
INST. OF STAND

A11104 045743

NATIONAL INSTITUTE OF STANDARDS &
TECHNOLOGY

Research Information Center
G$±ec&mrgt MD 20899

A 11 ID 3 44TT52

NIST

PUBLICATIONS

ADOPTED FOR USE BY
THE FEDERAL GOVERNMENT

PUB 158

SEE NOTICE ON INSIDE

X Window System

Version 11

Release 3

X Window System Protocol

Xlib - C Language X Interface

X Toolkit Intrinsics - C Language Interface

Bitmap Distribution Format 2.1

Research Mormatkjn Center
Gaithersburg, MD 20899

(Notice for Inside Front Cover)

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are
contained in Federal Information Processing Standards Publication
158, The User Interface Component of the Applications Portability
Profile. For a complete list of the publications available in the
Federal Information Processing Standards Series, write to the
Standards Processing Coordinator (ADP), National Institute of
Standards and Technology, Gaithersburg, MD 20899.

/ ^ (

Pr, z.
tIJO
C.P

X Window System Protocol

X Version 11, Release 3

Robert W. Scheifler

Massachusetts Institute of Technology

Laboratory for Computer Science

X Window System is a trademark of MIT

Copyright © 1986, 1987, 1988 Massachusetts Institute of Technology

Permission to use, copy, modify, and distribute this document for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all copies and that both that copyright notice

and this permission notice are retained, and that the name of M I T not be used in advertising or publicity

pertaining to this document without specific, written prior permission MIT makes no representations

about the suitability of this document or the protocol defined in this document for any purpose It is pro¬

vided “as is” without express or implied warranty.

Table of Contents

Acknowledgments . iii

1. Terminology . 1

2. Protocol Formats . 9

3. Syntactic Conventions . 10

4. Common Types . 10

5. Errors . 13

6. Keyboards . 14

7. Pointers . 15

8. Predefined Atoms . 15

9. Connection Setup . 16

10. Requests . 20

11. Connection Close . 74

12. Events . 75

13. Flow Control and Concurrency . 85

Appendix A - KEYSYM Encoding . 83

Appendix B - Protocol Encoding . 99

Acknowledgments

The primary contributers to the Xll protocol are:

Dave Carver (Digital HPW)
Branko Gerovac (Digital HPW)
Jim Gettys (MIT/'Project Athena, Digital)
Phil Karlton (Digital WSL)
Scott McGregor (Digital SSG)
Ram Rao (Digital UEG)
David Rosenthal (Sun)
Dave Winchell (Digital UEG)

The implementors of initial server who provided useful input are:

Susan Angebranndt (Digital)
Raymond Drewry (Digital)
Todd Newman (Digital)

The invited reviewers who provided useful input are:

Andrew Cherenson (Berkeley)
Burns Fisher (Digital)
Dan Garfinkel (HP)
Leo Hourvitz (Next)
Brock Krizan (HP)
David Laidlaw (Stellar)
Dave Mellinger (Interleaf)
Ron Newman (MIT)
John Ousterhout (Berkeley)
Andrew Palay (ITC CMU)
Ralph Swick (MIT)
Craig Taylor (Sun)
Jeffery Vroom (Stellar)

Thanks go to A1 Mento of Digital’s UEG Documentation Group for formatting this
document.

This document does not attempt to provide the rationale or pragmatics required to fully
understand the protocol or to place it in perspective within a complete system.

The protocol contains many management mechanisms that are not intended for normal
applications. Not all mechanisms are needed to build a particular user interface. It is
important to keep in mind that the protocol is intended to provide mechanism, not pol¬
icy.

Robert W. Scheifler
Massachusetts Institute of Technology
Laboratory for Computer Science

iii

1. Terminology

Access control list

X maintains a list of hosts from which client programs can be run. By default,
only programs on the local host and hosts specified in an initial list read by the
server can use the display. Clients on the local host can change this access control
list. Some server implementations can also implement other authorization mechan¬
isms in addition to or in place of this mechanism. The action of this mechanism
can be conditional based on the authorization protocol name and data received by
the server at connection setup.

Active grab

A grab is active when the pointer or keyboard is actually owned by the single grab¬
bing client.

Ancestors

If W is an inferior of A, then A is an ancestor of W.

Atom

An atom is a unique ID corresponding to a string name. Atoms are used to identify
properties, types, and selections.

Background

An InputOutput window can have a background, which is defined as a pixmap.
When regions of the window have their contents lost or invalidated, the server will
automatically tile those regions with the background.

Backing store

When a server maintains the contents of a window, the pixels saved off screen are
known as a backing store.

Bit gravity

When a window is resized, the contents of the window are not necessarily dis¬
carded. It is possible to request that the server relocate the previous contents to
some region of the window (though no guarantees are made). This attraction of
window contents for some location of a window is known as bit gravity.

Bit plane

When a pixmap or window is thought of as a stack of bitmaps, each bitmap is
called a bit plane or plane.

Bitmap

A bitmap is a pixmap of depth one.

Border

An InputOutput window can have a border of equal thickness on all four sides of
the window. A pixmap defines the contents of the border, and the server automati¬
cally maintains the contents of the border. Exposure events are never generated for
border regions.

Button grabbing

Buttons on the pointer may be passively grabbed by a client. When the button is
pressed, the pointer is then actively grabbed by the client.

Byte order

For image (pixmap/bitmap) data, the server defines the byte order, and clients with
different native byte ordering must swap bytes as necessary. For all other parts of
the protocol, the client defines the byte order, and the server swaps bytes as neces¬

sary.

1

X Protocol XI1, Release 3

Children

The children of a window are its first-level subwindows.

Client

An application program connects to the window system server by some interprocess
communication (IPC) path, such as a TCP connection or a shared memory buffer.
This program is referred to as a client of the window system server. More pre¬
cisely, the client is the IPC path itself; a program with multiple paths open to the
server is viewed as multiple clients by the protocol. Resource lifetimes are con¬
trolled by connection lifetimes, not by program lifetimes.

Clipping region

In a graphics context, a bitmap or list of rectangles can be specified to restrict out¬
put to a particular region of the window. The image defined by the bitmap or rec¬
tangles is called a clipping region.

Colormap

A colormap consists of a set of entries defining color values. The colormap associ¬
ated with a window is used to display the contents of the window; eSph pixel value
indexes the colormap to produce RGB values that drive the guns of a monitor.
Depending on hardware limitations, one or more colormaps may be installed at one
time, so that windows associated with those maps display with correct colors.

Connection

The IPC path between the server and client program is known as a connection. A
client program typically (but not necessarily) has one connection to the server over
which requests and events are sent.

Containment

A window “contains” the pointer if the window is viewable and the hotspot of the
cursor is within a visible region of the window or a visible region of one of its inferi¬
ors. The border of the window is included as part of the window for containment.
The pointer is “in” a window if the window contains the pointer but no inferior
contains the pointer.

Coordinate system

The coordinate system has X horizontal and Y vertical, with the origin [0, 0] at the
upper left. Coordinates are discrete and are in terms of pixels. Each window and
pixmap has its own coordinate system. For a window, the origin is inside the
border at the inside upper left.

Cursor

A cursor is the visible shape of the pointer on a screen. It consists of a hot spot, a
source bitmap, a shape bitmap, and a pair of colors. The cursor defined for a win¬
dow controls the visible appearance when the pointer is in that window.

Depth

The depth of a window or pixmap is the number of bits per pixel that it has. The
depth of a graphics context is the depth of the drawables it can be used in conjunc¬
tion with for graphics output.

Device

Keyboards, mice, tablets, track-balls, button boxes, and so on are all collectively
known as input devices. The core protocol only deals with two devices, “the key¬
board” and “the pointer.”

DirectColor

2

X Protocol XI1, Release 3

DirectColor is a class of colormap in which a pixel value is decomposed into three

separate subfields for indexing. The first subfield indexes an array to produce red

intensity values. The second subfield indexes a second array to produce blue inten¬

sity values. The third subfield indexes a third array to produce green intensity

values. The RGB values can be changed dynamically.

Display

A server, together with its screens and input devices, is called a display.

Drawable

Both windows and pixmaps can be used as sources and destinations in graphics

operations. These windows and pixmaps are collectively known as drawables.

However, an InputOnly window cannot be used as a source or destination in a

graphics operation.

Event

Clients are informed of information asynchronously by means of events. These

events can be generated either asynchronously from devices or as side effects of

client requests. Events are grouped into types. The server never sends events to a

client unless the client has specificially asked to be informed of that type of event.

However, other clients can force events to be sent to other clients. Events are typi¬

cally reported relative to a window.

Event mask

Events are requested relative to a window. The set of event types that a client

requests relative to a window is described by using an event mask.

Event synchronization

There are certain race conditions possible when demultiplexing device events to

clients (in particular deciding where pointer and keyboard events should be sent

when in the middle of window management operations). The event synchronization

mechanism allows synchronous processing of device events.

Event propagation

Device-related events propagate from the source window to ancestor windows until

some client has expressed interest in handling that type of event or until the event

is discarded explicitly.

Event source

The window the pointer is in is the source of a device-related event.

Exposure event

Servers do not guarantee to preserve the contents of windows when windows are

obscured or reconfigured. Exposure events are sent to clients to inform them when

contents of regions of windows have been lost.

Extension

Named extensions to the core protocol can be defined to extend the system. Exten¬

sion to output requests, resources, and event types are all possible and are

expected.

Focus window

The focus window is another term for the input focus.

Font

A font is a matrix of glyphs (typically characters). The protocol does no transla¬

tion or interpretation of character sets. The client simply indicates values used to

index the glyph array. A font contains additional metric information to determine

interglyph and interline spacing.

3

X Protocol Xll, Release 3

GC, GContext

GC and gcontext are abbreviations for graphics context.

Glyph

A glyph is an image, typically of a character, in a font.

Grab

Keyboard keys, the keyboard, pointer buttons, the pointer, and the server can be

grabbed for exclusive use by a client. In general, these facilities are not intended to

be used by normal applications but are intended for various input and window

managers to implement various styles of user interfaces.

Graphics context

Various information for graphics output is stored in a graphics context such as fore¬

ground pixel, background pixel, line width, clipping region, and so on. A graphics

context can only be used with drawables that have the same root and the same

depth as the graphics context.

Gravity

See bit gravity and window gravity.

GrayScale

GrayScale can be viewed as a degenerate case of PseudoColor, in which the

red, green, and blue values in any given colormap entry are equal, thus producing

shades of gray. The gray values can be changed dynamically.

Hotspot

A cursor has an associated hotspot that defines the point in the cursor correspond¬

ing to the coordinates reported for the pointer.

Identifier

An identifier is a unique value associated with a resource that clients use to name

that resource. The identifier can be used over any connection.

Inferiors

The inferiors of a window are all of the subwindows nested below it: the children,

the children’s children, and so on.

Input focus

The input focus is normally a window defining the scope for processing of keyboard

input. If a generated keyboard event would normally be reported to this window

or one of its inferiors, the event is reported normally. Otherwise, the event is

reported with respect to the focus window. The input focus also can be set such

that all keyboard events are discarded and such that the focus window is dynami¬

cally taken to be the root window of whatever screen the pointer is on at each key¬

board event.

Input manager

Control over keyboard input is typically provided by an input manager client.

InputOnly window

An InputOnly window is a window that cannot be used for graphics requests.

InputOnly windows are invisible and can be used to control such things as cur¬

sors, input event generation, and grabbing. InputOnly windows cannot have

InputOutput windows as inferiors.

InputOutput window

An InputOutput window is the normal kind of opaque window, used for both

input and output. InputOutput windows can have both InputOutput and

4

X Protocol Xll, Release 3

InputOnly windows as inferiors.

Key grabbing

Keys on the keyboard can be passively grabbed by a client. When the key is
pressed, the keyboard is then actively grabbed by the client.

Keyboard grabbing

A client can actively grab control of the keyboard, and key events will be sent to
that client rather than the client the events would normally have been sent to.

Keysym

An encoding of a symbol on a keycap on a keyboard.

Mapped

A window is said to be mapped if a map call has been performed on it. Unmapped
windows and their inferiors are never viewable or visible.

Modifier keys

Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple, CapsLock, ShiftLock, and
similar keys are called modifier keys.

Monochrome

Monochrome is a special case of StaticGray in which there are only two colormap
entries.

Obscure

A window is obscured if some other window obscures it. Window A obscures win¬
dow B if both are viewable InputOutput windows, A is higher in the global
stacking order, and the rectangle defined by the outside edges of A intersects the
rectangle defined by the outside edges of B. Note the distinction between obscure
and occludes. Also note that window borders are included in the calculation and
that a window can be obscured and yet still have visible regions.

Occlude

A window is occluded if some other window occludes it. Window A occludes win¬
dow B if both are mapped, A is higher in the global stacking order, and the rectan¬
gle defined by the outside edges of A intersects the rectangle defined by the outside
edges of B. Note the distinction between occludes and obscures. Also note that
window borders are included in the calculation.

Padding

Some padding bytes are inserted in the data stream to maintain alignment of the
protocol requests on natural boundaries. This increases ease of portability to some
machine architectures.

Parent window

If C is a child of P, then P is the parent of C.

Passive grab

Grabbing a key or button is a passive grab. The grab activates when the key or
button is actually pressed.

Pixel value

A pixel is an N-bit value, where N is the number of bit planes used in a particular
window or pixmap (that is, N is the depth of the window or pixmap). For a win¬
dow, a pixel value indexes a colormap to derive an actual color to be displayed.

Pixmap

A pixmap is a three-dimensional array of bits. A pixmap is normally thought of as
a two-dimensional array of pixels, where each pixel can be a value frorg 0 to (2 N)-

5

X Protocol Xll, Release 3

1 and where N is the depth (z axis) of the pixmap. A pixmap can also be thought
of as a stack of N bitmaps.

Plane

When a pixmap or window is thought of as a stack of bitmaps, each bitmap is
called a plane or bit plane.

Plane mask

Graphics operations can be restricted to only affect a subset of bit planes of a desti¬
nation. A plane mask is a bit mask describing which planes are to be modified.
The plane mask is stored in a graphics context.

Pointer

The pointer is the pointing device attached to the cursor and tracked on the
screens.

Pointer grabbing

A client can actively grab control of the pointer. Then button and motion events
will be sent to that client rather than the client the events would normally have
been sent to.

Pointing device

A pointing device is typically a mouse, tablet, or some other device with effective
dimensional motion. There is only one visible cursor defined by the core protocol,
and it tracks whatever pointing device is attached as the pointer.

Property

Windows may have associated properties, which consist of a name, a type, a data
format, and some data. The protocol places no interpretation on properties. They
are intended as a general-purpose naming mechanism for clients. For example,
clients might use properties to share information such as resize hints, program
names, and icon formats with a window manager.

Property list

The property list of a window is the list of properties that have been defined for
the window.

PseudoColor

PseudoColor is a class of colormap in which a pixel value indexes the colormap
to produce independent red, green, and blue values; that is, the colormap is viewed
as an array of triples (RGB values). The RGB values can be changed dynamically.

Redirecting control

Window managers (or client programs) may want to enforce window layout policy
in various ways. When a client attempts to change the size or position of a win¬
dow, the operation may be redirected to a specified client rather than the operation
actually being performed.

Reply

Information recjuested by a client program is sent back to the client with a reply.
Both events and replies are multiplexed on the same connection. Most requests do
not generate replies, although some requests generate multiple replies.

Request

A command to the server is called a request. It is a single block of data sent over a
connection.

Resource

6

X Protocol Xl 1, Release 3

Windows, pixmaps, cursors, fonts, graphics contexts, and colormaps are known as
resources. They all have unique identifiers associated with them for naming pur¬
poses. The lifetime of a resource usually is bounded by the lifetime of the connec¬
tion over which the resource was created.

RGB values

Red, green, and blue (RGB) intensity values are used to define color. These values
are always represented as 16-bit unsigned numbers, with 0 being the minimum
intensity and 65535 being the maximum intensity. The server scales the values to
match the display hardware.

Root

The root of a pixmap or graphics context is the same as the root of whatever draw-
able was used when the pixmap or graphics context was created. The root of a
window is the root window under which the window was created.

Root window

Each screen has a root window covering it. It cannot be reconfigured or unmapped,
but it otherwise acts as a full-fledged window. A root window has no parent.

Save set

The save set of a client is a list of other clients’ windows that, if they are inferiors
of one of the client’s windows at connection close, should not be destroyed and that
should be remapped if currently unmapped. Save sets are typically used by win¬
dow managers to avoid lost windows if the manager terminates abnormally.

Scanline

A scanline is a list of pixel or bit values viewed as a horizontal row (all values hav¬
ing the same y coordinate) of an image, with the values ordered by increasing x
coordinate.

Scanline order

An image represented in scanline order contains scanlines ordered by increasing y
coordinate.

Screen

A server can provide several independent screens, which typically have physically
independent monitors. This would be the expected configuration when there is only
a single keyboard and pointer shared among the screens.

Selection

A selection can be thought of as an indirect property with dynamic type; that is,
rather than having the property stored in the server, it is maintained by some
client (the “owner”). A selection is global in nature and is thought of as belonging
to the user (although maintained by clients), rather than as being private to a par¬
ticular window subhierarchy or a particular set of clients. When a client asks for
the contents of a selection, it specifies a selection “target type”. This target type
can be used to control the transmitted representation of the contents. For exam¬
ple, if the selection is “the last thing the user clicked on” and that is currently an
image, then the target type might specify whether the contents of the image should
be sent in XY format or Z format. The target type can also be used to control the
class of contents transmitted; for example, asking for the “looks” (fonts, line spac¬
ing, indentation, and so on) of a paragraph selection rather than the text of the
paragraph. The target type can also be used for other purposes. The protocol does
not constrain the semantics.

Server

7

X Protocol XI1, Release 3

The server provides the basic windowing mechanism. It handles IPC connections
from clients, demultiplexes graphics requests onto the screens, and multiplexes
input back to the appropriate clients.

Server grabbing

The server can be grabbed by a single client for exclusive use. This prevents pro¬
cessing of any requests from other client connections until the grab is completed.
This is typically only a transient state for such things as rubber-banding, pop-up
menus, or to execute requests indivisibly.

Sibling

Children of the same parent window are known as sibling windows.

Stacking order

Sibling windows may stack on top of each other. Windows above other windows
both obscure and occlude those lower windows. This is similar to paper on a desk.
The relationship between sibling windows is known as the stacking order.

StaticColor

StaticColor can be viewed as a degenerate case of PseudoColor in which the
RGB values are predefined and read-only.

StaticGray

StaticGray can be viewed as a degenerate case of GrayScale in which the gray
values are predefined and read-only. The values are typically linear or near-linear
increasing ramps.

Stipple

A stipple pattern is a bitmap that is used to tile a region that will serve as an addi¬
tional clip mask for a fill operation with the foreground color.

Tile

A pixmap can be replicated in two dimensions to tile a region. The pixmap itself is
also known as a tile.

Timestamp

A timestamp is a time value, expressed in milliseconds. It typically is the time since
the last server reset. Timestamp values wrap around (after about 49.7 days). The
server, given its current time is represented by timestamp T, always interprets
timestamps from clients by treating half of the timestamp space as being earlier in
time than T and half of the timestamp space as being later in time than T. One
timestamp value (named CurrentTime) is never generated by the server. This
value is reserved for use in requests to represent the current server time.

TrueColor

TrueColor can be viewed as a degenerate case of DirectCoIor in which the
subfields in the pixel value directly encode the corresponding RGB values; that is,
the colormap has predefined read-only RGB values. The values are typically linear
or near-linear increasing ramps.

Type

A type is an arbitrary atom used to identify the interpretation of property data.
Types are completely uninterpreted by the server and are solely for the benefit of
clients.

Viewable

A window is viewable if it and all of its ancestors are mapped. This does not imply
that any portion of the window is actually visible. Graphics requests can be per¬
formed on a window when it is not viewable, but output will not be retained unless

8

X Protocol Xl 1, Release 3

the server is maintaining backing store.

Visible

A region of a window is visible if someone looking at the screen can actually see it;
that is, the window is viewable and the region is not occluded by any other win¬
dow.

Window gravity

When windows are resized, subwindows may be repositioned automatically relative
to some position in the window. This attraction of a subwindow to some part of its
parent is known as window gravity.

Window manager

Manipulation of windows on the screen and much of the user interface (policy) is
typically provided by a window manager client.

XYFormat

The data for a pixmap is said to be in XY format if it is organized as a set of bit¬
maps representing individual bit planes, with the planes appearing from most-
significant to least-significant in bit order.

ZF or mat

The data for a pixmap is said to be in Z format if it is organized as a set of pixel
values in scanline order.

2. Protocol Formats

Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed in
units of four bytes. Every request consists of four bytes of a header (containing the
major opcode, the length field, and a data byte) followed by zero or more additional
bytes of data. The length field defines the total length of the request, including the
header. The length field in a request must equal the minimum length required to
contain the request. If the specified length is smaller or larger than the required
length, an error is generated. Unused bytes in a request are not required to be zero.
Major opcodes 128 through 255 are reserved for extensions. Extensions are
intended to contain multiple requests, so extension requests typically have an addi¬
tional minor opcode encoded in the “spare” data byte in the request header. How¬
ever, the placement and interpretation of this minor opcode and of all other fields
in extension requests are not defined by the core protocol. Every request on a given
connection is implicitly assigned a sequence number, starting with one, that is used
in replies, errors, and events.

Reply Format

Every reply contains a 32-bit length field expressed in units of four bytes. Every
reply consists of 32 bytes followed by zero or more additional bytes of data, as
specified in the length field. Unused bytes within a reply are not guaranteed to be
zero. Every reply also contains the least-significant 16 bits of the sequence number
of the corresponding request.

Error Format

Error reports are 32 bytes long. Every error includes an 8-bit error code. Error
codes 128 through 255 are reserved for extensions. Every error also includes the
major and minor opcodes of the failed request and the least-significant 16 bits of
the sequence number of the request. For the following errors (see section 5), the
failing resource ID is also returned: Colormap, Cursor, Drawable, Font,

GContext, IDChoice, Pixmap, and Window. For Atom errors, the failing
atom is returned. For Value errors, the failing value is returned. Other core

9

X Protocol XI1, Release 3

errors return no additional data. Unused bytes within an error are not guaranteed
to be zero.

Event Format

Events are 32 bytes long. Unused bytes within an event are not guaranteed to be
zero. Every event contains an 8-bit type code. The most-significant bit in this
code is set if the event was generated from a SendEvent request. Event codes 64
through 127 are reserved for extensions, although the core protocol does not define
a mechanism for selecting interest in such events. Every core event (with the
exception of KeymapNotify) also contains the least-significant 16 bits of the
sequence number of the last request issued by the client that was (or is currently
being) processed by the server.

3. Syntactic Conventions

The rest of this document uses the following syntactic conventions.

• The syntax {...} encloses a set of alternatives.

• The syntax [...] encloses a set of structure components.

• In general, TYPEs are in uppercase and AlternativeValues are capitalized.

• Requests in section 10 are described in the following format:

RequestName

argl: type!

argN: typeN

= >
resultl: typel

resultM: typeM

Errors: kindl, ..., kindK

Description.

If no => is present in the description, then the request has no reply (it is asyn¬
chronous), although errors may still be reported. If =>+ is used, then one or
more replies can be generated for a single request.

• Events in section 12 are described in the following format:

EventName

valuel: typel

valueN: typeN

Description.

4. Common Types

LISTofFOO

A type name of the form LISTofFOO means a counted list of elements of type
FOO. The size of the length field may vary (it is not necessarily the same size as a
FOO), and in some cases, it may be implicit. It is fully specified in Appendix B.
Except where explicitly noted, zero-length lists are legal.

BITMASK
LISTofVALUE

10

X Protocol Xl 1, Release 3

The types BITMASK and LISTofVALUE are somewhat special. Various requests
contain arguments of the form:

value-mask: BITMASK
value-list: LISTofVALUE

These are used to allow the client to specify a subset of a heterogeneous collection
of optional arguments. The value-mask specifies which arguments are to be pro¬
vided; each such argument is assigned a unique bit position. The representation of
the BITMASK will typically contain more bits than there are defined arguments.
The unused bits in the value-mask must be zero (or the server generates a Value
error). The value-list contains one value for each bit set to 1 in the mask, from
least-significant to most-significant bit in the mask. Each value is represented with
four bytes, but the actual value occupies only the least-significant bytes as required.
The values of the unused bytes do not matter.

OR

A type of the form “Tl or ... or Tn” means the union of the indicated types. A
single-element type is given as the element without enclosing braces.

WINDOW: 32-bit value (top three bits guaranteed to be zero)

PIXMAP: 32-bit value (top three bits guaranteed to be zero)

CURSOR: 32-bit value (top three bits guaranteed to be zero)

FONT: 32-bit value (top three bits guaranteed to be zero)

GCONTEXT: 32-bit value (top three bits guaranteed to be zero)

COLORMAP: 32-bit value (top three bits guaranteed to be zero)

DRAWABLE: WINDOW or PIXMAP

FONTABLE: FONT or GCONTEXT

ATOM: 32-bit value (top three bits guaranteed to be zero)

VISUALID: 32-bit value (top three bits guaranteed to be zero)

VALUE: 32-bit quantity (used only in LISTofVALUE)

BYTE: 8-bit value

INT8: 8-bit signed integer

INT16: 16-bit signed integer

INT32: 32-bit signed integer

CARD8: 8-bit unsigned integer

CARD16: 16-bit unsigned integer

CARD32: 32-bit unsigned integer

TIMESTAMP: CARD32

BITGRAVITY: {Forget, Static, NorthWest, North, NorthEast, West, Center,
East,

SouthWest, South, SouthEast}

WINGRAVITY: {Unmap, Static, NorthWest, North, NorthEast, West, Center,
East,

SouthWest, South, SouthEast}

BOOL: {True, False}

11

X Protocol XI1, Release 3

EVENT: {KeyPress, KeyRelease , OwnerGrabButton , ButtonPress,

ButtonRelease, EnterWindow , LeaveWindow, PointerMotion ,

PointerMotionHint, Button lMotion , Button2Motion ,

ButtonSMotion,

Button4Motion , Button5Motion , ButtonMotion , Exposure,

VisibilityChange , StructureNotify , ResizeRedirect, Substruc-

tureNotify,

SubstructureRedirect, FocusChange, PropertyChange,

ColormapChange, KeymapState }

POINTEREVENT: {ButtonPress, ButtonRelease, EnterWindow, LeaveWindow,

PointerMotion, PointerMotionHint, ButtonlMotion ,

Button2Motion,

Button3Motion , Button4Motion , Button5Motion , ButtonMo¬

tion ,

KeymapState }

DEVICEEVENT: {KeyPress, KeyRelease, ButtonPress, ButtonRelease, Pointer-

Motion ,

ButtonlMotion, Button2Motion , Button3Motion ,

Button4Motion ,

Button5Motion , ButtonMotion }

KEYSYM: 32-bit value (top three bits guaranteed to be zero)

KEYCODE: CARD8

BUTTON: CARDS

KEYMASK: {Shift, Lock, Control, Modi, Mod2, Mod3, Mod4, Mod5 }

BUTMASK: {Buttonl, Button2, Button3, Button4, Button5 }

KEYBUTMASK: KEYMASK or BUTMASK

STRING8: LISTofCARD8

STRING16: LISTofCHAR2B

CHAR2B: [bytel, byte2: CARDS]

POINT: [x, y: INTI6]

RECTANGLE: [x, y: INT16,

width, height: CARD16]

ARC: [x, y: INT16,

width, height: CARD16,

anglel, angle2: INTlG]

HOST: [family: {Internet, DECnet, Chaos}

address: LISTofBYTE]

The [x,y] coordinates of a RECTANGLE specify the upper-left corner.

The primary interpretation of large characters in a STRING16 is that they are

composed of two bytes used to index a 2-D matrix; hence, the use of CHAR2B

rather than CARD16. This corresponds to the JIS/ISO method of indexing 2-byte

characters. It is expected that most large fonts will be defined with 2-byte matrix

indexing. For large fonts constructed with linear indexing, a CHAR2B can be inter¬

preted as a 16-bit number by treating bytel as the most-significant byte. This

means that clients should always transmit such 16-bit character values most-

12

X Protocol Xll, Release 3

significant byte first, as the server will never byte-swap CHAR2B quantities.

The length, format, and interpretation of a HOST address are specific to the family
(see ChangeHosts request).

5. Errors

In general, when a request terminates with an error, the request has no side effects (that
is, there is no partial execution). The only requests for which this is not true are
ChangeWindowAttributes, ChangeGC, PolyText8, PolyTextlfi, FreeColors,
StoreColors, and ChangeKeyboardControl.

The following error codes result from various requests as follows:

Error Description

Access

Alloc

Atom

Colormap

Cursor

Drawable

Font

GContext

An attempt is made to grab a key/button combination already
grabbed by another client.

An attempt is made to free a colormap entry not allocated by
the client.

An attempt is made to store into a read-only or an unallocated
colormap entry.

An attempt is made to modify the access control list from
other than the local host (or otherwise authorized client).

An attempt is made to select an event type that only one
client can select at a time when another client has already
selected it.

The server failed to allocate the requested resource. Note that
the explicit listing of Alloc errors in request only covers allo¬
cation errors at a very coarse level and is not intended to cover
all cases of a server running out of allocation space in the mid¬
dle of service. The semantics when a server runs out of alloca¬
tion space are left unspecified, but a server may generate an
Alloc error on any request for this reason, and clients should
be prepared to receive such errors and handle or discard them.

A value for an ATOM argument does not name a defined
ATOM.

A value for a COLORMAP argument does not name a defined
COLORMAP.

A value for a CURSOR argument does not name a defined
CURSOR.

A value for a DRAWABLE argument does not name a defined
WINDOW or PIXMAP.

A value for a FONT argument does not name a defined
FONT.

A value for a FONTABLE argument does not name a defined
FONT or a defined GCONTEXT.

A value for a GCONTEXT argument does not name a defined
GCONTEXT.

13

X Protocol Xll, Release 3

Error Description

IDChoice The value chosen for a resource identifier either is not included
in the range assigned to the client or is already in use.

Implementation The server does not implement some aspect of the request. A
server that generates this error for a core request is deficient.
As such, this error is not listed for any of the requests, but
clients should be prepared to receive such errors and handle or
discard them.

Length The length of a request is shorter or longer than that required
to minimally contain the arguments.

The length of a request exceeds the maximum length accepted
by the server.

Match An XnputOnly window is used as a DRAWABLE.

In a graphics request, the GCONTEXT argument does not
have the same root and depth as the destination DRAWABLE
argument.

Some argument (or pair of arguments) has the correct type
and range, but it fails to match in some other way required by
the request.

Name A font or color of the specified name does not exist.

Pixmap A value for a PIXMAP argument does not name a defined
PIXMAP.

Request The major or minor opcode does not specify a valid request.

Value Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu¬
ment, the full range defined by the argument’s type is
accepted. Any argument defined as a set of alternatives typi¬
cally can generate this error (due to the encoding).

Window A value for a WINDOW argument does not name a defined
WINDOW.

Note

The Atom, Colormap, Cursor, Drawable, Font, GContext, Pix-

map, and Window errors are also used when the argument type is
extended by union with a set of fixed alternatives, for example, <WINDOW
or PointerRoot or None >.

6. Keyboards

A KEYCODE represents a physical (or logical) key. Key codes lie in the inclusive range
[8,255], A keycode value carries no intrinsic information, although server implementors
may attempt to encode geometry information (for example, matrix) to be interpreted in
a server-dependent fashion. The mapping between keys and keycodes cannot be
changed using the protocol.

A KE\SYM is an encoding of a symbol on the cap of a key. The set of defined
KEYSYMs include the character sets Latin 1, Latin 2, Latin 3, Latin 4, Kana, Arabic,

14

X Protocol Xll, Release 3

Cryllic, Greek, Tech, Special, Publish, APL, and Hebrew as well as a set of symbols com¬
mon on keyboards (Return, Help, Tab, and so on). IvEYSYMs with the most-significant
bit (of the 29 bits) set are reserved as vendor-specific.

A list of KEYSYMs is associated with each KEYCODE, and the length of the list can
vary with each KEYCODE. The list is intended to convey the set of symbols on the
corresponding key. By convention, if the list contains a single KEYSYM and that
KEYSYM is alphabetic and case distinction is relevant for it, then it should be treated
as equivalent to a two-element list of the lowercase and uppercase KEYSYMs. For
example, if the list contains the single KEYSYM for uppercase A, then the client should
treat it as if it were instead a pair with lowercase a as the first KEYSYM and uppercase
A as the second KEYSYM.

For any KEYCODE, the first KEYSYM in the list normally should be chosen as the
interpretation of a KeyPress when no modifier keys are down. The second KEYSYM
in the list normally should be chosen when the Shift modifier is on or when the Lock
modifier is on and Lock is interpreted as ShiftLock. When the Lock modifier is on and is
interpreted as CapsLock, it is suggested that the Shift modifier first be applied to choose
a KEYSYM. However, if that KEYSYM is lowercase alphabetic, the corresponding
uppercase KEYSYM should be used instead. Other interpretations of CapsLock are pos¬
sible. For example, it may be viewed as equivalent to ShiftLock, applying only when the
first KEYSYM is lowercase alphabetic and the second KEYSYM is the corresponding
uppercase alphabetic. No interpretation of KEYSYMs beyond the first two in a list is
suggested here. No spatial geometry of the symbols on the key is defined by their order
in the KEYSYM list, although a geometry might be defined on a vendor-specific basis.

The mapping between KEYCODEs and KEYSYMs is not used directly by the server; it
is merely stored for reading and writing by clients.

The KEYMASK modifier named Lock is intended to be mapped to either a CapsLock or
a ShiftLock key, but which one is left as application-specific and/or user-specific. How¬
ever, it is suggested that the determination be made according to the associated
KEYSYM(s) of the corresponding KEYCODE.

7. Pointers

Buttons are always numbered starting with one.

8. Predefined Atoms

Predefined atoms are not strictly necessary and may not be useful in all environments,
but they will eliminate many InternAtom requests in most applications. Note that
they are predefined only in the sense of having numeric values, not in the sense of hav¬
ing required semantics. The core protocol imposes no semantics on these names, except
as they are used in FONTPROP structures (see QueryFont request).

The following names have predefined atom values. Note that uppercase and lowercase
matter.

ARC
ATOM
BITMAP
CAP_HEIGHT
CARDINAL
COLORMAP
COPYRIGHT
CURSOR
CUTJBUFFERO
CUT_BUFFER1
CUT BUFFER2

ITALIC_ANGLE
MAX_SPACE
MIN_SPACE
NORM_SPACE
NOTICE
PIXMAP
POINT
POINT_SIZE
PRIMARY
QUAD_WIDTH
RECTANGLE

STRING
SUBSCRIPT_X
SUBSCRIPT_Y
SUPERSCRIPT_X
SUPERSCRIPT_Y
UNDERLINE_POSITION
UNDERLINEJTHICKNESS
VISUALID
WEIGHT
WINDOW
WM CLASS

15

X Protocol Xll, Release 3

CUT_BUFFER3

CUTJ3UFFER4
CUT_BUFFER5
CUTJBUFFER6
CUT_BUFFER7
DRAWABLE
END_SPACE
FAMILY_NAME
FONT
FONT_NAME
FULL_NAME
INTEGER

RESOLUTION
RESOURCE_MANAGER
rgb_best_map
RGB_BLUE_MAP
RGB_COLOR_MAP
RGB_DEFAULT_MAP
RG B_G R A Y_M A P

RGB_GREEN_MAP
RGB_RED_MAP
SECONDARY
STRIKEOUT_ASCENT

WM_CLIENT_MACHINE
WM_COMMAND
WM_HINTS
WM_I C O N_N AME
WM_ICON_SIZE
WMJNAME
WM_NORMAL_HINTS
WM_SIZE_HI NTS
WM_TRANSIENT_F OR
WM_Z OOM_H I NT S
X_HEIGHT
STRIKEOUT DESCENT

To avoid conflicts with possible future names for which semantics might be imposed
(either at the protocol level or in terms of higher level user interface models), names
beginning with an underscore should be used for atoms that are private to a particular
vendor or organization. To guarantee no conflicts between vendors and organizations,
additional prefixes need to be used. However, the protocol does not define the mechan¬
ism for choosing such prefixes. For names private to a single application or end user but
stored in globally accessible locations, it is suggested that two leading underscores be
used to avoid conflicts with other names.

9. Connection Setup

For remote clients, the X protocol can be built on top of any reliable byte stream.

The client must send an initial byte of data to identify the byte order to be employed.
The value of the byte must be octal 102 or 154. The value 102 (ASCII uppercase B)
means values are transmitted most-significant byte first, and value 154 (ASCII lowercase
1) means values are transmitted least-significant byte first. Except where explicitly noted
in the protocol, all 16-bit and 32-bit quantities sent by the client must be transmitted
with this byte order, and all 16-bit and 32-bit quantities returned by the server will be
transmitted with this byte order.

Following the byte-order byte, the client sends the following information at connection
setup:

protocol-major-version: CARD16
protocol-minor-version: CARD 16
authorization-protocol-name: STRING8
authorization-protocol-data: STRINGS

The version numbers indicate what version of the protocol the client expects the
server to implement.

The authorization name indicates what authorization protocol the client expects the
server to use, and the data is specific to that protocol. Specification of valid
authorization mechanisms is not part of the core X protocol. It is hoped that even¬
tually one authorization protocol will be agreed upon. In the meantime, a server
that implements a different protocol than the client expects or that only imple¬
ments the host-based mechanism may simply ignore this information. If both name
and data strings are empty, this is to be interpreted as “no explicit authorization.”

The client receives the following information at connection setup:

success: BOOL
protocol-major-version: CARD16
protocol-minor-version: CARD 16
length: CARD 16

16

X Protocol Xll, Release 3

Length is the amount of additional data to follow, in units of four bytes. The ver¬
sion numbers are an escape hatch in case future revisions of the protocol are neces¬
sary. In general, the major version would increment for incompatible changes, and
the minor version would increment for small upward compatible changes. Barring
changes, the major version will be 11, and the minor version will be 0. The proto¬
col version numbers returned indicate the protocol the server actually supports.
This might not equal the version sent by the client. The server can (but need not)
refuse connections from clients that offer a different version than the server sup¬
ports. A server can (but need not) support more than one version simultaneously.

The client receives the following additional data if authorization fails:

reason: STRING8

The client receives the following additional data if authorization is accepted:

vendor: STRING8
release-number: CAR.D32
resource-id-base, resource-id-mask: CARD32
image-byte-order: {LSBF'irst, MSBFirst}
bitmap-scanline-unit: {8, 16, 32}
bitmap-scanline-pad: (8, 16, 32}
bitmap-bit-order: {LeastSignificant, MostSignificant}
pixmap-formats: LISTofFORMAT
roots: LISTofSCREEN
motion-buffer-size: CARD32
maximum-request-length: CARD18
min-keycode, max-keycode: KEYCODE

where:

FORMAT: [depth: CARD8,
bits-per-pixel: (1, 4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]

SCREEN: [root: WINDOW
width-in-pixels, height-in-pixels: CARD16
width-in-millimeters, height-in-millimeters: CARD16
allowed-depths: LISTofDEPTH
root-depth: CARD8
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
min-installed-maps, max-installed-maps: CARD16
backing-stores: (Never, WhenMapped, Always}

save-unders: BOOL
cur rent-input-masks: SETofEVENT]

DEPTH: [depth: CARD8
visuals: LISTofVISUALTYPE]

VISUALTYPE: [visual-id: VISUALID
class: (StaticGray, StaticColor, TrueColor,

GraySeale,

PseudoColor, DirectColor }

red-mask, green-mask, blue-mask: CARD32
bits-per-rgb-value: CARD8
colormap-entries: CARD16]

17

X Protocol XI1, Release 3

The information that is global to the server is:

The vendor string gives some identification of the owner of the server implementa¬
tion. The vendor controls the semantics of the release number.

The resource-id-mask contains a single contiguous set of bits (at least 18). The
client allocates resource IDs for types WINDOW, PIXMAP, CURSOR, FONT,
GCONTEXT, and COLORMAP by choosing a value with only some subset of
these bits set and ORing it with resource-id-base. Only values constructed in this
way can be used to name newly created resources over this connection. Resource
IDs never have the top three bits set. The client is not restricted to linear or con¬
tiguous allocation of resource IDs. Once an ID has been freed, it can be reused, but
this should not be necessary. An ID must be unique with respect to the IDs of all
other resources, not just other resources of the same type. However, note that the
value spaces of resource identifiers, atoms, visualids, and keysyms are distinguished
by context, and as such, are not required to be disjoint; for example, a given
numeric value might be both a valid window ID, a valid atom, and a valid keysym.

Although the server is in general responsible for byte-swapping data to match the
client, images are always transmitted and received in formats (including byte order)
specified by the server. The byte order for images is given by image-byte-order and
applies to each scanline unit in XY format (bitmap format) and to each pixel value
in Z format.

A bitmap is represented in scanline order. Each scanline is padded to a multiple of
bits as given by bitmap-scanline-pad. The pad bits are of arbitrary value. The
scanline is quantized in multiples of bits as given by bitmap-scanline-unit. The
bitmap-scanline-unit is always less than or equal to the bitmap-scanline-pad.
Within each unit, the leftmost bit in the bitmap is either the least-significant or
most-significant bit in the unit, as given by bitmap-bit-order. If a pixmap is
represented in XY format, each plane is represented as a bitmap, and the planes
appear from most-significant to least-significant in bit order with no padding
between planes.

Pixmap-formats contains one entry for each depth value. The entry describes the Z
format used to represent images of that depth. An entry for a depth is included if
any screen supports that depth, and all screens supporting that depth must support
only that Z format for that depth. In Z format, the pixels are in scanline order, left
to right within a scanline. The number of bits used to hold each pixel is given by
bits-per-pixel. Bits-per-pixel may be larger than strictly required by the depth, in
which case the least-significant bits are used to hold the pixmap data, and the
values of the unused high-order bits are undefined. When the bits-per-pixel is 4,
the order of nibbles in the byte is the same a.s the image byte-order. When the
bits-per-pixel is 1, the format is identical for bitmap format. Each scanline is pad¬
ded to a multiple of bits as given by scanline-pad. When bits-per-pixel is 1, this
will be identical to bitmap-scanline-pad.

How a pointing device roams the screens is up to the server implementation and is
transparent to the protocol. No geometry is defined among screens.

The server may retain the recent history of pointer motion and do so to a finer
granularity than is reported by MotionNotify events. The GetMotionEvents

request makes such history available. The motion-buffer-size gives the approximate
size of the history buffer.

Maximum-request-length specifies the maximum length of a request accepted by the
server, in 4-byte units. That is, length is the maximum value that can appear in
the length field of a request. Requests larger than this maximum generate a
Length error, and the server will read and simply discard the entire request.
Maximum-request-length will always be at least 4096 (that is, requests of length up

18

X Protocol Xl 1, Release 3

to and including 16384 bytes will be accepted by all servers).

Min-keycode and max-keycode specify the smallest and largest keycode values
transmitted by the server. Min-keycode is never less than 8, and max-keycode is
never greater than 255. Not all keycodes in this range are required to have
corresponding keys.

The information that applies per screen is:

The allowed-depths specifies what pixmap and window depths are supported. Pix-
maps are supported for each depth listed, and windows of that depth are supported
if at least one visual type is listed for the depth. A pixmap depth of one is always
supported and listed, but windows of depth one might not be supported. A depth
of zero is never listed, but zero-depth InputOnly windows are always supported.

Root-depth and root-visual specify the depth and visual type of the root window.
Width-in-pixels and height-in-pixels specify the size of the root window (which can¬
not be changed). The class of the root window is always InputOutput. Width-
in-millimeters and height-in-millimeters can be used to determine the physical size
and the aspect ratio.

The default-colormap is the one initially associated with the root window. Clients
with minimal color requirements creating windows of the same depth as the root
may want to allocate from this map by default.

Black-pixel and white-pixel can be used in implementing a monochrome application.
These pixel values are for permanently allocated entries in the default-colormap.
The actual RGB values may be settable on some screens and, in any case, may not
actually be black and white. The names are intended to convey the expected rela¬
tive intensity of the colors.

The border of the root window is initially a pixmap filled with the black-pixel. The
initial background of the root window is a pixmap filled with some unspecified
two-color pattern using black-pixel and white-pixel.

Min-installed-maps specifies the number of maps that can be guaranteed to be
installed simultaneously (with InstallColormap), regardless of the number of
entries allocated in each map. Max-installed-maps specifies the maximum number
of maps that might possibly be installed simultaneously, depending on their alloca¬
tions. Multiple static-visual colormaps with identical contents but differing in
resource ID should be considered as a single map for the purposes of this number.
For the typical case of a single hardware colormap, both values will be 1.

Backing-stores indicates when the server supports backing stores for this screen,
although it may be storage limited in the number of windows it can support at
once. If save-unders is True, the server can support the save-under mode in
CreateWindow and ChangeWindowAttributes, although again it may be
storage limited.

The current-input-events is what GetWindowAttributes would return for the
all-event-masks for the root window.

The information that applies per visual-type is:

A given visual type might be listed for more than one depth or for more than one
screen.

For PseudoColor , a pixel value indexes a colormap to produce independent RGB
values; the RGB values can be changed dynamically. GrayScale is treated in the
same way as PseudoColor except which primary drives the screen is undefined;
thus, the client should always store the same value for red, green, and blue in color-
maps. For DirectColor , a pixel value is decomposed into separate RGB subfields,
and each sublield separately indexes the colormap for the corresponding value. The
RGB values can be changed dynamically. TrueColor is treated in the same way

19

X Protocol XI1, Release 3

as DirectColor except the colormap has predefined read-only RGB values. These
values are server-dependent but provide linear or near-linear increasing ramps in
each primary. StaticColor is treated in the same way as PseudoColor except
the colormap has predefined read-only RGB values, which are server-dependent.
StaticGray is treated in the same way as StaticColor except the red, green, and
blue values are equal for any single pixel value, resulting in shades of gray. Sta¬
ticGray with a two-entry colormap can be thought of as monochrome.

The red-mask, green-mask, and blue-mask are only defined for DirectColor and
TrueColor. Each has one contiguous set of bits set to 1 with no intersections.
Usually each mask has the same number of bits set to 1.

The bits-per-rgb-value specifies the log base 2 of the number of distinct color inten¬
sity values (individually) of red, green, and blue. This number need not bear any
relation to the number of colormap entries. Actual RGB values are always passed
in the protocol within a 16-bit spectrum, with 0 being minimum intensity and
65535 being the maximum intensity. On hardware that provides a linear zero-
based intensity ramp, the following relationship exists:

hw-intensity = protocol-intensity / (65536 / total-hw-intensities)

Colormap entries are indexed from 0. The colormap-entries defines the number of
available colormap entries in a newly created colormap. For DirectColor and
TrueColor, this will usually be 2 to the power of the maximum number of bits
set to 1 in red-mask, green-mask, and blue-mask.

10. Requests

CreateWindow

wid, parent: WINDOW
class: {InputOutput, InputOnly, CopyFromParent }
depth: CARD8
visual: VISUALID or CopyFromParent
x, y: INT16
width, height, border-width: CARD 16
value-mask: BITMASK
value-list: LISTofVALUE

Errors: IDChoice, Window, Pixmap, Colormap, Cursor, Match, Value,
Alloc

This request creates an unmapped window and assigns the identifier wid to it.

A class of CopyFromParent means the class is taken from the parent. A depth
of zero for class InputOutput or CopyFromParent means the depth is taken
from the parent. A visual of CopyFromParent means the visual type is taken
from the parent. For class InputOutput, the visual type and depth must be a
combination supported for the screen (or a Match error results). The depth need
not be the same as the parent, but the parent must not be of class InputOnly (or
a Match error results). For class InputOnly, the depth must be zero (or a
Match error results), and the visual must be one supported for the screen (or a
Match error results). However, the parent can have any depth and class.

The server essentially acts as if InputOnly windows do not exist for the purposes
of graphics requests, exposure processing, and VisibilityNotify events. An Inpu¬
tOnly window cannot be used as a drawable (as a source or destination for graph¬
ics requests). InputOnly and InputOutput windows act identically in other
respects-properties, grabs, input control, and so on.

20

X Protocol XI1, Release 3

The window is placed on top in the stacking order with respect to siblings. The x
and y coordinates are relative to the parent’s origin and specify the position of the
upper-left outer corner of the window (not the origin). The width and height
specify the inside size (not including the border) and must be nonzero (or a Value

error results). The border-width for an InputOnly window must be zero (or a
Match error results).

The value-mask and value-list specify attributes of the window that are to be expli¬
citly initialized. The possible values are:

Attribute Type

background-pixmap PIXMAP or None or ParentRela-

tive

background-pixel CARD32
border-pixmap PIXMAP or CopyFromParent

border-pixel CARD32
bit-gravity BITGRAVITY
win-gravity WINGRAVITY
backing-store {NotUseful, WhenMapped,

Always }

backing-planes CARD32
backing-pixel CARD32
save-under BOOL
event-mask SETofEVENT
do-not-propagate-mask SETofDEVICEEVENT
override-redirect BOOL
colormap COLORMAP or CopyFromParent

cursor CURSOR or None

The default values when attributes are not explicitly initialized are:

Attribute Default

background-pixmap None

border-pixmap CopyF romParent

bit-gravity Forget

win-gravity NorthWest

backing-store NotUseful

backing-planes all ones
backing-pixel zero
save-under False

event-mask {} (empty set)
do-not-propagate-mask {} (empty set)
override-redirect False

colormap CopyF romParent

cursor None

Only the following attributes are defined for InputOnly windows:

• win-gravity

• event-mask

• do-not-propagate-mask

21

X Protocol Xll, Release 3

• override-redirect

• cursor

It is a Match error to specify any other attributes for InputOnly windows.

If background-pixmap is given, it overrides the default background-pixmap. The
background pixmap and the window must have the same root and the same depth
(or a Match error results). Any size pixmap can be used, although some sizes may
be faster than others. If background None is specified, the window has no defined
background. If background ParentRelative is specified, the parent’s background
is used, but the window must have the same depth as the parent (or a Match

error results). If the parent has background None, then the window will also have
background None. A copy of the parent’s background is not made. The parent’s
background is reexamined each time the window background is required. If
background-pixel is given, it overrides the default background-pixmap and any
background-pixmap given explicitly, and a pixmap of undefined size filled with
background-pixel is used for the background. Range checking is not performed on
the background-pixel value; it is simply truncated to the appropriate number of
bits. For a ParentRelative background, the background tile origin always aligns
with the parent’s background tile origin. Otherwise, the background tile origin is
always the window origin.

When no valid contents are available for regions of a window and the regions are
either visible or the server is maintaining backing store, the server automatically
tiles the regions with the window’s background unless the window has a back¬
ground of None. If the background is None, the previous screen contents from
other windows of the same depth as the window are simply left in place if the con¬
tents come from the parent of the window or an inferior of the parent; otherwise,
the initial contents of the exposed regions are undefined. Exposure events are then
generated for the regions, even if the background is None.

The border tile origin is always the same as the background tile origin. If border-
pixmap is given, it overrides the default border-pixmap. The border pixmap and
the window must have the same root and the same depth (or a Match error
results). Any size pixmap can be used, although some sizes may be faster than oth¬
ers. If CopyFromParent is given, the parent’s border pixmap is copied (subse¬
quent changes to the parent’s border attribute do not affect the child), but the win¬
dow must have the same depth as the parent (or a Match error results). The pix¬
map might be copied by sharing the same pixmap object between the child and
parent or by making a complete copy of the pixmap contents. If border-pixel is
given, it overrides the default border-pixmap and any border-pixmap given expli¬
citly, and a pixmap of undefined size filled with border-pixel is used for the border.
Range checking is not performed on the border-pixel value; it is simply truncated to
the appropriate number of bits.

Output to a window is always clipped to the inside of the window, so that the
border is never affected.

The bit-gravity defines which region of the window should be retained if the win¬
dow is resized, and win-gravity defines how the window should be repositioned if
the parent is resized (see ConfigureWindow request).

A backing-store of WhenMapped advises the server that maintaining contents of
obscured regions when the window is mapped would be beneficial. A backing-store
of Always advises the server that maintaining contents even when the window is
unmapped would be beneficial. In this case, the server may generate an exposure
event when the window is created. A value of NotUseful advises the server that
maintaining contents is unnecessary, although a server may still choose to maintain
contents while 'he window is mapped. Note that if the server maintains contents,

22

X Protocol XI1, Release 3

then the server should maintain complete contents not just the region within the
parent boundaries, even if the window is larger than its parent. While the server
maintains contents, exposure events will not normally be generated, but the server
may stop maintaining contents at any time.

If save-under is True, the server is advised that when this window is mapped, sav¬
ing the contents of windows it obscures would be beneficial.

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination (and source, when
the window is the source) of graphics requests, but regions obscured by inferior
windows are not included.

The backing-planes indicates (with bits set to 1) which bit planes of the window
hold dynamic data that must be preserved in backing-stores and during save-
unders. The backing-pixel specifies what value to use in planes not covered by
backing-planes. The server is free to save only the specified bit planes in the
backing-store or save-under and regenerate the remaining planes with the specified
pixel value. Any bits beyond the specified depth of the window in these values are
simply ignored.

The event-mask defines which events the client is interested in for this window (or
for some event types, inferiors of the window). The do-not-propagate-mask defines
which events should not be propagated to ancestor windows when no client has the
event type selected in this window.

The override-redirect specifies whether map and configure requests on this window
should override a SubstructureRedirect on the parent, typically to inform a
window manager not to tamper with the window.

The colormap specifies the colormap that best reflects the true colors of the win¬
dow. Servers capable of supporting multiple hardware colormaps may use this
information, and window managers may use it for InstallColormap requests.
The colormap must have the same visual type as the window (or a Match error
results). If CopyFromParent is specified, the parent’s colormap is copied (subse¬
quent changes to the parent’s colormap attribute do not affect the child). However,
the window must have the same visual type as the parent (or a Match error
results), and the parent must not have a colormap of None (or a Match error
results). For an explanation of None, see FreeColormap request. The colormap
is copied by sharing the colormap object between the child and the parent, not by
making a complete copy of the colormap contents.

If a cursor is specified, it will be used whenever the pointer is in the window. If
None is specified, the parent’s cursor will be used when the pointer is in the win¬
dow, and any change in the parent’s cursor will cause an immediate change in the
displayed cursor.

This request generates a CreateNotify event.

The background and border pixmaps and the cursor may be freed immediately if
no further explicit references to them are to be made.

Subsequent drawing into the background or border pixmap has an undefined effect
on the window state. The server might or might not make a copy of the pixmap.

ChangeWindow Attributes

window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Window, Pixmap, Colormap, Cursor, Match, Value, Access

23

X Protocol. Xll, Release 3

The value-mask and value-list specify which attributes are to be changed. The
values and restrictions are the same as for CreateWindow .

Setting a new background, whether by background-pixmap or background-pixel,
overrides any previous background. Setting a new border, whether by border-pixel
or border-pixmap, overrides any previous border.

Changing the background does not cause the window contents to be changed. Set¬
ting the border or changing the background such that the border tile origin changes
causes the border to be repainted. Changing the background of a root window to
None or ParentRelative restores the default background pixmap. Changing the
border of a root window to CopyFromParent restores the default border pix¬
map.

Changing the win-gravity does not affect the current position of the window.

Changing the backing-store of an obscured window to WhenMapped or Always

or changing the backing-planes, backing-pixel, or save-under of a mapped window
may have no immediate effect.

Multiple clients can select input on the same window; their event-masks are dis¬
joint. When an event is generated, it will be reported to all interested clients.
However, only one client at a time can select for SubstructureRedirect, only one
client at a time can select for ResizeRedirect, and only one client at a time can
select for ButtonPress. An attempt to violate these restrictions results in an
Access error.

There is only one do-not-propagate-mask for a window, not one per client.

Changing the colormap of a window (by defining a new map, not by changing the
contents of the existing map) generates a ColormapNotify event. Changing the
colormap of a visible window might have no immediate effect on the screen (see
InstallColormap request).

Changing the cursor of a root window to None restores the default cursor.

The order in which attributes are verified and altered is server-dependent. If an
error is generated, a subset of the attributes may have been altered.

GetWindowAitributes

window. WINDOW

= >

visual. VISUALID
class: {InputOutput, InputOnly}

bit-gravity: BITGRAVITY
win-gravity: WINGRAVITY
backing-store: (NotUsefuI, WhenMapped, Always}

backing-planes: CARD32
backing-pixel: CARD32
save-under: BOOL
colormap: COLORMAP or None

map-is-installed: BOOL
map-state: (Unmapped, Unviewable, Viewable}

all-event-masks, your-event-mask: SETofEVENT
do-not-propagate-mask: SETofDEVICEEVENT
override-redirect: BOOL

Errors: Window

This request returns the current attributes of the window. A window is Unview¬

able if it is mapped but some ancestor is unmapped. All-event-masks is the
inclusive-OR of all event masks selected on the window by clients. Your-event-

24

X Protocol Xl 1, Release 3

mask is the event mask selected by the querying client.

Destroy Window

window. WINDOW

Errors: Window

If the argument window is mapped, an UnmapWindow request is performed
automatically. The window and all inferiors are then destroyed, and a Destroy-
Notify event is generated for each window. The ordering of the DestroyNotify
events is such that for any given window, DestroyNotify is generated on all infe¬
riors of the window before being generated on the window itself. The ordering
among siblings and across subhierarchies is not otherwise constrained.

Normal exposure processing on formerly obscured windows is performed.

If the window is a root window, this request has no effect.

Destroy Sub windows

window: WINDOW

Errors: Window

This request performs a Destroy Window request on all children of the window,
in bottom-to-top stacking order.

ChangeSaveSet

window: WINDOW
mode: {Insert, Delete}

Errors: Window, Match, Value

This request adds or removes the specified window from the client’s save-set. The
window must have been created by some other client (or a Match error results).
For further information about the use of the save-set, see section 11.

When windows are destroyed, the server automatically removes them from the
save-set.

ReparentWindow

window, parent: WINDOW
x, y: INT16

Errors: Window, Match

If the window is mapped, an UnmapWindow request is performed automatically
first. The window is then removed from its current position in the hierarchy and is
inserted as a child of the specified parent. The x and y coordinates are relative to
the parent’s origin and specify the new position of the upper-left, outer corner of the
window. The window is placed on top in the stacking order with respect to
siblings. A ReparentNotify event is then generated. The override-redirect attri¬
bute of the window is passed on in this event; a value of True indicates that a
window manager should not tamper with this window. Finally, if the window was
originally mapped, a MapWindow request is performed automatically.

Normal exposure processing on formerly obscured windows is performed. The
server might not generate exposure events for regions from the initial unmap that
are immediately obscured by the final map.

A Match error is generated if:

• The new parent is not on the same screen as the old parent.

® The new parent is the window itself or an inferior of the window.

• The window has a ParentRelative background, and the new parent is not
the same depth as the window.

25

X Protocol XI1, Release 3

MapWindow

window. WINDOW

Errors: Window

If the window is already mapped, this request has no effect.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirect on the parent, then a MapRequest event is
generated, but the window remains unmapped. Otherwise, the window is mapped,
and a MapNotify event is generated.

If the window is now viewable and its contents have been discarded, the window is
tiled with its background (if no background is defined, the existing screen contents
are not altered), and zero or more exposure events are generated. If a backing-store
has been maintained while the window was unmapped, no exposure events are gen¬
erated. If a backing-store will now be maintained, a full-window exposure is always
generated. Otherwise, only visible regions may be reported. Similar tiling and
exposure take place for any newly viewable inferiors.

MapSub windows

window. WINDOW

Errors: Window

This request performs a MapWindow request on all unmapped children of the
window, in top-to-bottom stacking order.

Un mapWindow

window. WINDOW

Errors: Window

If the window is already unmapped, this request has no effect. Otherwise, the win¬
dow is unmapped, and an UnmapNotify event is generated. Normal exposure
processing on formerly obscured windows is performed.

UnmapSub windows

window. WINDOW

Errors: Window

This request performs an UnmapWindow request on all mapped children of the
window, in bottom-to-top stacking order.

ConfigureWindow

window. WINDOW
value-mask'. BITMASK
value-list: LISTofVALUE

Errors: Window, Match, Value

This request changes the configuration of the window. The value-mask and value-
list specify which values are to be given. The possible values are:

Attribute Type

x

y
width
height
border-width
sibling

INTI 6
INTI 6
CARD 16
CARD 16
CARD 16
WINDOW

26

X Protocol Xl 1, Release 3

Attribute Type

stack-mode {Above, Below, Toplf, Bottomlf,

Opposite }

The x and y coordinates are relative to the parent’s origin and specify the position
of the upper-left outer corner of the window. The width and height specify the
inside size, not including the border, and must be nonzero (or a Value error
results). Those values not specified are taken from the existing geometry of the
window. Note that changing just the border-width leaves the outer-left corner of
the window in a fixed position but moves the absolute position of the window’s ori¬
gin. It is a Match error to attempt to make the border-width of an InputOnly

window nonzero.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirect on the parent, a ConfigureRequest event is
generated, and no further processing is performed. Otherwise, the following is per¬
formed:

If some other client has selected ResizeRedirect on the window and the inside
width or height of the window is being changed, a ResizeRequest event is gen¬
erated, and the current inside width and height are used instead. Note that the
override-redirect attribute of the window has no effect on ResizeRedirect and
that SubstructureRedirect on the parent has precedence over ResizeRedirect

on the window.

The geometry of the window is changed as specified, the window is restacked
among siblings, and a ConfigureNotify event is generated if the state of the win¬
dow actually changes. If the inside width or height of the window has actually
changed, then children of the window are affected, according to their win-gravity.
Exposure processing is performed on formerly obscured windows (including the win¬
dow itself and its inferiors if regions of them were obscured but now are not).
Exposure processing is also performed on any new regions of the window (as a
result of increasing the width or height) and on any regions where window contents
are lost.

If the inside width or height of a window is not changed but the window is moved
or its border is changed, then the contents of the window are not lost but move
with the window. Changing the inside width or height of the window causes its
contents to be moved or lost, depending on the bit-gravity of the window. It also
causes children to be reconfigured, depending on their win-gravity. For a change of
width and height of W and H, we define the [x, y] pairs as:

Direction Deltas

NorthWest 0, 0|
North W/2, 0]
NorthEast W, 0]
West 0, H/2]
Center W/2, H/2]
East W, H/2]
SouthWest 0, H]
South W/2, H]
SouthEast w, H]

27

X Protocol Xll, Release 3

When a window with one of these bit-gravities is resized, the corresponding pair
defines the change in position of each pixel in the window. When a window with
one of these win-gravities has its parent window resized, the corresponding pair
defines the change in position of the window within the parent. This repositioning
generates a GravityNotify event. GravityNotify events are generated after
the ConfigureNotify event is generated.

A gravity of Static indicates that the contents or origin should not move relative
to the origin of the root window. If the change in size of the window is coupled
with a change in position of [X, Y], then for bit-gravity the change in position of
each pixel is [-X, -Y] and for win-gravity the change in position of a child when its
parent is so resized is [-X, -Y], Note that Static gravity still only takes effect
when the width or height of the window is changed, not when the window is simply
moved.

A bit-gravity of Forget indicates that the window contents are always discarded
after a size change, even if backing-store or save-under has been requested. The
window is tiled with its background (except, if no background is defined, the exist¬
ing screen contents are not altered) and zero or more exposure events are generated.
A server may also ignore the specified bit-gravity and use Forget instead.

A win-gravity of Unmap is like NorthWest, but the child is also unmapped
when the parent is resized, and an UnmapNotify event is generated. Unmap-

Notify events are generated after the ConfigureNotify event is generated.

If a sibling and a stack-mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

Toplf If the sibling occludes the window, then the window is
placed at the top of the stack.

Bottamlf If the window occludes the sibling, then the window is
placed at the bottom of the stack.

Opposite If the sibling occludes the window, then the window is
placed at the top of the stack. Otherwise, if the win¬
dow occludes the sibling, then the window is placed at
the bottom of the stack.

If a stack-mode is specified but no sibling is specified, the window is restacked as
follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

Toplf If any sibling occludes the window, then the window is
placed at the top of the stack.

Bottomlf If the window occludes any sibling, then the window is
placed at the bottom of the stack.

Opposite If any sibling occludes the window, then the window is
placed at the top of the stack. Otherwise, if the win¬
dow occludes any sibling, then the window is placed at
the bottom of the stack.

It is a Match error if a sibling is specified without a stack-mode or if the window
is not actually a sibling.

28

X Protocol Xll, Release 3

Note that the computations for Bottomlf, Toplf, and Opposite are performed
with respect to the window’s final geometry (as controlled by the other arguments
to the request), not to its initial geometry.

Attempts to configure a root window have no effect.

CirculateWindow

window: WINDOW
direction: { RaiseLowest, LowerHighest}

Errors: Window, Value

If some other client has selected SubstructureRedirect on the window, then a
CirculateRequest event is generated, and no further processing is performed.
Otherwise, the following is performed, and then a CirculateNotify event is gen¬
erated if the window is actually restacked.

For RaiseLowest, CirculateWindow raises the lowest mapped child (if any)
that is occluded by another child to the top of the stack. For LowerHighest,

CirculateWindow lowers the highest mapped child (if any) that occludes another
child to the bottom of the stack. Exposure processing is performed on formerly
obscured windows.

GetGeometry

drawable: DRAWABLE

= >

root: WINDOW
depth: CARD8
x, y: INT16
width, height, border-width: CARDlG

Errors: Drawable

This request returns the root and current geometry of the drawable. The depth is
the number of bits per pixel for the object. The x, y, and border-width will always
be zero for pixmaps. For a window, the x and y coordinates specify the upper-left
outer corner of the window relative to its parent’s origin, and the width and height
specify the inside size, not including the border.

It is legal to pass an InputOnly window as a drawable to this request.

QueryTree

window. WINDOW

= >

root: WINDOW
parent: WINDOW or None

children: LISTofWINDOW

Errors: Window

This request returns the root, the parent, and the children of the window. The
children are listed in bottom-to-top stacking order.

InternAtom

name: STRING8
only-if-exists: BOOL

= >

atom: ATOM or None

Errors: Value, Alloc

29

X Protocol Xll, Release 3

This request returns the atom for the given name. If only-if-exists is False, then
the atom is created if it does not exist. The string should use the ISO Latin-1
encoding. Uppercase and lowercase matter.

The lifetime of an atom is not tied to the interning client. Atoms remained defined
until server reset (see section 11).

GetAtomName

atom: ATOM

= >

name: STRING8

Errors: Atom

This request returns the name for the given atom.

ChangeProperty

window. WINDOW
property, type: ATOM
format: (8, 16, 32}
mode: (Replace, Prepend, Append}

data: LISTofINT8 or LISTofINTl6 or LISTofINT32

Errors: Window, Atom, Value, Match, Alloc

This request alters the property for the specified window. The type is uninter¬
preted by the server. The format specifies whether the data should be viewed as a
list of 8-bit, 16-bit, or 32-bit quantities so that the server can correctly byte-swap
as necessary.

If the mode is Replace, the previous property value is discarded. If the mode is
Prepend or Append, then the type and format must match the existing pro¬
perty value (or a Match error results). If the property is undefined, it is treated
as defined with the correct type and format with zero-length data. For Prepend,

the data is tacked on to the beginning of the existing data, and for Append, it is
tacked on to the end of the existing data.

This request generates a PropertyNotify event on the window.

The lifetime of a property is not tied to the storing client. Properties remain until
explicitly deleted, until the window is destroyed, or until server reset (see section
ii).

The maximum size of a property is server-dependent and may vary dynamically.

DeleteProperty

window: WINDOW
property: ATOM

Errors: Window, Atom

This request deletes the property from the specified window if the property exists
and generates a PropertyNotify event on the window unless the property does
not exist.

GetProperty

window: WINDOW
property: ATOM
type: ATOM or AnyPropertyType

lonq-offset, lonq-lenqth: CARD32
delete: BOOL

30

X Protocol XI1, Release 3

type: ATOM or None
format: {0, 8, 16, 32}
bytes-after: CARD32
value: LISTofINT8 or LISTofINTl6 or LISTofINT32

Errors: Window, Atom, Value

If the specified property does not exist for the specified window, then the return
type is None, the format and bytes-after are zero, and the value is empty. The
delete argument is ignored in this case. If the specified property exists but its type
does not match the specified type, then the return type is the actual type of the
property, the format is the actual format of the property (never zero), the bytes-
after is the length of the property in bytes (even if the format is 16 or 32), and the
value is empty. The delete argument is ignored in this case. If the specified pro¬
perty exists and either AnyPropertyType is specified or the specified type
matches the actual type of the property, then the return type is the actual type of
the property, the format is the actual format of the property (never zero), and the
bytes-after and value are as follows, given:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

1 = 4* long-offset
T = N-I
L = MINIMUM(T, 4 * long-length)
A = N - (I + L)

The returned value starts at byte index I in the property (indexing from 0), and its
length in bytes is L. However, it is a Value error if long-offset is given such that L
is negative. The value of bytes-after is A, giving the number of trailing unread
bytes in the stored property. If delete is True and the bytes-after is zero, the pro¬
perty is also deleted from the window, and a PropertyNotify event is generated
on the window.

RotateP roperties

window: WINDOW
delta: INT16
properties: LISTofATOM

Errors: Window, Atom, Match

If the property names in the list are viewed as being numbered starting from zero,
and there are N property names in the list, then the value associated with property
name I becomes the value associated with property name (I + delta) mod N, for all
I from zero to N - 1. The effect is to rotate the states by delta places around the
virtual ring of property names (right for positive delta, left for negative delta).

If delta mod N is nonzero, a PropertyNotify event is generated for each property
in the order listed.

If an atom occurs more than once in the list or no property with that name is
defined for the window, a Match error is generated. If an Atom or Match error
is generated, no properties are changed.

ListProperties

window: WINDOW

= >

atoms: LISTofATOM

Errors: Window

31

X Protocol Xll, Release 3

This request returns the atoms of properties currently defined on the window.

SetSelectionOwner

selection: ATOM
owner: WINDOW or None
time: TIMESTAMP or CurrentTime

Errors: Atom, Window

This request changes the owner, owner window, and last-change time of the
specified selection. This request has no effect if the specified time is earlier than the
current last-change time of the specified selection or is later than the current server
time. Otherwise, the last-change time is set to the specified time with Current-
Time replaced by the current server time. If the owner window is specified as
None, then the owner of the selection becomes None (that is, no owner). Other¬
wise, the owner of the selection becomes the client executing the request. If the
new owner (whether a client or None) is not the same as the current owner and
the current owner is not None, then the current owner is sent a SelectionClear
event.

If the client that is the owner of a selection is later terminated (that is, its connec¬
tion is closed) or if the owner window it has specified in the request is later des¬
troyed, then the owner of the selection automatically reverts to None, but the
last-change time is not affected.

The selection atom is uninterpreted by the server. The owner window is returned
by the GetSelectionOwner request and is reported in SelectionRequest and
SelectionClear events.

Selections are global to the server.

GetSelectionOwner

selection: ATOM

= >

owner: WINDOW or None

Errors: Atom

This request returns the current owner window of the specified selection, if any. If
None is returned, then there is no owner for the selection.

ConvertSelection

selection, target: ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime

Errors: Atom, Window

If the specified selection has an owner, the server sends a SelectionRequest event
to that owner. If no owner for the specified selection exists, the server generates a
SelectionNotify event to the requestor with property None. The arguments are
passed on unchanged in either event.

SendEvent

destination: WINDOW or PointerWindow or InputFocus
propagate: BOOL
event-mask: SETofEVENT
event: <normal-event-format>

Errors: Window, Value

32

X Protocol XI1, Release 3

If PointerWindow is specified, destination is replaced with the window that the
pointer is in. If InputFocus is specified and the focus window contains the
pointer, destination is replaced with the window that the pointer is in. Otherwise,
destination is replaced with the focus window.

If the event-mask is the empty set, then the event is sent to the client that created
the destination window. If that client no longer exists, no event is sent.

If propagate is False, then the event is sent to every client selecting on destination
any of the event types in event-mask.

If propagate is True and no clients have selected on destination any of the event
types in event-mask, then destination is replaced with the closest ancestor of desti¬
nation for which some client has selected a type in event-mask and no intervening
window has that type in its do-not-propagate-mask. If no such window exists or if
the window is an ancestor of the focus window and InputFocus was originally
specified as the destination, then the event is not sent to any clients. Otherwise,
the event is reported to every client selecting on the final destination any of the
types specified in event-mask.

The event code must be one of the core events or one of the events defined by an
extension (or a Value error results) so that the server can correctly byte-swap the
contents as necessary. The contents of the event are otherwise unaltered and
unchecked by the server except to force on the most-significant bit of the event
code and to set the sequence number in the event correctly.

Active grabs are ignored for this request.

GrabPointer

grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
confine-to: WINDOW or None
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime

= >

status: {Success, Already Grabbed , Frozen, InvalidTime, NotViewable}

Errors: Cursor, Window, Value

This request actively grabs control of the pointer. Further pointer events are only
reported to the grabbing client. The request overrides any active pointer grab by
this client.

If owner-events is False, all generated pointer events are reported with respect to
grab-window and are only reported if selected by event-mask. If owner-events is
True and a generated pointer event would normally be reported to this client, it is
reported normally. Otherwise, the event is reported with respect to the grab-
window and is only reported if selected by event-mask. For either value of owner-
events, unreported events are simply discarded.

If pointer-mode is Asynchronous, pointer event processing continues normally. If
the pointer is currently frozen by this client, then processing of pointer events is
resumed. If pointer-mode is Synchronous, the state of the pointer (as seen by
means of the protocol) appears to freeze, and no further pointer events are gen¬
erated by the server until the grabbing client issues a releasing AllowEvents
request or until the pointer grab is released. Actual pointer changes are not lost
while the pointer is frozen. They are simply queued for later processing.

33

X Protocol XI1, Release 3

If keyboard-mode is Asynchronous, keyboard event processing is unaffected by
activation of the grab. If keyboard-mode is Synchronous, the state of the key¬
board (as seen by means of the protocol) appears to freeze, and no further keyboard
events are generated by the server until the grabbing client issues a releasing
AllowEvents request or until the pointer grab is released. Actual keyboard
changes are not lost while the keyboard is frozen. They are simply queued for later
processing.

If a cursor is specified, then it is displayed regardless of what window the pointer is
in. If no cursor is specified, then when the pointer is in grab-window or one of its
subwindows, the normal cursor for that window is displayed. Otherwise, the cursor
for grab-window is displayed.

If a confine-to window is specified, then the pointer will be restricted to stay con¬
tained in that window. The confine-to window need have no relationship to the
grab-window. If the pointer is not initially in the confine-to window, then it is
warped automatically to the closest edge (and enter/leave events are generated nor¬
mally) just before the grab activates. If the confine-to window is subsequently
reconfigured, the pointer will be warped automatically as necessary to keep it con¬
tained in the window.

This request generates EnterNotify and LeaveNotify events.

The request fails with status AlreadyGrabbed if the pointer is actively grabbed
by some other client. The request fails with status Frozen if the pointer is frozen
by an active grab of another client. The request fails with status NotViewable if
grab-window or confine-to window is not viewable or if the confine-to window lies
completely outside the boundaries of the root window. The request fails with
status InvalidTime if the specified time is earlier than the last-pointer-grab time
or later than the current server time. Otherwise, the last-pointer-grab time is set
to the specified time, with CurrentTime replaced by the current server time.

UngrabPointer

time: TIMESTAMP or CurrentTime

This request releases the pointer if this client has it actively grabbed (from either
GrabPointer or GrabButton or from a normal button press) and releases any
queued events. The request has no effect if the specified time is earlier than the
last-pointer-grab time or is later than the current server time.

This request generates EnterNotify and LeaveNotify events.

An UngrabPointer request is performed automatically if the event window or
confine-to window for an active pointer grab becomes not viewable or if window
reconfiguration causes the confine-to window to lie completely outside the boun¬
daries of the root window.

GrabButton

modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: (Synchronous, Asynchronous}
confine-to: WINDOW or None
cursor : CURSOR or None

Errors: Cursor, Window, Value, Access

This request establishes a passive grab. In the future, the pointer is actively
grabbed as described in GrabPointer, the last-pointer-grab time is set to the time
at which the button was pressed (as transmitted in the ButtonPress event), and

34

X Protocol XI1, Release 3

the ButtonPress event is reported if all of the following conditions are true:

• The pointer is not grabbed and the specified button is logically pressed when
the specified modifier keys are logically down, and no other buttons or
modifier keys are logically down.

• The grab-window contains the pointer.

• The confine-to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any
ancestor of grab-window.

The interpretation of the remaining arguments is the same as for GrabPointer.
The active grab is terminated automatically when the logical state of the pointer
has all buttons released, independent of the logical state of modifier keys. Note
that the logical state of a device (as seen by means of the protocol) may lag the
physical state if device event processing is frozen.

This request overrides all previous passive grabs by the same client on the same
button/key combinations on the same window. A modifier of AnyModifier is
equivalent to issuing the request for all possible modifier combinations (including
the combination of no modifiers). It is not required that all specified modifiers have
currently assigned keycodes. A button of AnyButton is equivalent to issuing the
request for all possible buttons. Otherwise, it is not required that the button
specified currently be assigned to a physical button.

An Access error is generated if some other client has already issued a GrabBut-
ton request with the same button/key combination on the same window. When
using AnyModifier or AnyButton, the request fails completely (no grabs are
established), and an Access error is generated if there is a conflicting grab for any
combination. The request has no effect on an active grab.

UngrabButton

modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW

Errors: Window, Value

This request releases the passive button/key combination on the specified window if
it was grabbed by this client. A modifiers argument of AnyModifier is equivalent
to issuing the request for all possible modifier combinations (including the combina¬
tion of no modifiers). A button of AnyButton is equivalent to issuing the request
for all possible buttons. The request has no effect on an active grab.

ChangeActivePointerGrab

event-mask: SETofPOINTEREVENT
cursor : CURSOR or None
time: TIMESTAMP or CurrentTime

Errors: Cursor, Value

This request changes the specified dynamic parameters if the pointer is actively
grabbed by the client and the specified time is no earlier than the last-pointer-grab
time and no later than the current server time. The interpretation of event-mask
and cursor are the same as in GrabPointer. This request has no effect on the
parameters of any passive grabs established with GrabButton.

GrabKey board

grab-window: WINDOW
owner-events: BOOL
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
time: TIMESTAMP or CurrentTime

35

X Protocol Xll, Release 3

= >

status: {Success, AlreadyGrabbed , Frozen, InvalidTime, NotViewable}

Errors: Window, Value

This request actively grabs control of the keyboard. Further key events are
reported only to the grabbing client. This request overrides any active keyboard
grab by this client.

If owner-events is False, all generated key events are reported with respect to
grab-window. If owner-events is True and if a generated key event would nor¬
mally be reported to this client, it is reported normally. Otherwise, the event is
reported with respect to the grab-window. Both KeyPress and KeyRelease

events are always reported, independent of any event selection made by the client.

If keyboard-mode is Asynchronous, keyboard event processing continues nor¬
mally. If the keyboard is currently frozen by this client, then processing of key¬
board events is resumed. If keyboard-mode is Synchronous, the state of the key¬
board (as seen by means of the protocol) appears to freeze. No further keyboard
events are generated by the server until the grabbing client issues a releasing
AllowEvents request or until the keyboard grab is released. Actual keyboard
changes are not lost while the keyboard is frozen. They are simply queued for later
processing.

If pointer-mode is Asynchronous, pointer event processing is unaffected by
activation of the grab. If pointer-mode is Synchronous, the state of the pointer
(as seen by means of the protocol) appears to freeze. No further pointer events are
generated by the server until the grabbing client issues a releasing AllowEvents

request or until the keyboard grab is released. Actual pointer changes are not lost
while the pointer is frozen. They are simply queued for later processing.

This request generates Focusln and FocusOut events.

The request fails with status AlreadyGrabbed if the keyboard is actively
grabbed by some other client. The request fails with status Frozen if the key¬
board is frozen by an active grab of another client. The request fails with status
NotViewable if grab-window is not viewable. The request fails with status
InvalidTime if the specified time is earlier than the last-keyboard-grab time or
later than the current server time. Otherwise, the last-keyboard-grab time is set to
the specified time with CurrentTime replaced by the current server time.

UngrabKey board

time: TIMESTAMP or CurrentTime

This request releases the keyboard if this client has it actively grabbed (as a result
of either GrabKeyboard or GrabKey) and releases any queued events. The
request has no effect if the specified time is earlier than the last-keyboard-grab time
or is later than the current server time.

This request generates Focusln and FocusOut events.

An UngrabKeyboard is performed automatically if the event window for an
active keyboard grab becomes not viewable.

GrabKey

key: KEYCODE or AnyKey

modifiers: SETofKEYMASIv or AnyModifier

grab-window: WINDOW
owner-events: BOOL
pointer-mode, keyboard-mode: {Synchronous, Asynchronous }

Errors: Window, Value, Access

36

X Protocol XI1, Release 3

This request establishes a passive grab on the keyboard. In the future, the key¬
board is actively grabbed as described in GrabKeyboard , the last-keyboard-grab
time is set to the time at which the key was pressed (as transmitted in the
KeyPress event), and the KeyPress event is reported if all of the following con¬
ditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a
modifier key) is logically pressed when the specified modifier keys are logically
down, and no other modifier keys are logically down.

• Either the grab-window is an ancestor of (or is) the focus window, or the
grab-window is a descendent of the focus window and contains the pointer.

.• A passive grab on the same key combination does not exist on any ancestor of
grab-window.

The interpretation of the remaining arguments is the same as for GrabKey¬

board . The active grab is terminated automatically when the logical state of the
keyboard has the specified key released, independent of the logical state of modifier
keys. Note that the logical state of a device (as seen by means of the protocol) may
lag the physical state if device event processing is frozen.

This request overrides all previous passive grabs by the same client on the same key
combinations on the same window. A modifier of AnyModifier is equivalent to
issuing the request for all possible modifier combinations (including the combination
of no modifiers). It is not required that all modifiers specified have currently
assigned keycodes. A key of AnyKey is equivalent to issuing the request for all
possible keycodes. Otherwise, the key must be in the range specified by min-
keycode and max-keycode in the connection setup (or a Value error results).

An Access error is generated if some other client has issued a GrabKey with the
same key combination on the same window. When using AnyModifier or Any¬

Key , the request fails completely (no grabs are established), and an Access error
is generated if there is a conflicting grab for any combination.

UngrabKey

key: KEYCODE or AnyKey

modifiers: SETofKEYMASK or AnyModifier

grab-window: WINDOW

Errors: Window, Value

This request releases the key combination on the specified window if it was grabbed
by this client. A modifiers argument of AnyModifier is equivalent to issuing the
request for all possible modifier combinations (including the combination of no
modifiers). A key of AnyKey is equivalent to issuing the request for all possible
keycodes. This request has no effect on an active grab.

AllowEvents

mode: { AsyncPointer , SyncPointer , ReplayPointer , AsyncKeyboard ,

SyncKeyboard,

ReplayKeyboard , AsyncBoth , SyncBoth }

time: TIMESTAMP or CurrentTime

Errors: Value

This request releases some queued events if the client has caused a device to freeze.
The request has no effect if the specified time is earlier than the last-grab time of
the most recent active grab for the client or il ilie specified time is later than the
current server time.

For AsyncPointer, if the pointer is frozen by the client, pointer event processing
continues normally. If the pointer is frozen twice by the client on behalf of two

37

X Protocol Xll, Release 3

separate grabs, AsyncPointer thaws for both. AsyncPointer has no effect if
the pointer is not frozen by the client, but the pointer need not be grabbed by the
client.

For SyncPointer, if the pointer is frozen and actively grabbed by the client,
pointer event processing continues normally until the next ButtonPress or But-

tonRelease event is reported to the client, at which time the pointer again
appears to freeze. However, if the reported event causes the pointer grab to be
released, then the pointer does not freeze. SyncPointer has no effect if the
pointer is not frozen by the client or if the pointer is not grabbed by the client.

For ReplayPointer, if the pointer is actively grabbed by the client and is frozen
as the result of an event having been sent to the client (either from the activation
of a GrabButton or from a previous AllowEvents with mode SyncPointer

but not from a GrabPointer), then the pointer grab is released and that event is
completely reprocessed, this time ignoring any passive grabs at or above (towards
the root) the grab-window of the grab just released. The request has no effect if
the pointer is not grabbed by the client or if the pointer is not frozen as the result
of an event.

For AsyncKeyboard , if the keyboard is frozen by the client, keyboard event pro¬
cessing continues normally. If the keyboard is frozen twice by the client on behalf
of two separate grabs, AsyncKeyboard thaws for both. AsyncKeyboard has
no effect if the keyboard is not frozen by the client, but the keyboard need not be
grabbed by the client.

For SyncKeyboard , if the keyboard is frozen and actively grabbed by the client,
keyboard event processing continues normally until the next KeyPress or
KeyRelease event is reported to the client, at which time the keyboard again
appears to freeze. However, if the reported event causes the keyboard grab to be
released, then the keyboard does not freeze. SyncKeyboard has no effect if the
keyboard is not frozen by the client or if the keyboard is not grabbed by the client.

For ReplayKeyboard , if the keyboard is actively grabbed by the client and is
frozen as the result of an event having been sent to the client (either from the
activation of a GrabKey or from a previous AllowEvents with mode SyncK¬

eyboard but not from a GrabKeyboard), then the keyboard grab is released
and that event is completely reprocessed, this time ignoring any passive grabs at or
above (towards the root) the grab-window of the grab just released. The request
has no effect if the keyboard is not grabbed by the client or if the keyboard is not
frozen as the result of an event.

For SyncBoth, if both pointer and keyboard are frozen by the client, event pro¬
cessing (for both devices) continues normally until the next ButtonPress, But-

tonRelease, KeyPress, or KeyRelease event is reported to the client for a
grabbed device (button event for the pointer, key event for the keyboard), at which
time the devices again appear to freeze. However, if the reported event causes the
grab to be released, then the devices do not freeze (but if the other device is still
grabbed, then a subsequent event for it will still cause both devices to freeze).
SyncBoth has no effect unless both pointer and keyboard are frozen by the client.
If the pointer or keyboard is frozen twice by the client on behalf of two separate
grabs, SyncBoth thaws for both (but a subsequent freeze for SyncBoth will only
freeze each device once).

For AsyncBoth, if the pointer and the keyboard are frozen by the client, event
processing for both devices continues normally. If a device is frozen twice by the
client on behalf of two separate grabs, AsyncBoth thaws for both. AsyncBoth

has no effect unless both pointer and keyboard are frozen by the client.

38

X Protocol XI1, Release 3

AsyncPointer, SyncPointer, and ReplayPointer have no effect on processing
of keyboard events. AsyncKeyboard , SyncKeyboard , and ReplayKeyboard

have no effect on processing of pointer events.

It is possible for both a pointer grab and a keyboard grab to be active simultane¬
ously (by the same or different clients). When a device is frozen on behalf of either
grab, no event processing is performed for the device. It is possible for a single dev¬
ice to be frozen because of both grabs. In this case, the freeze must be released on
behalf of both grabs before events can again be processed.

GrabServer

This request disables processing of requests and close-downs on all connections
other than the one this request arrived on.

UngrabServer

This request restarts processing of requests and close-downs on other connections.

QueryPointer

window. WINDOW

= >

root: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, win-x, win-v: INTI6
mask: SETofKEYBUTMASK

Errors: Window

The root window the pointer is logically on and the pointer coordinates relative to
the root’s origin are returned. If same-screen is False, then the pointer is not on
the same screen as the argument window, child is None, and win-x and win-y are
zero. If same-screen is True, then win-x and win-y are the pointer coordinates
relative to the argument window’s origin, and child is the child containing the
pointer, if any. The current logical state of the modifier keys and the buttons are
also returned. Note that the logical state of a device (as seen by means of the pro¬
tocol) may lag the physical state if device event processing is frozen.

GetMotionEvents

start, stop: TIMESTAMP or CurrentTime

window: WINDOW

= >

events: LISTofTIMECOORD

where:

TIMECOORD: [x, y: INTI6
time: TIMESTAMP]

Errors: Window

This request returns all events in the motion history buffer that fall between the
specified start and stop times (inclusive) and that have coordinates that lie within
(including borders) the specified window at its present placement. The x and y
coordinates are reported relative to the origin of the window.

If the start time is later than the stop time or if the start time is in the future, no
events are returned. If the stop time is in the future, it is equivalent to specifying

CurrentTime.

TranslateCoordinates

39

X Protocol XI1, Release 3

src-window, dst-window. WINDOW
src-x, src-y: INT16

= >

same-screen: BOOL
child: WINDOW or None
dst-x, dst-y: INT16

Errors: Window

The src-x and src-y coordinates are taken relative to src-window’s origin and are
returned as dst-x and dst-y coordinates relative to dst-window’s origin. If same-
screen is False, then src-window and dst-window are on different screens, and ds -
x and dst-y are zero. If the coordinates are contained in a mapped child of dst-
window, then that child is returned.

WarpPointer

src-window. WINDOW or None
dst-window: WINDOW or None
src-x, src-y: INT16
src-width, src-height: CARD 16
dst-x, dst-y: INT16

Errors: Window

If dst-window is None, this request moves the pointer by offsets [dst-x, dst-y] rela¬
tive to the current position of the pointer. If dst-window is a window, this request
moves the pointer to [dst-x, dst-y] relative to dst-window’s origin. However, if src-
window is not None, the move only takes place if src-window contains the pointer
and the pointer is contained in the specified rectangle of src-window.

The src-x and src-y coordinates are relative to src-window’s origin. If src-height is
zero, it is replaced with the current height of src-window minus src-y. If src-width
is zero, it is replaced with the current width of src-window minus src-x.

This request cannot be used to move the pointer outside the confine-to window of
an active pointer grab. An attempt will only move the pointer as far as the closest
edge of the confine-to window.

This request will generate events just as if the user had instantaneously moved the
pointer.

SetlnputF ocus

focus: WINDOW or PointerRoot or None
revert-to: {Parent, PointerRoot, None}
time: TIMESTAMP or CurrentTime

Errors: Window, Value, Match

This request changes the input focus and the last-foe us-change time. The request
has no effect if the specified time is earlier than the current last-focus-change time
or is later than the current server time. Otherwise, the last-focus-change time is set
to the specified time with CurrentTime replaced by the current server time.

If None is specified as the focus, all keyboard events are discarded until a new
focus window is set. In this case, the revert-to argument is ignored.

If a window is specified as the focus, it becomes the keyboard’s focus window. If a
generated keyboard event would normally be reported to this window or one of its
inferiors, the event is reported normally. Otherwise, the event is reported with
respect to the focus window.

If PointerRoot is specified as the focus, the focus window is dynamically taken to
be the root window of whatever screen the pointer is on at each keyboard event. In

40

X Protocol XI1, Release 3

this case, the revert-to argument is ignored.

This request generates Focusln and FocusOut events.

The specified focus window must be viewable at the time of the request (or a
Match error results). If the focus window later becomes not viewable, the new
focus window depends on the revert-to argument. If revert-to is Parent, the focus
reverts to the parent (or the closest viewable ancestor) and the new revert-to value
is taken to be None. If revert-to is PointerRoot or None, the focus reverts to
that value. When the focus reverts, Focusln and FocusOut events are gen¬
erated, but the last-focus-change time is not affected.

GetlnputF ocus

= >

focus: WINDOW or PointerRoot or None
revert-to: {Parent, PointerRoot, None}

This request returns the current focus state.

Query Key map

= >

keys: LISTofCARD8

This request returns a bit vector for the logical state of the keyboard. Each bit set
to 1 indicates that the corresponding key is currently pressed. The vector is
represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7
with the least-significant bit in the byte representing key 8N. Note that the logical
state of a device (as seen by means of the protocol) may lag the physical state if
device event processing is frozen.

OpenFont

fid: FONT
name: STRING8

Errors: IDChoice, Name, Alloc

This request loads the specified font, if necessary, and associates identifier fid with
it. The font name should use the ISO Latin-1 encoding, and uppercase and lower¬
case do not matter.

Fonts are not associated with a particular screen and can be stored as a component
of any graphics context.

CloseFont

font: FONT

Errors: Font

This request deletes the association between the resource ID and the font. The font
itself will be freed when no other resource references it.

QueryFont

font: FONT ABLE

= >

font-info: FONTINFO
char-infos: LISTofCHARINFO

where:

FONTINFO: [draw-direction: {LeftToRight, Right-
ToLeft}
min-char-or-byte2, max-char-or-byte2: CARD16
min-bytel, max-bytel: CARD8

41

X Protocol Xll, Release 3

all-chars-exist: BOOL
default-char: CARD16
min-bounds: CHARINFO
max-bounds: CHARINFO
font-ascent: INT16
font-descent: INT16
properties: LISTofFONTPROP]

FONTPROP: [name: ATOM
value: <32-bit-value>]

CHARINFO: [left-side-bearing: INT16
right-side-bearing: INT16
character-width: INT16
ascent: INT16
descent: INT16
attributes: CARD16]

Errors: Font

This request returns logical information about a font. If a gcontext is given for
font, the currently contained font is used.

The draw-direction is just a hint and indicates whether most char-infos have a
positive, LeftToRight, or a negative, RightToLeft, character-width metric.
The core protocol defines no support for vertical text.

If min-bytel and max-bytel are both zero, then min-char-or-byte2 specifies the
linear character index corresponding to the first element of char-infos, and max-
char-or-byte2 specifies the linear character index of the last element. If either min-
bytel or max-bytel are nonzero, then both min-char-or-byte2 and max-char-or-
byte2 will be less than 256, and the 2-byte character index values corresponding to
char-infos element N (counting from 0) are:

bytel = N/D + min-bytel
byte2 = N\D + min-char-or-byte2

where:

D = max-char-or-byte2 - min-char-or-byte2 + 1
/ = integer division
\ = integer modulus

If char-infos has length zero, then min-bounds and max-bounds will be identical,
and the effective char-infos is one filled with this char-info, of length:

L = D * (max-bytel - min-bytel + 1)

That is, all glyphs in the specified linear or matrix range have the same informa¬
tion, as given by min-bounds (and max-bounds). If all-chars-exist is True, then all
characters in char-infos have nonzero bounding boxes.

The default-char specifies the character that will be used when an undefined or
nonexistent character is used. Note that default-char is a CARD16, not CHAR2B.
For a font using 2-byte matrix format, the default-char has bytel in the most-
significant byte and byte2 in the least-significant byte. If the default-char itself
specifies an undefined or nonexistent character, then no printing is performed for an
undefined or nonexistent character.

The min-bounds and max-bounds contain the minimum and maximum values of
each individual CHARINFO component over all char-infos (ignoring nonexistent
characters). The bounding box of the font (that is, the smallest rectangle enclosing

42

X Protocol XI1, Release 3

the shape obtained by superimposing all characters at the same origin [x,y]) has its
upper-left coordinate at:

[x + min-bounds.left-side-bearing, y - max-bounds.ascent]

with a width of:

max-bounds.right-side-bearing - min-bounds.left-side-bearing

and a height of:

max-bounds.ascent + max-bounds.descent

The font-ascent is the logical extent of the font above the baseline and is used for
determining line spacing. Specific characters may extend beyond this. The font-
descent is the logical extent of the font at or below the baseline and is used for
determining line spacing. Specific characters may extend beyond this. If the base¬
line is at Y-coordinate y, then the logical extent of the font is inclusive between the
Y-coordinate values (y - font-ascent) and (y + font-descent - 1).

A font is not guaranteed to have any properties. The interpretation of the pro¬
perty value (for example, INT32, CARD32) must be derived from a priori
knowledge of the property. When possible, fonts should have at least the following
properties (note that uppercase and lowercase matter).

Property Type Description

MIN_SPACE CARD32

NORM_SPACE CARD32

MAXJSPACE CARD32

END_SPACE CARD32

SUPERSCRIPT X INT32
SUPERSCRIPT Y

SUBSCRIPT_X INT32
SUBSCRIPT_Y

UNDERLINE POSITION INT32

UNDERLINE_THICKNESS CARD32

STRIKEOUT_ASCENT INT32
STRIKEOUT DESCENT

The minimum interword spacing, in pixels.

The normal interword spacing, in pixels.

The maximum interword spacing, in pixels.

The additional spacing at the end of sentences,
in pixels.

Offsets from the character origin where super¬
scripts should begin, in pixels. If the origin is
at [x,y], then superscripts should begin at
[x + SUPERSCRIPT.^ y - SUPERSCRIPT_Y],

Offsets from the character origin where sub¬
scripts should begin, in pixels. If the origin is
at [x,y], then subscripts should begin at
[x + SUBSCRIPT_X, y + SUBSCRIPT_Y],

Y offset from the baseline to the top of an
underline, in pixels. If the baseline is Y-
coordinate y, then the top of the underline is at
(y + UNDERLINE_POSITION).

Thickness of the underline, in pixels.

Vertical extents for boxing or voiding charac¬
ters, in pixels. If the baseline is at Y-coordinate
y, then the top of the strikeout box is at
(y - STRIKEOUT_ASCENT)
and the height of the box is
(STRIKEOUT_ASCENT + STRIKEOUTJDESCENT).

43

X Protocol Xll, Release 3

Property Type Description

ITALIC_ANGLE INT32 The angle of the dominant staffs of characters
in the font, in degrees scaled by 64, relative to
the three-o’clock position from the character
origin, with positive indicating counterclockwise
motion (as in Arc requests).

X_HEIGHT INT32 1 ex as in TeX, but expressed in units of pixels.
Often the height of lowercase x.

QUAD_WIDTH INT32 1 em as in TeX, but expressed in units of pixels.
Often the width of the digits 0-9.

CAP .HEIGHT INT32 Y offset from the baseline to the top of the cap¬
ital letters, ignoring accents, in pixels. If the
baseline is at Y-coordinate y, then the top of
the capitals is at (y - CAP.HEIGHT).

WEIGHT CARD 32 The weight or boldness of the font, expressed as
a value between 0 and 1000.

POINT_SIZE CARD32 The point size, expressed in 1/10, of this font at
the ideal resolution.

RESOLUTION CARD32 The number of pixels per point, expressed in
1/100, at which this font was created.

For a character origin at [x,y], the bounding box of a character (that is, the smal¬
lest rectangle enclosing the character’s shape), described in terms of CHARINFO
components, is a rectangle with its upper-left corner at:

[x + left-side-bearing, y - ascent]

with a width of:

right-side-bearing - left-side-bearing

and a height of:

ascent + descent

and the origin for the next character is defined to be:

[x + character-width, y]

Note that the baseline is logically viewed as being just below nondescending charac¬
ters (when descent is zero, only pixels with Y-coordinates less than y are drawn)
and that the origin is logically viewed as being coincident with the left edge of a
nonkerned character (when left-side-bearing is zero, no pixels with X-coordinate less
than x are drawn).

Note that CHARINFO metric values can be negative.

A nonexistent character is represented with all CHARINFO components zero.

The interpretation of the per-character attributes field is server-dependent.

Query TextExtents

font: FONTABLE
string: STRING16

44

X Protocol Xll, Release 3

draw-direction: { LeftToRight, RightToLeft}
font-ascent: INT16
font-descent: INT16
overall-ascent: INT16
overall-descent: INT16
overall-width: INT32
overall-left: INT32
overall-right: INT32

Errors: Font

This request returns the logical extents of the specified string of characters in the
specified font. If a gcontext is given for font, the currently contained font is used.
The draw-direction, font-ascent, and font-descent are the same as described in
QueryFont. The overall-ascent is the maximum of the ascent metrics of all char¬
acters in the string, and the overall-descent is the maximum of the descent metrics.
The overall-width is the sum of the character-width metrics of all characters in the
string. For each character in the string, let W be the sum of the character-width
metrics of all characters preceding it in the string, let L be the left-side-bearing
metric of the character plus W, and let R be the right-side-bearing metric of the
character plus W. The overall-left is the minimum L of all characters in the string,
and the overall-right is the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, the
server will interpret each CHAR2B sis a 16-bit number that has been transmitted
most-significant byte first (that is, bytel of the CHAR2B is taken as the most-
significant byte).

If the font has no defined default-char, then undefined characters in the string are
taken to have all zero metrics.

ListFonts

pattern: STRING8
max-names'. CARD16

= >

names: LISTofSTRING8

This request returns a list of available font names (as controlled by the font search
path; see SetFontPath request) that match the pattern. At most, max-names
names will be returned. The pattern should use the ISO Latin-1 encoding, and
uppercase and lowercase do not matter. In the pattern, the “?” character (octal
value 77) will match any single character, and the character (octal value 52)
will match any number of characters. The returned names are in lowercase.

ListF ontsWithlnfo

pattern: STRING8
max-names: CARD16

= > +

name: STRINGS
info: FONTINFO
replies-hint: CARD32

where:

FONTINFO: <same type definition as in QueryFont >

This request is similar to ListFonts, but it also returns information about each
font. The information returned for each font is identical to what QueryFont
would return except that the per-character metrics are not returned. Note that

45

X Protocol XI1, Release 3

this request can generate multiple replies. With each reply, replies-hint may pro¬
vide an indication of how many more fonts will be returned. This number is a hint
only and may be larger or smaller than the number of fonts actually returned. A
zero value does not guarantee that no more fonts will be returned. After the font
replies, a reply with a zero-length name is sent to indicate the end of the reply
sequence.

SetFontPath

path: LISTofSTRING8

Errors: Value

This request defines the search path for font lookup. There is only one search path
per server, not one per client. The interpretation of the strings is operating-
system-dependent, but the strings are intended to specify directories to be searched
in the order listed.

Setting the path to the empty list restores the default path defined for the server.

As a side effect of executing this request, the server is guaranteed to flush all cached
information about fonts for which there currently are no explicit resource IDs allo¬
cated.

The meaning of an error from this request is system specific.

GetFontPath

= >

path: LISTofSTRING8

This request returns the current search path for fonts.

CreatePixmap

pid: PIXMAP
drawable: DRAWABLE
depth: CARD8
width, height: CARD16

Errors: IDChoice, Drawable, Value, Alloc

This request creates a pixmap and assigns the identifier pid to it. The width and
height must be nonzero (or a Value error results). The depth must be one of the
depths supported by the root of the specified drawable (or a Value error results).
The initial contents of the pixmap are undefined.

It is legal to pass an InputOnly window as a drawable to this request.

F reeP Lx map

pixmap: PIXMAP

Errors: Pixmap

This request deletes the association between the resource ID and the pixmap. The
pixmap storage will be freed when no other resource references it.

CreateGC

cid: GCONTEXT
drawable: DRAWABLE
value-mask: BITMASK
value-list: LISTofVALUE

Errors: IDChoice, Drawable, Pixmap, Font, Match, Value, Alloc

This request creates a graphics context and assigns the identifier cid to it. The
gcontext can be used with any destination drawable having the same root and
depth as the specified drawable; use with other drawables results in a Match

46

X Protocol XI1, Release 3

error.

The value-mask and value-list specify which components are to be explicitly initial¬
ized. The context components are:

Component Type

function (Clear, And, AndReverse, Copy, Andlnverted,
NoOp,
Xor, Or, Nor, Equiv, Invert, OrReverse, Copy-

Inverted ,
Orlnverted, Nand, Set}

plane-mask CARD32
foreground CARD32
background CARD32
line-width CARD 16
line-style (Solid, OnOffDash , DoubleDash }
cap-style (NotLast, Butt, Round, Projecting}
join-style (Miter, Round, Bevel}
fill-style (Solid, Tiled, OpaqueStippled, Stippled}
fill-rule (EvenOdd, Winding}
arc-mode (Chord, PieSlice}
tile PIXMAP
stipple PIXMAP
tile-stipple-x-origin INT16
tile-stipple-y-origin INT16
font FONT
subwindow-mode (ClipByChildren , Includelnferiors }
graphics-exposures BOOL
clip-x-origin INT16
clip-y-origin INT16
clip-mask PIXMAP or None
dash-offset CARD16
dashes CARD8

In graphics operations, given a source and destination pixel, the result is computed
bitwise on corresponding bits of the pixels; that is, a Boolean operation is per¬
formed in each bit plane. The plane-mask restricts the operation to a subset of
planes, so the result is:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or
plane-mask. They are simply truncated to the appropriate number of bits.

The meanings of the functions are:

Function Operation

Clear
And
AndReverse
Copy
Andlnverted
NoOp

0
src AND dst
src AND (NOT dst)
src
(NOT src) AND dst
dst

47

X Protocol XI1, Release 3

Xor
Or
Nor
Equiv
Invert
OrReverse
CopyXnverted
Orlnverted
Nand
Set

src XOR dst
src OR dst
(NOT src) AND (NOT dst)
(NOT src) XOR dst
NOT dst
src OR (NOT dst)
NOT src
(NOT src) OR dst
(NOT src) OR (NOT dst)
1

The line-width is measured in pixels and can be greater than or equal to one, a
wide line, or the special value zero, a thin line.

Wide lines are drawn centered on the path described by the graphics request.
Unless otherwise specified by the join or cap style, the bounding box of a wide line
with endpoints [xl, yl], [x2, y2] and width w is a rectangle with vertices at the fol¬
lowing real coordinates:

xl-(w*sn/2), yl+(w*cs/2)], [xl+(w*sn/2), yl-(w*cs/2) ,
x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)

The sn is the sine of the angle of the line and cs is the cosine of the angle of the
line. A pixel is part of the line (and hence drawn) if the center of the pixel is fully
inside the bounding box, which is viewed as having infinitely thin edges. If the
center of the pixel is exactly on the bounding box, it is part of the line if and only
if the interior is immediately to its right (x increasing direction). Pixels with
centers on a horizontal edge are a special case and are part of the line if and only if
the interior or the boundary is immediately below (y increasing direction) and if the
interior or the boundary is immediately to the right (x increasing direction). Note
that this description is a mathematical model describing the pixels that are drawn
for a wide line and does not imply that trigonometry is required to implement such
a model. Real or fixed point arithmetic is recommended for computing the corners
of the line endpoints for lines greater than one pixel in width.

Thin lines (zero line-width) are “one pixel wide” lines drawn using an unspecified,
device-dependent algorithm. There are only two constraints on this algorithm.
First, if a line is drawn unclipped from [xl,y 1] to [x2,y2] and another line is drawn
unclipped from [xl+dx,yl+dy] to [x2+dx,y2+dy], then a point [x,y] is touched by
drawing the first line if and only if the point [x+dx,y+dy] is touched by drawing
the second line. Second, the-effective set of points comprising a line cannot be
affected by clipping. Thus, a point is touched in a clipped line if and only if the
point lies inside the clipping region and the point would be touched by the line
when drawn unclipped.

Note that a wide line drawn from [x 1 ,y 1] to [x2,y2] always draws the same pixels as
a wide line drawn from [x2,y2] to [x 1 ,y 1], not counting cap-style and join-style.
Implementors are encouraged to make this property true for thin lines, but it is not
required. A line-width of zero may differ from a line-width of one in which pixels
are drawn. In general, drawing a thin line will be faster than drawing a wide line
of width one, but thin lines may not mix well aesthetically with wide lines because
of the different drawing algorithms. If it is desirable to obtain precise and uniform
results across all displays, a client should always use a line-width of one, rather
than a line-width of zero.

The line-style defines which sections of a line are drawn:

48

X Protocol Xll, Release 3

Solid

DoubleDash

OnOfFDash

The full path of the line is drawn.

The full path of the line is drawn, but the even
dashes are filled differently than the odd dashes (see
fill-style), with Butt cap-style used where even and
odd dashes meet.

Only the even dashes are drawn, and cap-style
applies to all internal ends of the individual dashes
(except NotLast is treated as Butt).

The cap-style defines how the endpoints of a path are drawn:

NotLast The result is equivalent to Butt, except that for a
line-width of zero the final endpoint is not drawn.

Butt The result is square at the endpoint (perpendicular
to the slope of the line) with no projection beyond.

Round The result is a circular arc with its diameter equal
to the line-width, centered on the endpoint; it is
equivalent to Butt for line-width zero.

Projecting The result is square at the end, but the path con¬
tinues beyond the endpoint for a distance equal to
half the line-width; it is equivalent to Butt for
line-width zero.

The join-style defines how corners are drawn for wide lines:

Miter The outer edges of the two lines extend to meet at
an angle. However, if the angle is less than 11
degrees, a Bevel join-style is used instead.

Round The result is a circular arc with a diameter equal to
the line-width, centered on the joinpoint.

Bevel The result is Butt endpoint styles, and then the
triangular “notch” is filled.

For a line with coincident endpoints (xl=x2, yl=y2), when the cap-style is applied
to both endpoints, the semantics depends on the line-width and the cap-style:

NotLast thin This is device-dependent, but the desired
effect is that nothing is drawn.

Butt thin This is device-dependent, but the desired
effect is that a single pixel is drawn.

Round thin This is the same as Butt/thin

Projecting thin This is the same as Butt/thin.

Butt wide Nothing is drawn.

Round wide The closed path is a circle, centered at the
endpoint and with a diameter equal to the
line-width.

Projecting wide The closed path is a square, aligned with
the coordinate axes, centered at the end¬
point and with sides equal to the line-width

49

X Protocol XI1, Release 3

For a line with coincident endpoints (xl=x2, yl=y2), when the join-style is
applied at one or both endpoints, the effect is as if the line was removed from the
overall path. However, if the total path consists of (or is reduced to) a single point
joined with itself, the effect is the same as when the cap-style is applied at both
endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of whatever
destination drawable is specified in a graphics request.

The tile pixmap must have the same root and depth as the gcontext (or a Match
error results). The stipple pixmap must have depth one and must have the same
root as the gcontext (or a Match error results). For fill-style Stippled (but not
fill-style OpaqueStippled), the stipple pattern is tiled in a single plane and acts
as an additional clip mask to be ANDed with the clip-mask. Any size pixmap can
be used for tiling or stippling, although some sizes may be faster to use than others.

The fill-style defines the contents of the source for line, text, and fill requests. For
all text and fill requests (for example, PolyText8, PolyTextlS, PolyFillRec-
tangle, FillPoly, and PolyFillArc) as well as for line requests with line-style
Solid, (for example, PolyLine, PolySegment, Poly Rectangle, Poly Arc) and
for the even dashes for line requests with line-style OnOffDash or DoubleDash:

Solid Foreground

Tiled Tile

OpaqueStip¬
pled

A tile with the same width and height as stipple
but with background everywhere stipple has a
zero and with foreground everywhere stipple
has a one

Stippled Foreground masked by stipple

For the odd dashes for line requests with line-style DoubleDash

Solid

Tiled

OpaqueStip¬
pled

Stippled

Background

Same as for even dashes

Same as for even dashes

Background masked by stipple

The dashes value allowed here is actually a simplified form of the more general pat¬
terns that can be set with SetDashes. Specifying a value of N here is equivalent
to specifying the two element list [N, N] in SetDashes. The value must be
nonzero (or a Value error results). The meaning of dash-offset and dashes are
explained in the SetDashes request.

The clip-mask restricts writes to the destination drawable. Only pixels where the
clip-mask has bits set to 1 are drawn. Pixels are not drawn outside the area covered
by the clip-mask or where the clip-mask has bits set to 0. The clip-mask affects all
graphics requests, but it does not clip sources. The clip-mask origin is interpreted
relative to the origin of whatever destination drawable is specified in a graphics
request. If a pixmap is specified as the clip-mask, it must have depth 1 and have
the same root as the gcontext (or a Match error results). If clip-mask is None,
then pixels are always drawn, regardless of the clip origin. The clip-mask can also
be set with the SetClipRectangles request.

For ClipByChildren, both source and destination windows are additionally
clipped by all viewable InputOutpuL children. For Includelnferiors, neither

50

X Protocol XI1, Release 3

source nor destination window is clipped by inferiors. This will result in including
subwindow contents in the source and drawing through subwindow boundaries of
the destination. The use of Includelnferiors with a source or destination window
of one depth with mapped inferiors of differing depth is not illegal, but the seman¬
tics is undefined by the core protocol.

The fill-rule defines what pixels are inside (that is, are drawn) for paths given in
FillPoly requests. EvenOdd means a point is inside if an infinite ray with the
point as origin crosses the path an odd number of times. For Winding, a point is
inside if an infinite ray with the point as origin crosses an unequal number of clock¬
wise and counterclockwise directed path segments. A clockwise directed path seg¬
ment is one that crosses the ray from left to right as observed from the point. A
counter-clockwise segment is one that crosses the ray from right to left as observed
from the point. The case where a directed line segment is coincident with the ray
is uninteresting because one can simply choose a different ray that is not coincident
with a segment.

For both fill rules, a point is infinitely small and the path is an infinitely thin line.
A pixel is inside if the center point of the pixel is inside and the center point is not
on the boundary. If the center point is on the boundary, the pixel is inside if and
only if the polygon interior is immediately to its right (x increasing direction). Pix¬
els with centers along a horizontal edge are a special case and are inside if and only
if the polygon interior is immediately below (y increasing direction).

The arc-mode controls filling in the PolyFillArc request.

The graphics-exposures flag controls GraphicsExposure event generation for
Copy Area and CopyPlane requests (and any similar requests defined by exten¬
sions).

The default component values are:

Component Default

function
plane-mask
foreground
background
line-width
line-style
cap-style
join-style
fill-style
fill-rule
arc-mode
tile

stipple
tile-stipple-x-origin
tile-stipple-y-origin
font
subwindow-mode
graphics-exposures
clip-x-origin
clip-y-origin

Copy
all ones
0
1
0
Solid
Butt
Miter
Solid
EvenOdd
PieSlice
Pixmap of unspecified size filled with foreground pixel
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pix¬

map)
Pixmap of unspecified size filled with ones

0
0
<server-dependent-font>
ClipBy Children
True
0
0

51

X Protocol XI1, Release 3

Component Default

clip-mask None
dash-offset 0
dashes 4 (that is, the list [4, 4])

Storing a pixmap in a gcontext might or might not result in a copy being made. If
the pixmap is later used as the destination for a graphics request, the change might
or might not be reflected in the gcontext. If the pixmap is used simultaneously in a
graphics request as both a destination and as a tile or stipple, the results are not
defined.

It is quite likely that some amount of gcontext information will be cached in
display hardware and that such hardware can only cache a small number of gcon-
texts. Given the number and complexity of components, clients should view
switching between gcontexts with nearly identical state as significantly more expen¬
sive than making minor changes to a single gcontext.

ChangeGC

gc: GCONTEXT
value-mask: BITMASK
value-list: LISTofVALUE

Errors: GContext, Pixmap, Font, Match, Value, Alloc

This request changes components in gc. The value-mask and value-list specify
which components are to be changed. The values and restrictions are the same as
for CreateGC.

Changing the clip-mask also overrides any previous SetClipRectangles request
on the context. Changing dash-offset or dashes overrides any previous SetDashes
request on the context.

The order in which components are verified and altered is server-dependent. If an
error is generated, a subset of the components may have been altered.

CopyGC

src-gc, dst-gc: GCONTEXT
value-mask: BITMASK

Errors: GContext, Value, Match, Alloc

This request copies components from src-gc to dst-gc. The value-mask specifies
which components to copy, as for CreateGC. The two gcontexts must have the
same root and the same depth (or a Match error results).

SetDashes

gc: GCONTEXT
dash-offset: CARD16
dashes: LISTofCARD8

Errors: GContext, Value, Alloc

This request sets dash-offset and dashes in gc for dashed line styles. Dashes cannot
be empty (or a Value error results). Specifying an odd-length list is equivalent to
specifying the same list concatenated with itself to produce an even-length list.
The initial and alternating elements of dashes are the even dashes; the others are
the odd dashes. Each element specifies a dash length in pixels. All of the elements
must be nonzero (or a Value error results). The dash-offset defines the phase of
the pattern, specifying how many pixels into dashes the pattern should actually
begin in any single graphics request. Dashing is continuous through path elements
combined with a join-style, but it is reset to the dash-offset each time a cap-style is

52

X Protocol XI1, Release 3

applied at a line endpoint.

The unit of measure for dashes is the same as in the ordinary coordinate system.
Ideally, a dash length is measured along the slope of the line, but implementations
are only required to match this ideal for horizontal and vertical lines. Failing the
ideal semantics, it is suggested that the length be measured along the major axis of
the line. The major axis is defined as the x axis for lines drawn at an angle of
between -45 and +45 degrees or between 315 and 225 degrees from the x axis. For
all other lines, the major axis is the y axis.

SetClipRectangles

gc: GCONTEXT
clip-x-origin, clip-y-origin: INT16
rectangles: LISTofRECTANGLE
ordering: {UnSorted, YSorted , YXSorted , YXBanded }

Errors: GContext, Value, Alloc, Match

Th is request changes clip-mask in gc to the specified list of rectangles and sets the
clip origin. Output will be clipped to remain contained within the rectangles. The
clip origin is interpreted relative to the origin of whatever destination drawable is
specified in a graphics request. The rectangle coordinates are interpreted relative to
the clip origin. The rectangles should be nonintersecting, or graphics results will be
undefined. Note that the list of rectangles can be empty, which effectively disables
output. This is the opposite of passing None as the clip-mask in CreateGC and
ChangeGC.

If known by the client, ordering relations on the rectangles can be specified with
the ordering argument. This may provide faster operation by the server. If an
incorrect ordering is specified, the server may generate a Match error, but it is not
required to do so. If no error is generated, the graphics results are undefined.
UnSorted means that the rectangles are in arbitrary order. YSorted means that
the rectangles are nondecreasing in their Y origin. YXSorted additionally con¬
strains YSorted order in that all rectangles with an equal Y origin are nondecreas¬
ing in their X origin. YXBanded additionally constrains YXSorted by requiring
that, for every possible Y scanline, all rectangles that include that scanline have
identical Y origins and Y extents.

FreeGC

gc: GCONTEXT

Errors: GContext

This request deletes the association between the resource ID and the gcontext and
destroys the gcontext.

ClearArea

window: WINDOW
x, y : INT16
width, height: CARD16
exposures: BOOL

Errors: Window, Value, Match

The x and y coordinates are relative to the window’s origin and specify the upper-
left corner of the rectangle. If width is zero, it is replaced with the current width of
the window minus x. If height is zero, it is replaced with the current height of the
window minus y. If the window has a defined background tile, the rectangle is tiled
with a plane-mask of all ones and function of Copy and a subwindow-mode of
ClipByChildren. If the window has background None, the contents of the win¬
dow are not changed. In either case, if exposures is True, then one or more

53

X Protocol Xll, Release 3

exposure events are generated for regions of the rectangle that are either visible or
are being retained in a backing store.

It is a Match error to use an InputOnly window in this request.

CopyArea

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT
src-x, src-y: INT16
width, height: CARD 16
dst-x, dst-y: INT16

Errors: Drawable, GContext, Match

This request combines the specified rectangle of src-drawable with the specified rec¬
tangle of dst-drawable. The src-x and src-y coordinates are relative to src-
drawable’s origin. The dst-x and dst-y are relative to dst-drawable’s origin, each
pair specifying the upper-left corner of the rectangle. The src-drawable must have
the same root and the same depth as dst-drawable (or a Match error results).

If regions of the source rectangle are obscured and have not been retained in back¬
ing store or if regions outside the boundaries of the source drawable are specified,
then those regions are not copied, but the following occurs on all corresponding des¬
tination regions that are either visible or are retained in backing-store. If the dst-
drawable is a window with a background other than None, these corresponding
destination regions are tiled (with plane-mask of all ones and function Copy) with
that background. Regardless of tiling and whether the destination is a window or a
pixmap, if graphics-exposures in gc is True, then GraphicsExposure events for
all corresponding destination regions are generated.

If graphics-exposures is True but no GraphicsExposure events are generated,
then a NoExposure event is generated.

GC components: function, plane-mask, subwindow-mode, graphics-exposures, clip-
x-origin, clip-y-origin, clip-mask

CopyPlane

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT
src-x, src-y: INT16
width, height: CARD 16
dst-x, dst-y: INT16
bit-plane: CARD32

Errors: Drawable, GContext, Value, Match

The src-drawable must have the same root as dst-drawable (or a Match error
results), but it need not have the same depth. The bit-plane must have exactly one
bit set to 1 and the value of bit-plane must be less than 2n where n is the depth of
src-drawable (or a Value error results). Effectively, a pixmap of the same depth as
dst-drawable and with size specified by the source region is formed using the
foreground/background pixels in gc (foreground everywhere the bit-plane in src-
drawable contains a bit set to 1, background everywhere the bit-plane contains a
bit set to 0), and the equivalent of a CopyArea is performed, with all the same
exposure semantics. This can also be thought of as using the specified region of the
source bit-plane as a stipple with a fill-style of OpaqueStippled for filling a rec¬
tangular area of the destination.

GC components: function, plane-mask, foreground, background, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, clip-mask

54

X Protocol Xll, Release 3

PolyPoint

drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: {Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Value, Match

This request combines the foreground pixel in gc with the pixel at each point in the
drawable. The points are drawn in the order listed.

The first point is always relative to the drawable’s origin. The rest are relative
either to that origin or the previous point, depending on the coordinate-mode.

GC components: function, plane-mask, foreground, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

PolyLine

drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: {Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Value, Match

This request draws lines between each pair of points (point[i], point[i+l]). The
lines are drawn in the order listed. The lines join correctly at all intermediate
points, and if the first and last points coincide, the first and last lines also join
correctly.

For any given line, no pixel is drawn more than once. If thin (zero line-width) lines
intersect, the intersecting pixels are drawn multiple times. If wide lines intersect,
the intersecting pixels are drawn only once, as though the entire PolyLine were a
single filled shape.

The first point is always relative to the drawable’s origin. The rest are relative
either to that origin or the previous point, depending on the coordinate-mode.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style,
fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-
x-origin, tile-stipple-y-origin, dash-offset, dashes

PolySegment

drawable: DRAWABLE
gc: GCONTEXT
segments: LISTofSEGMENT

where:

SEGMENT: [xl, yl, x2, y2: INT16]

Errors: Drawable, GContext, Match

For each segment, this request draws a line between [xl, yl] and [x2, y2]. The lines
are drawn in the order listed. No joining is performed at coincident endpoints. For
any given line, no pixel is drawn more than once. If lines intersect, the intersecting
pixels are drawn multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-
x-origin, tile-stipple-y-origin, dash-offset, dashes

55

X Protocol Xll, Release 3

Poly Rectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE

Errors: Drawable, GContext, Match

This request draws the outlines of the specified rectangles, as if a five-point Poly-
Line were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

The x and y coordinates of each rectangle are relative to the drawable’s origin and
define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is
drawn more than once. If rectangles intersect, the intersecting pixels are drawn
multiple times.

GC components: function, plane-mask, line-width, line-style, join-style, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-
x-origin, tile-stipple-y-origin, dash-offset, dashes

Poly Arc

drawable: DRAWABLE
gc : GCONTEXT
arcs: LISTofARC

Errors: Drawable, GContext, Match

This request draws circular or elliptical arcs. Each arc is specified by a rectangle
and two angles. The angles are signed integers in degrees scaled by 64, with posi¬
tive indicating counterclockwise motion and negative indicating clockwise motion.
The start of the arc is specified by anglel relative to the three-o’clock position from
the center of the rectangle, and the path and extent of the arc is specified by angle2
relative to the start of the arc. If the magnitude of angle2 is greater than 360
degrees, it is truncated to 360 degrees. The x and y coordinates of the rectangle
are relative to the origin of the drawable. For an arc specified as [x,y,w,h,al,a2],
the origin of the major and minor axes is at [x+(w/2),y+(h/2)|, and the infinitely
thin path describing the entire circle/ellipse intersects the horizontal axis at
x,y+(h/2)] and [x+w,y+(h/2)] and intersects the vertical axis at [x+(w/2),y] and
x+(w/2),y+h], These coordinates can be fractional; that is, they are not truncated
to discrete coordinates. The path should be defined by the ideal mathematical
path. For a wide line with line-width lw, the bounding outlines for filling are given
by the two infinitely thin paths consisting of all points whose perpendicular dis¬
tance from the path of the circle/ellipse is equal to lw/2 (which may be a fractional
value). The cap-style and join-style are applied the same as for a line correspond¬
ing to the tangent of the circle/ellipse at the endpoint.

For an arc specified as [x,y,w,h,al,a2], the angles must be specified in the effectively
skewed coordinate system of the ellipse (for a circle, the angles and coordinate sys¬
tems are identical). The relationship between these angles and angles expressed in
the normal coordinate system of the screen (as measured with a protractor) is as
follows:

skewed-angle — atan(tan(normal-angle) * w/h) + adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees
scaled by 64) in the range [0,2*PI). The atan returns a value in the range
[—PI/2,PI/2]. The adjust is:

56

X Protocol XI1, Release 3

0 for normal-angle in the range [0,PI/2)
PI for normal-angle in the range [PI/2,(3*PI)/2)
2*PI for normal-angle in the range [(3*PI)/2,2*PI)

The arcs are drawn in the order listed. If the last point in one arc coincides with
the first point in the following arc, the two arcs will join correctly. If the first point
in the first arc coincides with the last point in the last arc, the two arcs will join
correctly. For any given arc, no pixel is drawn more than once. If two arcs join
correctly and the line-width is greater than zero and the arcs intersect, no pixel is
drawn more than once. Otherwise, the intersecting pixels of intersecting arcs are
drawn multiple times. Specifying an arc with one endpoint and a clockwise extent
draws the same pixels as specifying the other endpoint and an equivalent counter¬
clockwise extent, except as it affects joins.

By specifying one axis to be zero, a horizontal or vertical line can be drawn.

Angles are computed based solely on the coordinate system, ignoring the aspect
ratio.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style,
fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-
x-origin, tile-stipple-y-origin, dash-offset, dashes

FillPoly

drawable: DRAWABLE
gc: GCONTEXT
shape: {Complex, Nonconvex , Convex}
coordinate-mode: {Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request fills the region closed by the specified path. The path is closed
automatically if the last point in the list does not coincide with the first point. No
pixel of the region is drawn more than once.

The first point is always relative to the drawable’s origin. The rest are relative
either to that origin or the previous point, depending on the coordinate-mode.

The shape parameter may be used by the server to improve performance. Com¬
plex means the path may self-intersect.

Nonconvex means the path does not self-intersect, but the shape is not wholly
convex. If known by the client, specifying Nonconvex over Complex may
improve performance. If Nonconvex is specified for a self-intersecting path, the

graphics results are undefined.

Convex means the path is wholly convex. If known by the client, specifying
Convex can improve performance. If Convex is specified for a path that is not
convex, the graphics results are undefined.

GC components: function, plane-mask, fill-style, fill-rule, subwindow-mode, clip-x-

origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-

x-origin, tile-stipple-y-origin

PolyFillRectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles'. LISTofRECTANGLE

57

X Protocol Xll, Release 3

Errors: Drawable, GContext, Match

This request fills the specified rectangles, as if a four-point FillPoly were specified
for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

The x and y coordinates of each rectangle are relative to the drawable’s origin and
define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is
drawn more than once. If rectangles intersect, the intersecting pixels are drawn
multiple times.

GC components: function, plane-mask, fill-style, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-
x-origin, tile-stipple-y-origin

PolyFillArc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC

Errors: Drawable, GContext, Match

For each arc, this request fills the region closed by the infinitely thin path described
by the specified arc and one or two line segments, depending on the arc-mode. For
Chord, the single line segment joining the endpoints of the arc is used. For
PieSlice, the two line segments joining the endpoints of the arc with the center
point are used. The arcs are as specified in the Poly Arc request.

The arcs are filled in the order listed. For any given arc, no pixel is drawn more
than once. If regions intersect, the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, fill-style, arc-mode, subwindow-mode, clip-
x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-
x-origin, tile-stipple-y-origin

Putlmage

drawable: DRAWABLE
gc: GCONTEXT
depth: CARD8
wi dth, height: CARD 16
dst-x, dst-y: INT16
left-pad: CARDS
format: {Bitmap, XYPixmap, ZPixmap}
data: LISTofBYTE

Errors: Drawable, GContext, Match, Value

This request combines an image with a rectangle of the drawable. The dst-x and
dst-y coordinates are relative to the drawable’s origin.

If Bitmap format is used, then depth must be one (or a Match error results),
and the image must be in XY format. The foreground pixel in gc defines the source
for bits set to 1 in the image, and the background pixel defines the source for the
bits set to 0.

For XYPixmap and ZPixmap, the depth must match the depth of the drawable
(or a Match error results). For XYPixmap, the image must be sent in XY for¬
mat. For ZPixmap, the image must be sent in the Z format defined for the given

58

X Protocol XI1, Release 3

depth.

The left-pad must be zero for ZPixmap format (or a Match error results). For
Bitmap and XYPixmap format, left-pad must be less than bitmap-scanline-pad
as given in the server connection setup information (or a Match error results).
The first left-pad bits in every scanline are to be ignored by the server. The actual
image begins that many bits into the data. The width argument defines the width
of the actual image and does not include left-pad.

GC components: function, plane-mask, subwindow-mode, clip-x-origin, clip-y-origin,
clip-mask

GC mode-dependent components: foreground, background

Getlmage

drawable: DRAWABLE
x, y: INTI6
width, height: CARD 16
plane-mask: CARD32
format: {XYPixmap, ZPixmap}

= >

depth: CARD8
visual: VISUALID or None
data: LISTofBYTE

Errors: Drawable, Value, Match

This request returns the contents of the given rectangle of the drawable in the
given format. The x and y coordinates are relative to the drawable’s origin and
define the upper-left corner of the rectangle. If XYPixmap is specified, only the
bit planes specified in plane-mask are transmitted, with the planes appearing from
most-significant to least-significant in bit order. If ZPixmap is specified, then bits
in all planes not specified in plane-mask are transmitted as zero. Range checking is
not performed on plane-mask; extraneous bits are simply ignored. The returned
depth is as specified when the drawable was created and is the same as a depth
component in a FORMAT structure (in the connection setup), not a bits-per-pixel
component. If the drawable is a window, its visual type is returned. If the draw-
able is a pixmap, the visual is None.

If the drawable is a pixmap, then the given rectangle must be wholly contained
within the pixmap (or a Match error results). If the drawable is a window, the
window must be viewable, and it must be the case that, if there were no inferiors or
overlapping windows, the specified rectangle of the window would be fully visible
on the screen and wholly contained within the outside edges of the window (or a
Match error results). Note that the borders of the window can be included and
read with this request. If the window has a backing store, then the backing-store
contents are returned for regions of the window that are obscured by noninferior
windows; otherwise, the returned contents of such obscured regions are undefined.
Also undefined are the returned contents of visible regions of inferiors of different
depth than the specified window. The pointer cursor image is not included in the
contents returned.

This request is not general-purpose in the same sense as other graphics-related
requests. It is intended specifically for rudimentary hardcopy support.

PolyText8

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
items: LISTofTEXTITEMS

59

X Protocol Xll, Release 3

where:

TEXTITEM8: TEXTELT8 or FONT
TEXTELT8: [delta: INT8

string: STRING8]

Errors: Drawable, GContext, Match, Font

The x and y coordinates are relative to the drawable’s origin and specify the base¬
line starting position (the initial character origin). Each text item is processed in
turn. A font item causes the font to be stored in gc and to be used for subsequent
text. Switching among fonts does not affect the next character origin. A text ele¬
ment delta specifies an additional change in the position along the x axis before the
string is drawn; the delta is always added to the character origin. Each character
image, as defined by the font in gc, is treated as an additional mask for a fill opera¬
tion on the drawable.

All contained FONTs are always transmitted most-significant byte first.

If a Font error is generated for an item, the previous items may have been drawn.

For fonts defined with 2-byte matrix indexing, each STRING8 byte is interpreted
as a byte2 value of a CHAR2B with a bytel value of zero.

GC components: function, plane-mask, fill-style, font, subwindow-mode, clip-x-
origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-
x-origin, tile-stipple-y-origin

PoIyTextl6

drawable: DRAWABLE
gc: GCONTEXT
x, y: INTI6
items: LISTofTEXTITEMl6

where:

TEXTITEM16: TEXTELT16 or FONT
TEXTELT16: [delta: INT8

string: STRING16]

Errors: Drawable, GContext, Match, Font

This request is similar to PolyText8 , except 2-byte (or 16-bit) characters are
used. For fonts defined with linear indexing rather than 2-bvte matrix indexing,
the server will interpret each CHAR2B as a 16-bit number that has been transmit¬
ted most-significant byte first (that is, bytel of the CHAR2B is taken as the most-
significant byte).

ImageTextS

drawable: DRAWABLE
gc : GCONTEXT
x, y: INT16
string: STRING8

Errors: Drawable, GContext, Match

The x and y coordinates are relative to the drawable’s origin and specify the base¬
line starting position (the initial character origin). The effect is first to fill a desti¬
nation rectangle with the background pixel defined in gc and then to paint the text
with the foreground pixel. The upper-left corner of the filled rectangle is at:

60

X Protocol Xll, Release 3

[x, y - font-ascent]

the width is:

overall-width

and the height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as they would be returned by a
QueryTextExtents call using gc and string.

The function and fill-style defined in gc are ignored for this request. The effective
function is Copy, and the effective fill-style Solid.

For fonts defined with 2-byte matrix indexing, each STRINGS byte is interpreted
as a byte2 value of a CHAR2B with a bytel value of zero.

GC components: plane-mask, foreground, background, font, subwindow-mode,
clip-x-origin, clip-y-origin, clip-mask

ImageTextl6

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
string: STRING16

Errors: Drawable, GContext, Match

This request is similar to XmageTextS, except 2-byte (or 16-bit) characters are
used. For fonts defined with linear indexing rather than 2-byte matrix indexing,
the server will interpret each CHAR2B as a 16-bit number that has been transmit¬
ted most-significant byte first (that is, bytel of the CHAR2B is taken as the most-
significant byte).

CreateColormap

mid: COLORMAP
visual: VISUALID
window: WINDOW
alloc: {None, All)

Errors: ID Choice, Window, Value, Match, Alloc

This request creates a colormap of the specified visual type for the screen on which
the window resides and associates the identifier mid with it. The visual type must
be one supported by the screen (or a Match error results). The initial values of
the colormap entries are undefined for classes GrayScale, PseudoColor, and
DirectColor. For StaticGray, StaticColor, and TrueColor, the entries will
have defined values, but those values are specific to the visual and are not defined
by the core protocol. For StaticGray, StaticColor, and TrueColor, alloc
must be specified as None (or a Match error results). For the other classes, if
alloc is None, the colormap initially has no allocated entries, and clients can allo¬
cate entries.

If alloc is All, then the entire colormap is “allocated” writable. The initial values
of all allocated entries are undefined. For GrayScale and PseudoColor, the
effect is as if an AllocColorCells request returned all pixel values from zero to N
- 1, where N is the colormap-entries value in the specified visual. For
DirectColor, the effect is as if an AllocColorPlanes request returned a pixel
value of zero and red-mask, green-mask, and blue-mask values containing the same
bits as the corresponding masks in the specified visual. However, in all cases, none

61

X Protocol Xll, Release 3

of these entries can be freed with FreeColors.

F reeCoiormap

cmap: COLORMAP

Errors: Colormap

This request deletes the association between the resource ID and the colormap and
frees the colormap storage. If the colormap is an installed map for a screen, it is
uninstalled (see UninstallColormap request). If the colormap is defined as the
colormap for a window (by means of CreateWindow or ChangeWindowAttri-
butes), the colormap for the window is changed to None, and a ColormapNo-
tify event is generated. The protocol does not define the colors displayed for a
window with a colormap of None.

This request has no effect on a default colormap for a screen.

Copy CoIormapAndF ree

mid, src-cmap: COLORMAP

Errors: IDChoice, Colormap, Alloc

This request creates a colormap of the same visual type and for the same screen as
src-cmap, and it associates identifier mid with it. It also moves all of the client’s
existing allocations from src-cmap to the new colormap with their color values
intact and their read-only or writable characteristics intact, and it frees those
entries in src-cmap. Color values in other entries in the new colormap are
undefined. If src-cmap was created by the client with alloc All (see
CreateColormap request), then the new colormap is also created with alloc All,
all color values for all entries are copied from src-cmap, and then all entries in src-
cmap are freed. If src-cmap was not created by the client with alloc All, then the
allocations to be moved are all those pixels and planes that have been allocated by
the client using either AllocColor, AllocNamedColor, AllocColorCells, or
AllocColorPlanes and that have not been freed since they were allocated.

InstallColormap

cmap: COLORMAP

Errors: Colormap

This request makes this colormap an installed map for its screen. All windows
associated with this colormap immediately display with true colors. As a side
effect, additional colormaps might be implicitly installed or uninstalled by the
server. Which other colormaps get installed or uninstalled is server-dependent
except that the required list must remain installed.

If cmap is not already an installed map, a ColormapNotify event is generated on
every window having cmap as an attribute. In addition, for every other colormap
that is installed or uninstalled as a result of the request, a ColormapNotify
event is generated on every window having that colormap as an attribute.

At any time, there is a subset of the installed maps that are viewed as an ordered
list and are called the required list. The length of the required list is at most M,
where M is the min-installed-maps specified for the screen in the connection setup.
The required list is maintained as follows. When a colormap is an explicit argu¬
ment to InstallColormap, it is added to the head of the list; the list is truncated
at the tail, if necessary, to keep the length of the list to at most M. When a color-
map is an explicit argument to UninstallColormap and it is in the required list,
it is removed from the list. A colormap is not added to the required list when it is
installed implicitly by the server, and the server cannot implicitly uninstall a color-
map that is in the required list.

62

X Protocol XI1, Release 3

Initially the default colormap for a screen is installed (but is not in the required
list).

UninstallColormap

cmap: COLORMAP

Errors: Colormap

If cmap is on the required list for its screen (see InstallColormap request), it is
removed from the list. As aside effect, cmap might be uninstalled, and additional
colormaps might be implicitly installed or uninstalled. Which colormaps get
installed or uninstalled is server-dependent except that the required list must
remain installed.

If cmap becomes uninstalled, a ColormapNotify event is generated on every win¬
dow having cmap as an attribute. In addition, for every other colormap that is
installed or uninstalled as a result of the request, a ColormapNotify event is gen¬
erated on every window having that colormap as an attribute.

ListlnstalledColormaps

window. WINDOW

= >

cmaps: LISTofCOLORMAP

Errors: Window

This request returns a list of the currently installed colormaps for the screen of the
specified window. The order of colormaps is not significant, and there is no explicit
indication of the required list (see InstallColormap request).

AllocColor

cmap: COLORMAP
red, green, blue: CARD16

= >

pixel: CARD32
red, green, blue: CARD16

Errors: Colormap, Alloc

This request allocates a read-only colormap entry corresponding to the closest RGB
values provided by the hardware. It also returns the pixel and the RGB values
actually used.

AllocNamedColor

cmap: COLORMAP
name: STRING8

= >

pixel: CARD32
exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16

Errors: Colormap, Name, Alloc

This request looks up the named color with respect to the screen associated with
the colormap. Then, it does an AllocColor on cmap. The name should use the
ISO Latin-1 encoding, and uppercase and lowercase do not matter. The exact RGB
values specify the true values for the color, and the visual values specify the values
actually used in the colormap.

AllocColor Cells

63

X Protocol XI1, Release 3

cmap: COLORMAP
colors, planes: CARD16
contiguous-. BOOL

= >

pixels, masks: LISTofCARD32

Errors: Colormap, Value, Alloc

The number of colors must be positive, and the number of planes must be nonnega¬
tive (or a Value error results). If C colors and P planes are requested, then C pix¬
els and P masks are returned. No mask will have any bits in common with any
other mask or with any of the pixels. By ORing together masks and pixels, C*2P
distinct pixels can be produced; all of these are allocated writable by the request.
For GrayScale or PseudoColor, each mask will have exactly one bit set to 1;
for DirectColor, each will have exactly three bits set to 1. If contiguous is True
and if all masks are ORed together, a single contiguous set of bits will be formed
for GrayScale or PseudoColor, and three contiguous sets of bits (one within
each pixel subfield) for DirectColor. The RGB values of the allocated entries are
undefined.

AllocColorPlanes

cmap: COLORMAP
colors, reds, greens, blues: CARD16
contiguous: BOOL

= >

pixels: LISTofCARD32
red-mask, green-mask, blue-mask: CARD32

Errors: Colormap, Value, Alloc

The number of colors muse be positive, and the reds, greens, and blues must be
nonnegative (or a Value error results). If C colors, R reds, G greens, and B blues
are requested, then C pixels are returned, and the masks have R, G, and B bits set,
respectively. If contiguous is True, then each mask will have a contiguous set of
bits. No mask will have any bits in common with any other mask or with any of
the pixels. For DirectColor, each mask will lie within the corresponding pixel
subfield. By ORing together subsets of masks with pixels, c*2fl+G+B distinct pix¬
els can be produced; all of these are allocated by the request. The initial RGB
values of the allocated entries are undefined. In the colormap, there are only 0*2^
independent red entries, C*2G independent green entries, and C*25 independent
blue entries. This is true even for PseudoColor. When the colormap entry for a
pixel value is changed using StoreColors or StoreNamedColor, the pixel is
decomposed according to the masks and the corresponding independent entries are
updated.

FreeColors

cmap: COLORMAP
pixels: LISTofCARD32
plane-mask: CARD32

Errors: Colormap, Access, Value

The plane-mask should not have any bits in common with any of the pixels. The
set of all pixels is produced by ORing together subsets of plane-mask with the pix¬
els. The request frees all of these pixels that were allocated by the client (using
AllocColor, AllocNamedColor , AllocColorCells, and AllocColorPlanes).
Note that freeing an individual pixel obtained from AllocColorPlanes may not
actually allow it to be reused until all of its related pixels are also freed.

64

X Protocol XI1, Release 3

All specified pixels that are allocated by the client in cmap are freed, even if one or
more pixels produce an error. A Value error is generated if a specified pixel is not
a valid index into cmap, and an Access error is generated if a specified pixel is not
allocated by the client (that is, is unallocated or is only allocated by another client).
If more than one pixel is in error, it is arbitrary as to which pixel is reported.

StoreColors

cmap: COLORMAP
items: LISTofCOLORITEM

where:

COLORITEM: [pixel: CARD32
do-red, do-green, do-blue: BOOL
red, green, blue: CARD16]

Errors: Colormap, Access, Value

This request changes the colormap entries of the specified pixels. The do-red, do-
green, and do-blue fields indicate which components should actually be changed. If
the colormap is an installed map for its screen, the changes are visible immediately.

All specified pixels that are allocated writable in cmap (by any client) are changed,
even if one or more pixels produce an error. A Value error is generated if a
specified pixel is not a valid index into cmap, and an Access error is generated if a
specified pixel is unallocated or is allocated read-only. If more than one pixel is in
error, it is arbitrary as to which pixel is reported.

StoreNamedColor

cmap: COLORMAP
pixel: CARD32
name: STRING8
do-red, do-green, do-blue: BOOL

Errors: Colormap, Name, Access, Value

This request looks up the named color with respect to the screen associated with
cmap and then does a StoreColors in cmap. The name should use the ISO
Latin-1 encoding, and uppercase and lowercase do not matter. The Access and
Value errors are the same as in StoreColors.

QueryColors

cmap: COLORMAP
pixels: LISTofCARD32

= >

colors: LISTofRGB

where:

RGB: [red, green, blue: CARD16]

Errors: Colormap, Value

This request returns the color values stored in cmap for the specified pixels. The
values returned for an unallocated entry are undefined. A Value error is gen¬
erated if a pixel is not a valid index into cmap. If more than one pixel is in error, it
is arbitrary as to which pixel is reported.

LookupColor

cmap: COLORMAP
name: STRING8

65

X Protocol Xll, Release 3

= >

exact-red, exact-green, exact-blue: CARD 16
visual-red, visual-green, visual-blue: CARD16

Errors: Coiormap, Name

This request looks up the string name of a color with respect to the screen associ¬
ated with cmap and returns both the exact color values and the closest values pro¬
vided by the hardware with respect to the visual type of cmap. The name should
use the ISO Latin-1 encoding, and uppercase and lowercase do not matter.

CreateCursor

cid: CURSOR
source: PIXMAP
mask: PIXMAP or None
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
x, y: CARD 16

Errors: IDChoice, Pixmap, Match, Alloc

This request creates a cursor and associates identifier cid with it. The foreground
and background RGB values must be specified, even if the server only has a Sta-
ticGray or GrayScale screen. The foreground is used for the bits set to 1 in the
source, and the background is used for the bits set to 0. Both source and mask (if
specified) must have depth one (or a Match error results), but they can have any
root. The mask pixmap defines the shape of the cursor. That is, the bits set to 1
in the mask define which source pixels will be displayed, and where the mask has
bits set to 0, the corresponding bits of the source pixmap are ignored. If no mask is
given, all pixels of the source are displayed. The mask, if present, must be the
same size as the source (or a Match error results). The x and y coordinates define
the hotspot relative to the source’s origin and must be a point within the source (or
a Match error results).

The components of the cursor may be transformed arbitrarily to meet display limi¬
tations.

The pixmaps can be freed immediately if no further explicit references to them are
to be made.

Subsequent drawing in the source or mask pixmap has an undefined effect on the
cursor. The server might or might not make a copy of the pixmap.

CreateGlyphCursor

cid: CURSOR
source-font: FONT
mask-font: FONT or None
source-char, mask-char: CARD16
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16

Errors: IDChoice, Font, Value, Alloc

This request is similar to CreateCursor, except the source and mask bitmaps are
obtained from the specified font glyphs. The source-char must be a defined glyph
in source-font, and if mask-font is given, mask-char must be a defined glyph in
mask-font (or a Value error results). The mask font and character are optional.
The origins of the source and mask (if it is defined) glyphs are positioned coin-
cidently and define the hotspot. The source and mask need not have the same
bounding box metrics, and there is no restriction on the placement of the hotspot
relative to the bounding boxes. If no mask is given, all pixels of the source are

66

X Protocol XI1, Release 3

displayed. Note that source-char and mask-char are CARD16, not CHAR2B. For
2-byte matrix fonts, the 16-bit value should be formed with bytel in the most-
significant byte and byte2 in the least-significant byte.

The components of the cursor may be transformed arbitrarily to meet display limi¬
tations.

The fonts can be freed immediately if no further explicit references to them are to
be made.

FreeCursor

cursor: CURSOR

Errors: Cursor

This request deletes the association between the resource ID and the cursor. The
cursor storage will be freed when no other resource references it.

RecolorCursor

cursor: CURSOR
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16

Errors: Cursor

This request changes the color of a cursor. If the cursor is being displayed on a
screen, the change is visible immediately.

Query BestSize

class: {Cursor, Tile, Stipple}
drawable: DRAWABLE
width, height: CARD 16

= >

width, height: CARD16

Errors: Drawable, Value, Match

This request returns the best size that is closest to the argument size. For Cur¬
sor, this is the largest size that can be fully displayed. For Tile, this is the size
that can be tiled fastest. For Stipple, this is the size that can be stippled fastest.

For Cursor, the drawable indicates the desired screen. For Tile and Stipple,
the drawable indicates the screen and also possibly the window class and depth.
An XnputOnly window cannot be used as the drawable for Tile or Stipple (or a
Match error results).

Query Extension

name: STRINGS

= >

present: BOOL
major-opcode: CARD8
first-event: CARD8
first-error: CARD8

This request determines if the named extension is present. If so, the major opcode
for the extension is returned, if it has one. Otherwise, zero is returned. Any minor
opcode and the request formats are specific to the extension. If the extension
involves additional event types, the base event type code is returned. Otherwise,
zero is returned. The format of the events is specific to the extension. If the exten¬
sion involves additional error codes, the base error code is returned. Otherwise,
zero is returned. The format of additional data in the errors is specific to the
extension.

67

X Protocol XI1, Release 3

The extension name should use the ISO Latin-1 encoding, and uppercase and lower¬
case matter.

ListExtensions

= >

names: LISTofSTRING8

This request returns a list of all extensions supported by the server.

SetModifierMapping

keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

= >

status: {Success, Busy, Failed}

Errors: Value, Alloc

This request specifies the keycodes (if any) of the keys to be used as modifiers. The
number of keycodes in the list must be 8*keycodes-per-modifier (or a Length error
results). The keycodes are divided into eight sets, with each set containing
keycodes-per-modifier elements. The sets are assigned to the modifiers Shift,
Lock, Control, Modi, Mod2, Mod3 , Mod4, and Mod5 , in order. Only
nonzero key code values are used within each set; zero values are ignored. All of the
nonzero keycodes must be in the range specified by min-keycode and max-keycode
in the connection setup (or a Value error results). The order of keycodes within a
set does not matter. If no nonzero values are specified in a set, the use of the
corresponding modifier is disabled, and the modifier bit will always be zero. Other¬
wise, the modifier bit will be one whenever at least one of the keys in the
corresponding set is in the down position.

A server can impose restrictions on how modifiers can be changed (for example, if
certain keys do not generate up transitions in hardware, if auto-repeat cannot be
disabled on certain keys, or if multiple keys per modifier are not supported). The
status reply is Failed if some such restriction is violated, and none of the modifiers
are changed.

If the new nonzero keycodes specified for a modifier differ from those currently
defined and any (current or new) keys for that modifier are logically in the down
state, then the status reply is Busy, and none of the modifiers is changed.

This request generates a MappingNotify event on a Success status.

GetModifierMapping

= >

keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

This request returns the keycodes of the keys being used as modifiers. The number
of keycodes in the list is 8*keycodes-per-modifier. The keycodes are divided into
eight sets, with each set containing keycodes-per-modifier elements. The sets are
assigned to the modifiers Shift, Lock, Control, Modi, Mod2 , Mod3,
Mod.4, and Mod5 , in order. The keycodes-per-modifier value is chosen arbi¬
trarily by the server; zeroes are used to fill in unused elements within each set. If
only zero values are given in a set, the use of the corresponding modifier has been
disabled. The order of keycodes within each set is chosen arbitrarily by the server.

ChangeKeyboardMapping

first-key code: KEYCODE
keysyms-per-keycode: CARDS
keysyms: LISTofKEYSYM

68

X Protocol XI1, Release 3

Errors: Value, Alloc

This request defines the symbols for the specified number of keycodes, starting with
the specified keycode. The symbols for keycodes outside this range remained
unchanged. The number of elements in the keysyms list must be a multiple of
keysyms-per-keycode (or a Length error results). The first-keycode must be
greater than or equal to min-keycode as returned in the connection setup (or a
Value error results) and:

first-keycode + (keysyms-length / keysyms-per-keycode) - 1

must be less than or equal to max-keycode as returned in the connection setup (or a
Value error results). KEYSYM number N (counting from zero) for keycode K has
an index (counting from zero) of:

(K - first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode can be chosen arbitrarily by the client to be
large enough to hold all desired symbols. A special KEYSYM value of NoSymbol
should be used to fill in unused elements for individual keycodes. It is legal for
NoSymbol to appear in nontrailing positions of the effective list for a keycode.

This request generates a MappingNotify event.

There is no requirement that the server interpret this mapping; it is merely stored
for reading and writing by clients (see section 6).

GetKeyboardMapping

first-keycode: KEYCODE
count: CARD8

= >

keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM

Errors: Value

This request returns the symbols for the specified number of keycodes, starting
with the specified keycode. The first-keycode must be greater than or equal to
min-keycode as returned in the connection setup (or a Value error results), and:

first-keycode + count - 1

must be less than or equal to max-keycode as returned in the connection setup (or a
Value error results). The number of elements in the keysyms list is:

count * keysyms-per-keycode

and KEYSYM number N (counting from zero) for keycode K has an index (count¬
ing from zero) of:

(K - first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode value is chosen arbitrarily by the server to
be large enough to report all requested symbols. A special KEYSYM value of
NoSymbol is used to fill in unused elements for individual keycodes.

ChangeKeyboardControl

value-mask: BITMASK
value-list: LISTofVALUE

Errors: Match, Value

69

X Protocol Xll, Release 3

This request controls various aspects of the keyboard. The value-mask and value-
list specify which controls are to be changed. The possible values are:

Control Type

key-click-percent INT8
bell-percent INT8
bell-pitch INTI 6
bell-duration INTI 6
led CARD8
led-mode {On, Off}
key KEYCODE
auto-repeat-mode {On, Off, Default}

The key-click-percent sets the volume for key clicks between 0 (off) and 100 (loud)
inclusive, if possible. Setting to -1 restores the default. Other negative values gen¬
erate a Value error.

The bell-percent sets the base volume for the bell between 0 (off) and 100 (loud)
inclusive, if possible. Setting to -1 restores the default. Other negative values gen¬
erate a Value error.

The bell-pitch sets the pitch (specified in Hz) of the bell, if possible. Setting to -1
restores the default. Other negative values generate a Value error.

The bell-duration sets the duration of the bell (specified in milliseconds), if possible.
Setting to -1 restores the default. Other negative values generate a Value error.

If both led-mode and led are specified, then the state of that LED is changed, if
possible. If only led-mode is specified, then the state of all LEDs are changed, if
possible. At most 32 LEDs, numbered from one, are supported. No standard
interpretation of LEDs is defined. It is a Match error if an led is specified without
an led-mode.

If both auto-repeat-mode and key are specified, then the auto-repeat mode of that
key is changed, if possible. If only auto-repeat-mode is specified, then the global
auto-repeat mode for the entire keyboard is changed, if possible, without affecting
the per-key settings. It is a Match error if a key is specified without an auto¬
repeat-mode. Each key has an individual mode of whether or not it should auto¬
repeat and a default setting for that mode. In addition, there is a global mode of
whether auto-repeat should be enabled or not and a default setting for that mode.
When the global mode is On, keys should obey their individual auto-repeat modes.
When the global mode is Off, no keys should auto-repeat. An auto-repeating key
generates alternating KeyPress and KeyRelease events. When a key is used as
a modifier, it is desirable for the key not to auto-repeat, regardless of the auto¬
repeat setting for that key.

A bell generator connected with the console but not directly on the keyboard is
treated as if it were part of the keyboard.

The order in which controls are verified and altered is server-dependent. If an error
is generated, a subset of the controls may have been altered.

GetKeyboardControl

= >

key-click-percent: CARD8
bell-percent: CARD8
bell-pitch: CARD16
bell-duration: CARD16

70

X Protocol XI1, Release 3

led-mask: CARD32
global-auto-repeat: { On , Off }
auto-repeats: LISTofCARD8

This request returns the current control values for the keyboard. For the LEDs,
the least-significant bit of led-mask corresponds to LED one, and each one bit in
led-mask indicates an LED that is lit. The auto-repeats is a bit vector; each one
bit indicates that auto-repeat is enabled for the corresponding key. The vector is
represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7,
with the least-significant bit in the byte representing key 8N.

Bell

percent: INT8

Errors: Value

This request rings the bell on the keyboard at a volume relative to the base volume
for the keyboard, if possible. Percent can range from -100 to 100 inclusive (or a
Value error results). The volume at which the bell is rung when percent is nonne¬
gative is:

base - [(base * percent) / 100] + percent

When percent is negative, it is:

base + [(base * percent) / 100]

SetPointerMapping

map: LISTofCARD8

= >

status: {Success, Busy}

Errors: Value

This request sets the mapping of the pointer. Elements of the list are indexed
starting from one. The length of the list must be the same as GetPointerMap-
ping would return (or a Value error results). The index is a core button number,
and the element of the list defines the effective number.

A zero element disables a button. Elements are not restricted in value by the
number of physical buttons, but no two elements can have the same nonzero value
(or a Value error results).

If any of the buttons to be altered are logically in the down state, the status reply
is Busy, and the mapping is not changed.

This request generates a MappingNotify event on a Success status.

GetPoimterMapping

= >

map: LISTofCARD8

This request returns the current mapping of the pointer. Elements of the list are
indexed starting from one. The length of the list indicates the number of physical

buttons.

The nominal mapping for a pointer is the identity mapping: map[i]=i.

ChangePointer Control

do-acceleration, do-threshold: BOOL
acceleration-numerator, acceleration-denominator: INT16

threshold: INT16

71

X Protocol XI1, Release 3

Errors: Value

This request defines how the pointer moves. The acceleration is a multiplier for
movement expressed as a fraction. For example, specifying 3/1 means the pointer
moves three times as fast as normal. The fraction can be rounded arbitrarily by
the server. Acceleration only takes effect if the pointer moves more than threshold
number of pixels at once and only applies to the amount beyond the threshold.
Setting a value to -1 restores the default. Other negative values generate a Value
error, as does a zero value for acceleration-denominator.

GetPointer Control

= >

acceleration-numerator, acceleration-denominator: CARD16
threshold: CARD16

This request returns the current acceleration and threshold for the pointer.

SetScreenSaver

timeout, interval: INTI6
prefer-blanking: {Yes, No, Default}
allow-exposures: {Yes, No, Default}

Errors: Value

The timeout and interval are specified in seconds; setting a value to -1 restores the
default. Other negative values generate a Value error. If the timeout value is
zero, screen-saver is disabled. If the timeout value is nonzero, screen-saver is
enabled. Once screen-saver is enabled, if no input from the keyboard or pointer is
generated for timeout seconds, screen-saver is activated. For each screen, if blank¬
ing is preferred and the hardware supports video blanking, the screen will simply go
blank. Otherwise, if either exposures are allowed or the screen can be regenerated
without sending exposure events to clients, the screen is changed in a server-
dependent fashion to avoid phosphor burn. Otherwise, the state of the screens does
not change, and screen-saver is not activated. At the next keyboard or pointer
input or at the next ForceScreenSaver with mode Reset, screen-saver is deac¬
tivated, and all screen states are restored.

If the server-dependent screen-saver method is amenable to periodic change, inter¬
val serves as a hint about how long the change period should be, with zero hinting
that no periodic change should be make. Examples of ways to change the screen
include scrambling the color map periodically, moving an icon image about the
screen periodically, or tiling the screen with the root window background tile, ran¬
domly reorigined periodically.

GetScreenSaver

= >

timeout, interval: CARD16
prefer-blanking: {Yes, No}
allow-exposures: {Yes, No}

This request returns the current screen-saver control values.

ForceScreenSaver

mode: {Activate, Reset}

Errors: Value

If the mode is Activate and screen-saver is currently deactivated, then screen¬
saver is activated (even if screen-saver has been disabled with a timeout value of
zero). If the mode is Reset and screen-saver is currently enabled, then screen¬
saver is deactivated (if it was activated), and the activation timer is reset to its

72

X Protocol XI1, Release 3

initial state as if device input had just been received.

ChangeHosts

mode: {Insert, Delete}
host: HOST

Errors: Access, Value

This request adds or removes the specified host from the access control list. When
the access control mechanism is enabled and a host attempts to establish a connec¬
tion to the server, the host must be in this list, or the server will refuse the connec¬
tion.

The client must reside on the same host as the server and/or have been granted
permission by a server-dependent method to execute this request (or an Access
error results).

An initial access control list can usually be specified, typically by naming a file that
the server reads at startup and reset.

The following address families are defined. A server is not required to support
these families and may support families not listed here. Use of an unsupported
family, an improper address format, or an improper address length within a sup¬
ported family results in a Value error.

For the Internet family, the address must be four bytes long. The address bytes
are in standard IP order; the server performs no automatic swapping on the address
bytes. For a Class A address, the network number is the first byte in the address,
and the host number is the remaining three bytes, most-significant byte first. For a
Class B address, the network number is the first two bytes and the host number is
the last two bytes, each most-significant byte first. For a Class C address, the net¬
work number is the first three bytes, most-significant byte first, and the last byte is
the host number.

For the DECnet family, the server performs no automatic swapping on the address
bytes. A Phase IV address is two bytes long: the first byte contains the least-
significant eight bits of the node number, and the second byte contains the most-
significant two bits of the node number in the least-significant two bits of the byte
and the area in the most significant six bits of the byte.

For the Chaos family, the address must be two bytes long. The host number is
always the first byte in the address, and the subnet number is always the second
byte. The server performs no automatic swapping on the address bytes.

ListHosts

= >

mode: {Enabled, Disabled}
hosts: LISTofHOST

This request returns the hosts on the access control list and whether use of the list
at connection setup is currently enabled or disabled.

Each HOST is padded to a multiple of four bytes.

SetAccessControl

mode: {Enable, Disable}

Errors: Value, Access

This request enables or disables the use of the access control list at connection set¬
ups.

The client must reside on the same host as the server and/or have been granted
permission by a server-dependent method to execute this request (or an Access
error results).

73

X Protocol Xll, Release 3

SetCloseDownMode

mode: {Destroy, RetainPermanent, RetainTemporary }

Errors: Value

This request defines what will happen to the client’s resources at connection close.
A connection starts in Destroy mode. The meaning of the close-down mode is
described in section 11.

KillClient

resource: CARD32 or AllTemporary

Errors: Value

If a valid resource is specified, KillClient forces a close-down of the client that
created the resource. If the client has already terminated in either RetainPer¬
manent or RetainTemporary mode, all of the client’s resources are destroyed
(see section 11). If AllTemporary is specified, then the resources of all clients
that have terminated in RetainTemporary are destroyed.

NoOperation

This request has no arguments and no results, but the request length field can be
nonzero, which allows the request to be any multiple of four bytes in length. The
bytes contained in the request are uninterpreted by the server.

This request can be used in its minimum four byte form as padding where neces¬
sary by client libraries that find it convenient to force requests to begin on 64-bit
boundaries.

11. Connection Close

At connection close, all event selections made by the client are discarded. If the client
has the pointer actively grabbed, an UngrabPointer is performed. If the client has
the keyboard actively grabbed, an UngrabKeyboard is performed. All passive grabs
by the client are released. If the client has the server grabbed, an UngrabServer is
performed. All selections (see SetSelectionOwner request) owned by the client are
disowned. If close-down mode (see SetCloseDownMode request) is RetainPer¬
manent or RetainTemporary, then all resources (including colormap entries) allo¬
cated by the client are marked as permanent or temporary, respectively (but this does
not prevent other clients from explicitly destroying them). If the mode is Destroy, all
of the client’s resources are destroyed.

When a client’s resources are destroyed, for each window in the client’s save-set, if the
window is an inferior of a window created by the client, the save-set window is
reparented to the closest ancestor such that the save-set window is not an inferior of a
window created by the client. If the save-set window is unmapped, a MapWindow
request is performed on it (even if it was not an inferior of a window created by the
client). The reparenting leaves unchanged the absolute coordinates (with respect to the
root window) of the upper-left outer corner of the save-set window. After save-set pro¬
cessing, all windows created by the client are destroyed. For each nonwindow resource
created by the client, the appropriate Free request is performed. All colors and color-
map entries allocated by the client are freed.

A server goes through a cycle of having no connections and having some connections.
At every transition to the state of having no connections as a result of a connection clos¬
ing with a Destroy close-down mode, the server resets its state as if it had just been
started. This starts by destroying all lingering resources from clients that have ter¬
minated in RetainPermanent or RetainTemporary mode. It additionally includes
deleting all but the predefined atom identifiers, deleting all properties on all root win¬
dows, resetting all device maps and attributes (key click, bell volume, acceleration),
resetting the access control list, restoring the standard root tiles and cursors, restoring

74

X Protocol Xll, Release 3

the default font path, and restoring the input focus to state PointerRoot.

Note that closing a connection with a close-down mode of RetainPermanent or
RetainTemporary will not cause the server to reset.

12. Events

When a button press is processed with the pointer in some window W and no active
pointer grab is in progress, the ancestors of W are searched from the root down, looking
for a passive grab to activate. If no matching passive grab on the button exists, then an
active grab is started automatically for the client receiving the event, and the last-
pointer-grab time is set to the current server time. The effect is essentially equivalent to
a GrabButton with arguments:

Argument Value

event-window Event window
event-mask Client’s selected pointer events on the event

window
pointer-mode and keyboard¬
mode

Asynchronous

owner-events True if the client has OwnerGrabButton

selected on the event window, otherwise False

confine-to None

cursor None

The grab is terminated automatically when the logical state of the pointer has all but¬
tons released. UngrabPointer and ChangeActivePointerGrab can both be used
to modify the active grab.

KeyPress

KeyRelease

ButtonPress

ButtonRelease

MotionNotify

root, event'. WINDOW

child: WINDOW or None

same-screen: BOOL

root-x, root-y, event-x, event-y: INT16
detail: <see below >
state: SETofKEYBUTMASK
time: TIMESTAMP

These events are generated either when a key or button logically changes state or
when the pointer logically moves. The generation of these logical changes may lag
the physical changes if device event processing is frozen. Note that KeyPress and
KeyRelease are generated for all keys, even those mapped to modifier bits. The
source of the event is the window the pointer is in. The window the event is
reported with respect to is called the event window. The event window is found by
starting with the source window and looking up the hierarchy for the first window
on which any client has selected interest in the event (provided no intervening win¬
dow prohibits event generation by including the event type in its do-not-
propagate-mask). The actual window used for reporting can be modified by active
grabs and, in the case of keyboard events, can be modified by the focus window.

The root is the root window of the source window, and root-x and root-y are the
pointer coordinates relative to root’s origin at the time of the event. Event is the

75

X Protocol Xll, Release 3

event window. If the event window is on the same screen as root, then event-x and
event-y are the pointer coordinates relative to the event window’s origin. Other¬
wise, event-x and event-y are zero. If the source window is an inferior of the event
window, then child is set to the child of the event window that is an ancestor of (or
is) the source window. Otherwise, it is set to None. The state component gives
the logical state of the buttons and modifier keys just before the event. The detail
component type varies with the event type:

Event Component

KeyPress, Key Release KEYCODE

ButtonPress, Button-
Release

BUTTON

MotionNotify {Normal, Hint}

MotionNotify events are only generated when the motion begins and ends in the
window. The granularity of motion events is not guaranteed, but a client selecting
for motion events is guaranteed to get at least one event when the pointer moves
and comes to rest. Selecting PointerMotion receives events independent of the
state of the pointer buttons. By selecting some subset of Button [l-5]Motion
instead, MotionNotify events will only be received when one or more of the
specified buttons are pressed. By selecting ButtonMotion, MotionNotify
events will be received only when at least one button is pressed. The events are
always of type MotionNotify, independent of the selection. If PointerMo-
tionHint is selected, the server is free to send only one MotionNotify event
(with detail Hint) to the client for the event window until either the key or button
state changes, the pointer leaves the event window, or the client issues a
QueryPointer or GetMotionEvents request.

EnterNotify
LeaveNotify

root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
mode: {Normal, Grab, Ungrab}
detail: (Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual}
focus: BOOL
state: SETofKEYBUTMASK
time: TIMESTAMP

If pointer motion or window hierarchy change causes the pointer to be in a different
window than before, EnterNotify and LeaveNotify events are generated
instead of a MotionNotify event. Only clients selecting EnterWindow on a
window receive EnterNotify events, and only clients selecting LeaveNotify
receive LeaveNotify events. The pointer position reported in the event is always
the final position, not the initial position of the pointer. The root is the root win¬
dow for this position, and root-x and root-y are the pointer coordinates relative to
root’s origin at the time of the event. Event is the event window. If the event win¬
dow is on the same screen as root, then event-x and event-y are the pointer coordi¬
nates relative to the event window’s origin. Otherwise, event-x and event-y are
zero. In a LeaveNotify event, if a child of the event window contains the initial
position of the pointer, then the child component is set to that child. Otherwise, it
is None. For an EnterNotify event, if a child of the event window contains the

76

X Protocol XI1, Release 3

final pointer position, then the child component is set to that child. Otherwise, it is
None. If the event window is the focus window or an inferior of the focus win¬
dow, then focus is True. Otherwise, focus is False.

Normal pointer motion events have mode Normal. Pseudo-motion events when a
grab activates have mode Grab, and pseudo-motion events when a grab deac¬
tivates have mode Ungrab.

All EnterNotify and LeaveNotify events caused by a hierarchy change are gen¬
erated after any hierarchy event caused by that change (that is, UnmapNotify,
MapNotify, ConfigureNotify, GravityNotify, CirculateNotify), but the
ordering of EnterNotify and LeaveNotify events with respect to FocusOut,
VisibilityNotify, and Expose events is not constrained.

Normal events are generated as follows:

When the pointer moves from window A to window B and A is an inferior of B:

» LeaveNotify with detail Ancestor is generated on A.

• LeaveNotify with detail Virtual is generated on each window between A
and B exclusive (in that order).

• EnterNotify with detail Inferior is generated on B.

When the pointer moves from window A to window B and B is an inferior of A:

® LeaveNotify with detail Inferior is generated on A.

• EnterNotify with detail Virtual is generated on each window between A
and B exclusive (in that order).

® EnterNotify with detail Ancestor is generated on B.

When the pointer moves from window A to window B and window C is their least
common ancestor:

• LeaveNotify with detail Nonlinear is generated on A.

• LeaveNotify with detail NonlinearVirtual is generated on each window
between A and C exclusive (in that order).

• EnterNotify with detail NonlinearVirtual is generated on each window
between C and B exclusive (in that order).

® EnterNotify with detail Nonlinear is generated on B.

When the pointer moves from window A to window B on different screens:

® LeaveNotify with detail Nonlinear is generated on A.

• If A is not a root window, LeaveNotify with detail NonlinearVirtual is
generated on each window above A up to and including its root (in order).

• If B is not a root window, EnterNotify with detail NonlinearVirtual is
generated on each window from B’s root dowm to but not including B (in
order).

• EnterNotify with detail Nonlinear is generated on B.

When a pointer grab activates (but after any initial warp into a confine-to window
and before generating any actual ButtonPress event that activates the grab), G
is the grab-window for the grab, and P is the window the pointer is in:

• EnterNotify and LeaveNotify events with mode Grab are generated (as
for Normal above) as if the pointer were to suddenly warp from its current
position in P to some position in G. However, the pointer does not warp, and
the pointer position is used as both the initial and final positions for the
events.

77

X Protocol XI1, Release 3

When a pointer grab deactivates (but after generating any actual ButtonRelease
event that deactivates the grab), G is the grab-window for the grab, and P is the
window the pointer is in:

• EnterNotify and LeaveNotify events with mode Ungrab are generated
(as for Normal above) as if the pointer were to suddenly warp from some
position in G to its current position in P. However, the pointer does not
warp, and the current pointer position is used as both the initial and final
positions for the events.

Focusln
FocusOut

event: WINDOW
mode: {Normal, WhileGrabbed , Grab, Ungrab}
detail: {Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual,
Pointer,

PointerRoot, None}

These events are generated when the input focus changes and are reported to
clients selecting FocusChange on the window. Events generated by Setlnput-
Focus when the keyboard is not grabbed have mode Normal. Events generated
by SetlnputFocus when the keyboard is grabbed have mode WhileGrabbed.
Events generated when a keyboard grab activates have mode Grab, and events
generated when a keyboard grab deactivates have mode Ungrab.

All FocusOut events caused by a window unmap are generated after any
UnmapNotify event, but the ordering of FocusOut with respect to generated
EnterNotify, LeaveNotify, VisibilityNotify, and Expose events is not con¬
strained.

Normal and WhileGrabbed events are generated as follows:

When the focus moves from window A to window B, A is an inferior of B, and the
pointer is in window P:

• FocusOut with detail Ancestor is generated on A.

• FocusOut with detail Virtual is generated on each window between A and
B exclusive (in order).

• Focusln with detail Inferior is generated on B.

• If P is an inferior of B but P is not A or an inferior of A or an ancestor of A,
Focusln with detail Pointer is generated on each window below B down to
and including P (in order).

When the focus moves from window A to window B, B is an inferior of A, and the
pointer is in window P:

• If P is an inferior of A but P is not an inferior of B or an ancestor of B,
FocusOut with detail Pointer is generated on each window from P up to
but not including A (in order).

• FocusOut with detail Inferior is generated on A.

• Focusln with detail Virtual is generated on each window between A and B
exclusive (in order).

• Focusln with detail Ancestor is generated on B.

When the focus moves from window A to window B, window C is their least com¬
mon ancestor, and the pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each
window from P up to but not including A (in order).

78

X Protocol XI1, Release 3

• FocusOut with detail Nonlinear is generated on A.

• FocusOut with detail NonlinearVirtual is generated on each window
between A and C exclusive (in order).

• Focusln with detail NonlinearVirtual is generated on each window
between C and B exclusive (in order).

• Focusln with detail Nonlinear is generated on B.

• If P is an inferior of B, Focusln with detail Pointer is generated on each
window below B down to and including P (in order).

When the focus moves from window A to window B on different screens and the
pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each
window from P up to but not including A (in order).

• FocusOut with detail Nonlinear is generated on A.

• If A is not a root window, FocusOut with detail NonlinearVirtual is gen¬
erated on each window above A up to and including its root (in order).

• If B is not a root window, Focusln with detail NonlinearVirtual is gen¬
erated on each window from B’s root down to but not including B (in order).

® Focusln with detail Nonlinear is generated on B.

• If P is an inferior of B, Focusln with detail Pointer is generated on each
window below B down to and including P (in order).

When the focus moves from window A to PointerRoot (or None) and the
pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each
window from P up to but not including A (in order).

• FocusOut with detail Nonlinear is generated on A.

• If A is not a root window, FocusOut with detail NonlinearVirtual is gen¬
erated on each window above A up to and including its root (in order).

® Focusln with detail PointerRoot (or None) is generated on all root win¬
dows.

o If the new focus is PointerRoot, Focusln with detail Pointer is gen¬
erated on each window from P’s root down to and including P (in order).

When the focus moves from PointerRoot (or None) to window A and the
pointer is in window P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is gen¬
erated on each window from P up to and including P’s root (in order).

• FocusOut with detail PointerRoot (or None) is generated on all root
windows.

• If A is not a root window, Focusln with detail NonlinearVirtual is gen¬
erated on each window from A’s root down to but not including A (in order).

• Focusln with detail Nonlinear is generated on A.

• If P is an inferior of A, Focusln with detail Pointer is generated on each
window below A down to and including P (in order).

When the focus moves from PointerRoot to None (or vice versa) and the
pointer is in window P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is gen¬
erated on each window from P up to and including P’s root (in order).

79

X Protocol XI1, Release 3

• FocusOut with detail PointerRoot (or None) is generated on all root
windows.

• Focusln with detail None (or PointerRoot) is generated on all root win¬
dows.

• If the new focus is PointerRoot, Focusln with detail Pointer is gen¬
erated on each window from P’s root down to and including P (in order).

When a keyboard grab activates (but before generating any actual KeyPress
event that activates the grab), G is the grab-window for the grab, and F is the
current focus:

• Focusln and FocusOut events with mode Grab are generated (as for
Normal above) as if the focus were to change from F to G.

When a keyboard grab deactivates (but after generating any actual KeyRelease
event that deactivates the grab), G is the grab-window for the grab, and F is the
current focus:

• Focusln and FocusOut events with mode Ungrab are generated (as for
Normal above) as if the focus were to change from G to F.

KeymapNotify

keys: LISTofCARD8

The value is a bit vector as described in QueryKeymap. This event is reported
to clients selecting KeymapState on a window and is generated immediately after
every EnterNotify and Focusln.

Expose

window: WINDOW
x, y, width, height: CARD 16
count: CARD16

This event is reported to clients selecting Exposure on the window. It is gen¬
erated when no valid contents are available for regions of a window, and either the
regions are visible, the regions are viewable and the server is (perhaps newly) main¬
taining backing store on the window, or the window is not viewable but the server
is (perhaps newly) honoring window’s backing-store attribute of Always or
WhenMapped. The regions are decomposed into an arbitrary set of rectangles,
and an Expose event is generated for each rectangle.

For a given action causing exposure events, the set of events for a given window are
guaranteed to be reported contiguously. If count is zero, then no more Expose
events for this v/indow follow. If count is nonzero, then at least that many more
Expose events for this window follow (and possibly more).

The x and y coordinates are relative to window’s origin and specify the upper-left
corner of a rectangle. The width and height specify the extent of the rectangle.

Expose events are never generated on InputOnly windows.

All Expose events caused by a hierarchy change are generated after any hierarchy
event caused by that change (for example, UnmapNotify, MapNotify,
ConfigureNotify, GravityNotify , CirculateNotify). All Expose events on
a given window are generated after any VisibilityNotify event on that window,
but it is not required that all Expose events on all windows be generated after all
Visibilitity events on all windows. The ordering of Expose events with respect
to FocusOut, EnterNotify, and LeaveNotify events is not constrained.

GraphicsExposure

drawable: DRAWABLE
x, y, width, height: CARD 16

80

X Protocol Xll, Release 3

count: CARD16
major-opcode: CARD8
minor-opcode: CARD 16

This event is reported to clients selecting graphics-exposures in a graphics context
and is generated when a destination region could not be computed due to an
obscured or out-of-bounds source region. All of the regions exposed by a given
graphics request are guaranteed to be reported contiguously. If count is zero then
no more GraphicsExposure events for this window follow. If count is nonzero,
then at least that many more GraphicsExposure events for this window follow
(and possibly more).

The x and y coordinates are relative to drawable’s origin and specify the upper-left
corner of a rectangle. The width and height specify the extent of the rectangle.

The major and minor opcodes identify the graphics request used. For the core pro¬
tocol, major-opcode is always Copy Area or CopyPlane, and minor-opcode is
always zero.

NoExposure

drawable: DRAWABLE
major-opcode: CARD8
minor-opcode: CARD 16

This event is reported to clients selecting graphics-exposures in a graphics context
and is generated when a graphics request that might produce GraphicsExposure
events does not produce any. The drawable specifies the destination used for the
graphics request.

The major and minor opcodes identify the graphics request used. For the core pro¬
tocol, major-opcode is always CopyArea or CopyPlane, and the minor-opcode
is always zero.

Visibility Notify

window: WINDOW
state: {Unobscured, Partially Obscured , Fully Obscured }

This event is reported to clients selecting VisibilityChange on the window. In
the following, the state of the window is calculated ignoring all of the window’s
subwindows. When a window changes state from partially or fully obscured or not
viewable to viewable and completely unobscured, an event with Unobscured is
generated. When a window changes state from viewable and completely unob¬
scured or not viewable, to viewable and partially obscured, an event with Partial¬
ly Obscured is generated. When a window changes state from viewable and com¬
pletely unobscured, from viewable and partially obscured, or from not viewable to
viewable and fully obscured, an event with FullyObscured is generated.

VisibilityNotify events are never generated on InputOnly windows.

All VisibilityNotify events caused by a hierarchy change are generated after any
hierarchy event caused by that change (for example, UnmapNotify, MapNo-
tify, ConfigureNotify, GravityNotify , CirculateNotify). Any Visibili¬
tyNotify event on a given window is generated before any Expose events on that
window, but it is not required that all VisibilityNotify events on all windows be
generated before all Expose events on all windows. The ordering of Visibili¬
tyNotify events with respect to FocusOut, EnterNotify, and LeaveNotify
events is not constrained.

CreateNotify

parent, window: WINDOW
x, y : INT16

81

X Protocol XI1, Release 3

width, height, border-width: CARD 16
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on the parent and
is generated when the window is created. The arguments are as in the
CreateWindow request.

DestroyNotify

event, window. WINDOW

This event is reported to clients selecting StructureNotify on the window and to
clients selecting SubstructureNotify on the parent. It is generated when the
window is destroyed. The event is the window on which the event was generated,
and the window is the window that is destroyed.

The ordering of the DestroyNotify events is such that for any given window,
DestroyNotify is generated on all inferiors of the window before being generated
on the window itself. The ordering among siblings and across subhierarchies is not
otherwise constrained.

UnmapNotify

event, window: WINDOW
from-configure: BOOL

This event is reported to clients selecting StructureNotify on the window and to
clients selecting SubstructureNotify on the parent. It is generated when the
window changes state from mapped to unmapped. The event is the window on
which the event was generated, and the window is the window that is unmapped.
The from-configure flag is True if the event was generated as a result of the
window’s parent being resized when the window itself had a win-gravity of
Unmap.

MapNotify

event, window: WINDOW
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to
clients selecting SubstructureNotify on the parent. It is generated when the
window changes state from unmapped to mapped. The event is the window on
which the event was generated, and the window is the window that is mapped.
The override-redirect flag is from the window’s attribute.

MapRequest

parent, window: WINDOW

This event is reported to the client selecting SubstructureRedirect on the parent
and is generated when a MapWindow request is issued on an unmapped window
with an override-redirect attribute of False.

ReparentNotify

event, window, parent: WINDOW
x, y : INT16
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on either the old
or the new parent and to clients selecting StructureNotify on the window. It is
generated when the window is reparented. The event is the window on which the
event was generated. The window is the window that has been rerooted. The
parent specifies the new parent. The x and y coordinates are relative to the new
parent’s origin and specify the position of the upper-left outer corner of the win¬
dow. The override-redirect flag is from the window’s attribute.

82

X Protocol XI1, Release 3

ConfigureNotify

event, window. WINDOW
x, y: INTI6
width, height, border-width: CARD 16
above-sibling: WINDOW or None
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to
clients selecting SubstructureNotify on the parent. It is generated when a
ConfigureWindow request actually changes the state of the window. The event
is the window on which the event was generated, and the window is the window
that is changed. The x and y coordinates are relative to the new parent’s origin
and specify the position of the upper-left outer corner of the window. The width
and height specify the inside size, not including the border. If above-sibling is
None, then the window is on the bottom of the stack with respect to siblings.
Otherwise, the window is immediately on top of the specified sibling. The
override-redirect flag is from the window’s attribute.

GravityNotify

event, window. WINDOW
x, y: INT16

This event is reported to clients selecting SubstructureNotify on the parent and
to clients selecting StructureNotify on the window. It is generated when a win¬
dow is moved because of a change in size of the parent. The event is the window
on which the event was generated, and the window is the window that is moved.
The x and y coordinates are relative to the new parent’s origin and specify the posi¬
tion of the upper-left outer corner of the window.

ResizeRequest

window. WINDOW
width, height: CARD16

This event is reported to the client selecting ResizeRedirect on the window and
is generated when a ConfigureWindow request by some other client on the win¬
dow attempts to change the size of the window. The width and height are the
inside size, not including the border.

ConfigureRequest

parent, window. WINDOW
x, y: INT16
width, height, border-width: CARD16
sibling: WINDOW or None
stack-mode: {Above, Below, Toplf, Bottomlf, Opposite}
value-mask: BITMASK

This event is reported to the client selecting SubstructureRedirect on the parent
and is generated when a ConfigureWindow request is issued on the window by
some other client. The value-mask indicates which components were specified in
the request. The value-mask and the corresponding values are reported as given in
the request. The remaining values are filled in from the current geometry of the
window, except in the case of sibling and stack-mode, which are reported as None
and Above (respectively) if not given in the request.

CircuIateNotify

event, window: WINDOW
place: {Top, Bottom}

83

X Protocol Xll, Release 3

This event is reported to clients selecting StructureNotify on the window and to
clients selecting SubstructureNotify on the parent. It is generated when the
window is actually restacked from a CircuIateWindow request. The event is the
v/indow on which the event was generated, and the window is the window that is
restacked. If place is Top, the window is now on top of all siblings. Otherwise, it
is below all siblings.

CircuIateRequest

parent, window. WINDOW
place: {Top, Bottom)

This event is reported to the client selecting SubstructureRedirect on the parent
and is generated when a CircuIateWindow request is issued on the parent and a
window actually needs to be restacked. The window specifies the window to be res¬
tacked, and the place specifies what the new position in the stacking order should
be.

PropertyNotify

window. WINDOW
atom: ATOM
state: {NewValue, Deleted)
time: TIMESTAMP

This event is reported to clients selecting Property Change on the window and is
generated with state NewValue when a property of the window is changed using
ChangeProperty or RotateProperties, even when adding zero-length data
using ChangeProperty and when replacing all or part of a property with identi¬
cal data using ChangeProperty or RotateProperties. It is generated with
state Deleted when a property of the window is deleted using request DeletePro-
perty or GetProperty. The timestamp indicates the server time when the pro¬
perty was changed.

SelectionClear

owner: WINDOW
selection: ATOM
time: TIMESTAMP

This event is reported to the current owner of a selection and is generated when a
new owner is being defined by means of SetSelectionOwner. The timestamp is
the last-change time recorded for the selection. The owner argument is the window
that was specified by the current owner in its SetSelectionOwner request.

SelectionRequest

owner: WINDOW
selection: ATOM
target: ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime

This event is reported to the owner of a selection and is generated when a client
issues a ConvertSelection request. The owner argument is the window that was
specified in the SetSelectionOwner request. The remaining arguments are as in
the ConvertSelection request.

The owner should convert the selection based on the specified target type. If a pro¬
perty is specified, the owner should store the result as that property on the reques¬
tor window and then send a SelectionNotify event to the requestor using Sen-
dEvent with an empty event-mask (that is, the event should be sent to the crea¬
tor of the requestor window). If None is specified as the property, the owner

84

X Protocol XI1, Release 3

should choose a property name, store the result as that property on the requestor
window, and then send a SelectionNotify giving that actual property name. If
the selection cannot be converted as requested, the owner should send a Selection¬
Notify with the property set to None.

SelectionNotify

requestor: WINDOW
selection, target: ATOM
property: ATOM or None
time: TIMESTAMP or CurrentTime

This event is generated by the server in response to a ConvertSelection request
when there is no owner for the selection. When there is an owner, it should be gen¬
erated by the owner using SendEvent. The owner of a selection should send this
event to a requestor either when a selection has been converted and stored as a pro¬
perty or when a selection conversion could not be performed (indicated with pro¬
perty None).

ColormapNotify

window: WINDOW
colormap: COLORMAP or None
new: BOOL
state: {Installed, Uninstalled}

This event is reported to clients selecting ColormapChange on the window. It is
generated with value True for new when the colormap attribute of the window is
changed and is generated with value False for new when the colormap of a win¬
dow is installed or uninstalled. In either case, the state indicates whether the color-
map is currently installed.

MappingNotify

request: {Modifier, Keyboard, Pointer}
first-keycode, count: CARD8

This event is sent to all clients. There is no mechanism to express disinterest in
this event. The detail indicates the kind of change that occurred: Modifiers for a
successful SetModifierMapping, Keyboard for a successful ChangeKey-
boardMapping, and Pointer for a successful SetPointerMapping If the
detail is Keyboard, then first-keycode and count indicate the range of altered
keycodes.

ClientMessage

window: WINDOW
type: ATOM
format: {8, 16, 32}
data: LISTofINTS or LISTofINTl6 or LISTofINT32

This event is only generated by clients using SendEvent. The type specifies how
the data is to be interpreted by the receiving client; the server places no interpreta¬
tion on the type or the data. The format specifies whether the data should be
viewed as a list of 8-bit, 16-bit, or 32-bit quantities, so that the server can correctly
byte-swap, as necessary. The data always consists of either 20 8-bit values or 10
16-bit values or 5 32-bit values, although particular message types might not make
use of all of these values.

13. Flow Control and Concurrency

Whenever the server is writing to a given connection, it is permissible for the server to
stop reading from that connection (but if the writing would block, it must continue to
service other connections). The server is not required to buffer more than a single

85

X Protocol Xll, Release 3

request per connection at one time. For a given connection to the server, a client can
block while reading from the connection but should undertake to read (events and
errors) when writing would block. Failure on the part of a client to obey this rule could
result in a deadlocked connection, although deadlock is probably unlikely unless either
the transport layer has very little buffering or the client attempts to send large numbers
of requests without ever reading replies or checking for errors and events.

If a server is implemented with internal concurrency, the overall effect must be as if indi¬
vidual requests are executed to completion in some serial order, and requests from a
given connection must be executed in delivery order (that is, the total execution order is
a shuffle of the individual streams). The execution of a request includes validating all
arguments, collecting all data for any reply, and generating and queueing all required
events. However, it does not include the actual transmission of the reply and the events.
In addition, the effect of any other cause that can generate multiple events (for example,
activation of a grab or pointer motion) must effectively generate and queue all required
events indivisibly with respect to all other causes and requests. For a request from a
given client, any events destined for that client that are caused by executing the request
must be sent to the client before any reply or error is sent.

86

Appendix A

KBY8YM Encoding

For convenience, KEYSYM values are viewed as split into four bytes:

* Byte 1 (for the purposes of this encoding) is the most-significant 5 bits (because of the 29-bit effective
values)

• Byte 2 is the next most-significant 8 bits

® Byte 3 is the next most-significant 8 bits

® Byte 4 is the leasLsignificant 8 bits

The standard KEYSYM values all have the zero values for bytes 1 and 2. Byte 3 indicates a character code
set, and byte 4 indicates a particular character within that set.

Byte 3 Byte 4

0 Latin 1
1 Latin 2
2 Latin 3
3 Latin 4
4 Kana
5 Arabic
6 Cyrillic
7 Greek
8 Technical
9 Special
10 Publishing
11 APL
12 Hebrew
255 Keyboard

Each character set contains gaps where codes have been removed that were duplicates with codes in previous
character sets (that is, character sets with lesser byte 3 value).

The 94 and 96 character code sets have been moved to occupy the right-hand quadrant (decimal 129 through
256), so the ASCII subset has a unique encoding across byte 4, which corresponds to the ASCII character
code However, this cannot be guaranteed with future registrations and does not apply to all of the Key¬
board set.

To the best of our knowledge, the Latin, Kana, Arabic, Cyrillic, Greek, APL, and Hebrew sets are from the
appropriate ISO and/or ECMA international standards. There are no Technical, Special, or Publishing inter¬
national standards, so these sets are based on Digital Equipment Corporation standards

The ordering between the sets (byte 3) is essentially arbitrary Although the national and international
standards bodies are commencing deliberations regarding international 2-byte and 4-byte character sets, we
do not know of any proposed layouts.

The order may be arbitrary, but it is important in dealing with duplicate coding. As far as possible,
KEYSYM values are the same as the character code. In the Latin-1 to Latm-4 sets, all duplicate glyphs
occupy the same code position. However, duplicates between Greek and Technical do not occupy the same
code position. Thus, applications wishing to use the technical character set must transform the keysym by
means of an array.

There is a difference between European and US usage of the names Pilcrow, Paragraph, and Section, as fol¬
lows:

US name European name code position in Latin-1

Section sign Paragraph sign 10/07
Paragraph sign Pilcrow sign 11/06

87

X Protocol XI1, Release 3

We have adopted the names used by both the ISO and ECMA standards Thus, 11/06 is the Pilcrow sign,

and 10/07 is the Paragraph sign (Section sign) This favors the European usage.

The Keyboard set is a miscellaneous collection of commonly occurring keys on keyboards Within this set,

the keypad symbols are generally duplicates of symbols found on keys on the main part of the keyboard, but

they are distinguished here because they often have a distinguishable semantics associated with them.

Keyboards tend to be comparatively standard with respect to the alphanumeric keys, but they differ radi¬

cally on the miscellaneous function keys. Many function keys are left over from early timesharing days or

are designed for a specific application Keyboard layouts from large manufacturers tend to have lots of keys

for every conceivable purpose, whereas small workstation manufacturers often add keys that are solely for

support of some of their unique functionality. There are two ways of thinking about how to define keysyms

for such a world:

• The Engraving approach

• The Common approach

The Engraving approach is to create a keysym for every unique key engraving This is effectively taking the

union of all key engravings on all keyboards. For example, some keyboards label function keys across the

top as Fl through Fn, and others label them as PFl through PFn These would be different keys under the
Engraving approach Likewise, Lock would differ from Shift Lock, which is different from the up-arrow sym¬

bol that has the effect of changing lowercase to uppercase. There are lots of other aliases such as Del, DEL,

Delete, Remove, and so forth. The Engraving approach makes it easy to decide if a new entry should be
added to the keysym set: if it does not exactly match an existing one, then a new one is created. One esti¬

mate is that there would be on the order of 300-500 Keyboard keysyms using this approach, without count¬

ing foreign translations and variations.

The Common approach tries to capture all of the keys present on an interesting number of keyboards, fold¬

ing likely aliases into the same keysym. For example, Del, DEL, and Delete are all merged into a single
keysym. Vendors would be expected to augment the keysym set (using the vendor-specific encoding space)

to include all of their unique keys that were not included in the standard set. Each vendor decides which of

its keys map into the standard keysyms, which presumably can be overridden by a user. It is more difficult

to implement this approach, because judgment is required about when a sufficient set of keyboards imple¬

ments an engraving to justify making it a keysym in the standard set and about which engravings should be

merged into a single keysym. Under this scheme there are an estimated 100-150 keysyms

Although neither scheme is perfect or elegant, the Common approach has been selected because it makes it

easier to write a portable application. Having the Delete functionality merged into a single keysym allows

an application to implement a deletion function and expect reasonable bindings on a wide set of worksta¬

tions. Under the Common approach, application writers are still free to look for and interpret vendor-

specific keysyms, but because they are in the extended set, the application developer is more conscious that

they are writing the application in a nonportable fashion.

In the listings below, Code Pos is a representation of byte 4 of the KEYSYM value, expressed as most-

significant/least-significant 4-bit values The Code Pos numbers are for reference only and do not affect the

KEYSYM value. In all cases, the KEYSYM value is:

byte3 * 256 + byte4

Byte
3

Byte

4

Code

Pos

Name Set

000 032 02/00 SPACE Latin-1

000 033 02/01 EXCLAMATION POINT Latin-1

000 034 02/02 QUOTATION MARK Latin-1

000 035 02/03 NUMBER SIGN Latin-1

000 036 02/04 DOLLAR SIGN Latin-1

000 037 02/05 PERCENT SIGN Latin-1

000 038 02/06 AMPERSAND Latin-1

000 039 02/07 APOSTROPHE Latin-1

000 040 02/08 LEFT PARENTHESIS Latin-1
000 041 02/09 RIGHT PARENTHESIS Latin-1

000 042 02/10 ASTERISK Latin-1

000 043 02/11 PLUS SIGN Latin-1
000 044 02/12 COMMA Latin-1
000 045 02/13 HYPHEN, MINUS SIGN Latin-1
000 046 02/14 FULL STOP Latin-1
000 047 02/15 SOLIDUS Latin-1

88

X Protocol XI1, Release 3

Byte

3

Byte

4

Code

Pos

Name Set

000 048 03/00 DIGIT ZERO Latin-1

000 049 03/01 DIGIT ONE Latin-1

000 050 03/02 DIGIT TWO Latin-1

000 051 03/03 DIGIT THREE Latin-1

000 052 03/04 DIGIT FOUR Latin-1

000 053 03/05 DIGIT FIVE Latin-1

000 054 03/06 DIGIT SIX Latin-1

000 055 03/07 DIGIT SEVEN Latin-1

000 056 03/08 DIGIT EIGHT Latin-1
000 057 03/09 DIGIT NINE Latin-1

000 058 03/10 COLON Latin-1

000 059 03/11 SEMICOLON Latin-1
000 060 03/12 LESS THAN SIGN Latin-1

000 061 03/13 EQUALS SIGN Latin-1

000 062 03/14 GREATER THAN SIGN Latin-1
000 063 03/15 QUESTION MARK Latin-1

000 064 04/00 COMMERCIAL AT Latin-1
000 065 04/01 LATIN CAPITAL LETTER A Latin-1
000 066 04/02 LATIN CAPITAL LETTER B Latin-1
000 067 04/03 LATIN CAPITAL LETTER C Latin-1
000 068 04/04 LATIN CAPITAL LETTER D Latin-1
000 069 04/05 LATIN CAPITAL LETTER E Latin-1
000 070 04/06 LATIN CAPITAL LETTER F Latin-1
000 071 04/07 LATIN CAPITAL LETTER G Latin-1
000 072 04/08 LATIN CAPITAL LETTER H Latin-1
000 073 04/09 LATIN CAPITAL LETTER I Latin-1

000 074 04/10 LATIN CAPITAL LETTER J Latin-1
000 075 04/11 LATIN CAPITAL LETTER K Latin-1

000 076 04/12 LATIN CAPITAL LETTER L Latin-1

000 077 04/13 LATIN CAPITAL LETTER M Latin-1
000 078 04/14 LATIN CAPITAL LETTER N Latin-1

000 079 04/15 LATIN CAPITAL LETTER O Latin-1

000 080 05/00 LATIN CAPITAL LETTER P Latin-1

000 081 05/01 LATIN CAPITAL LETTER Q Latin-1

000 082 05/02 LATIN CAPITAL LETTER R Latin-1

000 083 05/03 LATIN CAPITAL LETTER S Latin-1

000 084 05/04 LATIN CAPITAL LETTER T Latin-1

000 085 05/05 LATIN CAPITAL LETTER U Latin-1

000 086 05/06 LATIN CAPITAL LETTER V Latin-1

000 087 05/07 LATIN CAPITAL LETTER W Latin-1

000 088 05/08 LATIN CAPITAL LETTER X Latin-1

000 089 05/09 LATIN CAPITAL LETTER Y Latin-1

000 090 05/10 LATIN CAPITAL LETTER Z Latin-1

000 091 05/11 LEFT SQUARE BRACKET Latin-1

000 092 05/12 REVERSE SOLIDUS Latin-1

000 093 05/13 RIGHT SQUARE BRACKET Latin-1

000 094 05/14 CIRCUMFLEX ACCENT Latin-1

000 095 05/15 LOW LINE Latin-1

000 096 06/00 GRAVE ACCENT Latin-1

000 097 06/01 LATIN SMALL LETTER a Latin-1

000 098 06/02 LATIN SMALL LETTER b Latin-1

000 099 06/03 LATIN SMALL LETTER c Latin-1

000 100 06/04 LATIN SMALL LETTER d Latin-1

000 101 06/05 LATIN SMALL LETTER e Latin-1

000 102 06/06 LATIN SMALL LETTER f Latin-1

000 103 06/07 LATIN SMALL LETTER g Latin-1

000 104 06/08 LATIN SMALL LETTER h Latin-1

000 105 06/09 LATIN SMALL LETTER i Latin-1

000 106 06/10 LATIN SMALL LETTER j Latin-1

000 107 06/11 LATIN SMALL LETTER k Latin-1

000 108 06/12 LATIN SMALL LETTER 1 Latin-1

89

X Protocol Xl 1, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

000 109 06/13 LATIN SMALL LETTER m Latin-1
000 no 06/14 LATIN SMALL LETTER n Latin-1
000 in 06/15 LATIN SMALL LETTER o Latin-1
000 112 07/00 LATIN SMALL LETTER p Latin-1
000 113 07/01 LATIN SMALL LETTER q Latin-1
000 114 07/02 LATIN SMALL LETTER r Latin-1
000 115 07/03 LATIN SMALL LETTER s Latin-1
000 116 07/04 LATIN SMALL LETTER t Latin-1
000 117 07/05 LATIN SMALL LETTER u Latin-1
000 118 07/06 LATIN SMALL LETTER v Latin-1
000 119 07/07 LATIN SMALL LETTER w Latin-1
000 120 07/08 LATIN SMALL LETTER x Latin-1
000 121 07/09 LATIN SMALL LETTER y Latin-1
000 122 07/10 LATIN SMALL LETTER z Latin-1
000 123 07/11 LEFT CURLY BRACKET Latin-1
000 124 07/12 VERTICAL LINE Latin-1
000 125 07/13 RIGHT CURLY BRACKET Latin-1
000 126 07/14 TILDE Latin-1
000 160 10/00 NO-BREAK SPACE Latin-1
000 161 10/01 INVERTED EXCLAMATION MARK Latin-1
000 162 10/02 CENT SIGN Latin-1
000 163 10/03 POUND SIGN Latin-1
000 164 10/04 CURRENCY SIGN Latin-1
000 165 10/05 YEN SIGN Latin-1
TOO 166 10/06 BROKEN VERTICAL BAR Latin-1
TOO 167 10/07 PARAGRAPH SIGN, SECTION SIGN Latin-1
TOO 168 10/08 DIAERESIS Latin-1
TOO 169 10/09 COPYRIGHT SIGN Latin-1
TOO 170 10/10 FEMININE ORDINAL INDICATOR Latin-1
000 171 10/11 LEFT ANGLE QUOTATION MARK Latin-1
TOO 172 10/12 NOT SIGN Latin-1
TOO 174 10/14 REGISTERED TRADEMARK SIGN Latin-1
TOO 175 10/15 MACRON Latin-1
TOO 176 11/00 DEGREE SIGN, RING ABOVE Latin-1
TOO 177 11/01 PLUS-MINUS SIGN Latin-1
TOO 178 11/02 SUPERSCRIPT TWO Latin-1
TOO 179 11/03 SUPERSCRIPT THREE Latin-1
TOO 180 11/04 ACUTE ACCENT Latin-1
TOO 181 11/05 MICRO SIGN Latin-1
TOO 182 11/06 PILCROW SIGN Latin-1
TOO 183 11/07 MIDDLE DOT Latin-1
TOO 184 11/08 CEDILLA Latin-1
TOO 185 11/09 SUPERSCRIPT ONE Latin-1
TOO 186 11/10 MASCULINE ORDINAL INDICATOR Latin-1
TOO 187 11/11 RIGHT ANGLE QUOTATION MARK Latin-1
TOO 188 11/12 VULGAR FRACTION ONE QUARTER Latin-1
TOO 189 11/13 VULGAR FRACTION ONE HALF Latin-1
TOO 190 11/14 VULGAR FRACTION THREE QUARTERS Latin-1
TOO 191 11/15 INVERTED QUESTION MARK Latin-1
TOO 192 12/00 LATIN CAPITAL LETTER A WITH GRAVE ACCENT Latin-1
TOO 193 12/01 LATIN CAPITAL LETTER A WITH ACUTE ACCENT Latin-1
TOO 194 12/02 LATIN CAPITAL LETTER A WITH-CIRCUMFLEX ACCENT Latin-1
TOO 195 12/03 LATIN CAPITAL LETTER A WITH TILDE Latin-1
TOO 196 12/04 LATIN CAPITAL LETTER A WITH DIAERESIS Latin-1
TOO 197 12/05 LATIN CAPITAL LETTER A WITH RING ABOVE Latin-1
TOO 198 12/06 LATIN CAPITAL DIPHTHONG AE Latin-1
TOO 199 12/07 LATIN CAPITAL LETTER C WITH CEDILLA Latin-1
TOO 200 12/08 LATIN CAPITAL LETTER E WITH GRAVE ACCENT Latin-1
000 201 12/09 LATIN CAPITAL LETTER E WITH ACUTE ACCENT Latin-1
TOO 202 12/10 LATIN CAPITAL LETTER E WITH CIRCUMFLEX ACCENT Latin-1
TOO 203 12/11 LATIN CAPITAL LETTER E WITH DIAERESIS Latin-1

90

X Protocol XI1, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

000 204 12/12 LATIN CAPITAL LETTER I WITH GRAVE ACCENT Latin-1
000 205 12/13 LATIN CAPITAL LETTER I WITH ACUTE ACCENT Latin-1
000 206 12/14 LATIN CAPITAL LETTER I WITH CIRCUMFLEX ACCENT Latin-1
000 207 12/15 LATIN CAPITAL LETTER I WITH DIAERESIS Latin-1
000 208 13/00 ICELANDIC CAPITAL LETTER ETH Latin-1
000 209 13/01 LATIN CAPITAL LETTER N WITH TILDE Latin-1
000 210 13/02 LATIN CAPITAL LETTER 0 WITH GRAVE ACCENT Latin-1
000 211 13/03 LATIN CAPITAL LETTER O WITH ACUTE ACCENT Latin-1
000 212 13/04 LATIN CAPITAL LETTER O WITH CIRCUMFLEX ACCENT Latin-1
000 213 13/05 LATIN CAPITAL LETTER 0 WITH TILDE Latin-1
000 214 13/06 LATIN CAPITAL LETTER 0 WITH DIAERESIS Latin-1
000 215 13/07 MULTIPLICATION SIGN Latin-1
000 216 13/08 LATIN CAPITAL LETTER 0 WITH OBLIQUE STROKE Latin-1
000 217 13/09 LATIN CAPITAL LETTER U WITH GRAVE ACCENT Latin-1
000 218 13/10 LATIN CAPITAL LETTER U WITH ACUTE ACCENT Latin-1
000 219 13/11 LATIN CAPITAL LETTER U WITH CIRCUMFLEX ACCENT Latin-1
000 220 13/12 LATIN CAPITAL LETTER U WITH DIAERESIS Latin-1
000 221 13/13 LATIN CAPITAL LETTER Y WITH ACUTE ACCENT Latin-1
000 222 13/14 ICELANDIC CAPITAL LETTER THORN Latin-1
000 223 13/15 GERMAN SMALL LETTER SHARP s Latin-1
000 224 14/00 LATIN SMALL LETTER a WITH GRAVE ACCENT Latin-1
000 225 14/01 LATIN SMALL LETTER a WITH ACUTE ACCENT Latin-1
000 226 14/02 LATIN SMALL LETTER a WITH CIRCUMFLEX ACCENT Latin-1
000 227 14/03 LATIN SMALL LETTER a WITH TILDE Latin-1
000 228 14/04 LATIN SMALL LETTER a WITH DIAERESIS Latin-1
000 229 14/05 LATIN SMALL LETTER a WITH RING ABOVE Latin-1
000 230 14/06 LATIN SMALL DIPHTHONG ae Latin-1
000 231 14/07 LATIN SMALL LETTER c WITH CEDILLA Latin-1
000 232 14/08 LATIN SMALL LETTER e WITH GRAVE ACCENT Latin-1
000 233 14/09 LATIN SMALL LETTER e WITH ACUTE ACCENT Latin-1
000 234 14/10 LATIN SMALL LETTER e WITH CIRCUMFLEX ACCENT Latin-1
000 235 14/11 LATIN SMALL LETTER e WITH DIAERESIS Latin-1
000 236 14/12 LATIN SMALL LETTER i WITH GRAVE ACCENT Latin-1
000 237 14/13 LATIN SMALL LETTER i WITH ACUTE ACCENT Latin-1
000 238 14/14 LATIN SMALL LETTER i WITH CIRCUMFLEX ACCENT Latin-1
000 239 14/15 LATIN SMALL LETTER i WITH DIAERESIS Latin-1
000 240 15/00 ICELANDIC SMALL LETTER ETH Latin-1
000 241 15/01 LATIN SMALL LETTER n WITH TILDE Latin-1
000 242 15/02 LATIN SMALL LETTER o WITH GRAVE ACCENT Latin-1
000 243 15/03 LATIN SMALL LETTER o WITH ACUTE ACCENT Latin-1
000 244 15/04 LATIN SMALL LETTER o WITH CIRCUMFLEX ACCENT Latin-1
000 245 15/05 LATIN SMALL LETTER o WITH TILDE Latin-1
000 246 15/06 LATIN SMALL LETTER o WITH DIAERESIS Latin-1
000 247 15/07 DIVISION SIGN Latin-1
000 248 15/08 LATIN SMALL LETTER o WITH OBLIQUE STROKE Latin-1
000 249 15/09 LATIN SMALL LETTER u WITH GRAVE ACCENT Latin-1
000 250 15/10 LATIN SMALL LETTER u WITH ACUTE ACCENT Latin-1
000 251 15/11 LATIN SMALL LETTER u WITH CIRCUMFLEX ACCENT Latin-1
000 252 15/12 LATIN SMALL LETTER u WITH DIAERESIS Latin-1
000 253 15/13 LATIN SMALL LETTER y WITH ACUTE ACCENT Latin-1
000 254 15/14 ICELANDIC SMALL LETTER THORN Latin-1
000 255 15/15 LATIN SMALL LETTER y WITH DIAERESIS Latin-1

001 161 10/01 LATIN CAPITAL LETTER A WITH OGONEK Latin-2
001 162 10/02 BREVE Latin-2
001 163 10/03 LATIN CAPITAL LETTER L WITH STROKE Latin-2
001 165 10/05 LATIN CAPITAL LETTER L WITH CARON Latin-2
001 166 10/06 LATIN CAPITAL LETTER S WITH ACUTE ACCENT Latin-2
001 169 10/09 LATIN CAPITAL LETTER S WITH CARON Latin-2
001 170 10/10 LATIN CAPITAL LETTER S WITH CEDILLA Latin-2

91

X Protocol XI1, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

001 171 10/11 LATIN CAPITAL LETTER T WITH CARON Latin-2
001 172 10/12 LATIN CAPITAL LETTER Z WITH ACUTE ACCENT Latin-2
001 174 10/14 LATIN CAPITAL LETTER Z WITH CARON Latin-2
001 175 10/15 LATIN CAPITAL LETTER Z WITH DOT ABOVE Latin-2
001 177 11/01 LATIN SMALL LETTER a WITH OGONEK Latin-2
001 178 11/02 OGONEK Latin-2
001 179 11/03 LATIN SMALL LETTER 1 WITH STROKE Latin-2
001 181 11/05 LATIN SMALL LETTER ! WITH CARON Latin-2
001 182 11/06 LATIN SMALL LETTER s WITH ACUTE ACCENT Latin-2
001 183 11/07 CARON Latin-2
001 185 11/09 LATIN SMALL LETTER s WITH CARON Latin-2
001 186 11/10 LATIN SMALL LETTER s WITH CEDILLA Latin-2
001 187 11/11 LATIN SMALL LETTER t WITH CARON Latm-2
001 188 11/12 LATIN SMALL LETTER z WITH ACUTE ACCENT Latm-2
001 189 11/13 DOUBLE ACUTE ACCENT Latin-2
001 190 11/14 LATIN SMALL LETTER z WITH CARON Latin-2
001 191 11/15 LATIN SMALL LETTER z WITH DOT ABOVE Latin-2
001 192 12/00 LATIN CAPITAL LETTER R WITH ACUTE ACCENT Latin-2
001 195 12/03 LATIN CAPITAL LETTER A WITH BREVE Latin-2
001 197 12/05 LATIN CAPITAL LETTER L WITH ACUTE ACCENT Latin-2
001 198 12/06 LATIN CAPITAL LETTER C WITH ACUTE ACCENT Latin-2
001 200 12/08 LATIN CAPITAL LETTER C WITH CARON Latin-2
001 202 12/10 LATIN CAPITAL LETTER E WITH OGONEK Latin-2
001 204 12/12 LATIN CAPITAL- LETTER E WITH CARON Latin-2
001 207 12/15 LATIN CAPITAL LETTER D WITH CARON Latin-2
001 208 13/00 LATIN CAPITAL LETTER D WITH STROKE Latin-2
001 209 13/01 LATIN CAPITAL LETTER N WITH ACUTE ACCENT Latin-2
001 210 13/02 LATIN CAPITAL LETTER N WITH CARON Latin-2
001 213 13/05 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE ACCENT Latin-2
001 216 13/08 LATIN CAPITAL LETTER R WITH CARON Latin-2
001 217 13/09 LATIN CAPITAL LETTER U WITH RING ABOVE Latin-2
001 219 13/11 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE ACCENT Latin-2
001 222 13/14 LATIN CAPITAL LETTER T WITH CEDILLA Latin-2
001 224 14/00 LATIN SMALL LETTER r WITH ACUTE ACCENT Latin-2
001 227 14/03 LATIN SMALL LETTER a WITH BREVE Latin-2
001 229 14/05 LATIN SMALL LETTER 1 WITH ACUTE ACCENT Latin-2
001 230 14/06 LATIN SMALL LETTER c WITH ACUTE ACCENT Latin-2
001 232 14/08 LATIN SMALL LETTER c WITH CARON Latin-2
001 234 14/10 LATIN SMALL LETTER e WITH OGONEK Latin-2
001 236 14/12 LATIN SMALL LETTER e WITH CARON Latin-2
001 239 14/15 LATIN SMALL LETTER d WITH CARON Latin-2
001 240 15/00 LATIN SMALL LETTER d WITH STROKE Latin-2
001 241 15/01 LATIN SMALL LETTER n WITH ACUTE ACCENT Latin-2
001 242 15/02 LATIN SMALL LETTER n WITH CARON Latm-2
001 245 15/05 LATIN SMALL LETTER o WITH DOUBLE ACUTE ACCENT Latin-2
001 248 15/08 LATIN SMALL LETTER r WITH CARON Latin-2
001 249 15/09 LATIN SMALL LETTER u WITH RING ABOVE Latin-2
001 251 15/11 LATIN SMALL LETTER u WITH DOUBLE ACUTE ACCENT Latin-2
001 254 15/14 LATIN SMALL LETTER t WITH CEDILLA Latin-2
001 255 15/15 DOT ABOVE Latin-2

002 161 10/01 LATIN CAPITAL LETTER H WITH STROKE Latin-3
002 166 10/06 LATIN CAPITAL LETTER H WITH CIRCUMFLEX ACCENT Latin-3
002 169 10/09 LATIN CAPITAL LETTER I WITH DOT ABOVE Latin-3
002 171 10/11 LATIN CAPITAL LETTER G WITH BREVE Latin-3
002 172 10/12 LATIN CAPITAL LETTER J WITH CIRCUMFLEX ACCENT Latin-3
002 177 11/01 LATIN SMALL LETTER h WITH STROKE Latin-3
002 182 11/06 LATIN SMALL LETTER h WITH CIRCUMFLEX ACCENT Latin-3
002 185 11/09 SMALL DOTLESS LETTER i Latin-3
002 187 11/11 LATIN SMALL LETTER g WITH BREVE Latin-3

92

X Protocol XI1, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

002 188 11/12 LATIN SMALL LETTER j WITH CIRCUMFLEX ACCENT Latin-3
002 197 12/05 LATIN CAPITAL LETTER C WITH DOT ABOVE Latin-3
002 198 12/06 LATIN CAPITAL LETTER C WITH CIRCUMFLEX ACCENT Latin-3
002 213 13/05 LATIN CAPITAL LETTER G WITH DOT ABOVE Latin-3
002 216 13/08 LATIN CAPITAL LETTER G WITH CIRCUMFLEX ACCENT Latin-3
002 221 13/13 LATIN CAPITAL LETTER U WITH BREVE Latin-3
002 222 13/14 LATIN CAPITAL LETTER S WITH CIRCUMFLEX ACCENT Latin-3
002 229 14/05 LATIN SMALL LETTER c WITH DOT ABOVE Latin-3
002 230 14/06 LATIN SMALL LETTER c WITH CIRCUMFLEX ACCENT Latin-3
002 245 15/05 LATIN SMALL LETTER g WITH DOT ABOVE Latin-3
002 248 15/08 LATIN SMALL LETTER g WITH CIRCUMFLEX ACCENT Latin-3
002 253 15/13 LATIN SMALL LETTER u WITH BREVE Latin-3
002 254 15/14 LATIN SMALL LETTER s WITH CIRCUMFLEX ACCENT Latin-3

003 162 10/02 LATIN SMALL LETTER KAPPA Latin-4
003 163 10/03 LATIN CAPITAL LETTER R WITH CEDILLA Latm-4
003 165 10/05 LATIN CAPITAL LETTER I WITH TILDE Latin-4
003 166 10/06 LATIN CAPITAL LETTER L WITH CEDILLA Latin-4
003 170 10/10 LATIN CAPITAL LETTER E WITH MACRON Latm-4
003 171 10/11 LATIN CAPITAL LETTER G WITH CEDILLA Latin-4
003 172 10/12 LATIN CAPITAL LETTER T WITH OBLIQUE STROKE Latm-4
003 179 11/03 LATIN SMALL LETTER r WITH CEDILLA Latin-4
003 181 11/05 LATIN SMALL LETTER i WITH TILDE Latin-4
003 182 11/06 LATIN SMALL LETTER i WITH CEDILLA Latm-4
003 186 11/10 LATIN SMALL LETTER e WITH MACRON Latin-4
003 187 11/11 LATIN SMALL LETTER g WITH ACUTE ACCENT Latin-4
003 188 11/12 LATIN SMALL LETTER t WITH OBLIQUE STROKE Latin-4
003 189 11/13 LAPPISH CAPITAL LETTER ENG Latin-4
003 191 11/15 LAPPISH SMALL LETTER ENG Latin-4
003 192 12/00 LATIN CAPITAL LETTER A WITH MACRON Latin-4
003 199 12/07 LATIN CAPITAL LETTER I WITH OGONEK Latm-4
003 204 12/12 LATIN CAPITAL LETTER E WITH DOT ABOVE Latin-4
003 207 12/15 LATIN CAPITAL LETTER I WITH MACRON Latin-4
003 209 13/01 LATIN CAPITAL LETTER N WITH CEDILLA Latin-4
003 210 13/02 LATIN CAPITAL LETTER O WITH MACRON Latin-4
003 211 13/03 LATIN CAPITAL LETTER K WITH CEDILLA Latin-4
003 217 13/09 LATIN CAPITAL LETTER U WITH OGONEK Latm-4
003 221 13/13 LATIN CAPITAL LETTER U WITH TILDE Latm-4
003 222 13/14 LATIN CAPITAL LETTER U WITH MACRON Latin-4
003 224 14/00 LATIN SMALL LETTER a WITH MACRON Latin-4
003 231 14/07 LATIN SMALL LETTER l WITH OGONEK Latin-4
003 236 14/12 LATIN SMALL LETTER e WITH DOT ABOVE Latin-4
003 239 14/15 LATIN SMALL LETTER i WITH MACRON Latin-4
003 241 15/01 LATIN SMALL LETTER n WITH CEDILLA Latin-4
003 242 15/02 LATIN SMALL LETTER o WITH MACRON Latin-4
003 243 15/03 LATIN SMALL LETTER k WITH CEDILLA Latin-4
003 249 15/09 LATIN SMALL LETTER u WITH OGONEK Latm-4
003 253 15/13 LATIN SMALL LETTER u WITH TILDE Latin-4
003 254 15/14 LATIN SMALL LETTER u WITH MACRON Latin-4

004 126 07/14 OVERLINE Kan a
004 161 10/01 KANA FULL STOP Kana
004 162 10/02 KANA OPENING BRACKET Kana
004 163 10/03 KANA CLOSING BRACKET Kana
004 164 10/04 KANA COMMA Kana
004 165 10/05 KANA MIDDLE DOT Kana
004 166 10/06 KANA LETTER WO Kana
004 167 10/07 KANA LETTER SMALL A Kana
004 168 10/08 KANA LETTER SMALL I Kana

93

X Protocol XI1, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

004 169 10/09 KANA LETTER SMALL U Kana
004 170 10/10 KANA LETTER SMALL E Kana
004 171 10/11 KANA LETTER SMALL 0 Kana
004 172 10/12 KANA LETTER SMALL YA Kana
004 173 10/13 KANA LETTER SMALL YU Kana
004 174 10/14 KANA LETTER SMALL YO Kana
004 175 10/15 KANA LETTER SMALL TU Kana
004 176 11/00 PROLONGED SOUND SYMBOL Kana
004 177 11/01 KANA LETTER A Kana
004 178 11/02 KANA LETTER I Kana
004 179 11/03 KANA LETTER U Kana
004 180 11/04 KANA LETTER E Kana
004 181 11/05 KANA LETTER O Kana
004 182 11/06 KANA LETTER KA Kana
004 183 11/07 KANA LETTER KI Kana
004 184 11/08 KANA LETTER ICU Kana
004 185 11/09 KANA LETTER KE Kana
004 186 11/10 KANA LETTER KO Kana
004 187 11/11 KANA LETTER SA Kana
004 188 11/12 KANA LETTER SHI Kana
004 189 11/13 KANA LETTER SU Kana
004 190 11/14 KANA LETTER SE Kana
004 191 11/15 KANA LETTER SO Kana
004 192 12/00 KANA LETTER TA Kana
004 193 12/01 KANA LETTER TI Kana
004 194 12/02 KANA LETTER TU Kana
004 195 12/03 KANA LETTER TE Kana
004 196 12/04 KANA LETTER TO Kana
004 197 12/05 KANA LETTER NA Kana
004 198 12/06 KANA LETTER NI Kana
004 199 12/07 KANA LETTER NU Kana
004 200 12/08 KANA LETTER NE Kana
004 201 12/09 KANA LETTER NO Kana
004 202 12/10 KANA LETTER HA Kana
004 203 12/11 KANA LETTER HI Kana
004 204 12/12 KANA LETTER HU Kana
004 205 12/13 KANA LETTER HE Kana
004 206 12/14 KANA LETTER HO Kana
004 207 12/15 KANA LETTER MA Kana
004 208 13/00 KANA LETTER MI Kana
004 209 13/01 KANA LETTER MU Kana
004 210 13/02 KANA LETTER ME Kana
004 211 13/03 KANA LETTER MO Kana
004 212 13/04 KANA LETTER YA Kana
004 213 13/05 KANA LETTER YU Kana
004 214 13/06 KANA LETTER YO Kana
004 215 13/07 KANA LETTER RA Kana
004 216 13/08 KANA LETTER RI Kana
004 217 13/09 KANA LETTER RU Kana
004 218 13/10 KANA LETTER RE Kana
004 219 13/11 KANA LETTER RO Kana
004 220 13/12 KANA LETTER WA Kana
004 221 13/13 KANA LETTER N Kana
004 222 13/14 VOICED SOUND SYMBOL Kana
004 223 13/15 SEMIVOICED SOUND SYMBOL Kana

005 172 10/12 ARABIC COMMA Arabic
005 187 11/11 ARABIC SEMICOLON Arabic
005 191 11/15 ARABIC QUESTION MARK Arabic
005 193 12/01 ARABIC LETTER HAMZA Arabic

94

X Protocol XI1, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

005 194 12/02 ARABIC LETTER MADDA ON ALEF Arabic
005 195 12/03 ARABIC LETTER HAMZA ON ALEF Arabic
005 196 12/04 ARABIC LETTER HAMZA ON WAW Arabic
005 197 12/05 ARABIC LETTER HAMZA UNDER ALEF Arabic
005 198 12/06 ARABIC LETTER HAMZA ON YEH Arabic
005 199 12/07 ARABIC LETTER ALEF Arabic
005 200 12/08 ARABIC LETTER BEH Arabic
005 201 12/09 ARABIC LETTER TEH MARBUTA Arabic
005 202 12/10 ARABIC LETTER TEH Arabic
005 203 12/11 ARABIC LETTER THEH Arabic
005 204 12/12 ARABIC LETTER JEEM Arabic
005 205 12/13 ARABIC LETTER HAH Arabic
005 206 12/14 ARABIC LETTER KHAH Arabic
005 207 12/15 ARABIC LETTER DAL Arabic
005 208 13/00 ARABIC LETTER THAL Arabic
005 209 13/01 ARABIC LETTER RA Arabic
005 210 13/02 ARABIC LETTER ZAIN Arabic
005 211 13/03 ARABIC LETTER SEEN Arabic
005 212 13/04 ARABIC LETTER SHEEN Arabic
005 213 13/05 ARABIC LETTER SAD Arabic
005 214 13/06 ARABIC LETTER DAD Arabic
005 215 13/07 ARABIC LETTER TAH Arabic
005 216 13/08 ARABIC LETTER ZAH Arabic
005 217 13/09 ARABIC LETTER AIN Arabic
005 218 13/10 ARABIC LETTER GHAIN Arabic
005 224 14/00 ARABIC LETTER TATWEEL Arabic
005 225 14/01 ARABIC LETTER FEH Arabic
005 226 14/02 ARABIC LETTER QAF Arabic
005 227 14/03 ARABIC LETTER KAF Arabic
005 228 14/04 ARABIC LETTER LAM Arabic
005 229 14/05 ARABIC LETTER MEEM Arabic
005 230 14/06 ARABIC LETTER NOON Arabic
005 231 14/07 ARABIC LETTER HEH Arabic
005 232 14/08 ARABIC LETTER WAW Arabic
005 233 14/09 ARABIC LETTER ALEF MAKSURA Arabic
005 234 14/10 ARABIC LETTER YEH Arabic
005 235 14/11 ARABIC LETTER FATHATAN Arabic
005 236 14/12 ARABIC LETTER DAMMATAN Arabic
005 237 14/13 ARABIC LETTER KASRATAN Arabic
005 238 14/14 ARABIC LETTER FATHA Arabic
005 239 14/15 ARABIC LETTER DAMMA Arabic
005 240 15/00 ARABIC LETTER KASRA Arabic
005 241 15/01 ARABIC LETTER SHADDA Arabic
005 242 15/02 ARABIC LETTER SUKUN Arabic

006 161 10/01 SERBIAN SMALL LETTER DJE Cyrillic
006 162 10/02 MACEDONIA SMALL LETTER GJE Cyrillic
006 163 10/03 CYRILLIC SMALL LETTER IO Cyrillic
006 164 10/04 UKRAINIAN SMALL LETTER JE Cyrillic
006 165 10/05 MACEDONIA SMALL LETTER DSE Cyrillic
006 166 10/06 UKRAINIAN SMALL LETTER I Cyrillic
006 167 10/07 UKRAINIAN SMALL LETTER YI Cyrillic
006 168 10/08 SERBIAN SMALL LETTER JE Cyrillic
006 169 10/09 SERBIAN SMALL LETTER LJE Cyrillic
006 170 10/10 SERBIAN SMALL LETTER NJE Cyrillic
006 171 10/11 SERBIAN SMALL LETTER TSHE Cyrillic
006 172 10/12 MACEDONIA SMALL LETTER KJE Cyrillic
006 174 10/14 BYELORUSSIAN SMALL LETTER SHORT U Cyrillic
006 175 10/15 SERBIAN SMALL LETTER DZE Cyrillic
006 176 11/00 NUMERO SIGN Cyrillic

95

X Protocol XI1, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

006 177 11/01 SERBIAN CAPITAL LETTER DJE Cyrill
006 178 11/02 MACEDONIA CAPITAL LETTER GJE Cyrill
006 179 11/03 CYRILLIC CAPITAL LETTER IO Cyrill
006 180 11/04 UKRAINIAN CAPITAL LETTER JE Cyrill
006 181 11/05 MACEDONIA CAPITAL LETTER DSE Cyrill
006 182 11/06 UKRAINIAN CAPITAL LETTER I Cyrill
006 183 11/07 UKRAINIAN CAPITAL LETTER YI Cyrill
006 184 11/08 SERBIAN CAPITAL LETTER JE Cyrill
006 185 11/09 SERBIAN CAPITAL LETTER LJE Cyrill
006 186 11/10 SERBIAN CAPITAL LETTER NJE Cyrill
006 187 11/11 SERBIAN CAPITAL LETTER TSHE Cyrill
006 188 11/12 MACEDONIA CAPITAL LETTER KJE Cyrill
006 190 11/14 BYELORUSSIAN CAPITAL LETTER SHORT U Cyrill
006 191 11/15 SERBIAN CAPITAL LETTER DZE Cyrill
006 192 12/00 CYRILLIC SMALL LETTER YU Cyrill
006 193 12/01 CYRILLIC SMALL LETTER A Cyrill
006 194 12/02 CYRILLIC SMALL LETTER BE Cyrill
006 195 12/03 CYRILLIC SMALL LETTER TSE Cyrill
006 196 12/04 CYRILLIC SMALL LETTER DE Cyrill
006 197 12/05 CYRILLIC SMALL LETTER IE Cyrill
006 198 12/06 CYRILLIC SMALL LETTER EF Cyrill
006 199 12/07 CYRILLIC SMALL LETTER GHE Cyrill
006 200 12/08 CYRILLIC SMALL LETTER HA Cyrill
006 201 12/09 CYRILLIC SMALL LETTER I Cyrill
006 202 12/10 CYRILLIC SMALL LETTER SHORT I Cyrill
006 203 12/11 CYRILLIC SMALL LETTER KA Cyrill
006 204 12/12 CYRILLIC SMALL LETTER EL Cyrill
006 205 12/13 CYRILLIC SMALL LETTER EM Cyrill
006 206 12/14 CYRILLIC SMALL LETTER EN Cyrill
006 207 12/15 CYRILLIC SMALL LETTER O Cyrill
006 208 13/00 CYRILLIC SMALL LETTER PE Cyrill
006 209 13/01 CYRILLIC SMALL LETTER YA Cyrill
006 210 13/02 CYRILLIC SMALL LETTER ER Cyrill
006 211 13/03 CYRILLIC SMALL LETTER ES Cyrill
006 212 13/04 CYRILLIC SMALL LETTER TE Cyrill
006 213 13/05 CYRILLIC SMALL LETTER U Cyrill
006 214 13/06 CYRILLIC SMALL LETTER ZHE Cyrill
006 215 13/07 CYRILLIC SMALL LETTER VE Cyrill
006 216 13/08 CYRILLIC SMALL SOFT SIGN Cyrill
006 217 13/09 CYRILLIC SMALL LETTER YERU Cyrill
006 218 13/10 CYRILLIC SMALL LETTER ZE Cyrill
006 219 13/11 CYRILLIC SMALL LETTER SHA Cyrill
006 220 13/12 CYRILLIC SMALL LETTER E Cyrill
006 221 13/13 CYRILLIC SMALL LETTER SHCHA Cyrill
006 222 13/14 CYRILLIC SMALL LETTER CHE Cyrill
006 223 13/15 CYRILLIC SMALL HARD SIGN Cyrill
006 224 14/00 CYRILLIC CAPITAL LETTER YU Cyrill
006 225 14/01 CYRILLIC CAPITAL LETTER A Cyrill
006 226 14/02 CYRILLIC CAPITAL LETTER BE Cyrill
006 227 14/03 CYRILLIC CAPITAL LETTER TSE Cyrill
006 228 14/04 CYRILLIC CAPITAL LETTER DE Cyrill
006 229 14/05 CYRILLIC CAPITAL LETTER IE Cyrill
006 230 14/06 CYRILLIC CAPITAL LETTER EF Cyrill
006 231 14/07 CYRILLIC CAPITAL LETTER GHE Cyrill
006 232 14/08 CYRILLIC CAPITAL LETTER HA Cyrill
006 233 14/09 CYRILLIC CAPITAL LETTER I Cyrill
006 234 14/10 CYRILLIC CAPITAL LETTER SHORT I Cyrill
006 235 14/11 CYRILLIC CAPITAL LETTER KA Cyrill
006 236 14/12 CYRILLIC CAPITAL LETTER EL Cyrill
006 237 14/13 CYRILLIC CAPITAL LETTER EM Cyrill
006 238 14/14 CYRILLIC CAPITAL LETTER EN Cyrill

96

X Protocol Xll, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

006 239 14/15 CYRILLIC CAPITAL LETTER O Cyrillic
006 240 15/00 CYRILLIC CAPITAL LETTER PE Cyrillic
006 241 15/01 CYRILLIC CAPITAL LETTER YA Cyrillic
006 242 15/02 CYRILLIC CAPITAL LETTER ER Cyrillic
006 243 15/03 CYRILLIC CAPITAL LETTER ES Cyrillic
006 244 15/04 CYRILLIC CAPITAL LETTER TE Cyrillic
006 245 15/05 CYRILLIC CAPITAL LETTER U Cyrillic
006 246 15/06 CYRILLIC CAPITAL LETTER ZHE Cyrillic
006 247 15/07 CYRILLIC CAPITAL LETTER VE Cyrillic
006 248 15/08 CYRILLIC CAPITAL SOFT SIGN Cyrillic
006 249 15/09 CYRILLIC CAPITAL LETTER YERU Cyrillic
006 250 15/10 CYRILLIC CAPITAL LETTER ZE Cyrillic
006 251 15/11 CYRILLIC CAPITAL LETTER SHA Cyrillic
006 252 15/12 CYRILLIC CAPITAL LETTER E Cyrillic
006 253 15/13 CYRILLIC CAPITAL LETTER SHCHA Cyrillic
006 254 15/14 CYRILLIC CAPITAL LETTER CHE Cyrillic
006 255 15/15 CYRILLIC CAPITAL HARD SIGN Cyrillic

007 161 10/01 GREEK CAPITAL LETTER ALPHA WITH ACCENT Greek
007 162 10/02 GREEK CAPITAL LETTER EPSILON WITH ACCENT Greek
007 163 10/03 GREEK CAPITAL LETTER ETA WITH ACCENT Greek
007 164 10/04 GREEK CAPITAL LETTER IOTA WITH ACCENT Greek
007 165 10/05 GREEK CAPITAL LETTER IOTA WITH DIAERESIS Greek
007 166 10/06 GREEK CAPITAL LETTER IOTA WITH ACCENT+DIAERESIS Greek
007 167 10/07 GREEK CAPITAL LETTER OMICRON WITH ACCENT Greek
007 168 10/08 GREEK CAPITAL LETTER UPSILON WITH ACCENT Greek
007 169 10/09 GREEK CAPITAL LETTER UPSILON WITH DIAERESIS Greek
007 170 10/10 GREEK CAPITAL LETTER UPSILON WITH ACCENT+DIAERESISGreek
007 171 10/11 GREEK CAPITAL LETTER OMEGA WITH ACCENT Greek
007 177 11/01 GREEK SMALL LETTER ALPHA WITH ACCENT Greek
007 178 11/02 GREEK SMALL LETTER EPSILON WITH ACCENT Greek
007 179 11/03 GREEK SMALL LETTER ETA WITH ACCENT Greek
007 180 11/04 GREEK SMALL LETTER IOTA WITH ACCENT Greek
007 181 11/05 GREEK SMALL LETTER IOTA WITH DIAERESIS Greek
007 182 11/06 GREEK SMALL LETTER IOTA WITH ACCENT+DIAERESIS Greek
007 183 11/07 GREEK SMALL LETTER OMICRON WITH ACCENT Greek
007 184 11/08 GREEK SMALL LETTER UPSILON WITH ACCENT Greek
007 185 11/09 GREEK SMALL LETTER UPSILON WITH DIAERESIS Greek
007 186 11/10 GREEK SMALL LETTER UPSILON WITH ACCENT+DIAERESIS Greek
007 187 11/11 GREEK SMALL LETTER OMEGA WITH ACCENT Greek
007 193 12/01 GREEK CAPITAL LETTER ALPHA Greek
007 194 12/02 GREEK CAPITAL LETTER BETA Greek
007 195 12/03 GREEK CAPITAL LETTER GAMMA Greek
007 196 12/04 GREEK CAPITAL LETTER DELTA Greek
007 197 12/05 GREEK CAPITAL LETTER EPSILON Greek
007 198 12/06 GREEK CAPITAL LETTER ZETA Greek
007 199 12/07 GREEK CAPITAL LETTER ETA Greek
007 200 12/08 GREEK CAPITAL LETTER THETA Greek
007 201 12/09 GREEK CAPITAL LETTER IOTA Greek
007 202 12/10 GREEK CAPITAL LETTER KAPPA Greek
007 203 12/11 GREEK CAPITAL LETTER LAMBDA Greek
007 204 12/12 GREEK CAPITAL LETTER MU Greek
007 205 12/13 GREEK CAPITAL LETTER NU Greek
007 206 12/14 GREEK CAPITAL LETTER XI Greek
007 207 12/15 GREEK CAPITAL LETTER OMICRON Greek
007 208 13/00 GREEK CAPITAL LETTER PI Greek
007 209 13/01 GREEK CAPITAL LETTER RHO Greek
007 210 13/02 GREEK CAPITAL LETTER SIGMA Greek
007 212 13/04 GREEK CAPITAL LETTER TAU Greek
007 213 13/05 GREEK CAPITAL LETTER UPSILON Greek

97

X Protocol Xll, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

007 214 13/06 GREEK CAPITAL LETTER PHI Greek
007 215 13/07 GREEK CAPITAL LETTER CHI Greek
007 216 13/08 GREEK CAPITAL LETTER PSI Greek
007 217 13/09 GREEK CAPITAL LETTER OMEGA Greek
007 225 14/01 GREEK SMALL LETTER ALPHA Greek
007 226 14/02 GREEK SMALL LETTER BETA Greek
007 227 14/03 GREEK SMALL LETTER GAMMA Greek
007 228 14/04 GREEK SMALL LETTER DELTA Greek
007 229 14/05 GREEK SMALL LETTER EPSILON Greek
007 230 14/06 GREEK SMALL LETTER ZETA Greek
007 231 14/07 GREEK SMALL LETTER ETA Greek
007 232 14/08 GREEK SMALL LETTER THETA Greek
007 233 14/09 GREEK SMALL LETTER IOTA Greek
007 234 14/10 GREEK SMALL LETTER KAPPA Greek
007 235 14/11 GREEK SMALL LETTER LAMBDA Greek
007 236 14/12 GREEK SMALL LETTER MU Greek
007 237 14/13 GREEK SMALL LETTER NU Greek
007 238 14/14 GREEK SMALL LETTER XI Greek
007 239 14/15 GREEK SMALL LETTER OMICRON Greek
007 240 15/00 GREEK SMALL LETTER PI Greek
007 241 15/01 GREEK SMALL LETTER RHO Greek
007 242 15/02 GREEK SMALL LETTER SIGMA Greek
007 243 15/03 GREEK SMALL LETTER FINAL SMALL SIGMA Greek
007 244 15/04 GREEK SMALL LETTER TAU Greek
007 245 15/05 GREEK SMALL LETTER UPSILON Greek
007 246 15/06 GREEK SMALL LETTER PHI Greek
007 247 15/07 GREEK SMALL LETTER CHI Greek
007 248 15/08 GREEK SMALL LETTER PSI Greek
007 249 15/09 GREEK SMALL LETTER OMEGA Greek

008 161 10/01 LEFT RADICAL Technical
008 162 10/02 TOP LEFT RADICAL Technical
008 163 10/03 HORIZONTAL CONNECTOR Technical
008 164 10/04 TOP INTEGRAL Technical
008 165 10/05 BOTTOM INTEGRAL Technical
008 166 10/06 VERTICAL CONNECTOR Technical
008 167 10/07 TOP LEFT SQUARE BRACKET Technical
008 168 10/08 BOTTOM LEFT SQUARE BRACKET Technical
008 169 10/09 TOP RIGHT SQUARE BRACKET Technical
008 170 10/10 BOTTOM RIGHT SQUARE BRACKET Technical
008 171 10/11 TOP LEFT PARENTHESIS Technical
008 172 10/12 BOTTOM LEFT PARENTHESIS Technical
008 173 10/13 TOP RIGHT PARENTHESIS Technical
008 174 10/14 BOTTOM RIGHT PARENTHESIS Technical
008 175 10/15 LEFT MIDDLE CURLY BRACE Technical
008 176 11/00 RIGHT MIDDLE CURLY BRACE Technical
008 177 11/01 TOP LEFT SUMMATION Technical
008 178 11/02 BOTTOM LEFT SUMMATION Technical
008 179 11/03 TOP VERTICAL SUMMATION CONNECTOR Technical
008 180 11/04 BOTTOM VERTICAL SUMMATION CONNECTOR Technical
008 181 11/05 TOP RIGHT SUMMATION Technical
008 182 11/06 BOTTOM RIGHT SUMMATION Technical
008 183 11/07 RIGHT MIDDLE SUMMATION Technical
008 188 11/12 LESS THAN OR EQUAL SIGN Technical
008 189 11/13 NOT EQUAL SIGN Technical
008 190 11/14 GREATER THAN OR EQUAL SIGN Technical
008 191 11/15 INTEGRAL Technical
008 192 12/00 THEREFORE Technical
008 193 12/01 VARIATION, PROPORTIONAL TO Technical
008 194 12/02 INFINITY Technical

98

X Protocol Xll, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

008 197 12/05 NABLA, DEL Technical
008 200 12/08 IS APPROXIMATE TO Technical
008 201 12/09 SIMILAR OR EQUAL TO Technical
008 205 12/13 IF AND ONLY IF Technical
008 206 12/14 IMPLIES Technical
008 207 12/15 IDENTICAL TO Technical
008 214 13/06 RADICAL Technical
008 218 13/10 IS INCLUDED IN Technical
008 219 13/11 INCLUDES Technical
008 220 13/12 INTERSECTION Technical
008 221 13/13 UNION Technical
008 222 13/14 LOGICAL AND Technical
008 223 13/15 LOGICAL OR Technical
008 239 14/15 PARTIAL DERIVATIVE Technical
008 246 15/06 FUNCTION Technical
008 251 15/11 LEFT ARROW Technical
008 252 15/12 UPWARD ARROW Technical
008 253 15/13 RIGHT ARROW Technical
008 254 15/14 DOWNWARD ARROW Technical

009 223 13/15 BLANK Special
009 224 14/00 SOLID DIAMOND Special
009 225 14/01 CHECKERBOARD Special
009 226 14/02 “HT” Special
009 227 14/03 “FF” Special
009 228 14/04 “CR” Special
009 229 14/05 “LF” Special
009 232 14/08 “NL” Special
009 233 14/09 “VT” Special
009 234 14/10 LOWER-RIGHT CORNER Special
009 235 14/11 UPPER-RIGHT CORNER Special
009 236 14/12 UPPER-LEFT CORNER Special
009 237 14/13 LOWER-LEFT CORNER Special
009 238 14/14 CROSSING-LINES Special
009 239 14/15 HORIZONTAL LINE, SCAN 1 Special
009 240 15/00 HORIZONTAL LINE, SCAN 3 Special
009 241 15/01 HORIZONTAL LINE, SCAN 5 Special
009 242 15/02 HORIZONTAL LINE, SCAN 7 Special
009 243 15/03 HORIZONTAL LINE, SCAN 9 Special
009 244 15/04 LEFT “T” Special
009 245 15/05 RIGHT “T” Special
009 246 15/06 BOTTOM “T” Special
009 247 15/07 TOP “T” Special
009 248 15/08 VERTICAL BAR Special

010 161 10/01 EM SPACE Publish
010 162 10/02 EN SPACE Publish
010 163 10/03 3/EM SPACE Publish
010 164 10/04 4/EM SPACE Publish
010 165 10/05 DIGIT SPACE Publish
010 166 10/06 PUNCTUATION SPACE Publish
010 167 10/07 THIN SPACE Publish
010 168 10/08 HAIR SPACE Publish
010 169 10/09 EM DASH Publish
010 170 10/10 EN DASH Publish
010 172 10/12 SIGNIFICANT BLANK SYMBOL Publish
010 174 10/14 ELLIPSIS Publish
010 175 10/15 DOUBLE BASELINE DOT Publish
010 176 11/00 VULGAR FRACTION ONE THIRD Publish

99

X Protocol Xll, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

010 177 11/01 VULGAR FRACTION TWO THIRDS Publish
010 178 11/02 VULGAR FRACTION ONE FIFTH Publish
010 179 11/03 VULGAR FRACTION TWO FIFTHS Publish
010 180 11/04 VULGAR FRACTION THREE FIFTHS Publish
010 181 11/05 VULGAR FRACTION FOUR FIFTHS Publish
010 182 11/06 VULGAR FRACTION ONE SIXTH Publish
010 183 11/07 VULGAR FRACTION FIVE SIXTHS Publish
010 184 11/08 CARE OF Publish
010 187 11/11 FIGURE DASH Publish
010 188 11/12 LEFT ANGLE BRACKET Publish
010 189 11/13 DECIMAL POINT Publish
010 190 11/14 RIGHT ANGLE BRACKET Publish
010 191 11/15 MARKER Publish
010 195 12/03 VULGAR FRACTION ONE EIGHTH Publish
010 196 12/04 VULGAR FRACTION THREE EIGHTHS Publish
010 197 12/05 VULGAR FRACTION FIVE EIGHTHS Publish
010 198 12/06 VULGAR FRACTION SEVEN EIGHTHS Publish
010 201 12/09 TRADEMARK SIGN Publish
010 202 12/10 SIGNATURE MARK Publish
010 203 12/11 TRADEMARK SIGN IN CIRCLE Publish
010 204 12/12 LEFT OPEN TRIANGLE Publish
010 205 12/13 RIGHT OPEN TRIANGLE Publish
010 206 12/14 EM OPEN CIRCLE Publish
010 207 12/15 EM OPEN RECTANGLE Publish
010 208 13/00 LEFT SINGLE QUOTATION MARK Publish
010 209 13/01 RIGHT SINGLE QUOTATION MARK Publish
010 210 13/02 LEFT DOUBLE QUOTATION MARK Publish
010 211 13/03 RIGHT DOUBLE QUOTATION MARK Publish
010 212 13/04 PRESCRIPTION, TAKE, RECIPE Publish
010 214 13/06 MINUTES Publish
010 215 13/07 SECONDS Publish
010 217 13/09 LATIN CROSS Publish
010 218 13/10 HEXAGRAM Publish
010 219 13/11 FILLED RECTANGLE BULLET Publish
010 220 13/12 FILLED LEFT TRIANGLE BULLET Publish
010 221 13/13 FILLED RIGHT TRIANGLE BULLET Publish
010 222 13/14 EM FILLED CIRCLE Publish
010 223 13/15 EM FILLED RECTANGLE Publish
010 224 14/00 EN OPEN CIRCLE BULLET Publish
010 225 14/01 EN OPEN SQUARE BULLET Publish
010 226 14/02 OPEN RECTANGULAR BULLET Publish
010 227 14/03 OPEN TRIANGULAR BULLET UP Publish
010 228 14/04 OPEN TRIANGULAR BULLET DOWN Publish
010 229 14/05 OPEN STAR Publish
010 230 14/06 EN FILLED CIRCLE BULLET Publish
010 231 14/07 EN FILLED SQUARE BULLET Publish
010 232 14/08 FILLED TRIANGULAR BULLET UP Publish
010 233 14/09 FILLED TRIANGULAR BULLET DOWN Publish
010 234 14/10 LEFT POINTER Publish
010 235 14/11 RIGHT POINTER Publish
010 236 14/12 CLUB Publish
010 237 14/13 DIAMOND Publish
010 238 14/14 HEART Publish
010 240 15/00 MALTESE CROSS Publish
010 241 15/01 DAGGER Publish
010 242 15/02 DOUBLE DAGGER Publish
010 243 15/03 CHECK MARK, TICK Publish
010 244 15/04 BALLOT CROSS Publish
010 245 15/05 MUSICAL SHARP Publish
010 246 15/06 MUSICAL FLAT Publish
010 247 15/07 MALE SYMBOL Publish

100

X Protocol XI1, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

010 248 15/08 FEMALE SYMBOL Publish
010 249 15/09 TELEPHONE SYMBOL Publish
010 250 15/10 TELEPHONE RECORDER SYMBOL Publish
010 251 15/11 PHONOGRAPH COPYRIGHT SIGN Publish
010 252 15/12 CARET Publish
010 253 15/13 SINGLE LOW QUOTATION MARK Publish
010 254 15/14 DOUBLE LOW QUOTATION MARK Publish
010 255 15/15 CURSOR Publish

Oil 163 10/03 LEFT CARET APL
Oil 166 10/06 RIGHT CARET APL
011 168 10/08 DOWN CARET APL
011 169 10/09 UP CARET APL
Oil 192 12/00 OVERBAR APL
Oil 194 12/02 DOWN TACK APL
Oil 195 12/03 UP SHOE (CAP) APL
Oil 196 12/04 DOWN STILE APL
Oil 198 12/06 UNDERBAR APL
Oil 202 12/10 JOT APL
Oil 204 12/12 QUAD APL
Oil 206 12/14 UP TACK APL
Oil 207 12/15 CIRCLE APL
Oil 211 13/03 UP STILE APL
Oil 214 13/06 DOWN SHOE (CUP) APL
on 216 13/08 RIGHT SHOE APL
Oil 218 13/10 LEFT SHOE APL
on 220 13/12 LEFT TACK APL
Oil 252 15/12 RIGHT TACK APL

012 224 14/00 HEBREW LETTER ALEPH Hebrew
012 225 14/01 HEBREW LETTER BETH Hebrew
012 226 14/02 HEBREW LETTER GIMMEL Hebrew
012 227 14/03 HEBREW LETTER DALETH Hebrew
012 228 14/04 HEBREW LETTER HE Hebrew
012 229 14/05 HEBREW LETTER WAW Hebrew
012 230 14/06 HEBREW LETTER ZAYIN Hebrew
012 231 14/07 HEBREW LETTER HET Hebrew
012 232 14/08 HEBREW LETTER TETH Hebrew
012 233 14/09 HEBREW LETTER YOD Hebrew
012 234 14/10 HEBREW LETTER FINAL KAPH Hebrew
012 235 14/11 HEBREW LETTER KAPH Hebrew
012 236 14/12 HEBREW LETTER LAMED Hebrew
012 237 14/13 HEBREW LETTER FINAL MEM Hebrew
012 238 14/14 HEBREW LETTER MEM Hebrew
012 239 14/15 HEBREW LETTER FINAL NUN Hebrew
012 240 15/00 HEBREW LETTER NUN Hebrew
012 241 15/01 HEBREW LETTER SAMEKH Hebrew
012 242 15/02 HEBREW LETTER A’YIN Hebrew
012 243 15/03 HEBREW LETTER FINAL PE Hebrew
012 244 15/04 HEBREW LETTER PE Hebrew
012 245 15/05 HEBREW LETTER FINAL ZADI Hebrew
012 246 15/06 HEBREW LETTER ZADI Hebrew
012 247 15/07 HEBREW IvUF Hebrew
012 248 15/08 HEBREW RESH Hebrew
012 249 15/09 HEBREW SHIN Hebrew
012 250 15/10 HEBREW TAF Hebrew

255 008 00/08 BACKSPACE. BACK SPACE, BACK CHAR Keyboa

101

X Protocol Xll, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

255 009 00/09 TAB Keyboard
255 010 00/10 LINEFEED, LF Keyboard
255 Oil 00/11 CLEAR Keyboard
255 013 00/13 RETURN,ENTER Keyboard
255 019 01/03 PAUSE, HOLD, SCROLL LOCK Keyboard
255 027 01/11 ESCAPE Keyboard
255 032 02/00 MULTI-KEY CHARACTER PREFACE Keyboard
255 033 02/01 KANJI, KANJI CONVERT Keyboard
255 080 05/00 HOME Keyboard
255 081 05/01 LEFT, MOVE LEFT, LEFT ARROW Keyboard
255 082 05/02 UP, MOVE UP, UP ARROW Keyboard
255 083 05/03 RIGHT, MOVE RIGHT, RIGHT ARROW Keyboard
255 084 05/04 DOWN, MOVE DOWN, DOWN ARROW Keyboard
255 085 05/05 PRIOR, PREVIOUS Keyboard
255 086 05/06 NEXT Keyboard
255 087 05/07 END, EOL Keyboard
255 088 05/08 BEGIN, BOL Keyboard
255 096 06/00 SELECT, MARK Keyboard
255 097 06/01 PRINT Keyboard
255 098 06/02 EXECUTE, RUN, DO Keyboard
255 099 06/03 INSERT, INSERT HERE Keyboard
255 101 06/05 UNDO, OOPS Keyboard
255 102 06/06 REDO, AGAIN Keyboard
255 103 06/07 MENU Keyboard
255 104 06/08 FIND, SEARCH Keyboard
255 105 06/09 CANCEL, STOP, ABORT, EXIT Keyboard
255 106 06/10 HELP, QUESTION MARK Keyboard
255 107 06/11 break; Keyboard
255 126 07/14 MODE SWITCH, SCRIPT SWITCH, CHARACTER SET SWITCH Keyboard
255 127 07/15 NUM LOCK Keyboard
255 128 08/00 KEYPAD SPACE Keyboard
255 137 08/09 KEYPAD TAB Keyboard
255 141 08/13 KEYPAD ENTER Keyboard
255 145 09/01 KEYPAD FI, PFl, A Keyboard
255 146 09/02 KEYPAD F2, PF2, B Keyboard
255 147 09/03 KEYPAD F3, PF3, C Keyboard
255 148 09/04 KEYPAD F4, PF4, D Keyboard
255 170 10/10 KEYPAD MULTIPLICATION SIGN, ASTERISK Keyboard
255 171 10/11 KEYPAD PLUS SIGN Keyboard
255 172 10/12 KEYPAD SEPARATOR, COMMA Keyboard
255 173 10/13 KEYPAD MINUS SIGN, HYPHEN Keyboard
255 174 10/14 KEYPAD DECIMAL POINT, FULL STOP Keyboard
255 175 10/15 KEYPAD DIVISION SIGN, SOLIDUS Keyboard
255 176 11/00 KEYPAD DIGIT ZERO Keyboard
255 177 11/01 KEYPAD DIGIT ONE Keyboard
255 178 11/02 KEYPAD DIGIT TWO Keyboard
255 179 11/03 KEYPAD DIGIT THREE Keyboard
255 180 11/04 KEYPAD DIGIT FOUR Keyboard
255 181 11/05 KEYPAD DIGIT FIVE Keyboard
255 182 11/06 KEYPAD DIGIT SIX Keyboard
255 183 11/07 KEYPAD DIGIT SEVEN Keyboard
255 184 11/08 KEYPAD DIGIT EIGHT Keyboard
255 185 11/09 KEYPAD DIGIT NINE Keyboard
255 189 11/13 KEYPAD EQUALS SIGN Keyboard
255 190 11/14 FI Keyboard
255 191 11/15 F2 Keyboard
255 192 12/00 F3 Keyboard
255 193 12/01 F4 Keyboard
255 194 12/02 F5 Keyboard
255 195 12/03 F6 Keyboard
255 196 12/04 F7 Keyboard

X Protocol XI1, Release 3

Byte
3

Byte
4

Code
Pos

Name Set

255 197 12/05 F8 Keyboard

255 198 12/06 F9 Keyboard

255 199 12/07 F10 Keyboard

255 200 12/08 F11, LI Keyboard

255 201 12/09 FI2, L2 Keyboard

255 202 12/10 F13, L3 Keyboard

255 203 12/11 F14, L4 Keyboard

255 204 12/12 F15, L5 Keyboard

255 205 12/13 FI6, L6 Keyboard

255 206 12/14 F17, L7 Keyboard

255 207 12/15 F18, L8 Keyboard

255 208 13/00 F19, L9 Keyboard

255 209 13/01 F20, L10 Keyboard

255 210 13/02 F21, Rl Keyboard

255 211 13/03 F22, R2 Keyboard

255 212 13/04 F23, R3 Keyboard

255 213 13/05 F24, R4 Keyboard

255 214 13/06 F25, R5 Keyboard
255 215 13/07 F26, R6 Keyboard

255 216 13/08 F27, R7 Keyboard

255 217 13/09 F28, R8 Keyboard
255 218 13/10 F29, R9 Keyboard

255 219 13/11 F30, R10 Keyboard

255 220 13/12 F31, Rl 1 Keyboard

255 221 13/13 F32, R12 Keyboard

255 222 13/14 F33, R13 Keyboard

255 223 13/15 F34, R14 Keyboard

255 224 14/00 F35, R15 Keyboard

255 225 14/01 LEFT SHIFT Keyboard

255 226 14/02 RIGHT SHIFT Keyboard

255 227 14/03 LEFT CONTROL Keyboard

255 228 14/04 RIGHT CONTROL Keyboard

255 229 14/05 CAPS LOCK Keyboard

255 230 14/06 SHIFT LOCK Keyboard

255 231 14/07 LEFT META Keyboard

255 232 14/08 RIGHT META Keyboard

255 233 14/09 LEFT ALT Keyboard

255 234 14/10 RIGHT ALT Keyboard

255 235 14/11 LEFT SUPER Keyboard

255 236 14/12 RIGHT SUPER Keyboard

255 237 14/13 LEFT HYPER Keyboard

255 238 14/14 RIGHT HYPER Keyboard

255 255 15/15 DELETE, RUBOUT Keyboard

103

X Protocol XI1, Release 3

Appendix B

Protocol Encoding

Syntactic Conventions

All numbers are in decimal, unless prefixed with #x, in which case they are in hexadecimal (base 16).

The general syntax used to describe requests, replies, errors, events, and compound types is:

NameofThing
encode-form

encode-form

Each encode-form describes a single component.

For components described in the protocol as:

name: TYPE

the encode-form is:

N TYPE name

N is the number of bytes occupied in the data stream, and TYPE is the interpretation of those bytes. For
example,

depth CARD8

becomes:

1 CARD8 depth

For components with a static numeric value the encode-form is:

N value name

The value is always interpreted as an N-byte unsigned integer. For example, the first two bytes of a Win¬
dow error are always zero (indicating an error in general) and three (indicating the Window error in particu¬
lar):

1 0 Error
1 3 code

For components described in the protocol as:

name: {Namel,..., Namel }

the encode-form is:

N name
valuel Namel

valuel Namel

The value is always interpreted as an N-byte unsigned integer. Note that the size of N is sometimes larger
than that strictly required to encode the values. For example:

class: {InputOutput, InputOnly, CopyFromParent}

becomes:

2 class
0 CopyFromParent
1 InputOutput
2 InputOnly

For components described in the protocol as:

104

X Protocol XI1, Release 3

NAME TYPE or Alternativel or Alternativel

the encode-form is:

N TYPE NAME
valuel Alternativel

valuel Alternativel

The alternative values are guaranteed not to conflict with the encoding of TYPE. For example

destination: WINDOW or PointerWindow or InputFocus

becomes:

4 WINDOW destination
0 PointerWindow
1 InputFocus

For components described in the protocol as:

value-mask: BITMASK

the encode-form is:

N BITMASK value-mask

maskl mask-name 1

maskl mask-namel

The individual bits in the mask are specified and named, and N is 2 or 4. The most-significant bit in a BIT-
MASK is reserved for use in defining chained (multiword) bitmasks, as extensions augment existing core
requests. The precise interpretation of this bit is not yet defined here, although a probable mechanism is
that a 1-bit indicates that another N bytes of bitmask follows, with bits within the overall mask still inter¬
preted from least-significant to mosLsignificant with an N-byte unit, with N-byte units interpreted in stream
order, and with the overall mask being byte-swapped in individual N-byte units.

For LISTofVALUE encodings, the request is followed by a section of the form:

VALUES

encode-form

encode-form

listing an encode-form for each VALUE. The NAME in each encode-form keys to the corresponding BIT-

MASK bit The encoding of a VALUE always occupies four bytes, but the number of bytes specified in the
encoding-form indicates how many of the least-significant bytes are actually used; the remaining bytes are

unused and their values do not matter

In various cases, the number of bytes occupied by a component will be specified by a lowercase single-letter

variable name instead of a specific numeric value, and often some other component will have its value

specified as a simple numeric expression involving these variables. Components specified with such expres¬

sions are always interpreted as unsigned integers The scope of such variables is always just the enclosing

request, reply, error, event, or compound type structure For example:

2 3+n request length
4n LISTofPOINT points

For unused bytes (the values of the bytes are undefined and do no matter), the encode-form is:

N unused

If the number of unused bytes is variable, the encode-form typically is:

p unused, p=pad(E)

where E is some expression, and pad(E) is the number of bytes needed to round E up to a multiple of four

pad(E) = (4 - (E mod 4)) mod 4

105

X Protocol XI1, Release 3

Common Types

LISTofFOO

In this document the LISTof notation strictly means some number of repetitions of the FOO encoding;

the actual length of the list is encoded elsewhere.

SETofFOO

A set is always represented by a bitmask, with a 1-bit indicating presence in the set.

BITMASK: CARD32

WINDOW: CARD32

PDCMAP: CARD32

CURSOR: CARD32

FONT: CARD32

GCONTEXT CARD32

COLORMAP: CARD32

DRAWABLE: CARD32

FONTABLE: CARD32

ATOM CARD32

VISUALID: CARD32

BYTE 8-bit value

INT8: 8-bit signed integer

INT16: 16-bit signed integer

INT32: 32-bit signed integer

CARD8: 8-bit unsigned integer

CARD16 16-bit unsigned integer

CARD32: 32-bit unsigned integer

TIMESTAMP: CARD32

BITGRAVITY

0
1

2
3

4
5

6
7

8
9

10

WINGRAVITY

0
1
2
3

4

5

6
7

8
9

10

BOOL
0
1

SETofEVENT

#x00000001 KeyPress

Forget

NorthWest

North

NorthEast

West

Center

East

SouthWest

South

SouthEast

Static

Unmap

NorthWest

North

NorthEast

West

Center

East
SouthWest

South

SouthEast

Static

False

True

106

X Protocol XI1, Release 3

#x00000002 KeyRelease
#x00000004 ButtonPress
#x00000008 ButtonRelease
#x00000010 EnterWindow
#x00000020 LeaveWindow
#x00000040 PointerMotion
#x00000080 PointerMotionHint
#x00000100 Button lMotion
#x00000200 Button2Motion
#x00000400 Button3Motion
#x00000800 Button4Motion
#x00001000 Button5Motion
#x00002000 ButtonMotion
#x00004000 KeymapState
#x00008000 Exposure
#x00010000 VisibilityChange
#x00020000 StructureNotify
#x00040000 ResizeRedirect
#x00080000 SubstructureNotify
#x00100000 SubstructureRedirect
#x00200000 FocusChange
#x00400000 Property Change
#x00800000 ColormapChange
#x01000000 OwnerGrabButton
#xfe000000 unused but must be zero

SETofPOINTEREVENT
encodings are the same as for SETofEVENT, except with
#xffff8003 unused but must be zero

SETofDEVICEEVENT
encodings are the same as for SETofEVENT, except with
#xffffcObO unused but must be zero

KEYSYM: CARD32

KEYCODE: CARD8

BUTTON: CARD8

SETofKEYBUTMASK
#x0001 Shift
#x0002 Lock
#x0004 Control
#x0008 Modi
#x0010 Mod2
#x0020 Mod3
#x0040 Mod4
#x0080 Mod5
#x0100 Button 1
#x0200 Button2
#x0400 Button3
#x0800 Button4
#xl000 Button5
#xe000 unused but must be zero

SETof KEYMASK
encodings are the same as for SETofKEYBUTMASK, except with
#xff00 unused but must be zero

STRING8: LISTofCARD8

STRING 16: LISTofCHAR2B

CHAR2B
1 CARD8 bytel
1 CARD8 byte2

107

X Protocol Xll, Release 3

POINT

2 INTI 6 X

2 INT16 y

RECTANGLE
2 INT16 X

2 INTI 6 y
2 CARD 16 width
2 CARD 16 height

me
2 INT16 X

2 INT16 y
2 CARD 16 width
2 CARD 16 height
2 INT16 angle 1
2 INTI 6 angle2

HOST
1

0 Internet
family

1 DECnet
2 Chaos

1 unused
2 n length of address
n LISTofBYTE address

P unused, p=pad(n)

STR
1 n length of name in bytes
n STRING8 name

Errors

Request

1 0 Error
1 1 code
2 CARD 16 sequence number
4 unused
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Value

1 0 Error
1 2 code
2 CARD 16 sequence number
4 <32-bits> bad value
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Window

1 0 Error
1 3 code
2 CARD 16 sequence number
4 CARD32 bad resource id
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Pixmap

1 0 Error
1 4 code
2 CARD 16 sequence number
4 CARD32 bad resource id

108

X Protocol XU, Release 3

2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Atom

1 0 Error
1 5 code
2 CARD 16 sequence number
4 CARD32 bad atom id
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Cursor

1 0 Error
1 6 code
2 CARD 16 sequence number
4 CARD32 bad resource id
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Font

1 0 Error
1 7 code
2 CARD 16 sequence number
4 CARD32 bad resource id
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Match

1 0 Error
1 8 code
2 CARD 16 sequence number
4 unused
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Drawable

1 0 Error
1 9 code
2 CARD 16 sequence number
4 CARD32 bad resource id
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Access

1 0 Error
1 10 code
2 CARD 16 sequence number
4 unused
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Alloc

1 0 Error
1 11 code
2 CARD 16 sequence number
4 unused
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

109

X Protocol

Colormap

1 0 Error
1 12 code
2 CARD 16 sequence number
4 CARD32 bad resource id
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

GContext

1 0 Error
1 13 code
2 CARD 16 sequence number
4 CARD32 bad resource id
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

IDChoice

1 0 Error
1 14 code
2 CARD 16 sequence number
4 CARD32 bad resource id
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Name

1 0 Error
1 15 code
2 CARD 16 sequence number
4 unused
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Length

1 0 Error
1 16 code
2 CARD 16 sequence number
4 unused
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Implementation

1 0 Error
1 17 code
2 CARD 16 sequence number
4 unused
2 CARD 16 minor opcode
1 CARD8 major opcode
21 unused

Keyboards

KEYCODE values are always greater than 7 (and less than 256)

KEYSYM values with the bit #xl0000000 set are reserved as vendor-specific.

The names and encodings of the standard KEYSYM values are contained in appendix F

Pointers

BUTTON values are numbered starting with one

XI1, Release 3

110

X Protocol XI1, Release 3

Predefined Atoms

PRIMARY 1 WM NORMAL HINTS 40
SECONDARY 2 WM SIZE HINTS 41
ARC 3 WM ZOOM HINTS 42
ATOM 4 MIN SPACE 43
BITMAP 5 NORM SPACE 44
CARDINAL 6 MAX SPACE 45
COLORMAP 7 END SPACE 46
CURSOR 8 SUPERSCRIPT X 47
CUT JBUFFER0 9 SUPERSCRIPT Y 48
CUT BUFFER1 10 SUBSCRIPT _X 49
CUT _EUFFER2 11 SUBSCRIPT Y 50
CUT BUFFER3 12 UNDERLINE POSITION 51
CUT J3UFFER4 13 UNDERLINE THICKNESS 52
CUT BUFFER5 14 STRIKEOUT ASCENT 53
CUT BUFFER6 15 STRIKEOUT DESCENT 54
CUT BUFFER7 16 ITALIC ANGLE 55
DRAWABLE 17 X HEIGHT 56
FONT 18 QUAD WIDTH 57
INTEGER 19 WEIGHT 58
PIXMAP 20 POINT SIZE 59
POINT 21 RESOLUTION 60
RECTANGLE 22 COPYRIGHT 61
RESOURCE MANGER 23 NOTICE 62
RGB COLOR MAP 24 FONT NAME 63
RGB BEST MAP 25 FAMILY NAME 64
RGB BLUE MAP 26 FULL NAME 65
RGB DEFAULT MAP 27 CAP HEIGHT 66
RGB GRAY MAP 28 WM CLASS 67
RGB GREEN MAP 29 WM TRANSIENT FOR 68
RGB RED MAP 30
STRING 31
VISUALID 32
WINDOW 33
WM COMMAND 34
WM HINTS 35
WM CLIENT MACHINE 36
WM ICON NAME 37
WM ICON SIZE 38
WM NAME 39

Connection Setup

For TCP connections, displays on a given host are numbered starting from 0, and the server for display N
listens and accepts connections on port 6000 + N. For DECnet connections, displays on a given host are
numbered starting from 0, and the server for display N listens and accepts connections on the object name
obtained by concatenating “X$X” with the decimal representation of N, for example, X$X0 and X$Xl

Information sent by the client at connection setup

1
#x42 MSB first

byte-order

#x6C LSB first
1 unused
2 CARD 16 protocol-major-version
2 CARD 16 protocol-m inor-version
2 n length of authorization-protocol-name
2 d length of authorization-protocol-data
2 unused
n STRING8 authorization-protocol-name

P unused, p=pad(n)
d STRING8 authorization-protocol- data

q unused, q=pad(d)

Except where explicitly noted in the protocol, all 16-bit and 32-bit quantities sent by the client must be
transmitted with the specified byte order, and all 16-bit and 32-bit quantities returned by the server will be
transmitted with this byte order.

Ill

X Protocol Xl 1, Release 3

Information received by the client if authorization fails:

1 0 failed
1 n length of reason in bytes
2 CARD16 protocol-major-version
2 CARD 16 protocol-mmor-version
2 (n+p)/4 length in 4-byte units of “additional data”
n STRING8 reason
p unused, p=pad(n)

Information received by the client if authorization is accepted:

1 1

1

2 CARD 16
2 CARD 16
2 8+2n+(v+p+m)/4
4 CARD32
4 CARD32
4 CARD32
4 CARD32
2 v
2 CARD 16
1 CARD8
1 n
1

0 LSBFirst
1 MSBFirst

1
0 LeastSignificant
1 MostSignificant

1 CARD8
1 CARD8
1 KEYCODE
1 KEYCODE
4
v STRING8

P
8n LISTofFORMAT
m LISTofSCREEN

FORMAT
1 CARD8
1 CARD8
1 CARD8
5

SCREEN
4 WINDOW
4 COLORMAP
4 CARD32
4 CARD32
4 SETofEVENT
2 CARD 16
2 CARD 16
2 CARD16
2 CARD16
2 CARD 16
2 CARD 16
4 VISUALID
1

0 Never
1 WhenMapped
2 Always

1 BOOL
1 CARD8
1 CARD8

success
unused
protocol-major-version
protocol-m inor-version
length in 4-byte units of “additional data”
release-number
resource-id-base
resource-id-mask
motion-buffer-size
length of vendor
maximum-request-length
number of SCREENs in roots
number for FORMATS in pixmap-formats
image-byte-order

bitmap-format-bit- order

bitm ap-format-scanlme-unit
bitmap-format-scanlme-pad
min-keycode
max-keycode
unused
vendor
unused, p=pad(v)
pixmap-formats
roots (m is always a multiple of 4)

depth
bits-per-pixel
scanline-pad
unused

root
default-colormap
white-pixel
black-pixel
current-input-masks
width-in-pixels
heigh t-in-pixels
width-in-millimeters
height-m-millimeters
min-installed-maps
max-mstalled-maps
root-visual
backing-stores

save-unders
roobdepth
number of DEPTHs in allowed-depths

112

X Protocol XI1, Release 3

n LISTofDEPTH allowed-depths (n is always a multiple of 4)

DEPTH
1 CARD8
1

2 n
4
24n LISTofVTSUALTYPE

depth
unused
number of VISUAL TYPES in visuals
unused
visuals

VISUALTYPE
4 VISUALID
1

0
1
2
3
4
5

1 CARD8
2 CARD 16
4 CARD32
4 CARD32
4 CARD32
4

visual-id
class

StaticGray
GrayScale
StaticColor
PseudoColor
TrueColor
DirectColor

bits-per-rgb-value
colormap-entries
red-mask
green-mask
blue-mask
unused

Requests

CreateWindow

1 1
1 CARD8
2 8+n
4 WINDOW
4 WINDOW
2 INT16
2 INT16
2 CARD 16
2 CARD 16
2 CARD 16
2

0
1
2

4 VISUALID
0

4 BITMASK
#x00000001
#x00000002
#x00000004
#x00000008
#x00000010
#x00000020
#x00000040
#x00000080
#x00000100
#x00000200
#x00000400
#x00000800
#x00001000
#x00002000
#x00004000

4n LISTofVALUE

VALUES
4 PIXMAP

0
1

opcode
depth
request length
wid
parent
x

y
width
height
border-width
class

CopyF romParent
InputOutput
InputOnly

visual
CopyF romParent

value-mask (has n bits set to 1)
background-pixmap
background-pixel
border-pixmap
border-pixel
bit-gravity
win-gravity
backing-store
backing-planes
backing-pixel
override-redirect
save-under
evenLmask
do-not-propagate-mask
colormap
cursor

value-list

background-pixmap
None
ParentRelative

113

X Protocol Xll, Release 3

4
4

4

1

1

1

4

4

1

1

4
4
4

4

CARD32
PIXMAP
0 CopyFromParent
CARD32
BITGRAVITY
W1NGRAVITY

0 NotUseful
1 WhenMapped
2 Always
CARD32
CARD32
BOOL
BOOL
SETofEVENT
SETofDEVICEEVENT
COLORMAP
0 CopyFromParent
CURSOR
0 None

background-pixel
border-pixmap

border-pixel
bihgravity
win-gravity
backing-store

backing-planes
backing-pixel
override-redirect
save-under
event-mask
do-not-propagate-mask
colormap

cursor

ChangeWindow Attributes

1 2 opcode
1 unused
2 3+n request length
4 WINDOW window
4 BITMASK value-mask (has n bits set to l)

encodings are the same as for CreateWindow
4n LISTofVALUE value-list

encodings are the same as for CreateWindow

GetWi ndowAttributes

1 3 opcode
1 unused
2 2 request length
4 WINDOW window

= >
1 1 Reply
1 backing-store

0 NotUseful
1 WhenMapped
2 Always

2 CARD 16 sequence number
4 3 reply length
4 VISUALID visual
2 class

1 InputOutput
2 InputOnly

1 BITGRAVITY bit-gravity
1 WING RAVI TY wm-gravity
4 CARD32 backing-planes
4 CARD32 backing-pixel
1 BOOL save-under
1 BOOL map-is-installed
1 map-state

0 Unmapped
1 Unviewable
2 Viewable

1 BOOL override-redirect
4 COLORMAP colormap

0 None
4 SETofEVENT all-event-masks
4 SETofEVENT your-event-mask
2 SETofDEVICEEVENT do-not-propagate-mask
2 unused

X Protocol XI1, Release 3

Destroy Window

1 4 opcode
1 unused
2 2 request length
4 WINDOW window

DestroySubwindows

1 5 opcode
I unused
2 2 request length
4 WINDOW window

ChangeSaveSet

1 6 opcode
1 mode

0 Insert
1 Delete

2 2 request length
4 WINDOW window

ReparentWindow

1 7 opcode
1 unused
2 4 request length
4 WINDOW window
4 WINDOW parent
2 INT16 X

2 INT16 y

MapWindow

1 8 opcode
1 unused
2 2 request length
4 WINDOW window

MapSubwindows

1 9 opcode
1 unused
2 2 request length
4 WINDOW window

Un map Window

1 10 opcode
1 unused
2 2 request length
4 WINDOW window

UnmapSubwindows

1 11 opcode
1 unused
2 2 request length
4 WINDOW window

Co nfigu reWindow

1 12 opcode
1 unused
2 3+n request length
4 WINDOW window
2 BITMASK value-mask (has n bits set to

#x0001 X

#x0002 y
#x0004 width
#x0008 height
#x0010 border-width
#x0020 sibling
#x0040 stack-mode

1)

115

X Protocol Xll, Release 3

2 unused

4n LISTofVALUE value-list

VALUES

2 INT16 X

2 INT16 y
2 CARD 16 width

2 CARD 16 height

2 CARD 16 border-width

4 WINDOW sibling

1 stack-mode

0 Above

1 Below

2 Toplf

3 Bottomlf

4 Opposite

CirculateWindow

1 13 opcode

1 direction

0 RaiseLowest

1 LowerHighest

2 2 request length

4 WINDOW window

GetGeometry

1 14 opcode

1 unused

2 2 request length

4 DRAWABLE drawable

= >
1 1 Reply

1 CARD8 depth

2 CARD 16 sequence number

4 0 reply length
4 WINDOW root

2 INTI 6 X

2 INT16 y
2 CARD 16 width

2 CARD 16 height

2 CARD 16 border-width
10 unused

QueryTree

1 15 opcode

1 unused

2 2 request length
4 WINDOW window

= >
1 1 Reply
1 unused

2 CARD 16 sequence number

4 n reply length
4 WINDOW root

4 WINDOW parent

0 None

2 n number of WINDOWS in children
14 unused

4n LISTofWINDOW children

In tern Atom

1 16 opcode
1 BOOL only-if-exists
2 2+(n+p)/4 request length
2 n length of name

X Protocol XI1, Release 3

2
n STRING8

P

= >
1 1

1
2 CARD 16

4 0

4 ATOM

0 None

20

GetAtomName

1 17

1

2 2
4 ATOM

= >
1 1

1
2 CARD16

4 (n+p)/4
2 n

22

n STRING8

P

Ch an geP roper ty

1 18

1

0 Replace
1 Prepend

2 Append

2 6+(n+p)/4
4 WINDOW

4 ATOM

4 ATOM

1 CARDS

3

4 CARD32

n LISTofBYTE

P

DeleteProperty

1 19

1
2 3
4 WINDOW

4 ATOM

unused
name

unused, p—pad(n)

Reply

unused

sequence number
reply length

atom

unused

opcode

unused

request length

atom

Reply

unused

sequence number

reply length
length of name

unused

name

unused, p=pad(n)

opcode

mode

request length
window

property

type
format

unused

length of data in format units

(= n for format = 8)

(= n/2 for format = 16)

(= n/4 for format = 32)

data

(n is a multiple of 2 for format = 16)

(n is a multiple of 4 for format = 32)

unused, p=pad(n)

opcode

unused

request length

window

property

GetProperty

1 20 opcode

1 BOOL delete

2 6 request length

4 WINDOW window

4 ATOM property

4 ATOM type

0 AnyPropertyType

4 CARD32 long-offset

117

X Protocol Xll, Release 3

4 CARD32

= >
1 1

1 CARD8

2 CARD 16

4 (n+p)/4

4 ATOM
0 None

4 CARD32

4 CARD32

12

n LISTofBYTE

P

ListProperties
1 21

1

2 2
4 WINDOW

= >
1 1

1

2 CARD 16

4 n

2 n

22

4n LISTofATOM

SetSelection Owner

1 22
1

2 4

4 WINDOW

0 None

4 ATOM

4 TIMESTAMP

0 CurrentTime

GetSelectionOwner

1 23

1

2 2
4 ATOM

= >
1 1

1

2 CARD 16

4 0

4 WINDOW

0 None

20

ConvertSelection
1 24

1

2 6
4 WINDOW

long-length

Reply

format

sequence number

reply length

type

bytes-after

length of value in format units

(= 0 for format = 0)

(= n for format = 8)

(= n/2 for format = 16)
(= n/4 for format = 32)

unused

value

(n is zero for format = 0)

(n is a multiple of 2 for format = 16)

(n is a multiple of 4 for format = 32)

unused, p=pad(n)

opcode

unused

request length
window

Reply

unused

sequence number

reply length

number of ATOMs in atoms

unused

atoms

opcode

unused

request length

owner

selection

time

opcode

unused

request length
selection

Reply

unused

sequence number

reply length

owner

unused

opcode

unused

request length

requestor

118

X Protocol XI1, Release 3

4 ATOM
4 ATOM

4 ATOM
0 None

4 TIMESTAMP

0 CurrentTime

selection
target
property

time

SendEvent

1

1
2
4

4

32

25 opcode

BOOL propagate
11 request length
WINDOW

0 PointerWindow
destination

1

SETofEVENT

InputFocus

event-mask

event
standard event format (see the Events section)

GrabPointer

1 26 opcode

1 BOOL owner-events

2 6 request length

4 WINDOW grab-window

2 SETofPOINTEREVENT evenUmask

1 pointer-mode
0 Synchronous

1 Asynchronous

1 keyboard-mode

0 Synchronous

1 Asynchronous

4 WINDOW confine-to

0 None

4 CURSOR cursor

0 None

4 TIMESTAMP time

0 CurrentTime

= >
1 1 Reply

1 status

0 Success
1 AlreadyGrabbed

2 InvalidTime

3 NotViewable

4 Frozen

2 CARD 16 sequence number

4 0 reply length

24 unused

UngrabPointer

1 27 opcode

1 unused

2 2 request length

4 TIMESTAMP time

0 CurrentTime

GrabButton

1 28 opcode

1 BOOL owner-events

2 6 request length

4 WINDOW grab-window

2 SETofPOINTEREVENT event-mask

1 pointer-mode

0 Synchronous

1 Asynchronous

1 keyboard-mode

119

X Protocol Xll, Release 3

0 Synchronous

1 Asynchronous

4 WINDOW confine-to

0 None

4 CURSOR cursor

0 None

1 BUTTON button

0 AnyButton

1 unused

2 SETofKEYMASK modifiers

#x8000 Any Modifier

UngrabButton

1 29 opcode

1 BUTTON button

0 AnyButton
2 3 request length

4 WINDOW grab-window

2 SETofKEYMASK modifiers

#x8000 AnyModifier

2 unused

ChangeActivePoin ter Grab

1 30 opcode

1 unused

2 4 request length

4 CURSOR cursor

0 None
4 TIMESTAMP time

0 CurrentTime

2 SETofPOINTEREVENT evenUmask

2 unused

GrabKey board

1 31 opcode

1 BOOL owner-events

2 4 request length
4 WINDOW grab-window

4 TIMESTAMP time

0 CurrentTime
1 pointer-mode

0 Synchronous

1 Asynchronous
1 keyboard-mode

0 Synchronous

1 Asynchronous
2 unused

= >
1 1 Reply
1 status

0 Success
1 AlreadyGrabbed
2 InvalidTime
3 NotViewable
4 Frozen

2 CARD 16 sequence number
4 0 reply length
24 unused

UngrabKey board

1 32

1
2 2
4 TIMESTAMP

0

opcode

unused

request length

time

CurrentTime

120

X Protocol XI1, Release 3

GrabKey
1 33 opcode
1 BOOL owner-events
2 4 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModifier
1 KEYCODE key

0 AnyKey

1 pointer-mode
0 Synchronous

1 Asynchronous

1 keyboard-mode
0 Synchronous

1 Asynchronous
3 unused

UngrabKey

1 34 opcode
1 KEYCODE key

0 AnyKey

2 3 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModifier
2 unused

AUowEvents
1 35 opcode
1 mode

0 AsyncPointer
1 SyncPointer

2 ReplayPointer

3 AsyncKeyboard
4 SyncKeyboard

5 ReplayKeyboard

6 AsyncBoth
7 SyncBoth

2 2 request length
4 TIMESTAMP time

0 CurrentTime

GrabServer

1 36 opcode

1 unused

2 1 request length

UngrabServer

1 37 opcode

1 unused

2 1 request length

QueryPointer

1 38 opcode
1 unused

2 2 request length

4 WINDOW window

= >
1 1 Reply

1 BOOL same-screen

2 CARD 16 sequence number

4 0 reply length

4 WINDOW root

4 WINDOW child

0 None

121

X Protocol XI1, Release 3

2 INTI 6

2 INT16

2 INTI 6

2 INT16

2 SETofKEYBUTMASK

6

GetMotionEvents

1 39

1
2 4

4 WINDOW

4 TIMESTAMP

0 CurrentTime

4 TIMESTAMP

0 CurrentTime

= >
1 1

1
2 CARD 16

4 2n

4 n
20
8n LISTofTIMECOORD

root-x

root-y

win-x

win-y

mask

unused

opcode

unused

request length

window

start

stop

Reply
unused
sequence number
reply length
number of TIMECOORDs in events
unused
events

TIMECOORD

4 TIMESTAMP time

2 CARD 16 X
2 CARD 16 y

Tran slateCoord mates
1 40 opcode

1 unused

2 4 request length
4 WINDOW src-window

4 WINDOW dst-window

2 INT16 src-x
2 INTI 6 src-y

= >
1 1 Reply
1 BOOL same-screen

2 CARD 16 sequence number

4 0 reply length
4 WINDOW child

0 None

2 INT16 dst-x
2 INT16 dst-y

16 unused

WarpPointer

1 41 opcode

1 unused

2 6 request length

4 WINDOW src-window

0 None

4 WINDOW dst-window

0 None

2 INT16 src-x

2 INT16 src-y

2 CARD 16 src-width
2 CARD 16 src-height

2 INT16 dst-x

2 INT16 dst-y

122

X Protocol XI1, Release 3

SetlnputFocus

1 42 opcode

1 revert-to

0 None

1 PointerRoot

2 Parent

2 3 request length

4 WINDOW focus

0 None

1 PointerRoot

4 TIMESTAMP time

0 CurrentTime

GetlnputFocus

1 43 opcode

1 unused
2 1 request length

= >
1 1 Reply

1 revert-to
0 None

1 PointerRoot
2 Parent

2 CARD 16 sequence number

4 0 reply length
4 WINDOW focus

0 None

1 PointerRoot
20 unused

Query Key map

1 44 opcode
1 unused

2 1 request length

= >
1 1 Reply

1 unused
2 CARD 16 sequence number
4 2 reply length

32 LISTofCARD8 keys

Open Font

1 45 opcode
1 unused

2 3+(n+p)/4 request length

4 FONT fid

2 n length of name

2 unused

n STRING8 name

P unused, p=pad(n

CloseFont

1 46 opcode

1 unused

2 2 request length

4 FONT font

QueryFont

1 47 opcode

1 unused

2 2 request length

4 FONTABLE font

= >
1 1 Reply

123

X Protocol Xll, Release 3

1
2 CARD 16

4 7+2n+3m

12 CHARINFO

4
12 CHARINFO

4
2 CARD 16

2 CARD 16

2 CARD 16

2 n

1
0 LeftToRight

1 RightToLeft

1 CARD8

1 CARD8

1 BOOL

2 INTI 6

2 INTI 6

4 m
8n LISTofFONTPROP

12m LISTofCHARINFO

FONTPROP

4 ATOM

4 <32-bits>

CHARINFO

2 INT16

2 INT16

2 INT16

2 INT16

2 INT16

2 CARD 16

Query TextExtents

1 48

1 BOOL

2 2+(2n+p)/4

4 FONTABLE

2n STRING 16

P

= >
1 1
1

0 LeftToRight

1 RightToLeft

2 CARD16

4 0

2 INT16

2 INT16

2 INT16

2 INT16

4 INT32

4 INT32

4 INT32
4

ListFonts

1 49

1

2 2+(n+p)/4
2 CARD 16

2 n

n STRING8

unused

sequence number

reply length

min-bounds

unused

max-bounds

unused

min-char-or-byte2

max-char-or-byte2

default-char

number of FONTPROPs in properties

draw-direction

min-bytel

max-byte 1

all-chars-exist

fonLascent

font-descent

number of CHARINFOs in char-infos

properties

char-infos

name

value

left-side-bearing

right-side-bearing

character-width

ascent
descent

attributes

opcode

odd length, True if p = 2
request length

font

string

unused, p=pad(2n)

Reply

draw-direction

sequence number

reply length

fonL-ascent

font-descent

overall-ascent

overall-descent

overall-width

overall-left

overall-right
unused

opcode

unused

request length

max-names

length of pattern

pattern

124

X Protocol Xll, Release 3

p unused, p=pad(n)

=>
1 1 Reply

1 unused
2 CARD 16 sequence number

4 (n+p)/4 reply length

2 CARD16 number of STRs in names
22 unused

n LISTofSTR names

P unused, p=pad(n)

ListFon itsWithlnfo

1 50 opcode

1 unused

2 2-f(n+p)/4 request length

2 CARD 16 max-names

2 n length of pattern

n STRING8 pattern

P unused, p=pad(n)

= > (except for last in series)

1 1

1 n

2 CARD 16

4 7+2m+(n+p)/4

12 CHARINFO

4

12 CHARINFO

4
2 CARD 16

2 CARD 16

2 CARD 16

2 m

1

0 LeftToRight

1 RightToLeft

1 CARD8

1 CARD8

1 BOOL

2 INT16

2 INTI 6

4 CARD32

8m LISTofFONTPROP

n STRING8

P

FONTPROP

encodings are the same as for QueryFont

CHARINFO

encodings are the same as for QueryFont

= > (last in series)

1 1

1 0
2 CARD 16

4 7

52

SetFontPath

1 51
1

2 2+(n+p)/4

2 CARD 16
2
n LISTofSTR

Reply

last-reply indicator
sequence number

reply length

unused

opcode

unused

request length

number of STRs in path

unused

path

Reply

length of name in bytes

sequence number

reply length

mm-bounds
unused

max-bounds

unused

mm-char-or-byte2

max-char-or-byte2

default-char

number of FONTPROPs in properties

draw-direction

min-byte 1

max-by tel
all-chars-exist

font-ascent

font-descent

replies-hint

properties

name

unused, p=pad(n)

125

X Protocol Xll, Release 3

p unused, p=pad(n)

GetFontPath

1 52 opcode

1 unused

2 1 request list

= >
1 1 Reply

1 unused

2 CARD 16 sequence number
4 (n+p)/4 reply length

2 CARD 16 number of STRs in path

22 unused
n LISTofSTR path

P unused, p=pad(n)

CreatePix map

1 53 opcode

1 CARD8 depth

2 4 request length

4 PEXMAP pid

4 DRAWABLE drawable
2 CARD 16 width

2 CARD 16 height

F reePixmap

1 54 opcode

1 unused
2 2 request length

4 PIXMAP pixmap

CreateGC

1 55

1
2 4+n

4 GCONTEXT

4 DRAWABLE

4 BITMASK

#x00000001

#x00000002

#x00000004
#x00000008

#x00000010

#x00000020

#x00000040

#x00000080

#x00000100

#x00000200

#x00000400

#x00000800

#x00001000
#x00002000

#x00004000

#x00008000

#x00010000

#x00020000

#x00040000

#x00080000

#x00100000

#x00200000

#x00400000

4n LISTofVALUE

VALUES

1 function

opcode

unused

request length

cid

drawable

value-mask (has n bits set to 1)

function

plane-mask

foreground

background

lme-width

line-style

cap-style

join-style

fill-style

fill-rule
tile

stipple

tile-stipple-x-origin

tile-stipple-y-origm

font

subwindow-mode

graphics-exposures

clip-x-origm

clip-y-origin
clip-mask

dash-offset

dashes

arc-mode

value-list

126

X Protocol Xl 1, Release 3

4

4

4

2
1

1

1

1

1

4

4

2
2
4

1

1

2
2
4

2
1

1

0
1

2
3
4

5

6
7

8
9
10
11

12
13

14

15

CARD32

CARD32

CARD32
CARD 16

0
1

2

0

1

2
3

0
1

2

0
1

2
3

0
1

PEXMAP

PIXMAP

INT16

INT16
FONT

0
1

BOOL

INTI 6

INT16

PIXMAP

0
CARD 16

CARD8

0
1

Clear

And

AndReverse

Copy

Andlnverted

NoOp

Xor
Or

Nor
Equiv

Invert

OrReverse

Copylnverted

Orlnverted

Nand

Set

plane-mask

foreground

background

line-width

line-style

Solid
OnOffDash

DoubleDash

cap-style
NotLast

Butt

Round

Projecting

join-style

Miter
Round

Bevel

fill-style

Solid

Tiled

Stippled

OpaqueStippled

fill-rule

EvenOdd

Winding

tile

stipple

tile-stipple-x-origin

tile-stipple-y-origin

font
subwindow-mode

ClipByChildren

Includelnferiors
graphics-exposures

clip-x-origin

clip-y-ongin

clip-mask

None

dash-offset

dashes

arc-mode

Chord

PieSlice

ChangeGC
1 56

1

2 3+n

4 GCONTEXT

opcode

unused

request length

gc

127

X Protocol XI1, Release 3

4 BITMASK value-mask (has n bits set to 1)

encodings are the same as for CreateGC

4n LISTofVALUE value-list

encodings are the same as for CreateGC

CopyGC

1 57 opcode

1 unused

2 4 request length

4 GCONTEXT src-gc

4 GCONTEXT dst-gc

4 BITMASK value-mask

encodings are the same as for CreateGC

SetDashes

1 58 opcode

1 unused

2 3+(n+p)/4 request length

4 GCONTEXT gc
2 CARD 16 dash-offset

2 n length of dashes

n LISTofCARD8 dashes

P unused, p=pad(n

SetClipRectangles
1 59 opcode
1 ordering

0 UnSorted
1 YSorted
2 YXSorted
3 YXBanded

2 3+2n request length

4 GCONTEXT gc
2 INT16 clip-x-origin
2 INTI 6 clip-y-origin

8n LISTofRECTANGLE rectangles

F reeGC

1 60 opcode
1 unused
2 2 request length

4 GCONTEXT gc

ClearArea

1 61 opcode
1 BOOL exposures
2 4 request length
4 WINDOW window
2 INT16 X

2 INT16 y
2 CARD 16 width
2 CARD 16 height

CopyArea

1 62 opcode
1 unused
2 7 request length
4 DRAWABLE src-drawable

4 DRAWABLE dst-drawable

4 GCONTEXT gc
2 INT16 src-x
2 INT16 src-y
2 INT16 dst-x
2 INT16 dst-y
2 CARD 16 width
2 CARD 16 height

128

X Protocol Xll, Release 3

CopyPlane
1 63 opcode

1 unused

2 8 request length
4 DRAWABLE src-draw able

4 DRAWABLE dst-draw able

4 GCONTEXT gc
2 INT16 src-x

2 INT16 src-y

2 INT16 dst-x
2 INT16 dst-y

2 CARD 16 width

2 CARD 16 height
4 CARD32 bit-plane

PolyPoint

1 64 opcode

1 coordinate-mode

0 Origin

1 Previous

2 3+n request length
4 DRAWABLE drawable
4 GCONTEXT gc
4n LISTofPOINT points

PolyLine

1 65 opcode

1 coord mate-mode
0 Origin

1 Previous

2 3+n request length

4 DRAWABLE drawable

4 GCONTEXT gc
4n LISTofPOINT points

PolySegment

1 66 opcode
1 unused

2 3+2n request length

4 DRAWABLE drawable

4 GCONTEXT gc
8n LISTofSEGMENT segments

SEGMENT

2 INT16 xl

2 INT16 yi
2 INT16 x2

2 INT16 y2

Poly Rectangle

1 67 opcode

1 unused

2 3+2n request length

4 DRAWABLE drawable

4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

Poly Arc

1 68 opcode

1 unused

2 3+3n request length

4 DRAWABLE drawable

4 GCONTEXT gc
12n LISTofARC arcs

129

X Protocol XI1, Release 3

FiliPoly
1 69 opcode

1 unused

2 4+n request length

4 DRAWABLE drawable

4 GCONTEXT gc
1 shape

0 Complex

1 Nonconvex

2 Convex

1 coordinate-mode

0 Origin

1 Previous

2 unused

4n LISTofPOINT points

PolyFHiRectangle

1 70 opcode

1 unused

2 3+2n request length

4 DRAWABLE drawable

4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

PolyFillArc

1 71 opcode
1 unused
2 3+3n request length

4 DRAWABLE drawable

4 GCONTEXT gc
12n LISTofARC arcs

Putlmage

1 72 opcode
1 format

0 Bitmap

1 XYPixmap
2 ZPixmap

2 6+(n+p)/4 request length

4 DRAWABLE drawable
4 GCONTEXT gc
2 CARD 16 width

2 CARD 16 height
2 INT16 dst-x
2 INT16 dst-y

1 CARD8 left-pad
1 CARD8 depth
2 unused

n LISTofBYTE data

P unused, p=pad(n

Getlmage

1 73 opcode

1 format
1 XYPixmap

2 ZPixmap

2 5 request length

4 DRAWABLE drawable

2 INT16 X

2 INT16 y
2 CARD 16 width

2 CARD 16 height

4 CARD32 plane-mask

= >
1 1 Reply

130

X Protocol XI1, Release 3

1 CARD8
2 CARD 16

4 (n+p)/4
4 VISUALID

0 None

20
n LISTofBYTE

P

depth

sequence number

reply length

visual

unused

data

unused, p=pad(n)

PolyText8

1 74

1

2 4+(n+p)/4

4 DRAWABLE

4 GCONTEXT

2 INT16

2 INT16

n LISTofTEXTITEM8

P

TEXTITEM8

1 n

1 INT8
n STRING8

or

1 255
1

1

1

1

opcode

unused

request length
drawable

gc
x

y
items

unused, p=pad(n) (p is always 0 or 1)

length of string (cannot be 255)

delta

string

font-shift indicator

font byte 3 (most-significant)

font byte 2

font byte 1

font byte 0 (leasLsignificant)

PolyTextl0

1 75

1

2 4+(n+p)/4

4 DRAWABLE

4 GCONTEXT

2 INT16
2 INT16

n LISTofTEXTI TEM16

P

TEXTITEM16

1 n

1 INT8

n STRING 16

or

1 255

1
1

1
1

opcode

unused

request length

drawable

gc
x

y
items

unused, p=pad(n) (p is always 0 or 1)

number of CHAR2Bs in string (cannot be 255)

delta
string

font-shift indicator
font byte 3 (most-significant)

font byte 2

font byte 1
font byte 0 (least-significant)

ImageText8

1 76

1 n

2 4+(n+p)/4
4 DRAWABLE

4 GCONTEXT

2 INT16
2 INT16

n STRING8

P

opcode

length of string

request length

drawable

gc
x

y
string

unused, p=pad(n)

ImageTextlB

1 77 opcode

131

X Protocol Xll, Release 3

1 n
2 4+(2n+p)/4

4 DRAWABLE

4 GCONTEXT

2 INT16

2 INT16
2n STRING 16

P

CreateColormap

1 78

1
0 None

1 All

2 4
4 COLORMAP
4 WINDOW

4 VISUALID

FreeColormap

1 79

1

2 2
4 COLORMAP

CopyColormapAndF ree

1 80

1

2 3

4 COLORMAP
4 COLORMAP

InstallColormap

1 81

1

2 2
4 COLORMAP

Un InstallColormap

1 82

1

2 2
4 COLORMAP

ListlnstalledColormaps

1 83

1

2 2
4 WINDOW

= >
1 1
1

2 CARD 16

4 n

2 n

22
4n LISTof COLOR MAP

AllocColor

1 84
1

2 4

4 COLORMAP
2 CARD 16

2 CARD 16

number of CHAR2Bs in string
request length

draw able

gc
x

y
string

unused, p=pad(2n)

opcode

alloc

request length

mid
window

visual

opcode

unused

request length

cmap

opcode

unused

request length

mid

src-cmap

opcode

unused

request length

cmap

opcode

unused

request length

cmap

opcode

unused

request length
window

Reply

unused

sequence number

reply length

number of COLORMAPs in cmaps
unused

cmaps

opcode

unused

request length

cmap
red

green

132

X Protocol XI1, Release 3

2 CARD 16

2

= >
1 1

1
2 CARD 16

4 0
2 CARD 16

2 CARD 16

2 CARD 16

2
4 CARD32

12

AllocNamed Color
1 85

1
2 3+(n+p)/4

4 COLORMAP

2 n

2
n STRING8

P

= >
1 1
1
2 CARD 16

4 0

4 CARD32

2 CARD 16

2 CARD 16

2 CARD 16

2 CARD 16

2 CARD 16

2 CARD 16

8

blue

unused

Reply
unused

sequence number

reply length
red

green

blue
unused

pixel

unused

opcode
unused

request length

cmap
length of name

unused

name

unused, p=pad(n)

Reply
unused

sequence number

reply length
pixel

exact-red

exact-green
exact-blue

visual-red

visual-green

visual-blue

unused

AllocColorCeUs
1 86
1 BOOL

2 3

4 COLORMAP

2 CARD 16

2 CARD 16

opcode

contiguous

request length

cmap

colors

planes

1 1

1

2 CARD 16

4 n+m

2 n

2 m

20
4n LISTofCARD32

4m LISTofCARD32

Reply

unused

sequence number

reply length
number of CARD32s in pixels

number of CARD32s in masks

unused

pixels

masks

AllocColorPlanes
1 87

1 BOOL
2 4

4 COLORMAP

2 CARD 16

2 CARD 16

2 CARD 16

2 CARD 16

opcode

contiguous
request length

cmap

colors
reds

greens

blues

133

X Protocol Xll, Release 3

= >
1 1 Reply

1 unused

2 CARD 16 sequence number

4 n reply length

2 n number of CARD32s in pixels

2 unused

4 CARD32 red-mask

4 CARD32 green-mask

4 CARD32 blue-mask
8 unused

4n LISTofCARD32 pixels

F reeCoIors

1 88 opcode

1 unused

2 3+n request length

4 COLORMAP cmap

4 CARD32 plane-mask

4n LISTofCARD32 pixels

StoreColors

1 89 opcode

1 unused

2 2+3n request length
4 COLORMAP cmap

12n LISTofCOLORITEM items

COLORITEM

4 CARD32 pixel

2 CARD 16 red

2 CARD 16 green
2 CARD 16 blue

1 do-red, do-green, do-blue

#x01 do-red (1 is True, 0 is False)

#x02 do-green (1 is True, 0 is False)

#x04 do-blue (1 is True, 0 is False)

#xf8 unused

1 unused

StoreN&medColor

1 90 opcode

1 do-red, do-green, do-blue

#x01 do-red (1 is True, 0 is False)

#x02 do-green (1 is True, 0 is False)

#x04 do-blue (1 is True, 0 is False)

#xf8 unused

2 4+(n+p)/4 request length

4 COLORMAP cmap

4 CARD32 pixel

2 n length of name

2 unused

n STRING8 name

P unused, p=pad(n)

QueryColors

1 91 opcode

1 unused

2 2+n request length

4 COLORMAP cmap

4n LISTofCARD32 pixels

= >
1 1 Reply

1 unused

2 CARD 16 sequence number

134

X Protocol XI1, Release 3

4 2n reply length

2 n number of RGBs in

22 unused

8n LISTofRGB colors

RGB

2 CARD 16 red

2 CARD 16 green

2 CARD 16 blue

2 unused

Looku pColor

1 92 opcode

1 unused

2 3+(n+p)/4 request length

4 COLORMAP cmap

2 n length of name

2 unused

n STRING8 name

P unused, p=pad(n)

= >
1 1 Reply

1 unused
2 CARD 16 sequence number

4 0 reply length

2 CARD 16 exact-red

2 CARD 16 exact-green

2 CARD 16 exact-blue

2 CARD 16 visual-red
2 CARD 16 visual-green

2 CARD 16 visual-blue

12 unused

CreateCursor

1 93 opcode

1 unused

2 8 request length

4 CURSOR cid

4 PIXMAP source

4 PIXMAP mask

0 None

2 CARD 16 fore-red

2 CARD 16 fore-green

2 CARD 16 fore-blue

2 CARD 16 back-red

2 CARD 16 back-green

2 CARD 16 back-blue

2 CARD 16 X

2 CARD 16 y

CreateGlyphCursor

1 94 CreateGlyphCursor

1 unused

2 8 request length

4 CURSOR cid

4 FONT source-font

4 FONT mask-font

0 None

2 CARD 16 source-char

2 CARD 16 mask-char

2 CARD 16 fore-red

2 CARD 16 fore-green

2 CARD 16 fore-blue

2 CARD 16 back-red

2 CARD 16 back-green

135

X Protocol Xll, Release 3

2 CARD 16 back-blue

FreeCursor

1 95 opcode

1 unused

2 2 request length

4 CURSOR cursor

Recolor Cursor

1 96 opcode

1 unused

2 5 request length

4 CURSOR cursor

2 CARD 16 fore-red

2 CARD 16 fore-green

2 CARD 16 fore-blue

2 CARD 16 back-red

2 CARD 16 back-green

2 CARD 16 back-blue

QueryBestSize

1 97 opcode

1 class

Cursor

Tile
Stipple

2 3 request length

4 DRAWABLE drawable

2 CARD 16 width

2 CARD 16 height

= >
1 1 Reply

1 unused

2 CARD 16 sequence number
4 0 reply length

2 CARD 16 width

2 CARD 16 height
20 unused

Quer; yExtension

1 98 opcode

1 unused
2 2+(n+p)/4 request length

2 n length of name
2 unused
n STRING8 name

P unused, p=pad(n)

= >
1 1 Reply
1 unused
2 CARD 16 sequence number
4 0 reply length
1 BOOL present
1 CARD8 major-opcode
1 CARD8 first-event
1 CARD8 first-error
20 unused

ListExtensions

1 99 opcode
1 unused
2 1 request length

= >
1 1 Reply

136

X Protocol XI1, Release 3

1 CARD8 number of STRs in names
2 CARD 16 sequence number

4 (n+p)/4 reply length

24 unused

n LISTofSTR names

P unused, p—pad(n)

ChangeKey boar dMap ping

1 100 opcode

1 n keycode-count

2 2+nm request length

1 KEYCODE first-keycode

1 m keysyms-per-keycode

2 unused

4nm LISTofKEYSYM keysyms

GetKey board Mapping

1 101 opcode

1 unused

2 2 request length

1 KEYCODE first-keycode

1 CARD8 count

2 unused

= >
1 1 Reply
1 n keysyms-per-keycode

2 CARD 16 sequence number

4 nm reply length (m = count field from

24 unused

4nm LISTofKEYSYM keysyms

ChangeKey board Control

1 102 opcode

1 unused

2 2+n request length

4 BITMASK value-mask (has n bits set to 1)

#x0001 key-click-percent

#x0002 bell-percent

#x0004 bell-pitch

#x0008 bell-duration

#x0010 led

#x0020 led-mode

#x0040 key

#x0080 auto-repeat-mode

4n LISTofYALUE value-list

VALUES
1 INT8 key-click-percent

1 INT8 bell-percent

2 INT16 bell-pitch

2 INT16 bell-duration

1 CARD8 led

1 led-mode

0 Off

1 On

1 KEYCODE key

1 auto-repeat-mode

0 Off

1 On
2 Default

GetKey board Control

1 103

1
2 1

opcode

unused
request length

137

X Protocol Xll, Release 3

=>
1 1 Reply

1

0 Off

1 On

global-auto-repeat

2 CARD 16 sequence number

4 5 reply length
4 CARD32 led-mask

1 CARD8 key-click-percent

1 CARD8 bell-percent

2 CARD 16 bell-pitch

2 CARD 16 bell-duration

2 unused

32 LISTofCARD8 auto-repeats

Bell

1 104 opcode

1 INT8 percent

2 1 request length

Chan gePoin ter Control

1 105 opcode

1 unused

2 3 request length

2 INTI 6 acceleration-numerator
2 1NT16 acceleration-denominator

2 INTI 6 threshold

1 BOOL do-acceleration

1 BOOL do-threshold

GetPointerControI

1 106

1
2 1

= >
1 1
1

2 CARD 16

4 0

2 CARD 16

2 CARD 16

2 CARD 16

18

opcode

unused

request length

Reply

unused

sequence number

reply length

acceleration-numerator

acceleration-denominator

threshold

unused

SetScreenSaver

1 107

1

2 3

2 INT16

2 INT16

1
0 No

1 Yes

2 Default

1

0 No

1 Yes
2 Default

2

opcode

unused

request length

timeout

interval

prefer-blankmg

al low-exposures

unused

GetScreenSaver

1 108

1

2 1

opcode

unused
request length

138

X Protocol XI1, Release 3

=>
1 1 Reply

1 unused

2 CARD 16 sequence number

4 0 reply length

2 CARD 16 timeout

2 CARD 16 interval

1

0 No
prefer-blanking

1 Yes

1
0 No

allow-exposures

1 Yes

18 unused

ChangeHosts

1 109 opcode

1

0 Insert

mode

1 Delete

2 2+(n+p)/4 request length

1
0 Internet

family

1 DECnet

2 Chaos

1 mused

2 CARD 16 length of address

n LISTofCARD8 address

P unused, p=pad(n)

ListHosts

1 110 opcode

1 unused

2 1 request length

= >
1 1 Reply

1

0 Disabled

mode

1 Enabled

2 CARD 16 sequence number

4 n/4 reply length

2 CARD 16 number of HOSTs

22
n LISTofHOST

SetAccessControl

1 111

1

0 Disable

1 Enable

2 1

SetCIoseDownMode

1 112

1

0
1

2
2 1

in hosts

unused
hosts (n always a multiple of 4)

opcode

mode

request length

opcode

mode

Destroy

RetainPermanent

RetainTemporary

request length

KillClient

1 113

1

2 2
4 CARD32

opcode

unused
request length

resource

139

X Protocol XI1, Release 3

0 AUTemporary

RotateProperties

1 114 opcode
1 unused
2 3+n request length
4 WINDOW window
2 n number of properties
2 INT16 delta
4n LISTofATOM properties

ForceScreenSaver

1 115 opcode
1 mode

0 Reset
1 Activate

2 1 request length

SetPointerMapping

1 116 opcode
1 n length of map
2 l+(n+p)/4 request length
n LlSTofCARD8 map

P unused, p=pad(n)

= >
1 1 Reply
1 status

0 Success
1 Busy

2 CARD 16 sequence number
4 0 reply length
24 unused

GefcPointerM&pping

1 117 opcode
1 unused
2 1 request length

= >
1 1 Reply
1 n length of map
2 CARD16 sequence number
4 (n+p)/4 reply length
24 unused
n LlSTofCARD8 map

P unused, p=pad(n)

SetModifierMapping

1 118 opcode
1 n keycodes-per-modiher
2 l+2n request length
8n LISTofKEYCODE keycodes

= >
1 1 Reply
1 status

0 Success
1 Busy
2 Failed

2 CARD 16 sequence number
4 0 reply length
24 unused

GetModifierMapping

1 119 opcode
1 unused

140

X Protocol XI1, Release 3

2 1 request length

= >
1 1 Reply
1 n keycodes-per-modi
2 CARD 16 sequence number
4 2n reply length
24 unused
8n LISTofKEYCODE keycodes

NoOperation

1 127 opcode
1 unused
2 1 request length

Events

KeyP ress

1 2 code
1 KEYCODE detail
2 CARD 16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INTI 6 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

KeyRelease

1 3 code
1 KEYCODE detail
2 CARD 16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INTI 6 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

ButtonPress

1 4 code
1 BUTTON detail
2 CARD 16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INTI 6 root-x
2 INTI 6 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen

141

X Protocol Xll, Release 3

1 unused

ButtonRelease
1 5 code
1 BUTTON detail
2 CARD 16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root>x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

Motio nNotify
1 6 code
1 detail

0 Normal
1 Hint

2 CARD 16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INTI 6 root-x
2 INT16 root-y
2 INTI 6 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

EnterNotify
1 7 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual

2 CARD 16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INTI 6 root-x
2 INTI 6 root-y
2 INT16 event-x
2 INTI 6 event-y
2 SETofKEYBUTMASK state
1 mode

0 Normal
1 Grab
2 Ungrab

1 same-screen, focus
#x01 focus (1 is True, 0 is False)
#x02 same-screen (1 is True, 0 is False)
#xfc unused

142

X Protocol Xll, Release 3

LeaveNotify

1 8
1

code

detail

2
4
4
4
4

2
2
2
2
2
1

1

0
1
2
3
4
CARD 16
TIMESTAMP
WINDOW
WINDOW
WINDOW
0
INT16
INT16
INT16
INT16
SETofKEYBUTMASK

Ancestor
Virtual

Inferior

Nonlinear

NonlinearVirtual

None

Normal

Grab

Ungrab

sequence number

time

root

event

child

root-x

root-y

event-x

event-y

state
mode

#x01
#x 02

#xfc

same-screen, focus
focus (1 is True, 0 is False)

same-screen (1 is True, 0 is False)
unused

Focusln

1 9
1

0
1
2
3
4
5
6
7

2 CARD 16
4 WINDOW
1

0
1
2
3

23

code

detail
Ancestor

Virtual

Inferior

Nonlinear

NonlinearVirtual

Pointer

PointerRoot

None

sequence number
event

mode
Normal

Grab

Ungrab

WhileG rabbed

unused

FocusOut

1 10
1

0
1
2
3
4
5
6
7

2 CARD 16
4 WINDOW
1

0
1
2

Ancestor
Virtual

Inferior

Nonlinear

NonlinearVirtual

Pointer

PointerRoot
None

Normal

Grab

Ungrab

code

detail

sequence number

event

mode

143

X Protocol Xll, Release 3

3 WhileGrabbed

23 unused

KeymapNotify

1 11 code

31 LISTofCARD8 keys (byte for keycodes 0-7 is omitted)

Expose

1 12 code

1 unused

2 CARD 16 sequence number

4 WINDOW window

2 CARD 16 X

2 CARD 16 y
2 CARD 16 width

2 CARD 16 height

2 CARD 16 count

14 unused

GraphicsExposure

1 13 code

1 unused

2 CARD 16 sequence number

4 DRAWABLE drawable

2 CARD 16 X

2 CARD 16 y
2 CARD 16 width

2 CARD 16 height
2 CARD 16 minor-opcode

2 CARD 16 count

1 CARD8 major-opcode
11 unused

NoExposure

1 14 code
1 unused
2 CARD 16 sequence number

4 DRAWABLE drawable
2 CARD 16 minor-opcode
1 CARD8 major-opcode
21 unused

Visibility Notify

1 15 code
1 unused
2 CARD 16 sequence number
4 WINDOW window
1

0 Unobscured

state

1 Partially Obscured
2 Fully Obscured

23 unused

CreateNotify
1 16 code
1 unused
2 CARD 16 sequence number
4 WINDOW parent
4 WINDOW window
2 INT16 X

2 INT16 y
2 CARD 16 width
2 CARD 16 height
2 CARD 16 border-width
1 BOOL override-redirect
9 unused

144

X Protocol

Destroy Notify

1 17 code

1 unused

2 CARD 16 sequence number
4 WINDOW event

4 WINDOW window

20 unused

UnmapNotify

1 18 code

1 unused

2 CARD 16 sequence number
4 WINDOW event
4 WINDOW window

1 BOOL from-configure

19 unused

MapNotify

1 19 code

1 unused

2 CARD 16 sequence number
4 WINDOW event
4 WINDOW window

1 BOOL override-redirect

19 unused

MapRequest

1 20 code
1 unused

2 CARD 16 sequence number
4 WINDOW parent
4 WINDOW window

20 unused

ReparentNotify

1 21 code
1 unused

2 CARD 16 sequence number
4 WINDOW event
4 WINDOW window

4 WINDOW parent

2 INT16 X

2 INT16 y
1 BOOL override-redirect

11 unused

ConfigureNotify

1 22 code
1 unused

2 CARD 16 sequence number

4 WINDOW event
4 WINDOW window

4 WINDOW above-sibling

0 None
2 INT16 X

2 INT16 y
2 CARD 16 width

2 CARD 16 height

2 CARD 16 border-width

1 BOOL override-redirect
5 unused

ConfigureRequest
1 23 code
1 stack-mode

0 Above

145

X Protocol Xll, Release 3

1 Below

2 Toplf

3 Bottomlf

4 Opposite

2 CARD 16 sequence number

4 WINDOW parent

4 WINDOW window

4 WINDOW sibling

0 None

2 INT16 X

2 INT16 y
2 CARD 16 width

2 CARD 16 height

2 CARD 16 border-width

2 BITMASK value-mask

#x0001 X

#x0002 y
#x0004 width

#x0008 height

#x0010 border-width

#x0020 sibling

#x0040 stack-mode

4 unused

Gravity Notify

1 24 code

1 unused

2 CARD 16 sequence number

4 WINDOW event

4 WINDOW window

2 INT16 X

2 INT16 y
16 unused

ResizeRequest

1 25 code

1 unused

2 CARD 16 sequence number

4 WINDOW window

2 CARD 16 width

2 CARD 16 height

20 unused

Circu lateNotify

1 26 code

1 unused

2 CARD 16 sequence number

4 WINDOW event

4 WINDOW window

4 WINDOW unused

1 place

0 Top

1 Bottom

15 unused

CircuIateRequest

1 27 code

1 unused

2 CARD 16 sequence number

4 WINDOW parent

4 WINDOW window

4 unused

1 place

0 Top

1 Bottom

146

X Protocol XI1, Release 3

15 unused

Property Notify

1 28 code
1 unused
2 CARD 16 sequence number
4 WINDOW window
4 ATOM atom
4 TIMESTAMP time
1 state

0 NewValue
1 Deleted

15 unused

SelectionCIear

1 29 code
1 unused
2 CARD 16 sequence number
4 TIMESTAMP time
4 WINDOW owner
4 ATOM selection
16 unused

SelectionRequest
1 30 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time

0 CurrentTime
4 WINDOW owner
4 WINDOW requestor
4 ATOM selection
4 ATOM target
4 ATOM property

0 None
4 unused

Selection Notify

1 31 code
1 unused
2 CARD 16 sequence number
4 TIMESTAMP time

0 CurrentTime
4 WINDOW requestor
4 ATOM selection
4 ATOM target
4 ATOM property

0 None
8 unused

ColormapNotify
1 32 code
1 unused
2 CARD 16 sequence number
4 WINDOW window
4 COLORMAP colormap

0 None
1 BOOL new
1 state

0 Uninstalled
1 Installed

18 unused

ClientMessage

1 33 code
1 CARD8 format

147

X Protocol

2 CARD 16 sequence number
4 WINDOW window
4 ATOM type
20 data

MappingNotify

1 34 code
1 unused
2 CARD 16 sequence number
1

0 Modifier
request

1 Keyboard
2 Pointer

1 KEYCODE first-keycode
1 CARD8 count
25 unused

Xll, Release 3

148

X Protocol Xl 1, Release 3

Index

A

Above, 26, 28, 83
Access control list, 1
Access, 13, 23, 24, 34, 35, 36, 37, 64, 65, 73,
105
Activate, 72
Active grab, 1
All, 61, 62
Alloc, 13, 20, 29, 30, 41, 46, 52, 53, 61, 62, 63,
64, 66, 68, 69, 105
AllocColor, 62, 63, 64, 128
AllocColorCells, 61, 62, 63, 64, 129
AllocColorPlanes, 61, 62, 64, 129
AllocNamedColor, 62, 63, 64, 129
AllowEvents, 33, 34, 36, 37, 38, 117
AllTemporary, 74
AlreadyGrabbed, 33, 34, 36
Alternativel, 101
Alternativel, 101
AlternativeValues, 10
Always, 17, 21, 22, 24, 80
Ancestor, 76, 77, 78
Ancestors, 1
And, 47
Andlnverted, 47
AndReverse, 47
AnyButton, 34, 35
AnyKey, 36, 37
AnyModifier, 34, 35, 36, 37
AnyPropertyType, 30, 31
Append, 30
AsyncBoth, 37, 38
Asynchronous, 33, 34, 35, 36, 75
AsyncKeyboard, 37, 38, 39
AsyncPointer, 37, 38, 39
Atom, 1, 9, 13, 14, 30, 31, 32, 105

B

Background, 1
Backing store, 1

Bell, 71, 134
Below, 26, 28, 83
Bevel, 47, 49
Bit:

gravity, 1

plane, 1

Bitmap, 1, 58, 59
Border, 1
Bottom, 83, 84
Bottomlf, 26, 28, 29, 83

Busy, 68, 71
Butt, 47, 48, 49, 51
Button 1, 12
Button lMotion, 11, 12
Button2, 12
Button2Motion, 11, 12
Button3, 12
Button3Motion, 11, 12
Button4, 12
Button4Motion, 11, 12
Button5, 12
ButtonSMotion, 11, 12
Button:

grabbing, 1
ButtonMotion, 11, 12, 76
ButtonPress, 11, 12, 24, 34, 35, 38, 75, 76, 77,
137
ButtonRelease, 11, 12, 38, 75, 76, 78, 138
Button[l-5]Motion, 76
Byte order, 1

c

Center, 11, 27
ChangeActivePointerGrab, 35, 75, 116
ChangeGC, 13, 52, 53, 123
ChangeHosts, 13, 73, 135
ChangeKeyboardControl, 13, 69, 133
ChangeKeyboardMapping, 68, 85, 133
ChangePointerControl, 71, 134
ChangeProperty, 30, 84, 113
ChangeSaveSet, 25, 111
ChangeWindowAttributes, 13, 19, 23, 62, 110
Chaos, 12
Children, 2

Chord, 47, 58
CirculateNot.ify, 29, 77, 80, 81, 83, 142
CirculateRequest, 29, 84, 142
CirculateWindow, 29, 84, 112
Clear, 47
Clear Area, 53, 124
Client, 2
ClientMessage, 85, 143
ClipByChildren, 47, 50, 51, 53
Clipping region, 2

CloseFont, 41, 119
Colormap, 2, 9, 13, 14, 20, 23, 62, 63, 64, 65,
66, 106
ColormapChange, 11, 85
ColormapNotify, 24, 62, 63, 85, 143
Complex, 57
ConfigureNotify, 27, 28, 77, 80, 81, 83, 141

149

X Protocol Xl 1, Release 3

ConfigureRequest, 27, 83, 141

ConfigureWindow, 22, 26, 83, 111

Connection, 2
Containment, 2
Control, 12, 68

ConvertSelection, 32, 84, 85, 114

Convex, 57

Coordinate system, 2
Copy, 47, 51, 53, 54, 61

CopyArea, 51, 54, 81, 124

CopyColormapAndFree, 62, 128

CopyFromParent, 20, 21, 22, 23, 24, 100

CopyGC, 52, 124

Copylnverted, 47

CopyPlane, 51, 54, 81, 125

CreateColormap, 61, 62, 128

CreateCursor, 66, 131

CreateGC, 46, 52, 53, 122

CreateGlyphCursor, 66, 131
CreateNotify, 23, 81, 140

CreatePixmap, 46, 122

CreateWindow, 19, 20, 24, 62, 82, 109

CurrentTime, 8, 32, 33, 34, 35, 36, 37, 39, 40,

84, 85

Cursor, 2, 9, 13, 14, 20, 23, 33, 34, 35, 67, 105

D

DECnet, 12

Default, 70, 72

Delete, 25, 73

Deleted, 84

DeleteProperty, 30, 84, 113

Depth, 2

Destroy, 74

Destroy Notify, 25, 82, 141

DestroySubwindows, 25, 111

Destroy Window, 25, 111

Device, 2
DirectColor, 2, 3, 8, 17, 19, 20, 61, 64

Disable, 73

Disabled, 73

Display, 3
DoubleDash, 47, 48, 50

Drawable, 3, 9, 13, 14, 29, 46, 54, 55, 56, 57,

58, 59, 60, 61, 67, 105

E

East, 11, 27

Enable, 73

Enabled, 73

EnterNotify, 34, 76, 77, 78, 80, 81, 138

EnterWindow, 11, 12, 76

Equiv, 47

Error Codes:

Access, 13
Alloc, 13
Atom, 13
Colormap, 13
Cursor, 13
Drawable, 13
Font, 13
GContext, 13
IDChoice, 13
Implementation, 13
Length, 14
Match, 14
Name, 14
Pixmap, 14
Request, 14
Value, 14
Window, 14

EvenOdd, 47, 51
Event, 3

Exposure, 3
mask, 3
propagation, 3
source, 3
synchronization, 3

EventName, 10

Expose, 77, 78, 80, 81, 140

Exposure, 11, 80

Extension, 3

F

Failed, 68

False, 11, 21, 26, 27, 30, 33, 36, 39, 40, 75, 77,

82, 85

FillPoly, 50, 51, 57, 58, 126

Focus window, 3

FocusChange, 11, 78

Focusln, 36, 41, 78, 79, 80, 139

FocusOut, 36, 41, 77, 78, 79, 80, 81, 139

Font, 3, 9, 13, 14, 41, 42, 45, 46, 52, 60, 66,

105

ForceScreenSaver, 72, 136

Forget, 11, 21, 28

Free, 74

FreeColormap, 23, 62, 128

FreeColors, 13, 62, 64, 130

FreeCursor, 67, 132

FreeGC, 53, 124

FreePixmap, 46, 122

Frozen, 33, 34, 36

150

X Protocol XI1, Release 3

FullyObscured, 81

G

GC, 4

GContext, 4, 9, 13, 14, 52, 53, 54, 55, 56, 57,

58, 60, 61, 106
GetAtomName, 30, 113
GetFontPath, 46, 122

GetGeometry, 29, 112

Getlmage, 59, 126

GetlnputFocus, 41, 119

GetKeyboardControl, 70, 133

GetKeyboardMapping, 69, 133

GetModifierMapping, 68, 136

GetMotionEvents, 18, 39, 76, 118

GetPointerControl, 72, 134

GetPointerMapping, 71, 136

GetProperty, 30, 84, 113
GetScreenSaver, 72, 134

GetSelectionOwner, 32, 114

GetWindowAttributes, 19, 24, 110

Glyph, 4

Grab, 4, 76, 77, 78, 80

GrabButton, 34, 35, 38, 75, 115

GrabKey, 36, 37, 38, 117

GrabKeyboard, 35, 36, 37, 38, 116

GrabPointer, 33, 34, 35, 38, 115

GrabServer, 39, 117

Graphics context, 4

GraphicsExposure, 51, 54, 80, 81, 140

Gravity, 4

GravityNotify, 28, 77, 80, 81, 83, 142

GrayScale, 4, 8, 17, 19, 61, 64, 66

H

Hint, 76

Hotspot, 4

I

IDChoice, 9, 13, 20, 41, 46, 61, 62, 66, 106

Identifier, 4

ImageTextl6, 81, 127

ImageText8, 60, 61, 127

Implementation, 13, 106

Includelnferiors, 47, 50, 51

Inferior, 76, 77, 78

Inferiors, 4

Input focus, 4

Input manager, 4

InputFocus, 32, 33, 101

InputOnly, 3, 4, 13, 19, 20, 21, 22, 24, 27, 29,

46, 54, 67, 80, 81, 100

InputOutput, 1, 4, 5, 19, 20, 24, 50, 100

Insert, 25, 73

InstallColormap, 19, 23, 24, 62, 63, 128
Installed, 85

InternAtom, 15, 29, 112

Internet, 12

InvalidTime, 33, 34, 36
Invert, 47

K

Key:

grabbing, 5

Keyboard, 85

grabbing, 5

KeymapNotify, 10, 80, 140

KeymapState, 11, 12, 80

KeyPress, 11, 12, 15, 36, 37, 38, 70, 75, 76,

80, 137
ICeyRelease, 11, 12, 36, 38, 70, 75, 76, 80, 137

Keysym, 5

KillClient, 74, 135

L

LeastSignificant, 17

LeaveNotify, 34, 76, 77, 78, 80, 81, 139

LeaveWindow, 11, 12

LeftToRight, 41, 42, 45

Length, 13, 18, 68, 69, 106

ListExtensions, 68, 132

ListFonts,, 45

ListFonts, 45, 120

ListFontsWithlnfo, 45, 121

ListHosts, 73, 135

ListlnstalledColormaps, 63, 128

ListProperties, 31, 114

Lock, 12, 68

LookupColor, 65, 131

LowerHighest, 29

LSBFirst, 17

M

MapNotify, 26, 77, 80, 81, 82, 141

Mapped window, 5

MappingNotify, 68, 69, 71, 85, 144

MapRequest, 26, 82, 141

MapSubwindows, 26, 111

MapWindow, 25, 26, 74, 82, 111

Match, 13, 20, 21, 22, 23, 25, 26, 27, 28, 30,

31, 40, 41, 46, 50, 52, 53, 54, 55, 56, 57, 58,

59, 60, 61, 66, 67, 69, 70, 105

Miter, 47, 49, 51

Modi, 12, 68

151

X Protocol Xll, Release 3

Mod2, 12, 68
Mod3, 12, 68
Mod4, 12, 68
Mod5, 12, 68
Modifier keys, 5
Modifier, 85
Modifiers, 85
Monochrome, 5
MostSignificant, 17
MotionNotify, 18, 75, 76, 138
MSBFirst, 17

N

Namel, 100
Name, 13, 41, 63, 65, 66, 106
Namel, 100
NameofThing, 100
Nand, 47
Never, 17
NewValue, 84
No, 72
NoExposure, 54, 81, 140
Nonconvex, 57
None, 14, 21, 22, 23, 24, 29, 31, 32, 33, 34, 35,
39, 40, 41, 47, 50, 51, 53, 54, 59, 61, 62, 66,
75, 76, 77, 78, 79, 80, 83, 84, 85
Nonlinear, 76, 77, 78, 79
NonlinearVirtual, 76, 77, 78, 79
NoOp, 47
NoOperation, 74, 137
Nor, 47
Normal, 76, 77, 78, 80
North, 11, 27
NorthEast, 11, 27
Northwest, 11, 21, 27, 28
NoSymbol, 69
NotLast, 47, 48, 49
NotUseful, 21, 22, 24
NotViewable, 33, 34, 36

o

Obscure, 5
Occlude, 5
Off, 70, 71
On, 70, 71
OnOffDash, 47, 48, 50
OpaqueStippled, 47, 50, 54
OpenFont, 41, 119
Opposite, 26, 28, 29, 83
Or, 47
Origin, 55, 57
Orlnverted, 47
OrReverse, 47

OwnerGrabButton, 11, 75

P

Padding, 5

Parent, 40, 41

ParentRelative, 21, 22, 24, 25

PartiallyObscured, 81

Passive grab, 5
PieSlice, 47, 51, 58

Pixel value, 5
Pixmap, 5, 9, 13, 14, 20, 23, 46, 52, 66, 104

Plane, 6

mask, 6

Pointer, 6, 78, 79, 80, 85

grabbing, 6

PointerMotion, 11, 12, 76

PointerMotionHint, 11, 12, 76

PointerRoot, 14, 40, 41, 75, 78, 79, 80
PointerWindow, 32, 33, 101

Pointing device, 6

PolyArc, 50, 56, 58, 125

PolyFillArc, 50, 51, 58, 126

PolyFillRectangle, 50, 57, 126

PolyLine, 50, 55, 56, 125

PolyPoint, 55, 125

PolyRectangle, 50, 56, 125

PolySegment, 50, 55, 125

PolyTextl6, 13, 50, 60, 127

PolyText8, 13, 50, 59, 60, 127

Prepend, 30

Previous, 55, 57

Projecting, 47, 49

Property list, 6

Property, 6
PropertyChange, 11, 84

PropertyNotify, 30, 31, 84, 143

PseudoColor, 4, 6, 8, 17, 19, 20, 61, 64

Putlmage, 58, 126

Q

QueryBestSize, 67, 132

QueryColors, 65, 130

QueryExtension, 67, 132

QueryFont, 15, 41, 45, 119

QueryKeymap, 41, 80, 119

QueryPointer, 39, 76, 117

QueryTextExtents, 44, 61, 120

QueryTree, 29, 112

R

RaiseLowest, 29

RecolorCursor, 67, 132

152

X Protocol XI1, Release 3

Redirecting control, 6

ReparentNotify, 25, 82, 141

ReparentWindow, 25, 111

Replace, 30
ReplayKeyboard, 37, 38, 39

ReplayPointer, 37, 38, 39

Reply, §
Request, 6, 13, 104

RequestName, 10

Reset, 72
ResizeRedirect, 11, 24, 27, 83

ResizeRequest, 27, 83, 142

Resource, 6

RetainPermanent, 74, 75

RetainTemporary, 74, 75

RGB values, 7
RightToLeft, 41, 42, 45

Root, 7
RotateProperties, 31, 84, 136

Round, 47, 49

s

Save set, 7
Scanline order, 7
Scanline, 7
Screen, 7
Selection, 7
SelectionClear, 32, 84, 143

SelectionNotify, 32, 84, 85, 143

SelectionRequest, 32, 84, 143

SendEvent, 10, 32, 84, 85, 115

Server, 7
grabbing, 8

Set, 47

SetAccessControl, 73, 135

SetClipRectangles, 50, 52, 53, 124

SetCloseDownMode, 74, 135

SetDashes, 50, 52, 124

SetFontPath, 45, 46, 121

SetlnputFocus, 40, 78, 119

SetModifierMapping, 68, 85, 136

SetPointerMapping, 71, 85, 136

SetScreenSaver, 72, 134

SetSelectionOwner, 32, 74, 84, 114

Shift, 12, 68

Sibling, 8

Solid, 47, 48, 50, 51, 61

South, 11, 27

SouthEast, 11, 27

SouthWest, 11, 27

Stacking order, 8

Static, 11, 28

StaticColor, 8, 17, 20, 61

StaticGray, 5, 8, 17, 20, 61, 66

Stipple, 8, 67

Stippled, 47, 50

StoreColors, 13, 64, 65, 130

StoreNamedColor, 64, 65, 130

StructureNotify, 11, 82, 83, 84

SubstructureNotify, 11, 82, 83, 84

SubstructureRedirect, 11, 23, 24, 26, 27, 29,
82, 83, 84

Success, 33, 36, 68, 71

SyncBoth, 37, 38

Synchronous, 33, 34, 35, 36

SyncKeyboard, 37, 38, 39

SyncPointer, 37, 38, 39

T

Tile, 8, 67

Tiled, 47, 50

Timestamp, 8
Top, 83, 84

Toplf, 26, 28, 29, 83

TranslateCoordinates, 39, 118

True, 11, 19, 23, 25, 31, 33, 36, 39, 42, 51, 53,

54, 64, 75, 77, 82, 85

TrueColor, 8, 17, 19, 20, 61

Type, 8

Types:

ARC, 12
ATOM, 11
BITGRAVITY, 11

BITMASK, 10
BOOL, 11
BUTMASK, 12

BUTTON, 12
BYTE, 11

CARD16, 11
CARD32, 11
CARD8, 11

CHAR2B, 12
COLORMAP, 11

CURSOR, 11

DEVICEEVENT, 12

DRAWABLE, 11

EVENT, 11
FONT, 11
FONTABLE, 11
GCONTEXT, 11

HOST, 12
INT16, 11
INT32, 11
INT8, 11
IvEYBUTMASK, 12
KEYCODE, 12
KEYMASK, 12

KEYSYM, 12

153

X Protocol XI1, Release 3

LISTofFOO, 10
LISTofVALUE, 10
OR, 11
P1XMAP, 11
POINT, 12
POINTEREVENT, 12
RECTANGLE, 12
STRING16, 12
STRING8, 12
TIMESTAMP, 11

VALUE, 11

VISUALID, 11

WINDOW, 11
WINGRAVITY, 11

U

Ungrab, 76, 77, 78, 80

LIngrabButton, 35, 116
UngrabKey, 37, 117

UngrabKeyboard, 36, 74, 116

UngrabPointer, 34, 74, 75, 115

LTngrabServer, 39, 74, 117

UninstallColormap, 62, 63, 128

Uninstalled, 85

LInmap, 11, 28, 82

UnmapNotify, 26, 28, 77, 78, 80, 81, 82, 141

LTnmapped, 24

UnmapSubwindows, 26, 111
LJnmapWindow, 25, 26, 111

Unobscured, 81
UnSorted, 53

LInviewable, 24

V

Value, 9, 11, 13, 20, 21, 23, 25, 26, 27, 29, 30,

31, 32, 33, 34, 35, 36, 37, 40, 46, 50, 52, 53,

54, 55, 57, 58, 59, 61, 64, 65, 66, 67, 68, 69,

70, 71, 72, 73, 74, 104

Viewable, 8, 24

Virtual, 76, 77, 78

Visibilitity, 80

VisibilityChange, 11, 81

VisibilityNotify, 20, 77, 78, 80, 81, 140

Visible, 9

w

WarpPointer, 40, 118

West, 11, 27

WhenMapped, 17, 21, 22, 24, 80

WhileGrabbed, 78

Winding, 47, 51

Window, 9, 13, 14, 20, 23, 24, 25, 26, 29, 30,

31, 32, 33, 34, 35, 36, 37, 39, 40, 53, 61, 63,

104

gravity, 9
InputOnly, 4
InputOutput, 4
manager, 9
parent, 5
root, 7

X

Xor, 47

XYFormat, 9
XYPixmap, 58, 59

Y

Yes, 72

YSorted, 53

YXBanded, 53

YXSorted, 53

z

ZFormat, 9
ZPixmap, 58, 59

154

Xlib — C Language X Interface

X Window System

X Version 11, Release 3

James Gettys

Digital Equipment Corporation

Systems Research Center

MIT Project Athena

Robert W. Scheifler

Massachusetts Institute of Technology

Laboratory for Computer Science

Ron Newman

Massachusetts Institute of Technology

MIT Project Athena

The X Window System is a trademark of MIT.

ULTRIX, ULTRIX-32, ULTRIX-32m, ULTREX-32w, and VAX/VMS are trademarks of Digital Equipment

Corporation

UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1985, 1986, 1987, 1988 Massachusetts Institute of Technology, Cambridge, Massachusetts, and

Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appears in all copies and that both that copyright notice

and this permission notice appear in supporting documentation, and that the name of M I T or Digital not

be used in in advertising or publicity pertaining to distribution of the software without specific, written prior

permission M.I.T and Digital makes no representations about the suitability of the software described

herein for any purpose It is provided “as is” without express or implied warranty.

Xlib - C Library Xll, Release 3

Table of Contents

Table of Contents . 1

Acknowledgments . 7

Chapter 1: Introduction to Xlib . 1

1.1. Overview of the X Window System . 1

1.2. Errors . 3

1.3. Naming and Argument Conventions within Xlib . 3

1.4. Programming Considerations . 4

1.5. Conventions Used in Xlib - C Language X Interface . 4

Chapter 2: Display Functions . 5

2.1. Opening the Display . 5

2.2. Obtaining Information about the Display, Image Formats, or Screens . 6

2.2.1. Display Macros. 6

2.2.2. Image Format Macros . 10

2.2.3. Screen Information Macros . 12

2.3. Generating a NoOperation Protocol Request . 15

2.4. Freeing Client-Created Data . 15

2.5. Closing the Display . 15

2.6. X Server Connection Close Operations .. 15

Chapter 3: Window Functions . 17

3.1. Visual Types . 17

3.2. Window Attributes . 18

3.2.1. Background Attribute . 21

3.2.2. Border Attribute . 22

3.2.3. Gravity Attributes. 22

3.2.4. Backing Store Attribute . 23

3.2.5. Save Under Flag . 23

3.2.6. Backing Planes and Backing Pixel Attributes . 24

3.2.7. Event Mask and Do Not Propagate Mask Attributes ... 24

3.2.8. Override Redirect Flag. 24

3.2.9. Coloimap Attribute . 24

3.2.10. Cursor Attribute . 24

3.3. Creating Windows . 25

3.4. Destroying Windows . 27

3.5. Mapping Windows . 28

3.6. Unmapping Windows . 30

3.7. Configuring Windows . 30

1

3.8. Changing Window Stacking Order ... 34

3.9. Changing Window Attributes . 37

3.10. Translating Window Coordinates . 39

Chapter 4: Window Information Functions 41

4.1. Obtaining Window Information . 41

4.2. Properties and Atoms . 45

4.3. Obtaining and Changing Window Properties . 47

4.4. Selections . 51

Chapter 5: Graphics Resource Functions . 53

5.1. Colormap Functions . 53

5.1.1. Creating, Copying, and Destroying Coiormaps . 54

5.1.2. Allocating, Modifying, and Freeing Color Cells ... 56

5.1.3. Reading Entries in a Colormap . 61

5.2. Creating and Freeing Pixmaps. 62

5.3. Manipulating Graphics Context/State . 63

5.4. Using GC Convenience Routines . 70

5.4.1. Setting the Foreground, Background, Function, or Plane Mask . 71

5.4.2. Setting the Line Attributes and Dashes . 72

5.4.3. Setting the Fill Style and Fill Rule . 73

5.4.4. Setting the Fill Tile and Stipple . 73

5.4.5. Setting the Current Font ... 76

5.4.6. Setting the Clip Region ... 76

5.4.7. Setting the Arc Mode, Subwindow Mode, and Graphics Exposure . 77

Chapter 6: Graphics Functions ... 79

6.1. Clearing Areas. 79

6.2. Copying Areas. 80

6.3. Drawing Points, Lines, Rectangles, and Arcs . 82

6.3.1. Drawing Single and Multiple Points . 82

6.3.2. Drawing Single and Multiple Lines . 83

6.3.3. Drawing Single and Multiple Rectangles . 85

6.3.4. Drawing Single and Multiple Arcs . 86

6.4. Filling Areas . 87

6.4.1. Filling Single and Multiple Rectangles ... 88

6.4.2. Filling a Single Polygon . 89

6.4.3. Filling Single and Multiple Arcs 89

6.5. Font Metrics. 91

6.5.1. Loading and Freeing Fonts . 95

6.5.2. Obtaining and Freeing Font Names and Information . 96

6.5.3. Setting and Retrieving the Font Search Path . 98

6.5.4. Computing Character String Sizes .. 99

6.5.5. Computing Logical Extents . 99

6.5.6. Querying Character String Sizes. 100

2

6.6. Drawing Text . 102

6.6.1. Drawing Complex Text . 103

6.6.2. Drawing Text Characters . 104

6.6.3. Drawing Image Text Characters . 105

6.7. Transferring Images between Client and Server . 106

6.8. Cursors . 110

6.8.1. Creating a Cursor . 110

6.8.2. Changing and Destroying Cursors . 112

6.8.3. Defining the Cursor . 113

Chapter 7: Window Manager Functions . 114

7.1. Changing the Parent of a Window . 114

7.2. Controlling the Lifetime of a Window . 115

7.3. Determining Resident Colormap . 116

7.4. Pointer Grabbing . 117

7.5. Keyboard Grabbing . 122

7.6. Server Grabbing . 126

7.7. Miscellaneous Control Functions . 127

7.7.1. Controlling Input Focus ... 127

7.7.2. Killing Clients . 129

7.8. Keyboard and Pointer Settings .. 130

7.9. Keyboard Encoding . 134

7.10. Screen Saver Control . 139

7.11. Controlling Host Access 140

7.11.1. Adding, Getting, or Removing Hosts . 141

7.11.2. Changing, Enabling, or Disabling Access Control . 143

Chapter 8: Events and Event-Handling Functions . 144

8.1. Event Types . 144

8.2. Event Structures . 145

8.3. Event Masks . 146

8.4. Event Processing. 147

8.4.1. Keyboard and Pointer Events . 149

8.4.1.1. Pointer Button Events . 149

8.4.1.2. Keyboard and Pointer Events 150

8.4.2. Window Entry/Exit Events . 152

8.4.2.1. Normal Entry/Exit Events . 154

8.4.2.2. Grab and Ungrab Entry/Exit Events . 155

8.4.3. Input Focus Events . 155

8.4.3.1. Normal Focus Events and Focus Events While Grabbed . 156

8.4.3.2. Focus Events Generated by Grabs . 159

8.4.4. Key Map State Notification Events. 159

8.4.5. Exposure Events . 160

8.4.5.1. Expose Events .. 160

3

8.4.5.2. GraphicsExpose and NoExpose Events . 160

8.4.6. Window State Change Events . 162

8.4.6.1. CirculateNotify Events . 162

8.4.6.2. ConfigureNotify Events . 162

8.4.6.3. CreateNotify Events . 163

8.4.6.4. DestroyNotify Events . 164

8.4.6.5. GravityNotify Events . 164

8.4.6.6. MapNotify Events . 165

8.4.6.7. MappingNotify Events . 165

8.4.6.8. ReparentNotify Events . 166

8.4.6.9. UnmapNotify Events . 167

8.4.6.10. VisibilityNotify Events . 167

8.4.7. Structure Control Events . 168

8.4.7.1. CirculateRequest Events . 168

8.4.7.2. ConfigureRequest Events . 169

8.4.7.3. MapRequest Events . 169

8.4.7.4. ResizeRequest Events . 170

8.4.8. Colormap State Change Events . 170

8.4.9. Client Communication Events . 171

8.4.9.1. ClientMessage Events. 171

8.4.9.2. PropertyNotify Events . 172

8.4.9.3. SelectionClear Events . 172

8.4.9.4. SelectionRequest Events . 173

8.4.9.5. SelectionNotify Events . 174

8.5. Selecting Events . 174

8.6. Handling the Output Buffer . 175

8.7. Event Queue Management . 176

8.8. Manipulating the Event Queue . 176

8.8.1. Returning the Next Event . 176

8.8.2. Selecting Events Using a Predicate Procedure . 177

8.8.3. Selecting Events Using a Window or Event Mask . 178

8.9. Putting an Event Back into the Queue . 181

8.10. Sending Events to Other Applications . 181

8.11. Getting Pointer Motion History . 182

8.12. Handling Error Events . 183

8.12.1. Enabling or Disabling Synchronization . 183

8.12.2. Using the Default Error Handlers . 183

Chapter 9: Predefined Property Functions . 188

9.1. Communicating with Window Managers . 188

9.1.1. Setting Standard Properties . 190

9.1.2. Setting and Getting Window Names . 190

9.1.3. Setting and Getting Icon Names. 191

4

9.1.4. Setting the Command . 192

9.1.5. Setting and Getting Window Manager Hints . 192

9.1.6. Setting and Getting Window Sizing Hints . 194

9.1.7. Setting and Getting Icon Size Hints . 197

9.1.8. Setting and Getting the Class of a Window . 198

9.1.9. Setting and Getting the Transient Property . 199

9.2. Manipulating Standard Colormaps . 200

9.2.1. Standard Colormaps . 200

9.2.2. Standard Colormap Properties and Atoms . 201

9.2.3. Getting and Setting an XStandardColormap Structure . 202

Chapter 10: Application Utility Functions . 204

10.1. Keyboard Utility Functions . 204

10.1.1. Keyboard Event Functions . 204

10.1.2. Keysym Classification Macros . 207

10.2. Obtaining the X Environment Defaults . 207

10.3. Parsing the Window Geometry . 208

10.4. Parsing the Color Specifications . 210

10.5. Generating Regions . 210

10.6. Manipulating Regions . 211

10.6.1. Creating, Copying, or Destroying Regions. 211

10.6.2. Moving or Shrinking Regions . 211

10.6.3. Computing with Regions . 212

10.6.4. Determining if Regions Are Empty or Equal. 213

10.6.5. Locating a Point or a Rectangle in a Region . 213

10.7. Using the Cut and Paste Buffers ... 214

10.8. Determining the Appropriate Visual Type . 215

10.9. Manipulating Images . 217

10.10. Manipulating Bitmaps. 219

10.11. Using the Resource Manager . 222

10.11.1. Resource Manager Matching Rules . 223

10.11.2. Basic Resource Manager Definitions . 224

10.11.3. Resource Database Access . 226

10.11.3.1. Storing Into a Resource Database . 226

10.11.3.2. Looking Up from a Resource Database . 228

10.11.3.3. Database Search Lists ... 229

10.11.3.4. Merging Resource Databases . 230

10.11.3.5. Retrieving and Storing Databases . 230

10.11.4. Parsing Command Line Options . 231

10.12. Using the Context Manager . 233

Appendix A: Xlib Functions and Protocol Requests . 235

Appendix C: Extensions . 246

Appendix D: Version 10 Compatibility Functions . 261

5

Glossary

Index

265

275

6

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work of
three individuals: Robert Scheifler of the MIT Laboratory for Computer Science and
Jim Gettys of Digital Equipment Corporation and Ron Newman of MIT, both at MIT
Project Athena. X version 11, however, is the result of the efforts of dozens of individu¬
als at almost as many locations and organizations. At the risk of offending some of the
players by exclusion, we would like to acknowledge some of the people who deserve spe¬
cial credit and recognition. Our apologies to anyone inadvertently overlooked.

First, our thanks goes to Phil Karlton and Scott McGregor, both of Digital, for their
considerable contributions to the specification of the version 11 protocol. Susan Ange-
branndt, Raymond Drewry, Todd Newman, and Phil Karlton of Digital worked long and
hard to produce the sample server implementation.

Next, our thanks goes to Ralph Swick (Project Athena and Digital) who kept it all
together for us. He handled literally thousands of requests from people everywhere and
saved the sanity of at least one of us. His calm good cheer was a foundation on which
we could build.

Our thanks also goes to Todd Brunhoff (Tektronix) who was “loaned” to Project Athena
at exactly the right moment to provide very capable and much-needed assistance during
the alpha and beta releases. He was responsible for the successful integration of sources
from multiple sites; we would not have had a release without him.

Our thanks also goes to A1 Mento and A1 Wojtas of Digital’s ULTRIX Documentation
Group. With good humor and cheer, they took a rough draft and made it an infinitely
better and more useful document. The work they have done will help many everywhere.
We also would like to thank Hal Murray (Digital SRC) and Peter George (Digital VMS)
who contributed much by proofreading the early drafts of this document.

Our (hanks also goes to Jeff Dike (Digital UEG), Tom Benson, Jackie Granfield, and
Vince Orgovan (Digital VMS) who helped with the library utilities implementation; to
Hania Gajewska (Digital UEG-WSL) who, along with Ellis Cohen (CMU and Siemens),
was instrumental in the semantic design of the window manager properties; and to Dave
Rosenthal (Sun Microsystems) who also contributed to the protocol and provided the
sample generic color frame buffer device-dependent code.

The alpha and beta test participants deserve special recognition and thanks as well. It is
significant that the bug reports (and many fixes) during alpha and beta test came almost
exclusively from just a few of the alpha testers, mostly hardware vendors working on
product implementations of X. The continued public contribution of vendors and univer¬
sities is certainly to the benefit of the entire X community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate Research at Digi¬
tal, who has remained committed to the widest public availability of X and who made it
possible to greatly supplement MIT’s resources with the Digital staff in order to make
version 11a reality. Many of the people mentioned here are part of the Western
Software Laboratory (Digital UEG-WSL) of the ULTRIX Engineering group and work
for Smokey Wallace, who has been vital to the project’s success. Others not mentioned
here worked on the toolkit and are acknowledged in the X Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanford University and
now of Digital UEG-WSL, who wrote W, the predecessor to X, and Brian Reid, formerly
of Stanford University and now of Digital WRL, who had much to do with W’s design.

Finally, our thanks goes to MIT, Digital Equipment Corporation, and IBM for providing
the environment where it could happen.

7

Jim Gettys
Systems Research Center
Digital Equipment Corporation

Robert W. Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

Ron Newman
Project Athena
Massachusetts Institute of Technology

May 1988

8

Chapter 1

Introduction to Xlib

The X Window System is a network-transparent window system that wras designed at
MIT. It runs under 4.3BSD UNIX, ULTRIX-32, many other UNIX variants, VAX/VMS,
MS/DOS, as well as several other operating systems.

X display servers run on computers with either monochrome or color bitmap display
hardware. The server distributes user input to and accepts output requests from various
client programs located either on the same machine or elsewhere in the network. Xlib is
a C subroutine library that application programs (clients) use to interface with the win¬
dow system by means of a stream connection. Although a client usually runs on the
same machine as the X server it is talking to, this need not be the case.

Xlib - C Language X Interface is a reference guide to the low-level C language interface
to the X Window System protocol. It is neither a tutorial nor a user’s guide to program¬
ming the X Window System. Rather, it provides a detailed description of each function
in the library as well as a discussion of the related background information. Xlib - C
Language X Interface assumes a basic understanding of a graphics window system and of
the C programming language. Other higher-level abstractions (for example, those pro¬
vided by the toolkits for X) are built on top of the Xlib library. For further information
about these higher-level libraries, see the appropriate toolkit documentation. The X
Window System Protocol provides the definitive word on the behavior of X. Although
additional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:

• Overview of the X Window System

• Errors

• Naming and argument conventions

• Programming considerations

• Conventions used in this document

1.1. Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common
to other window systems have different meanings in X. You may find it helpful to refer
to the glossary, which is located at the end of the book.

The X Window System supports one or more screens containing overlapping windows or
subwindows. A screen is a physical monitor and hardware, which can be either color or
black and white. There can be multiple screens for each display or workstation. A sin¬
gle X server can provide display services for any number of screens. A set of screens for
a single user with one keyboard and one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each
hierarchy is a root window, which covers each of the display screens. Each root window
is partially or completely covered by child windows. All window's, except for root win¬
dows, have parents. There is usually at least one window for each application program.
Child windows may in turn have their own children. In this way, an application pro¬
gram can create an arbitrarily deep tree on each screen. X provides graphics, text, and
raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child window
can extend beyond the boundaries of the parent, but all output to a window is clipped

1

XIib - C Library Xll, Release 3

by its parent. If several children of a window have overlapping locations, one of the chil¬
dren is considered to be on top of or raised over the others thus obscuring them. Out¬
put to areas covered by other windows is suppressed by the window system unless the
window has backing store. If a window is obscured by a second window, the second win¬
dow obscures only those ancestors of the second window, which are also ancestors of the

first window.

A window has a border zero or more pixels in width, which can be any pattern (pixmap)
or solid color you like. A window usually but not always has a background pattern,
which will be repainted by the window system when uncovered. Each window has its
own coordinate system. Child windows obscure their parents unless the child windows
(of the same depth) have no background, and graphic operations in the parent window
usually are clipped by the children.

X does not guarantee to preserve the contents of windows. When part or all of a window
is hidden and then brought back onto the screen, its contents may be lost. The server
then sends the client program an Expose event to notify it that part or all of the win¬
dow needs to be repainted. Programs must be prepared to regenerate the contents of
windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane
(depth 1) pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most
graphics functions interchangeably with windows and are used in various graphics opera¬
tions to define patterns or tiles. Windows and pixmaps together are referred to as draw-

ables.

Most of the functions in Xlib just add requests to an output buffer. These requests later
execute asynchronously on the X server. Functions that return values of information
stored in the server do not return (that is, they block) until an explicit reply is received
or an error occurs. You can provide an error handler, which will be called when the
error is reported.

If a client does not want a request to execute asynchronously, it can follow the request
with a call to XSyne, which blocks until all previously buffered asynchronous events
have been sent and acted on. As an important side effect, the output buffer in Xlib is
always flushed by a call to any function that returns a value from the server or waits for
input.

Many Xlib functions will return an integer resource ID, which allows you to refer to
objects stored on the X server. These can be of type Window, Font, Pixmap,
Coiormap, Cursor, and GContext, as defined in the file <Xll/X.h >.± These
resources are created by requests and are destroyed (or freed) by requests or when con¬
nections are closed. Most of these resources are potentially sharable between applica¬
tions, and in fact, windows are manipulated explicitly by window manager programs.
Fonts and cursors are shared automatically across multiple screens. Fonts are loaded
and unloaded as needed and are shared by multiple clients. Fonts are often cached in
the server. Xlib provides no support for sharing graphics contexts between applications.

Client programs are informed of events. Events may either be side effects of a request
(for example, restacking windows generates Expose events) or completely asynchronous
(for example, from the keyboard). A client program asks to be informed of events.
Because other applications can send events to your application, programs must be
prepared to handle (or ignore) events of all types.

Input events (for example, a key pressed or the pointer moved) arrive asynchronously
from the server and are queued until they are requested by an explicit call (for example,
XNextEvent or XWindowEvent). In addition, some library functions (for example,

± The < > has the meaning defined by the # include statement of the C compiler and is a file relative to a well-known direc¬
tory. On UNIX-based systems, this is /usr/include.

2

Xlib - C Library XI1, Release 3

XRaiseWindow) generate Expose and ConfigureRequest events. These events
also arrive asynchronously, but the client may wish to explicitly wait for them by calling
XSync after calling a function that can cause the server to generate events.

1.2. Errors

Some functions return Status, an integer error indication. If the function fails, it
returns a zero. If the function returns a status of zero, it has not updated the return
arguments. Because C does not provide multiple return values, many functions must
return their results by writing into client-passed storage. By default, errors are handled
either by a standard library function or by one that you provide. Functions that return
pointers to strings return NULL pointers if the string does not exist.

The X server reports protocol errors at the time that it detects them. If more than one
error could be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it
buffers them), errors can be reported much later than they actually occur. For debug¬
ging purposes, however, Xlib provides a mechanism for forcing synchronous behavior (see
section 8.12.1). When synchronization is enabled, errors are reported as they are gen¬
erated.

When Xlib detects an error, it calls an error handler, which your program can provide.
If you do not provide an error handler, the error is printed, and your program ter¬
minates.

1.3. Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions. Given
that you remember what information the function requires, these conventions are
intended to make the syntax of the functions more predictable.

The major naming conventions are:

• To differentiate the X symbols from the other symbols, the library uses mixed case
for external symbols. It leaves lowercase for variables and all uppercase for user
macros, as per existing convention.

© All Xlib functions begin with a capital X.

© The beginnings of all function names and symbols are capitalized.

• All user-visible data structures begin with a capital X. More generally, anything
that a user might dereference begins with a capital X.

• Macros and other symbols do not begin with a capital X. To distinguish them
from all user symbols, each word in the macro is capitalized.

• All elements of or variables in a data structure are in lowercase. Compound
words, where needed, are constructed with underscores (_).

• The display argument, where used, is always first in the argument list.

• All resource objects, where used, occur at the beginning of the argument list
immediately after the display argument.

• When a graphics context is present together with another type of resource (most
commonly, a drawable), the graphics context occurs in the argument list after the
other resource. Drawables outrank all other resources.

• Source arguments always precede the destination arguments in the argument list.

• The x argument always precedes the y argument in the argument list.

• The width argument always precedes the height argument in the argument list.

• Where the x, y, width, and height arguments are used together, the x and y argu¬
ments always precede the width and height arguments.

3

XIib — C Library Xll, Release 3

• Where a mask is accompanied with a structure, the mask always precedes the
pointer to the structure in the argument list.

1.4. Programming Considerations

The major programming considerations are:

• Keyboards are the greatest variable between different manufacturer’s workstations.
If you want your program to be portable, you should be particularly conservative
here.

® Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

• The user should have control of his screen real estate. Therefore, you should write
your applications to react to window management rather than presume control of
the entire screen. What you do inside of your top-level window, however, is up to
your application. For further information, see chapter 9.

® Coordinates and sizes in X are actually 16-bit quantities. They usually are
declared as an “int” in the interface (int is 16 bits on some machines). Values
larger than 16 bits are truncated silently. Sizes (width and height) are unsigned
quantities. This decision was taken to minimize the bandwidth required for a
given level of performance.

1.5. Conventions Used in Xlib - C Language X Interface

This document uses the following conventions:

® Global symbols in Xlib - C Language X Interface are printed in this special
font. These can be either function names, symbols defined in include files, or
structure names. Arguments are printed in italics.

® Each function is introduced by a general discussion that distinguishes it from other
functions. The function declaration itself follows, and each argument is specifically
explained. General discussion of the function, if any is required, follows the argu¬
ments. Where applicable, the last paragraph of the explanation lists the possible
Xlib error codes that the function can generate. For a complete discussion of the
Xlib error codes, see section 8.12.2.

• To eliminate any ambiguity between those arguments that you pass and those that
a function returns to you, the explanations for all arguments that you pass start
with the word specifies or, in the case of multiple arguments, the word specify.
The explanations for all arguments that are returned to you start with the word
returns or, in the case of multiple arguments, the word return. The explanations
for all arguments that you can pass and are returned start with the words specifies
and returns.

• Any pointer to a structure that is used to return a value is designated as such by
the jreturn suffix as part of its name. All other pointers passed to these functions
are used for reading only. A few arguments use pointers to structures that are
used for both input and output and are indicated by using the _in_out suffix.

• Xlib defines the Boolean values of True and False.

Xlib - C Library Xll, Release 3

Chapter 2

Display Functions

Before your program can use a display, you must establish a connection to the X server.
Once you have established a connection, you then can use the Xlib macros and functions
discussed in this chapter to return information about the display. This chapter discusses
how to:

• Open (connect to) the display

® Obtain information about the display, image format, and screen

• Free client-created data

® Close (disconnect from) a display

The chapter concludes with a general discussion of what occurs when the connection to
the X server is closed.

2.1. Opening the Display

To open a connection to the X server that controls a display, use XOpenDisplay.

Display *XOpenDisplay (display_name)
char *display_name;

display_name Specifies the hardware display name, which determines the display and
communications domain to be used. On a UNIX-based system, if the
display_name is NULL,-it defaults to the value of the DISPLAY environ¬
ment variable.

On UNIX-based systems, the display name or DISPLAY environment variable is a string
in the format:

hostname: number. screen_number

hostname Specifies the name of the host machine on which the display is physically
attached. You follow the hostname with either a single colon (:) or a dou¬
ble colon (::).

number Specifies the number of the display server on that host machine. You
may optionally follow this display number with a period (.). A single
CPU can have more than one display. Multiple displays are usually num¬
bered starting with zero.

screen_numberSpec'\fies the screen to be used on that server. Multiple screens can be
controlled by a single X server. The screen_number sets an internal vari¬
able that can be accessed by using the DefaultScreen macro or the
XDefaultScreen function if you are using languages other than C (see
section 2.2.1).

For example, the following would specify screen 2 of display 0 on the machine named
mit-athena:

mit-athena:0.2

The XOpenDisplay function returns a Display structure that serves as the connec¬
tion to the X server and that contains all the information about that X server.
XOpenDisplay connects your application to the X server through TCP, UNIX domain,

5

Xlib - C Library Xll, Release 3

or DECnet communications protocols. If the hostname is a host machine name and a
single colon (:) separates the hostname and display number, XOpenDisplay connects
using TCP streams. If the hostname is unix and a single colon (:) separates it from the
display number, XOpenDisplay connects using UNIX domain IPC streams. If the
hostname is not specified, Xlib uses whatever it believes is the fastest transport. If the
hostname is a host machine name and a double colon (::) separates the hostname and
display number, XOpenDisplay connects using DECnet. A single X server can sup¬
port any or all of these transport mechanisms simultaneously. A particular Xlib imple¬
mentation can support many more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is
defined in <Xll/Xlib.h >. If XOpenDisplay does not succeed, it returns NULL.
After a successful call to XOpenDisplay, all of the screens in the display can be used
by the client. The screen number specified in the display_name argument is returned by
the DefaultScreen macro (or the XDefaultScreen function). You can access ele¬
ments of the Display and Screen structures only by using the information macros or
functions. For information about using macros and functions to obtain information
from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 7.11).

2.2. Obtaining Information about the Display, Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that
return data from the Display structure. The macros are used for C programming, and
their corresponding function equivalents are for other language bindings. This section
discusses the:

© Display macros

« Image format macros

® . Screen macros

All other members of the Display structure (that is, those for which no macros are
defined) are private to Xlib and must not be used. Applications must never directly
modify or inspect these private members of the Display structure.

Note

The XDisplayWidth , XDisplayHeight, XDisplayCells, XDisplay-
Planes, XD isplayWidthMM, and XDisplayHeightMM functions in the
next sections are misnamed. These functions really should be named Screen-
whatever and XScreen whatever, not Display whatever or XDisplay whatever.
Our apologies for the resulting confusion.

2.2.1. Display Macros

Applications should not directly modify any part of the Display and Screen struc¬
tures. The members should be considered read-only, although they may change as the
result of other operations on the display.

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both can return.

AllPlanes()

unsigned long XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to a pro¬
cedure.

6

Xlib - C Library Xll, Release 3

Both BlackPixel and WhitePixel can be used in implementing'a monochrome appli¬
cation. These pixel values are for permanently allocated entries in the default colormap.
The actual RGB (red, green, and blue) values are settable on some screens and, in any
case, may not actually be black or white. The names are intended to convey the
expected relative intensity of the colors.

BlackPixel (display, $creen_number)

unsigned long XBlackPixel(display, screen_number)
Display * display,
int screenjnumber;

Both return the black pixel value for the specified screen.

WhitePixel(display, screenjnumber)

unsigned long XWhitePixel(display, screen_number)
Display * display ;
int screenjnumber;

Both return the white pixel value for the specified screen.

ConnectionNumber (display)

int XConnectionNumber(display)
Display * display;

Both return a connection number for the specified display. On a UNIX-based system,
this is the file descriptor of the connection.

4»

DefaultColormap (display, screenjnumber)

Colormap XDefaultColormap(display, screenjnumber)
Display * display ;
int screenjnumber;

Both return the default colormap ID for allocation on the specified screen. Most routine
allocations of color should be made out of this colormap.

DefaultDepth (display, screen_number)

int XDefaultDepth(display, screenjnumber)
Display * display ;
int screenjnumber;

Both return the depth (number of planes) of the default root window for the specified
screen. Other depths may also be supported on this screen (see XMatchVisuallnfo).

DefaultGC(display, screenjnumber)

GC XDefaultGC(display, screenjnumber)
Display * display;
int screenjnumber;

7

Xlib - C Library Xll, Release 3

Both return the default graphics context for the root window of the specified screen.
This GC is created for the convenience of simple applications and contains the default
GC components with the foreground and background pixel values initialized to the black
and white pixels for the screen, respectively. You can modify its contents freely because
it is not used in any Xlib function. This GC should never be freed.

DefaultRootWindow (display)

Window XDefaultRootWindow(display)
Display * display,

Both return the root window for the default screen.

DefaultScreenOfDisplay (display)

Screen *XDefaultScreenQfDisplay (display)
Display *display;

Both return a pointer to the default screen.

ScreenOfDisplay (display, screen_number)

Screen *XScreenQfDisplay (display, screen__number)
Display * display;
int screen_nurnber;

Both return a pointer to the indicated screen.

DefaultScreen (display)

int XDefaultScreen (display)
Display * display;

Both return the default screen number referenced by the XOpenDisplay function. This
macro or function should be used to retrieve the screen number in applications that will
use only a single screen.

DefaultVisua.l(display, screen_number)

Visual *XDefaultVisual(display, screen_number)
Display * display ;
int screen_number;

Both return the default visual type for the specified screen. For further information
about visual types, see section 3.1.

DisplayCells (display, screen_number)

int XDisplayCells(display, screen_number)
Display * display ;
int screen_number;

8

XIib - C Library Xll, Release 3

Both return the number of entries in the default colormap.

DisplayPlanes(display, screen_number)

int XDisplayPlanes(display, screen_number)
Display * display,
int screen_number;

Both return the depth of the root window of the specified screen. For an explanation of
depth, see the glossary.

DisplayString(display)

char *XDisplayString(display)
Display * display,

Both return the string that was passed to XOpenDisplay when the current display
was opened. On UNIX-based systems, if the passed string was NULL, these return the
value of the DISPLAY environment variable when the current display was opened.
These are useful to applications that invoke the fork system call and want to open a
new connection to the same display from the child process as well as for printing error
messages.

LastKnownRequestProcessed (display)

unsigned long XLastKnownRequestProcessed (display)
Display * display,

Both extract the full serial number of the last request known by Xlib to have been pro¬
cessed by the X server. Xlib automatically sets this number when replies, events, and
errors are received.

NextRequest(display)

unsigned long XNextRequest(display)
Display * display,

Both extract the full serial number that is to be used for the next request. Serial
numbers are maintained separately for each display connection.

ProtocolVersion (display)

int XProtocolVersion (display)
Display * display,

Both return the major version number (11) of the X protocol associated with the con¬
nected display.

ProtocolRevision (display)

int XProtocolRevision (display)
Display * display,

9

Xlib - C Library Xll, Release 3

Both return the minor protocol revision number of the X server.

QLength(display)

int XQLength (display)
Display * display,

Both return the length of the event queue for the connected display. Note that there
may be more events that have not been read into the queue yet (see XEventsQueued).

Root Window (display, screen_number)

Window XRootWindow (display, screen_number)

Display * display,
int screen_number;

Both return the root window. These are useful with functions that need a drawable of a
particular screen and for creating top-level windows.

ScreenCount(display)

int XScreenCount(display)
Display * display,

Both return the number of available screens.

ServerVendor(display)

char *XServerVendor(display)
Display * display,

Both return a pointer to a null-terminated string that provides some identification of the
owner of the X server implementation.

VendorRelease(display)

int XVendorRelease (display)
Display * display;

Both return a number related to a vendor’s release of the X server.

2.2.2. Image Format Macros

Applications are required to present data to the X server in a format that the server
demands. To help simplify applications, most of the work required to convert the data
is provided by Xlib (see sections 6.7 and 10.9).

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both return for the specified server
and screen. These are often used by toolkits as well as by simple applications.

10

XIib - C Library XII, Release 3

ImageByteOrder(display)

int XlmageByteOrder(display)
Display * display,

Both specify the required byte order for images for each scanline unit in XY format (bit¬
map) or for each pixel value in Z format. The macro or function can return either
LSBFirst or MSBFirst

BitmapUnit(display)

int XBitmapUnit(display)
Display * display,

Both return the size of a bitmap’s scanline unit in bits. The scanline is calculated in
multiples of this value.

BitmapBitOrder(display)

int XBitmapBitOrder(display)
Display * display,

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is
either the least-significant or most-significant bit in the unit. This macro or function
can return LSBFirst or MSBFirst.

BitmapPad (display)

int XBitmapPad (display)
Display * display;

Each scanline must be padded to a multiple of bits returned by this macro or function.

DisplayHeight(display, screenynumber)

int XDisplayHeight(display, screen_number)
Display * display;
int screen_number;

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM(display, screen_number)

int XDisplayHeightMM(display, screenjnumber)
Display * display;
int screenjnumber;

Both return the height of the specified screen in millimeters.

11

Xlib — C Library Xll, Release 3

Display Width (display, screen_number)

int XDisplayWidth (display, screen_number)
Display * display,
int screen_number\

Both return the width of the screen in pixels.

DisplayWidthMM(display, screen_number)

int XDisplayWidthMM(display, screen_number)
Display * display,
int screen_number;

Both return the width of the specified screen in millimeters.

2.2.3. Screen Information Macros

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both can return. These macros or
functions all take a pointer to the appropriate screen structure.

BlackPixelOfScreen (screen)

unsigned long XBlackPixelOfScreen (screen)
Screen * screen-,

Both return the black pixel value of the specified screen.

WhitePixelOfScreen (screen)

unsigned long XWhitePixelOfScreen (screen)
Screen *screen]

Both return the white pixel value of the specified screen.

CellsOfScreen (screen)

int XCellsOfScreen(screen)
Screen *screen;

Both return the number of colormap cells in the default colormap of the specified screen.

DefaultColormapOfScreen (screen)

Colormap XDefaultColormapOfScreen(screen)
Screen *screen-,

Both return the default colormap of the specified screen.

DefaultDepthOfScreen (screen)

int XDefaultDepthOfScreen (screen)
Screen * screen-,

12

Xlib — C Library Xll, Release 3

Both return the depth of the root window.

DefaultGCOfScreen (screen)

GC XDefaultGCOfScreen (screen)
Screen * screen]

Both return a default graphics context (GC) of the specified screen, which has the same
depth as the root window of the screen. The GC must never be freed.

DefaultVisualOfScreen (screen)

Visual *XDefaultVisualQfScreen(screen)
Screen * screen]

Both return the default visual of the specified screen. For information on visual types,
see section 3.1.

DoesBackingStore (screen)

int XDoesBackingStore(screen)
Screen * screen]

Both return a value indicating whether the screen supports backing stores. The value
returned can be one of WhenMapped , NotUseful, or Always (see section 3.2.4).

DoesSaveUnders (screen)

Bool XDoesSaveUnders(screen)
Screen * screen]

Both return a Boolean value indicating whether the screen supports save unders. If
True, the screen supports save unders. If False, the screen does not support save
unders (see section 3.2.5).

DisplayOfScreen (screen)

Display *XDisplayOfScreen(screen)
Screen * screen]

Both return the display of the specified screen.

EventMaskOfScreen (screen)

long XEventMaskOfScreen (screen)
Screen * screen]

Both return the event mask of the root window for the specified screen at connection
setup time.

13

Xlib - C Library Xll, Release 3

WidthOfScreen (screen)

int XWidthOfScreen(screen)
Screen *screen]

Both return the width of the specified screen in pixels.

HeightOl’Screen (screen)

int XHeightOfScreen(screen)
Screen * screen]

Both return the height of the specified screen in pixels.

WidthMMOfScreen (screen)

int XWidthMMOfScreen(screen)
Screen * screen]

Both return the width of the specified screen in millimeters.

HeightMMOfScreen (screen)

int XHeightMMOfScreen(screen)
Screen *screen]

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen (screen)

int XMaxCmapsOfScreen(screen)
Screen *screen]

Both return the maximum number of installed colormaps supported by the specified
screen (see section 7.3).

MinCmapsOfScreen (screen)

int XMinCmapsOfScreen(screen)
Screen *screen]

Both return the minimum number of installed colormaps supported by the specified
screen (see section 7.3).

PlanesOfScreen (screen)

int XPlanesOfScreen (screen)
Screen *screen]

Both return the depth of the root window.

14

Xlib - C Library Xll, Release 3

RootWindowOfScreen (screen)

Window XRootWindowOfScreen (screen)
Screen * screen-,

Both return the root window of the specified screen.

2.3. Generating a NoOperation Protocol Request

To execute a NoOperation protocol request, use XNoOp.

XNoOp (display)
Display * display,

display Specifies the connection to the X server.

The XNoOp function sends a NoOperation protocol request to the X server, thereby
exercising the connection.

2.4. Freeing Client-Created Data

To free any in-memory data that was created by an Xlib function, use XFree.

XFree (data)
char *data\

data Specifies a pointer to the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified data. You
must use it to free any objects that were allocated by Xlib.

2.5. Closing the Display

To close a display or disconnect from the X server, use XCloseDisplay.

XCloseDisplay (display)
Display * display,

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display
specified in the Display structure and destroys all windows, resource IDs (Window,
Font, Pixmap, Colormap, Cursor, and GContext), or other resources that the
client has created on this display, unless the close-down mode of the resource has been
changed (see XSetCloseDownMode). Therefore, these windows, resource IDs, and
other resources should never be referenced again or an error will be generated. Before
exiting, you should call XCloseDisplay explicitly so that any pending errors are
reported as XCloseDisplay performs a final XSync operation.

XCloseDisplay can generate a BadGC error.

2.6. X Server Connection Close Operations

When the X server’s connection to a client is closed either by an explicit call to
XCloseDisplay or by a process that exits, the X server performs the following
automatic operations:

• It disowns all selections owned by the client (see XSetSelectionOwner).

• It performs an XUngrabPointer and XUngrabKeyboard if the client has
actively grabbed the pointer or the keyboard.

• It performs an XUngrabServer if the client has grabbed the server.

• It releases all passive grabs made by the client.

15

Xlib - C Library Xll, Release 3

• It marks all resources (including colormap entries) allocated by the client either as
permanent or temporary, depending on whether the close-down mode is Retain-
Permanent or RetainTemporary. However, this does not prevent other client
applications from explicitly destroying the resources (see XSetCloseDownMode).

When the close-down mode is Destroy All, the X server destroys all of a client’s
resources as follows:

• It examines each window in the client’s save-set to determine if it is an inferior
(subwindow) of a window created by the client. (The save-set is a list of other
clients’ windows, which are referred to as save-set windows.) If so, the X server
reparents the save-set window to the closest ancestor so that the save-set window
is not an inferior of a window created by the client. The reparenting leaves
unchanged the absolute coordinates (with respect to the root window) of the
upper-left outer corner of the save-set window.

® It performs a MapWindow request on the save-set window if the save-set win¬
dow is unmapped. The X server does this even if the save-set window was not an
inferior of a window created by the client.

• It destroys all windows created by the client.

© It performs the appropriate free request on each nonwindow resource created by
the client in the server (for example, Font, Pixmap, Cursor, Colormap, and
GContext).

• It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X
server goes through a cycle of having no connections and having some connections.
When the last connection to the X server closes as a result of a connection closing with
the close_mode of DestroyAll, the X server does the following:

*' It resets its state as if it had just been started. The X server begins by destroying
all lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode.

• It deletes all but the predefined atom identifiers.

• It deletes all properties on all root windows (see chapter 4).

® It resets all device maps and attributes (for example, key click, bell volume, and
acceleration) as well as the access control list.

® It restores the standard root tiles and cursors.

• It restores the default font path.

• It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down mode
set to RetainPermanent or RetainTemporary.

16

Xlib - C Library Xll, Release 3

Chapter 3

Window Functions

In the X Window System, a window is a rectangular area on the screen that lets you
view graphic output. Client applications can display overlapping and nested windows on
one or more screens that are driven by X servers on one or more machines. Clients who
want to create windows must first connect their program to the X server by calling
XOpenDisplay. This chapter begins with a discussion of visual types and window
attributes. The chapter continues with a discussion of the Xlib functions you can use to:

• Create windows

• Destroy windows

• Map windows

• Unmap windows

• Configure windows

• Change the stacking order

• Change window attributes

• Translate window coordinates

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for
communicating with window managers for it to work well with the various window
managers in use (see section 9.1). Toolkits generally adhere to these conventions for
you, relieving you of the burden. Toolkits also often supersede many functions in this
chapter with versions of their own. Refer to the documentation for the toolkit you are
using for more information.

3.1. Visual Types

On some display hardware, it may be possible to deal with color resources in more than
one way. For example, you may be able to deal with a screen of either 12-bit depth with
arbitrary mapping of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel
dedicated to each of red, green, and blue. These different ways of dealing with the
visual aspects of the screen are called visuals. For each screen of the display, there may
be a list of valid visual types supported at different depths of the screen. Because
default windows and visual types are defined for each screen, most simple applications
need not deal with this complexity. Xlib provides macros and functions that return the
default root window, the default depth of the default root window, and the default
visual type (see section 2.2.1 and XMatchVisuallnfo).

Xlib uses a Visual structure that contains information about the possible color map¬
ping. The members of this structure pertinent to this discussion are class, red_mask,
green_mask, blue_mask, bits_j>er_rgb, and map_entries. The class member specifies one
of the possible visual classes of the screen and can be StaticGray, StaticColor,
TrueColor, GrayScale, PseudoColor, or DirectColor.

The following concepts may serve to make the explanation of visual types clearer. The
screen can be color or grayscale, can have a colormap that is writable or read-only, and
can also have a colormap whose indices are decomposed into separate RGB pieces, pro¬
vided one is not on a grayscale screen. This leads to the following diagram:

17

Xlifo - C Library Xll, Release 3

Color GrayScale
R/O R/W R/O R/W

H—~..—I-—— ---F
| Undecomposed | Static | Pseudo | Static| Gray|
j Colormap | Color j Color j Gray | Scale j
_l__.--—I--— --—-—-+

| Decomposed | True | Direct |
| Colormap j Color j Color |

H...--—--F

Conceptually, as each pixel is read out of video memory for display on the screen, it goes
through a look-up stage by indexing into a colormap. Colormaps can be manipulated
arbitrarily on some hardware, in limited ways on other hardware, and not at all on other
hardware. The visual types affect the colormap and the RGB values in the following

ways:

• For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values, and the RGB values can be changed dynamically.

» GrayScale is treated the same way as PseudoColor except that the primary
that drives the screen is undefined. Thus, the client should always store the same
value for red, green, and blue in the colormaps.

® For DirectColor, a pixel value is decomposed into separate RGB subfields, and
each subfield separately indexes the colormap for the corresponding value. The
RGB values can be changed dynamically.

© TrueColor is treated the same way as DirectColor except that the colormap
has predefined, read-only RGB values. These RGB values are server-dependent
but provide linear or near-linear ramps in each primary.

® StaticColor is treated the same way as PseudoColor except that the colormap
has predefined, read-only, server-dependent RGB values.

• StaticGray is treated the same way as StaticColor except that the RGB values
are equal for any single pixel value, thus resulting in shades of gray. StaticGray
with a two-entry colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defined for DirectColor
and TrueColor. Each has one contiguous set of bits with no intersections. The
bits_per_rgb member specifies the log base 2 of the number of distinct color values (indi¬
vidually) of red, green, and blue. Actual RGB values are unsigned 16-bit numbers. The
map_entries member defines the number of available colormap entries in a newly created
colormap. For DirectColor and TrueColor, this is the size of an individual pixel
subfield.

To obtain the visual ID from a Visual, use XVisuallDFromVisual.

VisuallD XVisuallDFrornVisual (visual)
Visual * visual;

visual Specifies the visual type.

The XVisuallDFromVisual function returns the visual ID for the specified visual
type.

3.2. Window Attributes

All InputOutput windows have a border width of zero or more pixels, an optional
background, an event suppression mask (which suppresses propagation of events from
children), and a property list (see section 4.2). The window border and background can
be a solid color or a pattern, called a tile. All windows except the root have a parent

18

Xlib — C Library Xll, Release 3

and are clipped by their parent. If a window is stacked on top of another window, it
obscures that other window for the purpose of input. If a window has a background
(almost all do), it obscures the other window for purposes of output. Attempts to out¬
put to the obscured area do nothing, and no input events (for example, pointer motion)
are generated for the obscured area.

Windows also have associated property lists (see section 4.2).

Both InputOutput and InputOnly windows have the following common attributes,
which are the only attributes of an InputOnly window:

® win-gravity

® event-mask

• do-not-propagate-mask

<e override-redirect

• cursor

If you specify any other attributes for an InputOnly window, a BadMatch error
results.

InputOnly windows are used for controlling input events in situations where Inpu¬
tOutput windows are unnecessary. InputOnly windows are invisible; can only be
used to control such things as cursors, input event generation, and grabbing; and cannot
be used in any graphics requests. Note that InputOnly windows cannot have Inpu¬
tOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a background
pattern or tile. Pixel values can be used for solid colors. The background and border
pixmaps can be destroyed immediately after creating the window if no further explicit
references to them are to be made. The pattern can either be relative to the parent or
absolute. If ParentRelative, the parent’s background is used.

When windows are first created, they are not visible (not mapped) on the screen. Any
output to a window that is not visible on the screen and that does not have backing
store will be discarded. An application may wish to create a window long before it is
mapped to the screen. When a window is eventually mapped to the screen (using
XMapWindow), the X server generates an Expose event for the window if backing
store has not been maintained.

A window manager can override your choice of size, border width, and position for a
top-level window. Your program must be prepared to use the actual size and position of
the top window. It is not acceptable for a client application to resize itself unless in
direct response to a human command to do so. Instead, either your program should use
the space given to it, or if the space is too small for any useful work, your program
might ask the user to resize the window. The border of your top-level window is con¬
sidered fair game for window managers.

To set an attribute of a window, set the appropriate member of the XSetWindowAt-
tributes structure and OR in the corresponding value bitmask in your subsequent calls
to XCreate Window and XChangeWindowAttributes, or use one of the other con¬
venience functions that set the appropriate attribute. The symbols for the value mask
bits and the XSetWindowAttributes structure are:

/* Window attribute value mask bits */

#define CWBackPixmap (1L< <0)
#define CWBackPixel (1L<<1)
#define CWBorderPixmap (1L<<2)
^define CWBorder Pixel (1L<<3)
#define CWBitGravity (1L<<4)

19

Xll, Release 3 Xlib - C Library

#define CWWinGravity

^define CWBackingStore

^define CWBackingPlanes
^define CWBackingPixel
^define CWOverrideRedirect
^define CWSaveUnder
#define CWEventMask
#define CWDontPropagate
#dehne CWColormap
^define CWCursor

/* Values 7

typedef struct {
Pixmap background_pixmap;
unsigned long baekground_pixel;
Pixmap border_j>ixmap;
unsigned long border_pixel;
int bit_gravity;
int win_gravity;
int backing_store;
unsigned long b ack in g_p lanes;
unsigned long backing_pixel;
Bool save_under;
long event_mask;
long do_not_propagate_mask;
Bool override_redirect;
Colormap colormap;
Cursor cursor;

} XSetWindowAttributes;

(1L<<5)
(1L<<6)
(1L<<7)
(1L<<8)
(1L<<9)
(1L< < 10)
(1L< < 11)
(1L< < 12)
(1L< < 13)
(1L< < 14)

/* background, None, or ParentRelative */
/* background pixel */
/* border of the window or CopyFromParent
/* border pixel value */
/* one of bit gravity values */
/* one of the window gravity values */
/* NotUseful, WhenMapped, Always */
/* planes to be preserved if possible */
/* value to use in restoring planes */
/* should bits under be saved? (popups) */
/* set of events that should be saved */
/* set of events that should not propagate */
/* boolean value for override_redirect */
/* color map to be associated with window' */
/* cursor to be displayed (or None) */

7

The following lists the defaults for each window attribute and indicates whether the
attribute is applicable to InputOutput and InputOnly windows:

Attribute Default InputOut¬
put

Inpu¬
tOnly

background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFrom-

Parent
Yes No

border-pixel Undefined Yes No
bit-gravity F orgetGravity Yes No
win-gravity NorthWest-

Gravity
Yes Yes

backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel zero Yes No
save-under F alse Yes No

event-mask empty set Yes Yes
do-not-propagate-mask empty set Yes Yes
override-redirect F alse Yes Yes
colormap CopyFrom¬

Parent
Yes No

20

Xlib - C Library XI1, Release 3

Attribute Default InputOut- Xnpu-
put tOnly

cursor None Yes Yes

3.2.1. Background Attribute

Only InputOutput windows can have a background. You can set the background of
an InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for a
window’s background. This pixmap can be of any size, although some sizes may be fas¬
ter than others. The background-pixel attribute of a window specifies a pixel value used
to paint a window’s background in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRelative.
You can set the background-pixel of a window to any pixel value (no default). If you
specify a background-pixel, it overrides either the default background-pixmap or any
value you may have set in the background-pixmap. A pixmap of an undefined size that
is filled with the background-pixel is used for the background. Range checking is not
performed on the background pixel; it simply is truncated to the appropriate number of
bits.

If you set the background-pixmap, it overrides the default. The background-pixmap and
the window must have the same depth, or a BadMatch error results. If you set
background-pixmap to None, the window has no defined background. If you set the
background-pixmap to ParentRelative:

® The parent window’s background-pixmap is used. The child window, however,
must have the same depth as its parent, or a BadMatch error results.

® If the parent Avindow has a background-pixmap of None, the window also has a
background-pixmap of None.

® A copy of the parent window’s background-pixmap is not made. The parent’s
background-pixmap is examined each time the child window’s background-pixmap
is required.

• The background tile origin always aligns with the parent window’s background tile
origin. If the background-pixmap is not ParentRelative, the background tile ori¬
gin is the child window’s origin.

Setting a new background, whether by setting background-pixmap or background-pixel,
overrides any previous background. The background-pixmap can be freed immediately
if no further explicit reference is made to it (the X server will keep a copy to use when
needed). If you later draw into the pixmap used for the background, what happens is
undefined because the X implementation is free to make a copy of the pixmap or to use
the same pixmap.

When no valid contents are available for regions of a window and either the regions are
visible or the server is maintaining backing store, the server automatically tiles the
regions with the window’s background unless the window has a background of None.
If the background is None, the previous screen contents from other windows of the
same depth as the window are simply left in place as long as the contents come from the
parent of the window or an inferior of the parent. Otherwise, the initial contents of the
exposed regions are undefined. Expose events are then generated for the regions, even
if the background-pixmap is None (see chapter 8).

21

Xlib - C Library Xll, Release 3

3.2.2. Border Attribute

Only InputOutput windows can have a border. You can set the border of an Inpu-
tOutput window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a window’s
border. The border-pixel attribute of a window specifies a pixmap of undefined size
filled with that pixel be used for a window’s border. Range checking is not performed on
the background pixel; it simply is truncated to the appropriate number of bits. The
border tile origin is always the same as the background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster than
others) or to CopyFromParent (default). You can set the border-pixel to any pixel
value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the window
must have the same depth, or a BadMatch error results. If you set the border-pixmap
to CopyFromParent, the parent window’s border-pixmap is copied. Subsequent
changes to the parent window’s border attribute do not affect the child window. How¬
ever, the child window must have the same depth as the parent window, or a Bad-
Match error results.

The border-pixmap can be freed immediately if no further explicit reference is made to
it. If you later draw into the pixmap used for the border, what happens is undefined
because the X implementation is free either to make a copy of the pixmap or to use the
same pixmap. If you specify a border-pixel, it overrides either the default border-pixmap
or any value you may have set in the border-pixmap. All pixels in the window’s border
will be set to the border-pixel. Setting a new border, whether by setting border-pixel or
by setting border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. Therefore, graphics
operations never affect the window border.

3.2.3. Gravity Attributes

The bit gravity of a window defines which region of the window should be retained when
an InputOutput window is resized. The default value for the bit-gravity attribute is
ForgetGravity. The window gravity of a window allows you to define how the Inpu¬
tOutput or InputOnly window should be repositioned if its parent is resized. The
default value for the win-gravity attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is moved or
its border is changed, then the contents of the window are not lost but move with the
window. Changing the inside width or height of the window causes its contents to be
moved or lost (depending on the bit-gravity of the window) and causes children to be
reconfigured (depending on their win-gravity). For a change of width and height, the (x,
y) pairs are defined:

Gravity Direction Coordinates

NorthWestGravity
NorthGravity
NorthEastGravity
West Gravity
CenterGravity
East Gravity
South WestGravity
South Gravity
SouthEastGravity

(0, 0)
(Width/2, 0)
(Width, 0)
(0, Height/2)
(Width/2, Height/2)
(Width, Height/2)
(0, Height)
(Width/2, Height)
(Width, Height)

22

Xlib - C Library Xll, Release 3

When a window with one of these bit-gravity values is resized, the corresponding pair
defines the change in position of each pixel in the window. When a window with one of
these win-gravities has its parent window resized, the corresponding pair defines the
change in position of the window within the parent. When a window is so repositioned,
a GravityNotify event is generated (see chapter 8).

A bit-gravity of StaticGravity indicates that the contents or origin should not move
relative to the origin of the root window. If the change in size of the window is coupled
with a change in position (x, y), then for bit-gravity the change in position of each pixel
is (—x, -y), and for win-gravity the change in position of a child when its parent is so
resized is (-x, -y). Note that StaticGravity still only takes effect when the width or
height of the window is changed, not when the window is moved.

A bit-gravity of ForgetGravity indicates that the window’s contents are always dis¬
carded after a size change, even if a backing store or save under has been requested.
The window is tiled with its background and zero or more Expose events are gen¬
erated. If no background is defined, the existing screen contents are not altered. Some X
servers may also ignore the specified bit-gravity and always generate Expose events.

A win-gravity of UnmapGravity is like North West Gravity (the window is not
moved), except the child is also unmapped when the parent is resized, and an Unmap-
Notify event is generated.

3.2.4. Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of Xnpu-
tOutput windows. If the X server maintains the contents of a window, the off-screen
saved pixels are known as backing store. The backing store advises the X server on
what to do with the contents of a window. The backing-store attribute can be set to
NotUseful (default), WhenMapped, or Always.

A backing-store attribute of NotUseful advises the X server that maintaining contents
is unnecessary, although some X implementations may still choose to maintain contents
and, therefore, not generate Expose events. A backing-store attribute of When-
Mapped advises the X server that maintaining contents of obscured regions when the
window is mapped would be beneficial. In this case, the server may generate an
Expose event when the window is created. A backing-store attribute of Always
advises the X server that maintaining contents even when the window is unmapped
would be beneficial. Even if the window is larger than its parent, this is a request to the
X server to maintain complete contents, not just the region within the parent window
boundaries. While the X server maintains the window’s contents, Expose events nor¬
mally are not generated, but the X server may stop maintaining contents at any time.

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination of graphics requests
(and source, when the window is the source). However, regions obscured by inferior win¬
dows are not included.

3.2.5. Save Under Flag

Some server implementations may preserve contents of InputOutput windows under
other InputOutput windows. This is not the same as preserving the contents of a
window for you. You may get better visual appeal if transient windows (for example,
pop-up menus) request that the system preserve the screen contents under them, so the
temporarily obscured applications do not have to repaint.

You can set the save-under flag to True or False (default). If save-under is True,
the X server is advised that, when this window is mapped, saving the contents of win¬
dows it obscures would be beneficial.

23

Xlib ~ C Library XU, Release 3

3.2.6. Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to l) which bit planes of an Inpu-
tOutput window hold dynamic data that must be preserved in backing store and dur¬
ing save unders. The default value for the backing-planes attribute is all bits set to 1.
You can set backing pixel to specify what bits to use in planes not covered by backing
planes. The default value for the backing-pixel attribute is all bits set to 0. The X
server is free to save only the specified bit planes in the backing store or the save under
and is free to regenerate the remaining planes with the specified pixel value. Any
extraneous bits in these values (that is, those bits beyond the specified depth of the win¬
dow) may be simply ignored. If you request backing store or save unders, you should
use these members to minimize the amount of off-screen memory required to store your
window.

3.2.7. Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this InputOutput
or InputOnly window (or, for some event types, inferiors of that window). The do-
not-propagate-mask attribute defines which events should not be propagated to ancestor
windows when no client has the event type selected in this InputOutput or Inpu¬
tOnly window. Both masks are the bitwise inclusive OR of one or more of the valid
event mask bits. You can specify that no maskable events are reported by setting
NoEventMask (default).

3.2.8. Override Redirect Flag

To control window placement or to add decoration, a window manager often needs to
intercept (redirect) any map or configure request. Pop-up windows, however, often need
to be mapped without a window manager getting in the way. To control whether an
InputOutput or InputOnly window is to ignore these structure control facilities, use
the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this window
should override a SubstructureRedirectMask on the parent. You can set the
override-redirect flag to True or False (default). Window managers use this informa¬
tion to avoid tampering with pop-up windows (see also chapter 9).

3.2.9. Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the
InputOutput window. The colormap must have the same visual type as the window,
or a BadMatch error results. X servers capable of supporting multiple hardware color-
maps can use this information, and window managers can use it for calls to Xln-
stallColormap. You can set the colormap attibute to a colormap or to CopyFrom-
Parent (default).

If you set the colormap to CopyFromParent, the parent window’s colormap is copied
and used by its child. However, the child window must have the same visual type as the
parent, or a BadMatch error results. The parent window must not have a colormap of
None, or a BadMatch error results. The colormap is copied by sharing the colormap
object between the child and parent, not by making a complete copy of the colormap
contents. Subsequent changes to the parent window’s colormap attribute do not affect

the child window.

3.2.10. Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in the
InputOutput or InputOnly window. You can set the cursor to a cursor or None

(default).

24

Xlib - C Library Xll, Release 3

If you set the cursor to None, the parent’s cursor is used when the pointer is in the
InputOutput or InputOnly window, and any change in the parent’s cursor will cause
an immediate change in the displayed cursor. By calling XFreeCursor, the cursor can
be freed immediately as long as no further explicit reference to it is made.

3.3. Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-level
functions specifically for creating and placing top-level windows, which are discussed in
the appropriate toolkit documentation. If you do not use a toolkit, however, you must
provide some standard information or hints for the window manager by using the Xlib
predefined property functions (see chapter 9).

If you use Xlib to create your own top-level windows (direct children of the root win¬
dow), you must observe the following rules so that all applications interact reasonably
across the different styles of window management:

• You must never fight with the window manager for the size or placement of your
top-level window.

• You must be able to deal with whatever size window you get, even if this means
that your application just prints a message like “Please make me bigger” in its
window.

® You should only attempt to resize or move top-level windows in direct response to
a user request. If a request to change the size of a top-level window fails, you must
be prepared to live with what you get. You are free to resize or move the children
of top-level windows as necessary. (Toolkits often have facilities for automatic
relayout.)

• If you do not use a toolkit that automatically sets standard window properties, you
should set these properties for top-level windows before mapping them.

XCreateWindow is the m&re general function that allows you to set specific window
attributes when you create a window. XCreateSimpleWindow creates a window that
inherits its attributes from its parent window.

The X server acts as if InputOnly windows do not exist for the purposes of graphics
requests, exposure processing, and VisibilityNotify events. An InputOnly window
cannot be used as a drawable (that is, as a source or destination for graphics requests).
InputOnly and InputOutput windows act identically in other respects (properties,
grabs, input control, and so on). Extension packages can define other classes of win¬
dows.

To create an unmapped window and set its window attributes, use XCreate Window.

Window XCreateWindow (display, parent, x, y, width, height, border_width, depth,
class, visual, valuemask, attributes)

Display * display,
Window parent;
int x, y,
unsigned int width, height;
unsigned int border_width;
int depth;
unsigned int class;
Visual * visual
unsigned long valuemask;
XSetWindowAttributes * attributes',

display Specifies the connection to the X server.

parent Specifies the parent window.

25

Xlib - C Library Xll, Release 3

x

y Specify the x and y coordinates, which are the top-left outside corner of
the created window'’s borders and are relative to the inside of the parent
window’s borders.

width
height Specify the width and height, which are the created window’s inside

dimensions and do not include the created window’s borders. The dimen¬
sions must be nonzero, or a BadValue error results.

border_width Specifies the width of the created window’s border in pixels.

depth Specifies the window’s depth. A depth of CopyFromParent means the
depth is taken from the parent.

class Specifies the created window’s class. You can pass InputOutput, Inpu¬
tOnly, or CopyFromParent. A class of CopyFromParent means
the class is taken from the parent.

visual Specifies the visual type. A visual of CopyFromParent means the
visual type is taken from the parent.

valuemask Specifies which window attributes are defined in the attributes argument.
This mask is the bitwise inclusive OR of the valid attribute mask bits. If
valuemask is zero, the attributes are ignored and are not referenced.

attributes Specifies the structure from which the values (as specified by the value
mask) are to be taken. The value mask should have the appropriate bits
set to indicate w'hich attributes have been set in the structure.

The XC reate Window function creates an unmapped subwindow for a specified parent
window, returns the window ID of the created window', and causes the X server to gen¬
erate a CreateNotify event. The created window is placed on top in the stacking
order with respect to siblings.

The border_width for an InputOnly window must be zero, or a BadMatch error
results. For class InputOutput, the visual type and depth must be a combination sup¬
ported for the screen, or a BadMatch error results. The depth need not be the same
as the parent, but the parent must not be a window of class InputOnly, or a Bad¬
Match error results. For an InputOnly window, the depth must be zero, and the
visual must be one supported by the screen. If either condition is not met, a Bad¬
Match error results. The parent window, however, may have any depth and class. If
you specify any invalid window attribute for a window', a BadMatch error results.

The created window is not yet displayed (mapped) on the user’s display. To display the
window, call XMapWindow. The new window initially uses the same cursor as its
parent. A new cursor can be defined for the new window by calling XDefineCursor.
The window will not be visible on the screen unless it and all of its ancestors are mapped
and it is not obscured by any of its ancestors.

XCreateWindow can generate BadAIloc, BadColor, BadCursor, BadMatch,
BadPbcmap, BadVa!ue,and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window, use
XC reate S im p le Win d o w .

26

Xlib - C Library Xll, Release 3

Window XCreateSimpleWindow (display, parent, x, y, width, height , border_width,
border, background)

Display * display,
Window parent;
int x, y,
unsigned int width, height;
unsigned int border_width;
unsigned long border;
unsigned long background;

display Specifies the connection to the X server.

parent Specifies the parent window.

x
y Specify the x and y coordinates, which are the top-left outside corner of

the new window’s borders and are relative to the inside of the parent
window’s borders.

width
height

border_width

border

background

Specify the width and height, which are the created window’s inside
dimensions and do not include the created window’s borders. The dimen¬
sions must be nonzero, or a BadValue error results.

Specifies the width of the created window’s border in pixels.

Specifies the border pixel value of the window.

Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmapped InputOutput subwin¬
dow for a specified parent window, returns the window ID of the created window, and
causes the X server to generate a CreateNotify event. The created window is placed
on top in the stacking order with respect to siblings. Any part of the window that
extends outside its parent window is clipped The border_width for an InputOnly win¬
dow must be zero, or a BadMatch error results. XCreateSimpleWindow inherits
its depth, class, and visual from its parent. All other window attributes, except back¬
ground and border, have their default values.

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue, and
BadWindow errors.

3.4. Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all subwindows
of a window.

To destroy a window and all of its subwindows, use XDestroyWindow.

XDestroy Window (display, w)
Display * display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XDestroy Window function destroys the specified window as well as all of its
subwindows and causes the X server to generate a DestroyNotify event for each win¬
dow. The window should never be referenced again. If the window specified by the w
argument is mapped, it is unmapped automatically. The ordering of the DestroyNo¬
tify events is such that for any given window being destroyed, DestroyNotify is gen¬
erated on any inferiors of the window before being generated on the window itself. The

27

Xlib - C Library Xll, Release 3

ordering among siblings and across subhierarchies is not otherwise constrained. If the
window you specified is a root window, no windows are destroyed. Destroying a mapped
window will generate Expose events on other windows that were obscured by the win¬
dow being destroyed.

XDestroy Window can generate a BadWindow error.

To destroy all subwindows of a specified window, use XDestroySubwindows.

XDestroySubwindows(display, w)
Display *display,
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the specified win¬
dow, in bottom-to-top stacking order. It causes the X server to generate a DestroyNo-
tify event for each window. If any mapped subwindows were actually destroyed,
XDestroySubwindows causes the X server to generate Expose events on the
specified window. This is much more efficient than deleting many windows one at a
time because much of the work need be performed only once for all of the windows,
rather than for each window. The subwindows should never be referenced again.

XDestroySubwindows can generate a BadWindow error.

3.5. Mapping Windows

A window is considered mapped if an XMapWindow call has been made on it. It may
not be visible on the screen for one of the following reasons:

• It is obscured by another opaque window.

• One of its ancestors is not mapped.

• It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible on
the screen. A client receives the Expose events only if it has asked for them. Windows
retain their position in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If Substruc-
tureRedirectMask has been selected by a window manager on a parent window (usu¬
ally a root window), a map request initiated by other clients on a child window is not
performed, and the window manager is sent a MapRequest event. However, if the
override-redirect flag on the child had been set to True (usually only on pop-up
menus), the map request is performed.

A tiling window manager might decide to reposition and resize other client’s windows
and then decide to map the window to its final location. A window manager that wants
to provide decoration might reparent the child into a frame first. For further informa¬
tion, see section 3.2.8 and chapter 8. Only a single client at a time can select for Sub-
structureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent window.
Then, any attempt to resize the window by another client is suppressed, and the client
receives a ResizeRequest event.

To map a given window, use XMapWindow.

28

XIib — C Library Xl 1, Release 3

XMapWindow (display, w)
Display * display,
Window w,

display Specifies the connection to the X server.

w Specifies the window.

The XMapWindow function maps the window and all of its subwindows that have
had map requests. Mapping a window that has an unmapped ancestor does not display
the window but marks it as eligible for display when the ancestor becomes mapped.
Such a window is called unviewable. When all its ancestors are mapped, the window
becomes viewable and will be visible on the screen if it is not obscured by another win¬
dow. This function has no effect if the window is already mapped.

If the override-redirect of the window is False and if some other client has selected
SubstructureRedirectMask on the parent window, then the X server generates a
MapRequest event, and the XMapWindow function does not map the window.
Otherwise, the window is mapped, and the X server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the X
server tiles the window with its background. If the window’s background is undefined,
the existing screen contents are not altered, and the X server generates zero or more
Expose events. If backing-store was maintained while the window was unmapped, no
Expose events are generated. If backing-store will now be maintained, a full-window
exposure is always generated. Otherwise, only visible regions may be reported. Similar
tiling and exposure take place for any newly viewable inferiors.

If the window is an InputOutput window, XMapWindow generates Expose events
on each InputOutput window that it causes to be displayed. If the client maps and
paints the window and if the client begins processing events, the window is painted
twice. To avoid this, first ask for Expose evenjts and then map the window, so the
client processes input events as usual. The event list will include Expose for each win¬
dow that has appeared on the screen. The client’s normal response to an Expose event
should be to repaint the window. This method usually leads to simpler programs and to
proper interaction with window managers.

XMapWindow can generate a BadWindow error.

To map and raise a window, use XMapRaised.

XMapRaised (display, w)
Display * display,
Window w,

display Specifies the connection to the X server.

w Specifies the window.

The XMapRaised function essentially is similar to XMapWindow in that it maps
the window and all of its subwindows that have had map requests. However, it also
raises the specified window to the top of the stack. For additional information, see
XMapWindow.

XMapRaised can generate multiple BadWindow errors.

To map all subwindows for a specified window, use XMapSubwindows

XMapSubwindows(display, w)
Display * display,
Window w;

29

Xlib - C Library Xll, Release 3

display Specifies the connection to the X server.

w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in top-
to-bottom stacking order. The X server generates Expose events on each newly
displayed window. This may be much more efficient than mapping many windows one
at a time because the server needs to perform much of the work only once, for all of the
windows, rather than for each window.

XMapSubwindows can generate a BadWindow error.

3.6. Unmapping Windows

Xlib provides functions that you can use to unmap a window or all subwindows.

To unmap a window, use XUnmapWindow.

XUnmapWindow(display, w)
Display * display]
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the X server
to generate an UnmapNotify event. If the specified window is already unmapped,
XUnmapWindow has no effect. Normal exposure processing on formerly obscured
windows is performed. Any child window will no longer be visible until another map call
is made on the parent. In other words, the subwindows are still mapped but are not
visible until the parent is mapped. Unmapping a window will generate Expose events
on windows that were formerly obscured by it.

XUnmapWindow can generate a BadWindow error.

To unmap all subwindows for a specified window, use XUnmapSubwindows.

XUnmapSubwindows(display, w)
Display * display,
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the specified window
in bottom-to-top stacking order. It causes the X server to generate an UnmapNotify
event on each subwindow and Expose events on formerly obscured windows. Using
this function is much more efficient than unmapping multiple windows one at a time
because the server needs to perforrP much of the work only once, for all of the windows,

rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

3.7. Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move and
resize a window, or change a window’s border width. To change one of these parame¬
ters, set the appropriate member of the XWindowChanges structure and OR in the
corresponding value mask in subsequent calls to XConfigureWindow. The symbols
for the value mask bits and the XWindow Changes structure are:

30

Xlib - C Library Xll, Release 3

/* Configure window value mask bits */

^define cwx (K<0)
^define CWY (1«1)
#define CWWidth (1<<2)
#define CWHeight (1«3)
^define CWBorderWidth (1<<4)
^define CWSibling (1<<5)
#define CWStackMode (1<<6)

/* Values */

typedef struct {
int x, y;
int width, height;
int border_width;
Window sibling;
int stack_mode;

} XWindowChanges;

The x and y members are used to set the window’s x and y coordinates, which are rela¬
tive to the parent’s origin and indicate the position of the upper-left outer corner of the
window. The width and height members are used to set the inside size of the window,
not including the border, and must be nonzero, or a BadValue error results. Attempts
to configure a root window have no effect.

The border_width member is used to set the width of the border in pixels. Note that
setting just the border width leaves the outer-left corner of the window in a fixed posi¬
tion but moves the absolute position of the window’s origin. If you attempt to set the
border-width attribute of an InputOnly window nonzero, a BadMatch error results.

The sibling member is used to set the sibling window for stacking operations. The
stack_mode member is used to set how the window is to be restacked and can be set to
Above, Below, Toplf, Bottomlf, or Opposite.

If the override-redirect flag of the window is False and if some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, if some
other client has selected ResizeRedirectMask on the window and the inside width or
height of the window is being changed, a ResizeRequest event is generated, and the
current inside width and height are used instead. Note that the override-redirect flag of
the window has no effect on ResizeRedirectMask and that Substruc¬
tureRedirectMask on the parent has precedence over ResizeRedirectMask on the
window.

When the geometry of the window is changed as specified, the window is restacked
among siblings, and a ConfigureNotify event is generated, if the state of the window
actually changes. GravityNotify events are generated after ConfigureNotify
events. If the inside width or height of the window has actually changed, children of the
window are affected as specified.

If a window’s size actually changes, the window’s subwindows move according to their
window gravity. Depending on the window’s bit gravity, the contents of the window
also may be moved (see section 3.2.3).

If regions of the window were obscured but now are not, exposure processing is per¬
formed on these formerly obscured windows, including the window itself and its inferiors.
As a result of increasing the width or height, exposure processing is also performed on
any new regions of the window and any regions where window contents are lost.

31

Xlib -- C Library Xll, Release 3

The restack check (specifically, the computation for Bottomlf, Toplf, and Opposite)
is performed with respect to the window’s final size and position (as controlled by the
other arguments of the request), not its initial position. If a sibling is specified without a
stack_mode, a BadMatch error results.

If a sibling and a stack_mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

Toplf If the sibling occludes the window, the window is placed at the top of the
stack.

Bottomlf If the window occludes the sibling, the window is placed at the bottom of
the stack.

Opposite If the sibling occludes the window, the window is placed at the top of the
stack. If the window occludes the sibling, the window is placed at the
bottom of the stack.

If a stack_mode is specified but no sibling is specified, the window is restacked as fol¬
lows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

Toplf If any sibling occludes the window, the window is placed at the top of the
stack.

Bottomlf If the window occludes any sibling, the window is placed at the bottom of
the stack.

Opposite If any sibling occludes the window, the window is placed at the top of the
stack. If the window occludes any sibling, the window is placed at the
bottom of the stack.

Attempts to configure a root window have no effect.

To configure a window’s size, location, stacking, or border, use XConfigureWindow .

XConfigureWindow (display, w, value_mask, values)
Display * display,
Window w;
unsigned int value_mask\
XWindowChanges *values\

display

w

value mask

Specifies the connection to the X server.

Specifies the window to be reconfigured.

Specifies which values are to be set using information in the values struc¬
ture. This mask is the bitwise inclusive OR of the valid configure window
values bits.

values Specifies a pointer to the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWin¬
dowChanges structure to reconfigure a window’s size, position, border, and stacking
order. Values not specified are taken from the existing geometry of the window.

If a sibling is specified without a stack_mode or if the window is not actually a sibling, a
BadMatch error results. Note that the computations for Bottomlf, Toplf, and
Opposite are performed with respect to the window’s final geometry (as controlled by

32

XI ib - C Library Xll, Release 3

the other arguments passed to XConfigureWindow), not its initial geometry. Any
backing store contents of the window, its inferiors, and other newly visible windows are
either discarded or changed to reflect the current screen contents (depending on the
implementation).

XConfigureWindow can generate BadMatch, BadValue, and BadWindow

errors.

To move a window without changing its size, use XMoveWindow.

XMoveWindow(display, w, x, y)
Display * display,
Window w;
int x, y,

display Specifies the connection to the X server.

w Specifies the window to be moved.

x
y Specify the x and y coordinates, which define the new location of the

top-left pixel of the window’s border or the window itself if it has no
border.

The XMoveWindow function moves the specified window to the specified x and y
coordinates, but it does not change the window’s size, raise the window, or change the
mapping state of the window. Moving a mapped window may or may not lose the
window’s contents depending on if the window is obscured by nonchildren and if no
backing store exists. If the contents of the window are lost, the X server generates
Expose events. Moving a mapped window generates Expose events on any formerly
obscured windows.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, the win¬
dow is moved.

XMoveWindow can generate a BadWindow error.

To change a window’s size without changing the upper-left coordinate, use
XResizeWindow.

XResizeWindow(display, w, width, height)
Display * display,
Window w;
unsigned int width, height;

display Specifies the connection to the X server.

w Specifies the window.

width
height Specify the width and height, which are the interior dimensions of the

window after the call completes.

The XResizeWindow function changes the inside dimensions of the specified window,
not including its borders. This function does not change the window’s upper-left coordi¬
nate or the origin and does not restack the window. Changing the size of a mapped win¬
dow may lose its contents and generate Expose events. If a mapped window is made
smaller, changing its size generates Expose events on windows that the mapped win¬
dow formerly obscured.

33

Xlib - C Library Xll, Release 3

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. If either width or
height is zero, a BadValue error results.

XResizeWindow can generate BadValue and Bad Window errors.

To change the size and location of a window, use XMoveResizeWindow.

XMoveResizeWindow (display, w, x, y, width, height)
Display * display ,
Window w,
int x, t/;
unsigned int width, height;

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

x
y Specify the x and y coordinates, which define the new position of the win¬

dow relative to its parent.

width
height Specify the width and height, which define the interior size of the win¬

dow.

The XMoveResizeWindow function changes the size and location of the specified win¬
dow without raising it. Moving and resizing a mapped window may generate an
Expose event on the window. Depending on the new size and location parameters,
moving and resizing a window may generate Expose events on windows that the win¬
dow formerly obscured.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, the win¬
dow size and location are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.

To change the border width of a given window, use XSetWindowBorderWidth .

XSetWindowBorderWidth (display, w, width)
Display * display,
Window w;
unsigned int width;

display Specifies the connection to the X server.

w Specifies the window.

width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window’s border width to
the specified width.

XSetWindowBorderWidth can generate a BadWindow error.

3.8. Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack windows.

To raise a window so that no sibling window obscures it, use XRaiseWindow.

34

Xiib — C Library Xll, Release 3

XRaiseWindow(display, w)
Display * display]
Window w]

display Specifies the connection to the X server.

w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so
that no sibling window obscures it. If the windows are regarded as overlapping sheets of
paper stacked on a desk, then raising a window is analogous to moving the sheet to the
top of the stack but leaving its x and y location on the desk constant. Raising a
mapped window may generate Expose events for the window and any mapped subwin¬
dows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the window is
raised.

XRaiseWindow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use XLowerWin-
dow.

XLowerWindow[display, w)
Display * display,
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack
so that it does not obscure any sibling windows. If the windows are regarded as overlap¬
ping sheets of paper stacked on a desk, then lowering a window is analogous to moving
the sheet to the bottom of the stack but leaving its x and y location on the desk con¬
stant. Lowering a mapped window will generate Expose events on any windows it
formerly obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the window is
lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.

To circulate a subwindow up or down, use XCirculateSubwindows.

XCirculateSubwindows(display, w, direction)
Display * display]
Window w]
int direction]

display Specifies the connection to the X server.

w Specifies the window.

direction Specifies the direction (up or down) that you want to circulate the win¬
dow. You can pass RaiseLowest or LowerHighest.

The XCirculateSubwindows function circulates children of the specified window in
the specified direction. If you specify RaiseLowest, XCirculateSubwindows raises
the lowest mapped child (if any) that is occluded by another child to the top of the

35

Xlib — C Library Xll, Release 3

stack. If you specify LowerHighest, XCirculateSubwindows lowers the highest
mapped child (if any) that occludes another child to the bottom of the stack. Exposure
processing is then performed on formerly obscured windows. If some other client has
selected SubstructureRedirectMask on the window, the X server generates a Circu-
lateRequest event, and no further processing is performed. If a child is actually res¬
tacked, the X server generates a CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded by
another child, use XCirculateSubwindowsUp.

XCirculateSubwindowsUp (display, w)
Display * display]
Window w,

display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the
specified window that is partially or completely occluded by another child. Completely
unobscured children are not affected. This is a convenience function equivalent to
XCirculateSubwindows with RaiseLowest specified.

XCirculateSubwindowsLTp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely occludes
another child, use XCircuIateSubwindowsDown .

XCirculateSubwindowsDown (display, w)
Display * display,
Window xv]

display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of the
specified window that partially or completely occludes another child. Completely unob¬
scured children are not affected. This is a convenience function equivalent to XCircu¬
lateSubwindows with LowerHighest specified.

XCirculateSubwindowsDown can generate a BadWindow error.

To restack a set of windows from top to bottom, use XRestackWindows.

XRestackWindows(display, windows, nwindows);
Display * display,
Window windows^]
int nwindows]

display Specifies the connection to the X server.

windows Specifies an array containing the windows to be restacked.

nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top
to bottom. The stacking order of the first window in the windows array is unaffected,
but the other windows in the array are stacked underneath the first window, in the
order of the array. The stacking order of the other windows is not affected. For each
window in the window array that is not a child of the specified window, a BadMatch
error results.

36

Xlib - C Library Xl 1, Release 3

If the override-redirect attribute of a window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates
ConfigureRequest events for each window whose override-redirect flag is not set, and
no further processing is performed. Otherwise, the windows will be restacked in top to
bottom order.

XRestackWindows can generate a BadWindow error.

3.9. Changing Window Attributes

Xlib provides functions that you can use to set window attributes. XChangeWin-
dowAttributes is the more general function that allows you to set one or more window
attributes provided by the XSet. Window Attributes structure. The other functions
described in this section allow you to set one specific window attribute, such as a
window’s background.

To change one or more attributes for a given window, use XChangeWindowAttri¬
butes

XChange\VindowAttributes(display, w, valuemask, attributes)
Display * display,
Window w;
unsigned long valuemask;
XSetWindowAttributes * attributes]

Specifies the connection to the X server.

Specifies the window.

Specifies which window attributes are defined in the attributes argument.
This mask is the bitwise inclusive OR of the valid attribute mask bits. If
valuemask is zero, the attributes are ignored and are not referenced. The
values and restrictions are the same'as for XCreateWindow.

Specifies the structure from which the values (as specified by the value
mask) are to be taken. The value mask should have the appropriate bits
set to indicate which attributes have been set in the structure (see section
3.2).

Depending on the valuemask, the XChangeWindow Attributes function uses the win¬
dow attributes in the XSetWindowAttributes structure to change the specified win¬
dow attributes. Changing the background does not cause the window contents to be
changed. To repaint the window and its background, use XClearWindow. Setting
the border or changing the background such that the border tile origin changes causes
the border to be repainted. Changing the background of a root window to None or
Parent-Relative restores the default background pixmap. Changing the border of a
root window to CopyFromParent restores the default border pixmap. Changing the
win-gravity does not affect the current position of the window. Changing the backing-
store of an obscured window to WhenMapped or Always, or changing the backing-
planes, backing-pixel, or save-under of a mapped window may have no immediate effect.
Changing the colormap of a window (that is, defining a new map, not changing the con¬
tents of the existing map) generates a ColormapNotify event. Changing the colormap
of a visible window may have no immediate effect on the screen because the map may
not be installed (see XInstallColormap). Changing the cursor of a root window to
None restores the default cursor. Whenever possible, you are encouraged to share
colormaps.

Multiple clients can select input on the same window. Their event masks are maintained
separately. When an event is generated, it is reported to all interested clients. However,
only one client at a time can select for SubstructureRedirectMask,

display

w

valuemask

attributes

37

Xiib - C Library Xll, Release 3

ResizeRedirectMask, and ButtonPressMask . If a client attempts to select any of
these event masks and some other client has already selected one, a BadAccess error
results. There is only one do-not-propagate-mask for a window, not one per client.

XChangeWindowAttributes can generate BadAccess, BadColor, BadCursor,
BadMatch, BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSetWindowBackground.

XSetWindowBackground (display, w, backgroundjpixel)
Display * display,
Window w;
unsigned long backgroundjpixel;

display Specifies the connection to the X server.

w Specifies the window.

background_pixel
Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the
specified pixel value. Changing the background does not cause the window contents to
be changed. XSetWindowBackground uses a pixmap of undefined size filled with
the pixel value you passed. If you try to change the background of an InputOnly win¬
dow, a BadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow errors.

To set the background of a window to a given pixmap, use XSetWindowBack¬
groundPixmap .

XSetWindowBackgroundPixmap(display, w, backgroundjpixmap)
Display * display]
Window w;
Pixmap backgroundjpixmap]

display Specifies the connection to the X server.

w Specifies the window.

backgroundjpixmap
Specifies the background pixmap, ParentRelative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the
window to the specified pixmap. The background pixmap can immediately be freed if no
further explicit references to it are to be made. If ParentRelative is specified, the
background pixmap of the window’s parent is used, or on the root window, the default
background is restored. If you try to change the background of an InputOnly window,
a BadMatch error results. If the background is set to None, the window has no
defined background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and
BadWindow errors.

Note

XSetWindowBackground and XSetWindowBackgroundPixmap do
not change the current contents of the window.

To change and repaint a window’s border to a given pixel, use XSetWindowBorder

38

Xlib - C Library Xll, Release 3

XSetWindowBorder(display, w, border_pixel)
Display * display,
Window w;
unsigned long border_pixel;

display Specifies the connection to the X server.

w Specifies the window.

borderjpixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value
you specify. If you attempt to perform this on an InputOnly window, a BadMatch
error results.

XSetWindowBorder can generate BadMatch and BadWindow errors.

To change and repaint the border tile of a given window, use XSetWindowBorder-
Pixmap.

XSetWindowBorderPixmap(display, w, borderjpixmap)
Display * display;
Window w;
Pixmap borderjpixmap;

display Specifies the connection to the X server.

w Specifies the window.

border jpixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to
the pixmap you specify. The border pixmap can be freed immediately if no further
explicit references to it are to be made. If you specify CopyFromParent, a copy of
the parent window’s border pixmap is used. If you attempt to perform this on an Inpu¬
tOnly window, a BadMatch error results.

XSetWindowBorderPixmap can generate BadMatch, BadPbcmap, and
BadWindow errors.

3.10. Translating Window Coordinates

Applications, mostly window managers, often need to perform a coordinate transforma¬
tion from the coordinate space of one window to another window or need to determine
which subwindow a coordinate lies in. XTranslateCoordinates fulfills these needs
(and avoids any race conditions) by asking the X server to perform this operation.

Bool XTranslateCoordinates(display, srcjv, destjv, srcjr, srcjj, destjrjeturn,
destjjjeturn, childjeturn)

Display * display;
Window srcjuo, destjv;
int srcjr, srcj/;
int * destjjeturn, * destjjjeturn;
Window * childjeturn;

display Specifies the connection to the X server.

srcjjv Specifies the source window.

destjw Specifies the destination window.

srcjr
src_y Specify the x and y coordinates within the source window.

dest x return

39

Xlib — C Library Xll, Release 3

dest_y_return Return the x and y coordinates within the destination window.

childjreturn Returns the child if the coordinates are contained in a mapped child of
the destination window.

The XTranslateCoordinates function takes the src_x and src_v coordinates relative
to the source window’s origin and returns these coordinates to dest_x_return and
dest__y_return relative to the destination window’s origin. If XTranslateCoordinates
returns zero, src_w and dest_w are on different screens, and dest_x_return and
dest_y_return are zero. If the coordinates are contained in a mapped child of dest_w,
that child is returned to child_return. Otherwise, child_return is set to None.

XTranslateCoordinates can generate a BadWindow error.

40

Xlib - C Library XI1, Release 3

Chapter 4

Window Information Functions

After you connect the display to the X server and create a window, you can use the Xlib
window information functions to:

• Obtain information about a window

• Manipulate property lists

• Obtain and change window properties

• Manipulate selections

4.1. Obtaining Window Information

Xlib provides functions that you can use to obtain information about the window tree,
the window’s current attributes, the window’s current geometry, or the current pointer
coordinates. Because they are most frequently used by window managers, these func¬
tions all return a status to indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window, use
XQueryTree.

Status XQueryTree (display, w, rootjreturn, parent_return, childrenjreturn, nchildren_return)
Display * display;
Window w;
Window *root_return;
Window *parent_return;
Window **children_return;
unsigned int *nchildren_return;

display Specifies the connection to the X server.

w Specifies the window whose list of children, root, parent, and number of
children you want to obtain.

rootjreturn Returns the root window.

parent_return Returns the parent window.

children_returnReturns a pointer to the list of children.

nchildren_return
Returns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a pointer to the
list of children windows, and the number of children in the list for the specified window.
The children are listed in current stacking order, from bottommost (first) to topmost
(last). XQueryTree returns zero if it fails and nonzero if it succeeds. To free this list
when it is no longer needed, use XFree.

To obtain the current attributes of a given window, use XGetWindowAttributes.

Status XGetWindowAttributes(display, w, window_attributes_return)
Display * display ;
Window w;
XWindowAttributes *window_attributes_return;

41

XIib - C Library Xll, Release 3

display Specifies the connection to the X server.

w Specifies the window whose current attributes you want to obtain.

window_attributes_return
Returns the specified window’s attributes in the XWindowAttributes
structure.

The XGetWindowAttributes function returns the current attributes for the specified
window to an XWindowAttributes structure.

typedef struct {
int x, y;
int width, height;
int border_width;
int depth;
Visual ^visual;
Window root;
int class;
int bit_gravity;
int win__gravity;
int backing_store;
unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;
Colormap colormap;
Bool mapjinstalled;
int map_state;
long all_event_masks;
long your_event_mask;
long do_not__propagate_mask;
Bool override_redirect;
Screen *screen;

} XWindowAttributes;

/* location of window */
/* width and height of window */
/* border width of window */
/* depth of window */
/* the associated visual structure */
/* root of screen containing window */
/* InputOutput, InputOnly*/
/* one of the bit gravity values */
/* one of the window gravity values */
/* NotUseful, WhenMapped, Always */
/* planes to be preserved if possible */
/* value to be used when restoring planes */
/* boolean, should bits under be saved? */
/* color map to be associated with window */
/* boolean, is color map currently installed*/
/* IsUnmapped, IsUnviewable, IsViewable */
/* set of events all people have interest in*/
/* my event mask */
/* set of events that should not propagate */
/* boolean value for override-redirect */
/* back pointer to correct screen */

The x and y members are set to the upper-left outer corner relative to the parent
window’s origin. The width and height members are set to the inside size of the win¬
dow, not including the border. The border_width member is set to the window’s border
width in pixels. The depth member is set to the depth of the window (that is, bits per
pixel for the object). The visual member is a pointer to the screen’s associated Visual
structure. The root member is set to the root window of the screen containing the win¬
dow. The class member is set to the window’s class and can be either InputOutput or
InputOnly.

The bit_gravity member is set to the window’s bit gravity and can be one of the follow¬
ing:

ForgetGravity
No r t h West G r a v ity
NorthGravity
NorthEastGravity
WestGravity
CenterGravity

EastGravity
So u t h West G r av ity
SouthGravity
SouthEastGravity
StaticGravity

The win_gravity member is set to the window’s window gravity and can be one of the

following:

UnmapGravity EastGravity

42

Xli'b - C Library Xll, Release 3

No rt h West G r av ity
NorthGravity
NorthEastG ravity
WestGravity
CenterGravity

South West Gravity
SouthGravity
SouthEastGravity
StaticG ravity

For additional information on gravity, see section 3.3.

The backing_store member is set to indicate how the X server should maintain the con¬
tents of a window and can be WhenMapped, Always, or NotUseful. The
backing_planes member is set to indicate (with bits set to 1) which bit planes of the win¬
dow hold dynamic data that must be preserved in backing_stores and during
save_unders. The backing_pixel member is set to indicate what values to use for planes
not set in backing_planes.

The save_under member is set to True or False. The colormap member is set to the
colormap for the specified window and can be a colormap ID or None. The
map_installed member is set to indicate whether the colormap is currently installed and
can be True or False. The map_state member is set to indicate the state of the win¬
dow and can be IsUnmapped, IsUnviewable, or Is Viewable. XsXJnviewable is
used if the window is mapped but some ancestor is unmapped.

The all_event_masks member is set to the bitwise inclusive OR of all event masks
selected on the window by all clients. The your_event_mask member is set to the bit¬
wise inclusive OR of all event masks selected by the querying client. The
do_not_propagate_mask member is set to the bitwise inclusive OR of the set of events
that should not propagate.

The override_redirect member is set to indicate whether this window overrides structure
control facilities and can be True or False. Window manager clients should ignore the
window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer to the correct
screen. This makes it easier to obtain the screen information without having to loop
over the root window fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.

To obtain the current geometry of a given drawable, use XGetGeometry.

Status XGetGeometry (display, d, root__return, x_return, y_return, width_return,
height_return, border_width_return, depth_return)

Display * display,
Drawable d;
Window *root_returrr,
int *x_return, *y_returir,
unsigned int * width_return, * height_return\
unsigned int *border_width_return\
unsigned int *depth_return\

display

d

root_return

xjreturn
y_return

Specifies the connection to the X server.

Specifies the drawable, which can be a window or a pixmap.

Returns the root window.

Return the x and y coordinates that define the location of the drawable.
For a window, these coordinates specify the upper-left outer corner rela¬
tive to its parent’s origin. For pixmaps, these coordinates are always
zero.

43

Xlib — C Library XI1, Release 3

widthjeturn
heightjeturn Return the drawable’s dimensions (width and height). For a window,

these dimensions specify the inside size, not including the border.

border_width_return
Returns the border width in pixels. If the drawable is a pixmap, it returns
zero.

depth_return Returns the depth of the drawable (bits per pixel for the object).

The XGetGeometry function returns the root window and the current geometry of
the drawable. The geometry of the drawable includes the x and y coordinates, width
and height, border width, and depth. These are described in the argument list. It is
legal to pass to this function a window whose class is InputOnly.

To obtain the root window the pointer is currently on and the pointer coordinates rela¬
tive to the root’s origin, use XQueryPointer.

Bool XQueryPointer (display, w, rootjeturn, child_return, rootjxjeturn, root_y_return,
win_x_return, win_y_return, mask_return)

Display * display,
Window w,
Window *root_return, *child_return;
int *root_x_return, *root_y_returrr,
int *win_x_return, * win jyjeturn \
unsigned int *mask_return\

display

w

rootjeturn

child jeturn

Specifies the connection to the X server.

Specifies the window.

Returns the root window that the pointer is in.

Returns the child window that the pointer is located in, if any.

root_x_return
rootjjjeturn Return the pointer coordinates relative to the root window’s origin.

win _xjeturn
win_y_return Return the pointer coordinates relative to the specified window.

maskjeturn Returns the current state of the modifier keys and pointer buttons.

The XQueryPointer function returns the root window the pointer is logically on and
the pointer coordinates relative to the root window’s origin. If XQueryPointer
returns False, the pointer is not on the same screen as the specified window, and
XQueryPointer returns None to child_return and zero to win_x_return and
win_y_return. If XQueryPointer returns True, the pointer coordinates returned to
win_x_return and win_y_return are relative to the origin of the specified window. In
this case, XQueryPointer returns the child that contains the pointer, if any, or else
None to child return.

XQueryPointer returns the current logical state of the keyboard buttons and the
modifier keys in mask_return It sets mask_return to the bitwise inclusive OR of one or
more of the button or modifier key bitmasks to match the current state of the mouse
buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physical state
if device event processing is frozen (see section 7.4).

XQueryPointer can generate a BadWindow error.

44

Xlib - C Library Xll, Release 3

4.2. Properties a rid Atoms

A property is a collection of named, typed data. The window system has a set of
predefined properties (for example, the name of a window, size hints, and so on), and
users can define any other arbitrary information and associate it with windows. Each
property has a name, which is an ISO Latin-1 string. For each named property, a
unique identifier (atom) is associated with it. A property also has a type, for example,
string or integer. These types are also indicated using atoms, so arbitrary new types can
be defined. Data of only one type may be associated with a single property name.
Clients can store and retrieve properties associated with windows. For efficiency reasons,
an atom is used rather than a character string. XInternAtom can be used to obtain
the atom for property names.

A property is also stored in one of several possible formats. The X server can store the
information as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This permits the
X server to present the data in the byte order that the client expects.

Note

If you define further properties of complex type, you must encode and decode
them yourself. These functions must be carefully written if they are to be
portable. For further information about how to write a library extension, see
appendix C.

The type of a property is defined by an atom, which allows for arbitrary extension in
this type scheme.

Certain property names are predefined in the server for commonly used functions. The
atoms for these properties are defined in <Xll/Xatom.h >. To avoid name clashes
with user symbols, the #define name for each atom has the XA_ prefix. For definitions
of these properties, see section 4.3. For an explanation of the functions that let you get
and set much of the information stored in these predefined properties, see chapter 9.

You can use properties to communicate other information between applications. The
functions described in this section let you define new properties and get the unique atom
IDs in your applications.

Although any particular atom can have some client interpretation within each of the
name spaces, atoms occur in five distinct name spaces within the protocol:

• Selections

® Property names

• Property types

® Font properties

• Type of a ClientMessage event (none are built into the X server)

The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names are:

CUT_BUFFERO
CUT_BUFFER1

CUTJ3UFFER2
CUT_BUFFER3
CUTJBUFFER4
CUT_BUFFER5

CUT BUFFER6

RGB_GREEN_MAP
RGB_RED_MAP
RESOURCE_MANAGER
WM_CLASS
WM_CLIENT_MACHINE
WM.COMMAND
WM HINTS

45

Xlib - C Library XI1, Release 3

CUTBUFFER7
rgb_best_map
RGB_BLUE_MAP
RGB_DEFAULT_MAP
RGB GRAY MAP

WM_ICON_NAME
WM_ICON_SIZE
WM_NAME
\VM_NORMAL_HINTS
WM_ZOOM_HINTS
WM TRANSIENT FOR

The built-in property types are:

ARC
ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE
FONT
INTEGER
PIXMAP

POINT

RGB_COLOR_MAP
RECTANGLE
STRING
VISUALID
WINDOW
WM_HINTS
WM SIZE HINTS

The built-in font property names are:

M3N_SPACE
NORM_SPACE
MAX_SPACE
END.SPACE
SUPERSCRIPT.X
SUPERSCRIPT_Y
SUBSCRIPT_X
SUBSCRIPT_Y
UNDERLINE_POSITION
UNDERLINE_THICKNESS
FONT_NAME
FULL NAME

STRIKEOUT_DESCENT
STRIKEOUT_ASCENT
ITALIC_ANGLE
X_HEIGHT
QUAD_WIDTH
WEIGHT
POINT.SIZE
RESOLUTION
COPYRIGHT
NOTICE
FAMILY.NAME
CAP HEIGHT

For further information about font properties, see section 6.5.

To return an atom for a given name, use XInternAtom.

Atom XInternAtom (display, atom_name, only_if_exists)
Display * display,
char *atom_name]
Bool only_if_exists]

display Specifies the connection to the X server.

atom_name Specifies the name associated with the atom you want returned.

only_if_exists Specifies a Boolean value that indicates whether XInternAtom creates
the atom.

The XInternAtom function returns the atom identifier associated with the specified
atom_name string. If only_if_exists is False, the atom is created if it does not exist.
Therefore, XInternAtom can return None. You should use a null-terminated ISO
Latin-1 string for atom_name. Case matters; the strings thing, Thing, and thinG all
designate different atoms. The atom will remain defined even after the client’s

46

Xlib - C Library Xll, Release 3

connection closes. It will become undefined only when the last connection to the X
server closes.

XIn tern Atom can generate BadAlloc and BadValue errors.

To return a name for a given atom identifier, use XGetAtomName.

char *XGetAtomName (display, atom)
Display * display,
Atom atom]

display Specifies the connection to the X server.

atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified atom.
To free the resulting string, call XFree.

XGetAtomName can generate a BadAtom error.

4.3. Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a type, and
a value (see section 4.2). The value is an array of 8-bit, 16-bit, or 32-bit quantities,
whose interpretation is left to the clients.

Xlib provides functions that you can use to obtain, change, update, or interchange win¬
dow properties. In addition, Xlib provides other utility functions for predefined property
operations (see chapter 9).

To obtain the type, format, and value of a property of a given window, use XGetWin-
dowProperty.

int XGetWindowProperty (display, w, property, longjoffset, long_length, delete, req_type,
actual_type_return, actual_format_return, nitemsjreturn, bytes_after_return,
propjreturn)

Display * display,
Window w,
Atom property]
long long_offset, longjength]
Bool delete]
Atom reqjtype]
Atom * actual_type_return]
int * actual_Jormat_return]
unsigned long * nitemsjreturn]
unsigned long *bytes_after_return]
unsigned char **propjreturn]

display

w

property

long_offset

long_length

delete

reqjtype

Specifies the connection to the X server.

Specifies the window whose property you want to obtain.

Specifies the property name.

Specifies the offset in the specified property (in 32-bit quantities) where
the data is to be retrieved.

Specifies the length in 32-bit multiples of the data to be retrieved.

Specifies a Boolean value that determines whether the property is deleted.

Specifies the atom identifier associated with the property type or
AnyPropertyType.

47

Xlib - C Library XI1, Release 3

actual_type_return
Returns the atom identifier that defines the actual type of the property.

actual_format_return
Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit items stored in the
prop_return data.

bytes_ajter_return
Returns the number of bytes remaining to be read in the property if a
partial read was performed.

prop_return Returns a pointer to the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the
actual format of the property; the number of 8-bit, 16-bit, or 32-bit items transferred;
the number of bytes remaining to be read in the property; and a pointer to the data
actually returned. XGetWindowProperty sets the return arguments as follows:

• If the specified property does not exist for the specified window, XGetWin¬
dowProperty returns None to actual_t.ype_return and the value zero to
actual_format_return and bytes_after_return The nitems_return argument is
empty. In this case, the delete argument is ignored.

* If the specified property exists but its type does not match the specified type,
XGetWindowProperty returns the actual property type to actual_type_return,
the actual property format (never zero) to actual_format_return, and the property
length in bytes (even if the actual_format_return is 16 or 32) to bytes_after_return.
It also ignores the delete argument. The nitems_return argument is empty.

® If the specified property exists and either you assign AnyPropertyType to the
req_type argument or the specified type matches the actual property type,
XGetWindowProperty returns the actual property type to actual_type_return
and the actual property format (never zero) to actual_format_return. It also
returns a value to bytes_after_return and nitems_return, by defining the following
values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

1 = 4* long_offset
T = N- I
L = MINIMUM(T, 4 * longjength)
A = N - (I + L)

The returned value starts at byte index I in the property (indexing from zero), and
its length in bytes is L. If the value for long_offset causes L to be negative, a
BadValue error results. The value of bytes_after_return is A, giving the number
of trailing unread bytes in the stored property.

XGetWindowProperty always allocates one extra byte in prop_return (even if the
property is zero length) and sets it to ASCII null so that simple properties consisting of
characters do not have to be copied into yet another string before use. If delete is True
and bytes_after_return is zero, XGetWindowProperty deletes the property from the
window and generates a PropertyNotify event on the window.

The function returns Success if it executes successfully. To free the resulting data, use
XFree.

XGetWindowProperty can generate BadAtom, BadValue', and BadWindow
errors.

To obtain a given window’s property list, use XListProperties.

48

XIib - C Library Xll, Release 3

Atom *XListProperties(display, w, num_prop_return)
Display * display,
Window w,
int * num_prop_return;

display Specifies the connection to the X server.

w Specifies the window whose property list you want to obtain.

num_prop_return
Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom properties that
are defined for the specified window or returns NULL if no properties were found. To
free the memory allocated by this function, use XFree.

XListProperties can generate a BadWindow error.

To change a property of a given window, use XChangeProperty.

XChangeProperty (display, w, property, type, format, mode, data, nelements)
Display * display,
Window w;
Atom property, type',
int format;
int mode;
unsigned char *data;
int nelements]

display

w

property

type

format

mode

data

nelements

Specifies the connection to the X server.

Specifies the window whose property you want to change.

Specifies the property name.

Specifies the type of the property. The X server does not interpret the
type but simply passes it back to an application that later calls
XGetWindowProperty.

Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or
32-bit quantities. Possible values are 8, 16, and 32. This information
allows the X server to correctly perform byte-swap operations as neces¬
sary. If the format is 16-bit or 32-bit, you must explicitly cast your da.ta
pointer to a (char *) in the call to XChangeProperty.

Specifies the mode of the operation. You can pass PropModeReplace,
PropModePrepend , or PropModeAppend .

Specifies the property data.

Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified window and
causes the X server to generate a PropertyNotify event on that window.
XChangeProperty performs the following:

* If mode is PropModeReplace, XChangeProperty discards the previous pro¬
perty value and stores the new data.

• If mode is PropModePrepend or PropModeAppend, XChangeProperty
inserts the specified data before the beginning of the existing data or onto the end
of the existing data, respectively. The type and format must match the existing
property value, or a BadMatch error results. If the property is undefined, it is
treated as defined with the correct type and format with zero-length data.

49

X’iih - C Library Xll, Release 3

The lifetime of a property is not tied to the storing client. Properties remain until expli¬
citly deleted, until the window is destroyed, or until the server resets. For a discussion
of what happens when the connection to the X server is closed, see section 2.5. The max¬
imum size of a property is server dependent and can vary dynamically depending on the
amount of memory the server has available. (If there is insufficient space, a BadAlloc
error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch , BadValue,
and BadWindow errors.

To rotate a window’s property list, use XRotateWindowProperties.

XRotateWindowProperties(display, w, properties, num_prop, npositions)
Display * display,
Window w;
Atom properties [];
int numjprop;
int npositions;

display

w

properties

numjprop

npositions

Specifies the connection to the X server.

Specifies the window.

Specifies the array of properties that are to be rotated.

Specifies the length of the properties array.

Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a win¬
dow and causes the X server to generate Property Notify events. If the property
names in the properties array are viewed as being numbered starting from zero and if
there are num_prop property names in the list, then the value associated with property
name I becomes the value associated with property name (I + npositions) mod N for all I
from zero to N - I. The effect is to rotate the states by npositions places around the
virtual ring of property names (right for positive npositions, left for negative npositions).
If npositions mod N is nonzero, the X server generates a Property Notify event for
each property in the order that they are listed in the array. If an atom occurs more
than once in the list or no property with that name is defined for the window, a Bad-
Match error results. If a BadAtom or BadMatch error results, no properties are
changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and BadWin¬
dow errors.

To delete a property on a given window, use XDeleteProperty.

XDeleteProperty (display, w, property)
Display * display,
Window w,
Atom property,

display Specifies the connection to the X server.

w Specifies the window whose property you want to delete.

property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property was
defined on the specified window and causes the X server to generate a PropertyNotify
event on the window unless the property does not exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

50

Xlib - C Library Xll, Release 3

4.4. Selections

Selections are one method used by applications to exchange data. By using the property
mechanism, applications can exchange data of arbitrary types and can negotiate the type
of the data. A selection can be thought of as an indirect property with a dynamic type.
That is, rather than having the property stored in the X server, the property is main¬
tained by some client (the owner). A selection is global in nature (considered to belong
to the user but be maintained by clients) rather than being private to a particular win¬
dow subhierarchy or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of selections.
This allows applications to implement the notion of current selection, which requires
that notification be sent to applications when they no longer own the selection. Applica¬
tions that support selection often highlight the current selection and so must be
informed when another application has acquired the selection so that they can
unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target type.
This target type can be used to control the transmitted representation of the contents.
For example, if the selection is “the last thing the user clicked on” and that is currently
an image, then the target type might specify whether the contents of the image should
be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for exam¬
ple, asking for the “looks” (fonts, line spacing, indentation, and so forth) of a paragraph
selection, not the text of the paragraph. The target type can also be used for other pur¬
poses. The protocol does not constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

XSetSelectionOwner(display, selection, owner, time)
Display * display,
Atom selection-,
Window owner;
Time time;

display

selection

owner

Specifies the connection to the X server.

Specifies the selection atom.

Specifies the owner of the specified selection atom. You can pass a win¬
dow or None.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetSelectionOwner function changes the owner and last-change time for the
specified selection and has no effect if the specified time is earlier than the current last-
change time of the specified selection or is later than the current X server time. Other¬
wise, the last-change time is set to the specified time, with CurrentTime replaced by
the current server time. If the owner window is specified as None, then the owner of
the selection becomes None (that is, no owner). Otherwise, the owner of the selection
becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner of the
selection and the current owner is not None, the current owner is sent a Selection-
Clear event. If the client that is the owner of a selection is later terminated (that is, its
connection is closed) or if the owner window it has specified in the request is later des¬
troyed, the owner of the selection automatically reverts to None, but the last-change
time is not affected. The selection atom is uninterpreted by the X server. XGetSelec-
tionOwner returns the owner window, which is reported in SelectionRequest and
SelectionClear events. Selections are global to the X server.

51

XIib - C Library Xll, Release 3

XSetSelectionOwner can generate BadAtom and BadWindow errors.

To return the selection owner, use XGetSelectionOwner.

Window XGetSelectionOwner(display, selection)
Display * display,
Atom selection;

display Specifies the connection to the X server.

selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwner function returns the window ID associated with the win¬
dow that currently owns the specified selection. If no selection was specified, the func¬
tion returns the constant None. If None is returned, there is no owner for the selec¬
tion.

XGetSelectionOwner can generate a BadAtom error.

To request conversion of a selection, use XConvertSelection .

XConvertSelection(display, selection, target, property, requestor, time)
Display * display,
Atom selection, target;
Atom property,
Window requestor;
Time time]

Specifies the connection to the X server.

Specifies the selection atom.

Specifies the target atom.

Specifies the property name. You also can pass None.

Specifies the requestor.

Specifies the time. You can pass either a timestamp or CurrentTime.

XConvertSelection requests that the specified selection be converted to the specified
target type:

• If the specified selection has an owner, the X server sends a SelectionRequest
event to that owner.

• If no owner for the specified selection exists, the X server generates a Selection-
Notify event to th-e requestor with property None.

In either event, the arguments are passed on unchanged. There are two predefined selec¬
tion atoms: PRIMARY and SECONDARY.

XConvertSelection can generate BadAtom and BadWindow errors.

display

selection

target

property

requestor

time

52

Xlib - C Library Xll, Release 3

Chapter 5

Graphics Resource Functions

After you connect your program to the X server by calling XOpenDisplay, you can
use the Xlib graphics resource functions to:

• Create, copy, and destroy colormaps

• Allocate, modify, and free color cells

• Read entries in a colormap

• Create and free pixmaps

« Create, copy, change, and destroy graphics contexts

A number of resources are used when performing graphics operations in X. Most infor¬
mation about performing graphics (for example, foreground color, background color, line
style, and so on) are stored in resources called graphics contexts (GC). Most graphics
operations (see chapter 6) take a GC as an argument. Although in theory it is possible
to share GCs between applications, it is expected that applications will use their own
GCs when performing operations. Sharing of GCs is highly discouraged because the
library may cache GC state.

Each X window always has an associated colormap that provides a level of indirection
between pixel values and colors displayed on the screen. Many of the hardware displays
built today have a single colormap, so the primitives are written to encourage sharing of
colormap entries between applications. Because colormaps are associated with windows,
X will support displays with multiple colormaps and, indeed, different types of color-
maps. If there are not sufficient colormap resources in the display, some windows may
not be displayed in their true colors. A client or window manager can control which
windows are displayed in their true colors if more than one colormap is required for the
color resources the applications are using.

Off-screen memory or pixmaps are often used to define frequently used images for later
use in graphics operations. Pixmaps are also used to define tiles or patterns for use as
window backgrounds, borders, or cursors. A single bit-plane pixmap is sometimes
referred to as a bitmap.

Note that some screens have very limited off-screen memory. Therefore, you should
regard off-screen memory as a precious resource.

Graphics operations can be performed to either windows or pixmaps, which collectively
are called drawables. Each drawable exists on a single screen and can only be used on
that screen. GCs can also only be used with drawables of matching screens and depths.

5.1. Colormap Functions

Xlib provides functions that you can use to manipulate a colormap. This section
discusses how to:

• Create, copy, and destroy a colormap

• Allocate, modify, and free color cells

• Read entries in a colormap

The following functions manipulate the representation of color on the screen. For each
possible value that a pixel can take in a window, there is a color cell in the colormap.
For example, if a window is 4 bits deep, pixel values 0 through 15 are defined. A color-
map is a collection of color cells. A color cell consists of a triple of red, green, and blue.

53

Xlib — C Library Xll, Release 3

As each pixel is read out of display memory, its value is taken and looked up in the
colormap. The values of the cell determine what color is displayed on the screen. On a
multiplane display with a black-and-white monitor (with grayscale but not color), these
values can be combined to determine the brightness on the screen.

Screens always have a default colormap, and programs typically allocate cells out of this
colormap. You should not write applications that monopolize color resources. On a
screen that either cannot load the colormap or cannot have a fully independent color-
map, only certain kinds of allocations may work. Depending on the hardware, one or
more colormaps may be resident (installed) at one time. To install a colormap, use XI n-
stallColormap. The DefaultColormap macro returns the default colormap. The
DefaultVisual macro returns the default visual type for the specified screen. Color-
maps are local to a particular screen. Possible visual types are StaticGray, Grays¬
cale, StaticColor, PseudoColor, TrueCoIor,or DirectColor (see section 3.1).

The functions discussed in this section operate on an XColor structure, which contains:

typedef struct {
unsigned long pixel; /* pixel value */
unsigned short red, green, blue;/* rgb values */
char flags; /* DoRed, DoGreen, DoBlue */
char pad;

) XColor;

The red, green, and blue values are scaled between 0 and 65535. On full in a color is a
value of 65535 independent of the number of bits actually used in the display hardware.
Half brightness in a color is a value of 32767, and off is 0. This representation gives uni¬
form results for color values across different screens. In some functions, the flags
member controls which of the red, green, and blue members is used and can be one or
more of DoRed , DoGreen , and DoBlue.

The introduction of color changes the view a programmer should take when dealing with
a bitmap display. For example, when printing text, you write a pixel value, which is
defined as a specific color, rather than setting or clearing bits. Hardware will impose
limits (the number of significant bits, for example) on these values. Typically, one allo¬
cates color cells or sets of color cells. If read-only, the pixel values for these colors can be
shared among multiple applications, and the RGB values of the cell cannot be changed.
If read/write, they are exclusively owned by the program, and the color cell associated
with the pixel value may be changed at will.

5.1.1. Creating, Copying, and Destroying Colormaps

To create a colormap for a screen, use XCreateColormap.

Colormap XCreateColormap(display, tv, visual, alloc)
Display * display,
Window w;
Visual * visual]
int alloc;

display Specifies the connection to the X server.

w Specifies the window on whose screen you want to create a colormap.

visual Specifies a pointer to a visual type supported on the screen. If the visual
type is not one supported by the screen, a BadMatch error results.

alloc Specifies the colormap entries to be allocated. You can pass AllocNone
or AllocAll.

The XCreateColormap function creates a colormap of the specified visual type for the
screen on which the specified window resides and returns the colormap ID associated

54

Xlib - C Library Xll, Release 3

with it. Note that the specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classes Grays¬
cale, PseudoColor, and DirectColor. For StaticGray, StaticColor, and
TrueColor, the entries have defined values, but those values are specific to the visual
and are not defined by X. For StaticGray, StaticColor, and TrueColor, alloc
must be AllocNone, or a BadMatch error results. For the other visual classes, if
alloc is AllocNone, the colormap initially has no allocated entries, and clients can allo¬
cate them. For information about the visual types, see section 3.1.

If alloc is AllocAll, the entire colormap is allocated writable. The initial values of all
allocated entries are undefined. For GrayScale and PseudoColor, the effect is as if
an XAllocColorCells call returned all pixel values from zero to N - 1, where N is the
colormap entries value in the specified visual. For DirectColor, the effect is as if an
XAllocColorPlanes call returned a pixel value of zero and red_mask, green_mask, and
blue_mask values containing the same bits as the corresponding masks in the specified
visual. However, in all cases, none of these entries can be freed by using XFreeColors.

XCreateColormap can generate BadAlloc, BadMatch, BadValue, and
BadWindow errors.

To create a new colormap when the allocation out of a previously shared colormap has
failed because of resource exhaustion, use XCopyColormapAndFree.

Colormap XCopyColormapAndFree (display, colormap)
Display * display,
Colormap colormap]

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colprmap of the same visual type
and for the same screen as the specified colormap and returns the new colormap ID. It
also moves all of the client’s existing allocation from the specified colormap to the new
colormap with their color values intact and their read-only or writable characteristics
intact and frees those entries in the specified colormap. Color values in other entries in
the new colormap are undefined. If the specified colormap was created by the client
with alloc set to AllocAll, the new colormap is also created with AllocAll, all color
values for all entries are copied from the specified colormap, and then all entries in the
specified colormap are freed. If the specified colormap was not created by the client with
AllocAll, the allocations to be moved are all those pixels and planes that have been
allocated by the client using XAllocColor, XAllocNamedColor, XAllocColor¬
Cells, or XAllocColorP lanes and that have not been freed since they were allocated.

XCopyColormapAndFree can generate BadAlloc and BadColor errors.

To set the colormap of a given window, use XSetWindowColormap.

XSetWindowColormap(display, w, colormap)
Display * display,
Window w;
Colormap colormap;

display Specifies the connection to the X server.

w Specifies the window.

colormap. Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified win¬
dow. The colormap must have the same visual type as the window, or a BadMatch

55

Xlib - C Library Xll, Release 3

error results.

XSetWin do w Color map can generate BadColor, BadMatch , and BadWindow
errors.

To destroy a colormap, use XFreeColormap.

XFreeColormap (display, colormap)
Display * display,
Colormap colormap;

display Specifies the connection to the X server.

colormap Specifies the colormap that you want to destroy.

The XFreeColormap function deletes the association between the colormap resource
ID and the colormap and frees the colormap storage. However, this function has no
effect on the default colormap for a screen. If the specified colormap is an installed map
for a screen, it is uninstalled (see XUninstallColormap). If the specified colormap is
defined as the colormap for a window (by XCreateWindow, XSet, Window Color-
map , or XChangeWindowAttributes), XFreeColormap changes the colormap
associated with the window to None and generates a ColormapNotify event. X does
not define the colors displayed for a window with a colormap of None.

XFreeColormap can generate a BadColor error.

5.1.2. Allocating, Modifying, and Freeing Color Cells

There are two ways of allocating color cells: explicitly as read-only entries by pixel value
or read/write, where you can allocate a number of color cells and planes simultaneously.
The read/write cells you allocate do not have defined colors until set with
XStoreColor or XStoreColors.

To determine the color names, the X server uses a color database. Although»*you can
change the values in a read/write color cell that is allocated by another application, this
is considered “antisocial” behavior.

To allocate a read-only color cell, use XAllocColor.

Status XAllocColor(display, colormap, screen_in_out)
Display * display,
Colormap colormap-,
XColor *$creen_in_out;

display Specifies the connection to the X server.

colormap Specifies the colormap.

screen_in_out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding to the
closest RGB values supported by the hardware. XAllocColor returns the pixel value
of the color closest to the specified RGB elements supported by the hardware and
returns the RGB values actually used. The corresponding colormap cell is read-only. In
addition, XAllocColor returns nonzero if it succeeded or zero if it failed. Read-only
colormap cells are shared among clients. When the last client deallocates a shared cell, it
is deallocated. XAllocColor does not use or affect the flags in the XColor structure.

XAllocColor can generate a BadColor error.

To allocate a read-only color cell by name and return the closest color supported by the
hardware, use XAllocNamedCoior

56

Xlib - C Library Xll, Release 3

Status XAllocNamedColor (display, colormap, color_name, screen_def_relurn, exact_def_return)
Display * display,
Colormap colormap;
char * color_namc,
XColor * screen_def_r eturn, *exact_def_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_name Specifies the color name string (for example, red) whose color definition
structure you want returned.

screen_def_r eturn
Returns the closest RGB values provided by the hardware.

exact_def_return
Returns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the screen
that is associated with the specified colormap. It returns both the exact database
definition and the closest color supported by the screen. The allocated color cell is read¬
only. You should use the ISO Latin-1 encoding; uppercase and lowercase do not matter.

XAllocNamedColor can generate a BadColor error.

To look up the name of a color, use XLookupColor.

Status XLookupColor(display, colormap, color_name, exact_def_return, screen_def_r eturn)
Display * display,
Colormap colormap;
char *color_name]
XColor *exact_def_return, *screen_def_return\

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_name Specifies the color name string (for example, red) whose color definition
structure you want returned.

exact_def_r eturn
Returns the exact RGB values.

screen_def_r eturn
Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to the
screen associated with the specified colormap. It returns both the exact color values and
the closest values provided by the screen with respect to the visual type of the specified
colormap. You should use the ISO Latin-1 encoding; uppercase and lowercase do not
matter. XLookupColor returns nonzero if the name existed in the color database or
zero if it did not exist.

To allocate read/write color cell and color plane combinations for a PseudoColor
model, use XAllocColorCells.

57

Xlib - C Library Xll, Release 3

Status XAllocColorCells(display, colormap, contig, plane_masks_return, nplanes,
pixelsjr eturn, npixels)

Display * display,
Colormap colormap;
Bool contig\
unsigned long plane_masks_return[]',
unsigned int nplanes;
unsigned long pixelsjreturn\\;
unsigned int npixels;

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must be con¬
tiguous.

plane_mask_return
Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be returned in the plane
masks array.

pixelsjreturn Returns an array of pixel values.

npixels Specifies the number of pixel values that are to be returned in the
pixels_return array.

The XAllocColorCells function allocates read/write color cells. The number of colors
must be positive and the number of planes nonnegative, or a BadValue error results.
If ncolors and nplanes are requested, then ncolors pixels and nplane plane masks are
returned. No mask will have any bits set to 1 in common with any other mask or with
any of the pixels. By ORing together each pixel with zero or more masks, ncolors *
2npiane> distinct pixels can be produced. All of these are allocated writable by the
request. For Gray Scale or PseudoColor, each mask has exactly one bit set to 1. For
DirectColor, each has exactly three bits set to 1. If contig is True and if all masks
are ORed together, a single contiguous set of bits set to 1 will be formed for GrayScale
or PseudoColor and three contiguous sets of bits set to 1 (one within each pixel
subfield) for DirectColor. The RGB values of the allocated entries are undefined.
XAllocColorCells returns nonzero if it succeeded or zero if it failed.

XAllocColorCells can generate BadColor and BadValue errors.

To allocate read/write color resources for a DirectColor model, use XAllocColor-
Planes.

Status XAllocColorPlanes(display, colormap, contig, pixelsjreturn, ncolors, nreds, ngreens,
nblues, rmaskjreturn, gmaskjreturn, bmaskjr eturn)

Display * display,
Colormap colormap;
Bool contig',
unsigned long pixelsjreturn[\;
int ncolors;
int nreds, ngreens, nblues;
unsigned long * rmaskjr eturn, * gmaskjr eturn, * bmaskjr eturn',

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must be con¬
tiguous.

58

Xlib - C Library Xll, Release 3

pixels_return Returns an array of pixel values. XAllocColorPlanes returns the pixel
values in this array.

ncolors Specifies the number of pixel values that are to be returned in the
pixels_return array.

nreds
ngreens
nblues

Specify the number of red, green, and blue planes. The value you pass
must be nonnegative.

rmaskjreturn
gmask_return
bmask_return Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be nonnega¬
tive, or a BadValue error results. If ncolors colors, nreds reds, ngreens greens, and
nblues blues are requested, ncolors pixels are returned; and the masks have nreds,
ngreens, and nblues bits set to 1, respectively. If contig is True, each mask will have a
contiguous set of bits set to 1. No mask will have any bits set to 1 in common with any
other mask or with any of the pixels. For Direct-Color, each mask will lie within the
corresponding pixel subfield. By ORing together subsets of masks with each pixel value,
ncolors * o^nr(it +noreent +nbtvet) distinct pixel values can be produced. All of these are alio
cated by the request. However, in the colormap, there are only ncolors * 2nrede indepen¬
dent red entries, ncolors * 2nflree’1' independent green entries, and ncolors * onbluef
independent blue entries This is true even for PseudoColor. When the colormap
entry of a pixel value is changed (using XStoreColors, XStoreColor, or
XStoreNamedColor), the pixel is decomposed according to the masks, and the
corresponding independent entries are updated. XAllocColorPlanes returns nonzero
if it succeeded or zero if it failed.

XAllocColorPlanes can generate Ba^Color and BadValue errors.

To store RGB values into colormap cells, use XStoreColors.

XStoreColors(display, colormap, color, ncolors)
Display * display,
Colormap colormap',
XColor color [];
int ncolors;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies an array of color definition structures to be stored.

ncolors Specifies the number of XColor structures in the color definition array.

The XStoreColors function changes the colormap entries of the pixel values specified
in the pixel members of the XColor structures. You specify which color components
are to be changed by setting DoRed, DoGreen, and/or DoBlue in the flags member
of the XColor structures. If the colormap is an installed map for its screen, the
changes are visible immediately. XStoreColors changes the specified pixels if they are
allocated writable in the colormap by any client, even if one or more pixels generates an
error. If a specified pixel is not a valid index into the colormap, a BadValue error
results. If a specified pixel either is unallocated or is allocated read-only, a BadAceess
error results. If more than one pixel is in error, the one that gets reported is arbitrary.

XStoreColors can generate BadAceess, BadColor, and BadValue errors.

59

Xlib — C Library Xll, Release 3

To store an RGB value in a single colormap cell, use XStoreColor.

XStoreColor (display, colormap, color)
Display * display,
Colormap colormap;
XColor * color-,

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value specified in
the pixel member of the XColor structure. You specified this value in the pixel
member of the XColor structure. This pixel value must be a read/write cell and a
valid index into the colormap. If a specified pixel is not a valid index into the colormap,
a BadValue error results. XStoreColor also changes the red, green, and/or blue
color components. You specify which color components are to be changed by setting
DoRed , DoGreen, and/or DoBlue in the flags member of the XColor structure. If
the colormap is an installed map for its screen, the changes are visible immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.

To set the color of a pixel to a named color, use XStoreNamedColor.

XStoreNamedColor(display, colormap, color, pixel, flags)
Display *display,
Colormap colormap;
char * color;
unsigned long pixel;
int flags;

display

colormap

color

pixel

flags

Specifies the connection to the X server.

Specifies the colormap.

Specifies the color name string (for example, red).

Specifies the entry in the colormap.

Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect to the screen
associated with the colormap and stores the result in the specified colormap. The pixel
argument determines the entry in the colormap. The flags argument determines which
of the red, green, and blue components are set. You can set this member to the bitwise
inclusive OR of the bits DoRed , DoGreen, and DoBlue. If the specified pixel is not
a valid index into the colormap, a BadValue error results. If the specified pixel either
is unallocated or is allocated read-only, a BadAccess error results. You should use the
ISO Latin-1 encoding; uppercase and lowercase do not matter.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and Bad¬
Value errors.

To free colormap cells, use XFreeColors

XFreeColors(display, colormap, pixels, npixels, planes)
Display *display;
Colormap colormap;
unsigned long pixels [];
int npixels;
unsigned long planes;

60

Xlib - C Library Xll, Release 3

display

colormap

pixels

npixels

planes

Specifies the connection to the X server.

Specifies the colormap.

Specifies an array of pixel values that map to the cells in the specified
colormap.

Specifies the number of pixels.

Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values are in the
pixels array. The planes argument should not have any bits set to 1 in common with
any of the pixels. The set of all pixels is produced by ORing together subsets of the
planes argument with the pixels. The request frees all of these pixels that were allocated
by the client (using XAllocColor, XAllocNamedColor, XAllocColorCells, and
XAllocColorPlanes). Note that freeing an individual pixel obtained from XAlIoc-
ColorPlanes may not actually allow it to be reused until all of its related pixels are
also freed.

All specified pixels that are allocated by the client in the colormap are freed, even if one
or more pixels produce an error. If a specified pixel is not a valid index into the color-
map, a BadValue error results. If a specified pixel is not allocated by the client (that
is, is unallocated or is only allocated by another client), a BadAccess error results. If
more than one pixel is in error, the one that gets reported is arbitrary.

XFreeColors can generate BadAccess, BadColor, and BadValue errors.

5.1.3. Reading Entries in a Colormap

The XQueryColor and XQueryColors functions return the RGB values stored in
the specified colormap for the pixel value you pass in the pixel member of the XColor
structure(s). The values returned for an unallocated entry are undefined. These func¬
tions also set the flags member in the XColor structure to all three colors. If a pixel is
not a valid index into the specified colormap, a BadValue error results. If more than
one pixel is in error, the one that gets reported is arbitrary.

To query the RGB values of a single specified pixel value, use XQueryColor.

XQueryColor(display, colormap, def_in_out)
Display * display,
Colormap colormap-,
XColor *def_in_out;

display Specifies the connection to the X server.

colormap Specifies the colormap.

def_in_out Specifies and returns the RGB values for the pixel specified in the struc¬
ture.

The XQueryColor function returns the RGB values for each pixel in the XColor
structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColor can generate BadColor and BadValue errors.

To query the RGB values of an array of pixels stored in color structures, use
XQueryColors.

61

Xlib - C Library Xll, Release 3

XQueryColors(display, colormap, defs_in_out, ncolors)
Display * display,
Colormap colormap;
XColor defs_in_out[];
int ncolors;

display Specifies the connection to the X server.

colormap Specifies the colormap.

defs_in_out Specifies and returns an array of color definition structures for the pixel
specified in the structure.

ncolors Specifies the number of XColor structures in the color definition array.

The XQueryColors function returns the RGB values for each pixel in the XColor
structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColors can generate BadColor and BadValue errors.

5.2. Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are off¬
screen resources that are used for various operations, for example, defining cursors as til¬
ing patterns or as the source for certain raster operations. Most graphics requests can
operate either on a window or on a pixmap. A bitmap is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

Pixmap XCreatePixmap(display, d, width, height, depth)
Display *display,
Drawable d;
unsigned int width, height;
unsigned int depth;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width
height Specify the width and height, which define the dimensions of the pixmap.

depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth you
specified and returns a pixmap ID that identifies it. It is valid to pass an InputOnly
window to the drawable argument. The width and height arguments must be nonzero,
or a BadValue error results. The depth argument must be one of the depths sup¬
ported by the screen of the specified drawable, or a BadValue error results.

The server uses the specified drawable to determine on which screen to create the pix¬
map. The pixmap can be used only on this screen and only with other drawables of the
same depth (see XCopyPlane for an exception to this rule). The initial contents of the
pixmap are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmap, use XFreePixmap.

XFreePixmap(display, pixmap)
Display * display,
Pixmap pixmap;

display Specifies the connection to the X server.

62

Xlib - C Library XI1, Release 3

pixmap Specifies the pixmap.

The XFreePixmap function first deletes the association between the pixmap ID and
the pixmap. Then, the X server frees the pixmap storage when there are no references
to it. The pixmap should never be referenced again.

XFreePixmap can generate a BadPixmap error.

5.3. Manipulating Graphics Context/State

Most attributes of graphics operations are stored in Graphic Contexts (GCs). These
include line width, line style, plane mask, foreground, background, tile, stipple, clipping
region, end style, join style, and so on. Graphics operations (for example, drawing lines)
use these values to determine the actual drawing operation. Extensions to X may add
additional components to GCs. The contents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not resource IDs to
allow Xlib to implement the transparent coalescing of changes to GCs. For example, a
call to XSetForeground of a GC followed by a call to XSetLineAttributes results
in only a single-change GC protocol request to the server. GCs are neither expected nor
encouraged to be shared between client applications, so this write-back caching should
present no problems. Applications cannot share GCs without external synchronization.
Therefore, sharing GCs between applications is highly discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues structure
and OR in the corresponding value bitmask in your subsequent calls to XCreateGC .
The symbols for the value mask bits and the XGCValues structure are:

/* GC attribute value mask bits */

#define GCFunction (1L< <0)
#define GCPlaneMask (1L< <1)
^define GCForeground (1L<<2)
#define GCBackground (1L<<3)
#define GCLineWidth (1L<<4)
#define GCLineStyle (1L<<5)
#define GCCapStyle (1L<<6)
^define GC JoinStyle (1L<<7)
^define GCFillStyle (1L<<8)
^define GCFillRule (1L< <9)

^define GCTile (1L< <10)
^define GCStipple (1L< < 11)
^define GCTileStipXOrigin (1L< < 12)
#define GCTileStipYOrigin (1L< < 13)
#define GCFont (1L< < 14)
^define GCSubwindowMode (1L< < 15)
^define GCGraphicsExposures (1L< < 16)

^define GCClipXOrigin (1L< < 17)

^define GCClipY Origin (1L< < 18)

^define GCClipMask (1L< < 19)
#define G CD ash Offset (1L< <20)

#define GCDashList (1L< <21)
#define GCArcMode (1L< <22)

/* Values */

typedef struct {
int. function;
unsigned long plane_mask;
unsigned long foreground;

/* logical operation */
/* plane mask */
/* foreground pixel */

63

Xlib - C Library Xll, Release 3

unsigned long background;
int line_width;
int line_style;
int cap_style;
int join_style;
int fill_style;
int fill_rule;
int arc_mode;
Pixmap tile;
Pixmap stipple;
int ts„x_origin;
int ts_y_origin;
Font font;
int subwindow_mode;

Bool graphics_exposures;
int clip_x_origin;
int clip_y_prigin;
Pixmap clip_mask;
int dash_offset;
char dashes;

} XGCValues;

The default GC values are:

Component Default

function GXcopy
piane_mask All ones
foreground 0
background 1
line_width 0
line_style LineSolid
cap_style CapButt
join_style JoinMiter
fi!l_style FillSolid
fill_ru le EvenOddRule
arc_mode ArcPieSlice
tile Pixmap of unspecified size filled with foreground pixel

(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)

stipple Pixmap of unspecified size filled with ones
ts_x_origin 0
ts_y_origin 0
font <implementation dependent>
subwindow_mode ClipByChildren
graph ics_exposures True
clip_x_origin 0
clip_y_origin 0
clip_mask None
dash_offset 0
dashes 4 (that is, the list [4, 4])

/* background pixel */
/* line width (in pixels) */
/* LineSolid, LineOnOffDash, LineDoubleDash */
/* CapNotLast, CapButt, CapRound, CapProjecting */
/* JoinMiter, JoinRound, JoinBevel */
/* FillSolid, FillTiled, FillStippled FillQpaqueStippled*/
/* EvenOddRule, WindingRule */
/* ArcChord, ArcPieSlice */
/* tile pixmap for tiling operations */
/* stipple 1 plane pixmap for stippling */
/* offset for tile or stipple operations */

/* default text font for text operations */
/* ClipByChildren, Includelnferiors */
/* boolean, should exposures be generated */
/* origin for clipping */

/* bitmap clipping; other calls for rects */
/* patterned/dashed line information */

Note that foreground and background are not set to any values likely to be useful in a
window.

64

Xlib — C Library Xll, Release 3

The function attributes of a GC are used when you update a section of a drawable (the
destination) with bits from somewhere else (the source). The function in a GC defines
how the new destination bits are to be computed from the source bits and the old desti¬
nation bits. GXcopy is typically the most useful because it will work on a color
display, but special applications may use other functions, particularly in concert with
particular planes of a color display. The 16 GC functions, defined in <X11/X.h >,
are:

Function Name Hex Code Operation

GXclear 0x0 0
GXand 0x1 src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src
GXandln verted 0x4 (NOT src) AND dst
GXnoop 0x5 dst
GXxor 0x6 src XOR dst
GXor 0x7 src OR dst
GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Ox a NOT dst
GXorReverse Oxb src OR (NOT dst)
GXcopy Inverted Oxc NOT src
GXorlnverted Oxd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC. The planes
attribute is of type long, and it specifies which planes of the destination are to be
modified, one bit per plane. A monochrome display has only one plane and will be the
least-significant bit of the word. As planes are added to the display hardware, they will
occupy more significant bits in the plane mask.

In graphics operations, given a source and destination pixel, the result is computed bit¬
wise on corresponding bits of the pixels. That is, a Boolean operation is performed in
each bit plane. The plane_mask restricts the operation to a subset of planes. A macro
constant AllPlanes can be used to refer to all planes of the screen simultaneously. The
result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or
plane_mask. They are simply truncated to the appropriate number of bits. The line-
width is measured in pixels and either can be greater than or equal to one (wide line) or
can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics request. Unless
otherwise specified by the join-style or cap-style, the bounding box of a wide line with
endpoints [xl, yl], [x2, y2] and width w is a rectangle with vertices at the following real

coordinates:

[xl-(w*sn/2), yl+(w*cs/2)], xl+(w*sn/2), yl-(w*cs/2)j,
[x2-(w*sn/2), y2+(w*cs/2)j, x2+(w*sn/2), y2-(w*cs/2)j

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the line.
A pixel is part of the line and so is drawn if the center of the pixel is fully inside the
bounding box (which is viewed as having infinitely thin edges). If the center of the pixel

65

Xlib - C Library Xll, Release 3

is exactly on the bounding box, it is part of the line if and only if the interior is immedi¬
ately to its right (x increasing direction). Pixels with centers on a horizontal edge are a
special case and are part of the line if and only if the interior or the boundary is immedi¬
ately below (y increasing direction) and the interior or the boundary is immediately to
the right (x increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified, device¬
dependent algorithm. There are only two constraints on this algorithm.

1. If a line is drawn unclipped from [xl,yl] to [x2,y2] and if another line is drawn
unclipped from [xl+dx,yl+dy] to [x2-fdx,y2+dy], a point [x,y] is touched by draw¬
ing the first line if and only if the point [x-fdx,y+dy] is touched by drawing the
second line.

2. The effective set of points comprising a line cannot be affected by clipping. That
is, a point is touched in a clipped line if and only if the point lies inside the clip¬
ping region and the point would be touched by the line when drawn unclipped.

A wide line drawn from [xl,yl] to [x2,y2] always draws the same pixels as a wide line
drawn from [x2,y2] to [xl,yl], not counting cap-style and join-style. It is recommended
that this property be true for thin lines, but this is not required. A line-width of zero
may differ from a line-width of one in which pixels are drawn. This permits the use of
many manufacturers’ line drawing hardware, which may run many times faster than the
more precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width one.
However, because of their different drawing algorithms, thin lines may not mix well
aesthetically with wide lines. If it is desirable to obtain precise and uniform results
across all displays, a client should always use a line-width of one rather than a line-
width of zero.

The line-style defines which sections of a line are drawn:

The full path of the line is drawm.

The full path of the line is drawn, but the even dashes are filled
differently than the odd dashes (see fill-style) with CapButt style
used where even and odd dashes meet.

Only the even dashes are drawn, and cap-style applies to all inter¬
nal ends of the individual dashes, except CapNotLast is treated
as CapButt.

The cap-style defines how the endpoints of a path are drawn:

This is equivalent to CapButt except that for a line-width of
zero the final endpoint is not drawn.

The line is square at the endpoint (perpendicular to the slope of
the line) with no projection beyond.

The line has a circular arc with the diameter equal to the line-
width, centered on the endpoint. (This is equivalent to CapButt
for line-width of zero).

The line is square at the end, but the path continues beyond the
endpoint for a distance equal to half the line-width. (This is
equivalent to CapButt for line-width of zero).

The join-style defines how corners are drawn for wide lines:

CapNotLast

CapButt

CapRound

CapProjecting

LineSolid

LineDoub-
leDash

LineOnOffiDash

66

Xlib — C Library Xll, Release 3

JoinMiter The outer edges of two lines extend to meet at an angle. How¬
ever, if the angle is less than 11 degrees, then a JoinBevel join-
style is used instead.

JoinRound The corner is a circular arc with the diameter equal to the line-
width, centered on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangular
notch filled.

For a line with coincident endpoints (xl=x2, yl=y2), when the cap-style is applied to
both endpoints, the semantics depends on the line-width and the cap-style:

CapNotLast thin The results are device-dependent, but the desired effect is
that nothing is drawn.

CapButt thin The results are device-dependent, but the desired effect is
that a single pixel is drawn.

CapRound thin The results are the same as for CapButt/thin.

CapProjecting thin The results are the same as for Butt/thin.

CapButt wide Nothing is drawn.

CapRound wide The closed path is a circle, centered at the endpoint, and
with the diameter equal to the line-width.

CapProjecting wide The closed path is a square, aligned with the coordinate
axes, centered at the endpoint, and with the sides equal to
the line-width.

For a line with coincident endpoints (xl=x2, yl=y2), when the join-style is applied at
one or both endpoints, the effect is as if the line was removed from the overall path.
However, if the total path consists of or is reduced to a single point joined with itself,
the effect is the same as when the cap-style is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of whatever desti¬
nation drawable is specified in a graphics request. The tile pixmap must have the same
root and depth as the GC, or a BadMatch error results. The stipple pixmap must
have depth one and must have the same root as the GC, or a BadMatch error results.
For stipple operations where the fill-style is FillStippled but not FillOpaqueStip-
pled , the stipple pattern is tiled in a single plane and acts as an additional clip mask to
be ANDed with the clip-mask. Although some sizes may be faster to use than others,
any size pixmap can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill requests. For all
text and fill requests (for example, XDrawText, XE> raw Text 16 XFillRectangle,
XFillPolygon, and XFillArc); for line requests with line-style LineSolid (for exam¬
ple, XDrawLine, XD raw Segments, XDrawRectangle, XDrawArc); and for the
even dashes for line requests with line-style LineOnOffDash or LineDoubleDash, the
following apply:

FillSolid Foreground

FillTiled Tile

FillOpaqueStippled

FillStippled

A tile with the same width and height as stipple, but with
background everywhere stipple has a zero and with fore¬
ground everywhere stipple has a one

Foreground masked by stipple

67

XIib - C Library Xll, Release 3

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled by
the fill-style in the following manner:

FillSolid Background

Fill Tiled Same as for even dashes

FillOpaqueStippled Same as for even dashes

FillStippIed Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the pix-
map is later used as the destination for a graphics request, the change might or might
not be reflected in the GC. If the pixmap is used simultaneously in a graphics request
both as a destination and as a tile or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same GC
(without changing its components). The costs of changing GC components relative to
using different GCs depend upon the display hardware and the server implementation.
It is quite likely that some amount of GC information will be cached in display hardware
and that such hardware can only cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that can be
set with XSetDashes. Specifying a value of N is equivalent to specifying the two-
element list [N, Nj in XSetDashes. The value must be nonzero, or a BadValue error
results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to a
pixmap, it must have depth one and have the same root as the GC, or a BadMatch
error results. If clip-mask is set to None, the pixels are always drawn regardless of the
clip origin. The clip-mask also can be set by calling the XSetClipRectangles or XSe-
tRegion functions. Only pixels where the clip-mask has a bit set to 1 are drawn. Pixels
are not drawn outside the area covered by the clip-mask or where the clip-mask has a
bit set to 0. The clip-mask affects all graphics requests. The clip-mask does not clip
sources. The clip-mask origin is interpreted relative to the origin of whatever destina¬
tion drawable is specified in a graphics request.

You can set the subwindow-mode to ClipBy Children or Includelnferiors. For
ClipByChildren , both source and destination windows are additionally clipped by all
viewable InputOutput children. For Includelnferiors, neither source nor destination
window is clipped by inferiors. This will result in including subwindow contents in the
source and drawing through subwindow boundaries of the destination. The use of
Includelnferiors on a window of one depth with mapped inferiors of differing depth is
not illegal, but the semantics are undefined by the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPolygon
requests and can be set to EvenOddRule or WindingRule. For EvenOddRule, a
point is inside if an infinite ray with the point as origin crosses the path an odd number
of times. For WindingRule, a point is inside if an infinite ray with the point as origin
crosses an unequal number of clockwise and counterclockwise directed path segments. A
clockwise directed path segment is one that crosses the ray from left to right as observed
from the point. A counterclockwise segment is one that crosses the ray from right to left
as observed from the point. The case where a directed line segment is coincident with
the ray is uninteresting because you can simply choose a different ray that is not coin¬
cident with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small, and the path
is an infinitely thin line. A pixel is inside if the center point of the pixel is inside and the
center point is not on the boundary. If the center point is on the boundary, the pixel is
inside if and only if the polygon interior is immediately to its right (x increasing direc¬
tion). Pixels with centers on a horizontal edge are a special case and are inside if and

68

Xlib - C Library Xll, Release 3

only if the polygon interior is immediately below (y increasing direction).

The arc-mode controls filling in the XFillArcs function and can be set to ArcPieSlice
or ArcChord . For ArcPieSlice, the arcs are pie-slice filled. For ArcChord , the
arcs are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for
XCopyArea and XCopyPIane requests (and any similar requests defined by exten¬
sions).

To create a new GC that is usable on a given screen with a depth of drawable, use
XCreateGC.

GC XCreateGC (display, d, valuemask, values)
Display * display]
Drawable d]
unsigned long valuemask]
XGCValues * values]

display

d

valuemask

values

Specifies the connection to the X server.

Specifies the drawable.

Specifies which components in the GC are to be set using the information
in the specified values structure. This argument is the bitwise inclusive
OR of one or more of the valid GC component mask bits.

Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The GC can
be used with any destination drawable having the same root and depth as the specified
drawable. Use with other drawables results in a BadMatch error.

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch, Bad-
Pixmap, and BadValue errors.

To copy components from a source GC to a destination GC, use XCopyGC.

XCopyGC (display, src, valuemask, dest)
Display * display,
GC src, dest]
unsigned long valuemask]

display Specifies the connection to the X server.

src Specifies the components of the source GC.

valuemask Specifies which components in the GC are to be copied to the destination
GC. This argument is the bitwise inclusive OR of one or more of the valid
GC component mask bits.

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the
destination GC. The source and destination GCs must have the same root and depth,
or a BadMatch error results. The valuemask specifies which component to copy, as for
XCreateGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.

To change the components in a given GC, use XChangeGC.

69

Xlib — C Library Xll, Release 3

XChangeGC(display, gc, valuemask, values)
Display * display,
GC gc-,
unsigned long valuemask;
XGCValues * values -,

display

gc

valuemask

values

Specifies the connection to the X server.

Specifies the GC.

Specifies which components in the GC are to be changed using informa¬
tion in the specified values structure. This argument is the bitwise
inclusive OR of one or more of the valid GC component mask bits.

Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the
specified GC. The values argument contains the values to be set. The values and res¬
trictions are the same as for XCreateGC. Changing the clip-mask overrides any previ¬
ous XSetClipRectangles request on the context. Changing the dash-offset or dash-list
overrides any previous XSetDashes request on the context. The order in which com¬
ponents are verified and altered is server-dependent. If an error is generated, a subset of
the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPix-
map, and BadValue errors.

To free a given GC, use XFreeGC.

XFreeGC(display, gc)
Display *display,
GC gc-

display Specifies the connection to the X server.

gc Specifies the GC.

The XFreeGC function destroys the specified GC as well as all the associated storage.

XFreeGC can generate a BadGC error.

To obtain the GContext resource ID for a given GC, use XGContextFromGC.

GContext XGContextFromGC(gc)
GC gc-

gc Specifies the GC for which you want the resource ID.

5.4. Using GC Convenience Routines

This section discusses how to set the:

• Foreground, background, plane mask, or function components

• Line attributes and dashes components

• Fill style and fill rule components

• Fill tile and stipple components

• Font component

• Clip region component

• Arc mode, subwindow mode, and graphics exposure components

70

Xlib - C Library Xll, Release 3

5.4.1. Setting the Foreground, Background, Function, or Plane Mask

To set the foreground, background, plane mask, and function components for a given
GC, use XSetState.

XSetState (display, gc, foreground, background, function, plane_mask)
Display * display,
GC gc;
unsigned long foreground, background]
int function]
unsigned long plane_mask]

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the specified GC.

background Specifies the background you want to set for the specified GC.

function Specifies the function you want to set for the specified GC.

plane_mask Specifies the plane mask.

XSetState can generate BadAlloc, BadGC, and BadValue errors.

To set the foreground of a given GC, use XSetForeground.

XSetForeground (display, gc, foreground)
Display * display,
GC gc]
unsigned long foreground]

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the specified GC.

XSetForeground can generate BadAlloc and BadGC errors.

To set the background of a given GC, use XSetBackground.

XSetBackground(display, gc, background)
Display * display,
GC gc]
unsigned long background]

display Specifies the connection to the X server.

gc Specifies the GC.

background Specifies the background you want to set for the specified GC.

XSetBackground can generate BadAlloc and BadGC errors.

To set the display function in a given GC, use XSetFunction.

XSetFunction (display, gc, function)
Display *display,
GC gc]
int function]

display Specifies the connection to the X server.

gc Specifies the GC.

function Specifies the function you want to set for the specified GC.

71

XIlb - C Library Xll, Release 3

XSetFunction can generate BadAlloc, BadGC, and BadValue errors.

To set the plane mask of a given GC, use XSetPlaneMask.

XSetPlaneMask (display, gc, plane_mask)
Display ^display,
GC gc]
unsigned long plane_mask\

display Specifies the connection to the X server.

gc Specifies the GC.

planejmask Specifies the plane mask.

XSetPlaneMask can generate BadAlloc and BadGC errors.

5.4.2. Setting the Line Attributes and Dashes

To set the line drawing components of a given GC, use XSetLineAttributes.

XSetLineAttributes (display, gc, line_width, line_style, cap_style, join_style)
Display *display,
GC gc;
unsigned int line_width;
int line_style;
int cap_style;
int join_style;

display

gc

line_width

li?ie_style

cap_stylc

Specifies the connection to the X server.

Specifies the GC.

Specifies the line-width you want to set for the specified GC.

Specifies the line-style you want to set for the specified GC. You c?tn pass
LineSolid , LineOnOffDash , or LineDoubleDash .

Specifies the line-style and cap-style you want to set for the specified GC.
You can pass CapNotLast, CapButt, CapRound, or CapProject-
ing.

join_style Specifies the line join-style you want to set for the specified GC. You can
pass JoinMiter, JoinRound, or JoinBevel.

XSetLineAttributes can generate BadAlloc, BadGC, and BadValue errors.

To set the dash-offset and dash-list for dashed line styles of a given GC, use XSet-
Dashes.

XSetDashes {display, gc, dash_offset, dash_list, n)
Display * display,
GC gc;
int dash_offset;
char dash_list[];
int n;

display

gc

dash_offset

dash list

Specifies the connection to the X server.

Specifies the GC.

Specifies the phase of the pattern for the dashed line-style you want to
set for the specified GC.

Specifies the dash-list for the dashed line-style you want to set for the
specified GC.

72

Xlib - C Library Xll, Release 3

n Specifies the number of elements in dash_list.

The XSetDashes function sets the dash-offset and dash-list attributes for dashed line
styles in the specified GC. There must be at least one element in the specified dash_list,
or a BadValue error results. The initial and alternating elements (second, fourth, and
so on) of the dash_list are the even dashes, and the others are the odd dashes. Each ele¬
ment specifies a dash length in pixels. All of the elements must be nonzero, or a Bad-
Value error results. Specifying an odd-length list is equivalent to specifying the same
list concatenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the
dash-list the pattern should actually begin in any single graphics request. Dashing is
continuous through path elements combined with a join-style but is reset to the dash-
offset each time a cap-style is applied at a line endpoint.

The unit of measure for dashes is the same for the ordinary coordinate system. Ideally,
a dash length is measured along the slope of the line, but implementations are only
required to match this ideal for horizontal and vertical lines. Failing the ideal semantics,
it is suggested that the length be measured along the major axis of the line. The major
axis is defined as the x axis for lines drawn at an angle of between -45 and +45 degrees
or between 315 and 225 degrees from the x axis. For all other lines, the major axis is the
y axis.

XSetDashes can generate BadAlloc, BadGC, and BadValue errors.

5.4.3. Setting the Fill Style and Fill Rule

To set the fill-style of a given GC, use XSetFillStyle.

XSetFillStyle(display, gc, fill_style)
Display * display,
GC gc;
int fill_style;

display Specifies the connection to the X server.

gc ' Specifies the GC.

fill_style Specifies the fill-style you want to set for the specified GC. You can pass
FillSolid , FillTiled , FillStippled , or FillOpaqueStippled .

XSetFillStyle can generate BadAlloc, BadGC, and BadValue errors.

To set the fill-rule of a given GC, use XSetFillRule.

XSetFillRule(display, gc, fill_rule)
Display * display,
GC gc]
int fill_rule;

display Specifies the connection to the X server.

gc Specifies the GC.

filljrule Specifies the fill-rule you want to set for the specified
EvenOddRule or WindingRule

XSetFillRule can generate BadAlloc, BadGC, and BadValue

5.4.4. Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of specific
sizes. Tiling and stippling operations that restrict themselves to those specific sizes run
much faster than such operations with arbitrary size patterns. Xlib provides functions
that you can use to determine the best size, tile, or stipple for the display as well as to

GC. You can pass

errors.

73

Xlib - C Library Xll, Release 3

set the tile or stipple shape and the tile or stipple origin.

To obtain the best size of a tile, stipple, or cursor, use XQueryBestSize.

Status XQueryBestSize (display, class, which_screen, width, height, widthjreturn, heightjreturn)
Display * display)
int class;
Drawable whichjscreen)
unsigned int width, height)
unsigned int *width_return, * heightjreturn)

display

class

which_screen

width
height

widthjreturn
heightjreturn

Specifies the connection to the X server.

Specifies the class that you are interested in. You can pass TileShape,
CursorShape, or StippleShape.

Specifies any drawable on the screen.

Specify the width and height.

Return the width and height of the object best supported by the display
hardware.

The XQueryBestSize function returns the best or closest size to the specified size. For
CursorShape, this is the largest size that can be fully displayed on the screen specified
by which_screen. For TileShape, this is the size that can be tiled fastest. For Stip¬
pleShape, this is the size that can be stippled fastest. For CursorShape, the draw-
able indicates the desired screen. For TileShape and StippleShape, the drawable
indicates the screen and possibly the window class and depth. An InputOnly window
cannot be used as the drawable for TileShape or StippleShape, or a BadMatch
error results.

XQueryBestSize can generate BadDrawable, BadMatch, and BadValue errors.

To obtain the best fill tile shape, use XQueryBestTile.

Status XQueryBestTile (display, whichjscreen, width, height, widthjreturn, heightjreturn)
Display * display,
Drawable which_screen)
unsigned int width, height)
unsigned int * widthjreturn, * heightjreturn)

display

which_screen

width
height

Specifies the connection to the X server.

Specifies any drawable on the screen.

Specify the width and height.

widthjreturn
heightjreturn Return the width and height of the object best supported by the display

hardware.

The XQueryBestTile function returns the best or closest size, that is, the size that
can be tiled fastest on the screen specified by whichjscreen. The drawable indicates the
screen and possibly the window class and depth. If an InputOnly window is used as
the drawable, a BadMatch error results.

XQueryBestTile can generate BadDrawable and BadMatch errors.

To obtain the best stipple shape, use XQueryBestStipple.

74

Xlib - C Library Xll, Release 3

Status XQueryBestStipple (display, which_screen, width, height, widthjreturn, heightjreturn)
Display * display,
Drawable which_screerr,
unsigned int width, height;
unsigned int *width_return, * heightjreturn',

display

which_screen

width
height

widthjreturn
heightjreturn

Specifies the connection to the X server.

Specifies any drawable on the screen.

Specify the width and height.

Return the width and height of the object best supported by the display
hardware.

The XQueryBestStipple function returns the best or closest size, that is, the size that
can be stippled fastest on the screen specified by which_screen. The drawable indicates
the screen and possibly the window class and depth. If an InputOnly window is used
as the drawable, a BadMatch error results.

XQueryBestStipple can generate BadDrawable and BadMatch errors.

To set the fill tile of a given GC, use XSetTile.

XSetTile (display, gc, tile)
Display * display,
GC gc-
Pixmap tile;

display Specifies the connection to the X server.

gc Specifies the GC.

tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMatch error results.

XSetTile can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the stipple of a given GC, use XSetStipple.

XSetStipple(display, gc, stipple)
Display * display,
GC gc,
Pixmap stipple;

display Specifies the connection to the X server.

gc Specifies the GC.

stipple Specifies the stipple you want to set for the specified GC.

The stipple and GC must have the same depth, or a BadMatch error results.

XSetStipple can generate BadAlloc, BadGC, BadMatch, and BadPixmap
errors.

To set the tile or stipple origin of a given GC, use XSetTSOrigin .

XSetTSOrigin (display, gc, tsjc_origin, ts_y_origin)
Display * display,
GC gc,
int tsjtjorigin, ts_y_origin;

75

Xlib — C Library Xll, Release 3

display Specifies the connection to the X server.

gc Specifies the GC.

ts_x_origin
ts_y_origin Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the parent’s origin will be interpreted
relative to whatever destination drawable is specified in the graphics request.

XSetTSOrigin can generate BadAlloc and BadGC error.

5.4.5. Setting the Current Font

To set the current font of a given GC, use XSetFont.

XSetFont(display, gc, font)
Display * display;
GC gc;
Font font;

display Specifies the connection to the X server.

gc Specifies the GC.

font Specifies the font.

XSetFont can generate BadAlloc, BadFont, and BadGC errors.

5.4.6. Setting the Clip Region

Xlib provides functions that you can use to set the clip-origin and the clip-mask or set
the clip-mask to a list of rectangles.

To set the clip-origin of a given GC, use XSetClipOrigin.

XSetClipOrigin (display, gc, clip_x_origin, clip_y_origin)
Display * display;
GC gc;
int clip_x_origin, clip_y_origin;

display Specifies the connection to the X server.

gc Specifies the GC.

clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destination draw-
able is specified in the graphics request.

XSetClipOrigin can generate BadAlloc and BadGC errors.

To set the clip-mask of a given GC to the specified pixmap, use XSetClipMask.

XSetClipMask (display, gc, pixmap)
Display * display;
GC gc;
Pixmap pixmap;

display Specifies the connection to the X server.

gc Specifies the GC.

pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are are always drawn (regardless of the clip-

origin).

76

Xlib - C Library Xll, Release 3

XSetClipMask can generate BadAlloc, BadGC, BadMatch, and BadValue
errors.

To set the clip-mask of a given GC to the specified list of rectangles, use XSetClipRec-
tangles.

XSetClipRectangles(display, gc, clip_x_origin, clip_y_origin, rectangles, n, ordering)
Display * display,
GC gc;
int clip_x__origin, clip_y_origin;
XRectangle rectangles[];
int n;
int ordering;

display

gc

clip_x_origin
clip_y_origin

rectangles

n

ordering

Specifies the connection to the X server.

Specifies the GC.

Specify the x and y coordinates of the clip-mask origin.

Specifies an array of rectangles that define the clip-mask.

Specifies the number of rectangles.

Specifies the ordering relations on the rectangles. You can pass
Ur sorted YSorted , YXSorted , or YXBanded.

The XSetClipRectangles function changes the clip-mask in the specified GC to the
specified list of rectangles and sets the clip origin. The output is clipped to remain con¬
tained within the rectangles. The clip-origin is interpreted relative to the origin of what¬
ever destination drawable is specified in a graphics request. The rectangle coordinates are
interpreted relative to the clip-origin. The rectangles should be nonintersecting, or the
graphics results will be undefined. Note thatihe list of rectangles can be empty, which
effectively disables output. This is the opposite of passing None as the clip-mask in
XCreateGC, XChangeGC, and XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the ord¬
ering argument. This may provide faster operation by the server. If an incorrect ordering
is specified, the X server may generate a BadMatch error, but it is not required to do
so. If no error is generated, the graphics results are undefined. Unsorted means the
rectangles are in arbitrary order. YSorted means that the rectangles are nondecreasing
in their Y origin. YXSorted additionally constrains YSorted order in that all rectan¬
gles with an equal Y origin are nondecreasing in their X origin. YXBanded additionally
constrains YXSorted by requiring that, for every possible Y scanline, all rectangles
that include that scanline have an identical Y origins and Y extents.

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch, and Bad-
Value errors.

Xlib provides a set of basic functions for performing region arithmetic. For information
about these functions, see chapter 10.

5.4.7. Setting the Arc Mode, Subwindow Mode, and Graphics Exposure

To set the arc mode of a given GC, use XSetArcMode.

XSetArcMode (display, gc, arc_mode)
Display * display;
GC gc ;
int arc_mode;

77

Xlib - C Library Xll, Release 3

display Specifies the connection to the X server.

gc Specifies the GC.

arc_mode Specifies the arc mode. You can pass ArcChord or ArcPieSlice.

XSetArcMode can generate BadAlloc, BadGC, and BadValue errors.

To set the subwindow mode of a given GC, use XSetSubwindowMode.

XSetSubwindowMode(display, gc, subwindow_mode)
Display * display,
GC gc ;
int subwindowjmode;

display Specifies the connection to the X server.

gc Specifies the GC.

subwindow_mode
Specifies the subwindow mode. You can pass ClipByChildren or
Includelnferiors.

XSetSubwindowMode can generate BadAlloc, BadGC, and BadValue errors.

To set the graphics-exposures flag of a given GC, use XSetGraphicsExposures.

XSetGraphicsExposures(display, gc, graphics_exposures)
Display * display;
GC gc;
Bool graphics_exposures;

display Specifies the connection to the X server.

gc Specifies the GC.

graphics_exposures
Specifies a Boolean value that indicates whether you want GraphicsEx-
pose and NoExpose events to be reported when calling XCopyArea
and XCopyPlane with this GC.

XSetGraphicsExposures can generate BadAlloc, BadGC, and BadValue errors.

78

Xlib — C Library Xll, Release 3

Chapter 6

Graphics Functions

Once you have connected the display to the X server, you can use the Xlib graphics
functions to:

• Clear and copy areas

• Draw points, lines, rectangles, and arcs

• Fill areas

• Manipulate fonts

• Draw text

® Transfer images between clients and the server

• Manipulate cursors

If the same drawable and GC is used for each call, Xlib batches back-to-back calls to
XDrawPoint, XDrawLine, XDrawRectangle, XFillArc, and XFillRectangle.
Note that this reduces the total number of requests sent to the server.

6.1. Clearing Areas

Xlib provides functions that you can use to clear an area or the entire window. Because
pixmaps do not have defined backgrounds, they cannot be filled by using the functions
described in this section. Instead, to accomplish an analogous operation on a pixmap,
you should use XFillRectangle, which sets the pixmap to a known value.

To clear a rectangular area of a given window, use XClearArea.

XClearArea(display, w, x, y, width, height, exposures)
Display * display,
Window w,
int x, y;
unsigned int width, height;
Bool exposures',

display Specifies the connection to the X server.

w Specifies the window.

x

y

width
height

exposures

Specify the x and y coordinates, which are relative to the origin of the
window and specify the upper-left corner of the rectangle.

Specify the width and height, which are the dimensions of the rectangle.

Specifies a Boolean value that indicates if Expose events are to be gen¬
erated.

The XClearArea function paints a rectangular area in the specified window according
to the specified dimensions with the window’s background pixel or pixmap. The
subwindow-mode effectively is ClipByChildren. If width is zero, it is replaced with
the current width of the window minus x. If height is zero, it is replaced with the
current height of the window minus y. If the window has a defined background tile, the
rectangle clipped by any children is filled with this tile. If the window has background
None, the contents of the window are not changed. In either case, if exposures is

79

Xlib - C Library Xll, Release 3

True , one or more Expose events are generated for regions of the rectangle that are
either visible or are being retained in a backing store. If you specify a window whose
class is InputOnly, a BadMatch error results.

XClearArea can generate BadMatch, BadValue. and BadWindow errors.

To clear the entire area in a given window, use XClearWindow .

XClearWindow (display, w)
Display *display,
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XClearWindow function clears the entire area in the specified window and is
equivalent to XClearArea (display, w, 0, 0, 0, 0, False). If the window has a defined
background tile, the rectangle is tiled with a plane-mask of all ones and GXcopy func¬
tion. If the window has background None, the contents of the window are not
changed. If you specify a window whose class is InputOnly, a BadMatch error
results.

XClearWindow can generate BadMatch and BadWindow errors.

6.2. Copying Areas

Xlib provides functions that you can use to copy an area or a bit plane.

To copy an area between drawables of the same root and depth, use XCopyArea.

XCopyArea(display, src, dest, gc, src_x, src_y, width, height, dest_x, dest_jj)
Display * display,
Draw able src, dest;

GC gc;
int src_x, src__y,
unsigned int width, height-,
int dest_x, destjy,

display Specifies the connection to the X server.

src
dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_x
src_y Specify the x and y coordinates, which are relative to the origin of the

source rectangle and specify its upper-left corner.

width
height Specify the width and height, which are the dimensions of both the source

and destination rectangles.

dest_x
dest_y Specify the x and y coordinates, which are relative to the origin of the

destination rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the specified rec¬
tangle of dest. The drawables must have the same root and depth, or a BadMatch
error results.

If regions of the source rectangle are obscured and have not been retained in backing
store or if regions outside the I>< -nudaries of the source drawable are specified, those
regions are not copied. Instead, i lie following occurs on all corresponding destination

80

Xlib - C Library XI1, Release 3

regions that are either visible or are retained in backing store. If the destination is a win¬
dow with a background other than None, corresponding regions of the destination are
tiled with that background (with plane-mask of all ones and GXcopy function).
Regardless of tiling or whether the destination is a window or a pixmap, if graphics-
exposures is True, then GraphicsExpose events for all corresponding destination
regions are generated. If graphics-exposures is True but no GraphicsExpose events
are generated, a NoExpose event is generated. Note that by default graphics-
exposures is True in new GCs.

This function uses these GC components: function, plane-mask, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generate BadDrawable, BadGC, and BadMatch errors.

To copy a single bit plane of a given drawable, use XCopyPlane.

XCopyPlane(display, src, dest, gc, src_x, src_y, width, height, de$t_x, dest_y, plane)
Display * display,
Drawable src, dest;
GC gc;
int src_x, src_y,
unsigned int width, height’,
int dest_x, destjy,
unsigned long plane;

display Specifies the connection to the X server.

src
dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_x
src_y Specify the x and y coordinates, which are relative to the origin of the

source rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both the source
and destination rectangles.

dest_x

dest_y Specify the x and y coordinates, which are relative to the origin of the
destination rectangle and specify its upper-left corner.

plane Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectangle com¬
bined with the specified GC to modify the specified rectangle of dest. The drawables
must have the same root but need not have the same depth. If the drawables do not
have the same root, a BadMatch error results. If plane does not have exactly one bit
set to 1 and the values of planes must be less than 2" , where n is the depth of scr, a
BadValue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest
and with a size specified by the source region. It uses the foreground/background pixels
in the GC (foreground everywhere the bit plane in src contains a bit set to 1, back¬
ground everywhere the bit plane in src contains a bit set to 0) and the equivalent of a
Copy Area potocol request is performed with all the same exposure semantics. This
can also be thought of as using the specified region of the source bit plane as a stipple
with a fill-style of FillOpaqueStippled for filling a rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground, background,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

81

Xlib - C Library XI1, Release 3

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

6,3. Drawing Points, Lines, Rectangles, and Arcs

Xlib provides functions that you can use to draw:

• A single point or multiple points

• A single line or multiple lines

® A single rectangle or multiple rectangles

® A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

typedef struct {
short xl, yl, x2, y2;

} XSegment;

typedef struct {
short x, y;

} XPoint;

typedef struct {
short x, y;
unsigned short width, height;

} XRectangle;

typedef struct {
short x, y;
unsigned short width, height;
short anglel, ang!e2; /* Degrees * 64 */

} XArc;

All x and y members are signed integers. The width and height members are 16-bit
unsigned integers. You should be careful not to generate coordinates and sizes out of
the 16-bit ranges, because the protocol only has 16-bit fields for these values.

6,3.1. Drawing Single and Multiple Points

To draw a single point in a given drawable, use XDrawPoint.

XDrawPoint(display, d, gc, x, y)
Display * display ;
Drawable d;
GC gc;
int x, y;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates where you want the point drawn.

To draw multiple points in a given drawable, use XDrawPoints.

82

Xlib - C Library Xll, Release 3

XDrawPoints(display, d, gc, points, npoints, mode)
Display * display,
Drawable d]
GC gc-
XPoint * points]
int npoints-,
int mode;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies a pointer to an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

The XDrawPoint function uses the foreground pixel and function components of the
GC to draw a single point into the specified drawable; XDrawPoints draws multiple
points this way. CoordModeOrigin treats all coordinates as relative to the origin,
and CoordModePrevious treats all coordinates after the first as relative to the previ¬
ous point. XDrawPoints draws the points in the order listed in the array.

Both functions use these GC components: function, plane-mask, foreground,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors.
XDrawPoints can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

6.3.2. Drawing Single and Multiple Lines

To draw a single line between two points in a given drawable, use XDrawLine.

XDrawLine (display, d, gc, xl, yl, x2, y2)
Display * display,
Drawable d]
GC gc;
int xl, yl, x2, y2]

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

xl

yd
x2
y2 Specify the points (xl, yl) and (x2, y2) to be connected

To draw multiple lines in a given drawable, use XDrawLines.

XDrawLines(display, d, gc, points, npoints, mode)
Display * display,
Drawable d]
GC gc;
XPoint *points]
int npoints]
int mode]

83

Xlib - C Library Xll, Release 3

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies a pointer to an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

To draw multiple, unconnected lines in a given drawable, use XDrawSegments.

XDrawSegments(display, d, gc, segments, nsegments)
Display * display,
Drawable d;
GC gc\
XSegment *segments;
int, nsegments;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

segments Specifies a pointer to an array of segments.

nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line
between the specified set of points (xl, yl) and (x2, y2). It does not perform joining at
coincident endpoints. For any given line, XDrawLine does not draw a pixel more than
once. If lines intersect, the intersecting pixels are drawn multiple times. .

The XDrawLines function uses the components of the specified GC to draw npoints-1
lines between each pair of points (point[i], point[i-+-l]) in the array of XPoint struc¬
tures. It draws the lines in the order listed in the array. The lines join correctly at all
intermediate points, and if the first and last points coincide, the first and last lines also
join correctly. For any given line, XDrawLines does not draw a pixel more than once.
If thin (zero line-width) lines intersect, the intersecting pixels are drawn multiple times.
If wide lines intersect, the intersecting pixels are drawn only once, as though the entire
PolyLine protocol request were a single, filled shape. CoordModeOrigin treats all
coordinates as relative to the origin, and CoordModePrevious treats all coordinates
after the first as relative to the previous point.

The XD raw Segments function draws multiple, unconnected lines. For each segment,
XDrawSegments draws a line between (xl, yl) and (x2, y2). It draws the lines in the
order listed in the array of XSegment structures and does not perform joining at coin¬
cident endpoints. For any given line, XDrawSegments does not draw a pixel more
than once. If lines intersect, the intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width, line-
style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.
The XDrawLines function also uses the join-style GC component. All three functions
also use these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate BadDrawable,
BadGC, and BadMatch errors. XDrawLines also can generate BadValue errors.

84

Xlib - C Library Xll, Release 3

6,3.3. Drawing Single and Multiple Rectangles

To draw the outline of a single rectangle in a given drawable, use XDrawRectangle.

XDrawRectangle(display, d, gc, x, y, width, height)
Display * display,
Drawable d;
GC gc;
int x, y;
unsigned int width, height-,

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which specify the upper-left corner of the

rectangle.

width
height Specify the width and height, which specify the dimensions of the rectan¬

gle.

To draw the outline of multiple rectangles in a given drawable, use XDrawRectan-
gles

XDrawRectangles(display, d, gc, rectangles, nrectangles)
Display * display;
Drawable d;
GC gc ;
XRectangle rectangles [];
int nrectangles;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies a pointer to an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XDrawRectangle and XDrawRectangles functions draw the outlines of the
specified rectangle or rectangles as if a five-point PolyLine protocol request were
specified for each rectangle:

[x,y] [x+width,y] [x+width,y-fheight] [x,y+height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more than
once. XDrawRectangles draws the rectangles in the order listed in the array. If rec¬
tangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They
also use these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectangles can generate BadDrawable, BadGC,
and BadMatch errors.

85

Xlib - C Library Xll, Release 3

6.3.4. Drawing Single and Multiple Arcs

To draw a single arc in a given drawable, use XDrawArc.

XDrawArc (display, d, gc, x, y, width, height, anglel, angleS)
Display * display,
Drawable d;
GC gc-
int x, y,
unsigned int width, height;
int anglel, angle2\

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the

drawable and specify the upper-left corner of the bounding rectangle.

width
height Specify the width and height, which are the major and minor axes of the

arc.

anglel Specifies the start of the arc relative to the three-o’clock position from the
center, in units of degrees * 64.

angleS Specifies the path and extent of the arc relative to the start of the arc, in
units of degrees * 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

XDrawArcs(display, d, gc, arcs, narcs)
Display * display,
Drawable d;
GC gc-,
XArc *arcs;
int narcs-,

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

arcs Specifies a pointer to an array of arcs.

narcs Specifies the number of arcs in the array

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws multiple
circular or elliptical arcs. Each arc is specified by a rectangle and two angles. The center
of the circle or ellipse is the center of the rectangle, and the major and minor axes are
specified by the width and height. Positive angles indicate counterclockwise motion, and
negative angles indicate clockwise motion. If the magnitude of angle2 is greater than 360
degrees, XDrawArc or XDrawArcs truncates it to 360 degrees.

For an arc specified as [x , y , width , height, angle 1, angle 2], the origin of the major and

minor axes is at [x + .un^.) y + —], and the infinitely thin path describing the entire

circle or ellipse intersects the horizontal axis at [x , y 4- and + width , y +]

and intersects the vertical axis at [x + , y] and [x + -, y + height]. These coor-

86

Xlib - C Library Xll, Release 3

dinates can be fractional and so are not truncated to discrete coordinates. The path
should be defined by the ideal mathematical path. For a wide line with line-width lw,
the bounding outlines for filling are given by the two infinitely thin paths consisting of
all points whose perpendicular distance from the path of the circle/ellipse is equal to
lw/2 (which may be a fractional value). The cap-style and join-style are applied the
same as for a line corresponding to the tangent of the circle/ellipse at the endpoint.

For an arc specified as [x , y , width , height, angle 1, angle 2], the angles must be specified
in the effectively skewed coordinate system of the ellipse (for a circle, the angles and
coordinate systems are identical). The relationship between these angles and angles
expressed in the normal coordinate system of the screen (as measured with a protractor)
is as follows:

skewed-angle — atan I tan(normal-angle) 1+ adjust
height J

The skewed-angle and normal-angle are expressed in radians (rather than in degrees

scaled by 64) in the range [0, 27r] and where atan returns a value in the range [-—, -^]

and adjust is:

0

7T

27T

for normal-angle in the range [0, -A]
mt

for normal-angle in the range [-^, }
tmd 4*

for normal-angle in the range [-^, 2;r]

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than once.
If two arcs join correctly and if the line-width is greater than zero and the arcs intersect,
XDrawArc and -XDrawArcs do not draw a pixel more than once. Otherwise, the
intersecting pixels of intersecting arcs are drawn multiple times. Specifying an arc with
one endpoint and a clockwise extent draws the same pixels as specifying the other end¬
point and an equivalent counterclockwise extent, except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the two
arcs will join correctly. If the first point in the first arc coincides with the last point in
the last arc, the two arcs will join correctly. By specifying one axis to be zero, a horizon¬
tal or vertical line can be drawn. Angles are computed based solely on the coordinate
system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-style,
cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-
mask. They also use these GC mode-dependent components: foreground, background,
tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawArc and XDraw Arcs can generate BadDrawable, BadGC, and Bad-
Match errors.

6.4. Filling Areas

Xlib provides functions that you can use to fill:

• A single rectangle or multiple rectangles

• A single polygon

• A single arc or multiple arcs

87

Xlib - C Library Xll, Release 3

6.4.1, Filling Single and Multiple Rectangles

To fill a single rectangular area in a given drawable, use XFillRectangie.

XFillRectangle(display, d, gc, x, y, width, height)
Display * display,
Drawable d]
GC gc;
int x, y\
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the

drawable and specify the upper-left corner of the rectangle.

width
height Specify the width and height, which are the dimensions of the rectangle

to be filled.

To fill multiple rectangular areas in a given drawable, use XFiliRectangles.

XFil!Rectangles(display, d, gc, rectangles, nrectangles)
Display * display,
Drawable d,
GC gc;
XRectangle * rectangles]
int rtrectangles]

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies a pointer to an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XFillRectangie and XFiliRectangles functions fill the specified rectangle or rec¬
tangles as if a four-point FillPolvgon protocol request were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

Each function uses the x and y coordinates, width and height dimensions, and GC you
specify.

XFiliRectangles fills the rectangles in the order listed in the array. For any given rec¬
tangle, XFillRectangie and XFiliRectangles do not draw a pixel more than once. If
rectangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwindow¬
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, and
tile-stipple-y-origin.

XFillRectangie and XFiliRectangles can generate BadDrawable, BadGC, and
BadMatch errors.

88

Xlib — C Library Xll, Release 3

6.4.2. Filling a Single Polygon

To fill a polygon area in a given drawable, use XFillPolygon .

XFillPolygon (display, d, gc, points, npoints, shape, mode)
Display * display,
Drawable d;
GC gc;
XPoint * points',
int npoints]
int shape;
int mode;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies a pointer to an array of points.

npoints Specifies the number of points in the array.

shape Specifies a shape that helps the server to improve performance. You can
pass Complex , Convex , or Nonconvex .

mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

XFillPolygon fills the region closed by the specified path. The path is closed automat¬
ically if the last point in the list does not coincide with the first point. XFillPolygon
does not draw a pixel of the region more than once. CoordModeOrigin treats all
coordinates as relative to the origin, and CoordModePrevious treats all coordinates
after the first as relative to the previous point.

Depending on the specified shape, the following occurs:

• If shape is Complex, the path may self-intersect.

• If shape is Convex, the path is wholly convex. If known by the client, specifying
Convex can improve performance. If you specify Convex for a path that is not
convex, the graphics results are undefined.

• If shape is Nonconvex, the path does not self-intersect, but the shape is not
wrholly convex. If known by the client, specifying Nonconvex instead of Com¬
plex may improve performance. If you specify Nonconvex for a self-intersecting
path, the graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

6.4.3. Filling Single and Multiple Arcs

To fill a single arc in a given drawable, use XFillArc.

39

Xlib - C Library Xll, Release 3

XFillArc(display, d, gc, x, y, width, height, anglel, angleS)
Display *display;
Drawable d;
GC gc,
int x, y;
unsigned int width, height;
int anglel, angle2;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the

drawable and specify the upper-left corner of the bounding rectangle.

width
height Specify the width and height, which are the major and minor axes of the

arc.

anglel Specifies the start of the arc relative to the three-o’clock position from the
center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in
units of degrees * 64.

To fill multiple arcs in a given drawable, use XFillArcs.

XFillArcs(display, d, gc, arcs, narcs)
Display * display,
Drawable d;
GC gc,
XArc *arcs\
int narcs;

display

d

gc

arcs

narcs

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specifies a pointer to an array of arcs.

Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely thin path
described by the specified arc and, depending on the arc-mode specified in the GC, one
or two line segments. For ArcChord, the single line segment joining the endpoints of
the arc is used. For ArcPieSlice, the two line segments joining the endpoints of the arc
with the center point are used. XFillArcs fills the arcs in the order listed in the array.
For any given arc, XFillArc and XFillArcs do not draw a pixel more than once. If
regions intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC, and BadMatch
errors.

90

Xlib - C Library Xll, Release 3

6.5. Font Metrics

A font is a graphical description of a set of characters that are used to increase efficiency
whenever a set of small, similar sized patterns are repeatedly used.

This section discusses how to:

• Load and free fonts

• Obtain and free font names

• Set and retrieve the font search path

• Compute character string sizes

• Return logical extents

® Query character string sizes

The X server loads fonts whenever a program requests a new lont. The server can cache
fonts for quick lookup. Fonts are global across all screens in a server. Several levels are
possible when dealing with fonts. Most applications simply use XLoadQueryFont to
load a font and query the font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the only pix¬
els modified are those in which bits are set to 1 in the character. This means that it
makes sense to draw text using stipples or tiles (for example, many menus gray-out
unusable entries).

The XFontStruct structure contains all of the information for the font and consists of
the font-specific information as well as a pointer to an array of XCharStruct struc¬
tures for the characters contained in the font. The XFontStruct, XFontProp, and
XCharStruct structures contain:

typedef struct {
short Rearing;
short rbearing;
short width;
short ascent;
short descent;
unsigned short attributes;

} XCharStruct;

typedef struct {
Atom name;
unsigned long card32;

} XFontProp;

typedef struct {
unsigned char bytel;
unsigned char byte2;

} XChar2b;

typedef struct {
XExtData *ext_data;
Font fid;
unsigned direction;
unsigned min_char_or_byte2;
unsigned max_char_or_byte2;

unsigned min_bytel;
unsigned max_bytel;
Bool all_chars_exist;
unsigned default_char;
int n_properties;

/* origin to left edge of raster */
/* origin to right edge of raster */
/* advance to next char’s origin */
/* baseline to top edge of raster */
/* baseline to bottom edge of raster */
/* per char flags (not predefined) */

/* normal 16 bit characters are two bytes */

/* hook for extension to hang data */
/* Font id for this font */
/* hint about the direction font is painted */
/* first character */
/* last character */
/* first row that exists */
/* last row that exists */
/* flag if all characters have nonzero size */
/* char to print for undefined character */
/* how many properties there are */

91

Xlib - C Library Xll, Release 3

XFontProp *properties;
XCharStruct mm_boiinds;

XCharStruct max_bounds;
XCharStruct *per_char;
int ascent;
int descent;

} XFontStruct;

/* pointer to array of additional properties */
/* minimum bounds over all existing char */
/* maximum bounds over all existing char */
/* first_char to last_char information */
/* logical extent above baseline for spacing */
/* logical decent below baseline for spacing */

X supports single byte/character, two bytes/character matrix, and 16-bit character text
operations. Note that any of these forms can be used with a font, but a single
byte/character text request can only specify a single byte (that is, the first row of a 2-
byte font). You should view 2-byte fonts as a two-dimensional matrix of defined charac¬
ters: bytel specifies the range of defined rows and byte2 defines the range of defined
columns of the font. Single byte/character fonts have one row defined, and the byte2
range specified in the structure defines a range of characters.

The bounding box of a character is defined by the XCharStruct of that character.
When characters are absent from a font, the default_char is used. When fonts have all
characters of the same size, only the information in the XFontStruct min and max
bounds are used.

The members of the XFontStruct have the following semantics:

• The direction member can be either FontLeftToRight or FontRightToLeft.
It is just a hint as to whether most XCharStruct elements have a positive
(FontLeftToRight) or a negative (FontRightToLeft) character width metric.
The core protocol defines no support for vertical text.

• If the min_bytel and max_bytel members are both zero, min_char_or_byte2
specifies the linear character index corresponding to the first element of the
per_char array, and max_char_or_byfe2 specifies the linear character index of the
last element.

If either min_byt.el or max_bytel are nonzero, both min_char_or_byte2 and
max_char_or_byte2 are less than 256, and the 2-byte character index values
corresponding to the per_char array element N (counting from 0) are:

bytel = N/D -f min_bytel
byte2 = N\D + min_char_or_byte2

where:

D = max_char_or_byte2 - min_char_or_byte2 + 1
/ = integer division
\ = integer modulus

• If the per_char pointer is NULL, all glyphs between the first and last character
indexes inclusive have the same information, as given by both min_boiinds and
rnax_boiinds.

• If all_chars_exist is True, all characters in the per_char array have nonzero
bounding boxes.

• The default_char member specifies the character that will be used when an
undefined or nonexistent character is printed. The default_char is a 16-bit charac¬
ter (not a 2-byte character). For a font using 2-byte matrix format, the
default_char has bytel in the most-significant byte and byte2 in the least-
significant byte. If the default_char itself specifies an undefined or nonexistent
character, no printing is performed for an undefined or nonexistent character.

• The min_bounds and max_boiinds members contain the most extreme values of
each individual XCharStruct component over all elements of this array (and
ignore nonexistent characters). The bounding box of the font (the smallest

92

Xlib — C Library Xll, Release 3

rectangle enclosing the shape obtained by superimposing all of the characters at
the same origin [x,y]) has its upper-left coordinate at:

[x + min_bounds.lbearing, y - max_bounds.ascent]

Its width is:

max_bounds.rbearing - min_bounds.lbearing

Its height is:

max_bounds. ascent + max_bounds. descent

• The ascent member is the logical extent of the font above the baseline that is used
for determining line spacing. Specific characters may extend beyond this.

• The descent member is the logical extent of the font at or below the baseline that
is used for determining line spacing. Specific characters may extend beyond this.

• If the baseline is at Y-coordinate y, the logical extent of the font is inclusive
between the Y-coordinate values (y - font.ascent) and (y -f font.descent - 1). Typ¬
ically, the minimum interline spacing between rows of text is given by ascent +
descent.

For a character origin at [x,y], the bounding box of a character (that is, the smallest rec¬
tangle that encloses the character’s shape) described in terms of XCharStruct com¬
ponents is a rectangle with its upper-left corner at:

[x -F lbearing, y - ascent]

Its width is:

rbearing - lbearing

Its height is:

ascent + descent

The origin for the next character is defined to be:

[x + width, y]

The lbearing member defines the extent of the left edge of the character ink from the
origin. The rbearing member defines the extent of the right edge of the character ink
from the origin. The ascent member defines the extent of the top edge of the character
ink from the origin. The descent member defines the extent of the bottom edge of the
character ink from the origin. The width member defines the logical width of the char¬
acter.

Note that the baseline (the y position of the character origin) is logically viewed as being
the scanline just below nondescending characters. When descent is zero, only pixels with
Y-coordinates less than y are drawn, and the origin is logically viewed as being coin¬
cident with the left edge of a nonkerned character. When lbearing is zero, no pixels with
X-coordinate less than x are drawn. Any of the XCharStruct metric members could
be negative. If the width is negative, the next character will be placed to the left of the
current origin.

The X protocol does not define the interpretation of the attributes member in the
XCharStruct structure. A nonexistent character is represented with all members of
its XCharStruct set to zero.

93

XIib - C Library Xll, Release 3

A font is not guaranteed to have any properties. The interpretation of the property
value (for example, long or unsigned long) must be derived from a priori knowledge of
the property. When possible, fonts should have at least the properties listed in the fol¬
lowing table. With atom names, uppercase and lowercase matter. The following built-in
property atoms can be found in <Xll/Xatom.h >:

Property Name Type Description

MINJSPACE unsigned The minimum interword spacing, in pixels.

NORMJ5PACE unsigned The normal interword spacing, in pixels.

MAX_SPACE unsigned The maximum interword spacing, in pixels.

END_SPACE unsigned The additional spacing at the end of sentences, in
pixels.

SUPERSCRIPT_X
SUPER SCR IP T_Y

int Offset from the character origin where superscripts
should begin, in pixels. If the origin is at [x,y], then
superscripts should begin at
[x + SUPERSCRIPT_X, y - SUPERSCRIPT_Y].

SUBSCRIPT^
SUBSCRIPTS

int Offset from the character origin where subscripts
should begin, in pixels. If the origin is at [x,y], then
subscripts should begin at
[x + SUPERSCRIPT_X, y + SUPERSCRIPT_Y].

UNDERLINE_POSITION int Y offset from the baseline to the top of an under¬
line, in pixels. If the baseline is Y-coordinate y,
then the top of the underline is at
(y + UNDERLINE_POSITION).

UNDERLINE_THICKNESS unsigned Thickness of the underline, in pixels.

STREKEOUT_ASCENT
strikeout_descent

int Vertical extents for boxing or voiding characters, in
pixels. If the baseline is at Y-coordinate y, then the
top of the strikeout box is at
(y - STRIKEOUT_ASCENT),
and the height of the box is
(STREKEOUT_ASCENT + STRIKEOUT JDESCENT).

italic_angle int The angle of the dominant staffs of characters in
the font, in degrees scaled by 64, relative to the
three-o’clock position from the character origin,
with positive indicating counterclockwise motion
(as in XDrawArc).

X_HEIGHT int • 1 ex as in TeX, but expressed in units of pixels.
Often the height of lowercase x.

quad_width int 1 em as in TeX, but expressed in units of pixels.
Often the width of the digits 0-9.

cap_height int Y offset from the baseline to the top of the capital
letters, ignoring accents, in pixels. If the baseline is
at Y-coordinate y, then the top of the capitals is at
(y - CAP_HEIGHT).

WEIGHT unsigned The weight or boldness of the font, expressed as a
value between 0 and 1000.

94

Xlib - C Library Xll, Release 3

Property Name Type Description

POINTJ3IZE unsigned The point size of this font at the ideal resolution,
expressed in 1/10 points.

RESOLUTION unsigned The number of pixels per point, expressed in 1/100,
at which this font was created.

6.5.1. Loading and Freeing Fonts

Xlib provides functions that you can use to load fonts, get font information, unload
fonts, and free font information. A few font functions use a GContext resource ID or
a font ID interchangeably.

To load a given font, use XLoadFont.

Font XLoadFont(display, name)
Display * display,
char *name;

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated string.

The XLoadFont function loads the specified font and returns its associated font ID.
The name should be ISO Latin-1 encoding; uppercase and lowercase do not matter. If
XLoadFont was unsuccessful at loading the specified font, a BadName error results.
Fonts are not associated with a particular screen and can be stored as a component of
any GC. When the font is no longer needed, call XUnloadFont.

XLoadFont can generate BadAlloc and BadName errors.

To return information about an available font, use XQueryFont.

XFontStruct *XQueryFont(display, font_ID)
Display * display,
XID fontJD;

display Specifies the connection to the X server.

font_ID Specifies the font ID or the GContext ID.

The XQueryFont function returns a pointer to the XFontStruct structure, which
contains information associated with the font. You can query a font or the font stored
in a GC. The font ID stored in the XFontStruct structure will be the GContext ID,
and you need to be careful when using this ID in other functions (see XGCon-
textFromGC). To free this data, use XFreeFontlnfo.

To perform a XLoadFont and XQueryFont in a single operation, use XLoad-
QueryFont.

XFontStruct * XLoadQueryFont(display, name)
Display * display,
char *name;

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for accessing a font.
XLoadQueryFont both opens (loads) the specified font and returns a pointer to the

95

Xlib - C Library Xll, Release 3

appropriate XFontStruct structure. If the font does not exist, XLoadQueryFont
returns NULL.

XLoadQueryFont can generate a BadAlloc error.

To unload the font and free the storage used by the font structure that was allocated by
XQueryFont or XLoadQueryFont, use XFreeFont.

XFreeFont(display, font_struct)
Display * display,
XFontStruct *font_struct;

display Specifies the connection to the X server.

fontjstruct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID and the
specified font and frees the XFontStruct structure. The font itself will be freed when
no other resource references it. The data and the font should not be referenced again.

XFreeFont can generate a BadFont error.

To return a given font property, use XGetFontProperty.

Bool XGetFontProperty(font_struct, atom, value jreturn)
XFontStruct *font_struct;
Atom atom;
unsigned long *value_return]

font_struct Specifies the storage associated with the font.

atom Specifies the atom for the property name you want returned.

valuejreturn Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function returns the value
of the specified font property. XGetFontProperty also returns False if the property
was not defined or True if it was defined. A set of predefined atoms exists for font pro¬
perties, which can be found in <Xll/Xatom.h >. This set contains the standard pro¬
perties associated with a font. Although it is not guaranteed, it is likely that the
predefined font properties will be present.

To unload a font that was loaded by XLoadFont, use XUnloadFont.

XUnloadFont(display, font)
Display * display,
Font font',

display Specifies the connection to the X server.

font Specifies the font.

The XUnloadFont function deletes the association between the font resource ID and
the specified font. The font itself will be freed when no other resource references it. The
font should not be referenced again.

XUnloadFont can generate a BadFont error.

6.5.2. Obtaining and Freeing Font Names and Information

You obtain font names and information by matching a wildcard specification when
querying a font type for a list of available sizes and so on.

To return a list of the available font names, use XListFonts.

96

L

Xiib - C Library Xll, Release 3

char **XListFonts(display, pattern, maxnames, actual_count_return)
Display * display,
char * pattern]
int maxnames]
int * actual_count_return]

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain wildcard
characters.

maxnames Specifies the maximum number of names to be returned.

actual_count_return
Returns the actual number of font names.

The XListFonts function returns an array of available font names (as controlled by the
font search path; see XSetFontPath) that match the string you passed to the pattern
argument. The string should be ISO Latin-1; uppercase and lowercase do not matter.
Each string is terminated by an ASCII null. The pattern string can contain any charac¬
ters, but each asterisk (*) is a wildcard for any number of characters, and each question
mark (?) is a wildcard for a single character. The client should call XFreeFontNames
when finished with the result to free the memory.

To free a font name array, use XFreeFontNames.

XFreeFontNames(list)
char *list [];

list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by XListFonts
or XListFontsWithlnfo.

To obtain the names and information about available fonts, use XListFontsWithlnfo.

char **XListFontsWithInfo(display, pattern, maxnames, countjreturn, info_return)
Display *display,
char *pattern;
int maxnames]
int * countjreturn]
XFontStruct **info_return]

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain wildcard
characters.

maxnames Specifies the maximum number of names to be returned.

countjreturn Returns the actual number of matched font names.

infojreturn Returns a pointer to the font information.

The XListFontsWithlnfo function returns a list of font names that match the
specified pattern and their associated font information. The list of names is limited to
size specified by maxnames. The information returned for each font is identical to what
XLoadQueryFont would return except that the per-character metrics are not
returned. The pattern string can contain any characters, but each asterisk (*) is a wild¬
card for any number of characters, and each question mark (?) is a wildcard for a single
character. To free the allocated name array, the client should call XFreeFontNames.
To free the the font information array, the client should call XFreeFontlnfo.

97

Xlib - C Library Xll, Release 3

To free the the font information array, use XFreeFontlnfo.

XFreeFontInfo(names, freejnfo, actudiscount)
char **names;
XFontStruct *free_info;
int actual_count;

names Specifies the list of font names returned by XListFontsWithlnfo.

free_info Specifies the pointer to the font information returned by XList¬
FontsWithlnfo .

actualjcount Specifies the actual number of matched font names returned by XList¬
FontsWithlnfo .

6.5.3. Setting and Retrieving the Font Search Path

To set the font search path, use XSetFontPath,

XSetFontPath (display, directories, ndirs)
Display *display;
char **directories-,
int ndirs;

display Specifies the connection to the X server.

directories Specifies the directory path used to look for a font. Setting the path to
the empty list restores the default path defined for the X server.

ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup. There
is only one search path per X server, not one per client. The interpretation of the
strings is operating system dependent, but they are intended to specify directories to be
searched in the order listed. Also, the contents of these strings are operating system
dependent and are not intended to be used by client applications. Usually, the X server
is free to cache font information internally rather than having to readTonts from files.
In addition, the X server is guaranteed to flush all cached information about fonts for
which there currently are no explicit resource IDs allocated. The meaning of an error
from this request is operating system dependent.

XSetFontPath can generate a BadValue error.

To get the current font search path, use XGetFontPath.

char **XGetFontPath (display, npathsjreturn)
Display * display,
int * npathsjreturn-,

display Specifies the connection to the X server.

npathsjreturn Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing the
search path. When it is no longer needed, the data in the font path should be freed by
using XFreeFontPath

To free data returned by XGetFontPath, use XFreeFontPath.

XFreeFon tP ath (list)
char **list;

98

Xlib — C Library Xll, Release 3

list Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated by XGetFontPath .

6.5.4. Computing Character String Sises

Xlib provides functions that you can use to compute the width, the logical extents, and
the server information about 8-bit and 2-byte text strings. The width is computed by
adding the character widths of all the characters. It does not matter if the font is an 8-
bit or 2-byte font. These functions return the sum of the character metrics, in pixels.

To determine the width of an 8-bit character string, use XTextWidth.

int XTextWidth (font_struct, string, count)
XFontStruct *font_struct;
char * string]
int count]

font_struct Specifies the font used for the width computation.

string Specifies the character string.

count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidthlS.

int XTextWidthl6(font_struct, string, count)
XFontStruct *font_struct]
XChar2b * string]
int count]

font_$truct Specifies the font used for the width computation.

string Specifies the character string.

count Specifies the character count in the specified string.

6.5.5. Computing Logical Extents

To compute the bounding box of an 8-bit character string in a given font, use XTex-
tExtents.

XTextExtents(font_struct, string, nchars, direction_return, font_ascent_return,
font_descent_return, over alls eturn)

XFontStruct *font_struct]
char * string]
int nchars]
int * directionseturn]
int * font_as cents eturn, *font_descent_return]
XCharStruct * overalls eturn]

font_struct Specifies a pointer to the XFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

directions eturn
Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_as cents eturn
Returns the font ascent.

99

Xlib — C Library Xll, Release 3

font_descent_return
Returns the font descent.

ovcralljreturn Returns the overall size in the specified XCharStruct structure.

To compute the bounding box of a 2-byte character string in a given font, use XTex¬
tExtentsl 6 .

XTextExtentsl6(font_struct, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)

XFontStruct' *font_struct;
XChar2b * string-,
int nchars;
int *direction_return]
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return\

font_struct Specifies a pointer to the XFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

dir ection_return
Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

ovcralljreturn Returns the overall size in the specified XCharStruct structure.

The XTextExtents and XTextExtentsl6 functions perform the size computation
locally and, thereby, avoid the round-trip overhead of XQueryTextExtents and
XQueryTextExtentsl6. Both functions return an XCharStruct structure, whose
members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the
string. The descent member is set to the maximum of the descent metrics. The width
member is set to the sum of the character-width metrics of all characters in the string.
For each character in the string, let W be the sum of the character-width metrics of all
characters preceding it in the string. Let L be the left-side-bearing metric of the charac¬
ter plus W. Let R be the right-side-bearing metric of the character plus W. The lbear-
ing member is set to the minimum L of all characters in the string. The rbearing
member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most-significant
byte. If the font has no defined default character, undefined characters in the string are
taken to have all zero metrics.

6.5.6. Querying Character String Sizes

To query the server for the bounding box of an 8-bit character string in a given font, use
XQueryTextExtents.

100

XIib - C Library Xll, Release 3

XQueryTextExtents(display, font_ID, string, nchars, direction_return, font_ascent_return,
fontjiescentjreturn, overall_return)

Display * display,
XID fontJD;
char * string]
int nchars;
int * directionjreturn)
int *font_ascent_return, *font__descent jreturn)
XCharStruct * over all jreturn)

display Specifies the connection to the X server.

Jont_ID Specifies either the font ID or the GContext ID that contains the font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

dir ection_r eturn
Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_ascent_r eturn
Returns the font ascent.

font jiescentj eturn
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

To query the server for the bounding box of a 2-byte character string in a given font,
use XQueryTextExtentsl6 .

XQueryTextExtentsl6(display, font__ID, string, nchars, directionjreturn, font_ascentjeturn,
font_descent_return, overall_return)

Display * display,
XID fontJD)
XChar2b * string]
int nchars',
int * dir ectionjr eturn)
int *font_ascentjeturn, *font_descent_return]
XCharStruct * over all_r eturn)

display Specifies the connection to the X server.

font_ID Specifies either the font ID or the GContext ID that contains the font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

dir ectionjr eturn
Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_as centjreturn
Returns the font ascent.

font_de scent jreturn
Returns the font descent.

over all jreturn Returns the overall size in the specified XCharStruct structure.

The XQueryTextExtents and XQueryTextExtentsl6 functions return the bound¬
ing box of the specified 8-bit and 16-bit character string in the specified font or the font
contained in the specified GC. These functions query the X server and, therefore, suffer

101

XIib - C Library Xll, Release 3

the round-trip overhead that is avoided by XTextExtents and XTextExtentslG.
Both functions return a XCharStruct structure, whose members are set to the values
as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the
string. The descent member is set to the maximum of the descent metrics. The width
member is set to the sum of the character-width metrics of all characters in the string.
For each character in the string, let W be the sum of the character-width metrics of all
characters preceding it in the string. Let L be the left-side-bearing metric of the charac¬
ter plus W. Let R be the right-side-bearing metric of the character plus W. The Ibear-
ing member is set to the minimum L of all characters in the string. The rbearing
member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most-significant
byte. If the font has no defined default character, undefined characters in the string are
taken to have all zero metrics.

XQueryTextExtents and XQueryTextExtentsl6 can generate BadFont and
BadGC errors.

6.6. Drawing Text

This section discusses how to draw:

• Complex text

• Text characters

• Image text characters

The fundamental text functions XD raw Text and XD raw Text 16 use the following
structures.

typedef struct {
char *chars;
int nchars;
int delta;
Font font;

} XTextltem;

typedef struct {
XChar2b *c
int nchars;
int delta;
Font font;

} XTextIteml6;

If the font member is not None, the font is changed before printing and also is stored
in the GC. If an error was generated during text drawing, the previous items may have
been drawn. The baseline of the characters are drawn starting at the x and y coordi¬
nates that you pass in the text drawing functions.

For example, consider the background rectangle drawn by XDrawImageString. If
you want the upper-left corner of the background rectangle to be at pixel coordinate
(x,y), pass the (x,y + ascent) as the baseline origin coordinates to the text functions.
The ascent is the font ascent, as given in the XFontStruct structure. If you want the
lower-left corner of the background rectangle to be at pixel coordinate (x,y), pass the
(x,y - descent -f 1) as the baseline origin coordinates to the text functions. The descent
is the font descent, as given in the XFontStruct structure.

/* pointer to string */
/* number of characters */
/* delta between strings */
/* Font to print it in, None don’t change */

/* pointer to two-byte characters */
/* number of characters */
/* delta between strings */
/* font to print it in, None don’t change */

102

Xlib - C Library Xll, Release 3

6.6.1. Drawing Complex Text

To draw 8-bit characters in a given drawable, use XDrawText.

XDrawText(display, d, gc, x, y, items, nitems)
Display * display,
Drawable of;
GC gc;
int x, y;
XTextltem * items]
int nitems-,

display

d

gc

x

y

items

nitems

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

Specifies a pointer to an array of text items.

Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, use XDrawTextl6.

XDrawTextl6(display, d, gc, x, y, items, nitems)
Display * display,
Drawable d;
GC gc;
int x, y;
XTextIteml6 *items;
int nitems;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

items Specifies a pointer to an array of text items.

nitems Specifies the number of text items in the array.

The XDrawTextl6 function is similar to XDrawText except that it uses 2-byte or
16-bit characters. Both functions allow complex spacing and font shifts between counted
strings.

Each text item is processed in turn. A font member other than None in an item causes
the font to be stored in the GC and used for subsequent text. A text element delta
specifies an additional change in the position along the x axis before the string is drawn.
The delta is always added to the character origin and is not dependent on any charac¬
teristics of the font. Each character image, as defined by the font in the GC, is treated
as an additional mask for a fill operation on the drawable. The drawable is modified
only where the font character has a bit set to 1. If a text item generates a BadFont
error, the previous text items may have been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most-significant
byte.

103

Xiib - C Library Xll, Release 3

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and ti!e-stipple-y-origin.

XDrawText and XBrawTextl© can generate BadDrawable, BadFont,
BadGC, and BadMatch errors.

6,6.2. Drawing Text Characters

To draw 8-bit characters in a given drawable, use XDraw'String.

XDrawString(display, d, gc, x, y, string, length)
Display * display,
Drawable d;
GC gc]
int x, y,
char * string]
int length]

display

d

gc

x

y

string

length

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

Specifies the character string.

Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawrString 15 .

XDrawStringl6(display, d, gc, x, y, string, length)
Display * display]
Drawable d]
GC gc]
int x, y]
XChar2b * string]
int length]

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the

specified drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an additional mask
for a fill operation on the drawable. The drawable is modified only where the font char¬
acter has a bit set to 1. For fonts defined with 2-byte matrix indexing and used with
XDrawStringld , each byte is used as a byte2 with a bytel of zero.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,

104

Xlib - C Library Xll, Release 3

and tile-stipple-y-origin.

XD raw String and XDrawStringl6 can generate BadDrawable, BadGC, and
BadMatch errors.

6.6.3. Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text in which
both the foreground and background bits of each character are painted. This prevents
annoying flicker on many displays.

To draw 8-bit image text characters in a given drawable, use XDrawImageString

XDrawImageString(display, d, gc, x, y, string, length)
Display * display,
Drawable d\
GC gc;
int x, y;
char * string-,
int length;

display

d

gc

x

y

string

length

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

Specifies the character string.

Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDrawImageStringl6

XDrawImageStringl6(display, d, gc, x, y, string, length)
Display * display,
Drawable d;
GC gc;
int x, y;
XChar2b * string;
int length;

display

d

gc

x

y

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

The XDrawImageString 16 function is similar to XDrawImageString except that
it uses 2-byte or 16-bit characters. Both functions also use both the foreground and
background pixels of the GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the
GC and then to paint the text with the foreground pixel. The upper-left corner of the
filled rectangle is at:

105

Xlib - C Library Xll, Release 3

[x, y —font-ascent]

The width is:

overall-width

The height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be returned by
XQueryTextExtents using gc and string. The function and fill-style defined in the
GC are ignored for these functions. The effective function is GXcopy, and the effective
fill-style is FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDrawImageString,
each byte is used as a byte2 with a bytel of zero.

Both functions use these GC components: plane-mask, foreground, background, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawImageString and XDrawImageStringl6 can generate BadDrawable,
BadGC, and BadMatch errors.

8.7. Transferring Images between Client and Server

Xlib provides functions that you can use to transfer images between a client and the
server. Because the server may require diverse data formats, Xlib provides an image
object that fully describes the data in memory and that provides for basic operations on
that data. You should reference the data through the image object rather than referenc¬
ing the data directly. However, some implementations of the Xlib library may efficiently
deal with frequently used data formats by replacing functions in the procedure vector
with special cale functions. Supported operations include destroying the image, getting
a pixel, storing a pixel, extracting a subimage of an image, and adding a constant to an
image (see chapter 10).

All the image manipulation functions discussed in this section make use of the Xlmage
data structure, which describes an image as it exists in the client’s memory.

typedef struct _XImage {
int width, height;
int xoffset;
int format;
char *data;
int byte_order;
int bitmap_unit;
int bitmap_bit_order;
int bitmap„pad;
int depth;
int bytes_per_line;
int bits__per_pixel;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
char *obdata;
struct funcs {

struct _XImage *(*create_image)();
int (*destroy_image)();
unsigned long (*get_pixel)();

/* size of image */
/* number of pixels offset in X direction */
/* XYBitmap, XYPixmap, ZPixmap */
/* pointer to image data */
/* data byte order, LSBFirst, MSBFirst */
/* quant, of scanline 8, 16, 32 */
/* LSBFirst, MSBFirst */
/* 8, 16, 32 either XY or ZPixmap */
/* depth of image */
/* accelerator to next scanline */
/* bits per pixel (ZPixmap) */
/* bits in z arrangement */

/* hook for the object routines to hang on *,
/* image manipulation routines */

108

Xlib - C Library Xll, Release 3

int (*put_pixel)();
struct _XImage *(*sub_image)();
int (*add_pixel)();

} XImage;

You may request that some of the members (for example, height, width, and xoffset) be
changed when the image is sent to the server. That is, you may send a subset of the
image. Other members (for example, byte_order, bitmap_unit, and so forth) are charac¬
teristics of both the image and the server. If these members differ between the image and
the server, XPutlmage makes the appropriate conversions. The first byte of the first
scanline of plane n is located at the address (data + (n * height * bytes_per_line)).

To combine an image in memory with a rectangle of a drawable on the display, use
XPutlmage.

XPutlmage (display, d, gc, image, src_x, src_jy, dest_x, dest_g, width, height)
Display * display ,
Drawable d\
GC gc;
Xlmage * image]
int src_x, src_y\
int dest_x, dest_y]
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

image Specifies the image you want combined with the rectangle.

src_x Specifies the offset in X from the left edge of the image defined by the
Xlmage data structure.

src_y Specifies the offset in Y from the top edge of the image defined by the
Xlmage data structure.

destjx
dest_y Specify the x and y coordinates, which are relative to the origin of the

drawable and are the coordinates of the subimage.

width
height Specify the width and height of the subimage, which define the dimen¬

sions of the rectangle.

The XPutlmage function combines an image in memory with a rectangle of the
specified drawable. If XYBitmap format is used, the depth must be one, or a Bad-
Match error results. The foreground pixel in the GC defines the source for the one bits
in the image, and the background pixel defines the source for the zero bits. For
XYPixmap and ZPixmap, the depth must match the depth of the drawable, or a
BadMatch error results. The section of the image defined by the src_x, src_y, width,
and height arguments is drawn on the specified part of the drawable.

This function uses these GC components: function, plane-mask, subwindow-mode, clip-
x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent com¬
ponents: foreground and background.

XPutlmage can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

107

Xlib - C Library Xll, Release 3

To return the contents of a rectangle in a given drawable on the display, use XGetlm-
age. This function specifically supports rudimentary screen dumps.

Xlmage *XGetImage(display, d, x, y, width, height, plane_mask, format)
Display * display,
Drawable d;
int x, y,
unsigned int width, height',
long planejmask;
int format;

display Specifies the connection to the X server.

d Specifies the drawable.

x

y

width
height

plane_mask

format

Specify the x and y coordinates, which are relative to the origin of the
drawable and define the upper-left corner of the rectangle.

Specify the width and height of the subimage, which define the dimen¬
sions of the rectangle.

Specifies the plane mask.

Specifies the format for the image. You can pass XYBitmap, XYPix-
map, or ZPixmap.

The XGetlmage function returns a pointer to an Xlmage structure. This structure
provides you with the contents of the specified rectangle of the drawable in the format
you specify. If the format argument is XYPixmap, the image contains only the bit
planes you passed to the plane_mask argument. If the plane_mask argument only
requests a subset of the planes of the display, the depth of the returned image will be
the number of planes requested. If the format argument is ZPixmap, XGetlmage
returns as zero the bits in all planes not specified in the plane_mask argument. The
function performs no range checking on the values in plane_mask and ignores extraneous
bits.

XGetlmage returns the depth of the image to the depth member of the Xlmage
structure. The depth of the image is as specified when the drawable was created, except
when getting a subset of the planes in XYPixmap format, when the depth is given by
the number of bits set to 1 in plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained within the
pixmap, or a BadMatch error results. If the drawable is a window, the window must
be viewable, and it must be the case that if there were no inferiors or overlapping win¬
dows, the specified rectangle of the window would be fully visible on the screen and
wholly contained within the outside edges of the window, or a BadMatch error results.
Note that the borders of the window can be included and read with this request. If the
window has backing-store, the backing-store contents are returned for regions of the
window that are obscured by noninferior windows. If the window does not have
backing-store, the returned contents of such obscured regions are undefined. The
returned contents of visible regions of inferiors of a different depth than the specified
window’s depth are also undefined. The pointer cursor image is not included in the
returned contents.

XGetlmage can generate BadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preexisting
image structure, use XGetSublmage.

108

Xlib - C Library Xll, Release 3

Xlmage *XGetSubImage(display, d, x, y, width, height, plane_mask, format, dest_image, destjx,
dest_y)

Display * display,
Drawable d\
int x, y,
unsigned int width, height;
unsigned long plane_mask]
int format;
Xlmage * dest_image\
int dest__x, dest_y,

display Specifies the connection to the X server.

d Specifies the drawable.

x

y

width
height

plane_mask

format

dest_image

dest_x
dest_y

Specify the x and y coordinates, which are relative to the origin of the
drawable and define the upper-left corner of the rectangle.

Specify the width and height of the subimage, which define the dimen¬
sions of the rectangle.

Specifies the plane mask.

Specifies the format for the image. You can pass XYBitmap, XYPix-
map, or ZPixmap.

Specify the destination image.

Specify the x and y coordinates, which are relative to the origin of the
destination rectangle, specify its upper-left corner, and determine where
the subimage is placed in the destination image.

The XGetSublmage function updates destjmage with the specified subimage in the
same manner as XGetlmage. If the format argument is XYPbcmap, the image con¬
tains only the bit planes you passed to the plane_mask argument. If the format argu¬
ment is ZPixmap, XGetSublmage returns as zero the bits in all planes not specified
in the plane_mask argument. The function performs no range checking on the values in
piane_mask and ignores extraneous bits. As a convenience, XGetSublmage returns a
pointer to the same Xlmage structure specified by dest_image.

The depth of the destination Xlmage structure must be the same as that of the draw-
able. If the specified subimage does not fit at the specified location on the destination
image, the right and bottom edges are clipped. If the drawable is a pixmap, the given
rectangle must be wholly contained within the pixmap, or a BadMatch error results.
If the drawable is a window, the window must be viewable, and it must be the case that
if there were no inferiors or overlapping windows, the specified rectangle of the window
would be fully visible on the screen and wholly contained within the outside edges of the
window, or a BadMatch error results. If the window has backing-store, then the
backing-store contents are returned for regions of the window that are obscured by
noninferior windows. If the window does not have backing-store, the returned contents
of such obscured regions are undefined. The returned contents of visible regions of infe¬
riors of a different depth than the specified window’s depth are also undefined.

XGetSublmage can generate BadDrawable, BadGC, BadMatch, and Bad-
Value errors.

109

Xlib - C Library Xll, Release 3

6.8. Cursors

This section discusses how to:

® Create a cursor

® Change or destroy a cursor

© Define the cursor for a window

Each window can have a different cursor defined for it. Whenever the pointer is in a
visible window, it is set to the cursor defined for that window. If no cursor was defined
for that window, the cursor is the one defined for the parent window.

From X’s perspective, a cursor consists of a cursor source, mask, colors, and a hotspot.
The mask pixmap determines the shape of the cursor and must be a depth of one. The
source pixmap must have a depth of one, and the colors determine the colors of the
source. The hotspot defines the point on the cursor that is reported when a pointer
event occurs. There may be limitations imposed by the hardware on cursors as to size
and whether a mask is implemented. XQueryBestCursor can be used to find out
what sizes are possible. It is intended that most standard cursors will be stored as a spe¬
cial font.

6.8.1. Creating a Cursor

Xlib provides functions that you can use to create a font, bitmap, or glyph cursor.

To create a cursor from a standard font, use XCreateFontCursor.

#include <Xll/cursorfont.h>

Cursor XCreateFontCursor(display, shape)
Display * display,
unsigned int shape;

display Specifies the connection to the X server.

shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applications
are encouraged to use this interface for their cursors because the font can be customized
for the individual display type. The shape argument specifies which glyph of the stan¬
dard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors of
a cursor are a black foreground and a white background (see XRecolorCursor). For
further information about cursor shapes, see appendix B.

XCreateFontCursor can generate BadAlloc and BadValue errors.

To create a cursor from two bitmaps, use XCreatePixmapCursor.

Cursor XCreatePixmapCursor(display, source, mask, foreground_color, background_color, x, y)
Display * display,
Pixmap source4,
Pixmap mask4,
XColor *foreground_color4,
XColor *background_color;
unsigned int x, y,

display Specifies the connection to the X server.

source Specifies the shape of the source cursor.

mask Specifies the cursor’s source bits to be displayed or None.

110

Xlib - C Library Xll, Release 3

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

x
y Specify the x and y coordinates, which indicate the hotspot relative to the

source’s origin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID asso¬
ciated with it. The foreground and background RGB values must be specified using
foreground_color and background_color, even if the X server only has a StaticGray or
GrayScale screen. The foreground color is used for the pixels set to 1 in the source,
and the background color is used for the pixels set to 0. Both source and mask, if
specified, must have depth one (or a BadMatch error results) but can have any root.
The mask argument defines the shape of the cursor. The pixels set to 1 in the mask
define which source pixels are displayed, and the pixels set to 0 define which pixels are
ignored. If no mask is given, all pixels of the source are displayed. The mask, if present,
must be the same size as the pixmap defined by the source argument, or a BadMatch
error results. The hotspot must be a point within the source, or a BadMatch error
results.

The components of the cursor can be transformed arbitrarily to meet display limitations.
The pixmaps can be freed immediately if no further explicit references to them are to be
made. Subsequent drawing in the source or mask pixmap has an undefined effect on the
cursor. The X server might or might not make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.

To create a cursor from font glyphs, use XCreateGlyphCursor.

Cursor XCreateGlyphCursor (display, source_Jont, mask_font, source_char, mask_char,
foreground_color, background_color)

Display * display,
Font source_Jont, mask_Jont;
unsigned int source_char, mask_char;
XColor *foreground_color \
XColor * background_color;

display Specifies the connection to the X server.

source_font Specifies the font for the source glyph.

mask_font Specifies the font for the mask glyph or None.

source_char Specifies the character glyph for the source.

mask_char Specifies the glyph character for the mask.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except
that the source and mask bitmaps are obtained from the specified font glyphs. The
source_char must be a defined glyph in source_font, or a BadValue error results. If
mask_font is given, mask_char must be a defi-ned glyph in mask_font, or a BadValue
error results. The mask_font and character are optional. The origins of the source_char
and mask_char (if defined) glyphs are positioned coincidently and define the hotspot.
The source_char and mask_char need not have the same bounding box metrics, and
there is no restriction on the placement of the hotspot relative to the bounding boxes. If

111

XIib — C Library Xll, Release 3

no mask_char is given, all pixels of the source are displayed. You can free the fonts
immediately by calling XFreeFont if no further explicit references to them are to be
made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel member in
the most-significant byte and the byte2 member in the least-significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

6.8.2. Changing and Destroying Cursors

Xlib provides functions that you can use to change the cursor color, destroy the cursor,
and determine the best cursor size.

To change the color of a given cursor, use XRecolorCursor.

XRecolorCursor(display, cursor, foreground_color, background_color)
Display * display,
Cursor cursor;
XColor *foreground_color, *background_color\

display Specifies the connection to the X server.

cursor Specifies the cursor.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor, and if the cur¬
sor is being displayed on a screen, the change is visible immediately.

XRecolorCursor can generate a BadCursor error.

To free (destroy) a given cursor, use XFreeCursor.

XFreeCursor (display, cursor)
Display * display,
Cursor cursor;

display Specifies the connection to the X server.

cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor resource ID and
the specified cursor. The cursor storage is freed when no other resource references it.
The specified cursor ID should not be referred to again.

XFreeCursor can generate a BadCursor error.

To determine useful cursor sizes, use XQueryBestCursor.

Status XQueryBestCursor(display, d, width, height, width_return, height_return)
Display * display,
Drawable d\
unsigned int width, height;
unsigned int *width_return, * height,jreturn-,

display Specifies the connection to the X server.

d Specifies the drawable, which indicates the screen.

width

112

Xlib - C Library Xll, Release 3

height Specify the width and height of the cursor that you want the size infor¬
mation for.

width_return
height_return Return the best width and height that is closest to the specified width

and height.

Some displays allow larger cursors than other displays. The XQueryBestCursor func¬
tion provides a way to find out what size cursors are actually possible on the display. It
returns the largest size that can be displayed. Applications should be prepared to use
smaller cursors on displays that cannot support large ones.-

XQueryBestCursor can generate a BadDrawable error.

6.8.3. Defining the Cursor

Xlib provides functions that you can use to define or undefine the cursor that should be
displayed in a window.

To define which cursor will be used in a window, use XDefineCursor.

XDefineCursor(display, w, cursor)
Display * display,
Window w;
Cursor cursor;

display Specifies the connection to the X server.

w Specifies the window.

cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is
None, it is equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.

To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor (display, w)
Display * display,
Window w,

display Specifies the connection to the X server.

xv Specifies the window.

The XUndefineCursor undoes the effect of a previous XDefineCursor for this win¬
dow. When the pointer is in the window, the parent’s cursor will now be used. On the
root window, the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

113

Xlib — C Library Xll, Release 3

Chapter 7

Window Manager Functions

Although it is difficult to categorize functions as application only or window manager
only, the functions in this chapter are most often used by window managers. It is not
expected that these functions will be used by most application programs. You can use
the Xlib window manager functions to:

® Change the parent of a window

® Control the lifetime of a window

• Determine resident colormaps

® Grab the pointer

© Grab the keyboard

• Grab the server

® Control event processing

• Manipulate the keyboard and pointer settings

© Control the screen saver

• Control host access

7.1. Changing the Parent of a Window

To change a window’s parent to another window on the same screen, use
XReparentWindow. There is no way to move a window between screens.

XReparentWindow(display, w, parent, x, y)
Display * display,
Window w;
Window parent;
int x, y;

display Specifies the connection to the X server.

w Specifies the window.

parent Specifies the parent window.

x
y Specify the x and y coordinates of the position in the new parent window.

If the specified window is mapped, XReparentWindow automatically performs an
UnmapWindow request on it, removes it from its current position in the hierarchy,
and inserts it as the child of the specified parent. The window is placed in the stacking
order on top with respect to sibling windows.

.After reparenting the specified window, XReparentWindow causes the X server to
generate a ReparentNotify event. The override_redirect member returned in this
event is set to the window’s corresponding attribute. Window manager clients usually
should ignore this window if this member is set to True. Finally, if the specified win¬
dow was originally mapped, the X server automatically performs a MapWindow
request on it.

The X server performs normal exposure processing on formerly obscured windows. The
X server might not generate Expose events for regions from the initial UnmapWin¬
dow request that are immediately obscured by the final MapWindow request. A

114

Xlib — C Library Xll, Release 3

BadMatch error results if:

• The new parent window is not on the same screen as the old parent window.

• The new parent window is the specified window or an inferior of the specified win¬
dow.

• The specified window has a ParentRelative background, and the new parent
window is not the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

7.2. Controlling the Lifetime of a Window

The save-set of a client is a list of other clients’ windows that, if they are inferiors of one
of the client’s windows at connection close, should not be destroyed and should be
remapped if they are unmapped. For further information about close-connection pro¬
cessing, see section 2.6. To allow an application’s window to survive when a window
manager that has reparented a window fails, Xlib provides the save-set functions that
you can use to control the longevity of subwindows that are normally destroyed when
the parent is destroyed. For example, a window' manager that wants to add decoration
to a window by adding a frame might reparent an application’s window. When the
frame is destroyed, the application’s window should not be destroyed but be returned to
its previous place in the wdndow hierarchy.

The X server automatically removes windows from the save-set when they are destroyed.

To add or remove a window from the client’s save-set, use XChangeSaveSet.

XChangeSaveSet (display, w, changejmodt)
Display * display ;
Window w;
int changejmode;

display Specifies the connection to the X server.

w Specifies the window that you want to add to or delete from the client’s
save-set.

change_mode Specifies the mode. You can pass SetModeXnsert or SetModeDeiete.

Depending on the specified mode, XChangeSaveSet either inserts or deletes the
specified window from the client’s save-set. The specified window’ must have been
created by some other client, or a BadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue, and BadWindow errors.

To add a window to the client’s save-set, use .XAddToSaveSet.

XAddToSaveSet(display, w)
Display * display ;
Window w;

display Specifies the connection to the X server.

w Specifies the window that you want to add to the client’s save-set.

The XAddToSaveSet function adds the specified window to the client’s save-set. The
specified window must have been created by some other client, or a BadMatch error
results.

XAddToSaveSet can generate BadMatch and BadWindow errors.

To remove a window from the client’s save-set, use XRemoveFromSaveSet

115

Xlib - C Library Xll, Release 3

XRemoveFromSaveSet(display, w)
Display * display,
Window w;

display Specifies the connection to the X server.

w Specifies the window that you want to delete from the client’s save-set.

The XRemoveFromSaveSet function removes the specified window from the client’s
save-set. The specified window must have been created by some other client, or a Bad-
Match error results.

XRemoveFromSaveSet can generate BadMatch and BadWindow errors.

7.3. Determining Resident Colormaps

Xlib provides functions that you can use to install a colormap, uninstall a colormap, and
obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an ordered list and
is called the required list. The length of the required list is at most M, where M is the
minimum number of installed colormaps specified for the screen in the connection setup.
The required list is maintained as follows. When a colormap is specified to Xln-
stallColormap, it is added to the head of the list; the list is truncated at the tail, if
necessary, to keep its length to at most M. When a colormap is specified to XUnin-
stallColormap and it is in the required list, it is removed from the list. A colormap is
not added to the required list when it is implicitly installed by the X server, and the X
server cannot implicitly uninstall a colormap that is in the required list.

To install a colormap, use XInstallColormap.

XInstallColormap (display, colormap)
Display * display,
Colormap colormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XInstallColormap function installs the specified colormap for its associated
screen. All windows associated with this colormap immediately display with true colors.
You associated the windows with this colormap when you created them by calling
XCreateWindow , XCreateSimpleWindow, XChangeWindowAttributes, or
XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server generates a
ColormapNotify event on each window that has that colormap. In addition, for
every other colormap that is installed as a result of a call to XInstallColormap, the X
server generates a ColormapNotify event on each window that has that colormap.

XInstallColormap can generate a BadColor error.

To uninstall a colormap, use XUninstallColormap.

XUninstallColormap (display, colormap)
Display * display,
Colormap colormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XUninstallColormap function removes the specified colormap from the required
list for its screen. As a result, the specified colormap might be uninstalled, and the X

116

X3ib - C Library Xll, Release 3

server might implicitly install or uninstall additional colormaps. Which colormaps get
installed or uninstalled is server-dependent except that the required list must remain
installed.

If the specified colormap becomes uninstalled, the X server generates a Co lor map No¬
tify event on each window that has that colormap. In addition, for every other color-
map that is installed or uninstalled as a result of a call to XUninstallColormap, the
X server generates a ColormapNotify event on each window that has that colormap.

XUninstallColormap can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use XListlnstal-
ledCoIormaps.

Colormap *XListInstalledColormaps(display, w, num_retur?i)
Display * display;
Window w;
int *num_return;

display Specifies the connection to the X server.

w Specifies the window that determines the screen.

num_return Returns the number of currently installed colormaps.

The XL istln stalled Color maps function returns a list of the currently installed color-
maps for the screen of the specified window. The order of the colormaps in the list is
not significant and is no explicit indication of the required list. When the allocated list
is no longer needed, free it by using XFree.

XListlostalledColormaps can generate a BadWindow error.

7.4. Pointer Grabbing

Xlib provides functions that you can use to control input from the pointer, which usu¬
ally is a mouse. Window managers most often use these facilities to implement certain
styles of user interfaces. Some toolkits also need to use these facilities for special pur¬
poses.

Usually, as soon as keyboard and mouse events occur, the X server delivers them to the
appropriate client, which is determined by the window and input focus. The X server
provides sufficient control over event delivery to allow window managers to support
mouse ahead and various other styles of user interface. Many of these user interfaces
depend upon synchronous delivery of events. The delivery of pointer and keyboard
events can be controlled independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to the grabbing
client rather than the normal client who would have received the event. If the keyboard
or pointer is in asynchronous mode, further mouse and keyboard events will continue to
be processed. If the keyboard or pointer is in synchronous mode, no further events are
processed until the grabbing client allows them (see XAIlowEvents). The keyboard or
pointer is considered frozen during this interval. The event that triggered the grab can
also be replayed.

Note that the logical state of a device (as seen by client applications) may lag the physi¬
cal state if device event processing is frozen.

There are two kinds of grabs: active and passive. An active grab occurs when a single
client grabs the keyboard and/or pointer explicitly (see XGrabPointer and XGrab-
Keyboard). A passive grab occurs when clients grab a particular keyboard key or
pointer button in a window, and the grab will activate when the key or button is actu¬
ally pressed. Passive grabs are convenient for implementing reliable pop-up menus. For
example, you can guarantee that the pop-up is mapped before the up pointer button

117

Xlib - C Library Xll, Release 3
j
i

I
event occurs by grabbing a button requesting synchronous behavior. The down event
will trigger the grab and freeze further processing of pointer events until you have the
chance to map the pop-up window. You can then allow further event processing. The
up event will then be correctly processed relative to the pop-up window'.

For many operations, there are functions that take a time argument. The X server
includes a timestamp in various events. One special time, called CurrentTime,
represents the current server time. The X server maintains the time when the input
focus was last changed, when the keyboard was last grabbed, when the pointer wras last
grabbed, or when a selection was last changed. Your application may be slow reacting
to an event. You often need some way to specify that your request should not occur if
another application has in the meanwhile taken control of the keyboard, pointer, or
selection. By providing the timestamp from the event in the request, you can arrange
that the operation not take effect if someone else has performed an operation in the
meanwhile.

A timestamp is a time value, expressed in milliseconds. It typically is the time since the
last server reset. Timestamp values wrap around (after about 49.7 days). The server,
given its current time is represented by timestamp T, always interprets timestamps from
clients by treating half of the timestamp space as being later in time than T. One
timestamp value, named CurrentTime, is never generated by the server. This value is
reserved for use in requests to represent the current server time.

For many functions in this section, you pass pointer event mask bits. The valid pointer
event mask bits are: ButtonPressMask, ButtonReleaseMask, EnterWin-
dowMask , LeaveWindowMask, PointerMotionMask, PointerMo-
tionHintMask, ButtonlMotionMask , Button2MotionMask ,
Button3MotionMask , Button4MotionMask , Button5MotionMask , Button-
MotionMask, and KeyMapStateMask. For other functions in this section, you pass
keymask bits. The valid keymask bits are: ShiftMask, LockMask, ControlMask,
ModlMask, Mod2Mask , Mod3Mask, Mod4Mask , and Mod5Mask .

To grab the pointer, use XGrabPointer.

int XGrabPointer (display, grab_window, owner_events, event_mask, pointer_mode,
keyboardjmode, confinejto, cursor, time)

Display * display,
Window grabjwindow,
Bool owner_events;
unsigned int event_mask;
int pointer_mode, keyboardjmode]
Window confinejto;
Cursor cursor]
Time time]

Specifies the connection to the X server.

Specifies the grab window.

Specifies a Boolean value that indicates whether the pointer events are to
be reported as usual or reported with respect to the grab window if
selected by the event mask.

Specifies which pointer events are reported to the client. The mask is the
bitwise inclusive OR of the valid pointer event mask bits.

Specifies further processing of pointer events. You can pass GrabMo-
deSync or GrabModeAsync.

keyboard_modeSpec'\fies further processing of keyboard events. You can pass GrabMo-
deSync or GrabModeAsync.

display

grabjvindow

owner_events

eventjmask

pointerjmode

118
j

Xlib - C Library Xll, Release 3

confineJLo Specifies the window to confine the pointer in or None.

cursor Specifies the cursor that is to be displayed during the grab or None.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XGrabPointer function actively grabs control of the pointer and returns Grab-
Success if the grab was successful. Further pointer events are reported only to the
grabbing client. XGrabPointer overrides any active pointer grab by this client. If
owner_events is False, all generated pointer events are reported with respect to
grab_window and are reported only if selected by event_mask. If owner_events is True
and if a generated pointer event would normally be reported to this client, it is reported
as usual. Otherwise, the event is reported with respect to the grab_window and is
reported only if selected by event_mask. For either value of owner_events, unreported
events are discarded.

If the pointer_mode is GrabModeAsync, pointer event processing continues as usual.
If the pointer is currently frozen by this client, the processing of events for the pointer is
resumed. If the pointer_mode is GrabModeSync, the state of the pointer, as seen by
client applications, appears to freeze, and the X server generates no further pointer
events until the grabbing client calls XAlIowEvents or until the pointer grab is
released. Actual pointer changes are not lost while the pointer is frozen; they are simply
queued in the server for later processing.

If the keyboard_mode is GrabModeAsync, keyboard event processing is unaffected by
activation of the grab. If the keyboard_mode is GrabModeSync, the state of the key¬
board, as seen by client applications, appears to freeze, and the X server generates no
further keyboard events until the grabbing client calls XAlIowEvents or until the
pointer grab is released. Actual keyboard changes are not lost while the pointer is
frozen; they are simply queued in the server for later processing.

If a cursor is specified, it is displayed regardless of what window the pointer is in. If
None is specified, the normal cursor for that window is displayed when the pointer is in
grab_window or one of its subwindows; otherwise, the cursor for grab_window is
displayed.

If a confine_to window is specified, the pointer is restricted to stay contained in that
window. The confine_to window need have no relationship to the grab_window. If the
pointer is not initially in the confine_to window, it is warped automatically to the closest
edge just before the grab activates and enter/leave events are generated as usual. If the
confine_to window is subsequently reconfigured, the pointer is warped automatically, as
necessary, to keep it contained in the window.

The time argument allows you to avoid certain circumstances that come up if applica¬
tions take a long time to respond or if there are long network delays. Consider a situa¬
tion where you have two applications, both of which normally grab the pointer when
clicked on. If both applications specify the timestamp from the event, the second appli¬
cation may wake up faster and successfully grab the pointer before the first application.
The first application then will get an indication that the other application grabbed the
pointer before its request was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab_window or confine_to window is not viewable or if the confine_to window
lies completely outside the boundaries of the root window, XGrabPointer fails and
returns GrabNotViewable. If the pointer is actively grabbed by some other client, it
fails and returns AlreadyGrabbed. If the pointer is frozen by an active grab of
another client, it fails and returns GrabFrozen. If the specified time is earlier than the
last-pointer-grab time or later than the current X server time, it fails and returns Gra-
blnvalidTime. Otherwise, the last-pointer-grab time is set to the specified time
(CurrentTime is replaced by the current X server time).

119

Xlib — C Library Xll, Release 3

XGrabPointer can generate BadCursor, Bad Value, and BadWindow errors.

To ungrab the pointer, use XUngrabPointer.

XUngrabPointer(display, time)
Display * display]
Time time]

display Specifies the connection to the X server.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XUngrabPointer function releases the pointer and any queued events if this
client has actively grabbed the pointer from XGrabPointer, XGrabButton, or from
a normal button press. XUngrabPointer does not release the pointer if the specified
time is earlier than the last-pointer-grab time or is later than the current X server time.
It also generates EnterNotify and LeaveNotify events. The X server performs an
UngrabPointer request automatically if the event window or confine_to window for an
active pointer grab becomes not viewable or if window reconfiguration causes the
confine_to window to lie completely outside the boundaries of the root window.

To change an active pointer grab, use XChangeActivePointerGrab.

XChangeActivePointerGrab(display, event_mask, cursor, time)
Display * display,
unsigned int event_mask]
Cursor cursor]
Time time]

display

eventjmask

cursor

time

Specifies the connection to the X server.

Specifies which pointer events are reported to the client. The mask is the
bitwise inclusive OR of the valid pointer event mask bits.

Specifies the cursor that is to be displayed or None.

Specifies the time. You can pass either a timestamp or CurrentTime.

The XChangeActivePointerGrab function changes the specified dynamic parameters
if the pointer is actively grabbed by the client and if the specified time is no earlier than
the last-pointer-grab time and no later than the current X server time. This function
has no effect on the passive parameters of a XGrabButton. The interpretation of
event mask and cursor is the same as described in XGrabPointer.

XChangeActivePointerGrab can generate BadCursor and BadValue errors.

To grab a pointer button, use XGrabButton.

XGrabButton (display, button, modifiers, grabjwindow, owner_events, event_mask,
pointer_mode, keyboardjmode, confineJto, cursor)

Display * display,
unsigned int button]
unsigned int modifiers]
Window grab_window,
Bool owner_events]
unsigned int event_mask]
int pointer_mode, keyboard_mode]
Window confineJto;
Cursor cursor]

display Specifies the connection to the X server.

120

Xlib - C Library Xll, Release 3

button

modifiers

grabjwindow

owner events

event_ma.sk

pointer_mode

Specifies the pointer button that is to be grabbed or AnyButton.

Specifies the set of keymasks or AnyModifier. The mask is the bitwise
inclusive OR of the valid keymask bits.

Specifies the grab window.

Specifies a Boolean value that indicates whether the pointer events are to
be reported as usual or reported with respect to the grab window if
selected by the event mask.

Specifies which pointer events are reported to the client. The mask is the
bitwise inclusive OR of the valid pointer event mask bits.

Specifies further processing of pointer events. You can pass GrabMo-
deSync or GrabModeAsync.

keyboard_modeSpecifies further processing of keyboard events. You can pass GrabMo-
deSync or GrabModeAsync.

confine_to Specifies the window to confine the pointer in or None.

cursor Specifies the cursor that is to be displayed or None.

The XGrabButton function establishes a passive grab. In the future, the pointer is
actively grabbed (as for XGrabPointer), the last-pointer-grab time is set to the time
at which the button was pressed (as transmitted in the ButtonPress event), and the
ButtonPress event is reported if all of the following conditions are true:

• The pointer is not grabbed, and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys
are logically down.

• The grab_window contains the pointer.

• The confine__to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any ancestor
of grab_window.

The interpretation of the remaining arguments is as for XGrabPointer. The active
grab is terminated automatically when the logical state of the pointer has all buttons
released (independent of the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physi¬
cal state if device event processing is frozen.

This request overrides all previous grabs by the same client on the same button/key
combinations on the same window. A modifiers of AnyModifier is equivalent to issu¬
ing the grab request for all possible modifier combinations (including the combination of
no modifiers). It is not required that all modifiers specified have currently assigned Key-
Codes. A button of AnyButton is equivalent to issuing the request for all possible
buttons. Otherwise, it is not required that the specified button currently be assigned to
a physical button.

If some other client has already issued a XGrabButton with the same button/key
combination on the same window, a BadAccess error results. When using
AnyModifier or AnyButton, the request fails completely, and a BadAccess error
results (no grabs are established) if there is a conflicting grab for any combination.
XGrabButton has no effect on an active grab.

XGrabButton can generate BadCursor, BadValue, and BadWindow errors.

To ungrab a pointer button, use XUngrabButton.

121

Xlib - C Library XI1, Release 3

XUngrabButton (display, button, modifiers, grab_window)
Display * display,
unsigned int button;
unsigned int modifiers;
Window grabjwindow;

display

button

modifiers

grab_window

Specifies the connection to the X server.

Specifies the pointer button that is to be released or AnyButton .

Specifies the set of keymasks or AnyModifier. The mask is the bitwise
inclusive OR of the valid keymask bits.

Specifies the grab window.

The XUngrabButton function releases the passive button/key combination on the
specified window if it was grabbed by this client. A modifiers of AnyModifier is
equivalent to issuing the ungrab request for all possible modifier combinations, including
the combination of no modifiers. A button of AnyButton is equivalent to issuing the
request for all possible buttons. XUngrabButton has no effect on an active grab.

XUngrabButton can generate BadValue and BadWindow errors.

7.5. Keyboard Grabbing

Xlib provides functions that you can use to grab or ungrab the keyboard as well as allow
events.

For many functions in this section, you pass keymask bits. The valid keymask bits are:
ShiftMask, LockMask, ControlMask, ModlMask, Mod2Mask, ModSMask,
Mod4Mask , and ModSMask .

To grab the keyboard, use XGrabKeyboard.

int XGrabKeyboard (display, grab_window, owner_events, pointer_mode, keyboard_mode, time)
Display * display;
Window grab^window;
Bool owner_events;
int pointer_mode, keyboard_mode;
Time time;

display

grab_window

owner events

pointer_mode

Specifies the connection to the X server.

Specifies the grab window.

Specifies a Boolean value that indicates whether the pointer events are to
be reported as usual or reported with respect to the grab window if
selected by the event mask.

Specifies further processing of pointer events. You can pass GrabMo-
deSync or GrabModeAsync.

keyboard_modeSpecifies further processing of keyboard events. You can pass GrabMo-
deSync or GrabModeAsync.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XGrabKeyboard function actively grabs control of the keyboard and generates
Focusln and FocusOut events. Further key events are reported only to the grabbing
client. XGrabKeyboard overrides any active keyboard grab by this client. If
owner_ev-ents is False, all generated key events are reported with respect to
grab_window. If owner_events is True and if a generated key event would normally be
reported to this client, it is reported normally; otherwise, the event is reported with
respect to the grab_window. Both KeyPress and KeyRelease events are always
reported, independent of any event selection made by the client.

122

Xlib - C Library Xll, Release 3

If the keyboard_mode argument is GrabModeAsync, keyboard event processing con¬
tinues as usual. If the keyboard is currently frozen by this client, then processing of key¬
board events is resumed. If the keyboard_mode argument is GrabModeSync, the
state of the keyboard (as seen by client applications) appears to freeze, and the X server
generates no further keyboard events until the grabbing client issues a releasing XA1-
lowEvents call or until the keyboard grab is released. Actual keyboard changes are not
lost while the keyboard is frozen; they are simply queued in the server for later process¬
ing.

If pointer_mode is GrabModeAsync, pointer event processing is unaffected by activa¬
tion of the grab. If pointer_mode is GrabModeSync, the state of the pointer (as seen
by client applications) appears to freeze, and the X server generates no further pointer
events until the grabbing client issues a releasing XAllowEvents call or until the key¬
board grab is released. Actual pointer changes are not lost while the pointer is frozen;
they are simply queued in the server for later processing.

If the keyboard is actively grabbed by some other client, XGrabKeyboard fails and
returns AlreadyGrabbed. If grab_window is not viewable, it fails and returns Grab-
NotViewable. If the keyboard is frozen by an active grab of another client, it fails and
returns GrabFrozen . If the specified time is earlier than the last-keyboard-grab time
or later than the current X server time, it fails and returns GrablnvalidTime. Other¬
wise, the last-keyboard-grab time is set to the specified time (CurrentTime is replaced
by the current X server time).

XGrabKeyboard can generate BadWalue and BadWindow errors.

To ungrab the keyboard, use XUngrabKeyboard.

XUn grabKeyboard (display, time)
Display * display,
Time time)

display Specifies the connection to the X server.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XUngrabKeyboard function releases the keyboard and any queued events if this
client has it actively grabbed from either XGrabKeyboard or XGrabKey.
XUngrabKeyboard does not release the keyboard and any queued events if the
specified time is earlier than the last-keyboard-grab time or is later than the current X
server time. It also generates Focusln and FocusOut events. The X server automati¬
cally performs an UngrabKey board request if the event window for an active key¬
board grab becomes not viewable.

To passively grab a single key of the keyboard, use XGrabKey.

XGrabKey (display, keycode, modifiers, grab_window, owner_events, pointer_mode,
keyboardjmode)

Display * display,
int keycode)
unsigned int modifiers)
Window grabjwindow,
Bool owner_events;
int pointer_mode, keyboard_mode)

display Specifies the connection to the X server.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the bitwise
inclusive OR of the valid keymask bits.

Xlib — C Library Xll, Release 3

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer events are to
be reported as usual or reported with respect to the grab window if
selected by the event mask.

pointer_mode Specifies further processing of pointer events. You can pass GrabMo-
deSync or GrabModeAsync.

keyboard_modeSpecifies further processing of keyboard events. You can pass GrabMo-
deSync or GrabModeAsync.

The XGrabKey function establishes a passive grab on the keyboard. In the future,
the keyboard is actively grabbed (as for XGrabKeyboard), the last-keyboard-grab
time is set to the time at which the key was pressed (as transmitted in the KeyPress
event), and the KeyPress event is reported if all of the following conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a modifier
key) is logically pressed w'hen the specified modifier keys are logically down, and no
other modifier keys are logically down.

• Either the grab_window is an ancestor of (or is) the focus window, or the
grab_window is a descendant of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of
grab_window.

The interpretation of the remaining arguments is as for XGrabKeyboard . The active
grab is terminated automatically when the logical state of the keyboard has the specified
key released (independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physi¬
cal state if device event processing is frozen.

A modifiers argument of AnyModifier is equivalent to issuing the request for all possi¬
ble modifier combinations (including the combination of no modifiers). It is not required
that all modifiers specified have currently assigned KeyCodes. A keycode argument of
AmyKey is equivalent to issuing the request for all possible KeyCodes. Otherwise, the
specified keycode must be in the range specified by min_keycode and max_keycode in
the connection setup, or a BadValue error results.

If some other client has issued a XGrabKey with the same key combination on the
same window, a BadAccess error results. When using AnyModifier or AnyKey,
the request fails completely, and a BadAccess error results (no grabs are established) if
there is a conflicting grab for any combination.

XGrabKey can generate BadAccess, BadValue, and BadWindow errors.

To ungrab a key, use XUngrabKey.

XUngrabKey (display, keycode, modifiers, grab_window)
Display * display,
int keycode;
unsigned int modifiers;
Window grab_window;

display Specifies the connection to the X server.

keycode Specifies the KeyCode or AnyKey .

modifiers Specifies the set of keymasks or AnyModifier. The mask is the bitwise
inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

The XUngrabKey function releases the key combination on the specified window if it
was grabbed by this client. It has no effect on an active grab. A modifiers of

124

Xlib - C Library Xll, Release 3

AnyModifier is equivalent to issuing the request for all possible modifier combinations
(including the combination of no modifiers). A keycode argument of AnyKey is
equivalent to issuing the request for all possible key codes.

XUngrabKey can generate BadValue and BadWindow errors.

To allow further events to be processed when the device has been frozen, use XA1--
lowEvents.

XAllowEvents (display, event_mode, time)
Display * display,
int event_mode;
Time time;

display Specifies the connection to the X server.

event_mode Specifies the event mode. You can pass AsyncPointer, SyncPointer,
AsyncKeyboard , SyncKeyboard , ReplayPointer , Replay Key¬
board , AsyncBoth,or SyncBoth.

time Specifies the time. You can pass either a timestamp or CurrentTime .

The XAllowEvents function releases some queued events if the client has caused a
device to freeze. It has no effect if the specified time is earlier than the last-grab time of
the most recent active grab for the client or if the specified time is later than the current
X server time. Depending on the event_rnode argument, the following occurs:

AsyncPointer

SyncPointer

ReplayPointer

If the pointer is frozen by the client, pointer event processing con¬
tinues as usual. If the pointer is frozen twice by the client on
behalf of two separate grabs, AsyncPointer thaws for both.
AsyncPointer has no effect if the pointer is not frozen by the
client, but the pointer need not be grabbed by the client.

If the pointer is frozen and actively grabbed by the client, pointer
event processing continues as usual until the next Button?ress
or ButtonRelease event is reported to the client. At this time,
the pointer again appears to freeze. However, if the reported
event causes the pointer grab to be released, the pointer does not
freeze. SyncPointer has no effect if the pointer is not frozen by
the client or if the pointer is not grabbed by the client.

If the pointer is actively grabbed by the client and is frozen as the
result of an event having been sent to the client (either from the
activation of a XGrabButton or from a previous XAl¬
lowEvents with mode SyncPointer but not from a XGrab-
Pointer), the pointer grab is released and that event is com¬
pletely reprocessed. This time, however, the function ignores any
passive grabs at or above (towards the root of) the grab_window
of the grab just released. The request has no effect if the pointer
is not grabbed by the client or if the pointer is not frozen as the
result of an event.

AsyncKey¬
board

If the keyboard is frozen by the client, keyboard event processing
continues as usual. If the keyboard is frozen twice by the client
on behalf of two separate grabs, AsyncKeyboard thaws for
both. AsyncKeyboard has no effect if the keyboard is not
frozen by the client, but the keyboard need not be grabbed by the
client.

125

XIib - C Library Xll, Release 3

SyncKeyboard If the keyboard is frozen and actively grabbed by the client, key¬
board event processing continues as usual until the next
KeyPress or KeyRelease event is reported to the client. At
this time, the keyboard again appears to freeze. However, if the
reported event causes the keyboard grab to be released, the key¬
board does not freeze. SyncKeyboard has no effect if the key¬
board is not frozen by the client or if the keyboard is not grabbed
by the client.

If the keyboard is actively grabbed by the client and is frozen as
the result of an event having been sent to the client (either from
the activation of a XGrabKey or from a previous XA1-
lowEvents with mode SyncKeyboard but not from a XGrab-
Keyboard), the keyboard grab is released and that event is com¬
pletely reprocessed. This time, however, the function ignores any
passive grabs at or above (towards the root of) the grab_window
of the grab just released. The request has no effect if the key¬
board is not grabbed by the client or if the keyboard is not frozen
as the result of an event.

SyncBoth If both pointer and keyboard are frozen by the client, event pro¬
cessing for both devices continues as usual until the next But-
tonPress, ButtonRelease, KeyPress, or KeyRelease event
is reported to the client for a grabbed device (button event for the
pointer, key event for the keyboard), at which time the devices
again appear to freeze. However, if the reported event causes the
grab to be released, then the devices do not freeze (but if the other
device is still grabbed, then a subsequent event for it will still
cause both devices to freeze). SyncBoth has no effect unless both
pointer and keyboard are frozen by the client. If the pointer or
keyboard is frozen twice by the client on behalf of two separate
grabs, SyncBoth thaws for both (but a subsequent freeze for
SyncBoth will only freeze each device once).

AsyncBoth If the pointer and the keyboard are frozen by the client, event
processing for both devices continues as usual. If a device is
frozen twice by the client on behalf of two separate grabs, Async¬
Both thaws for both. AsyncBoth has no effect unless both
pointer and keyboard are frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on the processing
of keyboard events. AsyncKeyboard , SyncKeyboard, and ReplayKeyboard
have no effect on the processing of pointer events. It is possible for both a pointer grab
and a keyboard grab (by the same or different clients) to be active simultaneously. If a
device is frozen on behalf of either grab, no event processing is performed for the device.
It is possible for a single device to be frozen because of both grabs. In this case, the
freeze must be released on behalf of both grabs before events can again be processed.

XAllowEvents can generate a BadValue error.

7.6. Server Grabbing

Xlib provides functions that you can use to grab and ungrab the server. These functions
can be used to control processing of output on other connections by the window system
server. While the server is grabbed, no processing of requests or close downs on any
other connection will occur. A client closing its connection automatically ungrabs the
server. Although grabbing the server is highly discouraged, it is sometimes necessary.

ReplayKey
board

126

Xlib - C Library Xll, Release 3

To grab the server, use XGrabServer.

XGrabServer(display)
Display * display,

display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close downs on all
other connections than the one this request arrived on. You should not grab the X
server any more than is absolutely necessary.

To ungrab the server, use XUngrabServer.

XUngrabServer (display)
Display * display;

display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close downs on other
connections. You should avoid grabbing the X server as much as possible.

7.7. Miscellaneous Control Functions

This section discusses how to:

® Control the input focus

• Control the pointer

• Kill clients

7.7.1. Controlling Input Focus

Xlib provides functions that you can use to move the pointer position as well as to set
and get the input focus.

To move the pointer to an arbitrary point on the screen, use XWarpPointer.

XWarpPointer(display, src_w, dest_w, src_x, src_y, src_width, src_height, dest_x,
dest_y)

Display * display ;
Window src_w, dest_w;
int src_x, src_y ;
unsigned int srcjwidth, src_height;
int dest_x, dest_y;

display

src_w

dest w

Specifies the connection to the X server.

Specifies the source window or None.

Specifies the destination window or None.

src_x
src_y
src_width
src_height Specify a rectangle in the source window.

destjx
destjy Specify the x and y coordinates within the destination window.

If dest_w is None, XWarpPointer moves the pointer by the offsets (dest_x, dest_y)
relative to the current position of the pointer. If dest_w is a window, XWarpPointer
moves the pointer to the offsets (dest_x, destjy) relative to the origin of dest_w. How¬
ever, if src_w is a window, the move only takes place if the specified rectangle src_w con¬

tains the pointer.

127

Xlib — C Library Xll, Release 3

The src_x and src_y coordinates are relative to the origin of src_w. If src_height is zero,
it is replaced with the current height of src_w minus src_y. If src_width is zero, it is
replaced with the current width of src_w minus src„x.

There is seldom any reason for calling this function. The pointer should normally be left
to the user. If you do use this function, however, it generates events just as if the user
had instantaneously moved the pointer from one position to another. Note that you
cannot use XWarpPointer to move the pointer outside the confine_to window of an
active pointer grab. An attempt to do so will only move the pointer as far as the closest
edge of the confine_to window.

XWarpPointer can generate a BadWindow error.

To set the input focus, use XSetlnputFocus.

XSetInputFocus(display, focus, revertjo, time)
Display * display;
Window focus;
int revertjto;
Time time;

display Specifies the connection to the X server.

focus Specifies the window, PointerRoot, or None.

revertjo Specifies where the input focus reverts to if the window becomes not
viewable. You can pass RevertToParent, RevertToPointerRoot, or
RevertToNone.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetlnputFocus function changes the input focus and the last-focus-change time.
It has no effect if the specified time is earlier than the current last-focus-change time or
is later than the current X server time. Otherwise, the last-focus-change time is set to
the specified time (CurrentTime is replaced by the current X server time). XSetln¬
putFocus causes the X server to generate Focusln and FocusOut events.

Depending on the focus argument, the following occurs:

® If focus is None, all keyboard events are discarded until a new focus window is
set, and the revert_to argument is ignored.

® If focus is a window, it becomes the keyboard’s focus window. If a generated key¬
board event would normally be reported to this window or one of its inferiors, the
event is reported as usual. Otherwise, the event is reported relative to the focus
window.

@ If focus is PointerRoot, the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each keyboard event. In this case,
the revert_to argument is ignored.

The specified focus window must be viewable at the time XSetlnputFocus is called, or
a BadMatch error results. If the focus window later becomes not viewable, the X
server evaluates the revert_to argument to determine the new focus window as follows:

• If revert_to is RevertToParent, the focus reverts to the parent (or the closest
viewable ancestor), and the new revert_to value is taken to be RevertToNone.

® If revert_to is RevertToPointerRoot or RevertToNone, the focus reverts to
PointerRoot or None, respectively. When the focus reverts, the X server gen¬
erates Focusln and FocusOut events, but the last-focus-change time is not

affected.

XSetlnputFocus can generate BadMatch, BadValue, and BadWindow errors.

i

128

Xlib - C Library Xll, Release 3

To obtain the current input focus, use XGetlnputFocus.

XGetInputFocus(display, focus_return, revert_to_return)
Display * display,
Window *focus_return;
int *revert_to_return;

display Specifies the connection to the X server.

focus_return Returns the focus window, PointerRoot, or None.

revert_to_return
Returns the current focus state (RevertToParent, RevertToPointer-
Root, or RevertToNone).

The XGetlnputFocus function returns the focus window and the current focus state.

7.7.2. Killing Clients

Xlib provides functions that you can use to control the lifetime of resources owned by a
client or to cause the connection to a client to be destroyed.

To change a client’s close-down mode, use XSetCloseDownMode.

XSetCloseDownMode(display, close_mode)
Display * display,
int close_mode]

display Specifies the connection to the X server.

close_mode Specifies the client close-down mode. You can pass Destroy All,
RetainPermanent, or RetainTemporary .

The XSetCloseDownMode defines what will happen to the client’s resources at con¬
nection close. A connection starts in Destroy All mode. For information on what hap¬
pens to the client’s resources when the close_mode argument is RetainPermanent or
RetainTemporary , see section 2.6.

XSetCloseDownMode can generate a BadValue error.

To destroy a client, use XKillClient.

XKillClient(display, resource)
Display * display,
XID resource;

display Specifies the connection to the X server.

resource Specifies any resource associated with the client that you want to destroy
or AllTemporary.

The XKillClient function forces a close-down of the client that created the resource if
a valid resource is specified. If the client has already terminated in either RetainPer¬
manent or RetainTemporary mode, all of the client’s resources are destroyed. If
AllTemporary is specified, the resources of all clients that have terminated in
RetainTemporary are destroy-ed (see section 2.6). This permits implementation of
window manager facilities that aid debugging. A client can set its close-down mode to
RetainTemporary. If the client then crashes, its windows would not be destroyed.
The programmer can then inspect the application’s window tree and use the window
manager to destroy the zombie windows.

XKillClient can generate a BadValue error.

129

Xlib — C Library Xll, Release 3

7.8. Keyboard and Pointer Settings

Xlib provides functions that you can use to change the keyboard control, obtain a list of
the auto-repeat keys, turn keyboard auto-repeat on or off, ring the bell, set or obtain the
pointer button or keyboard mapping, and obtain a bit vector for the keyboard.

This section discusses the user-preference options of bell, key click, pointer behavior, and
so on. The default values for many of these functions are determined by command line
arguments to the X server and, on UNIX-based systems, are typically set in the
/etc/ttys file. Not all implementations will actually be able to control all of these
parameters.

The XChangeKeyboardControl function changes control of a keyboard and operates
on a XKeyboardControl structure:

/* Mask bits for ChangeKeyboardControl */

#define KBKeyClickPercent (1L<<0)
^define KBBellPercent (1L< < 1)
#define KBBellPitch (1L<<2)
^define KBBellDuration (1L<<3)
^define KBLed (1L<<4)
^define KBLedMode (1L<<5)
#define KBKey (1L<<6)
^define KBAutoRepeatMode (1L<<7)

/* Values */

typedef struct {
int key_click_percent;
int bell_percent;
int bell_pitch;
int bell_duration;
int led;
int led_mode; /* LedModeOn, LedModeOff */
int key;
int auto_repeat_mode; /* AutoRepeatModeOff, AutoRepeatModeOn,

AutoRepeatModeDefault */
} XKeyboardControl;

The key_click_percent member sets the volume for key clicks between 0 (off) and 100
(loud) inclusive, if possible. A setting of -1 restores the default. Other negative values
generate a BadValue error.

The beil_percent sets the base volume for the bell between 0 (off) and 100 (loud)
inclusive, if possible. A setting of -1 restores the default. Other negative values generate
a BadValue error. The bell_pitch member sets the pitch (specified in Hz) of the bell, if
possible. A setting of -1 restores the default. Other negative values generate a Bad¬
Value error. The bell_duration member sets the duration of the bell specified in mil¬
liseconds, if possible. A setting of -1 restores the default. Other negative values generate
a BadValue error.

If both the led_mode and led members are specified, the state of that LED is changed, if
possible. The led_mode member can be set to LedModeOn or LedModeOff. If only
led_mode is specified, the state of all LEDs are changed, if possible. At most 32 LEDs
numbered from one are supported. No standard interpretation of LEDs is defined. If led
is specified without led_mode, a BadMatch error results.

If both the auto_repeat_mode and key members are specified, the auto_repeat_mode of
that key is changed (according to AutoRepeatModeOn, AutoRepeatModeOff, or
AutoRepeatModeDefault), if possible. If only auto_repeat_mode is specified, the

130

XIib — C Library Xll, Release 3

global auto_repeat_mode for the entire keyboard is changed, if possible, and does not
affect the per key settings. If a key is specified without an auto_repeat_mode, a Bad-
Match error results. Each key has an individual mode of whether or not it should
auto-repeat and a default setting for the mode. In addition, there is a global mode of
whether auto-repeat should be enabled or not and a default setting for that mode.
When global mode is AutoRepeatModeOn, keys should obey their individual auto¬
repeat modes. When global mode is AutoRepeatModeOfF, no keys should auto¬
repeat. An auto-repeating key generates alternating KeyPress and KeyRelease
events. When a key is used as a modifier, it is desirable for the key not to auto-repeat,
regardless of its auto-repeat setting.

A bell generator connected with the console but not directly on a keyboard is treated as
if it were part of the keyboard. The order in which controls are verified and altered is
server-dependent. If an error is generated, a subset of the controls may have been
altered.

XChangeKeyboardControl(display, value_mask, values)
Display * display,
unsigned long value_mask\
XKeyboardControl * values]

display Specifies the connection to the X server.

value_mask Specifies one value for each bit set to 1 in the mask.

values Specifies which controls to change. This mask is the bitwise inclusive OR
of the valid control mask bits.

The XChangeKeyboardControl function controls the keyboard characteristics
defined by the XKeyboardControl structure. The value_mask argument specifies
which values are to be changed.

XChangeKeyboardControl can generate BadMatch and BadValue errors.

To obtain the current control values for the keyboard, use XGetKeyboardControl.

XGetKeyboardControl(display, values_return)
Display * display,
XKeyboardState *values_return]

display Specifies the connection to the X server.

values_return Returns the current keyboard controls in the specified XKeyboard¬
State structure.

The XGetKeyboardControl function returns the current control values for the key¬
board to the XKeyboardState structure.

typedef struct {
int key_click_percent;
int bell__percent;
unsigned int bell_pitch, bell_duration;
unsigned long led_mask;
int global_auto_repeat;
char auto_repeats[32];

} XKeyboardState;

For the LEDs, the least-significant bit of led_mask corresponds to LED one, and each bit
set to 1 in led_mask indicates an LED that is lit. The global_auto_repeat member can
be set to AutoRepeatModeOn or AutoRepeatModeOfF. The auto_repeats member
is a bit vector. Each bit set to 1 indicates that auto-repeat is enabled for the

131

XIib - C Library Xll, Release 3

corresponding key. The vector is represented as 32 bytes. Byte N (from 0) contains the
bits for keys 8N to 8N -f 7 with the least-significant bit in the byte representing key 8N.

To turn on keyboard auto-repeat, use XAutoRepeatOn.

XAutoRepeatOn (display)
Display * display,

display Specifies the connection to the X server.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the specified
display.

To turn off keyboard auto-repeat, use XAutoRepeatOff.

XAutoRepeatOff (display)
Display *display;

display Specifies the connection to the X server.

The XAutoRepeatOff function turns off auto-repeat for the keyboard on the specified
display.

To ring the bell, use XBell.

XBell(display, percent)
Display * display,
int percent',

display Specifies the connection to the X server.

percent Specifies the volume for the bell, which can range from -100 to 100
inclusive.

The XBell function rings the bell on the keyboard on the specified display, if possible.
The specified volume is relative to the base volume for the keyboard. If the value for
the percent argument is not in the range -100 to 100 inclusive, a Bad Value error
results. The volume at which the bell rings when the percent argument is nonnegative
is:

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeKeyboardControl.

XBell can generate a BadValue error.

To obtain a bit vector that describes the state of the keyboard, use XQueryKeymap .

XQueryKeymap(display, keysjreturn)
Display * display,
char keys_return[32];

display Specifies the connection to the X server.

keys_return Returns an array of bytes that identifies which keys are pressed down.
Each bit represents one key of the keyboard.

The XQueryKeymap function returns a bit vector for the logical state of the key¬
board, where each bit set to 1 indicates that the corresponding key is currently pressed
down. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys
8N to 8N + 7 with the least-significant bit in the byte representing key 8N.

132

XIib - C Library Xll, Release 3

Note that the logical state of a device (as seen by client applications) may lag the physi¬
cal state if device event processing is frozen.

To set the mapping of the pointer buttons, use XSetPointerMapping.

int XSetPointerMapping (display, map, nmap)
Display * display,
unsigned char map{];
int nmap;

display Specifies the connection to the X server.

map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

The XSetPointerMapping function sets the mapping of the pointer. If it succeeds,
the X server generates a MappingNotify event, and XSetPointerMapping returns
MappingSuccess Elements of the list are indexed starting from one. The length of
the list must be the same as XGetPointerMapping would return, or a BadValue
error results. The index is a core button number, and the element of the list defines the
effective number. A zero element disables a button, and elements are not restricted in
value by the number of physical buttons. However, no two elements can have the same
nonzero value, or a BadValue error results. If any of the buttons to be altered are log¬
ically in the down state, XSetPointerMapping returns MappingBusy, and the map¬
ping is not changed.

XSetPointerMapping can generate a BadValue error.

To get the pointer mapping, use XGetPointerMapping.

int XGetPointerMapping(display, map_return, nmap)
Display * display,
unsigned char map_return{];
int nmap-,

display Specifies the connection to the X server.

map_return Returns the mapping list.

nmap Specifies the number of items in the mapping list.

The XGetPointerMapping function returns the current mapping of the pointer. Ele¬
ments of the list are indexed starting from one. XGetPointerMapping returns the
number of physical buttons actually on the pointer. The nominal mapping for a pointer
is the identity mapping: map[i]=i. The nmap argument specifies the length of the array
where the pointer mapping is returned, and only the first nmap elements are returned in
map_return.

To control the pointer’s interactive feel, use XChangePointerControl.

XChangePointerControl(display, do_accel, dojthreshold, accel_numerator,
accel_denominator, threshold)

Display * display,
Bool do_accel, do_t.hr eshold\
int accel_numerator, accel_denominator;
int threshold;

display Specifies the connection to the X server.

do_accel Specifies a Boolean value that controls whether the values for the
accel numerator or accel_denominator are used.

133

Xlib - C Library Xll, Release 3

do_threshold. Specifies a Boolean value that controls whether the value for the thres¬
hold is used.

accel_numerator
Specifies the numerator for the acceleration multiplier.

accel_dencminator
Specifies the denominator for the acceleration multiplier.

threshold Specifies the acceleration threshold.

The XChangePointerControl function defines how the pointing device moves. The
acceleration, expressed as a fraction, is a multiplier for movement. For example, specify¬
ing 3/1 means the pointer moves three times as fast as normal. The fraction may be
rounded arbitrarily by the X server. Acceleration only takes effect if the pointer moves
more than threshold pixels at once and only applies to the amount beyond the value in
the threshold argument. Setting a value to -1 restores the default. The values of the
do_accel and do_threshold arguments must be True for the pointer values to be set, or
the parameters are unchanged. Negative values (other than -1) generate a BadValue
error, as does a zero value for the accel_denominator argument.

XChangePointerControl can generate a BadValue error.

To get the current pointer parameters, use XGetPointerControl.

XGetPointerControl(display, accel_numerator_return, accel_denominator_return,
thresholds eturn)

Display * display,
int *accel_nVL'fnz™tor_rzturn, *accel_denominator_return]
int *threshold_return;

display Specifies the connection to the X server.

accel_numerator_r eturn
Returns the numerator for the acceleration multiplier.

accel_denominator_r eturn
Returns the denominator for the acceleration multiplier.

thresholds eturn
Returns the acceleration threshold.

The XGetPointerControl function returns the pointer’s current acceleration multi¬
plier and acceleration threshold.

7.9. Keyboard Encoding

Most applications will find the simple interface XLookupString, which performs sim¬
ple translation of a key event to an ASCII string, most useful. Keyboard-related utilities
are discussed in chapter 10. The following section explains how to completely control
the bindings of symbols to keys and modifiers.

A KeyCode represents a physical (or logical) key. KeyCodes lie in the inclusive range
[8,255], A KeyCode value carries no intrinsic information, although server implementors
may attempt to encode geometry (for example, matrix) information in some fashion so
that it can be interpreted in a server-dependent fashion. The mapping between keys
and KeyCodes cannot be changed.

A KeySym is an encoding of a symbol on the cap of a key. The set of defined KeySyms
include the ISO Latin character sets (1-4), Katakana, Arabic, Cyrillic, Greek, Technical,
Special, Publishing, APL, Hebrew, and a special miscellany of keys found on keyboards
(Return, Help, Tab, and so on). To the extent possible, these sets are derived from inter¬
national standards. In areas where no standards exist, some of these sets are derived
from Digital Equipment Corporation standards. The list of defined symbols can be

134

Xlib - C Library Xll, Release 3

found in <Xll/keysymdef.h >. Unfortunately, some C preprocessors have limits on
the number of defined symbols. If you must use KeySyms not in the Latin 1-4, Greek,
and miscellaneous classes, you may have to define a symbol for those sets. Most applica¬
tions usually only include < Xll/keysym.h >, which defines symbols for ISO Latin
1-4, Greek, and miscellaneous.

A list of KeySyms is associated with each KeyCode. The length of the list can vary with
each KeyCode. The list is intended to convey the set of symbols on the corresponding
key. By convention, if the list contains a single KeySym and if that KeySym is alpha¬
betic and case distinction is relevant for it, then it should be treated as equivalent to a
two-element list of the lowercase and uppercase KeySyms. For example, if the list con¬
tains the single KeySym for uppercase A, the client should treat it as if it were a pair
with lowercase a as the first KeySym and uppercase A as the second KeySym.

For any KeyCode, the first KeySym in the list should be chosen as the interpretation of
a KeyPress when no modifier keys are down. The second KeySym in the list normally
should be chosen when the Shift modifier is on or when the Lock modifier is on and Lock
is interpreted as ShiftLock. When the Lock modifier is on and is interpreted as
CapsLock, it is suggested that the Shift modifier first be applied to choose a KeySym.
However, if that KeySym is lowercase alphabetic, the corresponding uppercase KeySym
should be used instead. Other interpretations of CapsLock are possible; for example, it
may be viewed as equivalent to ShiftLock, but only applying when the first KeySym is
lowercase alphabetic and the second KeySym is the corresponding uppercase alphabetic.
No interpretation of KeySyms beyond the first two in a list is suggested here. No spatial
geometry of the symbols on the key is defined by their order in the KeySym list,
although a geometry might be defined on a vendor-specific basis. The X server does not
use the mapping between KeyCodes and KeySyms. Rather, it stores it merely for read¬
ing and writing by clients.

To obtain the legal KeyCodes for a display, use XDisplayKeycodes.

XDisplayKeycodes(display, minjceycodesjreturn, max_keycodes_return)
Display * display,
int * min_keycodes_return, max_keycodes_return;

display Specifies the connection to the X server.

min_keycodes_return
Returns the minimum number of KeyCodes.

max_keycodes_return
Returns the maximum number of KeyCodes.

The XDisplayKeycodes function returns the min-keycodes and max-keycodes sup¬
ported by the specified display. The minimum number of KeyCodes returned is never
less than 8, and the maximum number of KeyCodes returned is never greater than 255.
Not all KeyCodes in this range are required to have corresponding keys.

To obtain the symbols for the specified KeyCodes, use XGetKeyboardMapping.

KeySym *XGetKeyboardMapping(display, first_keycode, keycode_count,
keysyms_per_keycode_return)

Display * display,
KeyCode first_keycode;
int keycode_count;
int *keysyms_per_keycode_return;

display Specifies the connection to the X server.

135

Xlib - C Library Xll, Release 3

first_keycode Specifies the first KeyCode that is to be returned.

keycode_count Specifies the number of KeyCodes that are to be returned.

key$yms_per_keycode_return
Returns the number of KeySyms per KeyCode.

The XGetKeyboardMapping function returns the symbols for the specified number
of KeyCodes starting with first_keycode. The value specified in first_keycode must be
greater than or equal to min_keycode as returned by XDisplayKeycodes, or a Bad-
Value error results. In addition, the following expression must be less than or equal to
max_keycode as returned by XDisplayKeycodes:

first_keyeode + keycode_count - 1

If this is not the case, a BadValue error results. The number of elements in the
KeySyms list is:

keycode_count * keysyms_per_keycode_return

KeySym number N, counting from zero, for KeyCode K has the following index in the
list, counting from zero:

(K - first_code) * keysyms_per_code_return + N

The X server arbitrarily chooses the keysyms_per_keycode_return value to be large
enough to report all requested symbols. A special KeySym value of NoSymbol is used
to fill in unused elements for individual KeyCodes. To free the storage returned by
XGetKeyboardMapping, use XFree.

XGetKeyboardMapping can generate a BadValue error.

To change the keyboard mapping, use XChangeKeyboardMapping.

XChangeKeyboardMapping(display, first_keycode, keysyms_per_keycode, keysyms, num_codes)
Display * display,
int first_keycode]
int keysymsjperjc eye ode]
KeySym ^keysyms;
int num_codes]

display Specifies the connection to the X server.

first_keycode Specifies the first KeyCode that is to be changed.

keysyms_per_keycode
Specifies the number of KeySyms per KeyCode.

keysyms Specifies a pointer to an array of KeySyms.

num_codes Specifies the number of KeyCodes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the specified
number of KeyCodes starting with first_keycode. The symbols for KeyCodes outside
this range remain unchanged. The number of elements in keysyms must be:

num_codes * keysyms_per_keycode

The specified first_keycode must be greater than or equal to min_keycode returned by
XDisplayKeycodes, or a BadValue error results. In addition, the following expres¬
sion must be less than or equal to max_keycode as returned by XDisplayKeycodes, or
a BadValue error results:

first_keycode + num_codes - 1

KeySym number N, counting from zero, for KeyCode K has the following index in

136

Xlib - C Library Xll, Release 3

keysyms, counting from zero:

(K - first_keycode) * keysyms_per_keycode + N

The specified keysyms_per_keycode can be chosen arbitrarily by the client to be large
enough to hold all desired symbols. A special KeySym value of NoSymbol should be
used to fill in unused elements for individual KeyCodes. It is legal for NoSymbol to
appear in nontrailing positions of the effective list for a KeyCode. XChangeKey-
boardMapping generates a MappingNotify event.

There is no requirement that the X server interpret this mapping. It is merely stored for
reading and writing by clients.

XChangeKeyboardMapping can generate BadAlloc and BadValue errors.

The next four functions make use of the XModifierKeymap data structure, which
contains:

typedef struct {
int max_keypermod; /* This server’s max number of keys per modifier */
KeyCode *modifiermap; /* An 8 by max_keypermod array of the modifiers */

} XModifierKeymap;

To create an XModifierKeymap structure, use XNewModifiermap.

XModifierKeymap *XNewModifiermap(maxjceys_per_mod)
int maxjceysjper_mod\

m a x_k eys_per_mod
Specifies the number of KeyCode entries preallocated to the modifiers in
the map.

The XNewModifiermap function returns a pointer to XModifierKeymap structure
for later use.

To add a new entry to an XModifierKeymap structure, use
XInsertModifiermapEntry.

XModifierKeymap * XInsertModifiermapEntry (modmap, keycode_entry, modifier)
XModifierKeymap *modmap\
KeyCode keycode_entry\
int modifier;

modmap Specifies a pointer to the XModifierKeymap structure.

keycode_entry Specifies the KeyCode.

modifier Specifies the modifier.

The XInsertModifiermapEntry function adds the specified KeyCode to the set that
controls the specified modifier and returns the resulting XModifierKeymap structure
(expanded as needed).

To delete an entry from an XModifierKeymap structure, use
XDeleteModifier map Entry.

XModifierKeymap *XDeleteModifiermapEntry (modmap, keycode_entry, modifier)
XModifierKeymap *modmap;
KeyCode keycode_entry\
int modifier;

modmap Specifies a pointer to the XModifierKeymap structure.

keycode_entry Specifies the KeyCode.

137

Xlib - C Library XI1, Release 3

modifier Specifies the modifier.

The XDeieteModifiermapEntry function deletes the specified KeyCode from the set
that controls the specified modifier and returns a pointer to the resulting
XModifierKeymap structure.

To destroy an XModifierKeymap structure, use XFreeModifiermap.

XFreeModifiermap(modmap)
XModifierKeymap *modmap\

modmap Specifies a pointer to the XModifierKeymap structure.

The XFreeModifiermap function frees the specified XModifierKeymap structure.

To set the KeyCodes to be used as modifiers, use XSetModifierMapping .

int XSetModifierMapping(display, modmap)
Display * display,
XModifierKeymap * modmap]

display Specifies the connection to the X server.

modmap Specifies a pointer to the XModifierKeymap structure.

The XSetModifierMapping function specifies the KeyCodes of the keys (if any) that
are to be used as modifiers. If it succeeds, the X server generates a MappingNotify
event, and XSetModifierMapping returns MappingSuccess. X permits at most
eight modifier keys. If more than eight are specified in the XModifierKeymap struc¬
ture, a BadLength error results.

The modifiermap member of the XModifierKeymap structure contains eight sets of
max_keypermod KeyCodes, one for each modifier in the order Shift, Lock, Control,
Modi, Mod2, Mod3, Mod4, and Mod5. Only nonzero KeyCodes have meaning in
each set, and zero KeyCodes are ignored. In addition, all of the nonzero KeyCodes must
be in the range specified by min_keycode and max_keycode in the Display structure, or
a BadValue error results. No KeyCode may appear twice in the entire map, or a
BadValue error results.

An X server can impose restrictions on how modifiers can be changed, for example, if
certain keys do not generate up transitions in hardware, if auto-repeat cannot be dis¬
abled on certain keys, or if multiple modifier keys are not supported. If some such res¬
triction is violated, the status reply is MappingFailed, and none of the modifiers are
changed. If the new KeyCodes specified for a modifier differ from those currently
defined and any (current or new) keys for that modifier are in the logically down state,
XSetModifierMapping returns MappingBusy, and none of the modifiers is changed.

XSetModifierMapping can generate BadAlloc and BadValue errors.

To obtain the KeyCodes used as modifiers, use XGetModifierMapping.

XModifierKeymap *XGetModifierMapping(display)
Display * display]

display Specifies the connection to the X server.

The XGetModifierMapping function returns a pointer to a newly created
XModifierKeymap structure that contains the keys being used as modifiers. The
structure should be freed after use by calling XFreeModifiermap. If only zero values
appear in the set for any modifier, that modifier is disabled.

138

Xlib - C Library XI1, Release 3

7.10. Screen Saver Control

Xlib provides functions that you can use to set, force, activate, or reset the screen saver
and to obtain the current screen saver values.

To set the screen saver, use XSetScreenSaver.

XSetScreenSaver(display, timeout, interval, prefer_blanking, allow_exposures)
Display * display;
int timeout, interval;
int prefer_blanking;
int allow_exposures;

display Specifies the connection to the X server.

timeout Specifies the timeout, in seconds, until the screen saver turns on.

interval Specifies the interval between screen saver alterations.

preferJblankingSpecifies how to enable screen blanking. You can pass DontPrefer-
Blanking, PreferBlanking, or DefaultBlanking .

allow_exposuresSpec'\f\es the screen save control values. You can pass DontAllowEx-
posures, AllowExposures, or DefaultExposures.

Timeout and interval are specified in seconds. A timeout of 0 disables the screen saver,
and a timeout of -1 restores the default. Other negative values generate a BadValue
error. If the timeout value is nonzero, XSetScreenSaver enables the screen saver. An
interval of 0 disables the random-pattern motion. If no input from devices (keyboard,
mouse, and so on) is generated for the specified number of timeout seconds once the
screen saver is enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the
screen simply goes blank. Otherwise, if either exposures are allowed or the screen can be
regenerated without sending Expose events to clients, the screen is tiled with the root
window background tile randomly re-origined each interval minutes. Otherwise, the
screens’ state do not change, and the screen saver is not activated. The screen saver is
deactivated, and all screen states are restored at the next keyboard or pointer input or
at the next call to XForceScreenSaver with mode ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval argu¬
ment serves as a hint about how long the change period should be, and zero hints that
no periodic change should be made. Examples of ways to change the screen include
scrambling the colormap periodically, moving an icon image around the screen periodi¬
cally, or tiling the screen with the root window background tile, randomly re-origined
periodically.

XSetScreenSaver can generate a BadValue error.

To force the screen saver on or off, use XForceScreenSaver.

XForceScreenSaver(display, mode)
Display * display ;
int mode;

display Specifies the connection to the X server.

mode Specifies the mode that is to be applied. You can pass ScreenSaverAc-
tive or ScreenSaverReset.

If the specified mode is ScreenSaverActive and the screen saver currently is deac¬
tivated, XForceScreenSaver activates the screen saver even if the screen saver had
been disabled with a timeout of zero. If the specified mode is ScreenSaverReset and
the screen saver currently is enabled, XForceScreenSaver deactivates the screen saver

139

Xlib - C Library Xll, Release 3

if it was activated, and the activation timer is reset to its initial state (as if device input
had been received).

XForceScreenSaver can generate a BadValue error.

To activate the screen saver, use XActivateScreenSaver.

XActivateScreenSaver (display)
Display * display;

display Specifies the connection to the X server.

To reset the screen saver, use XResetScreenSaver.

XResetScreenSaver (display)
Display * display;

display Specifies the connection to the X server.

To get the current screen saver values, use XGetScreenSaver.

XGetScreenSaver (display, timeout_return, interval_return, prefer_blanking_return,
allow_exposures_return)

Display * display ;
int *timeout_return, *interval_return;
int * prefer_blanking_return;
int * allow_exposures_return;

display Specifies the connection to the X server.

timeout_returnReturns the timeout, in minutes, until the screen saver turns on.

interval_returnRet\ivns the interval between screen saver invocations.

prefer_blanking_return
Returns the current screen blanking preference (DontPreferBlanking,
PreferBlanking, or Default-Blanking).

allow_exposures_return
Returns the current screen save control value (DontAllowExposures,
AllowExposures, or Default-Exposures).

7.11. Controlling Host Access

This section discusses how to:

• Add, get, or remove hosts from the access control list

• Change, enable, or disable access

X does not provide any protection on a per-window basis. If you find out the resource
ID of a resource, you can manipulate it. To provide some minimal level of protection,
however, connections are permitted only from machines you trust. This is adequate on
single-user workstations but obviously breaks down on timesharing machines. Although
provisions exist in the X protocol for proper connection authentication, the lack of a
standard authentication server leaves host-level access control as the only common
mechanism.

The initial set of hosts allowed to open connections typically consists of:

• The host the window system is running on.

• On UNIX-based systems, each host listed in the /etc/X?.hosts file. The ? indi¬
cates the number of the display. This file should consist of host names separated
by newlines. DECnet nodes must terminate in :: to distinguish them from Internet

140

XIib - C Library Xll, Release 3

hosts.

If a host is riot in the access control list when the access control mechanism is enabled
and if the host attempts to establish a connection, the server refuses the connection. To
change the access list, the client must reside on the same host as the server and/or must-
have been granted permission in the initial authorization at connection setup.

Servers also can implement other access control policies in addition to or in place of this
host access facility. For further information about other access control implementations,
see “X Window System Protocol.”

7.11.1. Adding, Getting, or Removing Hosts

Xlib provides functions that you can use to add, get, or remove hosts from the access
control list. All the host access control functions use the XHostAddress structure,
which contains:

typedef struct {
int family;
int length;
char * ad dress;

} XHostAddress;

The family member specifies which protocol address family to use (for example, TCP/IP
or DECnet) and can be Familylnternet, FamilyDECnet, or Family Chaos. The
length member specifies the length of the address in bytes. The address member
specifies a pointer to the address.

For TCP/IP, the address should be in network byte order. For the DECnet family, the
server performs no automatic swapping on the address bytes. A Phase IV address is two
bytes long. The first byte contains the least-significant eight bits of the node number.
The second byte..contains the most-significant two bits of the node number in the least-
significant two bits of the byte and the area in the most-significant six bits of the byte.

To add a single host, use XAddHost.

XAddHost (display, host)
Display * display,
XHostAddress *host;

display Specifies the connection to the X server.

host Specifies the host that is to be added.

The XAddHost function adds the specified host to the access control list for that
display. The server must be on the same host as the client issuing the command, or a
BadAecess error results.

XAddHost can generate BadAecess and BadWalue errors.

To add multiple hosts at one time, use XAddHosts.

XAddHosts(display, hosts, num_hosts)
Display * display,
XHostAddress * hosts;
int num_hosts;

display Specifies the connection to the X server.

hosts Specifies each host that is to be added.

num_hosts Specifies the number of hosts.

/* for example Familylnternet */
/* length of address, in bytes */
/* pointer to where to find the address */

141

Xlib - C Library Xll, Release 3

The XAddHosts function adds each specified host to the access control list for that
display. The server must be on the same host as the client issuing the command, or a
BadAccess error results.

XAddHosts can generate BadAccess and BadValue errors.

To obtain a host list, use XListHosts.

XHostAddress *XListHosts(display, nhosts_return, state_return)
Display * display,
int *nhosts_return;
Bool *state_returrr,

display Specifies the connection to the X server.

nhosts_return Returns the number of hosts currently in the access control list.

statejreturn Returns the state of the access control.

The XListHosts function returns the current access control list as well as whether the
use of the list at connection setup was enabled or disabled. XListHosts allows a pro¬
gram to find out what machines can make connections. It also returns a pointer to a list
of host structures that were allocated by the function. When no longer needed, this
memory should be freed by calling XFree.

To remove a single host, use XRemoveHost.

XRemoveHost (display, host)
Display * display,
XHostAddress *host;

display Specifies the connection to the X server.

host Specifies the host that is to be removed.

The XRemoveHost function removes the specified host from the access control list for
that display. The server must be on the same host as the client process, or a BadAc¬
cess error results. If you remove your machine from the access list, you can no longer
connect to that server, and this operation cannot be reversed unless you reset the server.

XRemoveHost can generate BadAccess and BadValue errors.

To remove multiple hosts at one time, use XRemoveHosts.

XRemoveHosts(display, hosts, num_hosts)
Display * display ;
XHostAddress * hosts;
int num_hosts;

display Specifies the connection to the X server.

hosts Specifies each host that is to be removed.

num_hosts Specifies the number of hosts.

The XRemoveHosts function removes each specified host from the access control list
for that display. The X server must be on the same host as the client process, or a
BadAccess error results. If you remove your machine from the access list, you can no
longer connect to that server, and this operation cannot be reversed unless you reset the
server.

XRemoveHosts can generate BadAccess and BadValue errors.

142

Xlib - C Library Xll, Release 3

7.11.2. Changing, Enabling, or Disabling Access Control

Xlib provides functions that you can use to enable, disable, or change access control.

For these functions to execute successfully, the client application must reside on the
same host as the X server and/or have been given permission in the initial authorization
at connection setup.

To change access control, use XSetAccessControl.

XSetAccessControl(display, mode)
Display * display]
int mode;

display Specifies the connection to the X server.

mode Specifies the mode. You can pass EnableAccess or DisableAccess.

The XSetAccessControl function either enables or disables the use of the access con¬
trol list at each connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.

To enable access control, use XEnableAccessControl.

XEnableAccessControl(display)
Display * display,

display Specifies the connection to the X server.

The XEnableAccessControl function enables the use of the access control list at each
connection setup.

XEnableAccessControl can generate a BadAccess error.

To disable access control, use XDisableAccessControl.

XDisableAccessControl(display)
Display * display,

display Specifies the connection to the X server.

The XDisableAccessControl function disables the use of the access control list at
each connection setup.

XDisableAccessControl can generate a BadAccess error.

143

Xlib - C Library XI1, Release 3

l

I

Chapter 8

Events and Event-Handling Functions

A client application communicates with the X server through the connection you estab¬
lish with the XOpenDisplay function. A client application sends requests to the X
server over this connection. These requests are made by the Xlib functions that are
called in the client application. Many Xlib functions cause the X server to generate
events, and the user’s typing or moving the pointer can generate events asynchronously.
The X server returns events to the client on the same connection.

This chapter begins with a discussion of the following topics associated with events:

© Event types

® Event structures

• Event mask

® Event processing

It then discusses the Xlib functions you can use to:

® Select events

® Handle the output buffer and the event queue

• Select events from the event queue ||
• Send and get events

® Handle error events
i

Note

Some toolkits use their own event-handling functions and do not allow you to
interchange these event-handling functions with those in Xlib. For further
information, see the documentation supplied with the toolkit.

Most applications simply are event loops: they wait for an event, decide what to do with
it, execute some amount of code that results in changes to the display, and then wait for
the next event.

8.1. Event Types

An event is data generated asynchronously by the X server as a result of some device
activity or as side effects of a request sent by an Xlib function. Device-related events
propagate from the source window to ancestor windows until some client application has
selected that event type or until the event is explicitly discarded. The X server generally
sends an event to a client application only if the client has specifically asked to be
informed of that event type, typically by setting the event-mask attribute of the win¬
dow. The mask can also be set when you create a window or by changing the window’s
event-mask. You can also mask out events that would propagate to ancestor windows
by manipulating the do-not-propagate mask of the window’s attributes. However,
MappingNotify events are always sent to all clients.

An event type describes a specific event generated by the X server. For each event type,
a corresponding constant name is defined in <Xll/X.h >, which is used when refer¬
ring to an event type. The following table lists the event category and its associated
event type or types. The processing associated with these events is discussed in section
8.4.

144

Xlib — C Library Xll, Release 3

Event Category Event Type

Keyboard events KeyPress, Key Release

Pointer events ButtonPress, ButtonRelease, MotionNotify

Window crossing events EnterNotify, LeaveNotify

Input focus events FocusXn, FocusOut

Keymap state notification event KeymapNotify

Exposure events Expose, GraphicsExpose, NoExpose

Structure control events CirculateRequest, ConfigureRequest,
MapRequest, ResizeRequest

Window state notification events CirculateNotify, ConfigureNotify,
CreateNotify , DestroyNotify , GravityNo-
tify , MapNotify, MappingNotify ,
ReparentNotify, UnmapNotify, Visibili-
tyNotify

Colormap state notification event ColormapNotify

Client communication events ClientMessage, PropertyNotify , Selection-
Clear, SelectionNotify, SelectionRequest

8.2. Event Structures

For each event type, a corresponding structure is declared in < Xll/Xlib.h >. All the
event structures have the following common members:

typedef struct {
int type;
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request
Display *display; /* Display the event was read from */
Window window;

} XAnyEvent;

The type member is set to the event type constant name that uniquely identifies it. For
example, when the X server reports a GraphicsExpose event to a client application, it
sends an XGraphicsExposeEvent structure with the type member set to Gra¬
phicsExpose. The display member is set to a pointer to the display the event was read
on. The send_event member is set to True if the event came from a SendEvent pro¬
tocol request. The serial member is set from the serial number reported in the protocol
but expanded from the 16-bit least-significant bits to a full 32-bit value. The window
member is set to the window that is most useful to toolkit dispatchers.

The X server can send events at any time in the input stream. Xlib stores any events
received while waiting for a reply in an event queue for later use. Xlib also provides
functions that allow you to check events in the event queue (see section 8.7).

In addition to the individual structures declared for each event type, the XEvent struc¬
ture is a union of the individual structures declared for each event type. Depending on
the type, you should access members of each event by using the XEvent union.

typedef union _XEvent {
int type;
XAnyEvent xany;

/* must not be changed */

Xlib - C Library Xll, Release 3

XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;

long pad [24];
} XEvent;

An XEvent structure’s first entry always is the type member, which is set to the event
type. The second member always is the serial number of the protocol request that gen¬
erated the event. The third member always is send_event, which is a Bool that indi¬
cates if the event was sent by a different client. The fourth member always is a display,
which is the display that the event was read from. Except for keymap events, the fifth
member always is a window, which has been carefully selected to be useful to toolkit
dispatchers. To avoid breaking toolkits, the order of these first five entries is not to
change. Most events also contain a time member, which is the time at which an event
occurred. In addition, a pointer to the generic event must be cast before it is used to
access any other information in the structure.

8.3. Event Masks

Clients select event reporting of most events relative to a window. To do this, pass an
event mask to an Xlib event-handling function that takes an event_mask argument.
The bits of the event mask are defined in < Xll/X.h . Each bit in the event mask
maps to an event mask name, which describes the event or events you want the X server
to return to a client application.

Unless the client has specifically asked for them, most events are not reported to clients
when they are generated. Unless the client suppresses them by setting graphics-exposures
in the GC to False, GraphicsExpose and NoExpose are reported by default as a
result of XCopyPlane and XCopyArea. SelectionClear, SelectionRequest,

146

XIib - C Library Xll, Release 3

SelectionNotify, or ClientMessage cannot be masked. Selection related events arc
only sent to clients cooperating with selections (see section 4.4). When the keyboard or
pointer mapping is changed, MappingNotify is always sent to clients.

The following table lists the event mask constants you can pass to the event_mask argu¬
ment and the circumstances in which you would want to specify the event mask:

Event Mask Circumstances

NoEventMask
KeyP ressMask
KeyReleaseMask
ButtonPressMask
ButtonReleaseMask
Enter WindowMask
LeaveWindowMask
PointerMotionMask
PointerMotionHintMask
Button iMotionMask
Button2MotionMask
Button 3 Motion Mask
Button4MotionMask
Button 5 Mot ion Mask
ButtonMotionMask
KeymapStateMask

ExposureMask
Visibility ChangeMask
StructureNotifyMask
ResizeRedirectMask
SubstructureNotifyMask
Substruc-
tureRedirectMask
FocusChangeMask
Property ChangeMask
ColormapChangeMask
OwnerGrabButtonMask

No events wanted
Keyboard down events wanted
Keyboard up events wanted
Pointer button down events wanted
Pointer button up events wanted
Pointer window entry events wanted
Pointer window leave events wanted
Pointer motion events wanted
Pointer motion hints wanted
Pointer motion while button 1 down
Pointer motion while button 2 down
Pointer motion while button 3 down
Pointer motion while button 4 down
Pointer motion while button 5 down
Pointer motion while any button down
Keyboard state wanted at window entry and focus
in
Any exposure wanted
Any change in visibility wanted
Any change in window structure wanted
Redirect resize of this window
Substructure notification wanted
Redirect structure requests on children

Any change in input focus wanted
Any change in property wanted
Any change in colormap wanted
Automatic grabs should activate with owner_events
set to True

8.4. Event Processing

The event reported to a client application during event processing depends on which
event masks you provide as the event-mask attribute for a window. For some event
masks, there is a one-to-one correspondence between the event mask constant and the
event type constant. For example, if you pass the event mask ButtonPressMask, the
X server sends back only ButtonPress events. Most events contain a time member,
which is the time at which an event occurred.

In other cases, one event mask constant can map to several event type constants. For
example, if you pass the event mask SubstructureNotifyMask , the X server can send
back CirculateNotify , ConfigureNotify , CreateNotify , DestroyNotify , Gravi-
tyNotify, MapNotify, ReparentNotify, or UnmapNotify events.

In another case, two event masks can map to one event type. For example, if you pass
either PointerMotionMask or ButtonMotionMask, the X server sends back a

Xlib — C Library Xll, Release 3

MotionNotify event.

The following table lists the event mask, its associated event type or types, and the
structure name associated with the event type. Some of these structures actually are
typedefs to a generic structure that is shared between two event types. Note that N.A.
appears in columns for which the information is not applicable.

Event Mask Event Type Structure Generic Structure

ButtonMotionMask
Button lMotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
Button5MotionMask

MotionNotify XPomterMovedEvent XMotionEvent

ButtonPressMask ButtonPress XButtonPressedEvent XButtonEvent

ButtonReleaseMask ButtonRelease XButtonReleasedEvent XButtonEvent

ColormapChangeMask ColormapNotify XColormapEvent

EnterWindowMask EnterNotify XEnterWmdow Event XCrossingEvent

LeaveWindowMask LeaveNotify XLeaveWindowEvent XCrossingEvent

ExposureMask Expose XExposeEvent
GCGraphicsExposures in GC Graph lcsExpose XGraphicsExposeEvent

NoExpose XNoExposeEvent

F ocusChangeMask Focusln XFocusInEvent XF ocusChangeEvent
FocusOut XFocusOutEvent XF ocusChangeEvent

KeymapStateMask KeymapNotify XKeymapEvent

KeyPressMask KeyPress XKeyPressedEvent XKeyEvent
KeyReleaseMask KeyRelease XKeyReleasedEvent XKeyEvent

OwnerGrabButtonMask N.A. N.A.

PointerMotionMask MotionNotify XPointerMovedEvent XMotionEvent
PointerMotionHintMask N.A. N.A

PropertyChangeMask PropertyNotify XProperty Event

ResizeRedirectMask ResizeRequest XResizeRequestEvent

StructureNotifyMask CirculateNotify XCirculateEvent
ConfigureNotify XConfigureEvent
DestroyNotify XDestroyWindowEvent
GravityNotify XGravityEvent
MapNotify XMapEvent
ReparentNotify XReparentEvent
UnmapNotify XUnmapEvent

SubstructureNotifyMask CirculateNotify XCirculateEvent
ConfigureNotify XConfigureEvent
CreateNotify XCreateWindowEvent
DestroyNotify XDestroyWindowEvent
GravityNotify XGravityEvent
MapNotify XMapEvent
ReparentNotify XReparentEvent

148

Xlib - C Library Xll, Release 3

Event Mask Event Type Structure Generic Structure

UnmapNotify XUnmapEvent

SubstructureRedirectMask CirculateRequest XCirculateRequestEvent

ConfigureRequest XConfigureRequestEvent

MapRequest XMapRequestEvent

N.A. ClientMessage XClientMessageEvent

N.A. MappmgNotify XMappingEvent

NA. SelectionClear XSelectionClearEvent

N.A. SelectionNotify XSelectionEvent

N.A SelectionRequest XSelectionRequestEvent

VisibilityChangeMask Visibili tyNotify XVisibilityEvent

The sections that follow describe the processing that occurs when you select the different
event masks. The sections are organized according to these processing categories:

• Keyboard and pointer events

® Window crossing events

• Input focus events

• Keymap state notification events

® Exposure events

• Window state notification events

• Structure control events

® Colormap state notification events

• Client communication events

8.4.1. Keyboard and Pointer Events

This section discusses:

• Pointer button events

• Keyboard and pointer events

8.4.1.1. Pointer Button Events

The following describes the event processing that occurs when a pointer button press is
processed with the pointer in some window w and when no active pointer grab is in pro¬
gress.

The X server searches the ancestors of w from the root down, looking for a passive grab
to activate. If no matching passive grab on the button exists, the X server automatically
starts an active grab for the client receiving the event and sets the last-pointer-grab time
to the current server time. The effect is essentially equivalent to an XGrabButton
with these client passed arguments:

Argument Value

w The event window

149

Xlib - C Library Xll, Release 3

i

Argument Value
11

event_mask The client’s selected pointer events on the event
window

pointer_mode GrabModeAsync I
keyboard_mode GrabModeAsync fl
owner_events True, if the client has selected OwnerGrabBut-

tonMask on the event window, otherwise False
confinejto None
cursor None

The active grab is automatically terminated when the logical state of the pointer has all
buttons released. Clients can modify the active grab by calling XUngrabPointer and
XChangeActivePointerGrab.

i;>]

8.4.1.2. Keyboard and Pointer Events

This section discusses the processing that occurs for the keyboard events KeyPress and
KeyRelease and the pointer events ButtonPress, ButtonRelease, and MotionNo-
tify. For information about the keyboard event-handling utilities, see chapter 10.

The X server reports KeyPress or KeyRelease events to clients wanting information
about keys that logically change state. Note that these events are generated for all keys,
even those mapped to modifier bits. The X server reports ButtonPress or Button-
Release events to clients wanting information about buttons that logically change state.

The X server reports MotionNotify events to clients wanting information about when
the pointer logically moves. The X server generates this event whenever the pointer is
moved and the pointer motion begins and ends in the window. The granularity of
MotionNotify events is not guaranteed, but a client that selects this event type is
guaranteed to receive at least one event when the pointer moves and then rests.

The generation of the logical changes lags the physical changes if device event processing
is frozen.

To receive KeyPress, KeyRelease, ButtonPress, and ButtonRelease events, set
KeyPressMask , KeyReleaseMask , ButtonPressMask , and Button-
ReleaseMask bits in the event-mask attribute of the window.

To receive MotionNotify events, set one or more of the following event masks bits in
the event-mask attribute of the window.

• ButtonlMotionMask-ButtonSMotionMask

The client application receives MotionNotify events only when one or more of
the specified buttons is pressed.

• ButtonMotionMask

The client application receives MotionNotify events only when at least one but¬
ton is pressed.

• PointerMotionMask

The client application receives MotionNotify events independent of the state of
the pointer buttons.

• PointerMotionHint

If PointerMotionHintMask is selected, the X server is free to send only one
MotionNotify event (with the is_hint member of the XPointerMovedEvent
structure set to NotifyHint) to the client for the event window, until either the
key or button state changes, the pointer leaves the event window, or the client

150

Xlib - C Library Xll, Release 3

calls XQueryPointer or XGetMotionEvents. The server still may send
MotionNotify events without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is in. The window used
by the X server to report these events depends on the window’s position in the window
hierarchy and whether any intervening window prohibits the generation of these events.
Starting with the source window, the X server searches up the window hierarchy until it
locates the first window specified by a client as having an interest in these events. If one
of the intervening windows has its do-not-propagate-mask set to prohibit generation of
the event type, the events of those types will be suppressed. Clients can modify the
actual window used for reporting by performing active grabs and, in the case of key¬
board events, by using the focus window.

The structures for these event types contain:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display *display; /*
Window window; /*
Window root; /*
Window subwindow; /*
Time time; /*
int x, y; /*
int x_root, y_root; /*
unsigned int state; /*
unsigned int button; /*
Bool samejscreen; /*

} XButtonEvent;
typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display *display; /*
Window window; /*
Window root; /*
Window subwindow; /*
Time time; /*
int x, y; /*
int x_root, y_root; /*
unsigned int state; /*
unsigned int keycode; /*
Bool samejscreen; /*

} XKeyEvent;
typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

typedef struct {
int type; /*
unsigned long serial; /*
Bool sendjevent; /*
Display *display; /*
Window window; /*

ButtonPress or ButtonRelease */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */
“event” window it is reported relative to */
root window that the event occurred on */
child window */
milliseconds */
pointer x, y coordinates in event window */
coordinates relative to root */
key or button mask */
detail */
same screen flag */

KeyPress or Key Release */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */
“event” window it is reported relative to */
root window that the event occurred on */
child window */
milliseconds */
pointer x, y coordinates in event window */
coordinates relative to root */
key or button mask */
detail */
same screen flag */

MotionNotify */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */
“event” window reported relative to */

151

Xlib - C Library Xll, Reiease 3

Window root; /*
Window subwindow; /*
Time time; /*
int x, y; /*
int x_root, y_root; /*
unsigned int state; /*
char is_hint; /*
Bool same_screen; /*

} XMotionEvent;
typedef XMotionEvent XPointerMovedEvent;

root window that the event occurred on */
child window */
milliseconds */
pointer x, y coordinates in event window */
coordinates relative to root */
key or button mask */
detail */
same screen flag */

These structures have the following common members: window, root, subwindow, time,
x, v, x_root, y_root, state, and same_screen. The window member is set to the window
on which the event was generated and is referred to as the event window. As long as the
conditions previously discussed are met, this is the window used by the X server to
report the event. The root member is set to the source window’s root window. The
x_root and y_root members are set to the pointer’s coordinates relative to the root
window’s origin at the time of the event.

The same_screen member is set to indicate w'hether the event window is on the same
screen as the root window and can be either True or False. If True, the event and
root windows are on the same screen. If False, the event and root windows are not on
the same screen.

If the source window is an inferior of the event window, the subwindow member of the
structure is set to the child of the event window that is the source member or an ances¬
tor of it. Otherwise, the X server sets the subwindow member to None. The time
member is set to the time when the event was generated and is expressed in milliseconds.

If the event window is on the same screen as the root window, the x and y members are
set to the coordinates relative to the event window’s origin. Otherwise, these members
are set to zero.

The state member is set to indicate the logical state of the pointer buttons*and modifier
keys just prior to the event, which is the bitwise inclusive OR of one or more of the but¬
ton or modifier key masks: Button 1 Mask, Button2Mask, ButtonSMask,
Button4Mask , ButtonSMask , ShiftMask , LockMask , ControiMask ,
ModIMask, ModSMask, ModSMask, Mod4Mask , and ModSMask.

Each of these structures also has a member that indicates the detail. For the
XKeyPressedEvent and XKeyReleasedEvent structures, this member is called key-
code. It is set to a number that represents a physical key on the keyboard. The key-
code is an arbitrary representation for any key on the keyboard (see chapter 7).

For the XButtonPressedEvent and XButtonReieasedEvent structures, this
member is called button. It represents the pointer button that changed state and can be
the Button 1, Button2, RuttonS, Button4, or Buttonb value. For the XPoin¬
terMovedEvent structure, this member is called is_hint. It can be set to NotifyNor-
mal or NotifyHint.

8.4.2. Window Entry/Exit Events

This section describes the processing that occurs for the window crossing events Enter-
Notify and LeaveNotify. If a pointer motion or a window hierarchy change causes
the pointer to be in a different window than before, the X server reports EnterNotify
or LeaveNotify events to clients who have selected for these events. All EnterNo¬
tify and LeaveNotify events caused by a hierarchy change are generated after any
hierarchy event (UnmapNotify , MapNotify , ConfigureNotify , GravityNotify ,
CirculateNotify) caused by that change; however, the X protocol does not constrain
the ordering of EnterNotify and LeaveNotify events with respect to FocusOut,

152

Xlib - C Library Xll, Release 3

VisibilityNotify, and Expose events.

This contrasts with MotionNotify events, which are also generated when the pointer
moves but only when the pointer motion begins and ends in a single window. An
EnterNotify or LeaveNotify event also can be generated when some client applica¬
tion calls XGrabPointer and XUngrabPointer.

To receive EnterNotify or LeaveNotify events, set the Enter Win do wMask or
Leave Win dowMask bits of the event-mask attribute of the window.

The structure for these event types contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display ^display; /*
Window window; /*
Window root; /*
Window subwindow; /*
Time time; /*
int x, y; /*
int x_root, y_root; /*
int mode; /*
int detail;

EnterNotify or LeaveNotify */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */
“event” window reported relative to */
root window that the event occurred on */
child window */
milliseconds */
pointer x, y coordinates in event window */
coordinates relative to root */
NotifyNormal, NotifyGrab, NotifyUngrab */

* NotifyAncestor, NotifyVirtual, Notifylnferior,
* Notify Nonlinear, Notify NonlinearVirtual

7
Bool same_screen;
Bool focus;,
unsigned int state;

} XCrossingEvent;
typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;

/* same screen flag */
/* boolean focus */
/* key or button mask */

The window member is set to the window on which the EnterNotify or LeaveNotify
event was generated and is referred to as the event window. This is the window used by
the X server to report the event, and is relative to the root window on which the event
occurred. The root member is set to the root window of the screen on which the event
occurred.

For a LeaveNotify event, if a child of the event window contains the initial position of
the pointer, the subwindow component is set to that child. Otherwise, the X server sets
the subwindow member to None. For an EnterNotify event, if a child of the event
window contains the final pointer position, the subwindow component is set to that child
or None.

The time member is set to the time when the event was generated and is expressed in
milliseconds. The x and y members are set to the coordinates of the pointer position in
the event window. This position is always the pointer’s final position, not its initial
position. If the event window is on the same screen as the root window, x and y are the
pointer coordinates relative to the event window’s origin. Otherwise, x and y are set to
zero. The x_root and y_root members are set to the pointer’s coordinates relative to the
root window’s origin at the time of the event.

The same_screen member is set to indicate whether the event window is on the same
screen as the root window and can be either True or False. If True, the event and
root windows are on the same screen. If False, the event and root windows are not on

the same screen.

153

Xlib - C Library Xll, Release 3

The focus member is set to indicate whether the event window is the focus window or an
inferior of the focus window. The X server can set this member to either True or
False. If True, the event window is the focus window or an inferior of the focus win¬
dow. If False, the event window is not the focus window or an inferior of the focus
window.

The state member is set to indicate the state of the pointer buttons and modifier keys
just prior to the event. The X server can set this member to the bitwise inclusive OR of
one or more of the button or modifier key masks: ButtonlMask, Button2Mask ,
ButtonSMask, Button4Mask, Button5Ma.sk, ShiftMask, LockMask, Con-
trolMask , ModlMask, Mod2Mask , Mod3Mask , Mod4Mask , Mod5Mask .

The mode member is set to indicate whether the events are normal events, pseudo¬
motion events when a grab activates, or pseudo-motion events when a grab deactivates.
The X server can set this member to NotifyNormal, NotifyGrab, or
NotifyUngrab.

The detail member is set to indicate the notify detail and can be NotifyAncestor,
Notify Virtual, Notifylnferior , NotifyNonlinear, or NotifyNonlinear Virtual.

8.4.2,1. Normal Entry/Exit Events

EnterNotify and LeaveNotify events are generated when the pointer moves from
one window to another window. Normal events are identified by XEnterWin-
dowEvent or XLeaveWindowEveni structures whose mode member is set to
NotifyNormal.

* When the pointer moves from window A to window B and A is an inferior of B,
the X server does the following:

- It generates a LeaveNotify event on window A, with the detail member of
the XLeave Window Event structure set to NotifyAncestor.

It generates a LeaveNotify event on each window between window A and
window B, exclusive, with the detail member of each XLeaveWin-
dowEvent structure set to Notify Virtual.

- It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to Notifylnferior.

® When the pointer moves from window A to window B and B is an inferior of A,
the X server does the following:

It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEveni structure set to Notifylnferior.

It generates an EnterNotify event on each window between window A and
window B, exclusive, with the detail member of each XEnterWin¬
dowEvent structure set to NotifyVirtual.

It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyAncestor.

• When the pointer moves from window A to window B and window C is their least
common ancestor, the X server does the following:

- It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEveni structure set to NotifyNonlinear.

It generates a LeaveNotify event on each window between window A and
window' C, exclusive, with the detail member of each XLeaveWin-
dowEvent structure set to NotifyNonlinearVirtual.

- It generates an EnterNotify event on each window between window C and
window B, exclusive, with the detail member of each XEnterWin¬
dowEvent structure set to NotifyNonlinearVirtual.

154

Xlib — C Library Xll, Release 3

It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyNonlinear.

« When the pointer moves from window A to window B on different screens, the X
server does the following:

- It generates a LeaveNotify event on window A, with the detail member of
•the XLeaveWindowEvent structure set to NotifyNonlinear.

- If window A is not a root window, it generates a LeaveNotify event on
each window above window A up to and including its root, with the detail
member of each XLeaveWindowEvent structure set to NotifyNon-
linear Virtual

If window B is not a root window, it generates an EnterNotify event on
each window from window B’s root down to but not including window B,
with the detail member of each XEnterWindowEvent structure set to
NotifyNonlinear Virtual.

It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyNonlinear.

S.4.2.2. Grab and IJngrab Entry/Exit Events

Pseudo-motion mode EnterNotify and LeaveNotify events are generated when a
pointer grab activates or deactivates. Events in which the pointer grab activates are
identified by XEnterWindowEvent or XLeaveWindowEvent structures whose
mode member is set to NotifyGrab. Events in which the pointer grab deactivates are
identified by XEnterWindowEvent or XLeaveWindowEvent structures whose
mode member is set to NotifyUngrab (see XGrabPointer).

® When a pointer grab activates after any initial warp into a confine_to window and
before generating any actual ButtonPress event that activates the grab, G is the
grab_window for the grab, and P is the window the pointer is in, the X server does
the following:

- It generates EnterNotify and LeaveNotify events (see section 8.4.2.Ij
with the mode members of the XEnterWindowEvent and XLeaveWin-
dowEvent structures set to NotifyGrab. These events are generated as if
the pointer were to suddenly warp from its current position in P to some
position in G. However, the pointer does not warp, and the X server uses the
pointer position as both the initial and final positions for the events.

® When a pointer grab deactivates after generating any actual ButtonRelease
event that deactivates the grab, G is the grab_window for the grab, and P is the
window the pointer is in, the X server does the following:

- It generates EnterNotify and LeaveNotify events (see section 8.4.2.l)
with the mode members of the XEnterWindowEvent and XLeaveWin¬
dowEvent structures set to NotifyUngrab. These events are generated
as if the pointer were to suddenly warp from some position in G to its
current position in P. However, the pointer does not warp, and the X server
uses the current pointer position as both the initial and final positions for the
events.

8.4.3. Input Focus Events

This section describes the processing that occurs for the input focus events Focusln
and FocusOut, The X server can report Focusln or FocusOut events to clients
wanting information about when the input focus changes. The keyboard is always
attached to some window (typically, the root window or a top-level window), which is
called the focus window. The focus window and the position of the pointer determine

155

Xlib - C Library Xll, Release 3

the window that receives keyboard input. Clients may need to know when the input
focus changes to control highlighting of areas on the screen.

To receive Focusln or FocusOut events, set the FocusChangeMask bit in the
event-mask attribute of the window.

The structure for these event types contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display *display; /*
Window window; /*
int mode; /*
int detail;

Focusln or FocusOut */
of last request processed by server */
true if this came from a SendEvent request *J
Display the event was read from */
window of event */
NotifyNormal, NotifyGrab, NotifyUngrab */

/*
* NotifyAncestor, NotifyVirtual, Notifylnferior,

* NotifyNonlinear,NotifyNonlinearVirtual, NotifyPointer,
* NotifyPointerRoot, NotifvDetailNone

7
} XFocusChangeEvent;
typedef XFocusChangeEvent XFocusInEvent;
typedef XFocusChangeEvent XFocusOutEvent;

The window member is set to the window on which the Focusln or FocusOut event
was generated. This is the window used by the X server to report the event. The mode
member is set to indicate whether the focus events are normal focus events, focus events
while grabbed, focus events when a grab activates, or focus events when a grab deac¬
tivates. The X server can set the mode member to NotifyNormal,
NotifyWhileGrabbed , NotifyGrab , or NotifyUngrab .

All FocusOut events caused by a window unmap are generated after any UnmapNo*
tify event; however, the X protocol does not constrain the ordering of FocusOut
events with respect to generated EnterNotify, LeaveNotify, VisibilityNotify, and
Expose events.

Depending on the event mode, the detail member is set to indicate the notify detail and
can be NotifyAncestor, NotifyVirtual, Notifylnferior, NotifyNonlinear,
NotifyNonlinearVirtual, NotifyPointer, NotifyPointerRoot, or NotifyDetail-
None.

8.4.3.1. Normal Focus Events and Focus Events While Grabbed

Normal focus events are identified by XFocusInEvent or XFocusOutEvent struc¬
tures whose mode member is set to NotifyNormal. Focus events while grabbed are
identified by XFocusInEvent or XFocusOutEvent structures whose mode member
is set to Notify WhileGrabbed. The X server processes normal focus and focus events
while grabbed according to the following:

• When the focus moves from window A to window B, A is an inferior of B, and the
pointer is in window P, the X server does the following:

- It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyAncestor.

- It generates a FocusOut event on each window between window A and
window B, exclusive, with the detail member of each XFocusOutEvent
structure set to NotifyVirtual.

- It generates a Focusln event on window B, with the detail member of the
XFocusOutEvent structure set to Notifylnferior.

156

XIib — C Library Xll, Release 3

If window P is an inferior of window B but window P is not window A or an
inferior or ancestor of window A, it generates a Focusln event on each win¬
dow below window B, down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer .

• When the focus moves from window A to window B, B is an inferior of A, and the
pointer is in window P, the X server does the following:

If window P is an inferior of window A but P is not an inferior of window B
or an ancestor of B, it generates a FocusOut event on each window from
window P up to but not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to Notifylnferior.

- It generates a Focusln event on each window between window A and win¬
dow B, exclusive, with the detail member of each XFocusInEvent structure
set to Notify Virtual.

It generates a Focusln event on window B, with the detail member of the
XFocusInEvent structure set to NotifyAncestor.

• When the focus moves from window A to window B, window C is their least com¬
mon ancestor, and the pointer is in window P, the X server does the following:

If window P is an inferior of window A, it generates a FocusOut event on
each window from window P up to but not including window A, with the
detail member of the XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

It generates a FocusOut event on each window between window A and
window C, exclusive, with the detail member of each XFocusOutEvent
structure set to NotifyNonlinearVirtual.

It generates a Focusln event on each window between C and B, exclusive,
with the detail member of each XFocusInEvent structure set to
NotifyNonlinearVirtual.

It generates a Focusln event on window B, with the detail member of the
XFocusInEvent structure set to NotifyNonlinear.

If window P is an inferior of window B, it generates a Focusln event on
each window below window B down to and including window P, with the
detail member of the XFocusInEvent structure set to NotifyPointer.

• When the focus moves from window A to window B on different screens and the
pointer is in window P, the X server does the following:

If window P is an inferior of window A, it generates a FocusOut event on
each window from window P up to but not including window A, with the
detail member of each XFocusOutEvent structure set to NotifyPointer.

- It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

- If window A is not a root window, it generates a FocusOut event on each
window above window A up to and including its root, with the detail
member of each XFocusOutEvent structure set to NotifyNonlinearVir¬
tual .

- If window B is not a root window, it generates a Focusln event on each
window from window B’s root down to but not including window B. with the
detail member of each XFocusInEvent structure set to NotifyNonlinear¬
Virtual .

Xlib - C Library Xll, Release 3

- It generates a Focusln event on window B, with the detail member of each
XFocusXnEvent structure set to NotifyNonlinear.

If window P is an inferior of window B, it generates a Focusln event on
each window below window B down to and including window P, with the
detail member of each XFocusXnEvent structure set to NotifyPointer.

When the focus moves from window A to PointerRoot (events sent to the win¬
dow under the pointer) or None (discard), and the pointer is in window P, the X
server does the following:

If window P is an inferior of window A, it generates a FocusOut event on
each window from window P up to but not including window A, with the
detail member of each XFocusOutEvent structure set to NotifyPointer.

- It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

If window A is not a root window, it generates a FocusOut event on each
window above window A up to and including its root, with the detail
member of each XFocusOutEvent structure set to NotifyNonlinearVir-
tual.

- It generates a Focusln event on the root window of all screens, with the
detail member of each XFocusXnEvent structure set to NotifyPointer-
Root (or NotifyBetailNone).

If the new focus is PointerRoot, it generates a Focusln event on each
window from window P’s root down to and including window P, with the
detail member of each XFocusInEvent structure set to NotifyPointer.

• When the focus moves from PointerRoot (events sent to the window under the
pointer) or None to window A, and the pointer is in window P, the X server does
the following:

- If the old focus is PointerRoot, it generates a FocusOut event on each
window from window P up to and including window P’s root, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on ail root windows, with the detail member
of each XFocusOutEvent structure set to NotifyPointerRoot (or
NotifyBetailNone).

If window A is not a root window, it generates a Focusln event on each
window from window A’s root down to but not including window A, with the
detail member of each XFocusInEvent structure set to NotifyNonlinear-
Virtual.

It generates a Focusln event on window A, with the detail member of the
XFocusInEvent structure set to NotifyNonlinear.

If window P is an inferior of window A, it generates a Focusln event on
each window below window A down to and including window P, with the
detail member of each XFocusInEvent structure set to NotifyPointer.

• When the focus moves from PointerRoot (events sent to the window under the
pointer) to None (or vice versa), and the pointer is in window P, the X server
does the following:

If the old focus is PointerRoot, it generates a FocusOut event on each
window from window P up to and including window P’s root, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

- It generates a FocusOut event on all root windows, with the detail member
of each XFocusOutEvent structure set to either NotifyPointerRoot or
NotifyBetailNone.

158

Xlib - C Library Xll, Release 3

It generates a Focusln event on all root windows, with the detail member of
each XFocusInEvent structure set to NotifyDetailNone or
NotifyPointerRoot.

- If the new focus is PointerRoot, it generates a Focusln event on each
window from window P’s root down to and including window P, with the
detail member of each XFocusInEvent structure set to NotifyPointer.

8.4.3.2. Focus Events Generated by Grabs

Focus events in which the keyboard grab activates are identified by XFocusInEvent
or XFocusOutEvent structures whose mode member is set to NotifyGrab. Focus
events in which the keyboard grab deactivates are identified by XFocusInEvent or
XFocusOutEvent structures whose mode member is set to NotifyXJngrab (see
XGrabKey board).

• When a keyboard grab activates before generating any actual KeyPress event
that activates the grab, G is the grab_window, and F is the current focus, the X
server does the following:

It generates Focusln and FocusOut events, with the mode members of the
XFocusInEvent and XFocusOutEvent structures set to NotifyGrab.
These events are generated as if the focus were to change from F to G.

• When a keyboard grab deactivates after generating any actual KeyRelease event
that deactivates the grab, G is the grab_window, and F is the current focus, the X
server does the following:

It generates Focusln and FocusOut events, with the mode members of the
XFocusInEvent and XFocusOutEvent structures set to
NotifyXJngrab. These events are generated as if the focus were to change
from G to F.

8.4.4. Key Map State Notification Events

The X server can report KeymapNotify events to clients that want information about
changes in their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit in the event-mask
attribute of the window. The X server generates this event immediately after every
EnterNotify and Focusln event.

The structure for this event type contains:

/* generated on EnterWindow and Focusln when KeymapState selected */
typedef struct {

mt type;
unsigned long serial;
Bool send_event;
Display ^display;
Window window;
char key_vector[32|;

} XKeymapEvent;

/* KeymapNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The window member is not used but is present to aid some toolkits. The key_vector
member is set to the bit vector of the keyboard. Each bit set to 1 indicates that the
corresponding key is currently pressed. The vector is represented as 32 bytes. Byte N
(from 0) contains the bits for keys 8N to 8N + 7 with the least-significant bit in the byte
representing key 8N.

159

Xlib - C Library XI1, Release 3

8.4.5. Exposure Events

The X protocol does not guarantee to preserve the contents of window regions when the
windows are obscured or reconfigured. Some implementations may preserve the contents
of windows. Other implementations are free to destroy the contents of windows when
exposed. X expects client applications to assume the responsibility for restoring the con¬
tents of an exposed window region. (An exposed window region describes a formerly
obscured window whose region becomes visible.) Therefore, the X server sends Expose
events describing the window arid the region of the window that has been exposed. A
naive client application usually redraws the entire window. A more sophisticated client
application redraws only the exposed region.

8.4.5.1. Expose Events

The X server can report Expose events to clients wanting information about when the
contents of window regions have been lost. The circumstances in which the X server
generates Expose events are not as definite as those for other events. However, the X
server never generates Expose events on windows whose class you specified as Inpu-
tOnly. The X server can generate Expose events when no valid contents are available
for regions of a window and either the regions are visible, the regions are viewable and
the server is (perhaps newly) maintaining backing store on the window, or the window is
not viewable but the server is (perhaps newly) honoring the window’s backing-store
attribute of Always or WhenMapped. The regions decompose into an (arbitrary) set
of rectangles, and an Expose event is generated for each rectangle. For any given win¬
dow, the X server guarantees to report contiguously all of the regions exposed by some
action that causes Expose events, such as raising a window.

To receive Expose events, set the ExposureMask bit in the event-mask attribute of
the window.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial';
Bool send_event;
Display *display;
Window window;
int x, y;
int width, height;
int count;

} XExposeEvent;

The window member is set to the exposed (damaged) window. The x and y members are
set to the coordinates relative to the window’s origin and indicate the upper-left corner
of the rectangle. The width and height members are set to the size (extent) of the rec¬
tangle. The count member is set to the number of Expose events that are to follow. If
count is zero, no more Expose events follow for this window. However, if count is
nonzero, at least that number of Expose events (and possibly more) follow for this win¬
dow. Simple applications that do not want to optimize redisplay by distinguishing
between subareas of its window can just ignore all Expose events with nonzero counts

and perform full redisplays on events with zero counts.

8.4.5.2. GraphicsExpose and JVoExpose Events

The X server can report GraphicsExpose events to clients wanting information about
when a destination region could not be computed during certain mmphics requests:
XCopyArea or XCopyPlane. The X server generates this ev<-m whenever a destina¬
tion region could not be computed due to an obscured or out-ol'-l" »unds source region.

/* Expose */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* if nonzero, at least this many more */

160

Xlib - C Library Xll, Release 3

In addition, the X server guarantees to report contiguously all of the regions exposed by
some graphics request (for example, copying an area of a drawable to a destination draw-
able).

The X server generates a NoExpose event whenever a graphics request that might pro¬
duce a GraphicsExpose event does not produce any. In other words, the client is
really asking for a GraphicsExpose event but instead receives a NoExpose event.

To receive GraphicsExpose or NoExpose events, you must first set the graphics-
exposure attribute of the graphics context to True. You also can set the graphics-
expose attribute when creating a graphics context using XCreateGC or by calling
XSetGraphicsExposures.

The structures for these event types contain:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
int x, y;
int width, height;
int count;
int major_code;
int minor_code;

} XGraphicsExposeEvent;

typedef struct {
int type;
unsigned long serial:
Bool sen d_event;
Display ^display;
Drawable drawable;
int major_code;
int minor_code;

} XNoExposeEvent;

/* GraphicsExpose */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* if nonzero, at least this many more */
/* core is CopyArea or CopyPlane */
/* not defined in the core */

/* NoExpose */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* core is CopyArea or CopyPlane */
/* not defined in the core */

Both structures have these common members: drawable, major_code, and minor_code.
The drawable member is set to the drawable of the destination region on which the
graphics request was to be performed. The major_code member is set to the graphics
request initiated by the client and can be either X_CopyArea or X_CopyPlane. If it
is X_CopyArea, a call to XCopyArea initiated the request. If it is X_CopyPlane,
a call to XCopyPlane initiated the request. These constants are defined in
<Xll/Xproto.h >. The minor_code member, like the major_code member, indicates
which graphics request was initiated by the client. However, the minor_code member is
not defined by the core X protocol and will be zero in these cases, although it may be
used by an extension.

The XGraphicsExposeEvent structure has these additional members: x, y, width,
height, and count. The x and y members are set to the coordinates relative to the
drawable’s origin and indicate the upper-left corner of the rectangle. The width and
height members are set to the size (extent) of the rectangle. The count member is set to
the number of GraphicsExpose events to follow. If count is zero, no more Gra¬
phicsExpose events follow for this window. However, if count is nonzero, at least that
number of GraphicsExpose events (and possibly more) are to follow for this window.

161

Xlib - C Library XI1, Release 3

8.4.8. Window State Change Events

The following sections discuss:

« CirculateNotify events

« ConfigureNotify events

® CreateNotify tvents

» DestroyNotify events

© GravityNotify events

® MapNotify events

© MappingNotify events

• ReparentNotify events

© UnmapNotify events

® VisibilityNotify events

8.4.6,1. CirculateNotify Events

The X server can report CirculateNotify events to clients wanting information about
when a window changes its position in the stack. The X server generates this event type
whenever a window is actually restacked as a result of a client application calling XCir-
culateSubwmdows, XCirculateSubwindowsUp, or XCirculateSubwindows-
Down.

To receive CirculateNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case, circulating any child generates an event).

The structure for this event type contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display ^display; /*
Window event;
Window window;
int place; /*

} XCirculateEvent;

CirculateNotify */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */

PlaceOnTop, PiaceOnBottom */

The event member is set either to the restacked window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window that was restacked. The place member is set to the
window’s position after the restack occurs and is either PlaceOnTop or PiaceOnBot¬
tom. If it is PlaceOnTop, the window is now on top of all siblings. If it is PiaceOn¬
Bottom, the window is now below all siblings.

8.4.6.2. ConfigureNotify Events

The X server can report ConfigureNotify events to clients wanting information about
actual changes to a window’s state, such as size, position, border, and stacking order.
The X server generates this event type whenever one of the following configure window
requests made by a client application actually completes:

© A window’s size, position, border, and/or stacking order is reconfigured by calling
XConfigureWindow.

© The window’s position in the stacking order is changed by calling XZLowerWin-
dow , XRaiseWindow, or XRestack Windows.

162

Xlib - C Library Xli, Release 3

• A window is moved by calling XMoveWindow,

® A window’s size is changed by calling XResizeWindow.

® A window’s size and location is changed by calling XMoveResizeWindow .

• A window is mapped and its position in the stacking order is changed by calling
XMapRaised .

• A window’s border width is changed by calling XSetWindowBorderWidth.

To receive ConfigureNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SulbstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case, configuring any child generates an event).

The structure for this event type contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display ^display; /*
Window event;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
Bool override_redirect;

} XConfigureEvent;

ConfigureNotify */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */

The event member is set either to the reconfigured window or to its parent, depending
on whether StructureNotify or SubstructureNotlfy was selected. The window
member is set to the window whose size, position, border, and/or stacking order was
changed.

The x and y members are set to the coordinates relative to the parent window’s origin
and indicate the position of the upper-left outside corner of the window. The width and
height members are set to the inside size of the window, not including the border. The
border_width member is set to the width of the window’s border, in pixels.

The above member is set to the sibling window and is used for stacking operations. If
the X server sets this member to None, the window whose state was changed is on the
bottom of the stack with respect to sibling windows. However, if this member is set to a
sibling window, the window whose state was changed is placed on top of this sibling win¬
dow.

The override_redireet member is set to the override-redirect attribute of the window.
Window manager clients normally should ignore this window if the override_redirect
member is True.

8.4.6.3. CreateNotify Events

The X server can report CreateNotify events to clients wanting information about
creation of windows. The X server generates this event whenever a client application
creates a window by calling XCreateWindow or XCreateSimpleWindow.

To receive CreateNotify events, set the SubstructureNotifyMask bit in the event-
mask attribute of the window. Creating any children then generates an event.

The structure for the event type contains:

typedef struct {
int type; /* CreateNotify */
unsigned long serial; /* # of last request processed by server */

163

Xlib — C Library Xll, Release 3

Bool send_event; /*
Display ^display; /*
Window parent; /*
Window window; /*

int x, y; . /*
int width, height; /*
int border_width; /*
Bool override_redirect; /*

} XCreateWindowEvent;

true if this came from a SendEvent request */
Display the event was read from */
parent of the window */
window id of window created */
window location */
size of window */
border width */
creation should be overridden */

The parent member is set to the created window’s parent. The window member
specifies the created window. The x and y members are set to the created window’s
coordinates relative to the parent window’s origin and indicate the position of the
upper-left outside corner of the created window. The width and height members are set
to the inside size of the created window (not including the border) and are always
nonzero. The border_width member is set to the width of the created window’s border,
in pixels. The override_redirect member is set to the override-redirect attribute of the
window. Window manager clients normally should ignore this window if the
override redirect member is True.

8.4.6,4. Destroy Notify Events

The X server can report DestroyNotify events to clients wanting information about
which windows are destroyed. The X server generates this event whenever a client
application destroys a window by calling XDestroyWindow or XDestroySubwin-
dows.

The ordering of the DestroyNotify events is such that for any given window, Des¬
troyNotify is generated on all inferiors of the window before being generated on the
window itself. The X protocol does not constrain the ordering among siblings and across
subhierarchies.

To receive DestroyNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case, destroying any child generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window event;
Window window;

} XDestroyWindowEvent;

/* DestroyNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The event member is set either to the destroyed window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window that is destroyed.

8.4.6.5. Gravity Notify Events

The X server can report GravityNotify events to clients wanting information about
when a window is moved because of a change in the size of its parent. The X server
generates this event whenever a client application actually moves a child window as a
result of resizing its parent by calling XConfigureWindow, XMoveResizeWindow,
or XResizeWindow.

164

Xlib - C Library Xll, Release 3

To receive Gravity Notify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case,
parent has been resized generates an event).

The structure for this event type contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display ^display; /*
Window event;
Window window;
int x, y;

} XGravityEvent;

any child that is moved because its

GravityNotify */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */

The event member is set either to the window that was moved or to its parent, depend¬
ing on whether StructureNotify or SubstructureNotify was selected. The window
member is set to the child window that was moved. The x and y members are set to the
coordinates relative to the new parent window’s origin and indicate the position of the
upper-left outside corner of the window.

8.4.8.6. MapNotify Events

The X server can report MapNotify events to clients wanting information about which
windows are mapped. The X server generates this event type whenever a client applica¬
tion changes the window’s state from unmapped to mapped by calling XMapWindow ,
XMapRaised , XMapSubwindows, XReparentWindow , or as a result of save-set
processing.

To receive MapNotify events, set the StructureNotifyMask bit in the event-mask
attribute of the window or the SubstructureNotifyMask bit in the event-mask attri¬
bute of the parent window (in which case, mapping any child generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window event;
Window window;
Bool override_redirect;

} XMapEvent;

/* MapNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* boolean, is override set... */

The event member is set either to the window that was mapped or to its parent,
depending on whether StructureNotify or SubstructureNotify was selected. The
window member is set to the window that was mapped. The override_redirect member
is set to the override-redirect attribute of the window. Window manager clients nor¬
mally should ignore this window if the override-redirect attribute is True, because these
events usually are generated from pop-ups, which override structure control.

8.4.6.7. MappingNotify Events

The X server reports MappingNotify events to all clients. There is no mechanism to
express disinterest in this event. The X server generates this event type whenever a
client application successfully calls:

165

Xlib - C Library Xll, Release 3

XSetModifierMapping to indicate which KeyCodes are to be used as modifiers

XChangeKeyboardMapping to change the keyboard mapping

XSetPointerMapping to set the pointer mapping

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int request;

int first_keycode;
int count;

} XMappingEvent;

/* MappingNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* unused */
/* one of MappingModifier, MappingKeyboard,

MappingPointer */
/* first keycode */
/* defines range of change w. first_keycode*/

The request member is set to indicate the kind of mapping change that occurred and can
be MappingModifier, MappingKeyboard, MappingPointer. If it is
MappingModifier, the modifier mapping was changed. If it is MappingKeyboard,
the keyboard mapping was changed. If it is MappingPointer, the pointer button
mapping was changed. The first_keycode and count members are set only if the request
member was set to MappingKeyboard. The number in first_keycode represents the
first number in the range of the altered mapping, and count represents the number of
key codes altered.

To update the client application’s knowledge of the keyboard, you should call
XRefreshKeyboardMapping.

8.4.6.8. ReparentNotify Events

The X server can report ReparentNotify events to clients wanting information about
changing a window’s parent. The X server generates this event whenever a client appli¬
cation calls XReparentWindow and the window is actually reparented.

To receive ReparentNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of either the old or the new parent window (in which case, reparenting any
child generates an event).

The structure for this event type contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display ^display; /*
Window event;
Window window;
Window parent;
int x, y;
Bool override_redirect;

} XReparentEvent;

ReparentNotify */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */

The event member is set either to the reparented window or to the old or the new
parent, depending on whether StructureNotify or SubstructureNotify was selected.
The window member is set to the window that was reparented. The parent member is
set to the new parent window. The x and y members are set to the reparented window’s

166

Xlib - C Library Xll, Release 3

coordinates relative to the new parent window’s origin and define the upper-left outer
corner of the reparented window. The override_redirect member is set to the override'
redirect attribute of the window specified by the window member. Window manager
clients normally should ignore this window if the override_redirect member is True.

8.4.0.9. UnmapNotify Events

The X server can report UnmapNotify events to clients wanting information about
which windows are unmapped. The X server generates this event type whenever a client
application changes the window’s state from mapped to unmapped.

To receive UnmapNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case, unmapping any child window generates
an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window event;
Window window;
Bool from_configure;

} XUnmapEvent;

/* UnmapNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The event member is set either to the unmapped window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. This is the window
used by the X server to report the event. The window member is set to the window
that was unmapped. Thq from_configure member is set to True if the event was gen¬
erated as a result of a resizing of the window’s parent when the window itself had a
win_gravity of UnmapGravity.

8.4.6.10. Visibility Notify Events

The X server can report VisibilityNotify events to clients wanting any change in the
visibility of the specified window. A region of a window is visible if someone looking at
the screen can actually see it. The X server generates this event whenever the visibility
changes state. However, this event is never generated for windows whose class is Inpu-
tOnly.

All VisibilityNotify events caused by a hierarchy change are generated after any
hierarchy event (UnmapNotify, MapNotify, ConfigureNotify, GravityNotify ,
CirculateNotify) caused by that change. Any VisibilityNotify event on a given
window is generated before any Expose events on that window, but it is not required
that all VisibilityNotify events on all windows be generated before all Expose events
on all windows. The X protocol does not constrain the ordering of VisibilityNotify
events with respect to FocusOut, EnterNotify, and LeaveNotify events.

To receive VisibilityNotify events, set the VisibilityChangeMask bit in the event-

mask attribute of the window.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;

/* VisibiltyNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

167

Xlib - C Library Xll, Release 3

Window window;
int state;

} XVisibilityEvent;

The window member is set to the window whose visibility state changes. The state
member is set to the state of the window’s visibility and can be VisibilityUnobscured,
VisibilityPartiallyObscured , or VisibilityFully Obscured. The X server ignores all
of a window’s subwindows when determining the visibility state of the window and
processes VisibilityNotify events according to the following:

• When the window changes state from partially obscured, fully obscured, or not
viewable to viewable and completely unobscured, the X server generates the event
with the state member of the XVisibilityEvent structure set to VisibilityU-
nobscured.

• When the window changes state from viewable and completely unobscured or not
viewable to viewable and partially obscured, the X server generates the event with
the state member of the XVisibilityEvent structure set to VisibilityPartial¬
lyObscured .

• When the window changes state from viewable and completely unobscured, view¬
able and partially obscured, or not viewable to viewable and fully obscured, the X
server generates the event with the state member of the XTVisibilityEvent struc¬
ture set to VisibilityFully Obscured .

8.4.7. Structure Control Events

This section discusses:

® CirculateRequest events

• ConfigureRequest events

® MapRequest events

© ResizeRequest events

8.4.7.1. CirculateRequest Events

The X server can report CirculateRequest events to clients wanting information
about when another client initiates a circulate window request on a specified window.
The X server generates this event type whenever a client initiates a circulate window
request on a window and a subwindow actually needs to be restacked. The client ini¬
tiates a circulate window request on the window by calling XCirculateSubwindows,
XCirculateSubwindowsUp , or XCirculateSubwindowsDown .

To receive CirculateRequest events, set the SubstructureRedirectMask in the
event-mask attribute of the window. Then, in the future, the circulate window request
for the specified window is not executed, and thus, any subwindow’s position in the
stack is not changed. For example, suppose a client application calls XCircula¬
teSubwindowsUp to raise a subwindow to the top of the stack. If you had selected
SubstructureRedirectMask on the window, the X server reports to you a Circula¬
teRequest event and does not raise the subwindow to the top of the stack.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window parent;
Window window;

/* CirculateRequest */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

108

Xlib - C Library Xll, Release 3

int place; /* PlaceOnTop, PlaceOnBottom */
} XCirculateRequestEvent;

The parent member is set to the parent window. The window member is set to the
subwindow to be restacked. The place member is set to what the new position in the
stacking order should be and is either PlaceOnTop or PlaceOnBottom. If it is
PlaceOnTop, the subwindow should be on top of all siblings. If it is PlaceOnBot¬
tom , the subwindow should be below all siblings.

8.4.7.2. ConfigureRequest Events

The X server can report ConfigureRequest events to clients wanting information
about when a different client initiates a configure window request on any child of a
specified window. The configure window request attempts to reconfigure a window’s size,
position, border, and stacking order. The X server generates this event whenever a
different client initiates a configure window request on a window by calling
XConfigureWindow, XLowerWindow7, XRaiseWindow , XMapRaised , XMo-
veResizeWindow, XMoveWindow , XResizeWindow , XRestackWindows, or
XSetWindowBorderWidth .

To receive ConfigureRequest events, set the SubstructureRedirectMask bit in the
event-mask attribute of the window. ConfigureRequest events are generated when a
ConfigureWindow protocol request is issued on a child window by another client. For
example, suppose a client application calls XLowerWindow to lower a window. If you
had selected SubstructureRedirectMask on the parent window and if the override-
redirect attribute of the window is set to False, the X server reports a
ConfigureRequest event to you and does not lower the specified window.

The structure for this event type contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display ^display; /*
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detail; /*
unsigned long value_mask;

} XConfigureRequestEvent;

The parent member is set to the parent window. The window member is set to the win¬
dow whose size, position, border width, and/or stacking order is to be reconfigured. The
value_mask member indicates which components were specified in the
ConfigureWindow protocol request. The corresponding values are reported as given
in the request. The remaining values are filled in from the current geometry of the win¬
dow, except in the case of above (sibling) and detail (stack-mode), which are reported as
Above and None, respectively, if they are not given in the request.

8.4.7.3. MapRequest Events

The X server can report MapRequest events to clients .wanting information about a
different client’s desire to map windows. A window is considered mapped when a map
window request completes. The X server generates this event whenever a different client

ConfigureRequest */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */

Above, Below, Toplf, Bottomlf, Opposite */

169

Xlib - C Library Xll, Release 3

initiates a map window request on an unmapped window whose override__redirect
member is set to False. Clients initiate map window requests by calling XMapWin¬
dow , XMapRaised, or XMapSubwindows.

To receive MapRequest events, set the SubstructureRedirectMask bit in the
event-mask attribute of the window. This means another client’s attempts to map a
child window by calling one of the map window request functions is intercepted, and you
are sent a MapRequest instead. For example, suppose a client application calls
XMapWindow to map a window. If you (usually a window manager) had selected
SubstructureRedirectMask on the parent window and if the override-redirect attri¬
bute of the window is set to False, the X server reports a MapRequest event to you
and does not map the specified window. Thus, this event gives your window manager
client the ability to control the placement of subwindows.

The structure for this event type contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display ^display; /*
Window parent;
Window window;

} XMapRequestEvent;

MapRequest */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */

The parent member is set to the parent window. The window member is set to the win
dow to be mapped.

8.4.7.4. ResizeRequest Events

The X server can report ResizeRequest events to clients wanting information about
another client’s attempts to change the size of a window. The X server generates this
event whenever some other client attempts to change the size of the specified window by
calling XConfigureWindow , XResizeWindow, or XMoveResizeWindow .

To receive ResizeRequest events, set the ResizeRedirect bit in the event-mask attri¬
bute of the window. Any attempts to change the size by other clients are then
redirected.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int width, height;

} XResizeRequestEvent;

The window member is set to the window whose size another client attempted to
change. The width and height members are set to the inside size of the window, exclud¬

ing the border.

8.4.8. Colormap State Change Events

The X server can report ColormapNotify events to clients wanting information about
when the colormap changes and when a colormap is installed or uninstalled. The X
server generates this event type whenever a client application:

/* ResizeRequest */
/* H of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

170

Xlib - C Library Xll, Release 3

• Changes the colormap member of the XSetWindowAttributes structure by cal¬
ling XChangeWindowAttributes , XFreeColormap , or XSetWin-
dowColormap

• Installs or uninstalls the colormap by calling XInstailColormap or XUnin-
stallColormap

To receive ColormapNotify events, set the ColormapChangeMask bit in the
event-mask attribute of the window.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window window;
Colormap colormap;
Bool new;
int state;

} XColormapEvent;

The window member is set to the window whose associated colormap is changed,
installed, or uninstalled. For a colormap that is changed, installed, or uninstalled, the
colormap member is set to the colormap associated with the window. For a colormap
that is changed by a call to XFreeColormap, the colormap member is set to None.
The new member is set to indicate whether the colormap for the specified window was
changed or installed or uninstalled and can be True or False. If it is True, the color-
map was changed. If it is False, the colormap was installed or uninstalled. The state
member is always set to indicate whether the colormap is installed or uninstalled and
can be Colormaplnstalled or ColormapUninstalled.

8,4.9. Client Communication Events

This section discusses:

• ClientMessage events

• PropertyNotify events

® SelectionClear events

• SelectionNotify events

® SelectionRequest events

8.4.9.1. ClientMessage Events

The X server generates ClientMessage events only when a client calls the function
XSendEvent.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window window;

Atom message_type;
int format;
union {

char b[20];

/* ClientMessage */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* ColormapNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* colormap or None */

/* Colormaplnstalled, ColormapUninstalled */

171

Xlib - C Library Xll, Release 3

short s[10];
long 1[5];

} data;
} XClientMessageEvent;

The window member is set to the window to which the event was sent. The
message_type member is set to an atom that indicates how the data should be inter¬
preted by the receiving client. The format member is set to 8, 16, or 32 and specifies
whether the data should be viewed as a list of bytes, shorts, or longs. The data member
is a union that contains the members b, s, and 1. The b, s, and 1 members represent
data of 20 8-bit values, 10 16-bit values, and 5 32-bit values. Particular message types
might not make use of all these values. The X server places no interpretation on the
values in the message_type or data members.

8.4.9.2. PropertyNotify Events

The X server can report PropertyNotify events to clients wanting information about
property changes for a specified window.

To receive PropertyNotify events, set the PropertyChangeMask bit in the event-
mask attribute of the window.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window window;
Atom atom;
Time time;
int state;

} XPropertyEvent;

The window member is set to the window whose associated property was changed. The
atom member is set to the property’s atom and indicates which property was changed or
desired. The time member is set to the server time when the property was changed.
The state member is set to indicate whether the property was changed to a new' value or
deleted and can be PropertyNewValue or PropertyDelete. The state member is
set to PropertyNewValue when a property of the window is changed using
XChangeProperty or XRotateWindowProperties (even when adding zero-length
data using XChangeProperty) and when replacing all or part of a property with
identical data using XChangeProperty or XRotateWindowProperties. The state
member is set to PropertyDeleted when a property of the window is deleted using
XDeleteProperty or, if the delete argument is True, XGetWindowProperty.

8.4.9.3. SelectionClear Events

The X server reports SelectionClear events to the current owner of a selection. The X
server generates this event type on the window losing ownership of the selection to a
new owner. This sequence of events could occur whenever a client calls XSetSelec-

tionOwner.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial;
Bool send_event;

/* SelectionClear */
/* # of last request processed by server */
/* true if this came from a SendEvent request */

/* PropertyNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* PropertyNewValue or PropertyDeleted */

172

Xlib - C Library Xll, Release 3

Display *display; /* Display the event was read from */
Window window;
Atom selection;
Time time;

} XSelectionClearEvent;

The window member is set to the window losing ownership of the selection. The selec¬
tion member is set to the selection atom. The time member is set to the last change
time recorded for the selection. The owner member is the window that was specified by
the current ’owner in its XSetSelectionOwner call.

8.4.9 .4. SelectionRequest Events

The X server reports SelectionRequest events to the owner of a selection. The X
server generates this event whenever a client requests a selection conversion by calling
XConvertSelection and the specified selection is owned by a window.

The structure for this event type contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display *display; /*
Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

} XSelectionRequestEvent;

SelectionRequest */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */

The owner member is set to the window owning the selection and is the window that
was specified by the current owner in its XSetSelectionOwner call.' The requestor
member is set to the window requesting the selection. The selection member is set to
the atom that names the selection. For example, PRIMARY is used to indicate the pri¬
mary selection. The target member is set to the atom that indicates the type the selec¬
tion is desired in. The property member can be a property name or None. The time
member is set to the time and is a timestamp or CurrentTime from the Convert-
Selection request.

The client who owns the selection should do the following:

• The owner client should convert the selection based on the atom contained in the
target member.

• If a property was specified (that is, the property member is set), the owner client
should store the result as that property on the requestor window and then send a
SelectionNotify event to the requestor by calling XSendEvent with an empty
event-mask; that is, the event should be sent to the creator of the requestor win¬
dow.

• If None is specified as the property, the owner client should choose a property
name on the requestor window and then send a SelectionNotify event giving the
actual name.

• If the selection cannot be converted as requested, the owner client should send a
SelectionNotify event with the property set to None.

173

Xlib - C Library Xll, Release 3

8.4.9.5. SelectionNotify Events

This event is generated by the X server in response to a ConvertSelection protocol
request when there is no owner for the selection. When there is fin owner, it should be
generated by the owner of the selection by using XSendEvent. The owner of a selec¬
tion should send this event to a requestor when a selection has been converted and
stored as a property or when a selection conversion could not be performed (which is
indicated by setting the property member to None).

If None is specified as the property in the ConvertSelection protocol request, the
owner should choose a property name, store the result as that property on the requestor
window, and then send a SelectionNotify giving that actual property name.

The structure for this event type contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display *display; /*
Window requestor;
Atom selection;
Atom target;
Atom property; /*
Time time;

} XSelectionEvent;

The requestor member is set to the window associated with the requestor of the selec¬
tion. The selection member is set to the atom that indicates the selection. For example,
PRIMARY is used for the primary selection. The target member is set to the atom that
indicates the converted type. For example, PIXMAP is used for a pixmap. The pro¬
perty member is set to the atom that indicates which property the result was stored on.
If the conversion failed, the property member is set to None. The time member is set
to* the time the conversion took place and can be a timestamp or CurrentTime.

8.5. Selecting Events

There are two ways to select the events you want reported to your client application.
One way is to set the event_mask member of the XSetWindowAttributes structure
when you call XCreateWindow and XChangeWindowAttributes. Another way is
to use XSelectlnput.

XSelectlnput(display, tv, event_mask)
Display * display,
Window w,
long event_mask;

display Specifies the connection to the X server.

tv Specifies the window whose events you are interested in.

event_mask Specifies the event mask.

The XSelectlnput function requests that the X server report the events associated
with the specified event mask. Initially, X will not report any of these events. Events
are reported relative to a window. If a window is not interested in a device event, it
usually propagates to the closest ancestor that is interested, unless the do_not_propagate
mask prohibits it.

Setting the event-mask attribute of a window overrides any previous call for the same
window but not for other clients. Multiple clients can select for the same events on the
same window with the following restrictions:

SelectionNotify */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */

atom or None */

174

Xlib - C Library Xll, Release 3

• Multiple clients can select events on the same window because their event masks
are disjoint. When the X server generates an event, it reports it to all interested
clients.

• Only one client at a time can select CirculateRequest, ConfigureRequest, or
MapRequest events, which are associated with the event mask Substruc-
tureRedirectMask.

• Only one client at a time can select a ResizeRequest event, which is associated
with the event mask ResizeRedirectMask.

• Only one client at a time can select a ButtonPress event, which is associated
with the event mask ButtonPressMask.

The server reports the event to all interested clients.

XSelectlnput can generate a BadWindow error.

8.6. Handling the Output Buffer

The output buffer is an area used by Xlib to store requests. The functions described in
this section flush the output buffer if the function would block or not return an event.
That is, all requests residing in the output buffer that have not yet been sent are
transmitted to the X server. These functions differ in the additional tasks they might
perform.

To flush the output buffer, use XFlush.

XFlush (display)
Display * display,

display Specifies the connection to the X server.

The XFlush function flushes the output buffer. Most client applications need not use
this function because the output buffer is automatically flushed as needed by calls to
XPending, XNextEvent, and XWindowEvent. Events generated by the server
may be enqueued into the library’s event queue.

To flush the output buffer and then wait until all requests have been processed, use
XSync.

XSync(display, discard)
Display * display,
Bool discard;

display Specifies the connection to the X server.

discard Specifies a Boolean value that indicates whether XSync discards all
events on the event queue.

The XSync function flushes the output buffer and then waits until all requests have
been received and processed by the X server. Any errors generated must be handled by
the error handler. For each error event received by Xlib, XSync calls the client
application’s error handling routine (see section 8.12.2). Any events generated by the
server are enqueued into the library’s event queue.

Finally, if you passed False, XSync does not discard the events in the queue. If you
passed True, XSync discards all events in the queue, including those events that were
on the queue before XSync was called. Client applications seldom need to call XSync.

175

Xlib - C Library Xll, Release 3

8.7. Event Queue Management

Xlib maintains an event queue. However, the operating system also may be buffering
data in its network connection that is not yet read into the event queue.

To check the number of events in the event queue, use XEventsQueued .

int XEventsQueued (display, mode)
Display * display,
int mode;

display Specifies the connection to the X server.

mode Specifies the mode. You can pass QueuedAlready, QueuedAfter-
Flush , or QueuedAfterRead mg .

If mode is QueuedAlready, XEventsQueued returns the number of events already
in the event queue (and never performs a system call). If mode is QueuedAfterFlush,
XEventsQueued returns the number of events already in the queue if the number is
nonzero. If there are no events in the queue, XEventsQueued flushes the output
buffer, attempts to read more events out of the application’s connection, and returns the
number read. If mode is QueuedAfterReading, XEventsQueued returns the
number of events already in the queue if the number is nonzero. If there are no events in
the queue, XEventsQueued attempts to read more events out of the application’s con¬
nection without flushing the output buffer and returns the number read.

XEventsQueued always returns immediately without I/O if there are events already
in the queue. XEventsQueued with mode QueuedAfterFlush is identical in
behavior to XT'ending. XIEventsQueued with mode QueuedAlready is identical
to the XQLength function.

To return the number of events that are pending, use XPending.

int XPending(display)
Display * display,

display Specifies the connection to the X server.

The XPending function returns the number of events that have been received from the
X server but have not been removed from the event queue. XPending is identical to
XEventsQueued with the mode QueuedAfterFlush specified.

8.8. Manipulating the Event Queue

Xlib provides functions that let you manipulate the event queue. The next three sec¬
tions discuss how to:

• Obtain events, in order, and remove them from the queue

® Peek at events in the queue without removing them

• Obtain events that match the event mask or the arbitrary predicate procedures
that you provide

8.8.1. Returning the Next Event

To get the next event and remove it from the queue, use XNextEvent.

XNextEvent(display, eventjreturn)
Display * display,
XEvent *event_return\

display Specifies the connection to the X server.

176

Xlib - C Library Xll, Release 3

event_return Returns the next event in the queue.

The XNextEvent function copies the first event from the event queue into the
specified XEvent structure and then removes it from the queue. If the event queue is
empty, XNextEvent flushes the output buffer and blocks until an event is received.

To peek at the event queue, use XPeekEvent.

XPeekEvent(display, eventjreturn)
Display * display ;
XEvent * eventjreturn;

display Specifies the connection to the X server.

eventjreturn Returns a copy of the matched event’s associated structure.

The XPeekEvent function returns the first event from the event queue, but it does not
remove the event from the queue. If the queue is empty, XPeekEvent flushes the out¬
put buffer and blocks until an event is received. It then copies the event into the client-
supplied XEvent structure without removing it from the event queue.

8.8.2. Selecting Events Using a Predicate Procedure

Each of the functions discussed in this section requires you to pass a predicate procedure
that determines if an event matches what you want. Your predicate procedure must
decide only if the event is useful and must not call Xlib functions. In particular, a predi¬
cate is called from inside the event routine, which must lock data structures so that the
event queue is consistent in a multi-threaded environment.

The predicate procedure and its associated arguments are:

Bool (*pre die ate) (display, event, arg)
Display * display ;
XEvent * event;
char *arg;

display Specifies the connection to the X server.

event Specifies a pointer to the XEvent structure.

arg Specifies the argument passed in from the XlfEvent, XChecklfEvent,
or XPeeklfEvent function.

The predicate procedure is called once for each event in the queue until it finds a match.
After finding a match, the predicate procedure must return True. If it did not find a
match, it must return False.

To check the event queue for a matching event and, if found, remove the event from the
queue, use XlfEvent.

XlfEvent(display, eventjreturn, predicate, arg)
Display * display ;
XEvent * eventjreturn;
Bool (* predicate) ();
char *arg;

display Specifies the connection to the X server.

eventjreturn Returns the matched event’s associated structure.

predicate Specifies the procedure that is to be called to determine if the next event
in the queue matches what you want.

arg Specifies the user-supplied argument that will be passed to the predicate

procedure.

177

XI ib - C Library Xll, Release 3

The XlfEvent function completes only when the specified predicate procedure returns
True for an event, which indicates an event in the queue matches. XlfEvent flushes
the output buffer if it blocks waiting for additional events. XlfEvent removes the
matching event from the queue and copies the structure into the client-supplied
XEvent structure.

To check the event queue for a matching event without blocking, use XChecklfEvent.

Bool XChecklfEvent (display, eventjreturn, predicate, arg)
Display * display,
XEvent * eventjreturn;
Bool (* predicate) ();
char *arg;

display

eventjreturn

predicate

arg

Specifies the connection to the X server.

Returns a copy of the matched event’s associated structure.

Specifies the procedure that is to be called to determine if the next event
in the queue matches what you want.

Specifies the user-supplied argument that will be passed to the predicate
procedure.

When the predicate procedure finds a match, XChecklfEvent copies the matched
event into the client-supplied XEvent structure and returns True. (This event is
removed from the queue.) If the predicate procedure finds no match, XChecklfEvent
returns False, and the output buffer will have been flushed. All earlier events stored in
the queue are not discarded.

To check the event queue for a matching event without removing the event from the
queue, use XPeeklfEvent.

XPeekIfEvent(display, eventjreturn, predicate, arg)
Display * display;
XEvent * eventjreturn;
Bool (* predicate) ();
char *arg;

display

eventjreturn

predicate

arg

Specifies the connection to the X server.

Returns a copy of the matched event’s associated structure.

Specifies the procedure that is to be called to determine if the next event
in the queue matches what you want.

Specifies the user-supplied argument that will be passed to the predicate
procedure.

The XPeeklfEvent function returns only when the specified predicate procedure
returns True for an event. After the predicate procedure finds a match, XPeekl¬
fEvent copies the matched event into the client-supplied XEvent structure without
removing the event from the queue. XPeeklfEvent flushes the output buffer if it
blocks waiting for additional events.

8.8.3. Selecting Events Using a Window or Event Mask

The functions discussed in this section let you select events by window or event types,
allowing you to process events out of order.

To remove the next event that matches both a window and an event mask, use XTWin-

dowEvent.

I

178 i

Xlib - C Library Xll, Release 3

XWindowEvent[display, w, event_mask, event_return)
Display * display,
Window w;
long event_mask;
XEvent * eventjreturn;

display Specifies the connection to the X server.

w Specifies the window whose events you are interested in.

event_mask Specifies the event mask.

eventjreturn Returns the matched event’s associated structure.

The XWindowEvent function searches the event queue for an event that matches
both the specified window and event mask. When it finds a match, XWindowEvent
removes that event from the queue and copies it into the specified XEvent structure.
The other events stored in the queue are not discarded. If a matching event is not in
the queue, XWindowEvent flushes the output buffer and blocks until one is received.

To remove the next event that matches both a window and an event mask (if any), use
XCheckWindowEvent. This function is similar to XWindowEvent except that it
never blocks and it returns a Bool indicating if the event was returned.

Bool XCheckWindowEvent (display, w, event_mask, event_return)
Display * display,
Window w,
long event_mask;
XEvent * eventjreturn]

display Specifies the connection to the X server.

w Specifies the window whose events you are interested in.

eventjnask Specifies the event mask.

event_return Returns the matched event’s associated structure.

The XCheckWindowEvent function searches the event queue and then the events
available on the server connection for the first event that matches the specified window
and event mask. If it finds a match, XCheckWindowEvent removes that event,
copies it into the specified XEvent structure, and returns True. The other events
stored in the queue are not discarded. If the event you requested is not available,
XCheckWindowEvent returns False, and the output buffer will have been flushed.

To remove the next event that matches an event mask, use XMaskEvent.

XMaskEvent(display, event_mask, eventjreturn)
Display * display,
long eventjmask]
XEvent * eventjreturn',

display Specifies the connection to the X server.

eventjmask Specifies the event mask.

eventjreturn Returns the matched event’s associated structure.

The XMaskEvent function searches the event queue for the events associated with the
specified mask. When it finds a match, XMaskEvent removes that event and copies it
into the specified XEvent structure. The other events stored in the queue are not dis¬
carded. If the event you requested is not in the queue, XMaskEvent flushes the out¬
put buffer and blocks until one is received.

179

Xlib — C Library Xll, Release 3

To return and remove the next event that matches an event mask (if any), use
XCheckMaskEvent. This function is similar to XMaskEvent except that it never
blocks and it returns a Bool indicating if the event was returned.

Bool XCheckMaskEvent (display, event_mask, event_return)
Display * display]
long event_mask;
XEvent * event_return\

display Specifies the connection to the X server.

event_mask Specifies the event mask.

event_return Returns the matched event’s associated structure.

The XCheckMaskEvent function searches the event queue and then any events avail¬
able on the server connection for the first event that matches the specified mask. If it
finds a match, XCheckMaskEvent removes that event, copies it into the specified
XEvent structure, and returns True. The other events stored in the queue are not
discarded. If the event you requested is not available, XCheckMaskEvent returns
False, and the output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type, use
XCheckTypedEvent.

Bool XCheckTypedEvent (display, eventjtype, event_return)
Display * display,
int eventjtype-,
XEvent *event_return;

display Specifies the connection to the X server.

eventjype Specifies the event type to be compared.

event_return Returns the matched event’s associated structure.

The XCheckTypedEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified type. If
it finds a match, XCheckTypedEvent removes that event, copies it into the specified
XEvent structure, and returns True. The other events in the queue are not dis¬
carded. If the event is not available, XCheckTypedEvent returns False, and the
output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type and a
window, use XCheckTypedWindowEvent.

Bool XCheckTypedWindowEvent(display, tv, eventjype, event_return)
Display * display,
Window w,
int eventjype-,
XEvent * eventjreturn-,

display Specifies the connection to the X server.

w Specifies the window.

eventjype Specifies the event type to be compared.

event_return Returns the matched event’s associated structure.

The XCheckTypedWindowEvent function searches the event queue and then any
events available on the server connection for the first event that matches the specified

180

Xlib - C Library Xll, Release 3

type and window. If it finds a match, XCheckTypedWindowEvent removes the
event from the queue, copies it into the specified XEvent structure, and returns True.
The other events in the queue are not discarded. If the event is not available, XCheck¬
TypedWindowEvent returns False, and the output buffer will have been flushed.

8.9. Putting an Event Back into the Queue

To push an event back into the event queue, use XPutBackEvent.

XPutBackEvent[display, event)
Display * display,
XEvent *event\

display Specifies the connection to the X server.

event Specifies a pointer to the event.

The XPutBackEvent function pushes an event back onto the head of the display’s
event queue by copying the event into the queue. This can be useful if you read an
event and then decide that you would rather deal with it later. There is no limit to the
number of times in succession that you can call XPutBackEvent.

8.10. Sending Events to Other Applications

To send an event to a specified window, use XSendEvent. This function is often used
in selection processing. For example, the owner of a selection should use XSendEvent
to send a SelectionNotify event to a requestor when a selection has been converted
and stored as a property.

Status XSendEvent(display, w, propagate, eventjmask, event_send)
Display * display,
Window w,
Bool propagate;
long event_mask;
XEvent *event_send;

display

w

propagate

event_mask

event send

Specifies the connection to the X server.

Specifies the window the event is to be sent to, PointerWindow, or
InputFocus.

Specifies a Boolean value.

Specifies the event mask.

Specifies a pointer to the event that is to be sent.

The XSendEvent function identifies the destination window, determines which clients
should receive the specified events, and ignores any active grabs. This function requires
you to pass an event mask. For a discussion of the valid event mask names, see section
8.3. This function uses the w argument to identify the destination window as follows:

• If w is PointerWindow, the destination window is the window that contains the
pointer.

• If w is InputFocus and if the focus window contains the pointer, the destination
window is the window that contains the pointer; otherwise, the destination window
is the focus window.

To determine which clients should receive the specified events, XSendEvent uses the
propagate argument as follows:

• If event_mask is the empty set, the event is sent to the client that created the des¬
tination window. If that client no longer exists, no event is sent.

• If propagate is False, the event is sent to every client selecting on destination any
of the event types in the event_mask argument.

181

Xlib - C Library Xll, Release 3

If propagate is True and no clients have selected on destination any of the event
types in event-mask, the destination is replaced with the closest ancestor of desti¬
nation for which some client has selected a type in event-mask and for which no
intervening window has that type in its do-not-propagate-mask. If no such window
exists or if the window is an ancestor of the focus window and InputFocus was
originally specified as the destination, the event is not sent to any clients. Other¬
wise, the event is reported to every client selecting on the final destination any of
the types specified in event_mask.

The event in the XEvent structure must be one of the core events or one of the events
defined by an extension (or a BadValue error results) so that the X server can correctly
byte-swap the contents as necessary. The contents of the event are otherwise unaltered
and unchecked by the X server except to force send_event to True in the forwarded
event and to set the serial number in the event correctly.

XSendEvent returns zero if the conversion to wire protocol format failed and returns
nonzero otherwise.

XSendEvent can generate BadValue and BadWindow errors.

8.11. Getting Pointer Motion History

Some X server implementations will maintain a more complete history of pointer motion
than is reported by event notification. The pointer position at each pointer hardware
interrupt may be stored in a buffer for later retrieval. This buffer is called the motion
history buffer. For example, a few applications, such as paint programs, want to have a
precise history of where the pointer traveled. However, this historical information is
highly excessive for most applications.

To determine the size of the motion buffer, use XDisplayMotionBufferSize.

unsigned long XDisplayMotionBufferSize(display)
Display * display,

display Specifies the connection to the X server.

The server may retain the recent history of the pointer motion and do so to a finer
granularity than is reported by MotionNotify events. The XGetMotionEvents
function makes this history available.

To get the motion history for a specified window and time, use XGetMotionEvents.

XTimeCoord *XGetMotionEvents(display, w, start, stop, nevents_return)
Display * display,
Window w;
Time start, stop;
int *nevents_return\

display Specifies the connection to the X server.

w Specifies the window.

start
stop Specify the time interval in which the events are returned from the

motion history buffer. You can pass a timestamp or CurrentTime.

neuenfs_re<urnReturns the number of events from the motion history buffer.

The XGetMotionEvents function returns all events in the motion history buffer that
fall between the specified start and stop times, inclusive, and that have coordinates that
lie within the specified window (including its borders) at its present placement. If the
start time is later than the stop time or if the start time is in the future, no events are
returned. If the stop time is in the future, it is equivalent to specifying CurrentTime.

182

Xlib - C Library XI1, Release 3

The return type for this function is a structure defined as follows:

typedef struct {
Time time;
short x, y;

} XTimeCoord;

The time member is set to the time, in milliseconds. The x and y members are set to the
coordinates of the pointer and are reported relative to the origin of the specified window.
To free the data returned from this call, use XFree.

XGetMotionEvents can generate a BadWindow error.

8.12. Handling Error Events

Xlib provides functions that you can use to enable or disable synchronization and to use
the default error handlers.

8.12.1. Enabling or Disabling Synchronization

When debugging X applications, it often is very convenient to require Xlib to behave
synchronously so that errors are reported as they occur. The following function lets you
disable or enable synchronous behavior. Note that graphics may occur 30 or more times
more slowly when synchronization is enabled. On UNIX-based systems, there is also a
global variable _Xdebug that, if set to nonzero before starting a program under a
debugger, will force synchronous library behavior.

After completing their work, all Xlib functions that generate protocol requests call what
is knowm as an after function. XSetAfterFunction sets which function is to be called.

int (^XSetAfterFunction (display, procedure))()
Display * display,
int (*procedure)(y,

display Specifies the connection to the X server.

procedure Specifies the function to be called after an Xlib function that generates a
protocol request completes its work.

The specified procedure is called with only a display pointer. XSetAfterFunction
returns the previous after function.

To enable or disable synchronization, use XSynchronize.

int (*XSynchronize(display, onoff))()
Display * display,
Bool onoff;

display Specifies the connection to the X server.

onoff Specifies a Boolean value that indicates whether to enable or disable syn¬
chronization.

The XSynchronize function returns the previous after function. If onoff is True,
XSynchronize turns on synchronous behavior. If onoff is False, XSynchronize
turns off synchronous behavior.

8.12.2. Using the Default Error Handlers

There are two default error handlers in Xlib: one to handle typically fatal conditions (for
example, the connection to a display server dying because a machine crashed) and one to
handle error events from the X server. These error handlers can be changed to user-
supplied routines if you prefer your own error handling and can be changed as often as
you like. If either function is passed a NULL pointer, it will reinvoke the default
handler. The action of the default handlers is to print an explanatory message and exit.

183

Xlib — C Library Xll, Release 3

To set the error handler, use XSetErrorHandler.

XSetErrorHandler (handler)
int (* handler)(Display *, XErrorEvent *)

handler Specifies the program’s supplied error handler.

Xlib generally calls the program’s supplied error handler whenever an error is received.
It is not called on BadName errors from OpenFont, LookupCoIor, or Alloc-
NamedColor protocol requests or on BadFont errors from a QueryFont protocol
request. These errors generally are reflected back to the program through the procedural
interface. Because this condition is not assumed to be fatal, it is acceptable for your
error handler to return. However, the error handler should not call any functions
(directly or indirectly) on the display that will generate protocol requests or that will
look for input events.

The XErrorEvent structure contains:

typedef struct {
int type;
Display ^display;
unsigned long serial;
unsigned char error_code;
unsigned char request_code;
unsigned char minor_code;
XID resourceid;

} XErrorEvent;

The serial member is the number of requests, starting from one, sent over the network
connection since it was opened. It is the number that was the value of NextRequest
immediately before the failing call was made. The request_code member is a protocol
request of the procedure that failed, as defined in < Xll/Xproto'.h >. The following
error codes can be returned by the functions described in this chapter:

/* Display the event was read from */
/* serial number of failed request */
/* error code of failed request */
/* Major op-code of failed request */
/* Minor op-code of failed request */
/* resource id */

Error Code Description

BadAccess A client attempts to grab a key/button combination
already grabbed by another client.

A client attempts to free a colormap entry that it had not
already allocated.

A client attempts to store into a read-only or unallocated
colormap entry.

A client attempts to modify the access control list from
other than the local (or otherwise authorized) host.

A client attempts to select an event type that another
client has already selected.

184

Xlib — C Library Xll, Release 3

Error Code Description

BadAlloc The server fails to allocate the requested resource. Note
that the explicit listing of BadAlloc errors in requests
only covers allocation errors at a very coarse level and is
not intended to (nor can it in practice hope to) cover all
cases of a server running out of allocation space in the
middle of service. The semantics when a server runs out of
allocation space are left unspecified, but a server may gen¬
erate a BadAlloc error on any request for this reason,
and clients should be prepared to receive such errors and
handle or discard them.

Bad Atom A value for an atom argument does not name a defined
atom.

BadColor A value for a colormap argument does not name a defined
colormap.

BadCursor A value for a cursor argument does not name a defined
cursor.

BadDrawable A value for a drawable argument does not name a defined
window or pixmap.

BadFont A value for a font argument does not name a defined font
(or, in some cases, GContext).

BadGC A value for a GContext argument does not name a
defined GContext.

BadIDChoice The value chosen for a resource identifier either is not
included in the range assigned to the client or is already in
use. Under normal circumstances, this cannot occur and
should be considered a server or Xlib error.

Badlm piemen tation The server does not implement some aspect of the request.
A server that generates this error for a core request is
deficient. As such, this error is not listed for any of the
requests, but clients should be prepared to receive such
errors and handle or discard them.

BadLength The length of a request is shorter or longer than that
required to contain the arguments. This is an internal Xlib
or server error.

BadMatch

The length of a request exceeds the maximum length
accepted by the server.

In a graphics request, the root and depth of the graphics
context does not match that of the drawable.

An InputOnly window is used as a drawable.

Some argument or pair of arguments has the correct type
and range, but it fails to match in some other way required
by the request.

An InputOnly window lacks this attribute.

185

XIib - C Library XI1, Release 3

Error Code Description

BadName A font or color of the specified name does not exist.

BadPixmap A value for a pixmap argument does not name a defined
pixmap.

B&dRequest The major or minor opcode does not specify a valid
request. This usually is an Xlib or server error.

Bad Value Some numeric value falls outside of the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alter¬
natives typically can generate this error (due to the encod¬
ing).

BadWindow A value for a window argument does not name a defined
window.

Note

The BadAtom, BadColor, BadCursor, BadDrawable, BadFont,
BadGC, BadPixmap, and BadWindow errors are also used when the
argument type is extended by a set of fixed alternatives.

To obtain textual descriptions of the specified error code, use XGetErrorText.

XGetErrorText (display, code, huffer_jeturn, length|
Display * display,
int code;
char *buffer_return;
int length;

display Specifies the connection to the X server.

code Specifies the error code for which you want to obtain a description.

buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string describing the specified
error code into the specified buffer. It is recommended that you use this function to
obtain an error description because extensions to Xlib may define their own error codes
and error strings.

To obtain error messages from the error database, use XGetErrorDatabaseText.

XGet£rrorDatabaseText(display, name, message, default_string, bufferjreturn, length)
Display * display,
char *name, * message]
char *default_string]
char *buffer_return]
int length]

display Specifies the connection to the X server.

name Specifies the name of the application.

186

Xlib — C Library Xll, Release 3

message Specifies the type of the error message.

default_string Specifies the default error message if none is found in the database.

bufferjreturn Returns the error description.

length Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a message (or the default message)
from the error message database. Xlib uses this function internally to look up its error
messages. On a UNIX-based svstem, the error message database is
/usr/lib/Xll/XErrorDB.

The name argument should generally be the name of your application. The message
argument should indicate which type of error message you want. Xlib uses three
predefined message types to report errors (uppercase and lowercase matter):

XProtoError The protocol error number is used as a string for the message argument.

XlibMessage These are the message strings that are used internally by the library.

XRequest The major request protocol number is used for the message argument. If
no string is found in the error database, the default._string is returned to
the buffer argument.

To report an error to the user when the requested display does not exist, use XDispIay-
Name.

char *XDisplayName(string)
char *string;

string Specifies the character string.

The XD is play Name function returns the name of the display that XOpenDisplay
would attempt to use. If a NULL string is specified, XDisplayName looks in the
environment for the display and returns the display name that XOpenDisplay would
attempt to use. This makes it easier to report to the user precisely which display the
program attempted to open when the initial connection attempt failed.

To handle fatal I/O errors, use XSetlOErrorHandler.

XSetlOErrorHandler (handler)
int (*handler)(Display *);

handler Specifies the program’s supplied error handler.

The XSetlOErrorHandler sets the fatal I/O error handler. Xlib calls the program’s
supplied error handler if any sort of system call error occurs (for example, the connection
to the server was lost). This is assumed to be a fatal condition, and the called routine
should not return. If the I/O error handler does return, the client process exits.

187

Xlib - C Library Xll, Release 3

Chapter 9

Predefined Property Functions

There are a number of predefined properties for information commonly associated with
windows. The atoms for these predefined properties can be found in
<Xll/Xatom.h >, where the prefix XA_ is added to each atom name.

Xlib provides functions that you can use to perform operations on predefined properties.
This chapter discusses how to:

• Communicate with window managers

• Manipulate standard colormaps

9.1. Communicating with Window Managers

This section discusses a set of properties and functions that are necessary for clients to
communicate effectively with window managers. Some of these properties have complex
structures. Because all the data in a single property on the server has to be of the same
format (8-bit, 16-bit, or 32-bit) and because the C structures representing property types
cannot be guaranteed to be uniform in the same way, Set and Get functions are pro¬
vided for properties with complex structures.

These functions define but do not enforce minimal policy among window managers.
Writers of window managers are urged to use the information in these properties rather
than invent their own properties and types. A window manager writer, however, can
define additional properties beyond this least common denominator.

In addition to Set and Get functions for individual properties, Xlib includes one func¬
tion, XSetStandardProperties, that sets all or portions of several properties. Appli¬
cations are encouraged to provide the window manager more information than is possible
with XSetStandardProperties. To do so, they should call the Set functions for the
additional or specific properties that they need.

To work well with most window managers, every application should specify the following
information:

• Name of the application

• Name to be used in the icon

• Command used to invoke the application

• Size and window manager hints

Xlib does not set defaults for the properties described in this section. Thus, the default
behavior is determined by the window manager and may be based on the presence or
absence of certain properties. All the properties are considered to be hints to a window
manager. When implementing window management policy, a window manager deter-

188

Xlib - C Library Xll, Release 3

mines what to do with this information and can ignore it.

The supplied properties are:

Name Type Format Description

WM_NAME STRING 8 Name of the application.

WM_ICON_NAME STRING 8 Name to be used in icon.

\VM_NORMAL_HINTS WM_SIZE_HINTS 32 Size hints for a window in its
normal state. The C type of this
property is XSizeHints.

\VM_ZOOM_HINTS WM_SIZE_HINTS 32 Size hints for a zoomed window.
The C type of this property is
XSizeHints.

WMJHINTS WM_HINTS 32 Additional hints set by client for
use by the window manager.
The C type of this property is
XWMHints.

WM_C OMMAND STRING 8 The command and arguments,
separated by ASCII nulls, used
to invoke the application.

WM_ICON_SIZE WM_ICON_SIZE 32 The window manager may set
this property on the root window
to specify the icon sizes it sup¬
ports. The C type of this pro¬
perty is XlconSize.

WM_CLASS STRING 32 Set by application programs to
allow window and session
managers to obtain the
application’s resources from the
resource database.

WM_TRANSIENT_FOR WINDOW 32 Set by application programs to
indicate to the window manager
that a transient top-level win¬
dow, such as a dialog box, is not
really a normal application win¬
dow.

The atom names stored in < Xll/Xatom.h > are named XA_PROPERTY_NAME.

Xlib provides functions that you can use to set and get predefined properties. Note that
calling the Set function for a property with complex structure redefines all members in
that property, even though only some of those members may have a specified new value.
Simple properties for which Xlib does not provide a Set or Get function can be set by
using XChangeProperty, and their values can be retrieved using XGetWindowPro-
perty. The remainder of this section discusses how to:

• Set standard properties

• ' Set and get the name of a window

• Set and get the icon name of a window

• Set the command and arguments of the application

189

Xlib - C Library Xll, Release 3

• Set and get window manager hints

• Set and get window size hints

® Set and get icon size hints

• Set and get the class of a window

• Set and get the transient property for a window

9.1.1. Setting Standard Properties

To specify a minimum set of properties describing the “quickie” application, use
XSetStandardProperties. This function sets all or portions of the WM_NAME,
\VM_ICON_NAME, WM_HINTS, WM_COMMAND, and WM_NORMAL_HINTS pro
perties.

XSetStandardProperties(display, w, windowjname, icon_name, iconjpixmap, argv, argc, hints)
Display * display ;
Window w;
char ^windowjname;
char *iconjiame;
Pixmap icon_pixmap;
char **argv;
int argc;
XSizeHints *hints;

display Specifies the connection to the X server.

w Specifies the window.

windowjname Specifies the window name, which should be a null-terminated string.

iconjname Specifies the icon name, which should be a null-terminated string.

iconjpixmap Specifies the bitmap that is to be used for the icon or None.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

hints Specifies a pointer to the size hints for the window in its normal state.

The XSetStandardProperties function provides a means by which simple applica¬
tions set the most essential properties with a single call. XSetStandardProperties
should be used to give a window manager some information about your program’s
preferences. It should not be used by applications that need to communicate more infor¬
mation than is possible with XSetStandardProperties. (Typically, argv is the argv
array of your main program.)

XSetStandardProperties can generate BadAlloc and BadWindow errors.

9.1.2. Setting and Getting Window Names

Xlib provides functions that you can use to set and read the name of a window. These
functions set and read the WM_NAME property.

To assign a name to a window, use XStoreName.

XStoreName (display, w, windowjname)
Display * display;
Window w;
char *vnndow_name;

display Specifies the connection to the X server.

190

Xlib - C Library Xll, Release 3

w Specifies the window.

window_name Specifies the window name, which should be a null-terminated string.

The XStoreName function assigns the name passed to window_name to the specified
window. A window manager can display the window name in some prominent place,
such as the title bar, to allow users to identify windows easily. Some window managers
may display a window’s name in the window’s icon, although they are encouraged to use
the window’s icon name if one is provided by the application.

XStoreName can generate BadAlloc and BadWindow errors.

To get the name of a window, use XFetchName.

Status XFetchName (display, w, window_navn&_return)
Display * display,
Window w;
char **window_name_return;

display Specifies the connection to the X server.

w Specifies the window.

window_name_return
Returns a pointer to the window name, which is a null-terminated string.

The XFetchName function returns the name of the specified window. If it succeeds, it
returns nonzero; otherwise, if no name has been set for the window, it returns zero. If
the WM_NAME property has not been set for this window, XFetchName sets
window_name_return to NULL. When finished with it, a client must free the window
name string using XFree.

XFetchName can generate a BadWindow error.

9.1.3. Setting and Getting Icon Names

Xlib provides functions that you can use to set and read the name to be displayed in a
window’s icon. These functions set and read the WM_ICON_NAME property.

To set the name to be displayed in a window’s icon, use XSetlconName

XSetlconName(display, w, icon_name)
Display * display,
Window u>;
char *icon_name;

display Specifies the connection to the X server.

w Specifies the window.

icon_name Specifies the icon name, which should be a null-terminated string.

XSetlconName can generate BadAlloc and BadWindow errors.

To get the name a window wants displayed in its icon, use XGetlconName.

Status XGetIconName(display, w, icon_name_return)
Display * display,
Window w,
char **icon_name_return;

display Specifies the connection to the X server.

w Specifies the window.

191

Xlib - C Library Xll, Release 3

icon_name_r eturn
Returns a pointer to the window’s icon name, which is a null-terminated
string.

The XGetlconName function returns the name to be displayed in the specified
window’s icon. If it succeeds, it returns nonzero; otherwise, if no icon name has been set
for the window, it returns zero. If you never assigned a name to the window, XGet¬
lconName sets icon_name_return to NULL. When finished with it, a client must free
the icon name string using XFree.

XGetlconName can generate a BadWindow error.

9.1.4. Setting the Command

To set the command property, use XSetCommand. This function sets the
WMjCOMMAND property.

XSetCommand (display, w, argv, argc)
Display * display,
Window w;
char **argv,
int argc;

display Specifies the connection to the X server.

w Specifies the window.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

The XSetCommand function sets the command and arguments used to invoke the
application. (Typically, argv is the argv array of your main program.)

XSetCommand can generate BadAlloc and BadWindow errors.

9.1.5. Setting and Getting Window Manager Hints

The functions discussed in this section set and read the WM_HINTS property and use
the flags and the XWMHints structure, as defined in the <Xll/Xutil.h > header
file:

/* Window manager hints mask bits */

^define InpntHint
^define StateHint
^define IconPixmapHint
^define IconWindowHint
^define XconPositionHint
#define IconMaskHint
^define WindowGroupHint
#define AllHints

/* Values */

(1L << 0)
(1L << 1)
(1L << 2)
(1L << 3)
(1L << 4)
(1L << 5)
(1L << 6)
(InputHint|StateHint|IconPixmapHint|
IconWindowHint|IconPositionHint|
IconMaskHint | WindowGroupHint)

typedef struct {
long flags;
Bool input;

int initial_state;
Pixmap icon_pixmap;
Window icon_window;

/* marks which fields in this structure are defined */
/* does this application rely on the window manager to
get keyboard input? */
/* see below */
/* pixmap to be used as icon */
/* window to be used as icon */

192

Xlib - C Library Xll, Release 3

int icon_x, icon_y; /* initial position of icon */
Pixmap icon_mask; /* pixmap to be used as mask for icon_pixmap */
XID window_group; /* id of related window group */
/* this structure may be extended in the future */

} XWMHints;

The input member is used to communicate to the window manager the input focus
model used by the application. Applications that expect input but never explicitly set
focus to any of their subwindows (that is, use the push model of focus management),
such as XlO-style applications that use real-estate driven focus, should set this member
to True. Similarly, applications that set input focus to their subwindows only when it
is given to their top-level window by a window manager should also set this member to
True. Applications that manage their own input focus by explicitly setting focus to
one of their subwindows whenever they want keyboard input (that is, use the pull model
of focus management) should set this member to False. Applications that never expect
any keyboard input also should set this member to False.

Pull model window managers should make it possible for push model applications to get
input by setting input focus to the top-level windows of applications whose input
member is True. Push model window managers should make sure that pull model
applications do not break them by resetting input focus to PointerRoot when it is
appropriate (for example, whenever an application whose input member is False sets
input focus to one of its subwindows).

The definitions for the initial_state flag are:

^define DontCareState 0 /* don’t know or care */
^define Normals tate 1 /* most applications start this way */
^define ZoomState 2 /* application wants to start zoomed */
^define IconicState 3 /* application wants to start as an icon

v
/* application believes it is seldom used;

some wm’s may put it on inactive
menu */

^define InactiveState 4

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon. This
allows for nonrectangular icons. Both the icon_pixmap and icon_mask must be bitmaps.
The icon_window lets an application provide a window for use as an icon for window
managers that support such use. The window_group lets you specify that this window
belongs to a group of other windows. For example, if a single application manipulates
multiple top-level windows, this allows you to provide enough information that a win¬
dow manager can iconify all of the windows rather than just the one window.

To set the window manager hints for a window, use XSetWMHints.

XSetWMHints(display, w, wmhints)
Display * display,
Window w;
XWMHints * wmhints -,

display Specifies the connection to the X server.

w Specifies the window.

wmhints Specifies a pointer to the window manager hints.

The XSetWMHints function sets the window manager hints that include icon informa¬
tion and location, the initial state of the window, and whether the application relies on
the window manager to get keyboard input.

193

Xlib - C Library Xll, Release 3

XSetWMHints can generate BadAlloc and BadWindow errors.

To read the window manager hints for a window, use XGetWMHints.

XWMHints *XGetWMHints(display, w)
Display * display,
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XGetWMHints function reads the window manager hints and returns NULL if no
WM_HINTS property was set on the window or a pointer to a XWMHints structure if
it succeeds. When finished with the data, free the space used for it by calling XFree.

XGetWMHints can generate a BadWindow error.

9.1.6. Setting and Getting Window Sizing Hints

Xlib provides functions that you can use to set or get window sizing hints.

The functions discussed in this section use the flags and the XSizeHints structure, as
defined in the <Xll/XutiLh > header file:

/* Size hints mask bits */

#define USPosition (1L <<

0)
(1L <<

1)
(1L <<
2)
(1L <<

3)
(1L <<

/* user specified x, y */

#define USSize /* user specified width, height */

#define PPosition /* program specified position */

^define PSize /* program specified size */

#define PMinSize /* program specified minimum size */

#define PMaxSize
4)
(1L <<

5)
(1L <<

6)
(1L <<

/* program specified maximum size */

^define PResizelnc /* program specified resize increments */

^define PAspect /* program specified min and max aspect ratios

^define PAllHints
7) */

(PPosition |PSize|PMinSize|PMaxSize|

/* Values V
PResizeInc|PAspect)

typedef struct {
long flags; /* marks which fields in this structure are defined */
int x, y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_mc, height_inc;
struct {

int x; /* numerator */
int y; /* denominator */

} min_aspect, max_aspect;
} XSizeHints;

194

Xlib - C Library XI1, Release 3

The x, y, width, and height members describe a desired position and size for the window.
To indicate that this information was specified by the user, set the USPosition and
USSize flags. To indicate that it was specified by the application without any user
involvement, set PPosition and PSize. This lets a window manager know that the
user specifically asked where the window should be placed or how the window should be
sized and that the window manager does not have to rely on the program’s opinion.

The min_width and min_hdght members specify the minimum window size that still
allows the application to be useful. The max_width and max_hdght members specify
the maximum window size. The width_inc and height_inc members define an arithmetic
progression of sizes (minimum to maximum) into which the window prefers to be resized.
The min_aspect and max_aspect members are expressed as ratios of x and y, and they
allow an application to specify the range of aspect ratios it prefers.

The next two functions set and read the WM_NORN4AL_HINTS property.

To set the size hints for a given window in its normal state, use XSetNormalHints.

XSetNormalHints (display, w, hints)
Display *display;
Window w;
XSizeHints * hints]

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies a pointer to the size hints for the window in its normal state.

The XSetNormalHints function sets the size hints structure for the specified window.
Applications use XSetNormalHints to inform the window manager of the size or posi¬
tion desirable for that window. In addition, an application that wants to move or resize
itself should call XSetNormalHints and specify its new desired location and size as
well as making direct Xlib calls to move or resize. This is because window managers may
ignore redirected configure requests, but they pay attention to property changes.

To set size hints, an application not only must assign values to the appropriate members
in the hints structure but also must set the flags member of the structure to indicate
which information is present and where it came from. A call to XSetNormalHints is
meaningless, unless the flags member is set to indicate which members of the structure
have been assigned values.

XSetNormalHints can generate BadAlloc and BadWindow errors.

To return the size hints for a window in its normal state, use XGetNormalHints.

Status XGetNormalHints(display, w, hints_return)
Display * display,
Window w,
XSizeHints *hints_return]

display Specifies the connection to the X server.

w Specifies the window.

hintsjreturn Returns the size hints for the window in its normal state.

The XGetNormalHints function returns the size hints for a window in its normal
state. It returns a nonzero status if it succeeds or zero if the application specified no
normal size hints for this window.

XGetNormalHints can generate a BadWindow error.

The next two functions set and read the WM_ZOOM_HINTS property.

195

Xlifo - C Library Xll, Release 3

To set the zoom hints for a window, use XSetZoomHints.

XSetZoomHints(display, w, zhints)
Display *display;
Window w;
XSizeHints *zhints;

display Specifies the connection to the X server.

w Specifies the window.

zhints Specifies a pointer to the zoom hints.

Many window managers think of windows in one of three states: iconic, normal, or
zoomed. The XSetZoomHints function provides the window manager with informa¬
tion for the window in the zoomed state.

XSetZoomHints can generate BadAlloc and BadWindow errors.

To read the zoom hints for a window, use XGetZoomHints.

Status XGetZoomHints(display, w, zhints_return)
Display *display;
Window w;
XSizeHints * zhints,jret urn ;

display Specifies the connection to the X server.

w Specifies the window.

zhintsjreturn Returns the zoom hints.

The XGetZoomHints function returns the size hints for a window in its zoomed state.
It returns a nonzero status if it succeeds or zero if the application specified no zoom size
hints for this window.

XGetZoomHints can generate a BadWindow error.

To set the value of any property of type WM_S IZ E_H I NT S, use XSetSizeHints .

XSetSizeHints(display, w, hints, property)
Display * display,
Window w;
XSizeHints * hints;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies a pointer to the size hints.

property Specifies the property name.

The XSetSizeHints function sets the XSizeHints structure for the named property
and the specified window. This is used by XSetNormalHints and XSetZoomHints,
and can be used to set the value of any property of type WM_SIZE_HINTS. Thus, it
may be useful if other properties of that type get defined.

XSetSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.

To read the value of any property of type WM„SIZE_HINTS, use XGetSizeHints.

190

Xlib - C Library Xll, Release 3

Status XGetSizeHints(display, w, hints_return, property)
Display * display ;
Window w;
XSizeHints *hints_return;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the size hints.

property Specifies the property name.

XGetSizeHints returns the XSizeHints structure for the named property and the
specified window. This is used by XGetNormalHints and XGetZoomHints. It also
can be used to retrieve the value of any property of type WM_SIZE_HINTS. Thus, it
may be useful if other properties of that type get defined. XGetSizeHints returns a
nonzero status if a size hint was defined or zero otherwise.

XGetSizeHints can generate BadAtom and BadWindow errors.

9.1.7. Setting and Getting Icon Size Hints

Applications can cooperate with window managers by providing icons in sizes supported
by a window manager. To communicate the supported icon sizes to the applications, a
window manager should set the icon size property on the root window of the screen. To
find out what icon sizes a window manager supports, applications should read the icon
size property from the root window of the screen.

The functions discussed in this section set or read the WM_ICON_SIZE property. In
addition, they use the XlconSize structure, which is defined in <Xll/Xutil.h > and
contains:

typedef struct
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;

} XlconSize;

The width_inc and height_inc members define an arithmetic progression of sizes
(minimum to maximum) that represent the supported icon sizes.

To set the icon size hints for a window, use XSetlconSizes.

XSetIconSizes(display, w, size_list, count)
Display * display;
Window w;
XlconSize *size_list;
int count;

display Specifies the connection to the X server.

w Specifies the window.

size_list Specifies a pointer to the size list.

count Specifies the number of items in the size list.

The XSetlconSizes function is used only by window managers to set the supported

icon sizes.

XSetlconSizes can generate BadAlloc and BadWindow errors.

To return the icon sizes hints for a window, use XGetlconSizes.

197

Xlib - C Library Xll, Release 3

Status XGetIconSizes(display, w, size_list_return, count_return)
Display * display,
Window w;
XlconSize **size_list_return-,
int *count_return;

display Specifies the connection to the X server.

w Specifies the window.

size_list_returnRet\ivns a pointer to the size list.

count_return Returns the number of items in the size list.

The XGetlconSizes function returns zero if a window manager has not set icon sizes
or nonzero otherwise. XGetlconSizes should be called by an application that wants to
find out what icon sizes would be most appreciated by the window manager under which
the application is running. The application should then use XSetWMHints to supply
the window manager with an icon pixmap or window in one of the supported sizes. To
free the data allocated in size_list_return, use XFree.

XGetlconSizes can generate a BadWindow error.

9.1.8. Setting and Getting the Class of a Window

Xlib provides functions to set and get the class of a window. These functions set and
read the WM_CLASS property. In addition, they use the XClassHint structure, which
is defined in <X11/Xutil.h > and contains:

typedef struct {
char *res_name;
char *res_class;

} XClassHint;

The res_name member contains the application name, and the res_class rfiember contains
the application class. Note that the name set in this property may differ from the name
set as WM_NAME. That is, WM_NAME specifies what should be displayed in the title
bar and, therefore, can contain temporal information (for example, the name of a file
currently in an editor’s buffer). On the other hand, the name specified as part of
WM_CLASS is the formal name of the application that should be used when retrieving
the application’s resources from the resource database.

To set the class of a window, use XSetClassHint.

XSetClassHint(display, w, class__hints)
Display * display,
Window w;
XClassHint *class_hints;

display Specifies the connection to the X server.

w Specifies the window.

class_hints Specifies a pointer to a XClassHint structure that is to be used.

The XSetClassHint function sets the class hint for the specified window.

XSetClassHint can generate BadAlloc and BadWindow errors.

To get the class of a window, use XGetClassHint.

198

Xlib — C Library Xll, Release 3

Status XGetClassHint(display, w, class_hintsjreturn)
Display * display,
Window to;
XClassHint *class_hints_return \

display Specifies the connection to the X server,

to Specifies the window.

class_hints_return
Returns the XClassHint structure.

The XGetClassHint function returns the class of the specified window. To free
res_name and res_class when finished with the strings, use XFree.

XGetClassHint can generate a BadWindow error.

9.1.9. Setting and Getting the Transient Property

An application may want to indicate to the window manager that a transient, top-level
window (for example, a dialog box) is operating on behalf of (or is transient for) another
window. To do so, the application would set the WM_TRANSIENT_FOR property of
the dialog box to be the window ID of its main window. Some window managers use
this information to unmap an application’s dialog boxes (for example, when the main
application window gets iconified).

The functions discussed in this section set and read the WM_TRANSIENT_FOR pro¬
perty.

To set the WM_TRANSIENT_FOR property for a window, use XSetTran-
sientForHint.

XSetTransientForHint(display, to, prop_window)
Display *display,
Window to;
Window prop_window,

display Specifies the connection to the X server,

to Specifies the window.

prop_window Specifies the window that the WM_TRANSIENT_FOR property is to be
set to.

The XSetTransientForHint function sets the WM_TRANSIENT_FOR property of
the specified window to the specified prop_window.

XSetTransientForHint can generate BadAlloc and BadWindow errors.

To get the WM_TRANSIENT_FOR value for a window, use XGetTransientForHint.

Status XGetTransientForHint(display, to, prop_window_return)
Display * display,
Window to;
Window *prop_window_return;

display Specifies the connection to the X server,

to Specifies the window.

prop_window_return
Returns the WM_TRANSIENT_FOR property of the specified window.

The XGetTransientForHint function returns the WM_TRANSIENT_FOR property

for the specified window.

199

Xlib - C Library Xll, Release 3

XGetTransientForHint can generate a BadWindow error.

9.2. Manipulating Standard Colormaps

Applications with color palettes, smooth-shaded drawings, or digitized images demand
large numbers of colors. In addition, these applications often require an efficient mapping
from color triples to pixel values that display the appropriate colors.

As an example, consider a 3D display program that wants to draw a smoothly shaded
sphere. At each pixel in the image of the sphere, the program computes the intensity and
color of light reflected back to the viewer. The result of each computation is a triple of
RGB coefficients in the range 0.0 to 1.0. To draw the sphere, the program needs a color-
map that provides a large range of uniformly distributed colors. The colormap should be
arranged so that the program can convert its RGB triples into pixel values very quickly,
because drawing the entire sphere requires many such conversions.

On many current workstations, the display is limited to 256 or fewer colors. Applications
must allocate colors carefully, not only to make sure they cover the entire range they
need but also to make use of as many of the available colors as possible. On a typical X
display, many applications are active at once. Most workstations have only one
hardware look-up table for colors, so only one application colormap can be installed at a
given time. The application using the installed colormap is displayed correctly, and the
other applications “go technicolor” and are displayed with false colors.

As another example, consider a user who is running an image processing program to
display earth-resources data. The image processing program needs a colormap set up
with 8 reds, 8 greens, and 4 blues (a total of 256 colors). Because some colors are
already in use in the default colormap, the image processing program allocates and
installs a new colormap.

The user decides to alter some of the colors in the image. He invokes a color palette pro¬
gram to mix and choose colors. The color palette program also needs a colormap with 8
reds, 8 greens, and 4 blues, so just as the image-processing program, it must allocate and
install a new colormap.

Because only one colormap can be installed at a time, the color palette may be displayed
incorrectly whenever the image-processing program is active. Conversely, whenever the
palette program is active, the image may be displayed incorrectly. The user can never
match or compare colors in the palette and image. Contention for colormap resources
can be reduced if applications with similar color needs share colormaps.

As another example, the image processing program and the color palette program could
share the same colormap if there existed a convention that described how the colormap
was set up. Whenever either program was active, both would be displayed correctly.

The standard colormap properties define a set of commonly used colormaps. Applications
that share these colormaps and conventions display true colors more often and provide a
better interface to the user.

9.2.1. Standard Colormaps

Standard colormaps allow applications to share commonly used color resources. This
allows many applications to be displayed in true colors simultaneously, even when each
application needs an entirely filled colormap.

Several standard colormaps are described in this section. Usually, a window manager
creates these colormaps. Applications should use the standard colormaps if they already
exist. If the standard colormaps do not exist, you should create them by opening a new
connection, creating the properties, and setting the close-down mode of the connection to
RetainPermanent.

200

Xlib - C Library Xll, Release 3

The XStandardColormap structure contains:

typedef struct {
Colormap colormap;
unsigned long red_max;
unsigned long red_mult;
unsigned long green_max;
unsigned long green_mult;
unsigned long blue_max;
unsigned long blue_mult;
unsigned long base_pixel;

} XStandardColormap;

The colormap member is the colormap created by the XCreateColormap function.
The red_max, green_max, and blue_max members give the maximum red, green, and
blue values, respectively. Each color coefficient ranges from zero to its max, inclusive.
For example, a common colormap allocation is 3/3/2 (3 planes for red, 3 planes for
green, and 2 planes for blue). This colormap would have red_max = 7, green_max = 7,
and blue_max = 3. An alternate allocation that uses only 216 colors is red_max = 5,
green_max = 5, and blue_max = 5.

The red_mult, green_mult, and blue_mult members give the scale factors used to com¬
pose a full pixel value. (See the discussion of the base_pixel members for further informa¬
tion.) For a 3/3/2 allocation, red_mult might be 32, green_mult might be 4, and
blue_mult might be 1. For a 6-colors-each allocation, red_mult might be 36, green_mult
might be 6, and blue_mult might be 1.

The base_pixel member gives the base pixel value used to compose a full pixel value.
Usually, the base_pixel is obtained from a call to the XAllocColorPlanes function.
Given integer red, green, and blue coefficients in their appropriate ranges, one then can
compute a corresponding pixel vajue by using the following expression:

r * red_mult + g * green_mult + b * blue_mult + base_pixel

For GrayScale colormaps, only the colormap, red_max, red_mult, and base_pixel
members are defined. The other members are ignored.

To compute a GrayScale pixel value, use the following expression:

gray * red_mult + base_pixel

The properties containing the XStandardColormap information have the type
RGB_COLOR_MAP.

9.2.2. Standard Colormap Properties and Atoms

Several standard colormaps are available. Each standard colormap is defined by a pro¬
perty, and each such property is identified by an atom. The following list names the
atoms and describes the colormap associated with each one. The <Xll/Xatom.h >
header file contains the definitions for each of the following atoms, which are prefixed
with XA_.

RGB_DEFAULT_MAP
This atom names a property. The value of the property is an XStandardColor¬
map .

The property defines an RGB subset of the default colormap of the screen. Some
applications only need a few RGB colors and may be able to allocate them from
the system default colormap. This is the ideal situation because the fewer color-
maps that are active in the system the more applications are displayed with correct

colors at all times.

201

Xlib — C Library Xll, Release 3

A typical allocation for the RGB„DEFAULT_MAP on 8-plane displays is 6 reds, 6
greens, and 6 blues. This gives 216 uniformly distributed colors (6 intensities of 36
different hues) and still leaves 40 elements of a 256-element colormap available for
special-purpose colors for text, borders, and so on.

RGB_BEST_MAP
This atom names a property. The value of the property is an XStandardColor-
map.

The property defines the best RGB colormap available on the screen. (Of course,
this is a subjective evaluation.) Many image processing and 3D applications need to
use all available colormap cells and to distribute as many perceptually distinct
colors as possible over those cells. This implies that there may be more green
values available than red, as well as more green or red than blue.

On an 8-plane PseudoColor display, RGB_BEST_MAP should be a 3/3/2 alloca¬
tion. On a 24-plane DirectColor display, RGB_BEST_MAP should be an 8/8/8
allocation. On other displays, the RGB__BEST_MAP allocation is purely up to the
implementor of the display.

RGB_RED„MAP
RGB_GREEN_MAP
RGB_BLUE_MAP

These atoms name properties. The value of each property is an XStandard-
Colormap.

The properties define all-red, all-green, and all-blue colormaps, respectively. These
maps are used by applications that want to make color-separated images. For
example, a user might generate a full-color image on an 8-plane display both by
rendering an image three times (once with high color resolution in red, once with
green, and once with blue) and by multiply-exposing a single frame in a camera.

RGB_GRAY_MAP
This atom names a property. The value of the property is an XStandardColor-
map.

The property describes the best GrayScale colormap available on the screen. As
previously mentioned, only the colormap, red_max, red_mult, and base_j>ixel
members of the XStandardColormap structure are used for GrayScale color-
maps.

9.2.3. Getting and Setting an XStandardColormap Structure

To get the XStandardColormap structure associated with one of the described
atoms, use XGetStandardColormap.

Status XGetStandardColormap(display, w, colormap_return, property)
Display * display;
Window w;
XStan dardColormap * color map jreturn;
Atom property; /* RGB_BEST_MAP, etc. */

display Specifies the connection to the X server.

w Specifies the window.

colormap jreturn
Returns the colormap associated with the specified atom.

property Specifies the property name.

The XGetStandardColormap function returns the colormap definition associated
with the atom supplied as the property argument. For example, to fetch the standard
GrayScale colormap for a display, you use XGetStandardColormap with the

202

XIib — C Library XI1, Release 3

following syntax:

XGetStandardColormap(dpy, DefaultRootWindow(dpy), fecmap, XA_RGB_GRAY__MAP);

Once you have fetched a standard colormap, you can use it to convert RGB values into
pixel values. For example, given an XStandardColormap structure and floating¬
point RGB coefficients in the range 0.0 to 1.0, you can compose pixel values with the fol¬
lowing C expression:

pixel = base_j>ixel
+ ((unsigned long) (0.5 + r* red_max)) * red_mult
+ ((unsigned long) (0.5 4- g * green_max)) * green_mult
+ ((unsigned long) (0,5 + b * blue_max)) * blue_mult;

The use of addition rather than logical OR for composing pixel values permits alloca¬
tions where the RGB value is not aligned to bit boundaries.

XGetStandardColormap can generate Bad Atom and Bad Window errors.

To set a standard colormap, use XSetStandardColormap.

XSetStandardColormap(display, w, colormap, property)
Display * display,
Window w,
XStandardColormap * colormap-,
Atom property, /* RGB_BEST_MAP, etc. */

display Specifies the connection to the X server.

w Specifies the window.

colormap Specifies the colormap.

property Specifies the property name.

The XSetStandardColormap function usually is only used by window managers. To
create a standard colormap, follow this procedure:

1. Open a new connection to the same server.

2. Grab the server.

3. See if the property is on the property list of the root window for the screen.

4. If the desired property is not present:

• Create a colormap (not required for RGB_DEFAULT_MAP)

• Determine the color capabilities of the display.

• Call XAllocColorPlanes or XAllocColorCells to allocate cells in the
colormap.

• Call XStoreColors to store appropriate color values in the colormap.

• Fill in the descriptive members in the XStandardColormap structure.

• Attach the property to the root window.

• Use XSetCloseDownMode to make the resource permanent.

5. Ungrab the server.

XSetStandardColormap can generate BadAlloc, BadAtom, and BadWindow

errors.

203

Xlib — C Library Xll, Release 3

Chapter 10

Application Utility Functions

Once you have initialized the X system, you can use the Xlib utility functions to:

• Handle keyboard events

• Obtain the X environment defaults

• Parse window geometry strings

• Parse hardware colors strings

• Generate regions

• Manipulate regions

• Use cut and paste buffers

• Determine the appropriate visual

• Manipulate images

• Manipulate bitmaps

• Use the resource manager

• Use the context manager
As a group, the functions discussed in this chapter provide the functionality that is fre¬
quently needed and that spans toolkits. Many of these functions do not generate actual
protocol requests to the server.

10.1. Keyboard Utility Functions

This section discusses keyboard event functions and KeySym classification macros.

10.1.1. Keyboard Event Functions

The X server does not predefine the keyboard to be ASCII characters. It is often useful
to know that the a key was just pressed or that it was just released. When a key is
pressed or released, the X server sends keyboard events to client programs. The struc¬
tures associated with keyboard events contain a keycode member that assigns a number
to each physical key on the keyboard. For a discussion of keyboard event processing,
see section 8.4.1. For information on how to manipulate the keyboard encoding, see sec¬
tion 7.9.

Because KeyCodes are completely arbitrary and may differ from server to server, client
programs wanting to deal with ASCII text, for example, must explicitly convert the Key-
Code value into ASCII. Therefore, Xlib provides functions to help you customize the
keyboard layout. Keyboards differ dramatically, so writing code that presumes the
existence of a particular key on the main keyboard creates portability problems.

Keyboard events are usually sent to the deepest viewable window underneath the
pointer’s position that is interested in that type of event. It is also possible to assign the
keyboard input focus to a specific window. When the input focus is attached to a win¬
dow, keyboard events go to the client that has selected input on that window rather
than the window under the pointer.

The functions in this section handle the shift modifier computations suggested by the
protocol. The KeySym table is internally modified to define the lowercase transforma¬
tion of a-z by adding the lowercase KeySym to the first element of the KeySym list
(used internally) defined for the KeyCode, when the list is of length 1. If you want the

Xlib - C Library Xll, Release 3

untransformed KeySyms defined for a key, you should only use the functions described
in section 7.9.

To look up the KeySyms, use XLookupKeysym

KeySym XLookupKeysym(key_event, index)
XKeyEvent *key_event;
int index;

key_event Specifies the KeyPress or KeyRelease event.

index Specifies the index into the KeySyms list for the event’s KeyCode.

The XLookupKeysym function uses a given keyboard event and the index you
specified to return the KeySym from the list that corresponds to the KeyCode member
in the XKeyPressedEvent or XKeyReleasedEvent structure. If no KeySym is
defined for the KeyCode of the event, XLookupKeysym returns NoSymbol.

To refresh the stored modifier and keymap information, use XRefreshKeyboardMap-
ping.

XRefreshKeyboardMapping(eventjmap)
XMappingEvent *event_map\

event_map Specifies the mapping event that is to be used.

The XRefreshKeyboardMapping function refreshes the stored modifier and keymap
information. You usually call this function when a MappingNotify event with a
request member of MappingKeyboard or MappingModifier occurs. The result is
to update Xlib’s knowledge of the keyboard.

To map a key event to an ISO Latin-1 string, use XLookupString.

int XLookupString(event_struct, buffer_return, bytes_buffer} keysym_return, status_in_ovt)
XKeyEvent * event_struct]
char *buffer_return]
int bytes_buffer;
KeySym *keysym_return\
XComposeStatus *status_in_out\

event_struct Specifies the key event structure to be used. You can pass
XKeyPressedEvent or XKeyReleasedEvent.

buffer_return Returns the translated characters.

bytes_buffer Specifies the length of the buffer. No more than bvtes_buffer of transla¬
tion are returned.

keysym_return Returns the KeySym computed from the event if this argument is not
NULL.

status_in_out Specifies or returns the XComposeStatus structure or NULL.

The XLookupString function is a convenience routine that maps a key event to an
ISO Latin-1 string, using the modifier bits in the key event to deal w'ith shift, lock, and
control. It returns the translated string into the user’s buffer. It also detects any
rebound KeySyms (see XRebindKeysym) and returns the specified bytes. XLookup¬
String returns the length of the string stored in the tag buffer. If the lock modifier has
the caps lock KeySym associated with it, XLookupString interprets the lock modifier
to perform caps lock processing.

If present (non-NULL), the XComposeStatus structure records the state, which is
private to Xlib, that needs preservation across calls to XLookupString to implement

205

Xlib - C Library XI1, Release 3

compose processing.

To rebind the meaning of a KeySym for a client, use XRebind^Ceysym.

XRebindKeysym(display, keysym, list, mod_count, string, bytes_string)
Display * display,
KeySym keysym-,
KeySym list [];
int mod_count-,
unsigned char * string;
int bytes_string;

display

keysym

list

mod_count

string

bytes_string

Specifies the connection to the X server.

Specifies the KeySym that is to be rebound.

Specifies the KeySyms to be used as modifiers.

Specifies the number of modifiers in the modifier list.

Specifies a pointer to the string that is copied and will be returned by
XLookupString.

Specifies the length of the string.

The XRebindKeysym function can be used to rebind the meaning of a KeySym for
the client. It does not redefine any key in the X server but merely provides an easy way
for long strings to be attached to keys. XLookupString returns this string when the
appropriate set of modifier keys are pressed and when the KeySym would have been
used for the translation. Note that you can rebind a KeySym that may not exist.

To convert the name of the KeySym to the KeySym code, use XStringToKeysym.

KeySym XStringToKeysym(string)
char * string;

string Specifies the name of the KeySym that is to be converted.

Valid KeySym names are listed in < Xll/keysymdef.h > by removing the XK_ prefix
from each name. If the specified string does not match a valid KeySym,
XStringToKeysym returns NoSymbol.

To convert a KeySym code to the name of the KeySym, use XKeysymToString.

char * XKeysymToString (keysym)
KeySym keysym;

keysym Specifies the KeySym that is to be converted.

The returned string is in a static area and must not be modified. If the specified
KeySym is not defined, XKeysymToString returns a NULL.

To convert a key code to a defined KeySym, use XKeycodeToKeysym.

KeySym XKeycodeToKeysym (display, keycode, index)
Display * display ;
KeyCode keycode;
int index;

display Specifies the connection to the X server.

keycode Specifies the KeyCode.

index Specifies the element of KeyCode vector.

206

Xlib — C Library XI1, Release 3

The XKeycodeToKeysym function uses internal Xlib tables and returns the KeySym
defined for the specified KeyCode and the element of the KeyCode vector. If no symbol
is defined, XKeycodeToKeysym returns NoSymbol.

To convert a KeySym to the appropriate KeyCode, use XKeysymToKeycode.

KeyCode XKeysymToKeycode (display, keysym)
Display * display]
KeySym keysym;

display Specifies the connection to the X server.

keysym Specifies the KeySym that is to be searched for.

If the specified KeySym is not defined for any KeyCode, XKeysymToKeycode returns
zero.

10.1.2. Keysym Classification Macros

You may want to test if a KeySym is, for example, on the keypad or on one of the func¬
tion keys. You can use the KeySym macros to perform the following tests.

IsCursorKey (keysym)

Returns True if the specified KeySym is a cursor key.

IsFunctionKey (keysym)

Returns True if the specified KeySym is a function key.

IsKeypadKey (keysym)

Returns True if the specified KeySym is a keypad key.

IsMiscF unctionKey (keysym)

Returns True if the specified KeySym is a miscellaneous function key.

IsModifierKey (keysym)

Returns True if the specified KeySym is a modifier key.

IsPFKey (keysym)

Returns True if the specified KeySym is a PF key.

10.2. Obtaining the X Environment Defaults

A program often needs a variety of options in the X environment (for example, fonts,
colors, mouse, background, text, and cursor). Specifying these options on the command
line is inefficient and unmanageable because individual users have a variety of tastes
with regard to window appearance. XGetDefault makes it easy to find out the fonts,
colors, and other environment defaults favored by a particular user. Defaults are usually
loaded into the RESOURCE_MANAGER property on the root window at login. If no
such property exists, a resource file in the user’s home directory is loaded. On a UNIX-
based system, this file is $HOME/.Xdefaults. After loading these defaults, XGetDe¬
fault merges additional defaults specified by the XENVIRONMENT environment vari¬
able. If XENVIRONMENT is defined, it contains a full path name for the additional
resource file. If XENVIRONMENT is not defined, XGetDefault looks for

207

Xlib — C Library Xll, Release 3

$HOME/JXdefaults-name, where name specifies the name of the machine on which
the application is running. For details of the format of these files, see section 10.11.

The XGetDefault function provides a simple interface for clients not wishing to use
the X toolkit or the more elaborate interfaces provided by the resource manager dis¬
cussed in section 10.11.

char *XGetDefault (display, program, option)
Display * display;
char *program.;
char * option ;

display Specifies the connection to the X server.

program Specifies the program name for the Xlib defaults (usually argvjQ] of the
main program).

option Specifies the option name.

The XGetDefault function returns the value NULL if the option name specified in this
argument does not exist for the program. The strings returned by XGetDefault are
owned by Xlib and should not be modified or freed by the client.

To obtain a pointer to the resource manager string of a display, use XResour-
ceManagerString.

char *XResourceManagerString(display)
Display * display;

display Specifies the connection to the X server.

The XResourceManagerString returns the RESOURCE_MANAGER property from
the server’s root window of screen zero, which was returned when the connection w'as
opened using XOpenDisplay.

10.3. Parsing the Window Geometry

To parse standard window geometry strings, use XParseGeometry.

int XParseGeometry (parsestring, x_return, y_return, widthjreturn, height jreturn)
char * parsestring;
int *x_return, *yjreturn;
int *width_return, * height jreturn;

parsestring Specifies the string you w'ant to parse.

xjreturn
yjreturn Return the x and y offsets.

width_return
height jeturn Return the width and height determined.

By convention, X applications use a standard string to indicate window size and place¬
ment. XParseGeometry makes it easier to conform to this standard because it allows
you to parse the standard window geometry. Specifically, this function lets you parse
strings of the form:

[=][< width>\< height >][{+-} <x offset >{+-}< yoffset>]

The items in this form map into the arguments associated with this function. (Items
enclosed in < > are integers, items in [] are optional, and items enclosed in { } indicate
“choose one of”. Note that the brackets should not appear in the actual string.)

The XParseGeometry function returns a bitmask that indicates which of the four
values (width, height, xoffset, and yoffset) were actually found in the string and w'hether

208

Xlib - C Library Xll, Release 3

the x and y values are negative. By convention, -0 is not equal to +0, because the user
needs to be able to say “position the window relative to the right or bottom edge.” For
each value found, the corresponding argument is updated. For each value not found, the
argument is left unchanged. The bits are represented by XValue, "YValue, Width-
Value, HeightValue, XNegative, or YNegative and are defined in
< Xll/Xutil.h >. They will be set whenever one of the values is defined or one of the
signs is set.

If the function returns either the XValue or YValue flag, you should place the win¬
dow at the requested position.

To parse window geometry given a user-specified position and a default position, use
XGeometry.

int XGeometry (display, screen, position, defaultjposition, bwidth, fwidth, Jheight, xadder,
yadder, xjreturn, y_return, width_return, heightjreturn)

Display * display,
int screen;
char * position, * default _position\
unsigned int bwidth;
unsigned int fwidth, fheight;
int xadder, yadder;
int *xjr eturn, *y_r eturn,
int * width jr eturn, * heightjreturn]

display Specifies the connection to the X server.

screen Specifies the screen.

position
default_positionSpeci£y the geometry specifications.

bwidth Specifies the border width.

fheight
fwidth Specify the font height and width in pixels (increment size).

xadder
yadder Specify additional interior padding needed in the window.

xjreturn
yjreturn Return the x and y offsets.

width_r eturn
heightjreturn Return the width and height determined.

You pass in the border width (bwidth), size of the increments fwidth and fheight (typi¬
cally font width and height), and any additional interior space (xadder and yadder) to
make it easy to compute the resulting size. The XGeometry function returns the posi¬
tion the window should be placed given a position and a default position. XGeometry
determines the placement of a window using a geometry specification as specified by
XParseGeometry and the additional information about the window. Given a fully
qualified default geometry specification and an incomplete geometry specification,
XParseGeometry returns a bitmask value as defined above in the XPar¬
seGeometry call, by using the position argument.

The returned width and height will be the width and height specified by default_position
as overridden by any user-specified position. They are not affected by fwidth, fheight, _
xadder, or yadder. The x and y coordinates are computed by using the border width,
the screen width and height, padding as specified by xadder and yadder, and the fheight
and fwidth times the width and height from the geometry specifications.

209

Xlib - C Library XI1, Release 3

10.4. Parsing the Color Specifications

To parse color values, use XParseColor.

Status XParseColor(display, colormap, spec, exact_def_return)
Display * display,
Colormap colormap]
char *$pec;
XColor *exact_def_return]

display Specifies the connection to the X server.

colormap Specifies the colormap.

spec Specifies the color name string; case is ignored.

exact_def_r etnrn
Returns the exact color value for later use and sets the DoRed ,
DoGreen, and DoBlue flags.

The XParseColor function provides a simple way to create a standard user interface
to color. It takes a string specification of a color, typically from a command line or
XGetDefault option, and returns the corresponding red, green, and blue values that
are suitable for a subsequent cal! to XAllocColor or XStoreColor. The color can be
specified either as a color name (as in XIAllocNamedColor) or as an initial sharp sign
character followed by a numeric specification, in one of the following formats:

#RGB (4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGGBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits (both uppercase and lowercase).
When fewer than 16 bits each are specified, they represent the most-significant bits of
the value. For example, #3a7 is the same as #3000a0007000. The colormap is used
only to determine which screen to look up the color on. For example, you can use the
screen’s default colormap.

If the initial character is a sharp sign but the string otherwise fails to fit the above for¬
mats or if the initial character is not a sharp sign and the named color does not exist in
the server’s database, XParseColor fails and returns zero.

XParseColor can generate a BadColor error.

10.5. Generating Regions

Regions are arbitrary sets of pixel locations. Xlib provides functions for manipulating
regions. The opaque type Region is defined in <Xll/Xutil.h >.

To generate a region from a polygon, use XPolygonRegion.

Region XPolygonRegion(points, n, fill_rule)
XPoint points[j]
int n;
int filljrule-,

points Specifies an array of points,

n Specifies the number of points in the polygon.

fill_rule Specifies the fill-rule you want to set for the specified GC. \ou can pass
EvenOddRule or WindingRule.

The XPolygonRegion function returns a region for the polygon defined by the points
array. For an explanation of fill_rule, see XCreateGC.

210

Xlib - C Library Xll, Release 3

To generate the smallest rectangle enclosing the region, use XClipBox .

XClipBox(r, rect_return)
Region r;
XRectangle *rect_returrr,

r Specifies the region.

rect_return Returns the smallest enclosing rectangle.

The XClipBox function returns the smallest rectangle enclosing the specified region.

10.6. Manipulating Regions

Xlib provides functions that you can use to manipulate regions. This section discusses
how to:

• Create, copy, or destroy regions

• Move or shrink regions

• Compute with regions

® Determine if regions are empty or equal

« Locate a point or rectangle in a region

10.6.1. Creating, Copying, or Destroying Regions

To create a new empty region, use XCreateRegion.

Region XCreateRegion ()

To set the clip-mask of a GC to a region, use XSetRegion.

XSetRegion(display, gc, r)
Display * display,
GC gc-
Region r;

display Specifies the connection to the X server.

gc Specifies the GC.

r Specifies the region.

The XSetRegion function sets the clip-mask in the GC to the specified region. Once it
is set in the GC, the region can be destroyed.

To deallocate the storage associated with a specified region, use XDestroyRegion.

XDestroyRegion (r)
Region r;

r Specifies the region.

10.6.2. Moving or Shrinking Regions

To move a region by a specified amount, use XOffsetRegion.

XOffsetRegion (r, dx, dy)
Region r;
int dx, dy,

r Specifies the region.

dx
dy Specify the x and y coordinates, which define the amount you want to

move the specified region.

211

Xlib - C Library Xll, Release 3

To reduce a region by a specified amount, use XShrinkRegion .

XShrinkRegion (r, dx, dy)
Region r;
int dx, dy,

r Specifies the region.

dx
dy Specify the x and y coordinates, which define the amount you want to

shrink the specified region.

Positive values shrink the size of the region, and negative values expand the region.

10.6.3. Computing with Regions

To compute the intersection of two regions, use XIntersectRegion.

XIntersectRegion (sra, srb, dr_return)
Region sra, srb, dr_returrr,

sra
srb Specify the two regions with which you want to perform the computation.

dr_return Returns the result of the computation.

To compute the union of two regions, use XUnionRegion.

XUnionRegion(sra, srb, dr_return)
Region sra, srb, dr_return\

sra
srb Specify the two regions with which you want to perform the computation.

dr_return Returns the result of the computation.

To create a union of a source region and a rectangle, use XUnionRectWithRegion.

XUnionRectWithRegion (rectangle, src_region, dest_region_return)
XRectangle *rectangle;
Region src_region\
Region dest_region_return]

rectangle Specifies the rectangle.

src_region Specifies the source region to be used.

dest_region_return
Returns the destination region.

The XUnionRectWithRegion function updates the destination region from a union of
the specified rectangle and the specified source region.

To subtract two regions, use XSubtractRegion .

XSubtractRegion(sra, srb, dr_return)
Region sra, srb, dr_return\

sra
srb Specify the two regions with which you want to perform the computation.

drjreturn Returns the result of the computation.

The XSubtractRegion function subtracts srb from sra and stores the results in

dr return.

212

Xlib — C Library Xll, Release 3

To calculate the difference between the union and intersection of two regions, use
XXorRegion.

XXorRegion (sra, srb, dr_return)
Region sra, srb, dr_return;

sra
srb Specify the two regions with which you want to perform the computation.

dr_return Returns the result of the computation.

10.6.4. Determining if Regions Are Empty or Equal

To determine if the specified region is empty, use XEmptyRegion .

Bool XEmptyRegion (r)
Region r;

r Specifies the region.

The XEmptyRegion function returns True if the region is empty.

To determine if two regions have the same offset, size, and shape, use XEqualRegion.

Bool XEqualRegion (rl, r2)
Region rl, r2;

rl
r£ Specify the two regions.

The XEqualRegion function returns True if the two regions have the same offset,
size, and shape.

10.6.5. Locating a Point or a Rectangle in a Region

To determine if a specified point resides in a specified region, use XPointlnRegion .

Bool XPointlnRegion (r, x, y)
Region r;
int x, y\

r Specifies the region.

x
y Specify the x and y coordinates, which define the point.

The XPointlnRegion function returns True if the point (x, y) is contained in the
region r.

To determine if a specified rectangle is inside a region, use XRectlnRegion .

int XRectlnRegion (r, x, y, width, height)
Region r;
int x, y;
unsigned int width, height;

r Specifies the region.

x
y Specify the x and y coordinates, which define the coordinates of the

upper-left corner of the rectangle.

width
height Specify the width and height, which define the rectangle .

The XRectlnRegion function returns Rectangleln if the rectangle is entirely in the
specified region, RectangleOut if the rectangle is entirely out of the specified region,

213

XI ib - C Library Xll, Release 3

and RectanglePart if the rectangle is partially in the specified region.

10.7. Using the Cut and Paste Buffers

Xlib provides functions that you can use to cut and paste buffers for programs using this
form of communications. Selections are a more useful mechanism for interchanging data
between clients because typed information can be exchanged. X provides property
names for properties in which bytes can be stored for implementing cut and paste
between windows (implemented by use of properties on the first root window of the
display). It is up to applications to agree on how to represent the data in the buffers.
The data is most often ISO Latin-1 text. The atoms for eight such buffer names are pro¬
vided and can be accessed as a ring or as explicit buffers (numbered 0 through 7). New
applications are encouraged to share data by using selections (see section 4.4).

To store data in cut buffer 0, use XStoreBytes.

XStoreBytes(display, bytes, nbytes)
Display * display,
char * bytes]
int nbytes]

display Specifies the connection to the X server.

bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.

nbytes Specifies the number of bytes to be stored.

Note that the cut buffer’s contents need not be text, so zero bytes are not special. The
cut buffer’s contents can be retrieved later by any client calling XFetchBytes.

XStoreBytes can generate a BadAlloc error.

To store data in a specified cut buffer, use XStoreBuffer.

XStoreBuffer(display, bytes, nbytes, buffer)
Display * display]
char * bytes]
int nbytes]
int buffer]

display Specifies the connection to the X server.

bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.

nbytes Specifies the number of bytes to be stored.

buffer Specifies the buffer in which you want to store the bytes.

If the property for the buffer has never been created, a BadAtom error results.

XStoreBuffer can generate BadAlloc and BadAtom errors.

To return data from cut buffer 0, use XFetchBytes.

char * XFetchBytes (display, nbytes_return)
Display * display]
int *nbytes_return]

display Specifies the connection to the X server.

nbytesjreturn Returns the number of bytes in the buffer.

The XFetchBytes function returns the number of bytes in the nbytes_return argu¬
ment, if the buffer contains data. Otherwise, the function returns NULL and sets nbytes
to 0. The appropriate amount of storage is allocated and the pointer returned. The

214

Xlib — C Library XI1, Release 3

client must free this storage when finished with it by calling XFree. Note that the cut
buffer does not necessarily contain text, so it may contain embedded zero bytes and may
not terminate with a null byte.

To return data from a specified cut buffer, use XFetchBuffer.

char * XFetchBuffer (display, nbytes_return, buffer)
Display *display,
int *nbytes_return]
int buffer;

display Specifies the connection to the X server.

nbytesjreturn Returns the number of bytes in the buffer.

buffer Specifies the buffer from which you want the stored data returned.

The XFetchBuffer function returns zero to the nbytes_return argument if there is no
data in the buffer.

XFetchBuffer can generate a BadValue error.

To rotate the cut buffers, use XRotateBuffers.

XRotateBuffers (display, rotate)
Display * display,
int rotate;

display Specifies the connection to the X server.

rotate Specifies how much to rotate the cut buffers.

The XRotateBuffers function rotates the cut buffers, such that buffer 0 becomes buffer
n, buffer 1 becomes n + 1 mod 8, and so on. This cut buffer numbering is global to the
display. Note that XRotateBuffers generates BadMatch errors if any of the eight
buffers have not been created.

10.8. Determining the Appropriate Visual Type

A single display can support multiple screens. Each screen can have several different
visual types supported at different depths. You can use the functions described in this
section to determine which visual to use for your application.

The functions in this section use the visual information masks and the XVisuallnfo
structure, which is defined in <Xll/Xutil.h > and contains:

/* Visual information mask bits */

#define VisualNoMask 0x0
#define VisuallDMask 0x1

#define VisualScreenMask 0x2
^define VisualDepthMask 0x4
^define VisualClassMask 0x8

^define VisualRedMaskMask 0x10

^define VisualGreenMaskMask 0x20

^define VisualBlueMaskMask 0x40

^define VisualColormapSizeMask 0x80

^define VisualBitsPerRGBMask 0x100

^define VisualAllMask Ox IFF

/* Values */

typedef struct {
Visual ^visual;

215

XHfo - C Library Xll, Release 3

VisuallD visualid;
int screen;
unsigned int depth;
int class;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue__mask;
int colormapjsize;
int bits__per__rgb;

} XVisuallnfo;

To obtain a list of visual information structures that match a specified template, use
XGetVisuallnfo.

XVisuallnfo *XGetVisualInfo(display, vinfo_mask, vinfojtemplate, nitems_return)
Display * display,
long vinfo_ma$k;
XVisuallnfo *vinfo_template-,
int *nitems_return;

display Specifies the connection to the X server.

vinfo_mask Specifies the visual mask value.

vinfojtemplate Specifies the visual attributes that are to be used in matching the visual
structures.

nitemsjreturn Returns the number of matching visual structures.

The XGetVisuallnfo function returns a list of visual structures that match the attri¬
butes specified by vinfo_template. If no visual structures match the template using the
specified vinfo_mask, XGetVisuallnfo returns a NULL. To free the data returned by
this function, use XFree.

To obtain the visual information that matches the specified depth and class of the
screen, use XMatchVisuallnfo.

Status XMatchVisuallnfo(display, screen, depth, class, vinfojrelurn)
Display * display,
int screen;
int depth;
int class;
XVisuallnfo *vinfo_return;

display

screen

depth

class

vinfojreturn

Specifies the connection to the X server.

Specifies the screen.

Specifies the depth of the screen.

Specifies the class of the screen.

Returns the matched visual information.

The XMatchVisuallnfo function returns the visual information for a visual that
matches the specified depth and class for a screen. Because multiple visuals that match
the specified depth and class can exist, the exact visual chosen is undefined. If a visual is
found, XMatchVisuallnfo returns nonzero and the information on the visual to
vinfo_return. Otherwise, when a visual is not found, XMatchVisuallnfo returns zero.

216

Xlib — C Library Xll, Release 3

10.9. Manipulating Images

Xlib provides several functions that perform basic operations on images. All operations
on images are defined using an Xlmage structure, as defined in < Xll/Xlib.h >.
Because the number of different types of image formats can be very large, this hides
details of image storage properly from applications.

This section describes the functions for generic operations on images. Manufacturers can
provide very fast implementations of these for the formats frequently encountered on
their hardware. These functions are neither sufficient nor desirable to use for general
image processing. Rather, they are here to provide minimal functions on screen format
images. The basic operations for getting and putting images are XGetlmage and
XPutlmage.

Note that no functions have been defined, as yet, to read and write images to and from
disk files.

The Xlmage structure describes an image as it exists in the client’s memory. The user
can request that some of the members such as height, width, and xoffset be changed
when the image is sent to the server. Note that bytes_per_line in concert with offset can
be used to extract a subset of the image. Other members (for example, byte order,
bitmap_unit, and so forth) are characteristics of both the image and the server. If these
members differ between the image and the server, XPutlmage makes the appropriate
conversions. The first byte of the first line of plane n must be located at the address
(data -f (n * height * bytes_per_line)). For a description of the Xlmage structure, see
section 6.7.

To allocate sufficient memory for an Xlmage structure, use XCreatelmage.

Xlmage *XCreateImage(display, visual, depth, format, offset, data, width, height, bitmap_pad,
bytes_per_line)

Display * display,
Visual * visual]
unsigned int depth]
int format]
int offset]
char *data]
unsigned int width]
unsigned int height]
int bitmap_pad]
int bytes_per_line]

display

visual

depth

format

offset

data

width

height

bitmap_pad

Specifies the connection to the X server.

Specifies a pointer to the visual.

Specifies the depth of the image.

Specifies the format for the image. You can pass XYBitmap, XYPix-
map, or ZPixmap,

Specifies the number of pixels to ignore at the beginning of the scanline.

Specifies a pointer to the image data.

Specifies the width of the image, in pixels.

Specifies the height of the image, in pixels.

Specifies the quantum of a scanline (8, 16, or 32). In other words, the
start of one scanline is separated in client memory from the start of the
next scanline by an integer multiple of this many bits.

217

Xlib - C Library Xll, Release 3

bytes_jper_line Specifies the number of bytes in the client image between the start of one
scanline and the start of the next.

The XCreatelmage function allocates the memory needed for an Xlmage structure
for the specified display but does not allocate space for the image itself. Rather, it ini¬
tializes the structure byte-order, bit-order, and bitmap-unit values from the display and
returns a pointer to the Xlmage structure. The red, green, and blue mask values are
defined for Z format images only and are derived from the Visual structure passed in.
Other values also are passed in. The offset permits the rapid displaying of the image
without requiring each scanline to be shifted into position. If you pass a zero value in
bytes_per_line, Xlib assumes that the scanlines are contiguous in memory and calculates
the value of bytes_j>er_line itself.

Note that when the image is created using XCreatelmage, XGetlmage, or XSu-
blmage, the destroy procedure that the XDestroylmage function calls frees both the
image structure and the data pointed to by the image structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and add a con¬
stant offset to a Z format image are defined in the image object. The functions in this
section are really macro invocations of the functions in the image object and are defined
in <Xll/XutiLh >.

To obtain a pixel value in an image, use XGetPixel.

unsigned long XGetPixel (ximage, x, y)
Xlmage * ximage-,
int x;
int y,

ximage Specifies a pointer to the image.

x
y Specify the x and y coordinates.

The XGetPixel function returns the specified pixel from the named image. The pixel
value is returned in normalized format (that is, the least-significant byte of the long is
the least-significant byte of the pixel). The image must contain the x and y coordinates.

To set a pixel value in an image, use XPutPixel.

int XPutPixel [ximage, x, y, pixel)
Xlmage * ximage -,
int x;
int y;
unsigned long pixel;

ximage Specifies a pointer to the image.

X

y
pixel

Specify the x and y coordinates.

Specifies the new pixel value.

The XPutPixel function overwrites the pixel in the named image with the specified
pixel value. The input pixel value must be in normalized format (that is, the least-
significant byte of the long is the least-significant byte of the pixel). The image must
contain the x and y coordinates.

To create a subimage, use XSublmage.

218

XIib - C Library Xll, Release 3

Xlmage *XSubImage (ximage, x, y, subimage_width, subimage_height)
Xlmage * ximage-,
int x;
int y,
unsigned int subimagejwidth]
unsigned int subimage_height]

ximage Specifies a pointer to the image.

x
y Specify the x and y coordinates.

subimage_widthSpecifies the width of the new subimage, in pixels.

subimage_heightSpecifies the height of the new subimage, in pixels.

The XSublmage function creates a new image that is a subsection of an existing one.
It allocates the memory necessary for the new Xlmage structure and returns a pointer
to the new image. The data is copied from the source image, and the image must con¬
tain the rectangle defined by x, y, subimage_width, and subimage_height.

To increment each pixel in the pixmap by a constant value, use XAddPixel.

X\ddPixel(ximage, value)
Xlmage * ximage-,
long value]

ximage Specifies a pointer to the image.

value Specifies the constant value that is to be added.

The XAddPixel function adds a constant value to every pixel in an image. It is useful
when you have a base pixel value from allocating color resources and need to manipulate
the image to that form.

To deallocate the memory allocated in a previous call to XCreatelmage, use XDes-
troylmage.

int XDestroylmage(ximage)
Xlmage * ximage]

ximage Specifies a pointer to the image.

The XDestroylmage function deallocates the memory associated with the Xlmage
structure.

Note that when the image is created using XCreatelmage, XGetlmage, or XSu¬
blmage, the destroy procedure that this macro calls frees both the image structure and
the data pointed to by the image structure.

10.10. Manipulating Bitmaps

Xlib provides functions that you can use to read a bitmap from a file, save a bitmap to a
file, or create a bitmap. This section describes those functions that transfer bitmaps to
and from the client’s file system, thus allowing their reuse in a later connection (for
example, from an entirely different client or to a different display or server).

The X version 11 bitmap file format is:

^define name_width width
#define name_height height
^define name_x_hot x
^define name_y_hot y
static char name_bits[] = { 0xNN,... }

219

Xlib - C Library Xll, Release 3

The variables ending with _x_hot and _y_hot suffixes are optional because they are
present only if a hotspot has been defined for this bitmap. The other variables are
required. The _bits array must be large enough to contain the size bitmap. The bitmap
unit is eight. The name is derived from the name of the file that you specified on the
original command line by deleting the directory path and extension.

To read a bitmap from a file, use XReadBitmapFile.

int XReadBitmapFile(display, d, filename, width_return, heightjreturn, bitmap_return, x_hot_returr
y_hot_return)

Display * display,
Drawable d]
char * filename]
unsigned int *width_return, *height_return]
Pixmap *bitmap_return]
int *x_hot_return, *y_hot_return]

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

filename Specifies the file name to use. The format of the file name is operating-
system dependent.

widthjreturn
heightjreturn Return the width and height values of the read in bitmap file.

bitmap_return Returns the bitmap that is created.

x_hot_return
y_hot_return Return the hotspot coordinates.

The XReadBitmapFile function reads in a file containing a bitmap. The file can be
either in the standard X version 10 format (that is, the format used by X version 10 bit¬
map program) or in the X version 11 bitmap format. If the file cannot be opened,
XReadBitmapFile returns BitmapOpenFailed. If the file can be opened but does
not contain valid bitmap data, it returns BitmapFilelnvalid. If insufficient working
storage is allocated, it returns BitmapNoMemory. If the file is readable and valid, it
returns BitmapSuccess.

XReadBitmapFile returns the bitmap’s height and width, as read from the file, to
width_return and height_return. It then creates a pixmap of the appropriate size, reads
the bitmap data from the file into the pixmap, and assigns the pixmap to the caller’s
variable bitmap. The caller must free the bitmap using XFreePixmap when finished.
If name_x_hot and name_y_hot exist, XReadBitmapFile returns them to

x_hot_return and y_hot_return; otherwise, it returns -1,-1.

XReadBitmapFile can generate BadAlloc and BadDrawable errors.

To write out a bitmap to a file, use XWriteBitmapFile.

int XWriteBitmapFile(display, filename, bitmap, width, height, x_hot, y_hot)
Display * display]
char * filename]
Pixmap bitmap]
unsigned int width, height]
int x_hot, y_hot]

display Specifies the connection to the X server.

filename Specifies the file name to use. The format of the file name is operating-
system dependent.

220

Xlib - C Library Xll, Release 3

bitmap Specifies the bitmap.

width
height Specify the width and height.

x_hot
y_hot Specify where to place the hotspot coordinates (or -1,-1 if none are

present) in the file.

The XWriteBitmapFile function writes a bitmap out to a file. While XReadBit-
mapFile can read in either X version 10 format or X version 11 format, XWriteBit-
mapFile always writes out X version 11 format. If the file cannot be opened for writ¬
ing, it returns BitmapOpenFailed. If insufficient memory is allocated, XWriteBit¬
mapFile returns BitmapNoMemory; otherwise, on no error, it returns BitmapSuc-
cess. If x_hot and y_hot axe not -1, - 1, XWriteBitmapFile writes them out as the
hotspot coordinates for the bitmap.

XWriteBitmapFile can generate BadDrawable and BadMatch errors.

To create a pixmap and then store bitmap-format data into it, use XCreatePixmap-
FromBitmapData.

Pixmap XCreatePixmapFromBitmapData(display, d, data, width, height, fg, bg, depth)
Display * display,
Drawable d;
char *data\
unsigned int width, height;
unsigned long fg, bg;
unsigned int depth;

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

data Specifies the data in bitmap format.

width
height Specify the width and height.

fg
bg Specify the foreground and background pixel values to use.

depth Specifies the depth of the pixmap.

The XCreatePixmapFromBitmapData function creates a pixmap of the given
depth and then does a bitmap-format XPutlmage of the data into it. The depth must
be supported by the screen of the specified drawable, or a BadMatch error results.

XCreatePixmapF romBitmapData can generate BadAlloc and BadMatch errors.

To include a"bitmap written out by XWriteBitmapFile in a program directly, as
opposed to reading it in every time at run time, use XCreateBitmapFromData

Pixmap XCreateBitmapFromData(display, d, data, width, height)
Display * display,
Drawable d;
char *data;
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

data Specifies the location of the bitmap data.

221

Xlib - C Library Xll, Release 3

width
height Specify the width and height.

The XCreateBitmapFromData function allows you to include in your C program
(using #include) a bitmap file that was written out by XWriteBitmapFile (X version
11 format only) without reading in the bitmap file. The following example creates a
gray bitmap:

^include ’’gray.bitmap”

Pixmap bitmap;
bitmap = XCreateBitmapFromData(display, window, gray_bits, gray_width, gray_height);

If insufficient working storage was allocated, XCreateBitmapFromData returns
None. It is your responsibility to free the bitmap using XFreePixmap when finished.

XCreateBitmapFromData can generate a BadAlloc error.

10.11. Using the Resource Manager

The resource manager is a database manager with a twist. In most database systems,
you perform a query using an imprecise specification, and you get back a set of records.
The resource manager, however, allows you to specify a large set of values with an
imprecise specification, to query the database with a precise specification, and to get
back only a single value. This should be used by applications that need to know what
the user prefers for colors, fonts, and other resources. It is this use as a database for
dealing with X resources that inspired the name “Resource Manager,” although the
resource manager can be and is used in other ways.

For example, a user of your application may want to specify that all windows should
have a blue background but that all mail-reading windows should have a red back¬
ground. Presuming that all applications use the resource manager, a user can define this
information using only two lines of specifications. Your personal resource database usu¬
ally is stored in a file and is loaded onto a server property when you log in. This data¬
base is retrieved automatically by Xlib when a connection is opened.

As an example of how the resource manager works, consider a mail-reading application
called xmh. Assume that it is designed so that it uses a complex window hierarchy all
the way down to individual command buttons, which may be actual small subwindows
in some toolkits. These are often called objects or widgets. In such toolkit systems,
each user interface object can be composed of other objects and can be assigned a name
and a class. Fully qualified names or classes can have arbitrary numbers of component
names, but a fully qualified name always has the same number of component names as a
fully qualified class. This generally reflects the structure of the application as composed
of these objects, starting with the application itself.

For example, the xmh mail program has a name “xmh” and is one of a class of “Mail”
programs. By convention, the first character of class components is capitalized, and the
first letter of name components is in lowercase. Each name and class finally has an attri¬
bute (for example “foreground” or “font”). If each window is properly assigned a name
and class, it is easy for the user to specify attributes of any portion of the application.

At the top level, the application might consist of a paned window (that is, a window
divided into several sections) named “toe”. One pane of the paned window is a button
box window named “buttons” and is filled with command buttons. One of these com¬
mand buttons is used to retrieve (include) new mail and has the name “include”. This
window has a fully qualified name, “xmh.toe.buttons.include”, and a fully qualified class,
“Xmh.VPaned.Box.Command”. Its fully qualified name is the name of its parent,
“xmh.toe.buttons”, followed by its name, “include”. Its class is the class of its parent,
“Xmh.VPaned.Box”, followed by its particular class, “Command”. The fully qualified
name of a resource is the attribute’s name appended to the object’s fully qualified name,

222

Xlib - C Library Xll, Release 3

and the fully qualified class is its class appended to the object’s class.

This include button needs the following resources:

• Title string

• Font

• Foreground color for its inactive state

• Background color for its inactive state

® Foreground color for its active state

• Background color for its active state

Each of the resources that this button needs are considered to be attributes of the but¬
ton and, as such, have a name and a class. For example, the foreground color for the
button in its active state might be named “activeForeground”, and its class would be
“Foreground.”

When an application looks up a resource (for example, a color), it passes the complete
name and complete class of the resource to a look-up routine. After look up, the
resource manager returns the resource value and the representation type.

The resource manager allows applications to store resources by an incomplete
specification of name, class, and a representation type, as well as to retrieve them given
a fully qualified name and class.

10.11.1. Resource Manager Matching Rules

The algorithm for determining which resource name or names match a given query is the
heart of the database. Resources are stored with only partially specified names and
classes, using pattern matching constructs. An asterisk (*) is used to represent any
number of intervening components (including none). A period (.) is used to separate
immediately adjacent components. All queries fully specify the name and class of the
resource needed. A trailing period and asterisk are not removed. The library supports
100 components in a name or class. The look-up algorithm then searches the database
for the name that most closely matches (is most specific) this full name and class. The
rules for a match in order of precedence are:

1. The attribute of the name and class must match. For example, queries for:

xterm.scrollbar, background (name)
XTerm.Scrollbar. Background (class)

will not match the following database entry:

xterm. scrollbanon

2. Database entries with name or class prefixed by a period (.) are more specific than
those prefixed by an asterisk (*). For example, the entry xterm.geometry is more
specific than the entry xterm*geometry.

3. Names are more specific than classes. For example, the entry
“*scrollbar.background” is more specific than the entry “*Scrollbar.Background”.

4. Specifying a name or class is more specific than omitting either. For example, the
entry “Scrollbar*Background” is more specific than the entry “*Background”.

5. Left components are more specific than right components. For example,
“*vtl00*background” is more specific than the entry “*scrollbar*background’ for
the query “.vtlOO.scrollbar.background”.

6. If neither a period (.) nor an asterisk (*) is specified at the beginning, a period (.) is
implicit. For example, “xterm.background” is identical to “.xterm.background”.

223

Xlib - C Library Xll, Release 3

Names and classes can be mixed. As an example of these rules, assume the following
user preference specification:

xmh*background: red
*command.font: 8x13
^command, background: blue
^Command.Foreground: green
xmh. toc*Command.activeForeground :black

A query for the name “xmh.toe.messagefunctions.include.activeForeground” and class
“Xmh.VPaned.Box.Command.Foreground” would match
“xmh.toc*Command.activeForeground” and return “black”. However, it also matches
“*Command.Foreground”.

Using the precedence algorithm described above, the resource manager would return the
value specified by “xmh.toc*Command.activeForeground”.

10.11.2. Basic Resource Manager Definitions

The definitions for the resource manager’s use are contained in < Xll/Xresource.h >.
Xlib also uses the resource manager internally to allow for non-English language error
messages.

Database values consist of a size, an address, and a representation type. The size is
specified in bytes. The representation type is a way for you to store data tagged by
some application-defined type (for example, “font” or “color”). It has nothing to do
with the C data type or with its class. The XrmValue structure contains:

typedef struct {
unsigned int size;
caddr_t addr;

} XrmValue, *XrmValuePtr;

A resource database is an opaque type used by the look-up functions,

typedef struct _XrmHashBucketRec *XrmDatabase;

To initialize the resource manager, use Xrmlnitialize.

void Xrmlnitialize();

Most uses of the resource manager involve defining names, classes, and representation
types as string constants. However, always referring to strings in the resource manager
can be slow, because it is so heavily used in some toolkits. To solve this problem, a
shorthand for a string is used in place of the string in many of the resource manager
functions. Simple comparisons can be performed rather than string comparisons. The
shorthand name for a string is called a quark and is the type XrmQuark. On some
occasions, you may want to allocate a quark that has no string equivalent.

A quark is to a string what an atom is to a string in the server, but its use is entirely
local to your application.

To allocate a new quark, use XrmUniqueQuark.

XrmQuark XrmUniqueQuark ()

The XrmUniqueQuark function allocates a quark that is guaranteed not to represent
any string that is known to the resource manager.

To allocate some memory you will never give back, use Xpermalloc.

224

Xlib — C Library Xll, Release 3

char *Xpermalloc(size)
unsigned int size;

The Xpermalloc function is used by some toolkits for permanently allocated storage
and allows some performance and space savings over the completely general memory
allocator.

Each name, class, and representation type is typedefd as an XrmQuark.

typedef int XrmQuark, *XrmQuarkList;
typedef XrmQuark XrmName;
typedef XrmQuark XrmClass;
typedef XrmQuark XrmRepresentation;

Lists are represented as null-terminated arrays of quarks. The size of the array must be
large enough for the number of components used.

typedef XrmQuarkList XrmNameList;
typedef XrmQuarkList XrmClassList;

To convert a string to a quark, use XrmStringToQuark.

^define XrmStringToName(string) XrmStringToQuark(string)
#define XrmStringToClass(string) XrmStringToQuark(string)
^define XrmStringToRepresentation(string) XrmStringToQuark(string)

XrmQuark XrmStringToQuark (string)
char * string]

string Specifies the string for which a quark is to be allocated.

To convert a quark to a string, use XrmQuarkToString.

#define XrmNameToString(name) XrmQuarkToString(name)
^define XrmClassToString(class) XrmQuarkToString(class)
#define XrmRepresentationToString(type) XrmQuarkToString(type)

char *XrmQuarkToString(quark)
XrmQuark quark]

quark Specifies the quark for which the equivalent string is desired.

These functions can be used to convert to and from quark representations. The string
pointed to by the return value must not be modified or freed. If no string exists for that
quark, XrmQuarkToString returns NULL.

To convert a string with one or more components to a quark list, use XrmStringTo-
QuarkList.

#define XrmStringToNameList(str, name) XrmStringToQuarkList((str), (name))
#define XrmStringToClassList(str,class) XrmStringToQuarkList((str), (class))

void XrmStringToQuarkList(string, quarks_return)

char *string]
XrmQuarkList quarksjreturn]

string Specifies the string for which a quark is to be allocated.

quarks_return Returns the list of quarks.

225

Xlib - C Library Xll, Release 3

The XrmStrmgToQuarkList function converts the null-terminated string (generally
a fully qualified name) to a list of quarks. The components of the string are separated
by a period or asterisk character.

A binding list is a list of type XrmBindingList and indicates if components of name or
class lists are bound tightly or loosely (that is, if wildcarding of intermediate components
is specified).

typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, *XrmBindingList;

XrmBindTightly indicates that a period separates the components, and
XrmBindLoosely indicates that an asterisk separates the components.

To convert a string with one or more components to a binding list and a quark list, use
XrmStrmgToBindingQuarkList.

XrmStringToBindingQuarkList(string, bindingsjreturn, quarksjreturn)
char * string]
XrmBindingList bindings_return\
XrmQuarkList quarksjreturn]

string Specifies the string for which a quark is to be allocated.

bindings_returnRet\in\s the binding list. The caller must allocate sufficient space for the
binding list before calling XrmStrmgToBindingQuarkList.

quarksjreturn Returns the list of quarks. The caller must allocate sufficient space for
the quarks list before calling XrmStrmgToBindingQuarkList.

Component names in the list are separated by a period or an asterisk character. If the
string does not start with a period or an asterisk, a period is assumed. For example,
“*a.b*c” becomes:

quarks a b c
bindings loose tight loose

10.11.3. Resource Database Access

Xlib provides resource management functions that you can use to manipulate resource
databases. The next sections discuss how to:

• Store and get resources

• Get database levels

• Merge two databases

• Retrieve and store databases

10.11.3.1. Storing Into a Resource Database

To store resources into the database, use XrmPutResource or XrmQPutResource.
Both functions take a partial resource specification, a representation type, and a value.
This value is copied into the specified database.

void XrmPutResource (database, specifier, type, value)
XrmDatabase * database]
char * specifier]
char *type]
XrmValue * value]

database Specifies a pointer to the resource database.

226
i
!

Xlib - C Library Xll, Release 3

specifier Specifies a complete or partial specification of the resource.

type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmPutResource creates a new database and returns a
pointer to it. XrmPutResource is a convenience function that calls XrmStringTo-
BindingQuarkList followed by:

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

void XrmQPutResource(database, bindings, quarks, type, value)
XrmDatabase * database]
XrmBindingList bindings]
XrmQuarkList quarks]
XrmRepresentation type]
XrmValue *value]

database Specifies a pointer to the resource database.

bindings Specifies a list of bindings.

quarks Specifies the complete or oartial name or the class list of the resource.

type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmQPutResource creates a new database and returns a
pointer to it.

To add a resource that is specified as a string, use XrmPutStringResource.

void XrmPutStringResource (database, specifier, value)
XrmDatabase * database]
char * specifier;
char * value]

database Specifies a pointer to the resource database.

specifier Specifies a complete or partial specification of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmPutStringResource creates a new database and
returns a pointer to it. XrmPutStringResource adds a resource with the specified
value to the specified database. XrmPutStringResource is a convenience routine
that takes both the resource and value as null-terminated strings, converts them to
quarks, and then calls XrmQPutResource, using a “String” representation type.

To add a string resource using quarks as a specification, use
XrmQPutStringResource.

void XrmQPutStringResource(database, bindings, quarks, value)

XrmDatabase * database]
XrmBindingList bindings]
XrmQuarkList quarks]
char * value]

database Specifies a pointer to the resource database.

bindings Specifies a list of bindings.

XIib - C Library Xll, Release 3

quarks Specifies the complete or partial name or the class list of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmQPutStringResource creates a new database and
returns a pointer to it. XrmQPutStringResource is a convenience routine that con¬
structs an XrmValue for the value string (by calling strlen to compute the size) and
then calls XrmQPutResource, using a “String” representation type.

To add a single resource entry that is specified as a string that contains both a name
and a value, use XrmPutLineResource

void XrmPutLineResource (database, line)
XrmDatabase * database]
char *line]

database Specifies a pointer to the resource database.

line Specifies the resource value pair as a single string. A single colon (:)
separates the name from the value.

If database contains NULL, XrmPutLineResource creates a new. database and
returns a pointer to it. XrmP utLineResource adds a single resource entry to the
specified database. Any white space before or after the name or colon in the line argu¬
ment is ignored. The value is terminated by a new-line or a NULL character. To allow
values to contain embedded new-line characters, a “\n” is recognized and replaced by a
new-line character. For example, line might have the value
“xterm*background:green\n”. Null-terminated strings without a new line are also per¬
mitted.

10,11.3.2. Looking Up from a Resource Database

To-retrieve a resource from a resource database, use XrmGetResource or
XrmQGetResource.

Bool XrmGetResource (database, str_name, str_class, str_type_return, value_return)
XrmDatabase database;
char * strjname]
char *str_class]
char **str_type_return]
XrmValue *value_return;

database Specifies the database that is to be used.

strjname Specifies the fully qualified name of the value being retrieved (as a string).

str_class Specifies the fully qualified class of the value being retrieved (as a string).

strJype_returnReturns a pointer to the representation type of the destination (as a
string).

value return Returns the value in the database.

Bool XrmQGetResource (database, quark_name, quarkjclass, quarkJypejreturn, valuejreturn)

XrmDatabase database]
XrmNameList quark_name]
XrmClassList quark_class]
XrmRepresentation * quarkjtypejreturn]
XrmValue * valuejreturn]

228

Xlib - C Library Xll, Release 3

database Specifies the database that is to be used.

quark_name Specifies the fully qualified name of the value being retrieved (as a quark).

quark_class Specifies the fully qualified class of the value being retrieved (as a quark).

quark_type_r eturn
Returns a pointer to the representation type of the destination (as a
quark).

value_return Returns the value in the database.

The XrmGetResource and XrmQGetResource functions retrieve a resource from
the specified database. Both take a fully qualified name/class pair, a destination
resource representation, and the address of a value (size/address pair). The value and
returned type point into database memory; therefore, you must not modify the data.

The database only frees or overwrites entries on XrmPutResource, XrmQPu-
tResource, or XrmMergeDatabases. A client that is not storing new values into the
database or is not merging the database should be safe using the address passed back at
any time until it exits. If a resource was found, both XrmGetResource and
XrmQGetResource return True; otherwise, they return False.

10.11.3.3. Database Search Lists

Most applications and toolkits do not make random probes into a resource database to
fetch resources. The X toolkit access pattern for a resource database is quite stylized. A
series of from 1 to 20 probes are made with only the last name/class differing in each
probe. The XrmGetResource function is at worst a 2” algorithm, where n is the
length of the name/class list. This can be improved upon by the application program¬
mer by prefetching a list of database levels that might match the first part of a
name/class list.

To return a list of database levels, use XrmQGetSearchList.

typedef XrmHashTable *XrmSearchList;

Bool XrmQGetSearchList (database, names, classes, list_return, listjlength)
XrmDatabase database;
XrmNameList names;
XrmClassList classes;
XrmSearchList list_return;
int list_length;

database

names

classes

list_return

list_length

Specifies the database that is to be used.

Specifies a list of resource names.

Specifies a list of resource classes.

Returns a search list for further use. The caller must allocate sufficient
space for the list before calling XrmQGetSearchList.

Specifies the number of entries (not the byte size) allocated for
list return.

The XrmQGetSearchList function takes a list of names and classes and returns a list
of database levels where a match might occur. The returned list is in best-to-worst
order and uses the same algorithm as XrmGetResource for determining precedence.
If list_return was large enough for the search list, XrmQGetSearchList returns
True; otherwise, it returns False.

The size of the search list that the caller must allocate is dependent upon the number of
levels and wildcards in the resource specifiers that are stored in the database. The worst
case length is 3", where n is the number of name or class components in names or

229

XIib - C Library Xll, Release 3

classes.

When using XrmQGetSearchList followed by multiple probes for resources with a
common name and class prefix, only the common prefix should be specified in the name
and class list to XrmQGetSearchList.

To search resource database levels for a given resource, use XrmQGetSear-
chResource.

Bool XrmQGetSearchResource (list, name, class, typejreturn, value_return)
XrmSearchList list;
XrmName name;
XrmClass class;
XrmRepresentation *type_return;
XrmValue *value_return;

list

name

class

type_return

value return

Specifies the search list returned by XrmQGetSearchList.

Specifies the resource name.

Specifies the resource class.

Returns data representation type.

Returns the value in the database.

The XrmQGetSearchResource function searches the specified database levels for the
resource that is fully identified by the specified name and class. The search stops with
the first match. XrmQGetSearchResource returns True if the resource was found;
otherwise, it returns False.

A call to XrmQGetSearchList with a name and class list containing all but the last
component of a resource name followed by a call to XrmQGetSearchResource with
the last component name and class returns the same database entry as
XrmGetResource and XrmQGetResource with the fully qualified name and class.

10.11.3.4. Merging Resource Databases

To merge the contents of one database into another database, use XrmMergeData-
bases.

void XrmMergeDatabases(source_db, target_db)
XrmDatabase source_db, *target_db;

source_db Specifies the resource database that is to be merged into the target data¬
base.

target_db Specifies a pointer to the resource database into which the source data¬
base is to be merged.

The XrmMergeDatabases function merges the contents of one database into another.
It may overwrite entries in the destination database. This function is used to combine
databases (for example, an application specific database of defaults and a database of
user preferences). The merge is destructive; that is, the source database is destroyed.

10.11.3.5. Retrieving and Storing Databases

To retrieve a database from disk, use XrmGetFileDatabase.

XrmDatabase XrmGetFileDatabase (filename)
char * filename;

filename Specifies the resource database file name.

The XrmGetFileDatabase function opens the specified file, creates a new resource
database, and loads it with the specifications read in from the specified file. The

230

Xlib - C Library XI1, Release 3

specified file must contain lines in the format accepted by XrmPutLineResource. If
it cannot open the specified file, XrmGetFileDatabase returns NULL.

To store a copy of a database to disk, use XrmPutFileDatabase.

void XrmPutFileDatabase (database, stored_db)
XrmDatabase database;
char *stored_db;

database Specifies the database that is to be used.

stored_db Specifies the file name for the stored database.

The XrmPutFileDatabase function stores a copy of the specified database in the
specified file. The file is an ASCII text file that contains lines in the format that is
accepted by XrmPutLineResource.

To create a database from a string, use XrmGetStringDatabase.

XrmDatabase XrmGetStringDatabase (data)
char *data\

data Specifies the database contents using a string.

The XrmGetStringDatabase function creates a new database and stores the
resources specified in the specified null-terminated string. XrmGetStringDatabase is
similar to XrmGetFileDatabase except that it reads the information out of a string
instead of out of a file. Each line is separated by a new-line character in the format
accepted by XrmPutLineResource.

10.11.4. Parsing Command Line Options

The XrmParseCommand function can be used to parse the command line arguments
to a program and modify a resource database with selected entries from the command
line.

typedef enum {
XrmoptionNoArg,
XrmoptionlsArg,
XrmoptionStickyArg,
XrmoptionSepArg,
XrmoptionResArg,
XrmoptionSkipArg,
XrmoptionSkipLine

} XrmOptionKind;

/* Value is specified in OptionDescRec.value */
/* Value is the option string itself */
/* Value is characters immediately following option */
/* Value is next argument in argv */
/* Resource and value in next argument in argv */
/* Ignore this option and the next argument in argv */
/* Ignore this option and the rest of argv */

typedef struct {
char *option;
char *resourceName;
XrmOptionKind argKind;
caddr_t value;

/* Option specification string in argv */
/* Binding and resource name (sans application name)
/* Which style of option it is */
/* Value to provide if XrmoptionNoArg */

} XrmOptionDescRec, *XrmOptionDescList;

V

To load a resource database from a C command line, use XrmParseCommand.

231

Xlib - C Library Xllj Release 3

void XrmParseCommand (database, table, table_count, name, argc_in_out, argv_rn_out,)
XrmDatabase * database)
XrmOptionDescList table;
int table_count;
char *name;
int *argc_in_out)
char **argv_in_out;

database

table

table_count

name

argc_in_out

argv_in_out

Specifies a pointer to the resource database.

Specifies the table of command line arguments to be parsed.

Specifies the number of entries in the table.

Specifies the application name.

Specifies the number of arguments and returns the number of remaining
arguments.

Specifies a pointer to the command line arguments and returns the
remaining arguments.

The XrmParseCommand function parses an (argc, argv) pair according to the
specified option table, loads recognized options into the specified database with type
“String,” and modifies the (argc, argv) pair to remove all recognized options.

The specified table is used to parse the command line. Recognized entries in the table
are removed from argv, and entries are made in the specified resource database. The
table entries contain information on the option string, the option name, the style of
option, and a value to provide if the option kind is XrmoptionNoArg. The argc
argument specifies the number of arguments in argv and is set to the remaining number
of arguments that were not parsed. The name argument should be the name of your
application for use in building the database entry. The name argument is prefixed to
the resourceName in the option table before storing the specification. No separating
(binding) character is inserted. The table must contain either a period (.) or an asterisk
(*) as the first character in each resourceName entry. To specify a more completely
qualified resource name, the resourceName entry can contain multiple components.

For example, the following is part of the standard option table from the X Toolkit
Xtlnitialize function.

static XrmOptionDescRec opTable[] = {
{’’-background”, ’’background”,

bd”, ”*borderColor”,
{”-bg”, ” background”,

{’’-borderwidth”, ”*TopLevelShell.borderWidth”,
{’’-bordercolor”, ”*borderColor”,

{”-bw”, ” *TopLevelShell. borderWidth”,
{’’-display”, ’’.display”,
{”—fg”, ’’^foreground”,

(”-fn”, ”*font”,
{’’-font”, ”*font”,
{"-foreground”, ’’^foreground”,
{’’-geometry”, ” .TopLevelShell.geometry”,
{’’-iconic”, ” .TopLevelShell.iconic”,
{’’-name”, ’’.name”,
{’’-reverse”, ”*reverseVideo”,
{”-rv”, ”*reverseVideo”,
{’’-synchronous”, ”.synchronous”,
{’’-title”, ” .TopLevelShell. title”,
{”-xrm”, NULL,

XrmoptionSepArg, (caddr_t) NULL},
XrmoptionSepArg, (caddr_t) NULL},
XrmoptionSepArg, (caddr_t) NULL},

XrmoptionSepArg,(caddr_t) NULL},

XrmoptionSepArg, (caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},

XrmoptionSepArg, (caddr_t) NULL},
XrmoptionSepArg, (caddr_t) NULL},

XrmoptionSepArg, (caddr_t) NULL},
XrmoptionSepArg, (caddr_t) NULL},
XrmoptionSepArg, (caddr_t) NULL},
XrmoptionSepArg, (caddr_t) NLJLL},

XrmoptionNoArg, (caddr_t) ”on”},
XrmoptionSepArg, (caddr_t) NULL},
XrmoptionNoArg, (caddr_t) ”on”},
XrmoptionNoArg, (caddr_t) ”on”},
XrmoptionNoArg, (caddr_t) ”on”},
XrmoptionSepArg, (caddr_t) NULL},
XrmoptionResArg, (caddr_t) NULL},

232

Xlib - C Library Xll, Release 3

};

Id this table, if the -background (or -bg) option is used to set background colors, the
stored resource specifier matches all resources of attribute background. If the -bor-
derwidth option is used, the stored resource specifier applies only to border width attri¬
butes of class TopLevelShell (that is, outer-most windows, including pop-up windows). If
the -title option is used to set a window name, only the topmost application windows
receive the resource.

When parsing the command line, any unique unambiguous abbreviation for an option
name in the table is considered a match for the option. Note that uppercase and lower¬
case matter.

10.12. Using the Context Manager

The context manager provides a way of associating data with a window in your pro¬
gram. Note that this is local to your program; the data is not stored in the server on a
property list. Any amount of data in any number of pieces can be associated with a
window, and each piece of data has a type associated with it. The context manager
requires knowledge of the window and type to store or retrieve data.

Essentially, the context manager can be viewed as a two-dimensional, sparse array: one
dimension is subscripted by the window and the other by a context type field. Each
entry in the array contains a pointer to the data. Xlib provides context management
functions with which you can save data values, get data values, delete entries, and create
a unique context type. The symbols used are in < Xll/Xutil.h >.

To save a data value that corresponds to a window and context type, use XSaveCon-
text.

int XSaveContext(display, w, context, data)
Display * display,
Window w,
XContext context;
caddr_t data-,

display Specifies the connection to the X server.

w Specifies the window with which the data is associated.

context Specifies the context type to which the data belongs.

data Specifies the data to be associated with the window and type.

If an entry with the specified window and type already exists, XSaveContext overrides
it with the specified context. The XSaveContext function returns a nonzero error
code if an error has occurred and zero otherwise. Possible errors are XCNOMEM (out

of memory).

To get the data associated with a window and type, use XFindContext.

int XFindContext(display, w, context, data_return)
Display *display;
Window in;
XContext context;
caddr_t *data_return\

display Specifies the connection to the X server.

w Specifies the window with which the data is associated.

context Specifies the context type to which the data belongs.

233

Xiih - C Library Xll, Release 3

datajreturn Returns a pointer to the data.

Because it is a return value, the data is a pointer. The XFindContext function
returns a nonzero error code if an error has occurred and zero otherwise. Possible errors
are XCNOENT (context-not-found).

To delete an entry for a given window and type, use XDeleteContext.

int XDeleteContext(display, w, context)
Display * display ;
Window w;
XContext context;

display Specifies the connection to the X server.

w Specifies the window with which the data is associated.

context Specifies the context type to which the data belongs.

The XDeleteContext function deletes the entry for the given window and type from
the data structure. This function returns the same error codes that XFindContext
returns if called with the same arguments. XDeleteContext does not free the data
whose address was saved.

To create a unique context type that may be used in subsequent calls to XSaveCon-
text and XFindContext, use XXJniqueContext.

XContext XUniqueContext()

234

Xlib - C Library Xll, Release 3

Appendix A

Xlib Functions and Protocol Requests

This appendix provides two tables that relate to Xlib functions and the X protocol. The
following table lists each Xlib function (in alphabetical order) and the corresponding pro¬
tocol request that it generates.

Xlib Function Protocol Request

XActivateScreenSaver
XAddHost
XAddHosts
XAddToSaveSet
XVllocColor
XAllocColorCells
XAllocColorP lanes
XAllocNamed Color
XAllowEvents
XAutoRepeatOff
XAu toRepeatOn

XBell
XChangeActivePointerGrab
XChangeGC
XChangeKey board Control
XChangeKeyboardMapping
XChangePointerControl
XChangeProperty
XCh angeSaveSet
XChange Window Attributes
XCirculateSubwindows
XCirculateSubwindowsDown
XCirculateSubwindowsUp
XClearArea
XClearWindow
XConfigureWindow
XConvertSelection
XCopyArea
XCopyColormapAndF ree
XCopyGC
XCopyPlane
XCreateBitmapF romData

XCreateColormap
XCreateF ontCursor
XCreateGC
XCreateGlyphCursor
XCreatePixmap
XCreateP ixm apCursor

ForceScreenSaver
ChangeHosts
ChangeHosts
ChangeSaveSet
AllocColor
AllocColorCells
AllocColorPlanes
AllocNamedColor
AllowEvents
Chan geKey board Control
ChangeKeyboardControl
Bell
ChangeActivePointerGrab
ChangeGC
»C h an geKey board Con trol
Chan geKey boardMapping
ChangePointerControl
ChangeProperty
ChangeSaveSet
Change WindowAttributes
Circulate Window
Circulate Window
Circulate Window
ClearArea
ClearArea
Configure Window
ConvertSelection
Copy Area
CopyColormapAndFree
CopyGC
CopyPlane
CreateGC
CreatePixmap
FreeGC
Putlmage
CreateColormap
CreateGlyph Cursor
CreateGC
CreateGlyphCursor
CreatePixmap
CreateCursor

235

Xlib - C Library Xll, Release 3

Xlib Function Protocol Request

XCreatePixmapF romData

XCreateSimple Window
XCreate Window
XDefineCursor
XDeleteProperty
XDestroy Sub windows
XDestroy Window
XDisableAccessControl
XDrawArc
XDrawArcs
XDrawIm ageString
XDrawImageStringl6
XDrawLine
XDrawLines
XDrawPoint
XDrawPoints
XDrawRectangle
XDrawRectangles
XDrawSegments
XDrawString
XDrawStringl6
XDrawText
XDrawTextl6
XEnableAccessControl
XFetchBytes
XFetchName
XFillArc
XFillArcs
XFillPolygon
XFillRectangle
XFillRectangles
XForceScreenSaver
XFreeColormap
XF reeColors
XFreeCursor
XFreeFont
XFreeGC
XFreePixmap
XGetAtomName
XGetFontPath
XGetGeometry
XGetlconSizes
XGetlmage
XGetlnputFocus
XGetKey board Control
XGetKeyboardMapping
XGetModifierMapping
XGetMotionEvents
XGetModifierMapping

CreateGC
CreatePixmap
FreeGC
Putlmage
CreateWindow
CreateWindow
Change Window Attributes
DeleteProperty
Destroy Subwindows
Destroy Window
SetAccessControl
PolyArc
Poly Arc
Ima.geText8
ImageTextl6
PolySegment
Poly Line
PolyPoint
PolyPoint
Poly Rectangle
Poly Rectangle
PolySegment
PolyText8
PolyTextl6
PolyText8
PolyTextl6
Set AccessCon trol
GetProperty
GetProperty
PolyFillArc
PolyFillArc
FillPoly
PolyFillRectangle

PolyFillRectangle
ForceScreenSaver
FreeColormap
F reeColors
FreeCursor
CloseFont
FreeGC
F reePixmap
GetAtomName
GetFontPath
GetGeometry
GetProperty
Getlmage
GetlnputFocus
Get-Key board Con trol
GetKeyboardMapping
GetModifie'rMapping
GetMotionEvents
GetModifierMapping

236

Xlib - C Library XI1, Release 3

Xlib Function Protocol Request

XGetNormalHints
XGetPointerControl
XGetPointerMapping
XGetScreenSaver
XGetSelectionOwner
XGetSizeHints
XGetWMHints
XGetWindowAttribu tes

XGetWindowProperty
XGetZoomHints
XGrabButton
XGrabKey
XGrabKey board
XGrabPointer
XGrabServer
XInitExtension
XInstallColorrnap
XIntern Atom
XKillClient
XListExtensions
XListFonts
XListFontsWithlnfo
XListHosts
XListlnstalledColormaps
XListProperties
XLoadFont
XLoad Query Font

XLookupColor
XLowerWindow
XMapRaised

XMapSub windows
XMap Window
XMoveResize Window
XMoveWindow
XNoOp
XOpenDisplay
XParseColor
XPutlmage
XQueryBestCursor
XQueryBestSize
XQueryBestStipple
XQueryBestTile
XQueryColor
XQueryColors
XQueryExtension
XQueryFont
XQueryKeymap
XQueryPointer
XQueryTextExtents

GetProperty
GetPoin terCon trol
GetPointerMapping
GetScreenSaver
GetSelection Owner
GetProperty
GetProperty
GetWindowAttributes
GetGeometry
GetProperty
GetProperty
GrabButton
GrabKey
GrabKey board
GrabPointer
GrabServer
QueryExtension
InstallColormap
InternAtom
KillClien t
ListExtensions
ListFonts
ListFontsWithlnfo
ListHosts
ListlnstalledColormaps
ListProperties
OpenFont
OpenFont
QueryFont
LookupColor
Configure Window
Configure Window
Map Window
MapSubwindows
MapWindow
ConfigureWindow
ConfigureWindow
NoOperation
CreateGC
LookupColor
Putlmage
Query BestSize
Query BestSize
Query BestSize
Query BestSize
QueryColors
QueryColors
QueryExtension
QueryFont
QueryKeymap
QueryPointer
QueryTextExtents

237

Xlib — C Library Xll, Release 3

Xlib Function Protocol Request

XQueryTextExtentsl6
XQueryTree
XRaiseWindow
XReadBitmapFile

QueryTextExtents
QueryTree
Configure Window
CreateGC
CreatePixmap
FreeGC

XRecolorCursor
XRemoveF romSaveSet
XRemoveHost
XRemoveHosts
XReparentWindow
XResetScreenSaver
XResizeWindow
XRestack Windows
XRotateBuffers
XRotateWindowProperties
XSelectlnput
XSendEvent
XSet AccessCon trol
XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetClipRectangles
XSetCloseDownMode
XSetCommand
XSetDashes
XSetFillRule
XSetFillStyle
XSetFont
XSetFontPath
XSetForeground
XSetFunction
XSetGraphicsExposures
XSetlconName
XSetlconSizes
XSetlnputFocus
XSetLineAttributes
XSetModifierMapping
XSetNormalHints
XSetPlaneMask
XSetPointerMapping
XSetScreenSaver
XSetSelection Owner
XSetSizeHints
XSetStandardProperties
XSetState
XSetStipple
XSetSubwindowMode
XSetTile
XSetTSOrigin

Putlmage
RecolorCursor
ChangeSaveSet
ChangeHosts
ChangeHosts
ReparentWindow
ForceScreenSaver
ConfigureWindow
ConfigureWindow
RotateProperties
RotateProperties
Change Window Attributes
SendEvent
SetAccessControl
ChangeGC
ChangeGC
ChangeGC
ChangeGC
SetClipRectangles
SetCloseDownMode
ChangeProperty
SetDashes
ChangeGC
ChangeGC
ChangeGC
SetFontPath
ChangeGC
ChangeGC
ChangeGC
ChangeProperty
ChangeProperty
SetlnputFocus
ChangeGC
SetModifierMapping
ChangeProperty
ChangeGC
SetPointerMapping
SetScreenSaver
SetSelection Owner
ChangeProperty
ChangeProperty
ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeGC

238

Xlib - C Library Xll, Release 3

Xlib Function Protocol Request

XSetWMHints
XSetWindowBackground
XSetWindowBackgroundPixmap
XSetWindow Border
XSet Window BorderPixmap
XSetWindowBorderWidth
XSetWindowColormap
XSetZoomHints
XStoreBuffer
XStoreBytes
XStoreColor
XStoreColors
XStoreName
XStoreNamedColor
XSync
XTranslateCoordinates
XUndefineCursor
XUngrabButton
XUligrabKey
XUngrabKey board
XUngrabPointer
XUngrabServer
XUninstallColormap
XUn load Font
XUnmapSub windows
XUnmap Window
XWarpPointer

ChangeProperty
ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
Configure Window
ChangeWindowAttributes
ChangeProperty
ChangeProperty
ChangeProperty
StoreColors
StoreColors
ChangeProperty
StoreNamedColor
GetlnputFocus
TranslateCoordinates
ChangeWindowAttributes
UngrabButton
UngrabKey
UngrabKey board
UngrabPointer
UngrabServer
UninstallColormap
CloseFont
UnmapSubwindows
UnmapWindow -
WarpPointer

239

Xlib - C Library Xll, Release 3

The following table lists each X protocol request (in alphabetical order) and the Xlib
functions that reference it.

Protocol Request Xlib Function

AllocColor
AllocColorCells
AllocColorPlanes
AllocNamedColor
AllowEvents
Bell
SetAccessControl

XAllocColor
XAllocColorCells
XAllocColorPlanes
XAllocNamedColor
XAllowEvents
XBell
XDisableAccessCon trol
XEn ableAccessControl
XSetAccessControl

ChangeActivePointerGrab
SetCloseDownMode
ChangeGC

XChangeActivePointerGrab
XSetCloseDownMode
XChangeGC
XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetFillRule
XSetFillStyle
XSetFont
XSetForeground
XSetF unction
XSetGraphicsExposures
XSetLine Attributes
XSetPlaneMask
XSetState
XSetStipple
XSetSubwindowMode
XSetTile

ChangeHosts
XSetTSOrigin
XAddHost
XAddHosts
XRemoveHost
XRemoveHosts

ChangeKeyboardControl XAutoRepeatOff
XAutoRepeatOn
XChangeKeyboardControl

ChangeKeyboardMapping
ChangePointerControl
ChangeProperty

XChangeKeyboardMapping
XChangePointerControl
XCh angeP roperty
XSetCommand
XSetlconName
XSetlconSizes
XSetNormalHints
XSetSizeHints
XSetStandardProperties
XSetWMHints
XSetZoomHints
XStoreBuffer
XStoreBytes

240

Xlib - C Library Xll, Release 3

Protocol Request Xlib Function

ChangeSaveSet
XStoreName
XAddToSaveSet
XChangeSaveSet
XRemoveF romSaveSet

ChangeWindowAttributes XChangeWindowAttributes
XDefineCursor
XSelectlnput
XSetWindowBackground
XSetWindowBackgroundPixmap
XSetWindowBorder
XSetWindowBorderPixmap
XSetWindowColormap
XUndefineCursor

CirculateWindow XCirculateSubwindowsDown
XCirculateSubwindowsUp
XCirculateSubwindows

ClearArea XClearArea
XClearWindow

CloseFont XFreeFont
XUnloadFont

ConfigureWindow XCon figure Window
XLower Window
XMapRaised
XMoveResizeWindow
XMoveWindow
XRaise Window
XResize Window
XRestack Windows
XSetWindowBorderWidth

ConvertSelection
Copy Area
CopyColormapAndF ree
CopyGC
CopyPlane
CreateColormap
CreateCursor
CreateGC

XConvertSelection
XCopyArea
XCopyColormapAndF ree
XCopyGC
XCopyPlane
XCreateColormap
XCreatePixmapCursor
XCreateGC

CreateGlyphCursor

XCreateBitmapF romData
XCreatePixmapF romData
XOpenDisplay
XReadBitmapF ile
XCreateF on tCu rsor
XCreateGlyphCursor

CreatePixmap XCreatePixmap
XCreateBitmapFromData
XCreatePixmapF romData
XReadBitmapFile

CreateWindow XCreateSim pie Window
XCreateWindow

DeleteProperty
DestroySubwindows
Destroy Window

XDeleteProperty
XDestroySubwindows
XDestroy Window

241

Xlib - C Library Xll, Release 3

Protocol Request Xlib Function

FillPoly
ForceScreenSaver

XFillPolygon
XActivateScreenSaver
XForceScreenSaver
XResetScreenSaver

FreeColormap
FreeColors
FreeCursor
FreeGC

XFreeColormap
XF reeColors
XFreeCursor
XFreeGC

FreePixmap
GetAtomName
GetFontPath
GetGeometry

XCreateBitmapF romData
XCreatePixmapF romData
XReadBitmapF ile
XFreePixmap
XGetAtomName
XGetFontPath
XGetGeometry
XGetWindowAttributes

Getlmage
GetlnputFocus

XGetlmage
XGetlnputFocus
XSync

GetKeyboardControl
GetKeyboardMapping
GetModifierMapping
GetMotionEvents
GetPointerControl
GetPointerMapping
GetProperty

XGetKeyboardControl
XGetKeyboardMapping
XGetModifierMapping
XGetMotionEven ts
XGetPointerControl
XGetPointerMapping
XFetch Bytes
XFetchName
XGetlconSizes
XGetNormalHints
XGetSizeHints
XGetWMHints
XGetWindowProperty
XGetZoomHints

GetSelection Owner
GetWindowAttributes
GrabButton
GrabKey
GrabKeyboard
GrabPointer
GrabServer
ImageTextl6
ImageText8
InstallColormap
InternAtom
KillClient
ListExtensions
ListFonts
ListFontsWithlnfo
ListHosts
ListlnstalledColormaps
ListProperties
LookupColor

XGetSelection Owner
XGetWindowAttributes
XGrabButton
XGrabKey
XGrabKey board
XGrabPointer
XGrabServer
XDrawImageStringl6
XDrawImageString
XInstallColormap
XInternAtom
XKillClient
XListExtensions
XListFonts
XListFontsWithlnfo
XListHosts
XListlnstalledColormaps
XListProperties
XLookupColor

242

Xlib — C Library XI1, Release 3

Protocol Request Xlib Function

MapSub windows
MapWindow

XParseColor
XMapSubwindows
XMapRaised
XMapWindow

NoOperation
OpenFont

XNoOp
XLoadFont
XLoadQueryFont

Poly Arc XDrawArc
XDrawArcs

PolyFillArc XFillArc
XFillArcs

PolyFillRectangle XFillRectangle
XFillRectangles

PolyLine
PolyPoint

XDrawLines
XDrawPoint
XDrawPoints

PolyRectangle XDrawRectangle
XDrawRectangles

PolySegment XDrawLine
XDrawSegrnents

PolyTextl6 XDrawStringl6
XDrawTextl6

PolyText8 XDrawString
XDrawText

Putlmage XPutlmage
XCreateBitmapF romData
XCreatePixmapF romData
XReadBitmapFile

QueryBestSize XQueryBestCursor
XQueryBestSize
XQueryBestStipple
XQueryBestTile

QueryColors XQueryColor
XQueryColors

QueryExtension XInitExtension
XQueryExtension

QueryFont XLoadQueryFont
XQueryFont

QueryKeymap
QueryPointer
Query TextExtents

XQueryKeymap
XQueryPointer
XQuery TextExtents
XQueryTextExtentsl6

QueryTree
Recolor Cursor
Reparent Window
RotateProperties

XQueryTree
XRecolorCursor
XReparentWindow
XRotateBuffers
XRotateWindowProperties

SendEvent
SetClipRectangles
SetCloseDownMode
SetDashes
SetFontPath

XSendEvent
XSetClipRectangles
XSetCloseDownMode
XSetDashes
XSetFontPath

243

Xlib - C Library Xll, Release 3

Protocol Request Xlib Function

SetlnputFocus
SetModifierMapping
SetPointerMapping
SetScreenSaver

SetSelection Owner
StoreColors

StoreNamedColor
TranslateCoordinates
UngrabButton
UngrabKey
UngrabKey board
UngrabPointer
UngrabServer
UninstallColormap
UnmapSubwindows
UnmapWindow
WarpPointer

XSetlnputFocus
XSetModifierMapping
XSetPointerMapping
XGetScreenSaver
XSetScreenSaver
XSetSelectionOwner
XStoreColor
XStoreColors
XStoreNamedColor
XT ranslateCoord in ates
XUngrabButton
XUngrabKey
XUngrabKey board
XUngrabPointer
XUngrabServer
XUninstallColormap
XUnmapSub Windows
XUn map Window
XWarpPointer

244

Xlib — C Library XI1, Release 3

The following are the available cursors that can be used with XCreateFontCursor.

#define XC_X_cursor 0

#define XC_arrow 2
#define XC_b&sed_arrow_down 4

^define XC_b&sed_ajrow_up g

#define XC_boat 8

#define XC_bogosity 10

#define XC_bottom_left_corner 12

#define XC_b°ttom_right_corner 14

#define XC_bottom_side 16

#define XC_bottom_tee 18

#define XC_box_spiral 20

#deflne XC_center_ptr 22

#define XC_circle 24

#define XC_clock 26

#define XC_coffee_mug 28

#define XC_cross 30

#define XC_cross_reverse 32

#define XC_crosshair 34

#define XC_diamond_cross 36

#define XC_dot 38

#define XC_dot_box_mask 40
#define XC_double_arrow 42

#define XC_drart_Iarge 44

#d«fine XC_draft__small 46
#define XC_draped_box 48

#define XC_exchange 50

#define XC_fleur 52

#define XC_gobbler 54

#define XC_gumby 56

#define XC_ha.nd 58

#define XC_handl_mask 60

#define XC_heart 62

#define XCJcon 64

#define XC_iron_cross 66

#define XCJeft_ptr 68

#define XC_left_side 70

#define XC_left_tee 72

#define XCJeftbutton 74

#define XCJl_angle 76

#define XCJr_angle 78

#define XC_man 80

#define XC_middlebutton 82

#define XC_mouse 84

#define XC_pencil 86

#define XC_pirate 88

#define XC_plus 90

#define XC_question_arrow 92

#define XC_right_ptr 94

#define XC_right_side 96

#define XC_right_tee 98

#define XC_rightbutton 100

#define XC_rtl_logo 102

#define XC_sailboat 104

#define XC_sb_down_arrow 106
#define XC_sb_h_d°uble_arrow 108

#define XC_sb_left_arrow 110

#define XC_sb_right_arrow 112

#define XC_sb_up_arrow 114

#define XC_sb_v_double_arrow 116

#define XC..shuttle 118

#define XC_sizing 120

#define XC_spider 122

#define XC_spraycan 124

#define XC_star 126

#define XC_target 128

#define XC_tcross 130

#define XC_topJeft_arrow 132

#define XC_top_left_corner 134

#define XC_top_right_corner 136

#define XC_top_side 138

#define XC_top_tee 140

#define XC_trek 142

#define XC_ul_angle 144

#define XC_umbrella 146

#define XC_ur_angle 148

#define XC_watch 150

#define XC_xterm 152

245

Xlib — C Library Xll, Release 3

I

Appendix C

Extensions

Because X can evolve by extensions to the core protocol, it is important that extensions not be
perceived as second class citizens. At some point, your favorite extensions may be adopted as
additional parts of the X Standard.

Therefore, there should be little to distinguish the use of an extension from that of the core proto¬
col. To avoid having to initialize extensions explicitly in application programs, it is also impor¬
tant that extensions perform “lazy evaluations” and automatically initialize themselves when
called for the first time.

This appendix describes techniques for writing extensions to Xlib that will run at essentially the
same performance as the core protocol requests.

Note

It is expected that a given extension to X consists of multiple requests. Defining ten
new features as ten separate extensions is a bad practice. Rather, they should be
packaged into a single extension and should use minor opcodes to distinguish the
requests.

The symbols and macros used for writing stubs to Xlib are listed in < Xll/Xlibint.h >.
i

Basic Protocol Support Routines

The^basic protocol requests for extensions are XQueryExtension and XListExtensions.

Bool XQ u e ry Ex tension (display, name, major_opcode_return, first_event_retvrn, first_error_retvrn)

Display * display ;

char *name;

int *major_opcode_return;

int * first_event_return;

int *fi.rst_error_retv.rn;

XQueryExtension determines if the named extension is present. If so, the major opcode for the
extension is returned (if it has one); otherwise, False is returned. Any minor opcode and the
request formats are specific to the extension. If the extension involves additional event types, the
base event type code is returned; otherwise, False is returned. The format of the events is
specific to the extension. If the extension involves additional error codes, the base error code is
returned; otherwise, False is returned. The format of additional data in the errors is specific to
the extension.

The extension name should be in the ISO Latin-1 encoding, and uppercase and lowercase do
matter.

char **XListExtensions(display, nextensionsjreturn)

Display * display;

int *nextensions_return;

XListExtensions returns a list of all extensions supported by the server.

XFreeExtensionList(list)

char **list;

XFreeExtensionList frees the memory allocated by XListExtensions.

246

Xlib — C Library Xll, Release 3

Hooking into Xlib

These functions allow you to hook into the library. They are not normally used by application
programmers but are used by people who need to extend the core X protocol and the X library
interface. The functions, which generate protocol requests for X, are typically called stubs.

In extensions, stubs first should check to see if they have initialized themselves on a connection.
If they have not, they then should call XInitExtension to attempt to initialize themselves on
the connection.

If the extension needs to be informed of GC/font allocation or deallocation or if the extension
defines new event types, the functions described here allow the extension to be called when these
events occur.

The XExtCodes structure returns the information from XInitExtension and is defined in
< Xll/Xlib.h >:

typedef struct _XExtCodes {
int extension;
int major_opcode;
int first_event;
int first_error;

} XExtCodes;

/* public to extension, cannot be changed */
/* extension number */
/* major op-code assigned by server */
/* first event number for the extension */
/* first error number for the extension */

XExtCodes *XInitExtension(display, name)

Display * display ;

char *name;

XInitExtension determines if the extension exists. Then, it allocates storage for maintaining the
information about the extension on the connection, chains this onto the extension list for the con¬
nection, and returns the information the stub implementor will need to access the extension. If
the extension does not exist, XInitExtension returns NULL.

In particular, the extension number in the XExtCodes structure is.needed in the other calls that
follow. This extension number is unique only to a single connection.

XExtCodes *XAddExtension (display)

Display * display,

For local Xlib extensions, XAddExtension allocates the XExtCodes structure, bumps the
extension number count, and chains the extension onto the extension list. (This permits exten¬
sions to Xlib without requiring server extensions.)

Hooks into the Library

These functions allow you to define procedures that are to be called when various circumstances
occur. The procedures include the creation of a new GC for a connection, the copying of a GC,
the freeing a GC, the creating and freeing of fonts, the conversion of events defined by extensions
to and from wire format, and the handling of errors.

All of these functions return the previous routine defined for this extension.

int (*XESetCloseDisplay(display, extension, proc))()

Display * display, /* display */
int extension; /* extension number */
int (*proc){); /* routine to call when display closed */

You use this procedure to define a procedure to be called whenever XCloseDisplay is called.
This procedure returns any previously defined procedure, usually NULL.

When XCloseDisplay is called, your routine is called with these arguments:

(*proc)(display, codes)
Display *display;

247

Xlib - C Library Xll, Release 3

XExtCodes ‘codes;

int (*XESetCreateGC(display, extension, proc))()
Display * display, /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when GC created */

You use this procedure to define a procedure to be called whenever a new GC is created. This
procedure returns any previously defined procedure, usually NULL.

When a GC is created, your routine is called with these arguments:

(*proc)(display, gc, codes)
Display *display;
GC gc;
XExtCodes *codes;

int (*XESetCopyGC(display, extension, proe))()
Display * display, /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when GC copied */

You use this procedure to define a procedure to be called whenever a GC is copied. This pro¬
cedure returns any previously defined procedure, usually NULL.

When a GC is copied, your routine is called with these arguments:

(‘proc)(display, gc, codes)
Display ‘display;
GC gc;
XExtCodes ‘codes;

int (*XESetFreeGC(display, extension, proc))()
Display * display ; /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when GC freed */

You use this procedure to define a procedure to be called whenever a GC is freed. This procedure
returns any previously defined procedure, usually NULL.

When a GC is freed, your routine is called with these arguments:

(*proc)(display, gc, codes)
Display ‘display;
GC gc;
XExtCodes ‘codes;

int (*XESetCreateFont(display, extension, proc))()
Display * display; /* display */
int extension ; /* extension number */
int (*proe)(); /* routine to call when font created */

You use this procedure to define a procedure to be called whenever XXoadQueryFont and
XQueryFont are called. This procedure returns any previously defined procedure, usually
NULL.

When XLoadQueryFont or XQueryFont is called, your routine is called with these argu¬
ments:

(*proc)(display, fs, codes)
Display ‘display;
XFontStruct *fs;
XExtCodes ‘codes;

248

Xlib - C Library Xll, Release 3

int (*XESetFreeFont(display, extension, proc))()

Display * display, /* display */

int extension; /* extension number */

int (*proc)(); /* routine to call when font freed */

You use this procedure to define a procedure to be called whenever XFreeFont is called. This

procedure returns any previously defined procedure, usually NULL.

When XFreeFont is called, your routine is called with these arguments:

(*proc)(display, fs, codes)

Display *display;

XFontStruct *fs;

XExtCodes *codes;

The next two functions allow you to define new events to the library.

Note

There is an implementation limit such that your host event structure size cannot be

bigger than the size of the XEvent union of structures. There also is no way to

guarantee that more than 24 elements or 96 characters in the structure will be fully

portable between machines.

int (*XESetWireToEvent(display, eventjnumber, proc)){)

Display * display; /* display */

int eventjnumber; /* event routine to replace */

Bool (*proc)(); /* routine to call when converting event */

You use this procedure to define a procedure to be called when an event needs to be converted

from wire format (xEvent) to host format (XEvent). The event number defines which protocol

event number to install a conversion routine for. This procedure returns any previously defined

procedure.

Note

You can replace a core event conversion routine with one of your own, although this is

not encouraged. It would, however, allow you to intercept a core event and modify it

before being placed in the queue or otherwise examined.

When Xlib needs to convert an event from wire format to host format, your routine is called with

these arguments:

Status (*proc)(display, re, event)

Display *display;

XEvent *re;

xEvent *event;

Your routine must return status to indicate if the conversion succeeded. The re argument is a

pointer to where the host format event should be stored, and the event argument is the 32-byte

wire event structure. In the XEvent structure you are creating, type must be the first member

and window^ must be the second member. You should fill in the type member with the type

specified for the xEvent structure. You should copy all other members from the xEvent struc¬

ture (wire format) to the XEvent structure (host format). Your conversion routine should return

True if the event should be placed in the queue or False if it should not be placed in the queue.

Status (*XESetEventToWire(display, eventjnumber, proc))()

Display * display ; /* display */

int eventjiumber; /* event routine to replace */

int (*proc)(); /* routine to call when converting event */

249

Xlib - C Library Xll, Release 3

You use this procedure to define a procedure to be called whenan event needs to be converted

from host format (XEvent) to wire format (xEvent) form. The event number defines which

protocol event number to install a conversion routine for. This procedure returns any previously

defined procedure. It returns zero if the conversion fails or nonzero otherwise.

Note

You can replace a core event conversion routine with one of your own, although this is

not encouraged. It would, however, allow you to intercept a core event and modify it

before being sent to another client.

When Xlib needs to convert an event from wire format to host format, your routine is called with

these arguments:

(*proc)(display, re, event)

Display *display;

XEvent *re;

xEvent *event;

The re argument is a pointer to the host format event, and the event argument is a pointer to

where the 32-byte wire event structure should be stored. In the XEvent structure that you are

forming, you must have “type” as the first member and “window” as the second. You then

should fill in the type with the type from the xEvent structure. All other members then should

be copied from the wire format to the XEvent structure.

int (*XESetError(display, extension, proc))()

Display * display; /* display */

int extension; /* extension number */

int (*proc)(); /* routine to call when X error happens */

Inside Xlib, there are times that you may want to suppress the calling of the external error han¬

dling when an error occurs. This allows status to be returned on a call at the cost of the call

being synchronous (though most such routines are query operations, in any case, and are typically

programmed to be synchronous).

When Xlib detects a protocol error in _XReply, it calls your procedure with these arguments:

int (*proc)(display, err, codes, ret_code)

Display *display;

xError *err;

XExtCodes * codes;

int *ret_code;

The err argument is a pointer to the 32-byte wire format error. The codes argument is a pointer

to the extension codes structure. The ret_code argument is the return code you may want

_XReply returned to.

If your routine returns a zero value, the error is not suppressed, and the client’s error handler is

called. (For further information, see section 8.12.2.) If your routine returns nonzero, the error is

suppressed, and _XReply returns the value of ret_code.

char *(*XESetErrorString(display, extension, proc))()

Display * display, /* display */

int extension; /* extension number */

char *(*proc)(); /* routine to call to obtain an error string */

The XGetErrorText function returns a string to the user for an error. XESetErrorString

allows you to define a routine to be called that should return a pointer to the error message. The

following is an example.

(*proc)(display, code, codes, buffer, nbytes)

Display *display;

250

Xlib - C Library Xll, Release 3

int code;

XExtCodes ‘codes;

char *buffer;

int nbytes;

Your procedure is called with the error code for every error detected. You should copy nbytes of

a null-terminated string containing the error message into buffer.

int (‘XESetFlushGC(display, extension, proc))()

Display * display ; /* display */

int extension; /* extension number */

char *(*proc)(); /* routine to call when I/O error happens */

The XESetFlushGC procedure is identical to XESetCopyGC except that XESetFlushGC

is called when a GC cache needs to be updated in the server.

Hooks onto Xlib Data Structures

Various Xlib data structures have provisions for extension routines to chain extension supplied

data onto a list. These structures are GC , Visual, Screen, ScreenFormat, Display , and

XFontStruct. Because the list pointer is always the first member in the structure, a single set

of routines can be used to manipulate the data on these lists.

The following structure is used in the routines in this section and is defined in < Xll/Xlib.h >:

typedef struct _XExtData {

int number; /* number returned by XInitExtension */

struct _XExtData *next; /* next item on list of data for structure */

int (*free)(); /* if defined, called to free private */

char ‘private; /* data private to this extension. */

} XExtData;

When any of the data structures listed above are freed, the list is walked, and the structure’s free

routine (if any) is called. If free is NULL, then the library frees both the data pointed to by the

private member and the structure itself.

union { Display ‘display;

GC gc;

Visual ‘visual;

Screen ‘screen;

ScreenFormat *pixmap_format;

XFontStruct ‘font } XEDataObject;

XExtData “XEHeadOfExtensionList(object)

XEDataObject object;

XEHeadOfExtensionList returns a pointer to the list of extension structures attached to the

specified object. In concert with XAddToExtensionList, XEHeadOfExtensionList allows

an extension to attach arbitrary data to any of the structures of types contained in XEDataOb¬

ject.

XAddToExtensionList(structure, ext_data)

struct _XExtData “structure; /* pointer to structure to add */

XExtData *ext_data; /* extension data structure to add */

The structure argument is a pointer to one of the data structures enumerated above. You must

initialize ext_data->number with the extension number before calling this routine.

XExtData *XFindOnExtensionList(structure, number)

struct _XExtData “structure;

int number; /* extension number from XInitExtension */

251

Xlib - C Library Xll, Release 3

XFindOnExtensionList returns the first extension data structure for the extension numbered

number. It is expected that an extension will add at most one extension data structure to any

single data structure’s extension data list. There is no way to find additional structures.

The XAllocID macro, which allocates and returns a resource ID, is defined in < Xll/Xlib.h >.

XAllocID (display)

Display * display;

This macro is a call through the Display structure to the internal resource ID allocator. It

returns a resource ID that you can use when creating new resources.

GC Caching

GCs are cached by the library to allow merging of independent change requests to the same GC

into single protocol requests. This is typically called a write-back cache. Any extension routine

whose behavior depends on the contents of a GC must flush the GC cache to make sure the server

has up-to-date contents in its GC.

The FlushGC macro checks the dirty bits in the library’s GC structure and calls

_XFIushGCCache if any elements have changed. The FlushGC macro is defined as follows:

FlushGC(display, gc)

Display * display ;

GC gc;

Note that if you extend the GC to add additional resource ID components, you should ensure that

the library stub sends the change request immediately. This is because a client can free a

resource immediately after using it, so if you only stored the value in the cache without forcing a

protocol request, the resource might be destroyed before being set into the GC. You can use the

_XFlushGCCache procedure to force the cache to be flushed. The _XFlushGCCache pro¬

cedure is defined as follows:

_XFlushGCCache(display, gc)

Display * display;

GC gc;

Graphics Batching

If you extend X to add more poly graphics primitives, you may be able to take advantage of facil¬

ities in the library to allow back-to-back single calls to be transformed into poly requests. This

may dramatically improve performance of programs that are not written using poly requests. A

pointer to an xReq, called last_req in the display structure, is the last request being processed.

By checking that the last request type, drawable, gc, and other options are the same as the new

one and that there is enough space left in the buffer, you may be able to just extend the previous

graphics request by extending the length field of the request and appending the data to the buffer.

This can improve performance by five times or more in naive programs. For example, here is the

source for the XDrawPoint stub. (Writing extension stubs is discussed in the next section.)

^include ’’copyright.h”

#include ’’XHbint.h”

/* precompute the maximum size of batching request allowed */

static int size = sizeof(xPolyPointReq) 4- EPERBATCH * sizeof(xPoint);

XDrawPoint(dpy, d, gc, x, y)

register Display *dpy;

Drawable d;

GC gc;

252

Xlib — C Library Xll, Release 3

int x, y; /* INT16 */

{
xPoint *point;

LockDisplay(dpy);

FlushGC(dpy, gc);

{
register xPolyPointReq *req = (xPolyPointReq *) dpy->last_req;

/* if same as previous request, with same drawable, batch requests */

if (
(req->reqType == X_PolyPoint)

&& (req-> drawable == d)

&& (req->gc == gc->gid)

&.& (req->coordMode == CoordModeOrigin)

&& ((dpy->bufptr + sizeof (xPoint)) <= dpv- > bufmax)

&■&. (((char *)dpy->bufptr - (char *)req) < size)) {

point = (xPoint *) dpy->bufptr;

req->length += sizeof (xPoint) >> 2;

dpy->bufptr +— sizeof (xPoint);

}

else {

GetReqExtra(PolyPoint, 4, req); /* 1 point = 4 bytes */

req-> drawable = d;

req->gc = gc-> gid;

req-> coordMode = CoordModeOrigin;

point = (xPoint *) (req +1);

}
point- >x = x;

point->y = y;

}
UnlockDisplay(dpy);

SyncHandleQ;

}
To keep clients from generating very long requests that may monopolize the server, there is a

symbol defined in < Xll/XIibint.h > of EPERBATCH on the number of requests batched.

Most of the performance benefit occurs in the first few merged requests. Note that FlushGC is

called before picking up the value of last_req, because it may modify this field.

Writing Extension Stubs

All X requests always contain the length of the request, expressed as a 16-bit quantity of 32 bits.

This means that a single request can be no more than 256K bytes in length. Some servers may

not support single requests of such a length. The value of dpy->max_request_size contains the

maximum length as defined by the server implementation. For further information, see “X Win¬

dow System Protocol”.

Requests, Replies, and Xproto.h

The < Xll/Xproto.h > file contains three sets of definitions that are of interest to the stub

implementor: request names, request structures, and reply structures.

You need to generate a file equivalent to < Xll/Xproto.h > for your extension and need to

include it in your stub routine. Each stub routine also must include < Xl 1 /Xlibint.h >.

The identifiers are deliberately chosen in such a way that, if the request is called X_DoSomething,

then its request structure is xDoSomethingReq, and its reply is xDoSomethingReply. The GetReq

family of macros, defined in < Xll/XIibint.h >, takes advantage of this naming scheme.

Xlib - C Library Xll, Release 3

For each X request, there is a definition in < Xll/Xproto.h > that looks similar to this:

#define X_DoSomething 42

In your extension header file, this will be a minor opcode, instead of a major opcode.

Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed in units of four

bytes. Every request consists of four bytes of header (containing the major opcode, the length

field, and a data byte) followed by zero or more additional bytes of data. The length field defines

the total length of the request, including the header. The length field in a request must equal the

minimum length required to contain the request. If the specified length is smaller or larger than

the required length, the server should generate a BadLength error. Unused bytes in a request

are not required to be zero.

long XMaxRequestSize(display)

Display *display;

XMaxRequestSi^e returns the maximum request size (in 4-byte units) supported by the server.

Single protocol requests to the server can be no longer than this size. Extensions should be

designed in such a way that long protocol requests can be split up into smaller requests. The pro¬

tocol guarantees the size to be no smaller than 4096 unit (16384 bytes).

Major opcodes 128 through 255 are reserved for extensions. Extensions are intended to contain

multiple requests, so extension requests typically have an additional minor opcode encoded in the

“spare” data byte in the request header, but the placement and interpretation of this minor

opcode as well as all other fields in extension requests are not defined by the core protocol. Every

request is implicitly assigned a sequence number (starting with one) used in replies, errors, and

events.

To help but not cure portability problems to certain machines, the B16 and B32 macros have

been defined so that they can become bitfield specifications on some machines. For example, on a

Cray, these should be used for all 16-bit and 32-bit quantities, as discussed below.

Most protocol requests have a corresponding structure typedef in < Xll/Xproto.h >, which

locks like:

typedef struct _DoSomethingReq {

CARD8 reqType; /* XJDoSomething */

CARD8 someDatum; /* used differently in different requests */

CARD 16 length Bl6; /* total # of bytes in request, divided by 4 */

/* request-specific data */

} xDoSomethingReq;

If a core protocol request has a single 32-bit argument, you need not declare a request structure in

your extension header file. Instead, such requests use < Xll/Xproto.h >’s xResourceReq

structure. This structure is used for any request whose single argument is a Window , Pixmap,

Drawable, G Context, Font, Cursor, Colormap, Atom, or VisuallD .

typedef struct _ResourceReq {

CARD8 reqType;

BYTE pad;

CARD 16 length Bl6;

CARD32 id B32;

} xResourceReq;

/* the request type, e.g. X_DoSomething */

/* not used */

/* 2 (— total # of bytes in request, divided by 4) */

/* the Window, Drawable, Font, GContext, etc. */

If convenient, you can do something similar in your extension header file.

254

Xlib — C Library Xll, Release 3

In both of these structures, the reqType field identifies the type of the request (for example,

X_MapWindow or X_CreatePixmap). The length field tells how long the request is in units of 4-

byte longwords. This length includes both the request structure itself and any variable length

data, such as strings or lists, that follow the request structure. Request structures come in

different sizes, but all requests are padded to be multiples of four bytes long.

A few protocol requests take no arguments at all. Instead, they use < Xll/Xproto.h >’s xReq

structure, which contains only a reqType and a length (and a pad byte).

If the protocol request requires a reply, then < Xll/Xproto.h > also contains a reply structure

typedef:

typedef struct _DoSomethingReply {

BYTE type;

BYTE someDatum;

CARD16 sequenceNumber B16;

CARD32 length B32;

/* always X_Reply */

/* used differently in different requests */

/* # of requests sent so far */

/* # of additional bytes, divided by 4 */

/* request-specific data */

} xDoSomethingReply;

Most of these reply structures are 32 bytes long. If there are not that many reply values, then

they contain a sufficient number of pad fields to bring them up to 32 bytes. The length field is the

total number of bytes in the request minus 32, divided by 4. This length will be nonzero only if:

• The reply structure is followed by variable length data such as a list or string.

• The reply structure is longer than 32 bytes.

Only Get Window Attributes, QueryFont, Query Keymap, and GetKeyboardControl

have reply structures longer than 32 bytes in the core protocol.

A few protocol requests return replies that contain no data. < Xll/Xproto.h > does not define

reply structures for these. Instead, they use the xGenericReply structure, which contains only

a type, length, and sequence number (and sufficient padding to make it 32 bytes long).

Starting to Write a Stub Routine

An Xlib stub routine should always start like this:

^include ”XUbint.h”

XDoSomething (arguments, ...)

/* argument declarations */

{

register XDoSomethingReq *req;

If the protocol request has a reply, then the variable declarations should include the reply struc¬

ture for the request. The following is an example:

xDoSomethingReply rep;

Locking Data Structures

To lock the display structure for systems that want to support multithreaded access to a single

display connection, each stub will need to lock its critical section. Generally, this section is the

point from just before the appropriate GetReq call until all arguments to the call have been

stored into the buffer. The precise instructions needed for this locking depend upon the machine

architecture. Two calls, which are generally implemented as macros, have been provided.

255

Xlib - C Library Xll, Release 3

LockDisplay(display)

Display * display;

UnlockDisplay(display)

Display * display;

Sending the Protocol Request and Arguments

After the variable declarations, a stub routine should call one of four macros defined in

< Xll/Xlibint.h >: GetReq, GetReqExtra, GetResReq, or GetEmptyReq. All of these

macros take, as their first argument, the name of the protocol request as declared in

< Xll/Xproto.h > except with X_ removed. Each one declares a Display structure pointer,

called dpy, and a pointer to a request structure, called req, which is of the appropriate type. The

macro then appends the request structure to the output buffer, fills in its type and length field,

and sets req to point to it.

If the protocol request has no arguments (for instance, X_GrabServer), then use GetEmptyReq.

GetEmptyReq (DoSomething);

If the protocol request has a single 32-bit argument (such as a Pixmap, Window , Drawable,

Atom, and so on), then use GetResReq. The second argument to the macro is the 32-bit

object. X__MapWindow is a good example.

GetResReq (DoSomething, rid);

The rid argument is the Pixmap, Window , or other resource ID.

If the protocol request takes any other argument list, then call GetReq. After the GetReq, you

need to set all the other fields in the request structure, usually from arguments to the stub rou¬

tine.

GetReq (DoSomething);

/* fill in arguments here */

req->argl — argl;

req- > arg2 = arg2;

A few stub routines (such as XCreateGC and XCreatePixmap) return a resource ED to the

caller but pass a resource ID as an argument to the protocol request. Such routines use the macro

XAllocID to allocate a resource ID from the range of IDs that were assigned to this client when

it opened the connection.

rid = req-> rid = XAllocEDQ;

return (rid);

Finally, some stub routines transmit a fixed amount of variable length data after the request.

Typically, these routines (such as XMoveWindow and XSetBackground) are special cases of

more general functions like XMoveResizeWmdow and XChangeGC. These special case rou¬

tines use GetReqExtra, which is the same as GetReq except that it takes an additional argu¬

ment (the number of extra bytes to allocate in the output buffer after the request structure). This

number should always be a multiple of four.

Variable Length Arguments

Some protocol requests take additional variable length data that follow the xDoSomethingReq

structure. The format of this data varies from request to request. Some requests require a

sequence of 8-bit bytes, others a sequence of 16-bit or 32-bit entities, and still others a sequence of

structures.

It is necessary to add the length of any variable length data to the length field of the request

structure. That length field is in units of 32-bit longwords. If the data is a string or other sequence

256

Xlib — C Library Xll, Release 3

of 8-bit bytes, then you must round the length up and shift it before adding:

req->length +— (nbytes+3)> >2;

To transmit variable length data, use the Data macros. If the data fits into the output buffer,

then this macro copies it to the buffer. If it does not fit, however, the Data macro calls

_XSend, which transmits first the contents of the buffer and then your data. The Data macros

take three arguments: the Display, a pointer to the beginning of the data, and the number of

bytes to be sent.

Data(display, (char *) data, nbytes);

Datalb(display, (short *) data, nbytes);

Data32(display, (long *) data, nbytes);

Data, Datald, and Data32 are macros that may use their last argument more than once, so

that argument should be a variable rather than an expression such as “nitems*sizeof(item)”. You

should do that kind of computation in a separate statement before calling them. Use the

appropriate macro when sending byte, short, or long data.

If the protocol request requires a reply, then call the procedure _XSend instead of the Data

macro. _XSend takes the same arguments, but because it sends your data immediately instead

of copying it into the output buffer (which would later be flushed anyway by the following call on

XReply), it is faster.

Replies

If the protocol request has a reply, then call _XReply after you have finished dealing with all

the fixed and variable length arguments. _XReply flushes the output buffer and waits for an

xReply packet to arrive. If any events arrive in the meantime, _XReply places them in the

queue for later use.

Status _XReply(display, rep, extra, discard)

Display * display;

xReply *rep;

int extra; /* number of 32-bit words expected after the reply */

Bool discard; /* should I discard data following "extra” words? */

_XReply waits for a reply packet and copies its contents into the specified rep. _XReply han¬

dles error and event packets that occur before the reply is received. _XReply takes four argu¬

ments:

® A Display * structure

® A pointer to a reply structure (which must be cast to an xReply *)

• The number of additional bytes (beyond sizeof(xReply) = 32 bytes) in the reply structure

• A Boolean that indicates whether _XReply is to discard any additional bytes beyond those

it was told to read

Because most reply structures are 32 bytes long, the third argument is usually 0. The only core

protocol exceptions are the replies to Get Window Attributes, QueryFont, QueryKeymap,

and GetKeyboardControl, which have longer replies.

The last argument should be False if the reply structure is followed by additional variable length

257

Xlib - C Library Xll, Release 3

data (such as a list or string). It should be True if there is not any variable length data.

Note

This last argument is provided for upward-compatibility reasons to allow a client to

communicate properly with a hypothetical later version of the server that sends more

data than the client expected. For example, some later version of Get Window At¬

tributes might use a larger, but compatible, xGetWindowAttributesReply that

contains additional attribute data at the end.

_XRepIy returns True if it received a reply successfully or False if it received any sort of

error.

For a request with a reply that is not followed by variable length data, you write something like:

_XReply(display, (xReply *)&rep, 0, True);

*retl = rep.retl;

*ret2 = rep.ret2;

*ret3 = rep.ret3;

UnlockDisplay(dpy);

SyncHandleQ;

return (rep.ret4);

}

If there is variable length data after the reply, change the True to False, and use the appropri¬

ate _XRead function to read the variable length data.

_XRead(display, data, nbytes)

Display * display,

char *data;

long nbytes;

_XRead reads the specified number of bytes into data.

_XReadl6(display, data, nbytes)

Display * display ;

short *data;

long nbytes;

_XReadl6 reads the specified number of bytes, unpacking them as 16-bit quanities, into the

specified array as shorts.

_XRead32(display, data, nbytes)

Display * display ;

long *data;

long nbytes;

_XRead32 reads the specified number of bytes, unpacking them as 32-bit quanities, into the

specified array as longs.

_XReadl6Pad(display, data, nbytes)

Display * display;

short *data;

long nbytes;

_XReadl6Pad reads the specified number of bytes, unpacking them as 16-bit quanities, into the

specified array as shorts. If the number of bytes is not a multiple of four, _XReadl8Pad reads

up to three additional pad bytes.

258

Xlib — C Library XI1, Release 3

_XReadPad(display, data, nbytes)

Display * display;

char *data;

long nbytes;

_XReadPad reads the specified number of bytes into data. If the number of bytes is not a mul¬

tiple of four, _XReadPad reads up to three additional pad bytes.

Each protocol request is a little different. For further information, see the Xlib sources for exam¬

ples.

Synchronous Calling

To ease debugging, each routine should have a call, just before returning to the user, to a routine

called SyncHandle. This routine generally is implemented as a macro. If synchronous mode is

enabled (see XSynchronize), the request is sent immediately. The library, however, waits until

any error the routine could generate at the server has been handled.

Allocating and Deallocating Memory

To support the possible reentry of these routines, you must observe several conventions when allo¬

cating and deallocating memory, most often done when returning data to the user from the win¬

dow system of a size the caller could not know in advance (for example, a list of fonts or a list of

extensions). The standard C library routines on many systems are not protected against signals

or other multithreaded uses. The following analogies to standard I/O library routines have been

defined:

Xmalloc() Replaces mallocQ

Xfree() Replaces free()

Xcalloc() Replaces callocQ

These should be used in place of any calls you would make to the normal C library routines.

If you need a single scratch buffer inside a critical section (for example, to pack and unpack data

to and from the wire protocol),

the general memory allocators may be too expensive to use (particularly in output routines,

which are performance critical). The routine below returns a scratch buffer for your use:

char *_XAllocScratch(display, nbytes)

Display * display;

unsigned long nbytes;

This storage must only be used inside of the critical section of your stub.

Portability Considerations

Many machine architectures, including many of the more recent RISC architectures, do not

correctly access data at unaligned locations; their compilers pad out structures to preserve this

characteristic. Many other machines capable of unaligned references pad inside of structures as

well to preserve alignment, because accessing aligned data is usually much faster. Because the

library and the server use structures to access data at arbitrary points in a byte stream, all data

in request and reply packets must be naturally aligned; that is, 16-bit data starts on 16-bit boun¬

daries in the request and 32-bit data on 32-bit boundaries. All requests must be a multiple of 32

bits in length to preserve the natural alignment in the data stream. You must pad structures out

to 32-bit boundaries. Pad information does not have to be zeroed unless you want to preserve

such fields for future use in your protocol requests. Floating point varies radically between

machines and should be avoided completely if at all possible.

This code may run on machines with 16-bit ints. So, if any integer argument, variable, or return

value either can take only nonnegative values or is declared as a CARD16 in the protocol, be sure

to declare it as unsigned int and not as int. (This, of course, does not apply to Booleans or

xiib - C Library Xll, Release 3

enumerations.)

Similarly, if any integer argument or return value is declared CARD32 in the protocol, declare it

as an unsigned long and not as int or long. This also goes for any internal variables that may

take on values larger than the maximum 16-bit unsigned int.

The library currently assumes that a char is 8 bits, a short is 16 bits, an int is 16 or 32 bits, and a

long is 32 bits. The PackData macro is a half-hearted attempt to deal with the possibility of 32

bit shorts. However, much more work is needed to make this work properly.

Deriving the Correct Extension Opcode

The remaining problem a writer of an extension stub routine faces that the core protocol does not

face is to map from the call to the proper major and minor opcodes. While there are a number of

strategies, the simplest and fastest is outlined below.

1. Declare an array of pointers, _NFILE long (this is normally found in < stdio.h > and is the

number of file descriptors supported on the system) of type XExtCodes. Make sure these

are all initialized to NULL.

2. When your stub is entered, your initialization test is just to use the display pointer passed

in to access the file descriptor and an index into the array. If the entry is NULL, then this is

the first time you are entering the routine for this display. Call your initialization routine

and pass it to the display pointer.

3. Once in your initialization routine, call XlmtExtensIon; if it succeeds, store the pointer

returned into this array. Make sure to establish a close display handler to allow you to zero

the entry. Do whatever other initialization your extension requires. (For example, install

event handlers and so on). Your initialization routine would normally return a pointer to

the XExtCodes structure for this extension, which is what would normally be found in

your array of pointers.

4. After returning from your initialization routine, the stub can now continue normally,

because it has its major opcode safely in its hand in the XExtCodes structure.

260

Xlib — C Library Xll, Release 3

Appendix D

Version 10 Compatibility Functions

Drawing and Filling Polygons and Curves

Xlib provides functions that you can use to draw or fill arbitrary polygons or curves. These func¬

tions are provided mainly for compatibility with XlO and have no server support. That is, they

call other Xlib functions, not the server directly. Thus, if you just have straight lines to draw,

using XDrawLines or XDrawSegments is much faster.

The functions discussed here provide all the functionality of the XlO functions XDraw,

XDrawFilled, XDrawPatterned, XDrawDashed, and XDrawTiled. They are as compa¬

tible as possible given Xll’s new line drawing functions. One thing to note, however, is that Ver-

texDrawLastPoint is no longer supported. Also, the error status returned is the opposite of

what it was under XlO (this is the Xll standard error status). XAppendVertex and XClear-

VertexFlag from XlO also are not supported.

Just how the graphics context you use is set up actually determines whether you get dashes or

not, and so on. Lines are properly joined if they connect and include the closing of a closed figure

(see XDrawLines). The functions discussed here fail (return zero) only if they run out of

memory or are passed a Vertex list that has a Vertex with VertexStartClosed set that is

not followed by a Vertex with VertexEndClosed set.

To achieve the effects of the XlO XDraw , XDrawDashed, and XDrawPatterned, use

XDraw.

^include <Xll/Xl0.h>

Status XDraw(display, d, gc, vlist, vcount)

Display * display ;

Drawable d;

GC gc;

Vertex * vlist;

int vcount;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

vlist Specifies a pointer to the list of vertices that indicate what to draw.

vcount Specifies how many vertices are in vlist.

XDraw draws an arbitrary polygon or curve. The figure drawn is defined by the specified list of

vertices (vlist). The points are connected by lines as specified in the flags in the vertex structure.

Each Vertex, as defined in < Xll/XlO.h >, is a structure with the following members:

typedef struct _Vertex {

short x,y;

unsigned short flags;

} Vertex;

The x and y members are the coordinates of the vertex that are relative to either the upper-left

inside corner of the drawable (if VertexRelative is zero) or the previous vertex (if VertexRela-

tive is one).

261

Xll, Release 3 Xlib — C Library

The flags, as defined in <Xll/Xl0.h>, are as follows:

V ertexRelative 0x0001 /* else absolute */

VertexDontDraw 0x0002 /* else draw */

V ertexCurved 0x0004 /* else straight */

V ertex StartC losed 0x0008 /* else not */

V ertexEndClosed 0x0010 /* else not */

• If VertexRelative is not set, the coordinates are absolute (that is, relative to the

drawable’s origin). The first vertex must be an absolute vertex.

• If VertexDontDraw is one, no line or curve is drawn from the previous vertex to this one.

This is analogous to picking up the pen and moving to another place before drawing another

line.

• If VertexCurved is one, a spline algorithm is used to draw a smooth curve from the previ¬

ous vertex through this one to the next vertex. Otherwise, a straight line is drawn from the

previous vertex to this one. It makes sense to set VertexCurved to one only if a previous

and next vertex are both defined (either explicitly in the array or through the definition of a

closed curve).

• It is permissible for VertexDontDraw bits and VertexCurved bits both to be one. This

is useful if you want to define the previous point for the smooth curve but do not want an

actual curve drawing to start until this point.

• If VertexStartClosed is one, then this point marks the beginning of a closed curve. This

vertex must be followed later in the array by another vertex whose effective coordinates are

identical and that has a VertexEndClosed bit of one. The points in between form a cycle

to determine predecessor and successor.vertices for the spline algorithm.

This function uses these GC components: function, plane-mask, line-width, line-style, cap-style,

join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these

GC mode-dependent components: foreground, background, tile, stipple, tile-stipp^-x-origin, tile-

stipple-y-origin, dash-offset, and dash-list.

To achieve the effects of the XlO XDrawTiled and XDrawFilled, use XDrawFilled.

#include <Xll/Xl0.h>

Status XDrawFilled(display, d, gc, vlist, vcount)

Display * display;

Drawable d;

GC gc ;

Vertex * vlist ;

int vcount;

display Specifies

d Specifies

gc Specifies

vlist Specifies

vcount Specifies

the connection to the X server,

the drawable.

the GC.

a pointer to the list of vertices that indicate what to draw,

how many vertices are in vlist.

XDrawFilled draws arbitrary polygons or curves and then fills them.

This function uses these GC components: function, plane-mask, line-width, line-style, cap-style,

join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-

stipple-y-origin, dash-offset, dash-list, fill-style, and fill-rule.

262

Xltb - C Library Xll, Release 3

Associating User Date with a Value

These functions have been superseded by the context management functions (see section 10.12). It

is often necessary to associate arbitrary information with resource IDs. Xlib provides the XAs-

socTable functions that you can use to make such an association. Application programs often

need to be able to easily refer to their own data structures when an event arrives. The XAs-

socTable system provides users of the X library with a method for associating their own data

structures with X resources (Pixmaps, Fonts, Windows, and so on).

An XAssocTable can be used to type X resources. For example, the user may want to have

three or four types of windows, each with different properties. This can be accomplished by associ¬

ating each X window ID with a pointer to a window property data structure defined by the

user. A generic type has been defined in the X library for resource IDs. It is called an XID.

There are a few guidelines that should be observed when using art XAssocTable:

® All X3Ds are relative to the specified display.

• Because of the hashing scheme used by the association mechanism, the following rules

for determining the size of a XAssocTable should be followed. Associations will be made

and looked up more efficiently if the table size (number of buckets in the hashing

system) is a power of two and if there are not more than 8 XIDs per bucket.

To return a pointer to a new XAssocTable, use XCreateAssocTable.

XAssocTable *XCreateAssocTable (size)

int size;

size Specifies the number of buckets in the hash system of XAssocTable.

The size argument specifies the number of buckets in the hash system of XAssocTable. For

reasons of efficiency the number of buckets should be a power of two. Some size suggestions

might be: use 32 buckets per 100 objects, and a reasonable maximum number of objects per

buckets is 8. If an error allocating memory for the XAssocTable occurs, a NULL pointer is

returned.

To create an entry in a given XAssocTable, use XMakeAssoc.

XMakeAssoc(display, table, x_id, data)

Display * display;

XAssocTable * table;

XID x_id;

char *data;

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ID.

data Specifies the data to be associated with the X resource ID.

XMakeAssoc inserts data into an XAssocTable keyed on an XID. Data is inserted into

the table only once' Redundant inserts are ignored. The queue in each association bucket is

sorted from the lowest XID to the highest XID.

To obtain data from a given XAssocTable, use XLookUpAssoc.

char *XLookUpAssoc(display, table, x_id)

Display * display;

XAssocTable * table;

XID x_id;

263

Xlib - C Library Xll, Release 3

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ED.

XLookUpAssoc retrieves the data stored in an XAssocTable by its XID. If an appropriately

matching XID can be found in the table, XLookUpAssoc returns the data associated with it. If

the x_id cannot be found in the table, it returns NULL.

To delete an entry from a given XAssocTable, use XDeleteAssoc.

XDeleteAssoc(display, table, x_id)

Display * display,

XAssocTable * table;

XED x_id;

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ED.

XDeleteAssoc deletes an association in an XAssocTable keyed on its XED. Redundant deletes

(and deletes of nonexistent XEDs) are ignored. Deleting associations in no way impairs the perfor¬

mance of an XAssocTable.

To free the memory associated with a given XAssocTable, use XDestroyAssocTable.

XDestroyAssocTable (table)

XAssocTable * table;

table Specifies the assoc table.

264

Xlib — C Library XI1, Release 3

Glossary

Access control list

X maintains a list of hosts from which client programs can be run. By default, only pro¬

grams on the local host and hosts specified in an initial list read by the server can use the

display. This access control list can be changed by clients on the local host. Some server

implementations can also implement other authorization mechanisms in addition to or in

place of this mechanism. The action of this mechanism can be conditional based on the au¬

thorization protocol name and data received by the server at connection setup.

Active grab

A grab is active when the pointer or keyboard is actually owned by the single grabbing

client.

Ancestors

If W is an inferior of A, then A is an ancestor of W.

Atom

An atom is a unique ED corresponding to a string name. Atoms are used to identify proper¬

ties, types, and selections.

Background

An InputOutput window can have a background, which is defined as a pixmap. When re¬

gions of the window have their contents lost or invalidated, the server automatically tiles

those regions with the background.

Backing store

When a server maintains the contents of a window, the pixels saved off-screen are known as

a backing store.

Bit gravity

When a window is resized, the contents of the window are not necessarily discarded. It is

possible to request that the server relocate the previous contents to some region of the win¬

dow (though no guarantees are made). This attraction of window contents for some location

of a window is known as bit gravity.

Bit plane

When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a bit

plane or plane.

Bitmap

A bitmap is a pixmap of depth one.

Border

An InputOutput window can have a border of equal thickness on all four sides of the win¬

dow. The contents of the border are defined by a pixmap, and the server automatically

maintains the contents of the border. Exposure events are never generated for border re¬

gions.

Button grabbing

Buttons on the pointer can be passively grabbed by a client. When the button is pressed,

the pointer is then actively grabbed by the client.

2 Aft

Xlib - C Library Xll, Release 8

Byte order

For image (pixmap/bitmap) data, the server defines the byte order, and clients with

different pative byte ordering must swap bytes as necessary. For all other parts of the proto¬

col, the client defines the byte order, and the server swaps bytes as necessary.

Children

The children of a window are its first-level subwindows.

Class

Windows can be of different classes or types. See the entries for InputOnly and Inpu-

tOutput windows for further information about valid window types.

Client

An application program connects to the window system server by some interprocess com¬

munication (IPC) path, such as a TCP connection or a shared memory buffer. This program

is referred to as a client of the window system server. More precisely, the client is the IPC

path itself. A program with multiple paths open to the server is viewed as multiple clients

by the protocol. Resource lifetimes are controlled by connection lifetimes, not by program

lifetimes.

Clipping region

In a graphics context, a bitmap or list of rectangles can be specified to restrict output to a

particular region of the window. The image defined by the bitmap or rectangles is called a

clipping region.

Co lor map

A colormap consists of a set of entries defining color values. The colormap associated with a

window is used to display the contents of the window; each pixel value indexes the colormap

to produce RGB values that drive the guns of a monitor. Depending on hardware limita¬

tions, one or more colormaps can be installed at one time so that windows associated with

those maps display with true colors.

Connection

The EPC path between the server and client program is known as a connection. A client

program typically (but not necessarily) has one connection to the server over which requests

and events are sent.

Containment

A window contains the pointer if the window is viewable and the hotspot of the cursor is

within a visible region of the window or a visible region of one of its inferiors. The border of

the window is included as part of the window for containment. The pointer is in a window if

the window contains the pointer but no inferior contains the pointer.

Coordinate system

The coordinate system has X horizontal and Y vertical, with the origin [0, 0] at the upper

left. Coordinates are discrete and are in terms of pixels. Each window and pixmap has its

own coordinate system. For a window, the origin is inside the border at the inside upper-left

corner.

Cursor

A cursor is the visible shape of the pointer on a screen. It consists of a hotspot, a source bit¬

map, a shape bitmap, and a pair of colors. The cursor defined for a window controls the

visible appearance when the pointer is in that window.

266

Xlib - C Library Xll, Release 3

Depth

The depth of a window or pixmap is the number of bits per pixel it has. The depth of a

graphics context is the depth of the drawables it can be used in conjunction with graphics

output.

Device

Keyboards, mice, tablets, track-balls, button boxes, and so on are all collectively known as

input devices. Pointers can have one or more buttons (the most common number is three).

The core protocol only deals with two devices: the keyboard and the pointer.

DirectColor

DirectColor is a class of colormap in which a pixel value is decomposed into three

separate subfields for indexing. The first subfield indexes an array to produce red intensity

values. The second subfield indexes a second array to produce blue intensity values. The

third subfield indexes a third array to produce green intensity values. The RGB (red, green,

and blue) values in the colormap entry can be changed dynamically.

Display

A server, together with its screens and input devices, is called a display. The Xlib Display

structure contains all information about the particular display and its screens as well as the

state that Xlib needs to communicate with the display over a particular connection.

Drawable

Both windows and pixmaps can be used as sources and destinations in graphics operations.

These windows and pixmaps are collectively known as drawables. However, an InputOnly

window cannot be used as a source or destination in a graphics operation.

Event

Clients are informed of information asynchronously by means of events. These events can

be either asynchronously generated from devices or generated as side effects of client re¬

quests. Events are grouped into types. The server never sends an event to a client unless the

client has specifically asked to be informed of that type of event. However, clients can force

events to be sent to other clients. Events are typically reported relative to a window.

Event mask

Events are requested relative to a window. The set of event types a client requests relative

to a window is described by using an event mask.

Event propagation

Device-related events propagate from the source window to ancestor windows until some

client has expressed interest in handling that type of event or until the event is discarded

explicitly.

Event synchronization

There are certain race conditions possible when demultiplexing device events to clients (in

particular, deciding where pointer and keyboard events should be sent when in the middle of

window management operations). The event synchronization mechanism allows synchronous

processing of device events.

Event source

The deepest viewable window that the pointer is in is called the source of a device-related

event.

Exposure event

Servers do not guarantee to preserve the contents of windows when windows are obscured or

reconfigured. Exposure events are sent to clients to inform them when contents of regions of

windows have been lost.

287

Xlib - C Library Xll, Release 3

Extension

Named extensions to the core protocol can be defined to extend the system. Extensions to

output requests, resources, and event types are all possible and expected.

Font

A font is an array of glyphs (typically characters). The protocol does no translation or in¬

terpretation of character sets. The client simply indicates values used to index the glyph ar¬

ray. A font contains additional metric information to determine interglyph and interline

spacing.

Frozen events

Clients can freeze event processing during keyboard and pointer grabs.

GC

GC is an abbreviation for graphics context. See Graphics context.

Glyph

A glyph is an image in a font, typically of a character.

Grab

Keyboard keys, the keyboard, pointer buttons, the pointer, and the server can be grabbed

for exclusive use by a client. In general, these facilities are not intended to be used by nor¬

mal applications but are intended for various input and window managers to implement

various styles of user interfaces.

Graphics context

Various information for graphics output is stored in a graphics context (GC), such as fore¬

ground pixel, background pixel, line width, clipping region, and so on. A graphics context

can only be used with drawables that have the same root and the same depth as the graph¬

ics context.

Gravity

The contents of windows and windows themselves have a gravity, which determines how the

contents move when a window is resized. See Bit gravity and Window gravity.

GrayScale

GrayScale can be viewed as a degenerate case of PseudoColor, in which the red, green,

and blue values in any given colormap entry are equal and thus, produce shades of gray.

The gray values can be changed dynamically.

Hotspot

A cursor has an associated hotspot, which defines the point in the cursor corresponding to

the coordinates reported for the pointer.

Identifier

An identifier is a unique value associated with a resource that clients use to name that

resource. The identifier can be used over any connection to name the resource.

Inferiors

The inferiors of a window are all of the subwindows nested below it: the children, the

children’s children, and so on.

268

Xlib — C Library Xll, Release 3

Input focus

The input focus is usually a window defining the scope for processing of keyboard input. If

a generated keyboard event usually would be reported to this window or one of its inferiors,

the event is reported as usual. Otherwise, the event is reported with respect to the focus

window. The input focus also can be set such that all keyboard events are discarded and

such that the focus window is dynamically taken to be the root window of whatever screen

the pointer is on at each keyboard event.

Input manager

Control over keyboard input is typically provided by an input manager client, which usually

is part of a window manager.

XnputOnly window

An InputOnly window is a window that cannot be used for graphics requests. InputOnly

windows are invisible and are used to control such things as cursors, input event generation,

and grabbing. InputOnly windows cannot have InputOutput windows as inferiors.

Input Output window

An InputOutput window is the normal kind of w'indow that is used for both input and

output. InputOutput windows car, have both InputOutput and InputOnly windows

as inferiors.

Key grabbing

Keys on the keyboard can be passively grabbed by a client. When the key is pressed, the

keyboard is then actively grabbed by the client.

Keyboard grabbing

A client can actively grab control of the keyboard, and key events will be sent to that client

rather than the client the events would normally have been sent to.

Keysym

An encoding of a symbol on a keycap on a keyboard.

Mapped

A window is said to be mapped if a map call has been performed on it. Unmapped windows

and their inferiors are never viewable or visible.

Modifier keys

Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple, CapsLock, ShiftLock, and similar

keys are called modifier keys.

Monochrome

Monochrome is a special case of StatkGray in which there are only two colormap entries.

Obscure

A window is obscured if some other window obscures it. A window can be partially ob¬

scured and so still have visible regions. Window A obscures window B if both are viewable

InputOutput windows, if A is higher in the global stacking order, and if the rectangle

defined by the outside edges of A intersects the rectangle defined by the outside edges of B.

Note the distinction between obscures and occludes. Also note that window borders are in¬

cluded in the calculation.

269

Xlib — C Library Xll, Release 3

Occlude

A window is occluded if some other window occludes it. Window A occludes window B if

both are mapped, if A is higher in the global stacking order, and if the rectangle defined by

the outside edges of A intersects the rectangle defined by the outside edges of B. Note the

distinction between occludes and obscures. Also note that window borders are included in

the calculation and that InputOnly windows never obscure other windows but can occlude

other windows.

Padding

Some padding bytes are inserted in the data stream to maintain alignment of the protocol

requests on natural boundaries. This increases ease of portability to some machine architec¬

tures.

Parent window

If C is a child of P, then P is the parent of C.

Passive grab

Grabbing a key or button is a passive grab. The grab activates when the key or button is

actually pressed.

Pixel value

A pixel is an N-bit value, where N is the number of bit planes used in a particular window

or pixmap (that is, is the depth of the window or pixmap). A pixel in a window indexes a

colormap to derive an actual color to be displayed.

Pixmap

A pixmap is a three-dimensional array of bits. A pixmap is normally thought of as a two-

dimensional array of pixels, where each pixel can be a value from 0 to 2^-1, and where N is

the depth (z axis) of the pixmap. A pixmap can also be thought of as a stack of N bitmaps.

A pixmap can only be used on the screen that it was created in.

Plane

When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a plane

or bit plane.

Plane mask

Graphics operations can be restricted to only affect a subset of bit planes of a destination. A

plane mask is a bit mask describing which planes are to be modified. The plane mask is

stored in a graphics context.

Pointer

The pointer is the pointing device currently attached to the cursor and tracked on the

screens.

Pointer grabbing

A client can actively grab control of the pointer. Then button and motion events will be

sent to that client rather than the client the events would normally have been sent to.

Pointing device

A pointing device is typically a mouse, tablet, or some other device with effective dimen¬

sional motion. The core protocol defines only one visible cursor, which tracks whatever

pointing device is attached as the pointer.

270

Xlib - C Library Xll, Release 3

Property

Windows can have associated properties that consist of a name, a type, a data format, and

some data. The protocol places no interpretation on properties. They are intended as a

general-purpose naming mechanism for clients. For example, clients might use properties to

share information such as resize hints, program names, and icon formats with a window

manager.

Property list

The property list of a window is the list of properties that have been defined for the win¬

dow.

PseudoColor

PseudoColor is a class of colormap in which a pixel value indexes the colormap entry to

produce independent RGB values; that is, the colormap is viewed as an array of triples

(RGB values). The RGB values can be changed dynamically.

Rectangle

A rectangle specified by [x,y,w,h] has an infinitely thin outline path with comers at [x,y],

[x+w,y], [x+w,y+h], and [x, y+h]. When a rectangle is filled, the lower-right edges are not

drawn. For example, if w=h=0, nothing would be drawn. For w=h=l, a single pixel

would be drawn.

Redirecting control

Window managers (or client programs) may enforce window layout policy in various ways.

When a client attempts to change the size or position of a window, the operation may be

redirected to a specified client rather than the operation actually being performed.

Reply

Information requested by a client program using the X protocol is sent back to the client

with a reply. Both events and replies are multiplexed on the same connection. Most re¬

quests do not generate replies, but some requests generate multiple replies.

Request

A command to the server is called a request. It is a single block of data sent over a connec¬

tion.

Resource

Windows, pixmaps, cursors, fonts, graphics contexts, and colormaps are known as resources.

They all have unique identifiers associated with them for naming purposes. The lifetime of a

resource usually is bounded by the lifetime of the connection over which the resource was

created.

RGB values

RGB values are the red, green, and blue intensity values that are used to define a color.

These values are always represented as 16-bit, unsigned numbers, with 0 the minimum in¬

tensity and 65535 the maximum intensity. The X server scales these values to match the

display hardware.

Root

The root of a pixmap or graphics context is the same as the root of whatever drawable was

used when the pixmap or GC was created. The root of a window is the root window under

which the window was created.

Root window

Each screen has a root window covering it. The root window cannot be reconfigured or un¬

mapped, but otherwise it acts as a full-fledged window. A root window has no parent.

271

Xlifo — C Library Xll, Release 3

Save set

The save set of a client is a list of other clients’ windows that, if they are inferiors of one of

the client’s windows at connection close, should not be destroyed and that should be

remapped if currently unmapped. Save sets are typically used by window managers to

avoid lost windows if the manager should terminate abnormally.

Scanline

A scanline is a list of pixel or bit values viewed as a horizontal row (all values having the

same y coordinate) of an image, with the values ordered by increasing the x coordinate.

Scanline order

An image represented in scanline order contains scanlines ordered by increasing the y coor¬

dinate.

Screen

A server can provide several independent screens, which typically have physically indepen¬

dent monitors. This would be the expected configuration when there is only a single key¬

board and pointer shared among the screens. A Screen structure contains the information

about that screen and is linked to the Display structure.

Selection

A selection can be thought of as an indirect property with dynamic type. That is, rather

than having the property stored in the X server, it is maintained by some client (the owner).

A selection is global and is thought of as belonging to the user and being maintained by

clients, rather than being private to a particular window subhierarchy or a particular set of

clients. When a client asks for the contents of a selection, it specifies a selection target

type, which can be used to control the transmitted representation of the contents. For ex¬

ample, if the selection is “the last thing the user clicked on,” and that is currently an im¬

age, then the target type might specify whether the contents of the image should be sent in

XY format or Z format.

The target type can also be used to control the class of contents transmitted; for example,

asking for the “looks” (fonts, line spacing, indentation, and so forth) of a paragraph selec¬

tion, rather than the text of the paragraph. The target type can also be used for other pur¬

poses. The protocol does not constrain the semantics.

Server

The server, which is also referred to as the X server, provides the basic windowing mechan¬

ism. It handles EPC connections from clients, demultiplexes graphics requests onto the

screens, and multiplexes input back to the appropriate clients.

Server grabbing

The server can be grabbed by a single client for exclusive use. This prevents processing of

any requests from other client connections until the grab is completed. This is typically

only a transient state for such things as rubber-banding, pop-up menus, or executing re¬

quests indivisibly.

Sibling

Children of the same parent window are known as sibling windows.

Stacking order

Sibling windows, similar to sheets of paper on a desk, can stack on top of each other. Win¬

dows above both obscure and occlude lower windows. The relationship between sibling win¬

dows is known as the stacking order.

StaticColor

StaticColor can be viewed as a degenerate case of PseudoColor in which the RGB

values are predefined and read-only.

272

Xlib — C Library Xll, Release 3

Static Gray

StaticGray can be viewed as a degenerate case of GrayScale in which the gray values

are predefined and read-only. The values are typically linear or near-linear increasing

ramps.

Status

Many Xlib functions return a success status. If the function does not succeed, however, its

arguments are not disturbed.

Stipple

A stipple pattern is a bitmap that is used to tile a region to serve as an additional clip mask

for a fill operation with the foreground color.

Tile

A pixmap can be replicated in two dimensions to tile a region. The pixmap itself is also

known as a tile.

Timestamp

A timestamp is a time value expressed in milliseconds. It is typically the time since the last

server reset. Timestamp values wrap around (after about 49.7 days). The server, given its

current time is represented by timestamp T, always interprets timestamps from clients by

treating half of the timestamp space as being earlier in time than T and half of the times¬

tamp space as being later in time than T. One timestamp value, represented by the con¬

stant CurrentTime, is never generated by the server. This value is reserved for use in re¬

quests to represent the current server time.

TrueColor

TrueCoIor can be viewed as a degenerate case of DirectColor in which the subfields in

the pixel value directly encode the corresponding RGB values. That is, the colormap has

predefined read-only RGB values. The values are typically linear or near-linear increasing

ramps.

Type

A type is an arbitrary atom used to identify the interpretation of property data. Types are

completely uninterpreted by the server. They are solely for the benefit of clients. X

predefines type atoms for many frequently used types, and clients also can define new types.

Viewable

A window is viewable if it and all of its ancestors are mapped. This does not imply that any

portion of the window is actually visible. Graphics requests can be performed on a window

when it is not viewable, but output will not be retained unless the server is maintaining

backing store.

Visible

A region of a window is visible if someone looking at the screen can actually see it; that is,

the window is viewable and the region is not occluded by any other window.

Window gravity

When windows are resized, subwindows may be repositioned automatically relative to some

position in the window. This attraction of a subwindow to some part of its parent is known

as window gravity.

Window manager

Manipulation of windows on the screen and much of the user interface (policy) is typically

provided by a window manager client.

273

Xlib - C Library Xll, Release 3

XY format

The data for a pixmap is said to be in XY format if it is organized as a set of bitmaps
representing individual bit planes with the planes appearing from most-significant to least-
significant bit order.

Z format

The data for a pixmap is said to be in Z format if it is organized as a set of pixel values in
scanline order.

274

Xlib — C Library Xll, Release 3

#define, 45

$

$HOME/.Xdefaults-name, 207
$HOME/.Xdefaults, 207

/
/etc/ttys, 130
/etc/X?.hosts, 140
/usr/include, 2
/usr/lib/Xll/XErrorDB, 187

A

Above, 31, 32, 169
Access control list, 140, 265
Active grab, 117, 265
AllHints, 192
Alloc All, 54, 55
Allocation:

colormap, 56
read-only colormap cells, 56
read/write colormap cells, 57

AllocNamedColor, 184
AllocNone, 54, 55
AllowExposures, 139, 140
AllPlanes, 6, 65
AllTemporary, 129
AlreadyG rabbed, 119, 123
Always, 13, 23, 37, 43, 160
Ancestors, 265
AnyButton, 121, 122
AnyKey, 123, 124, 125
AnyModifier, 121, 122, 123, 124
AnyPropertyType, 47, 48
ArcChord, 69, 78, 90
ArcPieSlice, 64, 69, 78, 90
Arcs:

drawing, 86
filling, 89

Areas:
clearing, 79
copying, 80

AsyncBoth, 125
AsyncKeyboard, 125, 126
AsyncPointer, 125, 126
Atom, 45, 254, 256, 265

getting name, 47

Index

interning, 46
predefined, 45, 189

Authentication, 140
AutoRepeatModeDefault, 130
AutoRepeatModeOff, 130, 131
AutoRepeatModeOn, 130, 131

B

B16, 254
B32, 254
Background, 265
Backing store, 265
BadAccess, 38, 59, 60, 61, 121, 124, 141, 142,
143, 184
BadAlloc, 26, 27, 47, 50, 55, 62, 69, 70, 71, 72,
73, 75, 76, 77, 78, 95, 96, 110, 111, 112, 137,
138, 184, 190, 191, 192, 194, 195, 196, 197,
198, 199, 203, 214, 220, 221, 222
BadAtom, 47, 48, 50, 52, 184, 186, 196, 197,
203, 214
BadColor, 26, 38, 55, 56, 57, 58, 59, 60, 61, 62,
116, 117, 184, 186, 210
BadCursor, 26, 38, 112, 113, 120, 121, 184,
186
BadDrawable, 43, 62, 69, 74, 75, 81, 82, 83,
84, 85, 87, 88, 89, 90, 104, 105, 106, 107, 108,
109, 113, 184, 186, 220, 221
BadFont, 69, 70, 76, 96, 102, 103, 104, 112,
184, 186
BadGC, 15, 69, 70, 71, 72, 73, 75, 76, 77, 78,
81, 82, 83, 84, 85, 87, 88, 89, 90, 102, 104, 105,
106, 107, 109, 184, 186
BadIDChoice, 184
Badlmplementation, 184, 186
BadLength, 138, 184, 186, 254
BadMatch, 19, 21, 22, 24, 26, 27, 31, 32, 33,
36, 38, 39, 49, 50, 54, 55, 56, 67, 68, 69, 70,
74, 75, 77, 80, 81, 82, 83, 84, 85, 87, 88, 89,
90, 104, 105, 106, 107, 108, 109, 111, 114, 115,
116, 128, 130, 131, 184, 186, 215, 221
BadName, 60, 95, 184, 186
BadPixmap, 26, 38, 39, 63, 69, 70, 75, 111,
184, 186
BadRequest, 184, 186
BadValue, 26, 27, 31, 33, 34, 36, 38, 47, 48,
50, 55, 58, 59, 60, 61, 62, 68, 69, 70, 71, 72,
73, 74, 77, 78, 80, 81, 82, 83, 84, 89, 98, 107,
108, 109, 110, 111, 112, 115, 120, 121, 122,
123, 124, 125, 126, 128, 129, 130, 131, 132,
133, 134, 136, 137, 138, 139, 140, 141, 142,
143, 182, 184, 186, 215

275

Xlib — C Library Xll, Release 3

Bad Window, 26, 27, 28, 29, 30, 33, 34, 35, 36,
37, 38, 39, 40, 43, 44, 48, 49, 50, 52, 55, 56,
80, 113, 115, 116, 117, 120, 121, 122, 123, 124,
125, 128, 175, 182, 183, 184, 186, 190, 191,
192, 194, 195, 196, 197, 198, 199, 200, 203
Below, 31, 32
Bit:

gravity, 205
plane, 205

Bitmap, 2, 205
BitmapBitOrder, 11
BitmapFilelnvalid, 220
BitmapNoMemory, 220, 221
BitmapOpenFailed, 220, 221
BitmapPad, 11
BitmapSuccess, 220, 221
BitmapUnit, 11
BlackPixel, 7
BlackPixelOfScreen, 12
Bool, 146, 179, 180
Border, 205
Bottomlf, 31, 32
Butt, 67
Buttonl, 152
ButtonlMask, 152, 154
Button !MotionMasl6utton5MotionMask, 150
ButtonlMotionMask, 118, 147
Button2, 152 %
Button2Mask, 152, 154
Button2MotionMask, 118, 147
Button3, 152
Button3Mask, 152, 154
ButtonSMotionMask, 118, 147
Button4, 152
Button4Mask, 152, 154
Button4MotionMask, 118, 147
Buttons, 152
ButtonSMask, 152, 154
Button5MotionMask, 118, 147
Button:

grabbing, 120, 265
ungrabbing, 121

ButtonMotionMask, 118, 147, 150
ButtonPress, 121, 125, 145, 147, 150, 155, 175
ButtonPressMask, 38, 118, 147, 150, 175
ButtonRelease, 125, 145, 150, 155
ButtonReleaseMask, 118, 147, 150
Byte:

order, 205

c

CapButt, 64, 66, 67, 72
CapNotLast, 66, 67, 72
CapProjecting, 66, 67, 72

CapRound, 66, 67, 72
CellsOfScreen, 12
CenterGravity, 22, 42, 43
Changing:

pointer grab, 120
Child window, 1
Child Window, 41
Children, 260
CirculateNotify, 36, 145, 147, 152, 162, 167
CirculateRequest, 36, 145, 168, 175
Class, 283
Clearing:

areas, 79
windows, 80

Client, 260
ClientMessage, 45, 145, 147, 171
ClipByChildren, 64, 68, 78, 79
Clipping region, 286
Color map, 54, 56
Color, 54

allocation, 56, 57, 58
database, 56
getting values, 61
naming, 56
parsing command lines, 210
setting cells, 59

Colormap, 2, 15, 16, 254, 288
ColormapChangeMask, 147, 171
Colormaplnstalled, 171
ColormapNotify, 37, 56, 116, 117, 145, 170,
171
ColormapUninstalled, 171
Complex, 89
ConfigureNotify, 31, 145, 147, 152, 162, 163,
167
ConfigureRequest, 3, 31, 33, 34, 35, 37, 145,
168, 189, 175
ConfigureWindow, 169
Connection, 266
ConnectionNumber, 7
Containment, 266
Control, 138
ControlMask, 118, 122, 152, 154
ConvertSelection, 173, 174
Convex, 89
Coordinate system, 266
CoordModeOrigin, 83, 84, 89
CoordModePrevious, 83, 84, 89
CopyArea, 81
CopyFromParent, 20, 22, 24, 26, 37, 39
Copying:

areas, 80
planes, 81

CreateNotify, 26, 27, 145, 147, 162, 163
CurrentTime, 51, 52, 118, 119, 120, 122, 123,

276

Xlib — C Library Xll, Release 3

125, 128, 147, 173, 174, 182, 273
Cursor, 2, 15, 16, 254, 266

Initial State, 26
limitations, 113

CursorShape, 74
Cut Buffers, 214
CWBackingPixel, 19
CWBackingPlanes, 19
CWBackingStore, 19
CWBackPixel, 19
CWBackPixmap, 19
CWBitGravity, 19
CWBorderPixel, 19
CWBorderPixmap, 19
CWBorderWidth, 31
CWColormap, 19
CWCursor, 19
CWDontPropagate, 19
CWEventMask, 19
CWHeight, 31
CWOverrideRedirect, 19
CWSaveUnder, 19
CWSibling, 31
CWStackMode, 31
CWWidth, 31
CWWinGravity, 19
CWX, 31
CWY, 31

D

Datal6, 257
Data32, 257
Data, 257
Debugging:

error event, 184
error handlers, 183
error message strings, 186
error numbers, 184
synchronous mode, 183

Default Protection, 140
DefaultBlanking, 139, 140
DefaultColormap, 7, 54
DefaultColormapOfScreen, 12
DefaultDepth, 7
DefaultDepthOfScreen, 13
DefaultExposures, 139, 140
DefaultGC, 8
DefaultGCOfScreen, 13
DefaultRootWindow, 8
DefaultScreen, 5, 6, 8
DefaultScreenOfDisplay, 8
DefaultVisual, 8, 54
DefaultVisualOfScreen, 13
Depth, 266

Destination, 65
DestroyAll, 16, 129
DestroyNotify, 27, 28, 145, 147, 162, 164
Device, 267
DirectColor, 17, 18, 54, 55, 58, 59, 202, 267,
273
DisableAccess, 143
Display Functions, 65
Display, 5, 6, 15, 138, 251, 252, 256, 257, 267,
272

data structure, 6
structure, 267, 272

DisplayCells, 9
DisplayHeight, 11
DisplayHeightMM, 11
DisplayOfScreen, 13
DisplayPlanes, 9
DisplayString, 9
DisplayWidth, 12
Display WidthMM, 12
DoBlue, 54, 59, 60, 61, 62, 210
DoesBackingStore, 13
DoesSaveUnders, 13
DoGreen, 54, 59, 60, 61, 62, 210
DontAllowExposures, 139, 140
DontCareState, 193
DontPreferBlanking, 139, 140
DoRed, 54, 59, 60, 61, 62, 210
Drawable, 2, 254, 256, 267
Drawing:

arcs, 86
image text, 105
lines, 83
points, 82
polygons, 83
rectangles, 85
strings, 104
text items, 103

E

EastGravity, 22, 42
EnableAccess, 143
EnterNotify, 119, 120, 145, 152, 153, 154,
155, 156, 159, 167
EnterWindowMask, 118, 147, 153
Environment:

DISPLAY, 5
Error:

codes, 184
handlers, 183
handling, 3

EvenOddRule, 64, 68, 73, 210
event mask, 146
Event, 2, 144, 267

277

XIib - C Library

categories, 144
Exposure, 267
mask, 267
propagation, 174, 267
source, 267
synchronization, 267
types, 144

EventMaskOfScreen, 13
Events:

ButtonPress, 150
ButtonRelease, 150
CirculateNotify, 162
CirculateRequest, 168
ClientMessage, 171
ColormapNotify, 170
ConfigureNotify, 162
ConfigureRequest, 169
CreateNotify, 163
DestroyNotify, 164
EnterNotify, 152
Expose, 160
Focusln, 155
FocusOut, 155
GraphicsExpose, 160
GravityNotify, 164
KeymapNotify, 159
KeyPress, 150
KeyRelease, 150
LeaveNotify, 152
MapNotify, 165
MappingNotify, 165
MapRequest, 169
MotionNotify, 150
NoExpose, 160
PropertyNotify, 172
ReparentNotify, 166
ResizeRequest, 170
SelectionClear, 172
SelectionNotify, 174
SelectionRequest, 173
UnmapNotify, 167
VisibilityNotify, 167

Expose, 2, 3, 19, 21, 23, 28, 29, 30, 33, 34, 35,
79, 80, 114, 139, 145, 153, 156, 160, 167
ExposureMask, 147, 160
Extension, 268

F

False, 4, 13, 20, 23, 24, 29, 31, 33, 34, 35, 37,
43, 44, 46, 80, 96, 119, 122, 146, 149, 152, 153,
154, 169, 170, 171, 175, 177, 178, 179, 180,
181, 183, 193, 229, 230, 246, 249, 257, 258
FamilyChaos, 141
FamilyDECnet, 141

Xll, Release 3

Familylnternet, 141
Files:

$HOME/.Xdefaults, 207
/etc/ttys, 130
/etc/X?.hosts, 140
/usr/lib/Xll/XErrorDB, 187
<sys/socket.h>, 142
<Xll/Xlib.h>, 247, 251, 252
<Xll/Xlibint.h>, 246, 253, 256
<Xll/Xproto.h>, 253, 254, 255, 256
<Xproto.h>, 255

Filling:
arcs, 89
polygon, 89
rectangles, 88

FillOpaqueStippled, 67, 68, 73, 81
FillPolygon, 88
FillSolid, 64, 67, 68, 73, 106
FillStippled, 67, 68, 73
FillTiled, 67, 68, 73
FlushGC, 252, 253
FocusChangeMask, 147, 156
Focusln, 122, 123, 128, 145, 155, 156, 157,
158, 159
FocusOut, 122, 123, 128, 145, 152, 155, 156,
157, 158, 159, 167
Font, 2
font, 4
Font, 15, 16, 91, 254, 268
FontLeftToRight, 92, 99, 100, 101
FontRightToLeft, 92, 99, 100, 101
Fonts, 263

freeing font information, 95
getting information, 95
unloading, 95

ForgetGravity, 20, 22, 23, 42
fork, 9
Freeing:

colors, 60
resources, 19, 38, 39

Frozen events, 268

G

GC, 251, 268
GCArcMode, 63
GCBackground, 63
GCCapStyle, 63
GCClipMask, 63
GCClipXOrigin, 63
GCClipYOrigin, 63
GCDashList, 63
GCDashOffset, 63
GCFillRule, 63
GCFillStyle, 63

278

Xlib - C Library Xll, Release 3

GCFont, 63
GCForeground, 63
GCFunction, 63
GCGraphicsExposures, 63
GCJoinStyle, 63
GCLineStyle, 63
GCLineWidth, 63
GContext, 2, 15, 16, 70, 95, 101, 184, 254
GCPlaneMask, 63
GCStipple, 63
GCSubwindowMode, 63
GCTile, 63
GCTileStipXOrigin, 63
GCTileStipYOrigin, 63
GetEmptyReq, 256
GetKeyboardControl, 255, 257
GetReq, 256
GetReqExtra, 256
GetResReq, 256
GetWindowAttributes, 255, 257, 258
Glyph, 268
Grab, 268
Grabbing:

buttons, 120
keyboard, 122
keys, 123
pointer, 118
server, 127

GrabFrozen, 119, 123
GrablnvalidTime, 119, 123
GrabModeAsync, 118, 119, 121, 122, 123, 124,
149
GrabModeSync, 118, 119, 121, 122, 123, 124
GrabNotViewable, 119, 123
GrabSuccess, 119
Graphics context, 53, 268

initializing, 69
path, 66

GraphicsExpose, 69, 78, 81, 145, 146, 160,
161
Gravity, 268
Gravity Notify, 23, 31, 145, 147, 152, 162,
164, 165, 167
Grayscale, 17, 18, 54, 55, 58, 111, 201, 202,
268, 273
GXand, 65
GXandlnverted, 65
GXandReverse, 65
GXclear, 65
GXcopy, 64, 65, 80, 81, 106
GXcopylnverted, 65
GXequiv, 65
GXinvert, 65
GXnand, 65
GXnoop, 65

GXnor, 65
GXor, 65
GXorlnverted, 65
GXorReverse, 65
GXset, 65
GXxor, 65

H

Hash Lookup, 263
HeightMMOfScreen, 14
HeightOfScreen, 14
HeightValue, 209
Hotspot, 268

I

IconicState, 193
IconMaskHint, 192
IconPixmapHint, 192
IconPositionHint, 192
IconWindowHint, 192
Identifier, 268
Image text:

drawing, 105
ImageByteOrder, 11
InactiveState, 193
Includelnferiors, 68, 78
Inferiors, 268
Input Control, 144
Input:

focus, 268
manager, 239

InputFocus, 181, 182
InputHint, 192
InputOnly, 19, 20, 22, 24, 25, 26, 27, 31, 38,
39, 42, 44, 62, 74, 75, 80, 160, 167, 184, 266,
267, 269
InputOutput, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 29, 42, 68, 265, 266, 269
IsCursorKey, 207
IsFunctionKey, 207
IsKeypadKey, 207
IsMiscFunctionKey, 207
IsModiferKey, 207
IsPFKey, 207
IsUnmapped, 43
IsUnviewable, 43
IsViewable, 43

J

JoinBevel, 66, 72
JoinMiter, 64, 66, 72

279

Xlib - C Library

JoinRound, 66, 72

K

KBAutoRepeatMode, 130
KBBellDuration, 130
KBBellPercent, 130
KBBellPitch, 130
KBKey, 130
KBKeyClickPercent, 130
KBLed, 130
KBLedMode, 130
Key:

grabbing, 123, 269
ungrabbing, 124

Keyboard:
bell volume, 130
bit vector, 130
grabbing, 122, 269
keyclick volume, 130
ungrabbing, 123

KeymapNotify, 145, 159
KeyMapStateMask, 118
KeymapStateMask, 147, 159
KeyPress, 122, 124, 125, 131, 145, 150, 159,
205
KeyPressMask, 147, 150
KeyRelease, 122, 125, 131, 145, 150, 159, 205
KeyReleaseMa.sk, 147, 150
Keysym, 269

L

LastKnownRequestProcessed, 9
LeaveNotify, 119, 120, 145, 152, 153, 154,
155, 156, 167
LeaveWindowMask, 118, 147, 153
LedModeOff, 130
LedModeOn, 130
LineDoubleDash, 66, 67, 68, 72
LineOnOffDash, 66, 67, 72
Lines:

drawing, 83
LineSolid, 64, 66, 67, 72
Lock,138
LockDisplay, 255
LockMask, 118, 122, 152, 154
LookupColor, 184
LowerHighest, 35, 36
LSBFirst, 11

M

MapNotify, 29, 145, 147, 152, 162, 165, 167
Mapped window, 269

Xll, Release 3

MappingBusy, 133, 138
MappingFailed, 138
MappingKeyboard, 166, 205
MappingModifier, 166, 205
MappingNotify, 133, 137, 138, 144, 145, 147,
162, 165, 205
MappingPointer, 166
MappingSuccess, 133, 138
MapRequest, 28, 29, 145, 168, 169, 170, 175
MapWindow, 16, 114
MaxCmapsOfScreen, 14
Menus, 126
MinCmapsOfScreen, 14
Modi, 138
ModlMask, 118, 122, 152, 154
Mod2, 138
Mod2Mask, 118, 122, 152, 154
Mod3, 138
Mod3Mask, 118, 122, 152, 154
Mod4, 138
Mod4Mask, 118, 122, 152, 154
Mod5, 138
Mod5Mask, 118, 122, 152, 154
Modifier keys, 269
Monochrome, 269
MotionNotify, 145, 147, 150, 151, 153, 182
Mouse:

programming, 130
MSBFirst, 11

N

NextRequest, 9, 184
NoEventMask, 24, 147
NoExpose, 78, 81, 145, 146, 161
Nonconvex, 89
None, 20, 21, 24, 25, 37, 38, 40, 43, 44, 46, 48,
51, 52, 56, 64, 68, 76, 77, 79, 80, 81, 102, 103,
110, 111, 113, 119, 120, 121, 127, 128, 129,
149, 152, 153, 158, 163, 169, 171, 173, 174,
190, 222
NoOperation, 15
NormaiState, 193
NorthEastGravity, 22, 42
NorthGravity, 22, 42
NorthWestGravity, 20, 22, 23, 42
NoSymbol, 136, 137, 205, 206, 207
Notify Ancestor, 154, 156, 157
NotifyDetailNone, 156, 158, 159
NotifyGrab, 154, 155, 156, 159
NotifyHint, 150, 151, 152
Notifylnferior, 154, 156, 157
NotifyNonlinear, 154, 155, 156, 157, 158
NotifyNonlinearVirtual, 154, 155, 156, 157,
158

280

Xlib — C Library Xll, Release 3

NotifyNormal, 152, 154, 156
NotifyPointer, 156, 157, 158, 159
NotifyPointerRoot, 156, 158, 159
NotifyUngrab, 154, 155, 156, 159
Notify Virtual, 154, 156, 157
Notify WhileGrabbed, 156
NotUseful, 13, 20, 23, 43

o

Obscure, 269
Occlude, 269
OpenFont, 184
Opposite, 31, 32
Output Control, 144
OwnerGrabButtonMask, 147, 149

P

PackData, 260
Padding, 270
PAllHints, 194
Parent Window, 1, 41
ParentRelative, 19, 21, 37, 38, 115
PAspect, 194
Passive grab, 117, 270
Paste Buffers, 214
Pixel value, 65, 27Q
Pixmap, 2, 15, 16, 254, 256, 270
Pixmaps, 263
PlaceOnBottom, 162, 169
PlaceOnTop, 162, 169
Plane, 270

copying, 81
mask, 65, 270

PlanesOfScreen, 14
PMaxSize, 194
PMinSize, 194
Pointer, 270

grabbing, 118, 120, 270
ungrabbing, 120

PointerMotionHint, 150
PointerMotionHintMask, 118, 147, 150
PointerMotionMask, 118, 147, 150
PointerRoot, 16, 128, 129, 158, 159, 193
PointerWindow, 181
Pointing device, 270
Points:

drawing, 82
Polygons:

drawing, 83
filling, 89

PolyLine, 84, 85
PPosition, 194, 195
PreferBlanking, 139, 140

PResizelnc, 194
Property list, 271
Property, 270

appending, 49
changing, 49
deleting, 50
format, 49
getting, 47
listing, 48
prepending, 49
replacing, 49
type, 49

PropertyChangeMask, 147, 172
PropertyDelete, 172
PropertyDeleted, 172
PropertyNewValue, 172
PropertyNotify, 48, 49, 50, 145, 171, 172
PropModeAppend, 49
PropModePrepend, 49
PropModeReplace, 49
Protocol:

DECnet, 6
TCP, 6

ProtocolRevision, 10
ProtocolVersion, 9
PseudoColor, 17, 18, 54, 55, 57, 58, 59, 202,
268, 271, 272
PSize, 194, 195

Q

QLength, 10
QueryFont, 184, 255, 257
QueryKeymap, 255, 257
QueuedAfterFlush, 176
QueuedAfterReading, 176
QueuedAJready, 176

R

RaiseLowest, 35, 36
read-only colormap cells, 56

allocating, 56
read/write colormap cells, 56

allocating, 57
Rectangle, 271

filling, 88
Rectangleln, 213'
RectangleOut, 213
RectanglePart, 214
Rectangles:

drawing, 85
Redirecting control, 271
Region, 210
ReparentNotify, 114, 145, 147, 162, 166

281

Xlib - C Library Xll, Release 3

ReplayKeyboard, 125, 126

ReplayPointer, 125, 126

Reply, 271
Request, 271
Requests, 144
ResizeRedirect, 170

ResizeRedirectMask, 28, 31, 37, 147, 175

ResizeRequest, 28, 31, 145, 168, 170, 175

Resource IDs, 2, 15, 263

Cursor, 2

Font, 2

freeing, 19, 38, 39

GContext, 2

Pixmap, 2

Window, 2

Resource, 271
RetainPermanent, 16, 129, 200

RetainTemporary, 16, 129

RevertToNone, 128, 129

RevertToParent, 128, 129

RevertToPointerRoot, 128, 129

RGB values, 271
Root, 53, 271
RootWindow, 10
RootWindowOfScreen, 15

S

Save set, 271
Save Unders, 23

Scanline, 272
order, 272

Screen, 1, 5, 6, 251, 272
structure, 272

ScreenCount, 10
ScreenFormat, 251

ScreenOfDisplay, 8

ScreenSaverActive, 139

ScreenSaverReset, 139

Selection, 51, 272
converting, 52

getting the owner, 52

setting the owner, 51

SelectionClear, 51, 145, 146, 171, 172
SelectionNotify, 52, 145, 146, 171, 173, 174,
181

SelectionRequest, 51, 52, 145, 146, 171, 173
SendEvent, 145

Serial Number, 184

Server, 272
grabbing, 127, 272

ServerVendor, 10
SetModeDelete, 115

SetModelnsert, 115

Shift, 138

ShiftMask, 118, 122, 152, 154

Sibling, 272

Source, 65

SouthEastGravity, 22, 42

SouthGravity, 22, 42

SouthWestGravity, 22, 42

special, 4

Stacking order, 2, 272

StateHint, 192

StaticColor, 17, 18, 54, 55, 272

StaticGravity, 23, 42

StaticGray, 17, 18, 54, 55, 111, 269, 273

Status, 3, 273
stdio.h, 260

Stipple, 273
StippleShape, 74

Strings:

drawing, 104

strlen, 228

StructureNotify, 162, 163, 164, 165, 166, 167

StructureNotifyMask, 147, 162, 163, 164, 165,

166, 167

SubstructureNotify, 162, 163, 164, 165, 166,

167

SubstructureNotifyMask, 147, 162, 163, 164,

165, 166, 167

SubstructureRedirectMask, 24, 28, 29, 31, 33,

34, 35, 36, 37, 147, 168, 169, 170, 175

Success, 48

SyncBoth, 125

SyncHandle, 259

SyncKeyboard, 125, 126

SyncPointer, 125, 126

T

Text:

drawing, 103

this, 4

Tile, 2, 273
mode, 19

pixmaps, 19

TileShape, 74

time, 118
Timestamp, 273
Toplf, 31, 32

True, 4, 13, 23, 24, 28, 43, 44, 48, 58, 59, 64,

79, 81, 92, 96, 114, 119, 122, 134, 145, 147,

149, 152, 153, 154, 161, 163, 164, 165, 167,

171, 172, 175, 177, 178, 179, 180, 181, 182,

183, 193, 207, 213, 229, 230, 249, 257, 258

TrueColor, 17, 18, 54, 55, 273

282

Xlib — C Library-

Type, 273

U

Ungrabbing:

buttons, 121

keyboard, 123

keys, 124

pointer, 120

UngrabKey board, 123

UngrabPointer, 120

Unix System Call:

fork, 9

UnlockDisplay, 256

UnmapGravity, 23, 42, 167

UnmapNotify Event, 30

UnmapNotify, 23, 30, 145, 147, 152, 156, 162,

187

Un map Window, 114

Unsorted, 77

USPosition, 194, 195

USSize, 194, 195

V

VendorRelease, 10

Vertex, 261

VertexCurved, 262

VertexDontDraw, 262

VertexDrawLastPoint, 261

VertexEndClosed, 261, 262

VertexRelative, 261, 262

VertexStartClosed, 261, 262

Viewable, 273

VisibilityChangeMask, 147, 167

VisibilityFullyObscured, 168

Visibility Notify, 25, 145, 152, 156, 162, 167,

168

VisibilityPartiallyObscured, 168

VisibilityUnobscured, 168

Visible, 273

Visual Classes:

GrayScale, 17

PseudoColor, 17

StaticColor, 17

StaticGray, 17

TrueColor, 17

Visual Type, 17

Visual, 17, 18, 42, 218, 251

VisualAllMask, 215

VisualBitsPerRGBMask, 215

VisualBlueMaskMask, 215

VisualClassMask, 215

VisualColormapSizeMask, 215

VisualDepthMask, 215

Xll, Release 3

VisualGreenMaskMask, 215

VisuallD, 254

VisualEDMask, 215

VisualNoMask, 215

VisualRedMaskMask, 215

VisualScreenMask, 215

w

WestGravity, 22, 42

WhenMapped, 13, 23, 37, 43, 160

WhitePixel, 7

WhitePixelOfScreen, 12

WidthMMOfScreen, 14

WidthOfScreen, 14

WidthValue, 209

WindingRule, 68, 73, 210

Window, 2, 15, 18, 254, 256

attributes, 18

background, 38

clearing, 80

defining the cursor, 113

determining location, 208, 209

gravity, 273

icon name, 191

IDs, 263

InputOnly, 25, 269

InputOutput, 269

manager, 273

managers, 126

mapping, 19

name, 190

parent, 270

root, 271

RootWindow, 10

undefining the cursor, 113
XRoot Window, 10

WindowGroupHint, 192

Windows, 263

X

X10 compatibility:
XDraw, 261

XDrawDashed, 261

XDrawFilled, 261, 262

XDrawPatterned, 261

XDrawTiled, 261, 262

Xll/keysym.h, 135

Xll/keysymdef.h, 135, 206

Xll/X.h, 2, 65, 144, 146

Xll/XlO.h, 261, 262

Xll/Xatom.h, 45, 94, 96, 188, 189, 201

Xll/Xlib.h, 6, 145, 217, 247, 251, 252

Xll/Xlibint.h, 246, 253, 256

283

Xlib - C Library Xll, Release 3

Xll/Xproto.h, 161, 184, 253, 254, 255, 256

Xll/Xresource.h, 224

Xll/Xutil.h, 192, 194, 197, 198, 209, 210, 215,

218, 233

XActivateScreenSaver, 140

XAddExtension, 247

XAddHost, 141

XAddHosts, 141, 142

XAddPixel, 219

XAddToExtensionList, 251

XAddToSaveSet, 115

XAllocColor, 55, 56, 61, 210

XAllocColorCells, 55, 57, 58, 61, 203

XAllocColorPlanes, 55, 58, 59, 61, 201, 203

XAlloc ID, 252, 256

XAllocNamedColor, 55, 50, 57, 61, 210

XAllowEvents, 117, 119, 123, 125, 126

XAllPlanes, 6

XAnyEvent, 145

XAppendVertex, 261

XArc, 82

XAssocTable, 263, 264

XAutoRepeatOff, 132

XAutoRepeatOn, 132

XBell, 132

XBitmapBitOrder, 11

XBitmapPad, 11

XBitmapUnit, 11

XBlackPixel, 7

XBlackPixelOfScreen, 12

XButtonEvent, 151

XButtonPressedEvent, 151, 152

XButtonReleasedEvent, 151, 152

XCellsOfScreen, 12

XChangeActivePointerGrab, 120, 150

XChangeGC, 69, 70, 77, 256

XChangeKeyboardControI, 130, 131, 132

XChangeKeyboardMapping, 136, 137, 166

XChangePointerControl, 133, 134

XChangeProperty, 49, 50, 172, 189

XChangeSaveSet, 115

XChangeWindowAttributes, 19, 37, 38, 56,

116, 171, 174

XChar2b, 91, 100, 102, 103

XCharStruct, 91, 92, 93, 100, 101, 102

XChecklfEvent, 177, 178

XCheckMaskEvent, 180

XCheckTypedEvent, 180

XCheckTypedWindowEvent, 180, 181

XCheckWindowEvent, 179

XCirculateEvent, 162

XCirculateRequestEvent, 168

XCirculateSubwindows, 35, 36, 162, 168

XCirculateSubwindowsDown, 36, 162, 168

XCirculateSubwindowsUp, 36, 162, 168

XCIassHint, 198, 199

XClearArea, 79, 80

XClearVertexFlag, 261

XClearWindow, 37, 80

XClientMessageEvent, 171

XClipBox, 211

XCloseDispiay, 15, 247

XCNOENT, 234

XCNOMEM, 233

XColor, 54, 56, 59, 60, 61, 62

XColormapEvent, 171

XComposeStatus, 205

XConfigureEvent, 163

XConfigureRequestEvent, 109

XConfigureWindow, 30, 32, 33, 162, 164, 169,

170

XConnectionNumber, 7

XConvertSelection, 52, 173

XCopyArea, 69, 78, 80, 81, 146, 160, 161

XCopyColormapAndFree, 55

XCopyGC, 09

XCopyPlane, 62, 69, 78, 81, 82, 146, 160, 161

XCreateAssocTable, 263

XCreateBitmapFromData, 221, 222

XCreateColormap, 54, 55, 201

XCreateFontCursor, 110, 245

XCreateGC, 63, 89, 70, 77, 161, 210, 256

XCreateGlyphCursor, 111, 112

XCreatelmage, 217, 218, 219

XCreatePixmap, 02, 256

XCreatePixmapCursor, 110, 111

XCreatePixmapFromBitmapData, 221

XCreateRegion, 211

XCreateSimpleWindow, 25, 26, 27, 116, 163

XCreateWindow, 19, 25, 26, 37, 56, 116, 163,

174

XCreateWindowEvent, 183

XCrossingEvent, 153

XDefaultColormap, 7

XDefaultColormapOfScreen, 12

XDefaultDepth, 7

XDefaultDepthOfScreen, 13

XDefaultGC, 8

XDefaultGCOfScreen, 13

XDefaultRootWindow, 8

XDefaultScreen, 5, 6, 8

XDefaultScreenOfDisplay, 8

XDefaultVisual, 8

XDefaultVisualOfScreen, 13

XDefineCursor, 26, 113

XDeleteAssoc, 264

XDeleteContext, 234

XDeleteModifiermapEntry, 137, 138

XDeleteProperty, 50, 172

XDestroyAssocTable, 264

284

Xlib — C Library Xll, Release 3

XDestroylmage, 218, 219
XDestrcyRegion, 211
XDestroySubwindows, 28, 164

XDestroyWindow, 27, 28, 164

XDestroyWindowEvent, 164
XDisableAccessControl, 143
XDisplayCells, 6, 9
XDisplayHeight, 6, 11
XDisplayHeightMM, 6, 11
XDisplayKey codes, 135, 136

XDisplayMotionBufferSize, 182
XDisplayName, 187
XDisplayOfScreen, 13
XDisplayPlanes, 6, 9
XDisplayString, 9

XDisplayWidth, 6, 12
XDisplayWidthMM, 6, 12
XDoesBackingStore, 13
XDoesSaveUnders, 13
xDoSomethingReply, 255
xDoSomethingReq, 254, 256
XDraw, 261
XDrawArc, 67, 86, 87, 94

XDraw Arcs, 86, 87

XDrawDashed, 261

XDrawFilled, 261, 262
XDrawImageStringl6, 105, 106

XDrawImageString, 102, 105, 106

XDrawLine, 67, 79, 83. 84

XDrawLines, 83, 84, 261

XDrawPatterned, 261

XDrawPoint, 79, 82, 83, 252

XDrawPoints, 82, 83

XDrawRectangle, 67, 79, 85
XDrawRectangles, 85
XDrawSegments, 67, 83, 84, 261

XDrawStringl6, 104, 105

XDrawString, 104, 105

XDrawTextl6, 67, 102, 103, 104

XDrawText, 67, 102, 103, 104

XDrawTiled, 261, 262

XEDataObject, 251

XEHeadOfExtensionList, 251
XEmptyRegion, 213
XEnableAccessControl, 143
XEnterWindowEvent, 153, 154, 155

XEqualRegion, 213
XErrorEvent, 184

XESetCloseDisplay, 247
XESetCopyGC, 248, 251

XESetCreateFont, 248
XESetCreateGC, 248
XESetError, 250
XESetErrorString, 250
XESetEventToWire, 249

XESetFlushGC, 251

XESetFreeFont, 249
XESetFreeGC, 248

XESetWireToEvent, 249

XEvent, 145, 146, 177, 178, 179, 180, 181,

182, 249

xEvent, 249

XEvent, 250

xEvent, 250

XEventMaskOfScreen, 13
XEventsQueued, 10, 176
XExposeEvent, 160
XExtCodes, 247, 260

XExtData, 251
XFetchBuffer, 215
XFetchBytes, 214
XFetchName, 191
XFillArc, 67, 79, 89, 90

XFillArcs, 69, 90
XFillPolygon, 67, 68, 89
XFillRectangle, 67, 79, 88

XFillRectangles, 88

XFindContext, 233, 234

XFindOnExtensionList, 251, 252

XFlush, 175
XFocusChangeEvent, 156
XFocusInEvent, 156, 157, 158, 159

XFocusOutEvent, 156, 157, 158, 159

XFontProp, 91

XFontStruct, 91, 92, 95, 96, 99, 100, 102, 251

XForceScreenSaver, 139, 140

XFree, 15, 41, 47, 48, 49, 117, 136, 142, 183,

191, 192, 194, 198, 199, 215, 216

XFreeColormap, 56, 171

XFreeColors, 55, 60, 61

XFreeCursor, 25, 112

XFreeExtensionList, 246

XFreeFont, 98, 112, 249

XFreeFontlnfo, 95, 97, 98

XFreeFontNames, 97

XFreeFontPath, 98, 99

XFreeGC, 70
XFreeModifiermap, 138
XFreePixmap, 62, 63, 220, 222

XGContextFromGC, 70, 95

XGCValues, 83

xGenericReply, 255

XGeometry, 209
XGetAtomName, 47

XGetClassHint, 198, 199 .

XGetDefault, 207, 208, 210

XGetErrorDatabaseText, 186, 187

XGetErrorText, 186, 250

XGetFontPath, 98, 99

XGetFontProperty, 96

285

XIib - C Library Xll, Release 3

XGetGeometry, 43, 44

XGetlconName, 191, 192

XGetlconSizes, 197, 198

XGetlmage, 108, 109, 217, 218, 219

XGetlnputFocus, 129
XGetKeyboardControl, 131
XGetKeyboardMapping, 135, 136

XGetModifierMapping, 138
XGetMotionEvents, 151, 182, 183

XGetNormalHints, 195, 197

XGetPixel, 218
XGetPointerControl, 134
XGetPointerMapping, 133
XGetScreenSaver, 140
XGetSelectionOwner, 51, 52
XGetSizeHints, 198, 197

XGetStandardColormap, 202, 203

XGetSublraage, 108, 109

XGetTransientForHint, 199 , 200
XGetVisuallnfo, 21©
XGetWindowAttributes, 41, 42, 43

xGetWindowAttributesReply, 258

XGetWindowProperty, 47, 48, 49, 172, 189

XGetWMHints, 194

XGetZoomHints, 196, 197

XGrabButton, 120, 121, 125, 149

XGrabKey, 123, 124, 125

XGrabKeyboard, 117, 122, 123, 124, 125, 159

XGrabPointer, 117, 118, 119, 120, 121, 125,

153, 155

XGrabServer, 127
XGraphicsExposeEvent, 145, 161
XGravity Event, 165
XHeightMMOfScreen, 14
XHeightOfScreen, 14
XHost Address, 141
XlconSize, 189, 197
XlfEvent, 177, 178

Xlmage, 106, 107, 108, 109, 217, 218, 219

XlmageByteOrder, 11
XInitExtension, 247, 260

XInsertModifiermapEntry, 137
XInstallColormap, 24, 37, 54, 116, 171

XInternAtom, 45, 46, 47

XIntersectRegion, 212
XKey board Control, 130, 131

XKeyboardState, 131
XKeycodeToKeysym, 206, 207

XKeyEvent, 151
XKeymapEvent, 159
XKeyPressedEvent, 151, 152, 205

XKeyReleasedEvent, 151, 152, 205

XKeysymToKeycode, 207
XKeysymToString, 206
XKillClient, 129

XLastKnownRequestProcessed, 9
XLeaveWindowEvent, 153, 154, 155

XListExtensions, 246
XListFonts, 96, 97

XListFontsWithlnfo, 97, 98

XListHosts, 142
XListlnstalledColormaps, 117
XListProperties, 48, 49

XLoadFont, 95, 96

XLoadQueryFont, 91, 95, 96, 97, 248

XLookUpAssoc, 2 63 , 264

XLookupColor, 57
XLookupKeysym, 205
XLookupString, 134, 205, 206

XLowerWindow, 35, 162, 169

XMakeAssoc, 263
XMapEvent, 165
XMappingEvent, 166
XMapRaised, 29, 163, 165, 169, 170

XMapRequestEvent, 170
XMapSubwindows, 29, 30, 165, 170

XMapWindow, 19, 26, 28, 29, 165, 170

XMaskEvent, 179, 180

XMatchVisuallnfo, 7, 17, 216
XMaxCmapsOfScreen, 14
XMaxRequestSize, 254
xmh, 222

XMinCmapsOfScreen, 14
XModifierKeymap, 137, 138

XMotionEvent, 151
XMoveResizeWindow, 34, 163, 164, 169, 170,

256

XMoveWindow, 33, 163, 169, 256

XNegative, 209

XNewModifiermap, 137
XNextEvent, 2, 175, 176, 177

XNextRequest, 9
XNoExposeEvent, 161
XNoOp, 15
XOffsetRegion, 211
XOpenDisplay, 5, 6, 8, 9, 17, 53, 144, 187, 208

XParseColor, 210
XParseGeometry, 208, 209

XPeekEvent, 177
XPeeklfEvent, 177, 178
XPending, 175, 176
Xpermalloc, 224, 225

XPlanesOfScreen, 14
XPoint, 82, 84

XPointerMovedEvent, 150, 151, 152

XPointlnRegion, 213
XPolygonRegion, 210
XProperty Event, 172
XProtocolRevision, 10
XProtocolVersion, 9

286

Xlib — C Library Xll, Release 3

XPutBackEvent, 181
XPutlmage, 107, 217, 221

XPutPixel, 218
XQLength, 10, 176

XQueryBestCursor, 110, 112, 113

XQueryBestSize, 74
XQueryBestStipple, 74, 75

XQueryBestTile, 74
XQueryColor, 61
XQueryColors, 61, 62

XQueryExtension, 246
XQueryFont, 95, 96, 248

XQueryKeymap, 132
XQueryPointer, 44, 151

XQueryTextExtentsl6, 100, 101, 102

XQueryTextExtents, 100, 101, 102, 106

XQueryTree, 41
XRaiseWindow, 2, 34, 35, 162, 169

XReadBitmapFile, 220 , 221

XRebindKeysym, 205, 206
XRecolorCursor, 110, 112
XRectangle, 82
XRectlnRegion, 213
XRefreshKeyboardMapping, 166, 205
XRemoveFromSaveSet, 115, 116

XRemoveHost, 142
XRemoveHosts, 142
XReparentEvent, 166
XReparentWindow, 114, 115, 165, 166

xReply, 257

xReq, 252, 255

XResetScreenSaver, 140
XResizeRequestEvent, 170
XResizeWindow, 33, 34, 163, 164, 169, 170

XResourceManagerString, 208
xResourceReq, 254
XRestackWindows, 36, 37, 162, 169

XrmBindingList, 226

XrmBindLoosely, 226

XrmBindTightly, 226

XrmGetFileDatabase, 230, 231

XrmGetResource, 228, 229, 230

XrmGetStringDatabase, 231
Xrmlnitialize, 224
XrmMergeDatabases, 229, 230
XrmOptionDescRec, 231
XrmOptionKind, 231
XrmoptionNoArg, 232

XrmParseCommand, 231, 232

XrmPutFileDatabase, 231
XrmPutLineResource, 228, 231

XrmPutResource, 226, 227, 229

XrmPutStringResource, 227
XrmQGetResource, 228, 229, 230

XrmQGetSearchList, 229, 230

XrmQGetSearchResource, 230

XrmQPutResource, 226, 227, 228, 229

XrmQPutStringResource, 227, 228

XrmQuark, 224, 225

XrmQuarkToString, 225

XrmStringToBindingQuarkList, 226, 227

XrmStringToQuark, 225

XrmStringToQuarkList, 225, 226

XrmUniqueQuark, 224

XrmValue, 224, 228

XRootWindow, 10

XRootWindowOfScreen, 15

XRotateBuffers, 215

XRotateWindowProperties, 50, 172

XSaveContext, 233, 234

XScreenCount, 10

XScreenOfDisplay, 8

XSegment, 82, 84

XSelectlnput, 174, 175

XSelectionClearEvent, 172

XSelectionEvent, 174

XSelectionRequestEvent, 173

XSendEvent, 171, 173, 174, 181, 182

XServerVendor, 10

XSetAccessControl, 143

XSetAfterFunction, 183

XSetArcMode, 77, 78

XSetBackground, 7*1, 256

XSetClassHint, 198

XSetClipMask, 76, 77

XSetClipOrigin, 76

XSetClipRectangles, 68, 70, 77

XSetCloseDownMode, 15, 16, 129, 203

XSetCommand, 192

XSetDashes, 68, 70, 72, 73

XSetErrorHandler, 184

XSetFillRule, 73

XSetFillStyle, 73

XSetFont, 76

XSetFontPath, 97, 98

XSetForeground, 63, 71

XSetFunction, 71, 72

XSetGraphicsExposures, 78, 161

XSetlconName, 191

XSetlconSizes, 197

XSetlnputFocus, 128

XSetlOErrorHandler, 187

XSetLineAttributes, 63, 72

XSetModifierMapping, 138, 166

XSetNormalHints, 195, 196

XSetPlaneMask, 72

XSetPointerMapping, 133, 166

XSetRegion, 68, 211

XSetScreenSaver, 139

XSetSelectionOwner, 15, 51, 52, 172, 173

287

Xlib - C Library Xll, Release 3

XSetSizeHints; 196
XSetStandardColormap, 203
XSetStandardProperties, 188, 190
XSetState, 71
XSetStipple, 75
XSetSubwindowMode, 7 8
XSetTile, 75
XSetTransientForHint, 199
XSetTSOrigm, 75, 76

XSetWindowAttributes, 19, 20, 37, 171, 174

XSetWindowBackground, 38
XSetWindowBackgroundPixmap, 38

XSetWindowBorder, 38, 39

XSetWindowBorderPixmap, 39
XSetWindowBorderWidth, 34, 163, 169

XSetWindowColormap, 55, 56, 116, 171

XSetWMHints, 193, 194, 198

XSetZoomHints, 196
XShrinkRegion, 212
XSizeHints, 189, 194, 196, 197

XStandardColormap, 201, 202, 203

XStoreBuffer, 214
XStoreBytes, 214
XStoreColor, 56, 59, 60, 210

XStoreColors, 56, 59, 203

XStoreName, 190, 191

XStoreNamedColor, 59, 60
XStringToKeysym, 206
XSublmage, 218, 219

XSubtractRegion, 212
XSync, 2, 3, 15, 175
XSynchronize, 183, 259

XTextExtentsl6, 100, 102

XTextExtents, 99, 100, 102

XTextIteml6, 102
XTextltem, 102
XTextWidthl6, 99
XTextWidth, 99
XTimeCoord, 183
Xtlnitialize, 232

XTranslateCoordinates, 39, 40

XUndefineCursor, 113
XUngrabButton, 121, 122

XUngrabKey, 124, 125

XUngrabKeyboard, 15, 123
XUngrabPointer, 15, 120, 150, 153

XUngrabServer, 15, 127
XUninstallColormap, 56, 116, 117, 171

XUnionRectWithRegion, 212
XUnionRegion, 212
XUniqueContext, 234
XUnloadFont, 95, 96
XUnmapEvent, 167
XUnmapSubwindows, 30
XUnmapWindow, 30

XValue, 209

XVendorRelease, 10
XVisibilityEvent, 167, 168

XVisuallDFromVisual, 18
XVisuallnfo, 215
XWarpPointer, 127, 128

XWhitePixel, 7
XWhitePixelOfScreen, 12
XWidthMMOfScreen, 14
XWidthOfScreen, 14
XWindowAttributes, 42
XWindowCnanges, 30, 31, 32

XWindowEvent, 2, 175, 178, 179

XWMHints, 189, 192, 194

XWriteBitmapFile, 220, 221, 222

XXorRegion, 213
XY format, 273
XYBitmap, 107, 108, 109, 217

XYPixmap, 107, 108, 109, 217

X_CopyArea, 161

X_CopyPlane, 161

X_MapWindow, 256

Y

YNegative, 209

YSorted, 77

YValue, 209

YXBanded, 77

YXSorted, 77

z

Z format, 274
ZoomState, 193

ZPixmap, 107, 108, 109, 217

XAllocScratch, 259
Xdebug, 183

XFlushGCCache, 252
XReadl6, 258

XReadl6Pad, 258

XRead32, 258

XRead, 258

XReadPad, 259

XReply, 250, 257, 258

XSend, 257

288

X Toolkit Intrinsics - C Language Interface

X Window System

X Version II, Release 3

Joel McCormack

Digital Equipment Corporation

Western Software Laboratory

Paul Asente

Digital Equipment Corporation

Western Software Laboratory

Ralph R. Swick

Digital Equipment Corporation

External Research Group

MIT Project Athena

The X Window System is a trademark of MIT.

Copyright © 1985, 1986, 1987, 1988 Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital

Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appears in all copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of M.I.T. or Digital not be used in in advertising or publi¬

city pertaining to distribution of the software without specific, written prior permission. M.I.T and Digital makes no

representations about the suitability of the software described herein for any purpose. It is provided “as is” without

express or implied warranty.

Table of Contents

Acknowledgments. 5

About Tills Manual . 7

Chapter 1 — Intrinsics and Widgets . 1

1.1. Terminology. 2

1.2. Intrinsics . 3

13. W'idgets. 3

1.3.1. Core Widgets . 4

1.3.1.1. CoreClassPart Structure... 4

1.3.1.2. CorePart Structure. 5

1.3.1.3. CorePart Default Values ... 6

1.3.2. Composite W'idgets. 7

1.3.2.1. CompositeClassPart Structure ... 7

1.3.2.2. CompositePart Structure . 7

1.3.2.3. CompositePart Default Values... 8

1.3.3. Constraint Widgets. 8

1.3.3.1. ConstraintClassPart Structure ._. 8

1.3.3.2. ConstraintPart Structure. 9

1.4. Widget Classing. 9

1.4.1. Widget Naming Conventions . 9

1.4.2. Widget Subclassing in Public .h Files . 10

1.4.3. Widget Subclassing in Private .h Files . 11

1.4.4. Widget Subclassing in .c Files. 12

1.4.5. Widget Class and Superclass Look Up. 15

1.4.6. Widget Subclass Verification. 15

1.4.7. Superclass Chaining .. 16

1.4.8. Class Initialization: class_initialize and class_.part_initialize Procedures. 16

1.4.9. Inheritance of Superclass Operations. 17

1.4.10. Invocation of Superclass Operations... 19

Chapter 2 - Widget Instantiation. 20

2.1. Initializing the X Toolkit . 20

2.2. Loading the Resource Database. 23

2.3. Parsing the Command Line ... 24

2.4. Creating Widgets. 25

2.4.1. Creating and Merging Argument Lists. 26

2.4.2. Creating a Widget Instance. 27

2.4.3. Creating an Application Shell Instance ... 28

2.4.4. Widget Instance Initialization: the initialize Procedure. 29

1

X Intrinsics Xll, Release 3, Oct. 1988

2.4.5. Constraint Widget Instance Initialization : the constraint_initialize Procedure. 30

2.4.6. Nonwidget Data Initialization: the initializejiook Procedure 30

2J. Realizing Widgets............. 30

2.5.1. Widget Instance Window Creation: the realize Procedure 31

2.5.2. Window Creation Convenience Routine 32

2.6. Obtaining Window Information from a Widget..... 33

2.6.1. Unrealizing Widgets........ 34

2.7. Destroying Widgets....... 34

2.7.1. Adding and Removing Destroy Callbacks 35

2.7.2. Dynamic Data Deallocation: the destroy Procedure 35

2.7.3. Dynamic Constraint Data Deallocation: the constraint destroy Procedure ... 36

2.8. Exiting from an Application 36

Chapter 3 - Composite Widgets and Their Children 37

3.1. Verifying the Class of a Composite Widget..... 38

3.2. Addition of Children to a Composite Widget: the insert_chiid Procedure 38

3.3. Insertion Order of Children: the insert_position Procedure 38

3.4. Deletion of Children: the delete_child Procedure....... 39

3 J. Adding and Removing Children from the Managed Set..... 39

3.5.1. Managing Children 39

3.5.2. Unmanaging Children 40

3.5.3. Determining if a Widget Is Managed......... 41

3.6. Controlling When Widgets Get Mapped 41

3.7. Constrained Composite Widgets 42

Chapter 4 - Shell Widgets 44

4.1. Shell Widget Definitions 44

4.1.1. ShellQassPart Definitions 45

4.1.2. SheliPart Definition......... 47

4.1.3. SheliPart Default Values 49

Chapter 5 - Pop-Up Widgets 51

5.1. Pop-Up Widget Types............. 51

52. Creating a Pop-Up Shell 51

53. Creating Pop-Up Children 52

5.4. Mapping a Pop-Up Widget 52

525. Unmapping a Pop-Up Widget....... 55

Chapter 6 - Geometry Management..... 57

6.1. Initiating Geometry- Changes..... 57

6.2. General Geometry Manager Requests 58

6.3. Resize Requests 60

6.4. Potential Geometry Changes. 60

6.5. Child Geometry Management: the geometry_manager Procedure. 60

6.6. Widget Placement and Sizing 62

6.7. Preferred Geometry....... 63

2

X Intrinsics XI1, Release 3, Oct. 1988

6.8. Size Change Management: the resize Procedure ... 64

Chapter 7 - Event Management . 65

7.1. Adding and Deleting Additional Event Sources... 65

7.1.1. Adding and Removing Input Sources ... 65

7.1.2. Adding and Removing Timeouts . 66

12. Constraining Events to a Cascade of Widgets... 67

73. Focusing Events on a Child... 68

7.4. Querying Event Sources. 69

73. Dispatching Events. 70

7.6. The Application Input Loop . 71

7.7. Setting and Checking the Sensitivity State of a Widget . 71

7.8. Adding Background Work Procedures 72

7.9. X Event Filters ... 72

7.9.1. Pointer Motion Compression... 73

7.9.2. Enter/Leave Compression. 73

7.9.3. Exposure Compression 73

7.10. Widget Exposure and Visibility. 73

7.10.1. Redisplay of a Widget: the expose Procedure . 73

7.10.2. Widget Visibility. 74

7.11. X Event Handlers....... 74

7.11.1. Event Handlers that Select Events... 75

7.11.2. Event Handlers that Do Not Select Events ... 76

7.11.3. Current Event Mask 76

Chapter 8 - Callbacks........... 78

8.1. Using Callback Procedure and Callback List Definitions. 78

8.2. Identifying Callback Lists 79

83. Adding Callback Procedures 79

8.4. Removing Callback Procedures. 79

8.5. Executing Callback Procedures ... 80

8.6. Checking the Status of a Callback List .. 80

Chapter 9 -- Resource Management. 82

9.1. Resource Lists....... 82

9.2. Byte Offset Calculations. 85

9.3. Superclass to Subclass Chaining of Resource Lists. 85

9.4. Subresources . 85

93. Obtaining Application Resources... 86

9.6. Resource Conversions. 87

9.6.1. Predefined Resource Converters ... 87

9.6.2. New Resource Converters. 87

9.6.3. Issuing Conversion Warnings... 89

9.6.4. Registering a New Resource Converter . 89

9.6.5. Resource Converter Invocation. 91

3

X Intrinsics Xll, Release 3, Oct. 1988

9.7. Reading and Writing Widget State . 92

9.7.1. Obtaining Widget State. 92

9.7.1.1. Widget Subpart Resource Data: the get_values_hook Procedure... 92

9.7.1.2. Widget Subpart State . 92

9.7.2. Setting Widget State. 93

9.7.2.1. Widget State: the set_values Procedure. 94

9.7.2.2. Widget State: the set_values_almost Procedure. 95

9.7.2.3. Widget State: the constraint set_values Procedure. 95

9.7.2.4. Setting Widget Subpart State. 95

9.7.2.5. Widget Subpart Resource Data: the set_values_hook Procedure. 96

Chapter 10 - Translation Management. 97

10.1. Action Tables. 97

10.1.1. Action Table Registration. 98

10.1.2. Action Names to Procedure Translations . 98

10.2. Translation Tables. 98

10.2.1. Event Sequences . 99

10.2.2. Action Sequences. 99

10.3. Translation Table Management . 99

10.4. Using Accelerators . 101

10.5. KeyCode-to-KeySym Conversions. 102

Chapter 11 - Utility Functions . 105

11.1. Determining the Number of Elements in an Array . 105

11.2. Translating Strings to Widget Instances. 105

11.3. Managing Memory Usage . 106

11.4. Sharing Graphics Contexts . 107

11.5. Managing Selections. 108

11.5.1. Setting and Getting the Selection Timeout Value . 108

11.5.2. Using Atomic Transfers. 108

11.5.2.1. Atomic Transfer Procedures . 108

11.5.2.2. Getting the Selection Value . 110

11.5.2.3. Setting the Selection Owner. 111

11.6. Merging Exposure Events into a Region . 112

11.7. Translating Widget Coordinates . 113

11.8. Translating a Window to a Widget . 113

11.9. Handling Errors. 113

Appendix A - Resource File Format. 118

Appendix B - Translation Table Syntax . 119

Appendix C - Conversion Notes . 126

Appendix D - Standard Errors and Warnings . 134

Appendix E - StringDefs.h Header File . 137

4

Acknowledgments

The design of the XI1 Intrinsics was done primarily by Joel McCormack of Digital WSL. Major
contributions to the design and implementation also were done by Charles Haynes, Mike Chow,
and Paul Asente of Digital WSL. Additional contributors to the design and/or implementation
were:

Loretta Guarino-Reid (Digital WSL)
Rich Hyde (Digital WSL)
Susan Angebranndt (Digital WSL)
Terry Weissman (Digital WSL)
Mary Larson (Digital UEG)
Marie Manasse (Digital SRC)
Jim Gettys (Digital SRC)
Ralph Swick (Project Athena and Digital ERP)
Leo Treggiari (Digital SDT)
Ron Newman (Project Athena)
Mark Ackerman (Project Athena)
Bob Scheifler (MIT LCS)

The contributors to the X10 toolkit also deserve mention. Although the XI1 Intrinsics present an
entirely different programming style, they borrow heavily from the implicit and explicit concepts
in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 toolkit’s sample widgets were by the above, as well as
by:

Ram Rao (Digital UEG)
Mary Larson (Digital UEG)
Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the XI1 intrinsics.

Thanks go to A1 Mento of Digital’s UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of Berkeley for extensively reviewing early
drafts of it.

Finally, a special thanks to Mike Chow, whose extensive performance analysis of the X10 toolkit
provided the justification to redesign it entirely for XI1.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

5

The current design of the Intrinsics has benefited greatly from the input of several dedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned, the
following individuals have dedicated significant time to suggesting improvements to the Intrin¬
sics:

Steve Pitschke (Stellar)
C. Doug Blewett (AT&T)
Bob Miller (HP)
David Schiferl (Tektronix)
Fred Taft (HP)
Michael Squires (Sequent)
Marcel Meth (AT&T)
Jim Fulton (MIT)
Kerry Kimbrough (Texas Instruments)
Mike Collins (Digital)
Scott McGregor (Digital)
Phil Karlton (Digital)
Julian Payne (ESS)
Jacques Davy (Bull)
Gabriel Beged-Dov (SPC)
Glenn Widener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick
External Research Group
Digital Equipment Corporation
MIT Project Athena

6

About This Manual

X Toolkit lntrinsics - C Language Interface is intended to be read by both application program¬
mers who will use one or more of the many widget sets built with the lntrinsics and by widget
programmers who will use the lntrinsics to build widgets for one of the widget sets. Not all the
information in this manual, however, applies to both audiences. That is, because the application
programmer is likely to use only a number of the lntrinsics functions in writing an application
and because the widget programmer is is likely to use many more, if not all, of the lntrinsics
functions in building a widget, an attempt has been made to highlight those areas of information
that are deemed to be of special interest for the application programmer. (It is assumed the wid¬
get programmer will have to be familiar with all the information.) Therefore, all entries in the
table of contents that are printed in bold indicate the information that should be of special interest
to an application programmer.

It is also assumed that as application programmers become more familiar with the concepts dis¬
cussed in this manual they will find it more convenient to implement portions of their applica¬
tions as special-purpose or custom widgets. It is possible, none the less, to use widgets without
knowing how to build them.

Conventions Used in this Manual

This document uses the following conventions:

• Global symbols are printed in this special font. These can be either function names, sym¬
bols defined in include files, data types, or structure names. Arguments to functions, pro¬
cedures, or macros are printed in italics.

• Each function is introduced by a general discussion that distinguishes it from other func¬
tions. The function declaration itself follows, and each argument is specifically explained.
General discussion of the function, if any is required, follows the arguments.

• To eliminate any ambiguity between those arguments that you pass and those that a func¬
tion returns to you, the explanations for all arguments that you pass start with the word
specifies or, in the case of multiple arguments, the word specify. The explanations for all
arguments that are returned to you start with the word returns or, in the case of multiple
arguments, the word return.

7

Chapter 1

Intrinsics and Widgets

The Intrinsics and a widget set make up the X Toolkit. The Intrinsics provide the base mechan¬
isms necessary to build a wide variety of widget sets and application environments. Because the
Intrinsics mask implementation details from the widget and application programmer, the widgets
and the application environments built with them are fully extensible and support independently
developed new or extended components. By following a small set of conventions, widget pro¬
grammers can extend their widget sets in new ways and can have these extensions function
smoothly with the existing facilities.

The Intrinsics is a library package layered on top of Xlib. As such, the intrinsics provide
mechanisms (functions and structures) for extending the basic programming abstractions pro¬
vided by the X Window System. By providing mechanisms for intercomponent and intracom¬
ponent interactions, the Intrinsics provide the next layer of functionality from which the widget
sets are built.

Figure 1-1 illustrates this extended three-tiered X programming environment.

Application

Widget
1
1

1
I

Set 1
1
l

1
1
l

1
1 Intrinsics
1

1
1
1

l

Xlib

A typical X Toolkit application is most likely to be a client of a given widget set, a subset of the
Intrinsics functions, and a smaller set of Xlib functions. This is illustrated by a left-to-right view¬
ing of Figure 1-1. At the same time, a widget set is a client of both the Intrinsics and Xlib, and
the Intrinsics are a client of Xlib only. This is illustrated by a top-to-bottom viewing of Figure
1-1.

For the application programmer, the X Toolkit provides:

• A consistent interface (widget set) for writing applications

• A small set of Intrinsics mechanisms that also are used in writing applications

For the widget programmer, the X Toolkit provides:

• A set of Intrinsics mechanisms for building widgets

• An architectural model for constructing and composing widgets

1

X Intrinsics XI1, Release 3, Oct. 1988

• A consistent interface (widget set) for programming

To the extent possible, the X Toolkit is policy free. The application environment, not the X
Toolkit, defines, implements, and enforces:

• Policy

• Consistency

® Style

Each individual widget implementation defines its own policy. The X Toolkit design allows for
the development of radically differing widget implementations.

1.1. Terminology

In addition to the terms already defined for X programming (see Xlib - C Language X Interface),
the following terms are specific to the Intrinsics and used throughout this book.

Application programmer

A programmer who uses the X Toolkit to produce an application user interface.

Class

The general group to which a specific object belongs.

Client

A function that uses a widget in an application or for composing other widgets.

Instance

A specific widget object as opposed to a general widget class.

Method

The functions or procedures that a widget class implements.

Name

The name that is specific to an instance of a widget for a given client.

Object

A software data abstraction consisting of private data and private and ’ :blic functions that
operate on the private data. Users of the abstraction can interact with the object only
through calls to the object’s public functions. In the X Toolkit, some of the object’s public
functions are called directly by the application, while others are called indirectly when the
application calls the common Intrinsics functions. In general, if a function is common to all
widgets, an application uses a single Intrinsic function to invoke the function for all types of
widgets. If a function is unique to a single widget type, the widget exports the function as
another “Xt” function.

Resource

A. named piece of data in a widget that can be set by a client, by an applicauon, or by user
defaults.

User

A person interacting with a workstation.

Widget

An object providing a user-interface abstraction (for example, a Scrollbar widget).

Widget class

The general group to which a specific widget belongs, otherwise known as the type of the
widget.

Widget programmer

A programmer who adds new widgets to the X Toolkit.

2

X Intrinsics Xll, Release 3, Oct. 1988

1.2. Intrinsics

The Intrinsics provide the base mechanisms (functions and structures) that simplify the design of
application user interfaces. In addition, it assists widget and application programmers by provid-
ing a commonly used set of underlying user-interface functions to manage:

• Toolkit initialization

* Widgets

• Memory

© Window, file, and timer events

® Widget geometry

© Input focus

© Selections

® Resources and resource conversion

® Translation of events

© Graphics contexts

» Pixmaps

® Errors and warnings

Although all Intrinsics mechanisms are primarily intended for use by widget programmers, some
are also intended for use by application programmers. The architectural model for the Intrinsics
lets the widget programmer create new widgets by using the supplied mechanisms and/or by
combining existing widgets. Therefore, an application interface layers built with the Intrinsics
will provide a coordinated set of widgets and composition policies. While some of the widgets
that are built with the Intrinsics are common across a number of application domains, others are
restricted to a specific application domain.

The Intrinsics are based on an architectural model that also is flexible enough to accommodate a
variety of different application interface layers. In addition, the supplied set of Intrinsics mechan¬
isms are:

® Functionally complete and policy free

® Stylistically and functionally consistent with the X Window System primitives

® Portable across languages, computer architectures, and operating systems

Applications that use the Intrinsics mechanisms must include the following header files:

® <Xll/lntrinsic.h>

© <XIl/StringDefs.h>

In addition, they may also include:

® <Xll/Xatoms.h>

® <Xli/SheIl.h>

Finally, widget implementations should include:

* <Xll/IntrinsicP.h> instead of <X11/Xntrinsic.h>.

The applications should also include the additional headers for each widget class that they are to
use (for example, <X11/Label.h> or <Xll/ScroIl.h>). On a UNIX-based system, the Intrinsics
object library file is named libXt.a and is usually referenced as -IXt.

1J. Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a combination
of an X window and its associated semantics and which is dynamically allocated and contains
state information. Logically, a widget is a rectangle with associated input/output semantics.
Some widgets display information (for example, text or graphics), and others are merely

3

X Intrinsics Xll, Release 3, Oct. 1988

containers for other widgets (for example, a menu box). Some widgets are output-only and do
not react to pointer or keyboard input, and others change their display in response to input and
can invoke functions that an application has attached to them.

Every widget belongs to exactly one widget class that is statically allocated and initialized and
that contains the operations allowable on widgets of that class. Logically, a widget class is the
procedures and data that is associated with all widgets belonging to that class. These procedures
and data can be inherited by subclasses. Physically, a widget class is a pointer to a structure. The
contents of this structure are constant for all widgets of the widget class but will vary from class
to class. (Here, constant means the class structure is initialized at compile-time and never
changed, except for a one-time class initialization and in-place compilation of resource lists,
which takes place when the first widget of the class or subclass is created.) For further informa¬
tion, see Section 2.4.

The organization of the declarations and code for a new widget class between a public .h file, a
private .h file, and the implementation .c file is described in Section 1.4. The predefined widget
classes adhere to these conventions.

A widget instance is composed of two parts:

• A data structure that contains instance-specific values

® A class structure that contains information that is applicable to all widgets of that class

Much of the input/output of a widget (for example, fonts, colors, sizes, border widths, and so on)
is customizable by users.

The next three sections discuss the base widget classes:

® Core widgets

* Composite widgets

® Constraint widgets

The chapter ends with a discussion of widget classing.

13.1. Core Widgets

The Core widget contains the definitions of fv Js common to all widgets. All widgets are subc¬
lasses of Core, which is defined by the CoreClassPart and CorePart structures.

13.1.1. CoreClassPart Structure

The common fields for all widget classes are defined in the CoreClassPart structure:

typedef struct {
WidgetClass superclass:
String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtWidgetClassProc class_part.
Boolean class_inited;
XtlnitProc initialize;
XtArgsProc initialize_hook;
XtRealizeProc realize;
XtActionList actions;
Cardinal num_actions;
XtResourceList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean compress_motion;
Boolean compress_exposure;
Boolean compress_enterleave;

See Section 1.4
See Section 1.4
See Section 2.4
See Section 1.4

initialize;See Section 1.4
See Section 1.4
Sre Section 2.4
See Section 2.4
See Section 2.4
See Chapter 10
See Chapter 10
See Chapter 9
See Chapter 9
Private to resource manager
See Section 7.9.1
See Section 7.9.3
See Section 7.9.2

4

X Intrinsics Xll, Release 3, Oct. 1988

Boolean visible_interest;
XtWidgetProc destroy;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtAlmostProc set_values_almost;
XtArgsProc get_values_hook;
XtAcceptFocusProc accept_focus;
XtVersionType version;
_XtOffsetList callback_private;
String tm_table;
XtGeometryHandler query _geometry;
XtStringProc display_accelerator,
caddr_t extension;

} CoreClassPart;

See Section 7.10
See Section 2.7
See Chapter 6
See Section 7.10
See Section 9.7
See Section 9.7
See Section 9.7
See Section 9.7
See Section 7.3
See Section 1.4
Private to callbacks
See Chapter 10
See Chapter 6
See Chapter 10
See Section 1.4

All widget classes have the core class fields as their first component. The prototypical
WidgetClass is defined with only this set of fields. Various routines can cast widget class
pointers, as needed, to specific widget class types, for example:

typedef struct {
CoreClassPart core_class;

} WidgetClassRec, *WidgetClass;

The predefined class record and pointer for WidgetClassRec are:

extern WidgetClassRec WidgetClassRec;

extern WidgetClass w'idgetClass;

The opaque types W’idget and W’idgetClass and the opaque variable WidgetClass are defined
for generic actions on widgets.

I.3.I.2. CorePart Structure

The common fields for all widget instances are defined in the CorePart structure:

typedef struct _CorePart {
Widget self;
WidgetClass widget_class;
Widget parent;
XrmName xrm_name;
Boolean being_destroyed;
XtCallbackList destroy_callbacks;
caddrj constraints;
Position x;
Position y;
Dimension width;
Dimension height;
Dimension border_width;
Boolean managed;
Boolean sensitive;
Boolean ancestor_sensitive;
XtEventTable event_table;
XtTMRec tm;
XtTranslations accelerators;

See Section 1.4
See Section 1.4
Private to resource manager
See Section 2.7
See Section 2.7
See Section 3.7
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 3
See Section 7.7
See Section 7.7
Private to event manager
Private to translation manager
See Chapter 10

5

X Intrinsics Xll, Release 3, Oct. 1988

Pixel border_pixel; See Section 2.6
Pixmap border_pixmap; See Section 2.6
WidgetList popup_list; See Chapter 5
Cardinal num_popups; See Chapter 5
String name; See Chapter 9
Screen *screen; See Section 2.6
Colormap colormap; See Section 2.6
Window window; See Section 2.6
Cardinal depth; See Section 2.5
Pixel background_pixel; See Section 2.6
Pixmap background_pixmap; See Section 2.6
Boolean visible; See Section 7.10
Boolean mapped_when_managed; See Chapter 3

} CorePart;

All widget instances have the core fields as their first component. The prototypical type Widget
is defined with only this set of fields. Various routines can cast widget pointers, as needed, to
specific widget types; for example:

typedef struct {
CorePart core;

} WidgetRec, *Widget;

1.3.13. CorePart Default Values

The default values for the core fields, which are filled in by the Core resource list and the Core
initialize procedure, are:

Field Default Value

self
widget_class
parent
xrm_name
being_destroyeu
destroy_callbacks
constraints
x

y
width
height
border_width
managed
sensitive
ancestor_sensitive
event_table
tm
accelerators
border_pixel
border_pixmap
popup_list
num_popups
name

Address of the widget structure (may not be changed)
widget_class argument to XtCreateWidget (may not be changed)
parent argument to XtCreateWidget (may not be changed)
Encoded name argument to XtCreateWidget (may not be changed)
Parent’s being_destroyed value
NULL
NULL
0
0
0
0
1
False
True
Bitwise AND of parent’s sensitive & ancestor_sensitive
Initialized by the event manager
Initialized by the translation manager
NULL
XtDefaultForeground
NULL
NULL
0
name argument to XtCreateWidget (may not be changed)

6

X Intrinsics Xll, Release 3, Oct. 1988

colormap
window
depth
background_pixel
background_pixmap
visible
m ap_when_m anaged

screen Parent’s screen, top-level widget gets it from display specifier (may
not be changed)
Default color map for the screen
NULL
Parent’s depth, top-level widget gets root window depth
XtDefaultBackground
NULL
True
True

13.2. Composite Widgets

Composite widgets are a subclass of the Core widget (see Chapter 3) are intended to be con¬
tainers for other widgets, and are defined by the CompositeClassPart and CompositePart struc¬
tures.

13.2.1. CompositeClassPart Structure

In addition to the Core widget class fields. Composite widgets have the following class fields:

typedef struct {
XtGeometryHandler geometry_manager,See Chapter 6
XtWidgetProc change_managed; See Chapter 3
XtWidgetProc insert_child; See Chapter 3
XtWidgetProc delete_child; See Chapter 3
caddr_t extension; See Section 1.4

} CompositeClassPart;

Composite widget classes have the composite fields immediately following the core fields:

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetClass;

The predefined class record and pointer for CompositeClassRec are:

extern CompositeClassRec CompositeClassRec;

extern WidgetClass composite WidgetClass;

The opaque types CompositeWidget and CompositeWidgetCIass and the opaque variable
compositeWidgetClass are defined for generic operations on widgets that are a subclass of
CompositeWidget.

13.2.2. CompositePart Structure

In addition to the CorePart fields. Composite widgets have the following fields defined in the
CompositePart structure:

typedef struct {
WidgetList children; See Section 1.4
Cardinal num_children; See Section 1.4
Cardinal num_slots; See Chapter 3
XtOrderProc insert_position; See Section 2.4

} CompositePart;

Composite widgets have the composite fields immediately following the core fields:

7

X Intrinsics Xll, Release 3, Oct. 1988

typedef struct {
CorePart core;
CompositePart composite;

} CompositeR.ee, *CompositeWidget;

13.2.3. CompositePart Default Values

The default values for the composite fields, which are filled in by the Composite resource list
and the Composite initialize procedure, are:

Field Default Value

children NULL
num_children 0
num_slots 0
insert_position Internal function InsertAtEnd

13.3. Constraint Widgets

Constraint widgets are a subclass of the Composite widget (see Section 3.7) that maintain addi¬
tional state data for each child, for example, client-defined constraints on the child’s geometry.
They are defined by the ConstraintClassPart and ConstraintPart structures.

1.33.1. ConstraintClassPart Structure

In addition to the Composite class fields,

typedef struct {
XtResourceList resources;
Cardinal num_resources;
Cardinal constraint_size;
XtlnitProc initialize;
XtWidgetProc destroy;
XtSetValuesFunc set_values;
caddr_t extension;

} ConstraintClassPart;

Constraint widget classes have the constraint fields immediately following the composite fields:

typedef struct (
CoreClassPart core_class;
Composite Cl assPart composite_class;
ConstraintClassPart constraint_class;

} ConstraintClassRec, *ConstraintWidgetClass;

The predefined class record and pointer for ConstraintClassRec are:

extern ConstraintClassRec ConstraintClassRec;

extern WidgetClass constraintWidgetClass;

The opaque types ConstraintWidget and ConstraintWidgetClass and the opaque variable con¬
straintWidgetClass are defined for generic operations on widgets that are a subclass of Con¬
straintWidgetClass.

Constraint widgets have the following class fields:

See Section 3.7
See Section 3.7
See Section 3.7
See Section 3.7
See Section 3.7
See Section 3.7
See Section 1.4

8

X Intrinsics Xll, Release 3, Oct. 1988

13.32. ConstraintPart Structure

In addition to the CompositePart fields, Constraint widgets have the following fields defined in
the ConstraintPart structure:

typedef struct { int empty; } ConstraintPart;

Constraint widgets have the constraint fields immediately following the composite fields:

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

1.4. Widget Classing

The widget_class field of a widget points to its widget class structure, which contains information
that is constant across all widgets of that class. As a consequence, widget classes usually do not
implement directly callable procedures; rather, they implement procedures that are available
through their widget class structure. These methods are invoked by generic procedures that
envelop common actions around the procedures implemented by the widget class. Such pro¬
cedures are applicable to all widgets of that class and also to widgets that are subclasses of that
class.

All widget classes are a subclass of Core and can be subclassed further. Subclassing reduces the
amount of code and declarations you write to make a new widget class that is similar to an exist¬
ing class. For example, you do not have to describe every resource your widget uses in an
XtResourceList. Instead, you describe only the resources your widget has that its superclass
does not. Subclasses usually inherit many of their superclass’s procedures (for example, the
expose procedure or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits none of the pro¬
cedures of its superclass, you should consider whether or not you have chosen the most appropri¬
ate superclass.

To make good use of subclassing, widget declarations and naming conventions are highly styl¬
ized. A widget consists of three files:

® A public .h file that is used by client widgets or applications

« A private .h file that is used by widgets that are subclasses of the widget

© A .c file that implements the widget class

1.4.1. Widget Naming Conventions

The Intrinsics provide a vehicle by which programmers can create new widgets and organize a
collection of widgets into an application. To ensure that applications need not deal with as many
styles of capitalization and spelling as the number of widget classes it uses, the following guide¬
lines should be followed when writing new widgets:

• Use the X naming conventions that are applicable. For example, a record component name
is all lowercase and uses underscores (_) for compound words (for example,
background_pixmap). Type and procedure names start with uppercase and use capitaliza¬
tion for compound words (for example, ArgList or XtSetValues).

® A resource name string is spelled identically to the field name except that compound names
use capitalization rather than underscore. To let the compiler catch spelling errors, each
resource name should have a macro definition prefixed with XtN. For example, the
background_pixmap field has the corresponding resource name identifier XtNbackground-
Pixmap, which is defined as the string “backgroundPixmap”. Many predefined names are
listed in <Xll/StringDefs.h>. Before you invent a new name, you should make sure that

9

X Intrinsics Xll, Release 3, Oct. 1988

your proposed name is not already defined or that there is not already a name that you can
use.

s A resource class string starts with a capital letter and uses capitalization for compound
names (for example,“BorderWidth”). Each resource class string should have a macro
definition prefixed with XtC (for example, XtCBorderWidth).

e A resource representation string is spelled identically to the type name (for example,
“TranslationTable”). Each representation string should have a macro definition prefixed
with XtR (for example, XtRTranslationTable).

• New widget classes start with a capital and use uppercase for compound words. Given a
new class name AbcXyz you should derive several names:

- Partial widget instance structure name AbcXyzPart

- Complete widget instance structure names AbcXyzRec and _AbcXyzRec

- Widget instance pointer type name AbcXyzWidget

- Partial class structure name AbcXyzClassPart

- Complete class structure names AbcXyzClassRec and _AbcXyzClassRec

- Class structure variable abcXyzClassRec

- Class pointer variable abcXyzWidgetClass

® Action procedures available to translation specifications should follow the same naming
conventions as procedures. That is, they start with a capital letter and compound names
use uppercase (for example, “Highlight” and “NotifyClient”).

1.4.2. Widget Subclassing in Public .h Files

The public .h file for a widget class is imported by clients and contains:

® A reference to the public .h files for the superclass

9 The names and classes of the new resources that this widget adds to its superclass

® The class record pointer that you use to create widget instances

® The C type that you use to declare widget instances of this class

® Entry points for new class methods

For example, tine following is the public .h file for a possible implementation of a Label widget:

#ifndef LABEL_H
#define LABEL_H

/* New resources */
#define XtNjustify
#define XtNforeground
#define XtNlabel
#define XtNfont
#define XtNintemalWidth
#define XtNintemalHeight

"justify"
"foreground"
"label"
"font"
"intemalWidth"
"intemalHeight"

/* Class record pointer */
extern WidgetClass labelWidgetClass;

/* C Widget type definition */
typedef struct _LabelRec *LabelWidget;

/* New class method entry points */
extern void Label SetTextQ;

/* Widget w */

10

X Intrinsics XI1, Release 3, Oct. 1988

/* String text */

extern String Label GetTextO;
/* Widget w */

#endif LABEL_H

The conditional inclusion of the text allows the application to include header files for different
widgets without being concerned that they already may be included as a superclass of another
widget.

To accommodate operating systems with file name length restrictions, the name of the public .h
file is the first ten characters of the widget class. For example, the public .h file for the Con¬
straint widget is Constraint.!!.

1.4.3. Widget Subclassing in Private .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget and
contains:

© A reference to the public .h file for the class

• A reference to the private .h file for the superclass

• The new fields that the widget instance adds to its superclass’s widget structure

• The complete widget instance structure for this widget

• The new fields that this widget class adds to its superclass’s Constraint structure if the
widget is a subclass of Constraint

• The complete Constraint structure if the widget is a subclass of Constraint

© The new fields that this widget class adds to its superclass’s widget class structure

• The complete widget class structure for this widget

• The name of a constant of the generic widget class structure

• An inherit procedure for subclasses that wish to inherit a superclass operation for each new
procedure in the widget class structure

For example, the following is the private .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <X11/Label.h>

/* New fields for the Label widget record */
typedef struct {
/* Settable resources */

Pixel foreground;
XFontStruct *font;
String label; /* text to display */
XtJustify justify;
Dimension intemal_width; /* # of pixels horizontal border */
Dimension intemal_height; /* # of pixels vertical border */

/* Data derived from resources */
GC normal_GC;
GC gray_GC;
Pixmap gray_pixmap;
Position label_x;
Position label_y;

1!

X Intrinsics Xll, Release 3, Oct. 1988

Dimension label_width;
Dimension label_height;
Cardinal labeljen;
Boolean display_sensitive;

} LabelPart;

/* Full instance record declaration */
typedef struct _LabelRec {

CorePart core;
LabelPart label;

} LabeLRec;

/* Types for label class methods */
typedef void (*LabelSetTextProc)0;

/* Widget w */
/* String text */

typedef String (*LabelGetTextProc)0;
/* Widget w */

/* New fields for the Label widget class record */
typedef struct {

LabelSetTextProc set_text;
LabelGetTextProc get_text;
caddrj extension;

} LabelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {

CoreClassPart core_class;
LabelClassPart label_class;

} LabelQassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

#define LabelInheritSetText((LabelSetTextProc)_XtInherit)
#define LabelInheritGetText((LabelGetTextProc)_XtInherit)
#endif LABELP_H

To accommodate operating systems with file name length restrictions, the name of the private .h
file is the first nine characters of the widget class followed by a capital P. For example, the
private .h file for the Constraint widget is ConstrainP.h.

1.4.4. Widget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable, which con¬
tains the following parts:

• Class information (for example, superclass, class_name, widget_size, class_initialize, and
class_inited)

• Data constants (for example, resources and num_resources, actions and num_actions,
visiblejnterest, compress_motion, compress_exposure, and version)

• Widget operations (for example, initialize, realize, destroy, resize, expose, set_values,
accept_focus, and any operations specific to the widget)

12

X Intrinsics Xll, Release 3, Oct. 1988

The superclass field points to the superclass WidgetClass record. For direct subclasses of the
generic core widget, superclass should be initialized to the address of the widgetClassRec struc¬
ture. The superclass is used for class chaining operations and for inheriting or enveloping a
superclass’s operations. (See Sections 1.4.7, 1.4.9, and 1.4.10).

The class_name field contains the text name for this class (used by the resource manager). For
example, the Label widget has the string “Label”. More than one widget class can share the
same text class name.

The widget_size field is the size of the corresponding widget structure (not the size of the Gass
structure).

The version field indicates the toolkit version number and is used for run-time consistency check¬
ing of the X Toolkit and widgets in an application. Widget writers must set it to the symbolic
value XtVersion in the widget class initialization. Those widget writers who know that their
widgets are backwards compatible with previous versions of the Intrinsics can put the special
value XtVersionDontCheck in the version field to turn off version checking for those widgets.

The extension field is for future upwards compatibility. If you add additional fields to class parts,
all subclass structure layouts change, requiring complete recompilation. To allow clients to avoid
recompilation, an extension field at the end of each class part can point to a record that contains
any additional class information required.

All other fields are described in their respective sections.

The following is an abbreviated version of the “.c” file for the Label widget. (The resources
table is described in the Chapter 9.)

/* Resources specific to Label */
#define XtRJustify "Justify"
static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString, XtDefaultForeground),

(XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString, XtDefaultFont},

(XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

/* Forward declarations of procedures */
static void ClassInitializeQ;
static void InitializeO;
static void RealizeO;
static void SetTextO;
static void GetText();

/* Class record constant */
LabelClassRec labelClassRec = {

/* core_class fields */
/* superclass */
/* class_name */
/* widget_size */
/* classjnitialize */

(WidgetClass) &widgetClassRec,
"Label",
sizeof(LabelRec),
Classlnitialize,

13

X Intrinsics Xll, Release 3, Oct. 1988

/* class_part_initialize */ NULL,
/* class_inited */ False,
/* initialize */ Initialize,
/* initialize_hook */ NULL,
/* realize */ Realize,
/* actions */ NULL,
/* num_actions V 0,
/* resources */ resources,
/* num_resources */ XtNumber(resources),
/* xrm_class V NULLQUARK,
/* compress_motion */ True,
/* compress_exposure */ True,
/* compress_enterleave */ True,
/* visible_interest */ False,
/* destroy */ NULL,
/* resize */ Resize,
/* expose */ Redisplay,
/* set_values */ Set Values,
/* set_values_hook */ NULL,
/* set_values_almost *1 XtlnheritSetValues Almost.
/* get_values_hook */ NULL,
/* accept_focus */ NULL,
/* version */ XtVersion,
/* callback_offsets */ NULL,
/* tm_table */ NULL,
/* query_geometry */ XtlnheritQueryGeometry,
/* display_accelerator */ NULL,
/* extension */ NULL

/* Label_class fields */
/* get_text */ GetText,
/* set_text */ SetText,
/* extension */ NULL

}

};

/* Class record pointer */
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;

/* New method access routines */
void Label SetText(w, text)

Widget w;
String text;

{
Label WidgetClass lwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(w, labelWidgetClass, NULL);
*Qwc->label_class.set_text)(w, text)

}

/* Private procedures */

14

X Intrinsics Xll, Release 3, Oct. 1988

1.4.5. Widget Class and Superclass Look Up

To obtain the class of a widget, use XtClass.

WidgetClass XtClass(w)
Widget w;

w Specifies the widget.

The XtClass function returns a pointer to the widget’s class structure.

To obtain the superclass of a widget, use XtSuperclass.

WidgetClass XtSuperclass(w)
Widget w,

w Specifies the widget.

The XtSuperclass function returns a pointer to the widget’s superclass class structure.

1.4.6. Widget Subclass Verification

To check the subclass that a widget belongs to, use XtlsSubclass.

Boolean XtIsSubclass(w, widget_class)
Widget w;
WidgetClass widget_class;

w Specifies the widget.

widget_class Specifies the widget class to test against.

The XtlsSubclass function returns True if the class of the specified widget is equal to or is a
subclass of the specified widget class. The specified widget can be any number of subclasses
down the chain and need not be an immediate subclass of the specified widget class. Composite
widgets that need to restrict the class of the items they contain can use XtlsSubclass to find out if
a widget belongs to the desired class of objects.

To check the subclass that a widget belongs to and generate a debugging error message, use
XtCheckSubclass.

void XtCheckSubclass(w, widget_class, message)
Widget w;
WidgetClass widget_class\
String message;

w Specifies the widget.

widget_class Specifies the widget class to test against.

message Specifies the message that is to be used.

The XtCheckSubclass macro determines if the class of the specified widget is equal to or is a
subclass of the specified widget class. The widget can be any number of subclasses down the
chain and need not be an immediate subclass of the specified widget class. If the specified widget
is not a subclass, XtCheckSubclass constructs an error message from the supplied message, the
widget’s actual class, and the expected class and calls XtErrorMsg. XtCheckSubclass should
be used at the entry point of exported routines to ensure that the client has passed in a valid wid¬
get class for the exported operation.

XtCheckSubclass is only executed when the widget has been compiled with the compiler sym¬
bol DEBUG defined; otherwise, it is defined as the empty string and generates no code.

15

X Intrinsics Xll, Release 3, Oct. 1988

1.4.7. Superclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their
corresponding field in their superclass or subclass structures. With a linked field, the Intrinsics
access it value only after accessing its corresponding superclass value (called downward super¬
class chaining) or before accessing its corresponding superclass value (called upward superclass
chaining). The self-contained fields in a widget class are:

® class_name

• class_initialize

• widget_size

• realize

• visible_interest

• resize

• expose

• accept_focus

• compress_motion

• compress_exposure

• compress_enterleave

® set_values_almost

• tm_table

• version

With downward superclass chaining, the invocation of an operation first accesses the field from
the Core class structure, then the subclass structure, and so on down the class chain to that
widget’s class structure. These superclass-to-subclass fields are:

• class_part_initialize

« get_values_hook

• initialize

® initialize_hook

• se Lvalues

• set_values_hook

• resources

In addition, for subclasses of Constraint, the resources field of the ConstraintClassPart struc¬
ture is chained from the Constraint class down to the subclass.

With upward superclass chaining, the invocation of an operation first accesses the field from the
widget class structure, then the field from the superclass structure, and so on up the class chain to
the Core class structure. The subciass-to-superclass fields are:

® destroy

• actions

1.4.8. Class Initialization: class_initialize and class_part_initialize Procedures

Many class records can be initialized completely at compile time. In some cases, however, a
class may need to register type converters or perform other sorts of one-time initialization.

Because the C language does not have initialization procedures that are invoked automatically
when a program starts up, a widget class can declare a class_initialize procedure that will be
automatically called exactly once by the X Toolkit. A class initialization procedure pointer is of
type XtProc:

16

X Intrinsics XI1, Release 3, Oct. 1988

typedef void (*XtProc)0;

A widget class indicates that it has no class initialization procedure by specifying NULL in the
class_initialize field.

In addition to having class initializations done exactly once, some classes need to perform addi¬
tional initialization for fields in its part of the class record. These are performed not just for the
particular class but for subclasses as well. This is done in the class’s class part initialization pro¬
cedure, which is stored in the class_part_initialize field. The class_part_initialize procedure
pointer is of type XtWidgetClassProc:

typedef void (*XtWidgetQassProc)(WidgetClass);

During class initialization, the class part initialization procedure for the class and all its superc¬
lasses are called in superclass-to-subclass order on the class record. These procedures have the
responsibility of doing any dynamic initializations necessary to their class’s part of the record.
The most common is the resolution of any inherited methods defined in the class. For example, if
a widget class C has superclasses Core, Composite, A, and B, the class record for C first is
passed to Core’s class_part_initialize record. This resolves any inherited core methods and com¬
piles the textual representations of the resource list and action table that are defined in the class
record. Next, the Composite’s class_part_initialize is called to initialize the composite part of
C’s class record. Finally, the class_part_initialize procedures for A, B, and C (in order) are
called. For further information, see Section 1.4.9. Gasses that do not define any new class fields
or that need no extra processing for them can specify NULL in the class_part_initialize field.

All widget classes, whether they have a class initialization procedure or not, must start with their
classJnited field False.

The first time a widget of a class is created, XtCreateWidget ensures that the widget class and
all superclasses are initialized, in superclass to subclass order, by checking each class_inited field
and if it is False, by calling the class_initialize and the class_part_initialize procedures for the
class and all its superclasses. The Intrinsics then set the class_inited field to True. After the
one-time initialization, a class structure is constant.

The following provides the class initialization procedure for Label,

static void Gasslnitialize()

{

XtQEleft = XrmStringToQuark(”left");
XtQEcenter = XrmStringToQuark("center");
XtQEright = XrmStringToQuark("right");

XtAddConverter(XtRString, XtRJustify, CvtStringToJustify, NULL, 0);
}

A class is initialized the first time a widget of that class or any subclass is created. If the class
initialization procedure registers type converters, these type converters are not available until this
first widget is created (see Section 9.6).

1.4.9. Inheritance of Superclass Operations

A widget class is free to use any of its superclass’s self-contained operations rather than imple¬
menting its own code. The most frequently inherited operations are:

• expose

• realize

• insert_child

• delete_child

17

X Xntrinsics Xll, Release 3, Oct. 1988

® geometry_manager

® set_values_almost

To inherit an operation xyz, specify the constant XtlnheritXyz in your class record.

Every class that declares a new procedure in its widget class part must provide for inheriting the
procedure in its class_part_initialize procedure. (The special chained operations initialize,
set_values, and destroy declared in the Core record do not have inherit procedures. Widget
classes that do nothing beyond what their superclass does specify NULL for chained procedures
in their class records.)

Inheriting works by comparing the value of the field with a known, special value and by copying
in the superclass’s value for that field if a match occurs. This special value is usually the Intrin¬
sics internal value Xtlnherit cast to the appropriate type. (Xtlnherit is a procedure that
issues an error message if it is actually called.)

For example, the Composite class’s private include file contains these definitions:

#define XtlnheritGeometryManager ((XtGeometryHandler) _XtInherit)
#define XtlnheritChangeManaged ((XtWidgetProc) _XtInherit)
#define Xtlnheritlnsert Child ((XtArgsProc) _XtInherit)
#define XtlnheritDeleteChild ((XtWidgetProc) _XtInherit)

The Composite’s class_part_initialize procedure begins as follows:

static void CompositeClassPartlnitialize(widgetClass)
WidgetClass widgetClass;

{

register Composite WidgetClass wc = (CompositeWidgetClass) widgetGass;
Composite WidgetClass super = (Composite WidgetGass) wc->core_class.superclass

if (wc->composite_class.geometry_managcr == XtlnheritGeometryManager) {
wc->composite_class.geometry_manager = super->composite_class.geometry_manager,

}

if (wc->composite_class.change_managed == XtlnheritChangeManaged) {
wc->composite_class.change_managed = super->composite_class.change_managed;

}

The inherit constants defined for Core are:

• XtlnheritRealize

• XtlnheritResize

® XtlnheritExpose

® XtlnheritSetValuesAImost

» XtlnheritAcceptFocus

• XtlnheritDisplayAccelerator

The inherit constants defined for Composite are:

® XtlnheritGeometryManager

• XtlnheritChangeManaged

e XtlnheritlnsertChild

• XtlnheritDeleteChild

18

X Intrinsics Xll, Release 3, Oct. 1988

1.4.10. Invocation of Superclass Operations

A widget class sometimes explicitly needs to call a superclass operation that usually is not
chained. For example, a widget’s expose procedure might call its superclass’s expose and then
perform a little more work of its own. Composite classes with fixed children can implement
insert_child by first calling their superclass’s insert_child procedure and then calling
XtManageChild to add the child to the managed list.

Note that a method should call its own superclass method, not the widget’s superclass method.
That is, it should use its own class pointers only, not the widget’s class pointers. This technique
is referred to as enveloping the superclass’s operation.

19

X Intrinsics Xll, Release 3, Oct. 1988

Chapter 2

Widget Instantiation

A collection of widget instances constitutes a widget, tree. The shell widget returned by
XtAppCreateShell is the root of the widget tree instance. The widgets with one or more chil¬
dren are the intermediate nodes of that tree, and the widgets with no children of any kind are the
leaves of a widget tree. With the exception of pop-up children (see Chapter 5), this widget tree
instance defines the associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain children, but
the Intrinsics provide a set of management mechanisms for constructing and interfacing between
composite widgets, their children, and other clients.

Composite widgets, subclasses of Composite, are containers for an arbitrary but
implementation-defined collection of children, which may be instantiated by the composite wid¬
get itself, by other clients, or by a combination of the two. Composite widgets also contain
methods for managing the geometry Qayout) 0f any child widget Under unusual circumstances,
a composite widget may have zero children, but it usually has at least one. By contrast, primitive
widgets that contain children typically instantiate specific children of known class themselves and
do not expect external clients to do so. Primitive widgets also do not have general geometry
management methods.

In addition, the Intrinsics recursively perform many operations (for example, realization and des¬
truction) on composite widgets and all of their children. Primitive widgets that have children
must be prepared to perform the recursive operations themselves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For example, XtRealizeWidget
traverses the tree downward and recursively realizes all pop-up widgets and children of compo¬
site widgets. XtDestroyWidget traverses the tree downward and destroys all pop-up widgets
and children of composite widgets. The functions that fetch and modify resources traverse the
tree upward and determine the inheritance of resources from a widget’s ancestors. XtMake-
GeometryRequest traverses the tree up one level and calls the geometry manager that is respon¬
sible for a widget child’s geometry.

To facilitate up-traversal of the widget tree, each widget has a pointer to its parent widget. The
Shell widget that XtAppCreateShell returns, however, has a parent pointer of NULL.

To facilitate down-traversal of the widget tree, each composite widget has a pointer to an array of
children widgets, which includes all normal children created, not just the subset of children that
are managed by the composite widget’s geometry manager. Primitive widgets that instantiate
children are entirely responsible for all operations that require downward traversal below them¬
selves. In addition, every widget has a pointer to an array of pop-up children widgets.

2.1. Initializing the X Toolkit

Before an application can call any of the Intrinsics functions, it must initialize the X Toolkit by
using:

• XtToolkitlnitialize, which initializes the X Toolkit internals

• XtC'reateApplicationContext, which initializes the per application state

• XtDisplayInitialize or XtOpenDisplay, which initializes the per display state

® XtAppCreateShell, which creates the initial widget

Multiple instances of X Toolkit applications may be implemented by a single program in a single
address space. Each instance needs to be able to read input and dispatch events independently of
any other instance. Further, an application may need multiple display connections or need to

20

X Intrinsics Xll, Release 3, Oct. 1988

have widgets on multiple screens. To accommodate both requirements, the Intrinsics define
application contexts, each of which provides the information needed to distinguish one applica¬
tion instance from another. The major component of an application context is a list of X Display
pointers for that application. The application context type XtAppContext is opaque to clients.

To initialize the X Toolkit internals, use XtToolkitlnitialize.

void XtToolkitlnitializeO

The semantics of calling XtToolkitlnitialize more than once are undefined.

To create an application context, use XtCreateApplicationContext.

XtAppContext XtCreateApplicationContextO

The XtCreateApplicationContext function returns an application context, which is an opaque
type. Every application must have at least one application context.

To destroy an application context and close any displays in it, use XtDestroyApplicationCon-
text.

void XtDestroyApplicationContext(app_conrexr)
XtAppContext app_contexr,

app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application context as soon
as it is safe to do so. If called from with an event dispatch (for example, a callback procedure),
XtDestroyApplicationContext does not destroy the application context until the dispatch is
complete.

To get the application context for a given widget, use XtWidgetToApplicationContext.

XtAppContext XtWidgetToApplicationContext(w)
Widget w;

w Specifies the widget for which you want the application context.

The XtWidgetToApplicationContext function returns the application context for the specified
widget.

To initialize a display and add it to an application context, use XtDisplaylnitialize.

void XtDisplayInitialize(app_conrm, display, application_name, application_class,
options, numjoptions, argc, argv)

XtAppContext app_context\
Display * display,
String application_name\
String application_class\
XrmOptionDescRec *options;
Cardinal num_options\
Cardinal *argc\
String *argv\

appjcontext Specifies the application context.

display Specifies the display. Note that a display can be in at most one application con¬
text.

applicationjiame
Specifies the name of the application instance.

21

X Intrinsics XI1, Release 3, Oct. 1988

application_class
Specifies the class name of this application, which is usually the generic name for
all instances of this application.

options

numjoptions

argc

argv

Specifies how to parse the command line for any application-specific resources.
The options argument is passed as a parameter to XrmParseCommand. For
further information, see Xlib - C Language X Interface.

Specifies the number of entries in the options list.

Specifies a pointer to the number of command line parameters.

Specifies the command line parameters.

The XtDisplayInitialize function builds the resource database, calls the Xlib XrmParseCom¬
mand function to parse the command line, and performs other per display initialization. After
XrmParseCommand has been called, argc and argv contain only those parameters that were not
in the standard option table or in the table specified by the options argument. If the modified argc
is not zero, most applications simply print out the modified argv along with a message listing the
allowable options. On UNIX-based systems, the application name is usually the final component
of argv[0j. If the synchronize resource is True for the specified application, XtDisplayInitialize
calls the Xlib XSynchronize function to put Xlib into synchronous mode for this display connec¬
tion. If the reverseVideo resource is True, the Intrinsics exchange XtDefaultForeground and
XtDefaultBackground for widgets created on this display. (See Section 9.6.1).

To open a display, initialize it, and add it to an application context, use XtOpenDisplay.

Display *XtOpenDisplay(app_co/trexr, displayjstring, application jiame, application_class,
options, numjoptions, argc, argv)

XtAppContext app _context\
String display _string\
String application_name\
String application_class;
XrmOptionDescRec *options;
Cardinal numjoptions'.
Cardinal *argc\
String *argv\

app_context Specifies the application context.

display_string Specifies the display string. Note that a display can be in at most one application
context.

applicationjname
Specifies the name of the application instance.

application_class
Specifies the class name of this application, which is usually the generic name for
all instances of this application.

options Specifies how to parse the command line for any application-specific resources.
The options argument is passed as a parameter to XrmParseCommand. For
further information, see Xlib - C Language X Interface.

numjoptions Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the command line parameters.

The XtOpenDisplay function calls XOpenDisplay the specified display name. If display_string
is NULL, XtOpenDisplay uses the current value of the -display option specified in argv and if
no display is specified in argv, uses the user’s default display (on UNIX-based systems, this is the
value of the DISPLAY environment variable).

22

X Intrinsics Xll, Release 3, Oct. 1988

If this succeeds, it then calls XtDisplaylnitialize and pass it the opened display and the value of
the -name option specified in argv as the application name. If no name option is specified, it uses
the application name passed to XtOpenDisplay. If the application name is NULL, it uses the
last component of argv[0]. XtOpenDisplay returns the newly opened display or NULL if it
failed.

XtOpenDisplay is provided as a convenience to the application programmer.

To close a display and remove it from an application context, use XtCloseDisplay.

void XtCloseDisplay(dLp/ay)
Display *display\

display Specifies the display.

The XtCloseDisplay function closes the specified display as soon as it is safe to do so. If called
from within an event dispatch (for example, a callback procedure), XtCloseDisplay does not
close the display until the dispatch is complete. Note that applications need only call
XtCloseDisplay if they are to continue executing after closing the display; otherwise, they
should call XtDestroyApplicationContext or just exit.

22. Loading the Resource Database

The XtDisplaylnitialize function loads the application’s resource database for this
display/host/application combination from the following sources (in order);

• Application-specific class resource file on the local host

• Application-specific user resource file on the local host

• Resource property on the server or user preference resource file on the local host

® Per-host user environment resource file on the local host

• Application command line (argv)

Each resource database is kept on a per-display basis.

The application-specific class resource file name is constructed from the class name of the appli¬
cation. It points to a site-specific resource file that usually is installed by the site manager when
the application is installed. On UNIX-based systems, this file usually is /usr/Iib/Xll/app-
defaultsI class, where class is the application class name. This file is expected to be provided by
the developer of the application and may be required for the application to function properly.

The application-specific user resource file name is constructed from the class name of the applica¬
tion and points to a user-specific resource file. This file is owned by the application and typically
stores user customizations. On UNIX-based systems, this file name is constructed from the user’s
XAPPLRESDIR variable by appending class to it, where class is the application class name. If
XAPPLRESDIR is not defined, it defaults to the user’s home directory. If the resulting resource
file exists, it is merged into the resource database. This file may be provided with the application
or constructed by the user.

The server resource file is the contents of the X server’s RESOURCE_MAN AGER property that
was returned by XOpenDisplay. If no such property exists for the display, the contents of the
resource file in the user’s home directory is used instead. On UNIX-based systems, the usual
name for the user preference resource file is .Xdefaults. If the resulting resource file exists, it is
merged into the resource database. The server resource file is constructed entirely by the user and
contains both display-independent and display-specific user preferences.

If one exists, a user’s environment resource file is then loaded and merged into the resource data¬
base. This file name is user and host specific. On UNIX-based systems, the user’s environment
resource file name is constructed from the value of the user’s XENVERONMENT variable for the
full path of the file. If this environment variable does not exist, XtDisplaylnitialize searches the
user’s home directory for the .Xdefaults-/u>.sr file, where host is the name of the machine on
which the application is running. If the resulting resource file exists, it is merged into the

23

X Intrinsics XI1, Release 3, Oct, 1988

resource database. The environment resource file is expected to contain process-specific resource
specifications that are to supplement those user-preference specifications in the server resource
file.

To obtain the resource database for a particular display, use XtDatabase.

XrmDatabase XtDatabase(dwpZoy)
Display *display\

display Specifies the display.

The XtDatabase function returns the fully merged resource database that was built by
XtDisplaylnitialize associated with the display that was passed in. If this display has not been
initialized by XtDisplaylnitialize, the results are not defined.

23. Parsing the Command Line

The XtOpenDisplay function first parses the command line for the following options:

-display Specifies the display name for XOpenDispiay, which overrides the display name
passed to XtDisplaylnitialize.

-name Sets the resource name prefix, which overrides the application name passed to
XtDisplaylnitialize.

XtDisplaylnitialize has a table of standard command line options that are passed to XrmPar-
seCommand for adding resources to the resource database, and it takes as a parameter additional
application-specific resource abbreviations. The format of this table is:

typedef enum {
XrmoptionNoArg, /*
XrmoptionlsArg, /*
XrmoptionStickyArg, /*
XrmoptionSepArg, /*
XrmoptionSkipArg, /*
XrmoptionSkipLine /*

} XrmOptionKind;

typedef struct {
char ^option; /*
char *specifier, /*
XrmOptionKind argKind; /*
caddr_t value; /*

} XrmOptionDescRec, *XrmOptionDescList;

Value is specified in OptionDescRec.value */
Value is the option string itself */
Value is characters immediately following option */
Value is next argument in argv */
Ignore this option and the next argument in argv */
Ignore this option and the rest of argv */

Option name in argv */
Resource name (without application name) */
Which style of option it is */
Value to provide if XrmoptionNoArg */

The standard table contains the following entries:

Option String Resource Name Argument Kind Resource Value

-background background SepArg next argument
-bd borderColor SepArg next argument
-bg background SepArg next argument
-borderwidth borderWfidth SepArg next argument
-bordercolor borderColor SepArg next argument
-bw borderWidth SepArg next argument
-display display SepArg next argument

-fg foreground SepArg next argument
-fn font SepArg next argument
-font font SepArg next argument

24

X Intrinsics XI1, Release 3, Oct. 1988

-foreground foreground SepArg next argument
-geometry geometry SepArg next argument
-iconic iconic NoArg true
-name name SepArg next argument
-reverse reverseVideo NoArg on
-rv reverseVideo NoArg on
+rv reverseVideo NoArg off
-selectionTimeout selectionTimeout SepArg next argument
-synchronous synchronize NoArg on
-(-synchronous synchronize NoArg off
-title title SepArg next argument
-xrm next argument ResArg next argument

Note that any unique abbreviation for an option name in the standard table or in the application
table is accepted.

If reverseVideo is set, the values of XtDefaultForeground and XtDefaultBackground are
exchanged. If synchronize is set, the Intrinsics put Xlib into synchronous mode for all connec¬
tions.

The -xrm option provides a method of setting any resource in an application. The next argument
should be a quoted string identical in format to a line in the user resources file. For example, to
give a red background to all command buttons in an application named xmh, you can start it up
as:

xmh-xrm ’xmh*Command.background: red’

When it parses the command line, XtDisplayInitialize merges the application option table with
the standard option table before calling the Xlib XrmParseCommand function. An entry in the
application table with the same name as an entry in the standard table overrides the standard table
entry. If an option name is a prefix of another option name, both names are kept in the merged
table.

2.4. Creating Widgets

The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added to the
managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up traversal of
the widget tree.

3. The widgets create X windows that then get mapped.

To start the first phase, the application calls XtCreateWidget for all its widgets and adds some
(usually, most or all) of its widgets to their respective parent’s managed set by calling
XtManageChild. To avoid an 0(n) creation process where each composite widget lays itself
out each time a widget is created and managed, parent widgets are not notified of changes in their
managed set during this phase.

After all widgets have been created, the application calls XtRealizeWidget on the top-level wid¬
get to start the second and third phases. XtRealizeWidget first recursively traverses the widget
tree in a post-order (bottom-up) traversal and then notifies each composite widget with one or
more managed children by means of its change_managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly geometry nego¬
tiation. A parent deals with constraints on its size imposed from above (for example, when a user
specifics the application window size) and suggestions made from below (for example, when a
primitive child computes its preferred size). One difference between the two can cause geometry

25

X Intrinsics Xll, Release 3, Oct. 1988

changes to ripple in both directions through the widget tree. The parent may force some of its
children to change size and position and may issue geometry requests to its own parent in order to
better accommodate all its children. You cannot predict where anything will go on the screen
until this process finishes.

Consequently, in the first and second phases, no X windows are actually created because it is
likely that they will get moved around after creation. This avoids unnecessary requests to the X
server.

Finally, XtRealizeWidget starts the third phase by making a pre-order (top-down) traversal of
the widget tree, allocates an X window to each widget by means of its realize procedure, and
finally maps the widgets that are managed.

2.4.1. Creating and Merging Argument Lists

Many Intrinsics functions need to be passed pairs of resource names and values. These are passed
as an ArgList, which contains:

typedef something XtArgVal;

typedef struct (
String name;
XtArgVal value;

} Arg, * ArgList;

Where something is a type large enough to contain caddrj, char *, long, int *, or a pointer to a
function.

If the size of the resource is less than or equal to the size of an XtArgVal, the resource value is
stored directly in value; otherwise, a pointer to it is stored into value.

To set values in an ArgList, use XtSetArg.

XtSetArg(arg, name, value)
Arg arg\
String name',
XtArgVal value',

arg Specifies the name-value pair to set.

name Specifies the name of the resource.

value Specifies the value of the resource if it will fit in an XtArgVal or the address.

The XtSetArg function is usually used in a highly stylized manner to minimize the probability of
making a mistake; for example:

Arg args[20];
int n;

n = 0;
XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;
XtSetValues(widget, args, n);

Alternatively, an application can statically declare the argument list and use XtNumber:

static Args args[] = {
{XtNheight, (XtArgVal) 100},
{XtNwidth, (XtArgVal) 200},

};
XtSetValues(Widget, args, XtNumber(args));

26

X Intrinsics Xll, Release 3, Oct. 1988

Note that you should not use auto-increment or auto-decrement within the first argument to
XtSetArg XtSetArg can be implemented as a macro that dereferences the first argument twice.

To merge two ArgList structures, use XtMergeArgLists.

ArgList XtMerge ArgLists(args/, num_argsl, args2, nurn_args2)
ArgList argsl\
Cardinal nurn_argsi;
ArgList args2;
Cardinal num_args2\

argsl Specifies the first ArgList.

numjargsl Specifies the number of arguments in the first argument list.

args2 Specifies the second ArgList.

num_args2 Specifies the number of arguments in the second argument list.

The XtMergeArgLists function allocates enough storage to hold the combined ArgList struc¬
tures and copies them into it. Note that it does not check for duplicate entries. When it is no
longer needed, free the returned storage by using XtFree.

2.4.2, Creating a Widget Instance

To create an instance of a widget, use XtCreateWidget.

Widget XtCreateWidget! name, widget class, parent, args, nu.m_args)
String name;
WidgetClass widget_class\
Widget parent.;
ArgList args\
Cardinal num_args;

name Specifies the resource name for the created widget, which is used for retrieving
resources and, for that reason, should not be the same as any other widget that is
a child of same parent.

widget_class Specifies the widget class pointer for the created widget

parent Specifies the parent widget.

args Specifies the argument list to override the resource defaults.

num_args Specifies the number of arguments in the argument list.

The XtCreateWidget function performs much of the boilerplate operations of widget creation:

• Checks to see if the class ..initialize procedure has been called for this class and for all
superclasses and, if not, calls those necessary in a superclass-to-subclass order.

• Allocates memory for the widget instance.

• If the parent is a subclass of constraintWidgetClass, it allocates memory for the parent’s
constraints and stores the address of this memory into the constraints field.

• Initializes the core nonresource data fields (for example, parent and visible).

• Initializes the resource fields (for example, background_pixel) by using the resource lists
specified for this class and all superclasses.

• If the parent is a subclass of constraintWidgetClass, it initializes the resource fields of the
constraints record by using the constraint resource list specified for the parent’s class and
all superclasses up to constraintWidgetClass.

• Calls the initialize procedures for the widget by starting at the Core initialize procedure on
down to the widget’s initialize procedure.

27

X Intrinsics XI1, Release 3, Oct. 1988

• If the parent is a subclass of compositeWidgetCIass, it puts the widget into its parent’s
children list by calling its parent’s insert_child procedure. For further information, see
Section 3.5.

• If the parent is a subclass of constraintWidgetClass, it calls the constraint initialize pro¬
cedures, starting at constraintWidgetClass on down to the parent’s constraint initialize
procedure.

Note that you can determine the number of arguments in an argument list by using the
XtNumber macro. For further information, see Section 11.1. (See also
XtCreateManaged Widget.)

2.4.3. Creating an Application Shell Instance

An application can have multiple top-level widgets, which can potentially be on many different
screens. An application uses XtAppCreateShell if it needs to have several independent win¬
dows. The XtAppCreateShell function creates a top-level widget that is the root of a widget
tree.

Widget XtAppCreateShel\(application_name, application_class, widget_class, display,
args, numjirgs)

String applicationjiame'.
String application_class',
WidgetClass widget_class'.
Display *disp!ay\
ArgList args'.
Cardinal num_args\

application_name
Specifies the name of the application instance. If application_name is NULL, the
application name passed to XtDisplayXnitialize is used.

application_class
Specifies the class name of this application.

widget_class Specifies the widget class that the application top-level widget should be (nor¬
mally, applicationShellWidgetClass).

display Specifies the display from which to get the resources.

args Specifies the argument list in which to set in the WM_COMMAND property.

num_args Specifies the number of arguments in the argument list.

The XtAppCreateShell function saves the specified application name and application class for
qualifying all widget resource specifiers. The application name and application class are used as
the left-most components in all widget resource names for this application. XtAppCreateShell
should be used to create a new logical application within a program or to create a shell on another
display. In the first case, it allows the specification of a new root in the resource hierarchy. In the
second case, it uses the resource database associated with the other display.

Note that the widget returned by XtAppCreateShell has the WM_COMMAND property set for
session managers (see Chapter 4).

To create multiple top-level shells within a single (logical) application, you can use one of two
methods:

• Designate one shell as the real top-level shell and create the others as pop-up children of it
by using XtCreatePopupShell.

• Have all shells as pop-up children of an unrealized top-level shell.

The first method, which is best used when there is a clear choice for what is the main window,
leads to resource specifications like the following:

28

X Intrinsics Xll, Release 3, Oct. 1988

xmail.geometry:... (the main window)
xm ail. read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

The second method, which is best if there is no main window, leads to resource specifications like
the following:

xm ail. headers,geometry:... (the headers window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

2.4.4. Widget Instance Initialization: the initialize Procedure

The initialize procedure pointer in a widget class is of type XtlnitProc:

typedef void (*XtIrutProc)(Widget, Widget);
Widget request,;
Widget new;

request Specifies the widget with resource values as requested by the argument list, the
resource database, and the widget defaults.

new Specifies a widget with the new values, both resource and nonresource, that are
actually allowed.

An initialization procedure performs the following:

• Allocates space for and copies any resources that are referenced by address. For example,
if a widget has a field that is a String it cannot depend on the characters at that address
remaining constant but must dynamically allocate space for the string and copy it to the
new space. (Note that you should not allocate space for or copy callback lists.)

• Computes values for unspecified resource fields. For example, if width and height are zero,
the widget should compute an appropriate width and height based on other resources. This
is the only time that a widget should ever directly assign its own width and height.

• Computes values for uninitialized nonresource fields that are derived from resource fields.
For example, graphics contexts (GCs) that the widget uses are derived from resources like
background, foreground, and font.

An initialization procedure also can check certain fields for internal consistency. For example, it
makes no sense to specify a color map for a depth that does not support that color map.

Initialization procedures are called in superclass-to-subclass order. Most of the initialization code
for a specific widget class deals with fields defined in that class and not with fields defined in its
superclasses.

If a subclass does not need an initialization procedure because it does not need to perform any of
the above operations, it can specify NULL for the initialize field in the class record.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass are often incorrect for a subclass and in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width and
height calculated by the superclass initialize procedure are too small and need to be incremented
by the size of the surround. The subclass needs to know if its superclass’s size was calculated by
the superclass or was specified explicitly. All widgets must place themselves into whatever size
is explicitly given, but they should compute a reasonable size if no size is requested.

The request and new arguments provide the necessary information for how a subclass knows the
difference between a specified size and a size computed by a superclass. The request widget is
the widget as originally requested. The new widget starts with the values in the request, but it has
been updated by all superclass initialization procedures called so far. A subclass initialize

29

X Intrinsics Xll, Release 3, Oct. 1988

procedure can compare these two to resolve any potential conflicts.

In the above example, the subclass with the visual surround can see if the width and height in the
request widget are zero. If so, it adds its surround size to the width and height fields in the new
widget. If not, it must make do with the size originally specified.

The new widget will become the actual widget instance record. Therefore, the initialization pro¬
cedure should do all its work on the new widget (the request widget should never be modified),
and if it needs to call any routines that operate on a widget, it should specify new as the widget
instance.

2.4.5. Constraint Widget Instance Initialization: the constraint initialize Procedure

The constraint_initialize procedure pointer is of type XtlnitProc. The values passed to the
parent constraint initialization procedure are the same as those passed to the child’s class widget
initialization procedure.

The constraint initialization procedure should compute any constraint fields derived from con¬
straint resources. It can make further changes to the widget to make the widget conform to the
specified constraints, for example, changing the widget’s size or position.

If a constraint class does not need a constraint initialization procedure, it can specify NULL for
the initialize field of the ConstraintClassPart in the class record.

2.4.6. Nonwidget Data Initialization: the initialize hook Procedure

The initialize_hook procedure pointer is of type XtArgsProc:

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal *);
Widget w;
ArgList args\
Cardinal *num_args;

w Specifies the widget.

args Specifies the argument list to override the resource defaults.

num_args Specifies the number of arguments in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding initialize pro¬
cedure or in its place if the initialize procedure is NULL.

The initialize_hook procedure allows a widget instance to initialize nonwidget data using infor¬
mation from the specified argument list. For example, the Text widget has subparti that are not
widgets, yet these subparts have resources that can be specified by means of the resource file or
an argument list. See also Section 9.4.

2.5. Realizing Widgets

To realize a widget instance, use XtRealizeWidget.

void XtRealizeWidget(w)
Widget w;

w Specifies the widget.

If the widget is already realized, XtRealizeWidget simply returns. Otherwise, it performs the
following:

• Binds all action names in the widget’s translation table to procedures (see Section 10.1.2).

• Makes a post-order traversal of the widget tree rooted at the specified widget and calls the
change_managed procedure of each composite widget that has one or more managed chil¬
dren.

• Constructs an XSetWindowAttributes structure filled in with information derived from
the Core widget fields and calls the realize procedure for the widget, which adds any

30

X Intrinsics Xll, Release 3, Oct. 1988

widget-specific attributes and creates the X window.

• If the widget is not a subclass of compositeWidgetClass, XtRealizeWidget returns; oth¬
erwise, it continues and performs the following:

- Descends recursively to each of the widget’s managed children and calls the realize
procedures. Primitive widgets that instantiate children are responsible for realizing
those children themselves.

- Maps all of the managed children windows that have mapped_when_managed True.
(If a widget is managed but mapped_when_managed is False, the widget is allocated
visual space but is not displayed. Some people seem to like this to indicate certain
states.)

If the widget is a top-level shell widget (that is, it has no parent), and mapped_when_managed is
True, XtRealizeWidget maps the widget window.

XtCreateWidget, XtRealizeWidget, XtManageChildren, XtUnmanageChildren, and
XtDestroyWidget maintain the following invariants:

• If a widget is realized, then all its managed children are realized.

• If a widget is realized, then all its managed children that are also mapped_when_managed
are mapped.

All Intrinsics functions and all widget routines should work with either realized or unrealized
widgets.

To check whether or not a widget has been realized, use XtlsRealized.

Boolean XtlsRealized(w)
Widget w;

w Specifies the widget.

The XtlsRealized function returns True if the widget has been realized, that is, if the widget has
a nonzero X window ID.

Some widget procedures (for example, set_values) might wish to operate differently after the
widget has been realized.

2.5.1. Widget Instance Window Creation: the realize Procedure

The realize procedure pointer in a widget class is of type XtRealizeProc:

typedef void (*XtRealizeProc)(Widget, XtValueMask *, XSetWindowAttributes *);
Widget w;
XtValueMask *valuejnask;
XSetWindowAttributes *attributes',

w Specifies the widget.

value_mask Specifies which fields in the attributes structure to use.

attributes Specifies the window attributes to use in the XCreateWindow call.

The realize procedure must create the widget’s window.

The generic XtRealizeWidget function fills in a mask and a corresponding XSetWindowAttri¬
butes structure. It sets the following fields based on information in the widget Core structure:

• The background_pixmap (or background_pixel if background_pixmap is NULL) is filled in
from the corresponding field.

• The border_pixmap (or border_pixel if border_pixmap is NULL) is filled in from the
corresponding field.

• The event_mask is tilled in based on the event handlers registered, the event translations
specified, whether expose is non-NULL, and whether visible_interest is True.

31

X Intnnsics XI1, Release 3, Oct. 1988

® The bit_gravity is set to NorthWestGravity if the expose field is NULL.

® The do_not_propagate_mask is set to propagate all pointer and keyboard events up the
window tree. A composite widget can implement functionality caused by an event any¬
where inside it (including on top of children widgets) as long as children do not specify a
translation for the event.

All other fields in attributes (and the corresponding bits in valuejnask) can be set by the realize
procedure.

Note that because realize is not a chained operation, the widget class realize procedure must
update the XSetWindowAttributes structure with all the appropriate fields from non-Core
superclasses.

A widget class can inherit its realize procedure from its superclass during class initialization. The
realize procedure defined for Core calls XtCreateWindow with the passed value_mask and
attributes and with windowQass and visual set to CopyFromParent. Both Composi-
teWidgetClass and ConstraintWidgetClass inherit this realize procedure, and most new widget
subclasses can do the same (see Section 1.4.9).

The most common noninherited realize procedures set bit_gravity in the mask and attributes to
the appropriate value and then create the window. For example, depending on its justification.
Label sets bit_gravity to WestGravity, CenterGravity, or EastGravity. Consequently, shrink¬
ing it just moves the bits appropriately, and no Expose event is needed for repainting.

If a composite widget’s children should be realized in a particular order (typically to control the
stacking order), it should call XtReaiizeWidget on its children itself in the appropriate order
from within its own realize procedure.

Widgets that have children and that are not a subclass of compositeWidgetClass are responsible
for calling XtReaiizeWidget on their children, usually from within the realize procedure.

2.5.2, Window Creation Convenience Routine

Rather than call the Xlib XCreateWindow function explicitly, a realize procedure should call
the Intnnsics analog XtCreateWindow, which simplifies me creation of windows for widgets.

void XtCreateWindow(w, window_class, visual, value iask, attributes)
Widget w;
unsigned int window_class\
Visual *visual\
XtValueMask valuejnask;
XSetWindowAttributes *attributes\

h’ Specifies tine widget that is used to set the x,y coordinates and so on.

window_class Specifies the Xlib window class (for example, InputOutput, InputOnly, or
CopyFromParent).

visual Specifies the visual type (usually CopyFromParent).

valuejnask Specifies which attribute fields to use.

attributes Specifies the window attributes to use in the XCreateWindow call.

The XtCreateWindow function calls the Xlib XCreateWindow function with values from the
widget structure and the passed parameters. Then, it assigns the created window to the widget’s
window field.

XtCreateWindow evaluates the following fields of tine Core widget structure:

® depth

» screen

® parent -> core.window

32

X Intrinsics Xll, Release 3, Oct. 1988

• x

• y
• width

• height

• border_width

2.6. Obtaining Window Information from a Widget

The Core widget definition contains the screen and window IDs. The window field may be
NULL for a while (see Sections 2.4 and 2.5).

The display pointer, the parent widget, screen pointer, and window of a widget are available to
the widget writer by means of macros and to the application writer by means of functions.

Display *XtDisplay(w)
Widget w;

w Specifies the widget.

XtDisplay returns the display pointer for the specified widget.

Widget XtParent(w)
Widget w;

w Specifies the widget.

XtParent returns the parent widget for the specified widget.

Screen *XtScreen(w)
Widget w;

w Specifies the widget.

XtScreen returns the screen pointer for the specified widget.

Window XtWindow(w)
Widget w;

w Specifies the widget.

XtWindow returns the window of the specified widget.

Several window attributes are locally cached in the widget. Thus, they can be set by the resource
manager and XtSetValues as well as used by routines that derive structures from these values
(for example, depth for deriving pixmaps, background_pixel for deriving GCs, and so on) or in
the XtCreateWindow call.

The x, y, width, height, and border_width window attributes are available to geometry managers.
These fields are maintained synchronously inside the X Toolkit. When an XConfigureWindow
is issued on the widget’s window (on request of its parent), these values are updated immediately
rather than sometime later when the server generates a ConfigureNotify event. (In fact, most
widgets do not have SubstructureNotify turned on.) ITiis ensures that all geometry calculations
are based on the internally consistent toolkit world, rather than on either an inconsistent world
updated by asynchronous ConfigureNotify events or a consistent but slow world in which
geometry managers ask the server for window sizes whenever they need to lay out their managed
children (see Chapter 6).

33

X Intrinsics Xll, Release 3, Oct. 1988

2.6.1. Unrealizing Widgets

To destroy the windows associated with a widget and its descendants, use XtUnrealizeWidget.

void XtUnrealizeWidget(w)
Widget w;

w Specifies the widget.

The XtUnrealizeWidget function destroys the windows of an existing widget and all of its chil¬
dren (recursively down the widget tree). To recreate the windows at a later time, call XtReal-
izeWidget again. If the widget was managed, it will be unmanaged automatically before its win¬
dow is freed.

2.7. Destroying Widgets

The Intrinsics provide support to:

® Destroy all the pop-up children of the widget being destroyed and destroy all children of
composite widgets

a Remove (and unmap) the widget from its parent

s Call the callback procedures that have been registered to trigger when the widget is des¬
troyed

® Minimize the number of things a widget has to deallocate when destroyed

© Minimize the number of XDestroyWindow calls

To destroy a widget instance, use XtDestroyWidget.

void XtDestroy Widget(w)
Widget w;

w Specifies the widget.

The XtDestroy Widget function provides the only method of destroying a widget, including wid¬
gets that need to destroy themselves. It can be called at any time, including from an application
callback routine of the v iget being destroyed. This requires a two-phase destroy process in
order to avoid dangling references to destroyed widgets.

In phase one, XtDestrov Widget performs the following:

* If the being_destroyed field of the widget is True, it returns immediately.

® Recursively descends the widget tree and sets the being_destroyed field to True for the
widget and all children.

® Adds the widget to a list of widgets (the destroy list) that should be destroyed when it is
safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after wl on the destroy list then
w2 is not a descendent of wl. (A descendant refers to both normal and pop-up children.)

Phase two occurs when all procedures that should execute as a result of the current event have
been called (including all procedures registered with the event and translation managers), that is,
when the current invocation of XtDispatchEvent is about to return or immediately if not in
XtDispatchEvent.

In phase two, XtDestroy Widget performs the following on each entry in the destroy list:

® Calls the destroy callback procedures registered on the widget (and all descendants) in
post-order (it calls children callbacks before parent callbacks).

® If the widget’s parent is a subclass of compositeWidgetClass and if the parent is not being
destroyed, it calls XtUnmanageChild on the widget and then calls the widget’s parent’s
delete_child procedure (see Section 3.4).

34

X Intrinsics Xll, Release 3, Oct. 1988

• If the widget’s parent is a subclass of constraintWidgetClass, it calls the constraint des¬
troy procedure for the parent, then the parent’s superclass, until finally it calls the constraint
destroy procedure for constraintWidgetClass.

• Calls the destroy methods for the widget (and all descendants) in post-order. For each such
widget, it calls the destroy procedure declared in the widget class, then the destroy pro¬
cedure declared in its superclass, until finally it calls the destroy procedure declared in the
Core class record.

® Calls XDestroyWindow if the widget is realized (that is, has an X window). The server
recursively destroys all descendant windows.

• Recursively descends the tree and deallocates all pop-up widgets, constraint records, call¬
back lists and, if the widget is a subclass of compositeWidgetClass, children.

2.7.1. Adding and Removing Destroy Callbacks

When a application needs to perform additional processing during the destruction of a widget, it
should register a destroy callback procedure for the widget. The destroy callback procedures use
the mechanism described in Chapter 8. The destroy callback list is identified by the resource
name XtNdestroyCailback.

For example, the following adds an application-supplied destroy callback procedure ClientDes¬
troy with client data to a widget by calling XtAddCallback.

XtAddCallback(w, XtNdestroyCailback, ClientDestroy, client jiata)

Similarly, the following removes the application-supplied destroy callback procedure ClientDes¬
troy by calling XtRemoveCallback.

XtRemoveCallback(w, XtNdestroyCailback, ClientDestroy, client jiata)

The ClientDestroy argument is of type XtCaUbackProc:

typedef void (*XtCallbackProc)(Widget, caddr_t, caddr_t);

For further information, see Section 8.1.

2.7.2. Dynamic Data Deallocation: the destroy Procedure

The destroy procedure pointer in the CoreClassPart structure is of type XtWidgetProc:

typedef void (*XtWidgetProc)(Widget);

The destroy procedures are called in subclass-to-superclass order. Therefore, a widget’s destroy
procedure only should deallocate storage that is specific to the subclass and should not bother
with the storage allocated by any of its superclasses. The destroy procedure should only deallo¬
cate resources that have been explicitly created by the subclass. Any resource that was obtained
from the resource database or was passed in in an argument list was not created by the widget
and, therefore, should not be destroyed by it If a widget does not need to deallocate any storage,
the destroy procedure entry in its widget class record can be NULL.

Deallocating storage includes but is not limited to:

• Calling XtFree on dynamic storage allocated with XtMalloc, XtCalioc, and >o on

® Calling XFreePixmap on pixmaps created with direct X calls

® Calling XtDestroyGC on GCs allocated with XtGetGC

@ Calling XFreeGC on GCs allocated with direct X calls

• Calling XtRemoveEventHandler on event handlers added with XtAddEventHandler

• Calling XtRemoveTimeOut on timers created with XtAppAddTimeOut

® Calling XtDestroy Widget for each child if the widget has children and is not a subclass of
compositeWidgetClass

35

X Intrinsics Xll, Release 3, Oct. 1988

2.7.3. Dynamic Constraint Data Deallocation: the constraint destroy Procedure

The constraint destroy procedure identified in the ConstraintClassPart structure is called for a
widget whose parent is a subclass of constraintWidgetClass. This constraint destroy procedure
pointer is of type XtWidgetProc. The constraint destroy procedures are called in subclass-to-
superclass order, starting at the widget’s parent and ending at constraintWidgetClass. There¬
fore, a parent’s constraint destroy procedure only should deallocate storage that is specific to the
constraint subclass and not the storage allocated by any of its superclasses.

If a parent does not need to deallocate any constraint storage, the constraint destroy procedure
entry in its class record can be NULL.

2.8. Exiting from an Application

All X Toolkit applications should terminate by calling XtDestroyApplicationContext and then
exiting using the standard method for their operating system (typically, by calling exit for
UNIX-based systems). The quickest way to make the windows disappear while exiting is to call
XtUnmapWidget on each top-level shell widget. The X Toolkit has no resources beyond those
in the program image, and the X server will free its resources when its connection to the applica¬
tion is broken.

36

X Intrinsics XU, Release 3, Oct. 1988

Chapter 3

Composite Widgets and Their Children

Composite widgets (widgets that are a subclass of compositeWidgetClass) can have an arbitrary
number of children. Consequently, they are responsible for much more than primitive widgets.
Their responsibilities (either implemented directly by the widget class or indirectly by Intrinsics
functions) include;

® Overall management of children from creation to destruction

® Destruction of descendants when the composite widget is destroyed

• Physical arrangement (geometry management) of a displayable subset of children (that is,
the managed children)

• Mapping and unmapping of a subset of the managed children

Overall management is handled by the generic procedures XtCreateWidget and XtDes-
troyWidget. XtCreateWidget adds children to their parent by calling the parent’s insert_child
procedure. XtDestroyWidget removes children from their parent by calling the parent’s
delete_child procedure and ensures that all children of a destroyed composite widget also get des¬
troyed.

Only a subset of the total number of children is actually managed by the geometry manager and,
hence, possibly visible. For example, a multibuffer composite editor widget might allocate one
child widget for each file buffer, but it only might display a small number of the existing buffers.
Windows that are in this displayable subset are called managed windows and enter into geometry
manager calculations. The other children are called unmanaged windows and, by definition, are
not mapped.

Children are added to and removed from the managed set by using XtManageChild,
XtManageChildren, XtUnmanageChild, and XtUnmanageChildren, which notify the parent
to recalculate the physical layout of its children by calling the parent’s change_managed pro¬
cedure. The XtCreateManagedWidget convenience function calls XtCreateWidget and
XtManageChild on the result.

Most managed children are mapped, but some widgets can be in a state where they take up physi¬
cal space but do not show anything. Managed widgets are not mapped automatically if their
map_when_managed field is False. The default is True and is changed by using XtSetMap-
pedWhenManaged.

Each composite widget class has a geometry manager, which is responsible for figuring out where
the managed children should appear within the composite widget’s window. Geometry manage¬
ment techniques fall into four classes;

® Fixed boxes

Fixed boxes have a fixed number of children that are created by the parent. All of these
children are managed, and none ever make geometry manager requests.

• Homogeneous boxes

Homogeneous boxes treat all children equally and apply the same geometry constraints to
each child. Many clients insert and delete widgets freely.

« Heterogeneous boxes

Heterogeneous boxes have a specific location where each child is placed. This location
usually is not specified in pixels, because the window may be resized, but is expressed
rather in terms of the relationship between a child and the parent or between the child and
other specific children. Heterogeneous boxes are usually subclasses of Constraint.

37

X Intrinsics Xll, Release 3, Oct. 1988

• Shell boxes

Shell boxes have only one child, which is exactly the size of the shell. The geometry
manager must communicate with the window manager if it exists, and the box must also
accept ConfigureNotify events when the window size is changed by the window manager.

3.1. Verifying the Class of a Composite Widget

To test if a given widget is a subclass of Composite, use XtlsComposite.

Boolean XtlsComposite(w)
Widget w;

w Specifies the widget.

The XtlsComposite function is a convenience function that is equivalent to XtlsSubclass with
compositeWidgetClass specified.

3.2. Addition of Children to a Composite Widget: the insert_child Procedure

To add a child to the parent’s list of children, the XtCreateWidget function calls the parent’s
class routine insert_child. The insert_child procedure pointer in a composite widget is of type
XtWidgetProc:

typedef void (*XtWidgetProc)(Widget);

Most composite widgets inherit their superclass’s operation. Composite’s insert_child routine
calls the insert_position procedure and inserts the child at the specified position.

Some composite widgets define their own insert_child routine so that they can order their chil¬
dren in some convenient way, create companion controller widgets for a new widget, or limit the
number or type of their children widgets.

If there is not enough room to insert a new child in the children array (that is, num_children -
num_slots), the insert_child procedure must first reallocate the array and update num_slots. The
insent_child procedure then places the child wherever it wants and increments the num_children
field.

3.3. Insertion Order of Children: the insert position Procedure

Instances of composite widgets need to specify about the order in which their children are kept.
For example, an application may want a set of command buttons in some logical order grouped
by function, and it may want buttons that represent file names to be kept in alphabetical order.

The insert_position procedure pointer in a composite widget instance is of type XtOrderProc:

typedef Cardinal (*XtOrderProc)(Widget);
Widget w;

w Specifies the widget.

Composite widgets that allow clients to order their children (usually homogeneous boxes) can
call their widget instance’s insert_position procedure from the class’s insert_child procedure to
determine where a new child should go in its children array. Thus, a client of a composite class
can apply different sorting criteria to widget instances of the class, passing in a different
insert_position procedure when it creates each composite widget instance.

The return value of the insereposition procedure indicates how many children should go before
the widget. Returning zero indicates that the widget should go before all other children, and
returning num_children indicates that it should go after all other children. The default
insert_position function returns num_children and can be overridden by a specific composite
widget’s resource list or by the argument list provided when the composite widget is created.

38

X Intrinsics Xll, Release 3, Oct. 1988

3.4. Deletion of Children: the deletechild Procedure

To remove the child from the parent’s children array, the XtDestroyWidget function eventually
causes a call to the composite parent’s class delete_child procedure. The delete_child procedure
pointer is of type XtWidgetProc:

typedef void (*XtWidgetProc)(Widget);

Most widgets inherit the delete_child procedure from their superclass. Composite widgets that
create companion widgets define their own delete_child procedure to remove these companion
widgets.

3.5. Adding and Removing Children from the Managed Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to or the removal
of widgets from a composite widget’s managed set. These generic routines eventually call the
widget’s change_managed procedure. The change_managed procedure pointer is of type
XtWidgetProc.

3.5.1. Managing Children

To add a list of widgets to the geometry-managed (and, hence, displayable) subset of its compo¬
site parent widget, the application must first create the widgets (XtCreateWidget) and then call
XtManageChildren.

typedef Widget *WidgetList;

void XtManageChildren(c/z/Wren, num_children)
WidgetList children;
Cardinal num_children\

children Specifies a list of child widgets.

num_children Specifies the number of children.

The XtManageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if the parent is not a sub¬
class of compositeWidgetClass.

• Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list, XtManageChildren ignores the child if it already is managed or is being
destroyed and marks it if not.

• If the parent is realized and after all children have been marked, it makes some of the
newly managed children viewable:

Calls the change_managed routine of the widgets’ parent.

- Calls XtRealizeWidget on each previously unmanaged child that is unrealized.

- Maps each previously unmanaged child that has map_when_managed True.

Managing children is independent of the ordering of children and independent of creating and
deleting children. The layout routine of the parent should consider children whose managed field
is True and should ignore all other children. Note that some composite widgets, especially fixed
boxes, call XtManageChild from their insert_child procedure.

If the parent widget is realized, its change_managed procedure is called to notify it that its set of
managed children has changed. The parent can reposition and resize any of its children. It moves
each child as needed by calling XtMoveWidget, which first updates the x and y fields and then
calls XMoveWindow if the widget is realized.

If the composite widget wishes to change the size or border width of any of its children, it calls
XtResizeWidget, which first updates the Core fields and then calls the Xlib
XConfigureWindow function if the widget is realized.

39

X Intrinsics Xll, Release 3, Oct. 1988

To add a single child to a parent widget’s list of managed children, first create the child widget
(XtCreateWidget) and then use XtManageChild.

void XtManageChild(c/u7<i)
Widget child',

child Specifies the child.

The XtManageChild function constructs a WidgetList of length one and calls XtManageChil-
dren.

To create and manage a child widget in a single procedure, use XtCreateManagedWidget.

Widget XtCreateManagedWidgetOtome, widget_class, parent, args, num_args)
String name.',
WidgetClass widget_class'.
Widget parent,
ArgList args'.
Cardinal numjxrgs'.

name Specifies the text name for the created widget.

widget_class Specifies the widget class pointer for the created widget.

parent Specifies the parent widget.

args Specifies the argument list to override the resource defaults.

num_args Specifies the number of arguments in the argument list.

The XtCreateManagedWidget function is a convenience routine that calls XtCreateWidget
and XtManageChild.

3.5.2. Unmanaging Children

To remove a list of cl .Idren from a parent widget’s managed list, use XtUnmanageChildren.

void XtUrmanageChndren(c/z/Wr<?n, num_children)
WidgetList ch ..iren\
Cardinal num children',

children Specifies a list of child widgets.

num_children Specifics the number of children.

The XtUnmanageChildren function performs the following:

© Issues an error if the children do not all have the same parent or if the parent is not a sub¬
class of coinpositeWidgetClass.

@ Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list, XtUnmanageChildren performs the following:

Ignores the child if it already is unmanaged or is being destroyed and marks it if not.

- If the chi] 1 is realized, it makes it nonvisible by unmapping it.

« Calls the ch~nge_managed routine of the widgets’ parent after all children have been
marked if the parent is realized.

XtUnmanageChildren does not destroy the children widgets. Removing widgets from a
parent’s managed set is often a temporary banishment, and, some time later, you may manage the
children again. To destroy widgets entirely, see Section 2.7.

To remove a single child from its parent’s managed set, use XtUnmanageChild.

void XtUnmanagcChild(c/i/W)
Widget child.

40

X Intrinsics Xll, Release 3, Oct. 1988

child Specifies the child.

The XtUnmanageChild function constructs a widget list of length one and calls XtUn-
manageChildren.

These generic functions are low-level routines that are used by generic composite widget building
routines. In addition, composite widgets can provide widget-specific, high-level convenience
procedures to let applications create and manage children more easily.

3.5.3. Determining if a Widget Is Managed

To determine the managed state of a given child widget, use XtlsManaged.

Boolean XtlsManaged(vw)
Widget w;

w Specifies the widget.

The XtlsManaged macro (for widget programmers) or function (for application programmers)
returns True if the specified child widget is managed or False if it is not.

3.6. Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. However, this behavior can be overridden by set¬
ting the XtNmappedWhenManaged resource for the widget when it is created or by setting the
map_when_managed field to False.

To change the value of a given widget’s map_when_managed field, use XtSetMappedWhen-
Managed.

void XtSetMappedWhenManaged(w, map_when_managed)
Widget w;
Boolean map_when_managed\

w Specifies the widget.

map jwhenjnanaged
Specifies a Boolean value that indicates the new value of the
map_when_managed field.

If the widget is realized and managed and if the new value of map_when_managed is True,
XtSetMappedWhenManaged maps the window. If the widget is realized and managed and if
the new value of map_when_managed is False, it unmaps the window. XtSetMappedWhen¬
Managed is a convenience function that is equivalent to (but slightly faster than) calling XtSet-
Values and setting the new value for the mappedWhenManaged resource. As an alternative to
using XtSetMappedWhenManaged to control mapping, a client may set
mapped_when_managed to False and use XtMapWidget and XtUnmapWidget explicitly.

To map a widget explicitly, use XtMapWidget.

XtMapWidget(w)
Widget w;

w Specifies the widget.

To unmap a widget explicitly, use XtUnmapWidget.

XtUnmapWidget(w)
Widget w;

w Specifies the widget.

41

X Intrinsics Xll, Release 3, Oct. 1988

3.7. Constrained Composite Widgets

Constraint widgets are a subclass of compositeWidgetClass. Their name is derived from the
fact that they may manage the geometry of their children based on constraints associated with
each child. These constraints can be as simple as the maximum width and height the parent will
allow the child to occupy or can be as complicated as how other children should change if this
child is moved or resized. Constraint widgets let a parent define resources that are supplied for
their children. For example, if the Constraint parent defines the maximum sizes for its children,
these new size resources are retrieved for each child as if they were resources that were defined
by the child widget Accordingly, constraint resources may be included in the argument list or
resource file just like any other resource for the child.

Constraint widgets have all the responsibilities of normal composite widgets and, in addition,
must process and act upon the constraint information associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints associated with a
child, every widget has a constraints field, which is the address of a parent-specific structure that
contains constraint information about the child. If a child’s parent is not a subclass of con-
straintWidgetClass, then the child’s constraints field is NULL.

Subclasses of a Constraint widget can add additional constraint fields to their superclass. To
allow this, widget writers should define the constraint records in their private .h file by using the
same conventions as used for widget records. For example, a widget that needs to maintain a
maximum width and height for each child might define its constraint record as follows:

typedef struct {
Dimension max_width, max_height;

} MaxConstraintPart;

typedef struct {
MaxConstraintPart max;

} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget that also needs to maintain a minimum size would define its constraint
record as follows:

typedef struct {
Dimension min_width, min_height;

} MinConstraintPart;

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar as possible by
the Intrinsics. The constraint class record part has several entries that facilitate this. Ail entries
in ConstraintClassPart are information and procedures that are defined and implemented by the
parent, but they are called whenever actions are performed on the parent’s children.

The XtCreateWidget function uses the constraint_size field to allocate a constraint record when
a child is created. The constraint_size field gives the number of bytes occupied by a constraint
record. XtCreateWidget also uses the constraint resources to fill in resource fields in the con¬
straint record associated with a child. It then calls the constraint initialize procedure so that the
parent can compute constraint fields that are derived from constraint resources and can possibly
move or resize the child to conform to the given constraints.

The XtGetValues and XtSetValues functions use the constraint resources to get the values or
set the values of constraints associated with a child. XtSetValues then calls the constraint
set_values procedures so that a parent can recompute derived constraint fields and move or resize
the child as appropriate.

42

X Intrinsics Xll, Release 3, Oct. 1988

The XtDestroyWidget function calls the constraint destroy procedure to deallocate any dynamic
storage associated with a constraint record. The constraint record itself must not be deallocated
by the constraint destroy procedure; XtDestroyWidget does this automatically.

43

X Intrinsics XI1, Release 3, Oct. 1988

Chapter 4

Shell Widgets

Shell widgets hold an application’s top-level widgets to allow them to communicate with the
window manager. Shells have been designed to be as nearly invisible as possible. Clients have
to create them, but they should never have to worry about their sizes.

If a shell widget is resized from the outside (typically by a window manager), the shell widget
also resizes its child widget automatically. Similarly, if the shell’s child widget needs to change
size, it can make a geometry request to the shell, and the shell negotiates the size change with the
outer environment. Clients should never attempt to change the size of their shells directly.

The four types of public shells are:

OverrideShell Used for shell windows that completely bypass the window manager
(for example, pop-up menu shells).

TransientShell Used for shell windows that can be manipulated by the window
manager but are not allowed to be iconified separately (for example.
Dialog boxes that make no sense without their associated applica¬
tion). They are iconified by the window manager only if the main
application shell is iconified.

TopLevelShel! Used for normal top-level windows (for example, any additional
top-level widgets an application needs).

ApplicationShell Used by the window manager to define a separate application
instance, which is the main top-level window of the application.

4.1. Shell Widget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget that directly
contains them. Widgets at the top of the hierarchy do not have parent widgets. Instead, they must
deal with the outside world. To provide for this, each top-level widget is encapsulated in a spe¬
cial widget, called a Shell.

Shell widgets, a subclass of the Composite widget, encapsulate other widgets and can allow a
widget to avoid the geometry clipping imposed by the parent/child window relationship. They
also can provide a layer of communication with the window manager.

The seven different types of shells are:

Shell Provides the base class for shell widgets and the fields needed for all
types of shells. Shell is a direct subclass of compositeWidgetClass.

OverrideShell Used for shell windows that completely bypass the window manager and
is a subclass of Shell.

WMShell Contains fields needed by the common window manager protocol and is
a subclass of Shell.

VendorShell Contains fields used by vendor-specific window managers and is a sub¬
class of WMShell.

44

X Intrinsics Xll, Release 3, Oct. 1988

TransientShell Used for shell windows that can be manipulated by the window manager
but that are not allowed to be iconified and is a subclass of VendorShell.

TopLevelShell Used for normal top level windows and is a subclass of VendorShell.

ApplicationShell Used for an application’s top-level window and is a subclass of TopLev¬
elShell.

Note that the classes Shell, WMShell, and VendorShell are internal and should not be instan¬
tiated or subclassed. Only OverrrideShell, TransientShell, TopLevelShell, and Application-
Shell are for public use.

4.1.1. ShellClassPart Definitions

None of the shell widget classes has any additional fields:

typedef struct { caddr_t extension; } ShellClassPart, OverrideSheUClassPart,
WMShellClassPart, VendorShellGassPart, TransientShell GassPart,
TopLevelShellClassPart, ApplicationShellClassPart;

Shell widget classes have the (empty) shell fields immediately following the composite fields:

typedef struct _ShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite .class;
ShellClassPart shell_class;

} ShellClassRec;

typedef struct _OverrideShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
OverrideShellClassPart override_shell_class;

} OverrideShellClassRec;

typedef struct _WMSheUClassRec {
CoreClassPart core_class;
CompositeGassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;

} WMShellGassRec;

typedef struct _VendorShellQassRec {
CoreClassPart core_class;
CompositeGassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellGassPart vendor_shell_class;

} VendorShellClassRec;

typedef struct _TransientShellGassRec {
CoreClassPart core_class;
CompositeGassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellGassPart vendor_shell_class;
TransientShellClassPart transient_shell_class;

} TransientShellGassRec;

45

X Intrinsics XI1, Release 3, Oct. 1988

typedef struct _TopLevelSheUClassRec {
CoreClassPart core_class;
CompositeQassPart composite_class;
SheUClassPart sheU_class;
WMShellClassPart wm_shell_class;
VendorShellQassPart vendor_shell_class;
TopLevelShellQassPart top_level_shell_class;

} TopLevelShellClassRec;

typedef struct _ApplicationShellGassRec {
CoreClassPart core_class;
CompositeQassPart composite_class;
SheUClassPart sheU_class;
WMSheUClassPart wm_sheU_class;
VendorSheUQassPart vendor_sheU_class;
TopLevelSheUClassPart top_level_sheU_class;
ApplicationSheUGassPart application_sheU_class;

} ApplicationSheUGassRec;

The predefined class records and pointers for shells are:

extern SheUGassRec sheUGassRec;
extern OverrideSheUClassRec overrideShellGassRec;
extern WMSheUQassRec wmShellClassRec;
extern VendorSheUGassRec vendorSheUGassRec:
extern TransientSheUGassRec transientSheUGassRec;
extern TopLevelSheUGassRec topLevelSheUGassRec;
extern ApplicationSheUGassRec applicationSheUGassRec;

extern WidgetClass shellWidgetClass;
extern WidgetClass overrideSheUWidgetClass;
extern WidgetClass wmSheUWidgetClass;
extern WidgetClass vendorSheUWidgetGass;
extern WidgetClass transientSheUWidgetClass;
extern WidgetClass topLevelSheUWidgetClass;
extern WidgetClass applicationSheUWidgetClass:

The foUowing opaque types and opaque variables are defined for generic operations on widgets
that are a subclass of ShellWidgetClass:

Types Variables

ShellWidget
OverrideShell Widget
WMShellWidget
VendorShellWidget
TransientShell Widget
TopLevelShellWidget
ApplicationShell Widget
ShellWidgetClass
OverrideSheUWidgetClass
WMShell WidgetClass
VendorSheUWidgetGass
TransientSheUWidgetClass
TopLevelSheUWidgetClass
ApplicationSheUWidgetClass

shellWidgetClass
overrideSheUWidgetClass
wmShell WidgetClass
vendorSheUWidgetGass
transientSheUWidgetClass
topLevelSheUWidgetClass
applicationSheUWidgetClass

46

X Intrinsics Xll, Release 3, Oct. 1988

4.1.2. ShellPart Definition

The various shells have the following additional fields defined in their widget records:

typedef struct {
String geometry;
XtCreatePopupChildProc create_popup_child_proc;
XtGrabKind grab_kind;
Boolean spring_loaded;
Boolean popped_up;
Boolean allow_shell_resize;
Boolean client_specified;
Boolean save_under,
Boolean override_redirect;
XtCallbackList popup_callback;
XtCallbackList popdown_callback;

} ShellPart;

typedef struct { int empty; } OverrideShellPart;

typedef struct {
String title;
int wm jimeout;
Boolean wait_for_wm;
Boolean transient;
XSizeHints size_hints;
XWMHints wm_hints;

} WMShellPart;

typedef struct (
int vendor_specific;

} VendorShellPart;

typedef struct { int empty; } TransientShellPart;

typedef struct {
String icon_name;
Boolean iconic;

} TopLevelShellPart;

typedef struct {
char *class;
XrmClass xrm_class;
int argc;
char **argv;

} ApplicationShellPart;

The full definitions of the various shell widgets have shell fields following composite fields:

47

X Intrinsics XI1, Release 3, Oct. 1988

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;

} ShellRec, *ShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
OverrideShelLPart override;

} OverrideShellRec, *OverrideShe]l Widget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WM She IIP art wm;

} WMShellRec, *WMShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WM She IIP art wm;
VendorShellPart vendor;

} VendorShellRec, *VendorShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TransientShellPart transient;

} TransientShelLRec, *TransientSheU Widget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLevelShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;
ApplicationShellPart application;

} ApplicauonShellRec, *ApplicationShellWidget;

48

X Intrinsics XI1, Release 3, Oct. 1988

4.1.3. ShellPart Default Values

The default values for fields common to all classes of public shells (filled in by the Shell resource
lists and the Shell initialize procedures) are:

Field Default Value

geometry NULL
create_popup_child_proc NULL
grab_kind (internal)
spring_loaded (internal)
popped_up (internal)
allow_shell_resize False
client_specified (internal)
save_under True for OverrideShell and TransientShell,

False otherwise
override_redirect True for OverrideShell, False otherwise
popup_callback NULL
popdown_callback NULL

The geometry resource specifies the size and position and is usually done only from a command
line or a defaults file. For further information, see Xlib - C Language X Interface. The
create_popup_child_proc is called by the XtPopup procedure and is usually NULL. The
allow_shell_resize field controls whether or not the widget contained by the shell is allowed to try
to resize itself. If allow_shell_resize is False, any geometry requests always return
XtGeometryNo. Setting save_under instructs the server to attempt to save the contents of win¬
dows obscured by the shell when it is mapped and to restore its contents automatically later. It is
useful for pop-up menus. Setting override_redirect determines whether or not the shell window is
visible to the window manager. If it is True, the window is immediately mapped without the
manager’s intervention. The popup and popdown callbacks are called during XtPopup and
XtPopdown. For further information, see Xlib - C Language X Interface.

The default values for shell fields in WMShell and its subclasses are:

Field Default Value

title Icon name, if specified, otherwise the
application’s name

wm_timeout Five seconds
wait for wm True
transient True for TransientShell, False otherwise
min_width None
min_height None
max_width None
max_height None
width_inc None
height_inc None
min_aspect_x None
min_aspect_y None
max_aspect_x None
max_aspect_y None
input False
initial_state Normal
icon_pixmap None
icon_window None

49

X Intrinsics XI1, Release 3, Oct. 1988

icon_x
icon_y
icon_mask

None
None
None

window_group None

The title is a string to be displayed by the window manager. The wm_timeout resource limits the
amount of time a shell is to wait for confirmation of a geometry request to the window manager.
If none comes back within that time, the shell assumes the window manager is not functioning
properly and sets wait_for_wm to be False (later events may reset this value). The wait_for_wm
resource sets the initial state for this flag. When the flag is False, the shell does not wait for a
response but relies on asynchronous notification. All other resources are for fields in the window
manager hints and the window manager size hints. For further information, see Xlib - C
Language X Interface and the Inter-Client Communication Conventions Manual.

TopLeve! shells have the the following additional resources:

Field Default Value

icon_name Shell widget’s name
iconic False

The iconjname field is the string to display in the shell’s icon, and the iconic field is an alterna¬
tive way to set the initialState resource to indicate that a shell should be initially displayed as an
icon.

Application shells have the following additional resources:

Field Default Value

argc 0
argv NULL

The argc and argv fields are used to initialize the standard property WM_COMMAND. See the
Inter-Client Communication Conventions Manual for more information.

50

X Intrinsics Xll, Release 3, Oct. 1988

Chapter 5

Pop-Up Widgets

Pop-up widgets are used to create windows that are outside of the window hierarchy defined by
the widget tree. Each pop-up child has a window that is a descendant of the root window so that
the pop-up window is not clipped by the pop-up widget’s parent window. Therefore, pop-ups are
created and attached differently to their widget parent than from normal widget children.

A parent of a pop-up widget does not actively manage its pop-up children; in fact, it usually never
notices them or operates upon them. The popupjist field in the CorePart structure contains the
list of its pop-up children. This pop-up list exists mainly to provide the proper place in the wid¬
get hierarchy for the pop-up to get resources and to provide a place for XtDestroy Widget to look
for all extant children.

A Composite widget can have both normal and pop-up children. A pop-up can be popped up
from almost anywhere, not just by its parent. A child always refers to a normal, geometry-
managed child on the children list, and a pop-up child always refers to a child on the pop-up list.

5.1. Pop-Up Widget Types

There are three kinds of pop-up widgets;

• Modeless pop-ups

A modeless pop-up (for example, a modeless dialog box) is usually visible to the window
manager and looks like any other application from the user’s point of view. (The applica¬
tion itself is a special form of a modeless pop-up.)

® Modal pop-ups

A modal pop-up (for example, a modal dialog box) may or may not be visible to the win¬
dow manager and, except for events that occur in the dialog box, disables user-event pro¬
cessing by the application.

• Spring-loaded pop-ups

A spring-loaded pop-up (for example, a menu) is not visible to the window manager and,
except for events that occur in the menu, disables user-event processing by all applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be coded as if they are the
same. In fact, the same widget (for example, a ButtonBox or Menu) can be used both as a modal
pop-up and as a spring-loaded pop-up within the same application. The main difference is that
spring-loaded pop-ups are brought up with the pointer and, because of the grab that the pointer
button causes, require different processing by the Intrinsics. Further, button up takes down a
spring-loaded pop-up no matter where the button up occurs.

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-ups can
constrain user events to the most recent such pop-up or to any of the modal/spring-loaded pop-
ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for communicating with the X
window manager and, therefore, are subclasses of Shell.

5.2. Creating a Pop-Up Shell

For a widget to pop up, it must be the child of a pop-up widget shell. A pop-up shell is never
allowed more than one child, referred to as the pop-up child. Both the shell and child taken
together are referred to as the pop-up. When you need to use a pop-up, you always should
specify the pop-up shell, not the pop-up child.

51

X Intrinsics Xll, Release 3, Oct. 1988

To create a pop-up shell, use XtCreatePopupShell.

Widget XtCreatePopupShell(rc<zme, widget _class, parent, args, numjirgs)
String name;
WidgetGass widget_class\
Widget parenr,
ArgList args\
Cardinal num_args\

Specifies the text name for the created shell widget.

Specifies the widget class pointer for the created shell widget.

Specifies the parent widget.

Specifies the argument list to override the resource defaults.

Specifies the number of arguments in the argument list.

The XtCreatePopupShell function ensures that the specified class is a subclass of Shell and,
rather than using insert_child to attach the widget to the parent’s children list, attaches the shell to
the parent’s pop-ups list directly.

A spring-loaded pop-up invoked from a translation table already must exist at the time that the
translation is invoked, so the translation manager can find the shell by name. Pop-ups invoked in
other ways can be created “on-the-fly” when the pop-up actually is needed. This delayed crea¬
tion of the shell is particularly useful when you pop up an unspecified number of pop-ups. You
can look to see if an appropriate unused shell (that is, not currently popped up) exists and create a
new shell if needed.

53. Creating Pop-Up Children

Once a pop-up shell is created, the single child of the pop-up shell can be created in one of two
ways:

• Static

• Dynamic

At startup, an application can create the child of the pop-up shell, which is appropriate for pop-up
children that are composed of a fixed set of widgets. The application can change the state of the
subpans of the pop-up child as the application state changes. For example, if an application
creates a static menu, it can call XtSetSensitive (or, in general, XtSetValues) on any of the but¬
tons that make up the menu. Creating the pop-up child early means that pop-up time is minim¬
ized, especially if the application calls XtRealize Widget on the pop-up shell at startup. When
the menu is needed, all the widgets that make up the menu already exist and need only be
mapped. The menu should pop up as quickly as the X server can respond.

Alternatively, an application can postpone the creation of the child until it is needed, which
minimizes application startup time and allows the pop-up child to reconfigure itself each time it is
popped up. In this case, the pop-up child creation routine should poll the application to find out if
it should change the sensitivity of any of its subparts.

Pop-up child creation does not map the pop-up, even if you create the child and call XtReal-
izeWidget on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the opportunity either to make
last-minute changes to a pop-up child before it is popped up or to change it after it is popped
down. Note that excessive use of pop-up callbacks can make popping up occur more slowly.

5.4. Mapping a Pop-Up Widget

Pop-ups can be popped up through several mechanisms:

• A call to XtPopup

name

widget_class

parent

args

num_args

52

X Intrinsics XI1, Release 3, Oct. 1988

• One of the supplied callback procedures (for example, XtCallbackNone, XtCallback
Nonexclusive, or XtCallbackExclusive)

• The standard translation action MenuPopup

Some of these routines take an argument of type XtGrabKind, which is defined as:

typedef enum {XtGrabNone, XtGrabNonexclusive, XtGrabExclusivej XtGrabKind;

To map a pop-up from within an application, use XtPopup.

void X\Popup(popup_shell, grab_kind)
Widget popup _shell\
XtGrabKind grabjcind\

popup_shell Specifies the widget shell.

grabjdnd Specifies the way in which user events should be constrained.

The XtPopup function performs the following:

® Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Generates an error if the shell’s popped_up field is already True.

• Calls the callback procedures on the shell’s popup_callback list.

• Sets the shell popped_up field to True, the shell spring_loaded field to False, and the shell
grab_kind field from grab_kind.

• If the shell’s create_popup_child field is non-NULL, XtPopup calls it with popup_shell as
the parameter.

• If grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls:

XtAddGrab(popup_shell, (grab_kind == XtGrabExclusive), False)

• Calls XtRealizeWidget with popup_shell specified.

• Calls XMapWindow with popup_shell specified.

To map a pop-up from a given widget’s callback list, you also can use the XtCallbackNone,
XtCallbackNonexclusive, or XtCallbackExclusive convenience routines.

void XtCallbackNone(w, client jdata, calljdata)
Widget w;
caddr_t clientjdata\
caddrj calljdata',

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data, which is not used by this procedure.

void XtCaUbackNonexclusive(w, client_daia, calljdata)
Widget w;
caddr_t clientjdata\
caddr_t calljdata;

w Specifies the widget.

clientjdata Specifies the pop-up shell.

calljdata Specifies the callback data, which is not used by this procedure.

53

X Intrinsics Xll, Release 3, Oct. 1988

void XtCallbackExclusive(w, client_data, call_data)
Widget w;
caddr_t client_data\
caddr_t calljAata;

w Specifies the widget.

clientjiata Specifies the pop-up shell.

call_data Specifies the callback data, which is not used by this procedure.

The XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive functions call
XtPopup with the shell specified by the client data argument and grab_kind set as the name
specifies. XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive specify
XtGrabNone, XtGrabNonexclusive, and XtGrabExclusive, respectively. Each function then
sets the widget that executed the callback list to be insensitive by using XtSetSensitive. Using
these functions in callbacks is not required. In particular, an application must provide customized
code for callbacks that create pop-up shells dynamically or that must do more than desensitizing
the button.

To pop up a menu when a pointer button is pressed or when the pointer is moved into some win¬
dow, use MenuPopup. From a translation writer’s point of view, the definition for this transla¬
tion action is:

void McnuPopup(shell_name)
String shell_name\

shell_name Specifies the name of the widget shell to pop up.

MenuPopup is known to the translation manager, which must perform special actions for
spring-loaded pop-ups. Calls to MenuPopup in a translation specification are mapped into calls
to a nonexported action procedure, and the translation manager fills in parameters based on the
event specified on the left-hand side of a translation.

If MenuPopup is invoked on ButtonPress (possibly with modifiers), the translation manager
pops up the shell with grab_kind set to XtGrabExclusive and spring_loaded set to True. If
MenuPopup is invoked on EnterWindow (possibly with modifiers), the translation manager
pops up the shell with grab_kind set to XtGrabNonexclusive and springjoaded set to False.
Otherwise, the translation manager generates an error. When the widget is popped up, the fol¬
lowing actions occur:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Generates an error if the shell’s popped_up field is already True.

• Calls the callback procedures on the shell’s popup_callback list.

• Sets the shell popped_up field to True and the shell grab_kind and springjoaded fields
appropriately.

• If the shell’s create_popup_child field is non-NULL, it is called with popup_shell as the
parameter.

• Calls:

XtAddGrab(popup_shell, (grabjdnd == XtGrabExclusive), springjoaded)

• Calls XtRealizeWidget with popup_shell specified.

• Calls XMapWindow with popup_shell specified.

(Note that these actions are the same as those for XtPopup.) MenuPopup tries to find the shell
by searching the widget tree starting at the parent of the widget in which it is invoked. If it finds
a shell with the specified name in the pop-up children of that parent, it pops up the shell with the
appropriate parameters. Otherwise, it moves up the parent chain as needed. If MenuPopup gets

54

X Intrinsics XI1, Release 3, Oct. 1988

to the application widget and cannot find a matching shell, it generates an error.

5.5. Unmapping a Pop-Up Widget

Pop-ups can be popped down through several mechanisms:

• A call to XtPopdown

• The supplied callback procedure XtCallbackPopdown

• The standard translation action MenuPopdown

To unmap a pop-up from within an application, use XtPopdown.

void X\Popdown(popup_shell)
Widget popup_sheli,

popup_shell Specifies the widget shell to pop down.

The XtPopdown function performs the following:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Checks that popup_shell is currently popped_up; otherwise, it generates an error.

• Unmaps popup_shell’s window.

• If popup_shelTs grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls
XtRemoveGrab.

• Sets pop-up shell’s popped_up field to False.

• Calls the callback procedures on the shell’s popdown_callback list.

To pop down pop-up that have been popped up with one of the callback routines (XtCallback-
None, XtCallbackNonexcIusive, XtCallbackExclusive), use the callback XtCallbackPop¬
down.

void XtCallbackPopdown(w, client_data, call_da:a)
Widget w;
caddr_t client_data\
caddr_t call_data\

w Specifies the widget.

client_data Specifies a pointer to the XtPopdownID structure.

call_data Specifies the callback data, which is not used by this procedure.

The XtCallbackPopdown function casts the client data parameter to an XtPopdownID pointer:

typedef struct {
Widget shell_widget;
Widget enable_widget;

} XtPopdownIDRec, *XtPopdownID;

The shell_widget is the pop-up shell to pop down, and the enable_widget is the widget that was
used to pop it up.

XtCallbackPopdown calls XtPopdown with the specified shell_widget and then calls XtSet-
Sensitive to resensitize the enable_widget.

To pop down a spring-loaded menu when a pointer button is released or when the pointer is
moved into some window, use MenuPopdown. From a translation writer’s point of view, the
definition for this translation action is:

55

X Inlrinsics XII, Release 3, Oct. 1988

void MenuPopdown(s/ze//_mz/ne)
String shell_name\

shell jiame Specifies the name of the widget shell to pop down.

If a shell name is not given, MenuPopdown calls XtPopdown with the widget for which the
translation is specified. If a shell_name is specified in the translation table, MenuPopdown tries
to find the shell by looking up the widget tree starting at the parent of the widget in which it is
invoked. If it finds a shell with the specified name in the pop-up children of that parent, it pops
down the shell; otherwise, it moves up the parent chain as needed. If MenuPopdown gets to the
application top-level shell widget and cannot find a matching shell, it generates an error.

56

X Intrinsics Xll, Release 3, Oct. 1988

Chapter 6

Geometry Management

A widget does not directly control its size and location; rather, its parent is responsible for con¬
trolling its size and location. Although the position of children is usually left up to their parent,
the widgets themselves often have the best idea of their optimal sizes and, possibly, preferred
locations.

To resolve physical layout conflicts between sibling widgets and between a widget and its parent,
the Intrinsics provide the geometry management mechanism. Almost all Composite widgets
have a geometry manager (geometry_manager field in the widget class record) that is responsible
for the size, position, and stacking order of the widget’s children. The only exception are fixed
boxes, which create their children themselves and can ensure that their children will never make a
geometry request

6.1. Initiating Geometry Changes

Parents, children, and clients all initiate geometry changes differently. Because a parent has
absolute control of its children’s geometry, it changes the geometry directly by calling XtMo-
veWidget, XtResizeWidget, or XtConfigureWidget. A child must ask its parent for a
geometry change by calling XtMakeGeometryRequest or XtMakeResizeRequest to convey its
wishes to its parent. An application or other client code initiates a geometry change by calling
XtSetValues on the appropriate geometry fields, thereby giving the widget the opportunity to
modify or reject the client request before it gets propagated to the parent and the opportunity to
respond appropriately to the parent’s reply.

When a widget that needs to change its size, position, border width, or stacking depth asks its
parent’s geometry manager to make the desired changes, the geometry manager can do one of the
following:

• Allow the request

• Disallow the request

• Suggest a compromise

When the geometry manager is asked to change the geometry of a child, the geometry manager
may also rearrange and resize any or all of the other children that it controls. The geometry
manager can move children around freely using XtMoveWidget. When it resizes a child (that is,
changes width, height, or border_width) other than the one making the request, it should do so by
calling XtResizeWidget. It can simultaneously move and resize a child with a single call to
XtConfigureWidget.

Often, geometry managers find that they can satisfy a request only if they can reconfigure a wid¬
get that they are not in control of (in particular, when the Composite widget wants to change its
own size). In this case, the geometry manager makes a request to its parent’s geometry manager.
Geometry requests can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended negotiation, win¬
dows are not actually allocated to widgets at application startup until all widgets are satisfied with

57

X Intrinsics Xll, Release 3, Oct. 1988

their geometry. For further information, see Sections 2.4 and 2.5.

Notes

1. The Intrinsics treatment of stacking requests is deficient in several areas. Stacking
requests for unrealized widgets are granted but will have no effect In addition, there
is no way to do an XtSetValues that will generate a stacking geometry request.

2. After a successful geometry request (one that returned XtGeometryYes), a widget
does not know whether or not its resize procedure has been called. Widgets should
have resize procedures that can be called more than once without ill effects.

62. General Geometry Manager Requests

To make a general geometry manager request from a widget, use XtMakeGeometryRequest.

XtGeometryResult XtMakeGeometryRequest(w, request, reply_return)
Widget w;
XtWidgetGeometry *requesr,
XtWidgetGeometry * reply_return\

w Specifies the widget that is making the request.

request Specifies the desired widget geometry (size, position, border width, and stacking
order).

reply ^return Returns the allowed widget size or may be NULL if the requesting widget is not
interested in handling XtGeometryAlmost.

Depending on the condition, XtMakeGeometryRequest performs the following:

• If the widget is unmanaged or the widget’s parent is not realized, it makes the changes and
returns XtGeometryYes.

» If the parent is not a subclass of compositeWidgetClass or the parent’s geometry_manager
is NULL, it issues an error.

• If the widget’s being_destroyed field is True, it returns XtGeometryNo.

• If the widget x, y, width, height and border_width fields are all equal to the requested
values, it returns XtGeometryYes; otherwise, it calls the parent’s geometry_manager pro¬
cedure with the given parameters.

• If the parent’s geometry manager returns XtGeometryYes and if XtCWQueryOnly is not
set in the request_mode and if the widget is realized, XtMakeGeometryRequest calls the
XCon figure Window Xhb function to reconfigure the widget’s window (set its size, loca¬
tion, and stacking order as appropriate).

• If the geometry manager returns XtGeometryDone, the change has been approved and
actually has been done. In this case, XtMakeGeometryRequest does no configuring and
returns XtGeometryYes. XtMakeGeometryRequest never returns XtGeometryDone.

Otherwise, XtMakeGeometryRequest returns the resulting value from the parent’s geometry
manager.

Children of primitive widgets are always unmanaged; thus, XtMakeGeometryRequest always
returns XtGeometryYes when called by a child of a primitive widget.

The return codes from geometry managers are:

58

X Intrinsics Xll, Release 3, Oct. 1988

typedef enum _XtGeometryResult {
XtGeometryYes,
XtGeometryNo.
XtGeometry Almost,
XtGeometryDone

} XtGeometryResult;

The XtWidgetGeometry structure is quite similar but not identical to the corresponding Xlib
structure:

typedef unsigned long XtGeometryMask;

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height;
Dimension border_width;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

The request_mode definitions are from <X1 1/X.h>:

#define cwx (1«0)
#define CWY (1«1)
#define CWWidth d«2)
#define CWHeight G«3)
#define CWBorderWidth (1«4)
#define CWSibling (1«5)
#define CWStackMode (1«6)

The Intrinsics also support the following value:

#define XtCWQueryOnly (1«7)

XtCWQueryOnly indicates that the corresponding geometry request is only a query as to what
would happen if this geometry request were made and that no widgets should actually be
changed.

XtMakeGeometryRequest, like the XConfigure Window Xlib function, uses request_mode to
determine which fields in the XtWidgetGeometry structure you want to specify.

The stack_mode definitions are from <X!1/X.h>:

#define Above 0
#define Below 1
#define Toplf 2
#define Bottomlf 3
#define Opposite 4

The Intrinsics also support the following value:

#define XtSMDontChange 5

For definition and behavior of Above, Below, Toplf, Bottomlf, and Opposite, seeXlib-C
Language X Interface. XtSMDontChange indicates that the widget wants its current stacking
order preserved.

59

X Intrinsics Xll, Release 3, Oct. 1988

6.3. Resize Requests

To make a simple resize request from a widget, you can use XtMakeResizeRequest as an alter¬
native to XtMakeGeometryRequest.

XtGeometryResult XtMakeResizeRequest(w, width, height, width_return, height_returri)
Widget w;
Dimension width, heighr.
Dimension *width_return, *height_return

w Specifies the widget.

width
height Specify the desired widget width and height.

width_return
height_return Return the allowed widget width and height.

The XtMakeResizeRequest function, a simple interface to XtMakeGeometryRequest, creates
a XtWidgetGeometry structure and specifies that width and height should change. The
geometry manager is free to modify any of the other window attributes (position or stacking
order) to satisfy the resize request. If the return value is XtGeometryAimost, width_retum and
height_retum contain a compromise width and height If these are acceptable, the widget should
immediately make an XtMakeResizeRequest and request that the compromise width and height
be applied. If the widget is not interested in XtGecmetryAlmost replies, it can pass NULL for
width_retum and height_retum.

6.4. Potential Geometry Changes

Sometimes a geome'^y manager cannot respond to a geometry request from a child without first
making a geometry request to the widget’s own parent (the requestor’s grandparent). If the
request to the grandparent would allow the parent to satisfy the original request, the geometry
manager can make the intermediate geometry request as if it were the originator. On the other
hand, if the geometry manager already has determined that the original request cannot be con •
pletely satisfied (for example, if it always denies position changes), it needs to tell the
grandparent to respond to the intermediate request without actually changing the geometry
because it does not know if the child will accept the compromise. To accomplish this, the
geometry manager uses XtCWQueryOnly in the intermediate request.

When XtCWQueryOnly is used, the geometry manager needs to cache enough information to
exactly reconstruct the intermediate request. If the grandparent’s response to the intermediate
query was XtGeometryAimost, the geometry manager needs to cache the entire reply geometry
in the event the child accepts the parent’s compromise.

If the grandparent’s response was XtGeometryAimost, it may also be necessary to cache the
entire reply geometry from the grandparent when XtCWQueryOnly is not used. If the geometry
manager is still able to satisfy the original request, it may immediately accept the grandparent’s
compromise and then act on the child’s request. If the grandparent’s compromise geometry is
insufficient to allow the child’s request and if the geometry manager is willing to offer a different
compromise to the child, the grandparent’s compromise should not be accepted until the child has
accepted the new compromise.

Note that a compromise geometry returned with XtGeometryAimost is guaranteed only for the
next call to the same widget; therefore, a cache of size one is sufficient.

6.5. Child Geometry Management; the geometrymanager Procedure

The geometry_manager procedure pointer in a composite widget class is of type
XtGeometryHandler:

60

X Intrinsics XI1, Release 3, Oct. 1988

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry *, XtWidgetGeometry *);
Widget w;
XtWidgetGeometry *request.;
XtWidgetGeometry * geometry _return\

A class can inherit its superclass’s geometry manager during class initialization.

A bit set to zero in the request’s mask field means that the child widget does not care about the
value of the corresponding field. Then, the geometry manager can change it as it wishes. A bit
set to 1 means that the child wants that geometry element changed to the value in the correspond¬
ing field.

If the geometry manager can satisfy all changes requested and if XtCWQueryOnly is not
specified, it updates the widget’s x, y, width, height, and border_width values appropriately.
Then, it returns XtGeometryYes, and the value of the geometry_retum argument is undefined.
The widget’s window is moved and resized automatically by XtMakeGeometryRequest.

Homogeneous composite widgets often find it convenient to treat the widget making the request
the same as any other widget, possibly reconfiguring it as part of its layout process, unless
XtCWQueryOnly is specified. If it does this, it should return XtGeometryDone to inform
XtMakeGeometryRequest that it does not need to do the configuration itself.

Although XtMakeGeometryRequest resizes the widget’s window (if the geometry manager
returns XtGeometryYes), it does not call the widget class’s resize procedure. The requesting
widget must perform whatever resizing calculations are needed explicitly.

If the geometry manager chooses to disallow the request, the widget cannot change its geometry.
The value of the geometry_retum parameter is undefined, and the geometry manager returns
XtGeometryNo.

Sometimes the geometry manager cannot satisfy the request exactly, but it may be able to satisfy
a similar request. That is, it could satisfy only a subset of the requests (for example, size but not
position) or a lesser request (for example, it cannot make the child as big as the request but it can
make the child bigger than its current size). In such cases, the geometry manager fills in
geometry_retum with the actual changes it is willing to make, including an appropriate mask, and
returns Xt Geometry Almost. If a bit in geometry_retum->request_mode is zero, the geometry
manager does not change the corresponding value if the geometry_retum is used immediately in a
new request. If a bit is one, the geometry manager does change that element to the corresponding
value in geometry_retum. More bits may be set in geometry_retum than in the original request if
the geometry manager intends to change other fields should the child accept the compromise.

When XtGeometryAlmost is returned, the widget must decide if the compromise suggested in
geometry_return is acceptable. If it is, the widget must not change its geometry directly; rather, it
must make another call to XtMakeGeometryRequest.

If the next geometry request from this child uses the geometry_retum box filled in by an
XtGeometryAlmost return and if there have been no intervening geometry requests on either its
parent or any of its other children, the geometry manager must grant the request, if possible. That
is, if the child asks immediately with the returned geometry, it should get an answer of
XtGeometryYes. However, the user’s window manager may affect the final outcome.

To return an XtGeometryYes, the geometry manager frequently rearranges the position of other
managed children by calling XtMoveWidget. However, a few geometry managers may some¬
times change the size of other managed children by calling XtResizeWidget or
XtConfigureWidget. If XtCWQueryOnly is specified, the geometry manager must return how
it would react to this geometry request without actually moving or resizing any widgets.

Geometry managers must not assume that the request and geometry_retum arguments point to
independent storage. The caller is permitted to use the same field for both, and the geometry
manager must allocate its own temporary storage, if necessary.

61

X Intrinsics XI1, Release 3, Oct. 1988

6.6. Widget Placement and Sizing

To move a sibling widget of the child making the geometry request, use XtMoveWidget.

void XtMoveWidget(w, x, y)
Widget w;
Position x\
Position y;

w Specifies the widget.

x
y Specify the new widget x and y coordinates.

The XtMoveWidget function returns immediately if the specified geometry fields are the same
as the old values. Otherwise, XtMoveWidget writes the new x and y values into the widget and,
if the widget is realized, issues an Xlib XMoveWindow call on the widget’s window.

To resize a sibling widget of the child making the geometry request, use XtResizeWidget.

void XtResizeWidget(w, width, height, border_width)
Widget w;
Dimension width'.
Dimension heighr.
Dimension border_width\

w Specifies the widget.

width
height
borderjwidth Specify the new widget size.

The XtResizeWidget function returns immediately if the specified geometry fields are the same
as the old values. Otherwise, XtResizeWidget writes the new width, height, and border_width
values into the widget and, if the widget is realized, issues an XConfigureWindow call on the
widget’s window.

If the new width or height are different from the old values, XtResizeWidget calls the widget’s
resize procedure to notify it of the size change.

To move and resize the sibling widget of the child making the geometry request, use
XtConfigureWidget.

void XtConfigureWidget(w, x, y, width, height, border_width)
Widget w;
Position x\
Position y;
Dimension width'.
Dimension heighr.
Dimension border_width\

w Specifies the widget.

x
y Specify the new widget x and y coordinates.

width
height
border_width Specify the new widget size.

The XtConfigureWidget function returns immediately if the specified geometry fields are the
same as the old values. Otherwise, XtConfigureWidget writes the new x, y, width, height, and
border_width values into the widget and, if the widget is realized, makes an Xlib
XConfigureWindow call on the widget’s window.

62

X Intrinsics XI1, Release 3, Oct. 1988

If either the new width or height is different from its old value, XtConfigureWidget calls the
widget’s resize procedure to notify it of the size change; otherwise, it simply returns.

To resize a child widget that already has the new values of its width, height, and border width
fields, use XtResizeWindow.

void XtResizeWindow(w)
Widget w;

w Specifies the widget.

The XtResize Window function calls the XConfigure Window Xlib function to make the win¬
dow of the specified widget match its width, height, and border width. This request is done
unconditionally because there is no way to tell if these values match the current values. Note that
the widget’s resize procedure is not called.

There are very few times to use XtResize Window; instead, you should use XtResizeWidget.

6.7. Preferred Geometry

Some parents may be willing to adjust their layouts to accommodate the preferred geometries of
their children. They can use XtQueryGeometry to obtain the preferred geometry and, as they
see fit, can use or ignore any portion of the response.

To query a child widget’s preferred geometry, use XtQueryGeometry.

XtGeometryResult XtQueryGeometry(w, intended, preferred_return)
Widget w;
XtWidgetGeometry * intended, *preferred_return\

w Specifies the widget.

intended Specifies any changes the parent plans to make to the child’s geometry or NULL.

preferred_returnRemms the child widget’s preferred geometry.

To discover a child’s preferred geometry, the child’s parent sets any changes that it intends to
make to the child’s geometry in the corresponding fields of the intended structure, sets the
corresponding bits in intended.request_mode, and calls XtQueryGeometry.

XtQueryGeometry clears all bits in the preferred_retum->request_mode and checks the
query_geometry field of the specified widget’s class record. If query, .geometry is not NULL,
XtQueryGeometry calls the query_geometry procedure and passes as arguments the specified
widget, intended, and preferred_retum structures. If the intended argument is NULL, XtQuery¬
Geometry replaces it with a pointer to an XtWidgetGeometry structure with request_mode=0
before calling query_geometry.

The query_geometry procedure pointer is of type XtGeometryHandler.

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry *, XtWidgetGeometry *);
Widget w;
XtWidgetGeometry ^request,;
XtWidgetGeometry * geometry _return\

The query .geometry procedure is expected to examine the bits set in request->request_mode,
evaluate the preferred geometry of the widget, and store the result in geometry.retum (setting the
bits in geometry_retum->request_mode corresponding to those geometry fields that it cares
about). If the proposed geometry change is acceptable without modification, the query_geometry
procedure should return XtGeometryYes. If at least one field in geometry.retum is different
from the corresponding field in request or if a bit was set in geometry.retum that was not set in
request, the query .geometry procedure should return XtGeometryAlmost. If the preferred
geometry is identical to the current geometry, the query_geometry procedure should return

63

X Xntrinsics XI1, Release 3, Oct. 1988

XtGeometryNo.

After calling the query_geometry procedure or if the query_geometry field is NULL, XtQuery-
Geometry examines all the unset bits in geometry_retum->request_mode and sets the
corresponding fields in geometry_retum to the current values from the widget instance. If
CWStackMode is not set, the stack_mode field is set to XtSMDontChange. XtQuery*
Geometry returns the value returned by the query_geometry procedure or XtGeometryYes if
the query_geometry field is NULL.

Therefore, the caller can interpret a return of XtGeometryYes as not needing to evaluate the con¬
tents of reply and, more importantly, not needing to modify its layout plans. A return of
XtGeometryAlmost means either that both the parent and the child expressed interest in at least
one common field and the child’s preference does not match the parent’s intentions or that the
child expressed interest in a field that the parent might need to consider. A return value of
XtGeometryNo means that both the parent and the child expressed interest in a field and that the
child suggests that the field’s current value is its preferred value. In addition, whether or not the
caller ignores the return value or the reply mask, it is guaranteed that the reply structure contains
complete geometry information for the child.

Parents are expected to call XtQueryGeometry in their layout routine and wherever other infor¬
mation is significant after change_managed has been called. The changed_managed procedure
may assume that the child’s current geometry is its preferred geometry. Thus, the child is still
responsible for storing values into its own geometry during its initialize procedure.

6.8. Size Change Management: the resize Procedure

A child can be resized by its parent at any time. Widgets usually need to know when they have
changed size so that they can lay out their displayed data again to match the new size. When a
parent resizes a child, it calls XtResizeWidget, which updates the geometry fields in the widget,
configures the window if the widget is realized, and calls the child’s resize procedure to notify the
child. The resize procedure pointer is of type XtWidgetProc.

If a class need not recalculate anything when a widget is resized, it can specify NULL for the
resize field in its class record. This is an unusual case and should occur only for widgets with
very trivial display semantics. The resize procedure takes a widget as its only argument. The x,
y, width, height and border_width fields of the widget contain the new values. The resize pro¬
cedure should recalculate the layout of internal data as needed. (For example, a centered Label in
a window that changes size should recalculate the starting position of the text) The widget must
obey resize as a command and must not treat it as a request. A widget must not issue an
XtMakeGeometryKequest or XtMakeResizeRequest call from its resize procedure.

64

X Intrinsics XI1, Release 3, Oct. 1988

Chapter 7

Event Management

While X allows the reading and processing of events anywhere in an application, widgets in the X
Toolkit neither directly read events nor grab the server or pointer. Widgets register procedures
that are to be called when an event or class of events occurs in that widget.

A typical application consists of startup code followed by an event loop that reads events and
dispatches them by calling the procedures that widgets have registered. The default event loop
provided by the Intrinsics is XtAppMainLoop.

The event manager is a collection of functions to perform the following tasks:

• Add or remove event sources other than X server events (in particular, timer interrupts and
file input).

• Query the status of event sources.

• Add or remove procedures to be called when an event occurs for a particular widget.

• Enable and disable the dispatching of user-initiated events (keyboard and pointer events)
for a particular widget

• Constrain the dispatching of events to a cascade of pop-up widgets.

• Call the appropriate set of procedures currently registered when an event is read.

Most widgets do not need to call any of the event handler functions explicitly. The normal inter¬
face to X events is through the higher-level translation manager, which maps sequences of X
events (with modifiers) into procedure calls. Applications rarely use any of the event manager
routines besides XtAppMainLoop.

7.1. Adding and Deleting Additional Event Sources

While most applications are driven only by X events, some applications need to incorporate other
sources of input into the X Toolkit event handling mechanism. The event manager provides rou¬
tines to integrate notification of timer events and file data pending into this mechanism.

The next section describes functions that provide input gathering from files. The application
registers the files with the Intrinsics read routine. When input is pending on one of the files, the
registered callback procedures are invoked.

7.1.1. Adding and Removing Input Sources

To register a new file as an input source for a given application, use XtAppAddlnput.

Xtlnputld XtAppAdd]nput(app_context, source, condition, proc, client_data)
XtAppContext app_contexr,
int source',
caddrj condition',
XtlnputCallbackProc proc,
caddr_t client_data\

appjcontext Specifies the application context that identifies the application.

source Specifies the source file descriptor on a UNIX-based system or other operating
system dependent device specification.

condition Specifies the mask that indicates a read, write, or exception condition or some
operating system dependent condition.

65

X Intrinsics Xll, Release 3, Oct. 1988

proc Specifies the procedure that is to be called when input is available.

client_data Specifies the argument that is to be passed to the specified procedure when input
is available.

The XtAppAddlnput function registers with the Intrinsics read routine a new source of events,
which is usually file input but can also be file output Note that file should be loosely interpreted
to mean any sink or source of data. XtAppAddlnput also specifies the conditions under which
the source can generate events. When input is pending on this source, the callback procedure is
called.

The legal values for the condition argument are operating-system dependent On a UNIX-based
system, the condition is some union of XtlnputReadMask, XtlnputWriteMask, and Xtlnpu-
tExceptMask.

Callback procedure pointers that are used when there are file events are of type Xtln-
putCallbackProc:

typedef void (*XtInputCallbackProc)(caddr_t, int *, Xtlnputld *);
caddr_t clientjiata;
int *source;
Xtlnputld *id;

client_data Specifies the client data that was registered for this procedure in XtAppAddln¬
put.

source Specifies the source file descriptor generating the event.

id Specifies the ID returned from the corresponding XtAppAddlnput call.

To discontinue a source of input, use XtRemovelnput.

void XtRemovelnput(iJ)
Xtlnputld id;

id Specifies the ID returned from the corresponding XtAppAddlnput call.

The XtRemovelnput function causes the Intrinsics read routine to stop watching for input from
the input source.

7.1.2. Adding and Removing Timeouts

The timeout facility notifies the application or the widget through a callback procedure that a
specified time interval has elapsed. Timeout values are uniquely identified by an interval ID.

To create a timeout value, use XtAppAddTimeOut.

Xtlntervalld XtAppAddTimeQut(app_conre;ri, interval, proc, client_data)
XtAppContext appjcontexv,
unsigned long interval;
XtTimerCallbackProc proc;
caddr_t clientjdata;

app_context Specifies the application context for which the timer is to be set.

interval Specifies the time interval in milliseconds.

proc Specifies the procedure that is to be called when the time expires.

client_data Specifies the argument that is to be passed to the specified procedure when it is
called.

The XtAppAddTimeOut function creates a timeout and returns an identifier for it. The timeout
value is set to interval. The callback procedure is called when the time interval elapses, and then
the timeout is removed.

I

i

66

X Intrinsics Xll, Release 3, Oct. 1988

Callback procedure pointer that are used when timeouts expire are of type XtTimerCallback-
Proc:

typedef void (*XtTimerCaHbackProc)(caddr_t, Xtlntervalld *);
caddr_t client_data\
Xtlntervalld *id\

client_data Specifies the client data that was registered for this procedure in XtAp-
pAddTimeOut.

id Specifies the ID returned from the corresponding XtAppAddTimeOut call.

To clear a timeout value, use XtRemoveTimeOut.

void XtRemoveTimeOut(timer)
Xtlntervalld timer,

timer Specifies the ID for the timeout request to be destroyed.

The XtRemoveTimeOut function removes the timeout. Note that timeouts are automatically
removed once they trigger.

7.2. Constraining Events to a Cascade of Widgets

Modal widgets are widgets that, except for the input directly to them, lock out user input to the
application.

When a modal menu or modal dialog box is popped up using XtPopup, user events (keyboard
and pointer events) that occur outside the modal widget should be delivered to the modal widget
or ignored. In no case will user events be delivered to a widget outside the modal widget.

Menus can pop up submenus and dialog boxes can pop up further dialog boxes to create a pop-up
cascade. In this case, user events may be delivered to one of several modal widgets in the cas¬
cade.

Display-related events should be delivered outside the modal cascade so that expose events and
the like keep the application’s display up to date. Any event that occurs within the cascade is
delivered as usual. The user events that are delivered to the most recent spring-loaded shell in the
cascade when they occur outside the cascade are called remap events and are KeyPress,
KeyRelease, ButtonPress, and ButtonRelease. The user events that are ignored when they
occur outside the cascade are MotionNotify, EnterNotify, and LeaveNotify. All other events
are delivered normally.

XtPopup uses the XtAddGrab and XtRemoveGrab functions to constrain user events to a
modal cascade and subsequently to remove a grab when the modal widget goes away. Usually
you should have no need to call them explicitly.

To redirect user input to a modal widget, use XtAddGrab.

void XtAddGrab(w, exclusive, spring Joaded)
Widget w;
Boolean exclusive'.
Boolean spring Joaded',

w Specifies the widget to add to the modal cascade.

exclusive Specifies whether user events should be dispatched exclusively to this widget or
also to previous widgets in the cascade.

spring Joaded Specifies whether this widget was popped up because the user pressed a pointer
button.

The XtAddGrab function appends the widget (and associated parameters) to the modal cascade '
and checks that exclusive is True if spring_loaded is True. If these are not True, XtAddGrab

67

X Intrinsics Xll, Release 3, Oct. 1988

generates an error.

The modal cascade is used by XtDispatchEvent when it tries to dispatch a user event. When at
least one modal widget is in the widget cascade, XtDispatchEvent first determines if the event
should be delivered. It starts at the most recent cascade entry and follows the cascade up to and
including the most recent cascade entry added with the exclusive parameter True.

This subset of the modal cascade along with all descendants of these widgets comprise the active
subset. User events that occur outside the widgets in this subset are ignored or remapped. Modal
menus with submenus generally add a submenu widget to the cascade with exclusive False.
Modal dialog boxes that need to restrict user input to the most deeply nested dialog box add a
subdialog widget to the cascade with exclusive True. User events that occur within the active
subset are delivered to the appropriate widget, which is usually a child or further descendant of
the modal widget.

Regardless of where on the screen they occur, remap events are always delivered to the most
recent widget in the active subset of the cascade that has spring_loaded True, if any such widget
exists.

To remove the redirection of user input to a modal widget, use XtRemoveGrab.

void XtRemoveGrab(w)
Widget w;

w Specifies the widget to remove from the modal cascade.

The XtRemoveGrab function removes widgets from the modal cascade starting at the most
recent widget up to and including the specified widget. It issues an error if the specified widget is
not on the modal cascade.

73. Focusing Events on a Child

To redirect keyboard input to a child of a Composite widget without calling XSetlnputFocus,
use XtSetKeyboardFocus.

XtSetKeyboardFocus(sui>rree, descendant)
Widget subtree, descendant.;

subtree Specifies the subtree of the hierarchy for which the keyboard focus is to be set.

descendant Specifies either the widget in the subtree structure which is to receive the key¬
board event, or None. Note that it is not an error to specify None when no input
focus was previously set.

If a future KeyFress or KeyRelease event occurs within the specified subtree, XtSetKeyboard¬
Focus causes XtDispatchEvent to remap and send the event to the specified descendant widget.

When there is no modal cascade, keyboard events can occur within a widget W in one of three
ways:

• W has the X input focus.

® W has the keyboard focus of one of its ancestors, and the event occurs within the ancestor
or one of the ancestor’s descendants.

• No ancestor of W has a descendant within the keyboard focus, and the pointer is within W.

When there is a modal cascade, a widget W receives keyboard events if an ancestor of W is in the
active subset of the modal cascade and one or more of the previous conditions is True.

When subtree or one of its descendants acquires the X input focus or the pointer moves into the
subtree such that keyboard events would now be delivered to subtree, a Focusln event is gen¬
erated for the descendant if FocusNotify events have been selected by the descendant. Similarly,
when W loses the X input focus or the keyboard focus for one of its ancestors, a FocusOut event
is generated for descendant if FocusNotify events have been selected by the descendant.

68

X Intrinsics XI1, Release 3, Oct. 1988

The accept_focus procedure pointer is of type XtAcceptFocusProc:

typedef Boolean (*XtAcceptFocusProc)(Widget, Time);
Widget w;
Time *time\

w Specifies the widget.

time Specifies the X time of the event causing the accept focus.

Widgets that need the input focus can call XSetlnputFocus explicitly. To allow outside agents
to cause a widget to get the input focus, every widget exports an accept_focus procedure. The
widget returns whether it actually took the focus or not, so that the parent can give the focus to
another widget. Widgets that need to know when they lose the input focus must use the Xlib
focus notification mechanism explicitly (typically by specifying translations for Focusln and
FocusOut events). Widgets that never want the input focus should set their accept_focus pro¬
cedure pointer to NULL.

To call a widget’s accept_focus procedure, use XtCallAcceptFocus.

Boolean XtCallAcceptFocus(w, time)
Widget w;
Time *time\

w Specifies the widget.

time Specifies the X time of the event that is causing the accept focus.

The XtCallAcceptFocus function calls the specified widget’s accept_focus procedure, passing it
the specified widget and time, and returns what the accept_focus procedure returns. If
accept_focus is NULL, XtCallAcceptFocus returns False.

7.4. Querying Event Sources

The event manager provides several functions to examine and read events (including file and
timer events) that are in the queue. The next three functions handle Intrinsics equivalents of the
XPending, XPeekEvent, and XNextEvent Xlib calls.

To determine if there are any events on the input queue for a given application, use XtAppPend-
ing.

XtlnputMask XtAppPending{app_context)
XtAppContext app_contexr,

app_context Specifies the application context that identifies the application to check.

The XtAppPending function returns a nonzero value if there are events pending from the X
server, timer pending, or other input sources pending. The value returned is a bit mask that is the
OR of XtIMXEvent, XtIMTimer, and XtIMAIternateInput (see XtAppProcessEvent). If
there are no events pending, XtAppPending flushes the output buffer and returns zero.

To return the value from the head of a given application’s input queue without removing input
from the queue, use XtAppPeekEvent.

Boolean XiAp^)?tt)sE\tr\i(app_context, event jreturn)
XtAppContext app_contexr,
XEvent *event_return\

app_context Specifies the application context that identifies the application.

event_return Returns the event information to the specified event structure.

If there is an event in the queue, XtAppPeekEvent fills in the event and returns a nonzero value.
If no X input is on the queue, XtAppPeekEvent flushes the output buffer and blocks until input

69

X Intrinsics Xll, Release 3, Oct. 1988

is available (possibly calling some timeout callbacks in the process). If the input is an event,
XtAppPeekEvent fills in the event and returns a nonzero value. Otherwise, the input is for an
alternate input source, and XtAppPeekEvent returns zero.

To return the value from the head of a given application’s input queue, use XtAppNextEvent.

void XlAppNexxEvQM(app_context, event_return)
XtAppContext app_context.;
XEvent *event_return\

appjcontext Specifies the application context that identifies the application.

event jeturn Returns the event information to the specified event structure.

If no input is on the X input queue, XtAppNextEvent flushes the X output buffer and waits for
an event while looking at the other input sources and timeout values and calling any callback pro¬
cedures triggered by them. This wait time can be used for background processing (see Section
7.8).

7.5. Dispatching Events

The Intrinsics provide functions that dispatch events to widgets or other application code. Every
client interested in X events on a widget uses XtAddEventHandler to register which events it is
interested in and a procedure (event handler) that is to be called when the event happens in that
window. The translation manager automatically registers event handlers for widgets that use
translation tables (see Chapter 10).

Applications that need direct control of the processing of different types of input should use
XtAppProcessEvent.

void XtAppProcessEvent(ap/7_conrexr, mask)
XtAppContext app_contexr,
XtlnputMask mask',

app_context Specifies the application context that identifies the application for which to pro¬
cess input.

mask Specifies what types of events to process. The mask is the bitwise inclusive OR
of any combination of XtIMXEvent, XtIMTimer, and XtlMAIternatelnput.
As a convenience, the X Toolkit defines the symbolic name XtIMAlI to be the
bitwise inclusive OR of all event types.

The XtAppProcessEvent function processes one timer, alternate input, or X event. If there is
nothing of the appropriate type to process, XtAppProcessEvent blocks until there is. If there is
more than one type of thing available to process, it is undefined which will get processed. Usu¬
ally, this procedure is not called by client applications (see XtAppMainLoop). XtAppPro¬
cessEvent processes timer events by calling any appropriate timer callbacks, alternate input by
calling any appropriate alternate input callbacks, and X events by calling XtDispatchEvent.

When an X event is received, it is passed to XtDispatchEvent, which calls the appropriate event
handlers and passes them the widget, the event, and client-specific data registered with each pro¬
cedure. If there are no handlers for that event registered, the event is ignored and the dispatcher
simply returns. The order in which the handlers are called is undefined.

Boolean XtDispatchEvent(eve^O
XEvent *evenr,

event Specifies a pointer to the event structure that is to be dispatched to the appropri¬
ate event handler.

70

X Intrinsics Xll, Release 3, Oct. 1988

The XtDispatchEvent function sends those events to the event handler functions that have been
previously registered with the dispatch routine. XtDispatchEvent returns True if it dispatched
the event to some handler and False if it found no handler to dispatch the event to. The most
common use of XtDispatchEvent is to dispatch events acquired with the XtAppNextEvent pro¬
cedure. However, it also can be used to dispatch user-constructed events. XtDispatchEvent also
is responsible for implementing the grab semantics for XtAddGrab.

7.6. The Application Input Loop

To process input from a given application, use XtAppMainLoop.

void XtAppMainLoop(jpp_conrexr)
XtAppContext app_contexr,

app_context Specifies the application context that identifies the application.

The XtAppMainLoop function first reads the next incoming X event by calling XtAppNex¬
tEvent and then it dispatches the event to the appropriate registered procedure by calling
XtDispatchEvent. This constitutes the main loop of X Toolkit applications, and, as such, it does
not return. Applications are expected to exit in response to some user action. There is nothing
special about XtAppMainLoop; it is simply an infinite loop that calls XtAppNextEvent and
then XtDispatchEvent.

Applications can provide their own version of this loop, which tests some global termination flag
or tests that the number of top-level widgets is larger than zero before circling back to the call to
XtAppNextEvent.

7.7. Setting and Checking the Sensitivity State of a Widget

Many widgets have a mode in which they assume a different appearance (for example, are greyed
out or stippled), do not respond to user events, and become dormant.

When dormant, a widget is considered to be insensitive. If a widget is insensitive, the Event
Manager does not dispatch any events to the widget with an event type of KeyPress,
KeyRelease, ButtonPress, ButtonRelease, MotionNotify, EnterNotify, LeaveNotify, Focu-
sln, or FocusOut.

A widget can be insensitive because its sensitive field is False or because one of its parents is
insensitive, and, thus, the widget’s ancestor_sensitive field also is False. A widget can but does
not need to distinguish these two cases visually.

To set the sensitivity state of a widget, use XtSetSensitive.

void XtSetSensitive(w, sensitive)
Widget w;
Boolean sensitive;

w Specifies the widget.

sensitive Specifies a Boolean value that indicates whether the widget should receive key¬
board and pointer events.

The XtSetSensitive function first calls XtSetValues on the current widget with an argument list
specifying that the sensitive field should change to the new value. It then recursively propagates
the new value down the managed children tree by calling XtSetValues on each child to set the
ancestor_sensitive to the new value if the new values for sensitive and the child’s
ancestor_sensitive are not the same.

XtSetSensitive calls XtSetValues to change sensitive and ancestor_sensitive. Therefore, when
one of these changes, the widget’s set_values procedure should take whatever display actions are
needed (for example, greying out or stippling the widget).

XtSetSensitive maintains the invariant that if parent has either sensitive or ancestor_sensitive
False, then all children have ancestor_sensitive False.

71

X Intrinsics Xll, Release 3, Oct. 1988

To check the current sensitivity state of a given widget (which is usually done by parents), use
XtlsSensitive.

Boolean XtlsSensitive(w)
Widget w;

w Specifies the widget.

The XtlsSensitive function returns True or False to indicate whether or not user input events
are being dispatched. If both core.sensitive and core.ancestor_sensitive are True, XtlsSensitive
returns True; otherwise, it returns False.

7.8. Adding Background Work Procedures

The Intrinsics have limited support for background processing. Because most applications spend
most of their time waiting for input, you can register an idie-time work procedure that will be
called when the toolkit would otherwise block in XtAppNextEvent or XtAppProcessEvent.
Work procedure pointers are of type XtWorkProc:

typedef Boolean (*XtWorkProc)(caddr_t);
caddr_t client jiata',

clientjdata Client data specified when the work proc was registered.

This procedure returns True if it is done, that is, the work procedure should be removed. Work
procedures should be very judicious about how much they do. If they run for more than a small
pan of a second, response time is likely to suffer.

To register a work procedure for a given application, use XtAppAddWorkProc.

XtWorkProcId XtAppAddWorkProc(app_ccvuexr, proc, clientjiata)
XtAppContext appjcontexr,
XtWorkProc proc,
caddr_t client jiata',

appjcontext Specifies the application context that identifies the application.

proc Specifies the procedure that is to be called when the application is idle.

client jiata Specifies the argument that is to be passed to the specified procedure when it is
called.

The XtAppAddWorkProc function adds the specified work procedure for the application
identified by app_context.

XtWorkProcId is an opaque unique identifier for this work procedure. Multiple work pro¬
cedures can be registered, and the most recently added one is always the one that is called. How¬
ever, if a work procedure adds another work procedure, the newly added one has lower priority
than the current one.

To remove a work procedure, either return True from the procedure when it is called or use
XtRemove Work Proc.

void XtRemoveWorkProc(id)
XtWorkProcId id;

id Specifies which work procedure to remove.

The XtRemoveWorkProc function explicitly removes the specified background work procedure.

7.9. X Event Filters

The event manager provides filters that can be applied to X user events. The filters, which screen
out events that are redundant or are temporarily unwanted, handle the following:

72

X Intrinsics Xll, Release 3, Oct. 1988

• Pointer motion compression

• Enter/leave compression

• Exposure compression

7.9.1. Pointer Motion Compression

Widgets can have a hard time keeping up with pointer motion events. Further, they usually do
not actually care about every motion event. To throw out redundant motion events, the widget
class field compress_motion should be True. When a request for an event would return a motion
event, the Intrinsics check if there are any other motion events immediately following the current
one, and, if so, skip all but the last of them.

7.9.2. Enter/Leave Compression

To throw out pairs of enter and leave events that have no intervening events, as can happen when
the user moves the pointer across a widget without stopping in it, the widget class field
compress_enterleave should be True. These enter and leave events are not delivered to the client
if they are found together in the input queue.

7.9.3. Exposure Compression

Many widgets prefer to process a series of exposure events as a single expose region rather than
as individual rectangles. Widgets with complex displays might use the expose region as a clip
list in a graphics context, and widgets with simple displays might ignore the region entirely and
redisplay their whole window or might get the bounding box from the region and redisplay only
that rectangle.

In either case, these widgets do not care about getting partial expose events. If the
compress_exposure field in the widget class structure is True, the event manager calls the
widget’s expose procedure only once for each series of exposure events. In this case, all Expose
events are accumulated into a region. When the final Expose event in a series (that is, the one
with count zero) is received, the event manager replaces the rectangle in the event with the
bounding box for the region and calls the widget’s expose procedure, passing the modified expo¬
sure event and the region. (See Xlib - C Language X Interface.)

If compress_exposure is False, the event manager calls the widget’s expose procedure for every
exposure event, passing it the event and a region argument of NULL.

7.10. Widget Exposure and Visibility

Every primitive widget and some composite widgets display data on the screen by means of raw
Xlib calls. Widgets cannot simply write to the screen and forget what they have done. They
must keep enough state to redisplay the window or parts of it if a portion is obscured and then
reexposed.

7.10.1. Redisplay of a Widget: the expose Procedure

The expose procedure pointer in a widget class is of type XtExposeProc:

typedef void (*XtExposeProc)(Widget, XEvent *, Region);
Widget w;
XEvent *evenr.;
Region region;

w Specifies the widget instance requiring redisplay.

event Specifies the exposure event giving the rectangle requiring redisplay.

region Specifies the union of all rectangles in this exposure sequence.

The redisplay of a widget upon exposure is the responsibility of the expose procedure in the
widget’s class record. If a widget has no display semantics, it can specify NULL for the expose

73

X Intrinsics XI1, Release 3, Oct. 1988

field. Many composite widgets serve only as containers for their children and have no expose
procedure.

Note

If the expose procedure is NULL, XtRealizeWidget fills in a default bit gravity of
NorthWestGravity before it calls the widget’s realize procedure.

If the widget’s compress_exposure class field is False (see Section 7.9.3), region always is
NULL. If the widget’s compress_exposure class field is True, the event contains the bounding
box for region.

A small simple widget (for example, Label) can ignore the bounding box information in the event
and redisplay the entire window. A more complicated widget (for example, Text) can use the
bounding box information to minimize the amount of calculation and redisplay it does. A very
complex widget uses the region as a clip list in a GC and ignores the event information. The
expose procedure is responsible for exposure of all superclass data as well as its own.

However, it often is possible to anticipate the display needs of several levels of subclassing. For
example, rather than separate display procedures for the widgets Label, Command, and Toggle,
you could write a single display routine in Label that uses display state fields like the following:

Boolean invert
Boolean highlight
Dimension highlight_width

Label would have invert and highlight always False and highlight_width zero. Command would
dynamically set highlight and highlight_width, but it would leave invert always False. Finally,
Toggle would dynamically set all three. In this case, the expose procedures for Command and
Toggle inherit their superclass’s expose procedure. For further information, see Section 1.4.9.

7,10.2. Widget Visibility

Some widgets may use substantial computing resources to display data. However, this effort is
wasted if the widget is not actually visible on the screen, that is, if the widget is obscured by
another application or is iconified.

Tne visible field in the Core widget structure provides a hint to the widget that it need not
display data. This field is guaranteed True by the time an Expose event is processed if the wid¬
get is visible but is usually False if the widget is not visible.

Widgets can use or ignore the visible hint. If they ignore it, they should have visible_interest in
their widget class record set False. In such cases, the visible field is initialized True and never
changes. If visible_interest is True, the event manager asks for VssibilityNotify events for the
widget and updates the visible field accordingly.

7.11. X Event Handlers

Event handlers are procedures that are called when specified events occur in a widget. Most wid¬
gets need not use event handlers explicitly. Instead, they use the Intrinsics translation manager.
Event handler procedure pointers are of the type XtEventHandler:

typedef void (*XtEventHandler)(Widget, caddr_t, XEvent *);
Widget w;
caddr_t client jLata\
XEvent * event',

w Specifies the widget for which to handle events.

client_data Specifies the client specific information registered with the event handler, which
is usually NULL if the event handler is registered by the widget itself.

74

X Intrinsics Xll, Release 3, Oct. 1988

event Specifies the triggering event.

7.11.1. Event Handlers that Select Events

To register an event handler procedure with the dispatch mechanism, use XtAddEventHandler.

void XtAddEventHandler(w, event jnask, nonmaskable, proc, client_data)
Widget w;
EventMask event jnask:.
Boolean nonmaskable;
XtEventHandler proc,
caddr_t client_data\

w Specifies the widget for which this event handler is being registered.

event jnask Specifies the event mask for which to call this procedure.

nonmaskable Specifies a Boolean value that indicates whether this procedure should be called
on the nonmaskable events (GraphicsExpose, NoExpose, SelectionClear,
SelectionRequest, SelectionNotify, ClientMessage. and MappingNotify).

proc Specifies the procedure that is to be called.

client_data Specifies additional data to be passed to the client’s event handler.

The XtAddEventHandler function registers a procedure with the dispatch mechanism that is to
be called when an event that matches the mask occurs on the specified widget. If the procedure is
already registered with the same client_data, the specified mask is ORed into the existing mask.
If the widget is realized, XtAddEventHandler calls XSelectlnput, if necessary.

To remove a previously registered event handler, use XtRemoveEventHandler.

void XtRemoveEventHandler(w, event jnask, nonmaskable, proc, clientjiata)
Widget w;
EventMask event jnask:.
Boolean nonmaskable',
XtEventHandler proc,
caddr_t client_data\

w

event jnask

nonmaskable

proc

client data

Specifies the widget for which this procedure is registered.

Specifies the event mask for which to unregister this procedure.

Specifies a Boolean value that indicates whether this procedure should be
removed on the nonmaskable events (GraphicsExpose, NoExpose, Selection-
Clear, SelectionRequest, SelectionNotify, ClientMessage, and MappingNo¬
tify).

Specifies the procedure that is to be removed.

Specifies the client data registered.

The XtRemoveEventHandler function stops the specified procedure from receiving the
specified events. The request is ignored if client_data does not match the value given in the call
to XtAddEventHandler. If the widget is realized, XtRemoveEventHandler calls XSelectln¬
put, if necessary. If the specified procedure has not been registered or if it has been registered
with a different value of client_data, XtRemoveEventHandler returns without reporting an
error.

To stop a procedure from receiving any events, which will remove it from the widget’s
event_table entirely, call XtRemoveEventHandler with an event_mask of XtAllEvents and
with nonmaskable True.

75

X Intrinsics Xll, Release 3, Oct. 1988

7.11.2. Event Handlers that Do Not Select Events

On occasion, clients need to register an event handler procedure with the dispatch mechanism
without causing the server to select for that event To do this, use XtAddRawEventHandler.

void XtAddRawEventHandler(w, event jnask, nonmaskable, proc, client_data)
Widget w;
EventMask event jnask'.
Boolean nonmaskable',
XtEventHandler proc;
caddr_t clientjiata'.

w Specifies the widget for which this event handler is being registered.

event jnask Specifies the event mask for which to call this procedure.

nonmaskable Specifies a Boolean value that indicates whether this procedure should be
removed on the nonmaskable events (GraphicsExpose, NoExpose, Selection-
Clear, SelectionRequest, SelectionNotify, ClientMessage, and MappingNo-
tify).

proc Specifies the procedure that is to be registered.

clientjiata Specifies additional data to be passed to the client’s event handler.

The XtAddRawEventHandler function is similar to XtAddEventHandler except that it does
not affect the widget’s mask and never causes an XSelectlnput for its events. Note that the wid¬
get might already have those mask bits set because of other nonraw event handlers registered on
it.

To remove a previously registered raw event handler, use XtRemoveRawEventHandler.

void XtRemoveRawEventHandler(w, event jnask, nonmaskable, proc, clientjiata)
Widget w;
EventMask event jnask'.
Boolean nonmaskable',
XtEventHandler proc,
caddr_t clientjiata'.

w

event jnask

nonmaskable

proc

client data

Specifies the widget for which this procedure is registered.

Specifies the event mask for which to unregister this procedure.

Specifies a Boolean value that indicates whether this procedure should be
removed on the nonmaskable events (GraphicsExpose, NoExpose, Selection-
Clear, SelectionRequest, SelectionNotify, ClientMessage, and MappingNo-
tify).

Specifies the procedure that is to be registered.

Specifies the client data registered.

The XtRemoveRawEventHandler function stops the specified procedure from receiving the
specified events. Because the procedure is a raw event handler, this does not affect the widget’s
mask and never causes a call on XSelectlnput.

7.11.3. Current Event Mask

To retrieve the event mask for a given widget, use XtBuildEventMask.

EventMask XtBuildEventMask(w)
Widget w;

w Specifies the widget.

The XtBuildEventMask function returns the event mask representing the logical OR of all event
masks for event handlers registered on the widget with XtAddEventHandler and all event

76

X Intrinsics Xll, Release 3, Oct. 1988

translations, including accelerators, installed on the widget. This is the same event mask stored
into the XSetWindowAttributes structure by XtRealizeWidget and sent to the server when
event handlers and translations are installed or removed on the realized widget.

77

X Intrinsics Xll, Release 3, Oct. 1988

Chapter 8

Callbacks

Applications and other widgets (clients) often need to register a procedure with a widget that gets
called under certain conditions. For example, when a widget is destroyed, every procedure on the
widget’s destroy_callbacks list is called to notify clients of the widget’s impending doom.

Every widget has a destroy_callbacks list. Widgets can define additional callback lists as they
see fit. For example, the Command widget has a callback list to notify clients when the button
has been activated.

8.1. Using Callback Procedure and Callback List Definitions

Callback procedure fields for use in callback lists are of type XtCallbackProc:

typedef void (*XtCallbackProc)(Widget, caddr_t, caddr_t);
Widget w;
caddr_t client_data\
caddr_t call_data\

w Specifies the widget for which the callback is registered.

client_data Specifies the data that the widget should pass back to the client when the widget
executes the client’s callback procedure.

call_data Specifies any callback-specific data the widget wants to pass to the client. For
example, when Scrollbar executes its thumbChanged callback list, it passes the
new position of the thumb.

The client_data argument provides a way for the client registering the callback also to register
client-specific data (for example, a pointer to additional information about the widget, a reason
for invoking the callback, and so on). The client_data value should be NULL if all necessary
information is in the widget. The call_data argument is a convenience to avoid having simple
cases where the client could otherwise call XtGetValues or a widget-specific function to retrieve
data from the widget. Widgets should generally avoid putting complex state information in
call_data. The client can use the more general data retrieval methods, if necessary.

Whenever a client wants to pass a callback list as an argument in an XtCreateWidget, XtSet-
Values, or XtGetValues call, it should specify the address of a null-terminated array of type
XtCallbackList:

typedef struct {
XtCallbackProc callback;
caddr_t closure;

} XtCallbackRec, *XtCallbackList;

For example, the callback list for procedures A and B with client data clientDataA and clientDa-
taB, respectively, is:

static XtCallbackRec callbacks[] = {
{A, (caddr_t) clientDataA},
{B, (caddr_t) clientDataB},
{(XtCallbackProc) NULL, (caddr_t) NULL}

};

Although callback lists are passed by address in argument lists, the Intrinsics know about call¬
back lists. Your widget initialize and set_values procedures should not allocate memory for the

78

X Intrinsics XI1, Release 3, Oct. 1988

callback list. The Intrinsics automatically do this for you by using a different structure for their
internal representation.

8.2. Identifying Callback Lists

Whenever a widget contains a callback list for use by clients, it also exports in its public .h file
the resource name of the callback list. Applications and client widgets never access callback list
fields directly. Instead, they always identify the desired callback list by using the exported
resource name. All the callback manipulation functions described in this chapter check to see
that the requested callback list is indeed implemented by the widget.

For the Intrinsics to find and correctly handle callback lists, they should be declared with a
resource type of XtRCallback.

8.3. Adding Callback Procedures

To add a callback procedure to a given widget’s callback list, use XtAddCallback.

void XtAddCallback(w\ callback_name, callback, client_data)
Widget w;
String callback_name\
XtCallbackProc callback;
caddr_t client_data;

w Specifies the widget.

callback_name Specifies the callback list to which the procedure is to be appended.

callback Specifies the callback procedure.

clientjiata Specifies the argument that is to be passed to the specified procedure when it is
invoked by XtCallCallbacks or NULL.

A callback will be invoked as many times as it occurs in the callback list.

To add a list of callback procedures to a given widget’s callback list, use XtAddCallbacks.

void XtAddCallbacks(w, callback_name, callbacks)
Widget w;
String callbackjiame',
XtCallbackList callbacks',

w Specifies the widget.

callbackjiame Specifies the callback list to which the procedure is to be appended.

callbacks Specifies the null-terminated list of callback procedures and corresponding client
data.

8.4. Removing Callback Procedures

To delete a callback procedure from a given widget’s callback list, use XtRemoveCallback.

void XtRemoveCallback(w, callback_name, callback, client_data)
Widget w;
String callbackjiame',
XtCallbackProc callback',
caddr_t client jiata',

w Specifies the widget.

callback_name Specifies the callback list from which the procedure is to be deleted.

callback Specifies the callback procedure.

client jiata Specifies the client data to match on the registered callback procedure.

79

X Intrinsics Xll, Release 3, Oct. 1988

The XtRemoveCallback function removes a callback only if both the procedure and the client
data match.

To delete a list of callback procedures from a given widget’s callback list, use XtRemoveCall-
backs.

void XtRemoveCallbacks(w, callbackjiame, callbacks)
Widget w;
String callback_name\
XtCallbackList callbacks',

w Specifies the widget.

callback_name Specifies the callback list from which the procedures are to be deleted.

callbacks Specifies the null-terminated list of callback procedures and corresponding client
data.

To delete all callback procedures from a given widget’s callback list and free all storage associ¬
ated with the callback list, use XtRemoveAllCallbacks.

void XtRemoveAllCallbacks(w, callback_name)
Widget w;
String callback jiame',

w Specifies the widget.

callback jiame Specifies the callback list to be removed.

8.5. Executing Callback Procedures

To execute the procedures in a given widget’s callback list, use XtCallCallbacks.

void XtCallCallbacks(w, callback_name, calljdata)
Widget w;
String callback_name\
caddr_t calljdata',

w Specifies the widget.

callback jiame Specifies the callback list to be executed.

calljdata Specifies a callback-list specific data value to pass to each of the callback pro¬
cedure in the list.

If no data is needed (for example, the commandActivated callback list in Command needs only to
notify its clients that the button has been activated), the call_data argument can be NULL. The
call_data argument is the actual data if only one (32-bit) longword is needed or is the address of
the data if more than one word is needed.

8.6. Checking the Status of a Callback List

To find out the status of a given widget’s callback list, use XtHasCallbacks.

typedef enum {XtCaUbackNoList, XtCallbackHasNone, XtCallbackHasSome} XtCallbackStatus;

XtCallbackStatus XtHasCallbacks(w, callback jiame')
Widget w;
String callback jiame',

w Specifies the widget.

callback jiame Specifies the callback list to be checked.

80

X Intrinsics XI1, Release 3, Oct. 1988

The XtHasCallbacks function first checks to see if the widget has a callback list identified by
callback_name. If the callback list does not exist, XtHasCallbacks returns XtCallbackNoList.
If the callback list exists but is empty, it returns XtCallbackHasNone. If the callback list exists
and has at least one callback registered, it returns XtCallbackHasSome.

81

X Intrinsics Xll, Release 3, Oct. 1988

Chapter 9

Resource Management

A resource is a field in the widget record with a corresponding resource entry in the resource list
of the widget or any of its superclasses. This means that the field is settable by XtCreateWidget
(by naming the field in the argument list), by an entry in the default resource files (by using either
the name or class), and by XtSetValues. In addition, it is readable by XtGetValues. Not all
fields in a widget record are resources. Some are for bookkeeping use by the generic routines
(like managed and being_destroyed). Others can be for local bookkeeping, and still others are
derived from resources (many graphics contexts and pixmaps).

Writers of widgets need to obtain a large set of resources at widget creation time. Some of the
resources come from the argument list supplied in the call to XtCreateWidget, some from the
resource database, and some from the internal defaults specified for the widget. Resources are
obtained first from the argument list, then from the resource database for all resources not
specified in the argument list, and lastly from the internal default, if needed.

9.1. Resource Lists

A resource entry specifies a field in the widget, the textual name and class of the field that argu¬
ment lists and external resource files use to refer to the field and a default value that the field
should get if no value is specified. The declaration for the XtResource structure is:

typedef struct {
String resource_name;
String resource_class;
String resource_type;
Cardinal resource_size;
Cardinal resource_offset:
String default_type;
caddrj default_address;

} XtResource, *XtResourceList;

The resource_name field contains the name used by clients to access the field in the widget. By
convention, it starts with a lowercase letter and is spelled identically to the field name, except all
underscores (_) are deleted and the next letter is replaced by its uppercase counterpan. For exam¬
ple, the resource name for background_pixel becomes backgroundPixel. Widget header files typ¬
ically contain a symbolic name for each resource name. All resource names, classes, and types
used by the Intrinsics are named in <Xll/StringDefs.h>. The Intrinsics symbolic resource
names begin with XtN and are followed by the string name (for example, XtNbackgroundPixel
for backgroundPixel).

A resource class provides two functions:

• It isolates an application from different representations that widgets can use for a similar
resource.

® It lets you specify values for several actual resources with a single name. A resource class
should be chosen to span a group of closely related fields.

For example, a widget can have several pixel resources: background, foreground, border, block
cursor, pointer cursor, and so on. Typically, the background defaults to white and everything else
to black. The resource class for each of these resources in the resource list should be chosen so
that it takes the minimal number of entries in the resource database to make background offwhite
and everything else darkblue.

82

X Intrinsics XI1, Release 3, Oct. 1988

In this case, the background pixel should have a resource class of Background and all the other
pixel entries a resource class of Foreground. Then, the resource file needs only two lines to
change all pixels to offwhite or darkblue:

♦Background: offwhite
♦Foreground: darkblue

Similarly, a widget may have several resource fonts (such as normal and bold), but all fonts
should have the class Font. Thus, changing all fonts simply requires only a single line in the
default resource file:

♦Font: 6x13

By convention, resource classes are always spelled starting with a capital letter. Their symbolic
names are preceded with XtC (for example, XtCBackground).

The resouicejype field is the physical representation type of the resource. By convention, it
starts with an uppercase letter and is spelled identically to the type name of the field. The
resource type is used when resources are fetched to convert from the resource database format
(usually String) or the default resource format (almost anything, but often String) to the desired
physical representation (see Section 9.6). The Intrinsics define the following resource types:

Resource Type Structure or Field Type

XtRAcceleratorTabie
XtRBoolean
XtRBooi
XtRCallback
XtRColor
XtRCursor
XtRDimension
XtRDisplay
XtRFile
XtRFloat
XtRFont
XtRFontStruct
XtRFunction
XtRInt
XtRPixel
XtRPixmap
XtRPointer
XtRPosition
XtRShort
XtRString
XtRTranslationTable
XtRUnsignedChar
XtRWidget
XtRWindovv

XtAccelerators
Boolean
Bool
XtCallbackList
XColor
Cursor
Dimension
Display*
FILE*
float
Font
XFontStruct *

(*)0
int
Pixel
Pixmap
caddrj
Position
short
char*
XtTranslations
unsigned char
Widget
Window

The resource_size field is the size of the physical representation in bytes; you should specify it as
“sizeof(/ype)” so that the compiler fills in the value. The resource_offset field is the offset in
bytes of the field within the widget. You should use the XtOffset macro to retrieve this value.
The default_type field is the representation type of the default resource value. If default_type is
different from resource_type and the default_type is needed, the resource manager invokes a
conversion procedure from default_type to resource_type. Whenever possible, the default type
should be identical to the resource type in order to minimize widget creation time. However,
there are sometimes no values of the type that the program can easily specify. In this case, it

83

X Intrinsics Xll, Release 3, Oct. 1988

should be a value that the convener is guaranteed to work for (for example, XtDefauItFore-
ground for a pixel resource). The default_address field is the address of the default resource
value. The default is used if a resource is not specified in the argument list or in the resource
database or if the conversion from the representation type stored in the resource database fails,
which can happen for various reasons (for example, a misspelled entry in a resource file).

Two special representation types (XtRImmediate and XtRCallProc) are usable only as default
resource types. XtRImmediate indicates that the value in the default_address field is the actual
value of the resource rather than the address of the value. The value must be in correct representa¬
tion type for the resource. No conversion is possible since there is no source representation type.
XtRCallProc indicates that the value in the default_address field is a procedure variable. This
procedure is automatically invoked with the widget, resource_offset, and a pointer to the
XrmValue in which to store the result and is an XtResourceDefaultProc:

typedef void (*XtResourceDefaultProc)(Widget, int, XrmValue *)
Widget w;
int offset;
XrmValue * value;

w Specifies the widget whose resource is to be obtained.

offset Specifies the offset of the field in the widget record.

value Specifies the resource value to fill in.

The XtResourceDefaultProc procedure should fill in the addr field of the value with a pointer to
the default data in its correct type.

Note

The default_address field in the resource structure is declared as a caddr_t. On some
machine architectures, this may be insufficient to hold procedure variables.

To get the resource list structure for a particular class, use XtGetResourceList:

void XtGetResourceList(c/ajs, resources_retur‘ num_resources_return);
WidgetClass class;
XtResourceList *resources_return;
Cardinal *num_resources_return;

widget_class Specifies the widget class pointer for the created shell widget.

resources_returnSpecifies a pointer to where to store the returned resource list. The caller must
free this storage using XtFree when done with it.

num_resources_return
Specifies a pointer to where to store the number of entries in the resource list.

If it is called before the widget class is initialized (that is, before the first widget of that class has
been created), XtGetResourceList returns the resource list as specified in the widget class
record. If it is called after the widget class has been initialized, XtGetResourceList returns a
merged resource list that contains the resources for all superclasses.

The routines XtSetValues and XtGetValues also use the resource list to set and get widget state.
For further information, see Sections 9.7.1 and 9.7.2.

Here is an abbreviated version of the resource list in the Label widget:

/* Resources specific to Label */
static XtResource resources[] = {
{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),

XtOffset(LabelWidget, label.foreground), XtRString, XtDefaultForeground},

84

X Intrinsics Xll, Release 3, Oct. 1988

{XtNfont, XtCFont, XtRPontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString, XtDefaultFont},

{XtNlabel, XtCLabel, XiRString, sizeof(Siring),
XtOffset(LabelWidget, label.label), XtRString, NULL},

}

The complete resource name for a field of a widget instance is the concatenation of the applica¬
tion shell name (from XtAppCreateShell), the instance names of all the widget’s parents up to
the ApplicationShellWidget, the instance name of the widget itself, and the resource name of
the specified field of the widget. Likewise, the full resource class of a field of a widget instance is
the concatenation of the application class (from XtAppCreateShell), the widget class names of
all the widget’s parents up to the ApplicationShellWidget (not the superclasses), the widget
class name of the widget itself, and the resource name of the specified field of the widget.

9.2. Byte Offset Calculations

To determine the byte offset of a field within a structure, use XtOffset.

Cardinal XtOffset (pointer jype, fieldjiame)
Type pointer_type;
Field field_name\

pointer jype Specifies a type that is declared as a pointer to the structure.

field jiame Specifies the name of the field for which to calculate the byte offset.

The XtOffset macro is usually used to determine the offset of various resource fields from the
beginning of a widget and can be used at compile time in static initializations.

9.3. Superclass to Subclass Chaining of Resource Lists

•The XtCreateWidget function gets resources as a superclass-to-subclass operation. That is, the
resources specified in Core resource list are fetched, then those in the subclass, and so on down
to the resources specified for this widget’s class. Within a class, resources are fetched in the order
they are declared.

In general, if a widget resource field is declared in a superclass, that field is included in the
superclass’s resource list and need not be included in the subclass’s resource list. For example,
the Core class contains a resource entry for background_pixel. Consequently, the implementa¬
tion of Label need not also have a resource entry for background_pixel. However, a subclass, by
specifying a resource entry for that field in its own resource list, can override the resource entry
for any field declared in a superclass. This is most often done to override the defaults provided in
the superclass with new ones. At class initialization time, resource lists for that class are scanned
from the superclass down to the class to look for resources with the same offset. A matching
resource in a subclass will be reordered to override the superclass entry. (A copy of the super¬
class resource list is made to avoid affecting other subclasses of the superclass.)

9.4. Subresources

A widget does not do anything to get its own resources; instead, XtCreateWidget does this
automatically before calling the class initialize procedure.

Some widgets have subparts that are not widgets but for which the widget would like to fetch
resources. For example, the Text widget fetches resources for its source and sink. Such widgets
call XtGetSubresources to accomplish this.

85

X Intrinsics Xll, Release 3, Oct. 1988

void XtGetSubresources(w, base, name, class, resources, num resources, args, numjirgs)
Widget w;
caddr_t base'.
String name'.
String class',
XtResourceList resources'.
Cardinal num Resources',
ArgList args;
Cardinal num_args;

w Specifies the widget that wants resources for a subpart.

base Specifies the base address of the subpart data structure where the resources
should be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

numjesources Specifies the number of resources in the resource list.

args Specifies the argument list to override resources obtained from the resource data¬
base.

numjargs Specifies the number of arguments in the argument list.

The XtGetSubresources function constructs a name/class list from the application name/class,
the name/classes of all its ancestors, and the widget itself. Then, it appends to this list the
name/class pair passed in. The resources are fetched from the argument list, the resource data¬
base, or the default values in the resource list Then, they are copied into the subpart record. If
args is NULL, num_args must be zero. However, if num_args is zero, the argument list is not
referenced.

9.5. Obtaining Appfication Resources

To retrieve resour .es that are not specific to a widget but apply to the overall application, use
XtGetApplicationResources.

void XtGetApplicationResources(w, base, resources, numjesources, args, numjirgs)
Widget w;
caddr_t base;
XtResourceList resources;
Cardinal numjesources;
ArgList args;
Cardinal numjirgs;

w Specifies the widget that identifies the resource database to search. (The database
is that associated with the display for this widget.)

base Specifies the base address of the subpart data structure where the resources
should be written.

Specifies the resource list for the subpan.

Specifies the number of resources in the resource list.

Specifies the argument list to override resources obtained from the resource data¬
base.

numjirgs Specifies the number of arguments in the argument list.

The XtGetApplicationResources function first uses the passed widget, which is usually an
application shell, to construct a resource name and class list. Then, it retrieves the resources from
the argument list, the resource database, or the resource list default values. After adding base to
each address, XtGetApplicationResources copies the resources into the address given in the

resources

numjesources

args

86

X Intrinsics Xll, Release 3, Oct. 1988

resource list. If args is NULL. num_args must be zero. However, if num_args is zero, the argu¬
ment list is not referenced. The portable way to specify application resources is to declare them
as members of a structure and pass the address of the structure as the base argument.

9.6. Resource Conversions

The Intrinsics provide a mechanism for registering representation converters that are automati¬
cally invoked by the resource fetching routines. The Intrinsics additionally provide and registers
several commonly used converters. This resource conversion mechanism serves several pur¬
poses:

• It permits user and application resource files to contain ASCII representations of nontextual
values.

• It allows textual or other representations of default resource values that are dependent on
the display, screen, or color map, and thus must be computed at run time.

• It caches all conversion source and result data. Conversions that require much computation
or space (for example, string to translation table) or that require round trips to the server
(for example, string to font or color) are performed only once.

9.6.1. Predefined Resource Converters

The Intrinsics define all the representations used in the Core, Composite, Constraint, and
Shell widgets. It registers the following resource converters:

From XtRString to:

XtRAcceleratorTable, XtRBoolean, XtRBool, XtRCursor, XtRDimension,
XtRDisplay, XtRFile, XtRFloat, XtRFont, XtRFontStruct, XtRInt, XtRPixel,
XtRPosition, XtRShort, XtRTranslationTable, and XtRUnsignedChar.

From XtRColor.to: XtRPixel.

From XRInt, to:

XtRBoolean, XtRBool, XtRColor, XtRDimension, XtRFloat, XtRFont, XtRPixel,
XtRPixmap, XtRPosition, XtRShort, and XtRUnsignedChar.

From XtRPixel, to: XtRColor.

The string to pixel conversion has two predefined constants that are guaranteed to work and con¬
trast with each other (XtDefaultForeground and XtDefaultBackground). They evaluate the
black and white pixel values of the widget’s screen, respectively. For applications that run with
reverse video, however, they evaluate the white and black pixel values of the widget’s screen,
respectively. Similarly, the string to font and font structure converters recognize the constant
XtDefaultFont and evaluate this to the font in the screen’s default graphics context.

9.6.2. New Resource Converters

Type converters use pointers to XrmValue structures (defined in <Xll/Xresource.h>) for input
and output values.

typedef struct {
unsigned int size-,
caddr_t addr,

} XrmValue, *XrmValuePtr,

A resource converter procedure pointer is of type XtConverter:

87

X Intrinsics Xll, Release 3, Oct. 1988

typedef void (*XtConverter)(Xrm Value *, Cardinal *, XrmValue *, XrmValue *);
XrmValue *args\
Cardinal *num_args\
XrmValue *from\
XrmValue *to\

args Specifies a list of additional XrmValue arguments to the converter if additional
context is needed to perform the conversion or NULL. For example, the string-
to-font converter needs the widget’s screen, or the string to pixel converter needs
the widget’s screen and color map.

num_args Specifies the number of additional XrmValue arguments or zero.

from Specifies the value to convert.

to Specifies the descriptor to use to return the converted value.

Type converters should perform the following actions:

• Check to see that the number of arguments passed is correct

• Attempt the type conversion.

• If successful, return a pointer to the data in the to parameter, otherwise, call XtWar-
ningMsg and return without modifying the to argument

Most type converters just take the data described by the specified from argument and return data
by writing into the specified to argument. A few need other information, which is available in the
specified argument list A type converter can invoke another type converter, which allows differ¬
ing sources that may convert into a common intermediate result to make maximum use of the
type converter cache.

Note that the address written to->addr cannot be that of a local variable of the converter because
this is not valid after the converter returns. It should be a pointer to a static variable, as in the fol¬
lowing example where screenColor is returned.

The following is an example of a converter that takes a string and converts it to a Pixel:

static void CvtStringToPixel(args, num_args, fromVal, toVal)
XrmValue *args;
Cardinal *num_args;
XrmValue * fromVal;
XrmValue *toVal;

static XColor screenColor,
XColor exactColor;
Screen ♦screen;
Colormap colormap;
Status status;
char message[1000];
XrmQuark q;
String params[l];
Cardinal num_params =

if (*num_args != 2)
XtErrorMsg("cvtStringToPixd","wrongParameters","XtToolkitEiror",

"String to pixel conversion needs screen and colormap arguments",
(String *)NULL, (Cardinal *)NULL);

screen = *((Screen **) args[0].addr);
colormap = *((Colormap *) args[l].addr);

LowerCase((char *) fromVal->addr, message);

88

X Intrinsics Xll, Release 3, Oct. 1988

q = XrmStringToQuark(message);

if (q == XtQExtdefaultbackground) { done(&screen->white_pixel, Pixel); return; }
if (q == XtQExtdefaultforeground) { done(&screen->black_pixel, Pixel); return; }

if ((char) fromVal->addr[0] == ’#’) { /* some color rgb definition */

status = XParseColor(DisplayOfScreen(screen), colormap, (String) fromVal->addr,
&screenColor);

if (status != 0) status = XAllocColor(DisplayOfScreen(screen), colormap, &screenColor);

} else /* some color name */

status = XAllocNamedColor(DisplayOfScreen(screen), colormap, (String) fromVal->addr,
&screenColor, &exactColor);

if (status == 0) {

params[0]=(String)fromVal->addr,
XtWamingMsg("cvtStringToPixer,"noColormap","XtToolkitError",

"Cannot allocate colormap entry for\"%s\"", params, &num_params);

} else {

toVal->addr = (caddr_t)&screenColor.pixel;
toVal->size = sizeof(Pixel);

All type converters should define some set of conversion values that they are guaranteed to
succeed on so these can be used in the resource defaults. This issue arises only with conversions,
such as fonts and colors, where there is no string representation that all server implementations
will necessarily recognize. For resources like these, the converter should define a symbolic con¬
stant (for example, XtDefauItForeground, XtDefaultBackground, or XtDefaultFont).

9.6.3. Issuing Conversion Warnings

The XtStringConversionWarning function is a convenience routine for new resource convert¬
ers that convert from strings.

void XtStringConversionWaming(.yrc, dstjype)
String src, dstjype',

src Specifies the string that could not be converted.

dstjype Specifies the name of the type to which the string could not be converted.

The XtStringConversionWarning function issues a warning message with name “conver-
sionError”, type “string”, class “XtToolkitError, and the default message string “Cannot con¬
vert "src" to type dstjype”.

9.6.4. Registering a New Resource Converter

To register a new converter, use XtAppAddConverter.

89

X Intrinsics Xll, Release 3, Oct. 1988

void XtAppAddConverter{app jontext, from jype, tojype, converter, convert_args, numjxrgs)
XtAppContext appjontexr.
String from_type\
String tojype;
XtConverter converter,
XtConvertArgList convert_args\
Cardinal numjargs'.

app_context

fromjype

tojype

converter

convertjirgs

numjirgs

Specifies the application context.

Specifies the source type.

Specifies the destination type.

Specifies the type converter procedure.

Specifies how to compute the additional arguments to the converter or NULL.

Specifies the number of additional arguments to the converter or zero.

If the same fromjype and tojype are specified in two calls to XtAppAddConverter, the second
call overrides the first. For the few type converters that need additional arguments, the Intrinsics
conversion mechanism provides a method of specifying how these arguments should be com¬
puted. The enumerated type XtAddressMode and the structure XtConvertArgRec specify how
each argument is derived. These are defined in <Xll/ConvertJi>.

typedef enum {
/* address mode

XtAddress,
XtBaseOffset,
Xtlmmediate,
XtResourceString,
XtResourceQuark

} XtAddressMode;

parameter representation */
/* address */
/* offset */
/* constant */
/* resource name string */
/* resource name quark */

typedef struct {
XtAddressMode addressjnode;
caddrj addressjd;
Cardinal size;

} XtConvertArgRec, *XtConvertArgList;

The addressjnode field specifies how the addressjd field should be interpreted. XtAddress
causes addressjd to be interpreted as the address of the data. XtBaseOffset causes addressjd to
be interpreted as the offset from the widget base. Xtlmmediate causes address jd to be inter¬
preted as a constant. XtResourceString causes addressjd to be interpreted as the name of a
resource that is to be converted into an offset from widget base. XtResourceQuark is an inter¬
nal compiled form of an XtResourceString. The size field specifies the length of the data in
bytes.

The following provides the code that was used to register the CvtStringToPixel routine shown
earlier:

static XtConvertArgRec colorConvertArgs[] = {
{XtBaseOffset, (caddrj) XtOffset(Widget, core.screen), sizeof(Screen *)},
{XtBaseOffset, (caddrj) XtOffset(Widget, core.colormap),sizeof(Colormap)}

};

XtAddConverter(XtRString, XtRPixel, CvtStringToPixel,
colorConvertArgs, XtNumber(colorConvertArgs));

The conversion argument descriptors colorConvertArgs and screenConvertArg are predefined.
The screenConvertArg descriptor puts the widget’s screen field into args[0]. The

90

X Intrinsics Xll, Release 3, Oct. 1988

colorConvertArgs descriptor puts the widget’s screen field into args[0], and the widget’s color-
map field into args[l].

Conversion routines should not just put a descriptor for the address of the base of the widget into
args[0], and use that in the routine. They should pass in the actual values that the conversion
depends on. By keeping the dependencies of the conversion procedure specific, it is more likely
that subsequent conversions will find what they need in the conversion cache. This way the cache
is smaller and has fewer and more widely applicable entries.

9.6.5. Resource Converter Invocation

All resource-fetching routines (for example, XtGetSubresources, XtGetApplicationResources,
and so on) call resource converters if the user specifies a resource that is a different representation
from the desired representation or if the widget’s default resource value representation is different
from the desired representation.

To invoke resource conversions, use XtConvert or XtDirectConvert.

void XtConvert(w, from jype, from, tojype, tojeturn)
Widget w;
String fromjype\
XrmValuePtr from'.
String tojype;
XrmValuePtr to return'.

w

fromjype

from

tojype

to return

Specifies the widget to use for additional arguments (if any are needed).

Specifies the source type.

Specifies the value to be converted.

Specifies the destination type.

Returns the converted value.

void XtDirectConvert(c0/ivmer, args, numjirgs,from, tojeturn)
XtConverter converter,
XrmValuePtr args',
Cardinal num_args\
XrmValuePtr from',
XrmValuePtr to return'.

converter

args

num_args

from

to return

Specifies the conversion procedure that is to be called.

Specifies the argument list that contains the additional arguments needed to per¬
form the conversion (often NULL).

Specifies the number of additional arguments (often zero).

Specifies the value to be converted.

Returns the converted value.

The XtConvert function looks up the type converter registered to convert from_type to to_type,
computes any additional arguments needed, and then calls XtDirectConvert. The
XtDirectConvert function looks in the converter cache to see if this conversion procedure has
been called with the specified arguments. If so, it returns a descriptor for information stored in
the cache; otherwise, it calls the converter and enters the result in the cache.

Before calling the specified converter, XtDirectConvert sets the return value size to zero and the
return value address to NULL. To determine if the conversion was successful, the client should
check to_retum.address for non-NULL.

91

X Intrinsics Xll, Release 3, Oct. 1988

9.7. Reading and Writing Widget State

Any resource field in a widget can be read or written by a client. On a write operation, the widget
decides what changes it will actually allow and updates all derived fields appropriately.

9.7.1. Obtaining Widget State

To retrieve the current value of a resource associated with a widget instance, use XtGetValues.

void XtGetValues(w, args, num_args)
Widget w;
ArgList args\
Cardinal num_args\

w Specifies the widget.

args Specifies the argument list of name/address pairs that contain the resource name
and the address into which the resource value is to be stored. The resource
names are widget-dependent.

num_args Specifies the number of arguments in the argument list.

The XtGetValues function starts with the resources specified for the core widget fields and
proceeds down the subclass chain to the widget. The value field of a passed argument list should
contain the address into which to store the corresponding resource value. It is the caller’s respon¬
sibility to allocate and deallocate this storage according to the size of the resource representation
type used within the widget.

If the widget’s parent is a subclass of constraintWidgetClass, XtGetValues then fetches the
values for any constraint resources requested. It starts with the constraint resources specified for
constraintWidgetClass and proceeds down to the subclass chain to the parent’s constraint
resources. If the argument list contains a resource name that is not found in any of the resource
lists searched, the value at the corresponding address is not modified. Finally, if the
get_values_hook procedures are non-NULL, they are called in superclass-to-subclass order after
all the resource values have been fetched by XtGetValues. This permits a subclass to provide
nonwidget resource data to XtGetValues.

9.7.1.1. Widget Subpart Resource Data: the get_values_hook Procedure

Widgets that have subparts can return resource values from them for XtGetValues by supplying
a get_values_hook procedure. The get_values_hook procedure pointer is of type XtArgsProc:

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal *);
Widget w;
ArgList args\
Cardinal *num_args\

w Specifies the widget whose nonwidget resource values are to be retrieved.

args Specifies the argument list that was passed to XtCreateWidget.

num_args Specifies the number of arguments in the argument list.

The widget should call XtGetSubvalues and pass in its subresource list and the arg and
num_args parameters.

9.7.1.2. Widget Subpart State

To retrieve the current value of a nonwidget resource data associated with a widget instance, use
XtGetSubvalues. For a discussion of nonwidget subclass resources, see Section 9.4.

92

X Intrinsics XI1, Release 3, Oct. 1988

void XtGetSubvalues(&Lse, resources, numjesources, args, num_args)
caddr_t base;
XtResourceList resources'.
Cardinal num_resources\
ArgList args\
Cardinal num_args\

base Specifies the base address of the subpart data structure where the resources
should be retrieved.

resources Specifies the nonwidget resources list.

num_resources Specifies the number of resources in the resource list.

args Specifies the argument list of name/address pairs that contain the resource name
and the address into which the resource value is to be stored. The arguments and
values passed in are dependent on the subpart. The storage for argument values
that are pointed to by the argument list must be deallocated by the application
when no longer needed.

num_args Specifies the number of arguments in the argument list.

The XtGetSubvalues function obtains resource values from the structure identified by base.

9.7.2. Setting Widget State

To modify the current value of a resource associated with a widget instance, use XtSetValues.

void XtSetValues(w, args, numjargs)
Widget w;
ArgList argy.
Cardinal num_args\

w Specifies the widget.

args Specifies the argument list of name/value pairs that contain the resources to be
modified and their new values. The resources and values passed are dependent
on the widget being modified.

num_args Specifies the number of arguments in the argument list.

The XtSetValues function starts with the resources specified for the Core widget fields and
proceeds down the subclass chain to the widget. At each stage, it writes the new value (if
specified by one of the arguments) or the existing value (if no new value is specified) to a new
widget data record. XtSetValues then calls the set_values procedures for the widget in
superclass-to-subclass order. If the widget has any non-NULL set_values_hook fields, these are
called immediately after the corresponding set_values procedure. This procedure permits subc¬
lasses to set nonwidget data for XtSetValues.

If the widget’s parent is a subclass of constraintWidgetClass, XtSetValues also updates the
widget’s constraints. It starts with the constraint resources specified for constraintWidgetClass
and proceeds down the subclass chain to the parent’s class. At each stage, it writes the new value
or the existing value to a new constraint record. It then calls the constraint set_values procedures
from constraintWidgetClass down to the parent’s class. The constraint set_values procedures
are called with widget arguments, as for all set_values procedures, not just the constraint record
arguments, so that they can make adjustments to the desired values based on full information
about the widget.

XtSetValues determines if a geometry request is needed by comparing the current widget to the
new widget. If any geometry changes are required, it makes the request, and the geometry
manager returns XtGeometryYes, XtGeometryAlmost, or XtGeometryNo. If
XtGeometryYes, XtSetValues calls the widget’s resize procedure. If XtGeometryNo, XtSet¬
Values resets the geometry fields to their original values. If XtGeometryAlmost, XtSetValues
calls the set_values_almost procedure, which determines what should be done and writes new

J

93

X Intrinsics Xll, Release 3, Oct. 1988

values for the geometry fields into the new widget. XtSetValues then repeats this process, decid¬
ing once more whether the geometry manager should be called.

Finally, if any of the set_values procedures returned True, XtSetValues causes the widget’s
expose procedure to be invoked by calling the Xlib XClearArea function on the widget’s win¬
dow.

9.7.2.I. Widget State: the setvalues Procedure

The set_values procedure pointer in a widget class is of type XtSetValuesFunc:

typedef Boolean (*XtSetValuesFunc)(Widget, Widget, Widget);
Widget current
Widget request.
Widget new,

current Specifies a copy of the widget as it was before the XtSetValues call.

request Specifies a copy of the widget with all values changed as asked for by the XtSet¬
Values call before any class set_values procedures have been called.

new Specifies the widget with the new values that are actually allowed.

The set_values procedure should recompute any field derived from resources that are changed
(for example, many GCs depend on foreground and background). If no recomputation is neces¬
sary and if none of the resources specific to a subclass require the window to be redisplayed when
their values are changed, you can specify NULL for the set_values field in the class record.

Like the initialize procedure, set_values mostly deals only with the fields defined in the subclass,
but it has to resolve conflicts with its superclass, especially conflicts over width and height.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass are often incorrect for a subclass and in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width and
height calculated by the superclass set_values procedure are too small and need to be incremented
by the size of the surround. The subclass needs to know if its superclass’s size was calculated by
the superclass or was specified explicitly. All widgets must place themselves into whatever size
is explicitly given, but they should compute a reasonable size if no size is requested. How does a
subclass know the difference between a specified size and a size computed by a superclass?

The request and new parameters provide the necessary information. The request widget is the
widget as originally requested. The new widget starts with the values in the request, but it has
been updated by all superclass set_values procedures called so far. A subclass set_values pro¬
cedure can compare these two to resolve any potential conflicts.

In the above example, the subclass with the visual surround can see if the width and height in the
request widget are zero. If so, it adds its surround size to the width and height fields in the new
widget. If not, it must make do with the size originally specified.

The new widget is the actual widget instance record. Therefore, the set_values procedure should
do all its work on the new widget (the request widget should never be modified), and if it needs to
call any routines that operate on a widget, it should specify new as the widget instance.

The widget specified by new starts with the values of that specified by request but has been
modified by any superclass set_values procedures. A widget need not refer to the request widget,
unless it must resolve conflicts between the current and new widgets. Any changes that the wid¬
get needs to make, including geometry changes, should be made in the new widget.

Finally, the set_values procedure must return a Boolean that indicates whether the widget needs
to be redisplayed. Note that a change in the geometry fields alone does not require the set_values
procedure to return True; the X server will eventually generate an Expose event, if necessary.
After calling all the set_values procedures, XtSetValues forces a redisplay by calling the Xlib
XClearArea function if any of the set_values procedures returned True. Therefore, a set_values

94

X Intrinsics Xll, Release 3, Oct. 1988

procedure should not try to do its own redisplaying.

Set_values procedures should not do any work in response to changes in geometry because
XtSetValues eventually will perform a geometry request, and that request might be denied. If
the widget actually changes size in response to a XtSetValues, its resize procedure are called.
Widgets should do any geometry-related work in their resize procedure.

Note that it is permissible to call XtSetValues before a widget is realized. Therefore, the
set_values proc must not assume that the widget is realized.

9.1.22. Widget State: the set values almost Procedure

The set_values_almost procedure pointer in a widget class is of type XtAlmostProc:

typedef void (*XtAlmostProc)(Widget, Widget, XtWidgetGeometry *, XtWidgetGeometry *);
Widget w\
Widget new _widget_re turn;
XtWidgetGeometry *requesr,
XtWidgetGeometry *reply\

w Specifies the widget on which the geometry change is requested.

new _widget_return
Specifies the new widget into which the geometry changes are to be stored.

request Specifies the original geometry request that was sent to the geometry manager
that returned XtGeometryAlmost.

reply Specifies the compromise geometry that was returned by the geometry manager
that returned XtGeometry Almost.

Most classes inherit this operation from their superclass by specifying XtlnheritSetValuesAl-
most in the class initialization. The Core set_values_almost procedure accepts the compromise
suggested.

The set_values_almost procedure is called when a client tries to set a widget’s geometry by
means of a call to XtSetValues, and the geometry manager cannot satisfy the request but instead
returns XtGeometryAlmost and a compromise geometry. The set_values_almost procedure
takes the original geometry and the compromise geometry and determines whether the comprom¬
ise is acceptable or a different compromise might work. It returns its results in the new_widget
parameter, which is then sent back to the geometry manager for another try.

9.7.23. Widget State: the constraint set_values Procedure

The constraint set_values procedure pointer is of type XtSetValuesFunc. The values passed to
the parent’s constraint set_values procedure are the same as those passed to the child’s class
set_values procedure. A class can specify NULL for the set_values field of the ConstraintPart
if it need not compute anything.

The constraint set_values procedure should recompute any constraint fields derived from con¬
straint resource that are changed. Further, it should modify the widget fields as appropriate. For
example, if a constraint for the maximum height of a widget is changed to a value smaller than
the widget’s current height, the constraint set_values procedure should reset the height field in the
widget.

9.7.2.4. Widget Subpart State

To set the current value of a nonwidget resource associated with a widget instance, use XtSet-
Subvalues. For a discussion of nonwidget subclass resources, see Section 9.4.

95

X Intrinsics Xll, Release 3, Oct. 1988

void XtSetSubvalues(£>aye, resources, num_resources, args, num_args)
caddr_t base',
XtResourceList resources'.
Cardinal num_resources',
ArgList args\
Cardinal num_argr,

base Specifies the base address of the subpart data structure where the resources
should be written.

resources Specifies the current nonwidget resources values.

num_resources Specifies the number of resources in the resource list.

args Specifies the argument list of name/value pairs that contain the resources to be
modified and their new values. The resources and values passed are dependent
on the subpart of the widget being modified.

num_args Specifies the number of arguments in the argument list.

The XtSetSubvalues function stores resources into the structure identified by base.

9.7.2.5. Wsdget Subpart Resource Data: the set_values_hook Procedure

Widgets that have a subpart can set the resource values by using XtSetValues and supplying a
set_values_hook procedure. The set_values_hook procedure pointer in a widget class is of type
XtArgsFunc:

typedef Boolean (*XtArgsFunc)(Widget, Arglist, Cardinal *);
Widget w;
ArgList args'.
Cardinal *num_args\

w Specifies the widget whose nonwidget resource values are to be changed.

args Specifies the argument list that was passed to XtCreateWidget.

num_args Specifies the number of arguments in the argument list.

96

X Intrinsics Xll, Release 3, Oct. 1988

Chapter 10

Translation Management

Except under unusual circumstances, widgets do not hardwire the mapping of user events into
widget behavior by using the event manager. Instead, they provide a default mapping of events
into behavior that you can override.

The translation manager provides an interface to specify and manage the mapping of X Event
sequences into widget-supplied functionality, for example, calling procedure Abe when the y key
is pressed.

The translation manager uses two kinds of tables to perform translations:

• The action tables, which are in the widget class structure, specify the mapping of externally
available procedure name strings to the corresponding procedure implemented by the wid¬
get class.

• A translation table, which is in the widget class structure, specifies the mapping of event
sequence to procedure name strings.

You can override the translation table in the class structure for a specific widget instance by sup¬
plying a different translation table for the widget instance. The resource name is XtNtranslations.

10.1. Action Tables

All widget class records contain an action table. In addition, an application can register its own
action tables with the translation manager so that the translation tables it provides to widget
instances can access application functionality. The translation action_proc procedure pointer is
of type XtActionProc:

typedef void (*XtActionProc)(Widget, XEvent *, String *, Cardinal *);
Widget w;
XEvent *evenr.
String *params\
Cardinal *num_params\

w Specifies the widget that caused the action to be called.

event Specifies the event that caused the action to be called. If the action is called after
a sequence of events, then the last event in the sequence is used.

params Specifies a pointer to the list of strings that were specified in the translation table
as arguments to the action.

num_params Specifies the number of arguments specified in the translation table.

typedef struct _XtActionsRec {
String action_name;
XtActionProc action_proc;

} XtActionsRec, *XtActionList;

The action_name field is the name that you use in translation tables to access the procedure. The
action_proc field is a pointer to a procedure that implements the functionality.

For example, the Command widget has procedures to take the following actions:

• Set the command button to indicate it is activated

• Unset the button back to its normal mode

• Highlight the button borders

97

X Intrinsics XI1, Release 3, Oct. 1988

• Unhighlight the button borders

• Notify any callbacks that the button has been activated

The action table for the Command widget class makes these functions available to translation
tables written for Command or any subclass. The string entry is the name used in translation
tables. The procedure entry (often spelled identically to the string) is the name of the C pro¬
cedure that implements that function:

XtActionsRec actionTable[] = {
{"Set”, Set},
{"Unset", Unset),
{"Highlight", Highlight},
{" Unhighlight", Unhighlight}
{"Notify", Notify},

};

10.1.1. Action Table Registration

To declare an action table and register it with the translation manager, use XtAppAddActions.

void XtAppAddActions(app_conrm, actions, num_actions)
XtAppContext appjcontexv,
XtActionList actions'.
Cardinal num_actions\

appjcontext Specifies the application context.

actions Specifies the action table to register.

num_args Specifies the number of entries in this action table.

If more than one action is registered with the same name, the most recently registered action is
used. If duplicate actions exist in an action table, the first is used. The Intrinsics register an
action table for MenuPopup and MenuPopdown as part of X Toolkit initialization.

10.1.2. Action Names to Procedure Translations

The translation manager uses a simple algorithm to convert the name of a procedure specified in a
translation table into the actual procedure specified in an action table. When the widget is real¬
ized, the translation manager performs a search for the name in the following tables:

• The widget’s class action table for the name

• The widget’s superclass action table and on up the superclass chain

• The action tables registered with XtAddActions (from the most recently added table to the
oldest table)

As soon as it finds a name, the translation manager stops the search. If it cannot find a name, the
translation manager generates an error.

10.2. Translation Tables

All widget instance records contain a translation table, which is a resource with no default value.
A translation table specifies what action procedures are invoked for an event or a sequence of
events. A translation table is a string containing a list of translations from an event sequence into
one or more action procedure calls. The translations are separated from one another by newline
characters (ASCII LF). The complete syntax of translation tables is specified in Appendix B.

As an example, the default behavior of Command is:

• Highlight on enter window

• Unhighlight on exit window

98

X Intrinsics Xll, Release 3, Oct. 1988

® Invert on left button down

• Call callbacks and reinvert on left button up

The following illustrates the Command’s default translation table:

static String defaultTranslations =
"<EnterWindow>:HighlightO'm\
<Le ave Windo w>: Unhi ghli ght()\n\
<BtnlDown>: SetOXnX
<BtnlUp>: Notify0 Unset()";

The tm_table field of the CoreClass record should be filled in at static initialization time with the
string containing the class’s default translations. If a class wants to inherit its superclass’s trans¬
lations, it can store the special value XtlnheritTranslations into tm_table. After the class ini¬
tialization procedures have been called, the Intrinsics compile this translation table into an
efficient internal form. Then, at widget creation time, this default translation table is used for any
widgets that have not had their core translations field set by the resource manager or the initialize
procedures.

The resource conversion mechanism automatically compiles string translation tables that are
resources. If a client uses translation tables that are not resources, it must compile them itself
using XtParseTranslationTable.

The Intrinsics use the compiled form of the translation table to register the necessary events with
the event manager. Widgets need do nothing other than specify the action and translation tables
for events to be processed by the translation manager.

10.2.1. Event Sequences

An event sequence is a comma separated list of X event descriptions that describes a specific
sequence of X events to map to a set of program actions. Each X event description consists of
three parts:

• The X event type

• A prefix consisting of the X modifier bits

• An event specific suffix

Various abbreviations are supported to make translation tables easier to read.

10.2.2. Action Sequences

Action sequences specify what program or widget actions to take in response to incoming X
events. An action sequence of action procedure call specifications. Each action procedure call
consists of the name of an action procedure and a parenthesized list of string parameters to pass to
that procedure.

103. Translation Table Management

Sometimes an application needs to destructively or nondestructively add its own translations to a
widget’s translation. For example, a window manager provides functions to move a window. It
usually may move the window when any pointer button is pressed down in a title bar, but it
allows the user to specify other translations for the middle or right button down in the title bar,
and it ignores any user translations for left button down.

To accomplish this, the window manager first should create the title bar and then should merge
the two translation tables into the title bar’s translations. One translation table contains the trans¬
lations that the window manager wants only if the user has not specified a translation for a partic¬
ular event (or event sequence). The other translation table contains the translations that the win¬
dow manager wants regardless of what the user has specified.

Three Intrinsics functions support this merging:

J
99

X Intrinsics Xll, Release 3, Oct. 1988

XtParseTranslationTable Compiles a translation table.

XtAugmentTranslations Nondestructive^ merges a compiled translation table into a
widget’s compiled translation table.

XtOverrideTranslations Destructively merges a compiled translation table into a
widget’s compiled translation table.

To compile a translation table, use XtParseTranslationTable.

XtTransl ati ons X tParseTransl ationTable {table)
String table',

table Specifies the translation table to compile.

The XtParseTranslationTable function compiles the translation table into the opaque internal
representation of type XtTranslations. Note that if an empty translation table is required for any
purpose, one can be obtained by calling XtParseTranslationTable and passing an empty string.

To merge new translations into an existing translation table, use XtAugmentTranslations.

void XtAugmentTranslations(w, translations)
Widget w;
XtTranslations translations;

w Specifies the widget into which the new translations are to be merged.

translations Specifies the compiled translation table to merge in (must not be NULL).

The XtAugmentTranslations function nondestructive^ merges the new translations into the
existing widget translations. If the new translations contain an event or event sequence that
already exists in the widget’s translations, the new translation is ignored.

To overwrite existing translations with new translations, use XtOverrideTranslations.

void XtOverrideTranslations(w, translations)
Widget w;
XtTranslations translations',

w Specifies the widget into which the new translations are to be merged.

translations Specifies the compiled translation table to merge in (must not be NULL).

The XtOverrideTranslations function destructively merges the new translations into the exist¬
ing widget translations. If the new translations contain an event or event sequence that already
exists in the widget’s translations, the new translation is merged in and override the widget’s
translation.

To replace a widget’s translations completely, use XtSetValues on the XtNtranslations resource
and specifiy a compiled translation table as the value.

To make it possible for users to easily modify translation tables in their resource files, the string-
to-translation-table resource type converter allows specifying whether the table should replace,
augment, or override any existing translation table in the widget. As an option, you can specify a
number sign (#) as the first character of the table followed by “replace” (default), “augment”, or
“override” to indicate whether to replace, augment, or override any existing table.

To completely remove existing translations, use XtUninstallTranslations.

100

X Intrinsics XI1, Release 3, Oct. 1988

void XtUninstallTranslations(>v)
Widget w;

w Specifies the widget from which the translations are to be removed.

The XtUninstallTranslations function causes the entire translation table for widget to be
removed.

10.4. Using Accelerators

It is often convenient to be able to bind events in one widget to actions in another. In particular,
it is often useful to be able to invoke menu actions from the keyboard. The Intrinsics provide a
facility, called accelerators, that let you accomplish this. An accelerator is a translation table that
is bound with its actions in the context of a particular widget. The accelerator table can then be
installed on some destination widget. When an action in the destination widget would cause an
accelerator action to be taken, rather than causing an action in the context of the destination, the
actions are executed as though triggered by an action in the accelerator widget.

Each widget instance contains that widget’s exported accelerator table. Each class of widget
exports a method that takes a displayable string representation of the accelerators so that widgets
can display their current accelerators. The representation is the accelerator table in canonical
translation table form (see Appendix B). The display_accelerator procedure pointer is of type
XtStringProc:

typedef void (*XtStringProc)(Widget, String);
Widget w;
String string;

w Specifies the widget that the accelerators are installed on.

string Specifies the string representation of the accelerators for this widget.

Accelerators can be specified in defaults files, and the string representation is the same as for a
translation table. However, the interpretation of the #augment and #override directives apply to
what will happen when the accelerator is installed, that is, whether or not the accelerator transla¬
tions will override the translations in the destination widget. The default is #augment, which
means that the accelerator translations have lower priority than the destination translations. The
#replace directive is ignored for accelerator tables.

To parse an accelerator table, use XtParseAcceleratorTable.

XtAccelerators XtParseAcceleratoiTable(sowrce)
String source;

source Specifies the accelerator table to compile.

The XtParseAcceleratorTable function compiles the accelerator table into the opaque internal
representation.

To install accelerators from a widget on another widget, use XtlnstallAccelerators.

void XtlnstallAcceleratorsC^n'/whon, source)
Widget destination;
Widget source;

destination Specifies the widget on which the accelerators are to be installed.

source Specifies the widget from which the accelerators are to come.

The XtlnstallAccelerators function installs the accelerators from source onto destination by
augmenting the destination translations with the source accelerators. If the source
display_accelerator method is non-NULL, XtlnstallAccelerators calls it with the source widget
and a string representation of the accelerator table, which indicates that its accelerators have been

101

X Intrinsics Xll, Release 3, Oct. 1988

installed and that it should display them appropriately. The string representation of the accelera¬
tor table is its canonical translation table representation.

As a convenience for installing all accelerators from a widget and all its descendants onto one
destination, use XtlnstallAllAccelerators.

void XtInstallAllAccelerators(rfe5rimm'ort, source)
Widget destination;
Widget source;

destination Specifies the widget on which the accelerators are to be installed.

source Specifies the root widget of the widget tree from which the accelerators are to
come.

The XtlnstallAllAccelerators function recursively descends the widget tree rooted at source and
installs the accelerators of each widget encountered onto destination. A common use is to call
XtlnstallAllAccelerators and pass the application main window as the source.

10.5. KeyCode-to-KeySvm Conversions

The translation manager provides support for automatically translating key codes in incoming
key events into KeySyms. KeyCode-to-KeySym-translator procedure pointers are of type
XtKeyProc:

typedef void (*XtKeyProc)(Display *, KeyCode, Modifiers, Modifiers *, KeySym *);
Display *display\
KeyCode keycode.
Modifiers modifiers'.
Modifiers * modifiers _return\
KeySym *keysym_return\

display Specifies the display that the KeyCode is from.

keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCode.

modifiers_re/urnReturns a mask that indicates the subset of all modifiers that are examined by the
key translator.

keysym_return Returns the resulting KeySym.

This procedure takes a KeyCode and modifiers and produces a KeySym. For any given key
translator function, modifiers_retum will be a constant that indicates the subset of all modifiers
that are examined by the key translator.

To register a key translator, use XtSetKeyTranslator.

void XtSetKeyTranslator(disp/ay, proc)
Display *display\
XtKeyProc proc,

display Specifies the display from which to translate the events.

proc Specifies the procedure that is to perform key translations.

The XtSetKeyTranslator function sets the specified procedure as the current key translator. The
default translator is XtTranslateKey, an XtKeyProc that uses Shift and Lock modifiers with the
interpretations defined by the core protocol. It is provided so that new translators can call it to get
default KeyCode-to-KeySym translations and so that the default translator can be reinstalled.

To invoke the currently registered KeyCode-to-KeySym translator, use XtTranslateKeycode.

102

X Intrinsics XI1, Release 3, Oct. 1988

void XtTranslateKeycode(<iz5,p/a>’, keycode, modifiers, modifiers ^return, keysym_return)
Display *display\
KeyCode keycode'.
Modifiers modifiers'.
Modifiers * modifiers _return\
KeySym *keysym_return\

display Specifies the display that the KeyCode is from.

Keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCode.

modifiers_returnRztums a mask that indicates the modifiers actually used to generate the
KeySym.

keysym_return Returns the resulting KeySym.

The XtTransIateKeycode function passes the specified arguments directly to the currently
registered KeyCode to KeySym translator.

To handle capitalization of nonstandard KeySyms, the Intrinsics allow clients to register case
conversion routines. Case converter procedure pointers are of type XtCaseProc:

typedef void (*XtCaseProc)(KeySym *, KeySym *, KeySym *);
KeySym * keysym',
KeySym * lower_return\
KeySym * upper_return\

keysym Specifies the KeySym to convert.

lower_return Specifies the lowercase equivalent for the KeySym.

upper_return Specifies the uppercase equivalent for the KeySym.

If there is no case distinction, this procedure should store the KeySym into both return values.

To register a case converter, use XtRegisterCaseConverter.

void XtRegisterCaseConverter(d/5p/ay, proc, start, stop)
Display *display\
XtCaseProc proc,
KeySym start',
KeySym stop-,

display Specifies the display from which the key events are to come.

proc Specifies the XtCaseProc that is to do the conversions.

start Specifies the first KeySym for which this converter is valid.

stop Specifies the last KeySym for which this converter is valid.

The XtRegisterCaseConverter registers the specified case converter. The start and stop argu¬
ments provide the inclusive range of KeySyms for which this converter is to be called. The new
converter overrides any previous converters for KeySyms in that range. No interface exists to
remove converters; you need to register an identity converter. When a new converter is
registered, the Intrinsics refreshes the keyboard state if necessary. The default converter under¬
stands case conversion for all KeySyms defined in the core protocol.

To determine upper and lowercase equivalents for a KeySym, use XtConvertCase.

X Intrinsics Xll, Release 3, Oct. 1988

void XlConvenCast(display, keysym, lower _return, upperjreturri)
Display *display\
KeySym keysym',
KeySym * lower_return\
KeySym * upper_return\

display Specifies the display that the KeySym came from.

keysym Specifies the KeySym to convert.

lower jeturn Returns the lowercase equivalent of the KeySym.

upper jreturn Returns the uppercase equivalent of the KeySym.

The XtConvertCase function calls the appropriate converter and returns the results. A user-
supplied XtKeyProc may need to use this function.

104

X Intrinsics Xll, Release 3, Oct. 1988

Chapter 11

Utility Functions

The Intrinsics provide a number of utility functions that you can use to:

• Determine the number of elements in an array

• Translate strings to widget instances

• Manage memory usage

• Share graphics contexts

• Manipulate selections

• Merge exposure events into a region

• Translate widget coordinates

• Translate a window to a widget

• Handle errors

ll.L Determining the Number of Elements in an Array

To determine the number of elements in a fixed-size array, use XtNumber.

Cardinal XtNumberiarroy)
Array Variable array,

array Specifies a fixed-size array.

The XtNumber macro returns the number of elements in the specified argument lists, resources
lists, and other counted arrays.

11.2. Translating Strings to Widget Instances

To translate a widget name to widget instance, use XtNameToWidget.

Widget XtNameToWidget(re/ercnce, names)'.
Widget reference;
String names;

reference Specifies the widget from which the search is to start.

names Specifies the fully qualified name of the desired widget.

The XtNameToWidget function looks for a widget whose name is the first component in the
specified names and that is a pop-up child of reference (or a normal child if reference is a subclass
of compositeWidgetClass). It then uses that widget as the new reference and repeats the search
after deleting the first component from the specified names. If it cannot find the specified widget,
XtNameToWidget returns NULL.

Note that the names argument contains the name of a widget with respect to the specified refer¬
ence widget and can contain more than one widget name (separated by periods) for widgets that
are not direct children of the specified reference widget.

If more than one child of the reference widget matches the name, XtNameToWidget can return
any of the children. The Intrinsics do not require that all children of a widget have unique names.
If the specified names contain more than one component and if more than one child matches the
first component, XtNameToWidget can return NULL if the single branch that it follows does
not contain the named widget. That is, XtNameToWidget does not back up and follow other
matching branches of the widget tree.

105

X Intrinsics Xll, Release 3, Oct. 1988

113. Managing Memory Usage

The Intrinsics memory management functions provide uniform checking for null pointers and
error reporting on memory allocation errors. These functions are completely compatible with
their standard C language runtime counterparts (malloc, calloc, realloc, and free) with the fol¬
lowing added functionality:

® XtMalloc, XtCalloc, and XtRealloc give an error if there is not enough memory.

• XtFree simply returns if passed a NULL pointer.

• XtRealloc simply allocates new storage if passed a NULL pointer.

See the standard C library documentation on malloc, calloc, realloc, and free for more informa¬
tion.

To allocate storage, use XtMalloc.

char *XtMaUoc(si'ze);
Cardinal size;

size Specifies the number of bytes desired.

The XtMalloc functions returns a pointer to a block of storage of at least the specified size bytes.
If there is insufficient memory to allocate the new block, XtMalloc calls XtErrorMsg.

To allocate and initialize an array, use XtCalloc.

char *XtCalloc(nura, size);
Cardinal nwn\
Cardinal size\

num Specifies the number of array elements to allocate.

size Specifies the size of an array element in bytes.

The XtCalloc function allocates space for the specified number of array elements of the specified
size and initializes the space to zero. If there is insufficient memory to allocate the new block,
XtCalloc calls XtErrorMsg.

To change the size of an allocated block of storage, use XtRealloc.

char *XtRealloc(pfr, num);
char *ptr\
Cardinal num\

ptr Specifies a pointer to the old storage.

num Specifies number of bytes desired in new storage.

The XtRealloc function changes the size of a block of storage (possibly moving it). Then, it
copies the old contents (or as much as will fit) into the new block and frees the old block. If there
is insufficient memory to allocate the new block, XtRealloc calls XtErrorMsg. If ptr is NULL,
XtRealloc allocates the new storage without copying the old contents; that is, it simply calls
XtMalloc.

To free an allocated block of storage, use XtFree.

void XtFree(prr);
char *ptr\

ptr Specifies a pointer to the block of storage that is to be freed.

The XtFree function returns storage and allows it to be reused. If ptr is NULL, XtFree returns
immediately.

106

X Intrinsics Xll, Release 3, Oct. 1988

To allocate storage for a new instance of a data type, use XtNew.

type *XtNew(/ype);
type-,

type Specifies a previously declared data type.

XtNew returns a pointer to the allocated storage. If there is insufficient memory to allocate the
new block, XtNew calls XtErrorMsg. XtNew is a convenience macro that calls XtMalloc
with the following arguments specified:

((type *) XtMalloc((unsigned) sizeof(type))

To copy an instance of a string, use XtNewString.

String XtNewString(srrmg);
String string',

string Specifies a previously declared string.

XtNewString returns a pointer to the allocated storage. If there is insufficient memory to allo¬
cate the new block, XtNewString calls XtErrorMsg. XtNewString is a convenience macro
that calls XtMalloc with the following arguments specified:

(strcpy(XtMalloc((unsigned) strlen(str) + 1), str))

11.4. Sharing Graphics Contexts

The Intrinsics provide a mechanism whereby cooperating clients can share a graphics context
(GC), thereby reducing both the number of GCs created and the total number of server calls in
any given application. The mechanism is a simple caching scheme, and all GCs obtained by
means of this mechanism must be treated as read-only. If a changeable GC is needed, the Xlib
XCreateGC function should be used instead.

To obtain a read-only, sharable GC, use XtGetGC.

GC XtGetGC(w\ value jnask, values)
Widget w;
XtGCMask valuejnask-,
XGCValues *values\

w Specifies the widget.

value jnask Specifies which fields of the values are specified.

values Specifies the actual values for this GC.

The XtGetGC function returns a sharable, read-only GC. The parameters to this function are the
same as those for XCreateGC except that a widget is passed instead of a display. XtGetGC
shares only GCs in which all values in the GC returned by XCreateGC are the same. In particu¬
lar, it does not use the value_mask provided to determine which fields of the GC a widget consid¬
ers relevant. The value_mask is used only to tell the server which fields should be filled in with
widget data and which it should fill in with default values. For further information about
value_mask and values, see XCreateGC in the Xlib - C Language X Interface.

To deallocate a shared GC when it is no longer needed, use XtReleaseGC.

void XtReleaseGC(w, gc)
Widget w;
GC gc\

w Specifies the widget.

107

X Intrinsics Xll, Release 3, Oct. 1988

gc Specifies the GC to be deallocated.

References to sharable GCs are counted and a free request is generated to the server when the last
user of a given GC destroys it.

11.5. Managing Selections

Arbitrary widgets (possibly not all in the same application) can communicate with each other by
means of the X Toolkit global selection mechanism, which is defined in the Inter-Client Com¬
munication Conventions Manual. The Intrinsics provide functions for providing and receiving
selection data in one logical piece (atomic transfers). The actual transfer between the selection
owner and the Intrinsics is not required to be atomic; the Intrinsics will break a too-large selec¬
tion into smaller pieces for transport if necessary.

The next sections discuss how to:

• Set and get the selection timeout value

• Use atomic transfers

11.5.1. Setting and Getting the Selection Timeout Value

To set the Intrinsics selection timeout, use XtAppSetSelectionTimeout.

void XtAppSetSelectionTimeout(app_amre;tr, timeout)
XtAppContext app jcontexv,
unsigned long timeout;

appjcontext Specifies the application context.

timeout Specifies the selection timeout in milliseconds.

To get the current selection timeout value, use XtAppGetSelectionTimeout.

unsigned long XtAppGetSelectionTimeout(app_conrexr)
XtAppContext app jcontexv,

appjcontext Specifies the application context.

The XtAppGetSelectionTimeout function returns the current selection timeout value, in mil¬
liseconds. The selection timeout is the time within which the two communicating applications
must respond to one another. The initial timeout value is set by the selectionTimeout applica¬
tion resource, or, if selectionTimeout is not specified, it defaults to five seconds.

11.5.2. Using Atomic Transfers

The next three three sections discuss:

• Atomic transfer procedures

• Getting the selection value

• Setting the selection owner

11^5.2.1. Atomic Transfer Procedures

The following procedures are to be used with atomic transfers. The first three are used by the
selection owner, and the last one is used by the requestor.

108

X Intrinsics Xll, Release 3, Oct. 1988

typedef Boolean (*XtConvertSelectionProc)(Widget, Atom *, Atom *, Atom *,
caddr_t *, unsigned long *, int *);

Widget w;
Atom *selection;
Atom *targer.
Atom * type _re turn',
caddr_t *value_return\
unsigned long *length_return\
int *format_return\

w

selection

target

type_return

value return ■

length_return

format_return

Specifies the widget which currently owns this selection.

Specifies the atom that describes the type of selection requested (for example,
XA PRIMARY or XASECONDARY).

Specifies the target type of the selection that has been requested, which indicates
the desired information about the selection (for example. File Name, Text, Win¬
dow).

Specifies a pointer to an atom into which the property type of the converted value
of the selection is to be stored. For instance, either file name or text might have
property type XA_STRING.

Specifies a pointer into which a pointer to the converted value of the selection is
to be stored. The selection owner is responsible for allocating this storage. If the
selection owner has provided an XtSelectionDoneProc for the selection, this
storage is owned by the selection owner, otherwise, it is owned by the Intrinsics
selection mechanism, which frees it by calling XtFree when it is done with it.

Specifies a pointer into which the number of elements in value (each of size indi¬
cated by format) is to be stored.

Specifies a pointer into which the size in bits of the data elements of the selection
value is to be stored.

This procedure is called by the Intrinsics selection mechanism to get the value of a selection as a
given type from the current selection owner. It returns True if the owner successfully converted
the selection to the target type or False otherwise. If the procedure returns False the values of
the return arguments are undefined. Each XtConvertSelectionProc should respond to target
value TARGETS by returning a value containing the list of the targets they are prepared to con¬
vert their selection into.

typedef void (*XtLoseSelectionProc)(Widget, Atom *);
Widget w;
Atom *selection;

w Specifies the widget that has lost selection ownership.

selection Specifies the atom that describes the selection type.

This procedure is called by the Intrinsics selection mechanism to inform the specified widgets
that it has lost the given selection. Note that this procedure does not ask the widget to lose the
selection ownership.

typedef void (*XtSelectionDoneProc)(Widget, Atom *, Atom *);
Widget w;
Atom *selection\
Atom * target',

w Specifies the widget that owns the converted selection.

109

X Intrinsics Xll, Release 3, Oct. 1988

selection Specifies the atom that describes the selection type that was converted.

target Specifies the target type to which the conversion was done.

This procedure is called by the Intrinsics selection mechanism to inform the selection owner
when a selection requestor has successfully retrieved a selection value. If the selection owner has
registered an XtSelectionDoneProc, it should expect it to be called once for each conversion that
it performs but after the converted value has been successfully transferred to the requestor. If the
selection owner has registered an XtSelectionDoneProc, it also owns the storage containing the
converted selection value.

typedef void (*XtSelectionCallbackProc)(Widget, caddrj, Atom *, Atom *, caddr_t, unsigned long *, int *)
Widget w,
caddr_t client_data\
Atom * selection'.
Atom *type,
caddr_t value,
unsigned long *length\
int * format',

Specifies the widget that requested the selection value.

Specifies a value passed in by the widget when it requested the selection.

Specifies the type of selection that was requested.

Specifies the representation type of the selection value (for example,
XA_STRING). Note that it is not the target that was requested but the type that
is used to represent the target. The special X Toolkit atom
XT CONVERT_F AIL is used to indicate that the selection conversion failed
because the selection owner did not respond within the Intrinsics’s selection
timeout interval.

value Specifies a pointer to the selection value. The requesting client owns this storage
and is responsible for freeing it by calling XtFree when it is.done with it.

length Specifies the number of elements in value.

format Specifies the size in bits of the data elements of value.

This procedure is called by the Intrinsics selection mechanism to deliver the requested selection
to the requestor.

11.5.2.2. Getting the Selection Value

To obtain the selection value in a single, logical unit, use XtGetSelectionValue or XtGetSelec-
tionValues.

void XtGetSelectionValue(w, selection, target, callback, client_data, time)
Widget w;
Atom selection'.
Atom target,;
XtSelectionCallbackProc callback',
caddr_t client_data\
Time time',

H’

client_data

selection

type

w Specifies the widget that is making the request.

selection Specifies the particular selection desired (that is, primary or secondary).

target Specifies the type of the information that is needed about the selection.

callback Specifies the callback procedure that is to be called when the selection value has
been obtained. Note that this is how the selection value is communicated back to
the client.

110

X Intrinsics Xll, Release 3, Oct. 1988

client_daia Specifies the argument that is to be passed to the specified procedure when it is
called.

time Specifies the timestamp that indicates when the selection is desired. This should
be the timestamp of the event which triggered this request; the value Current-
Time is not acceptable.

The XtGetSelectionValue function requests the value of the selection that has been converted to
the target type. The specified callback will be called some time after XtGetSelectionValue is
called; in fact, it may be called before or after XtGetSelectionValue returns.

void XtGetSelectionValues(w, selection, targets, count, callback, client_data, time)
Widget w;
Atom selection;
Atom *targets;
int count,
XtSelectionCallbackProc callback;
caddrj client_data\
Time time;

w

selection

targets

count

callback

Specifies the widget that is making the request.

Specifies the particular selection desired (that is, primary or secondary).

Specifies the types of information that is needed about the selection.

Specifies the length of the targets and client_data lists.

Specifies the callback procedure that is to be called with each selection value
obtained. Note that this is how the selection values are communicated back to
the client.

Specifies the client data (one for each target type) that is passed to the callback
procedure when it is called for that target

Specifies the timestamp that indicates when the selection value is desired. This
should be the timestamp of the event which triggered this request; the value
CurrentTime is not acceptable.

The XtGetSeleclionValues function is similar to XtGetSelectionValue except that it takes a list
of target types and a list of client data and obtains the current value of the selection converted to
each of the targets. The effect is as if each target were specified in a separate call to XtGetSelec¬
tionValue. The callback is called once with the corresponding client data for each target.
XtGetSelectionValues does guarantee that all the conversions will use the same selection value
becaues the ownership of the selection cannot change in the middle of the list, as would be when
calling XtGetSelectionValue repeatedly.

11.5.23. Setting the Selection Owner

To set the selection owner when using atomic transfers, use XtOwnSelection.

Boolean XtOwnSelection(w, selection, time, convert_proc, lose_selection, done_proc)
Widget w;
Atom selection;
Time time',
XtConvertSelectionProc convert_proc\
XtLoseSelectionProc lose_selection;
XtSelectionDoneProc done__proc,

w Specifies the widget that wishes to become the owner.

selection Specifies an atom that describes the type of the selection (for example,
XA PRIMARY, XA SECONDARY, or XA CLIPBOARD).

clientjdata

time

111

X Intrinsics XI1, Release 3, Oct. 1988

time Specifies the timestamp that indicates when the selection ownership should com¬
mence. This should be the timestamp of the event that triggered ownership; the
value CurrentTime is not acceptable.

convert_proc Specifies the procedure that is to be called whenever someone requests the
current value of the selection.

lose_selection Specifies the procedure that is to be called whenever the widget has lost selection
ownership or NULL if the owner is not interested in being called back.

done_proc Specifies the procedure that is called after the requestor has received the selection
or NULL if the owner is not interested in being called back.

The XtOwnSelection function informs the Intrinsics selection mechanism that a widget believes
it owns a selection. It returns True if the widget has successfully become the owner and False
otherwise. The widget may fail to become the owner if some other widget has asserted owner¬
ship at a time later than this widget. Note that widgets can lose selection ownership either
because someone else asserted later ownership of the selection or because the widget voluntarily
gave up ownership of the selection. Also note that the lose_selection procedure is not called if
the widget fails to obtain selection ownership in the first place.

Usually, the Intrinsics selection mechanism informs an application when one of its widgets has
lost ownership of the selection. However, in response to some user actions (for example, when a
user deletes the information selected), the application should explicitly inform the Intrinsics that
it’s widget no longer is to be the selection owner by using XtDisownSelection.

void XtDisownSelection(w\ selection, time)
Widget w;
Atom selection;
Time time',

w Specifies the widget that wishes to relinquish ownership.

selection Specifies the atom that specifies which selection it is giving up.

time Specifies the timestamp that indicates when the selection ownership is relin¬
quished.

The XtDisownSelection function informs the Intrinsics selection mechanism that the specified
widget is to lose ownership of the selection. If the widget does not currently own the selection
either because it lost the selection or because it never had the selection to begin with, XtDisown¬
Selection does nothing.

After a widget has called XtDisownSelection, its convert procedure is not called even if a
request arrives later with a timestamp during the period that this widget owned the selection.
However, its done procedure will be called if a conversion that staned before the call to XtDi¬
sownSelection finishes after the call to XtDisownSelection.

11.6. Merging Exposure Events into a Region

The Intrinsics provide the XtAddExposureToRegion utility function that merges Expose and
GraphicsExpose events into a region that clients can process at once rather than processing indi¬
vidual rectangles. (For further information about regions, see Xlib - C Language X Interface.)

To merge Expose and GraphicsExpose events into a region, use XtAddExposureToRegion.

void XtAddExposureToRegion(eve/zr, region)
XEvent * event.
Region region',

event Specifies a pointer to the Expose or GraphicsExpose event.

112

X Intrinsics Xll, Release 3, Oct. 1988

region Specifies the region object (as defined in <X11/Xutil.h>).

The XtAddExposureToRegion function computes the union of the rectangle defined by the
exposure event and the specified region. Then, it stores the results back in region. If the event
argument is not an Expose or GraphicsExpose event, XtAddExposureToRegion returns
without an error and without modifying region.

This function is used by the exposure compression mechanism (see Section 7.9.3).

11.7. Translating Widget Coordinates

To translate an x-y coordinate pair from widget coordinates to root coordinates, use XtTransla-
teCoords.

void XtTranslateCoordsfy', x, y, rootx_return, rooty jreturn)
Widget w;
Position x, y;
Position *rootx_return, * rooty_return\

w Specifies the widget.

x
y Specify the widget-relative x and y coordinates.

rootx_return
rooty_return Returns the root-relative x and y coordinates.

While XtTranslateCoords is similar to the Xlib XTranslateCoordinates function, it does not
generate a server request because all the required information already is in the widget’s data
structures.

11.8. Translating a Window to a Widget

To translate a window and display pointer into a widget instance, use XtWindowToWidget.

Widget XtWindowToWidget(dii-p/<3y, -window)
Display *display\
Window window;

display Specifies the display on which the window is defined.

window Specify the window for which you want the widget

11.9. Handling Errors

The Intrinsics let a client register procedures that are to be called whenever a fatal or nonfatal
error occurs. These facilities are intended for both error reporting and logging and for error
correction or recovery.

Two levels of interface are provided:

• A high-level interface that takes an error name and class and looks the error up in an error
resource database

• A low-level interface that takes a simple string

The high-level functions construct a string to pass to the lower-level interface. On UNIX-based
systems, the error database usually is /usr/lib/Xll/XtErrorDB.

Note

The application context specific error handling in not implemented on many systems.
Most implementations will have just one set of error handlers. If they are set for dif¬
ferent application contexts, the one performed last will prevail.

113

X Intrinsics XI1, Release 3, Oct. 1988

To obtain the error database (for example, to merge with an application or widget specific data¬
base), use XtAppGetErrorDatabase.

XrmDatabase *XtAppGetErrorDatabase(app_conrexr)
XtAppContext app_context\

app_context Specifies the application context.

The XtAppGetErrorDatabase function returns the address of the error database. The Intrinsics
do a lazy binding of the error database and do not merge in the database file until the first call to
XtAppGetErrorDatbaseText.

For a complete listing of all errors and warnings that can be generated by the Intrinsics, see
Appendix D.

The high-level error and warning handler procedure pointers are of the type XtEr-
rorMsgHandler:

typedef void (*XtErrorMsgHandler)(String, String, String, String, String *, Cardinal *);
String name;
String type'.
String class;
String defaultp-,
String *params\
Cardinal *num_params\

name Specifies the name that is concatenated with the specified type to form the
resource name of the error message.

type Specifies the type that is concatenated with the name to form the resource name
of the error message.

class Specifies the resource class of the error message.

defaultp Specifies the default message to use if no error database entry is found.

params Specifies a pointer to a list of values to be substituted in the message.

num_params Specifies the number of values in the parameter list.

The specified name can be a general kind of error, like invalidParameters or invalidWindow, and
the specified type gives extra information. Standard printf notation is used to substitute the
parameters into the message.

An error message handler can obtain the error database text for an error or a warning by calling
XtAppGetErrorDatabaseText.

void XtAppGetErrorDatabaseText(app_conrexr, name, type, class, default, buffer_return, nbytes, database)
XtAppContext app_context,
char *name, *type, *class:
char * default,
char *buffer_return;
int nbytes',
XrmDatabase database;

appjcontext

name
type

class

default

buffer_return

Specifies the application context.

Specifies the name and type that are concatenated to form the resource name of
the error message.

Specifies the resource class of the error message.

Specifies the default message to use if an error database entry is not found.

Specifies the buffer into which the error message is to be returned.

114

X Intrinsics Xll, Release 3, Oct. 1988

nbytes Specifies the size of the buffer in bytes.

database Specifies the name of the alternative database that is to be used or NULL if the
application’s database is to be used.

The XtAppGetErrorDatabaseText returns the appropriate message from the error database or
returns the specified default message if one is not found in the error database.

To register a procedure to be called on fatal error conditions, use XtAppSetErrorMsgHandler.

void XtAppSetErrorMsgHandler(app_conrexr, msgjiandler)
XtAppContext app_contexr,
XtErrorMsgHandler msgjiandler;

app_context Specifies the application context.

msgjiandler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics constructs a string from the error resource
database and calls XtError. Fatal error message handlers should not return. If one does, subse¬
quent X Toolkit behavior is undefined.

To call the high-level error handler, use XtAppErrorMsg.

void XtAppErrorMsg(app_context, name, type, class, default, params, num_params)
XtAppContext app _contexr.
String name'.
String type'.
String class'.
String default'.
String *params\
Cardinal *num jparams'.

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num jparams Specifies the number of values in the parameter list

The Intrinsics internal errors all have class XtTooIkitError.

To register a procedure to be called on nonfatal error conditions, use XtAppSetWar-
ningMsgHandler.

void XtAppSetWamingMsgHandler(app_co^rexr, msgjiandler)
XtAppContext appjcontexv,
XtErrorMsgHandler msgjiandler,

appjcontext Specifies the application context.

msgjiandler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics constructs a string from the error resource
database and calls XtWarning.

To call the installed high-level warning handler, use XtAppWarningMsg.

115

X Intrinsics XI1, Release 3, Oct. 1988

void XtAppWamingMsg(app_c0nrej:r, name, type, class, default, params, num_params)
XtAppContext appjcontexr.
String name'.
String type'.
String class'.
String default'.
String *params'.
Cardinal *num_params\

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of values in the parameter list.

The Intrinsics internal waminings all have class XtTooIkitError.

The low-level error and warning handler procedure pointers are of type XtErrorHandler:

typedef void (*XtErrorHandler)(String);
String message;

message Specifies the error message.

The error handler should display the message string in some appropriate fashion.

To register a procedure to be called on fatal error conditions, use XtAppSetErrorHandler.

void XtAppSetErrorHandler((3pp_conrcxr, handler)
XtAppContext appjcontexr,
XtErrorHandler handler,

app_context Specifies the application context.

handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics is XtError. On UNIX-based systems, it
prints the message to standard error and terminates the application. Fatal error message handlers
should not return. If one does, subsequent X Toolkit behavior is undefined.

To call the installed fatal error procedure, use XtAppError.

void XiAppEnor(app_context, message)
XtAppContext appjcontexr.
String message',

app_context Specifies the application context.

message Specifies the message that is to be reported.

Most programs should use XtAppErrorMsg, not XtAppError, to provide for customization
and internationalization of error messages.

To register a procedure to be called on nonfatal error conditions, use XtAppSetWar
ningHandler.

116

X Intrinsics Xll, Release 3, Oct. 1988

void XtAppSetWamingHandler(a/?/?_come;tf, handler)
XtAppContext app_contexv,
XtErrorHandler handler,

app_context Specifies the application context.

handler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics is _XtWarning. On UNIX-based sys¬
tems, it prints the message to standard error and returns to the caller.

To call the installed nonfatal error procedure, use XtAppWarning.

void XtAppWarning(app_context, message)
XtAppContext app_contexr.
String message;

appjcontext Specifies the application context.

message Specifies the nonfatal error message that is to be reported.

Most programs should use XtAppWarningMsg, not XtAppWarning, to provide for customiza¬
tion and internationalization of warning messages.

117

X Intrinsics XI1, Release 3, Oct. 1988

Appendix A

Resource File Format

A resource file contains text representing the default resource values for an application or set of
applications. The resource file is an ASCII text file that consists of a number of lines with the fol¬
lowing EBNF syntax:

resourcefile
line
comment
production
resourcename
string
name

= {line An”).
= (comment I production).
= "!” string.
= resourcenamestring.
= ["*"] name I "*") name).
= {<any character not including eol>).
= {"A"-"Z" I "a"-"z" I "0"-"9").

If the last character on a line is a backslash (\), that line is assumed to continue on the next line.

To include a newline character in a stnng, use “\n”.

118

X Intrinsics Xll, Release 3, Oct. 1988

Appendix R

Translation Table Syntax

Notation

Syntax is specified in EBNF notation with the following conventions:

[a] Means either nothing or “a”
{ a } Means zero or more occurrences of “a”

All terminals are enclosed in double quotation masks (“ ”). Informal descriptions are enclosed
in angle brackets (< >).

Syntax

The syntax of the translation table file is:

translation?able
directive
production
lhs
keyseq
keychar
event
modifier_list
modifier
count
modifier_name
event_type
detail
rhs
name
namechar
params
string
quoted_string
unquoted_string

= [directive] { production }
= ("#replace" I "#override" 1 ’'#augment") "Vi"
= lhs rhs "\n"
= (event I keyseq) { (event I keyseq) }
= """ keychar {keychar} """
= [1 "$" l ’V] <IS0 Latin 1 character
= [modifierjist] "<”event_type">" ["(" count["+"] ")"] {detail}
= (["!" I{modifier}) I "None"
= ["*'"] modifier_name
= ("1" I "2" I "3" 1 "4" I...)
= <keysym> I <see ModifierNames table below>
= <see Event Types table below>
= <event specific details>
= { name "(" [params]")" }
= namechar { namechar }
= { "a”-"z" I "A"-"Z" I "0"-"9" I "$" I"_" }
= string {”," string}.
= quoted_string I unquoted_string
=.{<Latin 1 characters}.
= {<Latin 1 character except space, tab,newline, ")">}

It is often convenient to include newlines in a translation table to make it more readable. In C,
indicate a newline with a “\n”:

"<BtnlDowns: DoSomething()\n\
<B m2 Downs: DoSomethingELseO"

Modifier Names

The modifier field is used to specify normal X keyboard and button modifier mask bits.
Modifiers are legal on event types KeyPress, KeyRelease, ButtonPress, ButtonRelease,
MotionNotify, EnterNotify, LeaveNotify, and their abbreviations. An error is generated when
a translation table that contains modifiers for any other events is parsed.

® If the modifierjist has no entries and is not “None”, it means “don’t care” on all
modifiers.

119

X Intrinsics Xll, Release 3, Oct. 1988

• If an exclamation point (!) is specified at the beginning of the modifier list, it means that
the listed modifiers must be in the correct state and no other modifiers can be asserted.

• If any modifiers are specified and an exclamation point (!) is not specified, it means that the
listed modifiers must be in the correct state and “don’t care” about any other modifiers.

• If a modifier is preceded by a tilde Q, it means that that modifier must not be asserted.

• If ‘ ‘None’’ is specified, it means no modifiers can be asserted.

• If a colon (:) is specified at the beginning of the modifier list, it directs the Intrinsics to
apply any standard modifiers in the event to map the event keycode into a keysym. The
default standard modifiers are Shift and Lock, with the interpretation as defined in X Win¬
dow System Protocol, X Version 11. The resulting keysym must exactly match the
specified keysym, and the nonstandard modifiers in the event must match the modifier_list.
For example, “:<Key>a” is distinct from “:<Key>A”, and “:Shift<Key>A” is distinct
from “:<Key>A”.

• If a colon (:) is not specified, no standard modifiers are applied. Then, for example,
“<Key>A” and “<Key>a” are equivalent.

In key sequences, a circumflex O is an abbreviation for the Control modifier, a dollar sign ($) is
an abbreviation for Meta, and a backslash (\) can be used to quote any character, in particular a
double quote ("), a circumflex Q, a dollar sign ($), and another backslash (\). Briefly:

No Modifiers: None <event> detail
Any Modifiers: <event> detail
Only these Modifiers: ! modi mod2 <event> detail
These modifiers and any others: modi mod2 <event> detail

The use of “None” for a modifierjist is identical to the use of and exclamation point with no
modifers.

Modifier Abbreviation Meaning

Ctrl c Control modifier bit
Shift s Shift modifier bit
Lock 1 Lock modifier bit
Meta m Meta key modifier (see below)
Hyper h Hyper key modifier (see below)
Super su Super key modifier (see below)
Alt a Alt key modifier (see below)
Modi Modi modifier bit
Mod2 Mod2 modifier bit
Mod3 Mod3 modifier bit
Mod4 Mod4 modifier bit
Mod5 Mod5 modifier bit
Buttonl Buttonl modifier bit
Button2 Button2 modifier bit
Button3 Button3 modifier bit
Button4 Button4 modifier bit
Buttons Button5 modifier bit
ANY Any combination

A key modifier is any modifier bit whose corresponding keycode contains the corresponding left
or right keysym. For example, “m” or “Meta” means any modifier bit mapping to a keycode
whose keysym list contains XK_Meta_L or XK_Meta_R. Note that this interpretation is for each
display, not global or even for each application context. The Control, Shift, and Lock modifier
names refer explicitly to the corresponding modifier bits; there is no additional interpretation of

120

X Intrinsics Xll, Release 3, Oct. 1988

keysyms for these modifiers.

Because it is possible to associate arbitrary keysyms with modifiers, the set of modifier key
modifiers is extensible. The <keysym> syntax means any modifier bit whose corresponding
keycode contains the specified keysym.

A modifier_list/keysym combination in a translation matches a modifiers/keycode combination in
an event in the following:

1. If a colon (:) is used, the Intrinsics call the display’s XtKeyProc with the keycode and
modifiers. To match, (modifiers & ~modifiers_retum) must equal modifier_list, and
keysym_retum must equal the given keysym.

2. If (:) is not used, the Intrinsics mask off all don’t-care bits from the modifiers. This value
must be equal to modifierjist. Then, for each possible combination of don’t-care
modifiers in the modifierjist, the Intrinsics call the display’s XtKeyProc with the keycode
and that combination ORed with the cared-about modifier bits from the event.
Keysym_retum must match the keysym in the translation.

Event Types

The EventType field describes XEvent types. The following are the currently defined EventType
values:

Type Meaning

Key
KeyDown

KeyPress

Key Up KeyRelease
BtnDown ButtonPress
BtnUp ButtonRelease
Motion
PtrMoved
MouseMoved

MotionNotify

Enter
EnterWindow

EnterNotify

Leave
LeaveWindow

LeaveNotify

Focusln Focusln
FocusOut FocusOut
Keymap KeymapNotify
Expose Expose
GrExp GraphicsExpose
NoExp NoExpose
Visible VisibilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNotify
Map MapNotify
MapReq MapRequest
Reparent ReparentNotify
Configure ConfigureNotify
ConfigureReq ConfigureRequest
Grav GravityNotify
ResReq ResizeRequest
Circ CirculateNotify
CircReq CirculateRequest

121

X Intrinsics XI1. Release 3, Oct. 1988

Type Meaning

Prop PropertyNotify
SelClr SelectionClear
SelReq SelectionRequest
Select SelectionNotify
Clrmap ColormapNotify
Message ClientMessage
Mapping MappingNotify

The supported abbreviations are:

Abbreviation Meaning

Ctrl KeyPress with control modifier
Meta KeyPress with meta modifier
Shift KeyPress with shift modifier
BmlDown ButtonPress with Btnl detail
BtnlUp ButtonRelease with Btnl detail
Btn2Down ButtonPress with Btn2 detail
Btn2Up ButtonRelease with Btn2 detail
Bm3Down ButtonPress with Btn3 detail
Btn3Up ButtonRelease with Btn3 detail
Bm4Down ButtonPress with Btn4 detail
Bm4Up ButtonRelease with Bm4 detail
Btn5Down ButtonPress with Btn5 detail
BtnSUp ButtonRelease with Btn5 detail
BtnMotion MotionNotify with any button modifier
BmlMotion MotionNotify with Buttonl modifier
Btn2Motion MotionNotify with Button2 modifier
Btn3Motion MotionNotify with Button3 modifier
Btn4Motion MotionNotify with Button4 modifier
Btn5Motion MotionNotify with Button5 modifier

The Detail field is event specific and normally corresponds to the detail field of an X Event, for
example, <Key>A. If no detail field is specified, then ANY is assumed.

A keysym can be specified as any of the standard keysym names, a hexadecimal number prefixed
with “Ox” or “OX”, an octal number prefixed with “0” or a decimal number. A keysym
expressed as a single digit is interpreted as the corresponding Latin 1 keysym, for example, “0”
is the keysym XK_0. Other single character keysyms are treated as literal constants from Latin 1,
for example, “!” is treated as 0x21. Standard keysym names are as defined in
<Xll/keysymdef.h> with the “XK_” prefix removed.

Canonical Representation

Every translation table has a unique, canonical text representation. This representation is passed
to a widget’s display_accelerator method to describe the accelerators installed on that widget.
The canonical representation of a translation table file is (see also “Syntax”):

translationTable
production
lhs
event
modifierjist

= { production)
= lhsrhs ’\n"
= event { event }
= [modifierjist] "<"event_type">” ["(" count['V]")"] (detail)
= ["!" I {modifier}

122

X Intrinsics Xll, Release 3, Oct. 1988

modifier
count
modifier_name
event_type
detail
rhs
name
namechar
params
string
quoted_string

= modifier_name
= ("l” I ”2" I "3” I "4" I...)
= <keysym> I <see canonical modifier names below>
= <see canonical event types below>
= <event specific details>
= { name "(" [params]")" }
= namechar { namechar}
= { "a”-"z" I "A"-"Z” I "0"-"9" I "$" I}
= string string}.
= quoted_string
=.. [<Latin 1 character] """

The canonical modifier names are:

Ctrl Button 1
Shift Button2
Lock Button3
Modi Button4
Mod2 Button5
Mod3
Mod4
Mod5

The canonical event types are:

KeyPress
ButtonPress
MotionNotify
LeaveNotify
FocusOut
Expose
NoExpose
CreateNotifv
UnmapNotify
MapRequest
ConfigureNotify
GravityNotify
CirculateNotify
PropertyNotify
SelectionRequest
ColormapNotify

KeyRelease
ButtonRelease
EnterNotify
Focusln
KevmapNotify
GraphicsExpose,
VisibilityNotify
DestroyNotify
MapNotify
ReparentNotify
ConfigureRequest
ResizeRequest
CirculateRequest
SelectionClear
SelectionNotify
ClientMessage

Examples

• Always put more specific events in the table before more general ones:

Shift <BtnlDown> : twasCrirri
<BtnlDown> : brilligO

• For double-click on Button 1 Up with Shift, use this specification:

Shift<BtnlUp>(2): and()

This is equivalent to the following line with appropriate timers set between events:

123

X Intrinsics XI1, Release 3, Oct. 1988

Shift<BmlDown>,Shift<BtnlUp>,Shift<BtnlDown>,Shift<BtnlUp> : andO

• For double-click on Button 1 Down with Shift, use this specification:

Shift<BtnlDown>(2): the()

This is equivalent to the following line with appropriate timers set between events:

Shift<BmlDown>,Shift<BtnlUp>,Shift<BtnlDown> : theO

• Mouse motion is always discarded when it occurs between events in a table where no
motion event is specified:

<BtnlDown>,<BtnlUp> : slithyQ

This is taken, even if the pointer moves a bit between the down and up events. Similarly,
any motion event specified in a translation matches any number of motion events. If the
motion event causes an action procedure to be invoked, the procedure is invoked after each
motion event.

» If an event sequence consists of a sequence of events that is also a non-initial subsequence
of another translation, it is not taken if it occurs in the context of the longer sequence. This
occurs mostly in sequences like the following:

<Btn 1 Down>,<Bml Up> : toves()\n\
<BtnlUp> : didO

The second translation is taken only if the button release is not preceded by a button press
or if there are intervening events between the press and the release. Be particularly aware
of this when using the repeat notation, above, with buttons and keys because their expan¬
sion includes additional events, and when specifying motion events because they are impli¬
citly included between any two other events. In particular, pointer motion and double-click
translations cannot coexist in the same translation table.

• For single click on Button 1 Up with Shift and Meta, use this specification:

Shift Meta <BtnlDown>, Shift Meta<BtnlUp>: gyreO

• You can use a plus sign (+) to indicate “for any number of clicks greater than or equal to
count”; for example:

Shift <BtnlUp>(2+): and()

® To indicate EnterNotify with any modifiers, use this specification:

<Enter> : gimble()

• To indicate EnterNotify with no modifiers, use this specification:

None <Enter> : inO

@ To indicate EnterNotify with Button 1 Down and Button 2 Up and don’t care about the
other modifiers, use this specification:

Button 1 ~Button2 <Enter> : theO

• To indicate EnterNotify with Buttonl Down and Button2 Down exclusively, use this
specification:

124

X Intrinsics XI1, Release 3, Oct. 1988

! Button 1 Button2 <Enter> : wabe()

You do not need to use a tilde (“) with an exclamation point (!).

125

X Intrinsics XU, Release 3, Oct. 1988

Appendix C

Conversion Notes

In the X Version 10 and alpha release X Version 11 X Toolkit each widget class implemented an
Xt <\Vidget>Creaie (for example, XtLabelCreate) function, in which most of the code was
identical from widget to widget. In this X Toolkit, a single generic XtCreateWidget performs
most of the common work and then calls the initialize procedure implemented for the particular
widget class.

Each composite widget class also implemented the procedures Xt<Widget>Add and an
Xt<H//ii(ger>Delete (for example, XtButtonBoxAddButton and XtButtonBoxDeleteButton).
In the beta release X Version 11 X Toolkit, the composite generic procedures XtManageChil-
dren and XtUnmanageChildren perform error-checking and screening out of certain children.
Then, they call the changejmanaged procedure implemented for the widget’s composite class. If
the widget’s parent has not yet been realized, the call on the change_managed procedure is
delayed until realization time.

Ole style calls can be implemented in the X Toolkit by defining one-line procedures or macros
that invoke a generic routine. For example, you could define the macro XtCreateLabel as:

#define XtCreateLabel (name, parent, args, num_args)\
((LabelWidget) XtCreateWidget(rcame, labelWidgetClass, parent, args, num_args))

Pop-up shells no longer automatically perform an XtManageChild on their child within their
insert_child procedure. Creators of pop-up children need to call XtManageChild themselves.

As a convenience to people converting from earlier versions of the toolkit and for greater ortho¬
gonality, the following routines exist: Xtlnitiaiize, XtMainLoop, XtNextEvent, XtPro-
cossEvent, XtPeekEvent, XtPending, XtAddlnput, XtAddTimeOut, XtAddWorkProc, and
XtCreateApplicationShell.

Widget Xilruuahze(shell_name, application_class, options, num_options, arge, argv)
String shell_name\
String application_class',
XrmOptionDescRec options[]\
Cardinal num_options\
Cardinal *argc\
String argv[}\

shelljiame This parameter is ignored; therefore, you can specify NULL.

application_class
Specifies the class name of this application.

options Specifies how to parse the command line for any application-specific resources.
The options argument is passed as a parameter to XrmParseCommand. For
further information, see Xlib - C Language X Interface.

num_options Specifies the number of entries in options list

arge Specifies a pointer to the number of command line parameters.

argv Specifies the command line parameters.

126

X Intrinsics Xll, Release 3, Oct. 1988

Xtlnitialize calls XtToolkitlnitialize to initialize the toolkit internals, creates a default applica¬
tion context for use by the other convenience routines, then calls XtOpenDisplay with a
display .string of NULL and an application.name of NULL, and finally calls XtAppCreate-
Shell with an application.name of NULL and returns the created shell. The semantics of calling
Xtlnitialize more than once are undefined. See XtCreateApplicationContext, XtDispIaylni-
tialize, and XtAppCreateShell for more information.

void XtMainLoopO

XtMainLoop first reads the next incoming file, timer, or X event by calling XtNextEvent.
Then, it dispatches this to the appropriate registered procedure by calling XtDispatchEvent.
This can be used as the main loop of X Toolkit applications, and, as such, it does not return.
Applications are expected to exit in response to some user action. This routine has been replaced
by XtAppMainLoop.

There is nothing special about XtMainLoop. It is simply an infinite loop that calls
XtNextEvent then XtDispatchEvent.

void XtNextEvent(evenr_rem/7t)
XEvent *event_return;

event_return Returns the event information to the specified event structure.

If no input is on the X input queue for the default application context, XtNextEvent flushes the
X output buffer and waits for an event while looking at the other input sources and timeout
values and calling any callback procedures triggered by them. This routine has been replaced by
XtAppNextEvent. Xtlnitialize must be called before using this routine.

void XtProcessEvent(m&s£)
XtlnputMask mask;

mask Specifies the type of input to process.

XtProcessEvent processes one input event, timeout, or alternate input source (depending on the
value of mask), waiting if necessary. It has been replaced by XtAppProcessEvent. Xtlnitial¬
ize must be called before using this function.

Boolean X\PeekEveni(event_return)
XEvent *event_return;

event_return Returns the event information to the specified event structure.

If there is an event in the queue for the default application context, XtPeekEvent fills in the
event and returns a non-zero value. If no X input is on the queue, XtPeekEvent flushes the out¬
put buffer and blocks until input is available, possibly calling some timeout callbacks in the pro¬
cess. If the input is an event, XtPeekEvent fills in the event and returns a non-zero value. Oth¬
erwise, the input is for an alternate input source, and XtPeekEvent returns zero. This routine has
been replaced by XtAppPeekEvent. Xtlniiialize must be called before using this routine.

Boolean XtPendingO

The XtPending returns a nonzero value if there are events pending from the X server or other
input sources in the default application context. If there are no events pending, it flushes the out¬
put buffer and returns a zero value. It has been replaced by XtAppPending. Xtlnitialize must
be called before using this routine.

127

X Intrinsics Xll, Release 3, Oct. 1988

Xtlnputld XtAddInput(.?<wce, condition, proc, client_data)
int source;
caddr_t condition',
XtlnputCallbackProc proc,
caddr_t client_data\

source

condition

proc

client data

Specifies the source file descriptor on a UNIX-based system or other operating
system dependent device specification.

Specifies the mask that indicates either a read, write, or exception condition or
some operating system dependent condition.

Specifies the procedure that is called when input is available.

Specifies the parameter to be passed to proc when input is available.

The XtAddlnput function registers with the X Toolkit default application context a new source
of events, which is usually file input but can also be file output (The word “file” should be
loosely interpreted to mean any sink or source of data.) XtAddlnput also specifies the condi¬
tions under which the source can generate events. When input is pending on this source in the
default application context, the callback procedure is called. This routine has been replaced by
XtAppAddlnput. Xtlnitialize must be called before using this routine.

Xtlntervalld XtAddTimeOutO'/irerva/, proc, clientjiata)
unsigned long interval',
XtTimerCaUbackProc proc,
caddr_t client_data\

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when time expires.

client jiata Specifies the parameter to be passed to proc when it is called.

The XtAddTimeOut function creates a timeout in the default application context and returns an
identifier for it. The timeout value is set to interval. The callback procedure will be called after
the time interval elapses, after which the tir eout is removed. This routine has been replaced by
XtAppAddTimeOut. Xtlnitialize must be called before using this routine.

XtWorkProcId XtAddWorkProc(proc, closure)
XtWorkProc proc.
Opaque closure',

proc Procedure to call to do the work.

closure Client data to pass to proc when it is called.

This routine registers a work proc in the default application context. It has been replaced by
XtAppAddWorkProc. Xtlnitialize must be called before using this routine.

Widget XtCreateApplicationShell(ram<?, widgei_class, args, numjargs)
String name',
WidgetClass widget_class\
ArgList args'.
Cardinal numjargs',

name This parameter is ignored; therefore, you can specify NULL.

widget jlass Specifies the widget class pointer for the created application shell widget. This
will usually be topLevelShellWidgetClass or a subclass thereof.

args Specifies the argument list to override the resource defaults.

128

X Intrinsics Xll, Release 3, Oct. 1988

num_args Specifies the number of arguments in args.

XtCreateAppHcationShelS calls XtAppCreateShell with an application_name of NULL, the
application_class passed to Xtlnitialize and the default application context created by Xtlnitial-
ize. This routine has been replaced by XtAppCreateShell.

To register a new converter, use the procedure XtAddConverter.

void XtAddCon\ener(from_type, tojrype, converter, convert_args, numjirgs)
Strin gfromjype.
String to_type\
XtConverter converter,
XtConvertArgList convert_args\
Cardinal num_args\

fromjype Specifies the source type.

tojype Specifies the destination type.

converter Specifies the type converter procedure.

convert_args Specifies how to compute the additional arguments to the converter or NULL.

num_args Specifies the number of additional arguments to the converter or zero.

For the few type converters that need additional arguments, the Intrinsics conversion mechanism
provides a method of specifying how these arguments should be computed. The enumerated
type XtAddressMode and the structure XtConvertArgRee specify how each argument is
derived. These are defined in <Xll/Convert.h>.

typedef enum {
/* address mode parameter representation */

XtAddress,
XtBaseOffset,
Xtlmmediate,
XtResourceString,
XtResourceQuark

} XtAddressMode;

/* address */
/* offset */
/* constant */
/* resource name string */
/* resource name quark */

typedef struct {
XtAddressMode address_mode;
caddr_t address_id;
Cardinal size;

} XtConvertArgRee, *XtConvertArgList;

The address_mode field specifies how the addressjd field should be interpreted. XtAddress
causes addressjd to be interpreted as the address of the data. XtBaseOffset causes addressjd
to be interpreted as the offset from the widget base. Xtlmmediate causes addressjd to be inter¬
preted as a constant. XtResourceString causes addressjd to be interpreted as the name of a
resource that is to be converted into an offset from widget base. XtResourceQuark is an inter¬
nal compiled form of an XtResourceString. The size field specifies the length of the data in
bytes.

The following provides the code that was used to register the CvtStringToPixel routine shown
earlier:

static XtConvertArgRee colorConvertArgsf] = {
{XtBaseOffset, (caddr_t) XtOffset(Widget, core.screen), sizeof(Screen *)},
{XtBaseOffset, (caddr_t) XtOffset(Widget, core.colormap),sizeof(Colormap)}

129

X Intrinsics XI1, Release 3, Oct. 1988

XtAddConverterfXtRString, XtRPixel, CvtStringToPixel,
colorConvertArgs, XtNumber(colorConvertArgs));

The conversion argument descriptors colorConvertArgs and screenConvertArg are predefined.
The screenConvertArg descriptor puts the widget’s screen field into args[0]. The colorConver¬
tArgs descriptor puts the widget’s screen field into args[0], and the widget’s colormap field into
args[1].

Conversion routines should not just put a descriptor for the address of the base of the widget into
args[0], and use that in the routine. They should pass in the actual values that the conversion
depends on. By keeping the dependencies of the conversion procedure specific, it is more likely
that subsequent conversions will find what they need in the conversion cache. This way the
cache is smaller and has fewer and more widely applicable entries.

To deallocate a shared GC when it is no longer needed, use XtDestroyGC.

void XtDestrovGCO, gc)
Widget w;
GC gc\

w Specifies the widget.

gc Specifies the GC to be deallocated.

References to sharable GCs are counted and a free request is generated to the server when the
last user of a given GC destroys it. Note that some earlier versions of XtDestroyGC had only a
gc argument. Therefore, this function is not very portable, and you are encouraged to use
XtReleaseGC instead.

To declare an action table and register it with the translation manager, use XtAddActions.

void XtAddActions (actions, rmm_actions)
XtActionList actions;
Cardinal niun_actions\

actions Specifies the action table to register.

num_args Specifies the number of entries in this action table.

If more than one action is registered with the same name, the most recently registered action is
used. If duplicate actions exist in an action table, the first is used. The Intrinsics register an
action table for MenuPopup and MenuPopdown as pan of X Toolkit initialization.

To set the Intrinsics selection timeout, use XtSetSelectionTimeout.

void XtSetSelectionTimeout(hm<?our)
unsigned long timeout;

timeout Specifies the selection timeout in milliseconds.

To get the current selection timeout value, use XtGetSelectionTimeout.

unsigned long XtGetSelectionTimeoutO

The selection timeout is the time within which the two communicating applications must
respond to one another. If one of them does not respond within this interval, the Intrinsics aborts
the selection request. The default value of the selection timeout is five seconds.

To obtain the error database (for example, to merge with an application or widget specific data¬
base), use XtGetErrorDatabase.

130

X Intrinsics Xll, Release 3, Oct. 1988

XrmDatabase *XtGetErrorDatabaseO

The XtGetErrorDatabase function returns tha address of the error database. The Intrinsics do a
lazy binding of the error database and do not merge in the database file until the first call to
XtGetErrorDatbaseText.

For a complete listing of all errors and warnings that can be generated by the Intrinsics, see
Appendix D.

An error message handler can obtain the error database text for an error or a warning by calling
XtGetErrorDatabaseText.

void XtGetErrorDatabaseText(n<2me, type, class, default, buffer_return, nbytes)
char *name, *type, *class\
char *default;
char * buffer jeturrv,
int nbytes'.

name
type

class

default

buffer_return

nbytes

Specifies the name and type that are concatenated to form the resource name of
the error message.

Specifies the resource class of the error message.

Specifies the default message to use if an error database entry is not found.

Specifies the buffer into which the error message is to be returned.

Specifies the size of the buffer in bytes.

The XtGetErrorDatabaseText returns the appropriate message from the error database or
returns the specified default message if one is not found in the error database.

To register a procedure to be called on fatal error conditions, use XtSetErrorMsgHandler.

void XtSetErrorMsgHandler(m.sg_/u2rt<i/£r)
XtErrorMsgHandler msg_handler\

msgjiandler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics constructs a string from the error resource
database and calls XtError. Fatal error message handlers should not return. If one does, subse¬
quent X Toolkit behavior is undefined.

To call the high-level error handler, use XtErrorMsg.

void XtErrorMsg(mzme, type, class, default, params, num_params)
String name'.
String type'.
String class'.
String default-.
String *params'.
Cardinal *num_params',

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of values in the parameter list.

131

X Intrinsics XI1, Release 3, Oct. 1988

The Intrinsics internal errors all have class XtToolkitError.

To register a procedure to be called on nonfatal error conditions, use XtSetWar-
ningMsgHandler.

void XtSetWamingMsgHandler(mjg_/uimi/er)
XtErrorMsgHandler msg_handler\

msgjiandler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics constructs a string from the error resource
database and calls XtWaming.

To call the installed high-level warning handler, use XtWarningMsg.

void XtWamingMsgfmzme, type, class, default, params, num_params)
String name'.
String type'.
String class'.
String default.
String *params',
Cardinal *num_params\

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num jparams Specifies the number of values in the parameter list.

The Intrinsics internal waminings all have class XtToolkitError.

To register a procedure to be called on fatal error conditions, use XtSetErrorHandler.

void XtSetErrorHandler(/jan<i/er)
XtErrorHandler handler,

handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics is _XtError. On UNIX-based systems, it
prints the message to standard error and terminates the application. Fatal error message handlers
should not return. If one does, subsequent X Toolkit behavior is undefined.

To call the installed fatal error procedure, use XtError.

void XxError(message)
String message',

message Specifies the message that is to be reported.

Most programs should use XtErrorMsg, not XtError, to provide for customization and interna¬
tionalization of error messages.

To register a procedure to be called on nonfatal error conditions, use XtSetWarningHandler.

void XtSetWarningHandler(/uzmf/er)
XtErrorHandler handler,

handler Specifies the new nonfatal error procedure, which usually returns.

132

X Intrinsics XI1, Release 3, Oct. 1988

The default warning handler provided by the Intrinsics is _XtWarning. On UNIX-based sys¬
tems, it prints the message to standard error and returns to the caller.

To call the installed nonfatal error procedure, use XtWarning.

void XtWamingCme.wtfge)
String message;

message Specifies the nonfatal error message that is to be reported.

Most programs should use XtWarningMsg, not XtWarning, to provide for customization and
internationalization of warning messages.

133

X Intrinsics Xll, Release 3, Oct. 1988

Appendix D

Standard Errors and Warnings

All X Toolkit errors and warnings have class XtToolkitError. The following two tables sum¬
marize all of the errors and warnings that can be generated by the X Toolkit.

Error Messages

Name Type Default Message

allocError calloc

allocError malloc

allocError realloc

communicationError select

intemalError shell

invalidArgCount xtGetValues

invalid ArgCount xtSetValues

invalidClass constraintSetV alue

invalidClass XtAppCreateShell

invalidClass XtCreatePopupShell

invalidClass XtCreateWidget

invalidClass XtPopdown

invalidClass xtPopup

mvalidDimension xtCrealeWindow

invalidDimension shellReaiize

invalidDisplay xtlnitialize

invalidGeometryManager XtMakeGeometryRequest

invalidParameter remov e PopupFromParent

in v ali dP arame t er XtAddlnput

invalidParameters xtMenuPopupAction

inv alidP arame ter s xtmenuPopdown

invalid Parent realize

invalidParent XtCreatePopupShell

invalidParent XtCreateWidget

invalidParent XtMakeGeometryRequest

invalidParent XtMakeGeometryRequest

invalidParent xtManageChildren

invalidParent xtUnmanageChildren

invalidPopup xtMenuPopup

invalidPopup xtMenuPopup

invalidProcedure inheritance Proc

invalidProcedure realizeProc

Cannot perform calloc

Cannot perform malloc

Cannot perform realloc

Select failed

Shell’s window manager interaction is broken

Argument count > 0 on NULL argument list in XtGet-

Values

Argument count > 0 on NULL argument list in XtSet-

Values

Subclass of Constraint required in CallConstraintSet-

Values

XtAppCreateShell requires non-NULL widget class

XtCreatePopupShell requires non-NULL widget class

XtCreateWidget requires non-NULL widget class

XtPopdown requires a subclass of shellWidgetClass

XtPopup requires a subclass of shellWidgetClass

Widget %s has zero width and/or height

Shell widget %s has zero width and/or height

Can’t Open display

XtMakeGeometryRequest - parent has no geometry

manger

RemovePopupFromParent requires non-NULL popuplist

invalid condition passed to XtAddlnput

MenuPopup wants exactly one argument

XtMenuPopdown called with num_params != 0 or 1

Application shell is not a windowed widget?

XtCreatePopupShell requires non-NULL parent

XtCreateWidget requires non-NULL parent

XtMakeGeometryRequest - NULL parent Use SetValues

instead

XtMakeGeometryRequest - parent not composite

Attempt to manage a child when parent is not Composite

Attempt to unmanage a child when parent is not Compo¬

site

Can’t find popup in _XtMenu Popup

Can’t find popup in _XtMenuPopup

Unresolved inheritance operation

No realize class procedure defined

134

XI1, Release 3, Oct 1988 X Intrinsics

invalidWindow eventHandler

missingEvent shell

noAppContext widgetToApplicationContext

noPerDisplay closeDisplay

noPerDisplay getPerDisplay

noSelectionProperties freeSelectionProperty

nullProc insertChild

subclassMismatch xtCheckSubclass

translationError mergingTablesWithCycles

wrongParameters cvtlntOrPixelToXColor

wron g P arame ters c v tS tringToCursor

wrongParameters cvtStringToFont

wrongParameters cv tS tringToFontS cruet

wrongParameters cvtStringToPixel

Event with wrong window

Events are disappearing from under Shell

Couldn’t find ancestor with display information

Couldn’t find per display information

Couldn’t find per display information

internal error no selection property context for display

NULL insert_child procedure

Widget class %s found when subclass of %s expected:

%s

Trying to merge translation tables with cycles, and can’t

resolve this cycle.

Pixel to color conversion needs screen and colormap

arguments

String to cursor conversion needs screen argument

String to font conversion needs screen argument

String to cursor conversion needs screen argument

String to pixel conversion needs screen and colormap

arguments

Warning Messages

Name Type Default Message

ambigiousParent XtManageChildren

ambigiousParent XtUnmanageChildren

communicationError windowManager

conversionError string

displayError invalidDisplay

grabError grabDestroy Callback

grabError grabDestroyCallback

grabError XtRemoveGrab

initializationError xtlnitialize

invalidArgCount getResources

invalidCallbackList XtAddCallbacks

invalidCallbackList xtCallCallback

invalidCallbackList xtOverrideCallback

invalidCallbackList xtRemoveAllCallback

invalidCallbackList XtRemoveCallbacks

invalidChild XtManageChildren

invalidChild XtUnmanageChildren

invalidDepth setValues

invalidGeometry xtMakeGeometry Request

invalidParameters compileAccelerators

inv ahdParame ters compileT ranslations

invahdParameters mergeT ransl ations

invaLidParent xtCopyFromParent

Not all children have same parent in XtManageChildren

Not all children have same parent in XtUnmanageC’hil-

dren

Window Manager is confused

Cannot convert string "%s" to type "%s"

Can’t find display structure

XtAddGrab requires exclusive grab if spring_loaded is

TRUE

XtAddGrab requires exclusive grab if spring_loaded is

TRUE

XtRemoveGrab asked to remove a widget not on the grab

list

Initializing Resource Lists twice

argument count > 0 on NULL argument list

Cannot find callback list in XtAddCallbacks

Cannot find callback list in XtCallCallbacks

Cannot find callback list in XtOverrideCallbacks

Cannot find callback list in XtRemoveAllCallbacks

Cannot find callback list in XtRemoveCallbacks

null child passed to XtManageChildren

Null child passed to XtUnmanageChildren

Can’t change widget depth

Shell subclass did not take care of geometry in XtSet-

Values

String to AcceleratorTable needs no extra arguments

String to TranslationTable needs no extra arguments

MergcTM to TranslationTable needs no extra arguments

CopyFromParent must have non-NULL parent

135

X Intrinsics Xll, Release 3, Oct. 1988

invalidPopup unsupported Operation

invalidPopup unsupportedOperation

inv alidProcedure deleteChild

in v alidProcedure inputHandler

invalidProcedure set_values_almost

invalidResourceCount getResources

invalidResourceName computeArgs

invalids hell xtTranslateCoords

in v alidS izeOv erride xtDependencies

invalidTypeOv erride xtDependencies

invalidWidget removePopupFromParent

noColormap cvtStringToPixel

registerWindowError xtRegisterWindow

registerWindowError xtUnreg i sterWindo w

translation error nullTable

translation error nullTable

translationError ambigiousActions

translationError mergingNullT able

translationError nullTable

translationError unboundActions

translationError x tTrans latelni ti al ize

translationParseError showLine

translation? arseError parseError

translationParseError parseS tring

typeConversionError noConverter

versionMismatch widget

wrongParame ters cvtlntToBool

wrongParameters cvtlntToBoolean

wrongParameters cvtlntToFont

wrongParameters cvtlntToPixel

wrongParameters cvtlntToPixmap

wrongParameters cvtlntToShort

wrongParameters cvtStringToBool

wrongParameters c v tS tringToB oo lean

wrongParameters cvtStringToDisplay

wrongParameters cvtStringToFile

wrongParameters cvtStringToInt

wrongParameters cvtStringToShort

wrongParameters cvtStringToUnsignedChar

wrongParameters cvtXColorToPixel

Pop-up menu creation is only supported on ButtonPress

or EnterNotify events.

Pop-up menu creation is only supported on ButtonPress

or EnterNotify events,

null delete_child procedure in XtDestroy

XtRemovelnput: Input handler not found

set_values_almost procedure shouldn’t be NULL

resource count > 0 on NULL resource list

Cannot find resource name %s as argument to conversion

Widget has no shell ancestor

Representation size %d must match superclass’s to over¬

ride %s

Representation type %s must match superclass’s to over¬

ride %s

RemovePopupFromParent, widget not on parent list

Cannot allocate colormap entry for "%s"

Attempt to change already registered window.

Attempt to unregister invalid window.

Can’t remove accelerators from NULL table

Tried to remove non-existant accelerators

Overriding earlier translation manager actions.

Old translation table was null, cannot modify.

Can't translate event thorugh NULL table

Actions not found: %s

Intializing Translation manager twice.

... found while parsing ’%s’

translation table syntax error: %s

Missing *'.

No Type converter registered for ’%s’ to ’%s’ conversion.

Widget class %s version mismatch: widget %d vs. intrin¬

sics %d.

Integer to Bool conversion needs no extra arguments

Integer to Boolean conversion needs no extra arguments

Integer to Font conversion needs no extra arguments

Integer to Pixel conversion needs no extra arguments

Integer to Pixmap conversion needs no extra arguments

Integer to Short conversion needs no extra arguments

String to Bool conversion needs no extra arguments

String to Boolean conversion needs no extra arguments

String to Display conversion needs no extra arguments

String to File conversion needs no extra arguments

String to Integer conversion needs no extra arguments

String to Integer conversion needs no extra arguments

String to Integer conversion needs no extra arguments

Color to Pixel conversion needs no extra arguments

136

X Intrinsics Xll, Release 3, Oct. 1988

Appendix E

StringDefs.h Header File

The StringDefs.h header file contains:

/* Resource names */

#define XtMaccelerators
#define XtNallowHoriz
#define XtNallowVert
#define XtNancestorSensitive
#define XtNbackground
#define XtNbackgroundPixmap
#define XtNborderColor
#define XtNborder
#define XtNborderPixmap
#define XtNborderWidth
#define XtNcallback
#define XtNcoloimap
#define XtNdepth
#define XtNdestroyCallback
#define XtNeditType
#define XtNfont
#define XtNforceBars
#define XtNforeground
#define XtNfunction
#define XtNheight
#define XtNhSpace
#define XtNindex
#define XtNinnerHeight
#define XtNinnerWidth
#define XtNinnerWindow
#define XtNinsertPosition
#define XtNintemalHeight
#deftne XtNintemalWidth
#define XtNjustify
#define XtNknobHeight
#define XtNknoblndent
#define XtNknobPixel
#detine XtNknobWidth
#define XtNlabel
#define XtNlength
#define XtNlowerRight
#define XtNmappedWhenManaged
#define XtNmenuEntry
#defme XtNname
#define XtNnotify
#define XtNorientation
#define XtNparameter
#define XtNpopupCallback
#define XtNpopdownCallback

"accelerators"
"allowHoriz"
"allowVert"
"ancestorSensitive"
"background"
"backgroundPixmap"
"borderColor"
"borderColor"
"borderPixmap"
"borderWidth"
"callback"
"colormap"
"depth"
"destroyCallback"
"editType"
"font"
"forceBars"
"foreground"
"function"
"height"
"hSpace"
"index"
"innerHeight"
"innerWidth"
"innerWindow"
"insertPosition"
"intemalHeight"
"intemalWidth"
"justify"
"knobHeight"
"knoblndent"
"knobPixel"
"knobWidth"
"label"
"length"
"lowerRight"
"mappedWhenManaged"
"menuEntry"
"name"
"notify"
"orientation"
"parameter"
"popupCallback"
"popdownCallback"

137

Xll, Release 3, Oct. 1988 X Intrinsics

#define XtNreverseVideo
#define XtNscreen
#define XtNscrollProc
#define XtNscrollDCursor
#define XtNscrollHCursor
#define XtNscro 11LCursor
#define XtNscroURCursor
#define XtNscrollUCursor
#define XtNscro 11 VCursor
#define XtNselection
#define XtNselectionArray
#define XtNsensitive
#deftne XtNshown
#define XtNspace
#define XtNstring
#define XtNtextOptions
#define XtNtextSink
#define XtNtextSource
#define XtNthickness
#define XtNthumb
#define XtNthumbProc
#define XtNtop
#defrne XtNtranslations
#define XtNuseBottom
#defme XtNuseRight
#define XtNvalue
#define XtNvSpace
#deftne XtNwidth
#define XtNwindow
#define XtNx
#define XtNy

/* Class types */

#define XtCAccelerators
#define XtCBackground
#define XtCBoolean
#define XtCBorderColor
#defme XtCBorderWidth
#define XtCCallback
#define XtCColormap
#define XtCColor
#define XtCCursor
#define XtCDepth
#define XtCEditType
#define XtCEventBindings
#define XtCFile
#deftne XtCFont
#define XtCForeground
#define XtCFraction
#define XtCFunction
#define XtCHeight
#define XtCHSpace
#define XtCIndex

"reverseVideo"
"screen"
"scrollProc"
"scroll EX) wnCursor"
"scrollHorizontalCursor"
"scrollLeftCursor"
"scrollRightCursor"
"scrollUpCursor"
"scrollVertical Cursor"
"selection"
"selectionArray"
"sensitive"
"shown"
"space"
"string"
"textOptions"
"textSink"
"textSource"
"thickness"
"thumb"
"thumbProc"
"top"
"translations"
"useBottom"
"useRight"
"value"
"vSpace"
"width"
"window"
"x"

"Accelerators"
"Background"
"Boolean"
"BorderColor"
"BorderWidth"
"CaUback"
"Colormap"
"Color"
"Cursor"
"Depth"
"EditType"
"EventBindings"
"File"
"Font"
"Foreground"
"Fraction"
"Function"
"Height"
"HSpace"
"Index"

138

X Intrinsics Xll, Release 3, Oct. 1988

#define XtCInterval
#define XtCJustify
#define XtCKnoblndent
#define XtCKnobPixel
#define XtCLabel
#define XtCLength
#define XtCMappedWhenManaged
#define XtCMargin
#define XtCMenuEntry
#define XtCNotify
#define XtCOrientation
#define XtCParameter
#define XtCPixmap
#define XtCPosition
#define XtCScreen
#deftne XtCScrollProc
#define XtCScrollDCursor
#define XtCScrollHCursor
#deftne XtCScrollLCursor
#deftne XtCScrollRCursor
#define XtCScrollUCursor
#define XtCScrollVCursor
#define XtCSelection
#define XtCSensitive
#define XtCSelectionArray
#define XtCSpace
#define XtCString
#define XtCTextOptions
#deftne XtCTextPosition
#define XtCTextSink
#defme XtCTextSource
#define XtCThickness
#define XtCThumb
#define XtCTranslations
#define XtCValue
#define XtC VS pace
#define XtC Width
#deftne XtCWindow
#define XtCX
#define XtCY

"Interval"
"Justify"
"Knoblndent"
"KnobPixel"
"Label"
"Length"
"MappedWhenManaged"
"Margin"
"MenuEntry"
"Notify"
"Orientation"
"Parameter"
"Pixmap"
"Position"
"Screen"
"ScrollProc"
"ScrollDownCursor"
"ScrollHorizontal Cursor"
"ScrollLeftCursor"
"ScrollRightCursor"
"ScrollUpCursor"
"ScrollVerticalCursor"
"Selection"
"Sensitive"
"SelectionArray"
"Space"
"String"
"TextOptions"
"TextPosition"
"TextS ink"
"TextSource"
"Thickness"
"Thumb"
"Translations"
"Value"
"VSpace"
"Width"
"Window"
"X"
"Y"

/* Representation types */

#define XtRAcceleratoiTable
#define XtRBoolean
#define XtRCallback
#define XtRCallProc
#deftne XtRColor
#define XtRCursor
#deftne XtRDimension
#define XtRDisplay
#define XtREditMode
#define XtRFile
#define XtRFont

"AcceleratorTable"
"Boolean"
"Callback"
"CallProc"
"Color"
"Cursor"
"Dimension"
"Display"
"EditMode"
"File"
"Font"

139

X Intrinsics Xll, Release 3, Oct. 1988

#define XtRFontStmct "FontS truct"
#define XtRFunction "Function"
#define XtRGeometry "Geometry"
#define XtRImmediate "Immediate"
#define XtRInt "Int"
#deflne XtRJustify "Justify"
#define XtRLongBoolean "LongBoolean"
#define XtROrientation "Orientation"
#define XtRPixel "Pixel"
#define XtRPixmap "Pixmap"
#define XtRPointer "Pointer"
#define XtRPosition "Position"
#define XtRShort "Short"
#define XtRString "String"
#define XiRStringTable "StringTable"
#define XtRUnsignedChar "UnsignedQiar"
#define XtRTranslationTable "TranslationTable"
#defme XtRWindow "Window"

/* Boolean enumeration constants */

#define XtEoff "off’
#define XtEfalse "false"
#define XtEno "no"
#define XtEon "on"
#define XtEtrue "true"
#define XtEyes "yes"

/* Orientation enumeration constants */

#define XtEvertical "vertical"
#define XtEhorizontal "horizontal"

/* text edit enumeration constants */

#define XtEtextRead "read"
#define XtEtextAppend "append"
#define XtEtextEdit "edit"

/* color enumeration constants */

#define XtExtdefaultbackground "xtdefaultbackground"
#define XtExtdefaultforeground "xtdefaultforeground"

/* font constant */

#define XtExtdefaultfont "xtdefaultfont"

140

X Intrinsics Xll, Release 3, Oct. 1988

Index

/

/usr/lib/Xl l/app-defaults/, 23
/usr/lib/Xl 1/XtErrorDB, 113

A

Above, 59
Accelerator, 101
accept_focus procedure, 69
Action Table, 98
action_proc procedure, 97
application context, 21
Application programmer, 2
Application, 50
ApplicationShell, 44,45
ApplicationShellWidget, 46, 85
ApplicationShellWidgetClass, 46
applicationShellWidgetClass, 46
ArgList, 9, 26, 27

B

Background, 83
Below, 59
Bottomlf, 59
ButtonPress, 54, 67, 71, 119, 121, 122, 123
ButtonRelease, 67,71, 119,121, 122, 123

c

calloc, 106
CenterGravity, 32
Chaining, 29, 30, 85

Subclass, 16
superclass, 16

change_managed procedure, 39
CirculateNotify, 121, 123
CirculateRequest, 121, 123
Class Initialization, 16
Class, 2
class_initialize procedure, 16
class_name, 13
Client, 2
ClientMessage, 75, 76, 121,123
ColormapNotify, 121, 123
Composite widgets, 37
Composite, 7, 8, 17, 18, 19, 20, 38, 44, 51, 57, 68,
87
CompositeClassPart, 7
CompositeClassRec, 7
CpmpositePart, 7, 9
CompositeWidget, 7, 8

CompositeWidgetClass, 7
compositeWidgetClass, 7, 28, 31
CompositeWidgetClass, 32
compositeWidgetClass, 32, 34, 35, 37, 38, 39, 40,
42,44,58, 105
compress_enterleave, 73
compress_expose field, 73
compress_motion, 73
Configure Window, 57
ConfigureNotify, 33, 38, 121,123
ConfigureRequest, 121, 123
ConstrainP.h, 12
ConstrainLh, 11
Constraint, 8,9,11, 12, 16, 37,42, 87
ConstraintClassPart, 8, 16, 30, 36,42
ConstraintClassRec, 8
ConstraintPart, 8, 9, 95
ConstraintWidget, 8, 9
Constrain tWidgetClass, 8
constraintWidgetClass, 8, 27, 28
ConstraintWidgetClass, 32
constraintWidgetClass, 35, 36,42, 92,93
CopyFromParent, 32
Core, 4, 6, 7, 9, 16, 17, 18, 27, 30, 31, 32, 33, 39,
74, 85, 87, 93, 95
CoreClass, 99
CoreClassPart, 4, 35
CorePart, 4, 5,7, 51
CreateNotify, 121, 123
CurrentTime, 111, 112
CWBorderWidth, 59
CWHeight, 59
CWSibling, 59
CWStackMode, 59, 64
CWWidth, 59
CWX, 59
CWY, 59

D

delete_child procedure, 39
Destroy Callbacks, 35, 78
destroy procedure, 35
DestroyNotify, 121, 123
Display, 21
display_accelerator procedure, 101
display_accelerator, 122

E

EastGravity, 32
EnterNotify, 67,71, 119, 121, 123, 124
EnterWindow, 54

141

X Intrinsics Xll, Release 3, Oct. 1988

Events, 69 libXLa, 3
exit, 36
expose procedure, 73 M
Expose, 32, 73,74, 94,112,113,121, 123

m alloc, 106
F MapNotify, 121,123

MappingNotify, 75,76, 121
False, 6, 17, 31, 37, 41, 49, 50, 53, 54, 55, 68, 69, MapRequest, 121,123
71,72,73, 74, 109, 112
Focusln, 68,69, 71, 121,123
FocusNotify, 68
FocusOut, 68,69,71,121, 123
font, 5
Foreground, 83
free, 106

G

Geometry Management, 57
geometry_manager field, 57
get_values_hook procedure, 92
Grabbing Input, 67
GraphicsExpose,, 123
GraphicsExpose, 75, 76,112,113,121
GravityNotify, 121, 123

H

hook, 92,93

I

Inheritance, 16, 29, 30, 32, 85
Initialization, 16, 29, 30
initialize procedure, 29, 30
initialize_hook procedure, 30
Input Grabbing, 67
InputOnly, 32
InputOutput, 32
insert_child procedure, 19, 38, 52, 126
Instance, 2

K

key modifier, 120
KeymapNotify, 121, 123
KeyPress, 67,68,71, 119,121, 122, 123
KeyRelease, 67,68, 71, 119,121,123

L

LeaveNotify, 67, 71, 119, 121, 123

MenuPopdown, 55, 56,98,130
MenuPopup, 53, 54,98, 130
Method, 2
ModonNotify, 67, 71,119, 121,122, 123

N

Name, 2
NoExpose, 75, 76,121, 123
None, 68
NorthWestGravity, 32, 74

o

Object, 2
Opposite, 59
OverrideShell, 44,49
Overrides hell Widget, 46
OverrideShellWidgetClass, 46
overrides hellWidgetClass, 46
OverrrideShell, 45

P

pop-up, 51
child, 51
list, 51
shell, 51

printf, 114
PropertyNotify, 121,123

Q

query_geometry procedure, 63

R

realize procedure, 32
realloc, 106
ReparentNotify, 121, 123
resize procedure, 64
ResizeRequest, 121, 123
Resource Management, 82
Resource, 2

s

142

SelecuonClear, 75, 76, 121, 123
SelectionNoufy, 75, 76, 121, 123

X Intrinsic; Xll, Release 3, Oct. 1988

SelectionRequest, 75, 76, 121, 123
selectionTimeout, 108
set_values procedure, 94,95
set_values_almost procedure, 95
set_values_hook procedure, 96
Shell, 20, 44,45,49, 51, 52, 53, 54, 55, 87
ShellPart, 47
ShellWidget, 46, 47
Shell WidgetClass, 46
shellWidgetClass, 46
special, 5
String,29
StringDefs.h, 137
Subclass Chaining, 16
SubstructureNotify, 33
Superclass Chaining, 16,29, 30, 85
superclass, 13

T

TARGETS, 109
this, 5
Toplf, 59
TopLevel, 50
TopLevelShell, 44,45
TopLevelShellWidget, 46
TopLevelShellWidgetClass, 46
topLevelShell WidgetClass, 46, 128
TransientShell, 44, 45,49
TransientShellWidget, 46
Transients hellWidgetClass, 46
transientShellWidgetClass, 46
Translation Table, 99
Translation tables, 119
True, 6, 15, 17, 22, 31, 34, 37, 39, 41, 49, 53, 54,
58,67,68,71,72, 73,74,75,94,109, 112

u
UnmapNotify, 121, 123
User, 2

V

VendorShell, 44,45
VendorShellWidget, 46
VendorShellWidgetClass, 46
vendorShellWidgetClass, 46
version, 13
Visibility, 74
VisibilityNotify, 74, 121, 123
Visible, 74

W

WestGravity, 32
Widget class, 2

Widget programmer, 2
Widget, 2, 5, 6
WidgetClass, 5
WidgetClass, 5
WidgetClass, 13
WidgetClassRec, 5
widgetClassRec, 13
WidgetList, 40
widget_class, 9
widget_size, 13
WMShell, 44,45,49
WMShellWidget, 46
WMSheUWidgetClass, 46
wmShell WidgetClass, 46

X

Xll/ConverLh, 90, 129
Xll/Intrinsic.h, 3
XI 1/IntrinsicP.h, 3
Xll/keysymdef.h, 122
Xll/Label.h, 3
XI 1/Scroll.h, 3
XI 1/Shell.h, 3
Xll/StringDefs.h, 3,9, 82
Xll/X.h, 59
Xll/Xatoms.h, 3
Xll/Xresource.h, 87
Xll/Xutil.h, 113
XA_CLEPBOARD, 111
XA_PRIMARY, 109, 111
XA_SECONDARY, 109, 111
XA_STRING, 109, 110
XClearArea, 94
XConfigureWindow, 33, 39, 58, 59, 62, 63
XCreateGC, 107
XCreateWindow, 31, 32
XDestroyWindow, 34, 35
XFreeGC, 35
XFreePixmap, 35
XMapWindow, 53, 54
xmh, 25
XMoveWindow, 39,62
XNextEvent, 69
XOpenDisplay, 22, 23, 24
XPeekEvent, 69
XPending, 69
XRInt, 87
XrmOptionDescRec, 24
XrmParseCommand, 22, 24, 25, 126
XrmValue, 84, 87, 88
XSelectlnput, 75, 76
XSetlnputFocus, 68, 69
XSetWindowAttributes, 30, 31, 32, 77
XSynchronize, 22
XtAcceptFocusProc, 69
XtActionList, 97

143

X Intrinsics Xll, Release 3, Oct. 1988

XtActionProc, 97
XtActionsRec, 97
XtAddActions, 98,130
XtAddCallback, 35, 79
XtAddCailbacks, 79
XtAddConverter, 129
XtAddEventHandler, 35, 70, 75, 76
XtAddExposureToRegion, 112,113
XtAddGrab, 67, 71
XtAddlnput, 126,127,128
XtAddRawEventHandler, 76
XtAddress, 90, 129
XtAddressMode, 90,129
XtAddTimeOut, 126,128
XtAddW orkProc, 126,128
XtAllEvents, 75
XtAlmostProc, 95
XtAppAddAcdons, 98
XtAppAddConverter, 89, 90
XtAppAddlnput, 65, 66, 128
XtAppAddTimeOut, 35, 66, 67,128
XtAppAddWorkProc, 72, 128
XtAppContext, 21
XtAppCreateShell, 20, 28,85,127, 129
XtAppError, 116
XtAppErrorMsg, 115, 116
XtAppGetErrorDatabase, 114
XtAppGetErrorDatabaseText, 114, 115
XtAppGetErrorDatbaseText, 114
XtAppGetSelectionTimeout, 108
XtAppMainLoop, 65, 70, 71, 127
XtAppNextEvent, 70, 71, 72, 127
XtAppPeekEvent, 69, 70,127
XtAppPending, 69,127
XtAppProcessEvent, 69, 70, 72,127
XtAppSetErrorHandler, 116
XtAppSetErrorMsgHandler, 115
XtAppSetSelectionTimeout, 108
XtAppSetWamingHandler, 116
XtAppSetWamingMsgHandler, 115
XtAppWaming, 117
XtAppWamingMsg, 115, 117
XtArgsFunc, 96
XtArgsProc, 30, 92
XtArgVal, 26
XtAugmentTranslations, 100
XtBaseOffset, 90, 129
XtBuildEventMask, 76
XtButtonBoxAddButton, 126
XiButtonBoxDeleteBuUon, 126
XtC,10, 83
XtCallAcceptFocus, 69
XtCallbackExclusive, 53, 54, 55
XtCallbackHasNone, 81
XtCallbackHasSome, 81
XtCallbackList, 78
XtCallbackNoList, 81

XtCallbackNone, 53, 54, 55
XtCallbackNonexclusive, 53, 54,55
XtCallbackPopdown, 55
XtCallbackProc, 35, 78
XtCallbackRec, 78
XtCallCallbacks, 79, 80
XtCalloc, 35, 106
XtCaseProc, 103
XtCheckSubclass, 15,53, 54,55
XtClass, 15
XtCloseDisplay, 23
XtConfigureWidget, 57,61, 62,63
XtConvert, 91
XtConvertArgRec, 90,129
XtConvertCase, 103,104
XtConverter, 87
XtConvertSelectionProc, 108,109
XtCreateApplicationContext, 20, 21,127
XtCreateApplicationShell, 126, 128, 129
XtCreateLabel, 126
XtCreateManagedWidget, 28, 37, 40
XtCreatePopupShell, 28, 52
XtCreateWidget, 6, 17, 25, 27, 31, 37, 38, 39, 40,
42, 78, 82, 85, 92,96,126
XtCreateWindow, 32, 33
XtCWQueryOnly, 58, 59,60, 61
XtDatabase, 24
XtDefaultBackground, 6, 22, 25, 87, 89
XtDefaultFont, 87, 89
XtDefaultForeground, 6, 22, 25, 84, 87, 89
XtDestroyApplicationContext, 21,23, 36
XtDestroyGC, 35,130
XtDestroyWidget, 20, 31, 34, 35, 37, 39,43, 51
XtDirectConvert, 91
XtDisownSelection, 112
XtDispatchEvent, 34,68, 70, 71, 127
XtDisplay, 33
XtDisplayInitialize, 20, 21, 22, 23,24, 25, 28, 127
XtError, 115, 131, 132
XtErrorHandler, 116
XtErrorMsg, 15, 106,107, 131,132
XtErrorMsgHandler, 114
XtEventHandler, 74
XtExposeProc, 73
XtFree, 27, 35, 84,106, 109,110
XtGeometryAlmost, 58, 60, 61, 63, 64, 93, 95
XtGeometryDone, 58,61
XtGeometryHandler, 60,63
XtGeometry Mask, 59
XtGeometryNo, 49, 58,61,63,64, 93
XtGeometryResult, 58
XtGeometry Yes, 58, 61,63,64,93
XtGetApplicationResources, 86, 91
XtGetErrorDatabase, 130,131
XtGetErrorDatabaseText, 131
XtGetErrorDatbaseText, 131
XtGetGC, 35,107

144

X Intrinsics Xll, Release 3, Oct. 1988

XtGetResourceList, 84
XtGetSelectionTimeout, 130
XtGetSelectionValue, 110, 111
XtGetSelectionValues, 110, 111
XtGetSubresources, 85, 86, 91
XtGetSubvalues, 92,93
XtGetValues, 42, 78, 82, 84, 92
XtGrabExclusive, 53, 54, 55
XtGrabKind, 53
XtGrabNone, 54
XtGrabNonexclusive, 53, 54, 55
XtHasCallbacks, 80, 81
XtIMAll, 70
XtIMAltemateInput, 69, 70
Xtlmmediate, 90, 129
XtIMTimer, 69, 70
XtIMXEvent, 69, 70
Xtlnherit, 18
XtlnheritAccepiFocus, 18
XtlnheritChangeManaged, 18
XtinheritDeleteChild, 18
XtlnheritDisplayAccelerator, 18
XiinheritExpose, 18
XtlnheritGeometry Manager, 18
XtlnheritlnsertChild, 18
XtlnheritRealize, 18
XtlnheriiResize, 18
XtlnheritSetValuesAlmost, 18, 95
XtinheritTranslations, 99
Xtlnitialize, 126, 127, 128, 129
XtlnitProc, 29, 30
XtlnputCallbackProc, 66
XtlnputExceptMask, 66
XtlnputReadMask, 66
XtlnputWriteMask, 66
XtlnstallAccelerators, 101
XtlnstallAllAccelerators, 102
XtlsComposite, 38
XtlsManaged, 41
XtlsRealized, 31
XtlsSensitive, 72
XtlsSubclass, 15, 38
XtKeyProc, 102,104, 121
XtLabelCreate, 126
XtLoseSelectionProc, 109
XtMainLoop, 126, 127
XtMakeGeometryRequest, 20, 57, 58, 59, 60, 61,
64
XtMakeResizeRequest, 57, 60, 64
XtMalloc, 35, 106,107
XtManageChild, 19, 25, 37, 39, 40, 126
XtManageChildren, 31, 37, 39,40, 126
XtMapWidget, 41
XtMergeArgLists, 27
XtMoveWidget, 39, 57, 61, 62
XtN, 9,82
XtNameToWidget, 105

XtNew, 107
XtNewString, 107
XtNextEvent, 126, 127
XtNumber, 26, 28, 105
XtOffset, 83, 85
XtOpenDisplay, 20, 22, 23, 24, 127
XtOrderProc, 38
XtOverrideTranslations, 100
XtOwnSelection, 111, 112
XtParent, 33
XtParseAcceleratorTable, 101
XtParseTranslationTable, 99, 100
XtPeekEvent, 126,127
XtPending, 126, 127
XiPopdown, 49, 55, 56
XtPopdownID, 55
XtPopup, 49, 52, 53,54,67
XtProc, 16
XtProcessEvent, 126, 127
XtQueryGeometry, 63, 64
XtR, 10
XtRAcceleratorTable, 83, 87
XTranslateCoordinates, 113
XtRBool, 83, 87
XtRBoolean, 83, 87
XtRCallback, 79, 83
XtRCallProc, 84
XtRColor, 83, 87
XtRCursor, 83, 87
XtRDimension, 83, 87
XtRDisplay, 83, 87
XtRealizeProc, 31
XtRealizeWidget, 20, 25, 26, 30, 31, 32, 34, 39,
52,53,54,74,77
XtRealloc, 106
XtRegisterCaseConverter, 103
XtReleaseGC, 107, 130
XtRemoveAllCallbacks, 80
XtRemoveCallback, 35, 79, 80
XtRemoveCallbacks, 80
XtRemoveEventHandler, 35, 75
XtRemoveGrab, 55, 67, 68
XtRemovelnput, 66
XtRemoveRawEventHandler, 76
XtRemoveTimeOut, 35, 67
XtRemoveWorkProc, 72
XtResizeWidget, 39, 57, 61, 62, 63,64
XiResizeWindow, 63
XtResource, 82
XtResourceDefaultProc, 84
XtResourceList, 9, 82
XtResourceQuark, 90, 129
XtResourceString, 90, 129
XtRFile, 83, 87
XtRFloat, 83, 87
XtRFont, 83, 87
XtRFontStruct, 83, 87

145

X Intrinsics Xll, Release 3, Oct. 1988

XtRFunction, 83
XtRImmediate, 84
XtRInt, 83. 87
XtRPixel, 83, 87

XtWorkProcId, 72
XT_CONVERT_FAIL, 110

XtRPixmap, 83, 87
XtRPointer, 83
XiRPosition, 83, 87
XiRShort, 83, 87

_XtError, 116,132
_XtInherit, 18
_XtWaming, 117,133

XtRString, 83, 87
XtRTranslationTable, 83, 87
XtRUnsignedChar, 83, 87
XtRWidget, 83
XtRWindow, 83
XtScreen, 33
XtSelectionCallbackProc, 110
XtSelectionDoneProc, 109, 110
XtSetArg, 26,27
XtSetErrorHandler, 132
XtSetErrorMsgHandler, 131
XtSetKeyboardFocus, 68
XtSetKeyTranslator, 102
XtSetMappedWhenManaged, 37, 41
XtSetSelectionTimeout, 130
XtSetSensitive, 52, 54, 55, 71
XtSetSubvalues, 95, 96
XtSetValues, 9, 33, 41, 42, 52, 57, 58, 71, 78, 82,
84,93,94,95,96, 100
XtSetValuesFunc, 94, 95
XtSetWamingHandler, 132
XtSetWamingMsgHandler, 132
XtSMDontChange, 59, 64
XtStringConversionWaming, 89
XtStringProc, 101
XtSuperclass, 15
XtTimerCallbackProc, 67
XtToolkilError, 115, 116, 132, 134
XtToolkitlnitialize, 20, 21, 127
XtTranslateCoords, 113
XtTranslateKey, 102
XtTranslate Key code, 102,103
XtTranslaiions, 100
XtUninstallTranslations, 100,101
XtUnmanageChild, 34, 37, 40,41
XtUnmanageChildren, 31, 37, 40,41, 126
XtUnmapWidget, 36, 41
XtUnrealizeWidget, 34
XtVersion, 13
XtVersionDontCheck, 13
XtWaming, 115,132,133
XtWamingMsg, 88, 132,133
XtWidgetClassProc, 17
XtWidgetGeometry, 59, 60,63
XtWidgeiProc, 35, 36, 38, 39,64
XtWidgetToApplicationConiext, 21
XtWindow, 33
XtWindowToWidget, 113
XtWorkProc, 72

146

Bitmap Distribution Format 2.1

Copyright © 1984, 1987, 1988 Adobe Systems, Inc.

Permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without

fee is hereby granted, provided that the above copyright
notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting

documentation.

Bitmap Distribution Format
1

Table of Contents
1. Introduction *
2. File Format
3. Metric Information ?
4. An Example File 5

Y11
BDF Version 2.1

WMMMMmmmmmi W U —I IM ■ HMMHI ■!

Bitmap Distribution Format ii

Figure 3-1:
Figure 3-2:
Figure 4-1:

List of Figures
An example of a descender
An example with the origin outside the bounding box
A short example file

Xll BDF Version 2.1

T
f

IT
)

Bitmap Distribution Format 1

1. Introduction
This document describes Bitmap Distribution Format (BDF), version 2.1. BDF is an X

Consortium standard for font interchange, intended to be easily understood by both humans and
computers.

2. File Format
Character bitmap information will be distributed in an USASCn encoded, human readable form.

Each file is encoded in the printable characters (octal 40 through 176) of USASCn plus carriage
return and linefeed. Each file consists of a sequence of variable-length lines. Each line is

terminated by a carriage-return (octal 015) and line-feed (octal 012), or by just a line-feed.

The information about a particular family and face at one size and orientation will be contained
in one file. The file begins with information pertaining to the face as a whole, followed by the
information and bitmaps for the individual characters.

A font bitmap description file has the following general form, where each item is contained on
a separate line of text in the file. Items on a line are separated by spaces.

1. The word STARTFONT followed by a version number indicating the exact file
format used. The version described here is number 2.1.

2. One or more lines beginning with the word COMMENT. These lines may be ignored
by any program reading the file.

3. The word FONT followed by the full name of the font. Note that the name
continues all the way to the end of the line, and may contain spaces.

4. The word SIZE followed by the point size of the characters, the x resolution, and
the y resolution of the device for which these characters were intended.

5. The word FONTBOUNDINGBOX followed by the width in x, height in y, and the x
and y displacement of the lower left comer from the origin. (See the examples in
section 3).

6. Optionally the word STARTPROPERTIES followed by the number of properties (p)
that follow.

7. Then come p lines consisting of a word for the property name followed by either
an integer or string surrounded by double-quote (octal 042). Internal double¬
quotes characters are indicated by using two in a row.

8. Properties named font_ascent, font_descent, and DEFAULT_CHAR should be
provided to define the logical font-ascent and font-descent and the default-char for
the font. These properties will be removed from the actual font properties in the
binary form produced by a compiler. If these properties are not provided, a
compiler may reject the font, or may compute (arbitrary) values for these
properties.

9. The property section, if it exists, is terminated by ENDPROPERTIES.

10. The word CHARS followed by the number of character segments (c) that follow.

11. Then come c character segments of the form:

Xll BDF Version 2.1

Bitmap Distribution Format 2

a. The word STARTCHAR followed by up to 14 characters (no blanks) of

descriptive name of the glyph.

b. The word ENCODING followed by a positive integer representing the Adobe
Standard Encoding value. If the character is not a member of the Adobe
Standard Encoding, ENCODING is followed by -1 and an optional integer
specifying the glyph index; if the glyph index is not specified, a compiler
will typically ignore the character segment.

c. The word SWIDTH followed by the scalable width in x and y of character.
Scalable widths are in units of 1/1000th of the size of the character. If the
size of the character is p points, the width information must be scaled by
p/1000 to get the width of the character in printer’s points. This width
information should be considered as a vector indication the position of the
next character’s origin relative to the origin of this character. To convert
the scalable width to the width in device pixels, multiply SWTDTH times
p/1000 times r/72 where r is the device resolution in pixels per inch. The
result is a real number giving the ideal print width in device pixels. The
actual device width must of course be an integral number of device pixels
and is given in the next entry. The SWIDTH y value should always be zero
for a standard X font.

d. The word DWIDTH followed by the width in x and y of the character in
device units. Like the SWIDTH, this width information is a vector indicating
the position of the next character’s origin relative to the origin of this
character. The DWIDTH y value should always be zero for a standard X
font.

e. The word BBX followed by the width in x (BBw), height in y (BBh) and x
and y displacement (BBox, BBoy) of the lower left comer from the origin
of the character.

f. The optional word ATTRIBUTES followed by the attributes as 4

hex-encoded characters. The interpretation of these attributes is undefined
in this document.

g. The word BITMAP.

h. h lines of hex-encoded bitmap, padded on the right with zero’s to the
nearest byte (i.e., multiple of 8).

i. The word ENDCHAR.

12. The file is terminated with the word ENDFONT.

3, Metric Information
Figures 3-1 and 3-2 best illustrate the bitmap format and character metric information.

xo BDF Version 2.1

Bitmap Distribution Format 3

^ BBox

BBw = 9, BBh = 22, BBox = -2, BBoy = -6
Rounded character width = 80

“+” = character origin and width

Figure 3-1: An example of a descender

Xll BDF Version 2.1

Bitmap Distribution Format 4

_^ BBox

BBh = 6, BBw = 4, BBox = +2, BBoy = +12
Rounded character width = 50

Figure 3-2: An example with the origin outside the bounding box

Xll BDF Version 2.1

Bitmap Distribution Format 5

4. An Example File
Figure 4-1 is an abbreviated example of a bitmap file containing the specification of two

characters (the j and quoteright in 3).1

STARTFONT 2.1
COMMENT This is a sample font in 2.1 format.
FONT Helvetica-Bold
SIZE 8 200 200
FONTBOONDINGBOX 9 24 -2 -6
STARTPROPERTIES 2
MinSpace 4
Copyright "Copyright (c) 1987 Adobe Systems, Inc."
ENDPROPERTIES
CHARS 2
STARTCHAR j
ENCODING 106
SWIDTH 355 0
DWIDTH 8 0
BBX 9 22 -2 -6
BITMAP

0380
0380
0380
0380
0000
0700
0700
0700
0700
0E00
0E00
0E00
0E00
0E00
1C00
1C00
1C00
1C00
2C00
7800
F000
E000
ENDCHAR
STARTCHAR quoteright
ENCODING 39
SWIDTH 223 0
DWIDTH 5 0
BBX 4 5 2 12
ATTRIBUTES 01C0
BITMAP
70
70
60
E0
CO
ENDCHAR

ENDFONT

Figure 4-1: A short example file

Helvetica® is a registered trademark of Allied Corporation.

Xll
*U.S. GOVERNMENT PRINTING OFFICE: 1 9 9 0 -27 5 - 5 0 3/2 0 8 2 2

BDF Version 2.1

la

I

I

I.

