. A byte with all bits set to 0,

10 called the null character, shall exist in the basic execution character set; it is used to terminate a

character string literal.

Both the basic source and basic execution character sets shall have at least the following

members: the 26 uppercase letters of the English alphabet

ABCDEFGHIJKLM

15 NOPQRSTUVWXYZ

the 26 lowercase letters of the English alphabet

abed e f g h i j k 1 m

n o p q r s t u V w x y z

the 10 decimal digits

20 0 1 2 3 4 5 6 7 8 9

the following 29 graphic characters

! " # % & f
() * + , - • /

;< — > ? t \]
A

{ 1 I ~

the space character, and control characters representing horizontal tab, vertical tab, and form feed.

25 In both the source and execution basic character sets, the value of each character after 0 in the

above list of decimal digits shall be one greater than the value of the previous. In source files,

there shall be some way of indicating the end of each line of text; this standard treats such an

end-of-line indicator as if it were a single new-line character. In the execution character set, there

shall be control characters representing alert, backspace, carriage return, and new line. If any

30 other characters are encountered in a source hie (except in a character constant, a string literal, a

header name, a comment, or a preprocessing token that is never converted to a token), the

behavior is undefined.

Forward references: character constants (3.1.3.4), preprocessing directives (3.8), string literals

(3.1.4), comments (3.1.9).

35 2.2.1.1 Trigraph Sequences

All occurrences in a source hie of the following sequences of three characters (called trigraph

sequences1) are replaced with the corresponding single character.

7. The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as described
in ISO 646:1983, which is a subset of the seven-bit ASCII code set.

2.2 AMERICAN NATIONAL STANDARD X3.159-1989 2.2.1.1

Environment 12 Environmental Considerations

??= #

??([

??/ \

??)]
5 ??' A

??< {

??! |

??> }

? ?- ~

10 No other trigraph sequences exist. Each ? that does not begin one of the trigraphs listed above

is not changed.

Example

The following source line

printf("Eh???/n");

15 becomes (after replacement of the trigraph sequence ??/)

printf("Eh?\n”) ;

2.2.1.2 Multibyte Characters

The source character set may contain multibyte characters, used to represent members of the

extended character set. The execution character set may also contain multibyte characters, which

20 need not have the same encoding as for the source character set. For both character sets, the

following shall hold:

• The single-byte characters defined in 2.2.1 shall be present.

• The presence, meaning, and representation of any additional members is locale-specific.

0 A multibyte character may have a state-dependent encoding, wherein each sequence of

25 multibyte characters begins in an initial shift state and enters other implementation-defined

shift states when specific multibyte characters are encountered in the sequence. While in the

initial shift state, all single-byte characters retain their usual interpretation and do not alter the

shift state. The interpretation for subsequent bytes in the sequence is a function of the current

shift state.

30 • A byte with all bits zero shall be interpreted as a null character independent of shift state.

• A byte with all bits zero shall not occur in the second or subsequent bytes of a multibyte

character.

For the source character set, the following shall hold:

• A comment, string literal, character constant, or header name shall begin and end in the initial

35 shift state.

• A comment, string literal, character constant, or header name shall consist of a sequence of

valid multibyte characters.

AMERICAN NATIONAL STANDARD X3.159-1989 2.2.1.2

Environment 13 Environmental Considerations

2.2.2 Character Display Semantics

The active position is that location on a display device where the next character output by the

fputc function would appear. The intent of writing a printable character (as defined by the

isprint function) to a display device is to display a graphic representation of that character at

5 the active position and then advance the active position to the next position on the current line.

The direction of writing is locale-specific. If the active position is at the final position of a line

(if there is one), the behavior is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution character set

are intended to produce actions on display devices as follows:

10 \a (alert) Produces an audible or visible alert. The active position shall not be changed.

\b (backspace) Moves the active position to the previous position on the current line. If the

active position is at the initial position of a line, the behavior is unspecified.

\f (form feed) Moves the active position to the initial position at the start of the next logical

page.

15 \n (new line) Moves the active position to the initial position of the next line.

\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the

current line. If the active position is at or past the last defined horizontal tabulation position,

the behavior is unspecified.

20 \v (vertical tab) Moves the active position to the initial position of the next vertical tabulation

position. If the active position is at or past the last defined vertical tabulation position, the

behavior is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which

can be stored in a single char object. The external representations in a text file need not be

25 identical to the internal representations, and are outside the scope of this standard.

Forward references: the fputc function (4.9.7.3), the isprint function (4.3.1.7).

2.2.3 Signals and Interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal, or

may be called by a signal handler, or both, with no alteration to earlier, but still active,

30 invocations’ control flow (after the interruption), function return values, or objects with automatic

storage duration. All such objects shall be maintained outside the function image (the

instructions that comprise the executable representation of a function) on a per-invocation basis.

The functions in the standard library are not guaranteed to be reentrant and may modify

objects with static storage duration.

35 2.2.4 Environmental Limits

Both the translation and execution environments constrain the implementation of language

translators and libraries. The following summarizes the environmental limits on a conforming

implementation.

2.2.4.1 Translation Limits

40 The implementation shall be able to translate and execute at least one program that contains

at least one instance of every one of the following limits:8

8. Implementations should avoid imposing fixed translation limits whenever possible.

AMERICAN NATIONAL STANDARD X3.159-1989 2.2.4.1

Environment 14 Environmental Considerations

• 15 nesting levels of compound statements, iteration control structures, and selection control

structures

• 8 nesting levels of conditional inclusion

• 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic, a

5 structure, a union, or an incomplete type in a declaration

• 31 nesting levels of parenthesized declarators within a full declarator

• 32 nesting levels of parenthesized expressions within a full expression

• 31 significant initial characters in an internal identifier or a macro name

• 6 significant initial characters in an external identifier

10 *511 external identifiers in one translation unit

• 127 identifiers with block scope declared in one block

• 1024 macro identifiers simultaneously defined in one translation unit

• 31 parameters in one function definition

• 31 arguments in one function call

15 • 31 parameters in one macro definition

• 31 arguments in one macro invocation

• 509 characters in a logical source line

• 509 characters in a character string literal or wide string literal (after concatenation)

9 32767 bytes in an object (in a hosted environment only)

20 • 8 nesting levels for #included files

• 257 case labels for a switch statement (excluding those for any nested switch

statements)

• 127 members in a single structure or union

• 127 enumeration constants in a single enumeration

25 • 15 levels of nested structure or union definitions in a single struct-declaration-list

2.2.4.2 Numerical Limits

A conforming implementation shall document all the limits specified in this section, which

shall be specified in the headers <limits . h> and <float ,h>.

2.2.4.2.1 Sizes of Integral Types <limits ,h>

30 The values given below shall be replaced by constant expressions suitable for use in #if

preprocessing directives. Moreover, except for CHAR_BIT and MB_LEN_MAX. the following

shall be replaced by expressions that have the same type as would an expression that is an object

of the corresponding type converted according to the integral promotions. Their implementation-

defined values shall be equal or greater in magnitude (absolute value) to those shown, with the

35 same sign.

» number of bits for smallest object that is not a bit-field (byte)

CHAR_BIT 8

• minimum value for an object of type signed char

SCHAR_MIN -127

40 • maximum value for an object of type signed char

SCHAR MAX +127

2.2.4.1 AMERICAN NATIONAL STANDARD X3.1.S9-I989 2.2.4.2.1

Environment 15 Environmental Considerations

• maximum value for an object of type unsigned char

UCHAR_MAX 255

• minimum value for an object of type char

CHAR_MIN see below

5 • maximum value for an object of type char

CHAR_MAX see below

• maximum number of bytes in a multibyte character, for any supported locale

MB_LEN_MAX 1

• minimum value for an object of type short int

10 SHRT_MIN -32767

• maximum value for an object of type short int

SHRT_MAX +32767

• maximum value for an object of type unsigned short int

USHRT_MAX 65535

15 • minimum value for an object of type int

INT_MIN -32767

• maximum value for an object of type int

INT_MAX +32767

• maximum value for an object of type unsigned int

20 UINT_MAX 65535

• minimum value for an object of type long int

LONG_MIN -2147483647

• maximum value for an object of type long int

LONG_MAX +2147483647

25 • maximum value for an object of type unsigned long int

ULONG_MAX 4294967295

If the value of an object of type char is treated as a signed integer when used in an

expression, the value of CHAR_MIN shall be the same as that of SCHAR_MIN and the value of

CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value of CHAR_MIN shall

30 be 0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX."

2.2.4.2.2 Characteristics of Floating Types <float ,h>

The characteristics of floating types are defined in terms of a model that describes a

representation of floating-point numbers and values that provide information about an

implementation’s floating-point arithmetic.9 10 The following parameters are used to define the

35 model for each floating-point type:

9. See 3.1.2.5.

10. The floating-point model is intended to clarify the description of each floating-point characteristic and does not
require the floating-point arithmetic of the implementation to be identical.

2.2.4.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 2.2.4.2.2

Environment 16 Environmental Considerations

5

s sign (±1)

/? base or radix of exponent representation (an integer > 1)

e exponent (an integer between a minimum emin and a maximum emax)

/? precision (the number of base-/? digits in the significand)

fk nonnegative integers less than b (the significand digits)

A normalized floating-point number v (/, > 0 if a * 0) is defined by the following model:

-V = s X b X £ fk x b , emm <e< em.M
k=l

Of the values in the <float. h> header, FLT_RADIX shall be a constant expression suitable

for use in #if preprocessing directives; all other values need not be constant expressions. All

10 except FLT_RADIX and FLT_ROUNDS have separate names for all three floating-point types.

The floating-point model representation is provided for all values except FLT_ROUNDS.

The rounding mode for floating-point addition is characterized by the value of FLT_ROUNDS:

15

-1 indeterminable

0 toward zero

1 to nearest

2 toward positive infinity

3 toward negative infinity

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

The values given in the following list shall be replaced by implementation-defined expressions

20 that shall be equal or greater in magnitude (absolute value) to those shown, with the same sign:

25

30

35

40

• radix of exponent representation, b

FLT_RADIX 2

• number of base-FLT_RADIX digits in the floating-point significand, p

FLT_MANT_DIG

DBL_MANT_DIG

LDBL MANT DIG

number of decimal digits, <y, such that any floating-point number with q decimal digits can be

rounded into a floating-point number with p radix b digits and back again without change to

j 1 if b is a power of 10

10 otherwise
the q decimal digits.

(p - 1) x log,,,/?

FLT_DIG

DBL_DIG

LDBL DIG

6

10

10

• minimum negative integer such that FLT_RADIX raised to that power minus 1 is a

normalized floating-point number, <?min

FLT_MIN_EXP

DBL_MIN_EXP

LDBL_MIN_EXP

• minimum negative integer such that 10 raised to that power is in the range of normalized

floating-point numbers,

FLT_MIN_10_EXP

DBL_MIN_10_EXP

LDBL MIN 10 EXP

logic/?

-37

-37

-37

2.2.4.2.2 2.2.4.2.2 AMERICAN NATIONAL STANDARD X3.I59-1989

Environment 17 Environmental Considerations

• maximum integer such that FLT_RADIX raised to that power minus 1 is a representable finite

floating-point number, emax

5

10

FLT_MAX_EXP

DBL_MAX_EXP

LDBL MAX EXP

• maximum integer such that 10 raised to that power is in the range of representable finite

floating-point numbers.
logio((I - b p) x //nm)

FLT_MAX_10_EXP +37

DBL_MAX_10_EXP +37

LDBL MAX 10 EXP +37

The values given in the following list shall be replaced by implementation-defined expressions

with values that shall be equal to or greater than those shown:

• maximum representable finite floating-point number, (1 — b r) x bCm"

FLT_MAX 1E+37

15 DBL_MAX 1E+37

LDBL_MAX 1E+37

The values given in the following list shall be replaced by implementation-defined expressions

with values that shall be equal to or less than those shown:

• the difference between 1.0 and the least value greater than 1.0 that is representable in the

20 given floating point type, b1-/5

FLT_EP SILON IE-5

DBL_EP SILON IE-9

LDBL_EPSILON IE-9

• minimum normalized positive floating-point number, b1"""

25 FLT_MIN IE-37

DBL_MIN IE-37

LDBL_MIN IE-37

Examples

The following describes an artificial floating-point representation that meets the minimum

30 requirements of the standard, and the appropriate values in a <float.h> header for type

float:

35

40

6

.V = X x 16'' x £ fk x 16_i , -31 < e < +32
k=I

FLT_RADIX

FLT _MANT_DIG

FLT_EP SILON

FLT_DIG

FLT_MIN_EXP

FLT_MIN

FLT_MIN_10_EXP

FLT_MAX_EXP

FLT_MAX

FLT MAX 10 EXP

16

6

9.53674316E-07F

6

-31

2.93873588E-39F

-38

+32

3.40282347E+38F

+ 38

2.2.4.2.2 AMERICAN NATIONAL STANDARD X3.159-1989 2.2.4.2.2

Environment Environmental Considerations

The following describes floating-point representations that also meet the requirements for

single-precision and double-precision normalized numbers in ANSI/IEEE 754-1985,

appropriate values in a <float ,h> header for types float and double:

and the

10

15

20

24

= 5 X 2'' x £ fk X 2" -125 < e < +128
4 = 1

53

5 xd = s x 2e x £ A X 2~k, -1021 < e < +1024
4 = 1

FLT_RADIX

FLT_MANT_DIG

FLT_EPSILON

FLT_DIG

FLT_MIN_EXP

FLT_MIN

FLT_MIN_10_EXP

FLT_MAX_EXP

FLT_MAX

FLT_MAX_10_EXP

DBL_MANT_DIG

DBL_EPSILON 2.2204460492503131E-16

DBL_DIG 15

DBL_MIN_EXP -1021

DBL_MIN 2.2250738585072014E-308

DBL_MIN_10_EXP -307

DBL_MAX_EXP +1024

DBL_MAX 1.7976931348623157E+308

DBL MAX 10 EXP +308

2

24

1920 92 90E-07F

6

-125

17549435E-38F

-37

+ 128

40282347E+38F

+38

53

25 Forward references: conditional inclusion (3.8.1).

11. The floating-point model in that standard sums powers of h from zero, so the values of the exponent limits are
one less than shown here.

2.2.4.2.2 AMERICAN NATIONAL STANDARD X3.159-1989 2.2.4.2.2

C Standard 19 Language

3. Language

In the syntax notation used in the language section (Section 3), syntactic categories

(nonterminals) are indicated by italic type, and literal words and character set members

(terminals) by bold type. A colon (.) following a nonterminal introduces its definition.

5 Alternative definitions are listed on separate lines, except when prefaced by the words “one of.”

An optional symbol is indicated by the subscript “opt,” so that

{ expression }

indicates an optional expression enclosed in braces.

3.1 Lexical Elements

10 Syntax

token:

keyword

identifier

constant

15 string-literal

operator

punctuator

preprocessing-token:

header-name

20 identifier

pp-numher

character-constant

string-literal

operator

25 punctuator

each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a

keyword, an identifier, a constant, a string literal, an operator, or a punctuator.

30 Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8. The

categories of tokens are: keywords, identifiers, constants, string literals, operators, and

punctuators. A preprocessing token is the minimal lexical element of the language in translation

phases 3 through 6. The categories of preprocessing token are: header names, identifiers,

35 preprocessing numbers, character constants, string literals, operators, punctuators, and single

non-white-space characters that do not lexically match the other preprocessing token categories.

If a ' or a " character matches the last category, the behavior is undefined. Preprocessing tokens

can be separated by white space', this consists of comments (described later), or white-space

characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As described in

40 3.8, in certain circumstances during translation phase 4, white space (or the absence thereof)

serves as more than preprocessing token separation. White space may appear within a

preprocessing token only as part of a header name or between the quotation characters in a

character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next

45 preprocessing token is the longest sequence of characters that could constitute a preprocessing

token.

3. AMERICAN NATIONAL STANDARD X3.159-1989 3.1

Language 20 Lexical Elements

Examples

The program fragment lEx is parsed as a preprocessing number token (one that is not a valid

floating or integer constant token), even though a parse as the pair of preprocessing tokens 1 and

Ex might produce a valid expression (for example, if Ex were a macro defined as +1).

5 Similarly, the program fragment 1E1 is parsed as a preprocessing number (one that is a valid

floating constant token), whether or not E is a macro name.

The program fragment x+++++y is parsed as x ++ ++ + y. which violates a constraint on

increment operators, even though the parse x ++ + ++ y might yield a correct expression.

Forward references: character constants (3.1.3.4). comments (3.1.9). expressions (3.3), floating

10 constants (3.1.3.1), header names (3.1.7), macro replacement (3.8.3), postfix increment and

decrement operators (3.3.2.4), prefix increment and decrement operators (3.3.3.1). preprocessing

directives (3.8), preprocessing numbers (3.1.8), string literals (3.1.4).

3.1.1 Keywords

Syntax

15 keyword: one of

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Semantics

25 The above tokens (entirely in lowercase) are reserved (in translation phases 7 and 8) for use

as keywords, and shall not be used otherwise.

3.1.2 Identifiers

Syntax

identifier:

30 nondigit

identifier nondigit

identifier digit

nondigit: one of

a b c d e f g h i j k 1 m

n o P q r s t u V w X y z

A B C D E F G H I J K L M

N O P Q R S T 0 V W X Y Z

digit: one of

0123456789

40 Description

An identifier is a sequence of nondigit characters (including the underscore and the

lowercase and uppercase letters) and digits. The first character shall be a nondigit character.

Constraints

In translation phases 7 and 8, an identifier shall not consist of the same sequence of characters

45 as a keyword.

3.1 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.2

Language 21 Lexical Elements

Semantics

An identifier denotes an object, a function, or one of the following entities that will be

described later: a tag or a member of a structure, union, or enumeration; a typedef name; a label

name; a macro name; or a macro parameter. A member of an enumeration is called an

5 enumeration constant. Macro names and macro parameters are not considered further here,

because prior to the semantic phase of program translation any occurrences of macro names in

the source file are replaced by the preprocessing token sequences that constitute their macro

definitions.

There is no specific limit on the maximum length of an identifier.

10 Implementation Limits

The implementation shall treat at least the first 31 characters of an internaI name (a macro

name or an identifier that does not have external linkage) as significant. Corresponding lowercase

and uppercase letters are different. The implementation may further restrict the significance of an

external name (an identifier that has external linkage) to six characters and may ignore

15 distinctions of alphabetical case for such names.12 These limitations on identifiers are all

implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two identifiers

differ in a nonsignificant character, the behavior is undefined.

Forward references: linkages of identifiers (3.1.2.2), macro replacement (3.8.3).

20 3.1.2,1 Scopes of Identifiers

An identifier is visible (i.e., can be used) only within a region of program text called its

scope. There are four kinds of scopes: function, file, block, and function prototype. (A function

prototype is a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto

25 statement) anywhere in the function in which it appears, and is declared implicitly by its syntactic

appearance (followed by a : and a statement). Label names shall be unique within a function.

Every other identifier has scope determined by the placement of its declaration (in a declarator

or type specifier). If the declarator or type specifier that declares the identifier appears outside of

any block or list of parameters, the identifier has file scope, which terminates at the end of the

30 translation unit. If the declarator or type specifier that declares the identifier appears inside a

block or within the list of parameter declarations in a function definition, the identifier has block

scope, which terminates at the } that closes the associated block. If the declarator or type

specifier that declares the identifier appears within the list of parameter declarations in a function

prototype (not part of a function definition), the identifier has function prototype scope, which

35 terminates at the end of the function declarator. If an outer declaration of a lexically identical

identifier exists in the same name space, it is hidden until the current scope terminates, after

which it again becomes visible.

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance of the

40 tag in a type specifier that declares the tag. Each enumeration constant has scope that begins just

after the appearance of its defining enumerator in an enumerator list. Any other identifier has

scope that begins just after the completion of its declarator.

12. See “future language directions” (3.9.1).

3.1.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.2.1

Language Lexical Elements

Forward references: compound statement, or block (3.6.2), declarations (3.5), enumeration

specifiers (3.5.2.2), function calls (3.3.2.2), function declarators (including prototypes) (3.5.4.3),

function definitions (3.7.1), the goto statement (3.6.6.1), labeled statements (3.6.1), name spaces

of identifiers (3.1.2.3), scope of macro definitions (3.8.3.5), source file inclusion (3.8.2), tags

5 (3.5.2.3), type specifiers (3.5.2).

3.1.2.2 Linkages of Identifiers

An identifier declared in different scopes or in the same scope more than once can be made to

refer to the same object or function by a process called linkage. There are three kinds of linkage:

external, internal, and none.

10 In the set of translation units and libraries that constitutes an entire program, each instance of

a particular identifier with external linkage denotes the same object or function. Within one

translation unit, each instance of an identifier with internal linkage denotes the same object or

function. Identifiers with no linkage denote unique entities.

If the declaration of a file scope identifier for an object or a function contains the storage-

15 class specifier static, the identifier has internal linkage.13

If the declaration of an identifier for an object or a function contains the storage-class

specifier extern, the identifier has the same linkage as any visible declaration of the identifier

with file scope. If there is no visible declaration with file scope, the identifier has external

linkage.

20 If the declaration of an identifier for a function has no storage-class specifier, its linkage is

determined exactly as if it were declared with the storage-class specifier extern. If the

declaration of an identifier for an object has file scope and no storage-class specifier, its linkage is

external.

The following identifiers have no linkage: an identifier declared to be anything other than an

25 object or a function; an identifier declared to be a function parameter; a block scope identifier for

an object declared without the storage-class specifier extern.

If, within a translation unit, the same identifier appears with both internal and external

linkage, the behavior is undefined.

Forward references: compound statement, or block (3.6.2), declarations (3.5), expressions (3.3),

30 external definitions (3.7).

3.1.2.3 Name Spaces of Identifiers

If more than one declaration of a particular identifier is visible at any point in a translation

unit, the syntactic context disambiguates uses that refer to different entities. Thus, there are

separate name spaces for various categories of identifiers, as follows:

35 • label names (disambiguated by the syntax of the label declaration and use);

• the tags of structures, unions, and enumerations (disambiguated by following any14 of the

keywords struct, union, or enum);

• the members of structures or unions; each structure or union has a separate name space for its

members (disambiguated by the type of the expression used to access the member via the .

40 or -> operator);

13. A function declaration can only contain the storage-class specifier static if it is at file scope; see 3.5.1.

14. There is only one name space for tags even though three are possible.

3.1.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.2.3

Language 23 Lexical Elements

• all other identifiers, called ordinary identifiers (declared in ordinary declarators or as

enumeration constants).

Forward references: enumeration specifiers (3.5.2.2), labeled statements (3.6.1), structure and

union specifiers (3.5.2.1), structure and union members (3.3.2.3). tags (3.5.2.3).

5 3.1.2.4 Storage Durations of Objects

An object has a storage duration that determines its lifetime. There are two storage

durations: static and automatic.

An object whose identifier is declared with external or internal linkage, or with the storage-

class specifier static has static storage duration. For such an object, storage is reserved and

10 its stored value is initialized only once, prior to program startup. The object exists and retains its

last-stored value throughout the execution of the entire program.1"’

An object whose identifier is declared with no linkage and without the storage-class specifier

static has automatic storage duration. Storage is guaranteed to be reserved for a new

instance of such an object on each normal entry into the block with which it is associated, or on

15 a jump from outside the block to a labeled statement in the block or in an enclosed block. If an

initialization is specified for the value stored in the object, it is performed on each normal entry,

but not if the block is entered by a jump to a labeled statement. Storage for the object is no

longer guaranteed to be reserved when execution of the block ends in any way. (Entering an

enclosed block suspends but does not end execution of the enclosing block. Calling a function

20 suspends but does not end execution of the block containing the call.) The value of a pointer that

referred to an object with automatic storage duration that is no longer guaranteed to be reserved

is indeterminate.

Forward references: compound statement, or block (3.6.2), function calls (3.3.2.2), initialization

(3.5.7).

25 3.1.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the

type of the expression used to access it. (An identifier declared to be an object is the simplest

such expression; the type is specified in the declaration of the identifier.) Types are partitioned

into object types (types that describe objects), function types (types that describe functions), and

30 incomplete types (types that describe objects but lack information needed to determine their

sizes).

An object declared as type char is large enough to store any member of the basic execution

character set. If a member of the required source character set enumerated in 2.2.1 is stored in a

char object, its value is guaranteed to be positive. If other quantities are stored in a char

35 object, the behavior is implementation-defined: the values are treated as either signed or

nonnegative integers.

There are four signed integer types, designated as signed char, short int, int. and

long int. (The signed integer and other types may be designated in several additional ways, as

described in 3.5.2.)

40 An object declared as type signed char occupies the same amount of storage as a "plain"

char object. A “plain” int object has the natural size suggested by the architecture of the

execution environment (large enough to contain any value in the range INT_MIN to INT_MAX

as defined in the header <limits.h>). In the list of signed integer types above, the range of

values of each type is a subrange of the values of the next type in the list.

15. In the case of a volatile object, the last store may not be explicit in the program.

3.1.2.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.2.5

Language 24 Lexical Elements

For each of the signed integer types, there is a corresponding (but different) unsigned integer

type (designated with the keyword unsigned) that uses the same amount of storage (including

sign information) and has the same alignment requirements. The range of nonnegative values of

a signed integer type is a subrange of the corresponding unsigned integer type, and the

5 representation of the same value in each type is the same.16 A computation involving unsigned

operands can never overflow, because a result that cannot be represented by the resulting

unsigned integer type is reduced modulo the number that is one greater than the largest value that

can be represented by the resulting unsigned integer type.

There are three floating types, designated as float, double, and long double. The set

10 of values of the type float is a subset of the set of values of the type double: the set of

values of the type double is a subset of the set of values of the type long double.

The type char, the signed and unsigned integer types, and the floating types are collectively

called the basic types. Even if the implementation defines two or more basic types to have the

same representation, they are nevertheless different types.

15 The three types char, signed char, and unsigned char are collectively called the

character types.

An enumeration comprises a set of named integer constant values. Each distinct enumeration

constitutes a different enumerated type.

The void type comprises an empty set of values; it is an incomplete type that cannot be

20 completed.

Any number of derived types can be constructed from the object, function, and incomplete

types, as follows:

• An array type describes a contiguously allocated nonempty set of objects with a particular

member object type, called the element type}1 Array types are characterized by their element

25 type and by the number of elements in the array. An array type is said to be derived from its

element type, and if its element type is T, the array type is sometimes called “array of T."

The construction of an array type from an element type is called “array type derivation.”

• A structure type describes a sequentially allocated nonempty set of member objects, each of

which has an optionally specified name and possibly distinct type.

30 • A union type describes an overlapping nonempty set of member objects, each of which has an

optionally specified name and possibly distinct type.

• A function type describes a function with specified return type. A function type is

characterized by its return type and the number and types of its parameters. A function type

is said to be derived from its return type, and if its return type is T, the function type is

35 sometimes called “function returning T." The construction of a function type from a return

type is called “function type derivation.”

• A pointer type may be derived from a function type, an object type, or an incomplete type,

called the referenced type. A pointer type describes an object whose value provides a

reference to an entity of the referenced type. A pointer type derived from the referenced type

40 T is sometimes called “pointer to T." The construction of a pointer type from a referenced

type is called “pointer type derivation.”

16. The same representation and alignment requirements are meant to imply interchangeability as arguments to
functions, return values from functions, and members of unions.

17. Since object types do not include incomplete types, an array of incomplete type cannot be constructed.

3.1.2.5 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.2.5

Language 25 Lexical Elements

These methods of constructing derived types can be applied recursively.

The type char, the signed and unsigned integer types, and the enumerated types are

collectively called integral types. The representations of integral types shall define values by use

of a pure binary numeration system.IS The representations of floating types are unspecified.

5 Integral and floating types are collectively called arithmetic types. Arithmetic types and

pointer types are collectively called scalar types. Array and structure types are collectively called
19 aggregate types.

An array type of unknown size is an incomplete type. It is completed, for an identifier of that

type, by specifying the size in a later declaration (with internal or external linkage). A structure

10 or union type of unknown content (as described in 3.5.2.3) is an incomplete type. It is

completed, for all declarations of that type, by declaring the same structure or union tag with its

defining content later in the same scope.

Array, function, and pointer types are collectively called derived declarator types. A

declarator type derivation from a type T is the construction of a derived declarator type from T

15 by the application of an array-type, a function-type, or a pointer-type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a

derived type (as noted above in the construction of derived types), or the type itself if the type

consists of no derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has three

20 corresponding qualified versions of its type:20 a const-qualified version, a volatile-qualified

version, and a version having both qualifications. The qualified or unqualified versions of a type

are distinct types that belong to the same type category and have the same representation and

alignment requirements.16 A derived type is not qualified by the qualifiers (if any) of the type

from which it is derived.

25 A pointer to void shall have the same representation and alignment requirements as a pointer

to a character type. Similarly, pointers to qualified or unqualified versions of compatible types

shall have the same representation and alignment requirements.16 Pointers to other types need not

have the same representation or alignment requirements.

Examples

30 The type designated as "float *" has type "pointer to float." Its type category is

pointer, not a floating type. The const-qualified version of this type is designated as "float *

const" whereas the type designated as "const float *” is not a qualified type — its type

is "pointer to const-qualified float” and is a pointer to a qualified type.

Finally, the type designated as "struct tag (*[5]) (float)" has type “array of

35 pointer to function returning struct tag." The array has length five and the function has a

single parameter of type float. Its type category is array.

Forward references: character constants (3.1.3.4), compatible type and composite type (3.1.2.6),

declarations (3.5), tags (3.5.2.3), type qualifiers (3.5.3).

18. A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by
successive bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps
the bit with the highest position. (Adapted from the American National Dictionary for Information Processing
Systems.)

19. Note that aggregate type does not include union type because an object with union type can only contain one
member at a time.

20. See 3.5.3 regarding qualified array and function types.

3.1.2.5 AMERICAN NATIONAL STANDARD X3.I59-1989 3.1.2.5

Language 26 Lexical Elements

3.1.2.6 Compatible Type and Composite Type

Two types have compatible type if their types are the same. Additional rules for determining

whether two types are compatible are described in 3.5.2 for type specifiers, in 3.5.3 for type

qualifiers, and in 3.5.4 for declarators.21 Moreover, two structure, union, or enumeration types

5 declared in separate translation units are compatible if they have the same number of members,

the same member names, and compatible member types; for two structures, the members shall be

in the same order: for two structures or unions, the bit-fields shall have the same widths; for two

enumerations, the members shall have the same values.

All declarations that refer to the same object or function shall have compatible type;

10 otherwise, the behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that is

compatible with both of the two types and satisfies the following conditions:

• If one type is an array of known size, the composite type is an array of that size.

• If only one type is a function type with a parameter type list (a function prototype), the

15 composite type is a function prototype with the parameter type list.

• If both types are function types with parameter type lists, the type of each parameter in the

composite parameter type list is the composite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with external or internal linkage declared in the same scope as another

20 declaration for that identifier, the type of the identifier becomes the composite type.

Example

Given the following two file scope declarations:

int f(int (*)(), double (*)[3]);

int f(int (*)(char *), double (*)[]);

25 The resulting composite type for the function is:

int f(int (*)(char *), double (*)[3]);

Forward references: declarators (3.5.4), enumeration specifiers (3.5.2.2), structure and union

specifiers (3.5.2.1), type definitions (3.5.6), type qualifiers (3.5.3), type specifiers (3.5.2).

3.1.3 Constants

30 Syntax

constant:

floating-constant

integer-constant

enumeration-constant

35 character-constant

Constraints

The value of a constant shall be in the range of representable values for its type.

21. Two types need not be identical to be compatible.

3.1.2.6 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.3

Language 27 Lexical Elements

Semantics

Each constant has a type, determined by its form and value, as detailed later.

3.1.3.1 Floating Constants

Syntax

5

10

15

20

floating-constant:

fractional-constant exponent-part f floating-suffix)

digit-sequence exponent-part floaling-suffx

fractional-constant:

digit-sequence . digit-sequence

digit-sequence .

exponent-part:

e sign digit-sequence

E sign digit-sequence

sign: one of

+

digit-sequence:

digit

digit-sequence digit

floating-suffix: one of

f 1 F L

Description

A floating constant has a significand part that may be followed by an exponent part and a

suffix that specifies its type. The components of the significand part may include a digit

sequence representing the whole-number part, followed by a period (.), followed by a digit

25 sequence representing the fraction part. The components of the exponent part are an e or E

followed by an exponent consisting of an optionally signed digit sequence. Either the whole-

number part or the fraction part shall be present; either the period or the exponent part shall be

present.

Semantics

30 The significand part is interpreted as a decimal rational number; the digit sequence in the

exponent part is interpreted as a decimal integer. The exponent indicates the power of 10 by

which the significand part is to be scaled. If the scaled value is in the range of representable

values (for its type) the result is either the nearest representable value, or the larger or smaller

representable value immediately adjacent to the nearest representable value, chosen in an

35 implementation-defined manner.

An unsuffixed floating constant has type double. If suffixed by the letter f or F, it has type

float. If suffixed by the letter 1 or L, it has type long double.

3.1.3.2 Integer Constants

Syntax

40 integer-constant:

decimal-constant integer-suffix

octal-constant integer-suffix
opt

opt
hexadecimal-constant integer-suffix

opt

3.1.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.3.2

Language Lexical Elements

5

10

15

20

25

decimal-constant:

nonzero-digit

decimal-constant digit

octal-constant:

0

octal-constant octal-digit

hexadecimal-constant:

Ox hexadecimal-digit

OX hexadecimal-digit

hexadecimal-constant hexadecimal-digit

nonzero-digit: one of

1 2 3 4 5 6

octal-digit: one of

0 1 2 3 4 5

hexadecimal-digit: one of

0 1 2 3 4 5

a b c d e f

A B C D E F

7 8 9

6 7

6 7 8 9

integer-suffix:

unsigned-suffix long-suffix

long-suffix unsigned-suffix^

unsigned-suffix: one of

u U

long-suffix: one of

1 L

Description

An integer constant begins with a digit, but has no period or exponent part. It may have a

prefix that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits.

30 An octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0

through 7 only. A hexadecimal constant consists of the prefix Ox or OX followed by a sequence

of the decimal digits and the letters a (or A) through f (or F) with values 10 through 15

respectively.

Semantics

35 The value of a decimal constant is computed base 10; that of an octal constant, base 8; that of

a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can be

represented. Unsuffixed decimal: int, long int. unsigned long int; unsuffixed octal or

hexadecimal: int, unsigned int. long int. unsigned long int; suffixed by the letter

40 u or U: unsigned int. unsigned long int; suffixed by the letter 1 or L: long int.

unsigned long int; suffixed by both the letters u or U and 1 or L: unsigned long int.

3.1.3.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.3.2

Language 29 Lexical Elements

3.1.3.3 Enumeration Constants

Syntax

enumeration-constant:

identifier

5 Semantics

An identifier declared as an enumeration constant has type int.

Forward references: enumeration specifiers (3.5.2.2).

3.1.3.4 Character Constants

Syntax

10 character-constant:

' c-char-sequence'

L' c-char-sequence'

c-char-sequence:

c-char

15 c-char-sequence c-char

c-char:

any member of the source character set except

the single-quote ', backslash \, or new-line character

escape-sequence

20 escape-sequence:

simple-escape-sequence

octal-escape-sequence

hexadecimal-escape-sequence

simple-escape-sequence: one of

25 V \" \? \\

\a \b \f \n \r \t \v

octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

30 \ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:

\x hexadecimal-digit

hexadecimal-escape-sequence hexadecimal-digit

Description

35 An integer character constant is a sequence of one or more multibyte characters enclosed in

single-quotes, as in ' x' or ' ab'. A wide character constant is the same, except prefixed by the

letter L. With a few exceptions detailed later, the elements of the sequence are any members of

the source character set; they are mapped in an implementation-defined manner to members of the

execution character set.

40 The single-quote ', the double-quote ", the question-mark ?, the backslash \, and arbitrary

integral values, are representable according to the following table of escape sequences:

3.1.3.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.3.4

Language 30 Lexical Elements

single-quote ' V
double-quote " \"
question-mark ? \?

backslash \ w
octal integer \octal digits

hexadecimal integer \xhexadecimal *

The double-quote " and question-mark ? are representable either by themselves or by the

escape sequences \" and \?, respectively, but the single-quote ' and the backslash \ shall be

represented, respectively, by the escape sequences V and \\.

10 The octal digits that follow the backslash in an octal escape sequence are taken to be part of

the construction of a single character for an integer character constant or of a single wide

character for a wide character constant. The numerical value of the octal integer so formed

specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape

15 sequence are taken to be part of the construction of a single character for an integer character

constant or of a single wide character for a wide character constant. The numerical value of the

hexadecimal integer so formed specifies the value of the desired character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can

constitute the escape sequence.

20 In addition, certain nongraphic characters are representable by escape sequences consisting of

the backslash \ followed by a lowercase letter: \a, \b. \f, \n, \r. \t, and \v.22 If any other

escape sequence is encountered, the behavior is undefined.22

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of representable

25 values for the type unsigned char for an integer character constant, or the unsigned type

corresponding to wchar_t for a wide character constant.

Semantics

An integer character constant has type int. The value of an integer character constant

containing a single character that maps into a member of the basic execution character set is the

30 numerical value of the representation of the mapped character interpreted as an integer. The

value of an integer character constant containing more than one character, or containing a

character or escape sequence not represented in the basic execution character set, is

implementation-defined. If an integer character constant contains a single character or escape

sequence, its value is the one that results when an object with type char whose value is that of

35 the single character or escape sequence is converted to type int.

A wide character constant has type wchar_t. an integral type defined in the <stddef. h>

header. The value of a wide character constant containing a single multibyte character that maps

into a member of the extended execution character set is the wide character (code) corresponding

to that multibyte character, as defined by the mbtowc function, with an implementation-defined

40 current locale. The value of a wide character constant containing more than one multibyte

character, or containing a multibyte character or escape sequence not represented in the extended

execution character set, is implementation-defined.

22. The semantics of these characters were discussed in 2.2.2.

23. See “future language directions"’ (3.9.2).

3.1.3.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.3.4

Language 31 Lexical Elements

Examples

The construction ' \0' is commonly used to represent the null character.

Consider implementations that use two’s-complement representation for integers and eight bits

for objects that have type char. In an implementation in which type char has the same range

5 of values as signed char, the integer character constant ' \xFF' has the value -1; if type

char has the same range of values as unsigned char, the character constant ' \xFF' has the

value +255 .

Even if eight bits are used for objects that have type char, the construction '\xl23'

specifies an integer character constant containing only one character. (The value of this single-

10 character integer character constant is implementation-defined and violates the above constraint.)

To specify an integer character constant containing the two characters whose values are 0x12

and '3', the construction '\0223' may be used, since a hexadecimal escape sequence is

terminated only by a nonhexadecimal character. (The value of this two-character integer

character constant is implementation-defined also.)

15 Even if 12 or more bits are used for objects that have type wchar_t, the construction

L'\1234' specifies the implementation-defined value that results from the combination of the

values 0123 and ' 4' .

Forward references: characters and integers (3.2.1.1) common definitions <stddef.h>

(4.1.5), the mbtowc function (4.10.7.2).

20 3.1.4 String Literals

Syntax

string-literal:

" s-char-sequence "
' opt

L" s-char-sequence "
' opt

25 s-char-sequence:

s-char

s-char-sequence s-char

s-char:

any member of the source character set except

30 the double-quote ", backslash \, or new-line character

escape-sequence

Description

A character string literal is a sequence of zero or more multibyte characters enclosed in

double-quotes, as in "xyz". A wide string literal is the same, except prefixed by the letter L.

35 The same considerations apply to each element of the sequence in a character string literal or

a wide string literal as if it were in an integer character constant or a wide character constant,

except that the single-quote ' is representable either by itself or by the escape sequence V . but

the double-quote " shall be represented by the escape sequence \".

Semantics

40 In translation phase 6, the multibyte character sequences specified by any sequence of

adjacent character string literal tokens, or adjacent wide string literal tokens, are concatenated into

a single multibyte character sequence. If a character string literal token is adjacent to a wide

string literal token, the behavior is undefined.

3.1.3.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.4

Language 32 Lexica] Elements

In translation phase 7, a byte or code of value zero is appended to each multibyte character

sequence that results from a string literal or literals.24 The multibyte character sequence is then

used to initialize an array of static storage duration and length just sufficient to contain the

sequence. For character string literals, the array elements have type char, and are initialized

5 with the individual bytes of the multibyte character sequence; for wide string literals, the array

elements have type wchar_t, and are initialized with the sequence of wide characters

corresponding to the multibyte character sequence.

Identical string literals of either form need not be distinct. If the program attempts to modify

a string literal of either form, the behavior is undefined.

10 Example

This pair of adjacent character string literals

"\xl2" "3"

produces a single character string literal containing the two characters whose values are \xl2

and ' 3', because escape sequences are converted into single members of the execution character

15 set just prior to adjacent string literal concatenation.

Forward references: common definitions <stddef . h> (4.1.5).

3.1.5 Operators

Syntax

operator: one of

20 []()•->

++ — & * + - ! sizeof

/%«»<><=>=== ! = | && ||
9 ;

= *= /= %= += -= «= »= &= A= | =
25 , # ##

Constraints

The operators [].(), and ? : shall occur in pairs, possibly separated by expressions. The

operators # and ## shall occur in macro-defining preprocessing directives only.

Semantics

30 An operator specifies an operation to be performed (an evaluation) that yields a value, or

yields a designator, or produces a side effect, or a combination thereof. An operand is an entity

on which an operator acts.

Forward references: expressions (3.3), macro replacement (3.8.3).

24. A character string literal need not be a string (see 4.1.1), because a null character may be embedded in it by a
\0 escape sequence.

3.1.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.5

Language 33 Lexical Elements

3.1.6 Punctuators

Syntax

punctuator: one of

[] () { } * , : = ; ... #

5 Constraints

The punctuators [],(), and { } shall occur (after translation phase 4) in pairs, possibly

separated by expressions, declarations, or statements. The punctuator # shall occur in

preprocessing directives only.

Semantics

10 A punctuator is a symbol that has independent syntactic and semantic significance but does

not specify an operation to be performed that yields a value. Depending on context, the same

symbol may also represent an operator or part of an operator.

Forward references: expressions (3.3), declarations (3.5), preprocessing directives (3.8),

statements (3.6).

15 3.1.7 Header Names

Syntax

header-name:

<h-char-sequence>

" q-char-sequence"

20 h-char-sequence:

h-char

h-char-sequence h-char

h-char:

any member of the source character set except

25 the new-line character and >

q-char-sequence:

q-char

q-char-sequence q-char

q-char:

30 any member of the source character set except

the new-line character and "

Constraints

Header name preprocessing tokens shall only appear within a #include preprocessing

directive.

35 Semantics

The sequences in both forms of header names are mapped in an implementation-defined

manner to headers or external source file names as specified in 3.8.2.

If the characters ', \. ", or /* occur in the sequence between the < and > delimiters, the

behavior is undefined. Similarly, if the characters ', \, or /* occur in the sequence between the

40 " delimiters, the behavior is undefined.2S

25. Thus, sequences of characters that resemble escape sequences cause undefined behavior.

3.1.6 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.7

Lexical Elements Language 34

Example

The following sequence of characters:

0x3<l/a.h>le2

#include <l/a.h>

5 #define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token

delimited by a { on the left and a } on the right).

iu / Wait t-tVii.r'i-i.fioPf

{#}{include[{<l/a.h>}

10 {#}{define} {const}{. }{member}{ @ }{$}

Forward references: source hie inclusion (3.8.2).

3.1.8 Preprocessing Numbers

Syntax

pp-number:

15 digit

■ dig'r
pp-number digit

pp-number nondigit

pp-number e sign

20 pp-number E sign

pp-number .

Description

A preprocessing number begins with a digit optionally preceded by a period (.) and may be

followed by letters, underscores, digits, periods, and e+. e-. E+. or E- character sequences.

25 Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics

A preprocessing number does not have type or a value; it acquires both after a successful

conversion (as part of translation phase 7) to a floating constant token or an integer constant

token.

30 3.1.9 Comments

Except within a character constant, a string literal, or a comment, the characters /* introduce

a comment. The contents of a comment are examined only to identify multibyte characters and

to And the characters */ that terminate it.2h

26. Thus, comments do not nest.

3.1.7 AMERICAN NATIONAL STANDARD X3.159-1989 3.1.9

Language 35 Conversions

3.2 Conversions

Several operators convert operand values from one type to another automatically. This

section specifies the result required from such an implicit conversion, as well as those that result

from a cast operation (an explicit conversion). The list in 3.2.1.5 summarizes the conversions

5 performed by most ordinary operators; it is supplemented as required by the discussion of each

operator in 3.3.

Conversion of an operand value to a compatible type causes no change to the value or the

representation.

Forward references: cast operators (3.3.4).

10 3.2.1 Arithmetic Operands

3.2.1.1 Characters and Integers

A char, a short int, or an int bit-field, or their signed or unsigned varieties, or an

enumeration type, may be used in an expression wherever an int or unsigned int may be

used. If an int can represent all values of the original type, the value is converted to an int;

15 otherwise, it is converted to an unsigned int. These are called the integral promotionsr

All other arithmetic types are unchanged by the integral promotions.

The integral promotions preserve value including sign. As discussed earlier, whether a

‘'plain" char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (3.5.2.2), structure and union specifiers (3.5.2.1).

20 3.2.1.2 Signed and Unsigned Integers

When a value with integral type is converted to another integral type, if the value can be

represented by the new type, its value is unchanged.

When a signed integer is converted to an unsigned integer with equal or greater size, if the

value of the signed integer is nonnegative, its value is unchanged. Otherwise: if the unsigned

25 integer has greater size, the signed integer is first promoted to the signed integer corresponding to

the unsigned integer; the value is converted to unsigned by adding to it one greater than the

largest number that can be represented in the unsigned integer type.2s

When a value with integral type is demoted to an unsigned integer with smaller size, the

result is the nonnegative remainder on division by the number one greater than the largest

30 unsigned number that can be represented in the type with smaller size. When a value with

integral type is demoted to a signed integer with smaller size, or an unsigned integer is converted

to its corresponding signed integer, if the value cannot be represented the result is

implementation-defined.

27. The integral promotions are applied only as part of the usual arithmetic conversions, to certain argument
expressions, to the operands of the unary +, -, and ~ operators, and to both operands of the shift operators, as
specified by their respective sections.

28. In a two’s-complement representation, there is no actual change in the bit pattern except filling the high-order
bits with copies of the sign bit if the unsigned integer has greater size.

3.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.2.1.2

Language 36 Conversions

3.2.1.3 Floating and Integral

When a value of floating type is converted to integral type, the fractional part is discarded. If

the value of the integral part cannot be represented by the integral type, the behavior is

undefined.211

5 When a value of integral type is converted to floating type, if the value being converted is in

the range of values that can be represented but cannot be represented exactly, the result is either

the nearest higher or nearest lower value, chosen in an implementation-defined manner.

3.2.1.4 Floating Types

When a float is promoted to double or long double, or a double is promoted to

10 long double, its value is unchanged.

When a double is demoted to float or a long double to double or float, if the

value being converted is outside the range of values that can be represented, the behavior is

undefined. If the value being converted is in the range of values that can be represented but

cannot be represented exactly, the result is either the nearest higher or nearest lower value,

15 chosen in an implementation-defined manner.

3.2.1.5 Usual Arithmetic Conversions

Many binary operators that expect operands of arithmetic type cause conversions and yield

result types in a similar way. The purpose is to yield a common type, which is also the type of

the result. This pattern is called the usual arithmetic conversions:

20 First, if either operand has type long double, the other operand is converted to long

double.

Otherwise, if either operand has type double, the other operand is converted to double.

Otherwise, if either operand has type float, the other operand is converted to float.

Otherwise, the integral promotions are performed on both operands. Then the following

25 rules are applied:

If either operand has type unsigned long int, the other operand is converted to

unsigned long int.

Otherwise, if one operand has type long int and the other has type unsigned

int, if a long int can represent all values of an unsigned int, the operand of

30 type unsigned int is converted to long int; if a long int cannot represent

all the values of an unsigned int, both operands are converted to unsigned

long int.

Otherwise, if either operand has type long int. the other operand is converted to

long int.

35 Otherwise, if either operand has type unsigned int, the other operand is

converted to unsigned int.

Otherwise, both operands have type int.

The values of floating operands and of the results of floating expressions may be represented

in greater precision and range than that required by the type: the types are not changed thereby.30

29. The remaindering operation performed when a value of integral type is converted to unsigned type need not be
performed when a value of floating type is converted to unsigned type. Thus, the range of portable floating
values is (-1 ,U/‘ypc_MAX+1).

30. The cast and assignment operators still must perform their specified conversions, as described in 3.2.1.3 and
3.2.1.4.

3.2.1.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.2.1.5

Language 37 Conversions

3.2.2 Other Operands

3.2.2.1 Lvalues and Function Designators

An lvalue is an expression (with an object type or an incomplete type other than void) that

designates an object.31 When an object is said to have a particular type, the type is specified by

5 the lvalue used to designate the object. A modifiable lvalue is an lvalue that does not have array

type, does not have an incomplete type, does not have a const-qualified type, and if it is a

structure or union, does not have any member (including, recursively, any member of all

contained structures or unions) with a const-qualified type.

Except when it is the operand of the sizeof operator, the unary & operator, the ++ operator,

10 the — operator, or the left operand of the . operator or an assignment operator, an lvalue that

does not have array type is converted to the value stored in the designated object (and is no

longer an lvalue). If the lvalue has qualified type, the value has the unqualified version of the

type of the lvalue; otherwise, the value has the type of the lvalue. If the lvalue has an incomplete

type and does not have array type, the behavior is undefined.

15 Except when it is the operand of the sizeof operator or the unary & operator, or is a

character string literal used to initialize an array of character type, or is a wide string literal used

to initialize an array with element type compatible with wchar_ t, an lvalue that has type “array

of type” is converted to an expression that has type “pointer to type" that points to the initial

element of the array object and is not an lvalue.

20 A function designator is an expression that has function type. Except when it is the operand

of the sizeof operator3 or the unary & operator, a function designator with type “function

returning type" is converted to an expression that has type “pointer to function returning type."

Forward references: address and indirection operators (3.3.3.2), assignment operators (3.3.16),

common definitions <stddef. h> (4.1.5), initialization (3.5.7), postfix increment and decrement

25 operators (3.3.2.4), prefix increment and decrement operators (3.3.3.1), the sizeof operator

(3.3.3.4), structure and union members (3.3.2.3).

3.2.2.2 void

The (nonexistent) value of a void expression (an expression that has type void) shall not be

used in any way, and implicit or explicit conversions (except to void) shall not be applied to

30 such an expression. If an expression of any other type occurs in a context where a void

expression is required, its value or designator is discarded. (A void expression is evaluated for

its side effects.)

3.2.2.3 Pointers

A pointer to void may be converted to or from a pointer to any incomplete or object type.

35 A pointer to any incomplete or object type may be converted to a pointer to void and back

again; the result shall compare equal to the original pointer.

For any qualifier q, a pointer to a non-c/-qualified type may be converted to a pointer to the

^/-qualified version of the type; the values stored in the original and converted pointers shall

compare equal.

31. The name “lvalue" comes originally from the assignment expression El = E2. in which the left operand El
must be a (modifiable) lvalue. It is perhaps better considered as representing an object “locator value." What
is sometimes called “rvalue" is in this standard described as the “value of an expression.”

An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary expression
that is a pointer to an object, *E is an lvalue that designates the object to which E points.

32. Because this conversion does not occur, the operand of the sizeof operator remains a function designator and
violates the constraint in 3.3.3.4.

3.2.1.5 AMERICAN NATIONAL STANDARD X3.159-1989 3.2.2.3

Language 38 Conversions

An integral constant expression with the value 0, or such an expression cast to type void *,

is called a null pointer constant." If a null pointer constant is assigned to or compared for

equality to a pointer, the constant is converted to a pointer of that type. Such a pointer, called a

null pointer, is guaranteed to compare unequal to a pointer to any object or function.

5 Two null pointers, converted through possibly different sequences of casts to pointer types,

shall compare equal.

Forward references: cast operators (3.3.4), equality operators (3.3.9). simple assignment

(3.3.16.1).

33. The macro NULL is defined in <stddef .h> as a null pointer constant; see 4.1.5.

3.2.2.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.2.2.3

Language 39 Expressions

3.3 Expressions

An expression is a sequence of operators and operands that specifies computation of a value,

or that designates an object or a function, or that generates side effects, or that performs a

combination thereof.

5 Between the previous and next sequence point an object shall have its stored value modified

at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed

only to determine the value to be stored.'4

Except as indicated by the syntax35 or otherwise specified later (for the function-call operator

0, &&, I I• ?:, and comma operators), the order of evaluation of subexpressions and the order

10 in which side effects take place are both unspecified.

Some operators (the unary operator ~, and the binary operators «, », &, A, and |,

collectively described as bitwise operators) shall have operands that have integral type. These

operators return values that depend on the internal representations of integers, and thus have

implementation-defined aspects for signed types.

15 If an exception occurs during the evaluation of an expression (that is, if the result is not

mathematically defined or not in the range of representable values for its type), the behavior is

undefined.

An object shall have its stored value accessed only by an lvalue that has one of the following

types:36

20 • the declared type of the object,

• a qualified version of the declared type of the object,

• a type that is the signed or unsigned type corresponding to the declared type of the object,

• a type that is the signed or unsigned type corresponding to a qualified version of the declared

type of the object,

25 • an aggregate or union type that includes one of the aforementioned types among its members

(including, recursively, a member of a subaggregate or contained union), or

• a character type.

34. This paragraph renders undefined statement expressions such as

i = ++i + 1;

while allowing

i = i + 1;

35. The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the
order of the major subsections of this section, highest precedence first. Thus, for example, the expressions
allowed as the operands of the binary + operator (3.3.6) shall be those expressions defined in 3.3.1 through
3.3.6. The exceptions are cast expressions (3.3.4) as operands of unary operators (3.3.3), and an operand
contained between any of the following pairs of operators: grouping parentheses () (3.3.1), subscripting
brackets [] (3.3.2.1), function-call parentheses () (3.3.2.2), and the conditional operator ? : (3.3.15).

Within each major subsection, the operators have the same precedence. Left- or right-associativity is indicated
in each subsection by the syntax for the expressions discussed therein.

36. The intent of this list is to specify those circumstances in which an object may or may not be aliased.

3.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.3

Language 40 Expressions

3.3.1 Primary Expressions

Syntax

primary-expression:

identifier

5 constant

string-literal

(expression)

Semantics

An identifier is a primary expression, provided it has been declared as designating an object

10 (in which case it is an lvalue) or a function (in which case it is a function designator).

A constant is a primary expression. Its type depends on its form and value, as detailed in

3.1.3.

A string literal is a primary expression. It is an lvalue with type as detailed in 3.1.4.

A parenthesized expression is a primary expression. Its type and value are identical to those

15 of the unparenthesized expression. It is an lvalue, a function designator, or a void expression if

the unparenthesized expression is, respectively, an lvalue, a function designator, or a void

expression.

Forward references: declarations (3.5).

3.3.2 Postfix Operators

20 Syntax

postfix-expression:

primary-expression

postfix-expression [expression]

postfix-expression (argument-expression-list)

25 postfix-expression . identifier

postfix-expression -> identifier

postfix-expression 4+

postfix-expression —

argument-express ion-list:

30 assignment-expression

argument-expression-list , assignment-expression

3.3.2.1 Array Subscripting

Constraints

One of the expressions shall have type “pointer to object typed’ the other expression shall

35 have integral type, and the result has type “type.”

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted

designation of an element of an array object. The definition of the subscript operator (] is that

E1[E2] is identical to (*(E1+(E2))). Because of the conversion rules that apply to the

40 binary + operator, if El is an array object (equivalently, a pointer to the initial element of an

array object) and E2 is an integer, El [E2] designates the E2-th element of El (counting from

zero).

Successive subscript operators designate an element of a multidimensional array object. If E

is an n-dimensional array {n>2) with dimensions ixjx ... xk, then E (used as other than an

45 lvalue) is converted to a pointer to an (/?-l)-dimensional array with dimensions jx ... xk. If the

unary * operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the

3.3.1 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.2.1

Language 41 Expressions

result is the pointed-to (/?-1)-dimensional array, which itself is converted into a pointer if used as

other than an lvalue. It follows from this that arrays are stored in row-major order (last subscript

varies fastest).

Example

5 Consider the array object defined by the declaration

int x[3] [5] ;

Here x is a 3x5 array of ints; more precisely, x is an array of three element objects, each of

which is an array of five ints. In the expression x [i], which is equivalent to (* (x+ (i))),

x is first converted to a pointer to the initial array of five ints. Then i is adjusted according to

10 the type of x, which conceptually entails multiplying i by the size of the object to which the

pointer points, namely an array of five int objects. The results are added and indirection is

applied to yield an array of five ints. When used in the expression x[i] [j], that in turn is

converted to a pointer to the first of the ints, so x[i] [j] yields an int.

Forward references: additive operators (3.3.6), address and indirection operators (3.3.3.2). array

15 declarators (3.5.4.2).

3.3.2.2 Function Calls

Constraints

The expression that denotes the called function'7 shall have type pointer to function returning

void or returning an object type other than an array type.

20 If the expression that denotes the called function has a type that includes a prototype, the

number of arguments shall agree with the number of parameters. Each argument shall have a

type such that its value may be assigned to an object with the unqualified version of the type of

its corresponding parameter.

Semantics

25 A postfix expression followed by parentheses () containing a possibly empty, comma-

separated list of expressions is a function call. The postfix expression denotes the called

function. The list of expressions specifies the arguments to the function.

If the expression that precedes the parenthesized argument list in a function call consists

solely of an identifier, and if no declaration is visible for this identifier, the identifier is implicitly

30 declared exactly as if, in the innermost block containing the function call, the declaration

extern int identifier {) ;

appeared.'71

An argument may be an expression of any object type. In preparing for the call to a function,

the arguments are evaluated, and each parameter is assigned the value of the corresponding

35 argument.3" The value of the function call expression is specified in 3.6.6.4.

37. Most often, this is the result of converting an identifier that is a function designator.

38. That is, an identifier with block scope declared to have external linkage with type function without parameter
information and returning an int. If in fact it is not defined as having type “function returning int,” the
behavior is undefined.

39. A function may change the values of its parameters, but these changes cannot affect the values of the
arguments. On the other hand, it is possible to pass a pointer to an object, and the function may change the
value of the object pointed to. A parameter declared to have array or function type is converted to a parameter
with a pointer type as described in 3.7.1.

3.3.2.1 AMERICAN NATIONAL STANDARD X3.139-1989 3.3.2.2

42 Expressions Language

If the expression that denotes the called function has a type that does not include a prototype,

the integral promotions are performed on each argument and arguments that have type float are

promoted to double. These are called the default argument promotions. If the number of

arguments does not agree with the number of parameters, the behavior is undefined. If the

5 function is defined with a type that does not include a prototype, and the types of the arguments

after promotion are not compatible with those of the parameters after promotion, the behavior is

undefined. If the function is defined with a type that includes a prototype, and the types of the

arguments after promotion are not compatible with the types of the parameters, or if the prototype

ends with an ellipsis (, . . .), the behavior is undefined.

10 If the expression that denotes the called function has a type that includes a prototype, the

arguments are implicitly converted, as if by assignment, to the types of the corresponding

parameters. The ellipsis notation in a function prototype declarator causes argument type

conversion to stop after the last declared parameter. The default argument promotions are

performed on trailing arguments. If the function is defined with a type that is not compatible

15 with the type (of the expression) pointed to by the expression that denotes the called function, the

behavior is undefined.

No other conversions are performed implicitly; in particular, the number and types of

arguments are not compared with those of the parameters in a function definition that does not

include a function prototype declarator.

20 The order of evaluation of the function designator, the arguments, and subexpressions within

the arguments is unspecified, but there is a sequence point before the actual call.

Recursive function calls shall be permitted, both directly and indirectly through any chain of

other functions.

Example

25 In the function call

(*pf[fl()]) (f 2 () , f 3 () + f 4 ())

the functions fl, f2, f3. and f4 may be called in any order. All side effects shall be

completed before the function pointed to by pf [fl ()] is entered.

Forward references: function declarators (including prototypes) (3.5.4.3), function definitions

30 (3.7.1), the return statement (3.6.6.4), simple assignment (3.3.16.1).

3.3.2.3 Structure and Union Members

Constraints

The first operand of the . operator shall have a qualified or unqualified structure or union

type, and the second operand shall name a member of that type.

35 The first operand of the -> operator shall have type "pointer to qualified or unqualified

structure" or "pointer to qualified or unqualified union," and the second operand shall name a

member of the type pointed to.

Semantics

A postfix expression followed by a dot . and an identifier designates a member of a structure

40 or union object. The value is that of the named member, and is an lvalue if the first expression

is an lvalue. If the first expression has qualified type, the result has the so-qualified version of

the type of the designated member.

3.3.2.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.2.3

Language 43 Expressions

A postfix expression followed by an arrow -> and an identifier designates a member of a

structure or union object. The value is that of the named member of the object to which the first

expression points, and is an lvalue.40 If the first expression is a pointer to a qualified type, the

result has the so-qualified version of the type of the designated member.

5 With one exception, if a member of a union object is accessed after a value has been stored in

a different member of the object, the behavior is implementation-defined.41 One special

guarantee is made in order to simplify the use of unions: If a union contains several structures

that share a common initial sequence (see below), and if the union object currently contains one

of these structures, it is permitted to inspect the common initial part of any of them. Two

10 structures share a common initial sequence if corresponding members have compatible types (and,

for bit-fields, the same widths) for a sequence of one or more initial members.

Examples

If f is a function returning a structure or union, and x is a member of that structure or union,

f () .x is a valid postfix expression but is not an lvalue.

15 The following is a valid fragment:

union {

struct {

int

} in¬

alltypes;

20 struct {

int type;

int

} ni;

struct {

intnode;

25 int type;

double

} nf;

} u;

u.nf.type = 1;

doublenode

30 u.nf.doublenode = 3.

/*...*/

14;

if (u.n.alltypes == 1)

/*...*/ sin(u.nf.doublenode) /*...*/

Forward references: address and indirection operators (3.3.3.2), structure and union specifiers

35 (3.5.2.1).

3.3.2.4 Postfix Increment and Decrement Operators

Constraints

The operand of the postfix increment or decrement operator shall have qualified or unqualified

scalar type and shall be a modifiable lvalue.

40. If &E is a valid pointer expression (where & is the “address-of” operator, which generates a pointer to its
operand), the expression (&E) ->MOS is fhe same as E .MOS.

41. The “byte orders” for scalar types are invisible to isolated programs that do not indulge in type punning (for
example, by assigning to one member of a union and inspecting the storage by accessing another member that
is an appropriately sized array of character type), but must be accounted for when conforming to externally
imposed storage layouts.

3.3.2.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.2.4

44 Expressions Language

Semantics

The result of the postfix ++ operator is the value of the operand. After the result is obtained,

the value of the operand is incremented. (That is. the value 1 of the appropriate type is added to

it.) See the discussions of additive operators and compound assignment for information on

5 constraints, types, and conversions and the effects of operations on pointers. The side effect of

updating the stored value of the operand shall occur between the previous and the next sequence

point.

The postfix — operator is analogous to the postfix ++ operator, except that the value of the

operand is decremented (that is, the value I of the appropriate type is subtracted from it).

10 Forward references: additive operators (3.3.6), compound assignment (3.3.16.2).

3.3.3 Unary Operators

Syntax

unary-expression:

postfix-expression

15 ++ unary-expression

— unary-expression

unary-operator cast-expression

sizeof unary-expression

sizeof (type-name)

20 unary-operator: one of

& * + !

3.3.3.1 Prefix Increment and Decrement Operators

Constraints

The operand of the prefix increment or decrement operator shall have qualified or unqualified

25 scalar type and shall be a modifiable lvalue.

Semantics

The value of the operand of the prefix ++ operator is incremented. The result is the new

value of the operand after incrementation. The expression ++E is equivalent to (E+=l). See

the discussions of additive operators and compound assignment for information on constraints,

30 types, side effects, and conversions and the effects of operations on pointers.

The prefix — operator is analogous to the prefix ++ operator, except that the value of the

operand is decremented.

Forward references: additive operators (3.3.6), compound assignment (3.3.16.2).

3.3.3.2 Address and Indirection Operators

35 Constraints

The operand of the unary & operator shall be either a function designator or an lvalue that

designates an object that is not a bit-field and is not declared with the register storage-class

specifier.

The operand of the unary * operator shall have pointer type.

40 Semantics

The result of the unary & (address-of) operator is a pointer to the object or function

designated by its operand. If the operand has type “type,” the result has type "pointer to type."

The unary * operator denotes indirection. If the operand points to a function, the result is a

function designator; if it points to an object, the result is an lvalue designating the object. If the

3.3.2.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.3.2

Language 45 Expressions

operand has type “pointer to type," the result has type "type." If an invalid value has been

assigned to the pointer, the behavior of the unary * operator is undefined.42

Forward references: storage-class specifiers (3.5.1), structure and union specifiers (3.5.2.1).

3.3.3.3 Unary Arithmetic Operators

5 Constraints

The operand of the unary + or - operator shall have arithmetic type; of the ~ operator,

integral type; of the ! operator, scalar type.

Semantics

The result of the unary + operator is the value of its operand. The integral promotion is

10 performed on the operand, and the result has the promoted type.

The result of the unary - operator is the negative of its operand. The integral promotion is

performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its operand (that is, each bit in the

result is set if and only if the corresponding bit in the converted operand is not set). The integral

15 promotion is performed on the operand, and the result has the promoted type. The expression ~E

is equivalent to (ULONG_MAX-E) if E is promoted to type unsigned long, to

(UINT_MAX—E) if E is promoted to type unsigned int. (The constants ULONG_MAX and

UINT_MAX are defined in the header Climits ,h>.)

The result of the logical negation operator ! is 0 if the value of its operand compares unequal

20 to 0, 1 if the value of its operand compares equal to 0. The result has type int. The expression

!E is equivalent to (0==E).

Forward references: limits <f loat. h> and <limits . h> (4.1.4).

3.3.3.4 The sizeof Operator

Constraints

25 The sizeof operator shall not be applied to an expression that has function type or an

incomplete type, to the parenthesized name of such a type, or to an lvalue that designates a bit-

held object.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an expression

30 or the parenthesized name of a type. The size is determined from the type of the operand, which

is not itself evaluated. The result is an integer constant.

When applied to an operand that has type char, unsigned char, or signed char, (or a

qualified version thereof) the result is 1. When applied to an operand that has array type, the

result is the total number of bytes in the array.43 When applied to an operand that has structure

35 or union type, the result is the total number of bytes in such an object, including internal and

trailing padding.

42. It is always true that if E is a function designator or an lvalue that is a valid operand of the unary & operator,
*&E is a function designator or an lvalue equal to E. If *P is an lvalue and T is the name of an object pointer
type, the cast expression * (T)P is an lvalue that has a type compatible with that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an address
inappropriately aligned for the type of object pointed to, and the address of an object that has automatic storage
duration when execution of the block with which the object is associated has terminated.

43. When applied to a parameter declared to have array or function type, the sizeof operator yields the size of
the pointer obtained by converting as in 3.2.2.1; see 3.7.1.

3.3.3.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.3.4

Language 46 Expressions

The value of the result is implementation-defined, and its type (an unsigned integral type) is

size_t defined in the <stddef .h> header.

Examples

A principal use of the sizeof operator is in communication with routines such as storage

5 allocators and I/O systems. A storage-allocation function might accept a size (in bytes) of an

object to allocate and return a pointer to void. For example:

extern void *alloc(size_t);

double *dp = alloc(sizeof *dp) ;

The implementation of the alloc function should ensure that its return value is aligned suitably

10 for conversion to a pointer to double.

Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[0]

Forward references: common definitions <stddef .h> (4.1.5), declarations (3.5), structure and

union specifiers (3.5.2.1), type names (3.5.5).

15 3.3.4 Cast Operators

Syntax

cast-expression:

unary-expression

(type-name) cast-expression

20 Constraints

Unless the type name specifies void type, the type name shall specify qualified or unqualified

scalar type and the operand shall have scalar type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the expression to

25 the named type. This construction is called a cast.44 A cast that specifies no conversion has no

effect on the type or value of an expression.

Conversions that involve pointers (other than as permitted by the constraints of 3.3.16.1) shall

be specified by means of an explicit cast; they have implementation-defined and undefined

aspects:

30 A pointer may be converted to an integral type. The size of integer required and the result

are implementation-defined. If the space provided is not long enough, the behavior is

undefined.

An arbitrary integer may be converted to a pointer. The result is implementation-

defined.45

35 A pointer to an object or incomplete type may be converted to a pointer to a different

object type or a different incomplete type. The resulting pointer might not be valid if it is

improperly aligned for the type pointed to. It is guaranteed, however, that a pointer to an

object of a given alignment may be converted to a pointer to an object of the same

44. A cast does not yield an lvalue. Thus, a cast to a qualified type has the same effect as a cast to the unqualified
version of the type.

45. The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be
consistent with the addressing structure of the execution environment.

3.3.3.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.4

Language 47 Expressions

alignment or a less strict alignment and back again; the result shall compare equal to the

original pointer. (An object that has character type has the least strict alignment.)

A pointer to a function of one type may be converted to a pointer to a function of another

type and back again; the result shall compare equal to the original pointer. If a converted

5 pointer is used to call a function that has a type that is not compatible with the type of the

called function, the behavior is undefined.

Forward references: equality operators (3.3.9), function declarators (including prototypes)

(3.5.4.3), simple assignment (3.3.16.1), type names (3.5.5).

3.3.5 Multiplicative Operators

10 Syntax

multiplicative-expression:

cast-expression

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

15 multiplicative-expression % cast-expression

Constraints

Each of the operands shall have arithmetic type. The operands of the % operator shall have

integral type.

Semantics

20 The usual arithmetic conversions are performed on the operands.

The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the

second; the result of the % operator is the remainder. In both operations, if the value of the

second operand is zero, the behavior is undefined.

25 When integers are divided and the division is inexact, if both operands are positive the result

of the / operator is the largest integer less than the algebraic quotient and the result of the %

operator is positive. If either operand is negative, whether the result of the / operator is the

largest integer less than or equal to the algebraic quotient or the smallest integer greater than or

equal to the algebraic quotient is implementation-defined, as is the sign of the result of the %

30 operator. If the quotient a/b is representable, the expression (a/b) *b + a%b shall equal a.

3.3.6 Additive Operators

Syntax

additive-expression:

multiplicative-expression

35 additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a

pointer to an object type and the other shall have integral type. (Incrementing is equivalent to

40 adding 1.)

For subtraction, one of the following shall hold:

• both operands have arithmetic type;

• both operands are pointers to qualified or unqualified versions of compatible object types; or

3.3.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.6

Language 48 Expressions

• the left operand is a pointer to an object type and the right operand has integral type.

(Decrementing is equivalent to subtracting 1.)

Semantics

If both operands have arithmetic type, the usual arithmetic conversions are performed on

5 them.

The result of the binary + operator is the sum of the operands.

The result of the binary - operator is the difference resulting from the subtraction of the

second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a

10 pointer to the first element of an array of length one with the type of the object as its element

type.

When an expression that has integral type is added to or subtracted from a pointer, the result

has the type of the pointer operand. If the pointer operand points to an element of an array

object, and the array is large enough, the result points to an element offset from the original

15 element such that the difference of the subscripts of the resulting and original array elements

equals the integral expression. In other words, if the expression P points to the /-th element of

an array object, the expressions (P)+N (equivalently, N+(P)) and (P)-N (where N has the

value n) point to, respectively, the i+n-th and /-«-th elements of the array object, provided they

exist. Moreover, if the expression P points to the last element of an array object, the expression

20 (P)+l points one past the last element of the array object, and if the expression Q points one

past the last element of an array object, the expression (Q) -1 points to the last element of the

array object. If both the pointer operand and the result point to elements of the same array

object, or one past the last element of the array object, the evaluation shall not produce an

overflow; otherwise, the behavior is undefined. Unless both the pointer operand and the result

25 point to elements of the same array object, or the pointer operand points one past the last element

of an array object and the result points to an element of the same array object, the behavior is

undefined if the result is used as an operand of the unary * operator.

When two pointers to elements of the same array object are subtracted, the result is the

difference of the subscripts of the two array elements. The size of the result is implementation-

30 defined, and its type (a signed integral type) is ptrdiff_t defined in the <stddef ,h> header.

As with any other arithmetic overflow, if the result does not fit in the space provided, the

behavior is undefined. In other words, if the expressions P and Q point to, respectively, the /-th

and j-th elements of an array object, the expression (P)-(Q) has the value i—j provided the

value fits in an object of type ptrdiff_t. Moreover, if the expression P points either to an

35 element of an array object or one past the last element of an array object, and the expression Q

points to the last element of the same array object, the expression ((Q)+1)-(P) has the same

value as ((Q) - (P))+l and as -((P)-((Q)+D), and has the value zero if the expression P

points one past the last element of the array object, even though the expression (Q)+l does not

point to an element of the array object. Unless both pointers point to elements of the same array

40 object, or one past the last element of the array object, the behavior is undefined.46

46. Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this
scheme the integral expression added to or subtracted from the converted pointer is first multiplied by the size
of the object originally pointed to, and the resulting pointer is converted back to the original type. For pointer
subtraction, the result of the difference between the character pointers is similarly divided by the size of the
object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which may overlap another
object in the program) just after the end of the object in order to satisfy the “one past the last element”
requirements.

3.3.6 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.6

Language 49 Expressions

Forward references: common definitions <stddef .h> (4.1.5).

3.3.7 Bitwise Shift Operators

Syntax

shift-expression:

5 additive-expression

shift-expression « additive-expression

shift-expression » additive-expression

Constraints

Each of the operands shall have integral type.

10 Semantics

The integral promotions are performed on each of the operands. The type of the result is that

of the promoted left operand. If the value of the right operand is negative or is greater than or

equal to the width in bits of the promoted left operand, the behavior is undefined.

The result of El « E2 is El left-shifted E2 bit positions; vacated bits are filled with zeros.

15 If El has an unsigned type, the value of the result is El multiplied by the quantity, 2 raised to

the power E2, reduced modulo ULONG_MAX+l if El has type unsigned long, UINT_MAX+1

otherwise. (The constants ULONG_MAX and UINT_MAX are defined in the header

Climits . h>.)

The result of El » E2 is El right-shifted E2 bit positions. If El has an unsigned type or if

20 El has a signed type and a nonnegative value, the value of the result is the integral part of the

quotient of El divided by the quantity, 2 raised to the power E2. If El has a signed type and a

negative value, the resulting value is implementation-defined.

3.3.8 ReJationa! Operators

Syntax

25 relational-expression:

shift-expression

relational-expression <

relational-expression >

relational-expression <

30 relational-expression >

Constraints

One of the following shall hold:

* both operands have arithmetic type;

• both operands are pointers to qualified or unqualified versions of compatible object types; or

35 • both operands are pointers to qualified or unqualified versions of compatible incomplete types.

Semantics

If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a

pointer to the first element of an array of length one with the type of the object as its element

40 type.

When two pointers are compared, the result depends on the relative locations in the address

space of the objects pointed to. If the objects pointed to are members of the same aggregate

object, pointers to structure members declared later compare higher than pointers to members

declared earlier in the structure, and pointers to array elements with larger subscript values

shift-expression

shift-expression

= shift-expression

= shift-expression

3.3.6 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.8

Language 50 Expressions

compare higher than pointers to elements of the same array with lower subscript values. All

pointers to members of the same union object compare equal. If the objects pointed to are not

members of the same aggregate or union object, the result is undefined, with the following

exception. If the expression P points to an element of an array object and the expression Q

5 points to the last element of the same array object, the pointer expression Q+l compares higher

than P. even though Q+l does not point to an element of the array object.

If two pointers to object or incomplete types both point to the same object, or both point one

past the last element of the same array object, they compare equal. If two pointers to object or

incomplete types compare equal, both point to the same object, or both point one past the last

10 element of the same array object.47

Each of the operators < (less than), > (greater than), <= (less than or equal to), and >=

(greater than or equal to) shall yield 1 if the specified relation is true and 0 if it is false.4* The

result has type int.

3.3.9 Equality Operators

15 Syntax

equality- e.xpressi on:

relational-expression

equality-expression == relational-expression

equality-expression ! = relational-expression

20 Constraints

One of the following shall hold:

• both operands have arithmetic type;

• both operands are pointers to qualified or unqualified versions of compatible types;

• one operand is a pointer to an object or incomplete type and the other is a pointer to a

25 qualified or unqualified version of void; or

• one operand is a pointer and the other is a null pointer constant.

Semantics

The == (equal to) and the != (not equal to) operators are analogous to the relational

operators except for their lower precedence.4'1 Where the operands have types and values suitable

30 for the relational operators, the semantics detailed in 3.3.8 apply.

If two pointers to object or incomplete types are both null pointers, they compare equal. If

two pointers to object or incomplete types compare equal, they both are null pointers, or both

point to the same object, or both point one past the last element of the same array object. If two

pointers to function types are both null pointers or both point to the same function, they compare

35 equal. If two pointers to function types compare equal, either both are null pointers, or both

point to the same function. If one of the operands is a pointer to an object or incomplete type

and the other has type pointer to a qualified or unqualified version of void, the pointer to an

object or incomplete type is converted to the type of the other operand.

47. If invalid prior pointer operations, such as accesses outside array bounds, produced undefined behavior, the
effect of subsequent comparisons is undefined.

48. The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means
(a<b)<c; in other words, “if a is less than b compare 1 to c; otherwise, compare 0 to c.“

49. Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

3.3.8 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.9

Language 51 Expressions

3.3.10 Bitwise AND Operator

Syntax

AND-expression:

equality-expression

5 AND-expression & equality-expression

Constraints

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

10 The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the

result is set if and only if each of the corresponding bits in the converted operands is set).

3.3.11 Bitwise Exclusive OR Operator

Syntax

exclusi ve-OR- expression :

15 AND-expression

exclusive-OR-expression A AND-expression

Constraints

Each of the operands shall have integral type.

Semantics

20 The usual arithmetic conversions are performed on the operands.

The result of the A operator is the bitwise exclusive OR of the operands (that is, each bit in

the result is set if and only if exactly one of the corresponding bits in the converted operands is

set).

3.3.12 Bitwise Inclusive OR Operator

25 Syntax

inclusive-OR-expression:

exclusive-OR-expression

inclusive-OR-expression \ exclusive-OR-expression

Constraints

30 Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in

the result is set if and only if at least one of the corresponding bits in the converted operands is

35 set).

3.3.10 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.12

Language 52 Expressions

3.3.13 Logical AND Operator

Syntax

logical-AND-expression:

inclusive-OR-expression

5 logical-AND-expression && inclusive-OR-expression

Constraints

Each of the operands shall have scalar type.

Semantics

The && operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it

10 yields 0. The result has type int.

Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; there

is a sequence point after the evaluation of the first operand. If the first operand compares equal

to 0, the second operand is not evaluated.

3.3.14 Logical OR Operator

15 Syntax

logical-OR-expression:

logical-AND-expression

logical-OR-expression | | logical-AND-expression

Constraints

20 Each of the operands shall have scalar type.

Semantics

The | 1 operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it

yields 0. The result has type int.

Unlike the bitwise | operator, the | | operator guarantees left-to-right evaluation; there is a

25 sequence point after the evaluation of the first operand. If the first operand compares unequal to

0, the second operand is not evaluated.

3.3.15 Conditional Operator

Syntax

conditional-expression:

30 logical-OR-expression

logical-OR-expression ? expression : conditional-expression

Constraints

The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

35 • both operands have arithmetic type;

• both operands have compatible structure or union types;

• both operands have void type;

• both operands are pointers to qualified or unqualified versions of compatible types;

• one operand is a pointer and the other is a null pointer constant; or

40 • one operand is a pointer to an object or incomplete type and the other is a pointer to a

qualified or unqualified version of void.

3.3.13 AMERICAN NATIONAL STANDARD X3.159-I989 3.3.15

Language 53 Expressions

Semantics

The first operand is evaluated; there is a sequence point after its evaluation. The second

operand is evaluated only if the first compares unequal to 0; the third operand is evaluated only if

the first compares equal to 0; the value of the second or third operand (whichever is evaluated) is

5 the result.''”

If both the second and third operands have arithmetic type, the usual arithmetic conversions

are performed to bring them to a common type and the result has that type. If both the operands

have structure or union type, the result has that type. If both operands have void type, the result

has void type.

10 If both the second and third operands are pointers or one is a null pointer constant and the

other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the

types pointed-to by both operands. Furthermore, if both operands are pointers to compatible

types or differently qualified versions of a compatible type, the result has the composite type; if

one operand is a null pointer constant, the result has the type of the other operand; otherwise, one

15 operand is a pointer to void or a qualified version of void, in which case the other operand is

converted to type pointer to void, and the result has that type.

Examples

The common type that results when the second and third operands are pointers is determined

in two independent stages. The appropriate qualifiers, for example, do not depend on whether the

20 two pointers have compatible types.

Given the declarations

const void *c_vp;

void *vp;

const int *c_ip;

25 volatile int *v_ip;

int *ip;

const char *c_cp;

the third column in the following table is the common type that is the result of a conditional

expression in which the first two columns are the second and third operands (in either order):

c vp c ip const void *

v ip 0 volatile int *

c ip v ip const volatile

vp c cp const void *

ip c ip const int *

vp ip void *

50. A conditional expression does not yield an lvalue.

3.3.15 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.15

Language 54 Expressions

3.3.16 Assignment Operators

Syntax

assignment-expression:

conditional-expression

5 unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= /= %= += -= «= »= &= A= | =

Constraints

An assignment operator shall have a modifiable lvalue as its left operand.

10 Semantics

An assignment operator stores a value in the object designated by the left operand. An

assignment expression has the value of the left operand after the assignment, but is not an lvalue.

The type of an assignment expression is the type of the left operand unless the left operand has

qualified type, in which case it is the unqualified version of the type of the left operand. The

15 side effect of updating the stored value of the left operand shall occur between the previous and

the next sequence point.

The order of evaluation of the operands is unspecified.

3.3.16.1 Simple Assignment

Constraints

20 One of the following shall hold:M

• the left operand has qualified or unqualified arithmetic type and the right has arithmetic type;

• the left operand has a qualified or unqualified version of a structure or union type compatible

with the type of the right;

• both operands are pointers to qualified or unqualified versions of compatible types, and the

25 type pointed to by the left has all the qualifiers of the type pointed to by the right;

• one operand is a pointer to an object or incomplete type and the other is a pointer to a

qualified or unqualified version of void, and the type pointed to by the left has all the

qualifiers of the type pointed to by the right; or

9 the left operand is a pointer and the right is a null pointer constant.

30 Semantics

In simple assignment (=), the value of the right operand is converted to the type of the

assignment expression and replaces the value stored in the object designated by the left operand.

If the value being stored in an object is accessed from another object that overlaps in any way

the storage of the first object, then the overlap shall be exact and the two objects shall have

35 qualified or unqualified versions of a compatible type; otherwise, the behavior is undefined.

51. The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion
(specified in 3.2.2.1) that changes lvalues to "the value of the expression” which removes any type qualifiers
from the type category of the expression.

3.3.16 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.16.1

Language 55 Expressions

Example

In the program fragment

int f(void);

char c;

5 /*...*/

/*...*/ ((c = f()) == -1) /*...*/

the int value returned by the function may be truncated when stored in the char, and then

converted back to int width prior to the comparison. In an implementation in which “plain"

char has the same range of values as unsigned char (and char is narrower than int), the

10 result of the conversion cannot be negative, so the operands of the comparison can never compare

equal. Therefore, for full portability, the variable c should be declared as int.

3.3.16.2 Compound Assignment

Constraints

For the operators += and -= only, either the left operand shall be a pointer to an object type

15 and the right shall have integral type, or the left operand shall have qualified or unqualified

arithmetic type and the right shall have arithmetic type.

For the other operators, each operand shall have arithmetic type consistent with those allowed

by the corresponding binary operator.

Semantics

20 A compound assignment of the form El op= E2 differs from the simple assignment

expression El = El op (E2) only in that the lvalue El is evaluated only once.

3.3.17 Comma Operator

Syntax

expression:

25 assignment-expression

expression , assignment-expression

Semantics

The left operand of a comma operator is evaluated as a void expression; there is a sequence

point after its evaluation. Then the right operand is evaluated; the result has its type and value.32

30 Example

As indicated by the syntax, in contexts where a comma is a punctuator (in lists of arguments

to functions and lists of initializers) the comma operator as described in this section cannot

appear. On the other hand, it can be used within a parenthesized expression or within the second

expression of a conditional operator in such contexts. In the function call

35 f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (3.5.7).

52. A comma operator does not yield an lvalue.

3.3.16.1 AMERICAN NATIONAL STANDARD X3.159-1989 3.3.17

56 Constant Expressions Language

3.4 Constant Expressions

Syntax

constant-expression:

conditional-expression

5 Description

A constant expression can be evaluated during translation rather than runtime, and

accordingly may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call, or

10 comma operators, except when they are contained within the operand of a sizeof operator/1

Each constant expression shall evaluate to a constant that is in the range of representable

values for its type.

Semantics

An expression that evaluates to a constant is required in several contexts/4 If a floating

15 expression is evaluated in the translation environment, the arithmetic precision and range shall be

at least as great as if the expression were being evaluated in the execution environment.

An integral constant expression shall have integral type and shall only have operands that are

integer constants, enumeration constants, character constants, sizeof expressions, and floating

constants that are the immediate operands of casts. Cast operators in an integral constant

20 expression shall only convert arithmetic types to integral types, except as part of an operand to

the sizeof operator.

More latitude is permitted for constant expressions in initializers. Such a constant expression

shall evaluate to one of the following:

• an arithmetic constant expression,

25 • a null pointer constant,

• an address constant, or

• an address constant for an object type plus or minus an integral constant expression.

An arithmetic constant expression shall have arithmetic type and shall only have operands

that are integer constants, floating constants, enumeration constants, character constants, and

30 sizeof expressions. Cast operators in an arithmetic constant expression shall only convert

arithmetic types to arithmetic types, except as part of an operand to the sizeof operator.

An address constant is a pointer to an lvalue designating an object of static storage duration,

or to a function designator; it shall be created explicitly, using the unary & operator, or implicitly,

by the use of an expression of array or function type. The array-subscript [] and member-access

35 . and -> operators, the address & and indirection * unary operators, and pointer casts may be

used in the creation of an address constant, but the value of an object shall not be accessed by

use of these operators.

53. The operand of a sizeof operator is not evaluated (3.3.3.4), and thus any operator in 3.3 may be used.

54. An integral constant expression must be used to specify the size of a bit-field member of a structure, the value
of an enumeration constant, the size of an array, or the value of a case constant. Further constraints that
applv to the integral constant expressions used in conditional-inclusion preprocessing directives are discussed in
3.8.1.

3.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.4

Language 57 Constant Expressions

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for nonconstant

expressions.55

Forward references: initialization (3.5.7).

55. Thus, in the following initialization,

static int i = 2 || 1/0;

the expression is a valid integral constant expression with value one.

3.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.4

Language 58 Declarations

3.5 Declarations

Syntax

5

10

declaration:

declaration-specifiers init-declarator-list^ ;

declaration-specifiers:

storage-class-specifier declaration-specifiers

type-specifier declaration-specifiers^

type-qualifier declaration-specifiers

init-declarator-list:

init-declarator

init-declarator-list , init-declarator

init-declarator:

declarator

declarator = initializer

15 Constraints

A declaration shall declare at least a declarator, a tag, or the members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier (in

a declarator or type specifier) with the same scope and in the same name space, except for tags as

specified in 3.5.2.3.

20 All declarations in the same scope that refer to the same object or function shall specify

compatible types.

Semantics

A declaration specifies the interpretation and attributes of a set of identifiers. A declaration

that also causes storage to be reserved for an object or function named by an identifier is a

25 definition ,56

The declaration specifiers consist of a sequence of specifiers that indicate the linkage, storage

duration, and part of the type of the entities that the declarators denote. The init-declarator-list is

a comma-separated sequence of declarators, each of which may have additional type information,

or an initializer, or both. The declarators contain the identifiers (if any) being declared.

30 If an identifier for an object is declared with no linkage, the type for the object shall be

complete by the end of its declarator, or by the end of its init-declarator if it has an initializer.

Forward references: declarators (3.5.4), enumeration specifiers (3.5.2.2), initialization (3.5.7),

tags (3.5.2.3).

56. Function definitions have a different syntax, described in 3.7.1.

3.5 AMERICAN NATIONAL STANDARD X3.159-1989 3.5

Language 59 Declarations

3.5.1 Storage-Class Specifiers

Syntax

storage-class-specifier:

typedef

5 extern

static

auto

register

Constraints

10 At most, one storage-class specifier may be given in the declaration specifiers in a

declaration.57

Semantics

The typedef specifier is called a “storage-class specifier” for syntactic convenience only; it

is discussed in 3.5.6. The meanings of the various linkages and storage durations were discussed

15 in 3.1.2.2 and 3.1.2.4.

A declaration of an identifier for an object with storage-class specifier register suggests

that access to the object be as fast as possible. The extent to which such suggestions are

effective is implementation-defined.^

The declaration of an identifier for a function that has block scope shall have no explicit

20 storage-class specifier other than extern.

Forward references: type definitions (3.5.6).

3.5.2 Type Specifiers

Syntax

type-specifier:

25 void

char

short

int

long

30 float

double

signed

unsigned

struct-or-union-specifier

35 enum-specifier

typedef-name

57. See “future language directions” (3.9.3).

58. The implementation may treat any register declaration simply as an auto declaration. However, whether
or not addressable storage is actually used, the address of any part of an object declared with storage-class
specifier register may not be computed, either explicitly (by use of the unary & operator as discussed in
3.3.3.2) or implicitly (by converting an array name to a pointer as discussed in 3.2.2.1). Thus the only operator
that can be applied to an array declared with storage-class specifier register is sizeof.

3.5.1 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.2

Language 60 Declarations

Constraints

Each list of type specifiers shall be one of the following sets (delimited by commas, when

there is more than one set on a line); the type specifiers may occur in any order, possibly

intermixed with the other declaration specifiers.

5 • void

• char

• signed char

• unsigned char

» short, signed short, short int, or signed short int

10 • unsigned short, or unsigned short int

• int, signed, signed int. or no type specifiers

• unsigned, or unsigned int

• long, signed long, long int, or signed long int

• unsigned long, or unsigned long int

15 • float

• double

• long double

• struct-or-union specifier

• enum-specifier

20 • typedef-name

Semantics

Specifiers for structures, unions, and enumerations are discussed in 3.5.2.1 through 3.5.2.3.

Declarations of typedef names are discussed in 3.5.6. The characteristics of the other types are

discussed in 3.1.2.5.

25 Each of the above comma-separated sets designates the same type, except that for bit-fields,

the type signed int (or signed) may differ from int (or no type specifiers).

Forward references: enumeration specifiers (3.5.2.2), structure and union specifiers (3.5.2.1),

tags (3.5.2.3), type definitions (3.5.6).

3.5.2.1 Structure and Union Specifiers

30 Syntax

struct-or-union-specifier:

struct-or-union identifier { struct-declaration-list }

struct-or-union identifier

struct-or-union:

35 struct

union

struct-declaration-list:

struct-declaration

struct-declaration-list struct-declaration

3.5.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.2.1

Language 61 Declarations

struct-declaration:

specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:

type-specifier specifier-qualifier-list
ont

5

struct-declarator-list:

struct-declarator

struct-declarator-list , struct-declarator

struct-declarator:

10 declarator

declarator : constant-expression
opt

Constraints

A structure or union shall not contain a member with incomplete or function type. Hence it

shall not contain an instance of itself (but may contain a pointer to an instance of itself).

15 The expression that specifies the width of a bit-held shall be an integral constant expression

that has nonnegative value that shall not exceed the number of bits in an ordinary object of

compatible type. If the value is zero, the declaration shall have no declarator.

Semantics

As discussed in 3.1.2.5, a structure is a type consisting of a sequence of named members,

20 whose storage is allocated in an ordered sequence, and a union is a type consisting of a sequence

of named members, whose storage overlap.

Structure and union specifiers have the same form.

The presence of a struct-declaration-list in a struct-or-umon-speciher declares a new type,

within a translation unit. The struct-declaration-list is a sequence of declarations for the members

25 of the structure or union. If the struct-declaration-list contains no named members, the behavior

is undefined. The type is incomplete until after the } that terminates the list.

A member of a structure or union may have any object type. In addition, a member may be

declared to consist of a specified number of bits (including a sign bit, if any). Such a member is

called a bit-field;59 its width is preceded by a colon.

30 A bit-field shall have a type that is a qualified or unqualified version of one of int,

unsigned int, or signed int. Whether the high-order bit position of a (possibly qualified)

“plain" int bit-field is treated as a sign bit is implementation-defined. A bit-field is interpreted

as an integral type consisting of the specified number of bits.

An implementation may allocate any addressable storage unit large enough to hold a bit-field.

35 If enough space remains, a bit-field that immediately follows another bit-field in a structure shall

be packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field

that does not fit is put into the next unit or overlaps adjacent units is implementation-defined.

The order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-

order) is implementation-defined. The alignment of the addressable storage unit is unspecified.

40 A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed

bit-field.60 As a special case of this, a bit-field structure member with a width of 0 indicates that

59. The unary & (address-of) operator may not be applied to a bit-field object; thus, there are no pointers to or
arrays of bit-field objects.

60. An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

3.5.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.2.1

Language 62 Declarations

no further bit-field is to be packed into the unit in which the previous bit-field, if any, was

placed.

Each non-bit-held member of a structure or union object is aligned in an implementation-

defined manner appropriate to its type.

5 Within a structure object, the non-bit-held members and the units in which bit-helds reside

have addresses that increase in the order in which they are declared. A pointer to a structure

object, suitably converted, points to its initial member (or if that member is a bit-held, then to the

unit in which it resides), and vice versa. There may therefore be unnamed padding within a

structure object, but not at its beginning, as necessary to achieve the appropriate alignment.

10 The size of a union is sufficient to contain the largest of its members. The value of at most

one of the members can be stored in a union object at any time. A pointer to a union object,

suitably converted, points to each of its members (or if a member is a bit-held, then to the unit in

which it resides), and vice versa.

There may also be unnamed padding at the end of a structure or union, as necessary to

15 achieve the appropriate alignment were the structure or union to be an element of an array.

Forward references: tags (3.5.2.3).

3.5.2.2 Enumeration Specifiers

Syntax

enum-specifier:

20 enum identifier { enumerator-list }

enum identifier

enumerator-list:

enumerator

enumerator-list , enumerator

25 enumerator:

enumeration-constant

enumeration-constant = constant-expression

Constraints

The expression that dehnes the value of an enumeration constant shall be an integral constant

30 expression that has a value representable as an int.

Semantics

The identihers in an enumerator list are declared as constants that have type int and may

appear wherever such are permitted.61 An enumerator with = dehnes its enumeration constant as

the value of the constant expression. If the hrst enumerator has no =. the value of its

35 enumeration constant is 0. Each subsequent enumerator with no = dehnes its enumeration

constant as the value of the constant expression obtained by adding 1 to the value of the previous

enumeration constant. (The use of enumerators with = may produce enumeration constants with

values that duplicate other values in the same enumeration.) The enumerators of an enumeration

are also known as its members.

40 Each enumerated type shall be compatible with an integer type; the choice of type is

implementation-defined.

61. Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from each other
and from other identifiers declared in ordinary declarators.

3.5.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.2.2

Language 63 Declarations

Example

enum hue { chartreuse, burgundy, claret=20, winedark };

/*...*/
enum hue col, *cp;

5 /*...*/
col = claret;

cp = &col;

/*...*/
/*...*/ (*cp != burgundy) /*...*/

10 makes hue the tag of an enumeration, and then declares col as an object that has that type and

cp as a pointer to an object that has that type. The enumerated values are in the set {0, 1, 20,

21}.

Forward references: tags (3.5.2.3).

3.5.2.3 Tags

15 Semantics

A type specifier of the form

struct-or-union identifier { struct-declaration-list }

or

enum identifier { enumerator-list }

20 declares the identifier to be the tag of the structure, union, or enumeration specified by the list.

The list defines the structure content, union content, or enumeration content. If this declaration

of the tag is visible, a subsequent declaration that uses the tag and that omits the bracketed list

specifies the declared structure, union, or enumerated type. Subsequent declarations in the same

scope shall omit the bracketed list.

25 If a type specifier of the form

struct-or-union identifier

occurs prior to the declaration that defines the content, the structure or union is an incomplete

type.62 It declares a tag that specifies a type that may be used only when the size of an object of

the specified type is not needed.6’ If the type is to be completed, another declaration of the tag

30 in the same scope (but not in an enclosed block, which declares a new type known only within

that block) shall define the content. A declaration of the form

struct-or-union identifier ;

specifies a structure or union type and declares a tag, both visible only within the scope in which

the declaration occurs. It specifies a new type distinct from any type with the same tag in an

35 enclosing scope (if any).

A type specifier of the form

62. A similar construction with enum does not exist and is not necessary as there can be no mutual dependencies
between the declaration of an enumerated type and any other type.

63. It is not needed, for example, when a typedef name is declared to be a specifier for a structure or union, or
when a pointer to or a function returning a structure or union is being declared. (See incomplete types in
3.1.2.5.) The specification shall be complete before such a function is called or defined.

3.5.2.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.2.3

Declarations Language 64

struct-or-union { struct-declaration-list }

or

enum { enumerator-list }

specifies a new structure, union, or enumerated type, within the translation unit, that can only be

5 referred to by the declaration of which it is a part.w

Examples

This mechanism allows declaration of a self-referential structure.

struct tnode {

int count;

10 struct tnode *left, *right;

} ;

specifies a structure that contains an integer and two pointers to objects of the same type. Once

this declaration has been given, the declaration

struct tnode s, *sp;

15 declares s to be an object of the given type and sp to be a pointer to an object of the given type.

With these declarations, the expression sp->left refers to the left struct tnode pointer of

the object to which sp points; the expression s. right->count designates the count member

of the right struct tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

20 typedef struct tnode TNODE;

struct tnode {

int count;

TNODE *left, *right;

} ;
25 TNODE s, *sp;

To illustrate the use of prior declaration of a tag to specify a pair of mutually referential

structures, the declarations

struct si { struct s2 *s2p; /*...*/ }; /* D1 */

struct s2 { struct si *slp; /*...*/ }; /* D2 */

30 specify a pair of structures that contain pointers to each other. Note, however, that if s2 were

already declared as a tag in an enclosing scope, the declaration D1 would refer to it, not to the

tag s2 declared in D2. To eliminate this context sensitivity, the otherwise vacuous declaration

struct s2;

may be inserted ahead of Dl. This declares a new tag s2 in the inner scope; the declaration D2

35 then completes the specification of the new type.

Forward references: type definitions (3.5.6).

64. Of course, when the declaration is of a typedef name, subsequent declarations can make use of the typedef
name to declare objects having the specified structure, union, or enumerated type.

3.5.2.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.2.3

Language 65 Declarations

3.5.3 Type Qualifiers

Syntax

type-qualifier:

const

5 volatile

Constraints

The same type qualifier shall not appear more than once in the same specifier list or qualifier

list, either directly or via one or more typedefs.

Semantics

10 The properties associated with qualified types are meaningful only for expressions that are

lvalues.65

If an attempt is made to modify an object defined with a const-qualified type through use of

an lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer

to an object defined with a volatile-qualified type through use of an lvalue with non-volatile-

15 qualified type, the behavior is undefined.66

An object that has volatile-qualified type may be modified in ways unknown to the

implementation or have other unknown side effects. Therefore any expression referring to such

an object shall be evaluated strictly according to the rules of the abstract machine, as described in

2.1.2.3. Furthermore, at every sequence point the value last stored in the object shall agree with

20 that prescribed by the abstract machine, except as modified by the unknown factors mentioned

previously.67 What constitutes an access to an object that has volatile-qualified type is

implementation-defined.

If the specification of an array type includes any type qualifiers, the element type is so-

qualified, not the array type. If the specification of a function type includes any type qualifiers,

25 the behavior is undefined.68

For two qualified types to be compatible, both shall have the identically qualified version of a

compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect

the specified type.

Examples

30 An object declared

extern const volatile int real_time_clock;

may be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

The following declarations and expressions illustrate the behavior when type qualifiers modify

an aggregate type:

65. The implementation may place a const object that is not volatile in a read-only region of storage.
Moreover, the implementation need not allocate storage for such an object if its address is never used.

66. This applies to those objects that behave as if they were defined with qualified types, even if they are never
actually defined as objects in the program (such as an object at a memory-mapped input/output address).

67. A volatile declaration may be used to describe an object corresponding to a memory-mapped input/output
port or an object accessed by an asynchronously interrupting function. Actions on objects so declared shall not
be “optimized out” by an implementation or reordered except as permitted by the rules for evaluating
expressions.

68. Both of these can only occur through the use of typedefs.

3.5.3 AMERICAN NATIONAL STANDARD X3.I59-1989 3.5.3

Language 66 Declarations

const struct s { int mem; } cs = { 1 };

struct s ncs; /* the object ncs is modifiable */

typedef int A[2] [3] ;

const A a = {{4, 5, 6}, {7, 8, 9}}; /* array of array of const int * /

5 int *pi;

const int *pci;

ncs = cs; /* valid */

cs = ncs; /* violates modifiable lvalue constraint for - * /

pi = &ncs.mem; /* valid */

10 pi = Scs.mem; /* violates type constraints for = */

pci = Scs.mem; /* valid */

pi = a[0]; /* invalid: a [0] has type “const int *” */

3.5.4 Declarators

Syntax

declarator:

pointer direct-declarator
1 opt

direct-declarator:

identifier

(declarator)

direct-declarator [constant-expression
^ opt 1

direct-declarator (parameter-type-list)

direct-declarator (identifier-list)

pointer:

* type-qualifier-list

* type-qualifier-list^ pointer

type-qualifier-list:

type-qualifier

type-qualifier-list type-qualifier

parameter-type-list:

30 parameter-list

parameter-list , ...

15

20

25

parameter-list:

parameter-declaration

parameter-list , parameter-declaration

35

40

parameter-declaration:

declaration-specifiers declarator

declaration-specifiers abstract-declarator

identifier-list:

identifier

identifier-list , identifier

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same form as

the declarator appears in an expression, it designates a function or object with the scope, storage

duration, and type indicated by the declaration specifiers.

45 In the following subsections, consider a declaration

T D1

3.5.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.4

Language 67 Declarations

where T contains the declaration specifiers that specify a type 7 (such as int) and D1 is a

declarator that contains an identifier idem. The type specified for the identifier idem in the

various forms of declarator is described inductively using this notation.

If. in the declaration “T Dl,” D1 has the form

5 identifier

then the type specified for idem is 7.

If, in the declaration “T Dl,” Dl has the form

(D)

then ident has the type specified by the declaration ”T D.” Thus, a declarator in parentheses is

10 identical to the unparenthesized declarator, but the binding of complex declarators may be altered

by parentheses.

Implementation Limits

The implementation shall allow the specification of types that have at least 12 pointer, array,

and function declarators (in any valid combinations) modifying an arithmetic, a structure, a union,

15 or an incomplete type, either directly or via one or more typedefs.

Forward references: type definitions (3.5.6).

3.5.4.I Pointer Declarators

Semantics

If, in the declaration ”T Dl,” Dl has the form

20 * type-qualifier-list D

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list 7,”

then the type specified for ident is ”derived-declarator-type-list type-qualifier-list pointer to 7.”

For each type qualifier in the list, ident is a so-qualified pointer.

For two pointer types to be compatible, both shall be identically qualified and both shall be

25 pointers to compatible types.

Examples

The following pair of declarations demonstrates the difference between a “variable pointer to

a constant value” and a “constant pointer to a variable value.”

const int *ptr_to_constant;

30 int *const constant_jptr;

The contents of an object pointed to by ptr_to_constant shall not be modified through that

pointer, but ptr_to_constant itself may be changed to point to another object. Similarly,

the contents of the int pointed to by constant_ptr may be modified, but constant_ptr

itself shall always point to the same location.

35 The declaration of the constant pointer constant_ptr may be clarified by including a

definition for the type “pointer to int.”

typedef int *int_ptr;

const int_ptr constant_ptr;

declares constant_ptr as an object that has type “const-qualified pointer to int.”

3.5.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.4.1

Language 68 Declarations

3.5.4.Z Array Declarators

Constraints

The expression delimited by [and] (which specifies the size of an array) shall be an integral

constant expression that has a value greater than zero.

5 Semantics

If, in the declaration "T Dl,” D1 has the form

D [constant-expression]
r opt

and the type specified for ident in the declaration “T D" is “derived-declarator-type-list T,"

then the type specified for ident is “derived-declarator-type-list array of 7Y’69 If the size is not

10 present, the array type is an incomplete type.

For two array types to be compatible, both shall have compatible element types, and if both

size specifiers are present, they shall have the same value.

Examples

float fa[11], *afp[17];

15 declares an array of float numbers and an array of pointers to float numbers.

Note the distinction between the declarations

extern int *x;

extern int y[];

The first declares x to be a pointer to int; the second declares y to be an array of int of

20 unspecified size (an incomplete type), the storage for which is defined elsewhere.

Forward references: function definitions (3.7.1), initialization (3.5.7).

3.5.4.3 Function Declarators (Including Prototypes)

Constraints

A function declarator shall not specify a return type that is a function type or an array type.

25 The only storage-class specifier that shall occur in a parameter declaration is register.

An identifier list in a function declarator that is not part of a function definition shall be

empty.

Semantics

If, in the declaration “T Dl," Dl has the form

30 D (parameter-type-list)

or

D (identifier-listq ?)

and the type specified for ident in the declaration "T D" is “derived-declarator-type-list T,"

then the type specified for ident is “derived-declarator-type-list function returning T

35 A parameter type list specifies the types of. and may declare identifiers for, the parameters of

the function. If the list terminates with an ellipsis (, . . .), no information about the number or

types of the parameters after the comma is supplied.70 The special case of void as the only

69. When several "array of” specifications are adjacent, a multidimensional array is declared.

70. The macros defined in the <stdarg.h> header (4.8) may be used to access arguments that correspond to the
ellipsis.

3.5.4.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.4.3

Language 69 Declarations

item in the list specifies that the function has no parameters.

In a parameter declaration, a single typedef name in parentheses is taken to be an abstract

declarator that specifies a function with a single parameter, not as redundant parentheses around

the identifier for a declarator.

5 The storage-class specifier in the declaration specifiers for a parameter declaration, if present,

is ignored unless the declared parameter is one of the members of the parameter type list for a

function definition.

An identifier list declares only the identifiers of the parameters of the function. An empty list

in a function declarator that is part of a function definition specifies that the function has no

10 parameters. The empty list in a function declarator that is not part of a function definition

specifies that no information about the number or types of the parameters is supplied.71

For two function types to be compatible, both shall specify compatible return types.72

Moreover, the parameter type lists, if both are present, shall agree in the number of parameters

and in use of the ellipsis terminator; corresponding parameters shall have compatible types. If

15 one type has a parameter type list and the other type is specified by a function declarator that is

not part of a function definition and that contains an empty identifier list, the parameter list shall

not have an ellipsis terminator and the type of each parameter shall be compatible with the type

that results from the application of the default argument promotions. If one type has a parameter

type list and the other type is specified by a function definition that contains a (possibly empty)

20 identifier list, both shall agree in the number of parameters, and the type of each prototype

parameter shall be compatible with the type that results from the application of the default

argument promotions to the type of the corresponding identifier. (For each parameter declared

with function or array type, its type for these comparisons is the one that results from conversion

to a pointer type, as in 3.7.1. For each parameter declared with qualified type, its type for these

25 comparisons is the unqualified version of its declared type.)

Examples

The declaration

int f (void) , *fip(), (*pfi) () ;

declares a function f with no parameters returning an int, a function fip with no parameter

30 specification returning a pointer to an int, and a pointer pfi to a function with no parameter

specification returning an int. It is especially useful to compare the last two. The binding of

*fip() is *(fip ()), so that the declaration suggests, and the same construction in an

expression requires, the calling of a function fip, and then using indirection through the pointer

result to yield an int. In the declarator (*pfi) (), the extra parentheses are necessary to

35 indicate that indirection through a pointer to a function yields a function designator, which is then

used to call the function; it returns an int.

If the declaration occurs outside of any function, the identifiers have file scope and external

linkage. If the declaration occurs inside a function, the identifiers of the functions f and fip

have block scope and either internal or external linkage (depending on what file scope

40 declarations for these identifiers are visible), and the identifier of the pointer pfi has block scope

and no linkage.

Here are two more intricate examples.

71. See “future language directions” (3.9.4).

72. If both function types are “old style,” parameter types are not compared.

3.5.4.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.4.3

Language 70 Declarations

int (*apfi[3])(int *x, int *y);

declares an array apfi of three pointers to functions returning int. Each of these functions has

two parameters that are pointers to int. The identifiers x and y are declared for descriptive

purposes only and go out of scope at the end of the declaration of apfi. The declaration

5 int (*fpfi(int (*) (long), int)) (int, ...);

declares a function fpfi that returns a pointer to a function returning an int. The function

fpfi has two parameters: a pointer to a function returning an int (with one parameter of type

long), and an int. The pointer returned by fpfi points to a function that has one int

parameter and accepts zero or more additional arguments of any type.

10 Forward references: function definitions (3.7.1), type names (3.5.5).

3.5.5 Type Names

Syntax

15

20

type-name:

specifier-qualifier-list abstract-declarator

abstract-declarator:

pointer

pointer direct-abstract-declarator
^ opt

direct-abstract-declarator:

(abstract-declarator)

direct-abstract-declarator [constant-expression
opt ^ opt

direct-abstract-declarator (parameter-type-list)
opt 1 ^ opt '

Semantics

In several contexts, it is desired to specify a type. This is accomplished using a type name,

which is syntactically a declaration for a function or an object of that type that omits the

25 identifier.73

Examples

The constructions

(a) int

(b) int ★

(c) int * [3]

(d) int (*) C3]
(e) int *0

(f) int (*)(void)

(g) int (*const [])(unsigned int, . • •)

35 name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to int, (d)

pointer to an array of three ints, (e) function with no parameter specification returning a pointer

to int, (f) pointer to function with no parameters returning an int, and (g) array of an

unspecified number of constant pointers to functions, each with one parameter that has type

unsigned int and an unspecified number of other parameters, returning an int.

73. As indicated by the syntax, empty parentheses in a type name are interpreted as “function with no parameter
specification,” rather than redundant parentheses around the omitted identifier.

3.5.4.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.5

Language 71 Declarations

3.5.6 Type Definitions

Syntax

typedef-name:

identifier

5 Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an

identifier to be a typedef name that specifies the type specified for the identifier in the way

described in 3.5.4. A typedef declaration does not introduce a new type, only a synonym for

the type so specified. That is, in the following declarations:

10 typedef T type_ident;

type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration specifiers

in T (known as T), and the identifier in D has the type “derived-declarator-type-list T" where

the derived-declarator-type-list is specified by the declarators of D. A typedef name shares the

15 same name space as other identifiers declared in ordinary declarators. If the identifier is

redeclared in an inner scope or is declared as a member of a structure or union in the same or an

inner scope, the type specifiers shall not be omitted in the inner declaration.

Examples

After

20 typedef int MILES, KLICKSP();

typedef struct { double re, im; } complex;

the constructions

MILES distance;

extern KLICKSP *metricp;

25 complex x;

complex z, *zp;

are all valid declarations. The type of distance is int, that of metricp is "pointer to

function with no parameter specification returning int," and that of x and z is the specified

structure; zp is a pointer to such a structure. The object distance has a type compatible with

30 any other int object.

After the declarations

typedef struct si { int x; } tl, *tpl;

typedef struct s2 { int x; } t2, *tp2;

type tl and the type pointed to by tpl are compatible. Type tl is also compatible with type

35 struct si, but not compatible with the types struct s2, t2, the type pointed to by tp2,

and int.

The following obscure constructions

typedef signed int t;

typedef int plain;

40 struct tag {

unsigned t:4;

const t:5;

plain r:5;

} ;

45 declare a typedef name t with type signed int, a typedef name plain with type int, and a

structure with three bit-field members, one named t that contains values in the range [0,15], an

3.5.6 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.6

Language 72 Declarations

unnamed const-qualified bit-field which (if it could be accessed) would contain values in at least

the range [-15,-1-15], and one named r that contains values in the range [0,31] or values in at

least the range [-15,+ 15]. (The choice of range is implementation-defined.) The first two bit-

field declarations differ in that unsigned is a type specifier (which forces t to be the name of a

5 structure member), while const is a type qualifier (which modifies t which is still visible as a

typedef name). If these declarations are followed in an inner scope by

t f (t (t)) ;

long t;

then a function f is declared with type "function returning signed int with one unnamed

10 parameter with type pointer to function returning signed int with one unnamed parameter

with type signed int,” and an identifier t with type long.

On the other hand, typedef names can be used to improve code readability. All three of the

following declarations of the signal function specify exactly the same type, the first without

making use of any typedef names.

15 typedef void fv(int), (*pfv)(int);

void (*signal(int, void (*) (int))) (int);

fv *signal(int, fv *);

pfv signal(int, pfv);

Forward references: the signal function (4.7.1.1).

20 3.5.7 Initialization

Syntax

initializer:

assignment-expression

{ initializer-list }

25 { initializer-list , }

initializer-list:

initializer

initializer-list , initializer

Constraints

30 There shall be no more initializers in an initializer list than there are objects to be initialized.

The type of the entity to be initialized shall be an object type or an array of unknown size.

All the expressions in an initializer for an object that has static storage duration or in an

initializer list for an object that has aggregate or union type shall be constant expressions.

If the declaration of an identifier has block scope, and the identifier has external or internal

35 linkage, the declaration shall have no initializer for the identifier.

Semantics

An initializer specifies the initial value stored in an object.

All unnamed structure or union members are ignored during initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is

40 indeterminate.74 If an object that has static storage duration is not initialized explicitly, it is

74. Unlike in the base document, any automatic duration object may be initialized.

3.5.6 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.7

Language 73 Declarations

initialized implicitly as if every member that has arithmetic type were assigned 0 and every

member that has pointer type were assigned a null pointer constant.

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The

initial value of the object is that of the expression; the same type constraints and conversions as

5 for simple assignment apply, taking the type of the scalar to be the unqualified version of its

declared type.

A brace-enclosed initializer for a union object initializes the member that appears first in the

declaration list of the union type.

The initializer for a structure or union object that has automatic storage duration either shall

10 be an initializer list as described below, or shall be a single expression that has compatible

structure or union type. In the latter case, the initial value of the object is that of the expression.

The rest of this section deals with initializers for objects that have aggregate or union type.

An array of character type may be initialized by a character string literal, optionally enclosed

in braces. Successive characters of the character string literal (including the terminating null

15 character if there is room or if the array is of unknown size) initialize the elements of the array.

An array with element type compatible with wchar_t may be initialized by a wide string

literal, optionally enclosed in braces. Successive codes of the wide string literal (including the

terminating zero-valued code if there is room or if the array is of unknown size) initialize the

elements of the array.

20 Otherwise, the initializer for an object that has aggregate type shall be a brace-enclosed list of

initializers for the members of the aggregate, written in increasing subscript or member order; and

the initializer for an object that has union type shall be a brace-enclosed initializer for the first

member of the union.

If the aggregate contains members that are aggregates or unions, or if the first member of a

25 union is an aggregate or union, the rules apply recursively to the subaggregates or contained

unions. If the initializer of a subaggregate or contained union begins with a left brace, the

initializers enclosed by that brace and its matching right brace initialize the members of the

subaggregate or the first member of the contained union. Otherwise, only enough initializers

from the list are taken to account for the members of the subaggregate or the first member of the

30 contained union; any remaining initializers are left to initialize the next member of the aggregate

of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are members of an aggregate,

the remainder of the aggregate shall be initialized implicitly the same as objects that have static

storage duration.

35 If an array of unknown size is initialized, its size is determined by the number of initializers

provided for its elements. At the end of its initializer list, the array no longer has incomplete

type.

Examples

The declaration

40 int x[] = { 1, 3, 5 };

defines and initializes x as a one-dimensional array object that has three elements, as no size was

specified and there are three initializers.

3.5.7 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.7

Language 74 Declarations

float y [41 [3] = I

{ 1 3, 5 },

{ 2, 4, 6 },

{ 3, 5, 7 },

5 } ;

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y (the

array object y[0]), namely y[0] [0], y[0] [1], and y[0] [2], Likewise the next two lines

initialize y[l] and y[2]. The initializer ends early, so y [3] is initialized with zeros.

Precisely the same effect could have been achieved by

10 float y[4](3] = {

1, 3, 5, 2, 4, 6, 3, 5, 7

} ;

The initializer for y [0] does not begin with a left brace, so three items from the list are used.

Likewise the next three are taken successively for y [1] and y [2]. Also,

15 float z[4] [3] = {

{ 1 }, { 2 }, { 3 >, { 4 >

} ;

initializes the first column of z as specified and initializes the rest with zeros.

struct { int a[3], b; } w[] = { { 1 }, 2 };

20 is a definition with an inconsistently bracketed initialization. It defines an array with two element

structures: w[0] .a[0] is 1 and w[l] ,a[0] is 2; all the other elements are zero.

The declaration

short q[4][3][2] = {

{ 1 I,
25 { 2, 3 },

{ 4, 5, 6 }

};

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional

array object: q[0] [0] [0] is 1, q[1] [0] [0] is 2, q[l] [0] [1] is 3, and 4, 5, and 6

30 initialize q[2] [0] [0], q[2] [0] [1], and q[2] [1] [0], respectively; all the rest are zero.

The initializer for q[0] [0] does not begin with a left brace, so up to six items from the current

list may be used. There is only one, so the values for the remaining five elements are initialized

with zero. Likewise, the initializers for q[l] [0] and q[2][0] do not begin with a left brace,

so each uses up to six items, initializing their respective two-dimensional subaggregates. If there

35 had been more than six items in any of the lists, a diagnostic message would have been issued.

The same initialization result could have been achieved by:

short q [4] [3] [2] = {

1, 0, 0, 0, 0, 0,
2, 3, 0, 0, 0, 0,

40 4, 5, 6

};

or by:

3.5.7 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.7

Language 75 Declarations

5

10

short q[4][3][2] = {

{

{ 1 },
},
{

{ 2, 3 },

},
{

{ 4, 5 },

{ 6 },
}

} ;

in a fully bracketed form.

Note that the fully bracketed and minimally bracketed forms of initialization are, in general,

15 less likely to cause confusion.

One form of initialization that completes array types involves typedef names. Given the

declaration

typedef int A[];

the declaration

20 A a = {1, 2}, b = {3, 4, 5};

is identical to

int a[] = {1, 2}, b[] = {3, 4, 5};

due to the rules for incomplete types.

Finally, the declaration

25 char s[] = "abc", t[3] = "abc";

defines “plain” char array objects s and t whose elements are initialized with character string

literals. This declaration is identical to

char s[] = { 'a', 'b', 'c', '\0' },

t [] = { 'a' , 'b' , 'c' } ;

30 The contents of the arrays are modifiable. On the other hand, the declaration

char *p = "abc";

defines p with type “pointer to char” that is initialized to point to an object with type “array

of char” with length 4 whose elements are initialized with a character string literal. If an

attempt is made to use p to modify the contents of the array, the behavior is undefined.

35 Forward references: common definitions <stddef.h> (4.1.5).

3.5.7 AMERICAN NATIONAL STANDARD X3.159-1989 3.5.7

Language 76 Statements

3.6 Statements

Syntax

statement:

labeled-statement

5 compound-statement

expression-statement

selection-statement

iteration-statement

jump-statement

10 Semantics

A statement specifies an action to be performed. Except as indicated, statements are executed

in sequence.

A full expression is an expression that is not part of another expression. Each of the

following is a full expression: an initializer: the expression in an expression statement; the

15 controlling expression of a selection statement (if or switch); the controlling expression of a

while or do statement; each of the three (optional) expressions of a for statement; the

(optional) expression in a return statement. The end of a full expression is a sequence point.

Forward references: expression and null statements (3.6.3), selection statements (3.6.4),

iteration statements (3.6.5), the return statement (3.6.6.4).

20 3.6.1 Labeled Statements

Syntax

labeled-statement:

identifier : statement

case constant-expression : statement

25 default : statement

Constraints

A case or default label shall appear only in a switch statement. Further constraints on

such labels are discussed under the switch statement.

Semantics

30 Any statement may be preceded by a prefix that declares an identifier as a label name. Labels

in themselves do not alter the flow of control, which continues unimpeded across them.

Forward references: the goto statement (3.6.6.1), the switch statement (3.6.4.2).

3.6.2 Compound Statement, or Block

Syntax

35 compound-statement:

{ declaration-list statement-list }
opt opt

declaration-list:

declaration

declaration-list declaration

40 statement-list:

statement

statement-list statement

3.6 AMERICAN NATIONAL STANDARD X3.159-1989 3.6.2

Language 77 Statements

Semantics

A compound statement (also called a block) allows a set of statements to be grouped into one

syntactic unit, which may have its own set of declarations and initializations (as discussed in

3.1.2.4). The initializers of objects that have automatic storage duration are evaluated and the

5 values are stored in the objects in the order their declarators appear in the translation unit.

3.6.3 Expression and Null Statements

Syntax

expression-statement:

expression ;
K opt

10 Semantics

The expression in an expression statement is evaluated as a void expression for its side

effects.75

A null statement (consisting of just a semicolon) performs no operations.

Examples

15 If a function call is evaluated as an expression statement for its side effects only, the

discarding of its value may be made explicit by converting the expression to a void expression by

means of a cast:

int p(int);

/*-..*/
20 (void)p(O);

In the program fragment

char *s;

/*...*/
while (*s++ != '\0')

25

a null statement is used to supply an empty loop body to the iteration statement.

A null statement may also be used to carry a label just before the closing } of a compound

statement.

while (loopl) {

30 /*...*/

while (loop2) {

/*...*/
if (want_out)

goto end_loopl;

35 /*...*/

}

/*...*/
end_loopl: ;

}

40 Forward references: iteration statements (3.6.5).

75. Such as assignments, and function calls which have side effects.

3.6.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.6.3

Language 78 Statements

3.6.4 Selection Statements

Syntax

selection-statement:

if (expression) statement

5 if (expression) statement else statement

switch (expression) statement

Semantics

A selection statement selects among a set of statements depending on the value of a

controlling expression.

10 3.6.4.1 The if Statement

Constraints

The controlling expression of an if statement shall have scalar type.

Semantics

In both forms, the first substatement is executed if the expression compares unequal to 0. In

15 the else form, the second substatement is executed if the expression compares equal to 0. If

the first substatement is reached via a label, the second substatement is not executed.

An else is associated with the lexically immediately preceding else-less if that is in the

same block (but not in an enclosed block).

3.6.4.2 The switch Statement

20 Constraints

The controlling expression of a switch statement shall have integral type. The expression

of each case label shall be an integral constant expression. No two of the case constant

expressions in the same switch statement shall have the same value after conversion. There

may be at most one default label in a switch statement. (Any enclosed switch statement

25 may have a default label or case constant expressions with values that duplicate case

constant expressions in the enclosing switch statement.)

Semantics

A switch statement causes control to jump to, into, or past the statement that is the switch

body, depending on the value of a controlling expression, and on the presence of a default

30 label and the values of any case labels on or in the switch body. A case or default label is

accessible only within the closest enclosing switch statement.

The integral promotions are performed on the controlling expression. The constant expression

in each case label is converted to the promoted type of the controlling expression. If a

converted value matches that of the promoted controlling expression, control jumps to the

35 statement following the matched case label. Otherwise, if there is a default label, control

jumps to the labeled statement. If no converted case constant expression matches and there is

no default label, no part of the switch body is executed.

Implementation Limits

As discussed previously (2.2.4.1), the implementation may limit the number of case values

40 in a switch statement.

Example

In the artificial program fragment

3.6.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.6.4.2

Language 79 Statements

switch (expr)

{

int i = 4;

f (i) ;
5 case 0:

i = 17; /* falls through into default code */

default:

printf("%d\n", i);

}

10 the object whose identifier is i exists with automatic storage duration (within the block) but is

never initialized, and thus if the controlling expression has a nonzero value, the call to the

printf function will access an indeterminate value. Similarly, the call to the function f cannot

be reached.

3.6.5 Iteration Statements

15 Syntax

20

iteration-statement:

while (expression) statement

do statement while (expression)

for (expression ; expression
y opt y opt

Constraints

expression) statement
F opt

The controlling expression of an iteration statement shall have scalar type.

Semantics

An iteration statement causes a statement called the loop body to be executed repeatedly until

the controlling expression compares equal to 0.

25 3.6.5.1 The while Statement

The evaluation of the controlling expression takes place before each execution of the loop

body.

3.6.5.2 The do Statement

The evaluation of the controlling expression takes place after each execution of the loop body.

30 3.6.5.3 The for Statement

Except for the behavior of a continue statement in the loop body, the statement

for (expression-1 ; expression-2 ; expression-3) statement

and the sequence of statements

expression-1 ;

35 while (expression-2) {

statement

expression-3 ;

}

are equivalent.76

76. Thus, expression-1 specifies initialization for the loop; expression-2, the controlling expression, specifies an
evaluation made before each iteration, such that execution of the loop continues until the expression compares
equal to 0; expression-3 specifies an operation (such as incrementing) that is performed after each iteration.

3.6.4.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.6.5.3

Language 80 Statements

Both expression-1 and expression-3 may be omitted. Each is evaluated as a void expression.

An omitted expression-2 is replaced by a nonzero constant.

Forward references: the continue statement (3.6.6.2).

3.6.6 Jump Statements

5 Syntax

jump-statement:

goto identifier ;

continue ;

break ;

10 return expression ;
K opt

Semantics

A jump statement causes an unconditional jump to another place.

3.6.6.1 The goto Statement

Constraints

15 The identifier in a goto statement shall name a label located somewhere in the enclosing

function.

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named label

in the enclosing function.

20 Example

It is sometimes convenient to jump into the middle of a complicated set of statements. The

following outline presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.

2. The general initialization code is too large to warrant duplication.

25 3. The code to determine the next operation must be at the head of the loop. (To allow it to

be reached by continue statements, for example.)

/*...*/
goto first_time;

for (;;) {

30 / * determine next operation * /

/*...*/
if (need to reinitialize) {

/* reinitialize-only code * /

/*...*/
35 first_time:

/* general initialization code */

/*...*/
continue;

}
40 /* handle other operations */

/*...*/

}

3.6.5.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.6.6.1

Language 81 Statements

3.6.6.2 The continue Statement

Constraints

A continue statement shall appear only in or as a loop body.

Semantics

5 A continue statement causes a jump to the loop-continuation portion of the smallest

enclosing iteration statement; that is, to the end of the loop body. More precisely, in each of the

statements

10

while (/*...*/) {

/*--•*/
continue;

/*...*/
contin; ;

}

do {

/*...*/
continue;

/*...*/
contin: ;

} while (/*... */);

for (/*...*/) {

/*...*/
continue;

/*...*/
contin: ;

}

unless the continue statement shown is in an enclosed iteration statement (in which case it is

15 interpreted within that statement), it is equivalent to goto contin;.77

3.6.6.3 The break Statement

Constraints

A break statement shall appear only in or as a switch body or loop body.

Semantics

20 A break statement terminates execution of the smallest enclosing switch or iteration

statement.

3.6.6.4 The return Statement

Constraints

A return statement with an expression shall not appear in a function whose return type is

25 void.

Semantics

A return statement terminates execution of the current function and returns control to its

caller. A function may have any number of return statements, with and without expressions.

If a return statement with an expression is executed, the value of the expression is returned

30 to the caller as the value of the function call expression. If the expression has a type different

from that of the function in which it appears, it is converted as if it were assigned to an object of

that type.

If a return statement without an expression is executed, and the value of the function call

is used by the caller, the behavior is undefined. Reaching the } that terminates a function is

35 equivalent to executing a return statement without an expression.

77. Following the contin: label is a null statement.

3.6.6.2 AMERICAN NATIONAL STANDARD X3.159-1989 3.6.6.4

Language 82 External Definitions

3.7 External Definitions

Syntax

translation-unit:

external-declaration

5 translation-unit external-declaration

external-declaration:

function-definition

declaration

Constraints

10 The storage-class specifiers auto and register shall not appear in the declaration

specifiers in an external declaration.

There shall be no more than one external definition for each identifier declared with internal

linkage in a translation unit. Moreover, if an identifier declared with internal linkage is used in

an expression (other than as a part of the operand of a sizeof operator), there shall be exactly

15 one external definition for the identifier in the translation unit.

Semantics

As discussed in 2.1.1.1, the unit of program text after preprocessing is a translation unit,

which consists of a sequence of external declarations. These are described as “external” because

they appear outside any function (and hence have file scope). As discussed in 3.5, a declaration

20 that also causes storage to be reserved for an object or a function named by the identifier is a

definition.

An external definition is an external declaration that is also a definition of a function or an

object. If an identifier declared with external linkage is used in an expression (other than as part

of the operand of a sizeof operator), somewhere in the entire program there shall be exactly

25 one external definition for the identifier; otherwise, there shall be no more than one.'s

3.7.1 Function Definitions

Syntax

function-definition:

declaration-specifiers declarator declaration-list compound-statement
J opt opt '

30 Constraints

The identifier declared in a function definition (which is the name of the function) shall have

a function type, as specified by the declarator portion of the function definition.71’

78. Thus, if an identifier declared with external linkage is not used in an expression, there need be no external
definition for it.

79. The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void);
F f, g;
F f { /*...*/ }
F g() { /*...*/ }
int f(void) { /*...*/ }
int g() { /*...*/ }
F *e(void) { /*...*/ }
F *((e))(void) { /*...*/
int (*fp)(void);
F *Fp;

/ * type F is ‘ ‘function of no arguments returning int * /
/* f and g both have type compatible with F */
/* WRONG: syntax!constraint error */
/* WRONG: declares that g returns a function */
/* RIGHT: f has type compatible with F */
/* RIGHT: g has type compatible with F */
/ * e returns a pointer to a function * /
/* same: parentheses irrelevant */
/* fp points to a function that has type F */
/* Fp points to a function that has type F */

3.7 AMERICAN NATIONAL STANDARD X3.159-1989 3.7.1

Language 83 External Definitions

The return type of a function shall be void or an object type other than array.

The storage-class specifier, if any, in the declaration specifiers shall be either extern or

static.

If the declarator includes a parameter type list, the declaration of each parameter shall include

5 an identifier (except for the special case of a parameter list consisting of a single parameter of

type void, in which there shall not be an identifier). No declaration list shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall have at

least one declarator, and those declarators shall declare only identifiers from the identifier list.

An identifier declared as a typedef name shall not be redeclared as a parameter. The declarations

10 in the declaration list shall contain no storage-class specifier other than register and no

initializations.

Semantics

The declarator in a function definition specifies the name of the function being defined and

the identifiers of its parameters. If the declarator includes a parameter type list, the list also

15 specifies the types of all the parameters; such a declarator also serves as a function prototype for

later calls to the same function in the same translation unit. If the declarator includes an

identifier list,*" the types of the parameters may be declared in a following declaration list. Any

parameter that is not declared has type int.

If a function that accepts a variable number of arguments is defined without a parameter type

20 list that ends with the ellipsis notation, the behavior is undefined.

On entry to the function the value of each argument expression shall be converted to the type

of its corresponding parameter, as if by assignment to the parameter. Array expressions and

function designators as arguments are converted to pointers before the call. A declaration of a

parameter as “array of type" shall be adjusted to “pointer to type," and a declaration of a

25 parameter as “function returning type" shall be adjusted to “pointer to function returning type"

as in 3.2.2.1. The resulting parameter type shall be an object type.

Each parameter has automatic storage duration. Its identifier is an lvalue.*1 The layout of the

storage for parameters is unspecified.

Examples

30 extern int max(int a, int b)

{
return a > b ? a : b;

}

Here extern is the storage-class specifier and

35 omitted as those are the defaults); max (int a,

{ return a > b ? a : b; }

is the function body. The following similar

parameter declarations:

int is the type specifier (each of which may be

int b) is the function declarator; and

definition uses the identifier-list form for the

80. See “future language directions” (3.9.5).

81. A parameter is in effect declared at the head of the compound statement that constitutes the function body, and
therefore may not be redeclared in the function body (except in an enclosed block).

3.7.1 AMERICAN NATIONAL STANDARD X3.159-1989 3.7.1

Language 84 External Definitions

extern int max(a, b)

int a, b;

{
return a > b ? a : b,

5 }

Here int a, b; is the declaration list for the parameters, which may be omitted because those

are the defaults. The difference between these two definitions is that the first form acts as a

prototype declaration that forces conversion of the arguments of subsequent calls to the function,

whereas the second form may not.

10 To pass one function to another, one might say

int f(void);

/*...*/

g(f) ;

Note that f must be declared explicitly in the calling function, as its appearance in the expression

15 g(f) was not followed by (. Then the definition of g might read

g(int (*funcp)(void))

{
/*...*/ (*funcp) () /* or funcp() ... */

}

20 or, equivalently,

g(int func(void))

{
/*...*/ func() /* or (*func) () ... */

}

25 3.7.2 External Object Definitions

Semantics

If the declaration of an identifier for an object has file scope and an initializer, the declaration

is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and

30 without a storage-class specifier or with the storage-class specifier static, constitutes a

tentative definition. If a translation unit contains one or more tentative definitions for an

identifier, and the translation unit contains no external definition for that identifier, then the

behavior is exactly as if the translation unit contains a file scope declaration of that identifier,

with the composite type as of the end of the translation unit, with an initializer equal to 0.

35 If the declaration of an identifier for an object is a tentative definition and has internal

linkage, the declared type shall not be an incomplete type.

Examples

int il = 1; /* definition, external linkage */

static int i2 = 2; /* definition, internal linkage */

extern int i3 = 3; /* definition, external linkage */

int i4; /* tentative definition, external linkage */

static int i5; /* tentative definition, internal linkage */

3.7.1 AMERICAN NATIONAL STANDARD X3.159-1989 3.7.2

Language 85 External Definitions

5

10

int il;

int i2;

int i3;

int i4;

int i5;

/* valid tentative definition, refers to previous */

/* 3.1.2.2 renders undefined, linkage disagreement */

/* valid tentative definition, refers to previous */

/* valid tentative definition, refers to previous */

/* 3.1.2.2 renders undefined, linkage disagreement */

extern int il;

extern int i2;

extern int i3;

extern int i4;

extern int i5;

/*

/*

/*

/*

/*

refers to previous,

refers to previous,

refers to previous,

refers to previous,

refers to previous,

whose linkage is

whose linkage is

whose linkage is

whose linkage is

whose linkage is

external */

internal */

external */

external * /

internal * /

3.7.2 AMERICAN NATIONAL STANDARD X3.159-I989 3.7.2

Language 86 Preprocessing Directives

3.8 Preprocessing Directives

Syntax

5

preprocessing-file:

group
6 y opt

group:

group-part

group group-part

10

group-part:

pp-tokens new-line
°P{

if-section

control-line

15

20

25

30

35

40

if-section:

if-group elif-groupselse-groupendif-line

if-group:

if constant-expression new-line group

ifdef identifier new-line group

ifndef identifier new-line group

elif-groups:

elif-group

elif-groups elif-group

elif-group:

el if constant-expression new-line group

else-group:

else new-line group
° r opt

endif-line:

endif new-line

control-line:

include

define

define

undef

line

error

pragma

ens new-line

ier replacement-list new-line

ter Iparen identifier-list)

ier new-line

ens new-line

ens new-line
opt

replacement-list new-line

Iparen:

the left-parenthesis character without preceding white-space

replacement-list:

pp-tokens
opt

pp-tokens:

preprocessing-token

pp-tokens preprocessing-token

new-line:

the new-line character

3.8 AMERICAN NATIONAL STANDARD X3.159-1989 3.8

Language 87 Preprocessing Directives

Description

A preprocessing directive consists of a sequence of preprocessing tokens that begins with a #

preprocessing token that is either the first character in the source file (optionally after white space

containing no new-line characters) or that follows white space containing at least one new-line

5 character, and is ended by the next new-line character.82

Constraints

The only white-space characters that shall appear between preprocessing tokens within a

preprocessing directive (from just after the introducing # preprocessing token through just before

the terminating new-line character) are space and horizontal-tab (including spaces that have

10 replaced comments or possibly other white-space characters in translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include other

source files, and replace macros. These capabilities are called preprocessing, because

conceptually they occur before translation of the resulting translation unit.

15 The preprocessing tokens within a preprocessing directive are not subject to macro expansion

unless otherwise stated.

3.8.1 Conditional Inclusion

Constraints

The expression that controls conditional inclusion shall be an integral constant expression

20 except that: it shall not contain a cast; identifiers (including those lexically identical to keywords)

are interpreted as described below;8' and it may contain unary operator expressions of the form

defined identifier

or

defined (identifier)

25 which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is

predefined or if it has been the subject of a #define preprocessing directive without an

intervening #undef directive with the same subject identifier), 0 if it is not.

Each preprocessing token that remains after all macro replacements have occurred shall be in

the lexical form of a token.

30 Semantics

Preprocessing directives of the forms

if constant-expression

el if constant-expression

new-line group 6 yopt
new-line group

* 1 opt

check whether the controlling constant expression evaluates to nonzero.

35 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the

controlling constant expression are replaced (except for those macro names modified by the

defined unary operator), just as in normal text. If the token defined is generated as a result

of this replacement process or use of the defined unary operator does not match one of the two

82. Thus, preprocessing directives are commonly called “lines.” These “lines” have no other syntactic
significance, as all white space is equivalent except in certain situations during preprocessing (see the #
character string literal creation operator in 3.8.3.2, for example).

83. Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or
are not macro names — there simply are no keywords, enumeration constants, and so on.

3.8 AMERICAN NATIONAL STANDARD X3.159-1989 3.8.1

Language 88 Preprocessing Directives

specified forms prior to macro replacement, the behavior is undefined. After all replacements due

to macro expansion and the defined unary operator have been performed, all remaining

identifiers are replaced with the pp-number 0, and then each preprocessing token is converted

into a token. The resulting tokens comprise the controlling constant expression which is

5 evaluated according to the rules of 3.4 using arithmetic that has at least the ranges specified in

2.2.4.2, except that int and unsigned int act as if they have the same representation as,

respectively, long and unsigned long. This includes interpreting character constants, which

may involve converting escape sequences into execution character set members. Whether the

numeric value for these character constants matches the value obtained when an identical

10 character constant occurs in an expression (other than within a #if or #elif directive) is

implementation-defined.s4 Also, whether a single-character character constant may have a

negative value is implementation-defined.

Preprocessing directives of the forms

15
ifdef identifier new-line group

ifndef identifier new-line group

check whether the identifier is or is not currently defined as a macro name. Their conditions are

equivalent to #if defined identifier and #if ! defined identifier respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it

controls is skipped: directives are processed only through the name that determines the directive

20 in order to keep track of the level of nested conditionals; the rest of the directives’ preprocessing

tokens are ignored, as are the other preprocessing tokens in the group. Only the first group

whose control condition evaluates to true (nonzero) is processed. If none of the conditions

evaluates to true, and there is a #else directive, the group controlled by the #else is

processed; lacking a #else directive, all the groups until the #endif are skipped.^

25 Forward references: macro replacement (3.8.3), source file inclusion (3.8.2).

3.8,2 Source File Inclusion

Constraints

A #include directive shall identify a header or source file that can be processed by the

implementation.

30 Semantics

A preprocessing directive of the form

include <h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the

specified sequence between the < and > delimiters, and causes the replacement of that directive

35 by the entire contents of the header. How the places are specified or the header identified is

implementation-defined.

84. Thus, the constant expression in the following #if directive and if statement is not guaranteed to evaluate to
the same value in these two contexts.

#if 'z' - 'a' = = 25

if (' z' - ' a' ==25)

85. As indicated by the syntax, a preprocessing token shall not follow a #else or #endif directive before the
terminating new-line character. However, comments may appear anywhere in a source file, including within a
preprocessing directive.

3.8.1 AMERICAN NATIONAL STANDARD X3.159-1989 3.8.2

Language 89 Preprocessing Directives

A preprocessing directive of the form

include "q-ehai -sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the

specified sequence between the " delimiters. The named source file is searched for in an

5 implementation-defined manner. If this search is not supported, or if the search fails, the

directive is reprocessed as if it read

include <h-char-sequence> new-line

with the identical contained sequence (including > characters, if any) from the original directive.

A preprocessing directive of the form

10 # include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after

include in the directive are processed just as in normal text. (Each identifier currently defined

as a macro name is replaced by its replacement list of preprocessing tokens.) The directive

resulting after all replacements shall match one of the two previous forms.X6 The method by

15 which a sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair

of " characters is combined into a single header name preprocessing token is implementation-

defined.

There shall be an implementation-defined mapping between the delimited sequence and the

external source file name. The implementation shall provide unique mappings for sequences

20 consisting of one or more letters (as defined in 2.2.1) followed by a period (.) and a single

letter. The implementation may ignore the distinctions of alphabetical case and restrict the

mapping to six significant characters before the period.

A #include preprocessing directive may appear in a source file that has been read because

of a #include directive in another file, up to an implementation-defined nesting limit (see

25 2.2.4.1).

Examples

The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>

#include "myprog.h"

30 This example illustrates a macro-replaced #include directive:

#if VERSION == 1

#define INCFILE "versl.h"

#elif VERSION == 2

#define INCFILE "vers2.h" /* and so on */

35 #else

#define INCFILE "versN.h"

#endif

#include INCFILE

Forward references: macro replacement (3.8.3).

86. Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in
2.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

3.8.2 AMERICAN NATIONAL STANDARD X3.159-I989 3.8.2

Language 90 Preprocessing Directives

3.8.3 Macro Replacement

Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have the

same number, ordering, spelling, and white-space separation, where all white-space separations

5 are considered identical.

An identifier currently defined as a macro without use of lparen (an object-like macro) may be

redefined by another #define preprocessing directive provided that the second definition is an

object-like macro definition and the two replacement lists are identical.

An identifier currently defined as a macro using lparen (a function-like macro) may be

10 redefined by another #define preprocessing directive provided that the second definition is a

function-like macro definition that has the same number and spelling of parameters, and the two

replacement lists are identical.

The number of arguments in an invocation of a function-like macro shall agree with the

number of parameters in the macro definition, and there shall exist a) preprocessing token that

15 terminates the invocation.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

Semantics

The identifier immediately following the define is called the macro name. There is one

name space for macro names. Any white-space characters preceding or following the

20 replacement list of preprocessing tokens are not considered part of the replacement list for either

form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a

preprocessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

25 # define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name1*7 to be

replaced by the replacement list of preprocessing tokens that constitute the remainder of the

directive. The replacement list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

30

35

40

define identifier lparen identifier-list
J opt

replacement-list new-line

defines a function-like macro with arguments, similar syntactically to a function call. The

parameters are specified by the optional list of identifiers, whose scope extends from their

declaration in the identifier list until the new-line character that terminates the #define

preprocessing directive. Each subsequent instance of the function-like macro name followed by a

(as the next preprocessing token introduces the sequence of preprocessing tokens that is replaced

by the replacement list in the definition (an invocation of the macro). The replaced sequence of

preprocessing tokens is terminated by the matching) preprocessing token, skipping intervening

matched pairs of left and right parenthesis preprocessing tokens. Within the sequence of

preprocessing tokens making up an invocation of a function-like macro, new-line is considered a

normal white-space character.

87. Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not
sequences possibly containing identifier-like subsequences (see 2.1.1.2, translation phases), they are never
scanned for macro names or parameters.

3.8.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.8.3

Language 91 Preprocessing Directives

The sequence of preprocessing tokens bounded by the outside-most matching parentheses

forms the list of arguments for the function-like macro. The individual arguments within the list

are separated by comma preprocessing tokens, but comma preprocessing tokens between

matching inner parentheses do not separate arguments. If (before argument substitution) any

5 argument consists of no preprocessing tokens, the behavior is undefined. If there are sequences

of preprocessing tokens within the list of arguments that would otherwise act as preprocessing

directives, the behavior is undefined.

3.8.3.1 Argument Substitution

After the arguments for the invocation of a function-like macro have been identified,

10 argument substitution takes place. A parameter in the replacement list, unless preceded by a # or

preprocessing token or followed by a ## preprocessing token (see below), is replaced by the

corresponding argument after all macros contained therein have been expanded. Before being

substituted, each argument's preprocessing tokens are completely macro replaced as if they

formed the rest of the translation unit; no other preprocessing tokens are available.

15 3.8.3.2 The # Operator

Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be followed

by a parameter as the next preprocessing token in the replacement list.

Semantics

20 If, in the replacement list, a parameter is immediately preceded by a # preprocessing token,

both are replaced by a single character string literal preprocessing token that contains the spelling

of the preprocessing token sequence for the corresponding argument. Each occurrence of white

space between the argument’s preprocessing tokens becomes a single space character in the

character string literal. White space before the first preprocessing token and after the last

25 preprocessing token comprising the argument is deleted. Otherwise, the original spelling of each

preprocessing token in the argument is retained in the character string literal, except for special

handling for producing the spelling of string literals and character constants: a \ character is

inserted before each " and \ character of a character constant or string literal (including the

delimiting " characters). If the replacement that results is not a valid character string literal, the

30 behavior is undefined. The order of evaluation of # and ## operators is unspecified.

3.8.3.3 The ## Operator

Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list

for either form of macro definition.

35 Semantics

If, in the replacement list, a parameter is immediately preceded or followed by a ##

preprocessing token, the parameter is replaced by the corresponding argument’s preprocessing

token sequence.

For both object-like and function-like macro invocations, before the replacement list is

40 reexamined for more macro names to replace, each instance of a ## preprocessing token in the

replacement list (not from an argument) is deleted and the preceding preprocessing token is

concatenated with the following preprocessing token. If the result is not a valid preprocessing

token, the behavior is undefined. The resulting token is available for further macro replacement.

The order of evaluation of ## operators is unspecified.

3.8.3 AMERICAN NATIONAL STANDARD X3.159-1989 3.8.3.3

Language 92 Preprocessing Directives

3.8.3.4 Rescanning and Further Replacement

After all parameters in the replacement list have been substituted, the resulting preprocessing

token sequence is rescanned with all subsequent preprocessing tokens of the source file for more

macro names to replace.

5 If the name of the macro being replaced is found during this scan of the replacement list (not

including the rest of the source file’s preprocessing tokens), it is not replaced. Further, if any

nested replacements encounter the name of the macro being replaced, it is not replaced. These

nonreplaced macro name preprocessing tokens are no longer available for further replacement

even if they are later (re)examined in contexts in which that macro name preprocessing token

10 would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a

preprocessing directive even if it resembles one.

3.8.3.5 Scope of Macro Definitions

A macro definition lasts (independent of block structure) until a corresponding #undef

15 directive is encountered or (if none is encountered) until the end of the translation unit.

A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the

specified identifier is not currently defined as a macro name.

20 Examples

The simplest use of this facility is to define a “manifest constant,” as in

#define TABSIZE 100

int table[TABSIZE];

The following defines a function-like macro whose value is the maximum of its arguments, it

25 has the advantages of working for any compatible types of the arguments and of generating in¬

line code without the overhead of function calling. It has the disadvantages of evaluating one or

the other of its arguments a second time (including side effects) and generating more code than a

function if invoked several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

30 The parentheses ensure that the arguments and the resulting expression are bound properly.

To illustrate the rules for redefinition and reexamination, the sequence

#define X 3

#define f (a) f (x

#undef X

35 #define X 2

#define g f

#define z z[0]

#define h g(~
#define m(a) a (w)

40 #define w 0,1

#define t (a) a

f(y+l) + f(f(z)) %t(t (g)(0) +t)(l);

g (x+ (3,4) -w) | h 5) & m

(f) Am(m) ;

45 results in

3.8.3.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.8.3.5

Language 93 Preprocessing Directives

f (2 * (y+1)) + f (2 * (f (2 * (z [0])))) % f (2 * (0)) + t (1) ;

f (2 * (2+ (3, 4) -0,1)) | f (2 * (~ 5)) & f (2 * (0,1)) Am (0,1) ;

To illustrate the rules for creating character string literals and concatenating tokens, the

sequence

5

10

#define str(s)

#define xstr(s)

#define debug(s, t)

#define INCFILE(n)

#define glue(a, b)

#define xglue(a, b)

#define HIGHLOW

#define LOW

s

str (s)

printf ("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)

vers ## n /* from previous #include example */

a ## b

glue(a, b)

"hello"

LOW ", world"

debug(1, 2);

13 fputs(str(strncmp("abc\0d", "abc", '\4') /* this goes away */

== 0) str (: @\n) , s) ;

#include xstr(INCFILE(2).h)

glue(HIGH, LOW);

xglue(HIGH, LOW)

20 results in

printf("x" "1" "= %d, x" "2" "= %s", xl, x2);

fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0" @\n", s);

#include "vers2 .h" (after macro replacement, before file access)

"hello";

25 "hello" ", world"

or, after concatenation of the character string literals,

printf("xl= %d, x2= %s", xl, x2);

fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0: @\n", s);

#include "vers2 . h" (after macro replacement, before file access)

30 "hello";

"hello, world"

Space around the # and ## tokens in the macro definition is optional.

And finally, to demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)

35 #define OBJ_LIKE /* white space */ (1-1) /* other */

#define FTN_LIKE(a) (a)

#define FTN_LIKE(a)(/* note the white space */ \

a /* other stuff on this line

*/)

40 But the following redefinitions are invalid:

#define OB J_ LIKE (0)

#define OBJ_ _LIKE (1
#define FTN_ LIKE (b) (a
#define FTN LIKE (b) (b

/* different token sequence */

/* different white space * /

/ * different parameter usage * /

/* different parameter spelling * /

3.8.3.5 AMERICAN NATIONAL STANDARD X3.159-1989 3.8.3.5

Language 94 Preprocessing Directives

3.8.4 Line Control

Constraints

The string literal of a #line directive, if present, shall be a character string literal.

Semantics

5 The line number of the current source line is one greater than the number of new-line

characters read or introduced in translation phase 1 (2.1.1.2) while processing the source file to

the current token.

A preprocessing directive of the form

line digit-sequence new-line

10 causes the implementation to behave as if the following sequence of source lines begins with a

source line that has a line number as specified by the digit sequence (interpreted as a decimal

integer). The digit sequence shall not specify zero, nor a number greater than 32767.

A preprocessing directive of the form

line digit-sequence "s-char-sequence " new-line

15 sets the line number similarly and changes the presumed name of the source file to be the

contents of the character string literal.

A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after

20 line on the directive are processed just as in normal text (each identifier currently defined as a

macro name is replaced by its replacement list of preprocessing tokens). The directive resulting

after all replacements shall match one of the two previous forms and is then processed as

appropriate.

3.8.5 Error Directive

25 Semantics

A preprocessing directive of the form

error pp-tokens new-line

causes the implementation to produce a diagnostic message that includes the specified sequence

of preprocessing tokens.

30 3.8.6 Pragma Directive

Semantics

A preprocessing directive of the form

pragma pp-tokens new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is

35 not recognized by the implementation is ignored.

3.8.4 AMERICAN NATIONAL STANDARD X3.159-1989 3.8.6

Language 95 Preprocessing Directives

3.8.7 Null Directive

Semantics

A preprocessing directive of the form

new-line

5 has no effect.

3.8.8 Predefined Macro Names

The following macro names shall be defined by the implementation:

_LINE_The line number of the current source line (a decimal constant).

_FILE_The presumed name of the source file (a character string literal).

10_DATE_The date of translation of the source file (a character string literal of the form

"Mmm dd yyyy", where the names of the months are the same as those generated

by the asctime function, and the first character of dd is a space character if the

value is less than 10). If the date of translation is not available, an

implementation-defined valid date shall be supplied.

15_TIME_The time of translation of the source file (a character string literal of the form

"hh:mm:ss" as in the time generated by the asctime function). If the time of

translation is not available, an implementation-defined valid time shall be supplied.

STDC_The decimal constant 1, intended to indicate a conforming implementation.

The values of the predefined macros (except for_LINE_and_FILE_) remain

20 constant throughout the translation unit.

None of these macro names, nor the identifier defined, shall be the subject of a #define

or a #undef preprocessing directive. All predefined macro names shall begin with a leading

underscore followed by an uppercase letter or a second underscore.

Forward references: the asctime function (4.12.3.1).

3.8.7 AMERICAN NATIONAL STANDARD X3.159-1989 3.8.8

Language 96 Future Language Directions

3.9 Future Language Directions

3.9.1 External Names

Restriction of the significance of an external name to fewer than 31 characters or to only one

case is an obsolescent feature that is a concession to existing implementations.

5 3.9.2 Character Escape Sequences

Lowercase letters as escape sequences are reserved for future standardization. Other

characters may be used in extensions.

3.9.3 Storage-Class Specifiers

The placement of a storage-class specifier other than at the beginning of the declaration

10 specifiers in a declaration is an obsolescent feature.

3.9.4 Function Declarators

The use of function declarators with empty parentheses (not prototype-format parameter type

declarators) is an obsolescent feature.

3.9.5 Function Definitions

15 The use of function definitions with separate parameter identifier and declaration lists (not

prototype-format parameter type and identifier declarators) is an obsolescent feature.

3.9.6 Array Parameters

The use of two parameters declared with an array type (prior to their adjustment to pointer

type) in separate lvalues to designate the same object is an obsolescent feature.

3.9 AMERICAN NATIONAL STANDARD X3.159-1989 3.9.6

C Standard 97 Library

4. Library

4.1 Introduction

4.1.1 Definitions of Terms

5 A string is a contiguous sequence of characters terminated by and including the first null

character. A “pointer to" a string is a pointer to its initial (lowest addressed) character. The

“length” of a string is the number of characters preceding the null character and its “value” is

the sequence of the values of the contained characters, in order.

A letter is a printing character in the execution character set corresponding to any of the 52

10 required lowercase and uppercase letters in the source character set, listed in 2.2.1.

The decimal-point character is the character used by functions that convert floating-point

numbers to or from character sequences to denote the beginning of the fractional part of such

character sequences.SK It is represented in the text and examples by a period, but may be changed

by the setlocale function.

15 Forward references: character handling (4.3), the setlocale function (4.4.1.1).

4.1.2 Standard Headers

Each library function is declared in a header *Q whose contents are made available by the

#include preprocessing directive. The header declares a set of related functions, plus any

necessary types and additional macros needed to facilitate their use.

20

25

The standard headers are

<assert.h>

Cctype.h>

<errno.h>

<float.h>

<limits.h>

<locale.h>

<math.h>

<setjmp.h>

<signal.h>

<stdarg.h>

<stddef.h>

<stdio.h>

<stdlib.h>

<string.h>

<time.h>

If a hie with the same name as one of the above < and > delimited sequences, not provided

as part of the implementation, is placed in any of the standard places for a source hie to be

included, the behavior is undehned.

Headers may be included in any order; each may be included more than once in a given

30 scope, with no effect different from being included only once, except that the effect of including

<assert .h> depends on the definition of NDEBUG. If used, a header shall be included outside

of any external declaration or dehnition. and it shall hrst be included before the hrst reference to

any of the functions or objects it declares, or to any of the types or macros it defines. However,

if the identiher is declared or dehned in more than one header, the second and subsequent

35 associated headers may be included after the initial reference to the identiher. The program shall

not have any macros with names lexically identical to keywords currently dehned prior to the

inclusion.

Forward references: diagnostics (4.2).

88. The functions that make use of the decimal-point character are localeconv, fprint f, fscanf, printf,

scant, sprintf, sscanf. vfprintf. vprintf, vsprintf, atof, and strtod.

89. A header is not necessarily a source hie, nor are the < and > delimited sequences in header names necessarily
valid source hie names.

4. AMERICAN NATIONAL STANDARD X3.159-1989 4.1.2

Library 98 Introduction

4.1.2.1 Reserved Identifiers

Each header declares or defines all identifiers listed in its associated section, and optionally

declares or defines identifiers listed in its associated future library directions section and

identifiers which are always reserved either for any use or for use as file scope identifiers.

5 • All identifiers that begin with an underscore and either an uppercase letter or another

underscore are always reserved for any use.

• All identifiers that begin with an underscore are always reserved for use as identifiers with file

scope in both the ordinary identifier and tag name spaces.

• Each macro name listed in any of the following sections (including the future library

10 directions) is reserved for any use if any of its associated headers is included.

• All identifiers with external linkage in any of the following sections (including the future

library directions) are always reserved for use as identifiers with external linkage.90

• Each identifier with file scope listed in any of the following sections (including the future

library directions) is reserved for use as an identifier with file scope in the same name space if

15 any of its associated headers is included.

No other identifiers are reserved. If the program declares or defines an identifier with the

same name as an identifier reserved in that context (other than as allowed by 4.1.6), the behavior

is undefined.91

4.1.3 Errors <errno . h>

20 The header <errno.h> defines several macros, all relating to the reporting of error

conditions.

The macros are

EDOM

ERANGE

25 which expand to integral constant expressions with distinct nonzero values, suitable for use in

#if preprocessing directives; and

errno

which expands to a modifiable lvalue92 that has type int, the value of which is set to a positive

error number by several library functions. It is unspecified whether errno is a macro or an

30 identifier declared with external linkage. If a macro definition is suppressed in order to access an

actual object, or a program defines an identifier with the name errno, the behavior is undefined.

The value of errno is zero at program startup, but is never set to zero by any library

function.11' The value of errno may be set to nonzero by a library function call whether or not

there is an error, provided the use of errno is not documented in the description of the function

35 in the standard.

90. The list of reserved identifiers with external linkage includes errno, set jmp, and va_end.

91. Since macro names are replaced whenever found, independent of scope and name space, macro names
matching any of the reserved identifier names must not be defined if an associated header, if any, is included.

92. The macro errno need not be the identifier of an object. It might expand to a modifiable lvalue resulting
from a function call (for example, *errno ()).

93. Thus, a program that uses errno for error checking should set it to zero before a library function call, then
inspect it before a subsequent library function call. Of course, a library function can save the value of errno

on entry and then set it to zero, as long as the original value is restored if errno's value is still zero just
before the return.

4.1.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.1.3

Library 99 Introduction

Additional macro definitions, beginning with E and a digit or E and an uppercase letter,44 may

also be specified by the implementation.

4.1.4 Limits <f loat. h> and <limits . h>

The headers <float.h> and <limits.h> define several macros that expand to various

5 limits and parameters.

The macros, their meanings, and the constraints (or restrictions) on their values are listed in

2.2.4.2.

4.1.5 Common Definitions <stddef . h>

The following types and macros are defined in the standard header <stddef ,h>. Some are

10 also defined in other headers, as noted in their respective sections.

The types are

pt rdif f_t

which is the signed integral type of the result of subtracting two pointers;

size_t

15 which is the unsigned integral type of the result of the sizeof operator; and

wchar_t

which is an integral type whose range of values can represent distinct codes for all members of

the largest extended character set specified among the supported locales; the null character shall

have the code value zero and each member of the basic character set defined in 2.2.1 shall have a

20 code value equal to its value when used as the lone character in an integer character constant.

The macros are

NULL

which expands to an implementation-defined null pointer constant; and

of fsetof (type, member-designator)

25 which expands to an integral constant expression that has type size_t, the value of which is the

offset in bytes, to the structure member (designated by member-designator), from the beginning

of its structure (designated by type). The member-designator shall be such that given

static type t;

then the expression & (t .member-designator) evaluates to an address constant. (If the specified

30 member is a bit-field, the behavior is undefined.)

Forward references: localization (4.4).

94. See “future library directions” (4.13.1).

4.1.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.1.5

Library 100 Introduction

4.1.6 Use of Library Functions

Each of the following statements applies unless explicitly stated otherwise in the detailed

descriptions that follow. If an argument to a function has an invalid value (such as a value

outside the domain of the function, or a pointer outside the address space of the program, or a

5 null pointer), the behavior is undefined. If a function argument is described as being an array,

the pointer actually passed to the function shall have a value such that all address computations

and accesses to objects (that would be valid if the pointer did point to the first element of such an

array) are in fact valid. Any function declared in a header may be additionally implemented as a

macro defined in the header, so a library function should not be declared explicitly if its header is

10 included. Any macro definition of a function can be suppressed locally by enclosing the name of

the function in parentheses, because the name is then not followed by the left parenthesis that

indicates expansion of a macro function name. For the same syntactic reason, it is permitted to

take the address of a library function even if it is also defined as a macro.95 The use of #undef

to remove any macro definition will also ensure that an actual function is referred to. Any

15 invocation of a library function that is implemented as a macro shall expand to code that

evaluates each of its arguments exactly once, fully protected by parentheses where necessary, so

it is generally safe to use arbitrary expressions as arguments. Likewise, those function-like

macros described in the following sections may be invoked in an expression anywhere a function

with a compatible return type could be called.1’9 All object-like macros listed as expanding to

20 integral constant expressions shall additionally be suitable for use in #if preprocessing

directives.

Provided that a library function can be declared without reference to any type defined in a

header, it is also permissible to declare the function, either explicitly or implicitly, and use it

without including its associated header. If a function that accepts a variable number of arguments

25 is not declared (explicitly or by including its associated header), the behavior is undefined.

Examples

The function atoi may be used in any of several ways:

• by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>

30 const char *str ;

/*...*/
i = atoi(str);

95. This means that an implementation must provide an actual function for each library function, even if it also
provides a macro for that function.

96. Because external identifiers and some macro names beginning with an underscore are reserved, implementations
may provide special semantics for such names. For example, the identifier _BUILTIN_abs could be used to
indicate generation of in-line code for the abs function. Thus, the appropriate header could specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.

In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine
function may write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in implementation.
The prototype for the function, which precedes and is hidden by any macro definition, is thereby revealed also.

4.1.6 AMERICAN NATIONAL STANDARD X3.159-1989 4.1.6

Library 101 Introduction

5

10

15

20

4.1.6

• by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>

#undef atoi

const char *str;

/*...*/
i = atoi(str);

or

#include <stdlib.h>

const char *str;

/*...*/
i = (atoi)(str);

• by explicit declaration

extern int atoi(const char *) ;

const char *str;

/*...*/
i = atoi(str);

• by implicit declaration

const char *str;

/*-..*/
i = atoi(str);

AMERICAN NATIONAL STANDARD X3.159-1989 4.1.6

Library 102 Diagnostics <assert. h>

4.2 Diagnostics <assert .h>

The header <assert .h> dehnes the assert macro and refers to another macro.

NDEBUG

which is not defined by <assert.h>. If NDEBUG is defined as a macro name at the point in

5 the source file where <assert .h> is included, the assert macro is defined simply as

#define assert(ignore) ((void)0)

The assert macro shall be implemented as a macro, not as an actual function. If the macro

definition is suppressed in order to access an actual function, the behavior is undefined.

4.2.1 Program Diagnostics

10 4.2.1.1 The assert Macro

Synopsis

#include <assert.h>

void assert(int expression);

Description

15 The assert macro puts diagnostics into programs. When it is executed, if expression is

false (that is. compares equal to 0), the assert macro writes information about the particular

call that failed (including the text of the argument, the name of the source file, and the source

line number — the latter are respectively the values of the preprocessing macros_FILE_and

LINE) on the standard error file in an implementation-defined format.4' It then calls the

20 abort function.

Returns

The assert macro returns no value.

Forward references: the abort function (4.10.4.1).

97. The message written might be of the form

Assertion failed: expression, file xyz, line nnn

4.2 AMERICAN NATIONAL STANDARD X3.159-I989 4.2.1.1

Library 103 Character Handling <ctype . h>

4.3 Character Handling <ctype.h>

The header <ctype. h> declares several functions useful for testing and mapping

characters.9* In all cases the argument is an int. the value of which shall be representable as an

unsigned char or shall equal the value of the macro EOF. If the argument has any other

5 value, the behavior is undefined.

The behavior of these functions is affected by the current locale. Those functions that have

implementation-defined aspects only when not in the "C" locale are noted below.

The term printing character refers to a member of an implementation-defined set of

characters, each of which occupies one printing position on a display device; the term control

10 character refers to a member of an implementation-defined set of characters that are not printing

characters.9"

Forward references: EOF (4.9.1), localization (4.4).

4.3.1 Character Testing Functions

The functions in this section return nonzero (true) if and only if the value of the argument c

15 conforms to that in the description of the function.

4.3.1.1 The isalnum Function

Synopsis

#include <ctype.h>

int isalnum(int c);

20 Description

The isalnum function tests for any character for which isalpha or isdigit is true.

4.3.1.2 The isalpha Function

Synopsis

#include <ctype.h>

25 int isalpha(int c);

Description

The isalpha function tests for any character for which isupper or islower is true, or

any character that is one of an implementation-defined set of characters for which none of

iscntrl, isdigit, ispunct, or isspace is true. In the "C" locale, isalpha returns

30 true only for the characters for which isupper or islower is true.

4.3.1.3 The iscntrl Function

Synopsis

#include <ctype.h>

int iscntrl(int c);

98. See “future library directions” (4.13.2).

99. In an implementation that uses the seven-bit ASCII character set, the printing characters are those whose values
lie from 0x20 (space) through 0x7E (tilde); the control characters are those whose values lie from 0 (NUL)
through Ox IF (US), and the character 0x7F (DEL).

4.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.3.1.3

Library 104 Character Handling Cctype. h>

Description

The iscntrl function tests for any control character.

4.3.1.4 The isdigit Function

Synopsis

5 #include Cctype.h>

int isdigit(int c);

Description

The isdigit function tests for any decimal-digit character (as defined in 2.2.1).

4.3.1.5 The isgraph Function

10 Synopsis

#include Cctype.h>

int isgraph(int c);

Description

The isgraph function tests for any printing character except space (' ').

15 4.3.1.6 The islower Function

Synopsis

#include Cctype.h>

int islower(int c);

Description

20 The islower function tests for any character that is a lowercase letter or is one of an

implementation-defined set of characters for which none of iscntrl. isdigit. ispunct, or

isspace is true. In the "C" locale, islower returns true only for the characters defined as

lowercase letters (as defined in 2.2.1).

4.3.1.7 The isprint Function

25 Synopsis

#include Cctype.h>

int isprint(int c);

Description

The isprint function tests for any printing character including space (' ').

30 4.3.1.8 The ispunct Function

Synopsis

#include Cctype.h>

int ispunct(int c);

Description

35 The ispunct function tests for any printing character that is neither space (' ') nor a

character for which isalnum is true.

4.3.1.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.3.1.8

Library 105 Character Handling <ctype.h>

4.3.1.9 The isspace Function

Synopsis

#include <ctype.h>

int isspace(int c);

5 Description

The isspace function tests for any character that is a standard white-space character or is

one of an implementation-defined set of characters for which isalnum is false. The standard

white-space characters are the following: space (' '), form feed ('\f'), new-line ('\n'),

carriage return ('\r'), horizontal tab ('\t'), and vertical tab ('\v'). In the "C" locale,

10 isspace returns true only for the standard white-space characters.

4.3.1.10 The isupper Function

Synopsis

#include <ctype.h>

int isupper(int c);

15 Description

The isupper function tests for any character that is an uppercase letter or is one of an

implementation-defined set of characters for which none of iscntrl, isdigit, ispunct, or

isspace is true. In the "C" locale, isupper returns true only for the characters defined as

uppercase letters (as defined in 2.2.1).

20 4.3.1.11 The isxdigit Function

Synopsis

#include <ctype.h>

int isxdigit(int c);

Description

25 The isxdigit function tests for any hexadecimal-digit character (as defined in 3.1.3.2).

4.3.2 Character Case Mapping Functions

4.3.2.1 The tolower Function

Synopsis

#include <ctype.h>

30 int tolower(int c) ;

Description

The tolower function converts an uppercase letter to the corresponding lowercase letter.

Returns

If the argument is a character for which isupper is true and there is a corresponding

35 character for which islower is true, the tolower function returns the corresponding character:

otherwise, the argument is returned unchanged.

4.3.2.2 The toupper Function

Synopsis

40

#include <ctype.h>

int toupper(int c);

4.3.1.9 AMERICAN NATIONAL STANDARD X3.159-1989 4.3.2.2

Library 106 Character Handling Cctype . h>

Description

The toupper function converts a lowercase letter to the corresponding uppercase letter.

Returns

If the argument is a character for which islower is true and there is a corresponding

5 character for which isupper is true, the toupper function returns the corresponding character;

otherwise, the argument is returned unchanged.

4.3.2.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.3.2.2

Library 107 Localization <locale.h>

4.4 Localization clocale . h>

The header clocale.h> declares two functions, one type, and defines several macros.

The type is

struct lconv

5 which contains members related to the formatting of numeric values. The structure shall contain

at least the following members, in any order. The semantics of the members and their normal

ranges is explained in 4.4.2.1. In the "C" locale, the members shall have the values specified in

the comments.

char *decimal_point; /* " . " */

10 char *thousands sep; /* » » * /

char *grouping; /* " " * /

char *int curr symbol; /* " " * j

char *currency symbol; /* » " * /

char *mon decimal^point; /* " " */

15 char *mon thousands sep; /* »" */

char *mon grouping; /* "" */

char *positive sign; /* » » * /

char *negative sign; /* ”" * /

char int frac digits; /* CHAR_MAX */

20 char frac digits; /* CHAR_MAX */

char p cs_precedes; /* CHAR_MAX */

char p sep by space; /* CHAR_MAX */

char n cs_precedes; /* CHAR_MAX */
char n sep by space; /* CHAR_MAX */

25 char p sign_posn; /* CHAR_MAX */
char n sign_posn; /* CHAR_MAX */

The macros defined are NULL (described in 4.1.5); and

LC_ALL

LC_COLLATE

30 LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC TIME

which expand to integral constant expressions with distinct values, suitable for use as the first

35 argument to the setlocale function. Additional macro definitions, beginning with the

characters LC_ and an uppercase letter,100 may also be specified by the implementation.

100. See “future library directions” (4.13.3).

4.4 AMERICAN NATIONAL STANDARD X3.159-1989 4.4

Library 108 Localization <locale.h>

4.4.1 Locale Control

4.4.1.1 The setlocale Function

Synopsis

#include <locale.h>

5 char *setlocale(int category, const char *locale);

Description

The setlocale function selects the appropriate portion of the program's locale as specified

by the category and locale arguments. The setlocale function may be used to change

or query the program’s entire current locale or portions thereof. The value LC_ALL for

10 category names the program’s entire locale; the other values for category name only a

portion of the program’s locale. LC_COLLATE affects the behavior of the strcoll and

strxfrm functions. LC_CTYPE affects the behavior of the character handling functions101 and

the multibyte functions. LC_MONETARY affects the monetary formatting information returned by

the localeconv function. LC_NUMERIC affects the decimal-point character for the formatted

15 input/output functions and the string conversion functions, as well as the nonmonetary formatting

information returned by the localeconv function. LC_TIME affects the behavior of the

strftime function.

A value of "C" for locale specifies the minimal environment for C translation; a value of

"" for locale specifies the implementation-defined native environment. Other

20 implementation-defined strings may be passed as the second argument to setlocale.

At program startup, the equivalent of

setlocale(LC_ALL, "C");

is executed.

The implementation shall behave as if no library function calls the setlocale function.

25 Returns

If a pointer to a string is given for locale and the selection can be honored, the

setlocale function returns a pointer to the string associated with the specified category for

the new locale. If the selection cannot be honored, the setlocale function returns a null

pointer and the program’s locale is not changed.

30 A null pointer for locale causes the setlocale function to return a pointer to the string

associated with the category for the program’s current locale; the program's locale is not

changed.lo;!

The pointer to string returned by the setlocale function is such that a subsequent call with

that string value and its associated category will restore that part of the program’s locale. The

35 string pointed to shall not be modified by the program, but may be overwritten by a subsequent

call to the setlocale function.

Forward references; formatted input/output functions (4.9.6), the multibyte character functions

(4.10.7), the multibyte string functions (4.10.8), string conversion functions (4.10.1), the

strcoll function (4.11.4.3), the strftime function (4.12.3.5), the strxfrm function

40 (4.11.4.5).

101. The only functions in 4.3 whose behavior is not affected by the current locale are isdigit and isxdigit.

102. The implementation must arrange to encode in a string the various categories due to a heterogeneous locale
when category has the value LC_ALL.

4.4.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.4.1.1

Library 109 Localization <locale.h>

4.4.2 Numeric Formatting Convention Inquiry

4.4.2.1 The localeconv Function

Synopsis

#include <locale.h>

5 struct Iconv *localeconv(void);

Description

The localeconv function sets the components of an object with type struct Iconv with

values appropriate for the formatting of numeric quantities (monetary and otherwise) according to

the rules of the current locale.

10 The members of the structure with type char * are pointers to strings, any of which (except

decimal_point) can point to to indicate that the value is not available in the current

locale or is of zero length. The members with type char are nonnegative numbers, any of

which can be CHAR_MAX to indicate that the value is not available in the current locale. The

members include the following:

15 char *decimal_j?oint

The decimal-point character used to format nonmonetary quantities.

char *thousands_sep

The character used to separate groups of digits before the decimal-point character in

formatted nonmonetary quantities.

20 char ^grouping

A string whose elements indicate the size of each group of digits in formatted

nonmonetary quantities.

*int_curr_symbol

The international currency symbol applicable to the current locale. The first three

characters contain the alphabetic international currency symbol in accordance with

those specified in ISO 4217:1987. The fourth character (immediately preceding the

null character) is the character used to separate the international currency symbol

from the monetary quantity.

char *currency_symbol

30 The local currency symbol applicable to the current locale.

char *mon_decimal_point

The decimal-point used to format monetary quantities.

char

25

35

char *mon_thousands_sep

The separator for groups of digits before the decimal-point in formatted monetary

quantities.

char *mon_grouping

A string whose elements indicate the size of each group of digits in formatted

monetary quantities.

40

char *positive_sign

The string used to indicate a nonnegative-valued formatted monetary quantity.

char ^negative sign

The string used to indicate a negative-valued formatted monetary quantity.

45

char int_frac_digits

The number of fractional digits (those after the decimal-point) to be displayed in a

internationally formatted monetary quantity.

4.4.1.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.4.2.1

Library Localization <locale.h> 110

char frac_digits

The number of fractional digits (those after the decimal-point) to be displayed in a

formatted monetary quantity.

char p_cs_precedes

5 Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the

value for a nonnegative formatted monetary quantity.

char p_sep_by_space

Set to 1 or 0 if the currency_symbol respectively is or is not separated by a

space from the value for a nonnegative formatted monetary quantity.

10 char n_csj>recedes

Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the

value for a negative formatted monetary quantity.

char n_sep_by_space

Set to 1 or 0 if the currency_symbol respectively is or is not separated by a

15 space from the value for a negative formatted monetary quantity.

char p_sign__posn

Set to a value indicating the positioning of the positive_sign for a nonnegative

formatted monetary quantity.

char n_sign_posn

20 Set to a value indicating the positioning of the negative_sign for a negative

formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

25 other The integer value is the number of digits that comprise the current group. The

next element is examined to determine the size of the next group of digits before

the current group.

The value of p_sign_j50sn and n_sign_posn is interpreted according to the following:

0 Parentheses surround the quantity and currency_symbol.

30 1 The sign string precedes the quantity and currency_symbol.

2 The sign string succeeds the quantity and currency_symbol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately succeeds the currency_symbol.

The implementation shall behave as if no library function calls the localeconv function.

35 Returns

The localeconv function returns a pointer to the hlled-in object. The structure pointed to

by the return value shall not be modified by the program, but may be overwritten by a subsequent

call to the localeconv function. In addition, calls to the setlocale function with

categories LC_ALL, LC_MONETARY. or LC__NUMERIC may overwrite the contents of the

40 structure.

Examples

The following table illustrates the rules which may well be used by four countries to format

monetary quantities.

4.4.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.4.2.1

Library

Country

111 Localization <locale . h>

Positive format Negative format International format

Italy L . 1. 234 -L.1.234 ITL 1.234

Netherlands F 1. 234,56 F -1.234,56 NLG 1.234,56

Norway krl. 234,56 krl.234,56- NOK 1.234,56

5 Switzerland SFrs .1,234.56 SFrs.1,234. 56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the structure
returned by localeconv are:

Italy Netherlands Norway Switzerland

int curr symbol "ITL." "NLG " "NOK " "CHF "

10 currency symbol "L " "F" "kr" "SFrs."

mon decimal_point tl ft II II
f

II II
f

II II

mon thousands sep M ?» II ll II II II II
t

mon grouping " \ 3 " "\3" "\3" "\3"

positive sign If II II II II II II II

15 negative sign II_ II ll_ll II_ll "C"

int frac digits 0 2 2 2

frac digits 0 2 2 2

p cs_precedes 1 1 1 1

p sep by space 0 1 0 0

20 n cs_precedes 1 1 1 1

n_sep by space 0 1 0 0

p sign_posn 1 1 1 1

n sign posn 1 4 2 2

4.4.2.1 AMERICAN NATIONAL STANDARD X3.I59-1989 4.4.2.1

Library Mathematics Cmath. h> 1 12

4.5 Mathematics Cmath. h>

The header <math. h> declares several mathematical functions and defines one macro. The

functions take double arguments and return double values.1"' Integer arithmetic functions

and conversion functions are discussed later.

5 The macro defined is

HUGE_VAL

which expands to a positive double expression, not necessarily representable as a float.104

Forward references: integer arithmetic functions (4.10.6), the atof function (4.10.1.1), the

strtod function (4.10.1.4).

10 4.5.1 Treatment of Error Conditions

The behavior of each of these functions is defined for all representable values of its input

arguments. Each function shall execute as if it were a single operation, without generating any

externally visible exceptions.

For all functions, a domain error occurs if an input argument is outside the domain over

15 which the mathematical function is defined. The description of each function lists any required

domain errors; an implementation may define additional domain errors, provided that such errors

are consistent with the mathematical definition of the function.1"' On a domain error, the

function returns an implementation-defined value; the value of the macro EDOM is stored in

errno.

20 Similarly, a range error occurs if the result of the function cannot be represented as a

double value. If the result overflows (the magnitude of the result is so large that it cannot be

represented in an object of the specified type), the function returns the value of the macro

HUGE_VAL. with the same sign (except for the tan function) as the correct value of the

function; the value of the macro ERANGE is stored in errno. If the result underflows (the

25 magnitude of the result is so small that it cannot be represented in an object of the specified

type), the function returns zero; whether the integer expression errno acquires the value of the

macro ERANGE is implementation-defined.

4.5.2 Trigonometric Functions

4.5.2.1 The acos Function

30 Synopsis

#include <math.h>

double acos(double x);

Description

The acos function computes the principal value of the arc cosine of x. A domain error

35 occurs for arguments not in the range [-1, +1],

103. See “future library directions" (4.13.4).

104. HUGE_VAL can be positive infinity in an implementation that supports infinities.

105. In an implementation that supports infinities, this allows infinity as an argument to be a domain error if the
mathematical domain of the function does not include infinity.

4.5 AMERICAN NATIONAL STANDARD X3.159-1989 4.5.2.1

Library 113 Mathematics <math. h>

Returns

The acos function returns the arc cosine in the range [0, Jt] radians.

4.5.2.2 The asin Function

Synopsis

5 #include <math.h>

double asin(double x) ;

Description

The asin function computes the principal value of the arc sine of x. A domain error occurs

for arguments not in the range [-1, +1],

10 Returns

The asin function returns the arc sine in the range [-rc/2, +n/2] radians.

4.5.2.3 The atan Function

Synopsis

#include <math.h>

15 double atan(double x);

Description

The atan function computes the principal value of the arc tangent of x.

Returns

The atan function returns the arc tangent in the range [-jt/2, +7T/2] radians.

20 4.5.2.4 The atan2 Function

Synopsis

#include <math.h>

double atan2(double y, double x);

Description

25 The atan2 function computes the principal value of the arc tangent of y/x, using the signs

of both arguments to determine the quadrant of the return value. A domain error may occur if

both arguments are zero.

Returns

The atan2 function returns the arc tangent of y/x, in the range [-Jt, +7t] radians.

30 4.5.2.5 The cos Function

Synopsis

#include <math.h>

double cos(double x);

Description

35 The cos function computes the cosine of x (measured in radians).

Returns

The cos function returns the cosine value.

4.5.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.5.2.5

Library 114

4.5.2.6 The sin Function

Synopsis

#include <math.h>

double sin(double x);

5 Description

The sin function computes the sine of x (measured in radians).

Returns

The sin function returns the sine value.

4.5.2.7 The tan Function

10 Synopsis

#include <math.h>

double tan(double x);

Description

The tan function returns the tangent of x (measured in radians).

15 Returns

The tan function returns the tangent value.

4.5.3 Hyperbolic Functions

4.5.3.1 The cosh Function

Synopsis

20 #include <math.h>

double cosh(double x);

Description

The cosh function computes the hyperbolic cosine of x.

magnitude of x is too large.

25 Returns

The cosh function returns the hyperbolic cosine value.

4.5.3.2 The sinh Function

Synopsis

#include <math.h>

30 double sinh(double x);

Description

The sinh function computes the hyperbolic sine of x. A range

of x is too large.

Returns

35 The sinh function returns the hyperbolic sine value.

Mathematics <math.h>

range error occurs if the

error occurs if the magnitude

4.5.2.6 AMERICAN NATIONAL STANDARD X3.159-1989 4.5.3.2

Library Mathematics <math.h> 115

4.5.3.3 The tanh Function

Synopsis

#include <math.h>

double tanh(double x) ;

5 Description

The tanh function computes the hyperbolic tangent of x.

Returns

The tanh function returns the hyperbolic tangent value.

4.5.4 Exponential and Logarithmic Functions

10 4.5.4.1 The exp Function

Synopsis

#include <math.h>

double exp(double x);

Description

15 The exp function computes the exponential function of x. A range error occurs if the

magnitude of x is too large.

Returns

The exp function returns the exponential value.

4.5.4.2 The frexp Function

20 Synopsis

#include <math.h>

double frexp(double value, int *exp);

Description

The frexp function breaks a floating-point number into a normalized fraction and an integral

25 power of 2. It stores the integer in the int object pointed to by exp.

Returns

The frexp function returns the value x. such that x is a double with magnitude in the

interval [1/2, 1) or zero, and value equals x times 2 raised to the power *exp. If value is

zero, both parts of the result are zero.

30 4.5.4.3 The ldexp Function

Synopsis

#include <math.h>

double ldexp(double x, int exp);

Description

35 The ldexp function multiplies a floating-point number by an integral power of 2. A range

error may occur.

Returns

The ldexp function returns the value of x times 2 raised to the power exp.

4.5.3.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.5.4.3

Library Mathematics <math.h> 1 16

4.5.4.4 The log Function

Synopsis

#include <math.h>

double log(double x) ;

5 Description

The log function computes the natural logarithm of x. A domain error occurs if the

argument is negative. A range error may occur if the argument is zero.

Returns

The log function returns the natural logarithm.

10 4.5.4.5 The loglO Function

Synopsis

#include <math.h>

double loglO(double x);

Description

15 The loglO function computes the base-ten logarithm of x. A domain error occurs if the

argument is negative. A range error may occur if the argument is zero.

Returns

The loglO function returns the base-ten logarithm.

4.5.4.6 The modf Function

20 Synopsis

#include <math.h>

double modf(double value, double *iptr);

Description

The modf function breaks the argument value into integral and fractional parts, each of

25 which has the same sign as the argument. It stores the integral part as a double in the object

pointed to by iptr.

Returns

The modf function returns the signed fractional part of value.

4.5.5 Power Functions

30 4.5.5.1 The pow Function

Synopsis

#include <math.h>

double pow(double x, double y) ;

Description

35 The pow function computes x raised to the power y. A domain error occurs if x is negative

and y is not an integral value. A domain error occurs if the result cannot be represented when x

is zero and y is less than or equal to zero. A range error may occur.

Returns

The pow function returns the value of x raised to the power y.

4.5.4.4 AMERICAN NATIONAL STANDARD X3.159-1989 4.5.5.1

Library 1 17 Mathematics <math.h>

4.5.5.2 The sqrt Function

Synopsis

#include <math.h>

double sqrt(double x);

5 Description

The sqrt function computes the nonnegative square root of x. A domain error occurs if the

argument is negative.

Returns

The sqrt function returns the value of the square root.

10 4.5.6 Nearest Integer, Absolute Value, and Remainder Functions

4.5.6.1 The ceil Function

Synopsis

#include <math.h>

double ceil(double x);

15 Description

The ceil function computes the smallest integral value not less than x.

Returns

The ceil function returns the smallest integral value not less than x, expressed as a double.

4.5.6.2 The fabs Function

20 Synopsis

#include <math.h>

double fabs(double x);

Description

The fabs function computes the absolute value of a floating-point number x.

25 Returns

The fabs function returns the absolute value of x.

4.5.6.3 The floor Function

Synopsis

#include <math.h>

double floor(double x); 30

Description

The floor function computes the largest integral value not greater than x.

Returns

The floor function returns the largest integral value not greater than x. expressed as a

35 double.

4.5.5.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.5.6.3

Library 118 Mathematics Cmath. h>

4.5.6.4 The fmod Function

Synopsis

#include <math.h>

double fmod(double x, double y) ;

5 Description

The fmod function computes the floating-point remainder of x/y.

Returns

The fmod function returns the value x - / * y, for some integer i such that, if y is nonzero,

the result has the same sign as x and magnitude less than the magnitude of y. If y is zero,

10 whether a domain error occurs or the fmod function returns zero is implementation-defined.

4.5.6.4 AMERICAN NATIONAL STANDARD X3.159-1989 4.5.6.4

Library 119 Nonlocal Jumps <setjmp. h>

4.6 Nonlocal Jumps <set jmp.h>

The header <setjmp.h> defines the macro setjmp, and declares one function and one

type, for bypassing the normal function call and return discipline.1116

The type declared is

5 jmp_buf

which is an array type suitable for holding the information needed to restore a calling

environment.

It is unspecified whether setjmp is a macro or an identifier declared with external linkage.

If a macro definition is suppressed in order to access an actual function, or a program defines an

10 external identifier with the name setjmp, the behavior is undefined.

4.6.1 Save Calling Environment

4.6.1.1 The setjmp Macro

Synopsis

#include <setjmp.h>

15 int setjmp(jmp_buf env);

Description

The setjmp macro saves its calling environment in its jmp_buf argument for later use by

the longjmp function.

Returns

20 If the return is from a direct invocation, the setjmp macro returns the value zero. If the

return is from a call to the longjmp function, the setjmp macro returns a nonzero value.

Environmental Constraint

An invocation of the setjmp macro shall appear only in one of the following contexts:

• the entire controlling expression of a selection or iteration statement;

25 • one operand of a relational or equality operator with the other operand an integral constant

expression, with the resulting expression being the entire controlling expression of a selection

or iteration statement;

• the operand of a unary ! operator with the resulting expression being the entire controlling

expression of a selection or iteration statement; or

30 • the entire expression of an expression statement (possibly cast to void).

106. These functions are useful for dealing with unusual conditions encountered in a low-level function of a
program.

4.6 AMERICAN NATIONAL STANDARD X3.159-1989 4.6.1.1

Library 120 Nonlocal Jumps <set jmp.h>

4.6.2 Restore Calling Environment

4.6.2.1 The longjmp Function

Synopsis

#include <setjmp.h>

5 void longjmp(jmp_buf env, int val);

Description

The longjmp function restores the environment saved by the most recent invocation of the

setjmp macro in the same invocation of the program, with the corresponding jmp_buf

argument. If there has been no such invocation, or if the function containing the invocation of

10 the setjmp macro has terminated execution10 in the interim, the behavior is undefined.

All accessible objects have values as of the time longjmp was called, except that the values

of objects of automatic storage duration that are local to the function containing the invocation of

the corresponding setjmp macro that do not have volatile-qualified type and have been changed

between the setjmp invocation and longjmp call are indeterminate.

15 As it bypasses the usual function call and return mechanisms, the longjmp function shall

execute correctly in contexts of interrupts, signals and any of their associated functions.

However, if the longjmp function is invoked from a nested signal handler (that is, from a

function invoked as a result of a signal raised during the handling of another signal), the behavior

is undefined.

20 Returns

After longjmp is completed, program execution continues as if the corresponding invocation

of the setjmp macro had just returned the value specified by val. The longjmp function

cannot cause the setjmp macro to return the value 0; if val is 0, the setjmp macro returns

the value 1.

107. For example, by executing a return statement or because another longjmp call has caused a transfer to a
setjmp invocation in a function earlier in the set of nested calls.

4.6.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.6.2.1

Library 121 Signal Handling <signal.h>

4.7 Signal Handling <signal. h>

The header <signal.h> declares a type and two functions and defines several macros, for

handling various signals (conditions that may be reported during program execution).

The type defined is

5 sig_atomic_t

which is the integral type of an object that can be accessed as an atomic entity, even in the

presence of asynchronous interrupts.

The macros defined are

SIG_DFL

10 SIG_ERR

SIG_IGN

which expand to constant expressions with distinct values that have type compatible with the

second argument to and the return value of the signal function, and whose value compares

unequal to the address of any declarable function; and the following, each of which expands to a

15 positive integral constant expression that is the signal number corresponding to the specified

condition:

SIGABRT abnormal termination, such as is initiated by the abort function

SIGFPE an erroneous arithmetic operation, such as zero divide or an operation resulting in

overflow

20 SIGILL detection of an invalid function image, such as an illegal instruction

SIGINT receipt of an interactive attention signal

SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of explicit calls

25 to the raise function. Additional signals and pointers to undeclarable functions, with macro

definitions beginning, respectively, with the letters SIG and an uppercase letter or with SIG_ and

an uppercase letter,111* may also be specified by the implementation. The complete set of signals,

their semantics, and their default handling is implementation-defined; all signal numbers shall be

positive.

30 4.7.1 Specify Signal Handling

4.7.1.1 The signal Function

Synopsis

#include <signal.h>

void (*signal(int sig, void (*func) (int))) (int);

35 Description

The signal function chooses one of three ways in which receipt of the signal number sig

is to be subsequently handled. If the value of func is SIG_DFL. default handling for that

signal will occur. If the value of func is SIG_IGN. the signal will be ignored. Otherwise,

108. See “future library directions” (4.13.5). The names of the signal numbers reflect the following terms
(respectively): abort, floating-point exception, illegal instruction, interrupt, segmentation violation, and
termination.

4.7 AMERICAN NATIONAL STANDARD X3.159-1989 4.7.1.1

Library 122 Signal Handling <signal.h>

func shall point to a function to be called when that signal occurs. Such a function is called a

signal handler.

When a signal occurs, if func points to a function, first the equivalent of signal (sig,

SIG_DFL) ; is executed or an implementation-defined blocking of the signal is performed. (If

5 the value of sig is SIGILL, whether the reset to SIG_DFL occurs is implementation-defined.)

Next the equivalent of (*func) (sig) ; is executed. The function func may terminate by

executing a return statement or by calling the abort, exit, or longjmp function. If func

executes a return statement and the value of sig was SIGFPE or any other implementation-

defined value corresponding to a computational exception, the behavior is undefined. Otherwise,

10 the program will resume execution at the point it was interrupted.

If the signal occurs other than as the result of calling the abort or raise function, the

behavior is undefined if the signal handler calls any function in the standard library other than the

signal function itself (with a first argument of the signal number corresponding to the signal

that caused the invocation of the handler) or refers to any object with static storage duration other

15 than by assigning a value to a static storage duration variable of type volatile

sig_atomic_t. Furthermore, if such a call to the signal function results in a SIG_ERR

return, the value of errno is indeterminate.I()g

At program startup, the equivalent of

signal(sig, SIG_IGN);

20 may be executed for some signals selected in an implementation-defined manner; the equivalent

of

signal(sig, SIG_DFL);

is executed for all other signals defined by the implementation.

The implementation shall behave as if no library function calls the signal function.

25 Returns

If the request can be honored, the signal function returns the value of func for the most

recent call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned

and a positive value is stored in errno.

Forward references: the abort function (4.10.4.1), the exit function (4.10.4.3).

30 4.7.2 Send Signal

4.7.2.1 The raise Function

Synopsis

#include <signal.h>

int raise(int sig);

35 Description

The raise function sends the signal sig to the executing program.

Returns

The raise function returns zero if successful, nonzero if unsuccessful.

109. If any signal is generated by an asynchronous signal handler, the behavior is undefined.

4.7.1.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.7.2.1

Library 123 Variable Arguments <stdarg.h>

4.8 Variable Arguments <stdarg.h>

The header <stdarg.h> declares a type and defines three macros, for advancing through a

list of arguments whose number and types are not known to the called function when it is

translated.

5 A function may be called with a variable number of arguments of varying types. As

described in 3.7.1, its parameter list contains one or more parameters. The rightmost parameter

plays a special role in the access mechanism, and will be designated parmN in this description.

The type declared is

va_list

10 which is a type suitable for holding information needed by the macros va_start. va_arg, and

va_end. If access to the varying arguments is desired, the called function shall declare an

object (referred to as ap in this section) having type va_list. The object ap may be passed as

an argument to another function: if that function invokes the va_arg macro with parameter ap,

the value of ap in the calling function is indeterminate and shall be passed to the va_end macro

15 prior to any further reference to ap.

4.8.1 Variable Argument List Access Macros

The va_start and va_arg macros described in this section shall be implemented as

macros, not as actual functions. It is unspecified whether va_end is a macro or an identifier

declared with external linkage. If a macro definition is suppressed in order to access an actual

20 function, or a program defines an external identifier with the name va_end. the behavior is

undefined. The va_start and va_end macros shall be invoked in the function accepting a

varying number of arguments, if access to the varying arguments is desired.

4.8.1.1 The va_start Macro

Synopsis

25 #include <stdarg.h>

void va_start (va_list ap, parmN) ;

Description

The va_start macro shall be invoked before any access to the unnamed arguments.

The va_start macro initializes ap for subsequent use by va_arg and va_end.

30 The parameter parmN is the identifier of the rightmost parameter in the variable parameter list

in the function definition (the one just before the , . . .). If the parameter parmN is declared

with the register storage class, with a function or array type, or with a type that is not

compatible with the type that results after application of the default argument promotions, the

behavior is undefined.

35 Returns

The va_start macro returns no value.

4.8.1.2 The va_arg Macro

Synopsis

#include <stdarg.h>

40 type va_arg (va_list ap, type);

Description

The va_arg macro expands to an expression that has the type and value of the next

argument in the call. The parameter ap shall be the same as the va_list ap initialized by

va_start. Each invocation of va_arg modifies ap so that the values of successive arguments

4.8 AMERICAN NATIONAL STANDARD X3.159-1989 4.8.1.2

Library 124 Variable Arguments <stdarg.h>

are returned in turn. The parameter type is a type name specified such that the type of a pointer

to an object that has the specified type can be obtained simply by postfixing a * to type. If there

is no actual next argument, or if type is not compatible with the type of the actual next argument

(as promoted according to the default argument promotions), the behavior is undefined.

5 Returns

The first invocation of the va_arg macro after that of the va_start macro returns the

value of the argument after that specified by parmN. Successive invocations return the values of

the remaining arguments in succession.

4.8.1.3 The va_end Macro

10 Synopsis

#include <stdarg.h>

void va_end(va_list ap) ;

Description

The va_end macro facilitates a normal return from the function whose variable argument list

15 was referred to by the expansion of va_start that initialized the va _list ap. The va_end

macro may modify ap so that it is no longer usable (without an intervening invocation of

va_start). If there is no corresponding invocation of the va_start macro, or if the

va_end macro is not invoked before the return, the behavior is undefined.

Returns

20 The va_end macro returns no value.

Example

The function fl gathers into an array a list of arguments that are pointers to strings (but not

more than MAXARGS arguments), then passes the array as a single argument to function f2. The

number of pointers is specified by the first argument to fl.

25 #include <stdarg.h>

#define MAXARGS 31

void fl (int n_ptrs, ...)

{
va_list ap;

30 char *array[MAXARGS];

int ptr_no = 0;

if (n_j?trs > MAXARGS)

njptrs = MAXARGS;

va_start(ap, n_ptrs);

35 while (ptr_no < n_ptrs)

array [ptr_no++] = va__arg(ap, char *);

va_end(ap);

f2 (n_ptrs, array);

}

40 Each call to f 1 shall have visible the definition of the function or a declaration such as

void fl(int, . . .) ;

4.8.1.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.8.1.3

Library 125 Input/Output <stdio . h>

4.9 Input/Output <stdio . h>

4.9.1 Introduction

The header <stdio. h> declares three types, several macros, and many functions for

performing input and output.

5 The types declared are size_t (described in 4.1.5);

FILE

which is an object type capable of recording all the information needed to control a stream,

including its file position indicator, a pointer to its associated buffer (if any), an error indicator

that records whether a read/write error has occurred, and an end-of-file indicator that records

10 whether the end of the file has been reached; and

fpos_t

which is an object type capable of recording all the information needed to specify uniquely every

position within a file.

The macros are NULL (described in 4.1.5);

15 _IOFBF

_IOLBF

_IONBF

which expand to integral constant expressions with distinct values, suitable for use as the third

argument to the setvbuf function;

20 BUFSIZ

which expands to an integral constant expression, which is the size of the buffer used by the

setbuf function;

EOF

which expands to a negative integral constant expression that is returned by several functions to

25 indicate end-of-file, that is, no more input from a stream;

FOPEN_MAX

which expands to an integral constant expression that is the minimum number of files that the

implementation guarantees can be open simultaneously;

FILENAME_MAX

30 which expands to an integral constant expression that is the size needed for an array of char

large enough to hold the longest file name string that the implementation guarantees can be

opened;110

L_tmpnam

which expands to an integral constant expression that is the size needed for an array of char

35 large enough to hold a temporary file name string generated by the tmpnam function;

110. If the implementation imposes no practical limit on the length of file name strings, the value of
FILENAME_MAX should instead be the recommended size of an array intended to hold a file name string. Of
course, file name string contents are subject to other system-specific constraints; therefore all possible strings of
length FILENAME_MAX cannot be expected to be opened successfully.

4.9 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.1

Library 126 Input/Output <stdio. h>

SEEK_CUR

SEEK_END

SEEK SET

which expand to integral constant expressions with distinct values, suitable for use as the third

5 argument to the fseek function;

TMP_MAX

which expands to an integral constant expression that is the minimum number of unique file

names that shall be generated by the tmpnam function;

stderr

stdin

stdout

10

which are expressions of type “pointer to FILE” that point to the FILE objects associated,

respectively, with the standard error, input, and output streams.

Forward references: files (4.9.3), the fseek function (4.9.9.2), streams (4.9.2), the tmpnam

13 function (4.9.4.4).

4.9.2 Streams

Input and output, whether to or from physical devices such as terminals and tape drives, or

whether to or from files supported on structured storage devices, are mapped into logical data

streams, whose properties are more uniform than their various inputs and outputs. Two forms of

20 mapping are supported, for text streams and for binary streams.111

A text stream is an ordered sequence of characters composed into lines, each line consisting

of zero or more characters plus a terminating new-line character. Whether the last line requires a

terminating new-line character is implementation-defined. Characters may have to be added,

altered, or deleted on input and output to conform to differing conventions for representing text in

25 the host environment. Thus, there need not be a one-to-one correspondence between the

characters in a stream and those in the external representation. Data read in from a text stream

will necessarily compare equal to the data that were earlier written out to that stream only if: the

data consist only of printable characters and the control characters horizontal tab and new-line; no

new-line character is immediately preceded by space characters; and the last character is a new-

30 line character. Whether space characters that are written out immediately before a new-line

character appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record internal

data. Data read in from a binary stream shall compare equal to the data that were earlier written

out to that stream, under the same implementation. Such a stream may, however, have an

35 implementation-defined number of null characters appended to the end of the stream.

Environmental Limits

An implementation shall support text files with lines containing at least 254 characters,

including the terminating new-line character. The value of the macro BUFSIZ shall be at least

256.

111. An implementation need not distinguish between text streams and binary streams. In such an implementation,
there need be no new-line characters in a text stream nor any limit to the length of a line.

4.9.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.2

Library 127 Input/Output <stdio. h>

4.9.3 Files

A stream is associated with an external tile (which may be a physical device) by opening a

file, which may involve creating a new file. Creating an existing file causes its former contents

to be discarded, if necessary. If a file can support positioning requests (such as a disk file, as

5 opposed to a terminal), then a file position indicator112 associated with the stream is positioned at

the start (character number zero) of the file, unless the file is opened with append mode in which

case it is implementation-defined whether the file position indicator is initially positioned at the

beginning or the end of the file. The file position indicator is maintained by subsequent reads,

writes, and positioning requests, to facilitate an orderly progression through the file. All input

10 takes place as if characters were read by successive calls to the fgetc function; all output takes

place as if characters were written by successive calls to the fputc function.

Binary files are not truncated, except as defined in 4.9.5.3. Whether a write on a text stream

causes the associated file to be truncated beyond that point is implementation-defined.

When a stream is unbuffered, characters are intended to appear from the source or at the

15 destination as soon as possible. Otherwise characters may be accumulated and transmitted to or

from the host environment as a block. When a stream is fully buffered, characters are intended to

be transmitted to or from the host environment as a block when a buffer is filled. When a stream

is line buffered, characters are intended to be transmitted to or from the host environment as a

block when a new-line character is encountered. Furthermore, characters are intended to be

20 transmitted as a block to the host environment when a buffer is filled, when input is requested on

an unbuffered stream, or when input is requested on a line buffered stream that requires the

transmission of characters from the host environment. Support for these characteristics is

implementation-defined, and may be affected via the setbuf and setvbuf functions.

A file may be disassociated from a controlling stream by closing the file. Output streams are

25 flushed (any unwritten buffer contents are transmitted to the host environment) before the stream

is disassociated from the file. The value of a pointer to a FILE object is indeterminate after the

associated file is closed (including the standard text streams). Whether a file of zero length (on

which no characters have been written by an output stream) actually exists is implementation-

defined.

30 The file may be subsequently reopened, by the same or another program execution, and its

contents reclaimed or modified (if it can be repositioned at its start). If the main function

returns to its original caller, or if the exit function is called, all open files are closed (hence all

output streams are flushed) before program termination. Other paths to program termination,

such as calling the abort function, need not close all files properly.

35 The address of the FILE object used to control a stream may be significant; a copy of a

FILE object may not necessarily serve in place of the original.

At program startup, three text streams are predefined and need not be opened explicitly —

standard input (for reading conventional input), standard output (for writing conventional

output), and standard error (for writing diagnostic output). When opened, the standard error

40 stream is not fully buffered; the standard input and standard output streams are fully buffered if

and only if the stream can be determined not to refer to an interactive device.

Functions that open additional (nontemporary) files require a file name, which is a string.

The rules for composing valid file names are implementation-defined. Whether the same file can

be simultaneously open multiple times is also implementation-defined.

112. This is described in the Base Document as a file pointer. That term is not used in this standard to avoid
confusion with a pointer to an object that has type FILE.

4.9.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.3

Library 128 Input/Output <stdio. h>

Environmental Limits

The value of FOPEN_MAX shall be at least eight, including the three standard text streams.

Forward references: the exit function (4.10.4.3), the fgetc function (4.9.7.1), the fopen

function (4.9.5.3), the fputc function (4.9.7.3), the setbuf function (4.9.5.5), the setvbuf

5 function (4.9.5.6).

4.9.4 Operations on Files

4.9.4.1 The remove Function

Synopsis

#include <stdio.h>

10 int remove(const char *filename);

Description

The remove function causes the file whose name is the string pointed to by filename to

be no longer accessible by that name. A subsequent attempt to open that file using that name

will fail, unless it is created anew. If the file is open, the behavior of the remove function is

15 implementation-defined.

Returns

The remove function returns zero if the operation succeeds, nonzero if it fails.

4.9.4.2 The rename Function

Synopsis

20 #include <stdio.h>

int rename(const char *old, const char *new);

Description

The rename function causes the tile whose name is the string pointed to by old to be

henceforth known by the name given by the string pointed to by new. The file named old is no

25 longer accessible by that name. If a file named by the string pointed to by new exists prior to

the call to the rename function, the behavior is implementation-defined.

Returns

The rename function returns zero if the operation succeeds, nonzero if it fails,11' in which

case if the file existed previously it is still known by its original name.

30 4.9.4.3 The tmpfile Function

Synopsis

#include <stdio.h>

FILE *tmpfile(void);

Description

35 The tmpfile function creates a temporary binary file that will automatically be removed

when it is closed or at program termination. If the program terminates abnormally, whether an

open temporary file is removed is implementation-defined. The file is opened for update with

"wb+" mode.

113. Among the reasons the implementation may cause the rename function to fail are that the file is open or that
it is necessary to copy its contents to effectuate its renaming.

4.9.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.4.3

Library 129 Input/Output <stdio. h>

Returns

The tmpfile function returns a pointer to the stream of the hie that it created. If the hie

cannot be created, the tmpfile function returns a null pointer.

Forward references: the fopen function (4.9.5.3).

5 4.9.4.4 The tmpnam Function

Synopsis

#include <stdio.h>

char *tmpnam(char *s) ;

Description

10 The tmpnam function generates a string that is a valid hie name and that is not the same as

the name of an existing hie.114

The tmpnam function generates a different string each time it is called, up to TMP_MAX

times. If it is called more than TMP_MAX times, the behavior is implementation-dehned.

The implementation shall behave as if no library function calls the tmpnam function.

15 Returns

If the argument is a null pointer, the tmpnam function leaves its result in an internal static

object and returns a pointer to that object. Subsequent calls to the tmpnam function may modify

the same object. If the argument is not a null pointer, it is assumed to point to an array of at

least L_tmpnam chars; the tmpnam function writes its result in that array and returns the

20 argument as its value.

Environmental Limits

The value of the macro TMP_MAX shall be at least 25.

4.9.5 File Access Functions

4.9.5.1 The fclose Function

25 Synopsis

#include <stdio.h>

int fclose(FILE ^stream);

Description

The fclose function causes the stream pointed to by stream to be flushed and the

30 associated file to be closed. Any unwritten buffered data for the stream are delivered to the host

environment to be written to the file; any unread buffered data are discarded. The stream is

disassociated from the file. If the associated buffer was automatically allocated, it is deallocated.

114. Files created using strings generated by the tmpnam function are temporary only in the sense that their names
should not collide with those generated by conventional naming rules for the implementation. It is still
necessary to use the remove function to remove such files when their use is ended, and before program
termination.

4.9.4.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.5.1

Library 130 Input/Output <stdio. h>

Returns

The fclose function returns zero if the stream was successfully closed, or EOF if any errors

were detected.

4.9.5.2 The fflush Function

5 Synopsis

#include <stdio.h>

int fflush(FILE *stream);

Description

If stream points to an output stream or an update stream in which the most recent operation

10 was not input, the fflush function causes any unwritten data for that stream to be delivered to

the host environment to be written to the file; otherwise, the behavior is undefined.

If stream is a null pointer, the fflush function performs this flushing action on all

streams for which the behavior is defined above.

Returns

15 The fflush function returns EOF if a write error occurs, otherwise zero.

Forward references: the fopen function (4.9.5.3), the ungetc function (4.9.7.11).

4.9.5.3 The fopen Function

Synopsis

#include <stdio.h>

20 FILE *fopen (const char *filename, const char *mode);

Description

The fopen function opens the file whose name is the string pointed to by filename, and

associates a stream with it.

The argument mode points to a string beginning with one of the following sequences:115

25 r

w

a

rb

wb

30 ab

r+

w+

a+

r+b or rb+

35 w+b or wb+

a+b or ab+

open text file for reading

truncate to zero length or create text file for writing

append; open or create text file for writing at end-of-file

open binary file for reading

truncate to zero length or create binary file for writing

append; open or create binary file for writing at end-of-file

open text file for update (reading and writing)

truncate to zero length or create text file for update

append; open or create text file for update, writing at end-of-file

open binary file for update (reading and writing)

truncate to zero length or create binary file for update

append; open or create binary file for update, writing at end-of-file

Opening a file with read mode ('r' as the first character in the mode argument) fails if the

file does not exist or cannot be read.

Opening a file with append mode ('a' as the first character in the mode argument) causes all

40 subsequent writes to the file to be forced to the then current end-of-file, regardless of intervening

115. Additional characters may follow these sequences.

4.9.5.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.5.3

Library 131 Input/Output <stdio.h>

calls to the fseek function. In some implementations, opening a binary tile with append mode

('b' as the second or third character in the above list of mode argument values) may initially

position the file position indicator for the stream beyond the last data written, because of null

character padding.

5 When a tile is opened with update mode ('+' as the second or third character in the above

list of mode argument values), both input and output may be performed on the associated stream.

However, output may not be directly followed by input without an intervening call to the

fflush function or to a file positioning function (fseek, fsetpos, or rewind), and input

may not be directly followed by output without an intervening call to a file positioning function,

10 unless the input operation encounters end-of-tile. Opening (or creating) a text tile with update

mode may instead open (or create) a binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an

interactive device. The error and end-of-file indicators for the stream are cleared.

Returns

15 The fopen function returns a pointer to the object controlling the stream. If the open

operation fails, fopen returns a null pointer.

Forward references: file positioning functions (4.9.9).

4.9.5.4 The freopen Function

Synopsis

20 #include <stdio.h>

FILE *freopen (const char *filename, const char *mode,

FILE *stream);

Description

The freopen function opens the file whose name is the string pointed to by filename and

25 associates the stream pointed to by stream with it. The mode argument is used just as in the

fopen function.116

The freopen function first attempts to close any file that is associated with the specified

stream. Failure to close the file successfully is ignored. The error and end-of-lile indicators for

the stream are cleared.

30 Returns

The freopen function returns a null pointer if the open operation fails. Otherwise,

freopen returns the value of stream.

4.9.5.5 The setbuf Function

Synopsis

35 #include <stdio.h>

void setbuf (FILE *stream, char *buf);

116. The primary use of the freopen function is to change the file associated with a standard text stream
(stderr, stdin, or stdout), as those identifiers need not be modifiable lvalues to which the value returned
by the fopen function may be assigned.

4.9.5.3 AMERICAN NATIONAL STANDARD X3.I59-1989 4.9.5.5

Library 132 Input/Output <stdio.h>

Description

Except that it returns no value, the setbuf function is equivalent to the setvbuf function

invoked with the values _IOFBF for mode and BUFSIZ for size, or (if buf is a null pointer),

with the value _IONBF for mode.

5 Returns

The setbuf function returns no value.

Forward references: the setvbuf function (4.9.5.6).

4.9.5.6 The setvbuf Function

Synopsis

10 #include <stdio.h>

int setvbuf (FILE *stream, char *buf, int mode, size__t size) ;

Description

The setvbuf function may be used only after the stream pointed to by stream has been

associated with an open file and before any other operation is performed on the stream. The

15 argument mode determines how stream will be buffered, as follows: _IOFBF causes

input/output to be fully buffered; _IOLBF causes input/output to be line buffered; _IONBF

causes input/output to be unbuffered. If buf is not a null pointer, the array it points to may be

used instead of a buffer allocated by the setvbuf function.117 The argument size specifies

the size of the array. The contents of the array at any time are indeterminate.

20 Returns

The setvbuf function returns zero on success, or nonzero if an invalid value is given for

mode or if the request cannot be honored.

4.9.6 Formatted Input/Output Functions

4.9.6.1 The fprintf Function

25 Synopsis

#include <stdio.h>

int fprintf(FILE *stream, const char *format, ...);

Description

The fprintf function writes output to the stream pointed to by stream, under control of

30 the string pointed to by format that specifies how subsequent arguments are converted for

output. If there are insufficient arguments for the format, the behavior is undefined. If the

format is exhausted while arguments remain, the excess arguments are evaluated (as always) but

are otherwise ignored. The fprintf function returns when the end of the format string is

encountered.

35 The format shall be a multibyte character sequence, beginning and ending in its initial shift

state. The format is composed of zero or more directives: ordinary multibyte characters (not %),

which are copied unchanged to the output stream; and conversion specifications, each of which

results in fetching zero or more subsequent arguments. Each conversion specification is

introduced by the character %. After the %, the following appear in sequence:

117. The buffer must have a lifetime at least as great as the open stream, so the stream should be closed before a
buffer that has automatic storage duration is deallocated upon block exit.

4.9.5.5 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.1

Library 133 Input/Output <stdio. h>

• Zero or more flags (in any order) that modify the meaning of the conversion specification.

• An optional minimum field width. If the converted value has fewer characters than the field

width, it will be padded with spaces (by default) on the left (or right, if the left adjustment

flag, described later, has been given) to the held width. The held width takes the form of an

5 asterisk * (described later) or a decimal integer.Ils

• An optional precision that gives the minimum number of digits to appear for the d. i, o, u,

x. and X conversions, the number of digits to appear after the decimal-point character for e,

E, and f conversions, the maximum number of signihcant digits for the g and G conversions,

or the maximum number of characters to be written from a string in s conversion. The

10 precision takes the form of a period (.) followed either by an asterisk * (described later) or

by an optional decimal integer; if only the period is specihed, the precision is taken as zero.

If a precision appears with any other conversion specifier, the behavior is undehned.

• An optional h specifying that a following d, i, o, u, x, or X conversion speciher applies to a

short int or unsigned short int argument (the argument will have been promoted

15 according to the integral promotions, and its value shall be converted to short int or

unsigned short int before printing); an optional h specifying that a following n

conversion specifier applies to a pointer to a short int argument; an optional 1 (ell)

specifying that a following d. i, o. u, x, or X conversion specifier applies to a long int or

unsigned long int argument; an optional 1 specifying that a following n conversion

20 specifier applies to a pointer to a long int argument; or an optional L specifying that a

following e, E, f, g, or G conversion specifier applies to a long double argument. If an

h, 1. or L appears with any other conversion specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this

25 case, an int argument supplies the field width or precision. The arguments specifying field

width, or precision, or both, shall appear (in that order) before the argument (if any) to be

converted. A negative field width argument is taken as a - flag followed by a positive field

width. A negative precision argument is taken as if the precision were omitted.

The flag characters and their meanings are

30 - The result of the conversion will be left-justified within the field. (It will be right-justified

if this flag is not specified.)

+ The result of a signed conversion will always begin with a plus or minus sign. (It will

begin with a sign only when a negative value is converted if this flag is not specified.)

35

space If the first character of a signed conversion is not a sign, or if a signed conversion results

in no characters, a space will be prefixed to the result. If the space and + flags both

appear, the space flag will be ignored.

The result is to be converted to an “alternate form.” For o conversion, it increases the

precision to force the first digit of the result to be a zero. For x (or X) conversion, a

nonzero result will have Ox (or OX) prefixed to it. For e. E, f, g, and G conversions, the

40 result will always contain a decimal-point character, even if no digits follow it.

(Normally, a decimal-point character appears in the result of these conversions only if a

digit follows it.) For g and G conversions, trailing zeros will not be removed from the

result. For other conversions, the behavior is undefined.

118. Note that 0 is taken as a flag, not as the beginning of a field width.

4.9.6.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.1

Library 134 Input/Output <stdio.h>

0 For d, i, o, u. x, X, e. E, f, g, and G conversions, leading zeros (following any

indication of sign or base) are used to pad to the field width; no space padding is

performed. If the 0 and - flags both appear, the 0 flag will be ignored. For d, i, o, u.

x, and X conversions, if a precision is specified, the 0 flag will be ignored. For other

5 conversions, the behavior is undefined.

The conversion specifiers and their meanings are

d, i The int argument is converted to signed decimal in the style [-Jddcld. The

precision specifies the minimum number of digits to appear; if the value being

converted can be represented in fewer digits, it will be expanded with leading zeros.

10 The default precision is 1. The result of converting a zero value with a precision of

zero is no characters.

The unsigned int argument is converted to unsigned octal (o), unsigned decimal

(u), or unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef

are used for x conversion and the letters ABCDEF for X conversion. The precision

specifies the minimum number of digits to appear; if the value being converted can be

represented in fewer digits, it will be expanded with leading zeros. The default

precision is 1. The result of converting a zero value with a precision of zero is no

characters.

The double argument is converted to decimal notation in the style [-Jddd.ddd,

where the number of digits after the decimal-point character is equal to the precision

specification. If the precision is missing, it is taken as 6; if the precision is zero and

the # flag is not specified, no decimal-point character appears. If a decimal-point

character appears, at least one digit appears before it. The value is rounded to the

appropriate number of digits.

The double argument is converted in the style [—]d.ddd&±dd, where there is one

digit before the decimal-point character (which is nonzero if the argument is nonzero)

and the number of digits after it is equal to the precision; if the precision is missing,

it is taken as 6; if the precision is zero and the # flag is not specified, no decimal-

point character appears. The value is rounded to the appropriate number of digits.

The E conversion specifier will produce a number with E instead of e introducing the

exponent. The exponent always contains at least two digits. If the value is zero, the

exponent is zero.

The double argument is converted in style f or e (or in style E in the case of a G

conversion specifier), with the precision specifying the number of significant digits.

If the precision is zero, it is taken as 1. The style used depends on the value

converted; style e (or E) will be used only if the exponent resulting from such a

conversion is less than -4 or greater than or equal to the precision. Trailing zeros are

removed from the fractional portion of the result; a decimal-point character appears

only if it is followed by a digit.

40 c The int argument is converted to an unsigned char, and the resulting character

is written.

s The argument shall be a pointer to an array of character type.119 Characters from the

array are written up to (but not including) a terminating null character; if the precision

is specified, no more than that many characters are written. If the precision is not

45 specified or is greater than the size of the array, the array shall contain a null

character.

o, u, x, X

15

f

20

25 e, E

30

g, G

35

119. No special provisions are made for multibyte characters.

4.9.6.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.1

Library 135 Input/Output <stdio. h>

p The argument shall be a pointer to void. The value of the pointer is converted to a

sequence of printable characters, in an implementation-defined manner.

n The argument shall be a pointer to an integer into which is written the number of

characters written to the output stream so far by this call to fprintf. No argument

5 is converted.

% A % is written. No argument is converted. The complete conversion specification

shall be %%.

If a conversion specification is invalid, the behavior is undefined.120

If any argument is, or points to, a union or an aggregate (except for an array of character type

10 using %s conversion, or a pointer using %p conversion), the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a

conversion is wider than the field width, the field is expanded to contain the conversion result.

Returns

The fprintf function returns the number of characters transmitted, or a negative value if an

15 output error occurred.

Environmental Limit

The minimum value for the maximum number of characters produced by any single

conversion shall be 509.

Examples

20 To print a date and time in the form “Sunday, July 3, 10:02” followed by n to five decimal

places:

#include <math.h>

#include <stdio.h>

/*...*/
25 char *weekday, *month; /* pointers to strings */

int day, hour, min;

fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);

fprintf(stdout, "pi = %.5f\n", 4 * atan(l.O));

30 4.9.6.2 The fscanf Function

Synopsis

#include <stdio.h>

int fscanf(FILE *stream, const char *format, ...);

Description

35 The fscanf function reads input from the stream pointed to by stream, under control of

the string pointed to by format that specifies the admissible input sequences and how they are

to be converted for assignment, using subsequent arguments as pointers to the objects to receive

the converted input. If there are insufficient arguments for the format, the behavior is undefined.

If the format is exhausted while arguments remain, the excess arguments are evaluated (as

40 always) but are otherwise ignored.

120. See “future library directions” (4.13.6).

4.9.6.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.2

Library 136 Input/Output <stdio. h>

The format shall be a multibyte character sequence, beginning and ending in its initial shift

state. The format is composed of zero or more directives: one or more white-space characters; an

ordinary multibyte character (neither % nor a white-space character); or a conversion specification.

Each conversion specification is introduced by the character %. After the %, the following appear

5 in sequence:

® An optional assignment-suppressing character *.

• An optional nonzero decimal integer that specifies the maximum field width.

• An optional h, 1 (ell) or L indicating the size of the receiving object. The conversion

specifiers d, i, and n shall be preceded by h if the corresponding argument is a pointer to

10 short int rather than a pointer to int, or by 1 if it is a pointer to long int. Similarly,

the conversion specifiers o, u. and x shall be preceded by h if the corresponding argument is

a pointer to unsigned short int rather than a pointer to unsigned int, or by 1 if it is

a pointer to unsigned long int. Finally, the conversion specifiers e, f, and g shall be

preceded by 1 if the corresponding argument is a pointer to double rather than a pointer to

15 float, or by L if it is a pointer to long double. If an h, 1, or L appears with any other

conversion specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied. The valid conversion

specifiers are described below.

The fscanf function executes each directive of the format in turn. If a directive fails, as

20 detailed below, the fscanf function returns. Failures are described as input failures (due to the

unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first

non-white-space character (which remains unread), or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading the next characters

25 of the stream. If one of the characters differs from one comprising the directive, the directive

fails, and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as

described below for each specifier. A conversion specification is executed in the following steps:

Input white-space characters (as specified by the isspace function) are skipped, unless the

30 specification includes a [, c, or n specifier.121

An input item is read from the stream, unless the specification includes an n specifier. An

input item is defined as the longest matching sequence of input characters, unless that exceeds a

specified field width, in which case it is the initial subsequence of that length in the sequence.

The first character, if any, after the input item remains unread. If the length of the input item is

35 zero, the execution of the directive fails: this condition is a matching failure, unless an error

prevented input from the stream, in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count

of input characters) is converted to a type appropriate to the conversion specifier. If the input

item is not a matching sequence, the execution of the directive fails: this condition is a matching

40 failure. Unless assignment suppression was indicated by a *, the result of the conversion is

placed in the object pointed to by the first argument following the format argument that has not

already received a conversion result. If this object does not have an appropriate type, or if the

result of the conversion cannot be represented in the space provided, the behavior is undefined.

121. These white-space characters are not counted against a specified held width.

4.9.6.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.2

Library

The

d

5 i

o

10

u

X

15

e, f, g

20 s

[

25

30

35

c

40 p

45

122. No special

137 Input/Output <stdio . h>

following conversion specifiers are valid:

Matches an optionally signed decimal integer, whose format is the same as expected for

the subject sequence of the strtol function with the value 10 for the base argument.

The corresponding argument shall be a pointer to integer.

Matches an optionally signed integer, whose format is the same as expected for the

subject sequence of the strtol function with the value 0 for the base argument. The

corresponding argument shall be a pointer to integer.

Matches an optionally signed octal integer, whose format is the same as expected for the

subject sequence of the strtoul function with the value 8 for the base argument.

The corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed decimal integer, whose format is the same as expected for

the subject sequence of the strtoul function with the value 10 for the base

argument. The corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed hexadecimal integer, whose format is the same as expected

for the subject sequence of the strtoul function with the value 16 for the base

argument. The corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed floating-point number, whose format is the same as

expected for the subject string of the strtod function. The corresponding argument

shall be a pointer to floating.

Matches a sequence of non-white-space characters.122 The corresponding argument shall

be a pointer to the initial character of an array large enough to accept the sequence and a

terminating null character, which will be added automatically.

Matches a nonempty sequence of characters122 from a set of expected characters (the

scanset). The corresponding argument shall be a pointer to the initial character of an

array large enough to accept the sequence and a terminating null character, which will be

added automatically. The conversion specifier includes all subsequent characters in the

format string, up to and including the matching right bracket (]). The characters

between the brackets (the scanlist) comprise the scanset, unless the character after the

left bracket is a circumflex (A), in which case the scanset contains all characters that do

not appear in the scanlist between the circumflex and the right bracket. If the conversion

specifier begins with [] or [A], the right bracket character is in the scanlist and the

next right bracket character is the matching right bracket that ends the specification;

otherwise the first right bracket character is the one that ends the specification. If a -

character is in the scanlist and is not the first, nor the second where the first character is

a A, nor the last character, the behavior is implementation-defined.

Matches a sequence of characters122 of the number specified by the field width (1 if no

field width is present in the directive). The corresponding argument shall be a pointer to

the initial character of an array large enough to accept the sequence. No null character

is added.

Matches an implementation-defined set of sequences, which should be the same as the

set of sequences that may be produced by the %p conversion of the fprintf function.

The corresponding argument shall be a pointer to a pointer to void. The interpretation

of the input item is implementation-defined. If the input item, is a value converted

earlier during the same program execution, the pointer that results shall compare equal to

that value; otherwise the behavior of the %p conversion is undefined.

provisions are made for multibyte characters.

4.9.6.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.2

Library 138 Input/Output <stdio.h>

n No input is consumed. The corresponding argument shall be a pointer to integer into

which is to be written the number of characters read from the input stream so far by this

call to the fscanf function. Execution of a %n directive does not increment the

assignment count returned at the completion of execution of the fscanf function.

5 % Matches a single %; no conversion or assignment occurs. The complete conversion

specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.123

The conversion specifiers E, G, and X are also valid and behave the same as, respectively, e,

g. and x.

10 If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs

before any characters matching the current directive have been read (other than leading white

space, where permitted), execution of the current directive terminates with an input failure;

otherwise, unless execution of the current directive is terminated with a matching failure,

execution of the following directive (if any) is terminated with an input failure.

15 If conversion terminates on a conflicting input character, the offending input character is left

unread in the input stream. Trailing white space (including new-line characters) is left unread

unless matched by a directive. The success of literal matches and suppressed assignments is not

directly determinable other than via the %n directive.

Returns

20 The fscanf function returns the value of the macro EOF if an input failure occurs before

any conversion. Otherwise, the fscanf function returns the number of input items assigned,

which can be fewer than provided for, or even zero, in the event of an early matching failure.

Examples

The call:

25 #include <stdio.h>

/*...*/
int n, i; float x; char name[50];

n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:

30 25 54.32E-1 thompson

will assign to n the value 3, to / the value 25, to a the value 5.432, and name will contain

thompson\0. Or:

#include <stdio.h>

/*...*/
35 int i; float x; char name[50];

fscanf(stdin, "%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

will assign to / the value 56 and to a the value 789.0, will skip 0123, and name will contain

40 56\0. The next character read from the input stream will be a.

123. See “future library directions” (4.13.6).

4.9.6.2 AMERICAN NATIONAL STANDARD X3.139-1989 4.9.6.2

Input/Output <stdio.h> Library 139

To accept repeatedly from stdin a quantity, a unit of measure and an item name:

#include <stdio.h>

/*...*/
int count; float quant; char units [21], item[21];

5 while (!feof(stdin) && !ferror(stdin)) {

count = fscanf(stdin, "%f%20s of %20s",

Squant, units, item);

fscanf(stdin,"%*[A\n]");

}

10 If the stdin stream contains the following lines:

2 quarts of oil

-12.8degrees Celsius

lots of luck

10.0LBS of

15 fertilizer

lOOergs of energy

the execution of the above example will be analogous to the following assignments:

20

25

quant = 2; strcpy(units, "quarts"); strcpy(item, "oil");

count = 3;

quant = -12.8; strcpy(units, "degrees");

count = 2; /* "C" fails to match "o" */

count = 0; /* "1" fails to match "%f" */

quant = 10.0; strcpy(units, "LBS"); strcpy(item, "fertilizer")

count = 3;

count = 0; /* "lOOe" fails to match "%f" */

count = EOF;

Forward references: the strtod function (4.10.1.4), the strtol function (4.10.1.5), the

strtoul function (4.10.1.6).

4.9.6.3 The printf Function

30 Synopsis

#include <stdio.h>

int printf (const char *format, ...);

Description

The printf function is equivalent to fprintf with the argument stdout interposed

35 before the arguments to printf.

Returns

The printf function returns the number of characters transmitted, or a negative value if an

output error occurred.

4.9.6.4 The scanf Function

40 Synopsis

#include <stdio.h>

int scanf (const char *format, ...);

Description

The scanf function is equivalent to fscanf with the argument stdin interposed before

45 the arguments to scanf

4.9.6.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.4

Library 140 Input/Output <stdio.h>

Returns

The scanf function returns the value of the macro EOF if an input failure occurs before any

conversion. Otherwise, the scanf function returns the number of input items assigned, which

can be fewer than provided for, or even zero, in the event of an early matching failure.

5 4.9.6.5 The sprintf Function

Synopsis

#include <stdio.h>

int sprintf(char *s, const char *format, ...);

Description

10 The sprintf function is equivalent to fprintf, except that the argument s specifies an

array into which the generated output is to be written, rather than to a stream. A null character is

written at the end of the characters written; it is not counted as part of the returned sum. If

copying takes place between objects that overlap, the behavior is undefined.

Returns

15 The sprintf function returns the number of characters written in the array, not counting the

terminating null character.

4.9.6.6 The sscanf Function

Synopsis

#include <stdio.h>

20 int sscanf(const char *s, const char *format, ...);

Description

The sscanf function is equivalent to fscanf, except that the argument s specifies a string

from which the input is to be obtained, rather than from a stream. Reaching the end of the string

is equivalent to encountering end-of-file for the fscanf function. If copying takes place

25 between objects that overlap, the behavior is undefined.

Returns

The sscanf function returns the value of the macro EOF if an input failure occurs before

any conversion. Otherwise, the sscanf function returns the number of input items assigned,

which can be fewer than provided for, or even zero, in the event of an early matching failure.

30 4.9.6.7 The vfprintf Function

Synopsis

#include <stdarg.h>

#include <stdio.h>

int vfprintf(FILE *stream, const char *format, va_list arg);

35 Description

The vfprintf function is equivalent to fprintf. with the variable argument list replaced

by arg, which shall have been initialized by the va_start macro (and possibly subsequent

va_arg calls). The vfprintf function does not invoke the va_end macro.124

124. As the functions vfprintf, vsprintf, and vprintf invoke the va_arg macro, the value of arg after
the return is indeterminate.

4.9.6.4 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.7

Library 141 Input/Output <stdio. h>

Returns

The vfprintf function returns the number of characters transmitted, or a negative value if

an output error occurred.

Example

5 The following shows the use of the vfprintf function in a general error-reporting routine.

#include <stdarg.h>

#include <stdio.h>

void error(char *function_name, char *format, ...)

{
10 va_list args;

va_start(args, format);

/* print out name of function causing error * /

fprintf(stderr, "ERROR in %s: ", function_name);

/* print out remainder of message */

15 vfprintf(stderr, format, args);

va_end(args);

}

4.9.6.8 The vprintf Function

Synopsis

20 #include <stdarg.h>

#include <stdio.h>

int vprintf(const char *format, va_list arg);

Description

The vprintf function is equivalent to printf, with the variable argument list replaced by

25 arg, which shall have been initialized by the va_start macro (and possibly subsequent

va_arg calls). The vprintf function does not invoke the va_end macro.124

Returns

The vprintf function returns the number of characters transmitted, or a negative value if an

output error occurred.

30 4.9.6.9 The vsprintf Function

Synopsis

#include <stdarg.h>

#include <stdio.h>

int vsprintf(char *s, const char *format, va_list arg);

35 Description

The vsprintf function is equivalent to sprintf, with the variable argument list replaced

by arg, which shall have been initialized by the va_start macro (and possibly subsequent

va_arg calls). The vsprintf function does not invoke the va_end macro.124 If copying

takes place between objects that overlap, the behavior is undefined.

40 Returns

The vsprintf function returns the number of characters written in the array, not counting

the terminating null character.

4.9.6.7 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.6.9

Library 142 Input/Output <stdio.h>

4.9.7 Character Input/Output Functions

4.9.7.1 The fgetc Function

Synopsis

#include <stdio.h>

5 int fgetc(FILE *stream);

Description

The fgetc function obtains the next character (if present) as an unsigned char converted

to an int. from the input stream pointed to by stream, and advances the associated hie

position indicator for the stream (if defined).

10 Returns

The fgetc function returns the next character from the input stream pointed to by stream.

If the stream is at end-of-hle, the end-of-hle indicator for the stream is set and fgetc returns

EOF. If a read error occurs, the error indicator for the stream is set and fgetc returns EOF. ^

4.9.7.2 The fgets Function

15 Synopsis

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);

Description

The fgets function reads at most one less than the number of characters specified by n from

20 the stream pointed to by stream into the array pointed to by s. No additional characters are

read after a new-line character (which is retained) or after end-of-hle. A null character is written

immediately after the last character read into the array.

Returns

The fgets function returns s if successful. If end-of-hle is encountered and no characters

25 have been read into the array, the contents of the array remain unchanged and a null pointer is

returned. If a read error occurs during the operation, the array contents are indeterminate and a

null pointer is returned.

4.9.7.3 The fputc Function

Synopsis

30 #include <stdio.h>

int fputc (int c, FILE *stream);

Description

The fputc function writes the character specified by c (converted to an unsigned char)

to the output stream pointed to by stream, at the position indicated by the associated hie

35 position indicator for the stream (if dehned), and advances the indicator appropriately. If the hie

cannot support positioning requests, or if the stream was opened with append mode, the character

is appended to the output stream.

125. An end-of-file and a read error can be distinguished by use of the feof and ferror functions.

4.9.7 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.7.3

Library 143 Input/Output <stdio.h>

Returns

The fputc function returns the character written. If a write error occurs, the error indicator

for the stream is set and fputc returns EOF.

4.9.7.4 The fputs Function

5 Synopsis

#include <stdio.h>

int fputs(const char *s, FILE *stream);

Description

The fputs function writes the string pointed to by s to the stream pointed to by stream.

10 The terminating null character is not written.

Returns

The fputs function returns EOF if a write error occurs; otherwise it returns a nonnegative

value.

4.9.7.5 The getc Function

15 Synopsis

#include <stdio.h>

int getc(FILE *stream);

Description

The getc function is equivalent to fgetc, except that if it is implemented as a macro, it

20 may evaluate stream more than once, so the argument should never be an expression with side

effects.

Returns

The getc function returns the next character from the input stream pointed to by stream.

If the stream is at end-of-file, the end-of-file indicator for the stream is set and getc returns

25 EOF. If a read error occurs, the error indicator for the stream is set and getc returns EOF.

4.9.7.6 The getchar Function

Synopsis

#include <stdio.h>

int getchar(void);

30 Description

The getchar function is equivalent to getc with the argument stdin.

Returns

The getchar function returns the next character from the input stream pointed to by

stdin. If the stream is at end-of-file, the end-of-file indicator for the stream is set and

35 getchar returns EOF. If a read error occurs, the error indicator for the stream is set and

getchar returns EOF.

4.9.7.7 The gets Function

Synopsis

40

#include <stdio.h>

char *gets(char *s);

4.9.7.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.7.7

Library 144 Input/Output <stdio.h>

Description

The gets function reads characters from the input stream pointed to by stdin, into the

array pointed to by s, until end-of-file is encountered or a new-line character is read. Any new-

line character is discarded, and a null character is written immediately after the last character read

5 into the array.

Returns

The gets function returns s if successful. If end-of-file is encountered and no characters

have been read into the array, the contents of the array remain unchanged and a null pointer is

returned. If a read error occurs during the operation, the array contents are indeterminate and a

10 null pointer is returned.

4.9.7.8 The putc Function

Synopsis

#include <stdio.h>

int putc(int c, FILE *stream);

15 Description

The putc function is equivalent to fputc, except that if it is implemented as a macro, it

may evaluate stream more than once, so the argument should never be an expression with side

effects.

Returns

20 The putc function returns the character written. If a write error occurs, the error indicator

for the stream is set and putc returns EOF.

4.9.7.9 The put char Function

Synopsis

#include <stdio.h>

25 int putchar(int c);

Description

The putchar function is equivalent to putc with the second argument stdout.

Returns

The putchar function returns the character written. If a write error occurs, the error

30 indicator for the stream is set and putchar returns EOF.

4.9.7.10 The puts Function

Synopsis

#include <stdio.h>

int puts(const char *s) ;

35 Description

The puts function writes the string pointed to by s to the stream pointed to by stdout,

and appends a new-line character to the output. The terminating null character is not written.

Returns

The puts function returns EOF if a write error occurs; otherwise it returns a nonnegative

40 value.

4.9.7.7 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.7.10

Library 145 Input/Output <stdio.h>

4.9.7.11 The ungetc Function

Synopsis

#include <stdio.h>

int ungetc(int c, FILE *stream);

5 Description

The ungetc function pushes the character specified by c (converted to an unsigned

char) back onto the input stream pointed to by stream. The pushed-back characters will be

returned by subsequent reads on that stream in the reverse order of their pushing. A successful

intervening call (with the stream pointed to by stream) to a hie positioning function (fseek.

10 fsetpos. or rewind) discards any pushed-back characters for the stream. The external storage

corresponding to the stream is unchanged.

One character of pushback is guaranteed. If the ungetc function is called too many times

on the same stream without an intervening read or file positioning operation on that stream, the

operation may fail.

15 If the value of c equals that of the macro EOF, the operation fails and the input stream is

unchanged.

A successful call to the ungetc function clears the end-of-hle indicator for the stream. The

value of the file position indicator for the stream after reading or discarding all pushed-back

characters shall be the same as it was before the characters were pushed back. For a text stream.

20 the value of its file position indicator after a successful call to the ungetc function is

unspecified until all pushed-back characters are read or discarded. For a binary stream, its file

position indicator is decremented by each successful call to the ungetc function; if its value

was zero before a call, it is indeterminate after the call.

Returns

25 The ungetc function returns the character pushed back after conversion, or EOF if the

operation fails.

Forward references: file positioning functions (4.9.9).

4.9.8 Direct Input/Output Functions

4.9.8.1 The fread Function

30 Synopsis

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nmemb,

FILE *stream);

Description

35 The fread function reads, into the array pointed to by ptr, up to nmemb elements whose

size is specified by size, from the stream pointed to by stream. The file position indicator for

the stream (if defined) is advanced by the number of characters successfully read. If an error

occurs, the resulting value of the file position indicator for the stream is indeterminate. If a

partial element is read, its value is indeterminate.

40 Returns

The fread function returns the number of elements successfully read, which may be less

than nmemb if a read error or end-of-file is encountered. If size or nmemb is zero, fread

returns zero and the contents of the array and the state of the stream remain unchanged.

4.9.7.11 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.8.1

Library 146 Input/Output <stdio. h>

4.9.8.2 The fwrite Function

Synopsis

#include <stdio.h>

size_t fwrite (const void *ptr, size_t size, size_t nmemb,

5 FILE *stream);

Description

The fwrite function writes, from the array pointed to by ptr. up to nmemb elements

whose size is specified by size, to the stream pointed to by stream. The file position

indicator for the stream (if defined) is advanced by the number of characters successfully written.

10 If an error occurs, the resulting value of the file position indicator for the stream is indeterminate.

Returns

The fwrite function returns the number of elements successfully written, which will be less

than nmemb only if a write error is encountered.

4.9.9 File Positioning Functions

15 4.9.9.1 The fgetpos Function

Synopsis

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

Description

20 The fgetpos function stores the current value of the file position indicator for the stream

pointed to by stream in the object pointed to by pos. The value stored contains unspecified

information usable by the fsetpos function for repositioning the stream to its position at the

time of the call to the fgetpos function.

Returns

25 If successful, the fgetpos function returns zero; on failure, the fgetpos function returns

nonzero and stores an implementation-defined positive value in errno.

Forward references: the fsetpos function (4.9.9.3).

4.9.9.2 The fseek Function

Synopsis

30 #include <stdio.h>

int fseek (FILE *stream, long int offset, int whence);

Description

The fseek function sets the file position indicator for the stream pointed to by stream.

For a binary stream, the new position, measured in characters from the beginning of the file,

35 is obtained by adding offset to the position specified by whence The specified position is

the beginning of the file if whence is SEEK_SET, the current value of the file position indicator

if SEEK_CUR. or end-of-file if SEEK_END. A binary stream need not meaningfully support

fseek calls with a whence value of SEEK_END.

For a text stream, either offset shall be zero, or offset shall be a value returned by an

40 earlier call to the ftell function on the same stream and whence shall be SEEK_SET.

A successful call to the fseek function clears the end-of-file indicator for the stream and

undoes any effects of the ungetc function on the same stream. After an fseek call, the next

operation on an update stream may be either input or output.

4.9.8.2 AMERICAN NATIONAL STANDARD X3.I59-I989 4.9.9.2

Library 147 Input/Output <stdio.h>

Returns

The fseek function returns nonzero only for a request that cannot be satisfied.

Forward references: the ftell function (4.9.9.4).

4.9.9.3 The fsetpos Function

5 Synopsis

#include <stdio.h>

int fsetpos (FILE *stream, const fpos_t *pos);

Description

The fsetpos function sets the file position indicator for the stream pointed to by stream

10 according to the value of the object pointed to by pos, which shall be a value obtained from an

earlier call to the fgetpos function on the same stream.

A successful call to the fsetpos function clears the end-of-file indicator for the stream and

undoes any effects of the ungetc function on the same stream. After an fsetpos call, the

next operation on an update stream may be either input or output.

15 Returns

If successful, the fsetpos function returns zero; on failure, the fsetpos function returns

nonzero and stores an implementation-defined positive value in errno.

4.9.9.4 The ftell Function

Synopsis

20 #include <stdio.h>

long int ftell(FILE *stream);

Description

The ftell function obtains the current value of the file position indicator for the stream

pointed to by stream. For a binary stream, the value is the number of characters from the

25 beginning of the file. For a text stream, its file position indicator contains unspecified

information, usable by the fseek function for returning the file position indicator for the stream

to its position at the time of the ftell call; the difference between two such return values is not

necessarily a meaningful measure of the number of characters written or read.

Returns

30 If successful, the ftell function returns the current value of the file position indicator for

the stream. On failure, the ftell function returns -1L and stores an implementation-defined

positive value in errno.

4.9.9.5 The rewind Function

Synopsis

35 #include <stdio.h>

void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for the stream pointed to by stream to

the beginning of the file. It is equivalent to

40 (void)fseek(stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared.

4.9.9.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.9.5

Library 148 Input/Output <stdio.h>

Returns

The rewind function returns no value.

4.9.10 Error-Handling Functions

4.9.10.1 The clearerr Function

5 Synopsis

#include <stdio.h>

void clearerr(FILE *stream);

Description

The clearerr function clears the end-of-hle and error indicators for the stream pointed to

10 by stream.

Returns

The clearerr function returns no value.

4.9.10.2 The feof Function

Synopsis

15 #include <stdio.h>

int feof(FILE *stream);

Description

The feof function tests the end-of-file indicator for the stream pointed to by stream.

Returns

20 The feof function returns nonzero if and only if the end-of-hle indicator is set for stream.

4.9.10.3 The ferror Function

Synopsis

#include <stdio.h>

int ferror(FILE *stream);

25 Description

The ferror function tests the error indicator for the stream pointed to by stream.

Returns

The ferror function returns nonzero if and only if the error indicator is set for stream.

4.9.10.4 The perror Function

30 Synopsis

#include <stdio.h>

void perror (const char *s);

Description

The perror function maps the error number in the integer expression errno to an error

35 message. It writes a sequence of characters to the standard error stream thus: first (if s is not a

null pointer and the character pointed to by s is not the null character), the string pointed to by s

followed by a colon (:) and a space; then an appropriate error message string followed by a

new-line character. The contents of the error message strings are the same as those returned by

the strerror function with argument errno, which are implementation-defined.

4.9.9.5 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.10.4

Library 149 Input/Output <stdio.h>

Returns

The perror function returns no value.

Forward references: the strerror function (4.1 1.6.2).

4.9.10.4 AMERICAN NATIONAL STANDARD X3.159-1989 4.9.10.4

Library 150 General Utilities <stdlib.h>

4.10 General Utilities <stdlib. h>

The header <stdlib.h> declares four types and several functions of general utility, and

defines several macros.126

The types declared are size_t and wchar_t (both described in 4.1.5),

5 div_t

which is a structure type that is the type of the value returned by the div function, and

ldiv_t

which is a structure type that is the type of the value returned by the ldiv function.

The macros defined are NULL (described in 4.1.5);

10 EXIT_FAILURE

and

EXIT_SUCCESS

which expand to integral expressions that may be used as the argument to the exit function to

return unsuccessful or successful termination status, respectively, to the host environment;

15 RAND_MAX

which expands to an integral constant expression, the value of which is the maximum value

returned by the rand function; and

MB_CUR_MAX

which expands to a positive integer expression whose value is the maximum number of bytes in a

20 multibyte character for the extended character set specified by the current locale (category

LC_CTYPE), and whose value is never greater than MB_LEN_MAX.

4.10.1 String Conversion Functions

The functions atof, atoi, and atol need not affect the value of the integer expression

errno on an error. If the value of the result cannot be represented, the behavior is undefined.

25 4.10.1.1 The atof Function

Synopsis

#include <stdlib.h>

double atof (const char *nptr);

Description

30 The atof function converts the initial portion of the string pointed to by nptr to double

representation. Except for the behavior on error, it is equivalent to

strtod(nptr, (char **)NULL)

Returns

The atof function returns the converted value.

35 Forward references: the strtod function (4.10.1.4).

126. See “future library directions" (4.13.7).

4.10 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.1.1

Library 151 General Utilities <stdlib.h>

4.10.1.2 The atoi Function

Synopsis

#include <stdlib.h>

int atoi(const char *nptr);

5 Description

The atoi function converts the initial portion of the string pointed to by nptr to int

representation. Except for the behavior on error, it is equivalent to

(int)strtol(nptr, (char **)NULL, 10)

Returns

10 The atoi function returns the converted value.

Forward references: the strtol function (4.10.1.5).

4.10.1.3 The atoi Function

Synopsis

#include <stdlib.h>

15 long int atoi(const char *nptr);

Description

The atoi function converts the initial portion of the string pointed to by nptr to long

int representation. Except for the behavior on error, it is equivalent to

strtol (nptr, (char **)NULL, 10)

20 Returns

The atoi function returns the converted value.

Forward references: the strtol function (4.10.1.5).

4.10.1.4 The strtod Function

Synopsis

25 #include <stdlib.h>

double strtod(const char *nptr, char **endptr);

Description

The strtod function converts the initial portion of the string pointed to by nptr to

double representation. First, it decomposes the input string into three parts: an initial, possibly

30 empty, sequence of white-space characters (as specified by the isspace function), a subject

sequence resembling a floating-point constant: and a final string of one or more unrecognized

characters, including the terminating null character of the input string. Then, it attempts to

convert the subject sequence to a floating-point number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then a nonempty

35 sequence of digits optionally containing a decimal-point character, then an optional exponent part

as defined in 3.1.3.1, but no floating suffix. The subject sequence is defined as the longest initial

subsequence of the input string, starting with the first non-white-space character, that is of the

expected form. The subject sequence contains no characters if the input string is empty or

consists entirely of white space, or if the first non-white-space character is other than a sign, a

40 digit, or a decimal-point character.

If the subject sequence has the expected form, the sequence of characters starting with the

first digit or the decimal-point character (whichever occurs first) is interpreted as a floating

constant according to the rules of 3.1.3.1, except that the decimal-point character is used in place

1.2 4.10. AMERICAN NATIONAL STANDARD X3.159-1989 4.10.1.4

Library 152 General Utilities <stdlib.h>

of a period, and that if neither an exponent part nor a decimal-point character appears, a decimal

point is assumed to follow the last digit in the string. If the subject sequence begins with a

minus sign, the value resulting from the conversion is negated. A pointer to the final string is

stored in the object pointed to by endptr, provided that endptr is not a null pointer.

5 In other than the "C" locale, additional implementation-defined subject sequence forms may

be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is

performed; the value of nptr is stored in the object pointed to by endptr. provided that

endptr is not a null pointer.

10 Returns

The strtod function returns the converted value, if any. If no conversion could be

performed, zero is returned. If the correct value is outside the range of representable values, plus

or minus HUGE_VAL is returned (according to the sign of the value), and the value of the macro

ERANGE is stored in errno. If the correct value would cause underflow, zero is returned and

15 the value of the macro ERANGE is stored in errno.

4.10.1.5 The strtol Function

Synopsis

#include <stdlib.h>

long int strtol(const char *nptr, char **endptr, int base);

20 Description

The strtol function converts the initial portion of the string pointed to by nptr to long

int representation. First, it decomposes the input string into three parts: an initial, possibly

empty, sequence of white-space characters (as specified by the isspace function), a subject

sequence resembling an integer represented in some radix determined by the value of base, and

25 a final string of one or more unrecognized characters, including the terminating null character of

the input string. Then, it attempts to convert the subject sequence to an integer, and returns the

result.

If the value of base is zero, the expected form of the subject sequence is that of an integer

constant as described in 3.1.3.2, optionally preceded by a plus or minus sign, but not including an

30 integer suffix. If the value of base is between 2 and 36, the expected form of the subject

sequence is a sequence of letters and digits representing an integer with the radix specified by

base, optionally preceded by a plus or minus sign, but not including an integer suffix. The

letters from a (or A) through z (or Z) are ascribed the values 10 to 35; only letters whose

ascribed values are less than that of base are permitted. If the value of base is 16. the

35 characters Ox or OX may optionally precede the sequence of letters and digits, following the sign

if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting

with the first non-white-space character, that is of the expected form. The subject sequence

contains no characters if the input string is empty or consists entirely of white space, or if the

40 first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of

characters starting with the first digit is interpreted as an integer constant according to the rules of

3.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and

36, it is used as the base for conversion, ascribing to each letter its value as given above. If the

45 subject sequence begins with a minus sign, the value resulting from the conversion is negated. A

pointer to the final string is stored in the object pointed to by endptr. provided that endptr is

not a null pointer.

4.10.1.4 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.1.5

Library 153 General Utilities <stdlib.h>

In other than the "C" locale, additional implementation-defined subject sequence forms may

be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is

performed; the value of nptr is stored in the object pointed to by endptr, provided that

5 endptr is not a null pointer.

Returns

The strtol function returns the converted value, if any. If no conversion could be

performed, zero is returned. If the correct value is outside the range of representable values,

LONG_MAX or LONG_MIN is returned (according to the sign of the value), and the value of the

10 macro ERANGE is stored in errno.

4.10.1.6 The strtoul Function

Synopsis

#include <stdlib.h>

unsigned long int strtoul (const char *nptr, char **endptr,

15 int base);

Description

The strtoul function converts the initial portion of the string pointed to by nptr to

unsigned long int representation. First, it decomposes the input string into three parts: an

initial, possibly empty, sequence of white-space characters (as specified by the isspace

20 function), a subject sequence resembling an unsigned integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters,

including the terminating null character of the input string. Then, it attempts to convert the

subject sequence to an unsigned integer, and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer

25 constant as described in 3.1.3.2, optionally preceded by a plus or minus sign, but not including an

integer suffix. If the value of base is between 2 and 36, the expected form of the subject

sequence is a sequence of letters and digits representing an integer with the radix specified by

base, optionally preceded by a plus or minus sign, but not including an integer suffix. The

letters from a (or A) through z (or Z) are ascribed the values 10 to 35; only letters whose

30 ascribed values are less than that of base are permitted. If the value of base is 16, the

characters Ox or OX may optionally precede the sequence of letters and digits, following the sign

if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting

with the first non-white-space character, that is of the expected form. The subject sequence

35 contains no characters if the input string is empty or consists entirely of white space, or if the

first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of

characters starting with the first digit is interpreted as an integer constant according to the rules of

3.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and

40 36, it is used as the base for conversion, ascribing to each letter its value as given above. If the

subject sequence begins with a minus sign, the value resulting from the conversion is negated. A

pointer to the final string is stored in the object pointed to by endptr, provided that endptr is

not a null pointer.

In other than the "C" locale, additional implementation-defined subject sequence forms may

45 be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is

performed; the value of nptr is stored in the object pointed to by endptr. provided that

endptr is not a null pointer.

4.10.1.5 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.1.6

Library 154 General Utilities <stdlib. h>

Returns

The strtoul function returns the converted value, if any. If no conversion could be

performed, zero is returned. If the correct value is outside the range of representable values,

ULONG_MAX is returned, and the value of the macro ERANGE is stored in errno.

5 4.10.2 Pseudo-Random Sequence Generation Functions

4.10.2.1 The rand Function

Synopsis

#include <stdlib.h>

int rand(void);

10 Description

The rand function computes a sequence of pseudo-random integers in the range 0 to

RAND_MAX.

The implementation shall behave as if no library function calls the rand function.

Returns

15 The rand function returns a pseudo-random integer.

Environmental Limit

The value of the RAND_MAX macro shall be at least 32767.

4.10.2.2 The srand Function

Synopsis

20 #include <stdlib.h>

void srand(unsigned int seed);

Description

The srand function uses the argument as a seed for a new sequence of pseudo-random

numbers to be returned by subsequent calls to rand. If srand is then called with the same

25 seed value, the sequence of pseudo-random numbers shall be repeated. If rand is called before

any calls to srand have been made, the same sequence shall be generated as when srand is

first called with a seed value of I.

The implementation shall behave as if no library function calls the srand function.

Returns

30 The srand function returns no value.

Example

The following functions define a portable implementation of rand and srand.

4.10.1.6 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.2.2

Library 155 General Utilities <stdlib.h>

static unsigned long int next = 1;

int rand(void) /* RAND_MAX assumed to be 32767 */

{
next = next * 1103515245 + 12345;

5 return (unsigned int)(next/65536) % 32768;

}

void srand(unsigned int seed)

{

next = seed;

10 }

4.10.3 Memory Management Functions

The order and contiguity of storage allocated by successive calls to the calloc, malloc,

and realloc functions is unspecified. The pointer returned if the allocation succeeds is suitably

aligned so that it may be assigned to a pointer to any type of object and then used to access such

15 an object or an array of such objects in the space allocated (until the space is explicitly freed or

reallocated). Each such allocation shall yield a pointer to an object disjoint from any other

object. The pointer returned points to the start (lowest byte address) of the allocated space. If

the space cannot be allocated, a null pointer is returned. If the size of the space requested is

zero, the behavior is implementation-defined; the value returned shall be either a null pointer or a

20 unique pointer. The value of a pointer that refers to freed space is indeterminate.

4.10.3.1 The calloc Function

Synopsis

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);

25 Description

The calloc function allocates space for an array of nmemb objects, each of whose size is

size. The space is initialized to all bits zero.127

Returns

The calloc function returns either a null pointer or a pointer to the allocated space.

30 4.10.3.2 The free Function

Synopsis

#include <stdlib.h>

void free(void *ptr);

Description

35 The free function causes the space pointed to by ptr to be deallocated, that is, made

available for further allocation. If ptr is a null pointer, no action occurs. Otherwise, if the

argument does not match a pointer earlier returned by the calloc, malloc, or realloc

function, or if the space has been deallocated by a call to free or realloc, the behavior is

undefined.

127. Note that this need not be the same as the representation of floating-point zero or a null pointer constant.

4.10.2.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.3.2

Library 156 General Utilities <stdlib.h>

Returns

The free function returns no value.

4.10.3.3 The malloc Function

Synopsis

5 #include <stdlib.h>

void *malloc(size_t size);

Description

The malloc function allocates space for an object whose size is specified by size and

whose value is indeterminate.

10 Returns

The malloc function returns either a null pointer or a pointer to the allocated space.

4.10.3.4 The realloc Function

Synopsis

#include <stdlib.h>

15 void *realloc(void *ptr, size_t size);

Description

The realloc function changes the size of the object pointed to by ptr to the size specified

by size. The contents of the object shall be unchanged up to the lesser of the new and old

sizes. If the new size is larger, the value of the newly allocated portion of the object is

20 indeterminate. If ptr is a null pointer, the realloc function behaves like the malloc

function for the specified size. Otherwise, if ptr does not match a pointer earlier returned by

the calloc, malloc, or realloc function, or if the space has been deallocated by a call to

the free or realloc function, the behavior is undefined. If the space cannot be allocated, the

object pointed to by ptr is unchanged. If size is zero and ptr is not a null pointer, the object

25 it points to is freed.

Returns

The realloc function returns either a null pointer or a pointer to the possibly moved

allocated space.

4.10.4 Communication with the Environment

30 4.10.4.1 The abort Function

Synopsis

#include <stdlib.h>

void abort(void);

Description

35 The abort function causes abnormal program termination to occur, unless the signal

SIGABRT is being caught and the signal handler does not return. Whether open output streams

are flushed or open streams closed or temporary files removed is implementation-defined. An

implementation-defined form of the status unsuccessful termination is returned to the host

environment by means of the function call raise (SIGABRT).

40 Returns

The abort function cannot return to its caller.

4.10.3.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.4.1

Library 157 General Utilities <stdlib.h>

4.10.4.2 The atexit Function

Synopsis

#include <stdlib.h>

int atexit(void (*func)(void));

5 Description

The atexit function registers the function pointed to by func, to be called without

arguments at normal program termination.

Implementation Limits

The implementation shall support the registration of at least 32 functions.

10 Returns

The atexit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the exit function (4.10.4.3).

4.10.4.3 The exit Function

Synopsis

15 #include <stdlib.h>

void exit (int status);

Description

The exit function causes normal program termination to occur. If more than one call to the

exit function is executed by a program, the behavior is undefined.

20 First, all functions registered by the atexit function are called, in the reverse order of their

registration.I2X

Next, all open streams with unwritten buffered data are flushed, all open streams are closed,

and all files created by the tmpfile function are removed.

Finally, control is returned to the host environment. If the value of status is zero or

25 EXIT_SUCCESS, an implementation-defined form of the status successful termination is

returned. If the value of status is EXIT_FAILURE, an implementation-defined form of the

status unsuccessful termination is returned. Otherwise the status returned is implementation-

defined.

Returns

30 The exit function cannot return to its caller.

4.10.4.4 The getenv Function

Synopsis

#include <stdlib.h>

char *getenv(const char *name);

35 Description

The getenv function searches an environment list, provided by the host environment, for a

string that matches the string pointed to by name. The set of environment names and the

method for altering the environment list are implementation-defined.

128. Each function is called as many times as it was registered.

4.10.4.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.4.4

Library 158 General Utilities <stdlib.h>

The implementation shall behave as if no library function calls the getenv function.

Returns

The getenv function returns a pointer to a string associated with the matched list member.

The string pointed to shall not be modified by the program, but may be overwritten by a

5 subsequent call to the getenv function. If the specified name cannot be found, a null pointer is

returned.

4.10.4.5 The system Function

Synopsis

#include <stdlib.h>

10 int system(const char *string);

Description

The system function passes the string pointed to by string to the host environment to be

executed by a command processor in an implementation-defined manner. A null pointer may be

used for string to inquire whether a command processor exists.

15 Returns

If the argument is a null pointer, the system function returns nonzero only if a command

processor is available. If the argument is not a null pointer, the system function returns an

implementation-defined value.

4.10.5 Searching and Sorting Utilities

20 4.10.5.1 The bsearch Function

Synopsis

#include <stdlib.h>

void *bsearch (const void *key, const void *base,

size_t nmemb, size_t size,

25 int (*compar) (const void *, const void *)) ;

Description

The bsearch function searches an array of nmemb objects, the initial element of which is

pointed to by base, for an element that matches the object pointed to by key. The size of each

element of the array is specified by size.

30 The comparison function pointed to by compar is called with two arguments that point to

the key object and to an array element, in that order. The function shall return an integer less

than, equal to, or greater than zero if the key object is considered, respectively, to be less than,

to match, or to be greater than the array element. The array shall consist of: all the elements that

compare less than, all the elements that compare equal to, and all the elements that compare

35 greater than the key object, in that order.129

Returns

The bsearch function returns a pointer to a matching element of the array, or a null pointer

if no match is found. If two elements compare as equal, which element is matched is

unspecified.

129. In practice, the entire array is sorted according to the comparison function.

4.10.4.4 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.5.1

Library 159 General Utilities <stdlib.h>

4.10.5.2 The qsort Function

Synopsis

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size,

5 int (*compar)(const void *, const void *));

Description

The qsort function sorts an array of nmemb objects, the initial element of which is pointed

to by base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison function

10 pointed to by compar, which is called with two arguments that point to the objects being

compared. The function shall return an integer less than, equal to, or greater than zero if the first

argument is considered to be respectively less than, equal to, or greater than the second.

If two elements compare as equal, their order in the sorted array is unspecified.

Returns

15 The qsort function returns no value.

4.10.6 Integer Arithmetic Functions

4.10.6.1 The abs Function

Synopsis

#include <stdlib.h>

20 int abs(int j) ;

Description

The abs function computes the absolute value of an integer j. If the result cannot be

represented, the behavior is undefined.110

Returns

25 The abs function returns the absolute value.

4.10.6.2 The div Function

Synopsis

#include <stdlib.h>

div_t div(int numer, int denom);

30 Description

The div function computes the quotient and remainder of the division of the numerator

numer by the denominator denom. If the division is inexact, the resulting quotient is the

integer of lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be

represented, the behavior is undefined; otherwise, quot * denom + rem shall equal numer.

35 Returns

The div function returns a structure of type div_t, comprising both the quotient and the

remainder. The structure shall contain the following members, in either order:

130. In a two's complement representation, the absolute value of the most negative number cannot be represented.

4.10.5.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.6.2

Library 160

int quot; /* quotient */

int rem; /* remainder */

4.10.6.3 The labs Function

General Utilities <stdlib. h>

Synopsis

5 #include <stdlib.h>

long int labs(long int j);

Description

The labs function is similar to the abs function, except that the argument and the returned

value each have type long int.

10 4.10.6.4 The Idiv Function

Synopsis

#include <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

Description

15 The ldiv function is similar to the div function, except that the arguments and the

members of the returned structure (which has type ldiv_t) all have type long int.

4.10.7 Multibyte Character Functions

The behavior of the multibyte character functions is affected by the LC_CTYPE category of

the current locale. For a state-dependent encoding, each function is placed into its initial state by

20 a call for which its character pointer argument, s, is a null pointer. Subsequent calls with s as

other than a null pointer cause the internal state of the function to be altered as necessary. A call

with s as a null pointer causes these functions to return a nonzero value if encodings have state

dependency, and zero otherwise.1'1 Changing the LC_CTYPE category causes the shift state of

these functions to be indeterminate.

25 4.10.7.1 The mblen Function

Synopsis

#include <stdlib.h>

int mblen(const char *s, size_t n);

Description

30 If s is not a null pointer, the mblen function determines the number of bytes contained in

the multibyte character pointed to by s. Except that the shift state of the mbtowc function is not

affected, it is equivalent to

mbtowc((wchar_t *)0, s, n);

The implementation shall behave as if no library function calls the mblen function.

35 Returns

If s is a null pointer, the mblen function returns a nonzero or zero value, if multibyte

character encodings, respectively, do or do not have state-dependent encodings. If s is not a null

pointer, the mblen function either returns 0 (if s points to the null character), or returns the

131. If the implementation employs special bytes to change the shift state, these bytes do not produce separate wide
character codes, but are grouped with an adjacent multibyte character.

4.10.6.2 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.7.1

Library 161 General Utilities <stdlib.h>

number of bytes that are contained in the multibyte character (if the next n or fewer bytes form a

valid multibyte character), or returns -1 (if they do not form a valid multibyte character).

Forward references: the mbtowc function (4.10.7.2).

4.10.7.2 The mbtowc Function

5 Synopsis

#include <stdlib.h>

int mbtowc(wchar_t *pwc, const char *s, size_t n) ;

Description

If s is not a null pointer, the mbtowc function determines the number of bytes that are

10 contained in the multibyte character pointed to by s. It then determines the code for the value of

type wchar_t that corresponds to that multibyte character. (The value of the code

corresponding to the null character is zero.) If the multibyte character is valid and pwc is not a

null pointer, the mbtowc function stores the code in the object pointed to by pwc. At most n

bytes of the array pointed to by s will be examined.

15 The implementation shall behave as if no library function calls the mbtowc function.

Returns

If s is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte

character encodings, respectively, do or do not have state-dependent encodings. If s is not a null

pointer, the mbtowc function either returns 0 (if s points to the null character), or returns the

20 number of bytes that are contained in the converted multibyte character (if the next n or fewer

bytes form a valid multibyte character), or returns - I (if they do not form a valid multibyte

character).

In no case will the value returned be greater than n or the value of the MB_CUR_MAX macro.

4.10.7.3 The wctomb Function

25 Synopsis

#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

Description

The wctomb function determines the number of bytes needed to represent the multibyte

30 character corresponding to the code whose value is wchar (including any change in shift state).

It stores the multibyte character representation in the array object pointed to by s (if s is not a

null pointer). At most MB_CUR_MAX characters are stored. If the value of wchar is zero, the

wctomb function is left in the initial shift state.

The implementation shall behave as if no library function calls the wctomb function.

35 Returns

If s is a null pointer, the wctomb function returns a nonzero or zero value, if multibyte

character encodings, respectively, do or do not have state-dependent encodings. If s is not a null

pointer, the wctomb function returns -1 if the value of wchar does not correspond to a valid

multibyte character, or returns the number of bytes that are contained in the multibyte character

40 corresponding to the value of wchar.

In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

4.10.7.1 AMERICAN NATIONAL STANDARD X3.I59-I989 4.10.7.3

Library 162 General Utilities <stdlib.h>

4.10.8 Multibyte String Functions

The behavior of the multibyte string functions is affected by the LC_CTYPE category of the

current locale.

4.10.8.1 The mbstowcs Function

5 Synopsis

#include <stdlib.h>

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

Description

The mbstowcs function converts a sequence of multibyte characters that begins in the initial

10 shift state from the array pointed to by s into a sequence of corresponding codes and stores not

more than n codes into the array pointed to by pwcs. No multibyte characters that follow a null

character (which is converted into a code with value zero) will be examined or converted. Each

multibyte character is converted as if by a call to the mbtowe function, except that the shift state

of the mbtowe function is not affected.

15 No more than n elements will be modified in the array pointed to by pwcs. If copying takes

place between objects that overlap, the behavior is undefined.

Returns

If an invalid multibyte character is encountered, the mbstowcs function returns

(size_t)-l. Otherwise, the mbstowcs function returns the number of array elements

20 modified, not including a terminating zero code, if any.112

4.10.8.2 The westombs Function

Synopsis

#include <stdlib.h>

size_t westombs(char *s, const wchar_t *pwcs, size_t n);

25 Description

The westombs function converts a sequence of codes that correspond to multibyte characters

from the array pointed to by pwcs into a sequence of multibyte characters that begins in the

initial shift state and stores these multibyte characters into the array pointed to by s, stopping if a

multibyte character would exceed the limit of n total bytes or if a null character is stored. Each

30 code is converted as if by a call to the wetomb function, except that the shift state of the

wetomb function is not affected.

No more than n bytes will be modified in the array pointed to by s. If copying takes place

between objects that overlap, the behavior is undefined.

Returns

35 If a code is encountered that does not correspond to a valid multibyte character, the

westombs function returns (size_t)-l. Otherwise, the westombs function returns the

number of bytes modified, not including a terminating null character, if any.1 '2

132. The array will not be null- or zero-terminated if the value returned is n.

4.10.8 AMERICAN NATIONAL STANDARD X3.159-1989 4.10.8.2

Library 163 String Handling <string.h>

4.11 String Handling <string. h>

4.11.1 String Function Conventions

The header <string.h> declares one type and several functions, and defines one macro

useful for manipulating arrays of character type and other objects treated as arrays of character

5 type,1" The type is size_t and the macro is NULL (both described in 4.1.5). Various methods

are used for determining the lengths of the arrays, but in all cases a char * or void *

argument points to the initial (lowest addressed) character of the array. If an array is accessed

beyond the end of an object, the behavior is undefined.

4.11.2 Copying Functions

10 4.11.2.1 The memcpy Function

Synopsis

#include <string.h>

void *memcpy(void *sl, const void *s2, size_t n);

Description

15 The memcpy function copies n characters from the object pointed to by s2 into the object

pointed to by si. If copying takes place between objects that overlap, the behavior is undefined.

Returns

The memcpy function returns the value of si.

4.11.2.2 The memmove Function

20 Synopsis

#include <string.h>

void *memmove(void *sl, const void *s2, size_t n);

Description

The memmove function copies n characters from the object pointed to by s2 into the object

25 pointed to by si. Copying takes place as if the n characters from the object pointed to by s2

are first copied into a temporary array of n characters that does not overlap the objects pointed to

by si and s2. and then the n characters from the temporary array are copied into the object

pointed to by si.

Returns

30 The memmove function returns the value of si.

4.11.2.3 The strcpy Function

Synopsis

#include <string.h>

char *strcpy(char *sl, const char *s2);

35 Description

The strcpy function copies the string pointed to by s2 (including the terminating null

character) into the array pointed to by si. If copying takes place between objects that overlap,

the behavior is undefined.

133. See “future library directions” (4.13.8).

4.1 1 AMERICAN NATIONAL STANDARD X3.159-1989 4.11.2.3

Library 164 String Handling <string.h>

Returns

The strcpy function returns the value of si.

4.11.2.4 The strncpy Function

Synopsis

5 #include <string.h>

char *strncpy(char *sl, const char *s2, size_t n);

Description

The strncpy function copies not more than n characters (characters that follow a null

character are not copied) from the array pointed to by s2 to the array pointed to by si.1'4 If

10 copying takes place between objects that overlap, the behavior is undefined.

If the array pointed to by s2 is a string that is shorter than n characters, null characters are

appended to the copy in the array pointed to by si, until n characters in all have been written.

Returns

The strncpy function returns the value of si.

15 4.11.3 Concatenation Functions

4.11.3.1 The strcat Function

Synopsis

#include <string.h>

char *strcat(char *sl, const char *s2);

20 Description

The strcat function appends a copy of the string pointed to by s2 (including the

terminating null character) to the end of the string pointed to by si. The initial character of s2

overwrites the null character at the end of si. If copying takes place between objects that

overlap, the behavior is undefined.

25 Returns

The strcat function returns the value of si.

4.11.3.2 The strncat Function

Synopsis

#include <string.h>

30 char *strncat(char *sl, const char *s2, size_t n);

Description

The strncat function appends not more than n characters (a null character and characters

that follow it are not appended) from the array pointed to by s2 to the end of the string pointed

to by si. The initial character of s2 overwrites the null character at the end of si. A

35 terminating null character is always appended to the result.145 If copying takes place between

objects that overlap, the behavior is undefined.

134. Thus, if there is no null character in the first n characters of the array pointed to by s2, the result will not be
null-terminated.

135. Thus, the maximum number of characters that can end up in the array pointed to by si is
strlen(si)+n+l.

4.1 1.2.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.1 1.3.2

Library 165 String Handling <string. h>

Returns

The strncat function returns the value of si.

Forward references: the strlen function (4.1 1.6.3).

4.11.4 Comparison Functions

5 The sign of a nonzero value returned by the comparison functions memcmp, strcmp. and

strncmp is determined by the sign of the difference between the values of the first pair of

characters (both interpreted as unsigned char) that differ in the objects being compared.

4.11.4.1 The memcmp Function

Synopsis

10 #include <string.h>

int memcmp(const void *sl, const void *s2, size_t n);

Description

The memcmp function compares the first n characters of the object pointed to by si to the

first n characters of the object pointed to by s2.116

15 Returns

The memcmp function returns an integer greater than, equal to, or less than zero, accordingly

as the object pointed to by si is greater than, equal to, or less than the object pointed to by s2.

4.11.4.2 The strcmp Function

Synopsis

20 #include <string.h>

int strcmp(const char *sl, const char *s2) ;

Description

The strcmp function compares the string pointed to by si to the string pointed to by s2.

Returns

25 The strcmp function returns an integer greater than, equal to, or less than zero, accordingly

as the string pointed to by si is greater than, equal to, or less than the string pointed to by s2.

4.11.4.3 The strcoll Function

Synopsis

#include <string.h>

30 int strcoll(const char *sl, const char *s2);

Description

The strcoll function compares the string pointed to by si to the string pointed to by s2.

both interpreted as appropriate to the LC_COLLATE category of the current locale.

136. The contents of “holes” used as padding for purposes of alignment within structure objects are indeterminate.
Strings shorter than their allocated space and unions may also cause problems in comparison.

4.1 1.3.2 AMERICAN NATIONAL STANDARD X3.I59-I989 4.1 1.4.3

Library 166 String Handling <string.h>

Returns

The strcoll function returns an integer greater than, equal to, or less than zero, accordingly

as the string pointed to by si is greater than, equal to, or less than the string pointed to by s2

when both are interpreted as appropriate to the current locale.

5 4.11.4.4 The strncmp Function

Synopsis

#include <string.h>

int strncmp(const char *sl, const char *s2, size_t n);

Description

10 The strncmp function compares not more than n characters (characters that follow a null

character are not compared) from the array pointed to by si to the array pointed to by s2.

Returns

The strncmp function returns an integer greater than, equal to, or less than zero, accordingly

as the possibly null-terminated array pointed to by si is greater than, equal to, or less than the

15 possibly null-terminated array pointed to by s2.

4.11.4.5 The strxfrm Function

Synopsis

#include <string.h>

size_t strxfrm(char *sl, const char *s2, size_t n);

20 Description

The strxfrm function transforms the string pointed to by s2 and places the resulting string

into the array pointed to by si. The transformation is such that if the strcmp function is

applied to two transformed strings, it returns a value greater than, equal to, or less than zero,

corresponding to the result of the strcoll function applied to the same two original strings.

25 No more than n characters are placed into the resulting array pointed to by si, including the

terminating null character. If n is zero, si is permitted to be a null pointer. If copying takes

place between objects that overlap, the behavior is undefined.

Returns

The strxfrm function returns the length of the transformed string (not including the

30 terminating null character). If the value returned is n or more, the contents of the array pointed

to by si are indeterminate.

Example

The value of the following expression is the size of the array needed to hold the

transformation of the string pointed to by s.

35 1 + strxfrm(NULL, s, 0)

4.11.5 Search Functions

4.11.5.1 The memchr Function

Synopsis

#include <string.h>

40 void *memchr(const void *s, int c, size t n) ;

4.11.4.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.11.5.1

Library 167 String Handling <string.h>

Description

The memchr function locates the first occurrence of c (converted to an unsigned char) in

the initial n characters (each interpreted as unsigned char) of the object pointed to by s.

Returns

5 The memchr function returns a pointer to the located character, or a null pointer if the

character does not occur in the object.

4.11.5.2 The strchr Function

Synopsis

#include <string.h>

10 char *strchr(const char *s, int c);

Description

The strchr function locates the first occurrence of c (converted to a char) in the string

pointed to by s. The terminating null character is considered to be part of the string.

Returns

15 The strchr function returns a pointer to the located character, or a null pointer if the

character does not occur in the string.

4.11.5.3 The strcspn Function

Synopsis

#include <string.h>

20 size_t strcspn(const char *sl, const char *s2);

Description

The strcspn function computes the length of the maximum initial segment of the string

pointed to by si which consists entirely of characters nor from the string pointed to by s2.

Returns

25 The strcspn function returns the length of the segment.

4.11.5.4 The strpbrk Function

Synopsis

#include <string.h>

char *strpbrk (const char *sl, const char *s2);

30 Description

The strpbrk function locates the first occurrence in the string pointed to by si of any

character from the string pointed to by s2.

Returns

The strpbrk function returns a pointer to the character, or a null pointer if no character

35 from s2 occurs in si.

4.11.5.5 The strrchr Function

Synopsis

#include <string.h>

char *strrchr (const char *s, int c);

4.11.5.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.1 1.5.5

Library 168 String Handling <string.h>

Description

The strrchr function locates the last occurrence of c (converted to a char) in the string

pointed to by s. The terminating null character is considered to be part of the string.

Returns

5 The strrchr function returns a pointer to the character, or a null pointer if c does not occur

in the string.

4.11.5.6 The strspn Function

Synopsis

#include <string.h>

10 size_t strspn(const char *sl, const char *s2);

Description

The strspn function computes the length of the maximum initial segment of the string

pointed to by si which consists entirely of characters from the string pointed to by s2.

Returns

15 The strspn function returns the length of the segment.

4.11.5.7 The strstr Function

Synopsis

#include <string.h>

char *strstr(const char *sl, const char *s2) ;

20 Description

The strstr function locates the first occurrence in the string pointed to by si of the

sequence of characters (excluding the terminating null character) in the string pointed to by s2

Returns

The strstr function returns a pointer to the located string, or a null pointer if the string is

25 not found. If s2 points to a string with zero length, the function returns si.

4.11.5.8 The strtok Function

Synopsis

#include <string.h>

char *strtok(char *sl, const char *s2) ;

30 Description

A sequence of calls to the strtok function breaks the string pointed to by si into a

sequence of tokens, each of which is delimited by a character from the string pointed to by s2.

The first call in the sequence has si as its first argument, and is followed by calls with a null

pointer as their first argument. The separator string pointed to by s2 may be different from call

35 to call.

The first call in the sequence searches the string pointed to by si for the first character that is

not contained in the current separator string pointed to by s2. If no such character is found, then

there are no tokens in the string pointed to by si and the strtok function returns a null

pointer. If such a character is found, it is the start of the first token.

40 The strtok function then searches from there for a character that is contained in the current

separator string. If no such character is found, the current token extends to the end of the string

pointed to by si, and subsequent searches for a token will return a null pointer. If such a

character is found, it is overwritten by a null character, which terminates the current token. The

4.11.5.5 AMERICAN NATIONAL STANDARD X3.159-1989 4.1 1.5.8

Library 169 String Handling <string. h>

strtok function saves a pointer to the following character, from which the next search for a

token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching

from the saved pointer and behaves as described above.

5 The implementation shall behave as if no library function calls the strtok function.

Returns

The strtok function returns a pointer to the first character of a token, or a null pointer if

there is no token.

Example

10 #include <string.h>

static char str[] = "?a???b,,,#c";

char *t;

t = strtok(str, " ? ") ; /* t points to the token "a" */

t = strtok(NULL, ", ") ; /* t points to the token "??b"

15 t = strtok(NULL, "#,"); /* t points to the token "c" */

t = strtok(NULL, "?"); /* t is a null pointer */

4.11.6 Miscellaneous Functions

4.11.6.1 The memset Function

Synopsis

20 #include <string.h>

void *memset(void *s, int c, size_t n);

Description

The memset function copies the value of c (converted to an unsigned char) into each of

the first n characters of the object pointed to by s.

25 Returns

The memset function returns the value of s.

4.11.6.2 The strerror Function

Synopsis

#include <string.h>

30 char *strerror(int errnum);

Description

The strerror function maps the error number in errnum to an error message string.

The implementation shall behave as if no library function calls the strerror function.

Returns

35 The strerror function returns a pointer to the string, the contents of which are

implementation-defined. The array pointed to shall not be modified by the program, but may be

overwritten by a subsequent call to the strerror function.

4.1 1.5.8 AMERICAN NATIONAL STANDARD X3.159-1989 4.1 1.6.2

Library 170 String Handling <string. h>

4.11.6.3 The strlen Function

Synopsis

#include <string.h>

size_t strlen(const char *s);

5 Description

The strlen function computes the length of the string pointed to by s.

Returns

The strlen function returns the number of characters that precede the terminating null

character.

4.1 1.6.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.1 1.6.3

Library 171 Date and Time <time . h>

4.12 Date and Time <time.h>

4.12.1 Components of Time

The header <time.h> defines two macros, and declares four types and several functions for

manipulating time. Many functions deal with a calendar time that represents the current date

5 (according to the Gregorian calendar) and time. Some functions deal with local time, which is

the calendar time expressed for some specific time zone, and with Daylight Saving Time, which

is a temporary change in the algorithm for determining local time. The local time zone and

Daylight Saving Time are implementation-defined.

The macros defined are NULL (described in 4.1.5); and

10 CLOCKS_PER_SEC

which is the number per second of the value returned by the clock function.

The types declared are size_t (described in 4.1.5);

clock_t

and

15 time_t

which are arithmetic types capable of representing times; and

struct tm

which holds the components of a calendar time, called the broken-down time. The structure shall

contain at least the following members, in any order. The semantics of the members and their

20 normal ranges are expressed in the comments.137

25

int tm_sec;

int tm_min;

int tm_hour;

int tm_mday;

int tm_mon;

int tm_year;

int tm_wday;

int tm_yday;

int tm isdst;

/* seconds after the minute — [0,61] * /

/* minutes after the hour — [0, 59] * /

/* hours since midnight — [0,23] */

/ * day of the month — [1,31] * /

/* months since January — [0,11] */

/* years since 1900 */

/* days since Sunday — [0,6] */

/* days since January 1 — [0, 365] * /

/* Daylight Saving Time flag * /

30 The value of tm_isdst is positive if Daylight Saving Time is in effect, zero if Daylight Saving

Time is not in effect, and negative if the information is not available.

4.12.2 Time Manipulation Functions

4.12.2.1 The clock Function

Synopsis

35 #include <time.h>

clock_t clock(void);

Description

The clock function determines the processor time used.

137. The range [0, 61] for tm_sec allows for as many as two leap seconds.

4.12 AMERICAN NATIONAL STANDARD X3.159-1989 4.12.2.1

Library 172 Date and Time <time . h>

Returns

The clock function returns the implementation's best approximation to the processor time

used by the program since the beginning of an implementation-defined era related only to the

program invocation. To determine the time in seconds, the value returned by the clock

5 function should be divided by the value of the macro CLOCKS_PER_SEC. If the processor time

used is not available or its value cannot be represented, the function returns the value

(clock_t) -l.1 's

4.12.2.2 The difftime Function

Synopsis

10 #include <time.h>

double difftime(time_t timel, time_t timeO);

Description

The difftime function computes the difference between two calendar times: timel -

timeO.

15 Returns

The difftime function returns the difference expressed in seconds as a double.

4.12.2.3 The mktime Function

Synopsis

#include <time.h>

20 time_t mktime(struct tm *timeptr);

Description

The mktime function converts the broken-down time, expressed as local time, in the

structure pointed to by timeptr into a calendar time value with the same encoding as that of

the values returned by the time function. The original values of the tm_wday and tm_yday

25 components of the structure are ignored, and the original values of the other components are not

restricted to the ranges indicated above.1,11 On successful completion, the values of the

tm_wday and tm_yday components of the structure are set appropriately, and the other

components are set to represent the specified calendar time, but with their values forced to the

ranges indicated above; the final value of tm_mday is not set until tm_mon and tm_year are

30 determined.

Returns

The mktime function returns the specified calendar time encoded as a value of type

time_t. If the calendar time cannot be represented, the function returns the value

(time_t) -1.

35 Example

What day of the week is July 4, 2001?

138. In order to measure the time spent in a program, the clock function should be called at the start of the
program and its return value subtracted from the value returned by subsequent calls.

139. Thus, a positive or zero value for tm isdst causes the mktime function to presume initially that Daylight
Saving Time, respectively, is or is notTri effect for the specified time. A negative value for tm_isdst causes
the mktime function to attempt to determine whether Daylight Saving Time is in effect for the specified time.

4.12.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.12.2.3

Library 173 Date and Time Ctime . h>

5

10

15

#include <stdio.h>

#include <time.h>

static const char *const wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday", "-unknown-"

In¬

struct tm time_str;

/*...*/

time_str.tm_year = 2001 - 1900;

time_str.tm_mon =7-1;

time_str.tm_mday = 4 ;

time_str.tm_hour = 0;

time_str.tm_min = 0;

time_str.tm_sec = 1;

time_str.tm_isdst = -1;

if (mktime(&time_str) == -1)

time_str.tm_wday = 7;

printf("%s\n", wday[time_str.tm_wday]);

4.12.2.4 The time Function

20 Synopsis

#include Ctime.h>

time_t time(time_t *timer);

Description

The time function determines the current calendar time. The encoding of the value is

25 unspecified.

Returns

The time function returns the implementation’s best approximation to the current calendar

time. The value (time_t) -1 is returned if the calendar time is not available. If timer is not

a null pointer, the return value is also assigned to the object it points to.

30 4.12.3 Time Conversion Functions

Except for the strftime function, these functions return values in one of two static objects:

a broken-down time structure and an array of char. Execution of any of the functions may

overwrite the information returned in either of these objects by any of the other functions. The

implementation shall behave as if no other library functions call these functions.

35 4.12.3.1 The asctime Function

Synopsis

#include <time.h>

char *asctime(const struct tm *timeptr);

Description

40 The asctime function converts the broken-down time in the structure pointed to by

timeptr into a string in the form

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm.

4.12.2.3 AMERICAN NATIONAL STANDARD X3.159-1989 4.12.3.1

Library 174 Date and Tune <time . h>

char *asctime(const struct tm *timeptr)

{

static const char wday name[7][3] = {

} ;

static

"Sun", "Mon", "Tue", "Wed", "Thu", "Fri",

const char mon name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
10 static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",

wday_name[timeptr->tm_wday],

mon_name[timeptr->tm_mon],

timeptr->tm_mday, timeptr->tm_hour,

15 timeptr->tm_min, timeptr->tm_sec,

1900 + timeptr->tm_year);

return result;

}

Returns

20 The asctime function returns a pointer to the string.

4.12.3.2 The ctime Function

Synopsis

#include <time.h>

char *ctime(const time_t *timer);

25 Description

The ctime function converts the calendar time pointed to by timer to local time in the

form of a string. It is equivalent to

asctime(localtime(timer))

Returns

30 The ctime function returns the pointer returned by the asctime function with that broken-

down time as argument.

Forward references: the localtime function (4.12.3.4).

4.12.3.3 The gmtime Function

Synopsis

35 #include <time.h>

struct tm *gmtime(const time_t *timer);

Description

The gmtime function converts the calendar time pointed to by timer into a broken-down

time, expressed as Coordinated Universal Time (UTC).

40 Returns

The gmtime function returns a pointer to that object, or a null pointer if UTC is not

available.

4.12.3.1 AMERICAN NATIONAL STANDARD X3.159-1989 4.12.3.3

Library 175 Date and Time <time.h>

4.12.3.4 The localtime Function

Synopsis

#include <time.h>

struct tm *localtime(const time_t *timer);

5 Description

The localtime function converts the calendar time pointed to by timer into a broken-

down time, expressed as local time.

Returns

The localtime function returns a pointer to that object.

10 4.12.3.5 The strftime Function

Synopsis

#include <time.h>

size_t strftime(char *s, size_t maxsize,

const char *format, const struct tm *timeptr);

15 Description

The strftime function places characters into the array pointed to by s as controlled by the

string pointed to by format. The format shall be a multibyte character sequence, beginning and

ending in its initial shift state. The format string consists of zero or more conversion specifiers

and ordinary multibyte characters. A conversion specifier consists of a % character followed by a

20 character that determines the behavior of the conversion specifier. All ordinary multibyte

characters (including the terminating null character) are copied unchanged into the array. If

copying takes place between objects that overlap, the behavior is undefined. No more than

maxsize characters are placed into the array. Each conversion specifier is replaced by

appropriate characters as described in the following list. The appropriate characters are

25 determined by the LC_TIME category of the current locale and by the values contained in the

structure pointed to by timeptr.

30

35

40

45

%a is replaced by the locale’s abbreviated weekday name.

%A is replaced by the locale’s full weekday name.

%b is replaced by the locale’s abbreviated month name.

%B is replaced by the locale’s full month name.

%c is replaced by the locale’s appropriate date and time representation.

%d is replaced by the day of the month as a decimal number (01-31).

%H is replaced by the hour (24-hour clock) as a decimal number (00-23).

%I is replaced by the hour (12-hour clock) as a decimal number (01-12).

% j is replaced by the day of the year as a decimal number (001-366).

%m is replaced by the month as a decimal number (01-12).

%M is replaced by the minute as a decimal number (00-59).

%p is replaced by the locale’s equivalent of the AM/PM designations associated with a 12-

hour clock.

%S is replaced by the second as a decimal number (00-61).

%U is replaced by the week number of the year (the first Sunday as the first day of week 1)

as a decimal number (00-53).

%w is replaced by the weekday as a decimal number (0-6), where Sunday is 0.

%W is replaced by the week number of the year (the first Monday as the first day of week 1)

as a decimal number (00-53).

%x is replaced by the locale’s appropriate date representation.

%X is replaced by the locale’s appropriate time representation.

%y is replaced by the year without century as a decimal number (00-99).

%Y is replaced by the year with century as a decimal number.

4.12.3.4 AMERICAN NATIONAL STANDARD X3.I59-1989 4.12.3.5

Library 176 Date and Time Ctime . h>

%Z is replaced by the time zone name or abbreviation, or by no characters if no time zone is

determinable.

%% is replaced by %.

If a conversion specifier is not one of the above, the behavior is undefined.

5 Returns

If the total number of resulting characters including the terminating null character is not more

than maxsize. the strftime function returns the number of characters placed into the array

pointed to by s not including the terminating null character. Otherwise, zero is returned and the

contents of the array are indeterminate.

4.12.3.5 AMERICAN NATIONAL STANDARD X3.159-1989 4.12.3.5

Library 177 Future Library Directions

4.13 Future Library Directions

The following names are grouped under individual headers for convenience. All external

names described below are reserved no matter what headers are included by the program.

4.13.1 Errors <errno . h>

5 Macros that begin with E and a digit or E and an uppercase letter (followed by any

combination of digits, letters, and underscore) may be added to the declarations in the

<errno. h> header.

4.13.2 Character Handling Cctype . h>

Function names that begin with either is or to, and a lowercase letter (followed by any

10 combination of digits, letters, and underscore) may be added to the declarations in the

<otype. h> header.

4.13.3 Localization <locale . h>

Macros that begin with LC_ and an uppercase letter (followed by any combination of digits,

letters, and underscore) may be added to the definitions in the <locale ,h> header.

15 4.13.4 Mathematics <math. h>

The names of all existing functions declared in the <math.h> header, suffixed with f or 1,

are reserved respectively for corresponding functions with float and long double arguments

and return values.

4.13.5 Signal Handling <signal. h>

20 Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter

(followed by any combination of digits, letters, and underscore) may be added to the definitions

in the <signal .h> header.

4.13.6 Input/Output <stdio . h>

Lowercase letters may be added to the conversion specifiers in fprintf and fscanf.

25 Other characters may be used in extensions.

4.13.7 General Utilities <stdlib. h>

Function names that begin with str and a lowercase letter (followed by any combination of

digits, letters, and underscore) may be added to the declarations in the <stdlib.h> header.

4.13.8 String Handling <string.h>

30 Function names that begin with str. mem, or wcs and a lowercase letter (followed by any

combination of digits, letters, and underscore) may be added to the declarations in the

<string. h> header.

4.13 AMERICAN NATIONAL STANDARD X3.159-1989 4.13.8

Appendixes 178 Language Syntax Summary

Appendixes (These Appendixes are not part of American National Standard X3.159-1989. but are included

for information only.)

These appendixes collect information that appears in the standard, and are not necessarily complete.

A. Language Syntax Summary
The notation is described in the introduction to Section 3 (Language).

A.l Lexical Grammar

A.1.1 Tokens

(3.1) token:

keyword

identifier

constant

string-literal

operator

punctuator

(3.1) preprocessing-token:

header-name

identifier

pp-numher

character-constant

string-literal

operator

punctuator

each non-white-space character that cannot be one of the above

A.1.2 Keywords

(3.1.1) keyword: one of

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

A.1.3 Identifiers

(3.1.2) identifier:

nondigit

identifier nondigit

identifier < digit

3.1.2) nondigit: one of

a b c d

n o P q
A B C D

N 0 P Q

3.1.2) digit: one of

0 12 3 4

e f g h i j k 1 m

r s t u V w X y z

E F G H I J K L M

R S T U V W X Y Z

5 6 7 8 9

A. AMERICAN NATIONAL STANDARD X3.159-1989 A. 1.3

Appendixes 179 Language Syntax Summary

A.1.4 Constants

(3.1.3) constant:

floating-constant

integer-constant

enumeration-constant

character-constant

(3.1.3.1) floating-constant:

fractional-constant exponent-part floating-suffix
... „ opt J A JJ opt

digit-sequence exponent-part floating-suffix

(3.1.3.1) fractional-constant:

opt

digit-sequence ^ . digit-sequence

digit-sequence .

(3.1.3.1) exponent-part:

e sign digit-sequence

E sign digit-sequence

(3.1.3.1) sign: one of

(3.1.3.1) digit-sequence:

digit

digit-sequence digit

(3.1.3.1) floating-suffix: one of

f 1 F L

(3.1.3.2)

(3.1.3.2)

integer-constant:

decimal-constant integer-suffix

octal-constant integer-suffix ^
. , L JJ opt
hexadecimal-constant integer-suffix

opt

decimal-constant:

nonzero-digit

decimal-constant digit

(3.1.3.2) octal-constant:

0

octal-constant octal-digit

(3.1.3.2) hexadecimal-constant:

Ox hexadecimal-digit

OX hexadecimal-digit

hexadecimal-constant hexadecimal-digit

(3.1.3.2) nonzero-digit: one of

123456789

(3.1.3.2) octal-digit: one of

01234567

(3.1.3.2) hexadecimal-digit: one of

0123456789

a b c d e f

A B C D E F

A. 1.4 AMERICAN NATIONAL STANDARD X3.159-1989 A. 1.4

Appendixes 180 Language Syntax Summary

(3.1.3.2) integer-suffix:

unsigned-suffix long-suffix

long-suffix unsigned-suffix

(3.1.3.2) unsigned-suffix: one of

u U

(3.1.3.2) long-suffix: one of

1 L

(3.1.3.3) enumeration-constant:

identifier

(3.1.3.4) character-constant:

' c-char-sequence'

L' c-char-sequence'

(3.1.3.4) c-char-sequence:

c-char

c-char-sequence c-char

(3.1.3.4) c-char:

any member of the source character set except

the single-quote ', backslash \. or new-line character

escape-sequence

(3.1.3.4) escape-sequence:

simple-escape-sequence

octal-escape-sequence

hexadecimal-escape-sequence

(3.1.3.4) simple-escape-sequence: one of

V \" \? w
\a \b \f \n \r \t \v

(3.1.3.4) octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit

(3.1.3.4) hexadecimal-escape-sequence:

\x hexadecimal-digit

hexadecimal-escape-sequence hexadecimal-digit

A.1.5 String Literals

(3.1.4) string-literal:

" s-char-sequence "
opt

L" s-char-sequence "
1 opt

(3.1.4) s-char-sequence:

s-char

s-char-sequence s-char

(3.1.4) s-char:

any member of the source character set except

the double-quote ", backslash \, or new-line character

escape-sequence

A. 1.4 AMERICAN NATIONAL STANDARD X3.159-1989 A. 1.5

Appendixes 181 Language Syntax Summary

A.1.6 Operators

(3.1.5) operator: one of

[]().->
++ — & * + - ~ ! sizeof

/%«»<><=>=== ' = | && ||
? ;

= *= /= %= += -= «= »= &= A= | =
, # ##

A.1.7 Punctuators

(3.1.6) punctuator: one of

[] () { } * , : = ; . . . #

A.1.8 Header Names

(3.1.7) header-name:

<h-char-sequence>

" q-char-sequence "

(3.1.7) h-chai -sequence:

h-char

h-char-sequence h-char

(3.1.7) h-char:

any member of the source character set except

the new-line character and >

(3.1.7) q-char-sequence:

q-char

q-char-sequence q-char

(3.1.7) q-char:

any member of the source character set except

the new-line character and "

A.1.9 Preprocessing Numbers

(3.1.8) pp-numher:

digit

. digit

pp-numher digit

pp-numher nondigit

pp-numher e sign

pp-numher E sign

pp-numher .

A. 1.6 AMERICAN NATIONAL STANDARD X3.159-1989 A. 1.9

Language Syntax Summary Appendixes 182

A.2 Phrase Structure Grammar

A.2.1 Expressions

(3.3.1) primary-expression:

identifier

constant

string-literal

(expression)

(3.3.2) postfix-expression:

primary-expression

postfix-expression [expression]

postfix-expression (argument-expression-list)

postfix-expression . identifier

postfix-expression -> identifier

postfix-expression ++

postfix-expression —

(3.3.2) argument-expression-list:

assignment-expression

argument-expression-list , assignment-expression

(3.3.3) unary-expression:

postfix-expression

++ unary-expression

— unary-expression

unary-operator cast-expression

s i z e o f unary-expression

sizeof (type-name)

(3.3.3) unary-operator: one of

& * + — ~ !

(3.3.4) cast-expression:

unary-expression

(type-name) cast-expression

(3.3.5) multiplicative-expression:

cast-expression

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression % cast-expression

(3.3.6) additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

(3.3.7) shift-expression:

additi ve-expression

shift-expression « additive-expression

shift-expression » additive-expression

A.2 AMERICAN NATIONAL STANDARD X3.159-1989 A.2.1

Appendixes 183 Language Syntax Summary

(3.3.8) relational-expression:

shift-expression

relational-expression < shift-expression

relational-expression > shift-expression

relational-expression <= shift-expression

relational-expression >= shift-expression

(3.3.9) equality-expression:

relational-expression

equality-expression == relational-expression

equality-expression ! = relational-expression

(3.3.10) AND-expression:

equality-expression

AND-expression & equality-expression

(3.3.11) exclusive-OR-expression:

AND-expression

exclusive-OR-expression A AND-expression

(3.3.12) inclusive-OR-expression:

exclusive-OR-expression

inclusive-OR-expression | exclusive-OR-expression

(3.3.13) logical-AND-expression:

inclusive-OR-expression

logical-AND-expression & & inclusive-OR-expression

(3.3.14) logical-OR-expression:

logical-AND-expression

logical-OR-expression \ \ logical-AND-expression

(3.3.15) conditional-expression:

logical-OR-expression

logical-OR-expression ? expression : conditional-expression

(3.3.16) assignment-expression:

conditional-expression

unary-expression assignment-operator assignment-expression

(3.3.16) assignment-operator: one of

= *= /= %= += -= «= »= &= A= | =

(3.3.17) expression:

assignment-expression

expression , assignment-expression

(3.4) constant-expression:

conditional-expression

A.2.2 Declarations

(3.5) declaration:

declaration-specifiers init-declarator-list
' J opt

(3.5) declaration-specifiers:

storage-class-specifier declaration-specifiers

type-specifier declaration-specifiers

type-qualifier declaration-specifiers

A.2.1 AMERICAN NATIONAL STANDARD X3.159-1989 A.2.2

Appendixes 184 Language Syntax Summary

(3.5) init-declarator-list:

init-declarator

init-declarator-list , init-declarator

(3.5) init-declarator:

declarator

declarator = initializer

(3.5.1) storage-class-specifier:

typedef

extern

static

auto

register

(3.5.2) type-specifier:

void

char

short

int

long

float

double

signed

unsigned

struct-or-union-specifier

enum-specifier

typedef-name

(3.5.2.1) struct-or-union-specifier:

struct-or-union identifier { struct-declaration-list }

struct-or-union identifier

(3.5.2.1) struct-or-union:

struct

union

(3.5.2.1) struct-declaration-list:

struct-declaration

struct-declaration-list struct-declaration

(3.5.2.1) struct-declaration:

specifier-qualifier-list struct-declarator-list ;

(3.5.2.1) specifier-qualifier-list:

type-specifier specifier-aualifer-list

(3.5.2.1) struct-declarator-list:

struct-declarator

struct-declarator-list , struct-declarator

(3.5.2.1) struct-declarator:

declarator

declarator : constant-expression
opt

(3.5.2.2) enum-specifier:

enum taentijier

A.2.2 AMERICAN NATIONAL STANDARD X3.159-1989 A.2.2

Appendixes 185 Language Syntax Summary

(3.5.2.2) enumerator-list:

enumerator

enumerator-list , enumerator

(3.5.2.2) enumerator:

enumeration-constant

enumeration-constant = constant-expression

(3.5.3) type-qualifier:

const

volatile

(3.5.4) declarator:

pointer direct-declarator
r opt

(3.5.4) direct-declarator:

identifier

(declarator)

direct-declarator [constant-expression
1 opt

direct-declarator (parameter-type-list)

direct-declarator (identifier-list)

(3.5.4) pointer:

* type-qualifier-list

* type-qualifier-list pointer

(3.5.4) type-qualifier-list:

type-qualifier

type-qualifier-list type-qualifier

]

(3.5.4) parameter-type-list:

parameter-list

parameter-list ,

(3.5.4) parameter-list:

parameter-declaration

parameter-list , parameter-declaration

(3.5.4) parameter-declaration:

declaration-specifiers declarator

declaration-specifiers abstract-declarator(

(3.5.4) identifier-list:

identifier

identifier-list , identifier

(3.5.5) type-name:

specifier-qualifier-list abstract-declarator<

(3.5.5)

(3.5.5)

abstract-declarator:

pointer

pointer
H opt

direct-abstract-declarator

direct-abstract-declarator:

(abstract-declarator)

direct-abstract-declarator
opt

[constant-expression

direct-abstract-declarator (parameter-type-list
opt

‘opt

]

)

(3.5.6) typedef-name:

identifier

A.2.2 AMERICAN NATIONAL STANDARD X3.159-1989 A.2.2

Appendixes 186 Language Syntax Summary

(3.5.7) initializer:

assignment-expression

{ initializer-list }

{ initializer-list , }

(3.5.7) initializer-list:

initializer

initializer-list , initializer

A.2.3 Statements

(3.6) statement:

labeled-statement

compound-statement

expression-statement

selection-statement

iteration-statement

jump-statement

(3.6.1) labeled-statement:

identifier : statement

case constant-expression : statement

default : statement

(3.6.2) compound-statement:

{ declaration-list statement-list
opt opt

(3.6.2) declaration-list:

declaration

declaration-list declaration

}

(3.6.2) statement-list:

statement

statement-list statement

(3.6.3) expression-statement:

expression
t opt

(3.6.4) selection-statement:

if (expression) statement

if (expression) statement else statement

switch (expression) statement

(3.6.5) iteration-statement:

while (expression) statement

do statement while (expression)

for (expression ; expression
1 opt K opt

(3.6.6) jump-statement:

goto identifier ;

continue ;

break ;

return expression ;
' opt

expression
1 opt

statement

A.2.2 AMERICAN NATIONAL STANDARD X3.159-1989 A.2.3

Appendixes 187 Language Syntax Summary

A.2.4 External Definitions

(3.7) translation-unit:

external-declaration

translation-unit external-declaration

(3.7) external-declaration:

function-definition

declaration

(3.7.1) function-definition:

declaration-specifiers

A.3 Preprocessing Directives

declarator declaration-list
opt

compound-statement

(3.8) preprocessing-file:

group

(3.8) group:

opt

group-part

group group-part

(3.8) group-part:

pp-tokens new-line
opt

if-section

control-line

(3.8.1) if-section:

if-group elif-groups^ else-groupendif-line

(3.8.1) if-group:

if constant-expression new-line group

ifdef identifier new-line group

ifndef identifier new-line group

(3.8.1) elif-groups:

elif-group

elif-groups elif-group

(3.8.1) elif-group:

elif constant-expression new-line group

(3.8.1) else-group:

else new-line group 1 ^ opt

(3.8.1) endif-line:

endif new-line

(3.8.2)

control-line

include ! pp-tokens new-line

(3.8.3) # define identifier replacement-list new-line

(3.8.3) # define identifier Iparen identifier-list ^)

identifier new-line (3.8.3) # undef

(3.8.4) # line pp-tokens new-line

(3.8.5) # error pp-tokens new-line
opt

pp-tokens new-line
opt

new-line

(3.8.6) # pragma

(3.8.7) #

(3.8.3) Iparen:

replacement-list new-line

the left-parenthesis character without preceding white space

A.2.4 AMERICAN NATIONAL STANDARD X3.159-1989 A.3

Appendixes 188 Language Syntax Summary

(3.8.3) replacement-list:

pp-tokens
1 1 opt

(3.8) pp-tokens:

preprocessing-token

pp-tokens preprocessing-token

(3.8) new-line:

the new-line character

A.3 A.3 AMERICAN NATIONAL STANDARD X3.159-1989

Appendixes 189 Sequence Points

B. Sequence Points

The following are the sequence points described in 2.1.2.3.

• The call to a function, after the arguments have been evaluated (3.3.2.2).

• The end of the first operand of the following operators: logical AND && (3.3.13); logical OR | |

(3.3.14); conditional ? (3.3.15); comma , (3.3.17).

• The end of a full expression: an initializer (3.5.7); the expression in an expression statement (3.6.3);

the controlling expression of a selection statement (if or switch) (3.6.4); the controlling

expression of a while or do statement (3.6.5); each of the three expressions of a for statement

(3.6.5.3); the expression in a return statement (3.6.6.4).

B AMERICAN NATIONAL STANDARD X3.159-1989 B.

Appendixes 190 Library Summary

C. Library Summary

C.l Errors <errno. h>

EDOM

ERANGE

errno

C.2 Common Definitions <stddef. h>

NULL

off set of (type, member-designator)

pt rdi f f _t

size_t

wchar_t

C.3 Diagnostics <assert. h>

NDEBUG

void assert(int expression);

C.4 Character Handling <ctype.h>

int isalnum(int c) ;

int isalpha(int c) ;

int iscntrl(int c) ;

int isdigit(int c) ;

int isgraph(int c) ;

int islower(int c) ;

int isprint(int c) ;

int ispunct(int c) ;

int isspace(int c) ;

int isupper(int c) ;

int isxdigit(int • c)

int tolower(int c) ;

int toupper(int c) ;

C.5 Localization <locale . h>

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC_TIME

NULL

struct lconv

char *setlocale(int category, const char *locale);

struct lconv *localeconv(void);

C. AMERICAN NATIONAL STANDARD X3.159-1989 C.5

Appendixes 191

C.6 Mathematics <math. h>

HUGE_VAL

double acos(double x);

double asin(double x);

double atan(double x);

double atan2(double y, double x);

double cos(double x);

double sin(double x);

double tan(double x);

double cosh(double x);

double sinh(double x);

double tanh(double x);

double exp(double x);

double frexp(double value, int *exp);

double ldexp(double x, int exp);

double log(double x);

double loglO(double x);

double modf(double value, double *iptr)

double pow(double x, double y);

double sqrt(double x);

double ceil(double x);

double fabs(double x);

double floor(double x);

double fmod(double x, double y);

C.7 Nonlocal Jumps <set jmp.h>

jmp_buf

int setjmp(jmp_buf env);

void longjmp(jmp_buf env,

C.8 Signal Handling <signal .h>

int val)

s i g_a t omi c_t

SIG_DFL

SIG_ERR

SIG_IGN

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

void (*signal(int sig, void (*func) (int))) (int)

int raise(int sig);

Library Summary

C.5 AMERICAN NATIONAL STANDARD X3.159-1989 C.8

Appendixes 192 Library Summary

C.9 Variable Arguments <stdarg.h>

va_list

void va_start (va_list ap, parmN) ;

type va_arg (va_list ap, type);

void va_end(va_list ap) ;

C.10 Input/Output <stdio .h>

_IOFBF

_IOLBF

_IONBF

BUFSIZ

EOF

FILE

FILENAME_MAX

FOPEN_MAX

fpos_t

L_tmpnam

NULL

SEEK_CUR

SEEK_END

SEEK_SET

size_t

stderr

stdin

stdout

TMP_MAX

int remove(const char *filename);

int rename(const char *old, const char *new);

FILE *tmpfile(void) ;

char *tmpnam(char *s) ;

int fclose(FILE *stream);

int fflush(FILE *stream);

FILE *fopen(const char *filename, const char *mode);

FILE *freopen(const char *filename, const char *mode,

FILE *stream);

void setbuf(FILE *stream, char *buf);

int setvbuf(FILE *stream, char *buf, int mode, size_t size);

int fprintf(FILE *stream, const char *format, ...);

int fscanf(FILE ^stream, const char *format, . ..);

int printf(const char *format, ...);

int scanf (const char * format, . ..);

int sprintf(char *s, const char *format, ...);

int sscanf(const char *s, const char *format, . ..);

int vfprintf(FILE *stream, const char *format, va_list arg);

int vprintf(const char *format, va_list arg);

int vsprintf (char *s, const char *foirmat, va_list arg) ;

int fgetc(FILE *stream);

char *fgets(char *s, int n, FILE *stream);

int fputc(int c, FILE *stream);

int fputs(const char *s, FILE *stream);

int getc(FILE *stream);

int getchar(void);

char *gets(char *s);

int putc(int c, FILE *stream);

C.9 AMERICAN NATIONAL STANDARD X3.159-1989 C.10

Appendixes 193 Library Summary

int putchar(int c);

int puts (const char *s);

int ungetc(int c, FILE *stream);

size_t fread(void *ptr, size_t size, size_t nmemb,

FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb,

FILE *stream);

int fgetpos(FILE *stream, fpos_t *pos);

int fseek(FILE *stream, long int offset, int whence);

int fsetpos (FILE *stream, const fpos_t *pos);

long int ftell(FILE *stream);

void rewind(FILE *stream);

void clearerr(FILE *stream);

int feof(FILE *stream);

int ferror(FILE *stream);

void perror(const char *s);

C.10 AMERICAN NATIONAL STANDARD X3.159-1989 C.10

Appendixes 194

C.ll General Utilities <stdlib. h>

Library Summary

EXIT_FAILURE

EXIT_SUCCESS

MB_CUR_MAX

NULL

RAND_MAX

div_t

ldiv_t

size_t

wchar_t

double atof(const char *nptr);

int atoi(const char *nptr);

long int atol (const char *nptr);

double strtod(const char *nptr, char **endptr);

long int strtol(const char *nptr, char **endptr, int base);

unsigned long int strtoul(const char *nptr, char **endptr,

int base);

int rand(void);

void srand(unsigned int seed);

void *calloc(size_t nmemb, size_t size);

void free(void *ptr);

void *malloc(size_t size);

void *realloc(void *ptr, size_t size);

void abort(void);

int atexit(void (*func)(void));

void exit(int status);

char *getenv(const char *name);

int system(const char *string);

void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

int abs(int j);

div_t div(int numer, int denom);

long int labs(long int j);

ldiv_t ldiv(long int numer, long int denom);

int mblen(const char *s, size_t n);

int mbtowc(wchar_t *pwc, const char *s, size_t n);

int wctomb(char *s, wchar_t wchar);

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

C.10 AMERICAN NATIONAL STANDARD X3.159-1989 C.ll

Appendixes 195 Library Summary

C.12 String Handling <string.h>

NULL

size_t

void *memcpy(void *sl, const void *s2, size_t n);

void *memmove(void *sl, const void *s2, size_t n);

char *strcpy(char *sl, const char *s2);

char *strncpy(char *sl, const char *s2, size_t n);

char *strcat(char *sl, const char *s2);

char *strncat(char *sl, const char *s2, size_t n);

int memcmp(const void *sl, const void *s2, size_t n);

int strcmp(const char *sl, const char *s2) ;

int strcoll(const char *sl, const char *s2);

int strncmp(const char *sl, const char *s2, size_t n);

size_t strxfrm(char *sl, const char *s2, size_t n);

void *memchr(const void *s, int c, size_t n);

char *strchr (const char *s, int c);

size_t strcspn(const char *sl, const char *s2);

char *strpbrk (const char *sl, const char *s2) ;

char *strrchr(const char *s, int c) ;

size t strspn (const char *sl, const char *s2);

char *strstr(const char *sl, const char *s2);

char *strtok(char *sl, const char *s2);

void *memset(void *s, int c, size_t n);
char *strerror(int errnum);

size_t strlen(const char *s);

C.13 Date and Time ctime . h>

CLOCKS_PER_SEC

NULL

clock_t

t ime_t

size_t

struct tm

clock_t clock(void);

double difftime(time_t timel, time_t timeO);

time_t mktime(struct tm *timeptr);

time_t time(time_t * time r);

char *asctime(const struct tm *timeptr);

char *ctime(const time_t *timer);

struct tm *gmtime(const time_t *timer);

struct tm *localtime(const time_t *timer);

size_t strftime(char *s, size_t maxsize,

const char *format, const struct tm *timeptr);

C.l 1 AMERICAN NATIONAL STANDARD X3.159-1989 C.13

Appendixes 196 Implementation Limits

D. Implementation Limits

The contents of a header <limits.h> are given below, in alphabetic order. The minimum

magnitudes shown shall be replaced by implementation-defined magnitudes with the same sign. The

values shall all be constant expressions suitable for use in #if preprocessing directives. The

components are described further in 2.2.4.2.I.

#define CHAE_BIT 8

#define CHAR_MAX UCHAR_MAX or SCHAR_MAX

#define CHAR_MIN 0 or SCHAR_MIN

#define INT_MAX +32767

#define INT_MIN -32767

#define LONG_MAX +2147483647

#define LONG_MIN -2147483647

#define MB_LEN_MAX 1

#define SCHAR_MAX + 127

#define SCHAR_MIN -127

#define SHRT_MAX +32767

#define SHRT_MIN -32767

#define UCHAR_MAX 255

#define UINT_MAX 65535

#define ULONG_MAX 4294967295

#define USHRT MAX 65535

The contents of a header <float.h> are given below. The value of FLT_RADIX shall be a

constant expression suitable for use in #if preprocessing directives. Values that need not be constant

expressions shall be supplied for all other components. The components are described further in

2.2.4.2.2.

#define FLT_ROUNDS

The values given in the following list shall be replaced by implementation-defined expressions that

shall be equal or greater in magnitude (absolute value) to those shown, with the same sign:

#define DBL_DIG 10

#define DBL_MANT_DIG

#define DBL_MAX_10_EXP +37

#define DBL_MAX_EXP

#define DBL_MIN_10_EXP -37

#define DBL_MIN_EXP

#define FLT_DIG 6

#define FLT_MANT_DIG

#define FLT_MAX_10_EXP +37

#define FLT_MAX_EXP

#define FLT_MIN_10_EXP -37

#define FLT_MIN_EXP

#define FLT_RADIX 2

#define LDBL_DIG 10

#define LDBL_MANT_DIG

#define LDBL_MAX_10_EXP +37

#define LDBL_MAX_EXP

#define LDBL_MIN_10_EXP -37

#define LDBL MIN EXP

The values given in the following list shall be replaced by implementation-defined expressions that

shall be equal to or greater than those shown:

D. AMERICAN NATIONAL STANDARD X3.159-1989 D.

Appendixes 197 Implementation Limits

#define DBL_MAX 1E+37

#define FLT_MAX 1E+37

#define LDBL_MAX 1E+37

The values given in the following list shall be replaced by implementation-defined expressions that

shall be equal to or less than those shown:

#define DBL_EPSILON IE-9

#define DBL_MIN IE-37

#define FLT_EPSILON IE-5

#define FLT_MIN IE-37

#define LDBL_EPSILON IE-9

#define LDBL MIN IE-37

D AMERICAN NATIONAL STANDARD X3.159-1989 D.

Appendixes 198 Common Warnings

E. Common Warnings

An implementation may generate warnings in many situations, none of which is specified as part of

the standard. The following are a few of the more common situations.

• A block with initialization of an object that has automatic storage duration is jumped into (3.1.2.4).

• An integer character constant includes more than one character or a wide character constant includes

more than one multibyte character (3.1.3.4).

• The characters /* are found in a comment (3.1.7).

• An implicit narrowing conversion is encountered, such as the assignment of a long int or a

double to an int, or a pointer to void to a pointer to any type other than a character type (3.2).

• An “unordered” binary operator (not comma. && or | [) contains a side-effect to an lvalue in one

operand, and a side-effect to, or an access to the value of, the identical lvalue in the other operand

(3.3).

• A function is called but no prototype has been supplied (3.3.2.2).

• The arguments in a function call do not agree in number and type with those of the parameters in a

function definition that is not a prototype (3.3.2.2).

• An object is defined but not used (3.5).

• A value is given to an object of an enumeration type other than by assignment of an enumeration

constant that is a member of that type, or an enumeration variable that has the same type, or the

value of a function that returns the same enumeration type (3.5.2.2).

• An aggregate has a partly bracketed initialization (3.5.7).

• A statement cannot be reached (3.6).

• A statement with no apparent effect is encountered (3.6).

• A constant expression is used as the controlling expression of a selection statement (3.6.4).

• A function has return statements with and without expressions (3.6.6.4).

• An incorrectly formed preprocessing group is encountered while skipping a preprocessing group

(3.8.1).

• An unrecognized #pragma directive is encountered (3.8.6).

E. AMERICAN NATIONAL STANDARD X3.159-1989 E.

Appendixes 199 Portability Issues

F. Portability Issues

This appendix collects some information about portability that appears in the standard.

F.l Unspecified Behavior

The following are unspecified:

• The manner and timing of static initialization (2.1.2).

• The behavior if a printable character is written when the active position is at the final position of a

line (2.2.2).

• The behavior if a backspace character is written when the active position is at the initial position of

a line (2.2.2).

• The behavior if a horizontal tab character is written when the active position is at or past the last

defined horizontal tabulation position (2.2.2).

• The behavior if a vertical tab character is written when the active position is at or past the last

defined vertical tabulation position (2.2.2).

• The representations of floating types (3.1.2.5).

• The order in which expressions are evaluated — in any order conforming to the precedence rules,

even in the presence of parentheses (3.3).

• The order in which side effects take place (3.3).

• The order in which the function designator and the arguments in a function call are evaluated

(3.3.2.2) .

• The alignment of the addressable storage unit allocated to hold a bit-field (3.5.2.1).

• The layout of storage for parameters (3.7.1).

• The order in which # and ## operations are evaluated during macro substitution (3.8.3.3).

• Whether errno is a macro or an external identifier (4.1.3).

• Whether set jmp is a macro or an external identifier (4.6.1.1).

• Whether va_end is a macro or an external identifier (4.8.1.3).

• The value of the file position indicator after a successful call to the ungetc function for a text

stream, until all pushed-back characters are read or discarded (4.9.7.11).

• The details of the value stored by the fgetpos function on success (4.9.9.1).

• The details of the value returned by the ftell function for a text stream on success (4.9.9.4).

• The order and contiguity of storage allocated by the calloc, malloc, and realloc functions

(4.10.3).

• Which of two elements that compare as equal is returned by the bsearch function (4.10.5.1).

• The order in an array sorted by the qsort function of two elements that compare as equal

(4.10.5.2) .

• The encoding of the calendar time returned by the time function (4.12.2.3).

F. AMERICAN NATIONAL STANDARD X3.159-1989 F.l

Appendixes

F.2 Undefined Behavior

200 Portability Issues

The behavior in the following circumstances is undefined:

• A nonempty source file does not end in a new-line character, ends in new-line character

immediately preceded by a backslash character, or ends in a partial preprocessing token or comment

(2.1.1.2).

• A character not in the required character set is encountered in a source file, except in a

preprocessing token that is never converted to a token, a character constant, a string literal, a header

name, or a comment (2.2.1).

• A comment, string literal, character constant, or header name contains an invalid multibyte character

or does not begin and end in the initial shift state (2.2.1.2).

• An unmatched ' or " character is encountered on a logical source line during tokenization (3.1).

• The same identifier is used more than once as a label in the same function (3.1.2.1).

• An identifier is used that is not visible in the current scope (3.1.2.1).

• Identifiers that are intended to denote the same entity differ in a character beyond the minimal

significant characters (3.1.2).

• The same identifier has both internal and external linkage in the same translation unit (3.1.2.2).

• The value stored in a pointer that referred to an object with automatic storage duration is used

(3.1.2.4).

• Two declarations of the same object or function specify types that are not compatible (3.1.2.6).

• An unspecified escape sequence is encountered in a character constant or a string literal (3.1.3.4).

• An attempt is made to modify a string literal of either form (3.1.4).

• A character string literal token is adjacent to a wide string literal token (3.1.4).

• The characters ', or /* are encountered between the < and > delimiters or the characters ',

\, or /* are encountered between the " delimiters in the two forms of a header name preprocessing

token (3.1.7).

• An arithmetic conversion produces a result that cannot be represented in the space provided (3.2.1).

• An lvalue with an incomplete type is used in a context that requires the value of the designated

object (3.2.2.1).

• The value of a void expression is used or an implicit conversion (except to void) is applied to a

void expression (3.2.2.2).

• An object is modified more than once, or is modified and accessed other than to determine the new

value, between two sequence points (3.3).

• An arithmetic operation is invalid (such as division or modulus by 0) or produces a result that

cannot be represented in the space provided (such as overflow or underflow) (3.3).

• An object has its stored value accessed by an lvalue that does not have one of the following types:

the declared type of the object, a qualified version of the declared type of the object, the signed or

unsigned type corresponding to the declared type of the object, the signed or unsigned type

corresponding to a qualified version of the declared type of the object, an aggregate or union type

that (recursively) includes one of the aforementioned types among its members, or a character type

(3.3).

• An argument to a function is a void expression (3.3.2.2).

• For a function call without a function prototype, the number of arguments does not agree with the

number of parameters (3.3.2.2).

F.2 AMERICAN NATIONAL STANDARD X3.159-1989 F.2

Appendixes 201 Portability Issues

• For a function call without a function prototype, if the function is defined without a function

prototype, and the types of the arguments after promotion do not agree with those of the parameters

after promotion (3.3.2.2).

• If a function is called with a function prototype and the function is not defined with a compatible

type (3.3.2.2).

• A function that accepts a variable number of arguments is called without a function prototype that

ends with an ellipsis (3.3.2.2).

• An invalid array reference, null pointer reference, or reference to an object declared with automatic

storage duration in a terminated block occurs (3.3.3.2).

• A pointer to a function is converted to point to a function of a different type and used to call a

function of a type not compatible with the original type (3.3.4).

• A pointer to a function is converted to a pointer to an object or a pointer to an object is converted

to a pointer to a function (3.3.4).

• A pointer is converted to other than an integral or pointer type (3.3.4).

• A pointer that does not behave like a pointer to an element of an array object is added to or

subtracted from (3.3.6).

• Pointers that do not behave as if they point to the same array object are subtracted (3.3.6).

• An expression is shifted by a negative number or by an amount greater than or equal to the width in

bits of the expression being shifted (3.3.7).

• Pointers are compared using a relational operator that do not point to the same aggregate or union

(3.3.8).

• An object is assigned to an overlapping object (3.3.16.1).

• An identifier for an object is declared with no linkage and the type of the object is incomplete after

its declarator, or after its init-declarator if it has an initializer (3.5).

• A function is declared at block scope with a storage-class specifier other than extern (3.5.1).

• A structure or union is defined as containing only unnamed members (3.5.2.1).

• A bit-field is declared with a type other than int. signed int, or unsigned int (3.5.2.1).

• An attempt is made to modify an object with const-qualified type by means of an lvalue with non-

const-qualified type (3.5.3).

• An attempt is made to refer to an object with volatile-qualified type by means of an lvalue with

non-volatile-qualified type (3.5.3).

• The value of an uninitialized object that has automatic storage duration is used before a value is

assigned (3.5.7).

• An object with aggregate or union type with static storage duration has a non-brace-enclosed

initializer, or an object with aggregate or union type with automatic storage duration has either a

single expression initializer with a type other than that of the object or a non-brace-enclosed

initializer (3.5.7).

• The value of a function is used, but no value was returned (3.6.6.4).

• An identifier with external linkage is used but there does not exist exactly one external definition in

the program for the identifier (3.7).

• A function that accepts a variable number of arguments is defined without a parameter type list that

ends with the ellipsis notation (3.7.1).

F.2 AMERICAN NATIONAL STANDARD X3.159-1989 F.2

Appendixes 202 Portability Issues

• An identifier for an object with internal linkage and an incomplete type is declared with a tentative

definition (3.7.2).

• The token defined is generated during the expansion of a #if or #elif preprocessing directive

(3.8.1) .

• The #include preprocessing directive that results after expansion does not match one of the two

header name forms (3.8.2).

• A macro argument consists of no preprocessing tokens (3.8.3).

• There are sequences of preprocessing tokens within the list of macro arguments that would

otherwise act as preprocessing directive lines (3.8.3).

• The result of the preprocessing operator # is not a valid character string literal (3.8.3.2).

• The result of the preprocessing concatenation operator ## is not a valid preprocessing token

(3.8.3.3).

• The #line preprocessing directive that results after expansion does not match one of the two

well-defined forms (3.8.4).

• One of the following identifiers is the subject of a #define or #undef preprocessing directive:

defined._LINE_,_FILE_,_DATE_,_TIME_, or_STDC_(3.8.8).

• An attempt is made to copy an object to an overlapping object by use of a library function other

than memmove (section 4).

• The effect if the program redefines a reserved external identifier (4.1.2).

• The effect if a standard header is included within an external definition; is included for the first time

after the first reference to any of the functions or objects it declares, or to any of the types or

macros it defines; or is included while a macro is defined with a name the same as a keyword

(4.1.2) .

• A macro definition of errno is suppressed to obtain access to an actual object (4.1.3).

• The parameter member-designator of an offsetof macro is an invalid right operand of the

operator for the type parameter or designates bit-field member of a structure (4.1.5).

• A library function argument has an invalid value, unless the behavior is specified explicitly (4.1.6).

• A library function that accepts a variable number of arguments is not declared (4.1.6).

• The macro definition of assert is suppressed to obtain access to an actual function (4.2).

• The argument to a character handling function is out of the domain (4.3).

• A macro definition of set jmp is suppressed to obtain access to an actual function (4.6).

• An invocation of the set jmp macro occurs in a context other than as the controlling expression in

a selection or iteration statement, or in a comparison with an integral constant expression (possibly

as implied by the unary ! operator) as the controlling expression of a selection or iteration

statement, or as an expression statement (possibly cast to void) (4.6.1.1).

• An object of automatic storage class that does not have volatile-qualified type has been changed

between a set jmp invocation and a long jmp call and then has its value accessed (4.6.2.1).

• The long jmp function is invoked from a nested signal routine (4.6.2.1).

• A signal occurs other than as the result of calling the abort or raise function, and the signal

handler calls any function in the standard library other than the signal function itself or refers to

any object with static storage duration other than by assigning a value to a static storage duration

variable of type volatile sig_atomic_t (4.7.l.l).

F.2 AMERICAN NATIONAL STANDARD X3.159-1989 F.2

Appendixes 203 Portability Issues

• The value of errno is referred to after a signal occurs other than as the result of calling the

abort or raise function and the corresponding signal handler calls the signal function such

that it returns the value SIG_ERR (4.7.1.1).

• The macro va_arg is invoked with the parameter ap that was passed to a function that invoked

the macro va_arg with the same parameter (4.8).

• A macro definition of va_start, va_arg. or va_end or a combination thereof is suppressed to

obtain access to an actual function (4.8.1).

• The parameter parmN of a va_start macro is declared with the register storage class, or

with a function or array type, or with a type that is not compatible with the type that results after

application of the default argument promotions (4.8.1.1).

• There is no actual next argument for a va_arg macro invocation (4.8.1.2).

• The type of the actual next argument in a variable argument list disagrees with the type specified by

the va_arg macro (4.8.1.2).

• The va_end macro is invoked without a corresponding invocation of the va_start macro

(4.8.1.3) .

• A return occurs from a function with a variable argument list initialized by the va_start macro

before the va_end macro is invoked (4.8.1.3).

• The stream for the fflush function points to an input stream or to an update stream in which the

most recent operation was input (4.9.5.2).

• An output operation on an update stream is followed by an input operation without an intervening

call to the fflush function or a file positioning function, or an input operation on an update

stream is followed by an output operation without an intervening call to a file positioning function

(4.9.5.3) .

• The format for the fprintf or fscanf function does not match the argument list (4.9.6).

• An invalid conversion specification is found in the format for the fprintf or fscanf function

(4.9.6).

• A %% conversion specification for the fprintf or fscanf function contains characters between

the pair of % characters (4.9.6).

• A conversion specification for the fprintf function contains an h or 1 with a conversion specifier

other than d. i. n, o. u, x, or X, or an L with a conversion specifier other than e. E. f. g, or G

(4.9.6.1).

• A conversion specification for the fprintf function contains a # flag with a conversion specifier

other than o. x. X, e. E, f. g, or G (4.9.6.1).

• A conversion specification for the fprintf function contains a 0 flag with a conversion specifier

other than d, i. o. u, x, X. e. E. f, g, or G (4.9.6.1).

• An aggregate or union, or a pointer to an aggregate or union is an argument to the fprintf

function, except for the conversion specifiers %s (for an array of character type) or %p (for a pointer

to void) (4.9.6.1).

• A single conversion by the fprintf function produces more than 509 characters of output

(4.9.6.1).

• A conversion specification for the fscanf function contains an h or 1 with a conversion specifier

other than d. i, n. o, u, or x, or an L with a conversion specifier other than e. f. or g (4.9.6.2).

• A pointer value printed by %p conversion by the fprintf function during a previous program

execution is the argument for %p conversion by the fscanf function (4.9.6.2).

F.2 AMERICAN NATIONAL STANDARD X3.159-1989 F.2

Appendixes 204 Portability Issues

• The result of a conversion by the fscanf function cannot be represented in the space provided, or

the receiving object does not have an appropriate type (4.9.6.2).

• The result of converting a string to a number by the atof, atoi, or atol function cannot be

represented (4.10.1).

• The value of a pointer that refers to space deallocated by a call to the free or realloc function

is referred to (4.10.3).

• The pointer argument to the free or realloc function does not match a pointer earlier returned

by calloc, malloc, or realloc, or the object pointed to has been deallocated by a call to

free or realloc (4.10.3).

• A program executes more than one call to the exit function (4.10.4.3).

• The result of an integer arithmetic function (abs, div, labs, or Idiv) cannot be represented

(4.10.6).

• The shift states for the mblen, mbtowe, and wetomb functions are not explicitly reset to the

initial state when the LC_CTYPE category of the current locale is changed (4.10.7).

• An array written to by a copying or concatenation function is too small (4.11.2, 4.11.3).

• An invalid conversion specification is found in the format for the strftime function (4.12.3.5).

F.3 Implementation-Defined Behavior

Each implementation shall document its behavior in each of the areas listed in this section. The

following are implementation-defined:

F.3.1 Translation

• How a diagnostic is identified (2.1.1.3).

F.3.2 Environment

• The semantics of the arguments to main (2.1.2.2.1).

• What constitutes an interactive device (2.1.2.3).

F.3.3 Identifiers

• The number of significant initial characters (beyond 31) in an identifier without external linkage

(3.1.2).

• The number of significant initial characters (beyond 6) in an identifier with external linkage (3.1.2).

• Whether case distinctions are significant in an identifier with external linkage (3.1.2).

F.3.4 Characters

• The members of the source and execution character sets, except as explicitly specified in the

standard (2.2.1).

• The shift states used for the encoding of multibyte characters (2.2.1.2).

• The number of bits in a character in the execution character set (2.2.4.2.1).

• The mapping of members of the source character set (in character constants and string literals) to

members of the execution character set (3.1.3.4).

• The value of an integer character constant that contains a character or escape sequence not

represented in the basic execution character set or the extended character set for a wide character

constant (3.1.3.4).

• The value of an integer character constant that contains more than one character or a wide character

constant that contains more than one multibyte character (3.1.3.4).

F.2 AMERICAN NATIONAL STANDARD X3.159-1989 F.3.4

Appendixes 205 Portability Issues

• The current locale used to convert multibyte characters into corresponding wide characters (codes)

for a wide character constant (3.1.3.4).

• Whether a “plain” char has the same range of values as signed char or unsigned char

(3.2.1.1).

F.3.5 Integers

• The representations and sets of values of the various types of integers (3.1.2.5).

• The result of converting an integer to a shorter signed integer, or the result of converting an

unsigned integer to a signed integer of equal length, if the value cannot be represented (3.2.1.2).

• The results of bitwise operations on signed integers (3.3).

• The sign of the remainder on integer division (3.3.5).

9 The result of a right shift of a negative-valued signed integral type (3.3.7).

F.3.6 Floating Point

9 The representations and sets of values of the various types of floating-point numbers (3.1.2.5).

9 The direction of truncation when an integral number is converted to a floating-point number that

cannot exactly represent the original value (3.2.1.3).

9 The direction of truncation or rounding when a floating-point number is converted to a narrower

floating-point number (3.2.1.4).

F.3.7 Arrays and Pointers

9 The type of integer required to hold the maximum size of an array — that is, the type of the

sizeof operator, size_t (3.3.3.4. 4.1.1).

9 The result of casting a pointer to an integer or vice versa (3.3.4).

9 The type of integer required to hold the difference between two pointers to elements of the same

array, ptrdiff_t (3.3.6, 4.1.1).

F.3.8 Registers

9 The extent to which objects can actually be placed in registers by use of the register storage-

class specifier (3.5.1).

F.3.9 Structures, Unions, Enumerations, and Bit-Fields

• A member of a union object is accessed using a member of a different type (3.3.2.3).

9 The padding and alignment of members of structures (3.5.2.1). This should present no problem

unless binary data written by one implementation are read by another.

9 Whether a “plain” int bit-field is treated as a signed int bit-field or as an unsigned int

bit-field (3.5.2.1).

9 The order of allocation of bit-fields within a unit (3.5.2.1).

9 Whether a bit-field can straddle a storage-unit boundary (3.5.2.1).

9 The integer type chosen to represent the values of an enumeration type (3.5.2.2).

F.3.4 AMERICAN NATIONAL STANDARD X3.159-1989 F.3.9

Appendixes 206 Portability Issues

F.3.10 Qualifiers

• What constitutes an access to an object that has volatile-qualified type (3.5.5.3).

F.3.11 Declarators

• The maximum number of declarators that may modify an arithmetic, structure, or union type (3.5.4).

1,3.12 Statements

• The maximum number of case values in a switch statement (3.6.4.2).

F.3.13 Preprocessing Directives

• Whether the value of a single-character character constant in a constant expression that controls

conditional inclusion matches the value of the same character constant in the execution character

set. Whether such a character constant may have a negative value (3.8.1).

• The method for locating includable source files (3.8.2).

• The support of quoted names for includable source files (3.8.2).

• The mapping of source file character sequences (3.8.2).

• The behavior on each recognized #pragma directive (3.8.6).

• The definitions for __DATE_and_TIME_when respectively, the date and time of translation

are not available (3.8.8).

F.3.14 Library Functions

• The null pointer constant to which the macro NULL expands (4.1.5).

• The diagnostic printed by and the termination behavior of the assert function (4.2).

• The sets of characters tested for by the isalnum. isalpha. iscntrl, islower, isprint,

and isupper functions (4.3.1).

• The values returned by the mathematics functions on domain errors (4.5.1).

• Whether the mathematics functions set the integer expression errno to the value of the macro

ERANGE on underflow range errors (4.5.1).

• Whether a domain error occurs or zero is returned when the fmod function has a second argument

of zero (4.5.6.4).

• The set of signals for the signal function (4.7.1.1).

• The semantics for each signal recognized by the signal function (4.7.1.1).

• The default handling and the handling at program startup for each signal recognized by the signal

function (4.7.1.1).

• If the equivalent of signal (sig, SIG_DFL) ; is not executed prior to the call of a signal

handler, the blocking of the signal that is performed (4.7.1.1).

• Whether the default handling is reset if the SIGILL signal is received by a handler specified to the

signal function (4.7.1.1).

• Whether the last line of a text stream requires a terminating new-line character (4.9.2).

• Whether space characters that are written out to a text stream immediately before a new-line

character appear when read in (4.9.2).

• The number of null characters that may be appended to data written to a binary stream (4.9.2).

• Whether the file position indicator of an append mode stream is initially positioned at the beginning

or end of the file (4.9.3).

F.3.10 AMERICAN NATIONAL STANDARD X3.159-1989 F.3.14

Appendixes 207 Portability Issues

• Whether a write on a text stream causes the associated file to be truncated beyond that point (4.9.3).

• The characteristics of file buffering (4.9.3).

• Whether a zero-length file actually exists (4.9.3).

• The rules for composing valid file names (4.9.3).

• Whether the same file can be open multiple times (4.9.3).

• The effect of the remove function on an open file (4.9.4.1).

• The effect if a file with the new name exists prior to a call to the rename function (4.9.4.2).

• The output for %p conversion in the fprintf function (4.9.6.1).

• The input for %p conversion in the fscanf function (4.9.6.2).

• The interpretation of a - character that is neither the first nor the last character in the scanlist for

% [conversion in the fscanf function (4.9.6.2).

• The value to which the macro errno is set by the fgetpos or ftell function on failure

(4.9.9.1, 4.9.9.4).

• The messages generated by the perror function (4.9.10.4).

• The behavior of the calloc, malloc, or realloc function if the size requested is zero (4.10.3).

• The behavior of the abort function with regard to open and temporary files (4.10.4.1).

• The status returned by the exit function if the value of the argument is other than zero,

EXIT_SUCCESS, or EXIT_FAILURE (4.10.4.3).

• The set of environment names and the method for altering the environment list used by the

getenv function (4.10.4.4).

• The contents and mode of execution of the string by the system function (4.10.4.5).

• The contents of the error message strings returned by the strerror function (4.11.6.2).

• The local time zone and Daylight Saving Time (4.12.1).

• The era for the clock function (4.12.2.1).

F.4 Locale-Specific Behavior

The following characteristics of a hosted environment are locale-specific:

• The content of the execution character set, in addition to the required members (2.2.1).

• The direction of printing (2.2.2).

• The decimal-point character (4.1.1).

• The implementation-defined aspects of character testing and case mapping functions (4.3).

• The collation sequence of the execution character set (4.11.4.4).

• The formats for time and date (4.12.3.5).

F.3.14 AMERICAN NATIONAL STANDARD X3.159-1989 F.4

Appendixes 208 Portability Issues

F.5 Common Extensions

The following extensions are widely used in many systems, but are not portable to all

implementations. The inclusion of any extension that may cause a strictly conforming program to

become invalid renders an implementation nonconforming. Examples of such extensions are new

keywords, or library functions declared in standard headers or predefined macros with names that do

not begin with an underscore.

F.5.1 Environment Arguments

In a hosted environment, the main function receives a third argument, char *envp [], that points

to a null-terminated array of pointers to char, each of which points to a string that provides

information about the environment for this execution of the process (2.1.2.2.1).

E. 5.2 Specialized Identifiers

Characters other than the underscore _, letters, and digits, that are not defined in the required source

character set (such as the dollar sign $, or characters in national character sets) may appear in an

identifier (3.1.2).

F. 5.3 Lengths and Cases of Identifiers

All characters in identifiers (with or without external linkage) are significant and case distinctions

are observed (3.1.2).

F.5.4 Scopes of Identifiers

A function identifier, or the identifier of an object the declaration of which contains the keyword

extern, has tile scope (3.1.2.1).

F.5.5 Writable String Literals

String literals are modifiable. Identical string literals shall be distinct (3.1.4).

F.5.6 Other Arithmetic Types

Other arithmetic types, such as long long int, and their appropriate conversions are defined

(3.2.2.1).

F.5.7 Function Pointer Casts

A pointer to an object or to void may be cast to a pointer to a function, allowing data to be

invoked as a function (3.3.4). A pointer to a function may be cast to a pointer to an object or to void,

allowing a function to be inspected or modified (for example, by a debugger) (3.3.4).

F.5.8 Non-int Bit-Field Types

Types other than int. unsigned int, or signed int can be declared as bit-fields, with

appropriate maximum widths (3.5.2.1).

F.5.9 The fortran Keyword

The fortran declaration specifier may be used in a function declaration to indicate that calls

suitable for FORTRAN should be generated, or that different representations for external names are to be

generated (3.5.4.3).

F.5 AMERICAN NATIONAL STANDARD X3.159-1989 F.5.9

Appendixes 209 Portability Issues

F.5.10 The asm Keyword

The asm keyword may be used to insert assembly language code directly into the translator output.

The most common implementation is via a statement of the form

asm (character-string-literal) ;

(3.6).

F.5.11 Multiple External Definitions

There may be more than one external definition for the identifier of an object, with or without the

explicit use of the keyword extern. If the definitions disagree, or more than one is initialized, the

behavior is undefined (3.7.2).

F.5.12 Empty Macro Arguments

A macro argument may consist of no preprocessing tokens (3.8.3).

F.5.13 Predefined Macro Names

Macro names that do not begin with an underscore, describing the translation and execution

environments, may be defined by the implementation before translation begins (3.8.8).

F.5.14 Extra Arguments for Signal Handlers

Handlers for specific signals may be called with extra arguments in addition to the signal number

(4.7.1.1).

F.5.15 Additional Stream Types and File-Opening Modes

Additional mappings from files to streams may be supported (4.9.2), and additional file-opening

modes may be specified by characters appended to the mode argument of the fopen function

(4.9.5.3).

F.5.16 Defined File Position Indicator

The file position indicator is decremented by each successful call to the ungetc function for a text

stream, except if its value was zero before a call (4.9.7.11).

F.5.10 AMERICAN NATIONAL STANDARD X3.159-1989 F.5.16

C Standard 210 Index

Index
Only major references are listed.

! logical negation operator. 3.3.3.3

! = inequality operator, 3.3.9

* operator, 3.1.5, 3.8.3.1

* punctuator, 3.1.6, 3.8

operator, 3.1.5, 3.8.3.3

% remainder operator, 3.3.5

%= remainder assignment operator, 3.3.16.2

& address operator, 3.3.3.2

& bitwise AND operator, 3.3.10

&& logical AND operator, 3.3.13

&= bitwise AND assignment operator, 3.3.16.2

() cast operator, 3.3.4

() function-call operator, 3.3.2.2

() parentheses punctuator, 3.1.6, 3.5.4.3

* indirection operator, 3.3.3.2

* multiplication operator, 3.3.5

* asterisk punctuator. 3.1.6. 3.5.4.1

*= multiplication assignment operator, 3.3.16.2

+ addition operator, 3.3.6

+ unary plus operator, 3.3.3.3

++ postfix increment operator, 3.3.2.4

++ prefix increment operator, 3.3.3.1

+= addition assignment operator, 3.3.16.2

, comma operator, 3.3.17

, ... ellipsis, unspecified parameters, 3.5.4.3

- subtraction operator. 3.3.6

- unary minus operator, 3.3.3.3

— postfix decrement operator. 3.3.2.4

— prefix decrement operator, 3.3.3.1

-= subtraction assignment operator, 3.3.16.2

-> structure/union pointer operator, 3.3.2.3

. structure/union member operator, 3.3.2.3

. . . ellipsis punctuator, 3.1.6, 3.5.4.3

/ division operator, 3.3.5

/* */ comment delimiters, 3.1.7

/= division assignment operator, 3.3.16.2

: colon punctuator, 3.1.6, 3.5.2.1

; semicolon punctuator, 3.1.6, 3.5, 3.6.3

< less-than operator, 3.3.8
« left-shift operator, 3.3.7
«= left-shift assignment operator, 3.3.16.2
<= less-than-or-equal-to operator, 3.3.8

= equal-sign punctuator. 3.1.6, 3.5, 3.5.7

= simple assignment operator, 3.3.16.1
= = equal-to operator, 3.3.9

> greater-than operator, 3.3.8

>= greater-than-or-equal-to operator, 3.3.8

» right-shift operator, 3.3.7

»= right-shift assignment operator, 3.3.16.2

? : conditional operator, 3.3.15

??! trigraph sequence, |, 2.2.1.1

??' trigraph sequence, A, 2.2.1.1

?? (trigraph sequence, [, 2.2.1.1

??) trigraph sequence.], 2.2.1.1

??- trigraph sequence, ~, 2.2.1.1

??/ trigraph sequence, \, 2.2.1.1

??< trigraph sequence, {, 2.2.1.1

??= trigraph sequence, #, 2.2.1.1

??> trigraph sequence, }, 2.2.1.1

[] array subscript operator, 3.3.2.1

[] brackets punctuator. 3.1.6, 3.3.2.1, 3.5.4.2

\ backslash character, 2.2.1

\" double-quote-character escape sequence, 3.1.3.4
V single-quote-character escape sequence, 3.1.3.4
\? question-mark escape sequence, 3.1.3.4
\\ backslash-character escape sequence, 3.1.3.4
\0 null character, 2.2.1, 3.1.3.4, 3.1.4

\a alert escape sequence, 2.2.2, 3.1.3.4

\b backspace escape sequence. 2.2.2, 3.1.3.4

\f form-feed escape sequence, 2.2.2, 3.1.3.4

\n new-line escape sequence, 2.2.2, 3.1.3.4

\octal digits octal-character escape sequence,

3.1.3.4
\r carriage-return escape sequence, 2.2.2. 3.1.3.4

\t horizontal-tab escape sequence, 2.2.2, 3.1.3.4

\v vertical-tab escape sequence. 2.2.2, 3.1.3.4

\xhexadecimal digits hexadecimal-character escape

sequence, 3.1.3.4

A exclusive OR operator, 3.3.11
A= exclusive OR assignment operator, 3.3.16.2

{ } braces punctuator, 3.1.6, 3.5.7, 3.6.2

AMERICAN NATIONAL STANDARD X3.159-1989

C Standard 211 Index

| inclusive OR operator, 3.3.12

|= inclusive OR assignment operator, 3.3.16.2

| | logical OR operator, 3.3.14

~ bitwise complement operator, 3.3.3.3

_DATE_macro, 3.8.8

_FILE_macro, 3.8.8, 4.2.1

_LINE_macro, 3.8.8. 4.2.1

_STDC_macro, 3.8.8

_TIME_macro, 3.8.8

_IOFBF macro, 4.9.1, 4.9.S.6

_IOLBF macro, 4.9.1, 4.9.5.6

_IONBF macro, 4.9.1, 4.9.S.6

abort function, 4.2.1.1, 4.10.4.1

abs function, 4.10.6.1

absolute-value functions, 4.5.6.2, 4.10.6.1, 4.10.6.3

abstract declarator, type name, 3.5.5

abstract machine, 2.1.2.3

abstract semantics, 2.1.2.3

acos function, 4.5.2.1

active position, 2.2.2

addition assignment operator, +=, 3.3.16.2

addition operator, +. 3.3.6

additive expressions, 3.3.6

address operator, &, 3.3.3.2

aggregate type, 3.1.2.5

alert escape sequence, \a, 2.2.2, 3.1.3.4

alignment, definition of, 1.6

alignment of structure members, 3.5.2.1

AND operator, bitwise, &, 3.3.10

AND operator, logical, &&. 3.3.13

argc parameter, main function, 2.1.2.2.1

argument, function, 3.3.2.2

argument, 1.6

argument promotion, default, 3.3.2.2

argv parameter, main function, 2.1.2.2.1

arithmetic conversions, usual, 3.2.1.5

arithmetic operators, unary, 3.3.3.3

arithmetic type, 3.1.2.5

array declarator, 3.5.4.2

array parameter, 3.7.1

array subscript operator, [], 3.3.2.1

array type, 3.1.2.5

array type conversion, 3.2.2.1

arrow operator, ->, 3.3.2.3

ASCII character set, 2.2.1.1

asctime function, 4.12.3.1

asin function, 4.5.2.2

assert macro, 4.2.1.1

assert .h header, 4.2

assignment operators, 3.3.16

asterisk punctuator, *, 3.1.6. 3.5.4.1

atan function, 4.5.2.3

atan2 function, 4.5.2.4

atexit function, 4.10.4.2

atof function, 4.10.1.1

atoi function, 4.10.1.2

atol function, 4.10.1.3

auto storage-class specifier. 3.5.1

automatic storage, reentrancy, 2.1.2.3. 2.2.3

automatic storage duration, 3.1.2.4

backslash character, \, 2.1.1.2, 2.2.1

backspace escape sequence, \b, 2.2.2, 3.1.3.4

base documents, 1.5

basic character set, 1.6, 2.2.1

basic type. 3.1.2.5

binary stream, 4.9.2

bit, definition of, 1.6

bit. high-order, 1.6

bit, low-order, 1.6

bit-field structure member, 3.5.2.1

bitwise operators, 3.3, 3.3.7, 3.3.10, 3.3.1 1. 3.3.12

block. 3.6.2

block identifier scope, 3.1.2.1

bold type convention. Section 3.

braces punctuator, { }. 3.1.6, 3.5.7, 3.6.2

brackets punctuator, [], 3.1.6, 3.3.2.1, 3.5.4.2

break statement, 3.6.6, 3.6.6.3

broken-down-time type. 4.12.1

bsearch function, 4.10.5.1

BUFSIZ macro. 4.9.1, 4.9.2, 4.9.5.5

byte, definition of, 1.6

C program, 2.1.1.1

C Standard, definition of terms, 1.6

C Standard, organization of document, 1.4

C Standard, purpose of, 1.1

C Standard, references, 1.3

C Standard, scope, restrictions and limits, 1.2

calloc function, 4.10.3.1

carriage-return escape sequence, \r, 2.2.2, 3.1.3.4

case label. 3.6.1. 3.6.4.2

case mapping functions, 4.3.2

cast expressions, 3.3.4

cast operator, (), 3.3.4

ceil function, 4.5.6.1

char type, 3.1.2.5, 3.2.1.1, 3.5.2

CHAR_BIT macro, 2.2.4.2.1

CHAR_MAX macro, 2.2.4.2.1

CHAR_MIN macro, 2.2.4.2.1

character, 1.6

character case mapping functions, 4.3.2

character constant. 2.1.1.2, 2.2.1, 3.1.3.4

character display semantics, 2.2.2

character handling header, 4.3

character input/output functions, 4.9.7

character sets, 2.2.1

AMERICAN NATIONAL STANDARD X3.159-1989

C Standard 212 Index

character string literal, 2.1.1.2, 3.1.4
character testing functions, 4.3.1
character type, 3.1.2.5, 3.2.2.1, 3.5.7

character type conversion, 3.2.1.1
clearerr function, 4.9.10.1
clock function, 4.12.2.1
CLOCKS_PER_SEC macro, 4.12.1, 4.12.2.1

clock_t type, 4.12.1. 4.12.2.1

collating sequence, character set, 2.2.1

colon punctuator, :, 3.1.6, 3.5.2.1

comma operator, ,, 3.3.17
command processor, 4.10.4.5
comment delimiters. /* */, 3.1.9
comments, 2.1.1.2, 3.1, 3.1.9
common extensions, F.5

common initial sequence, 33.2.3
common warnings, Appendix E.

comparison functions, 4.11.4
compatible type, 3.1.2.6. 3.5.2, 3.5.3, 3.5.4

complement operator, ~, 3.3.3.3
compliance, 1.7
composite type, 3.1.2.6
compound assignment operators, 3.3.16.2
compound statement. 3.6.2

concatenation functions, 4.11.3
conceptual models, 2.1

conditional inclusion, 3.8.1
conditional operator, ? :, 3.3.15
conforming freestanding implementation, 1.7
conforming hosted implementation, 1.7
conforming implementation, 1.7
conforming program, 1.7
const-qualified type, 3.1.2.5, 3.2.2.1, 3.5.3

const type qualifier, 3.5.3
constant, character, 3.1.3.4
constant, enumeration, 3.1.2, 3.1.3.3
constant, floating, 3.1.3.1
constant, integer, 3.1.3.2
constant, primary expression, 3.3.1
constant expressions, 3.4
constants, 3.1.3
constraints, definition of, 1.6

content, structure/union/enumeration, 3.5.2.3

contiguity, memory allocation, 4.10.3
continue statement, 3.6.6, 3.6.6.2
control characters, 2.2.1, 4.3, 4.3.1.3

conversion, arithmetic operands, 3.2.1
conversion, array, 3.2.2.1
conversion, characters and integers, 3.2.1.1
conversion, explicit, 3.2

conversion, floating and integral, 3.2.1.3
conversion, floating types, 3.2.1.4, 3.2.1.5
conversion, function, 3.2.2.1
conversion, function arguments, 3.3.2.2, 3.7.1
conversion, implicit, 3.2

conversion, pointer, 3.2.2.1, 3.2.2.3
conversion, signed and unsigned integers, 3.2.1.2
conversion, void type, 3.2.2.2
conversions, 3.2
conversions, usual arithmetic, 3.2.1.5
copying functions, 4.11.2
cos function, 4.5.2.5
cosh function, 4.5.3.1
ctime function, 4.12.3.2
ctype . h header, 4.3

data streams, 4.9.2
date and time header, 4.12
DBL_ macros. 2.2.4.2.2
decimal constant, 3.1.3.2
decimal digits, 2.2.1

decimal-point character, 4.1.1
declaration specifiers, 3.5
declarations, 3.5
declarators, 3.5.4
declarator type derivation, 3.1.2.5. 3.5.4

decrement operator, postfix, —, 33.2.4
decrement operator, prefix, —, 3.3.3.1
default argument promotions, 33.2.2
default label, 3.6.1, 3.6.4.2
#define preprocessing directive. 3.8.3
defined preprocessing operator, 3.8.1
definition, 3.5
derived declarator types, 3.1.2.5
derived types, 3.1.2.5
device input/output, 2.1.2.3
diagnostics, 2.1.1.3
diagnostics, assert.h. 4.2
difftime function. 4.12.2.2
direct input/output functions, 4.9.8
display device, 2.2.2

div function, 4.10.6.2
div_t type, 4.10
division assignment operator, /=, 3.3.16.2
division operator, /. 3.3.5
do statement, 3.6.5, 3.6.5.2
documentation of implementation, 1.7
domain error, 4.5.1
dot operator, ., 3.3.2.3
double type, 3.1.2.5, 3.1.3.1, 3.5.2

double type conversion, 3.2.1.4, 3.2.1.5
double-precision arithmetic, 2.1.2.3

element type, 3.1.2.5
EDOM macro, 4.1.3, 4.5, 4.5.1

#elif preprocessing directive, 3.8.1
ellipsis, unspecified parameters, , 3.S.4.3
#else preprocessing directive, 3.8.1
else statement, 3.6.4. 3.6.4.1
end-of-file macro. EOF. 4.3, 4.9.1

AMERICAN NATIONAL STANDARD X3.159-1989

C Standard 213 Index

end-of-file indicator. 4.9.1, 4.9.7.1

end-of-line indicator, 2.2.1

#endif preprocessing directive, 3.8.1

enum type, 3.1.2.5, 3.5.2, 3.5.2.2

enumerated types, 3.1.2.5

enumeration constant, 3.1.2, 3.1.3.3

enumeration content, 3.5.2.3

enumeration members, 3.5.2.2

enumeration specifiers, 3.5.2.2

enumeration tag, 3.5.2.3

enumerator, 3.5.2.2

environment. Section 2.

environment functions, 4.10.4
environment list, 4.10.4.4
environmental considerations, 2.2

environmental limits, 2.2.4

EOF macro, 4.3, 4.9.1
equal-sign punctuator, =, 3.1.6, 3.5, 3.5.7

equal-to operator, ==, 3.3.9

equality expressions, 3.3.9

ERANGE macro. 4.1.3, 4.5, 4.5.1, 4.10, 4.10.1

errno macro, 4.1.3, 4.5.1,4.7.1.1. 4.9.10.4, 4.10.1

errno . h header, 4.1.3
error, domain, 4.5.1

error, range, 4.5.1
error conditions, 4.5.1
error handling functions, 4.9.10, 4.11.6.2

error indicator, 4.9.1, 4.9.7.1, 4.9.7.3

terror preprocessing directive, 3.8.5

escape sequences, 2.2.1, 2.2.2, 3.1.3.4
evaluation, 3.1.5, 3.3

exception, 3.3

exclusive OR assignment operator, A=, 3.3.16.2

exclusive OR operator, A, 3.3.11

executable program, 2.1.1.1

execution environment, character sets, 2.2.1

execution environment limits, 2.2.4.2

execution environments, 2.1.2

execution sequence. 2.1.2.3, 3.6

exit function, 2.1.2.2.3, 4.10.4.3
EXIT_FAILURE macro, 4.10, 4.10.4.3

EXIT_SUCCESS macro, 4.10, 4.10.4.3

explicit conversion, 3.2

exp function, 4.5.4.1
exponent part, floating constant, 3.1.3.1

exponential functions, 4.5.4
expression, 3.3

expression, full, 3.6

expression, primary, 3.3.1

expression, unary, 3.3.3

expression statement, 3.6.3

extended character set, 1.6, 2.2.1.2

extern storage-class specifier, 3.1.2.2, 3.5.1, 3.7

external definitions, 3.7

external identifiers, underscore, 4.1.2

external linkage, 3.1.2.2
external name, 3.1.2
external object definitions, 3.7.2

fabs function, 4.5.6.2
fclose function, 4.9.5.1
feof function, 4.9.10.2
terror function, 4.9.10.3
fflush function, 4.9.5.2
fgetc function, 4.9.7.1
fgetpos function, 4.9.9.1
fgets function, 4.9.7.2
FILENAME_MAX. 4.9.1
file, closing, 4.9.3
file, creating, 4.9.3
file, opening, 4.9.3
file access functions, 4.9.5
file identifier scope, 3.1.2.1, 3.7

file name, 4.9.3
FILE object type. 4.9.1
file operations, 4.9.4
file position indicator, 4.9.3
file positioning functions, 4.9.9
files, 4.9.3
float type, 3.1.2.5, 3.5.2

float type conversion, 3.2.1.4, 3.2.1.5
float ,h header, 1.7, 2.2.4.2.2. 4.1.4

floating arithmetic functions, 4.5.6
floating constants, 3.1.3.1
floating suffix, f or F. 3.1.3.1
floating types, 3.1.2.5
floating-point numbers, 3.1.2.5
floor function, 4.5.6.3
FLT__ macros, 2.2.4.2.2
fmod function, 4.5.6.4
fopen function, 4.9.5.3
FOPEN_MAX macro, 4.9.1, 4.9.3

for statement, 3.6.5, 3.6.5.3
form-feed character, 2.2.1, 3.1
form-feed escape sequence, \f, 2.2.2, 3.1.3.4

formatted input/output functions, 4.9.6
forward references, definition of, 1.6

fpos_t object type, 4.9.1
fprintf function, 4.9.6.1
fputc function, 2.2.2, 4.9.7.3
fputs function, 4.9.7.4
fread. function, 4.9.8.1
free function, 4.10.3.2
freestanding execution environment, 2.1.2, 2.1.2.1

freopen function, 4.9.5.4
frexp function, 4.5.4.2
fscanf function, 4.9.6.2
fseek function, 4.9.9.2
fsetpos function, 4.9.9.3
ftell function, 4.9.9.4

AMERICAN NATIONAL STANDARD X3.159-1989

C Standard 214 Index

full expression, 3.6

fully buffered stream, 4.9.3
function, recursive call. 3.3.2.2

function argument, 3.3.2.2

function body, 3.7, 3.7.1
function call, 3.3.2.2

function call, library. 4.1.6
function declarator, 3.5.4.3
function definition, 3.5.4.3, 3.7.1
function designator, 3.2.2.1
function identifier scope, 3.1.2.1
function image, 2.2.3

function library, 2.1.1.1, 4.1.6
function parameter, 2.1.2.2.1. 3.3.2.2
function prototype, 3.1.2.1, 3.3.2.2, 3.S.4.3, 3.7.1

function prototype identifier scope, 3.1.2.1
function return, 3.6.6.4

function type, 3.1.2.5
function type conversion. 3.2.2.1
function-call operator, (), 3.3.2.2

future directions, 1.8, 3.9, 4.13

future language directions, 3.9

future library directions, 4.13
fwrite function, 4.9.S.2

general utility library, 4.10
getc function, 4.9.7.5
getchar function, 4.9.V.6
getenv function. 4.10.4.4
gets function, 4.9.7.7
gintime function. 4.12.3.3
goto statement, 3.1.2.1, 3.6.1, 3.6.6, 3.6.6.1
graphic characters, 2.2.1
greater-than operator, >, 3.3.8
greater-than-or-equal-to operator, >=, 3.3.8

header names, 3.1. 3.1.7, 3.8.2

headers. 4.1.2
hexadecimal constant, 3.1.3.2
hexadecimal digit, 3.1.3.2. 3.1.3.4

hexadecimal escape sequence, 3.1.3.4
high-order bit, 1.6
horizontal-tab character, 2.2.1, 3.1
horizontal-tab escape sequence, \t, 2.2.2, 3.1.3.4

hosted execution environment, 2.1.2, 2.1.2.2
HUGE_VAL macro, 4.5, 4.5.1, 4.10.1.4

hyperbolic functions, 4.5.3

identifier, 3.1.2, 3.3.1

identifier, maximum length, 3.1.2
identifier, reserved, 4.1.2.1
identifier linkage, 3.1.2.2
identifier list, 3.5.4
identifier name space, 3.1.2.3
identifier scope, 3.1.2.1

identifier type, 3.1.2.5
IEEE floating-point arithmetic standard. 2.2.4.2.2
#if preprocessing directive, 3.8, 3.8.1
if statement, 3.6.4, 3.6.4.1
#ifdef preprocessing directive, 3.8, 3.8.1
#ifndef preprocessing directive, 3.8, 3.8.1
implementation, definition of, 1.6
implementation limits, 1.6. 2.2.4, Appendix D.
implementation-defined behavior, 1.6, F.3

implicit conversion, 3.2

implicit function declaration, 3.3.2.2

#include preprocessing directive, 2.1.1.2, 3.8.2
inclusive OR assignment operator, | =, 3.3.16.2
inclusive OR operator, |, 3.3.12
incomplete type, 3.1.2.5
increment operator, postfix. ++. 3.3.2.4
increment operator, prefix, ++, 3.3.3.1
indirection operator, *. 3.3.3.2
inequality operator, ! =, 3.3.9

initialization, 2.1.2, 3.1.2.4, 3.2.2.1, 3.5.7, 3.6.2

initializer, string literal. 3.2.2.1, 3.5.7
initializer braces, 3.5.7

initial shift state, 2.2.1.2, 4.10.7

input/output, device, 2.1.2.3
input/output header, 4.9

int type, 3.1.2.5, 3.1.3.2, 3.2.1.1, 3.2.1.2, 3.5.2

INT_MAX macro. 2.2.4.2.1
INT_MIN macro. 2.2.4.2.1
integer arithmetic functions, 4.10.6
integer character constant, 3.1.3.4
integer constants, 3.1.3.2
integer suffix, 3.1.3.2
integer type, 3.1.2.5
integer type conversion, 3.2.1.1, 3.2.1.2

integral constant expression, 3.4
integral promotions, 2.1.2.3, 3.2.1.1
integral type, 3.1.2.5
integral type conversion, 3.2.1.3
interactive device, 2.1.2.3. 4.9.3, 4.9.5.3

internal linkage. 3.1.2.2
internal name, 3.1.2
isalnum function, 4.3.1.1
isalpha function, 4.3.1.2
iscntrl function, 4.3.1.3
isdigit function, 4.3.1.4
isgraph function, 4.3.1.5
islower function. 4.3.1.6
ISO 4217:1987 Currencies and Funds Representation,

1.3, 4.4.2.1
ISO 646:1983 Invariant Code Set, 1.3, 2.2.1.1
isprint function, 2.2.2, 4.3.1.7
ispunct function, 4.3.1.8
isspace function, 4.3.1.9
isupper function, 4.3.1.10
isxdigit function, 4.3.1.11

AMERICAN NATIONAL STANDARD X3.159-1989

C Standard 215 Index

italic type convention. Section 3.

iteration statements, 3.6.5

jmp_buf array, 4.6
jump statements, 3.6.6

keywords. 3.1.1

L_tmpnam macro, 4.9.1

label name, 3.1.2.1, 3.1.2.3

labeled statements, 3.6.1

labs function, 4.10.6.3
language. Section 3.

language, future directions, 3.9

language syntax summary, Appendix A.

LC_ALL. 4.4
LC_COLLATE, 4.4
LC_CTYPE. 4.4
LC_MONETARY, 4.4
LC_NUMERIC, 4.4
LC_TIME. 4.4
lconv structure type, 4.4
LDBL_ macros, 2.2.4.2.2

ldexp function, 4.S.4.3
ldiv function, 4.10.6.4
ldiv_t type, 4.10
leading underscore in identifiers, 4.1.2

left-shift assignment operator, «=, 3.3.16.2

left-shift operator, «. 3.3.7

length function, 4.11.6.3
less-than operator, <, 3.3.8

less-than-or-equal-to operator, <=, 3.3.8

letter, 4.1.1

lexical elements, 2.1.1.2, 3.1

library, 2.1.1.1, Section 4.

library, future directions, 4.13

library functions, use of, 4.1.6

library summary. Appendix C.

library terms, 4.1.1
limits, environmental, 2.2.4

limits, numerical, 2.2.4.2

limits, translation. 2.2.4.1

limits.h header, 1.7, 2.2.4.2.1, 4.1.4

line buffered stream, 4.9.3

line number, 3.8.4

#line preprocessing directive, 3.8.4
lines, 2.1.1.2, 3.8, 4.9.2
lines, logical, 2.1.1.2

lines, preprocessing directive, 3.8
linkages of identifiers, 3.1.2.2
locale, definition of, 1.6

locale-specific behavior, 1.6, F.4

locale.h header, 4.4
localeconv function, 4.4.2.1
localization, 4.4

localtime function, 4.12.3.4
log function, 4.5.4.4
loglO function, 4.5.4.S
logarithmic functions, 4.5.4
logical AND operator, &&. 3.3.13

logical negation operator, !, 3.3.3.3

logical OR operator, | 1,3.3.14

logical source lines, 2.1.1.2

long double suffix, 1 or L, 3.1.3.1
long double type, 3.1.2.5, 3.1.3.1, 3.5.2

long double type conversion, 3.2.1.4, 3.2.1.5
long int type, 3.1.2.5, 3.2.1.2, 3.5.2

long integer suffix, 1 or L, 3.1.3.2
LONG_MAX macro, 2.2.4.2.1
LONG_MIN macro, 2.2.4.2.1
longjmp function, 4.6.2.1
low-order bit, 1.6

lvalue, 3.2.2.1, 3.3.1, 3.3.2.4, 3.3.3.1, 3.3.16

macro function vs. definition, 4.1.6
macro name definition, 2.2.4.1
macro names, predefined, 3.8.8
macro, redefinition of, 3.8.3
macro replacement, 3.8.3
main function, 2.1.2.2.1 2.1.2.2.3

malloc function, 4.10.3.3
math . h header, 4.5

MB_CUR_MAX- 410
MB_LEN_MAX. 2.2.4.2.1
mblen function, 4.10.7.1
mbstowcs function, 4.10.8.1
mbtowe function, 4.10.7.2
member-access operators, . and ->. 3.3.2.3
memchr function, 4.11.5.1
mememp function, 4.11.4.1
memepy function, 4.11.2.1
memmove function, 4.11.2.2
memory management functions, 4.10.3
memset function, 4.11.6.1
minus operator, unary, -, 3.3.3.3

mktime function, 4.12.2.3
modf function, 4.5.4.6
modifiable lvalue. 3.2.2.1
modulus function, 4.5.4.6
multibyte characters, 2.2.1.2. 3.1.3.4, 4.10.7, 4.10.8

multibyte functions, 4.10.7, 4.10.8

multiplication assignment operator, *=, 3.3.16.2
multiplication operator, *, 3.3.5
multiplicative expressions, 3.3.5

name, file, 4.9.3

name spaces of identifiers, 3.1.2.3
NDEBUG macro, 4.2
nearest-integer functions, 4.5.6
new-line character, 2.1.1.2, 2.2.1, 3.1. 3.8, 3.8.4

AMERICAN NATIONAL STANDARD X3.159-1989

C Standard 216 Index

new-line escape sequence, \n, 2.2.2, 3.1.3.4

nongraphic characters, 2.2.2, 3.1.3.4

nonlocal jumps header, 4.6

not-equal-to operator, !=, 3.3.9

null character padding of binary streams, 4.9.2
null character, \0, 2.2.1, 3.1.3.4, 3.1.4

NULL macro, 4.1.5

null pointer, 3.2.2.3

null pointer constant, 3.2.2.3

null preprocessing directive, 3.8.7

null statement, 3.6.3

number, floating-point, 3.1.2.5

numerical limits, 2.2.4.2

object, definition of, 1.6

object type, 3.1.2.5

obsolescence, 1.8, 3.9, 4.13

octal constant, 3.1.3.2

octal digit, 3.1.3.2, 3.1.3.4

octal escape sequence, 3.1.3.4

offsetof macro, 4.1.5

operand, 3.1.5, 3.3

operating system, 2.1.2.1, 4.10.4.5

operator, unary, 3.3.3

operators, 3.1.5, 3.3

OR assignment operator, exclusive, A=, 3.3.16.2

OR assignment operator, inclusive, | =, 3.3.16.2

OR operator, exclusive, A, 3.3.11

OR operator, inclusive, |, 3.3.12

OR operator, logical, | |, 3.3.14

order of memory allocation, 4.10.3

order of evaluation of expression, 3.3

ordinary identifier name space, 3.1.2.3

padding, null character, 4.9.2

parameter, ellipsis, , 3.5.4.3

parameter, function, 3.3.2.2

parameter, main function, 2.1.2.2.1
parameter, 1.6

parameter type list, 3.5.4.3

parameters, program, 2.1.2.2.1

parentheses punctuator, (), 3.1.6, 3.5.4.3

parenthesized expression, 3.3.1

perror function, 4.9.10.4
physical source lines, 2.1.1.2

plus operator, unary, +, 3.3.3.3

pointer, null, 3.2.2.3

pointer declarator, 3.5.4.1

pointer operator, ->, 3.3.2.3

pointer to function returning type, 3.3.2.2

pointer type, 3.1.2.5

pointer type conversion, 3.2.2.1, 3.2.2.3

portability of implementations, 1.7

position indicator, file, 4.9.3

postfix decrement operator, —, 3.3.2.4

postfix expressions, 3.3.2
postfix increment operator, ++, 3.3.2.4
pow function. 4.5.5.1
power functions, 4.5.5
#pragma preprocessing directive, 3.8.6
precedence of expression operators, 3.3

precedence of syntax rules, 2.1.1.2

predefined macro names, 3.8.8

prefix decrement operator, —, 3.3.3.1

prefix increment operator, ++. 3.3.3.1

preprocessing concatenation, 2.1.1.2, 3.8.3.3

preprocessing directives, 2.1.1.2, 3.8

preprocessing numbers, 3.1, 3.1.8
preprocessing tokens, 2.1.1.2, 3.1, 3.8

primary expressions, 3.3.1
print f function, 4.9.6.3
printing characters, 2.2.2, 4.3, 4.3.1.7

program, conforming, 1.7
program, strictly conforming, 1.7
program diagnostics, 4.2.1
program execution, 2.1.2.3
program file, 2.1.1.1

program image, 2.1.1.2

program name, argv[0], 2.1.2.2.1
program parameters, 2.1.2.2.1

program startup, 2.1.2, 2.1.2.1, 2.1.2.2.1

program structure, 2.1.1.1

program termination, 2.1.2, 2.1.2.1, 2.1.2.2.3, 2.1.

promotions, default argument, 3.3.2.2

promotions, integral, 2.1.2.3, 3.2.1.1
prototype, function, 3.1.2.1, 3.3.2.2, 3.5.4.3, 3.7.1

pseudo-random sequence functions, 4.10.2
ptrdiff_t type. 4.1.5
punctuators, 3.1.6

putc function. 4.9.7.8
putchar function, 4.9.7.9

puts function, 4.9.7.10

qsort function, 4.10.5.2
qualified types, 3.1.2.5
qualified version, 3.1.2.5

raise function, 4.7.2.1
rand function, 4.10.2.1
RAND_MAX macro, 4.10, 4.10.2.1

range error, 4.5.1
realloc function, 4.10.3.4
recursive function call, 3.3.2.2

redefinition of macro, 3.8.3

reentrancy, 2.1.2.3, 2.2.3

referenced type, 3.1.2.5

register storage-class specifier, 3.5.1
relational expressions, 3.3.8

reliability of data, interrupted, 2.1.2.3
remainder assignment operator, %=, 3.3.16.2

AMERICAN NATIONAL STANDARD X3.159-1989

C Standard 217 Index

remainder operator, %, 3.3.5

remove function, 4.9.4.1
rename function, 4.9.4.2
restore calling environment function, 4.6.2.1
reserved identifiers, 4.1.2.1
return statement, 3.6.6, 3.6.6.4
rewind function, 4.9.9.5
right-shift assignment operator, »=, 3.3.16.2

right-shift operator. », 3.3.7

rvalue. 3.2.2.1

save calling environment function, 4.6.1.1

scalar type, 3.1.2.5

scanf function, 4.9.6.4
SCHAR_MAX macro, 2.2.4.2.1
SCHAR_MIN macro, 2.2.4.2.1
scope of identifiers, 3.1.2.1
search functions. 4.10.5.1. 4.11.5

SEEK_CUR macro, 4.9.1
SEEK_END macro, 4.9.1
SEEK_SET macro, 4.9.1
selection statements, 3.6.4
semicolon punctuator, ;. 3.1.6, 3.5, 3.6.3

sequence points, 2.1.2.3, 3.3, 3.6. Appendix B.

setbuf function, 4.9.5.5
set jmp macro, 4.6.1.1
set jmp . h header, 4.6
setlocale function, 4.4.1.1
setvbuf function, 4.9.5.6
shift expressions, 3.3.7

shift states, 2.2.1.2, 4.10.7

short int type. 3.1.2.5, 3.5.2

short int type conversion. 3.2.1.1
SHRT_MAX macro. 2.2.4.2.1
SHRT_MIN macro. 2.2.4.2.1
side effects, 2.1.2.3, 3.3

sig_atomic_t type. 4.7
SIG_DFL macro, 4.7
SIG_ERR macro, 4.7
SIG_IGN macro, 4.7
SIGABRT macro, 4.7. 4.10.4.1

SIGFPE macro, 4.7
SIGILL macro, 4.7
SIGINT macro. 4.7
SIGSEGV macro, 4.7
SIGTERM macro, 4.7
signal function. 4.7.1.1
signal handler, 2.1.2.3, 2.2.3, 4.7.1.1
signal. h header. 4.7
signals, 2.1.2.3, 2.2.3, 4.7
signed char, 3.1.2.5
signed char type conversion. 3.2.1.1
signed integer types, 3.1.2.5, 3.1.3.2, 3.2.1.2

signed type, 3.1.2.5, 3.5.2

significand part, floating constant, 3.1.3.1

simple assignment operator, =, 3.3.16.1
sin function, 4.5.2.6
single-precision arithmetic, 2.1.2.3
sinh function, 4.5.3.2
size_t type, 4.1.5
sizeof operator, 3.3.3.4
sort function, 4.10.5.2
source character set, 2.2.1

source file inclusion, 3.8.2

source files, 2.1.1.1

source text, 2.1.1.2

space character, 2.1.1.2, 2.2.1, 3.1

sprint f function, 4.9.6.5
sqrt function, 4.5.5.2
srand function. 4.10.2.2
sscanf function, 4.9.6.6
standard streams, 4.9.1. 4.9.3
standard header, float. h, 1.7, 2.2.4.2.2, 4.1.4
standard header, limits.h. 1.7, 2.2.4.2.1, 4.1.4
standard header, stdarg.h, 1.7, 4.8
standard header, stddef .h. 1.7, 4.1.5
standard headers, 4.1.2
state-dependent encoding, 2.2.1.2, 4.10.7

statements, 3.6

static storage duration, 3.1.2.4
static storage-class specifier,

3.1.2.2, 3.1.2.4, 3.5.1, 3.7

stdarg.h header, 1.7, 4.8
stddef .h header, 1.7, 4.1.5
stderr file, 4.9.1, 4.9.3

stdin file. 4.9.1, 4.9.3

stdio . h header. 4.9
stdlib.h header, 4.10
stdout file. 4.9.1, 4.9.3

storage duration, 3.1.2.4
storage-class specifier. 3.5.1
strcat function, 4.11.3.2
strchr function, 4.11.5.2
strcmp function, 4.11.4.2
strcoll function, 4.11.4.3
strcpy function, 4.11.2.3
strcspn function, 4.11.5.3
stream, fully buffered, 4.9.3
stream, line buffered, 4.9.3
stream, standard error, stderr, 4.9.1, 4.9.3

stream, standard input, stdin, 4.9.1, 4.9.3

stream, standard output, stdout. 4.9.1, 4.9.3

stream, unbuffered, 4.9.3
streams, 4.9.2
strerror function, 4.11.6.2
strftime function, 4.12.3.5
strictly conforming program, 1.7
string, 4.1.1
string conversion functions, 4.10.1
string handling header. 4.11

AMERICAN NATIONAL STANDARD X3.159-1989

C Standard 218 Index

string length, 4.1.1, 4.11.6.3

string literal, 2.1.1.2, 2.2.1, 3.1.4, 3.3.1, 3.5.7
string.h header, 4.11
strlen function, 4.11.6.3
strncat function. 4.11.3.2
strncmp function, 4.11.4.4
strncpy function, 4.11.2.4
strpbrk function, 4.11.5.4
strrchr function, 4.11.5.5
strspn function, 4.11.5.6
strstr function, 4.11.5.7
strtod function, 4.10.1.4
strtok function, 4.11.5.8
strtol function, 4.10.1.5
strtoul function, 4.10.1.6
structure/union arrow operator, ->, 3.3.2.3

structure/union content, 3.5.2.3

structure/union dot operator, ., 3.3.2.3

structure/union member name space, 3.1.2.3

structure/union specifiers, 3.5.2.1

structure/union tag, 3.5.2.3

structure/union type, 3.1.2.5, 3.5.2.1

strxfrm function. 4.11.4.5
subtraction assignment operator, -=, 3.3.16.2

subtraction operator, -, 3.3.6

suffix, floating constant, 3.1.3.1

suffix, integer constant, 3.1.3.2

switch body, 3.6.4.2

switch case label, 3.6.1, 3.6.4.2

switch default label. 3.6.1, 3.6.4.2

switch statement, 3.6.4, 3.6.4.2
syntactic categories. Section 3.

syntax notation. Section 3.

syntax rules, precedence of, 2.1.1.2

syntax summary, language. Appendix A.

system function, 4.10.4.5

tab characters, 2.2.1

tabs, white space, 3.1

tag, enumeration, 3.5.2.3

tag, structure/union, 3.5.2.3

tag name space, 3.1.2.3

tan function, 4.5.2.7
tanh function, 4.5.3.3
tentative definitions, 3.7.2

text stream, 4.9.2

time components, 4.12.1

time conversion functions, 4.12.3

time function. 4.12.2.4
time manipulation functions, 4.12.2

time . h header, 4.12
time_t type, 4.12.1
tm structure type. 4.12.1

TMP_MAX macro, 4.9.1
tmpfile function, 4.9.4,3

tmpnam function, 4.9.4.4

tokens, 2.1.1.2, 3.1, 3.8

tolower function. 4.3.2.1

toupper function, 4.3.2.2

translation environment. 2.1.1

translation limits, 2.2.4.1

translation phases, 2.1.1.2

translation unit, 2.1.1.1, 3.7
trigonometric functions. 4.5.2

trigraph sequences, 2.1.1.2, 2.2.1.1

type, character, 3.1.2.5, 3.2.2.1, 3.5.7
type, compatible, 3.1.2.6, 3.5.2, 3.5.3, 3.5.4

type, composite, 3.1.2.6

type, const-qualified. 3.1.2.5, 3.5.3

type, function, 3.1.2.5

type, incomplete, 3.1.2.5

type, object, 3.1.2.5

type, qualified, 3.1.2.5

type, unqualified. 3.1.2.5

type, volatile-qualified, 3.1.2.5, 3.5.3

type category, 3.1.2.5

type conversions, 3.2

type definitions, 3.5.6

type names, 3.5.5

type specifiers, 3.5.2

type qualifiers, 3.5.3

typedef specifier, 3.5.1. 3.5.2, 3.5.6

types, 3.1.2.5

UCHAR_MAX macro, 2.2.4.2.1

UINT_MAX macro, 2.2.4.2.1

ULONG_MAX macro, 2.2.4.2.1

unary arithmetic operators, 3.3.3.3

unary expressions, 3.3.3

unary minus operator, -, 3.3.3.3

unary operators, 3.3.3

unary plus operator, +, 3.3.3.3

unbuffered stream, 4.9.3

#undef preprocessing directive, 3.8, 3.8.3, 4.1.6
undefined behavior, 1.6, F.2

underscore, leading, in identifiers, 4.1.2.1

ungetc function, 4.9.7.11

union initialization. 3.5.7

union tag. 3.5.2.3

union type specifier, 3.1.2.5, 3.5.2, 3.5.2.1

unqualified type, 3.1.2.5

unqualified version. 3.1.2.5

unsigned integer suffix, u or U, 3.1.3.2

unsigned integer types, 3.1.2.5, 3.1.3.2
unsigned type conversion, 3.2.1.2

unsigned type, 3.1.2.5, 3.2.1.2, 3.5.2
unspecified behavior, 1.6, F. 1

USHRT_MAX macro. 2.2.4.2.1

usual arithmetic conversions. 3.2.1.5

AMERICAN NATIONAL STANDARD X3.159-1989

C Standard 219 Index

va_arg macro, 4,8.1.2
va_end macro, 4.8.1.3
va_list type, 4.8
va_start macro, 4.8.1.1
variable arguments header, 4.8

vertical-tab character, 2.2.1, 3.1

vertical-tab escape sequence, \v, 2.2.2, 3.1.3.4

vfprintf function, 4.9.6.7
visibility of identifiers, 3.1.2.1
void expression, 3.2.2.2

void function parameter, 3.5.4.3
void type, 3.1.2.5, 3.5.2

void type conversion, 3.2.2.2
volatile storage, 2.1.2.3
volatile-qualified type, 3.1.2.5, 3.5.3

volatile type qualifier. 3.5.3
vprintf function, 4.9.6.S
vsprintf function, 4.9.6.9

wchar_t type, 3.1.3.4, 3.1.4, 3.5.7, 4.1.5, 4.10

wcstombs function, 4.10.8.2
wctomb function, 4.10.7.3
while statement, 3.6.5, 3.6.5.1
white space, 2.1.1.2. 3.1, 3.8, 4.3.1.9

wide character, 3.1.3.4
wide character constant. 3.1.3.4
wide string literal, 2.1.1.2, 3.1.4

I

I

I

Rationale for
American National Standard

for Information Systems -
Programming Language -

C

(This Rationale is not part of American National Standard X3.159-1989, but is included for information only.)

UNIX is a registered trademark of AT&T.

DEC and PDP-11 are trademarks of Digital Equipment Corporation.

POSIX is a trademark of IEEE.

Contents

1 INTRODUCTION 1
1.1 Purpose. 1

1.2 Scope .• • • • 4
1.3 References. 4
1.4 Organization of the document. 4
1.5 Base documents. 5
1.6 Definitions of terms. 5

1.7 Compliance. 6
1.8 Future directions. 8

2 ENVIRONMENT 9
2.1 Conceptual models . .. 9

2.1.1 Translation environment. 9
2.1.2 Execution environments. 11

2.2 Environmental considerations . .. 13
2.2.1 Character sets . 13
2.2.2 Character display semantics. 16
2.2.3 Signals and interrupts. 16
2.2.4 Environmental limits. 17

3 LANGUAGE 19

3.1 Lexical Elements. 19
3.1.1 Keywords. 19
3.1.2 Identifiers. 19
3.1.3 Constants 28

3.1.4 String literals. 31
3.1.5 Operators. 32
3.1.6 Punctuators .. 33
3.1.7 Header names. 33

3.1.8 Preprocessing numbers. 33

3.1.9 Comments. 33
3.2 Conversions 34

3.2.1 Arithmetic operands. 34

iv CONTENTS

3.2.2 Other operands. 36

3.3 Expressions. 38

3.3.1 Primary expressions. 40

3.3.2 Postfix operators. 41

3.3.3 Unary operators . 43

3.3.4 Cast operators. 44

3.3.5 Multiplicative operators. 45

3.3.6 Additive operators. 45

3.3.7 Bitwise shift operators. 46

3.3.8 Relational operators. 47

3.3.9 Equality operators. 47

3.3.10 Bitwise AND operator. 47

3.3.11 Bitwise exclusive OR. operator . 47

3.3.12 Bitwise inclusive OR operator. 47

3.3.13 Logical AND operator. 47

3.3.14 Logical OR operator. 47

3.3.15 Conditional operator. 47

3.3.16 Assignment operators . 48

3.3.17 Comma operator. 49

3.4 Constant Expressions . 49

3.5 Declarations. 50

3.5.1 Storage-class specifiers. 51

3.5.2 Type specifiers. 51

3.5.3 Type qualifiers. 52

3.5.4 Declarators. 54

3.5.5 Type names. 57

3.5.6 Type definitions . 57

3.5.7 Initialization . 57

3.6 Statements . 58

3.6.1 Labeled statements. 58

3.6.2 Compound statement, or block. 58

3.6.3 Expression and null statements. 58

3.6.4 Selection statements. 59

3.6.5 Iteration statements. 59

3.6.6 Jump statements. 59

3.7 External definitions. 60

3.7.1 Function definitions . 60

3.7.2 External object definitions. 61

3.8 Preprocessing directives. 61

3.8.1 Conditional inclusion. 62

3.8.2 Source file inclusion . 63

3.8.3 Macro replacement. 64

3.8.4 Line control. 68

3.8.5 Error directive. 68

CONTENTS v

3.8.6 Pragma directive. 68

3.8.7 Null directive. 68

3.8.8 Predefined macro names. 68

3.9 Future language directions. 69

3.9.1 External names. 69

3.9.2 Character escape sequences. 69

3.9.3 Storage-class specifiers. 69

3.9.4 Function declarators. 69

3.9.5 Function definitions . 69

3.9.6 Array parameters. 69

4 LIBRARY 71

4.1 Introduction. 71

4.1.1 Definitions of terms . 71

4.1.2 Standard headers. 71

4.1.3 Errors <errno.h> . 73

4.1.4 Limits <float.h> and <limits.h>. 73

4.1.5 Common definitions <stddef .h>. 74

4.1.6 Use of library functions. 75

4.2 Diagnostics <assert .h>. 76

4.2.1 Program diagnostics. 76

4.3 Character Handling Cctype .h>. 76

4.3.1 Character testing functions. 77

4.3.2 Character case mapping functions . 78

4.4 Localization <locale.h>. 78

4.4.1 Locale control. 80

4.4.2 Numeric formatting convention inquiry . 80

4.5 Mathematics <math.h>. 80

4.5.1 Treatment of error conditions. 81

4.5.2 Trigonometric functions. 82

4.5.3 Hyperbolic functions. 83

4.5.4 Exponential and logarithmic functions. 83

4.5.5 Power functions. 83

4.5.6 Nearest integer, absolute value, and remainder functions ... 84

4.6 Nonlocal jumps <setjmp .h>. 84

4.6.1 Save calling environment . 85

4.6.2 Restore calling environment. 85

4.7 Signal Handling <signal .h> 86

4.7.1 Specify signal handling. 86

4.7.2 Send signal. 87

4.8 Variable Arguments <stdarg.h>. 87

4.8.1 Variable argument list access macros. 87

4.9 Input/Output <stdio .h>. 88

4.9.1 Introduction . 89

RATIONALE

vi CONTENTS

4.9.2 Streams. 90

4.9.3 Files. 91

4.9.4 Operations on files. 92

4.9.5 File access functions. 93

4.9.6 Formatted input/output functions. 95

4.9.7 Character input/output functions. 97

4.9.8 Direct input/output functions. 98

4.9.9 File positioning functions. 99

4.9.10 Error-handling functions.100

4.10 General Utilities <stdlib ,h>.100

4.10.1 String conversion functions.100

4.10.2 Pseudo-random sequence generation functions.101

4.10.3 Memory management functions.101

4.10.4 Communication with the environment.102

4.10.5 Searching and sorting utilities.104

4.10.6 Integer arithmetic functions.104

4.10.7 Multibyte character functions.105

4.10.8 Multibyte string functions.105

4.11 STRING HANDLING <string.h>.105

4.11.1 String function conventions.105

4.11.2 Copying functions . ..106

4.11.3 Concatenation functions.106

4.11.4 Comparison functions.107

4.11.5 Search functions.107

4.11.6 Miscellaneous functions. 108

4.12 DATE AND TIME <time. h>.108

4.12.1 Components of time.108

4.12.2 Time manipulation functions.108

4.12.3 Time conversion functions.110

4.13 Future library directions. Ill

4.13.1 Errors <errno .h> Ill

4.13.2 Character handling <ctype .h>.Ill

4.13.3 Localization ciocale.h> Ill

4.13.4 Mathematics <math.h> Ill

4.13.5 Signal handling <signal .h>.Ill

4.13.6 Input/output <stdio .h> Ill

4.13.7 General utilities <stdlib.h> Ill

4.13.8 String handling <string.h>.Ill

5 APPENDICES 113

115 INDEX

Section

INTRODUCTION

This Rationale summarizes the deliberations of X3J11, the Technical Committee

charged by ANSI with devising a standard for the C programming language. It has

been published along with the draft Standard to assist the process of formal public

review.

The X3J11 Committee represents a cross-section of the C community: it con¬

sists of about fifty active members representing hardware manufacturers, vendors

of compilers and other software development tools, software designers, consultants,

academics, authors, applications programmers, and others. In the course of its

deliberations, it has reviewed related American and international standards both

published and in progress. It has attempted to be responsive to the concerns of the

broader community: as of September 1988, it had received and reviewed almost 200

letters, including dozens of formal comments from the first public review, suggesting

modifications and additions to the various preliminary drafts of the Standard.

Upon publication of the Standard, the primary role of the Committee will be to

offer interpretations of the Standard. It will consider and respond to all correspon¬

dence received.

1.1 Purpose

The Committee’s overall goal was to develop a clear, consistent, and unambiguous

Standard for the C programming language which codifies the common, existing def¬

inition of C and which promotes the portability of user programs across C language

environments.

The X3J11 charter clearly mandates the Committee to codify common existing

practice. The Committee has held fast to precedent wherever this was clear and

unambiguous. The vast majority of the language defined by the Standard is precisely

the same as is defined in Appendix A of The C Programming Language by Brian

Kernighan and Dennis Ritchie, and as is implemented in almost all C translators.

(This document is hereinafter referred to as K&R.)

K&R is not the only source of “existing practice.” Much work has been done over

1

2 Section 1. INTRODUCTION

the years to improve the C language by addressing its weaknesses. The Committee

has formalized enhancements of proven value which have become part of the various

dialects of C.

Existing practice, however, has not always been consistent. Various dialects

of C have approached problems in different and sometimes diametrically opposed

ways. This divergence has happened for several reasons. First, K&R, which has

served as the language specification for almost all C translators, is imprecise in some

areas (thereby allowing divergent interpretations), and it does not address some

issues (such as a complete specification of a library) important for code portability.

Second, as the language has matured over the years, various extensions have been

added in different dialects to address limitations and weaknesses of the language;

these extensions have not been consistent across dialects.

One of the Committee’s goals was to consider such areas of divergence and to

establish a set of clear, unambiguous rules consistent with the rest of the language.

This effort included the consideration of extensions made in various C dialects, the

specification of a complete set of required library functions, and the development of

a complete, correct syntax for C.

The work of the Committee was in large part a balancing act. The Committee

has tried to improve portability while retaining the definition of certain features of

C as machine-dependent. It attempted to incorporate valuable new ideas without

disrupting the basic structure and fabric of the language. It tried to develop a clear

and consistent language without invalidating existing programs. All of the goals were

important and each decision was weighed in the light of sometimes contradictory

requirements in an attempt to reach a workable compromise.

In specifying a standard language, the Committee used several guiding principles,

the most important of which are:

Existing code is important, existing implementations are not. A large body

of C code exists of considerable commercial value. Every attempt has been made

to ensure that the bulk of this code will be acceptable to any implementation con¬

forming to the Standard. The Committee did not want to force most programmers

to modify their C programs just to have them accepted by a conforming translator.

On the other hand, no one implementation was held up as the exemplar by which

to define C: it is assumed that all existing implementations must change somewhat

to conform to the Standard.

C code can be portable. Although the C language was originally born with the

UNIX operating system on the DEC PDP-11, it has since been implemented on a

wide variety of computers and operating systems. It has also seen considerable use

in cross-compilation of code for embedded systems to be executed in a free-standing

environment. The Committee has attempted to specify the language and the library

to be as widely implementable as possible, while recognizing that a system must meet

certain minimum criteria to be considered a viable host or target for the language.

C code can be non-portable. Although it strove to give programmers the op¬

portunity to write truly portable programs, the Committee did not want, to force

1.1. Purpose 3

programmers into writing portably, to preclude the use of C as a “high-level as¬

sembler”: the ability to write machine-specific code is one of the strengths of C.

It is this principle which largely motivates drawing the distinction between strictly

conforming program and conforming program (§1.7).

Avoid “quiet changes.” Any change to widespread practice altering the meaning

of existing code causes problems. Changes that cause code to be so ill-formed as to

require diagnostic messages are at least easy to detect. As much as seemed possible

consistent with its other goals, the Committee has avoided changes that quietly

alter one valid program to another with different semantics, that cause a working

program to work differently without notice. In important places where this principle

is violated, the Rationale points out a QUIET CHANGE.

A standard is a treaty between implementor and programmer. Some nu¬

merical limits have been added to the Standard to give both implementors and

programmers a better understanding of what must be provided by an implemen¬

tation, of what can be expected and depended upon to exist. These limits are

presented as minimum maxima (i.e., lower limits placed on the values of upper lim¬

its specified by an implementation) with the understanding that any implementor is

at liberty to provide higher limits than the Standard mandates. Any program that

takes advantage of these more tolerant limits is not strictly conforming, however,

since other implementations are at liberty to enforce the mandated limits.

Keep the spirit of C. The Committee kept as a major goal to preserve the

traditional spirit of C. There are many facets of the spirit of C, but the essence is

a community sentiment of the underlying principles upon which the C language is

based. Some of the facets of the spirit of C can be summarized in phrases like

• Trust the programmer.

• Don’t prevent the programmer from doing what needs to be done.

• Keep the language small and simple.

• Provide only one way to do an operation.

• Make it fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potential for efficient code

generation is one of the most important strengths of C. To help ensure that no code

explosion occurs for what appears to be a very simple operation, many operations

are defined to be how the target machine’s hardware does it rather than by a general

abstract rule. An example of this willingness to live with what the machine does can

be seen in the rules that govern the widening of char objects for use in expressions:

whether the values of char objects widen to signed or unsigned quantities typically

depends on which byte operation is more efficient on the target machine.

One of the goals of the Committee was to avoid interfering with the ability

of translators to generate compact, efficient code. In several cases the Committee

has introduced features to improve the possible efficiency of the generated code;

for instance, floating point operations may be performed in single-precision if both

operands are float rather than double.

RATIONALE

4 Section 1. INTRODUCTION

1.2 Scope

This Rationale focuses primarily on additions, clarifications, and changes made to

the language as described in the Base Documents (see §1.5). It is not a rationale for

the C language as a whole: the Committee was charged with codifying an existing

language, not designing a new one. No attempt is made in this Rationale to defend

the pre-existing syntax of the language, such as the syntax of declarations or the

binding of operators.

The Standard is contrived as carefully as possible to permit a broad range of im¬

plementations, from direct interpreters to highly optimizing compilers with separate

linkers, from ROM-based embedded microcomputers to multi-user multi-processing

host systems. A certain amount of specialized terminology has therefore been cho¬

sen to minimize the bias toward compiler implementations shown in the Base Doc¬

uments.

The Rationale discusses some language or library features which were not

adopted into the Standard. These are usually features which are popular in some C

implementations, so that a user of those implementations might question why they

do not appear in the Standard.

1.3 References

1.4 Organization of the document

This Rationale is organized to parallel the Standard as closely as possible, to facil¬

itate finding relevant discussions. Some subsections of the Rationale comprise just

the subsection title from the Standard: this indicates that the Committee thought

no special comment was necessary. Where a given discussion touches on several

areas, attempts have been made to include cross-references within the text. Such

references, unless they specify the Standard or the Rationale, are deliberately am¬

biguous.

As for the organization of the Standard itself, Base Documents existed only for

Sections 3 (Language) and 4 (Library) of the Standard. Section 1 (Introduction)

was modeled after the introductory matter in several other standards for procedural

languages. Section 2 (Environment) was added to fill a need, identified from the

start, to place a C program in context and describe the way it interacts with its

surroundings. The Appendices were added as a repository for related material not

included in the Standard itself, or to bring together in a single place information

about a topic which was scattered throughout the Standard.

Just as the Standard proper excludes all examples, footnotes, references, and

appendices, this rationale is not part of the Standard. The C language is defined

by the Standard alone. If any part of this Rationale is not in accord with that

definition, the Committee would very much like to be so informed.

RATIONALE

1.5. Base documents 5

1.5 Base documents

The Base Document for Section 3 (Language) was “The C Reference Manual” by

Dennis M. Ritchie, which was used for several years within AT&T Bell Laborato¬

ries and reflects enhancements to C within the UNIX environment. A version of

this manual was published as Appendix A of The C Programming Language by

Kernighan and Ritchie (K&R). Several deviations in the Base Document from K&R

were challenged during Committee deliberations, but most changes from K&R ulti¬

mately included in the Standard were readily endorsed by the Committee since they

were widely known and accepted outside the UNIX user community.

The Base Document for Section 4 (Library) was the 1984 /usr/group Standard.

(/usr/group is a UNIX system users group.) In defining what a UNIX-like environ¬

ment looks like to an applications programmer writing in C, /usr/group was obliged

to describe library functions usable in any C environment. The Committee found

/usr/group’s work to be an excellent codification of existing practice in defining

C libraries, once the UNIX-specific functions had been removed.

The work begun by /usr/group is being continued by the IEEE Committee 1003

to define a portable operating system interface (“POSIX”) based on the UNIX

environment. The X3J11 Committee has been working with IEEE 1003 to resolve

potential areas of overlap or conflict between the two Committees. The result of

this coordination has been to divide responsibility for standardizing library functions

into two areas. Those functions needed for a C implementation in any environment

are the responsibility of X3J11 and are included in the Standard. IEEE 1003 retains

responsibility for those functions which are operating-system-specific; the (POSIX)

standard will refer to the ANSI C Standard for C library function definitions.

Many of the discussions in this Rationale employ the formula “feature X has

been changed (added, removed) because ... The changes (additions, removals)

should be understood as being with respect to the appropriate Base Document.

1.6 Definitions of terms

The definitions of object, bit, byte, and alignment reflect a strong consensus, reached

after considerable discussion, about the fundamental nature of the memory organi¬

zation of a C environment:

• All objects in C must be representable as a contiguous sequence of bytes, each

of which is at least 8 bits wide.

• A char (or signed char or unsigned char) occupies exactly one byte.

(Thus, for instance, on a machine with 36-bit words, a byte can be defined to consist

of 9, 12, 18, or 36 bits, these numbers being all the exact divisors of 36 which are not

less than 8.) These strictures codify the widespread presumption that any object

can be treated as an array of characters, the size of which is given by the sizeof

operator with that object’s type as its operand.

RATIONALE

6 Section 1. INTRODUCTION

These definitions do not preclude “holes” in struct objects. Such holes are in

fact often mandated by alignment and packing requirements. The holes simply do

not participate in representing the (composite) value of an object.

The definition of object does not employ the notion of type. Thus an object has

no type in and of itself. However, since an object may only be designated by an

lvalue (see §3.2.2.1), the phrase “the type of an object” is taken to mean, here and

in the Standard, “the type of the lvalue designating this object,” and “the value of

an object” means “the contents of the object interpreted as a value of the type of

the lvalue designating the object.”

The concept of multi-byte character has been added to C to support very large

character sets. See §2.2.1.2.

The terms unspecified behavior, undefined behavior, and implementation-defined be¬

havior are used to categorize the result of writing programs whose properties the

Standard does not, or cannot, completely describe. The goal of adopting this cate¬

gorization is to allow a certain variety among implementations which permits quality

of implementation to be an active force in the marketplace as well as to allow certain

popular extensions, without removing the cachet of conformance to the Standard.

Appendix F to the Standard catalogs those behaviors which fall into one of these

three categories.

Unspecified behavior gives the implementor some latitude in translating pro¬

grams. This latitude does not extend as far as failing to translate the program.

Undefined behavior gives the implementor license not to catch certain program

errors that are difficult to diagnose. It also identifies areas of possible conforming

language extension: the implementor may augment the language by providing a

definition of the officially undefined behavior.

Implementation-defined behavior gives an implementor the freedom to choose

the appropriate approach, but requires that this choice be explained to the user.

Behaviors designated as implementation-defined are generally those in which a user

could make meaningful coding decisions based on the implementation definition.

Implementors should bear in mind this criterion when deciding how extensive an

implementation definition ought to be. As with unspecified behavior, simply failing

to translate the source containing the implementation-defined behavior is not an

adequate response.

1.7 Compliance

The three-fold definition of compliance is used to broaden the population of con¬

forming programs and distinguish between conforming programs using a single im¬

plementation and portable conforming programs.

A strictly conforming program is another term for a maximally portable program.

The goal is to give the programmer a fighting chance to make powerful C programs

that are also highly portable, without demeaning perfectly useful C programs that

happen not to be portable. Thus the adverb strictly.

1.7. Compliance 7

By defining conforming implementations in terms of the programs they accept,

the Standard leaves open the door for a broad class of extensions as part of a

conforming implementation. By defining both conforming hosted and conforming

freestanding implementations, the Standard recognizes the use of C to write such

programs as operating systems and ROM-based applications, as well as more conven¬

tional hosted applications. Beyond this two-level scheme, no additional subsetting

is defined for C, since the Committee felt strongly that too many levels dilutes the

effectiveness of a standard.

Conforming program is thus the most tolerant of all categories, since only one

conforming implementation need accept a program to rule it conforming. The pri¬

mary limitation on this license is §2.1.1.3.

Diverse sections of the Standard comprise the “treaty” between programmers

and implementors regarding various name spaces — if the programmer follows the

rules of the Standard the implementation will not impose any further restrictions or

surprises:

• A strictly conforming program can use only a restricted subset of the identifiers

that begin with underscore (§4.1.2). Identifiers and keywords are distinct

(§3.1.1). Otherwise, programmers can use whatever internal names they wish;

a conforming implementation is guaranteed not to use conflicting names of

the form reserved to the programmer. (Note, however, the class of identifiers

which are identified in §4.13 as possible future library names.)

• The external functions defined in, or called within, a portable program can be

named whatever the programmer wishes, as long as these names are distinct

from the external names defined by the Standard library (§4). External names

in a maximally portable program must be distinct within the first 6 characters

mapped into one case (§3.1.2).

• A maximally portable program cannot, of course, assume any language key¬

words other than those defined in the Standard.

• Each function called within a maximally portable program must either be

defined within some source file of the program or else be a function in the

Standard library.

One proposal long entertained by the Committee was to mandate that each im¬

plementation have a translate-time switch for turning off extensions and making

a pure Standard-conforming implementation. It was pointed out, however, that

virtually every translate-time switch setting effectively creates a different “imple¬

mentation,” however close may be the effect of translating with two different switch

settings. Whether an implementor chooses to offer a family of conforming imple¬

mentations, or to offer an assortment of non-conforming implementations along with

one that conforms, was not the business of the Committee to mandate. The Stan¬

dard therefore confines itself to describing conformance, and merely suggests areas

where extensions will not compromise conformance.

8 Section 1. INTRODUCTION

Other proposals rejected more quickly were to provide a validation suite, and to

provide the source code for an acceptable library. Both were recognized to be major

undertakings, and both were seen to compromise the integrity of the Standard by

giving concrete examples that might bear more weight than the Standard itself. The

potential legal implications were also a concern.

Standardization of such tools as program consistency checkers and symbolic

debuggers lies outside the mandate of the Committee. However, the Committee

has taken pains to allow such programs to work with conforming programs and

implementations.

1.8 Future directions

Section 2

ENVIRONMENT

Because C has seen widespread use as a cross-compiled language, a clear distinction

must be made between translation and execution environments. The preprocessor,

for instance, is permitted to evaluate the expression in a #if statement using the

long integer arithmetic native to the translation environment: these integers must

comprise at least 32 bits, but need not match the number of bits in the execution

environment. Other translate-time arithmetic, however, such as type casting and

floating arithmetic, must more closely model the execution environment regardless

of translation environment.

2.1 Conceptual models

The as if principle is invoked repeatedly in this Rationale. The Committee has found

that describing various aspects of the C language, library, and environment in terms

of concrete models best serves discussion and presentation. Every attempt has been

made to craft the models so that implementors are constrained only insofar as they

must bring about the same result, as if they had implemented the presentation

model; often enough the clearest model would make for the worst implementation.

2.1.1 Translation environment

2.1.1.1 Program structure

The terms source file, external linkage, linked, libraries, and executable program all

imply a conventional compiler-linker combination. All of these concepts have shaped

the semantics of C, however, and are inescapable even in an interpreted environment.

Thus, while implementations are not required to support separate compilation and

linking with libraries, in some ways they must behave as if they do.

2.1.1.2 Translation phases

Perhaps the greatest undesirable diversity among existing C implementations can be

found in preprocessing. Admittedly a distinct and primitive language superimposed

9

10 Section 2. ENVIRONMENT

upon C, the preprocessing commands accreted over time, with little central direction,

and with even less precision in their documentation. This evolution has resulted in

a variety of local features, each with its ardent adherents: the Base Document offers

little clear basis for choosing one over the other.

The consensus of the Committee is that preprocessing should be simple and

overt, that it should sacrifice power for clarity. For instance, the macro invocation

f (a, b) should assuredly have two actual arguments, even if b expands to c, d;

and the formal definition of f must call for exactly two arguments. Above all,

the preprocessing sub-language should be specified precisely enough to minimize or

eliminate dialect formation.

To clarify the nature of preprocessing, the translation from source text to tokens

is spelled out as a number of separate phases. The separate phases need not actually

be present in the translator, but the net effect must be as if they were. The phases

need not be performed in a separate preprocessor, although the definition certainly

permits this common practice. Since the preprocessor need not know anything

about the specific properties of the target, a machine-independent implementation

is permissible.

The Committee deemed that it was outside the scope of its mandate to require

the output of the preprocessing phases be available as a separate translator output

file.

The phases of translation are spelled out to resolve the numerous questions

raised about the precedence of different parses. Can a #def ine begin a comment?

(No.) Is backslash/new-line permitted within a trigraph? (No.) Must a comment

be contained within one #include file? (Yes.) And so on. The Rationale section

on preprocessing (§3.8) discusses the reasons for many of the particular decisions

which shaped the specification of the phases of translation.

A backslash immediately before a new-line has long been used to continue string

literals, as well as preprocessing command lines. In the interest of easing machine

generation of C, and of transporting code to machines with restrictive physical

line lengths, the Committee generalized this mechanism to permit any token to be

continued by interposing a backslash/new-line sequence.

2.1.1.3 Diagnostics

By mandating some form of diagnostic message for any program containing a syntax

error or constraint violation, the Standard performs two important services. First, it

gives teeth to the concept of erroneous program, since a conforming implementation

must distinguish such a program from a valid one. Second, it severely constrains

the nature of extensions permissible to a conforming implementation.

The Standard says nothing about the nature of the diagnostic message, which

could simply be “syntax error”, with no hint of where the error occurs. (An

implementation must, of course, describe what translator output constitutes a di¬

agnostic message, so that the user can recognize it as such.) The Committee ulti-

2.1. Conceptual models 11

mately decided that any diagnostic activity beyond this level is an issue of quality of

implementation, and that market forces would encourage more useful diagnostics.

Nevertheless, the Committee felt that at least some significant class of errors must

be diagnosed, and the class specified should be recognizable by all translators.

The Standard does not forbid extensions, but such extensions must not inval¬

idate strictly conforming programs. The translator must diagnose the use of such

extensions, or allow them to be disabled as discussed in (Rationale) §1.7. Other¬

wise, extensions to a conforming C implementation lie in such realms as defining

semantics for syntax to which no semantics is ascribed by the Standard, or giving

meaning to undefined behavior.

2.1.2 Execution environments

The definition of program startup in the Standard is designed to permit initialization

of static storage by executable code, as well as by data translated into the program

image.

2.1.2.1 Freestanding environment

As little as possible is said about freestanding environments, since little is served by

constraining them.

2.1.2.2 Hosted environment

The properties required of a hosted environment are spelled out in a fair amount of

detail in order to give programmers a reasonable chance of writing programs which

are portable among such environments.

The behavior of the arguments to main, and of the interaction of exit, main

and atexit (see §4.10.4.2) has been codified to curb some unwanted variety in the

representation of argv strings, and in the meaning of values returned by main.

The specification of argc and argv as arguments to main recognizes extensive

prior practice, argv [argc] is required to be a null pointer to provide a redundant

check for the end of the list, also on the basis of common practice.

main is the only function that may portably be declared either with zero or two

arguments. (The number of arguments must ordinarily match exactly between invo¬

cation and definition.) This special case simply recognizes the widespread practice

of leaving off the arguments to main when the program does not access the program

argument strings. While many implementations support more than two arguments

to main, such practice is neither blessed nor forbidden by the Standard; a program

that defines main with three arguments is not strictly conforming. (See Standard

Appendix F.5.1.)

Command line I/O redirection is not mandated by the Standard; this was deemed

to be a feature of the underlying operating system rather than the C’ language.

RATIONALE

12 Section 2. ENVIRONMENT

2.1.2.3 Program execution

Because C expressions can contain side effects, issues of sequencing are important

in expression evaluation. (See §3.3.) Most operators impose no sequencing require¬

ments, but a few operators impose sequence points upon the evaluation: comma,

logical-AND, logical-OR, and conditional. For example, in the expression (i = 1,

a[i] = 0) the side effect (alteration to storage) specified by i = 1 must be com¬

pleted before the expression a[i] = 0 is evaluated.

Other sequence points are imposed by statement execution and completion of

evaluation of a full expression. (See §3.6). Thus in fn(++a), the incrementation of

a must be completed before fn is called. In i = 1; a[i] = 0; the side-effect of

i = 1 must be complete before a[i] = 0 is evaluated.

The notion of agreement has to do with the relationship between the abstract

machine defining the semantics and an actual implementation. An agreement point

for some object or class of objects is a sequence point at which the value of the

object(s) in the real implementation must agree with the value prescribed by the

abstract semantics.

For example, compilers that hold variables in registers can sometimes drastically

reduce execution times. In a loop like

sum = 0;

for (i = 0; i < N; ++i)

sum += a[i] ;

both sum and i might be profitably kept in registers during the execution of the

loop. Thus, the actual memory objects designated by sum and i would not change

state during the loop.

Such behavior is, of course, too loose for hardware-oriented applications such as

device drivers and memory-mapped I/O. The following loop looks almost identical

to the previous example, but the specification of volatile ensures that each assign¬

ment to *ttyport takes place in the same sequence, and with the same values, as

the (hypothetical) abstract machine would have done.

volatile short *ttyport;

/* ... */
for (i = 0; i < N; ++i)

*ttyport = a[i];

Another common optimization is to pre-compute common subexpressions. In

this loop:

volatile short *ttyport;

short maskl, raask2;

/* ... */
for (i = 0; i < N; ++i)

*ttyport = a[i] & maskl & mask2;

2.2. Environmental considerations 13

evaluation of the subexpression maskl & mask2 could be performed prior to the

loop in the real implementation, assuming that neither maskl nor mask2 appear as

an operand of the address-of (&) operator anywhere in the function. In the abstract

machine, of course, this subexpression is re-evaluated at each loop iteration, but

the real implementation is not required to mimic this repetitiveness, because the

variables maskl and mask2 are not volatile and the same results are obtained

either way.

The previous example shows that a subexpression can be pre-computed in the

real implementation. A question sometimes asked regarding optimization is, “Is

the rearrangement still conforming if the pre-computed expression might raise a

signal (such as division by zero)?” Fortunately for optimizers, the answer is “Yes,”

because any evaluation that raises a computational signal has fallen into an undefined

behavior (§3.3), for which any action is allowable.

Behavior is described in terms of an abstract machine to underscore, once again,

that the Standard mandates results as if certain mechanisms are used, without

requiring those actual mechanisms in the implementation. The Standard specifies

agreement points at which the value of an object or class of objects in an implemen¬

tation must agree with the value ascribed by the abstract semantics.

Appendix B to the Standard lists the sequence points specified in the body of

the Standard.

The class of interactive devices is intended to include at least asynchronous ter¬

minals, or paired display screens and keyboards. An implementation may extend the

definition to include other input and output devices, or even network inter-program

connections, provided they obey the Standard’s characterization of interactivity.

2.2 Environmental considerations

2.2.1 Character sets

The Committee ultimately came to remarkable unanimity on the subject of character

set requirements. There was strong sentiment that C should not be tied to ASCII,

despite its heritage and despite the precedent of Ada being defined in terms of ASCII.

Rather, an implementation is required to provide a unique character code for each

of the printable graphics used by C, and for each of the control codes representable

by an escape sequence. (No particular graphic representation for any character is

prescribed — thus the common Japanese practice of using the glyph ¥ for the C

character ' \ ' is perfectly legitimate.) Translation and execution environments may

have different character sets, but each must meet this requirement in its own way.

The goal is to ensure that a conforming implementation can translate a C translator

written in C.

For this reason, and economy of description, source code is described as if it

undergoes the same translation as text that is input by the standard library I/O rou¬

tines: each line is terminated by some new-line character, regardless of its external

representation.

RATIONALE

14 Section 2. ENVIRONMENT

2.2.1.1 Trigraph sequences

Trigraph sequences have been introduced as alternate spellings of some characters

to allow the implementation of C in character sets which do not provide a sufficient

number of non-alphabetic graphics.

Implementations are required to support these alternate spellings, even if the

character set in use is ASCII, in order to allow transportation of code from systems

which must use the trigraphs.

The Committee faced a serious problem in trying to define a character set for C.

Not all of the character sets in general use have the right number of characters, nor do

they support the graphical symbols that C users expect to see. For instance, many

character sets for languages other than English resemble ASCII except that codes

used for graphic characters in ASCII are instead used for extra alphabetic characters

or diacritical marks. C relies upon a richer set of graphic characters than most other

programming languages, so the representation of programs in character sets other

than ASCII is a greater problem than for most other programming languages.

The International Standards Organization (ISO) uses three technical terms to

describe character sets: repertoire, collating sequence, and codeset. The repertoire is

the set of distinct printable characters. The term abstracts the notion of printable

character from any particular representation; the glyphs R, IZ, R, R, R, R, and 5? all

represent the same element of the repertoire, upper-case-R, which is distinct from

lower-case-r. Having decided on the repertoire to be used (C needs a repertoire of

96 characters), one can then pick a collating sequence which corresponds to the in¬

ternal representation in a computer. The repertoire and collating sequence together

form the codeset.

What is needed for C is to determine the necessary repertoire, ignore the collating

sequence altogether (it is of no importance to the language), and then find ways of

expressing the repertoire in a way that should give no problems with currently

popular codesets.

C derived its repertoire from the ASCII codeset. Unfortunately the ASCII reper¬

toire is not a subset of all other commonly used character sets, and widespread

practice in Europe is not to implement all of ASCII either, but use some parts of

its collating sequence for special national characters.

The solution is an internationally agreed-upon repertoire, in terms of which

an international representation of C can be defined. The ISO has defined such a

standard: ISO 646 describes an invariant subset of ASCII.

The characters in the ASCII repertoire used by C and absent from the ISO 646

repertoire are:

[] -C > \ I " ~

Given this repertoire, the Committee faced the problem of defining representations

for the absent characters. The obvious idea of defining two-character escape se¬

quences fails because C uses all the characters which are in the ISO 646 repertoire:

2.2. Environmental considerations 15

no single escape character is available. The best that can be done is to use a trigraph

— an escape digraph followed by a distinguishing character.

?? was selected as the escape digraph because it is not used anywhere else

in C (except as noted below); it suggests that something unusual is going on. The

third character was chosen with an eye to graphical similarity to the character being

represented.

The sequence ?? cannot currently occur anywhere in a legal C program except

in strings, character constants, comments, or header names. The character escape

sequence ' \? 1 (see §3.1.3.4) was introduced to allow two adjacent question-marks

in such contexts to be represented as ?\?, a form distinct from the escape digraph.

The Committee makes no claims that a program written using trigraphs looks

attractive. As a matter of style, it may be wise to surround trigraphs with white

space, so that they stand out better in program text. Some users may wish to define

preprocessing macros for some or all of the trigraph sequences.

QUIET CHANGE

Programs with character sequences such as ??! in string constants,

character constants, or header names will now produce different results.

2.2.1.2 Multibyte characters

The “byte = character” orientation of C works well for text in Western alphabets,

where the size of the character set is under 256. The fit is rather uncomfortable for

languages such as Japanese and Chinese, where the repertoire of ideograms numbers

in the thousands or tens of thousands.

Internally, such character sets can be represented as numeric codes, and it is

merely necessary to choose the appropriate integral type to hold any such character.

Externally, whether in the files manipulated by a program, or in the text of the

source files themselves, a conversion between these large codes and the various byte

media is necessary.

The support in C of large character sets is based on these principles:

• Multibyte encodings of large character sets are necessary in I/O operations,

in source text comments, and in source text string and character literals.

• No existing multibyte encoding is mandated in preference to any other; no

widespread existing encoding should be precluded.

• The null character (' \0') may not be used as part of a multibyte encoding,

except for the one-byte null character itself. This allows existing functions

which manipulate strings transparently to work with multibyte sequences.

• Shift encodings (which interpret byte sequences in part on the basis of some

state information) must start out in a known (default) shift state under certain

circumstances, such as the start of string literals.

RATIONALE

16 Section 2. ENVIRONMENT

• The minimum number of absolutely necessary library functions is introduced.

(See §4.10.7.)

2.2.2 Character display semantics

The Standard defines a number of internal character codes for specifying “format

effecting actions on display devices,” and provides printable escape sequences for

each of them. These character codes are clearly modelled after ASCII control codes,

and the mnemonic letters used to specify their escape sequences reflect this her¬

itage. Nevertheless, they are internal codes for specifying the format of a display

in an environment-independent manner; they must be written to a text file to effect

formatting on a display device. The Standard states quite clearly that the exter¬

nal representation of a text file (or data stream) may well differ from the internal

form, both in character codes and number of characters needed to represent a single

internal code.

The distinction between internal and external codes most needs emphasis with

respect to new-line. ANSI X3L2 (Codes and Character Sets) uses the term to re¬

fer to an external code used for information interchange whose display semantics

specify a move to the next line. Both ANSI X3L2 and ISO 646 deprecate the com¬

bination of the motion to the next line with a motion to the initial position on the

line. The C Standard, on the other hand, uses new-line to designate the end-of-line

internal code represented by the escape sequence '\n'. While this ambiguity is

perhaps unfortunate, use of the term in the latter sense is nearly universal within

the C community. But the knowledge that this internal code has numerous ex¬

ternal representations, depending upon operating system and medium, is equally

widespread.

The alert sequence ('\a') has been added by popular demand, to replace, for

instance, the ASCII BEL code explicitly coded as 1 \007 '.

Proposals to add 1 \e ' for ASCII ESC (1 \0331) were not adopted because other

popular character sets such as EBCDIC have no obvious equivalent. (See §3.1.3.4.)

The vertical tab sequence (1 \v') was added since many existing implementations

support it, and since it is convenient to have a designation within the language for

a 11 the defined white space characters.

The semantics of the motion control escape sequences carefully avoid the Western

language assumptions that printing advances left-to-right and top-to-bottom.

To avoid the issue of whether an implementation conforms if it cannot properly

effect vertical tabs (for instance), the Standard emphasizes that the semantics merely

describe intent.

2.2.3 Signals and interrupts

Signals are difficult to specify in a system-independent way. The Committee con¬

cluded that about the only thing a strictly conforming program can do in a signal

handler is to assign a value to a volatile static variable which can be written

2.2. Environmental considerations 17

uninterruptedly and promptly return. (The header <signal.h> specifies a type

sig_atomic_t which can be so written.) It is further guaranteed that a signal han¬

dler will not corrupt the automatic storage of an instantiation of any executing

function, even if that function is called within the signal handler.

No such guarantees can be extended to library functions, with the explicit ex¬

ceptions of longjmp (§4.6.2.1) and signal (§4.7.1.1), since the library functions

may be arbitrarily interrelated and since some of them have profound effect on the

environment.

Calls to longjmp are problematic, despite the assurances of §4.6.2.1. The signed

could have occurred during the execution of some library function which was in the

process of updating external state and/or static variables.

A second signal for the same handler could occur before the first is processed,

and the Standard makes no guarantees as to what happens to the second signal.

2.2.4 Environmental limits

The Committee agreed that the Standard must say something about certain capa¬

cities and limitations, but just how to enforce these treaty points was the topic of

considerable debate.

2.2.4.1 Translation limits

The Standard requires that an implementation be able to translate and compile

some program that meets each of the stated limits. This criterion was felt to give

a useful latitude to the implementor in meeting these limits. While a deficient

implementation could probably contrive a program that meets this requirement, yet

still succeed in being useless, the Committee felt that such ingenuity would probably

require more work than making something useful. The sense of the Committee is

that implementors should not construe the translation limits as the values of hard¬

wired parameters, but rather as a set of criteria by which an implementation will

be judged.

Some of the limits chosen represent interesting compromises. The goal was to

allow reasonably large portable programs to be written, without placing excessive

burdens on reasonably small implementations.

The minimum maximum limit of 257 cases in a switch statement allows coding

of lexical routines which can branch on any character (one of at least 256 values) or

on the value EOF.

2.2.4.2 Numerical limits

In addition to the discussion below, see §4.1.4.

2.2.4.2.1 Sizes of integral types <limits .h> Such a large body of C code has

been developed for 8-bit byte machines that the integer sizes in such environments

RATIONALE

18 Section 2. ENVIRONMENT

must be considered normative. The prescribed limits are minima: an implementa¬

tion on a machine with 9-bit bytes can be conforming, as can an implementation

that defines int to be the same width as long. The negative limits have been cho¬

sen to accommodate ones-complement or sign-magnitude implementations, as well

as the more usual twos-complement. The limits for the maxima and minima of un¬

signed types are specified as unsigned constants (e.g., 65535u) to avoid surprising

widenings of expressions involving these extrema.

The macro CHAFLBIT makes available the number of bits in a char object. The

Committee saw little utility in adding such macros for other data types.

The names associated with the short int types (SHRT_MIN, etc., rather than

SH0RT_MIN, etc.) reflect prior art rather than obsessive abbreviation on the Com¬

mittee’s part.

2.2.4.2.2 Characteristics of floating types <float.h> The characterization

of floating point follows, with minor changes, that of the FORTRAN standardiza¬

tion committee (X3J3).1 The Committee chose to follow the FORTRAN model in

some part out of a concern for FORTRAN-to-C translation, and in large part out

of deference to the FORTRAN committee’s greater experience with fine points of

floating point usage. Note that the floating point model adopted permits all com¬

mon representations, including sign-magnitude and twos-complement, but precludes

a logarithmic implementation.

Single precision (32-bit) floating point is considered adequate to support a con¬

forming C implementation. Thus the minimum maxima constraining floating types

are extremely permissive.

The Committee has also endeavored to accommodate the IEEE 754 floating

point standard by not adopting any constraints on floating point which are contrary

to this standard.

The term FLT_MANT_DIG stands for “float mantissa digits.” The Standard now

uses the more precise term significand rather than mantissa.

JSee X3J3 working document S8-112.

Section 3

LANGUAGE

While more formal methods of language definition were explored, the Committee

decided early on to employ the style of the Base Document: Backus-Naur Form for

the syntax and prose for the constraints and semantics. Anything more ambitious

was considered to be likely to delay the Standard, and to make it less accessible to

its audience.

3.1 Lexical Elements

The Standard endeavors to bring preprocessing more closely into line with the token

orientation of the language proper. To do so requires that at least some information

about white space be retained through the early phases of translation (see §2.1.1.2).

It also requires that an inverse mapping be defined from tokens back to source

characters (see §3.8.3).

3.1.1 Keywords

Several keywords have been added: const, enum, signed, void, and volatile.

As much as possible, however, new features have been added by overloading ex¬

isting keywords, as, for example, long double instead of extended. It is recognized

that each added keyword will require some existing code that used it as an identi¬

fier to be rewritten. No meaningful programs are known to be quietly changed by

adding the new keywords.

The keywords entry, fortran, and asm have not been included since they were

either never used, or are not portable. Uses of fortran and asm as keywords are

noted as common extensions.

3.1.2 Identifiers

While an implementation is not obliged to remember more than the first 31 charac¬

ters of an identifier for the purpose of name matching, the programmer is effectively

prohibited from intentionally creating two different identifiers that are the same in

19

20 Section 3. LANGUAGE

the first 31 characters. Implementations may therefore store the full identifier; they

are not obliged to truncate to 31.

The decision to extend significance to 31 characters for internal names was made

with little opposition, but the decision to retain the old six-character case-insensitive

restriction on significance of external names was most painful. While strong senti¬

ment was expressed for making C “right” by requiring longer names everywhere, the

Committee recognized that the language must, for years to come, coexist with other

languages and with older assemblers and linkers. Rather than undermine support

for the Standard, the severe restrictions have been retained.

The Committee has decided to label as obsolescent the practice of providing

different identifier significance for internal and external identifers, thereby signalling

its intent that some future version of the C Standard require 31-character case-

sensitive external name significance, and thereby encouraging new implementations

to support such significance.

Three solutions to the external identifier length/case problem were explored,

each with its own set of problems:

1. Label any C implementation without at least 31-character, case-sensitive sig¬

nificance in external identifiers as non-standard. This is unacceptable since

the whole reason for a standard is portability, and many systems today simply

do not provide such a name space.

2. Require a C implementation which cannot provide 31-character, case-sensitive

significance to map long identifiers into the identifier name space that it can

provide. This option quickly becomes very complex for large, multi-source

programs, since a program-wide database has to be maintained for all modules

to avoid giving two different identifiers the same actual external name. It also

reduces the usefulness of source code debuggers and cross reference programs,

which generally work with the short mapped names, since the source-code

name used by the programmer would likely bear little resemblance to the

name actually generated.

3. Require a C implementation which cannot provide 31-character, case-sensitive

significance to rewrite the linker, assembler, debugger, any other language

translators which use the linker, etc. This is not always practical, since

the C implementor might not be providing the linker, etc. Indeed, on some

systems only the manufacturer’s linker can be used, either because the format

of the resulting program file is not documented, or because the ability to create

program files is restricted to secure programs.

Because of the decision to restrict significance of external identifiers to six case-

insensitive characters, C programmers are faced with these choices when writing

portable programs:

1. Make sure that external identifiers are unique within the first six characters,

3.1. Lexical Elements 21

and use only one case within the name. A unique six-character prefix could be

used, followed by an underscore, followed by a longer, more descriptive name:

extern int a_xvz_real_long_name;

extern int a_rwt_real_long_name2;

2. Use the prefix method described above, and then use #def ine statements to

provide a longer, more descriptive name for the unique name, such as:

#define real_long_name a_xvz_real_long_name

#define real_long_name2 a_rwt_real_long_name2

Note that overuse of this technique might result in exceeding the limit on the

number of allowed #def ine macros, or some other implementation limit.

3. Use longer and/or multi-case external names, and limit the portability of the

programs to systems that support the longer names.

4. Declare all exported items (or pointers thereto) in a single data structure

and export that structure. The technique can reduce the number of external

identifiers to one per translation unit; member names within the structure are

internal identifiers, hence can have full significance. The principal drawback

of this technique is that functions can only be exported by reference, not by

name; on many systems this entails a run-time overhead on each function call.

QUIET CHANGE

A program that depends upon internal identifiers matching only in the

first (say) eight characters may change to one with distinct objects for

each variant spelling of the identifier.

3.1.2.1 Scopes of identifiers

The Standard has separated from the overloaded keywords for storage classes the

various concepts of scope, linkage, name space, and storage duration. (See §3.1.2.2,

§3.1.2.3, §3.1.2.4.) This has traditionally been a major area of confusion.

One source of dispute was whether identifiers with external linkage should have

file scope even when introduced within a block. The Base Document is vague on

this point, and has been interpreted differently by different implementations. For

example, the following fragment would be valid in the file scope scheme, while invalid

in the block scope scheme:

typedef struct data d_struct ;

first(){

extern d_struct funcQ;

/* . • • */
>

RATIONALE

22 Section 3. LANGUAGE

second(){

d_struct n = funcQ;

>

While it was generally agreed that it is poor practice to take advantage of an external

declaration once it had gone out of scope, some argued that a translator had to

remember the declaration for checking anyway, so why not acknowledge this? The

compromise adopted was to decree essentially that block scope rules apply, but that

a conforming implementation need not diagnose a failure to redeclare an external

identifier that had gone out of scope (undefined behavior).

QUIET CHANGE

A program relying on file scope rules may be valid under block scope

rules but behave differently — for instance, if d_struct were defined as

type float rather than struct data in the example above.

Although the scope of an identifier in a function prototype begins at its declaration

and ends at the end of that function’s declarator, this scope is of course ignored by

the preprocessor. Thus an identifier in a prototype having the same name as that

of an existing macro is treated as an invocation of that macro. For example:

#define status 23

void exit(int status);

generates an error, since the prototype after preprocessing becomes

void exit(int 23);

Perhaps more surprising is what happens if status is defined

#define status []

Then the resulting prototype is

void exit (int []);

which is syntactically correct but semantically quite different from the intent.

To protect an implementation’s header prototypes from such misinterpretation,

the implementor must write them to avoid these surprises. Possible solutions include

not using identifiers in prototypes, or using names (such as __status or -Status) in

the reserved name space.

3.1. Lexical Elements 23

3.1.2.2 Linkages of identifiers

The Standard requires that the first declaration, implicit or explicit, of an identifier

specify (by the presence or absence of the keyword static) whether the identifier

has internal or external linkage. This requirement allows for one-pass compilation

in an implementation which must treat internal linkage items differently than ex¬

ternal linkage items. An example of such an implementation is one which produces

intermediate assembler code, and which therefore must construct names for internal

linkage items to circumvent identifier length and/or case restrictions in the target

assembler.

Existing practice in this area is inconsistent. Some implementations have avoided

the renaming problem simply by restricting internal linkage names by the same rules

as for external linkage. Others have disallowed a static declaration followed later by

a defining instance, even though such constructs are necessary to declare mutually

recursive static functions. The requirements adopted in the Standard may call for

changes in some existing programs, but allow for maximum flexibility.

The definition model to be used for objects with external linkage was a major

standardization issue. The basic problem was to decide which declarations of an

object define storage for the object, and which merely reference an existing object.

A related problem was whether multiple definitions of storage are allowed, or only

one is acceptable. Existing implementations of C exhibit at least four different

models, listed here in order of increasing restrictiveness:

Common Every object declaration with external linkage (whether or not the key¬

word extern appears in the declaration) creates a definition of storage. When

all of the modules are combined together, each definition with the same name

is located at the same address in memory. (The name is derived from common

storage in FORTRAN.) This model was the intent of the original designer of

C, Dennis Ritchie.

Relaxed Ref/Def The appearance of the keyword extern (whether it is used out¬

side of the scope of a function or not) in a declaration indicates a pure reference

(ref), which does not define storage. Somewhere in all of the translation units,

at least one definition (def) of the object must exist. An external definition

is indicated by an object declaration in file scope containing no storage class

indication. A reference without a corresponding definition is an error. Some

implementations also will not generate a reference for items which are declared

with the extern keyword, but are never used within the code. The UNIX oper¬

ating system C compiler and linker implement this model, which is recognized

as a common extension to the C language (F.4.11). UNIX C programs which

take advantage of this model are standard conforming in their environment,

but are not maximally portable.

Strict Ref/Def This is the same as the relaxed ref/def model, save that only one

definition is allowed. Again, some implementations may decide not to put out

RATIONALE

24 Section 3. LANGUAGE

references to items that are not used. This is the model specified in K&R and

in the Base Document.

Initialization This model requires an explicit initialization to define storage. All

other declarations are references.

Figure 3.1 demonstrates the differences between the models.

The model adopted in the Standard is a combination of features of the strict

ref/def model and the initialization model. As in the strict ref/def model, only a

single translation unit contains the definition of a given object — many environ¬

ments cannot effectively or efficiently support the “distributed definition” inherent

in the common or relaxed ref/def approaches. However, either an initialization, or

an appropriate declaration without storage class specifier (see §3.7), serves as the

external definition. This composite approach was chosen to accommodate as wide

a range of environments and existing implementations as possible.

3.1.2.3 Name spaces of identifiers

Implementations have varied considerably in the number of separate name spaces

maintained. The position adopted in the Standard is to permit as many separate

name spaces as can be distinguished by context, except that all tags (struct, union,

and enum) comprise a single name space.

3.1.2.4 Storage durations of objects

It was necessary to clarify the effect on automatic storage of jumping into a block

that declares local storage. (See §3.6.2.) While many implementations allocate

the maximum depth of automatic storage upon entry to a function, some explicitly

allocate and deallocate on block entry and exit. The latter are required to assure that

local storage is allocated regardless of the path into the block (although initializers

in automatic declarations are not executed unless the block is entered from the top).

To effect true reentrancy for functions in the presence of signals raised asyn¬

chronously (see §2.2.3), an implementation must assure that the storage for func¬

tion return values has automatic duration. This means that the caller must allocate

automatic storage for the return value and communicate its location to the called

function. (The typical case of return registers for small types conforms to this re¬

quirement: the calling convention of the implementation implicitly communicates

the return location to the called function.)

3.1.2.5 Types

Several new types have been added:

void

void *

signed char

3.1. Lexical Elements 25

Figure 3.1: Comparison of identifier linkage models

Model File 1 File 2

common

extern int i;

raainO {

i = 1;

second!);

}

extern int i;

secondQ {

third(i);

}

Relaxed Ref/Def

int i;

mainO {

i = 1;

secondQ ;

}

int i;

secondQ {

third(i);

}

Strict Ref/Def

int i;

main() {

i = l;

secondQ ;

}

extern int i;

secondQ {

third(i);

}

Initializer

int i = 0;

mainO {

i = 1;

secondQ ;

}

int i;

secondQ {

third(i);

}

RATIONALE

26 Section 3. LANGUAGE

unsigned char

unsigned short

unsigned long

long double

New designations for existing types have been added:

signed short for short

signed int for int

signed long for long

void is used primarily as the typemark for a function which returns no result. It

may also be used, in any context where the value of an expression is to be discarded,

to indicate explicitly that a value is ignored by writing the cast (void). Finally, a

function prototype list that has no arguments is written as f (void), because f ()

retains its old meaning that nothing is said about the arguments.

A “pointer to void,” void *, is a generic pointer, capable of pointing to any

(data) object without truncation. A pointer to void must have the same represen¬

tation and alignment as a pointer to character; the intent of this rule is to allow

existing programs which call library functions (such as memcpy and free) to con¬

tinue to work. A pointer to void may not be dereferenced, although such a pointer

may be converted to a normal pointer type which may be dereferenced. Pointers to

other types coerce silently to and from void * in assignments, function prototypes,

comparisons, and conditional expressions, whereas other pointer type clashes are

invalid. It is undefined what will happen if a pointer of some type is converted to

void *, and then the void * pointer is converted to a type with a stricter alignment

requirement.

Three types of char are specified: signed, plain, and unsigned. A plain char

may be represented as either signed or unsigned, depending upon the implementa¬

tion, as in prior practice. The type signed char was introduced to make available

a one-byte signed integer type on those systems which implement plain char as

unsigned. For reasons of symmetry, the keyword signed is allowed as part of the

type name of other integral types.

Two varieties of the integral types are specified: signed and unsigned. If neither

specifier is used, signed is assumed. In the Base Document the only unsigned type

is unsigned int.

The keyword unsigned is something of a misnomer, suggesting as it does arith¬

metic that is non-negative but capable of overflow. The semantics of the C type

unsigned is that of modulus, or wrap-around, arithmetic, for which overflow has

no meaning. The result of an unsigned arithmetic operation is thus always defined,

whereas the result of a signed operation may (in principle) be undefined. In prac¬

tice, on twos-complement machines, both types often give the same result for all

operators except division, modulus, right shift, and comparisons. Hence there has

been a lack of sensitivity in the C community to the differences between signed and

unsigned arithmetic (see §3.2.1.1).

3.1. Lexical Elements 27

The Committee has explicitly restricted the C language to binary architectures,

on the grounds that this stricture was implicit in any case:

• Bit-fields are specified by a number of bits, with no mention of “invalid integer”

representation. The only reasonable encoding for such bit-fields is binary.

• The integer formats for printf suggest no provision for “illegal integer” values,

implying that any result of bitwise manipulation produces an integer result

which can be printed by printf.

• All methods of specifying integer constants — decimal, hex, and octal -

specify an integer value. No method independent of integers is defined for

specifying “bit-string constants.” Only a binary encoding provides a complete

one-to-one mapping between bit strings and integer values.

The restriction to “binary numeration systems” rules out such curiosities as Gray

code, and makes possible arithmetic definitions of the bitwise operators on unsigned

types (see §3.3.3.3, §3.3.7, §3.3.10, §3.3.11, §3.3.12).

A new floating type long double has been added to C. The long double type

must offer at least as much precision as the type double. Several architectures

support more than two floating types and thus can map a distinct machine type

onto this additional C type. Several architectures which only support two float¬

ing point types can also take advantage of the three C types by mapping the less

precise type onto float and double, and designating the more precise type long

double. Architectures in which this mapping might be desirable include those in

which single-precision floats offer at least as much precision as most other ma¬

chines’s double-precision, or those on which single-precision is considerably more

efficient than double-precision. Thus the common C floating types would map onto

an efficient implementation type, but the more precise type would still be available

to those programmers who require its use.

To avoid confusion, long float as a synonym for double has been retired.

Enumerations permit the declaration of named constants in a more convenient and

structured fashion than #define’s. Both enumeration constants and variables be¬

have like integer types for the sake of type checking, however.

The Committee considered several alternatives for enumeration types in C:

1. leave them out;

2. include them as definitions of integer constants;

3. include them in the weakly typed form of the UNIX C compiler;

4. include them with strong typing, as, for example, in Pascal.

The Committee adopted the second alternative on the grounds that this approach

most clearly reflects common practice. Doing away with enumerations altogether

would invalidate a fair amount of existing code; stronger typing than integer creates

problems, for instance, with arrays indexed by enumerations.

RATIONALE

28 Section 3. LANGUAGE

3.1.2.6 Compatible type and composite type

The notions of compatible types and composite type have been introduced to discuss

those situations in which type declarations need not be identical. These terms are

especially useful in explaining the relationship between an incomplete type and a

complete type.

Structure, union, or enumeration type declarations in two different translation

units do not formally declare the same type, even if the text of these declarations

come from the same include file, since the translation units are themselves disjoint.

The Standard thus specifies additional compatibility rules for such types, so that if

two such declarations are sufficiently similar they are compatible.

3.1.3 Constants

In folding and converting constants, an implementation must use at least as much

precision as is provided by the target environment. However, it is not required to use

exactly the same precision as the target, since this would require a cross compiler

to simulate target arithmetic at translation time.

The Committee considered the introduction of structure constants. Although it

agreed that structure literals would occasionally be useful, its policy has been not to

invent new features unless a strong need exists. Since the language already allows

for initialized const structure objects, the need for inline anonymous structured

constants seems less than pressing.

Several implementation difficulties beset structure constants. All other forms of

constants are “self typing” the type of the constant is evident from its lexical

structure. Structure constants would require either an explicit type mark, or typing

by context; either approach is considered to require increased complexity in the

design of the translator, and either approach would also require as much, if not

more, care on the part of the programmer as using an initialized structure object.

3.1.3.1 Floating constants

Consistent with existing practice, a floating point constant has been defined to have

type double. Since the Standard now allows expressions that contain only float

operands to be performed in float arithmetic (see §3.2.1.5) rather than double, a

method of expressing explicit float constants is desirable. The new long double

type raises similar issues.

Thus the F and L suffixes have been added to convey type information with

floating constants, much like the L suffix for long integers. The default type of

floating constants remains double, for compatibility with prior practice. Lower

case f and 1 are also allowed as suffixes.

Note that the run-time selection of the decimal point character by setlocale

(§4.4.1) has no effect on the syntax of C source text: the decimal point character is

always period.

3.1. Lexical Elements 29

3.1.3.2 Integer constants

The rule that the default type of a decimal integer constant is either int, long, or

unsigned long, depending on which type is large enough to hold the value without

overflow, simplifies the use of constants.

The suffixes U and u have been added to specify unsigned numbers.

Unlike decimal constants, octal and hexadecimal constants too large to be ints

are typed as unsigned int (if within range of that type), since it is more likely that

they represent bit patterns or masks, which are generally best treated as unsigned,

rather than “real” numbers.

Little support was expressed for the old practice of permitting the digits 8 and 9

in an octal constant, so it has been dropped.

A proposal to add binary constants was rejected due to lack of precedent and

insufficient utility.

Despite a concern that a lower-case L could be taken for the numeral one at the

end of an integral (or floating) literal, the Committee rejected proposals to remove

this usage, primarily on the grounds of sanctioning existing practice.

The rules given for typing integer constants were carefully worked out in accor¬

dance with the Committee’s deliberations on integral promotion rules (see §3.2.1.1).

QUIET CHANGE

Unsuffixed integer constants may have different types. In Iv&R, unsuf¬
fixed decimal constants greater than INT_MAX, and unsuffixed octal or
hexadecimal constants greater than UINT_MAX are of type long.

3.1.3.3 Enumeration constants

Whereas an enumeration variable may have any integer type that correctly repre¬

sents all its values when widened to int, an enumeration constant is only usable as

the value of an expression. Hence its type is simply int. (See §3.1.2.5.)

3.1.3.4 Character constants

The digits 8 and 9 are no longer permitted in octal escape sequences. (Cf. octal

constants, §3.1.3.2.)

The alert escape sequence has been added (see §2.2.2).

Hexadecimal escape sequences, beginning with \x, have been adopted, with

precedent in several existing implementations. (Little sentiment was garnered for

providing \X as well.) The escape sequence extends to the first non-hex-digit char¬

acter, thus providing the capability of expressing any character constant no matter

how large the type char is. String concatenation can be used to specify a hex-digit

character following a hexadecimal escape sequence:

char a[] = "\xff" "f" ;

char b[] = {’\xff’ , ’f ’ , »\0»>;

RATIONALE

30 Section 3. LANGUAGE

These two initializations give a and b the same string value.

The Committee has chosen to reserve all lower case letters not currently used

for future escape sequences (undefined behavior). All other characters with no cur¬

rent meaning are left to the implementor for extensions (implementation-defined

behavior). No portable meaning is assigned to multi-character constants or ones

containing other than the mandated source character set (implementation-defined

behavior).

The Committee considered proposals to add the character constant '\e' to

represent the ASCII ESC (' \0331) character. This proposal was based upon the use

of ESC as the initial character of most control sequences in common terminal driving

disciplines, such as ANSI X3.64. However, this usage has no obvious counterpart

in other popular character codes, such as EBCDIC. A programmer merely wishing

to avoid having to type \033 to represent the ESC character in an ASCII/X3.64

environment, may, instead of writing

printf ("\033[10; 10h'/,d\n" , somevalue) ;

write:

#define ESC "\033"

printf (ESC " [10; 10h'/,d\n" , somevalue);

Notwithstanding the general rule that literal constants are non-negative1, a char¬

acter constant containing one character is effectively preceded with a (char) cast

and hence may yield a negative value if plain char is represented the same as signed

char. This simply reflects widespread past practice and was deemed too dangerous

to change.

QUIET CHANGE

A constant of the form 1 \078 1 is valid, but now has different meaning.

It now denotes a character constant whose value is the (implementation-

defined) combination of the values of the two characters 1 \07' and 1 81.

In some implementations the old meaning is the character whose code is

078 = 0100 = 64.

QUIET CHANGE

A constant of the form ' \a.' or '\x' now may have different meaning.

The old meaning, if any, was implementation dependent.

An L prefix distinguishes wide character constants. (See §2.2.1.2.)

:-3 is an expression: unary minus with operand 3.

3.1. Lexical Elements 31

3.1.4 String literals

String literals are specified to be unmodifiable. This specification allows imple¬

mentations to share copies of strings with identical text, to place string literals in

read-only memory, and perform certain optimizations. However, string literals do

not have the type array of const char, in order to avoid the problems of pointer

type checking, particularly with library functions, since assigning a pointer to const

char to a plain pointer to char is not valid. Those members of the Committee who

insisted that string literals should be modifiable were content to have this practice

designated a common extension (see F.5.5).

Existing code which modifies string literals can be made strictly conforming by

replacing the string literal with an initialized static character array. For instance,

char *p, *rnake_temp(char *str);

/* ... */
p = make_temp("tempXXX");

/* make_temp overwrites the literal */

/* with a unique name */

can be changed to:

char *p, *make_temp(char *str);

/* ... */
{

static char template!] = "tempXXX";

p = make_temp(template);

>

A long string can be continued across multiple lines by using the backslash-

newline line continuation, but this practice requires that the continuation of the

string start in the first position of the next line. To permit more flexible layout,

and to solve some preprocessing problems (see §3.8.3), the Committee introduced

string literal concatenation. Two string literals in a row are pasted together (with

no null character in the middle) to make one combined string literal. This addition

to the C language allows a programmer to extend a string literal beyond the end of

a physical line without having to use the backslash-newline mechanism and thereby

destroying the indentation scheme of the program. An explicit concatenation oper¬

ator was not introduced because the concatenation is a lexical construct rather than

a run-time operation,

without concatenation:

/* say the column is this wide */

alpha = "abcdefghijklm\

nopqrstuvwxyz" ;

with concatenation:

RATIONALE

32 Section 3. LANGUAGE

/* say the column is this wide */

alpha = "abcdefghijklm"

"nopqrstuvwxyz";

QUIET CHANGE

A string of the form "\078" is valid, but now has different meaning. (See

§3.1.3.)

QUIET CHANGE

A string of the form "\a" or "\x" now has different meaning. (See

§3.1.3.)

QUIET CHANGE

It is neither required nor forbidden that identical string literals be rep¬

resented by a single copy of the string in memory; a program depending

upon either scheme may behave differently.

An L prefix distinguishes wide string literals. A prefix (as opposed to suffix)

notation was adopted so that a translator can know at the start of the processing

of a long string literal whether it is dealing with ordinary or wide characters. (See

§2.2.1.2.)

3.1.5 Operators

Assignment operators of the form =+, described as old fashioned even in K&R, have

been dropped.

The form += is now defined to be a single token, not two, so no white space is

permitted within it; no compelling case could be made for permitting such white

space.

QUIET CHANGE

Expressions of the form x=-3 change meaning with the loss of the old-

style assignment operators.

The operator # has been added in preprocessing statements: within a #define it

causes the macro argument following to be converted to a string literal.

The operator ## has also been added in preprocessing statements: within a

#def ine it causes the tokens on either side to be pasted to make a single new token.

See §3.8.3 for further discussion of these preprocessing operators.

3.1. Lexical Elements 33

3.1.6 Punctuators

The punctuator . . . (ellipsis) has been added to denote a variable number of trailing

arguments in a function prototype. (See §3.5.4.3.)

The constraint that certain punctuators must occur in pairs (and the similar con¬

straint on certain operators in §3.1.5) only applies after preprocessing. Syntactic

constraints are checked during syntactic analysis, and this follows preprocessing.

3.1.7 Header names

Header names in #include directives obey distinct tokenization rules; hence they

are identified as distinct tokens. Attempting to treat quote-enclosed header names

as string literals creates a contorted description of preprocessing, and the problems

of treating angle-bracket-enclosed header names as a sequence of C tokens is even

more severe.

3.1.8 Preprocessing numbers

The notion of preprocessing numbers has been introduced to simplify the description

of preprocessing. It provides a means of talking about the tokenization of strings

that look like numbers, or initial substrings of numbers, prior to their semantic

interpretation. In the interests of keeping the description simple, occasional spurious

forms are scanned as preprocessing numbers — 0xl23E+l is a single token under the

rules. The Committee felt that it was better to tolerate such anomalies than burden

the preprocessor with a more exact, and exacting, lexical specification. It felt that

this anomaly was no worse than the principle under which the characters a+++++b

are tokenized as a ++ ++ + b (an invalid expression), even though the tokenization

a ++ + ++ b would yield a syntactically correct expression. In both cases, exercise

of reasonable precaution in coding style avoids surprises.

3.1.9 Comments

The Committee considered proposals to allow comments to nest. The main argu¬

ment for nesting comments is that it would allow programmers to “comment out”

code. The Committee rejected this proposal on the grounds that comments should

be used for adding documentation to a program, and that preferable mechanisms

already exist for source code exclusion. For example,

#if 0

/* this code is bracketed out because ... */

code_to_be_excluded();

#endif

Preprocessing directives such as this prevent the enclosed code from being scanned

by later translation phases. Bracketed material can include comments and other,

nested, regions of bracketed code.

RATIONALE

34 Section 3. LANGUAGE

Another way of accomplishing these goals is with an if statement:

if (0) {

/* this code is bracketed out because ... */

code_to_be_excluded();

>

Many modern compilers will generate no code for this if statement.

3.2 Conversions

3.2.1 Arithmetic operands

3.2.1.1 Characters and integers

Since the publication of K&R, a serious divergence has occurred among implemen¬

tations of C in the evolution of integral promotion rules. Implementations fall into

two major camps, which may be characterized as unsigned preserving and value

preserving. The difference between these approaches centers on the treatment of

unsigned char and unsigned short, when widened by the integral promotions,

but the decision has an impact on the typing of constants as well (see §3.1.3.2).

The unsigned preserving approach calls for promoting the two smaller unsigned

types to unsigned int. This is a simple rule, and yields a type which is independent

of execution environment.

The value preserving approach calls for promoting those types to signed int,

if that type can properly represent all the values of the original type, and otherwise

for promoting those types to unsigned int. Thus, if the execution environment

represents short as something smaller than int, unsigned short becomes int;

otherwise it becomes unsigned int.

Both schemes give the same answer in the vast majority of cases, and both

give the same effective result in even more cases in implementations with twos-

complement arithmetic and quiet wraparound on signed overflow — that is, in most

current implementations. In such implementations, differences between the two only

appear when these two conditions are both true:

1. An expression involving an unsigned char or unsigned short produces an

int-wide result in which the sign bit is set: i.e., either a unary operation on

such a type, or a binary operation in which the other operand is an int or

“narrower” type.

2. The result of the preceding expression is used in a context in which its signed¬

ness is significant:

• sizeof (int) < sizeof (long) and it is in a context where it must be

widened to a long type, or

3.2. Conversions 35

• it is the left operand of the light-shift operator (in an implementation

where this shift is defined as arithmetic), or

• it is either operand of /, '/,, <, <=, >, or >=.

In such circumstances a genuine ambiguity of interpretation arises. The result

must be dubbed questionably signed, since a case can be made for either the signed or

unsigned interpretation. Exactly the same ambiguity arises whenever an unsigned

int confronts a signed int across an operator, and the signed int has a negative

value. (Neither scheme does any better, or any worse, in resolving the ambiguity

of this confrontation.) Suddenly, the negative signed int becomes a very large

unsigned int, which may be surprising — or it may be exactly what is desired by

a knowledgable programmer. Of course, all of these ambiguities can be avoided by

a judicious use of casts.

One of the important outcomes of exploring this problem is the understanding

that high-quality compilers might do well to look for such questionable code and

offer (optional) diagnostics, and that conscientious instructors might do well to warn

programmers of the problems of implicit type conversions.

The unsigned preserving rules greatly increase the number of situations where

unsigned int confronts signed int to yield a questionably signed result, whereas

the value preserving rules minimize such confrontations. Thus, the value preserving

rules were considered to be safer for the novice, or unwary, programmer. After much

discussion, the Committee decided in favor of value preserving rules, despite the fact

that the UNIX C compilers had evolved in the direction of unsigned preserving.

QUIET CHANGE

A program that depends upon unsigned preserving arithmetic conver¬

sions will behave differently, probably without complaint. This is con¬

sidered the most serious semantic change made by the Committee to a

widespread current practice.

The Standard clarifies that the integral promotion rules also apply to bit-fields.

3.2.1.2 Signed and unsigned integers

Precise rules are now provided for converting to and from unsigned integers. On a

twos-complement machine, the operation is still virtual (no change of representation

is required), but the rules are now stated independent of representation.

3.2.1.3 Floating and integral

There was strong agreement that floating values should truncate toward zero when

converted to an integral type, the specification adopted in the Standard. Although

the Base Document permitted negative floating values to truncate away from zero,

no Committee member knew of current hardware that functions in such a manner.2

2 We have since been informed of one such implementation.

RATIONALE

36 Section 3. LANGUAGE

3.2.1.4 Floating types

The Standard, unlike the Base Document, does not require rounding in the double

to float conversion. Some widely used IEEE floating point processor chips control

floating to integral conversion with the same mode bits as for double-precision to

single-precision conversion; since truncation-toward-zero is the appropriate setting

for C in the former case, it would be expensive to require such implementations to

round to float.

3.2.1.5 Usual arithmetic conversions

The rules in the Standard for these conversions are slight modifications of those

in the Base Document: the modifications accommodate the added types and the

value preserving rules (see §3.2.1.1). Explicit license has been added to perform

calculations in a “wider” type than absolutely necessary, since this can sometimes

produce smaller and faster code (not to mention the correct answer more often).

Calculations can also be performed in a “narrower” type, by the as if rule, so long

as the same end result is obtained. Explicit casting can always be used to obtain

exactly the intermediate types required.

The Committee relaxed the requirement that float operands be converted to

double. An implementation may still choose to convert.

QUIET CHANGE

Expressions with float operands may now be computed at lower preci¬

sion. The Base Document specified that all floating point operations be

done in double.

3.2.2 Other operands

3.2.2.1 Lvalues and function designators

A difference of opinion within the C community has centered around the meaning

of lvalue, one group considering an lvalue to be any kind of object locator, another

group holding that an lvalue is meaningful on the left side of an assigning operator.

The Committee has adopted the definition of lvalue as an object locator. The term

modifiable lvalue is used for the second of the above concepts.

The role of array objects has been a classic source of confusion in C, in large

part because of the numerous contexts in which an array reference is converted to

a pointer to its first element. While this conversion neatly handles the semantics

of subscripting, the fact that a[i] is itself a modifiable lvalue while a is not has

puzzled many students of the language. A more precise description has therefore

been incorporated in the Standard, in the hopes of combatting this confusion.

3.2. Conversions 37

3.2.2.2 void

The description of operators and expressions is simplified by saying that void yields

a value, with the understanding that the value has no representation, hence requires

no storage.

3.2.2.3 Pointers

C has now been implemented on a wide range of architectures. While some of

these architectures feature uniform pointers which are the size of some integer type,

maximally portable code may not assume any necessary correspondence between

different pointer types and the integral types.

The use of void * (“pointer to void”) as a generic object pointer type is an

invention of the Committee. Adoption of this type was stimulated by the desire

to specify function prototype arguments that either quietly convert arbitrary point¬

ers (as in fread) or complain if the argument type does not exactly match (as in

strcmp). Nothing is said about pointers to functions, which may be incommensurate

with object pointers and/or integers.

Since pointers and integers are now considered incommensurate, the only integer

that can be safely converted to a pointer is the constant 0. The result of converting

any other integer to a pointer is machine dependent.

Consequences of the treatment of pointer types in the Standard include:

• A pointer to void may be converted to a pointer to an object of any type.

• A pointer to any object of any type may be converted to a pointer to void.

• If a pointer to an object is converted to a pointer to void and back again to

the original pointer type, the result compares equal to original pointer.

• It is invalid to convert a pointer to an object of any type to a pointer to an

object of a different type without an explicit cast.

• Even with an explicit cast, it is invalid to convert a function pointer to an

object pointer or a pointer to void, or vice-versa.

• It is invalid to convert a pointer to a function of one type to a pointer to a

function of a different type without a cast.

• Pointers to functions that have different parameter-type information (includ¬

ing the “old-style” absence of parameter-type information) are different types.

Implicit in the Standard is the notion of invalid pointers. In discussing pointers, the

Standard typically refers to “a pointer to an object” or “a pointer to a function” or

“a null pointer.” A special case in address arithmetic allows for a pointer to just

past the end of an array. Any other pointer is invalid.

RATIONALE

38 Section 3. LANGUAGE

An invalid pointer might be created in several ways. An arbitrary value can be

assigned (via a cast) to a pointer variable. (This could even create a valid pointer,

depending on the value.) A pointer to an object becomes invalid if the memory

containing the object is deallocated. Pointer arithmetic can produce pointers outside

the range of an array.

Regardless how an invalid pointer is created, any use of it yields undefined be¬

havior. Even assignment, comparison with a null pointer constant, or comparison

with itself, might on some systems result in an exception.

Consider a hypothetical segmented architecture, on which pointers comprise a

segment descriptor and an offset. Suppose that segments are relatively small, so

that large arrays are allocated in multiple segments. While the segments are valid

(allocated, mapped to real memory), the hardware, operating system, or C imple¬

mentation can make these multiple segments behave like a single object: pointer

arithmetic and relational operators use the defined mapping to impose the proper

order on the elements of the array. Once the memory is deallocated, the mapping

is no longer guaranteed to exist; use of the segment descriptor might now cause an

exception, or the hardware addressing logic might return meaningless data.

3.3 Expressions

Several closely-related topics are involved in the precise specification of expression

evaluation: precedence, associativity, grouping, sequence points, agreement points,

order of evaluation, and interleaving. The latter three terms are discussed in §2.1.2.3.

The rules of precedence are encoded into the syntactic rules for each operator.

For example, the syntax for additive-expression includes the rule

additive-expression + multiplicative-expression

which implies that a+b*c parses as a+(b*c). The rules of associativity are similarly

encoded into the syntactic rules. For example, the syntax for assignment-expression

includes the rule

unary-expression assignment-operator assignment-expression

which implies that a=b=c parses as a=(b=c).

With rules of precedence and associativity thus embodied in the syntax rules, the

Standard specifies, in general, the grouping (association of operands with operators)

in an expression.

The Base Document describes C as a language in which the operands of succes¬

sive identical commutative associative operators can be regrouped. The Committee

has decided to remove this license from the Standard, thus bringing C into accord

with most other major high-level languages.

This change was motivated primarily by the desire to make C more suitable

for floating point programming. Floating point arithmetic does not obey many of

the mathematical rules that real arithmetic does. For instance, the two expressions

3.3. Expressions 39

(a+b)+c and a+(b+c) may well yield different results: suppose that b is greater

than 0, a equals -b, and c is positive but substantially smaller than b. (That is,

suppose c/b is less than DBL_EPSIL0N.) Then (a+b) + c is 0+c, or c, while a+(b+c)

equals a+b, or 0. That is to say, floating point addition (and multiplication) is not

associative.

The Base Document’s rule imposes a high cost on translation of numerical code

to C. Much numerical code is written in FORTRAN, which does provide a no-

regrouping guarantee; indeed, this is the normal semantic interpretation in most

high-level languages other than C. The Base Document’s advice, “rewrite using

explicit temporaries,” is burdensome to those with tens or hundreds of thousands

of lines of code to convert, a conversion which in most other respects could be done

automatically.

Elimination of the regrouping rule does not in fact prohibit much regrouping

of integer expressions. The bitwise logical operators can be arbitrarily regrouped,

since any regrouping gives the same result as if the expression had not been re¬

grouped. This is also true of integer addition and multiplication in implementations

with twos-complement arithmetic and silent wraparound on overflow. Indeed, in

any implementation, regroupings which do not introduce overflows behave as if no

regrouping had occurred. (Results may also differ in such an implementation if the

expression as written results in overflows: in such a case the behavior is undefined,

so any regrouping couldn’t be any worse.)

The types of lvalues that may be used to access an object have been restricted so

that an optimizer is not required to make worst-case aliasing assumptions.

In practice, aliasing arises with the use of pointers. A contrived example to

illustrate the issues is

int a;

void f(int * b)

{
a = 1;

*b = 2;

g(a);

>
It is tempting to generate the call to g as if the source expression were g(l), but b

might point to a, so this optimization is not safe. On the other hand, consider

int a;

void f(double * b)

{
a = 1;

*b = 2.0;

g(a);

>

RATIONALE

40 Section 3. LANGUAGE

Again the optimization is incorrect only if b points to a. However, this would

only have come about if the address of a were somewhere cast to (double*). The

Committee has decided that such dubious possibilities need not be allowed for.

In principle, then, aliasing only need be allowed for when the lvalues all have the

same type. In practice, the Committee has recognized certain prevalent exceptions:

• The lvalue types may differ in signedness. In the common range, a signed

integral type and its unsigned variant have the same representation; it was

felt that an appreciable body of existing code is not “strictly typed” in this

area.

• Character pointer types are often used in the bytewise manipulation of objects;

a byte stored through such a character pointer may well end up in an object

of any type.

• A qualified version of the object’s type, though formally a different type, pro¬

vides the same interpretation of the value of the object.

Structure and union types also have problematic aliasing properties:

struct fi{ float f; int i;};

void f(struct fi * fip, int * ip)

•c
static struct fi a = {2.0, 1};

*ip = 2;

*fip = a;

g(*ip);

*fip = a;

*ip = 2;

g(fip->i);

>

It is not safe to optimize the first call to g as g(2), or the second as g(l), since the

call to f could quite legitimately have been

struct fi x;

f (&x, &x.i);

These observations explain the other exception to the same-type principle.

3.3.1 Primary expressions

A primary expression may be void (parenthesized call to a function returning void),

a function designator (identifier or parenthesized function designator), an lvalue

(identifier or parenthesized lvalue), or simply a value expression. Constraints ensure

3.3. Expressions 41

that a void primary expression is no part of a further expression, except that a void

expression may be cast to void, may be the second or third operand of a conditional

operator, or may be an operand of a comma operator.

3.3.2 Postfix operators

3.3.2.1 Array subscripting

The Committee found no reason to disallow the symmetry that permits a[i] to be

written as i [a] .

The syntax and semantics of multidimensional arrays follow logically from the

definition of arrays and the subscripting operation. The material in the Standard

on multidimensional arrays introduces no new language features, but clarifies the C

treatment of this important abstract data type.

3.3.2.2 Function calls

Pointers to functions may be used either as (*pf)() or as pf(). The latter con¬

struct, not sanctioned in the Base Document, appears in some present versions of

C, is unambiguous, invalidates no old code, and can be an important shorthand.

The shorthand is useful for packages that present only one external name, which

designates a structure full of pointers to objects and functions: member functions

can be called as graphics . open(file) instead of (^graphics .open) (file).

The treatment of function designators can lead to some curious, but valid, syn¬

tactic forms. Given the declarations:

int f(), (*pf)();

then all of the following expressions are valid function calls:

(&f)(); f(); (*f)(); (**f)(); (***f)();

pf(); (*pf)(); (**pf)(); (***pf)();

The first expression on each line was discussed in the previous paragraph. The

second is conventional usage. All subsequent expressions take advantage of the

implicit conversion of a function designator to a pointer value, in nearly all expression

contexts. The Committee saw no real harm in allowing these forms; outlawing forms

like (*f)(), while still permitting *a (for int a[]), simply seemed more trouble

than it was worth.

The rule for implicit declaration of functions has been retained, but various past

ambiguities have been resolved by describing this usage in terms of a corresponding

explicit declaration.

For compatibility with past practice, all argument promotions occur as described

in the Base Document in the absence of a prototype declaration, including the (not

always desirable) promotion of float to double. A prototype gives the implementor

explicit license to pass a float as a float rather than a double, or a char as a

RATIONALE

42 Section 3. LANGUAGE

char rather than an int, or an argument in a. special register, etc. If the definition

of a function in the presence of a prototype would cause the function to expect other

than the default promotion types, then clearly the calls to this function must be

made in the presence of a compatible prototype.

To clarify this and other relationships between function calls and function defi¬

nitions, the Standard describes an equivalence between a function call or definition

which does occur in the presence of a prototype and one that does not.

Thus a prototyped function with no “narrow” types and no variable argument

list must be callable in the absence of a prototype, since the types actually passed in

a call are equivalent to the explicit function definition prototype. This constraint is

necessary to retain compatibility with past usage of library functions. (See §4.1.3.)

This provision constrains the latitude of an implementor because the parame¬

ter passing conventions of prototype and non-prototype function calls must be the

same for functions accepting a fixed number of arguments. Implementations in en¬

vironments where efficient function calling mechanisms are available must, in effect,

use the efficient calling sequence either in all “fixed argument list” calls or in none.

Since efficient calling sequences often do not allow for variable argument functions,

the fixed part of a variable argument list may be passed in a completely different

fashion than in a fixed argument list with the same number and type of arguments.

The existing practice of omitting trailing parameters in a call if it is known that

the parameters will not be used has consistently been discouraged. Since omission

of such parameters creates an inequivalence between the call and the declaration,

the behavior in such cases is undefined, and a maximally portable program will

avoid this usage. Hence an implementation is free to implement a function calling

mechanism for fixed argument lists which would (perhaps fatally) fail if the wrong

number or type of arguments were to be provided.

Strictly speaking then, calls to printf are obliged to be in the scope of a proto¬

type (as by #include <stdio.h>), but implementations are not obliged to fail on

such a lapse. (The behavior is undefined).

3.3.2.3 Structure and union members

Since the language now permits structure parameters, structure assignment and

functions returning structures, the concept of a structure expression is now part of

the C language. A structure value can be produced by an assignment, by a function

call, by a comma operator expression or by a conditional operator expression:

si = (s2 = s3)

sf (x)

(x, si)

x ? si : s2

In these cases, the result is not an lvalue; hence it cannot be assigned to nor can its

address be taken.

3.3. Expressions 43

Similarly, x.y is an lvalue only if x is an lvalue. Thus none of the following valid

expressions are lvalues:

sf(3). a

(sl=s2) .a

((i==6)?sl:s2) .a

(x,sl) .a

Even when x.y is an lvalue, it may not be modifiable:

const struct S si;

si.a = 3; /* invalid */

The Standard requires that an implementation diagnose a constraint error in the

case that the member of a structure or union designated by the identifier following

a member selection operator (. or ->) does not appear in the type of the structure

or union designated by the first operand. The Base Document is unclear on this

point.

3.3.2.4 Postfix increment and decrement operators

The Committee has not endorsed the practice in some implementations of consid¬

ering post-increment and post-decrement operator expressions to be lvalues.

3.3.3 Unary operators

3.3.3.1 Prefix increment and decrement operators

See §3.3.2.4.

3.3.3.2 Address and indirection operators

Some implementations have not allowed the & operator to be applied to an array or

a function. (The construct was permitted in early versions of C, then later made

optional.) The Committee has endorsed the construct since it is unambiguous, and

since data abstraction is enhanced by allowing the important & operator to apply

uniformly to any addressable entity.

3.3.3.3 Unary arithmetic operators

Unary plus was adopted by the Committee from several implementations, for sym¬

metry with unary minus.

The bitwise complement operator ", and the other bitwise operators, have now

been defined arithmetically for unsigned operands. Such operations are well-defined

because of the restriction of integral representations to “binary numeration systems.”

(See §3.1.2.5.)

RATIONALE

44 Section 3. LANGUAGE

3.3.3.4 The sizeof operator

It is fundamental to the correct usage of functions such as malloc and f read that

sizeof (char) be exactly one. In practice, this means that a byte in C terms is

the smallest unit of storage, even if this unit is 36 bits wide; and all objects are

comprised of an integral number of these smallest units. (See §1.6.)

The Standard, like the Base Document, defines the result of the sizeof operator

to be a constant of an unsigned integral type. Common implementations, and

common usage, have often presumed that the resulting type is int. Old code that

depends on this behavior has never been portable to implementations that define

the result to be a type other than int. The Committee did not feel it was proper

to change the language to protect incorrect code.

The type of sizeof, whatever it is, is published (in the library header

<stddef .h>) as size_t, since it is useful for the programmer to be able to refer

to this type. This requirement implicitly restricts size_t to be a synonym for an

existing unsigned integer type, thus quashing any notion that the largest declarable

object might be too big to span even with an unsigned long. This also restricts

the maximum number of elements that may be declared in an array, since for any

array a of N elements,

N == sizeof(a)/sizeof(a[0])

Thus size_t is also a convenient type for array sizes, and is so used in several library

functions. (See §4.9.8.1, §4.9.8.2, §4.10.3.1, etc.)

The Standard specifies that the argument to sizeof can be any value except a

bit field, a void expression, or a function designator. This generality allows for

interesting environmental enquiries; given the declarations

int *p, *q;

these expressions determine the size of the type used for ...

sizeof(F(x)) /* ... F’s return value */

sizeof(p-q) /* ... pointer difference */

(The last type is of course available as ptrdiff_t in <stddef .h>.)

3.3.4 Cast operators

A (void) cast is explicitly permitted, more for documentation than for utility.

Nothing portable can be said about casting integers to pointers, or vice versa, since

the two are now incommensurate.

The definition of these conversions adopted in the Standard resembles that in

the Base Document, but with several significant differences. The Base Document

required that a pointer successfully converted to an integer must be guaranteed to

3.3. Expressions 45

be convertible back to the same pointer. This integer-to-pointer conversion is now

specified as implementation-defined. While a high-quality implementation would

preserve the same address value whenever possible, it was considered impractical to

require that the identical representation be preserved. The Committee noted that,

on some current machine implementations, identical representations are required for

efficient code generation for pointer comparisons and arithmetic operations.

The conversion of the integer constant 0 to a pointer is defined similarly to the

Base Document. The resulting pointer must not address any object, must appear to

be equal to an integer value of 0, and may be assigned to or compared for equality

with any other pointer. This definition does not necessarily imply a representation

by a bit pattern of all zeros: an implementation could, for instance, use some address

which causes a hardware trap when dereferenced.

The type char must have the least strict alignment of any type, so char * has often

been used as a portable type for representing arbitrary object pointers. This usage

creates an unfortunate confusion between the ideas of arbitrary pointer and character

or string pointer. The new type void *, which has the same representation as char

*, is therefore preferable for arbitrary pointers.

It is possible to cast a pointer of some qualified type (§3.5.3) to an unqualified

version of that type. Since the qualifier defines some special access or abasing

property, however, any dereference of the cast pointer results in undefined behavior.

The Standard (§3.2.1.4) requires that a cast of one floating point type to another

(e.g., double to float) results in an actual conversion.

3.3.5 Multiplicative operators

There was considerable sentiment for giving more portable semantics to division

(and hence remainder) by specifying some way of giving less machine dependent

results for negative operands. Few Committee members wanted to require this by

default, lest existing fast code be gravely slowed. One suggestion was to make

signed int a type distinct from plain int, and require better-defined semantics for

signed int division and remainder. This suggestion was opposed on the grounds

that effectively adding several types would have consequences out of proportion to

the benefit to be obtained; the Committee twice rejected this approach. Instead the

Committee has adopted new library functions div and ldiv which produce integral

quotient and remainder with well-defined sign semantics. (See §4.10.6.2, §4.10.6.3.)

The Committee rejected extending the ’/. operator to work on floating types;

such usage would duplicate the facility provided by fmod. (See §4.5.6.5.)

3.3.6 Additive operators

As with the sizeof operator, implementations have taken different approaches in

defining a type for the difference between two pointers (see §3.3.3.4). It is important

RATIONALE

46 Section 3. LANGUAGE

that this type be signed, in order to obtain proper algebraic ordering when dealing

with pointers within the same array. However, the magnitude of a pointer difference

can be as large as the size of the largest object that can be declared. (And since that

is an unsigned type, the difference between two pointers may cause an overflow.)

The type of pointer minus pointer is defined to be int in K&R. The Stan¬

dard defines the result of this operation to be a signed integer, the size of which

is implementation-defined. The type is published as ptrdiff_t, in the standard

header <stddef .h>. Old code recompiled by a conforming compiler may no longer

work if the implementation defines the result of such an operation to be a type other

than int and if the program depended on the result to be of type int. This behavior

was considered by the Committee to be correctable. Overflow was considered not

to break old code since it was undefined by K&R. Mismatch of types between ac¬

tual and formal argument declarations is correctable by including a properly defined

function prototype in the scope of the function invocation.

An important endorsement of widespread practice is the requirement that a

pointer can always be incremented to just past the end of an array, with no fear of

overflow or wraparound:

SOMETYPE array[SPAN];

/* ... */
for (p = &array[0]; p < &array[SPAN]; p++)

This stipulation merely requires that every object be followed by one byte whose

address is representable. That byte can be the first byte of the next object declared

for all but the last object located in a contiguous segment of memory. (In the exam¬

ple, the address &array[SPAN] must address a byte following the highest element

of array.) Since the pointer expression p+1 need not (and should not) be derefer¬

enced, it is unnecessary to leave room for a complete object of size sizeof (*p).

In the case of p-1, on the other hand, an entire object would have to be allocated

prior to the array of objects that p traverses, so decrement loops that run off the

bottom of an array may fail. This restriction allows segmented architectures, for

instance, to place objects at the start of a range of addressable memory.

3.3.7 Bitwise shift operators

See §3.3.3.3 for a discussion of the arithmetic definition of these operators.

The description of shift operators in K&R suggests that shifting by a long count

should force the left operand to be widened to long before being shifted. A more

intuitive practice, endorsed by the Committee, is that the type of the shift count

has no bearing on the type of the result.

QUIET CHANGE

Shifting by a long count no longer coerces the shifted operand to long.

3.3. Expressions 47

The Committee has affirmed the freedom in implementation granted by the Base

Document in not requiring the signed right shift operation to sign extend, since such

a requirement might slow down fast code and since the usefulness of sign extended

shifts is marginal. (Shifting a negative twos-complement integer arithmetically right

one place is not the same as dividing by two!)

3.3.8 Relational operators

For an explanation of why the pointer comparison of the object pointer P with the

pointer expression P+1 is always safe, see Rationale §3.3.6.

3.3.9 Equality operators

The Committee considered, on more than one occasion, permitting comparison of

structures for equality. Such proposals foundered on the problem of holes in struc¬

tures. A byte-wise comparison of two structures would require that the holes as¬

suredly be set to zero so that all holes would compare equal, a difficult task for

automatic or dynamically allocated variables. (The possibility of union-type ele¬

ments in a structure raises insuperable problems with this approach.) Otherwise

the implementation would have to be prepared to break a structure comparison into

an arbitrary number of member comparisons; a seemingly simple expression could

thus expand into a substantial stretch of code, which is contrary to the spirit of C.

In pointer comparisons, one of the operands may be of type void *. In partic¬

ular, this allows NULL, which can be defined as (void *)0, to be compared to any

object pointer.

3.3.10 Bitwise AND operator

See §3.3.3.3 for a discussion of the arithmetic definition of the bitwise operators.

3.3.11 Bitwise exclusive OR operator

See §3.3.3.3.

3.3.12 Bitwise inclusive OR operator

See §3.3.3.3.

3.3.13 Logical AND operator

3.3.14 Logical OR operator

3.3.15 Conditional operator

The syntactic restrictions on the middle operand of the conditional operator have

been relaxed to include more than just logical-OR-expression: several extant imple¬

mentations have adopted this practice.

RATIONALE

48 Section 3. LANGUAGE

The type of a conditional operator expression can be void, a structure, or a

union; most other operators do not deal with such types. The rules for balancing

type between pointer and integer have, however, been tightened, since now only the

constant 0 can portably be coerced to pointer.

The Standard allows one of the second or third operands to be of type void *,

if the other is a pointer type. Since the result of such a conditional expression is

void *, an appropriate cast must be used.

3.3.16 Assignment operators

Certain syntactic forms of assignment operators have been discontinued, and others

tightened up (see §3.1.5).

The storage assignment need not take place until the next sequence point. (A

restriction in earlier drafts that the storage take place before the value of the ex¬

pression is used has been removed.) As a consequence, a straightforward syntactic

test for ambiguous expressions can be stated. Some definitions: A side effect is a

storage to any data object, or a read of a volatile object. An ambiguous expression is

one whose value depends upon the order in which side effects are evaluated. A pure

function is one with no side effects; an impure function is any other. A sequenced

expression is one whose major operator defines a sequence point: comma, &&, I I,

or conditional operator; an unsequenced expression is any other. We can then say

that an unsequenced expression is ambiguous if more than one operand invokes any

impure function, or if more than one operand contains an lvalue referencing the

same object and one or more operands specify a side-effect to that object. Further,

any expression containing an ambiguous expression is ambiguous.

The optimization rules for factoring out assignments can also be stated. Let

X (i ,S) be an expression which contains no impure functions or sequenced operators,

and suppose that X contains a storage S(i) to i. The storage expressions, and

related expressions, are

S(i): Sval(i): Snew(i)

+ + i i+1 i+1

i++ i i+1

— i i-1 i-1

i-- i i-1

n

•H
 y y

i op= y i op y i op y

Then X(i,S) can be replaced by either

(T = i, i = Snew(i), X(T.Sval))

or

(T = X(i,Sval), i = Snew(i), T)

provided that neither i nor y have side effects themselves.

3.4. Constant Expressions 49

3.3.16.1 Simple assignment

Structure assignment has been added: its use was foreshadowed even in K&R, and

many existing implementations already support it.

The rules for type compatibility in assignment also apply to argument compati¬

bility between actual argument expressions and their corresponding argument types

in a function prototype.

An implementation need not correctly perform an assignment between over¬

lapping operands. Overlapping operands occur most naturally in a union, where

assigning one field to another is often desirable to effect a type conversion in place;

the assignment may well work properly in all simple cases, but it is not maximally

portable. Maximally portable code should use a temporary variable as an interme¬

diate in such an assignment.

3.3.16.2 Compound assignment

The importance of requiring that the left operand lvalue be evaluated only once is

not a question of efficiency, although that is one compelling reason for using the

compound assignment operators. Rather, it is to assure that any side effects of

evaluating the left operand are predictable.

3.3.17 Comma operator

The left operand of a comma operator may be void, since only the right-hand

operator is relevant to the type of the expression.

The example in the Standard clarifies that commas separating arguments “bind”

tighter than the comma operator in expressions.

3.4 Constant Expressions

To clarify existing practice, several varieties of constant expression have been iden¬

tified:

The expression following #if (§3.8.1) must expand to integer constants, charac¬

ter constants, the special operator defined, and operators with no side effects.

No environmental inquiries can be made, since all arithmetic is done as translate¬

time (signed or unsigned) long integers, and casts are disallowed. The restriction to

translate-time arithmetic frees an implementation from having to perform execution-

environment arithmetic in the host environment. It does not preclude an imple¬

mentation from doing so — the implementation may simply define “translate-time

arithmetic” to be that of the target.

Unsigned arithmetic is performed in these expressions (according to the default

widening rules) when unsigned operands are involved; this rule allows for unsur¬

prising arithmetic involving very large constants (i.e, those whose type is unsigned

RATIONALE

50 Section 3. LANGUAGE

long) since they cannot be represented as long or constants explicitly marked as

unsigned.

Character constants, when evaluated in #if expressions, may be interpreted in

the source character set, the execution character set, or some other implementation-

defined character set. This latitude reflects the diversity of existing practice, espe¬

cially in cross-compilers.

An integral constant expression must ixrvolve only numbers knowable at translate

time, and operators with no side effects. Casts and the sizeof operator may be

used to interrogate the execution environment.

Static initializers include integral constant expressions, along with floating constants

and simple addressing expressions. An implementation must accept arbitrary ex¬

pressions involving floating and integral numbers and side-effect-free operators in

arithmetic initializers, but it is at liberty to turn such initializers into executable

code which is invoked prior to program startup (see §2.1.2.2); this scheme might

impose some requirements on linkers or runtime library code in some implementa¬

tions.

The translation environment must not produce a less accurate value for a

floating-point initializer than the execution environment, but it is at liberty to

do better. Thus a static initializer may well be slightly different than the same

expression computed at execution time. However, while implementations are cer¬

tainly permitted to produce exactly the same result in translation and execution

environments, requiring this was deemed to be an intolerable burden on many cross-

compilers.

QUIET CHANGE

A program that uses #if expressions to determine properties of the ex¬

ecution environment may now get different answers.

3.5 Declarations

The Committee decided that empty declarations are invalid (except for a special case

with tags, see §3.5.2.3, and the case of enumerations such as enum {zero.one};,

see §3.5.2.2). While many seemingly silly constructs are tolerated in other parts

of the language in the interest of facilitating the machine generation of C, empty

declarations were considered sufficiently easy to avoid.

The practice of placing the storage class specifier other than first in a declaration

has been branded as obsolescent (See §3.9.3.) The Committee feels it desirable to

rule out such constructs as

enum { aaa, aab,

/* etc */

zzy, zzz > typedef a2z;

in some future standard.

3.5. Declarations 51

3.5.1 Storage-class specifiers

Because the address of a register variable cannot be taken, objects of storage class

register effectively exist in a space distinct from other objects. (Functions occupy

yet a third address space). This makes them candidates for optimal placement, the

usual reason for declaring registers, but it also makes them candidates for more

aggressive optimization.

The practice of representing register variables as wider types (as when register

char is quietly changed to register int) is no longer acceptable.

3.5.2 Type specifiers

Several new type specifiers have been added: signed, enum, and void, long float

has been retired and long double has been added, along with a plethora of integer

types. The Committee’s reasons for each of these additions, and the one deletion,

are given in section §3.1.2.5 of this document.

3.5.2.1 Structure and union specifiers

Three types of bit fields are now defined: “plain” int calls for implementation-

defined signedness (as in the Base Document), signed int calls for assuredly signed

fields, and unsigned int calls for unsigned fields. The old constraints on bit fields

crossing word boundaries have been relaxed, since so many properties of bit fields

are implementation dependent anyway.

The layout of structures is determined only to a limited extent:

• no hole may occur at the beginning;

• members occupy increasing storage addresses; and

• if necessary, a hole is placed on the end to make the structure big enough to

pack tightly into arrays and maintain proper alignment.

Since some existing implementations, in the interest of enhanced access time, leave

internal holes larger than absolutely necessary, it is not clear that a portable deter¬

ministic method can be given for traversing a structure field by held.

To clarify what is meant by the notion that “all the fields of a union occupy the

same storage,” the Standard specifies that a pointer to a union, when suitably cast,

points to each member (or, in the case of a bit-held member, to the storage unit

containing the bit held).

3.5.2.2 Enumeration specifiers

3.5.2.3 Tags

As with all block structured languages that also permit forward references, C has a

problem with structure and union tags. If one wants to declare, within a block, two

mutually referencing structures, one must write something like:

RATIONALE

52 Section 3. LANGUAGE

struct x { struct y *p; /*...*/ >;

struct y { struct x *q; /*...*/

But if struct y is already defined in a containing block, the first field of struct x

will refer to the older declaration.

Thus special semantics has been given to the form:

struct y;

It now hides the outer declaration of y, and “opens” a new instance in the current

block.

QUIET CHANGE

The empty declaration struct x; is no longer innocuous.

3.5.3 Type qualifiers

The Committee has added to C two type qualifiers: const and volatile. Indi¬

vidually and in combination they specify the assumptions a compiler can and must

make when accessing an object through an lvalue.

The syntax and semantics of const were adapted from C+ + ; the concept itself

has appeared in other languages, volatile is an invention of the Committee; it

follows the syntactic model of const.

Type qualifiers were introduced in part to provide greater control over opti¬

mization. Several important optimization techniques are based on the principle of

“cacheing”: under certain circumstances the compiler can remember the last value

accessed (read or written) from a location, and use this retained value the next time

that location is read. (The memory, or “cache”, is typically a hardware register.) If

this memory is a machine register, for instance, the code can be smaller and faster

using the register rather than accessing external memory.

The basic qualifiers can be characterized by the restrictions they impose on

access and cacheing:

const No writes through this lvalue. In the absence of this qualifier, writes may

occur through this lvalue.

volatile No cacheing through this lvalue: each operation in the abstract semantics

must be performed. (That is, no cacheing assumptions may be made, since

the location is not guaranteed to contain any previous value.) In the absence

of this qualifier, the contents of the designated location may be assumed to be

unchanged (except for possible abasing.)

A translator design with no cacheing optimizations can effectively ignore the

type qualifiers, except insofar as they affect assignment compatibility.

It would have been possible, of course, to specify a nonconst keyword instead

of const, or nonvolatile instead of volatile. The senses of these concepts in

3.5. Declarations 53

the Standard were chosen to assure that the default, unqualified, case was the most

common, and that it corresponded most clearly to traditional practice in the use of

lvalue expressions.

Four combinations of the two qualifiers is possible; each defines a useful set of lvalue

properties. The next several paragraphs describe typical uses of these qualifiers.

The translator may assume, for an unqualified lvalue, that it may read or write

the referenced object, that the value of this object cannot be changed except by

explicitly programmed actions in the current thread of control, but that other lvalue

expressions could reference the same object.

const is specified in such a way that an implementation is at liberty to put

const objects in read-only storage, and is encouraged to diagnose obvious attempts

to modify them, but is not required to track down all the subtle ways that such

checking can be subverted. If a function parameter is declared const, then the

referenced object is not changed (through that lvalue) in the body of the function

— the parameter is read-only.

A static volatile object is an appropriate model for a memory-mapped I/O

register. Implementors of C translators should take into account relevant hardware

details on the target systems when implementing accesses to volatile objects. For

instance, the hardware logic of a system may require that a two-byte memory-

mapped register not be accessed with byte operations; a compiler for such a system

would have to assure that no such instructions were generated, even if the source

code only accesses one byte of the register. Whether read-modify-write instructions

can be used on such device registers must also be considered. Whatever decisions are

adopted on such issues must be documented, as volatile access is implementation-

defined. A volatile object is an appropriate model for a variable shared among

multiple processes.

A static const volatile object appropriately models a memory-mapped input

port, such as a real-time clock. Similarly, a const volatile object models a variable

which can be altered by another process but not by this one.

Although the type qualifiers are formally treated as defining new types they actually

serve as modifiers of declarators. Thus the declarations

const struct s {int a,b;j- x;

struct s y;

declare x as a const object, but not y. The const property can be associated with

the aggregate type by means of a type definition:

typedef const struct s {int a,b;> stype;

stype x;

stype y;

In these declarations the const property is associated with the declarator stype, so

x and y are both const objects.

RATIONALE

54 Section 3. LANGUAGE

The Committee considered making const and volatile storage classes, but this

would have ruled out any number of desirable constructs, such as const members

of structures and variable pointers to const types.

A cast of a value to a qualified type has no effect; the qualification (volatile,

say) can have no effect on the access since it has occurred prior to the cast. If it is

necessary to access a non-volatile object using volatile semantics, the technique is

to cast the address of the object to the appropriate pointer-to-qualified type, then

dereference that pointer.

3.5.4 Declarators

The function prototype syntax was adapted from C++. (See §3.3.2.2 and §3.5.4.3)

Some current implementations have a limit of six type modifiers (function re¬

turning, array of, pointer to), the limit used in Ritchie’s original compiler. This

limit has been raised to twelve since the original limit has proven insufficient in

some cases; in particular, it did not allow for FORTRAN-to-C translation, since

FORTRAN allows for seven subscripts. (Some users have reported using nine or ten

levels, particularly in machine-generated C code.)

3.5.4.1 Pointer declarators

A pointer declarator may have its own type qualifiers, to specify the attributes of the

pointer itself, as opposed to those of the reference type. The construct is adapted

from C+ + .

const int * means (variable) pointer to constant int, and int * const means

constant pointer to (variable) int, just as in C+ + , from which these constructs

were adopted. (And mutatis mutandis for the other type qualifiers.) As with other

aspects of C type declarators, judicious use of typedef statements can clarify the

code.

3.5.4.2 Array declarators

The concept of composite types (§3.1.2.6) was introduced to provide for the accretion

of information from incomplete declarations, such as array declarations with miss¬

ing size, and function declarations with missing prototype (argument declarations).

Type declarators are therefore said to specify compatible types if they agree except

for the fact that one provides less information of this sort than the other.

The declaration of 0-length arrays is invalid, under the general principle of not

providing for 0-length objects. The only common use of this construct has been in

the declaration of dynamically allocated variable-size arrays, such as

struct segment {

short int count;

char c[N];

>;

3.5. Declarations 55

struct segment * new_segment(const int length)

{
struct segment * result;

result = malloc(sizeof segment + (length-N));

result->count = length;

return result;

>

In such usage, N would be 0 and (length-N) would be written as length. But this

paradigm works just as well, as written, if N is 1. (Note, by the by, an alternate way

of specifying the size of result:

result = malloc(offsetof(struct segment,c) + length);

This illustrates one of the uses of the offsetof macro.)

3.5.4.3 Function declarators (including prototypes)

The function prototype mechanism is one of the most useful additions to the C lan¬

guage. The feature, of course, has precedent in many of the Algol-derived languages

of the past 25 years. The particular form adopted in the Standard is based in large

part upon C++.

Function prototypes provide a powerful translation-time error detection capa¬

bility. In traditional C practice without prototypes, it is extremely difficult for the

translator to detect errors (wrong number or type of arguments) in calls to func¬

tions declared in another source file. Detection of such errors has either occurred at

runtime, or through the use of auxiliary software tools.

In function calls not in the scope of a function prototype, integral arguments

have the integral widening conversions applied and float arguments are widened

to double. It is thus impossible in such a call to pass an unconverted char or

float argument. Function prototypes give the programmer explicit control over

the function argument type conversions, so that the often inappropriate and some¬

times inefficient default widening rules for arguments can be suppressed by the

implementation. Modifications of function interfaces are easier in cases where the

actual arguments are still assignment compatible with the new formal parameter

type — only the function definition and its prototype need to be rewritten in this

case; no function calls need be rewritten.

Allowing an optional identifier to appear in a function prototype serves two

purposes:

• the programmer can associate a meaningful name with each argument position

for documentation purposes, and

• a function declarator and a function prototype can use the same syntax. The

consistent syntax makes it easier for new users of C to learn the language. Au¬

tomatic generation of function prototype declarators from function definitions

is also facilitated.

RATIONALE

56 Section 3. LANGUAGE

Optimizers can also take advantage of function prototype information. Consider

this example:

extern int compare(const char * stringl,

const char * string2) ;

void func2(int x)

{
char * strl, * str2 ;

/* ... */

x = compare(strl, str2) ;

/* ... */
>

The optimizer knows that the pointers passed to compare are not used to assign new

values to any objects that the pointers reference. Hence the optimizer can make less

conservative assumptions about the side effects of compare than would otherwise be

necessary.

The Standard requires that calls to functions taking a variable number of argu¬

ments must occur in the presence of a prototype (using the trailing ellipsis notation

,...). An implementation may thus assume that all other functions are called with

a fixed argument list, and may therefore use possibly more efficient calling sequences.

Programs using old-style headers in which the number of arguments in the calls and

the definition differ may not work in implementations which take advantage of such

optimizations. This is not a Quiet Change, strictly speaking, since the program

does not conform to the Standard. A word of warning is in order, however, since

the style is not uncommon in extant code, and since a conforming translator is not

required to diagnose such mismatches when they occur in separate translation units.

Such trouble spots can be made manifest (assuming an implementation provides rea¬

sonable diagnostics) by providing new-style function declarations in the translation

units with the non-matching calls. Programmers who currently rely on being able

to omit trailing arguments are advised to recode using the <stdarg.h> paradigm.

Function prototypes may be used to define function types as well:

typedef double (*d_binop) (double A, double B);

struct d.funct {

d_binop fl;

int (*f2)(double, double);

};

The structure d_f unct has two fields, both of which hold pointers to functions taking

two double arguments; the function types differ in their return type.

3.5. Declarations 57

3.5.5 Type names

Empty parentheses within a type name are always taken as meaning function with

unspecified arguments and never as (unnecessary) parentheses around the elided

identifier. This specification avoids an ambiguity by fiat.

3.5.6 Type definitions

A typedef may only be redeclared in an inner block with a declaration that explicitly

contains a type name. This rule avoids the ambiguity about whether to take the

typedef as the type name or the candidate for redeclaration.

Some implementations of C have allowed type specifiers to be added to a type

defined using typedef. Thus

typedef short int small ;

unsigned small x ;

would give x the type unsigned short int. The Committee decided that since

this interpretation may be difficult to provide in many implementations, and since

it defeats much of the utility of typedef as a data abstraction mechanism, such type

modifications are invalid. This decision is incorporated in the rules of §3.5.2.

A proposed typeof operator was rejected on the grounds of insufficient utility.

3.5.7 Initialization

An implementation might conceivably have codes for floating zero and/or null

pointer other than all bits zero. In such a case, the implementation must fill out an

incomplete initializer with the various appropriate representations of zero; it may

not just fill the area with zero bytes.

The Committee considered proposals for permitting automatic aggregate initial¬

izers to consist of a brace-enclosed series of arbitrary (execute-time) expressions,

instead of just those usable for a translate-time static initializer. However, cases

like this were troubling:

int x [2] = { f(x[l]), g(x [0]) >;

Rather than determine a set of rules which would avoid pathological cases and yet

not seem too arbitrary, the Committee elected to permit only static initializers. Con¬

sequently, an implementation may choose to build a hidden static aggregate, using

the same machinery as for other aggregate initializers, then copy that aggregate to

the automatic variable upon block entry.

A structure expression, such as a call to a function returning the appropriate

structure type, is permitted as an automatic structure initializer, since the usage

seems unproblematic.

For programmer convenience, even though it is a minor irregularity in initializer

semantics, the trailing null character in a string literal need not initialize an array

element, as in:

RATIONALE

58 Section 3. LANGUAGE

char mesg[5] = "help!" ;

(Some widely used implementations provide precedent.)

The Base Document allows a trailing comma in an initializer at the end of an

initializer-list. The Standard has retained this syntax, since it provides flexibility in

adding or deleting members from an initializer list, and simplifies machine generation

of such lists.

Various implementations have parsed aggregate initializers with partially elided

braces differently. The Standard has reaffirmed the (top-down) parse described in

the Base Document. Although the construct is allowed, and its parse well defined,

the Committee urges programmers to avoid partially elided initializers: such initial¬

izations can be quite confusing to read.

QUIET CHANGE

Code which relies on a bottom-up parse of aggregate initializers with

partially elided braces will not yield the expected initialized object.

The Committee has adopted the rule (already used successfully in some implemen¬

tations) that the first member of the union is the candidate for initialization. Other

notations for union initialization were considered, but none seemed of sufficient merit

to outweigh the lack of prior art.

This rule has a parallel with the initialization of structures. Members of struc¬

tures are initialized in the sequence in which they are declared. The same can now

be said of unions, with the significant difference that only one union member (the

first) can be initialized.

3.6 Statements

3.6.1 Labeled statements

Since label definition and label reference are syntactically distinctive contexts, labels

are established as a separate name space.

3.6.2 Compound statement, or block

The Committee considered proposals for forbidding a goto into a block from outside,

since such a restriction would make possible much easier flow optimization and would

avoid the whole issue of initializing auto storage (see §3.1.2.4). The Committee

rejected such a ban out of fear of invalidating working code (however undisciplined)

and out of concern for those producing machine-generated C.

3.6.3 Expression and null statements

The void cast is not needed in an expression statement, since any value is always

discarded. Some checking compilers prefer this reassurance, however, for functions

that return objects of types other than void.

3.6. Statements 59

3.6.4 Selection statements

3.6.4.1 The if statement

See §3.6.2.

3.6.4.2 The switch statement

The controlling expression of a switch statement may now have any integral type,

even unsigned long. Floating types were rejected for switch statements since exact

equality in floating point is not portable.

case labels are first converted to the type of the controlling expression of the

switch, then checked for equality with other labels; no two may match after conver¬

sion.

Case ranges (of the form lo . . hi) were seriously considered, but ultimately

not adopted in the Standard on the grounds that it added no new capability, just

a problematic coding convenience. The construct seems to promise more than it

could be mandated to deliver:

• A great deal of code (or jump table space) might be generated for an innocent¬

looking case range such as 0 . . 65535.

• The range 1 A 1 . . ' Z ' would specify all the integers between the character code

for A and that for Z. In some common character sets this range would include

non-alphabetic characters, and in others it might not include all the alphabetic

characters (especially in non-English character sets).

No serious consideration was given to making the switch more structured, as in

Pascal, out of fear of invalidating working code.

QUIET CHANGE

long expressions and constants in switch statements are no longer trun¬

cated to int.

3.6.5 Iteration statements

3.6.5.1 The while statement

3.6.5.2 The do statement

3.6.5.3 The for statement

3.6.6 Jump statements

3.6.6.1 The goto statement

See §3.6.2.

RATIONALE

60 Section 3. LANGUAGE

3.6.6.2 The continue statement

The Committee rejected proposed enhancements to continue and break which

would allow specification of an iteration statement other than the immediately en¬

closing one, on grounds of insufficient prior art.

3.6.6.3 The break statement

See §3.6.6.2.

3.6.6.4 The return statement

3.7 External definitions

3.7.1 Function definitions

A function definition may have its old form (and say nothing about arguments on

calls), or it may be introduced by a prototype (which affects argument checking and

coercion on subsequent calls). (See also §3.1.2.2.)

To avoid a nasty ambiguity, the Standard bans the use of typedef names as formal

parameters. For instance, in translating the text

int f(size_t, a_t, b_t, c_t, d_t, e_t, f_t, g_t,

h_t, i_t, j_t, k_t, l_t, m_t, n_t, o_t,

p_t, q_t, r_t, s_t)

the translator determines that the construct can only be a prototype declaration as

soon as it scans the first size_t and following comma. In the absence of this rule,

it might be necessary to see the token following the right parenthesis that closes the

parameter list, which would require a sizeable look-ahead, before deciding whether

the text under scrutiny is a prototype declaration or an old-style function header

definition.

An argument list must be explicitly present in the declarator; it cannot be inherited

from a typedef (see §3.5.4.3). That is to say, given the definition

typedef int p(int q, int r);

the following fragment is invalid:

p funk /* weird */

{ return q + r ; }

Some current implementations rewrite the type of a (for instance) char parameter

as if it were declared int, since the argument is known to be passed as an int

(in the absence of prototypes). The Standard requires, however, that the received

argument be converted as if by assignment upon function entry. Type rewriting is

thus no longer permissible.

3.8. Preprocessing directives 61

QUIET CHANGE

Functions that depend on char or short parameter types being widened

to int, or float to double, may behave differently.

Notes for implementors: the assignment conversion for argument passing often

requires no executable code. In most twos-complement machines, a short or char

is a contiguous subset of the bytes comprising the int actually passed (for even

the most unusual byte orderings), so that assignment conversion can be effected by

adjusting the address of the argument (if necessary) .

For an argument declared float, however, an explicit conversion must usually

be performed from the double actually passed to the float desired. Not many

implementations can subset the bytes of a double to get a float. (Even those that

apparently permit simple truncation often get the wrong answer on certain negative

numbers.)

Some current implementations permit an argument to be masked by a declaration

of the same identifier in the outermost block of a function. This usage is almost

always an erroneous attempt by a novice C programmer to declare the argument;

it is rarely the result of a deliberate attempt to render the argument unreachable.

The Committee decided, therefore, that arguments are effectively declared in the

outermost block, and hence cannot be quietly redeclared in that block.

The Committee considered it important that a function taking a variable number

of arguments, such as printf, be expressible portably in C. Hence, the Committee

devoted much time to exploring methods of traversing variable argument lists. One

proposal was to require arguments to be passed as a “brick” (i.e., a contiguous area

of memory), the layout of which would be sufficiently well specified that a portable

method of traversing the brick could be determined.

Several diverse implementations, however, can implement argument passing

more efficiently if the arguments are not required to be contiguous. Thus, the

Committee decided to hide the implementation details of determining the location

of successive elements of an argument list behind a standard set of macros (see §4.8).

3.7.2 External object definitions

See §3.1.2.2.

3.8 Preprocessing directives

For an overview of the philosophy behind the preprocessor, see §2.1.1.2.

Different implementations have had different notions about whether white space

is permissible before and/or after the # signalling a preprocessor line. The Com¬

mittee decided to allow any white space before the #, and horizontal white space

RATIONALE

62 Section 3. LANGUAGE

(spaces or tabs) between the # and the directive, since the white space introduces

no ambiguity, causes no particular processing problems, and allows maximum flex¬

ibility in coding style. Note that similar considerations apply for comments, which

are reduced to white space early in the phases of translation (§2.1.1.2):

/* here a comment */ #if BLAH

#/* there a comment */ if BLAH

if /* every¬

where a comment */ BLAH

The lines all illustrate legitimate placement of comments.

3.8.1 Conditional inclusion

For a discussion of evaluation of expressions following #if, see §3.4.

The operator defined has been added to make possible writing boolean com¬

binations of defined flags with one another and with other inclusion conditions. If

the identifier defined were to be defined as a macro, defined(X) would mean the

macro expansion in C text proper and the operator expression in a preprocessing

directive (or else that the operator would no longer be available). To avoid this

problem, such a definition is not permitted (§3.8.8).

#elif has been added to minimize the stacking of #endif directives in multi-way

conditionals.

Processing of skipped material is defined such that an implementation need only

examine a logical line for the # and then for a directive name. Thus, assuming that

xxx is undefined, in this example:

ifndef xxx

define xxx "abc"

elif xxx > 0

/* ... */
endif

an implementation is not required to diagnose an error for the elif statement, even

though if it were processed, a syntactic error would be detected.

Various proposals were considered for permitting text other than comments at

the end of directives, particularly #endif and #else, presumably to label them for

easier matchup with their corresponding #if directives. The Committee rejected

all such proposals because of the difficulty of specifying exactly what would be

permitted, and how the translator would have to process it.

Various proposals were considered for permitting additional unary expressions

to be used for the purpose of testing for the system type, testing for the presence of

a file before #include, and other extensions to the preprocessing language. These

proposals were all rejected on the grounds of insufficient prior art and/or insufficient

utility.

3.8. Preprocessing directives 63

3.8.2 Source file inclusion

Specification of the #include directive raises distinctive grammatical problems be¬

cause the file name is conventionally parsed quite differently than an “ordinary”

token sequence:

• The angle brackets are not operators, but delimiters.

• The double quotes do not delimit a string literal with all its defined escape

sequences. (In some systems, backslash is a legitimate character in a filename.)

The construct just looks like a string literal.

• White space or characters not in the C repertoire may be permissible and

significant within either or both forms.

These points in the description of phases of translation are of particular relevance

to the parse of the # include directive:

• Any character otherwise unrecognized during tokenization is an instance of

an “invalid token.” As with valid tokens, the spelling is retained so that

later phases can, if necessary, map a token sequence (back) into a sequence of

characters.

• Preprocessing phases must maintain the spelling of preprocessing tokens; the

filename is based on the original spelling of the tokens, not on any interpreta¬

tion of escape sequences.

• The filename on the #include (and #line) directive, if it does not begin with

" or <, is macro expanded prior to execution of the directive. Allowing macros

in the include directive facilitates the parameterization of include file names,

an important issue in transportability.

The file search rules used for the filename in the #include directive were left as

implementation-defined. The Standard intends that the rules which are eventually

provided by the implementor correspond as closely as possible to the original K&R

rules. The primary reason that explicit rules were not included in the Standard

is the infeasibility of describing a portable file system structure. It was consid¬

ered unacceptable to include UNIX-like directory rules due to significant differences

between this structure and other popular commercial file system structures.

Nested include files raise an issue of interpreting the file search rules. In UNIX

C an include statement found within an include file entails a search for the named

file relative to the file system directory that holds the outer #include. Other imple¬

mentations, including the earlier UNIX C described in K&R, always search relative

to the same current directory. The Committee decided, in principle, in favor of the

K&R approach, but was unable to provide explicit search rules as explained above.

RATIONALE

64 Section 3. LANGUAGE

The Standard specifies a set of include fde names which must map onto distinct host

file names. In the absence of such a requirement, it would be impossible to write

portable programs using include files.

Section §2.2.4.1 on translation limits contains the required number of nesting levels

for include files. The limits chosen were intended to reflect reasonable needs for

users constrained by reasonable system resources available to implementors.

By defining a failure to read an include file as a syntax error, the Standard requires

that the failure be diagnosed. More than one proposal was presented for some form

of conditional include, or a directive such as #if includable, but none were accepted

by the Committee due to lack of prior art.

3.8.3 Macro replacement

The specification of macro definition and replacement in the Standard was based on

these principles:

« Interfere with existing code as little as possible.

• Keep the preprocessing model simple and uniform.

• Allow macros to be used wherever functions can be.

• Define macro expansion such that it produces the same token sequence whether

the macro calls appear in open text, in macro arguments, or in macro defini¬

tions.

Preprocessing is specified in such a way that it can be implemented as a separate

(text-to-text) pre-pass or as a (token-oriented) portion of the compiler itself. Thus,

the preprocessing grammar is specified in terms of tokens.

However, the new-line character must be a token during preprocessing, because

the preprocessing grammar is line-oriented. The presence or absence of white space is

also important in several contexts, such as between the macro name and a following

parenthesis in a #def ine directive. To avoid overly constraining the implementation,

the Standard allows the preservation of each white space character (which is easy for

a text-to-text pre-pass) or the mapping of white space into a single “white space”

token (which is easier for token-oriented translators).

The Committee desired to disallow “pernicious redefinitions” such as

(in headerl.h)

#define NBUFS 10

(in header2.h)

#define NBUFS 12

which are clearly invitations to serious bugs in a program. There remained,

however, the question of “benign redefinitions,” such as

f

I

3.8. Preprocessing directives 65

(in headerl.h)

#define NULL_DEV 0

(in header'2.h)

#define NULL.DEV 0

The Committee concluded that safe programming practice is better served by

allowing benign redefinition where the definitions are the same. This allows inde¬

pendent headers to specify their understanding of the proper value for a symbol of

interest to each, with diagnostics generated only if the definitions differ.

The definitions are considered “the same” if the identifier-lists, token sequences,

and occurrences of white-space (ignoring the spelling of white-space) in the two

definitions are identical.

Existing implementations have differed on whether keywords can be redefined by

macro definitions. The Committee has decided to allow this usage; it sees such

redefinition as useful during the transition from existing to Standard-conforming

translators.

These definitions illustrate possible uses:

define char signed char

define sizeof (int) sizeof

define const

The first case might be useful in moving extant code from a signed-char implementa¬

tion to one in which char is unsigned. The second case might be useful in adapting

code which assumes that sizeof results in an int value. The redefinition of const

could be useful in retrofitting more modern C code to an older implementation.

As with any other powerful language feature, keyword redefinition is subject to

abuse. Users cannot expect any meaningful behavior to come about from source

files starting with

#define int double

#include <stdio.h>

or similar subversions of common sense.

3.8.3.1 Argument substitution

3.8.3.2 The # operator

Some implementations have decided to replace identifiers found within a string lit¬

eral if they match a macro argument name. The replacement text is a “stringized”

form of the actual argument token sequence. This practice appears to be contrary

to the definition, in K&R, of preprocessing in terms of token sequences. The Com¬

mittee declined to elaborate the syntax of string literals to the point where this

RATIONALE

66 Section 3. LANGUAGE

practice could be condoned. However, since the facility provided by this mechanism

seems to be widely used, the Committee introduced a more tractable mechanism of

comparable power.

The # operator has been introduced for stringizing. It may only be used in a

#define expansion. It causes the formal parameter name following to be replaced

by a string literal formed by stringizing the actual argument token sequence. In

conjunction with string literal concatenation (see §3.1.4), use of this operator permits

the construction of strings as effectively as by identifier replacement within a string.

An example in the Standard illustrates this feature.

One problem with defining the effect of stringizing is the treatment of white

space occurring in macro definitions. Where this could be discarded in the past, now

upwards of one logical line worth (over 500 characters) may have to be retained. As a

compromise between token-based and character-based preprocessing disciplines, the

Committee decided to permit white space to be retained as one bit of information:

none or one. Arbitrary white space is replaced in the string by one space character.

The remaining problem with stringizing was to associate a “spelling” with each

token. (The problem arises in token-based preprocessors, which might, for instance,

convert a numeric literal to a canonical or internal representation, losing information

about base, leading 0’s, etc.) In the interest of simplicity, the Committee decided

that each token should expand to just those characters used to specify it in the

original source text.

QUIET CHANGE

A macro that relies on formal parameter substitution within a string

literal will produce different results.

3.8.3.3 The ## operator

Another facility relied on in much current practice but not specified in the Base Doc¬

ument is “token pasting,” or building a new token by macro argument substitution.

One existing implementation is to replace a comment within a macro expansion

by zero characters, instead of the single space called for in K&R. The Committee

considered this practice unacceptable.

As with “stringizing,” the facility was considered desirable, but not the extant

implementation of this facility, so the Committee invented another preprocessing

operator. The ## operator within a macro expansion causes concatenation of the

tokens on either side of it into a new composite token. The specification of this

pasting operator is based on these principles:

• Paste operations are explicit in the source.

• The ## operator is associative.

• A formal parameter as an operand for ## is not expanded before pasting. (The

actual is substituted for the formal, but the actual is not expanded:

3.8. Preprocessing directives 67

#define a(n) aaa ## n

#define b 2

Given these definitions, the expansion of a(b) is aaab, not aaa2 or aaan.)

• A normal operand for ## is not expanded before pasting.

• Pasting does not cross macro replacement boundaries.

• The token resulting from a paste operation is subject to further macro expan¬

sion.

These principles codify the essential features of prior art, and are consistent with

the specification of the stringizing operator.

3.8.3.4 Rescanning and further replacement

A problem faced by most current preprocessors is how to use a macro name in its

expansion without suffering “recursive death.” The Committee agreed simply to

turn off the definition of a macro for the duration of the expansion of that macro.

An example of this feature is included in the Standard.

The rescanning rules incorporate an ambiguity. Given the definitions

#define f(a) a*g

#define g f

it is clear (or at least unambiguous) that the expansion of f (2) (9) is 2*f (9) — the

f in the result clearly was introduced during the expansion of the original f, so is

not further expanded.

However, given the definitions

#define f(a) a*g

#define g(a) f(a)

the expansion rules allow the result to be either 2*f(9) or 2*9*g — it is unclear

whether the f (9) token string (resulting from the initial expansion of f and the

examination of the rest of the source file) should be considered as nested within

the expansion of f or not. The Committee intentionally left this behavior ambigu¬

ous: it saw no useful purpose in specifying all the quirks of preprocessing for such

questionably useful constructs.

3.8.3.5 Scope of macro definitions

Some pre-Standard implementations maintain a stack of #def ine instances for each

identifier; #undef simply pops the stack. The Committee agreed that more than

one level of #def ine was more prone to error than utility.

It is explicitly permitted to #undef a macro that has no current definition. This

capability is exploited in conjunction with the standard library (see §4.1.3).

RATIONALE

68 Section 3. LANGUAGE

3.8.4 Line control

Aside from giving values to __LINE_ and __FILE__ (see §3.8.8), the effect of #line

is unspecified. A good implementation will presumably provide line and file infor¬

mation in conjunction with most diagnostics.

3.8.5 Error directive

The directive #error has been introduced to provide an explicit mechanism for

forcing translation to fail under certain conditions. (Formally the Standard only

requires, can only require, that a diagnostic be issued when the #error directive is

effected. It is the intent of the Committee, however, that translation cease imme¬

diately upon encountering this directive, if this is feasible in the implementation;

further diagnostics on text beyond the directive are apt to be of little value.) Tra¬

ditionally such failure has had to be forced by inserting text so ill-formed that the

translator gagged on it.

3.8.6 Pragma directive

The #pragma directive has been added as the universal method for extending the

space of directives.

3.8.7 Null directive

The existing practice of using empty # lines for spacing is supported in the Standard.

3.8.8 Predefined macro names

The rule that these macros may not be redefined or undefined reduces the complex¬

ity of the name space that the programmer and implementor must understand; it

recognizes that these macros have special built-in properties.

The macros __DATE_ and __TIME__ have been added to make available the time of

translation. A particular format for the expansion of these macros has been specified

to aid in parsing strings initialized by them.

The macros __LINE__ and __FILE__ have been added to give programmers access

to the source line number and file name.

The macro __STDC__ allows for conditional translation on whether the translator

claims to be standard-conforming or not. It is defined as having value 1; future ver¬

sions of the Standard could define it as 2, 3, ..., to allow for conditional compilation

on which version of the Standard a translator conforms to. This macro should be

of use in the transition toward conformance to the Standard.

3.9. Future language directions 69

3.9 Future language directions

This section includes specific mention of the future direction in which the Com¬

mittee intends to extend and/or restrict the language. The contents of this section

should be considered as quite likely to become a part of the next version of the Stan¬

dard. Implementors are advised that failure to take heed of the points mentioned

herein is considered undesirable for a conforming hosted or freestanding implemen¬

tation. Users are advised that failure to take heed of the points mentioned herein is

considered undesirable for a conforming program.

3.9.1 External names

3.9.2 Character escape sequences

3.9.3 Storage-class specifiers

See §3.5.1.

3.9.4 Function declarators

The characterization as obsolescent of the use of the “old style” function declarations

and definitions — that is, the traditional style not using prototypes — signals the

Committee’s intent that the new prototype style should eventually replace the old

style.

The case for the prototype style is presented in §3.3.2.2 and §3.5.4.3. The gist

of this case is that the new syntax addresses some of the most glaring weaknesses

of the language defined in the Base Document, that the new style is superior to the

old style on every count.

It was obviously out of the question to remove syntax used in the overwhelming

majority of extant C code, so the Standard specifies two ways of writing function

declarations and function definitions. Characterizing the old style as obsolescent is

meant to discourage its use, and to serve as a strong endorsement by the Committee

of the new style. It confidently expects that approval and adoption of the prototype

style will make it feasible for some future C Standard to remove the old style syntax.

3.9.5 Function definitions

See §3.9.4.

3.9.6 Array parameters

As vector and parallel hardware, and numeric applications in C, become more com¬

mon, the aliasing semantics of C have been a source of frustration for implementors

wanting to make optimum use of such hardware. If arrays are known not to overlap,

certain optimizations become possible, but C currently provides no way to specify

to a translator that argument arrays indeed do not overlap. The Committee, in

RATIONALE

70 Section 3. LANGUAGE

adopting this future direction, hopes to provide common ground for implementors

and users concerned with this problem, so that some future C Standard can adopt

this non-overlapping rule on the basis of widespread experience.

Section 4

LIBRARY

4.1 Introduction

The Base Document for this section of the Standard was the 1984 /usr/group Stan¬

dard. The /usr/group document contains definitions of some facilities which were

specific to the UNIX Operating System and not relevant to other operating envi¬

ronments, such as pipes, ioctls, file access permissions and process control facilities.

Those definitions were dropped from the Standard. Some other functions were ex¬

cluded from the Standard because they were non-portable or were ill-defined.

Other facilities not in the library Base Document but present in many UNIX

implementations, such as the curses (terminal-independent screen handling) library

were considered to be more complex and less essential than the facilities of the Base

Document; these functions were not added to the Standard.

4.1.1 Definitions of terms

The decimal-point character is the character used in the input or output of floating

point numbers, and may be changed by setlocale. This is a library construct; the

decimal point in numeric literals in C source text is always a period.

4.1.2 Standard headers

Whereas in prior practice only certain library functions have been associated with

header files, the Standard now mandates that all library functions have a header.

Several headers have therefore been added, and the contents of a few old ones have

been changed.

In many implementations the names of headers are the names of files in special

directories. This implementation technique is not required, however: the Standard

makes no assumptions about the form that a file name may take on any system.

Headers may thus have a special status if an implementation so chooses. Standard

headers may even be built into a translator, provided that their contents do not

become “known” until after they are explicitly included. One purpose of permitting

71

72 Section 4. LIBRARY

these header “files” to be “built in” to the translator is to allow an implementation

of the C language as an interpreter in an un-hosted environment, where the only

“file” support may be a network interface.

The Committee decided to make library headers “idempotent” — they should

be includable any number of times, and includable in any order. This requirement,

which reflects widespread existing practice, may necessitate some protective wrap¬

pers within the headers, to avoid, for instance, redefinitions of typedefs. To ensure

that such protective wrapping can be made to work, and to ensure proper scoping

of typedefs, headers may only be included outside of any declaration.

Note to implementors: a common way of providing this “protective wrapping”

is:

#ifndef

#define

/* body

/* ...
#endif

where ..ERRNO.H is an otherwise unused macro name.

Implementors often desire to provide implementations of C in addition to that pre¬

scribed by the Standard. For instance, an implementation may want to provide

system-specific I/O facilities in <stdio.h>. A technique that allows the same header

to be used in both the Standard-conforming and alternate implementations is to add

the extra, non-Standard, declarations to the header as in this illustration:

#ifdef _EXTENSIONS,.

typedef int file.no;

extern int read(file_no _N, void * .Buffer, int .Nbytes);

/*. . . */
#endif

The header is usable in an implementation of the Standard in the absence of a

definition of ..EXTENSIONS.., and the non-Standard implementation can provide

the appropriate definitions to enable the extra declarations.

4.1.2.1 Reserved identifiers

To give implementors maximum latitude in packing library functions into files, all

external identifiers defined by the library are reserved (in a hosted environment).

This means, in effect, that no user supplied external names may match library

names, not even if the user function has the same specification. Thus, for instance,

strtod may be defined in the same object module as printf, with no fear that

link-time conflicts will occur. Equally, strtod may call printf, or printf may call

strtod, for whatever reason, with no fear that the wrong function will be called.

..ERRNO.H

..ERRNO.H

of <errno.h> */

*/

4.1. Introduction 73

Also reserved for the implementor are all external identifiers beginning with

an underscore, and all other identifiers beginning with an underscore followed by a

capital letter or an underscore. This gives a space of names for writing the numerous

behind-the-scenes non-external macros and functions a library needs to do its job

properly.

With these exceptions, the Standard assures the programmer that all other iden¬

tifiers are available, with no fear of unexpected collisions when moving programs

from one implementation to another.1 Note, in particular, that part of the name

space of internal identifiers beginning with underscore is available to the user —

translator implementors have not been the only ones to find use for “hidden” names.

C is such a portable language in many respects that this issue of “name space pollu¬

tion” is currently one of the principal barriers to writing completely portable code.

Therefore the Standard assures that macro and typedef names are reserved only if

the associated header is explicitly included.

4.1.3 Errors

<errno.h>

<errno.h> is a header invented to encapsulate the error handling mechanism used

by many of the library routines in math.h and strlib.h.2

The error reporting machinery centered about the setting of errno is generally

regarded with tolerance at best. It requires a “pathological coupling” between li¬

brary functions and makes use of a static writable memory cell, which interferes

with the construction of shareable libraries. Nevertheless, the Committee preferred

to standardize this existing, however deficient, machinery rather than invent some¬

thing more ambitious.

The definition of errno as an lvalue macro grants implementors the license to

expand it to something like *__errno_addr(), where the function returns a pointer

to the (current) modifiable copy of errno.

4.1.4 Limits

<float.h> and <limits.h>

Both <float.h> and <limits.h> are inventions. Included in these headers are

various parameters of the execution environment which are potentially useful at

compile time, and which are difficult or impossible to determine by other means.

The availability of this information in headers provides a portable way of tun¬

ing a program to different environments. Another possible method of determining

JSee §3.1.2.1 for a discussion of some of the precautions an implementor should take to keep

this promise. Note also that any implementation-defined member names in structures defined in

<time.h> and <locals.h> must begin with an underscore, rather than following the pattern of

other names in those structures.

2In earlier drafts of the Standard, errno and related macros were defined in <stddef .h>. When

the Committee decided that the other definitions in this header were of such general utility that

they should be required even in freestanding environments, it created <ermo.h>.

RATIONALE

74 Section 4. LIBRARY

some of this information is to evaluate arithmetic expressions in the preprocessing

statements. Requiring that preprocessing always yield the same results as run-time

arithmetic, however, would cause problems for portable compilers (themselves writ¬

ten in C) or for cross compilers, which would then be required to implement the

(possibly wildly different) arithmetic of the target machine on the host machine.

(See §3.4.)

<f loat .h> makes available to programmers a set of useful quantities for numerical

analysis. (See §2.2.4.2.) This set of quantities has seen widespread use for such anal¬

ysis, in C and in other languages, and was recommended by the numerical analysts

on the Committee. The set was chosen so as not to prejudice an implementation’s

selection of floating-point representation.

Most of the limits in <float.h> are specified to be general double expressions

rather than restricted constant expressions

• to allow use of values which cannot readily (or, in some cases, cannot possibly)

be constructed as manifest constants, and

• to allow for run-time selection of floating-point properties, as is possible, for

instance, in IEEE-854 implementations.

4.1.5 Common definitions

<stddef.h>

<stddef .h> is a header invented to provide definitions of several types and macros

used widely in conjunction with the library: ptrdiff_t (see §3.3.6), size_t (see

§3.3.3.4), wchar.t (see §3.1.3.4), and NULL. Including any header that references one

of these macros will also define it, an exception to the usual library rule that each

macro or function belongs to exactly one header.

NULL can be defined as any null pointer constant. Thus existing code can retain

definitions of NULL as 0 or OL, but an implementation may choose to define it as

(void *)0; this latter form of definition is convenient on architectures where the

pointer size(s) do(es) not equal the size of any integer type. It has never been wise

to use NULL in place of an arbitrary pointer as a function argument, however, since

pointers to different types need not be the same size. The library avoids this problem

by providing special macros for the arguments to signal, the one library function

that might see a null function pointer.

The offsetof macro has been added to provide a portable means of determining

the offset, in bytes, of a member within its structure. This capability is useful in

programs, such as are typical in data-base implementations, which declare a large

number of different data structures: it is desirable to provide “generic” routines that

work from descriptions of the structures, rather than from the structure declarations

themselves.3

3Consider, for instance, a set of nodes (structures) which are to be dynamically allocated and

4.1. Introduction 75

In many implementations, offsetof could be defined as one of

(size_t)&(((s_name*)0)->m_name)

or

(size_t)(char *)&(((s_name*)0)->m_name)

or, where X is some predeclared address (or 0) and A(Z) is defined as ((char*)&Z),

(size_t)(A((s_name*)X->m_name) - A(X))

It was not feasible, however, to mandate any single one of these forms as a construct

guaranteed to be portable.

Other implementations may choose to expand this macro as a call to a built-in

function that interrogates the translator’s symbol table.

4.1.6 Use of library functions

To make usage more uniform for both implementor and programmer, the Standard

requires that every library function (unless specifically noted otherwise) must be

represented as an actual function, in case a program wishes to pass its address as

a parameter to another function. On the other hand, every library function is now

a candidate for redefinition, in its associated header, as a macro, provided that

the macro performs a “safe” evaluation of its arguments, i.e., it evaluates each of

the arguments exactly once and parenthesizes them thoroughly, and provided that

its top-level operator is such that the execution of the macro is not interleaved

with other expressions. Two exceptions are the macros getc and putc, which may

evaluate their arguments in an unsafe manner. (See §4.9.7.5.)

If a program requires that a library facility be implemented as an actual function,

not as a macro, then the macro name, if any, may be erased by using the #undef

preprocessing directive (see §3.8.3).

All library prototypes are specified in terms of the “widened” types: an argu¬

ment formerly declared as char is now written as int. This ensures that most

library functions can be called with or without a prototype in scope (see §3.3.2.2),

thus maintaining backwards compatibility with existing, pre-Standard, code. Note,

however, that since functions like printf and scanf use variable-length argument

lists, they must be called in the scope of a prototype.

The Standard contains an example showing how certain library functions may

be “built in” in an implementation that remains conforming.

garbage-collected, and which can contain pointers to other such nodes. A possible implementation

is to have the first field in each node point to a descriptor for that node. The descriptor includes a

table of the offsets of fields which are pointers to other nodes. A garbage-collector “mark” routine

needs no further information about the content of the node (except, of course, where to put the

mark). New node types can be added to the program without requiring the mark routine to be

rewritten or even recompiled.

RATIONALE

Section 4. LIBRARY 76

4.2 Diagnostics

<assert.h>

4.2.1 Program diagnostics

4.2.1.1 The assert macro

Some implementations tolerate an arbitrary scalar expression as the argument to

assert, but the Committee decided to require correct operation only for int ex¬

pressions. For the sake of implementors, no hard and fast format for the output

of a failing assertion is required; but the Standard mandates enough machinery to

replicate the form shown in the footnote.

It can be difficult or impossible to make assert a true function, so it is restricted

to macro form only.

To minimize the number of different methods for program termination, assert

is now defined in terms of the abort function.

Note that defining the macro NDEBUG to disable assertions may change the be¬

havior of a program with no failing assertion if any argument expression to assert

has side-effects, because the expression is no longer evaluated.

It is possible to turn assertions off and on in different functions within a transla¬

tion unit by defining (or undefining) NDEBUG and including <assert.h> again. The

implementation of this behavior in <assert.h> is simple: undefine any previous

definition of assert before providing the new one. Thus the header might look like

#undef assert

#ifdef NDEBUG

#define assert(ignore) ((void) 0)

#else

extern void __gripe(char *_Expr, char *_File, int .Line);

#define assert(expr) \

((expr)? (void)0 : __gripe(#expr, __FILE__, _LINE__))

#endif

Note that assert must expand to a void expression, so the more obvious if state¬

ment does not suffice as a definition of assert. Note also the avoidance of names

in a header which would conflict with the user’s name space (see §3.1.2.1).

4.3 Character Handling

<ctype.h>

Pains were taken to eliminate any ASCII dependencies from the definition of the

character handling functions. One notable result of this policy was the elimination

of the function isascii, both because of the name and because its function was hard

to generalize. Nevertheless, the character functions are often most clearly explained

in concrete terms, so ASCII is used frequently to express examples.

4.3. Character Handling <ctype.h> 77

Since these functions are often used primarily as macros, their domain is re¬

stricted to the small positive integers representable in an unsigned char, plus the

value of EOF. EOF is traditionally —1, but may be any negative integer, and hence

distinguishable from any valid character code. These macros may thus be efficiently

implemented by using the argument as an index into a small array of attributes.

The Standard (§4.13.1) warns that names beginning with is and to, when these

are followed by lower-case letters, are subject to future use in adding items to

<ctype.h>.

4.3.1 Character testing functions

The definitions of printing character and control character have been generalized

from ASCII.

Note that none of these functions returns a nonzero value (true) for the argument

value EOF.

4.3.1.1 The isalnum function

4.3.1.2 The isalpha function

The Standard specifies that the set of letters, in the default locale, comprises the 26

upper-case and 26 lower-case letters of the Latin (English) alphabet. This set may

vary in a locale-specific fashion (that is, under control of the setlocale function,

§4.4) so long as

• isupper(c) implies isalpha(c)

• islower(c) implies isalpha(c)

• isspace(c), ispunct(c), iscntrl(c), or isdigit(c) implies !isalpha(c)

4.3.1.3 The iscntrl function

4.3.1.4 The isdigit function

4.3.1.5 The isgraph function

4.3.1.6 The islower function

4.3.1.7 The isprint function

4.3.1.8 The ispunct function

4.3.1.9 The isspace function

isspace is widely used within the library as the working definition of white space.

RATIONALE

78 Section 4. LIBRARY

4.3.1.10 The isupper function

4.3.1.11 The isxdigit function

4.3.2 Character case mapping functions

Earlier libraries had (almost equivalent) macros, _tolower and _toupper, for these

functions. The Standard now permits any library function to be additionally im¬

plemented as a macro; the underlying function must still be present. _toupper and

_tolower are thus unnecessary and were dropped as part of the general standard¬

ization of library macros.

4.3.2.1 The tolower function

4.3.2.2 The toupper function

4.4 Localization

<locale.h>

C has become an international language. Users of the language outside the United

States have been forced to deal with the various Americanisms built into the stan¬

dard library routines.

Areas affected by international considerations include:

Alphabet. The English language uses 26 letters derived from the Latin alphabet.

This set of letters suffices for English, Swahili, and Hawaiian; all other living

languages use either the Latin alphabet plus other characters, or other, non-

Latin alphabets or syllabaries.

In English, each letter has an upper-case and lower-case form. The German

“sharp S”, fi, occurs only in lower-case. European French usually omits dia-

criticals on upper-case letters. Some languages do not have the concept of two

cases.

Collation. In both EBCDIC and ASCII the code for ‘z’ is greater than the code

for ‘a’, and so on for other letters in the alphabet, so a “machine sort” gives

not unreasonable results for ordering strings. In contrast, most European

languages use a codeset resembling ASCII in which some of the codes used

in ASCII for punctuation characters are used for alphabetic characters. (See

§2.2.1.) The ordering of these codes is not alphabetic. In some languages

letters with diacritics sort as separate letters; in others they should be collated

just as the unmarked form. In Spanish, “11” sorts as a single letter following

“1”; in German, “fi” sorts like “ss”.

Formatting of numbers and currency amounts. In the United States the pe¬

riod is invariably used for the decimal point; this usage was built into the

definitions of such functions as printf and scanf. Prevalent practice in sev¬

eral major European countries is to use a comma; a raised dot is employed

4.4. Localization Clocale .h> 79

in some locales. Similarly, in the United States a comma is used to separate

groups of three digits to the left of the decimal point; a period is common

in Europe, and in some countries digits are not grouped by threes. In print¬

ing currency amounts, the currency symbol (which may be more than one

character) may precede, follow, or be embedded in the digits.

Date and time. The standard function asctime returns a string which includes

abbreviations for month and weekday names, and returns the various elements

in a format which might be considered unusual even in its country of origin.

Various common date formats include

1776-07-04

4.7.76

7/4/76

4.VII.76

76186

04JUL76

Thursday, July 4, 1776

ISO Format

customary central European

British usage
customary U.S. usage

Italian usage

Julian date (YYDDD)

airline usage

full U.S. format

and

Donnerstag, 4. Juli 1776 full German format

Time formats are also quite diverse:

3:30 PM

1530

15h.30

15.30

15:30

customary U.S. and British format

U.S. military format

It ah an usage

German usage

common European usage

The Committee has introduced mechanisms into the C library to allow these and

other issues to be treated in the appropriate locale-specific manner.

The localization features of the Standard are based on these principles:

English for C source. The C language proper is based on English. Keywords

are based on English words. A program which uses “national characters” in

identifiers is not strictly conforming. (Use of national characters in comments

is strictly conforming, though what happens when such a program is printed

in a different locale is unspecified.) The decimal point must be a period in C

source, and no thousands delimiter may be used.

Runtime selectability. The locale must be selectable at runtime, from an

implementation-defined set of possibilities. Translate-time selection does not

offer sufficient flexibility. Software vendors do not want to supply different

RATIONALE

80 Section 4. LIBRARY

object forms of their programs in different locales. Users do not want to use

different versions of a program just because they deal with several different

locales.

Function interface. Locale is changed by calling a function, thus allowing the im¬

plementation to recognize the change, rather than by, say, changing a memory

location that contains the decimal point character.

Immediate effect. When a new locale is selected, affected functions reflect the

change immediately. (This is not meant to imply if a signal-handling function

were to change the selected locale and return to a library function, that the

return value from that library function must be completely correct with respect

to the new locale.)

4.4.1 Locale control

4.4.1.1 The setlocale function

setlocale provides the mechanism for controlling locale-specific features of the li¬

brary. The category argument allows parts of the library to be localized as neces¬

sary without changing the entire locale-specific environment. Specifying the locale

argument as a string gives an implementation maximum flexibility in providing a

set of locales. For instance, an implementation could map the argument string into

the name of a file containing appropriate localization parameters — these files could

then be added and modified without requiring any recompilation of a localizable

program.

4.4.2 Numeric formatting convention inquiry

4.4.2.1 The localeconv function

The localeconv function gives a programmer access to information about how

to format numeric quantities (monetary or otherwise). This sort of interface was

considered preferable to defining conversion functions directly: even with a specified

locale, the set of distinct formats that can be constructed from these elements is

large, and the ones desired very application-dependent.

4.5 Mathematics

<math.h>

For historical reasons, the math library is only defined for the floating type double.

All the names formed by appending f or 1 to a name in <math.h> are reserved to

allow for the definition of float and long double libraries.

The functions ecvt, fcvt, and gcvt have been dropped since their capability is

available through sprintf.

4.5. Mathematics <math.h> 81

Traditionally, HUGE.VAL has been defined as a manifest constant that approxi¬

mates the largest representable double value. As an approximation to infinity it is

problematic. As a function return value indicating overflow, it can cause trouble if

first assigned to a float before testing, since a float may not necessarily hold all

values representable in a double.

After considering several alternatives, the Committee decided to generalize

HUGE_VAL to a positive double expression, so that it could be expressed as an external

identifier naming a location initialized precisely with the proper bit pattern. It can

even be a special encoding for machine infinity, on implementations that support

such codes. It need not be representable as a float, however.

Similarly, domain errors in the past were typically indicated by a zero return,

which is not necessarily distinguishable from a valid result. The Committee agreed

to make the return value for domain errors implementation-defined, so that special

machine codes can be used to advantage. This makes possible an implementation

of the math library in accordance with the IEEE P854 proposal on floating point

representation and arithmetic.

4.5.1 Treatment of error conditions

Whether underflow should be considered a range error, and cause errno to be set,

is specified as implementation-defined since detection of underflow is inefficient on

some systems.

The Standard has been crafted to neither require nor preclude any popular

implementation of floating point. This principle affects the definition of domain

error, an implementation may define extra domain errors to deal with floating-point

arguments such as infinity or “not-a-number”.

The Committee considered the adoption of the matherr capability from UNIX

System V. In this feature of that system’s math library, any error (such as overflow

or underflow) results in a call from the library function to a user-defined exception

handler named matherr. The Committee rejected this approach for several reasons:

• This style is incompatible with popular floating point implementations, such

as IEEE 754 (with its special return codes), or that of VAX/VMS.

• It conflicts with the error-handling style of FORTRAN, thus making it more

difficult to translate useful bodies of mathematical code from that language

to C.

• It requires the math library to be reentrant (since math routines could be

called from matherr), which may complicate some implementations.

o It introduces a new style of library interface: a user-defined library function

with a library-defined name. Note, by way of comparison, the signal and

exit handling mechanisms, which provide a way of “registering” user-defined

functions.

RATIONALE

82 Section 4. LIBRARY

4.5.2 Trigonometric functions

Implementation note: trignometric argument reduction should be performed by a

method that causes no catastrophic discontinuities in the error of the computed

result. In particular, methods based solely on naive application of a calculation like

x - (2*pi) * (int)(x/(2*pi))

are ill-advised.

4.5.2.1 The acos function

4.5.2.2 The asin function

4.5.2.3 The at an function

4.5.2.4 The atan2 function

The atan2 function is modelled after FORTRAN’S. It is described in terms of

arctan ^ for simplicity; the Committee did not wish to complicate the descriptions

by specifying in detail how the determine the appropriate quadrant, since that should

be obvious from normal mathematical convention. atan2(y,x) is well-defined and

finite, even when x is 0; the one ambiguity occurs when both arguments are 0, be¬

cause at that point any value in the range of the function could logically be selected.

Since valid reasons can be advanced for all the different choices that have been in

this situation by various implements, the Standard preserves the implementor’s free¬

dom to return an arbitrary well-defined value such as 0, to report a domain error,

or to return an IEEE NaN code.

4.5.2.5 The cos function

4.5.2.6 The sin function

4.5.2.7 The tan function

The tangent function has singularities at odd multiples of approaching +oo from

one side and — oo from the other. Implementations commonly perform argument

reduction using the best machine representation of 7r; for arguments to tan suffi¬

ciently close to a singularity, such reduction may yield a value on the wrong side of

the singularity. In view of such problems, the Committee has recognized that tan

is an exception to the range error rule (§4.5.1) that an overflowing result produces

HUGE-VAL properly signed.)

83 4.5. Mathematics <math .h>

4.5.3 Hyperbolic functions

4.5.3.1 The cosh function

4.5.3.2 The sinh function

4.5.3.3 The tanh function

4.5.4 Exponential and logarithmic functions

4.5.4.1 The exp function

4.5.4.2 The frexp function

The functions frexp, ldexp, and modf are primitives used by the remainder of the

library. There was some sentiment for dropping them for the same reasons that

ecvt, fcvt, and gcvt were dropped, but their adherents rescued them for general

use. Their use is problematic: on nonbinary architectures ldexp may lose precision,

and frexp may be inefficient.

4.5.4.3 The ldexp function

See §4.5.4.2.

4.5.4.4 The log function

Whether log(0.) is a domain error or a range error is arguable. The choice

in the Standard, range error, is for compatibility with IEEE P854. Some such

implementations would represent the result as —oo, in which case no error is raised.

4.5.4.5 The loglO function

See §4.5.4.4.

4.5.4.6 The modf function

See §4.5.4.2.

4.5.5 Power functions

4.5.5.1 The pow function

4.5.5.2 The sqrt function

IEEE P854, unlike the Standard, requires sqrt(-0.) to return a negatively signed

magnitude-zero result. This is an issue on implementations that support a neg¬

ative floating zero. The Standard specifies that taking the square root of a neg¬

ative number (in the mathematical sense: less than 0) is a domain error which

requires the function to return an implementation-defined value. This rule permits

RATIONALE

84 Section 4. LIBRARY

implementations to support either the IEEE P854 or vendor-specific floating point

representations.

4.5.6 Nearest integer, absolute value, and remainder functions

4.5.6.1 The ceil function

Implementation note: The ceil function returns the smallest integral value in dou¬

ble format not less than x, even though that integer might not be representable in

a C integral type, ceil(x) equals x for all x sufficiently large in magnitude. An

implementation that calculates ceil(x) as

(double)(int) x

is ill-advised.

4.5.6.2 The fabs function

Adding an absolute value operator was rejected by the Committee. An implemen¬

tation can provide a built-in function for efficiency.

4.5.6.3 The floor function

4.5.6.4 The fmod function

fmod is defined even if the quotient x/y is not representable — this function is

properly implemented by scaled subtraction rather than by division. The Standard

defines the result in terms of the formula x — i * y, where i is some integer. This

integer need not be representable, and need not even be explicitly computed. Thus

implementations are advised not to compute the result using a formula like

x - y * (int)(x/y)

Instead, the result can be computed in principle by subtracting ldexp(y.n) from

x, for appropriately chosen decreasing n, until the remainder is between 0 and x —

efficiency considerations may dictate a different actual implementation.

The result of fmod(x.O.O) is either a domain error or 0.0; the result always lies

between 0.0 and y, so specifying the non-erroneous result as 0.0 simply recognizes

the limit case.

The Committee considered and rejected a proposal to use the remainder oper¬

ator '/, for this function; the operators in general correspond to hardware facilities,

and fmod is not supported in hardware on most machines.

4.6 Nonlocal jumps

<setjmp.h>

jmp_buf must be an array type for compatibility with existing practice: programs

typically omit the address operator before a jmpJbuf argument, even though a

4.6. Nonlocal jumps <setjmp .h> 85

pointer to the argument is desired, not the value of the argument itself. Thus, a

scalar or struct type is unsuitable. Note that a one-element array of the appropriate

type is a valid definition.

setjmp is constrained to be a macro only: in some implementations the infor¬

mation necessary to restore context is only available while executing the function

making the call to setjmp.

4.6.1 Save calling environment

4.6.1.1 The setjmp macro

One proposed requirement on setjmp is that it be usable like any other function

— that it be callable in any expression context, and that the expression evaluate

correctly whether the return from setjmp is direct or via a call to longjmp. Un¬

fortunately, any implementation of setjmp as a conventional called function cannot

know enough about the calling environment to save any temporary registers or dy¬

namic stack locations used part way through an expression evaluation. (A setjmp

macro seems to help only if it expands to inline assembly code or a call to a special

built-in function.) The temporaries may be correct on the initial call to setjmp,

but are not likely to be on any return initiated by a corresponding call to longjmp.

These considerations dictated the constraint that setjmp be called only from within

fairly simple expressions, ones not likely to need temporary storage.

An alternative proposal considered by the Committee is to require that imple¬

mentations recognize that calling setjmp is a special case,4 and hence that they

take whatever precautions are necessary to restore the setjmp environment prop¬

erly upon a longjmp call. This proposal was rejected on grounds of consistency:

implementations are currently allowed to implement library functions specially, but

no other situations require special treatment.

4.6.2 Restore calling environment

4.6.2.1 The longjmp function

The Committee also considered requiring that a call to longjmp restore the (setjmp)

calling environment fully — that upon execution of a longjmp, all local variables

in the environment of setjmp have the values they did at the time of the longjmp

call. Register variables create problems with this idea. Unfortunately, the best that

many implementations attempt with register variables is to save them (in jmpJbuf)

at the time of the initial setjmp call, then restore them to that state on each return

initiated by a longjmp call. Since compilers are certainly at liberty to change register

variables to automatic, it is not obvious that a register declaration will indeed be

rolled back. And since compilers are at liberty to change automatic variables to

4This proposal was considered prior to the adoption of the stricture that setjmp be a macro. It

can be considered as equivalent to proposing that the setjmp macro expand to a call to a special

built-in compiler function.

RATIONALE

86 Section 4. LIBRARY

register (if their addresses are never taken), it is not obvious that an automatic

declaration will not be rolled back. Hence the vague wording. In fact, the only

reliable way to ensure that a local variable retain the value it had at the time of the

call to longjmp is to define it with the volatile attribute.

Some implementations leave a process in a special state while a signal is being

handled. An explicit reassurance must be given to the environment when the signal

handler is done. To keep this job manageable, the Committee agreed to restrict

longjmp to only one level of signal handling.

The longjmp function should not be called in an exit handler (i.e., a function

registered with the atexit function (see §4.10.4.2)), since it might jump to some

code which is no longer in scope.

4.7 Signal Handling

<signal.h>

This facility has been retained from the Base Document since the Committee felt

it important to provide some standard mechanism for dealing with exceptional pro¬

gram conditions. Thus a subset of the signals defined in UNIX were retained in the

Standard, along with the basic mechanisms of declaring signal handlers and (with

adaptations, see §4.7.2.1) raising signals. For a discussion of the problems created

by including signals, see §2.2.3.

The signal machinery contains many misnomers: SIGFPE, SIGILL, and SIGSEGV

have their roots in PDP-11 hardware terminology, but the names are too entrenched

to change. (The occurrence of SIGFPE, for instance, does not necessarily indicate

a floating-point error.) A conforming implementation is not required to field any

hardware interrupts.

The Committee has reserved the space of names beginning with SIG to permit

implementations to add local names to <signal.h>. This implies that such names

should not be otherwise used in a C source file which includes <signal.h>.

4.7.1 Specify signal handling

4.7.1.1 The signal function

When a signal occurs the normal flow of control of a program is interrupted. If a sig¬

nal occurs that is being trapped by a signal handler, that handler is invoked. When

it is finished, execution continues at the point at which the signal occurred. This

arrangement could cause problems if the signal handler invokes a library function

that was being executed at the time of the signal. Since library functions are not

guaranteed to be re-entrant, they should not be called from a signal handler that

returns. (See §2.2.3.) A specific exception to this rule has been granted for calls

to signal from within the signal handler; otherwise, the handler could not reliably

reset the signal.

4.8. Variable Arguments <stdarg.h> 87

The specification that some signals may be effectively set to SIG.IGN instead of

SIG_DFL at program startup allows programs under UNIX systems to inherit this

effective setting from parent processes.

For performance reasons, UNIX does not reset SIGILL to default handling when

the handler is called (usually to emulate missing instructions). This treatment is

sanctioned by specifying that whether reset occurs for SIGILL is implementation-

defined.

4.7.2 Send signal

4.7.2.1 The raise function

The function raise replaces the Base Document’s kill function. The latter has an

extra argument which refers to the “process ID” affected by the signal. Since the

execution model of the Standard does not deal with multi-processing, the Committee

deemed it preferable to introduce a function which requires no (dummy) process

argument. The Committee anticipates that IEEE 1003 will wish to standardize the

kill function in the POSIX specification.

4.8 Variable Arguments

<stdarg.h>

For a discussion of argument passing issues, see §3.7.1.

These macros, modeled after the UNIX <varargs.h> macros, have been added

to enable the portable implementation in C of library functions such as printf and

scanf (see §4.9.6). Such implementation could otherwise be difficult, considering

newer machines that may pass arguments in machine registers rather than using the

more traditional stack-oriented methods.

The definitions of these macros in the Standard differ from their forebears: they

have been extended to support argument lists that have a fixed set of arguments

preceding the variable list.

va_start and va_arg must exist as macros, since va_start uses an argument

that is passed by name and va_arg uses an argument which is the name of a data

type. Using #undef on these names leads to undefined behavior.

The va_list type is not necessarily assignable. However, a function can pass a

pointer to its initialized argument list object, as noted below.

4.8.1 Variable argument list access macros

4.8.1.1 The va_start macro

va_start must be called within the body of the function whose argument list is to

be traversed. That function can then pass a pointer to its vaEList object ap to

other functions to do the actual traversal. (It can, of course, traverse the list itself.)

RATIONALE

88 Section 4. LIBRARY

The parmN argument to va_start is an aid to writing conforming ANSI C code

for existing C implementations. Many implementations can use the second param¬

eter within the structure of existing C language constructs to derive the address of

the first variable argument. (Declaring parmN to be of storage class register would

interfere with use of these constructs; hence the effect of such a declaration is un¬

defined behavior. Other restrictions on the type of parmN are imposed for the same

reason.) New implementations may choose to use hidden machinery that ignores

the second argument to va_start, possibly even hiding a function call inside the

macro.

Multiple va_list variables can be in use simulaneously in the same function;

each requires its own calls to va_start and va_end.

4.8.1.2 The va_arg macro

Changing an arbitrary type name into a type name which is a pointer to that type

could require sophisticated rewriting. To allow the implementation of va_arg as a

macro, va_arg need only correctly handle those type names that can be transformed

into the appropriate pointer type by appending a *, which handles most simple cases.

(Typedefs can be defined to reduce more complicated types to a tractable form.)

When using these macros it is important to remember that the type of an argument

in a variable argument list will never be an integer type smaller than int, nor will

it ever be float. (See §3.5.4.3.)

va_arg can only be used to access the value of an argument, not to obtain its

address.

4.8.1.3 The va_end macro

va_end must also be called from within the body of the function having the variable

argument list. In many implementations, this is a do-nothing operation; but those

implementations that need it probably need it badly.

4.9 Input/Output

<stdio.h>

Many implementations of the C runtime environment (most notably the UNIX oper¬

ating system) provide, aside from the standard I/O library (fopen, fclose, fread,

fwrite, f seek), a set of unbuffered I/O services (open, close, read, write, Iseek).

The Committee has decided not to standardize the latter set of functions.

A suggested semantics for these functions in the UNIX world may be found in

the emerging IEEE P1003 standard. The standard I/O library functions use a file

pointer for referring to the desired I/O stream. The unbuffered I/O services use a

file descriptor (a small integer) to refer to the desired I/O stream.

Due to weak implementations of the standard I/O library, many implementors

have assumed that the standard I/O library was used for small records and that the

4.9. Input/Output <stdio . h> 89

unbuffered I/O library was used for large records. However, a good implementation

of the standard I/O library can match the performance of the unbuffered services

on large records. The user also has the capability of tuning the performance of the

standard I/O library (with setvbuf) to suit the application.

Some subtle differences between the two sets of services can make the implemen¬

tation of the unbuffered I/O services difficult:

• The model of a file used in the unbuffered I/O services is an array of characters.

Many C environments do not support this file model.

• Difficulties arise when handling the new-line character. Many hosts use con¬

ventions other than an in-stream new-line character to mark the end of a line.

The unbuffered I/O services assume that no translation occurs between the

program’s data and the file data when performing I/O, so either the new-line

character translation would be lost (which breaks programs) or the implemen¬

tor must be aware of the new-line translation (which results in non-portable

programs).

• On UNIX systems, file descriptors 0, 1, and 2 correspond to the standard

input, output, and error streams. This convention may be problematic for

other systems in that (1) file descriptors 0, 1, and 2 may not be available

or may be reserved for another purpose, (2) the operating system may use a

different set of services for terminal I/O than file I/O.

In summary, the Committee chose not to standardize the unbuffered I/O services

because:

• They duplicate the facilities provided by the standard I/O services.

• The performance of the standard I/O services can be the same or better than

the unbuffered I/O services.

• The unbuffered I/O file model may not be appropriate for many C language

environments.

4.9.1 Introduction

The macros _I0FBF, _I0LBF, _I0NBF are enumerations of the third argument to

setvbuf, a function adopted from UNIX System V.

SEEK_CUR, SEEKJEND, and SEEK_SET have been moved to <stdio .h> from a header

specified in the Base Document and not retained in the Standard.

F0PEN_MAX and TMP_MAX are added environmental limits of some interest to pro¬

grams that manipulate multiple temporary files.

FILENAME-MAX is provided so that buffers to hold file names can be conveniently

declared. If the target system supports arbitrarily long filenames, the implemen¬

tor should provide some reasonable value (80?, 255?, 509?) rather than something

unusable like USHRT-MAX.

RATIONALE

90 Section 4. LIBRARY

4.9.2 Streams

C inherited its notion of text streams from the UNIX environment in which it was

born. Having each line delimited by a single new-line character, regardless of the

characteristics of the actual terminal, supported a simple model of text as a sort of

arbitrary length scroll or “galley.” Having a channel that is “transparent” (no file

structure or reserved data encodings) eliminated the need for a distinction between

text and binary streams.

Many other environments have different properties, however. If a program writ¬

ten in C is to produce a text file digestible by other programs, by text editors in

particular, it must conform to the text formatting conventions of that environment.

The I/O facilities defined by the Standard are both more complex and more

restrictive than the ancestral I/O facilities of UNIX. This is justified on pragmatic

grounds: most of the differences, restrictions and omissions exist to permit C I/O

implementations in environments which differ from the UNIX I/O model.

Troublesome aspects of the stream concept include:

The definition of lines. In the UNIX model, division of a file into lines is effected

by new-line characters. Different techniques are used by other systems —

lines may be separated by CR-LF (carriage return, line feed) or by unrecorded

areas on the recording medium, or each line may be prefixed by its length.

The Standard addresses this diversity by specifying that new-line be used as

a line separator at the program level, but then permitting an implementation

to transform the data read or written to conform to the conventions of the

environment.

Some environments represent text lines as blank-filled fixed-length records.

Thus the Standard specifies that it is implementation-defined whether trailing

blanks are removed from a line on input. (This specification also addresses

the problems of environments which represent text as variable-length records,

but do not allow a record length of 0: an empty line may be written as a

one-character record containing a blank, and the blank is stripped on input.)

Transparency. Some programs require access to external data without modifica¬

tion. For instance, transformation of CR-LF to new-line character is usually

not desirable when object code is processed. The Standard defines two stream

types, text and binary, to allow a program to define, when a file is opened,

whether the preservation of its exact contents or of its line structure is more

important in an environment which cannot accurately reflect both.

Random access. The UNIX I/O model features random access to data in a file,

indexed by character number. On systems where a new-line character pro¬

cessed by the program represents an unknown number of physically recorded

characters, this simple mechanism cannot be consistently supported for text

streams. The Standard abstracts the significant properties of random access

for text streams: the ability to determine the current file position and then

4.9. Input/Output <stdio .h> 91

later reposition the file to the same location, ftell returns a file position

indicator, which has no necessary interpretation except that an fseek opera¬

tion with that indicator value will position the file to the same place. Thus

an implementation may encode whatever file positioning information is most

appropriate for a text file, subject only to the constraint that the encoding

be representable as a long. Use of fgetpos and fsetpos removes even this

constraint.

Buffering. UNIX allows the program to control the extent and type of buffering

for various purposes. For example, a program can provide its own large I/O

buffer to improve efficiency, or can request unbuffered terminal I/O to process

each input character as it is entered. Other systems do not necessarily support

this generality. Some systems provide only line-at-a-time access to terminal

input; some systems support program-allocated buffers only by copying data

to and from system-allocated buffers for processing. Buffering is addressed

in the Standard by specifying UNIX-like setbuf and setvbuf functions, but

permitting great latitude in their implementation. A conforming library need

neither attempt the impossible nor respond to a program attempt to improve

efficiency by introducing additional overhead.

Thus, the Standard imposes a clear distinction between text streams, which must

be mapped to suit local custom, and binary streams, for which no mapping takes

place. Local custom on UNIX (and related) systems is of course to treat the two

sorts of streams identically, and nothing in the Standard requires any changes to

this practice.

Even the specification of binary streams requires some changes to accommodate

a wide range of systems. Because many systems do not keep track of the length of a

file to the nearest byte, an arbitrary number of characters may appear on the end of

a binary stream directed to a hie. The Standard cannot forbid this implementation,

but does require that this padding consist only of null characters. The alternative

would be to restrict C to producing binary hies digestible only by other C programs;

this alternative runs counter to the spirit of C.

The set of characters required to be preserved in text stream I/O are those needed

for writing C programs; the intent is the Standard should permit a C translator to

be written in a maximally portable fashion. Control characters such as backspace

are not required for this purpose, so their handling in text streams is not mandated.

It was agreed that some minimum maximum line length must be mandated; 254

was chosen.

4.9.3 Files

The as if principle is once again invoked to define the nature of input and output

in terms of just two functions, fgetc and fputc. The actual primitives in a given

system may be quite different.

RATIONALE

92 Section 4. LIBRARY

Buffering, and unbuffering, is defined in a way suggesting the desired interactive

behavior; but an implementation may still be conforming even if delays (in a network

or terminal controller) prevent output from appearing in time. It is the intent that

matters here.

No constraints are imposed upon file names, except that they must be repre¬

sentable as strings (with no embedded null characters).

4.9.4 Operations on files

4.9.4.1 The remove function

The Base Document provides the unlink system call to remove files. The UNIX-

specific definition of this function prompted the Committee to replace it with a

portable function.

4.9.4.2 The rename function

This function has been added to provide a system-independent atomic operation

to change the name of an existing file; the Base Document only provided the link

system call, which gives the fde a new name without removing the old one, and

which is extremely system-dependent.

The Committee considered a proposal that rename should quietly copy a file

if simple renaming couldn’t be performed in some context, but rejected this as

potentially too expensive at execution time.

rename is meant to give access to an underlying facility of the execution envi¬

ronment’s operating system. When the new name is the name of an existing file,

some systems allow the renaming (and delete the old file or make it inaccessible

by that name), while others prohibit the operation. The effect of rename is thus

implementation-defined.

4.9.4.3 The tmpfile function

The tmpfile function is intended to allow users to create binary “scratch” files.

The as if principle implies that the information in such a file need never actually

be stored on a file-structured device.

The temporary file is created in binary update mode, because it will presumably

be first written and then read as transparently as possible. Trailing null-character

padding may cause problems for some existing programs.

4.9.4.4 The tmpnam function

This function allows for more control than tmpfile: a file can be opened in binary

mode or text mode, and files are not erased at completion.

There is always some time between the call to tmpnam and the use (in fopen) of

the returned name. Hence it is conceivable that in some implementations the name,

which named no file at the call to tmpnam, has been used as a filename by the time of

4.9. Input/Output <stdio.h> 93

the call to fopen. Implementations should devise name-generation strategies which

minimize this possibility, but users should allow for this possibility.

4.9.5 File access functions

4.9.5.1 The fclose function

On some operating systems it is difficult, or impossible, to create a file unless some¬

thing is written to the file. A maximally portable program which relies on a file

being created must write something to the associated stream before closing it.

4.9.5.2 The fflush function

The fflush function ensures that output has been forced out of internal I/O buffers

for a specified stream. Occasionally, however, it is necessary to ensure that all output

is forced out, and the programmer may not conveniently be able to specify all

the currently-open streams (perhaps because some streams are manipulated within

library packages).5 To provide an implementation-independent method of flushing

all output buffers, the Standard specifies that this is the result of calling fflush

with a NULL argument.

4.9.5.3 The fopen function

The b type modifier has been added to deal with the text/binary dichotomy (see

§4.9.2). Because of the limited ability to seek within text files (see §4.9.9.1), an

implementation is at liberty to treat the old update + modes as if b were also

specified. Table 4.1 tabulates the capabilities and actions associated with the various

specified mode string arguments to fopen.

Table 4.1: File and stream properties of fopen modes

r w a r+ w+ a+

file must exist before open V V
old file contents discarded on open V V
stream can be read V V V V
stream can be written V V V V V
stream can be written only at end V V

Other specifications for files, such as record length and block size, are not speci¬

fied in the Standard, due to their widely varying characteristics in different operating

5For instance, on a system (such as UNIX) which supports process forks, it is usually necessary

to flush all output buffers just prior to the fork.

RATIONALE

94 Section 4. LIBRARY

environments. Changes to file access modes and buffer sizes may be specified us¬

ing the setvbuf function. (See §4.9.5.6.) An implementation may choose to allow

additional file specifications as part of the mode string argument. For instance,

filel = fopen(filelname,"wb,reclen=80");

might be a reasonable way, on a system which provides record-oriented binary files,

for an implementation to allow a programmer to specify record length.

A change of input/output direction on an update file is only allowed following a

f setpos, f seek, rewind, or ff lush operation, since these are precisely the functions

which assure that the I/O buffer has been flushed.

The Standard (§4.9.2) imposes the requirement that binary files not be trun¬

cated when they are updated. This rule does not preclude an implementation from

supporting additional file types that do truncate when written to, even when they

are opened with the same sort of f open call. Magnetic tape files are an example of

a file type that must be handled this way. (On most tape hardware it is impossible

to write to a tape without destroying immediately following data.) Hence tape files

are not “binary files” within the meaning of the Standard. A conforming hosted

implementation must provide (and document) at least one file type (on disk, most

likely) that behaves exactly as specified in the Standard.

4.9.5.4 The freopen function

4.9.5.5 The setbuf function

setbuf is subsumed by setvbuf, but has been retained for compatibility with old

code.

4.9.5.6 The setvbuf function

setvbuf has been adopted from UNIX System V, both to control the nature of

stream buffering and to specify the size of I/O buffers. An implementation is not

required to make actual use of a buffer provided for a stream, so a program must

never expect the buffer’s contents to reflect I/O operations. Further, the Standard

does not require that the requested buffering be implemented; it merely mandates a

standard mechanism for requesting whatever buffering services might be provided.

Although three types of buffering are defined, an implementation may choose

to make one or more of them equivalent. For example, a library may choose to

implement line-buffering for binary files as equivalent to unbuffered I/O or may

choose to always implement full-buffering as equivalent to line-buffering.

The general principle is to provide portable code with a means of requesting the

most appropriate popular buffering style, but not to require an implementation to

support these styles.

4.9. Input/Output <stdio.h> 95

4.9.6 Formatted input/output functions

4.9.6.1 The fprintf function

Use of the L modifier with floating conversions has been added to deal with formatted

output of the new type long double.

Note that the '/.X and */,x formats expect a corresponding int argument; '/.IX or

'/,lx must be supplied with a long int argument.

The conversion specification */,p has been added for pointer conversion, since

the size of a pointer is not necessarily the same as the size of an int. Because

an implementation may support more than one size of pointer, the corresponding

argument is expected to be a (void *) pointer.

The */,n format has been added to permit ascertaining the number of characters

converted up to that point in the current invocation of the formatter.

Some pre-Standard implementations switch formats for '/,g at an exponent of —3

instead of (the Standard’s) —4: existing code which requires the format switch at —3

will have to be changed.

Some existing implementations provide ‘/,D and '/,0 as synonyms or replacements

for '/,ld and */,lo. The Committee considered the latter notation preferable.

The Committee has reserved lower case conversion specifiers for future standard¬

ization.

The use of leading zero in field widths to specify zero padding has been super¬

seded by a precision field. The older mechanism has been retained.

Some implementations have provided the format */,r as a means of indirectly

passing a variable-length argument list. The functions vfprintf, etc., are considered

to be a more controlled method of effecting this indirection, so '/,r was not adopted

in the Standard. (See §4.9.6.7.)

The printing formats for numbers is not entirely specified. The requirements

of the Standard are loose enough to allow implementations to handle such cases as

signed zero, not-a-number, and infinity in an appropriate fashion.

4.9.6.2 The fscanf function

The specification of fscanf is based in part on these principles:

• As soon as one specified conversion fails, the whole function invocation fails.

• One-character pushback is sufficient for the implementation of fscanf. Given

the invalid field “-.x”, the characters are not pushed back.

• If a “flawed field” is detected, no value is stored for the corresponding argu¬

ment.

The conversions performed by fscanf are compatible with those performed

by strtod and strtol.

RATIONALE

96 Section 4. LIBRARY

Input pointer conversion with ’/,p has been added, although it is obviously risky,

for symmetry with fprintf. The 7.i format has been added to permit the scanner

to determine the radix of the number in the input stream; the */,n format has been

added to make available the number of characters scanned thus far in the current

invocation of the scanner.

White space is now defined by the isspace function. (See §4.3.1.9.)

An implementation must not use the ungetc function to perform the necessary

one-character pushback. In particular, since the unmatched text is left “unread,”

the file position indicator as reported by the ftell function must be the position

of the character remaining to be read. Furthermore, if the unread characters were

themselves pushed back via ungetc calls, the pushback in f scanf must not affect

the push-back stack in ungetc. A scanf call that matches N characters from a

stream must leave the stream in the same state as if N consecutive getc calls had

been issued.

4.9.6.3 The printf function

See comments of section §4.9.6.1 above.

4.9.6.4 The scanf function

See comments in section §4.9.6.2 above.

4.9.6.5 The sprintf function

See §4.9.6.1 for comments on output formatting.

In the interests of minimizing redundancy, sprintf has subsumed the older,

rather uncommon, ecvt, fcvt, and gcvt.

4.9.6.6 The sscanf function

The behavior of sscanf on encountering end of string has been clarified. See also

comments in section §4.9.6.2 above.

4.9.6.7 The vfprintf function

The functions vfprintf, vprintf, and vsprintf have been adopted from UNIX

System V to facilitate writing special purpose formatted output functions.

4.9.6.8 The vprintf function

See §4.9.6.7.

4.9.6.9 The vsprintf function

See §4.9.6.7.

(

4

4.9. Input/Output <stdio.h> 97

4.9.7 Character input/output functions

4.9.7.1 The fgetc function

Because much existing code assumes that fgetc and fputc are the actual functions

equivalent to the macros getc and putc, the Standard requires that they not be

implemented as macros.

4.9.7.2 The fgets function

This function subsumes gets, which has no limit to prevent storage overwrite on

arbitrary input (see §4.9.7.7).

4.9.7.3 The fputc function

See §4.9.7.1.

4.9.7.4 The fputs function

4.9.7.5 The getc function

getc and putc have often been implemented as unsafe macros, since it is difficult in

such a macro to touch the stream argument only once. Since this danger is common

in prior art, these two functions are explicitly permitted to evaluate stream more

than once.

4.9.7.6 The getchar function

4.9.7.7 The gets function

See §4.9.7.2.

4.9.7.8 The putc function

See §4.9.7.5.

4.9.7.9 The putchar function

4.9.7.10 The puts function

puts(s) is not exactly equivalent to fputs(stdout,s); puts also writes a new line

after the argument string. This incompatibility reflects existing practice.

4.9.7.11 The ungetc function

The Base Document requires that at least one character be read before ungetc is

called, in certain implementation-specific cases. The Committee has removed this

requirement, thus obliging a FILE structure to have room to store one character of

RATIONALE

98 Section 4. LIBRARY

pushback regardless of the state of the buffer; it felt that this degree of generality

makes clearer the ways in which the function may be used.

It is permissible to push back a different character than that which was read;

this accords with common existing practice. The last-in, first-out nature of ungetc

has been clarified.

ungetc is typically used to handle algorithms, such as tokenization, which involve

one-character lookahead in text files, fseek and ft ell are used for random access,

typically in binary files. So that these disparate file-handling disciplines are not

unnecessarily linked, the value of a text file’s hie position indicator immediately

after ungetc has been specified as indeterminate.

Existing practice relies on two different models of the effect of ungetc. One

model can be characterized as writing the pushed-back character “on top of” the

previous character. This model implies an implementation in which the pushed-

back characters are stored within the file buffer and bookkeeping is performed by

setting the file position indicator to the previous character position. (Care must be

taken in this model to recover the overwritten character values when the pushed-

back characters are discarded as a result of other operations on the stream.) The

other model can be characterized as pushing the character “between” the current

character and the previous character. This implies an implementation in which the

pushed-back characters are specially buffered (within the FILE structure, say) and

accounted for by a flag or count. In this model it is natural not to move the file

position indicator. The indeterminacy of the file position indicator while pushed-

back characters exist accommodates both models.

Mandating either model (by specifying the effect of ungetc on a text file’s file

position indicator) creates problems with implementations that have assumed the

other model. Requiring the file position indicator not to change after ungetc woidd

necessitate changes in programs which combine random access and tokenization on

text hies, and rely on the hie position indicator marking the end of a token even

after pushback. Requiring the hie position indicator to back up would create severe

implementation problems in certain environments, since in some hie organizations

it can be impossible to hnd the previous input character position without having

read the hie sequentially to the point in question.6

4.9.8 Direct input/output functions

4.9.8.1 The fread function

size_t is the appropriate type both for an object size and for an array bound (see

6Consider, for instance, a sequential file of variable-length records in which a line is represented

as a count field followed by the characters in the line. The file position indicator must encode a

character position as the position of the count field plus an offset into the line; from the position of

the count field and the length of the line, the next count field can be found. Insufficient information

is available for finding the previous count field, so backing up from the first character of a line

necessitates, in the general case, a sequential read from the start of the file.

4.9. Input/Output <stdio.h> 99

§3.3.3.4), so this is the type of size and nelem.

4.9.8.2 The fwrite function

See §4.9.8.1.

4.9.9 File positioning functions

4.9.9.1 The fgetpos function

fgetpos and f setpos have been added to allow random access operations on files

which are too large to handle with fseek and ftell.

4.9.9.2 The fseek function

Whereas a binary file can be treated as an ordered sequence of bytes, counting from

zero, a text file need not map one-to-one to its internal representation (see §4.9.2).

Thus, only seeks to an earlier reported position are permitted for text files. The

need to encode both record position and position within a record in a long value

may constrain the size of text files upon which fseek-ftell can be used to be

considerably smaller than the size of binary files.

Given these restrictions, the Committee still felt that this function has enough

utility, and is used in sufficient existing code, to warrant its retention in the Stan¬

dard. fgetpos and fsetpos have been added to deal with files which are too large

to handle with fseek and ftell.

The fseek function will reset the end-of-file flag for the stream; the error flag is

not changed unless an error occurs, when it will be set.

4.9.9.3 The fsetpos function

4.9.9.4 The ftell function

ftell can fail for at least two reasons:

• the stream is associated with a terminal, or some other file type for which file

position indicator is meaningless; or

• the fde may be positioned at a location not representable in a long int.

Thus a method for ftell to report failure has been specified.

See also §4.9.9.1.

4.9.9.5 The rewind function

Resetting the end-of-file and error indicators was added to the specification of

rewind to make the specification more logically consistent.

RATIONALE

Section 4. LIBRARY 100

4.9.10 Error-handling functions

4.9.10.1 The clearerr function

4.9.10.2 The feof function

4.9.10.3 The terror function

4.9.10.4 The perror function

At various times, the Committee considered providing a form of perror that delivers

up an error string version of errno without performing any output. It ultimately de¬

cided to provide this capability in a separate function, strerror. (See §4.11.6.1).

4.10 General Utilities

<stdlib.h>

The header <stdlib.h> was invented by the Committee to hold an assortment of

functions that were otherwise homeless.

4.10.1 String conversion functions

4.10.1.1 The atof function

atof, atoi, and atol are subsumed by strtod and strtol, but have been retained

because they are used extensively in existing code. They are less reliable, but may

be faster if the argument is known to be in a valid range.

4.10.1.2 The atoi function

See §4.10.1.1.

4.10.1.3 The atoi function

See §4.10.1.1.

4.10.1.4 The strtod function

strtod and strtol have been adopted (from UNIX System V) because they offer

more control over the conversion process, and because they are required not to

produce unexpected results on overflow during conversion.

4.10.1.5 The strtol function

See §4.10.1.4.

4.10. General Utilities <stdlib.h> 101

4.10.1.6 The strtoul function

strtoul was introduced by the Committee to provide a facility like strtol for

unsigned long values. Simply using strtol in such cases could result in overflow

upon conversion.

4.10.2 Pseudo-random sequence generation functions

4.10.2.1 The rand function

The Committee decided that an implementation should be allowed to provide a rand

function which generates the best random sequence possible in that implementation,

and therefore mandated no standard algorithm. It recognized the value, however,

of being able to generate the same pseudo-random sequence in different implemen¬

tations, and so it has published as an example in the Standard an algorithm that

generates the same pseudo-random sequence in any conforming implementation,

given the same seed.

4.10.2.2 The srand function

4.10.3 Memory management functions

The treatment of null pointers and 0-length allocation requests in the definition of

these functions was in part guided by a desire to support this paradigm:

OBJ * p; /* pointer to a variable list of OBJ’s */

/* initial allocation */

p = (OBJ *) calloc(0, sizeof(OBJ));

/* ... */

/* reallocations until size settles */

while(/* list changes size to c */) {

p = (OBJ *) realloc((void *)p, c*sizeof(OBJ));

/* ... */
>

This coding style, not necessarily endorsed by the Committee, is reported to be in

widespread use.

Some implementations have returned non-null values for allocation requests of

0 bytes. Although this strategy has the theoretical advantage of distinguishing be¬

tween “nothing” and “zero” (an unallocated pointer vs. a pointer to zero-length

space), it has the more compelling theoretical disadvantage of requiring the concept

of a zero-length object. Since such objects cannot be declared, the only way they

could come into existence would be through such allocation requests. The Com¬

mittee has decided not to accept the idea of zero-length objects. The allocation

RATIONALE

102 Section 4. LIBRARY

functions may therefore return a null pointer for an allocation request of zero bytes.

Note that this treatment does not preclude the paradigm outlined above.

QUIET CHANGE

A program which relies on size-0 allocation requests returning a non-null

pointer will behave differently.

Some implementations provide a function (often called alloca) which allocates the

requested object from automatic storage; the object is automatically freed when the

calling function exits. Such a function is not efficiently implementable in a variety

of environments, so it was not adopted in the Standard.

4.10.3.1 The calloc function

Both nelem and elsize must be of type size_t, for reasons similar to those for

fread (see §4.9.8.1).

If a scalar with all bits zero is not interpreted as a zero value by an implemen¬

tation, then calloc may have astonishing results in existing programs transported

there.

4.10.3.2 The free function

The Standard makes clear that a program may only free that which has been al¬

located, that an allocation may only be freed once, and that a region may not be

accessed once it is freed. Some implementations allow more dangerous license. The

null pointer is specified as a valid argument to this function to reduce the need for

special-case coding.

4.10.3.3 The malloc function

4.10.3.4 The realloc function

A null first argument is permissible. If the first argument is not null, and the second

argument is 0, then the call frees the memory pointed to by the first argument, and

a null argument may be returned; this specification is consistent with the policy of

not allowing zero-size objects.

4.10.4 Communication with the environment

4.10.4.1 The abort function

The Committee vacillated over whether a call to abort should return if the signal

SIGABRT is caught or ignored. To minimize astonishment, the final decision was that

abort never returns.

4.10. General Utilities <stdlib.h> 103

4.10.4.2 The atexit function

at exit provides a program with a convenient way to clean up the environment

before it exits. It is adapted from the Whitesmiths C run-time library function

onexit.

A suggested alternative was to use the SIGTERM facility of the signal/raise ma¬

chinery, but that would not give the last-in first-out stacking of multiple functions

so useful with atexit.

It is the responsibility of the library to maintain the chain of registered functions

so that they are invoked in the correct sequence upon program exit.

4.10.4.3 The exit function

The argument to exit is a status indication returned to the invoking environment.

In the UNIX operating system, a value of 0 is the successful return code from a

program. As usage of C has spread beyond UNIX, exit(0) has often been retained

as an idiom indicating successful termination, even on operating systems with dif¬

ferent systems of return codes. This usage is thus recognized as standard. There

has never been a portable way of indicating a non-successful termination, since the

arguments to exit are then implementation-defined. The macro EXIT_FAILURE has

been added to provide such a capability. (EXIT.SUCCESS has been added as well.)

Aside from calls explicitly coded by a programmer, exit is invoked on return

from main. Thus in at least this case, the body of exit cannot assume the existence

of any objects with automatic storage duration (except those declared in exit).

4.10.4.4 The getenv function

The definition of getenv is designed to accommodate both implementations that

have all in-memory read-only environment strings and those that may have to read

an environment string into a static buffer. Hence the pointer returned by the getenv

function points to a string not modifiable by the caller. If an attempt is made to

change this string, the behavior of future calls to getenv is undefined.

A corresponding putenv function was omitted from the Standard, since its util¬

ity outside a multi-process environment is questionable, and since its definition is

properly the domain of an operating system standard.

4.10.4.5 The system function

The system function allows a program to suspend its execution temporarily in order

to run another program to completion.

Information may be passed to the called program in three ways: through

command-line argument strings, through the environment, and (most portably)

through data files. Before calling the system function, the calling program should

close all such data hies.

RATIONALE

104 Section 4. LIBRARY

Information may be returned from the called program in two ways: through

the implementation-defined return value (in many implementations, the termina¬

tion status code which is the argument to the exit function is returned by the

implementation to the caller as the value returned by the system function), and

(most portably) through data files.

If the environment is interactive, information may also be exchanged with users

of interactive devices.

Some implementations offer built-in programs called “commands” (for example,

“date”) which may provide useful information to an application program via the

system function. The Standard does not attempt to characterize such commands,

and their use is not portable.

On the other hand, the use of the system function is portable, provided the

implementation supports the capability. The Standard permits the application to

ascertain this by calling the system function with a null pointer argument. Whether

more levels of nesting are supported can also be ascertained this way; assuming more

than one such level is obviously dangerous.

4.10.5 Searching and sorting utilities

4.10.5.1 The bsearch function

4.10.5.2 The qsort function

4.10.6 Integer arithmetic functions

abs was moved from <math.h> as it was the only function in that library which did

not involve double arithmetic. Some programs have included <math.h> solely to

gain access to abs, but in some implementations this results in unused floating-point

run-time routines becoming part of the translated program.

4.10.6.1 The abs function

The Committee rejected proposals to add an absolute value operator to the language.

An implementation can provide a built-in function for efficiency.

4.10.6.2 The div function

div and ldiv provide a well-specified semantics for signed integral division and

remainder operations. The semantics were adopted to be the same as in FORTRAN.

Since these functions return both the quotient and the remainder, they also serve as

a convenient way of efficiently modelling underlying hardware that computes both

results as part of the same operation. Table 4.2 summarizes the semantics of these

functions.

Divide-by-zero is described as undefined behavior rather than as setting errno to

EDOM. The program can as easily check for a zero divisor before a division as for an

error code afterwards, and the adopted scheme reduces the burden on the function.

4.11. STRING HANDLING <string.h> 105

Table 4.2: Results of div and ldiv

numer denom quot rem

7 3 2 1

-7 3 -2 -1

7 -3 -2 1

-7 -3 2 -1

4.10.6.3 The labs function

4.10.6.4 The ldiv function

4.10.7 Multibyte character functions

See §2.2.1.2 for an overall discussion of multibyte character representations and wide

characters.

4.10.7.1 The mblen function

4.10.7.2 The mbtowc function

4.10.7.3 The wctomb function

4.10.8 Multibyte string functions

See §2.2.1.2 for an overall discussion of multibyte character representations and wide

characters.

4.10.8.1 The mbstowcs function

4.10.8.2 The wcstombs function

4.11 STRING HANDLING

<string.h>

The Committee felt that the functions in this section were all excellent candidates

for replacement by high-performance built-in operations. Hence many simple func¬

tions have been retained, and several added, just to leave the door open for better

implementations of these common operations.

The Standard reserves function names beginning with str or mem for possible

future use.

4.11.1 String function conventions

memcpy, memset, memcmp, and memchr have been adopted from several existing im¬

plementations. The general goal was to provide equivalent capabilities for three

RATIONALE

106 Section 4. LIBRARY

types of byte sequences:

• null-terminated strings (str-),

• null-terminated strings with a maximum length (strn-), and

• transparent data of specified length (mem-).

4.11.2 Copying functions

A block copy routine should be “right”: it should work correctly even if the blocks

being copied overlap. Otherwise it is more difficult to correctly code such overlapping

copy operations, and portability suffers because the optimal C-coded algorithm on

one machine may be horribly slow on another.

A block copy routine should be “fast”: it should be implementable as a few inline

instructions which take maximum advantage of any block copy provisions of the

hardware. Checking for overlapping copies produces too much code for convenient

inlining in many implementations. The programmer knows in a great many cases

that the two blocks cannot possibly overlap, so the space and time overhead are for

naught.

These arguments are contradictory but each is compelling. Therefore the Stan¬

dard mandates two block copy functions: memmove is required to work correctly

even if the source and destination overlap, while memcpy can presume nonoverlap¬

ping operands and be optimized accordingly.

4.11.2.1 The memcpy function

4.11.2.2 The memmove function

4.11.2.3 The strcpy function

4.11.2.4 The strncpy function

strncpy was initially introduced into the C library to deal with fixed-length name

fields in structures such as directory entries. Such fields are not used in the same

way as strings: the trailing null is unnecessary for a maximum-length held, and set¬

ting trailing bytes for shorter names to null assures efficient field-wise comparisons,

strncpy is not by origin a “bounded strcpy,” and the Committee has preferred to

recognize existing practice rather than alter the function to better suit it to such

use.

4.11.3 Concatenation functions

4.11.3.1 The strcat function

4.11.3.2 The strncat function

Note that this function may add n+1 characters to the string.

4.11. STRING HANDLING <string.h> 107

4.11.4 Comparison functions

4.11.4.1 The memcmp function

See §4.11.1.

4.11.4.2 The strcmp function

4.11.4.3 The strcoll function

strcoll and strxf rm provide for locale-specific string sorting, strcoll is intended

for applications in which the number of comparisons is small; strxfrm is more

appropriate when items are to be compared a number of times — the cost of trans¬

formation is then only paid once.

4.11.4.4 The strncmp function

4.11.4.5 The strxfrm function

See §4.11.4.3.

4.11.5 Search functions

4.11.5.1 The memchr function

See §4.11.1.

4.11.5.2 The strchr function

4.11.5.3 The strcspn function

4.11.5.4 The strpbrk function

4.11.5.5 The strrchr function

4.11.5.6 The strspn function

4.11.5.7 The strstr function

The strstr function is an invention of the Committee. It is included as a hook for

efficient substring algorithms, or for built-in substring instructions.

4.11.5.8 The strtok function

This function has been included to provide a convenient solution to many simple

problems of lexical analysis, such as scanning command line arguments.

RATIONALE

108 Section 4. LIBRARY

4.11.6 Miscellaneous functions

4.11.6.1 The memset function

See §4.11.1, and §4.10.3.1.

4.11.6.2 The strerror function

This function is a descendant of perror (see §4.9.10.4). It is defined such that it

can return a pointer to an in-memory read-only string, or can copy a string into a

static buffer on each call.

4.11.6.3 The strlen function

This function is now specified as returning a value of type size_t. (See §3.3.3.4.)

4.12 DATE AND TIME

<time.h>

4.12.1 Components of time

The types clock_t and time_t are arithmetic because values of these types must,

in accordance with existing practice, on occasion be compared with —1 (a “don’t-

know” indication) suitably cast. No arithmetic properties of these types are defined

by the Standard, however, in order to allow implementations the maximum flexi¬

bility in choosing ranges, precisions, and representations most appropriate to their

intended application. The representation need not be a count of some basic unit;

an implementation might conceivably represent different components of a temporal

value as subfields of an integral type.

Many C enviroirments do not support the Base Document library concepts of

daylight savings or time zones. Both notions are defined geographically and politi¬

cally, and thus may require more knowledge about the real world than an implemen¬

tation can support. Hence the Standard specifies the date and time functions such

that information about DST and time zones is not required. The Base Document

function tzset, which would require dealing with time zones, has been excluded

altogether. An implementation reports that information about DST is not available

by setting the tm_isdst field in a broken-down time to a negative value. An imple¬

mentation may return a null pointer from a call to gmtime if information about the

displacement between Universal Time (nee GMT) and local time is not available.

4.12.2 Time manipulation functions

4.12.2.1 The clock function

The function is intended for measuring intervals of execution time, in whatever units

an implementation desires. The conflicting goals of high resolution, long interval

4.12. DATE AND TIME <time .h> 109

capacity, and low timer overhead must be balanced carefully in the light of this

intended use.

4.12.2.2 The difftime function

dif f time is an invention of the Committee. It is provided so that an implementation

can store an indication of the date/time value in the most efficient format possible

and still provide a method of calculating the difference between two times.

4.12.2.3 The mktime function

mktime was invented by the Committee to complete the set of time functions. With

this function it becomes possible to perform portable calculations involving clock

times and broken-down times.

The rules on the ranges of the fields within the *timeptr record are crafted to

permit useful arithmetic to be done. For instance, here is a paradigm for continuing

some loop for an hour:

#include <time.h>

struct tm when;

time_t now;

time_t deadline;

/* ... */
now = time(O);

when = *localtime(&now);

when.tm.hour += 1; /* result is in the range [1,24] */

deadline = mktime(&when);

printf("Loop will finish: '/.sW, asctime(&when)) ;

while (difftime(deadline,time(0)) > 0) whateverO ;

The specification of mktime guarantees that the addition to the tm_hour field pro¬

duces the correct result even when the new value of tm_hour is 24, i.e., a value

outside the range ever returned by a library function in a struct tm object.

One of the reasons for adding this function is to replace the capability to do

such arithmetic which is lost when a programmer cannot depend on time_t being

an integral multiple of some known time unit.

Several readers of earlier versions of this Rationale have pointed out apparent

problems in this example if now is just before a transition into or out of daylight

savings time. However, when.tm_isdst indicates what sort of time was the basis of

the calculation. Implementors, take heed. If this field is set to -1 on input, one

truly ambiguous case involves the transition out of daylight savings time. As DST

is currently legislated in the USA, the hour 0100-0159 occurs twice, first as DST

and then as standard time. Hence an unlabeled 0130 on this date is problematic.

RATIONALE

no Section 4. LIBRARY

An implementation may choose to take this as DST or standard time, marking its

decision in the tm_isdst field. It may also legitimately take this as invalid input

(and return (time_t) (-1)).

4.12.2.4 The time function

Since no measure is given for how precise an implementation’s best approximation

to the current time must be, an implementation could always return the same date,

instead of a more honest —1. This is, of course, not the intent.

4.12.3 Time conversion functions

4.12.3.1 The asctime function

Although the name of this function suggests a conflict with the principle of removing

ASCII dependencies from the Standard, the name has been retained due to prior art.

For the same reason of existing practice, a proposal to remove the newline character

from the string format was not adopted. Proposals to allow for the use of languages

other than English in naming weekdays and months met with objections on grounds

of prior art, and on grounds that a truly international version of this function was

difficult to specify: three-letter abbreviation of weekday and month names is not

universally conventional, for instance. The strftime function (§4.12.3.5) provides

appropriate facilities for locale-specific date and time strings.

4.12.3.2 The ctime function

4.12.3.3 The gmtime function

This function has been retained, despite objections that GMT — that is, Coor¬

dinated Universal Time (UTC) — is not available in some implementations, since

UTC is a useful and widespread standard representation of time. If UTC is not

available, a null pointer may be returned.

4.12.3.4 The localtime function

4.12.3.5 The strftime function

strftime provides a way of formatting the date and time in the appropriate locale-

specific fashion, using the */,c, */,x, and */,X format specifiers. More generally, it allows

the programmer to tailor whatever date and time format is appropriate for a given

application. The facility is based on the UNIX system date command. See §4.4 for

further discussion of locale specification.

For the field controlled by '/,P, an implementation may wish to provide special

symbols to mark noon and midnight.

4.13. Future library directions 111

4.13

4.13.1

4.13.2

4.13.3

4.13.4

4.13.5

4.13.6

4.13.7

4.13.8

Future library directions

Errors <errno.h>

Character handling <ctype.h>

Localization <locale.h>

Mathematics <math.h>

Signal handling <signal.h>

Input/output <stdio.h>

General utilities <stdlib.h>

String handling <string.h>

RATIONALE

Section 5

APPENDICES

Most of the material in the appendices is not new. It is simply a summary of

information in the Standard, collated for the convenience of users of the Standard.

New (advisory) information is found in Appendix E (Common Warnings) and

in Appendix F.5 (Common Extensions). The section on common extensions is pro¬

vided in part to give programmers even further information which may be useful in

avoiding features of local dialects of C.

113

L

Index

1984 /usr/group Standard, 5, 71

abort function, 76, 102

abs function, 104

abstract machine, 12, 13

Ada programming language, 13

agreement point, 12, 38

aliasing, 39

alignment, 5

alloca function, nonstandard, 102

ANSI X3.64 character set standard,

30

ANSI X3L2 Committee (Codes and

Character Sets), 16

argc and argv parameters to main

function, 11

argument promotion, 41

as if principle, 9, 10, 13, 36, 39, 60,

91, 92

ASCII character code, 13, 14, 16, 30,

76, 78, 110

asctime function, 110

asm keyword, nonstandard, 19

assert macro, 76

<assert.h> header, 76

associativity, 38

atan2 function, 82

atexit function, 11, 86, 103

atof function, 100

atoi function, 100

atol function, 100

Backus-Naur Form, 19

benign redefinition, 64

binary numeration systems, 27, 43

bit, 5

bit fields, 51

break keyword, 60

byte, 5, 44

C++ programming language, 54, 55

calloc function, 102

case ranges, 59

cfree function, 102

clock function, 108

clock_t type, 108

codeset, 14, 78

collating sequence, 14

comments, 33

common extension, 19, 23, 31, 113

common storage, 23

compatible types, 28, 54

compliance, 6

composite type, 28, 54

concatenation, 31

conforming implementation,

freestanding, 7

conforming implementation, hosted, 7

conforming program, 3

const keyword, 19

constant expressions, 49

constraint error, 43

continue keyword, 60

control character, 77

conversions, 34

cross-compilation, 9, 28, 50, 74

<ctype.h> header, 76

curses screen-handling package,

nonstandard, 71

data abstraction, 43

__DATE_ macro, 68

115

116 INDEX

DEC PDP-11, 2

decimal-point character, 71

declarations, 50

defined preprocessing operator, 49,

62

diagnostics, 3, 10, 35, 65, 68

difftime function, 109

div function, 45, 104

domain error, 81

EBCDIC character set, 16, 30, 78

#elif preprocessing directive, 62

#else preprocessing directive, 62

#endif preprocessing directive, 62

entry keyword, nonstandard, 19

enum keyword, 19, 51

enumerations, 27, 29, 50

EOF macro, 77

errno macro, 73, 81, 100

<errno.h> header, 73

erroneous program, 10

#error preprocessing directive, 68

executable program, 9

exit function, 11, 103, 104

expression, ambiguous, 48

expression, sequenced, 48

expression, unsequenced, 48

expressions, 38

external identifiers, 20

external linkage, 9

f close function, 88

ff lush function, 93, 94

fgetc function, 91, 97

fgetpos function, 99

fgets function, 97

__FILE_ macro, 68

file pointer, 88

file position indicator, 91, 99

FILE type, 97

FILENAME_MAX macro, 89

<float.h> header, 18, 73, 74

fmod function, 45, 84

fopen function, 88, 93

fortran keyword, nonstandard, 19

FORTRAN programming language,

23, 54, 104

FORTRAN-to-C translation, 18, 39,

81

fputc function, 91

fread function, 88, 98

frexp function, 83

fscanf function, 95

fseek function, 88, 91, 94, 99

fsetpos function, 94

ftell function, 91

full expression, 12

function definition, 60

function prototypes, 55

function, pure, 48

future directions, 69

fwrite function, 88

getc function, 75, 97

getenv function, 103

gmtime function, 108, 110

goto keyword, 58

Gray code, 27

Greenwich Mean Time (GMT), 110

grouping, 38

header names, 33

hosted environment, 11

HUGE_VAL macro, 81

IEEE 1003 portable operating system

interface standardization

committee, 5, 87, 88

IEEE 754 floating point standard, 18,

81

IEEE P854 floating point

standardization committee,

74, 81, 83, 84

#if preprocessing directive, 9, 50

implementation-defined behavior, 6,

30, 51, 81, 83, 87, 90, 92

include preprocessing directive, 63

infinity, 95

integral constant expression, 50

INDEX 117

integral promotions, 34, 55

interactive devices, 13

interleaving, 38

International Standards Organization

(ISO), 14

internationalization, 110

isascii function, 76

ISO 646, 14

isspace function, 77, 96

jmp_buf type, 84

Kernighan, Brian, 5

kill function, 87

labels, 58

ldexp function, 83

ldiv function, 45, 104

lexical elements, 19

libraries, 9

<limits.h> header, 17, 73

__LINE_ macro, 68

linkage, 21, 23

linked, 9

locale, 77

localeconv function, 80

<locale.h> header, 78

locale-specific behavior, 77, 79, 80,

107

log function, 83

long double type, 27, 28, 51, 95

longjmp function, 17, 85

lvalue, 6, 36, 39, 42, 43, 49

lvalue, modifiable, 36

machine generation of C, 10, 50, 54,

58

main function, 11

manifest constant, 81

mantissa, 18

matherr function, nonstandard, 81

<math.h> header, 80, 104

memchr function, 105

memcmp function, 105

memcpy function, 105, 106

memmove function, 106

memset function, 105

mktime function, 109

modf function, 83

multibyte characters, 6, 15, 105

multi-processing, 87

name space, 21

new-line, 16

not-a-number, 95

NULL macro, 47, 74

null pointer constant, 74

object, 5, 6

obsolescent features, 20, 50, 69

offsetof macro, 55, 74

ones-complement arithmetic, 18

onexit function, 103

optimization, 51

order of evaluation, 38

Pascal programming language, 27, 59

perror function, 100, 108

phases of translation, 9, 10

pointer subtraction, 46

pointers, invalid, 37

POSIX portable operating system

interface standard, IEEE, 5,

87

ttpragma preprocessing directive, 68

precedence, operator, 38

preprocessing, 9, 10, 19, 31, 32, 33,

61, 74, 75

primary expression, 40

printf function, 27, 75, 87

printing character, 77

program startup, 11, 50

prototype, function, 60, 69

ptrdiff_t type, 44, 46, 74

putc function, 75, 97

puts function, 97

quality of implementation, 11

quiet change, 3, 15, 19, 21, 22, 29, 30,

32, 35, 36, 46, 50, 52, 58, 59,

61, 66, 102

RATIONALE

118 INDEX

raise function, 87

rand function, 101

range error, 82

register keyword, 51

remove function, 92

rename function, 92

repertoire, character set, 14

rewind, 94, 99

Ritchie, Dennis M., 5, 23

safe evaluation, 75

same type, 28

scanf function, 75, 87

scope, lexical, 21

sequence points, 12, 38

setbuf function, 91, 94

setjmp function, 85

<setjmp.h> header, 84

setlocale function, 77, 80

setvbuf function, 89, 91, 94

side effect, 48

SIGABRT macro, 102

sig_atomic_t type, 17

SIGILL macro, 87

signal function, 13, 16, 17, 24, 74,

86, 102, 103

<signal.h> header, 17, 86

signed keyword, 19, 51

signilicand, 18

sign-magnitude representation, 18

SIGTERM macro, 103

sizeof keyword, 5, 44, 45, 50

size_t type, 44, 74, 98, 102, 108

source file, 9

spirit of C, 47

sprintf function, 80

sscanf function, 96

statements, 58

static initializers, 50

<stdarg.h> header, 87

__STDC_ macro, 68

<stddef .h> header, 44, 46, 74

<stdio.h> header, 88, 89

<stdlib.h> header, 100

storage duration, 21

strcoll function, 107

streams, 90

streams, binary, 91

streams, text, 91

strerror function, 100, 108

strftime function, 110

strictly conforming program, 3, 6, 11

<string.h> header, 105

stringizing, 65

strlen function, 108

strncat function, 106

strncpy function, 106

strstr function, 107

strtod function, 100

strtok function, 107

strtol function, 100

structure types, 51

strxfrm function, 107

system function, 103

tags, 50

time function, 110

TIME macro, 68

<time.h> header, 108

time_t type, 108

tm_isdst field, 108

tmpf ile function, 92

tmpnam function, 92

token pasting, 32, 66

trigraph sequences, 14

twos-complement representation, 26

type modifier, 54

typedef keyword, 54, 57, 60

#undef preprocessing directive, 75, 87

undefined behavior, 6, 11, 13, 22, 26,

30, 42, 45, 87, 88, 103, 104

ungetc function, 96, 97

UNIX operating system, 2, 35, 63, 71,

81, 86, 87, 88, 90, 92, 93, 96

unlink function, 92

unsigned preserving, 34

unspecified behavior, 6, 68

INDEX 119

/usr/group (UNIX system users

group), 71

va_arg macro, 87

va_list type, 87

value preserving, 34

<varargs.h> header, 87

va_start macro, 87

VAX/VMS operating system, 81

vfprintf function, 95, 96

void * type, 26, 37, 45, 47, 48, 95

void keyword, 19, 51

volatile keyword, 19

vprintf function, 96

vsprintf function, 96

wchar_t type, 74

white space, 19

wide characters, 30, 32

widened types, 75

RATIONALE

•M

It

•I

♦

